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Preface

Preface to the second edition

One technical advance sinee the hirst edition is the possibility of having a
companion web sites and 1 have tried 1o use this to the full. The address
of the companion web site is www oup com/uk/companion/metric Parts
of the first edition have been moved there This makes toom for new
material on standard sufaces. intended both to give a brief introduction
to geomettic topology and also to amplify the section on guotient spaces.
hopefully without losing the advantage of brevity, Also. more explanations
and examples have been added both to the book and on the companion
webh site Accordingly the numbering in the preface 1o the first edition
no longer applies. although the progression of ideas described there is
still toughly followed. To help convey familiavitv, concepts sucli as cdosure
and interior are introduced first for metrie spaces. and then repeated for
topological spaces. | have tried to vary the accompanving exatmples and
exercises to suit the context

I am grateful for the opportunity to update notation and 1eferences

A colleague who liked other aspeets of the finst edition complained
that his students too readily looked at the answers: now as bhefore I have
a concern about students working fron this hook on their own. but I have
moved the answers to a 1estiicted web page.

It is a pleasure to thank anonymous referees for their thoughtful sug-
sostions for improvements: and equally  to thank two  distinguished
ox-students of New College for the comforting advice to change as lit-
te as possible T hope to have steeted a middle course i sesponse to all
this advice Tt is also a pleasiwe to thank several ex-students and other
fricuds for corrections and improvements to this edition

It i~ also more than a pleasure to thank Ruth for many things in
particular her encouragement for wiiting a second edition

Oiford 2008 W AS



vi Preface

Preface to the first edition

One of the ways in which topology has influenced other branches of math-
ematics in the past few decades is by putting the study of continuity and
convergence into a gencral setting. This book introduces metric and topo-
logical spaces by describing some of that influence. The aim is to move
gradually from familiar real analysis to abstract topological spaces; the
main topics in the abstract setting are related back to familiar ground as
far as possible. Apart from the language of metric and topological spaces,
the topics discussed are compactness, connectedness, and completeness.
These form part of the central core of general topology which is now used
in several branches of mathematics. The emphasis is on introduction; the
book is not comprehensive even within this central core, and algebraic
and geometric topology are not mentioned at all. Since the approach is
via analysis, it is hoped to add to the reader’s insight on some basic the-
orcms there (for example, it can be helpful to some students to see the
Heine Borel theorem and its implications for continuous functions placed
in a more general context).

The stage at which a student of mathematics should sec this process
of generalization, and the degree of generality he should see, are both
controversial. I have tried to write a book which students can rcad quite
soon after they have had a coursc on analysis of real-valued functions of
one recal variable, not necessarily including uniform convergence.

The first chapter reviews real numbers, sequences, and continuity for
real-valued functions of one real variable. Most readers will find noth-
ing new therc, but we shall continually refer back to it. With continuity
as the motivating concept, the setting is generalized to metric spaces in
Chapter 2 and to topological spaces in Chapter 3. The pay-off begins in
Chapter 5 with the study of compactness, and continues in later chapters
on connectedness and completeness. In order to introduce uniform con-
vergence, Chapter 8 reverts to the traditional approach for real-valued
functions of a real variable before interpreting this as convergence in the
sup metric.

Most of the methods of presentation used are the common property of
many mathematicians, but I wish to acknowledge that the way of intro-
ducing compactness is influenced by Hewitt (1960). It is also a pleasure to
acknowledge the influence of many teachers, colleagues, and ex-students
on this book, and to thank Peter Strain of the Open University for helpful
comments and the staff of the Clarendon Press for their encouragement
during the writing.

Ozford, 1974 W.AS.



Preface vii

Preface to reprinted edition

I am grateful to all who have pointed out errors in the first printing (even
to those who pointed out that the proof of Corollary 1.1.7 purported to
establish the existence of a positive rational number between any two
real numbers). In particular, it is a pleasure to thank Roy Dyckhoff, Toan
James, and Richard Woolfson for valuable comments and corrections.

Ozford, 1981 W.A.S.
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1 Introduction

In this book we are going to generalize theorems about convergence and
continuity which are probably familiar to the reader in the case of
sequences of real numbers and real-valued functions of one real variable.
The kind of result we shall be trying to generalize is the following: if a
real-valued function f is defined and continuous on the closed interval
[a, b] in the real line, then f is bounded on [a, b], i.e. there exists a real
number K such that |f(z)| < K for all x in [a, b]. Several such theo-
rems about real-valued functions of a real variable are true and useful in
a more general framework, after suitable minor changes of wording. For
example, if we suppose that a real-valued function f of two real variables
is defined and continuous on a rectangle [a, b] X [c, d], then f is bounded
on this rectangle. Once we have seen that the result generalizes from one
to two real variables, it is natural to suspect that it is true for any finite
number of real variables, and then to go a step further by asking: how
general a situation can the theorem be formulated for, and how gencrally
is it true? These questions lead us first to metric spaces and eventually
to topological spaces.

Before going on to study such questions, it is fair to ask: what is the
point of generalization? One answer is that it saves time, or at least avoids
tedious repetition. If we can show by a single proof that a certain result
holds for functions of n real variables, where n is any positive integer,
this is better than proving it separatecly for one real variable, two real
variables, three rcal variables, etc. In the same vein, generalization often
gives a unified mental grasp of several results which otherwise might just
secm vaguely similar, and in addition to the satisfaction involved, this
more efficient organization of material helps some people’s understand-
ing. Another gain is that generalization often illuminates the proof of
a theorem, because to see how generally a given result can be proved,
one has to notice exactly which properties or hypotheses are used at each
stage in the proof.

Against this, we should be aware of some dangers in generalization.
Most mathematicians would agree that it can be carried to an excessive
extent. Just when this stage is reached is a matter of controversy, but the
potential reader is warned that some mathematicians would say ‘Enough,



2 Introduction

no more (at least as far as analysis is concerned)’ when we get into metric
spaces. Also, there is an initial barrier of unfamiliarity to be overcome in
moving to a more general framework, with its new language; the extent
to which the pay-off is worthwhile is likely to vary from one student to
another.

Our successive generalizations lead to the subject called topology. Ap-
plications of topology range from analysis, geometry, and number theory
to mathematical physics and computer science. Topology is a language for
many mathematical topics, just as mathematics is a language for many
sciences. But it also has attractive results of its own. We have mentioned
that some of these generalize theorems the reader has already met for real-
valued functions of a rcal variable. Moreover, topology has a geometric
aspect which is familiar in popular expositions as ‘rubber-sheet geome-
try’, with pictures of doughnuts, Mobius bands, Klein bottles, and the
like; we touch on this in the chapter on quotients, trying to indicate how
such topics are part of the same story as the more analytic aspects. From
the point of view of analysis, topology is the study of continuity, while
from the point of view of gecometry, it is the study of those properties
of geometric objects which are preserved when the objects are stretched,
compressed, bent, and otherwise mistreated—everything is legitimate ex-
cept tearing apart and sticking together. This is what gives rise to the old
joke that a topologist is a person who cannot tell the difference between
a coffee cup and a doughnut the point being that cach of these is a solid
object with just one hole through it.

As a consequence of introducing abstractions gradually, the theorem
density in this book is low. The title of theorem is reserved for substantial
results, which have significance in a broad range of mathematics.

Some exercises are marked * or even ** and some passages are en-
closed between % signs to denote that they are tentatively thought to be
more challenging than the rest. A few paragraphs are enclosed between
» and <« signs to denote that they require some knowledge of abstract
algebra.

We shall try to illustrate the exposition with suitable diagrams; in
addition readers arc urged to draw their own diagrams wherever possible.

A word about the exercises: there are lots. Rather than being daunted,
try a sample at a first reading, some more on revision, and so on. Hints are
given with some of the exercises, and there are further hints on the web
site. When you have donc most of the exercises you will have an excellent
understanding of the subject.

A previous coursc in real analysis is a prerequisite for reading this book.
This means an introduction (including rigorous proofs) to continuity,
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differential and preferably also integral calculus for real-valued functions
of one real variable, and convergence of real number sequences. This
material is included, for example, in Hart (2001) or, in a slightly more
sophisticated but very complete way, in Spivak (2006) (names followed
by dates in parentheses refer to the bibliography at the end of the book).
The expericnce of abstraction gained from a previous course, in say, linear
algebra, would help the reader in a general way to follow the abstraction
of metric and topological spaces. However. the student is likely to be the
best judge of whether he/she is ready, or wants, to rcad this book.






2 Notation and terminology

We use the logical symbols = and < mecaning implies and if and only
if. We also use iff to mean ‘if and only if’; although not pretty, it is
short and we use it frequently. Most introductions to algebra and analysis
survey many parts of the language of scts and maps, and for these we just
list notation.

If an object a belongs to a set A we write a € A, or occasionally
A 3 a, and if not we write a ¢ A. If A is a subset of B (perhaps equal
to B) we write A C B, or occasionally B O A. The subset of elements
of A possessing some property P is written {a € A : P(a)}. A finite
sct is sometimes specified by listing its elements, say {ai, ag, ...,a,}. A
set containing just one element is called a singleton set. Intersection and
union of sets are denoted by N, U, or (), |J. The empty set is written 0.
If AN B = ) we say that A and B are disjoint. Given two sets A and B,
the set of elements which are in B but not in A is written B\ A. Thus in
particular if A C B then B\ A is the complement of A in B. If S is a set
and for each 7 in some set I we are given a subset A; of S, then we denote
by U A;, ﬂ A; (or just U A;, ﬂ A;) the union and intersection of the

i€l i€l
A; over all ¢ € I; for example, in the case of union what this means is

s € U A;, & there exists i € I such that s € A;.
i€l

In this situation I is called an indezing set. We use De Morgan’s laws,
which with the above notation assert

S\J4 =8\ 4, S\ 4 =S\ 4).
1 I I 1

In particular, if the indexing set is the positive integers N we usually write

UA,, ﬂA for |JAi, [)A

ieN ieN

The Cartesian product A x B of sets A, B is the set of all ordered pairs
(a, b) where @ € A, b € B. This generalizes easily to the product of any
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finite number of sets; in particular we use A™ to denote the set of ordered
n-tuples of elements from A.

A map or function f (we use the terms interchangably) between sets
X,Y is written f : X — Y. We call X the domain of f, and we avoid
calling Y anything. We think of f as assigning to cach z in X an element
f(x) in Y, although logically it is preferable to define a map as a pair
of sets X, Y together with a certain type of subset of X x Y (intuitively
the graph of f). Persisting with our way of thinking about f, we define
the graph of f to be the subset Gy = {(z,y) € X xY : f(x) = y} of
XxY.

Wecall f: X — Y injective if f(z) = f(z') = z = 2’ (we prefer this to
‘one-one’ since the latter is a little ambiguous). We should therefore call
f X — Y surjective if for every y € Y there is an x € X with f(z) =y,
but we usually call such an f onto. If f : X — Y is both injective and
onto we call it bijective or a one—one correspondence.

If f: X — Y isamap and A C X then the restriction of f to A,
written f|A, is the map f|A: A — Y defined by (f|A)(a) = f(a) for every
a € A. In traditional calculus the function f|A would not be distinguished
from f itsclf, but when we are being fussy about the precise domains of
our functions it is important to make the distinction: f has domain X
while f|A has domain A.

Iff:X —>Yandg:Y — Z are maps then their composition go f is
the map go f : X — Z defined by (g o f)(z) = g(f(zx)) for each z € X.
This is the abstract version of ‘function of a function’ that features, for
cxample, in the chain rule in calculus.

There are some more concepts relating to scts and functions which we
shall focus on in the next chapter.

We shall occasionally assume that the terms equivalence relation and
countable set arc understood.

We use N, Z, Q, R, C to denote the sets of positive integers, integers,
rational numbers, real numbers. and complex numbers, respectively. We
often refer to R as the real line and we call the following subsets of R
intervals:

(i) la,b) ={zr € R:a <z < b},
(ii) (a,b)={z€eR:a <z <b},
(iii) (@, b ={reR:a <z <b}
(iv) [a,b) ={z €eR:a <z <b},
)
)

—_

—

—

(—o0, b ={z € R:z < b},
(—oo, b)) ={zx e R:z < b},

(v

(vi
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(vii) [a, 0)={z€R:z > a},
(viii) (a, ©0) ={r €eR:z > a},
(ix) (—o0, ) =R.

This is our definition of interval a subset of R is an interval iff it is
on the above list. The intervals in (i), (v), (vii) (and (ix)) are called
closed intervals; those in (ii), (vi), (viii) (and (ix)) are called open in-
tervals; and (iii), (iv) arc called half-open intervals. When we refer to
an interval of types (i)—(iv), it is always to be understood that b > a,
except for type (i), when we also allow a = b. We shall try to avoid
the occasional risk of confusing an interval (a, b) in R with a point
(a, b) in R? by stating which of these is meant when there might be any
doubt.

The rcader has probably already had practice working with sets; here
as revision exercises arc a few facts which appear later in the book. The
last two exercises, involving equivalence relations, are relevant to the chap-
ter on quotient spaces (and only there). They look more complicated than
they recally are.

Exercise 2.1 Suppose that C, D are subsets of a set X. Prove that

(X\C)nD=D\C.

Exercise 2.2 Suppose that A, V are subsets of a set X. Prove that

A\(VNA) =AN(X\V).

Exercise 2.3 Supposc that V, X, Y are sets with V C X C Y and suppose that
U is a subset of Y such that X \ V = X NU. Prove that

V=Xn(Y\U).

Exercise 2.4 Suppose that U, V are subsets of sets X, Y, respectively Prove
that
UxV=(XxV)n({UxY).

Exercise 2.5 Suppose that U, Uy are subscts of a set X and that Vi, Vs are
subsets of a set Y. Prove that

(U x Vi) N (Uz x V2) = (U1 NU) x (Vi N Va).
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Exercise 2.6 Suppose that for some set X and some indexing sets I, J we have
U= U B;; and V = U Bjs where each B;j, Bj; is a subset of X. Prove that
il jeJ

uUnv = U B; ﬂsz.
(i.9)€IxJ

Exercise 2.7 (a) Let ~ be an equivalence relation on a set X. Show that the
corresponding equivalence classes partition X into a union of pairwise disjoint
non-empty subsets {4; : i € I'} for some indexing sct I. (This means that for all
i,j €1, wehave A; C X, A; #0, AinA; =0 fori # j, and | ] A = X).
il

(b) Conversely show that a partition of X into pairwise disjoint non-empty
subsets, say P = {A; : i € I}, determines an equivalence relation ~ on X where
x1 ~ 9 iff ) and x5 belong to the same set A; in P.

Exercise 2.8 Continuing with the notation of Exercise 2.7, let the partition
determined by an cquivalence relation ~ on X be denoted by P(~) and the
equivalence relation determined by a partition P be denoted by ~(P). Show
that ~ (P(~)) =~ and P(~(P)) = P. This shows that therc is a one one
correspondence between equivalence relations on X and partitions of X.



3 More on sets and functions

In the previous chapter we assumed familiarity with a certain amount of
notation and terminology about sets and functions; but some readers may
not yet be as much at easc with the concepts in the present chapter. In
topology the ideca of the inverse image of a set under a map is much used,
so it is good to be familiar with it. If you are at ease with Definitions 3.1
and 3.2 below, then you could safely skip the rest of this chapter. (If in
doubt, skip it now but come back to it later if necessary.)

Direct and inverse images
Let f : X — Y be any map, and let A, C be subsets of X, Y respectively.

Definition 3.1 The (direct or forwards) image f(A) of A under f is the
subset of Y given by {y € Y : y = f(a) for some a € A}.

Definition 3.2 The inverse image f~1(C) of C under f is the subset of
X given by {x € X : f(z) € C}.

We note immediately that in order to make sense Definition 3.2 does
not require the existence of an ‘inverse function’ f~1. Pre-image is pos-
sibly a safer name, but inverse image is morc common so we shall stick
to it. For the same reason, to avoid confusion with inverse functions, at
least one textbook has very reasonably tried to popularize the notation
f ‘4(0) in place of f~1(C), but this has not caught on, so we shall grasp
the nettle and use f~1(C).

A particularly confusing case is f~!(y) for y € Y. The confusion is
enhanced by the notation: f~1(y) should really be written f~!'({y}). It
is the special case of f~1(C) when C is the singleton set {y}. We shall
see examples below in which f~!(y) contains more than onc element. We
follow common usage by writing f~(y) for f~1({y}) except in the next
example.

Example 3.3 Let X = {z,y, 2z}, Y = {1, 2, 3} and define f : X - Y

by f(z) =1, f(y) =2, f(2) = 1. Then we have f({z, y}) = {1, 2},
Flz, 2}) = {1}, f7'({1}) ={z, 2}, and f7'({2,3}) = {y}.
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(a) (b)

Figure 3.1. (a) Graph of f and (b) graph of ¢

As mentioned, we henceforth write f=!({1}) as f~1(1). Note f~!(1) here
is not a singleton set.

Example 3.4 Let X =Y =R and define f: X - Y by f(x) =2z + 3.
The graph of this function is a straight line (see Figure 3.1(a)):
Then for example,

£U0, 1) =3, 5], f((1, %)) = (5, 00), f71([0, 1)) = [-3/2, ~1].

Example 3.5 Again let X =Y = R. Define g by g(z) = 2. The graph
of this function has the familiar parabolic shape as in Figure 3.1(b). Then
for example,

g([O, 1]) = [07 1]’ g([L 2]) = [17 4]7 g({_17 1}) = {l}a
g—l([ov 1]) = [-1, 1]= g_l([lv 2]) = [_\/57 _1]U[17 \/i]’ g_l([O,oo)) =R.

The special case of direct imnage and inverse image of the empty set are
worth noting: for any map f: X — Y we have f(0) = § and f~1(0) = 0:
for example, f~1(0) consists of all elements of X which are mapped by f
into the empty sct, and there are no such clements so f~1() = §.

We now come to some important formulac involving direct and inverse
images. We state thosc about unions and intersections first in the case of
just two subscts.

Proposition 3.6 Suppose that f : X — Y is a map, that A, B are sub-
sets of X and that C, D are subsets of Y. Then:

f(AUB) = f(A)U f(B), f(ANB)cC f(A)N f(B),
fFHeuD)=fHC)u D), fFHCND)=fHC)N fHD).
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Equality does not necessarily hold in the second formula, as we shall
see shortly. There is a more general form of Proposition 3.6.

Proposition 3.7 Suppose that f : X — Y is a map, and that for each i
in some indexing set I we are given a subset A; of X and a subset C; of

Y. Then
f (U Ai> =UJr4),  f (ﬂ A;-) C () f(4)

iel iel iel i€l

o (U&) = ey, <ﬂ Ci) Y

iel i€l iel iel

As a sample of the proof we show that

)

iel iel
(Proofs of the other parts of Proposition 3.7 are on the web site.) First
let z € f7! (ﬂCi) Then f(z) € ﬂC’l, so f(z) € C; for every i € I.
i€l i€l

This tells us that z € f~!(C;) for every i € I, so x € ﬂ f~YHC;). Hence,
i€l

()

i€l i€l
The reverse inclusion is proved by running the argument backwards. Ex-
plicitly, if x € ﬂ f7YC;) then for every i € I we have z € f~1(C;),

i€l
so f(z) € C;. This tells us that f(z ﬂC’z, sox € f~ (ﬂ C,-) as

i€l iel
required.

Next we give results about complements, again preceded by a special
case.

Proposition 3.8 Suppose that f: X - Y isamapand BC X,DCY.
Then

FX\B)2 f(X)\f(B), fHY\D)=X\[f(D).
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This follows by taking A = X, C = Y in the next proposition (for the
second part of Proposition 3.8 we use also f~1(Y) = X).

Proposition 3.9 With the notation of Proposition 3.6,
F(A\B) 2 f(A)\ f(B) and f~Y(C\D)=f"(C)\ f7H(D).

The proof is on the web site.

We now explore Propositions 3.6 and 3.8 further, in order to gain
familiarity. Here are two examples in which f(AN B) = f(A)N f(B) fails
and one in which f(A\ B) = f(A) \ f(B) fails.

Example 3.10 Let X = {a, b}, Y = {1, 2} and f(a) =1, f(b) = 1. Put
A = {a}, B={b}. Then ANB =0, so f(AN B) = . But on the other
hand f(A) N f(B) = {1} # 0.

Example 3.11 Let X = Y = R, define g(z) = z?, and let A = [0, 1),
B = (-1, 0] so that AN B = {0}. Then g(AN B) = {0} but on the other
hand g(A) N g(B) = [0, 1).

Example 3.12 Let X = {z, y, 2z}, Y = {1, 2, 3} and as in Example 3.3
let f(z) =1= f(2), f(y) =2. Put B ={z}. Then f(X \ B) = {1, 2},
but on the other hand f(X)\ f(B) = {2}

The next result is useful later.

Proposition 3.13 Suppose that f : X —» Y is a map, B C Y and for
some indexing set I there is a family {A; : i € I} of subsets of X with
X =; Ai. Then

1B =Jf14) 7' (B).

1

Proof First suppose z € f~1(B). Since X = |J; A; we have z € 4;, for
some iy € I. Then (f|A;,)(z) = f(z) € B, so z € (f|Ai,)~!(B), which is
contained in U(f|A,-)"1(B).

1

Conversely suppose that = € U(f|Ai)*l(B). Then z € (f|4;,) " Y(B)

T
for some iy € I. This says (f|Ai,)(z) € B. But (f|Ai,)(z) = f(z), so
f(x) € B which gives z € f~1(B). O

% We occasionally want to look at sets such as f~1(f(A)) or f(f~1(C));
we look at a few basic facts about these, and explore them further in the
excrceises.
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Proposition 3.14 Let X, Y be sets and f : X — Y a map. For any
subset C C Y we have f(f~1(C)) = CNf(X). In particular, f(f~1(C)) =
C if f is onto. For any subset A C X we have A C f~1(f(A)).

Proof First let y € f(f71(C)). Then y = f(z) for some z € f1(C).
But for such an z we have f(z) € C, so y € C. But also y = f(z) so
y € f(X). Hence y € CNf(X) and we have proved f(f~1(C)) C CNf(X).
Suppose conversely that y € C N f(X). Then y € C, and also y = f(x)
for some z € X. Now for this £ we have f(z) =y € C,so z € f~1(C).
Soy = f(z) € f(f~Y(C)) as required, and we have proved the reverse
inclusion C N f(X) C f(f~4(C)). Thus f(f~1(C)) = C N f(X). When f
is onto, f(X) =Y so f(f~10)) =C.

Secondly, for any a € A we have f(a) € f(A) so a € f~1(f(A)) as
required. a

It is casy to find examples where the inclusion in the last part is strict.

Example 3.15 Following Example 3.10 let X = {a, b}, Y = {1, 2}, and
fla) =1= f(b), A={a}. Then f~'(f(A)) = f~}(1) = {a, b} # A.
Example 3.16 Let X =Y =R and let g(z) = 2. Put A = [0, 1]. Then
97 Hg(4) =g 1([0, 1)) = [-1, 1] # A. *

Inverse functions

We have emphasized that in order for the inverse image f~1(C) to be
defined, there need not exist any inverse function f~!. We now look at
the case when such an inverse does exist.

Definition 3.17 A map f: X — Y is said to be invertible if there exists
amap g:Y — X such that the composition g o f is the identity map of
X and the composition f o g is the identity map of Y.

We immediately get a criterion on f for it to be invertible:

Proposition 3.18 A map f : X — Y is invertible if and only if it is
bijective.

Proof Suppose first that f is invertible and let g be as in Definition 3.17.
Then
f(@) = f(') = g(f(z)) = g(f(2')) = z =2

so f is injective. Also, given any y € Y we have y = f(g(y)) so y € f(X),
which says that f is onto. Hence f is bijective.
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Secondly suppose that f is bijective. We may define g : ¥ — X as
follows: for any y € Y we know f is onto, so y = f(z) for some z € X.
Moreover this z is unique for a given y since f is injective. Put g(y) = «,
and we can see that f and g satisfy Definition 3.17, so f is invertible as
required. O

The last part of the above proof also proves

Proposition 3.19 When f is invertible, there is a unique g satisfying
Definition 3.17. This unique g is called the inverse of f, written f~1.

For given y € Y, in order to satisfy Definition 3.17 we have to choose g(y)
to be the unique x € X such that f(z) =y.

The final result in this chapter is slightly tricky, but it is very useful
for one important theorem later (Theorem 13.26).

Proposition 3.20 Suppose that f : X — Y is a one—one correspondence
of sets X andY and that V C X. Then the inverse image of V under the
inverse map f~1:Y — X equals the image set f(V).

Proof Let us write g : Y — X for the inverse function f~lof f: X — Y.
We want to show for any V C X that g~1(V) = f(V).

First suppose y is in f(V'). Then y = f(x) for some z € V, and this z is
unique since f is injective. By definition of inverse function z = g(y). But
since x € V this gives y € g~ (V). We have now proved f(V) C g~1(V).

Secondly suppose y € g~(V). Then g(y) € V. So f(g9(y)) € f(V). But
g is the inverse function to f, so f(g(y)) = v, and we have y € f(V).
This shows that g~!(V) C f(V). So we have proved g~ }(V) = f(V) as
required.

We may write the conclusion in the following rather mind-boggling
way: (f~1)~1(V) = f(V). The inner superscript —1 indicates the function
f~1is inverse to f, and the outer onc indicates the inverse image of the
set V under that inverse function. m]

Although some textbooks write f~! only when f is invertible, others
take the more relaxed view that if f: X — Y is injective, then it defines
a bijective function f; : X — f(X), and they write f=! : f(X) — X
for the inverse of f; in the sense of Definition 3.17 and Proposition 3.19
above. This is a useful alternative, although we shall stick to the narrower
interpretation.

Of the exercises, 3.5, 3.6, and 3.9 involve the starred section above.
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Exercise 3.1 Let f: X — Y be a map and suppose that A C B C X and that
C C D CY. Prove that f(A) C f(B) CY and that f~{(C)C f~Y(D)C X

Exercise 3.2 Let f: R — R be defined by f(x) = sinz. Describe the sets:

FU0,7/2). £([0.00)), f7H([0,1]), £71([0. 1/2]). F7H([-1, 1]).

Exercise 3.3 Suppose that f: X - Yand ¢g:Y — Z are maps and U C Z.
Prove that (go f)~'(U) = f~H (g~ (U))

Exercise 3.4 Lot f. R — R? be defined by f(x) = (. 2z) Describe the sets:

F([0. 1), 740, 1] x [0, 1]). f Y(D) where D = {(z, y) € R* : 22 + ¢* < 1}

Exercise 3.5 Show that a map f : X — Y is onto iff f(f~'(C)) = C for all
subsets C C Y.

Exercise 3.6 Show that a map f: X — Y is injective iff A = f~1(f(A)) for all
subsets A C X.

Exercise 3.7 Let f© X — Y be a map. For cach of the following determine
whether it is true in general or whether it is sometimes false (Give a proof or a
counterexample for each.)

() Ify. ¥ € Y with y # ¢/ then f~'(y) # f~1(¥).

(i) If y, ¥ € Y with y # ' and f is onto then f='(y) # f~1 ().

Exercise 3.8 Let f : X — Y be a map and let A, B be subsets of X. Prove
that f(A\ B) = f(A)\ f(B) if and only if f(A\ B)N f(B) =0 Deduce that if
f is injective then f(A\ B) = f(A)\ f(B).

Exercise 3.9 Let f: X — Y beamap and A C X, C CY. Prove that
(a) f(ANC = f(ANfH(C)).
(b) if also B C X and f~!(f(B)) = B then f(A)N f(B) = f(AN B).

Exercise 3.10 Suppose that f: X — Y is a map from a set X onto a set Y.
Show that the family of subsets {f~'(y) : y € Y} forms a partition of X in the
sense of Exercise 2.7.






4 Review of some real analysis

The point of this chapter is to review a few basic ideas in real analysis
which will be generalized in later chapters. It is not intended to be an
introduction to these concepts for those who have never seen them before.

Real numbers

Two popular ways of thinking about the real number system are:

(1) geometrically, as corresponding to all the points on a straight line;

(2) in terms of decimal expansions, where if a number is irrational we
think of longer and longer decimal expansions approximating it more and
more closely.

Neither of these intuitive ideas is precise enough for our purposes,
although cach leads to a way of constructing the real numbers from the
rational numbers. The second of these ways is described on the web site.

One approach to real numbers is axiomatic. This means we writc down
a list of properties and define the recal numbers to be any system satisfying
these properties. The properties are called azioms when they are used in
this way. Another approach is constructive: we construct the real numbers
from the rationals. The rational numbers may in turn be constructed from
the integers, and so on—we can follow the trail backwards through the
positive integers and back to set theory. (One has to begin with axioms
at some stage, however.) In either approach the set of real numbers has
certain properties; depending on the approach we have in mind, we call
these properties either axioms or propositions. We shall assume that the
construction of R has already been carried out for us, and we are interested
in its properties.

Many introductions to analysis contain a list of properties of real numn-
bers (see, for example, Hart (2001) or Spivak (2006)). A large number of
these may be summed up technically by saying that the rcal numbers form
an ordered field. Roughly this means that addition, subtraction, multi-
plication, and division of real numbers all work in the way we expect
them to, and that the same is truc of the way in which inequalities z < y
work and interact with addition and multiplication. We shall not review
these propertics, but concentrate on the so-called completeness property.
The reasons for this strange behaviour are, first, that this is the property
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which distinguishes the recal numbers from the rational numbers (and in a
sense analysis and topology from algebra) and secondly that our intuition
is unlikely to let us down on properties deducible from those of an ordered
field, whereas arguments using completeness tend to be more subtle.

To state the completencss property we need some terminology. Let S
be a non-empty sct of real numbers. An upper bound for S is a number z
such that y < z for all y in S. If an upper bound for S exists we say that
S is bounded above. Lower bounds arc defined similarly.

Example 4.1 (a) The set R of all real numbers has no upper or lower
bound.
(b) The set R _ of all strictly negative real numbers has no lower bound,
but for example 0 is an upper bound (as is any positive real number).
(c) The half-open interval (0, 1] is bounded above and below.

If S has an upper bound u, then S has (infinitely) many upper bounds,
since any z € R satisfying = > u is also an upper bound. This gives the
next definition some point.

Definition 4.2 Given a non-empty subset S of R which is bounded above,
we call u a least upper bound for S if

(a) u is an upper bound for S,

(b) z > u for any upper bound x for S.

Example 4.3 In Example 4.1 (b), 0 is a least upper bound for R _. For
0 is an upper bound, and it is a least upper bound because any z < 0
is not an upper bound for R _ (since any such z satisfies /2 > = and
z/2 € R_). Examples 4.1 (c) and (b) show that a least upper bound of a
set S may or may not be in S.

It follows from Definition 4.2 that least upper bounds are unique when
they exist. For if u, u’ are both least upper bounds for a set S, then since u’
is an upper bound for S it follows that u < u’ by leastness of u (‘leastness’
means the property in Definition 4.2 (b)). Interchanging the roles of u and
v’ in this argument shows that also v’ < u, so v’ = u.

Greatest lower bounds are defined similarly to least upper bounds.

We can now state onc form of the completeness property for R.

Proposition 4.4 Any non-empty subset of R which is bounded above has
a least upper bound.

Since our interest is in gencralizing rcal analysis rather than studying
its foundations, we offer no proof of Proposition 4.4. The completeness
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property is quite subtle, and it is difficult to grasp its full significance
until it has been used several times. It corresponds to the intuitive idea
that there are no gaps in the real numbers, thought of as the points on
a straight line; but the transition from the intuitive idea to the formal
statement is not immediately obvious. For some sets of real numbers,
such as Examples 4.1 (b) and (c), it is ‘obvious’ that a least upper bound
exists (strictly speaking, this means that it follows from the properties of
an ordered field). But this is not the case for all bounded non-empty sets
of real numbers—for example, consider S = {z € Q : 2 < 2}: the least
upper bound turns out to be v/2, and we need Proposition 4.4 to establish
its existence indeed, the existence of v/2 cannot follow from the ordered
field properties alone, since Q is an ordered field, but there is no rational
number whose square is 2 (see Exercise 4.5).

For any non-empty subset S of R which is bounded above we call
its unique least upper bound sup S (sup is short for supremum). Other
notation sometimes used is l.u.b. S.

Although the completeness property was stated in terms of sets
bounded above, it is cquivalent to the corresponding property for sets
bounded below. The next proposition formally states half of this equiva-
lence.

Proposition 4.5 If a non-empy subset S of R is bounded below then it
has a greatest lower bound.

Proof Let T'={z € R: —z € S}. The idea of the proof is simply that
[ is a lower bound for S if and only if —[ is an upper bound for 7. The
details are left as Exercise 4.7. a

Just as in the case of least upper bounds, a non-empty subset S of R
which is bounded below has a unique greatest lower bound called inf S
(short for infimum) or g.l.b. S.

The next proposition and its corollary arc applications of the com-
pleteness property.

Proposition 4.6 The set N of positive integers is not bounded above.

Proof Suppose for a contradiction that N is bounded above. Then by
the completeness property therc is a real number u = supN. For any
neN n+1lisalsoin N, son+1 < u. But then n < u — 1. Hence
n<u—1forany n € N, so u— 1 is an upper bound for N, contradicting
the leastness of u. This contradiction shows that N cannot be bounded
above. O



20 Review of some real analysis

Corollary 4.7 Between any two distinct real numbers x and y there is a
rational number.

Proof Suppose first that 0 < z < y. Since y — = > 0, by Proposition 4.6
there is an n in N such that n > 1/(y — z) and hence 1/n < y — z. Let
M ={m € N:m/n > z}. By Proposition 4.6 M # (), otherwise nz would
be an upper bound for N. Hence, since M C N, M contains a least integer
mg. So mg/n > z and (mg — 1)/n < z, from which mo/n < z + 1/n.
Hence z < mo/n < z+1/n < z+ (y —x) = y, and my/n is a suitable
rational number, between z and y. Now suppose that x < 0. If y > 0 then
0 is a rational number between z and y, while if y < 0 then the first case
supplies a rational number r such that -y < r < —z,s0z < —r < y
which says that the rational number —r is between x and y. m|

The above proofs of Proposition 4.6 and Corollary 4.7 assume several
‘obvious’ facts about R which we should really prove beforehand. For
cxample, we deduced n < u — 1 from n + 1 < u, a consequence of the
property often stated as follows: if a, b, ¢ € R and a < b then a+c¢ < b+c.
Also, we assumed that any non-empty subset of N has a least element.
We leave the reader to spot other such assumptions.

Remark 4.8 Between any two distinct real numbers there is also an ir-
rational number (see Ezxercise 4.8).

We conclude this brief review of real numbers by recalling two useful
incqualities, often called the triangle inequality and the reverse triangle
inequality. There are proofs on the web site.

~

Proposition 4.9 |z + y| < |z| + |y| for any z, y in R.

Corollary 4.10 |z —y| > | |z| — |y|| for any z, y in R.

Real sequences

Formally an infinite sequence of real numbers is a map s : N — R. This
definition is useful for discussing topics such as subsequences and re-
arrangements without being vague. In practice, however, given such a
map s we denote s(n) by s, and think of the sequence in the traditional
way as an infinite ordered string of numbers, using the notation (s,) or
81, S9, 83, ... for the whole sequence.

It is important to distinguish between a sequence (s,) and the set of
its members {s, : n € N}. The latter can casily be finite. For example if
(sn) is 1,0, 1, 0, ... then its set of members is {0, 1}. Formally, this is a
matter of distinguishing between a map s : N — R and its image set s(N).
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Sequences can arise, for example, in solving algebraic or differential
equations. On the theoretical side, convergent sequences might be used
to prove the cxistence of solutions to equations. On the practical side,
s, might be the answer at the nth stage in some method of successive
approximations for finding a root of an equation. The only difference
between theory and practice here is that in practice one is interested
in how quickly the sequence gives a good approximation to the answer.
Also, in applications we might be dealing with a sequence of vectors or of
functions instead of real numbers.

We now review real number sequences, emphasizing thosc definitions
and results whosc analogues we shall later study for more general
sequences.

1 2 3 11 1
le 4.11 (a) -, —, —,... b1, ——, =, —=,...
Exampe (d) 2, 37 4, ’ () ’ 2a 47 8’ 3
1 1 11 1 1
S __’_1,_7_a_—'7'—_a'~" 1, 3 Dy ey y Uy Ly Use ey
@35 L-3 13573 1,23 (€) 1,0, 1,0

1
(f) s1=1,8=08,= E(sn—2 + sn—l) for n > 2,

(g) sn is the nth stage in some specified algorithm for approxi-
mating v/2.

In examples (a)—(e), there is a simple formula for s,, in terms of n, which
the reader will spot. This is convenient for illustrating the basic theory of
sequences, but in practice a sequence might be generated by an iterative
process, as in examples (f) and (g), or by the results of a probabilistic
cxperiment repeated more and more often, or by some other means, and
in such cases there may not be any simple formula for s, in terms of n.

In Examples 4.11 (a), (b), (¢) the sequence scems intuitively to be
heading towards a definitc number, whether stecadily, or by alternately
overshooting and undershooting the target, or irregularly, whereas in
Examples 4.11 (d) (e) this is not the case. The mathematical term for
‘heading towards’ is ‘converging’, and the precise definition, as the reader
probably knows, is as follows.

Definition 4.12 The sequence (s,) converges to (the real number) |
if given (any real number) € > 0, there exists (an integer) N such that
|sy — 1| < € for alln > N,.

This is usually shortened by omitting the phrases in parentheses, and
we often write just N in place of Vg, although we need to remember that
the value of N nceded will usually vary with e—intuitively, the smaller ¢
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is, the larger N will need to be. When Definition 4.12 holds, the number [
is called the limit of the sequence. Other ways of writing ‘(s,) converges to
I’ are ‘s, — lasn — 0o’ and ‘ lim s, = I’. Here are two ways of thinking

n—00
about the definition.

(1) (sn) converges to [ if, given any required degree of accuracy, then by
going far enough along the sequence we can be sure that the terms beyond
that stage all approximate ! to within the required degree of accuracy.

(2) Let us take coordinate axes in the plane and mark the points with
coordinates (n, s,). Let us also draw a horizontal line L at height [. Then
(sn) converges to [ if given any horizontal band of positive width centred
on L, there exists a vertical line such that all marked points to the right
of this vertical line lie within the prescribed horizontal band. Figure 4.1
is the kind of picture this suggests. The sequence promises to stay out of
the shaded territory.

Two points are casy to get wrong when one is first trying to wield the
formal definition. First, the order in which £, N occur is crucial: given any
€ > 0 first, there must then be an N, such that ... etc. Secondly, to prove
convergence it is not cnough to show that given £ > 0 there exists an N
such that |s, —I| < € for some n > N: this would be true of the sequence
1,0,1,0,..., withl =0, any € > 0, and N = 1, yet the sequence does
not converge.

The first deduction from the formal definition is an obvious part of the
intuitive idea of convergence.

L - 2¢e

N

Figure 4.1. ‘Graph’ of a convergent sequence
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Proposition 4.13 A convergent sequence has a unique limit.

Proof Suppose that (s,) converges to [ and also to I’ where I’ # [. Put
c= l|l —I'|. Since (s,) converges to [, there is an integer N; such that

|sn — 1| < € for all n > Ny. Similarly, since (sn) converges to I, there is an
integer N2 such that |s,, —I'| < ¢ for all n > Np. Put N = max{N;, Na}.
Then, using the triangle inequality (Proposition 4.9),

=Ul=l—sn+sn—U|<|l—sn|+|sn—U|<2e=]|l-1].
This contradiction shows that I’ = [. |

Before going further it is convenient to state explicitly a technical
detail which is often used in convergence proofs.

Lemma 4.14 Suppose there is a positive real number K such that given
e > 0 there exists N with |s, —1| < Ke for alln > N. Then (s,) converges
tol.

Proof Let e > 0. Then ¢/K > 0, and if the stated condition holds, then
there exists N such that |s, —1] < K(¢/K) =€ for all n > N, as required.
In practice K is often an integer such as 2 or 3; we note that it neceds to
be independent of the choice of e. a

In simple cases such as Example 4.11 (a) we can guess the limit and
prove convergence dircctly. In general, however, it may be hard to guess
the limit, and more importantly there may be no more convenient way to
name a real number than as the limit of a given sequence. As an example
consider:

1 1 1
Sn———l‘l'ﬁ-f‘a-l-...-l-a.
The reader may be able to think of a way to define the number e other
than as the limit of the sequence (s,,), but it will also directly or indirectly
involve taking the limit of this or some other sequence such as (¢,) where
tn = (1+1/n)".

We shall consider two theorems which provide ways of proving con-
vergence without using a known value of the limit. As the above discus-
sion indicates, both will depend heavily on the completeness property
for R.

Definition 4.15 A sequence (s,) is said to be monotonic increasing
(decreasing) if sp+1 = Sn (Sne1 < 8n) for all n in N. It is monotonic
if it has either of these properties.
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Theorem 4.16 FEvery bounded monotonic sequence of real numbers con-
verges.

The proof is on the companion web site. As well as being useful on its
own, Theorem 4.16 helps to prove the next convergence criterion. First we
give a name to sequences in which the terms get closer and closer together
as we get further along in the sequence.

Definition 4.17 A sequence (s,) is a Cauchy sequence if given € > 0
there exists N such that if myn > N (i.e. if m > N and n > N) then
|$m — sn| < €.

Theorem 4.18 (Cauchy’s convergence critcrion) A sequence (sy) of real
numbers converges if and only if it is a Cauchy sequence.

Proof Suppose that (s,) converges to [. Then given £ > 0, there exists
N such that |s, — | < € for all n > N, so for m, n > N the triangle
inequality gives

[$m — Sn| = |8m — L+ 1 — sn| < | — | + |l = 85| < 2¢.

Hence (s;,) is a Cauchy sequence (cf. Lemma 4.14).

Suppose converscly that (sy,) is a Cauchy sequence in R. We show first
that (s,) is bounded. Take ¢ = 1, say, in the Cauchy condition. Thus
there exists an IV such that m, n > N imply |sm — sp| < 1, so for any
m > N we have |s,, — sy| < 1, and hence, using the triangle incquality,

|3m|=|3m_sN+3N,< ,sm_'le'i_lle <1+ISN|'

From this we get |sp| < max{|si|, |s2, ... |sn—1], 1 + |sn]|} for all n, so
($n) is bounded. (We could have used any fixed positive choice of € in
place of 1 in this part of the proof for example, 101 or 10719.)

Next, in order to use Theorem 4.16, we manufacture a monotonic
sequence out of (s,) in the following subtle fashion. For each m € N we let
Sm be the sct of members of the sequence from the mth stage onwards,
Sm = {sn : n = m}. Since the whole set of members S = S; of the
sequence is bounded, so is Sy,,. Hence by the completeness property sup S;,
exists. Let t,, = sup Sy,. Since Sp,+1 C S, we have sup Sp,41 < sup Sy,
(sce Exercise 4.1). Thus the sequence (¢n,) is monotonic decreasing. Also,
tm = $m by definition of ¢,,, and S is bounded below, so (¢,,) is bounded
below. So by Theorem 4.16, (t,,) converges, say to [.

Finally we prove, by a 3e-argument, that (s, ) also converges to [. Given
€ > 0 there exists N such that |s, — sp| < € for m, n > Nj and there
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exists Nz such that |l —t;,| < e for m > Na. Put N = max{Nj, Na}. Since
¢y is sup S, we know that ty — ¢ is not an upper bound of Sy, so there
exists M > N such that sy > tn — €; also, sy <ty since sy € Sy and
tn is an upper bound for Sy. Hence |sp — tn| < e. Now for any n > N,
using the triangle inequality twice,

lsn"'” = lsn—sM+sM—tN+tN—ll < |sn—sm|+|sm—tn|+|tn—1| < 3e.

Hence (sp) converges to [ (using Lemma 4.14). a

There is a further result about sequences which we record here for later
reference: it is a version of the Bolzano—Weierstrass thcorem.

Theorem 4.19 Fvery bounded sequence of real numbers has at least one
convergent subsequence.

There is a proof on the web site.

Before leaving sequences we recall that their limits behave well under
algebraic operations in the following sense.

Proposition 4.20 Suppose that (sp), (tn) converge to s, t. Then
(a) (sn +t,) converges to s +t,
(b) (Sntn) converges to st,
(¢) (1/tn) converges to 1/t provided t # 0.

A few particular limits which we need are included in the exercises
below.

Limits of functions

Limits of functions arc used in the theoretical study of continuity, differ-
entiability, and integration, and in practical estimates of the bchaviour of
particular functions.

Suppose first for simplicity that we have a function f : R — R. (In
general the domain could be smaller.) Let a € R.

Definition 4.21 We say that f(z) tends to the limit [ as z tends to a,
and write lim f(x) =, if given (any real number) € > 0 there exists (a
r—a

real number) § > 0 such that |f(x) — | < € for all real numbers & which
satisfy 0 < |z —a| < 6.

This is similar to the definition of convergence of a sequence (s;), but
instcad of looking at s, for large values of n, we look at f(z) for z close
to, but not equal to, a. Again the phrases in parentheses are usually
omitted, and we note that the size of § needed will in general depend
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on €. The value f(a) is irrelevant to the existence of lim f(z),
r—a

and the limit, if it exists, may or may not equal f(a). Exercise 4.12
is a good test of whether this important point has been fully absorbed.

Example 4.22 Let f: R — R be given by

flz)=xz forx#0, f(0)=1.

Then lin%) f(z) =0. For given € > 0, put d = €. If 0 < |z — 0] < §, then
L
|f(z) — 0] = |z| < ¢, as required.
To emphasize further that f(a) is irrelevant to the existence or value
of lim f(z), we note that Definition 4.21 makes sense even if f(a) is not
r—a

defined—it is enough to assumne that f is defined on some subset A C R,
where A contains numbers arbitrarily close to (but not equal to) a. We
shall not study this general case, but we note two especially uscful ways of
generalizing Definition 4.21. Suppose first that the domain A of f contains
the open interval (a, d) for some d > a.

Definition 4.23 The right-hand limit lim+ f(x) is equal to 1 if given
r—a
€ > 0 there exists 6 > 0 such that |f(z) — 1| < € for all z in (a, a + §).

(Note that § may be chosen small enough so that (a, a + ) C (a, d),
and therefore f(z) is defined for all z in (a, a + §).) Left-hand limits are
defined similarly.

Next, hcre are two examples much used in illustrating theoretical
points.

Example 4.24 Let f, g: R\ {0} — R be given by
f(z) = zsinl/x, g(z) =sinl/z.

Then lirr(l) f(z) =0, while lin% g(z) does not exist.
Tr— T

The proofs are left as Exercise 4.14.

Results about limits of functions may be proved by analogy with the
proofs about sequences or we may deduce them from the latter using the
following conversion lemma.

Lemma 4.25 The following are equivalent:
(i) lim f(z) =1,
r—a

(i) if () is any sequence such that (x,) converges to a but for all n
we have x, # a, then (f(z,)) converges to l.
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a

Figure 4.2. Intermediate value property

The proof is on the web site. One may also prove analogues of Theo-
rem 4.18 and Proposition 4.20 for limits of functions, and for left- and
right-hand limits.

Continuity

In this section we revicw the way in which a precise definition of continuity
is derived from the intuitive notion. We first make a falsc start.

One statement containing something of the intuitive idea of continuity
is that a function is continuous if its graph can be drawn without lifting
pencil from paper. To formulate this more mathematically, let f: R — R
be a function and let (a, f(a)), (b, f(b)) be two points on its graph (sce
Figure 4.2).

Let L be the horizontal line at some height d between f(a) and f(b).
Then to satisfy our intuition about continuity, the graph of f has to
cross the line L at least once on its way from (a, f(a)) to (b, f(b)). In
other words, there exists at least one point ¢ in [a, b] such that f(c) =d.
Formally, we make the following definition.

Definition 4.26 A function f : R — R has the intermediate value prop-
erty (IVP) if given any a, b, d in R with a < b and d between f(a) and
f(b), there exists at least one ¢ satisfying a < ¢ < b and f(c) = d.

This definition also applies when the domain R in Definition 4.26 is
replaced by an interval in R.

A tentative definition of continuity would be that f is continuous if it
has the IVP. However, this fails to capture completely the intuitive idea
of continuity, as the next example shows.
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Example 4.27 Let f be given by

0 for z < 0,
sinl/z for z > 0.

fz) =

Part of the graph of f is shown in Figure 4.3.

Although we shall not prove it now, it is easy to believe by inspection
that f does have the IVP. But f does not satisfy our intuitive requirements
for a continuous function something is wrong near « = 0. On closer
scrutiny, we realize that our intuition includes the requirement that for all
values of x near 0, f(z) should be reasonably close to f(0), not oscillating
with amplitude 1 as it does in this example. More precisely, the reason
we are dissatisfied with f is that alcl_% f(z) does not exist. Considerations

such as these lead to the accepted definition.
Definition 4.28 A function f : R — R is continuous at a if lim f(z)
r—a

exists and is f(a).

Using Definition 4.21 this translates into € — § form.

Definition 4.29 A function f : R — R s continuous at a if given any
e > 0, there exists § > 0 such that |f(z) — f(a)| < € for any = such that
|z —a] < 4.

As usual, the size of § needed in general depends on €, though we do not
cxhibit that in the notation.

A third way of expressing continuity of a function f is to say that
zlﬂl f(z) and xErgl+ f(z) both exist and both equal f(a). This has the
advantage of identifying the ways in which continuity at a might fail: the
left-hand limit, or the right-hand limit of f at a (or both of these) might
fail to cxist; or both left- and right-hand limits exist, but at least one of
them fails to equal f(a). (In this last case we say that f has a simple jump
discontinuity at a.)

—_—

0.
AV,

Figure 4.3. Graph of sinl/z

-1
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fla)+e /_\/
fla) | = - -

fla)—e - / o

a—6 a a+d

Figure 4.4. Continuity at ¢

Here are two ways of thinking about continuity of f at a.

(1) In terms of approximations: we can ensure that f(z) approximates
f(a) within any prescribed degree of accuracy by choosing z to approxi-
mate a sufficiently accurately.

(2) Geometrically: given a horizontal band of any positive width 2e
centred on height f(a), we can choose a vertical band of some suitable
width 26 centred on x = a such that the part of the graph of f in this
vertical band is also in the horizontal band (see Figure 4.4): if an aeroplane
is flying at 10000 ft at time ¢ = a then it is between 9000 ft and 11000 ft for
a non-zcro time interval around ¢ = a, unless it is capable of discontinuous
flight.

The same idea motivates the next result.

Proposition 4.30 Suppose that f : R — R is continous at a € R and
that f(a) # 0. Then there exists 6 > 0 such that f(z) # 0 whenever
|z —a| < 4.

Proof Take e = |f(a)|/2 in Definition 4.29. Then there exists § > 0 such
that |f(z) — f(a)| < |f(a)|/2 whenever |z — a| < 4. For such z, using the
reverse triangle inequality (Corollary 4.10) we get

@) = |f(@)~(f(@)~F@))] > |f(a)l-|f(@)-F(@)| > |f(@)]-If(@)/2 > O,
so f(z) # 0. 0

In view of such results, continuity is sometimes called ‘the principle of
inertia’.
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As in the definition of lim f(x), it is not necessary for f to be defined
r—a

on all of R for the definition of continuity of f at a to make sense. It is
certainly cnough for f to be defined on some open interval I containing
a, since then in Definition 4.29 we can take § small enough so that x € I
whenever |z —a| < 8. Also, we say that f is continuous at a from the right
(or the left) if IEIB+ f(x) (or Il_lgl_ f(x)) exists and equals f(a).

Examples of continuous functions

In this section we review how to build up many examples of continuous
functions. If f, g : R — R are functions then we can define functions
|fl. f +9, f-g: R — R by the formulae

|fl(2) = [f ()], (f+9)(z) = f(z)+g(z), (f.9)(x) = f(x)g(z) for allz € R.
Also. if Z = {z € R: g(x) = 0}, ‘the zcro set of ¢’, then we may define
1/g: R\ Z > Rby (1/g)(z) = 1/g(z) for all z € R\ Z.

Proposition 4.31 Suppose that f, g : R — R are continuous at a € R.

Then so are (a) |f|, (b) f+gand (c) f.g. (d) If g(a) # O then 1/g is
continuous at a.

Proof (a) Let e > 0. We know there exists § > 0 with |f(z) — f(a)| <€
whenever |z — a| < §. Then using the reverse triangle incquality (Corol-
lary 4.10), whenever |z — a| < § we have

1F (=) = [fl(@)] = [If (@) = | fla)l| < |f(z) - fla)l <&
so | f| is continuous at a.

(b) For € > 0 there exists §; > 0 such that |f(z) — f(a)] < &/2
whenever |z — a| < 61, and d2 > 0 such that |g(z) — g(a)| < £/2 whenever
|z — a| < d2. Let § = min{d,, d2}. Then whenever |z — a| < §, we have

I(f +9)(x) = (f + g)(a)| = |f(z) ()+9( )— g(a)|
<|f(@) = fla)l +|g(z) — gla)| <e/2+e/2=¢.
so f + g is continuous at a.

(¢) For the proof that f.g is continuous at a € X when f and g are,
it makes sense to ‘begin at the end’. We are going to use a trick way of

writing f(x)g(x) - f(a)g(a), as f(z)(g(x) - g(a)) + (f(x) — f(a))g(a) (the

roles of f and g could be exchanged). From this we see

|f(x)g(z) — fla)g(a)| = | (z)(g(x) — g(a)) + (f(z) — f(a))g(a)l
<|f(x ||9 z —g(a)l +1/(2) — f(a)llg(a)l-

We know that |f(z) — f(a)| is small when | — a| is sufficiently small,
and |g(a)| is a constant so gives no trouble—given £ > (0 we may choose
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6, > 0 such that |f(z) — f(a)| < €/2(|g(a)| + 1) whenever |z — a| < é;.
[The extra 1 is added on the denominator just to avoid making a special
case when g =0.] So |f(z) — f(a)|lg(a)| < £/2 whenever |z — a| < §;.
But |f(z)||g(x ) g(a)] is %hghtly more awkward to deal with since |f(z)|
varies. However, it does not vary too wildly near a since f is continuous
at a: there exists d2 > 0 such that | f(z) — f(a)| < 1 whenever |z —a| < d2,
so for all such z, we have |f(z)| = |f(z) — f(a) + f(a)] < 1+ |f(a)| by
the triangle inequality. Finally, by continuity of g at a there exists d3 > 0
such that |g(z) — g(a)] < €/2(1 + |f(a)|) whenever |z — a| < d3. Put
§ = min{d;, 2, d3}. Then for any z with |z — a| < § we have

f(z)g(x) = fla)g(a)l < |f(z)llg(z) — g(a)| + | f(z) — f(a)llg(a)l

(1 +1f(a)])e £lg(a)]
2001+ 1f(a)) * 2(lg(a)] + 1)

<e/2+¢e/2=¢.

So f.g is continuous at a € X.

(d) First we note that by continuity of g at a, there is an open
interval containing a on which 1/g is defined because g is never zero
(see Proposition 4.30). Now beginning at the end again, we are going to
use

\ 11| le(a) — (@) )
g9(z) gla)|  |g(z)[lg(a)l

We know that |g(z) — g(a)| is small when |z — a| is small, and |g(a)|
is a non-zero constant, so it is easy to handle. But |g(z)| varies, and
might ‘come dangerously close to 0°, so that i might become large. We
get around that as follows. By continuity of g at a, there exists §; > 0
such that |g(z) — g(a)| < |g(a)|/2 whenever |z — a| < §;. For all such
we have, using the reverse triangle inequality (Corollary 4.10.),

l9(z)| = [(g(a) — (g(a) — g(2))| > |g(a)| - |g(a) — g(@)| > |g(a)|/2.

Continuity of g at a gives do > 0 such that |g(z) — g(a)| < €|g(a)|?/2
whenever |z — a|] < 2. Put § = min{d;, d2}. Then using (i) above, for
any r with |z — a| <4,

11| lg@) —g(@)l _ Jg(x) - g(a)
|

‘g(:r) g(a)|  lg(@)llgla)l ~ lg(a)]?/2

So 1/g is continuous at a. O

<e.
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The above proofs can be shortened by hiding the secrets of how they
are constructed. To illustrate the shorter version, and to see how to
reasscmble the proof forwards, here is a rabbit-out-of-a-hat proof
of (c):

Proof of (c) Let ¢ > 0. By continuity of f at a, there exists §; > 0
such that |f(z) — f(a)] < €/2(|g(a)] + 1) whenever |z — a| < 6;. Also by
continuity of f at a, there exists d2 > 0 such that |f(x) — f(a)| < 1, and
hence |f(z)| < 1+|f(a)|, whenever |z —a| < d2. Finally, by continuity of g
at a there exists 63 > 0 such that |g(z) —g(a)| < €/2(1+|f(a)|) whenever
|z — a| < 3. Put § = min{d,, b2, d3}. Then for any = with [z —a| < § we
have

|f(2)g(z) — fla)g(a)l < |f(2)llg(z) — g(a)| + |/ (z) — fla)llg(a)] <e.

O

We can use Proposition 4.31 and induction to see that other real-valued
functions are continuous.

Proposition 4.32 (i) Lel p: R — R be the ‘polynomial function’ defined
by p(z) = anz™ + an_12"" ' 4+ ... + a1z + ag where the a; are constants.
Then p is continuous.

(it) Let r : R\ Z — R be the rational function z — p(x)/q(x) where
p and q are polynomial functions and Z is the zero set of q. Then r is
continuous on R\ Z.

Proof For (i), it is easy to check that the map = +— z is continuous on
R, and so too is any constant function. Next we show inductively that
x — " is continuous on R for any n € N. The case n = 1 is continuity
of x — z. Suppose inductively that z — z" is continuous on R. Then
using (c) of Proposition 4.31, z — z.z"™ = 2™*! is continuous on R. Hence
by induction, x — x" is continuous for any positive integer n. Since the
constant map r — a, is also continuous on R, another application of
(c) shows that x — a,x™ is continuous on R. Now an easy induction on
(b) shows that any polynomial function is continuous on R. For (ii), an
application of (d) shows that  — 1/g(z) is continuous on R\ Z, and then
(c) shows that z — p(z)/q(z) is continuous on R\ Z. O

Proposition 4.33 Suppose that f : R — R and g : R — R are such
that f is continuous at a € R, and g is continuous al f(a). Then go f is
continuous at a.

Proof Let e > 0. By continuity of g at f(a) there exists 6; > 0 such that
lg(y)—g(f(a))| < € whenever |y— f(a)| < é1. By continuity of f at a, there
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exists 02 > 0 such that |f(z) — f(a)| < é; whenever |z — a| < 2. Now for
any z with |z—a| < &2 we have | f(z)— f(a)| < 150 |9(f(2))—g(f(a))| <e.
This shows that g o f is continuous at a. 0O

Like Proposition 4.31, this result helps build up a store of continuous
functions, especially when used in conjunction with continuity of spe-
cific functions such as the exponential and log functions, cosine and sine
functions, and the like, whose continuity propertics we know from analy-
sis (see for example 7.4 of Hart (2001) or Part III of Sp1vak (2006)). So
functions such as z — sin(z? + 3z + 1), z > ™%, g > ¢ 10T

nuous on R.

are conti-

% Herc is a more general approach to continuity for real-valued functions
of a real variable.

Definition 4.34 Let f : X — R be a function defined on a subset X C R
and let a € X. We say f is continuous at a if given € > 0 there exists
§ > 0 such that | f(z) — f(a)| < € whenever |x —a| < § and x € X.

The more general analogue of Proposition 4.31 can be proved similarly;
after each occurrence of the phrase ‘whenever |z — a| < 8’ we just insert
‘and z € X’. This is a special case of the later Proposition 5.17. %

In connection with the false start we made on defining continuity, the

following theorem, usually called the intermediate value theorem, is true.

Theorem 4.35 Any continuous function f : R — R has the IVP. The
same s true for a continuous function f : I — R for any interval 1
mn R.

We could give the proof now, using the completeness property, but
before proving this and other basic results about continuity we raise the
stakes by generalizing to functions between more general ‘spaces’ than
subsets of R. The motives for this were mentioned in the introduction.

Exercise 4.1 Show that if # 2 A C B C R and B is bounded above then A is
bounded above and sup A < sup B

Exercise 4.2 Show that if A and B are non-empty subscts of R which are
bounded above then AU B is bounded above and

sup A U B = max{sup A, sup B}

Exercise 4.3 Formulatc and prove analogues of Exercises 4.1 and 4 2 for inf.
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Exercise 4.4 For each of the following subsets of R find the sup if it exists, and
decide whether it is in the set-

{z:2? <2z —1}. {£:o? + 22 < 1},
{x:2® <8}, {z . zsinz < 1}.

Exercise 4.5 Show that there is no rational number g such that ¢ = 2.
[Hint. express g as a quotient of integers m/n where m. n are mutually prime,
and show that m? = 2n? leads to a contradiction.]

Exercise 4.6* Show that if 7 and n are positive integers with highest common
factor 1, then m/n is the square of a rational number if and only if rn and n are
both squares of integers.

Exercise 4.7 Deduce from the completeness property Proposition 4.4 that a
non-empty sct of rcal numbers which is bounded below has a greatest lower
bound.

Exercise 4.8 Prove that between any two distinct real numbers there is an
irrational number.

Exercise 4.9 Prove that if y, o are real numbers with y > 1 then n*/y™ — 0
as n — 0o.
[Hint: use the binomial expansion of (1 4+ z)™ where y = 1 + z.]

Exercise 4.10 Prove that lim n'/" = 1.
n—oo

[Hint: Put n'/® = 1 4 a,, and note that a, > 0 for n > 1 Using (1 + a,,)" = n,
deduce that n — 1 > n(n — 1)a2 /2 for n > 1 and hence 0 < a2 < 2/n.]

Exercise 4.11 Given a set of 7 non-ncgative real numbers {a, az, ..., a,}, let
a = max{ai, ag, ..., ar}. Prove that for any positive integer n,

a" <al+ay +. .+al <ra™
By taking nth roots throughout, deduce that
a<(af +al +...4+a")" < rt/n,

and hence that lim (a7 + a8 +.. +a®)¥/"

n—o

= a.

Exercise 4.12 Give an cxample where f(z) — bas x — a and g(y) — ¢ as
y—bbut g(f(z)) Acasx —a
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Exercise 4.13 (a) Prove that for any y, 2z in R,
1 1
max{y, z}—2 y+z+ly—z|), min{y, z}—2 y+z—|y—z|).

(b) Given that f, g : R — R are continuous at a, prove that h and k are
continuous at ¢ € R, where for any z in R

h(z) = max{f(z), g(z)}, k(z) = min{f(x), g(z)}.
Exercise 4.14 Let f, g "R\ {0} — R be given by
f(z) =xsinl/z, g(z) =sinl/z.
Prove that ;li% f(z) =0, while ;13}) g(z) does not exist.

Exercise 4.15 Let f: R — R be given by

_J0, x € Q,
f(x)—{l’ o

Show that f is not continuous at any point in R.

Exercise 4.16* Let f : R — R be given by

(@) 0 if x=0o0rz¢gQ,
xT) =
1/q if x =p/q, p, q integers with highest common factor 1, ¢ > 0.

Prove that f is discontinuous at any non-zero a in Q, but continuous at 0 and
at any irrational ¢ in R
Exercise 4.17* A function f : R — R is said to be convez if

fOz+ (1= Xy) <Af(z)+ (1= A)f(y)

for all z, y in R and all A in [0, 1]. Prove that any convex function is continuous.

Exercise 4.18** For any function f : R — R show that the set of points a € R
at which f has a simple jump discontinuity is countable.






h Metric spaces

In this chapter we begin to study metric spaces. These are a bit more
concrete than the topological spaces that we shall study later, but they
give valuable pointers for the more abstract material. They are also related
to analysis and geometry in intuitively appealing ways.

Motivation and definition

The motivation for metric spaces comes from studying continuity. We
begin by rephrasing Definition 4.29 using more English and no Greck: a
real-valued function of a real variable is continuous at a if we can make
the distance |f(z) — f(a)| between f(z) and f(a) as small as we pleasc
by choosing z so that the distance |z — a| between z and a is sufficiently
small. (The reader is reminded that the terms function and map are in-
terchangeable. We tend to use the former when dealing with functions
of real variables, in which case this terminology is long established, and
the latter when dealing with maps between more general scts.) Next let
us consider a real-valued function f of two real variables. We again get
a definition corresponding to our intuitive idea of continuity by changing
the above wording very slightly: f is continuous at a point (a, b) in R?
if we can make the distance between f(z, y) and f(a, b) as small as we
please by choosing (z, y) so that its distance from (a, b) is sufficiently
small. We may recover an € — ¢ form of this definition by using the for-
mulae for the distances involved. Since f(z, y) and f(a, b) are real num-
bers (f is rcal-valued) the distance between them is |f(z, y) — f(a, b)|.
Since (z, y) and (a b) are points in the plane, the distance between them
is \/ (z—a)2+(y—> 2] where as always this means the non-negative
square root. Thus f :R? = R is continuous at (a, b) if given € > 0 there
exists § > 0 such that | f(z, y) — f(a, b)| < € for all (z, y) in R? satisfying
Vi —a)?+(y -7 <s.

Now given any positive integer n lct us try to define continuity for a
real-valued function f of n rcal variables, f : R® — R. We shall denote
a point in R™ by « = (zy, z9, ..., ). By analogy with our previous
definitions we may try writing: f is continuous at a = (ay, ag, ..., ap) if
the distance between f(z) and f(a) can be made as small as we please by
choosing z so that the distance between = and a is sufficiently small. Let
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us sce if this means anything. Since f(z) and f(a) are real numbers, the
distance between them is | f(z)— f(a)|. However, continuity for f : R — R
at a does not make sense (for n > 3) until we find a suitable meaning for
‘the distance between x and a in R™ for general n.

Such a meaning is not hard to guess when we look at the particular
casesn =1, 2, 3. When n = 3 and x and a are points in Euclidean 3-space,
the distance between them is \/[(z1 — a1)? + (72 — a2)? + (z3 — a3)?]. We
have already used similar formulae for n = 1 and n = 2. (For the case
n = 1 note that |z; —a1| = v/(z; — a1)?.) It is therefore plausible to define
‘the Euclidean distance between (z1, 22, ..., z,) and (a1, ag, ..., ay)’ to
be

Sw]

1=1

Definition 5.1 A function f : R®™ — R is continuous at a point a € R",
say a = (a1, a2, ..., @), if given € > 0 there exists § > 0 such that
|f(z) — f(a)| < € for every x = (z1, x9, ..., Tn) satisfying

n
[Z(l’z — ai)2] < 9.
i=1

For general n this does not have any graphical interpretation except by
analogy with the cases n = 1 and n = 2. However, it still has familiar
physical interpretations. It often happens that some physical quantity
depends on several variables. For example, the energy of a given solid
body in a gravitational field depends on its height, its linear velocity, and
its angular velocity, and these may be described by seven real variables.
Continuity in the sense of Definition 5.1 for the function giving the energy
in terms of these seven variables means that if the variables are altered
slightly the energy changes only slightly.

Now let us try generalizing one step further. The way in which we
arrived at Definition 5.1 suggests a plausible definition of continuity for
any map f : X — Y provided that we can give an adequate meaning to
‘the distance between’ any two clements or points in X and likewise for
any two points in Y. Formally, a function giving the distance between any
two points of a set X will be a map d : X x X — R, since for any two
points z, y of X it should give a real number (the distance between x and
y). What properties should this distance function, or metric d have? The



Metric spaces 39

d(z, 2)

y . Z

Figure 5.1. Triangle inequality in Euclidean space

choice of these was probably historically a matter of trial and error, but
we shall go straight to the historical winners: we pick out some properties
of Euclidcan distances in the line, plane, and 3-space, and then use them
as the axioms for a general metric space.

First, the distance between two points is greater than zero except when
the points coincide:

(M1) for all z, y € X, d(z, y) > 0; and d(z, y) =0 iff x = y.

Secondly, the distance from y to z is the same as the distance from z
to y:

(M2) (Symmetry) for all z, y € X, d(y, ) = d(z, y).
Finally we use the triangle inequality
(M3) for all z, y, z € X, d(z, 2) < d(z, y) + d(y, 2).

Geometrically this says: in any triangle, the length of a side is less than or
equal to the sum of the lengths of the other two sides. This is familiar in
the plane or in 3-space (sce Figure 5.1); in the line, the ‘triangle’ collapses
and we have Proposition 4.9.

It turns out that any function d satisfying just these three properties
is similar enough to Euclidean distance for a lot of our geometric intuition
about distances to work, so we formalize this into the definition of a metric
space.

Definition 5.2 A metric space consists of a non-empty set X together

with a function d : X x X — R such that (M1), (M2), and (M3) above
hold.

We often just talk about ‘the metric space X’ for short, but there is
always a metric d attached to it, which we name only when necessary. The
elements of X are called ‘points’ of the space, and d is called the mectric or
the distance function. Note that the set X is assumed to be non-empty.
The choice between this and allowing the empty set is a matter of swings
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and roundabouts- -there are advantages and disadvantages in each. We
have chosen the non-empty option because if we allow the empty set, then
some later results would neced certain spaces to be non-empty in a context
where it would be easy to forget to say so.

» At this point readers familiar with vector spaces may refer to the
web site for the definition and examples of a concept which lies between
Euclidean spaces and metric spaces in degree of generality, that of a
normed vector space. Any norm on a vector space gives rise to a met-
ric on it. Many of the metric spaces below arc actually normed vector
spaces. <

Before giving examples of metric spaces, we follow the train of thought
that led us to them by defining continuity in this context.

Definition 5.3 Suppose that (X, dx) and (Y, dy) are metric spaces and
let f: X —Y be a map.

(a) We say f is continuous at zg € X if given € > 0, there exists § > 0
such that dy (f(z), f(xo)) < &€ whenever dx(z, zo) < 4.

(b) We say f is continuous if f is continuous at every zg € X.

When there are other metrics around we say ‘f is (dx, dy )-continuous’.

Examples of metric spaces

We shall look at several examples of metric spaces, to get familiar with the
definition and to explore its scope. The cxtent to which metric spaccs arc a
fruitful generalization of Euclidean spaces depends largely on how many
interesting cxamples there are of metric spaces. Some of our examples
are designed to illustrate phenomena internal to metric space theory, but
others are of interest in analysis. The first example is the one from which
we abstracted the definition.

Example 5.4 Euclidean n-space (R™, d2) where for

z = (x1, T2, ..., Tp)andy = (Y1, Yo, ..., Yn), do(x, ¥) =

It is easy to see that (M1) and (M2) are satisfied. In order to check (M3),
let z = (z1, 22, ..., 2p), let all summations be over i = 1,2, ..., n and
write x; — y; = 14, ¥i — 2; = 8;. Then we have to prove

() () > (Do 02)
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Since both sides are non-necgative, it is equivalent (squaring both sides)
to prove

ZT?+ZS%+2(ZT?)% (Zsf)% 22r1~2+23?+22n3i.

This in turn is equivalent to proving Cauchy’s inequality,

() () 2 (Xrs)

The reader may have seen a proof of this inequality before. One proof is
on the web site.

When we consider R™ as a metric space, this Euclidean metric will always
be understood unless some other is specified.

Next we see that from the metric space viewpoint, the complex num-
bers are very like (R2, dg).

Example 5.5 Let X = C and for 21, 22 in C let d(21, 22) = |21 — 22|
Again (M1) and (M2) clearly hold. When we express cach complex number
in terms of its real and imaginary parts, the triangle inequality for C,
|21 — 23] < |21 — 22| + |22 — 23] coincides with the triangle inequality for
(R?, dy). The close relationship between these metric spaces will be made
precise in Example 6.40.

The next example is a much stranger onc.

Example 5.6 Let X be any non-cmpty set and define d by

1, z#y,
d(x,y)={0 ry

It is casy to check that (M1) and (M2) hold. To check (M3), note that
if 2 = 2 then d(x, 2) = 0 and certainly d(z, y) + d(y, z) > d(z, z) since
both of d(z, y), d(y, z) are non-negative. If z # 2 then at least one of
T #y, y # z must be true, so d(z, y) +d(y, z) is 1 or 2, while d(z, z) =1
S0 again the triangle inequality holds.

For any set X this metric is called the discrete metric. Such ‘patho-
logical’ examples, as they are nicknamed, are not normally used in appli-
cations in analysis. They serve as a warning to check by rigorous proofs
that results suggested by intuition really hold in general metric spaces. In
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other words, they are potential counterexamples; they explore the bound-
aries of the concept of a metric space. Nevertheless, metric spaces built up
from discrete metric spaces have been used in problems in combinatorics.

The next set of examples show that therc are metrics for R™ other than
the Euclidean metric of Example 5.4. We illustrate this in the
plane.

Example 5.7 Let X = R? and for z = (21, z2), y = (y1, ¥2) let
di(z, y) = |lz1 — y1| + |22 — y2l,
da(x, y) = [(z1 — 91)% + (22 — )47,
doo(z, y) = max{|z1 — 1], |22 — y2l}-
The choice of subscripts is explained in the web site.
We already know that do satisfies the metric space axioms. It is easy to

see that d; and do, satisfy (M1) and (M2). To check (M3), let z = (21, 22).
Then

di(z, y) +di(y, 2) = |21 — 1l + |2 — ye| + ly1 — 21| + |y2 — 2]
= |z =yl + ly1 — z1] + |22 — 2| + |y2 — 22
2 |z1 — 21] + |22 — 22
= dy(z, 2).
Also, for i = 1, 2 we have

|z — 25| < |os — wil + |y — 2] < doo(2, y) + doo(y, 2),
50 doo(xa Z) < doo(xa y) + doo(y, 2:).

We could also let dy be the discrete metric on R2. So there may be several
distinct metric spaces with the same underlying set. We shall sec later that
dy, dg, d are all equivalent in a certain sense (and each one deserves to
be called a ‘product metric’), but that they are not equivalent to dp.

It is clear how to define analogues of these three metrics on R™ for any
n € N. The proofs that the axioms hold are similar to the above.

Next we are going to look ways of ‘getting new metric spaces from old’,
which have counterparts for many other mathematical structures. Here
they are called (metric) subspaces and products.

Example 5.8 Metric subspaces. Suppose that (X, d) is a metric space
and that A is a non-empty subset of X. Let d4 : A x A — R be the
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restriction of d to A x A (recall that this means da(z, y) = d(z, y) for
any z, ¥ in A). The metric space axioms hold for d 4 since they hold for d.

The metric space (A, da) is called a (metric) subspace of (X, d) and d4
is called the metric on A induced by d. When it is agreed which metric d
is intended we may just say that A is a subspace of X. In this looser
terminology we call A cither a subset or a subspace of X according to
the emphasis desired at the time. If A is a non-empty subset of R™ then
in referring to A as a metric space we assume the metric induced by the
Euclidean metric on R™ unless some other is specified. In particular this
applics to subsets of R.

When we have metric spaces (X, d), (X', d’),and amap f: X — X'
then for any subset A C X and a € A we can talk about continuity
(more preciscly, (da, d')-continuity) of f|A at a. It is important to dis-
tinguish this from continuity (more precisely (d, d’)-continuity) of f at a.
An extreme example of this is

Example 5.9 Consider f : R — R given by

0, T € Q,
f(w)—{l’ o

Then f|Q : Q — R is the constant function with value 0, and is continu-
ous at every point of Y, whereas f is not continuous at any point. This
example might suggest that continuity of f|A is not very useful. However,
suppose that a real-valued function f is defined on some subset of R con-
taining [a, b]. Let us see what continuity of f|[a, b] means. At the point
a it means: given any € > 0 there exists § > 0 such that |f(z) — f(a)| < e
for all z satisfying |z — a| < & and also z € [a, b], or equivalently, for
all x satisfying a < z < a + 6. This means continuity from the right
of f at a. Similarly at b it means continuity from the left. Finally, for
any ¢ € (a, b) it means ordinary (two-sided) continuity. Thus continuity
of f|[a, b] is of intcrest, as the rcader who has studied the mean value
theorem in differential calculus knows.

Example 5.10 Product spaces. This generalizes Example 5.7. Given two
metric spaces (X, dx) and (Y, dy) we can define several metrics on X xY'.
For points (z1, y1) and y = (z9, y2) in X x Y let

di((z1, ¥1), (22, ¥2)) = dx (1, T2) +dy (y1, ¥2),
do((z1, 1), (22, y2)) = [dx (a1, 22)? + dy (31, 32)%]7,
doo((x1, 11), (22, y2)) = max{dx(z1, T2), dy (1, ¥2)}-
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These may be proved to be metrics on X xY just asinthecase X =Y =R
(see Exercise 5.16). As in Example 5.7 any one of these descrves to be
called a product metric. We shall see in the next chapter that they are
all equivalent in a certain sense. The definition may be extended to the
product of any finitec number of metric spaces.

If the only examples of metric spaces were Examples 5.4, 5.6, 5.7,
together with metric subspaces and products formed from them, it is
doubtful whether general metric space thcory would be worthwhile. The
examples below indicate the wide range of metric space theory (but do
not exhaust it). First we sketch examples arising in number theory and
group theory, respectively.

Example 5.11 Let p be a fixed prime number, and defined : ZxZ — R
by d(m, m) = 0 and for m # n, d(m, n) = 1/r where p"~! is the highest
power of p which divides m — n.

(M1) and (M2) arc easy to check. For (M3), suppose that m —n = p™~ 'k
and n — ¢ = p* 'K/, where k and k' are not divisible by p. We can check
that m — q¢ = p'~1k"” where ¢t > min{r, s} (equality holds when r # s)
and k" is not divisible by p. So

d(m, q) = 1/t < 1/(min{r, s}) = max{1/r, 1/s}
= max{d(m, n), d(n, ¢)} < d(m, n) + d(n, q).

Example 5.12 » This example will make sense only if you know about
groups and gencrating scts. Suppose G is a finitely generated group and
A is a gencrating set for G. Let F(A) be the frec group on A, and let
p : F(A) — G be the natural (onto) map. The word metric dg on G
associated to A is defined as follows: for gy, g2 € G let d4(g1, g2) be the
length of the shortest word in p~' (g7 g2).

Again (M1) and (M2) are easy to check. For (M3), if w is a word of shortest
length in p~!(g; g2) and w' is a word of shortest length in p‘l(gz_ 1g3)
then ww' is a word in p~'(g; ' g3), and

da(g1, g3) < length (ww') = length(w) + length(w')
= da(g1, g2) + d.a(g2, 93). <

There arc two further kinds of metric spaces used in analysis: se-
quence spaces and function spaces. We discuss sequence spaces on the
web site, and introduce function spaces here. We take some collection of
functions and decide to treat it as a ‘space’, calling the individual func-
tions ‘points’ and putting a metric on the collection.
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To indicate how this might be useful, let us consider a classical problem
in one of the first areas where function space language was seen to be
appropriate, calculus of variations. The brachistocrone problem is roughly
as follows. Suppose we have any two points z, y in a vertical plane, with
z higher than, but not vertically above, y. What is the shape of the curve
in this plane along which a heavy particle will take the least time to
slide from z to y under the action of gravity (with no friction)? It is not
important for this illustration to be precise about what kind of curves are
intended, but we could take ‘curve’ to mean one defined by a function
h : 0,1 — R? given by h(t) = (f(t), g(t)) where f,g : [0,1] — R
are continuously differentiable functions. For any given curve A we can
use integration to calculate the time T'()\) the particle takes to make
the journey from z to y along A. Thus we get a real-valued function T
defined on the collection of all curves from x to y, and the brachistochrone
problem is to find the ‘point’ Ag (if there is one) at which T takes a
minimum value. (The answer turns out to be part of a cycloid.) This is
like looking for the minimum of a function T : R — R, except that the
domain R is replaced by the ‘space’ of curves. The calculus of variations
develops analogues of ordinary calculus for solving such problems. Even
to begin calculus, we need continuity of T, and this motivates putting a
metric on the collection of curves. (The collection of curves is more or
less the set of above functions such as h, satisfying h(0) = z, h(1) = y,
except that distinet functions may define the same geometric curve for
example, hi, hy : [0, 1] — R given by hi(t) = (t, t) and hy(t) = (£2, t?)
both describe a straight line segment joining the points (0, 0) and (1, 1).)

In this and other contexts where maps are defined on collections of
functions, the language of function spaces is useful. The possibilities it
allows for the use of geometric intuition have proved to be fruitful. We
now give a few examples of function spaces with metrics on them.

Example 5.13 Let X be the set of all bounded functions f : [a, b] — R.
Given two points f and g in X, let

d(f, g) = sup |f(z)— g(z)|.

z€la, b]

The right-hand side exists, since f and g are bounded, so there are con-

stants K, L such that |f(z)| < K, |g(z)] < L for all z € [a, b] and we
have

f(x) = g(2)] < |f(e) +|9(z)| < K + L for all z € [a, b].

We shall now check in detail that the metric space axioms hold.
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(M1) It is clear that d(f, g) > O since it is the sup of a (bounded,
non-cmpty) set of non-negative real numbers. Also, if f and g are the
same point in X, this means they arc identical as functions from [a, b] to
R, so f(z) = g(z) for all z € [a, b], and from its definition d(f, g) = 0.
Finally, d(f. g) = 0 says that sup |f(z)— g(z)| =0, so f(z) = g(z) for

z€la, b)

all z € [a, b] which says that f = g.

(M2) For any f, g € X we have |f(z) — g(z)| = |g(z) — f(z)] for all
z € [a. b] so
sup, |f(z) — g(x)| = sap l9(z) — f(z)|, which says d(f, g) = d(g. ).

(M3) Let f, g, h € X. For any ¢ € [a. b],
|f(¢) = h(e)] < [f(c) = gle)] + [g(c) — h(c)]
< sup |f(x) = g(z)|+ sup |g(x) — h(z)]

z€la, b] z€la, b]
=d(f, g) +d(g. h),

where the first inequality is just the triangle inequality in R. The above
holds for any ¢ € [a, b, so d(f, g) +d(g, h) is an upper bound for the set

S={lf(e) = )] : c € [a, B]}.

Hence d(f, g) + d(g, h) =2 sup S = d(f, h) as required.

This metric is called the sup metric or the uniform metric. We denote
the resulting metric space by (B([a, b],R), dw), but note that this nota-
tion is not universally agreed.

Any continuous function f : [a, )] — R is bounded, by a theorem
quoted in the introduction, so the set of all such continuous functions
forms a subspace of B([a, b],R), sometimes written Ca, b].

Example 5.14 Let X be the set of all continuous functions f : [a, b)) — R

but this time let
/ £(8) — g(t)] dt.

To check the metric space axioms we need the following lemma from
integration theory.

Lemma 5.15 Suppose that h : [a, b] — R is continuous, that h(t) > 0
b

for allt € [a, b] and that / h(t)dt = 0. Then h(t) =0 for all t € [a, b].
a
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The idea of the proof is that if h(c) > 0 for some ¢ € [a, b] then by
continuity h(t) exceeds some fixed positive number, for example %h(c),
throughout an interval of non-zero length around c¢. This makes a strictly
positive contribution to the integral which cannot be cancelled out else-
where since h(t) is ncver negative.

(M1) It is clear that d(f, g) > 0 for all f, g € X, and that if f = g then
d(f, 9) = 0. If d(f, g) = 0 then by Lemma 5.15 applied with h = |f — ¢|
we get f=g.

(M2) Symmetry of d(f, g) is clear.

(M3) For any continuous f, g, h: [a, b] —» R and any ¢ € [a, b],

£ (&) = h(®)] < |F(E) — g(t)] + 19(t) — h(t)].

Hence by integration theory,

b b b
[ s -nota< 150 - g0lac+ [ 1ot -

as required. This metric is called the L! metric and sometimes written dj.

Examples 5.13 and 5.14 give us a choice of two metrics, dy and d;,
on the set of continuous functions f : [a, b — R. The metric used in any
particular situation depends on which properties of the functions are of
intcrest at the time. When we regard ¢g as a good approximation to f
iff g(t) is uniformly close to f(t) for all t € [a, b], we use ds (this will
be studied in Chapter 16). On the other hand, we might not be as much
interested in the difference in values of the functions at each point as in
their average deviation from onc another over the range [a, b]. We might
then use d; or some other metric involving integration, such as in the next
example.

Example 5.16 Let X be as in Example 5.14 and let

do(f, 9) = {/ab(f(t) —g(1))? dt} ;

Again (M1) follows from Lemma 5.15, and (M2) clearly holds. The proof
that (M3) holds is similar to the proof in Example 5.4 with Cauchy’s
inequality rcplaced by its analoguc for integrals, the Cauchy-Schwarz

inequality:
[wwra [ woras{ [ 10 } ,

which is proved on the companion web site. The metric ds is called the
L? metric.
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Results about continuous functions on metric spaces

Here is a generalization of Proposition 4.31. If f, g : X — R are real-
valued functions on a metric space X then we can define associated func-
tions |f|, f +9, f.g: X — R where, for all z € X,

1F1(z) = [f(@)l, (f+9)(x)=f(z)+g(z), (f9)z)=f(z)g9(x).

Also, if g never takes the value 0 on X then we may define 1/g: X — R
by (1/g9)(z) = 1/g(z) for all z € X.

Proposition 5.17 Suppose that f, g : X — R are continuous real-valued
functions on a metric space (X, d). Then so are (a) |f|, (b) f+ g, and
(¢} f.9. (d)Also, if g is never zero on X, then 1/g is continuous
on X.

Proof Let d be the metric on X. Then in (a) (d) continuity at any
point @ € X can be proved by an exact replica of the proof of Propo-
sition 4.31: we simply replace the domain R of the functions by X and
every occurrence of ‘|z — a| < 8’ by ‘d(z, a) < §. O

An alternative proof will be given shortly.
The next four results will be generalized in Chapter 8.

Proposition 5.18 Suppose that f : X — Y and g: Y — Z are maps of
metric spaces with metrics dx, dy, dz, that f is continuous at a € X and
that g is continuous at f(a). Then go f is continuous at a.

Proof Let ¢ > 0. Since g is continuous at f(a) there exists §; > 0 such
that dz(¢(y), 9(f(a))) < € whenever dy (y, f(a)) < 1, and then by conti-
nuity of f at a, there exists do > 0 such that dy (f(z), f(a)) < 41 whenever
dx(x, a) < 2. Then whenever dx (z, a) < d2 we have dy (f(z), f(a)) < &
so dz(g(f(x)),g9(f(a))) < €. This gives continuity of g o f at a. o

The next three results involve product metric spaces. As we have already
mentioned, we shall see in the next chapter that the metrics in Exam-
ple 5.10 are all cquivalent in a sense which means that using any one of
them would make the next three propositions true. But in the meantime
we shall use the metric called d; in Example 5.10 whenever we consider
a product of metric spaces.

Proposition 5.19 Suppose that f : X — X', g:Y — Y’ are maps of
metric spaces which are continuous al a € X, b € Y respectively. Then
the map f x g: X xY — X' x Y’ given by (f x g)(z, y) = (f(z), g(y)),
for all (z, y) € X x Y, is continuous at (a, b).
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Proof Let dx, dy, dx/, dy: be the metrics on X, Y, X', Y. Recall we
are using the metrics dy, dj on X xY, X' xY’, where di((z1, 11), (x2, ¥2))
is defined to be dx(x1, z2) + dy(y1, ¥2) and similarly for d} (see Exam-
e 5.10).

P Let € > 0. It follows from continuity of f at a and g at b that there exist
§; > 0, 62 > 0 such that dx/(f(z), f(a)) < €/2 whenever dx(z, a) < 41,
and dy+(9(y), g(b)) < €/2 whenever dy (y, b) < d2. Put § = min{d;, d2}.
If di((z, ¥), (a, b)) < & then dx(z, a) < d1((z, y), (a, b)) < § < & and
similarly dy (y, b) < d2 so

dy((f(x), 9(v)), (f(a), g(b))) = dx/(f(z), f(a)) +dy-(g(y), g(b)) <e.

This proves that f x g is continuous at (a, b). o

Proposition 5.20 The projections px : X XY - X py : X XY =Y of
a metric product onto its factors, defined by px(z, y) =z, py(z, y) =y,
are continuous.

Proof We again use the metric d; on X x Y as in the proof of Propo-
sition 5.19. We check continuity of px at (a, b) € X x Y. Let € > 0 and
choose § = ¢. Then whenever d;((z, y), (a, b)) < § we have

dx(px (=, ), rx(a, b)) = dx(z, a') <di((z, y), (a, b)) <3 =¢,

so px is continuous at (a, b), and similarly for py. a

Definition 5.21 The diagonal map A : X — X x X of any set X is the
map defined by A(x) = (x, ).

Proposition 5.22 The diagonal map A : X — X x X of any metric
space X 1is continuous.

Proof As before we use the metric d; on X x X defined by
di((z1, x2), (21, 23)) = dx (@1, ) + dx (22, 23).
Let € > 0. Put § = /2. Then whenever dx (z, ') < § we have
di(A(z), A(x) = di((z, z),(z', 2')) = dx(z, ) + dx(z, 2') < e.
This establishes continuity of A. a

We can use these results to give a slightly different proof of Proposi-
tion 5.17. Note that as special cases of Proposition 4.31 the functions
R — R given by z — |z| and R\ {0} — R given by = + 1/z are
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both continuous. Hence if f, g : X — R are continuous real-valued func-
tions on a metric space X with g(z) never 0, then by Proposition 5.18
the compositions z — f(z) — |[f(z)|] and z — g(z) — 1/g(x) are
continuous.

Next, the projections pi, po : R2 = R x R — R of R? onto the
coordinate axes are continuous as a special case of Proposition 5.20, hence
by Proposition 4.31 so is their sum (z, y) — x + y and their product
(z, y) — xy. Now suppose f, g : X — R are real-valued maps on a metric
space X which are continuous at a € X. The sum/product of f and g is
the composition

A fxg
X —XxX —SRxR —R,

where the third map is either (z, y) — z + y or (z, y) — zy. For the
composition is z — (z, ) — (f(z), g(z)) — f(z) + g(z) or f(x)g(zx). By
the above results this composition is continuous at a.

Bounded sets in metric spaces
One topic in metric spaces which intuition guides us to generalize easily
from Euclidean spaces is that of bounded sets.

Definition 5.23 A subset S of a metric space (X, d) is bounded if there
exist xg € X and K € R such that d(z, xo) < K forallz € S.

If S satisfies the definition for some g € X and K € R, then it also
satisfies the definition with zy replaced by any other point z; € X and
K replaced by K + d(xg, x1). For if d(z, z¢) < K then

d($7 1'1) < d(.’l?,m()) + d(ZIT(), J:1) <K+ d(SL'(), 1’.1)'

If S satisfies 5.23 then d(z, y) < d(z, o) + d(zo, y) < 2K for all
x.y € 5. The following definition therefore makes sense.

Definition 5.24 If S is a non-empty bounded subset of a metric space
with metric d, then the diamcter of S is sup{d(z,y) : =,y € S}. The
diameter of the empty set is 0.

Definition 5.25 If f : § — X is a map from a set S to a metric space
X, then we say f is bounded if the subset f(S) of X is bounded.

Here is a sample of the kind of result that our intuition about bounded
sets in Euclidean spaces suggests.
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Proposition 5.26 The union of any finite number of bounded subsets of
a metric space is bounded.

Proof It is enough to prove this for two bounded sets, since the result
then follows by induction. Before reading on, try to think how the proof
should work by contemplating two bounded sets in the plane say. Sup-
pose that S;, Sz are bounded subsets of a metric space X with metric
d. Then there exist points x1, 9 € X and real numbers K;, K2 such
that d(z, 1) < K for all z € S; and d(z, z2) < Kj for all z € Ss.
Put K = max{Ki, K2+ d(z2, z1)}. Then for any z € S; U Sy we have
either z € Sy, so d(z, 1) < K; < K, or clse x € Sy, in which case
d(z, z1) < d(z, z2) + d(z2. 1) < K2 + d(z2, 1) < K. This shows that
S1 U Sy is bounded. O

Open balls in metric spaces

In this scction we develop some terminology which is useful for discussing
continuity in metric spaces, and will lead us towards a more general frame-
work in which to discuss continuity.

Definition 5.27 Let (X, d) be a metric space, xyp € X, and r > 0 a real
number. The open ball in X of radius r centred on xg is the set

B (zg) = {z € X : d(z, zo) <1}

If we are considering more than one metric on X then we write B(xy).

Both name and notation vary. Sometimes it is called an ‘open spherical
neighbourhood’. Notation: we are using B for ‘ball’; some others use D
for ‘disc’.

Example 5.28 (a) In R (with its usual metric) By(x¢) is the open interval
(To — 7, T + 7).

(b) Let X = R? and d = dz, the Euclidean metric. Then B,(zq) is the
open disc of radius r centred on zq (the set of all points strictly inside the
circle of radius r centred on o).

(¢) Let X =R3, d = dy. Then B,(xp) is the open ball of radius r centred
on g (the set of all points strictly inside the sphere of radius r centred
on :L'o).

(d) Let X = R?, d = d; (sec Example 5.7). Then B,(x) is the inside of
the squarc centred on zy with diagonals of length 2r parallel to the axes,
as in Figure 5.2.
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Figure 5.2. B (z)

(e) Let X = R? and let d be the discrete metric. Then

a; ~_ JAwe} if r <1,

Br (o) { R? if > 1.

(f) Let X be the set B([0, 1], R) of all bounded rcal-valued functions
on [0, 1], and let d be the sup metric do. Then for fo € X and r > 0
a real number, B%(fy) is the set of all functions f € X whose graphs
lie inside a ribbon of vertical width 2r centred on the graph of fy (see
Figure 5.3).

Examples 5.28(d) (c¢) warn us not to take the name ‘ball’ too seriously
balls are not always round. Examples 5.28(b), (d), (c) show that B%(x)
depends in general on d. It also depends on the underlying set in the way
shown by the next example.

Example 5.29 Let A = [0, 1] C R with the Euclidean metric d on R and
the induced metric d4 on A. Then we have BY(1) = (0, 2) while on the

other hand B4 (1) = (0, 1].

We mention two things that can be done with open balls before going
on. First, we may rephrase the definition of a bounded sct: a subset S of

y‘ A

—_—— -

xr

Figure 5.3. Open ball in (B([0, 1], R), dx)
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Figure 5.4. Proof of Proposition 5.3

a metric space X is bounded iff S C B,(zg) for some zg € X and r > 0.
Secondly, we can re-express the definition of continuity in terms of open
balls.

Proposition 5.30 With notation as in Definition 5.3, f is continuous at
zo iff given € > 0 there exists 6 > 0 such that f(BgX (w0)) C B (f(z0)).

Proof This is an immediate translation of Definition 5.3. O

We end this section with an important property of open balls whose
proof illustrates how geometric intuition and analytic rigour both play a
role in metric space theory.

Proposition 5.31 Given an open ball B.(x) in a metric space (X, d)
and a point y € B.(x), there exists € > 0 such that B:(y) C B(z).

Proof In the plane, this asserts that we can draw a disc around y lying
entirely within the larger disc in Figure 5.4. This is obvious in the picture,
but the proof for general metric spaces will have to use the axioms only.
However, the picture helps by suggesting what sizc to try taking €, namely
such that € + d(y, =) < r.

Here is the formal proof. Take € = r —d(y, ) We note that then e > 0
since y € Br(z) so d(y, ) < r. We shall prove that B.(y) C B,(z). For if
2 € Be(y) thend(z, y) < g,s0d(z, z) < d(z, y)+d(y, x) < e+d(y, ) =,
and z € B,(z) as required. a

Open sets in metric spaces

Despite the usefulness of open balls, we want a similar but more widely
applicable concept generalizing them. Specifically, we generalize the prop-
erty of open balls expressed in Proposition 5.31, which has been described
as ‘having some elbow-room around each point’.
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(a.d) )
!
1

(a,c) (b,e)

Figure 5.5. Open rectangle

Definition 5.32 Let (X, d) be a metric space and U C X. We say that U
is open in X if for every x € U there exists e, > 0 such that B, (z) CU.

We have put a suffix £ on the € here to emphasize that in gencral the
size of € that does the trick will depend on the position of z in the
sct U. But hercafter we nearly always leave off this z—it is understood
that ¢ depends on z, but the notation becomes clumsy if we insist on
emphasising it.

Example 5.33 By Proposition 5.31, any open ball in a metric space X
is open in X. In particular any ‘open interval’ in R is open in R. On the
other hand, intervals in R such as [a, b], [a, b), (a, b] are not open in R:
for a € [a, b), but no matter how small a positive ¢ we choose, B.(a)
contains points, such as a — /2, to the left of a, which are not in [a, b).
Note that not every open sct is an open ball: for example, in R? let U be
the interior of a rectangle, say

U={(:c1,a:2)€]R2:a<x1<b,c<x2<d}.

If £ = (1, z2) € U and we set ¢ = min{x; —a, b —z1, x2 — ¢, d — T2}, it
is casily seen (compare Figure 5.5) that B.(z) C U.

As these Euclidean examples suggest, there are no ‘boundary points’
in a set U which is open in a metric space—from any point in U one can
‘g0’ some positive distance without going outside U—each point in U has
some elbow-room around it, within U.

Example 5.34 For any metric space X, the whole set X and the empty
set ) arc both open in X. This follows trivially from the definition of
‘open’. For example [a, b] is open in [a, b].

Example 5.35 In a discrete metric space X, any subset A C X is
open in X. For if £ € A we can choose e; to be 1 say, and then
B, (z) = {z} C A.
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The next examples show that when we say a set is open we have to
be careful about which metric space we mean, both about the underlying
set and also about the metric.

Example 5.36 A singleton set such as {0} is open in R with the discrete
metric, but not in R with the usual (Euclidean) metric. When necessary
we say that a sct is ‘d-open’. The interval [a, b] is open in [a, b] with its
usual metric, as in Example 5.34 above, but not in the larger space R.
The interval (a, b) is open in R, but not in R? when we identify (a, b)
with (a, b) x {0}): for = € (a, b) x {0} there is no € > 0 such that the disc
B.(z) in R? is contained in (a, b) x {0}—any such disc contains points
which are off the zj-axis sce Figure 5.6.

Next we derive yet another critcrion for a map between metric spaces
to be continuous, this time in terms of open sets. The reader may think
we are not making much progress, but merely juggling with definitions.
This is true, but eventually this criterion will lead us to generalizing our
whole framework to topological spaces. The criterion says that everything
about continuity in metric spaces is entitely encoded in the open sets of
the spaces: if we know what the open sets in the spaces are, then a function
from one metric space to another is continuous iff the inverse image of
any open set is open.

If you feel at all shaky about inverse images of sets, before reading the
next definition would be a good time to study Chapter 3.

Proposition 5.37 Suppose that f : X — Y is a map of metric spaces.
Then f is continuous iff f~1(U) is open in X whenever U is open in Y.

Proof First suppose that f is continuous and that U C Y is open in
Y. We want to show that f~(U) is open in X. So let zo € f~}(U).
Then f(zg) € U, and since U is open in Y there exists € > 0 such
that B.(f(zo)) C U. Since f is continuous at xp, there exists § > 0
such that f(Bs(zo)) € Be(f(xp)). From this we get f(Bs(xg)) C U, so
Bs(xo) € f~1(U) and f~1(U) is open in X as required.

PN
N

Figure 5.6. (a,b) x {0} not open in R?
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Conversely suppose that f~1(U) is open in X whenever U is open in
Y. We shall prove that f is continuous at any zo € X. For let € > 0. Then
B:(f(x0)) is open in Y by Proposition 5.31 so f~(B.(f(xo))) is open in
X. Also, 29 € f~Y(B:(f(x0))) since f(zo) € Be(f(zo)). So there exists
8 > 0 such that Bs(zo) C f1(B:(f(20))). Then f(Bs(zo)) C Be(f(z0)),
and f is continuous at xg by Proposition 5.30. a

Example 5.38 The reader should be warned that when f : X — Y
is a continuous map of metric spaces, it is not necessarily true that the
forwards image of an open set is open, that is to say, U may be open in
X without f(U) being open in Y. For example if we let f: R — R be a
constant map, say f(z) =0 for all z € R, then certainly f is continuous,
but for example (0, 1) is open in R while f((0, 1)) = {0} is not open in R.

We end this chapter with two results which show that ‘open set’ is a
more flexible concept than ‘open ball’. They feature again later.

Proposition 5.39 If Uy, Us, ..., U, are open in a melric space X then
m

S0 1S ﬂ U;.
i=1

m
Proof Let z € m U;. Then x € U; for each i = 1, 2, ..., m, so there

i=1

exists €; > 0 such that B, (z) C U;. Put ¢ = min{ey, €9, ..., €n}. Then
B:(z) C B.,(x) CU; foreach i =1,2,..., m, so B( ﬂ U;

and ﬂ U; is open as required. O

i=1
Thus the intersection of a finite number of open sets is open. Without
finiteness, the result is false in general.

Example 5.40 In R, the interval (—1/n, 1/n) is open for each n € N.
But ﬂ (—=1/n, 1/n) = {0}. To see this, note that 0 € (—1/n, 1/n) for

cvery n € N, so 0 € m (—=1/n, 1/n). On the other hand if  # 0 then z
n=1

is not in this intersection, since for sufficiently large n, = & (—1/n, 1/n).

Since {0} is not open in R, we have the required example.
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Proposition 5.41 The union of any collection of sets open in a metric
space X is open in X.

Proof Lect I be an indexing set, and for cach i € I let U; be an open
subset of the metric space X. We shall show that U U; is open in X.

el
Let z € UUi' We have z € U;, for some ig € I, so there exists ¢ > 0
iel
such that Be(z) C U;,. Then B.(z) C U U;, and the latter is open in X.

icl
O

We note that in general neither an intersection nor a union of open balls
is again an open ball: this illustrates the greater flexibility of open sets.

Exercise 5.1 Given points z, y, z in a metric space {X, d) prove that
ld(z, z) — d(y, )| < d(z, y)
Exercise 5.2 Given points z, y, 2, ¢ in a metric space (X, d) prove that

ld(l‘, y) - d(zv t)| < d(.’L‘, 2) + d(yv t)

Exercise 5.3 Given points z1, Z2, ..., Zn in a metric space (X. d) prove that

d(z1, ) < d(z1, 2) + d(T2, 3) + ... + d(Tn-1, Tn)-

Exercise 5.4 Show that cach of the following formulas defines a metric for R:

(@)d(z, y) = |z° 4|, (B)d(z, y) = [e®—e¥], () d(z. y) = |tan~" (z)—tan™" (y)I.

Which property of the maps z + z*, z + ¢,z + tan~!(z) makes this work?

Exercise 5.5 Supposc that z, y arc distinct points in a metric space (X, d) and
let € = d(z, y)/2. Prove that B.(z) and B.(y) are disjoint.

Exercise 5.6 Supposc that z, ¥ arc points in a metric space and that € > 0.
Show that if y € B./a(z) then B o(y) C Be(x).

Exercise 5.7 Show that if S is a bounded set in R™ then S is contained in
[a, b] x [a, b] X ... x [a, b] for some a, b € R.

Exercise 5.8 Suppose that (X, d) is a metric space, A C X . Show that A is
bounded iff there is some constant A such that d(a, a’) < A for all a, o’ € A.
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Exercise 5.9 Suppose that A C B where B is a bounded subset of a metric
space. Prove that A is bounded and diam A < diam B

Exercise 5.10 Prove that if A, B are bounded subsets of a metric space and
AN DB # 0 then diam (AU B) < diam A + diam B.

Exercise 5.11 Sketch the open ball B%=((0, 0)) in R2.

Exercise 5.12 Suppose that d is a metric for a non-empty set X, and for any
r, y € X define

d(z,y) = kd(z.y), where k is a positive constant, d'® (z, y) = min{1,d(z,y)}
d®(z, y) = d(z, y)/(1+d(z, y)), dD(z, y) = d(z, y)*,
Prove that dV, d@, d®) are metrics for X but d* may not be a metric for X.

Exercise 5.13 Prove that a subsct of a metric space is open iff it is a union of
open balls.

Exercise 5.14 Show that for any z, y € R",

doo(, y) < da(7, y) < di(z, y) < ndoo(z, y).

Exercise 5.15 Suppose that X is a non-empty scl and that d, d’ are metrics
on X such that d(z;, z2) < kd'{z;. 22) for all z1. 2o € X and some positive
constant k.

(a) Show that Bg}k(a;) C BY(z) for any x € X and any € > 0.
(b) Deduce that any subset of X which is d-open is also d’-open.
(¢) Show that the open sets in R™ are the same for the metrics dy, da, d.

Exercise 5.16 Let (X, dx) and (Y, dy) be metric spaces. As in Example 5.10,
for (xy1, y1), (%2, y2) € X X Y let

di((z1, 1) (22, y2)) = dx(z1, x2) + dy (31 ¥2),

da((z1, Y1), (2. ¥2)) = Vdx (21, 72)? + dy (y1. ¥2)%

doo((21. 91)- (22, y2)) = max{dx (1, z2), dy (y1. y2)}

(a) Prove that each of dy, da. deo is a metric for X x Y
(b) Prove that for any p. g€ X x Y,

dos(p, q) < d2(p, q) < di1(p, q) € 2do(p, q).

(¢) Show that the open sets in X x Y are the same for d;, dz, d
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(d) Let U, V be open subsets of X, Y respectively. Show that U x V' is d;-open
in X xY fori=1, 2, cc.

Exercise 5.17 Let (X, d) be a metric space and consider X x X as a metric
space with the metric d; of Exercise 5.16. Show that d : X x X — R is continuous.
(Hint* you could usc Exercise 5.2.)

Exercise 5.18 Suppose that in a metric space X we have B.(z) = B,(y) for
some z, y € X and some positive real numbers 7, 5. Is x = y? Is r = 3?7






6 More concepts in metric
spaces

We now explore some more concepts in metric spaces which generalize
notions from real analysis and which in turn will be generalized to topo-
logical spaces later.

Closed sets

First we generalize the notion of a ‘closed interval’ [a, b] in R.
Definition 6.1 A subset V of a metric space X is closed in X if X \V
is open in X.

Examples 6.2 (a) the following sets are all closed in R:

(i) [a, b, (id) (=00, 0], (idi) {0}, (iv) {1,1/2,1/3,...,1/m, ...}U{0}:
(b) the ‘closed unit disc’ {(z1, z2) € R? : 27 + 23 < 1} is closed in R?;
1< b,

(c) the ‘closed rectangle’ {(z1, z2) € R% : a c < zg < d}is
closed in R2.

(d) for a discrete metric space X, any subset of X is closed in X.

(e) in the space C([0, 1]) of continuous real-valued functions on [0, 1]
with the sup metric, the subset {f € C([0, 1]) : f(1) = 0} is closed. For
its complement is open, since if f(1) # 0 then the same is true for all
g € C([0, 1]) which are close cnough to f in the sup metric e.g. such

that doo(g7 f) < |f(1)|/2

Intuitively, a set is closed if it contains all its ‘boundary’ points. We leave
the proofs of Examples 6.2(a) (d) as exercises. The reader will quickly
spot that results about closed sets can often be deduced from correspond-
ing results about open sets by taking complements. This is true in par-
ticular for the next two results.

Proposition 6.3 If Vi, Va, ..., Vi, are closed subsets of a metric space
m

X, then so is U V.
i=1
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Proposition 6.4 The intersection of any family of sets each of which s
closed in a metric space X is also closed in X.

The proofs are a matter of taking complements and applying Proposi-
tion 5.39 and Proposition 5.41. Taking complements interchanges
intersections and unions by De Morgan’s Laws. For example, to prove
Proposition 6.3 we observe that for cach i € {1, 2, ..., m} the set X \ 'V}

is open in X. Hence by Proposition 5.39 m(X \ V;) is open in X. But
i=1
m m m m
X\()x\vi)=Jx\x\v)=JV, so [JVi isclosed in X,
i=1 i=1 i=1 i=1
Likewise from Example 5.34 we casily deduce

Proposition 6.5 For any metric space X, the empty set O and the whole
set X are closed in X .

We should warn that subsets of a metric space X are ‘nothing like doors’—
that is to say, many subsets of X are neither open nor closed in X, and
we can have a subset which is both open and closed in X; for examples,
think of [0, 1) in R and the whole set X in any metric space X.

We can express continuity in terms of closed sets as well as in terms
of open sets.

Proposition 6.6 Let X, Y be metric spaces and let f : X — Y be a map.
Then f is continuous iff f~(V) is closed in X whenever V is closed inY .

Proof The proof follows from Proposition 5.37 by taking complements.
(Remember that X \ f~}(V) = f~1(Y \ V).) O

Closure

We have already remarked that a general subset of a metric space X is
likely to be neither open nor closed in X. However, we can get from an
arbitrary subset of X to one that is closed in X and also to one that is
open in X, in rather natural ways. We shall explain first how to get from
a general subset A of X to a related set, called the closure of A in X,
which is closed in X. Intuitively, to get from A to its closure, written A,
we add in all points of X which are ‘arbitrarily close to A’.

Definition 6.7 Suppose that A is a subset of a metric space X, and
z € X. We say that x is a point of closure of A in X if given ¢ > 0
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we have B.(z) N A # (. The closure of A in X is the set of all points of
closure of A in X.

When it is agreed which metric space X we are taking closures in, we
denote the closure of A in X by A.

Example 6.8 (a) The closure of each of the intervals (0, 1), [0, 1), (0, 1],
[0, 1} in R is the interval [0, 1].

(b) The closure of B;((0, 0)) in R? is {z € R? : dy(z, 0) < 1}.

(c) If A is a non-cmpty bounded subset of R then sup A and inf A arc
in A.
Closure gives rise to a concept which is often important in analysis.

Definition 6.9 A subset A of a metric space X is said to be dense in X
if A=X.

Example 6.10 Both the set Q of rational numbers and the set R\ Q of
irrational numbers are dense in R.

The next proposition is a survey of properties of closure.
Proposition 6.11 Let A, B be subsets of a metric space X. Then
a) AC Z

(
(
(c A ds closed mn X if and onl'q if A= A;
(
(e

A=
A is cloaed in X;
A is the smallest closed subset of X containing A.

Proof Properties (a) and (b) are clear after a little thought. To prove
(c), suppose first that A is closed in X. We shall show that no point of its
complement is in A. For X \ A is open in X, so if z € X \ A then there
exists € > 0 such that B.(x) C X \ 4, so B, (;c) N A = (. This shows that
x ¢ A. Thus A C A, and since A C A by (a), we get A = A.

Conversely if A = A we can show that X \ A is open in X, hence 4
is closed in X. For if z € X \ A then z ¢ A, so for some £ > 0 we have
B.(z)M A =10, so Be(x) C X \ A, and the latter is open as required.

To prove (d), first note that A C A by (b). Now let z € A and let
e > 0. Then B,jo(x) N'A # 0, so there is some y € B.jp(z) N A. Now
B, ;5(y) C Be(z) (scc Exercisc 5.6). Also Be/o(y) N A # 0 since y € A.

Hence B.(z) N A # 0, so € A. This shows that ACA s0A=A
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Now (e) follows from (c) and (d).

Finally we expand on what (f) means and then prove it. It means that
A C A (which we know already from (a)), and also that if B is any closed
subset of X satisfying A C B then A C B. So suppose B is such a closed
sct. By (b) we have A C B. But by (c) we have B = B. So A C B as
required. O

Another way of expressing (f) is to say that A is the intersection,
call it V, of all sets which are both closed in X and contain A. For, by
Proposition 5.39, V is also closed in X, and V contains A, so A C V. But
A is itself closed in X by (e), and contains A by (a), so it is one of the
sets we take the intersection of to form V, hence V C A. This proves that
V=A.

We have carlicr expressed continuity of a map f : X — Y of metric
spaces in terms of open scts and in terms of closed sets. We can also
express it in terms of closure.

Proposition 6.12 A map f : X — Y of metric spaces is continuous if
and only if f(A) C f(A) for every A C X.
Proof This is an exercisc at the end of the chapter. O

There are analogues of Propositions 6.3, 6.4 for closure.
Proposition 6.13 Let A, Az, ..., An be subsets of a metric space X.

Then
m
e

i=1 i

Cs

1

~.

Proposition 6.14 For cach i in some indexing set I, let A; be a subset
of the metric space X. Then

N4icN4.

el iel

Proof The proofs are exercises at the end of the chapter. |
Equality does not necessarily hold in Proposition 6.14 even when the index
set is finite (sec Exercise 6.15).

Limit points

For analysis it is often useful to consider limit points as well as closure.
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Definition 6.15 A point x in a metric space X is said to be a limit point
of a subset A in X if given € > O there is a point in B.(x) N A other than
r tself, i.e. (Be(z) \ {z})N A #0.

Another name sometimes used for this is: z is a point of accumulation
of A in X. Notice the difference here from the definition of a point of
closure: it is not enough for z itself to be in A. Thus points in A may or
may not be limit points of A although they are always points of closure
of A. On the other hand it follows immediately from the definition that
all limit points of A in X arc in A.

Example 6.16 (a) Let A = [0, 1) U {2}. Then the limit points of A in R
are the points of [0, 1], while A = [0, 1] U {2}.

(b) Let A= {1/n:n € N} U {0}. Then A has only one limit point in
R, namely 0, while A = A.

The main use of limit points is to recognize which sets in a metric
space X are closed in X, using the next proposition.

Proposition 6.17 A subset A of a metric space X is closed in X iff it
contains all its limit points in X.

Proof This is a corollary of the next proposition. m|

Proposition 6.18 Let A be any subset of a metric space X. Then A is
the union of A with all its limit points in X.

Proof Let us tecmporarily write B for the union of A with all its limit
points in X. We have already noted that from the definitions all limit
points of A in X are contained in ‘A. By Proposition 6.11 A C A. Thus
B C A.

Conversely suppose z is in A. If € A then z € B as required. Suppose
x ¢ A. Then since z € A, for any € > 0 we know B(z)N A # 0, and since
z & A this tells us that (Bs(z) \ {z}) N A # 0, so z is a limit point of A
in X, and again = € B. This proves A C B. So B = A as required. |

It is not usually a good idea to use this result in proving facts about
closures if we set out with the ‘definition’ of closure of A in X as the
union of A with its limit points in X, then we tend to have to distinguish
two cases in our arguments, wherecas Definition 6.7 usually allows a more
streamlined treatment.

Interior

The idea of interior is, in a sense which we shall try to explain, dual to
the idea of closure. The closure of a subset A adds in all points which are
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intuitively very close to A, whereas the interior of A consists of all points
which are ‘well inside’ A.

Definition 6.19 The intcrior A of a subset A in a metric space X is the
set of points a € A such that B:(a) C A for some € > 0.

Example 6.20 (a) the interior of any of the intervals (a, b), [a, b), (a, b,
[a, b] in R is (a, b).
(b) the interior of Q in R is §.

Comparison of the next proposition with Proposition 6.11—espccially
their parts (f)—indicates the sense in which interior is dual to closure.

Proposition 6.21 Let A, B be subsets of a metric space X. Then
(a) A CA;

(b) A C B implies that A C B;

(c) A is open in X iﬁfful = A;

)
(e) A is open in X;
H A is the largest open subset of X contained in A.

Proof (a) Ifz € A then by definition z € A.

(b)) fAC Bandz € A then there exists € > 0 with B(z) CACB
sox €B.

(c) If A is open in X then it follows from the definition that there
exists € > 0 such that B.(z) C Asor € A. This shows that then A C A,
and since A C A by (a), we get A=A Conversely if A = A then any
re€ Aisin ;1, so there exists ¢ > 0 such that B.(z) C A; this shows that
Aisopenin X.

(d) From (b), A CA. Conversely suppose = € A. Then there exists
€ > 0 such that B.(z) C A. Now for any y € B.(x) we know (cf. Proposi-

tion 5.31) there exists § > 0 such that Bs(y) C B.(z) C A, hence y € A.
This shows that

o o

B.(x) C ;1, S0 T € A . Hence A - ;1, and A = A as required.

(¢) What this means is that A is open, which follows from (c) and (d),
and also that if B C A is open in X then B C A. This follows since B is
open in X so B = B, and B C A from (b). ]
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Remark We could also prove Proposition 6.21 by relating interior to
closure and deducing Proposition 6.21 from Proposition 6.11. For variety,
we shall follow that route when we return to these ideas in the more
general context of Chapter 7.

As Exercise 6.20 asserts, continuity in metric spaces may also be char-
acterised in terms of interior.

Boundary

Next we consider the boundary or frontier of a subset A in a metric
space X.

Definition 6.22 The boundary 0A of a subset A in a metric space X is
the set A\ A.

Intuitively, the boundary consists of all points which are ‘very close’ to A
but are not in the interior of A. Alternatively, in view of Proposition 6.24
below, we may think of A as consisting of points which are very close to
both A and X \ A.

In the next example, (a) illustrates the standard situation, in line with
our intuition, whereas (b) shows that the definition can produce some
surprising examples.

Example 6.23 (a) In R, the boundary of each interval (a, b), [a, b), (a, b],
la, b] is {a, b}. The boundary of [0, 1} U {2} is {0, 1, 2}.
(b) The boundary of Q in R is R. (This is Exercise 6.21).

We shall not prove much about boundaries here, but the next propo-
sition provides an alternative definition of boundary.

Proposition 6.24 Given a subset A of a metric space X, a point x € X
is in A iff for every ¢ > 0 both AN B.(z) and (X \ A) N Be(z) are
non-empty.

Proof Suppose r € 9A and let € > 0. Since = € A it follows by definition
of A that AN B.(z) # 0. But also z ¢ A so B:(z) € A, and this shows
that (X \ A) N Be(z) # 0.

Converscly suppose that both AN B.(z) and (X \ A) N B:(z) are non-
empty, for any choice of ¢ > 0 . From the first of these we get that z € A
and from the second, that x ¢ A. O

A few more intuitively plausible properties of boundary are left as
Exercise 6.23.
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Convergence in metric spaces

As in Chapter 4 a sequence of objects in any set X may be defined formally
as a map s : N — X, but we use the traditional notation (z,) for a
scquence, putting x, = s(n).

Definition 6.25 A sequence (z,) in a metric space X converges to a
point x € X if given (any real number) £ > 0, there exists (an integer) N
such that x, € B.(x) whenever n > N.

Just as for real number sequences, we get uniqueness of limits for sequences
in metric spaces.

Proposition 6.26 Suppose that a sequence (x,,) in a metric space (X, d)
converges to x and also toy in X. Thenz =y.

Proof This is just like the proof of Proposition 4.13. Suppose that the
sequence () in X converges both to x and to y. Suppose y # z, and let
e = d(z, y)/2. Then B(z) and B.(y) are disjoint, by Exercise 5.5, and
since x,, is supposed to belong to each of these for sufficiently large n, we
get a contradiction. O

Just as for real sequences we can also consider Cauchy scquences in a
metric space.

Definition 6.27 A sequence (z,) in a metric space (X, d) is called a
Cauchy sequence if for € > 0 there exists N € N such that d(xm, x,) < €
whenever m, n 2 N (recall this means m > N and n > N).

The proof of the following result (Exercise 6.24) is entirely similar to
that of the casy part of Theorem 4.18. Its converse will be considered in
Chapter 17.

Proposition 6.28 Any convergent sequence in a metric space is a Cauchy
sequence.

We prove just one more result about convergence in metric spaces in
the meantime.

Proposition 6.29 Suppose that Y is a subset of a metric space X and
that (yn) is a sequence in Y which converges to a point a € X. Then

a€cyY.

Proof Since (y,) converges to a, for any £ > 0 we have y,, € Be(a) for
all sufficently large n, and y, is a point of Y. Hence a is in the closure Y
of Y in X. O
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Corollary 6.30 If Y is a closed subset of a metric space X and (y,) is
a sequence of points in' Y which converges in X to a point a thena €Y.

Equivalent metrics

We introduced metrics to study continuity, so it is reasonable to call two
metrics on a set equivalent if they make the same maps in to and out
of that set continuous. The next definition achieves that, as we prove in
Proposition 6.32. Although the word topology will not be defined until the
next chapter, the name topologically equivalent will be used here to avoid
confusion with another equivalence relation on metrics.

Definition 6.31 Metrics d; and d2 on a set X are called topologically
equivalent if a subset U of X is dy-open in X iff it is dy-open in X.

Paraphrasing this definition, metrics are topologically equivalent if they
make the same sets open. Topological equivalence of metrics is clearly an
cquivalence relation.

Proposition 6.32 Suppose that dy, da2 are topologically equivalent met-
rics for a set X. For any metric spaces (Y, dy), (Z, dz) and for any maps
f:Y—> X, g: X — Z the following hold:

(a) f is (dy, di)-continuous iff it is (dy, d2)-continuous;
(b) g is (d1, dz)-continuous iff it is (dz2, dz)-continuous.

Proof Suppose that f:Y — X is (dy, d1)-continuous. Then, by Propo-
sition 5.37, f~1(U) is dy-open in Y whenever U is a d;-open subset of
X. Now let U be a ds-open subset of X; by topological cquivalence U is
also dy-open, so f~!(U) is dy-open in Y. Again by Proposition 5.37 this
shows that f is (dy, d3)-continuous. The converse, that if f is (dy, d2)-
continuous then it is (dy, dq)-continuous, is proved similarly.

The part concerning g is also proved similarly: supposcthat g : X — Z
is (dy, dz)-continuous. Then, by Proposition 5.37, ¢g~!(U) is a d;-open
subset of X whenever U is a dz-open subset of Z. By topological equiv-
alence of d; and dy it follows that ¢g~'(U) is a ds-open subsct of X
whenever U is a dz-open subset of Z. Hence, again by Proposition 5.37,
g : X — Z is (dg, dz)-continuous. The proof of the converse, that if
g: X — Zis (da, dz)-continuous then it is (d;, dz)-continuous, is entirely
similar. o

Quite often when two metrics are topologically equivalent it is because
they are equivalent in a stronger way, which we define next.
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Definition 6.33 Two metrics di, do on a set X will be called Lipschitz
equivalent if there are positive constants h, k such that for any ¢, y € X,

hda(z, y) < di(z, y) < kda(z, y).

The reader should be warned that although the name we have chosen for
the concept seems appropriate, it is not universally used. It is clear that
Definition 6.33 gives an equivalence relation.

Proposition 6.34 Lipschitz equivalent metrics are topologically equiv-
alent.

Proof Suppose that metrics dy, d2 on X satisfy Definition 6.33. Then for
any € > 0 and any x € X the following inclusions hold (see Exercise 5.15).

B () C B¥(z), BZ(z) C Bl (x).

(Warning: it is easy to get these the wrong way round!) Now suppose
that U C X is dj-open, and let £ € U. Then there is an € > 0 such that
B%(x) C U. Hence Bg‘/‘k(a:) C B3 (x) C U. This proves that U is da-open.
The converse is proved similarly. O

Example 6.35 Let X = R™ and let di, do, do be as in Example 5.7.
Then (see Exercise 5.14) for all z, y € R™ we have

doo (T, Y) < da(z, y) < di(z, y) < ndoo(z, Y)-

This shows that all three of these metrics are Lipschitz cquivalent. Hence
by Proposition 6.34 they arc topologically equivalent. Thus although the
open balls with respect to these three metrics differ in shape, the open sets
are the same. In a particular situation, it may be more convenient to use
one of thesc metrics rather than the others. We now know that different
choices will not affect anything that concerns continuity alone. Likewise
the metrics in Example 5.10 are Lipschitz and hence topologically equiv-
alent. This finally justifies the claims made in the previous chapter that
propositions about products proved using d; are truc also using ds or dy.
Not all metrics on R™ are equivalent, however; we have already seen

that the discrete metric makes singleton sets open, so it cannot be topolog-
ically equivalent to dy, dy, de- More interesting examples of non-equivalent
metrics arise in function spaces.

Example 6.36 On the set C[a, b] of all continuous real-valued functions
on [a, b] the sup metric dy, and the L' metric d; are not topologically
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Figure 6.1. Graph of f

equivalent. To sce this, let f, g € Cla, b]. Then |f(t) — g(¢)| < doo(/f, 9)
for all t € [a, b] by definition of do. Hence by integration theory,

a(f, 9) / 1£(8) — g(B)]dt < (b a)doo(f, g),

which is ‘half of a Lipschitz equivalence’ and gives B%=(f) C Bzib‘ a)s( )
for any f € Cla, b] and any € > 0.

However, if we let 0 denote also the constant function with value 0, then
Bf”(()), which is d-open, is not dj-open. For if it were then we would
have B41(0) C Bf“’ (0) for some € > 0. But for any € > 0 there exists a
continuous function f on [a, b] such that di(f, 0) < e yet f ¢ Bf"" (0) (see
Figure 6.1 for the graph of such a function).

Closely related to these definitions of equivalence of metrics we have
also equivalences between metric spaces, say (X, dx) and (Y, dy).

Definition 6.37 A topological equivalence or homeomorphism s a bi-
jective map f : X — Y such that f and f~! are both continuous.

Definition 6.38 A Lipschitz equivalence is a bijective map f: X — Y
such that there exist strictly positive constants h, k satisfying

hdy (f(z1), f(z2)) < dx (1, 22) < kdy (f(z1), f(22))

for all 21, z2 € X.

Again, we note that the terminology Lipschitz is not universally used for
this concept.

As before, a Lipschitz equivalence is a topological equivalence. A spe-
cial case of a Lipschitz equivalence between metric spaces (X, dx) (Y, dy)
is given in the next definition.
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Definition 6.39 An isometry f: X — Y is a bijective map such that

dy(f(.’L‘l), f(.’l?g)) = dx(.'rl, :L'Q) for all z1, z2 € X.

We also use the term isometry into for a map which satisfics the con-
ditions for an isometry except that it is not necessarily onto.
Next we give a familiar example of an isometry.

Example 6.40 Let f : R? — C be given by f(z;, z2) = z; + ize. Then
f is an isometry from R? with the Euclidean metric to C with the metric
of Example 5.5.

The precise relation between Definitions 6.31, 6.33 on the one hand
and Definitions 6.37, 6.38 on the other is the following: two metrics dy, do
on a set X are topologically (resp. Lipschitz) equivalent if and only if the
identity map of X is a homeomorphism (resp. Lipschitz equivalence) from
(X, d1) to (X, d2). Likewise, if f is a homeomorphism (resp. Lipschitz
equivalence) from a metric space (X, dx) to (Y, dy) then the formula
d(z1, z2) = dy(f(z1), f(x2)) defines a metric d on X which is topologi-
cally (resp. Lipschitz) equivalent to dx.

Review

In this chapter and the previous one we began by looking at metric spaces
as a general framework in which to study continuity. However, we have
seen in Proposition 5.37 and Proposition 6.32 that it is not so much the
particular metrics on spaces that determine which maps between them
are continuous, but the topological equivalence classes of these metrics,
in other words, the ‘open set structure’ defined by the metrics. So in
order to define continuity of a map from one set to another, perhaps after
all we do not really need metrics on the sets, but only some adequate
notion of ‘open subset’. This leads us to topological spaces, the subject
of the next chapter. In it we shall follow the same pattern as the move
from Euclidean spaces to general metric spaces. There we first observed
that continuity of functions between Euclidean spaces can be cxpressed
in terms of Euclidean distance. We then wrote down three properties of
Euclidean distance and used them as azioms for metric spaces. Likewise
now we write down some properties of open sets in metric spaces, and
use them as azxioms for topological spaces. The properties of open scts
in metric spaces that we choose is again a matter of historical trial and
error, as in the case of the metric space axioms. Again we shall go straight
to the historical winners in the next chapter.

There is another important property, completencss, which we shall
study in the context of metric spaces; we return to that in Chapter 16.
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Exercise 6.1 Check that the sets in Example 6.2 are closed in R.

Exercise 6.2 Which of the following scts are closed in R?
(a) [L.oo), () R\Q, (0) {n/(n+1):ne N},
(d){1/n:neN,n>2}uU{0,1,2}.

Exercise 6.3 Prove that any finite subset of a metric space X is closed in X.

Exercise 6.4 Prove Proposition 6.4, that the intersection of any family of sets
each closed in a metric space X is also closed in X.

Exercise 6.5 Let Cy = [0, 1], let C; denote Cy with its open middle third
removed, so that C) is the union of the two closed intervals [0, 1/3], [2/3, 1]
each of length 1/3. Inductively suppose we have defined C,, as the union of 27
closed intervals each of length 1/3%, and define C,,; to be the result of removing
from cach interval in C,, its open middle third, so that C,,;; is the union of 27*1

o0
closed intervals cach of length 1/3"*!. Finally let C = ﬂ Cp. Show that C
n=0

(which is called ‘the Cantor middle-third set’) is closed in R.

Exercise 6.6 Let C[0, 1] be the space of continuous real-valued functions on
[0, 1] with the sup metric, and A C [0, 1]. Show that the following subset is
closed in C[0, 1]: {f € C[0, 1] : f{a) =0 for all a € A}.

Exercise 6.7 Prove that the closure of each of the intervals (0, 1), [0, 1), (0, 1],
and [0, 1} in R is [0, 1].

Exercise 6.8 Prove that, in R?, B,((0, 0)) = {z € R? : dy(z, 0) < 1}.

Exercise 6.9 Prove that if A is a non-empty bounded subsct of R then sup A
and inf A are in A.

Exercise 6.10 Prove that if A is a bounded subset of a metric space then A is
bounded and diam A = diam A.

Exercise 6.11 Describe the closure of cach of the sets in Exercise 6.2.

Exercise 6.12 Let z be a point in a metric space (X, d) and let 7 > 0 be a real
number. Define B, (z) = {y € X : d(y, ) < r}. Show that B,(z) is closed in X.
Show also that B,.(z) C B,(x) and give an cxample to show that the inclusion
may be strict.

[Hint: Think about discrete metric spaces.
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Exercise 6.13 Prove Proposition 6.12, that a map f: X — Y of metric spaces
is continuous iff f(A) C f(A) for all subsets A C X.

Exercise 6.14 Prove Proposition 6.13, that if A, As, .... A, are subsets of a
metric space X. then
m

i=1

I
C§

o

.
Il

—

Exercise 6.15 Prove Proposition 6.14, that if for each i in some indexing set 1
we have a subset A; of a metric space X, then

N4 <4

i€l el

Give an example to show that equality may fail even when there are only two
sets involved.

Exercise 6.16 For a point x and a non-empty subset A of a metrie space (X, d),
define d(z, A) = inf{d(z, a) : a € A}.

(a) Prove that d(z, A) =0 iff z € A.

(b) Show that if y is another point in X then d(z, A) < d(z, y) + d(y, A).

(¢) Prove that « — d(z, A) gives a continuous map from X to R.

Exercise 6.17 Describe the sct of limit points in R of cach of the sets in Exer-
cise 6.2.

Exercise 6.18 Prove that a finite subset of a metric space has no limit points.
Exercise 6.19 Prove that Proposition 6 17 follows from Proposition 6.18

Exercise 6.20 Prove that a map f: X — Y of metric spaces is continuous iff
for every subset B C Y we have that f~! (])’) is contained in the interior of
JS=H(B).

Exercise 6.21 Prove that
(a) the boundary of each interval (a, b). [a, b). (a. b], [a, b] is {a, b},
(b) the boundary of @ in R is R.

Exercise 6.22 Given a non-empty subset A of a metric space X, prove that a
point z € X is in JA iff d(z, A) = 0 =d(z, X \ A), where d(x, A) is defined as
in Exercise 6.16.
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Exercise 6.23 For a subset A of a metric space X, prove:

Exercise 6.24 Prove that any convergent sequence in a metric space is Cauchy.

Exercise 6.25 Prove that the following is a characterization of continuity for a
map [ : X — Y of metric spaces: whenever (x,,) is a sequence in X converging
to a point € X we have that (f(z,)) converges to f(z) inY.

Exercise 6.26 Prove the following converse to Proposition 6.29: Suppose that
Y is a subset of a metric space X and that a € Y. Prove that there is a sequence
in Y which converges in X to a. Deduce that if every sequence in Y which
converges in X has its limit in Y then Y is closed in X.

Exercise 6.27 Prove that the metrics d?, d® in Exercise 5.12 are topologically
cquivalent to d.






7 Topological spaces

In this chapter, we make our final lcap into generality: we introduce topo-
logical spaces as our ultimate framework for studying continuity. At the
end of the last chapter we saw that the open sets in a metric space are
the most important elements when defining continuity. In the light of the
remarks there, the following is a plausible definition.

Definition
Definition 7.1 A topological space T' = (X, T) consists of a non-empty
set X together with a fized family T of subsets of X satisfying

(T1) X,0 €T,

(T2) the intersection of any two sets in T is in T,

(T3) the union of any collection of sets in T is in T.

The family 7 is called a topology for X, and the members of 7 are called
the open sets of T. Thus ‘U € 7’ and ‘U is open in 7" mean the same
thing. Elements of X are called points in the space T'. In practice we often
use the same name for X and T when it is unmistakable which topology
is intended. Thus in the above context we refer to ‘the topological space
X", ‘points of X, and ‘open scts of X’. In fact, as we go on we shall refer
to just the ‘space’ X when it is clear that this is short for ‘topological
space’. All this is intended to avoid some clumsy notation. However, there
is always a topology 7 understood, and whenever it is desirable for clarity
we shall use the full notation (X, 7).

From (T2) it follows by induction that the intersection of any finite
collection of open sets in X is open in X. Note that one cannot get to
a statement about an infinite interscction (or union) by induction from
statements about finite intersections (or unions). In general, as we shall
see, an infinite intersection of open sets in a topological space is not open.

It is important to remember that 7 is in general only a subfamily of
the family of all subsets of X.

We note here an easy result which we often use while proving that
some set is open.
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Proposition 7.2 For a subset U of a topological space X to be open in
X it is necessary and sufficient that for every x € U there is an open
subset U, of X such that x € U, C U.

Proof If U is open in X, then for each z € U we may take U, = U and
the condition holds.
Conversely suppose the condition holds. We shall check that

U= U Us. (k)

zelU

Thus U is a union of sets open in X so U is open in X. To prove

(*x) we first suppose zy € U. Then z¢ € U, C U U,. Converscly, any

zelU
point in the union is in U, for some = € U, and we know U, C U so

zelU, CU. O

Note that we have insisted that the set X in a topological space (X, T)
should be non-empty. The rcason for this choice is the same as for metric
spaces- - it saves us from having to add the condition of being non-empty
as a requirement in certain results later on.

Examples

We now give sceveral examples of topological spaces. The first is the class
of examples that motivated the definition of topological spaces.

Example 7.3 Any metric space (X, d) gives risc to a topological space
(X, T4) where 7y is defined to be the family of all d-open subsets of X,
i.e. those subsets of X which are open in X according to Definition 5.32.
By Example 5.34, Proposition 5.39, and Proposition 5.41, the topological
space axioms are satisfied by this family 7g.

This usc of the term open in two slightly different contexts is confusing
at first. On the one hand, when a metric space (X, d) has been specified,
we can work out, using Definition 5.32, whether or not a given subset of X
is d-open. On the other hand, when a topological space (X, 7) has been
specified, then to tell whether a given subset U of X is open in X (i.e.
whether U € T), we have only to ‘look’ at the list 7 and check whether U
is on it. A graphic comparison may help fix this distinction: a nightclub
bouncer may have a list of criteria (wearing a blouse or shirt, not wearing
jeans or trainers, etc.) to work through before deciding whether to admit
you. But a doorkeeper at a private party may just have a list of those to
be admitted: if you're on the list, you're in. The bouncer’s decision is like



Topological spaces 79

deciding whether a subset of a given metric space X is open in X, while
the doorkeeper’s nod is like deciding that a subset of a given topological
space X is open in X.

Example 7.3 says that given a metric space (X, d) we may construct
a topological space (X, 73) by defining 73 to consist of precisely those
subsets of X which are d-open. A topological space which arises in this
way from a metric space is called metrizable. In this case, the two meanings
of open coincide (being d-open in the metric space (X, d) and being open
in the topological space (X, T3)). We call (X, 73) the topological space
underlying the metric space (X, d), and we call 7; the topology induced
by the metric d.

Our discussion of topologically equivalent metrics in the previous chap-
ter shows that distinct metric spaces may give rise to the same topological
space. For example, the metrics d), dy, doo on R™ all give rise to the same
open sets and hence to the same topology (‘the Euclidean topology’).
Whenever we refer to R™ or a subspace of R" as a topological space, this
topology will be understood unless some other is specified.

After the warning above that 7 is in gencral only a subfamily of the
family of subsets of X, the next example may scem perverse. This example
plays a similar role to the discrete metric in providing counterexamples.

Example 7.4 Let X be any non-empty set, and let 7 be the set of all
subsets of X. The topological space axioms are clearly satisficd by this
7. We call 7 the discrete topology on X and the resulting space (X, 7))
a discrete space.

Example 7.4 is actually a special case of Example 7.3, for the discrete
topology on X is induced by the discrete metric on X -this follows from
Example 5.35.

Example 7.4 leads us to think about the other extreme form of
topology.

Example 7.5 Let X be any non-empty set. The indiscrete topology on
X is the family {0, X}.

Proof It is easy to check that the topological space axioms hold. O

This is an appropriate point at which to notc that in gencral the same
set can have different topologics on it. For cxample, if X contains at least
two distinct points, then the discrete and the indiscrete topologies on X
arc different.

Definition 7.6 Given two topologies Ty and 7o on the same set, we say
that 77 is coarser than 75 if 77 C 7.
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It would be more accurate but also clumsier to say ‘at least as coarse as’
in place of ‘coarser than’. The opposite of ‘coarser’ is ‘finer’: we say 7Tp is
finer than 7, iff T; is coarser than 7.

Remark For any topological space (X, 7), the indiscrete topology on
X is coarser than 7 which in turn is coarser than the discrete topology
on X.

Example 7.7 The Sierpinski space S consists of two points {0, 1} with
the topology {0, {1}, {0, 1}}. The topology of the Sierpinski space is finer
than the indiscrete topology {0, {0, 1}} on {0, 1} but coarser than the
discrete topology {0, {0}, {1}, {0, 1}} on {0, 1}.

Example 7.8 We can look at different ways of putting a topology on
the set S = {0, 1, 2}. For example, let 7 = {0, S, {0}, {0, 1}}. It is easy
to check ‘by hand’ (i.e. checking the axioms case-by-case) that this is a
topology. Similarly, we may let 7o = {0, S, {0}, {1, 2}}, and again this is
a topology. On the other hand, the collection {0, S, {0, 1}, {1, 2}} is not
a topology for S—we need to add in the intersection {1} of {0, 1} and
{1, 2} to make it up to a topology. In Exercise 7.1(b), you are asked to
cxplore further the topologies that can be put on a set of three points.

We are now going to look at one more example of a topology.

Example 7.9 Let X be any non-cmpty set. The co-finite topology on X
consists of the empty set together with every subset U of X such that
X \ U is finite.

Exercise 7.5 asks you to prove that this is indeed a topology. Note that
when X is finite the co-finite topology is just the discrete topology; the
interest in Example 7.9 is when X is infinite. In that case we shall see
later that the resulting topological space is not metrizable.

In addition to these examples, there are two general ways of getting
new topological spaces from old, which are explored in Chapter 10.

Exercise 7.1 List all possible topologies on (a) the set {0, 1} and (b) the set
{0, 1, 2}.

Exercise 7.2 Give an example of two topologies 77, 73 on the same set such
that neither contains the other.

Exercise 7.3 Show that the intersection of two topologies on the same set X is
also a topology on X, but that their union may or may not be a topology. Does
the first result extend to the intersection of an arbitrary family of topologics
on X7
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Exercise 7.4 Prove that we get a topology for N = {1, 2, 3, ...} by taking the
open sets to be @, N and {1, 2, ..., n} for each n € N.

Exercise 7.5 Prove that for any set X the co-finite topology defined in Exam-
ple 7.9 does give a topology for X. Show also that if X is finitc then the co-finite
topology is the discrete topology.

Exercise 7.6 Let 7 be the collection of all subsets of R consisting of @, R
together with all intervals of the form (—oo, b). Show that 7 is a topology for R.






8 Continuity in topological
spaces; bases

Now we come to the main point of topological spaces as far as analysis
is concerned: the definition of continuity. The second part of this chapter
concerns bases, which are useful in considering continuity.

Definition
Bearing in mind how continuity in metric spaces can be characterized in
terms of open sets, we define continuity as follows.

Definition 8.1 We say that a map f : X — Y of topological spaces
(X, Tx) and (Y, Ty) is continuous if U € Ty = f~1(U) € Tx. If neces-
sary for clarity we say that f is (Tx, Ty )-continuous.

It is important to note that this definition concerns inverse
images of open sets in Y and makes no reference to direct images
of open sets in X.

For metric spaces we first defined continuity at a point. We can still
do that, although at the present level of generality Definition 8.1 is the
one most commonly used.

Definition 8.2 With the notation of Definition 8.1, we say that f is con-
tinuous at a point € X if, given any U’ € Ty such that f(z) € U’, there
is some U € Tx such that x € U and f(U) CU'.

Then one can prove (sec Excrcise 8.2) that f is continuous iff it is contin-
uous at cvery point of X.
Needless to say, Definition 8.1 does not conflict with our previous

Definition 5.3(b) when X and Y are metric spaces; the next result states
this.

Proposition 8.3 If (X, dx), (Y, dy) are metric spaces whose underly-
ing topological spaces are (X, Tx), (Y, Ty), then a map f : X — Y is
(dx, dy)-continuous iff it is (Tx. Ty )-continuous.

Proof This is just a translation of Proposition 5.37. a
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We shall not prove much more about continuity before introducing
further conditions on topological spaces, but there are a few results that
can and should be proved at the present level of generality.

Proposition 8.4 Given spaces (X, Tx), (Y, Ty), (Z, Tz) and continu-
ous maps f : X =Y, g:Y — Z, the composition go f : X — Z is
continuous (more precisely, if f is (Tx, Ty)-continuous and g is (Ty, Tz)-
continuous then go f is (Tx, Tz)-continuous).

Proof Suppose that U C Z is open in Z. Then since ¢ is continuous,
g~ 1(U) is open in Y, and hence since f is continuous, f~1(g~'(U)) is
open in X. This says (go f)~}(U) is open in X. Hence go f is continuous.

O

Example 8.5 If f, g arc real-valued functions of a real variable such
that f is continuous on [a, b] and g is continuous on some subset of R
containing f([a, b]) then  — g(f(x)) is coutinuous on [a, b].

Proposition 8.6 (a) the identity map of any topological space is
continuous;

(b) any constant map is continuous;

(¢) if Tx is the discrete topology then any map f : X — Y to another
topological space (Y, Ty) is continuous;

(d) if Ty is the indiscrete topology then any map f : X — Y from
another topological space (X, Tx) is continuous.

Proof This is Exercise 8.1. O

Homeomorphisms

The next definition is fundamental for topology: it tells you when two
spaces are equivalent in the topological sense.

Definition 8.7 A homeomorphism between topological spaces X and Y
is a bijective map f : X — Y such that f and its inverse function f1
are both continuous.

Notice then that U C X is open in X iff f(U) is open in Y. So a home-
omorphism is a one one correspondence that preserves all the structure
that there is in a topological space, namely the open sets. (»The analo-
gous notion for algebraic structures such as groups or vector spaces is an
isomorphism.«) If a homeomorphism cxists between spaces we say that
they are homeomorphic or just equivalent. One can check that this gives an
cquivalence relation or topological spaces (sce Exercise 8.4). In topology,
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we are interested in those properties of spaces, or quantities associated
with spaces, which are preserved under all homeomorphisms; such prop-
erties or quantites arc called topological invariants. We shall draw atten-
tion to some of these as we come to them. The study of homeomorphisms
touches on the more geometric aspects of topology that appear in popular
presentations of the subject. (For example, an overcoat is homeomorphic
to a disc with two holes in it.)

Example 8.8 (a) Any two open intervals (a, b) and (¢, d) in R with
the topologies arising from the Euclidcan metric are homeomorphic. As
usual we assume here that b > a, d > ¢. A suitable homeomorphism
f: (a, b) = (¢, d) is given by

L d-c)@—a)

fla) = e+

(b) Any open interval (a, b) is homeomorphic to R. By (a) it is enough
to show that (—1, 1) and R are homeomorphic. We may define a suitable
homeomorphism f: (-1, 1) - R by

f(=z)

oz
N

Remark It is often easier to ‘see’ that two spaces are homcomorphic
than to prove this explicitly; for example, think about a doughnut and a
coffee cup.

Bases

In a metric space, any open sct is a union of open balls, where in general
infinitely many balls are involved in the union. (This was Exercise 5.13.)
In a topological space it is often convenient to have some subfamily B of
the open sets such that any open set is a union of sets from B.

Definition 8.9 Given a topological space (X, T), a basis for T is a sub-
family B C T such that every set in T is a union of sets from B.

Example 8.10 In R? with the Euclidean topology, the family
{Be(x) : x € R%, ¢ > 0} s a basis.

Proof Thisis by definition of ‘open set’ in the Euclidean metric, together
with Example 7.3 explaining how a topology is induced by a metric. O
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Example 8.11 Let S = {0, 1, 2}. Then {0. S, {0}, {1}, {0, 1}} is a
topology for S. A basis for this topology is B = {S, {0}, {1}}. (Note
that we allow ourselves to take the union of no sets from B, to get the
empty set.)

Here is an application of basis.

Proposition 8.12 To check that a map f: X — Y of topological spaces
(X, Tx) and (Y, Ty) is continuous, it is enough to check that for each
open set B in some basis for Ty, the inverse image f~'(B) is open
in X.

Proof For suppose it has been proved that f=!(B) is open in X for

every B in some basis B for 7y. Any open set U in Y is a union U B; for
iel

some indexing set I, where cach B; is in B. So

Aoy =By = B,

i€l i€l

This last set is a union of sets known to be open in X, hence it is open
in X. Hence f is continuous. O

This application indicates that it may be worthwhile looking for ‘eco-
nomical’ bases, that is to say bases with relatively fcw sets in them.

Example 8.13 Let S = {(z,y) € R? : z, y € Q}. Let B bc the family
of all open balls By(z, y) as (z, y) ranges over S and ¢ ranges over all
positive rational numbers.

This gives a countable basis for the Euclidean topology on R? (see Excr-
cise 8.7). A topological space which admits a countable basis for open sets
is called second countable. We shall not study second countable spaces in
this book, but just note that they have potential for allowing inductive
arguments.

There is another concept similar to but more general than bascs,
namely sub-bases. There is also another aspect of bases suppressed here
since it can be confusing. Both of these are treated bricfly on the web site.

» If you have met the idea of a basis in a vector space, notice that it is
rather similar to a basis in a topological space: a basis for a vector space
is a subset B of the vectors such that any vector can be expressed as a
(finite) linear combination of vectors in B. «
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Exercise 8.1 Prove Proposition 8.6, that a map f : X — Y of topological
spaces is continuous in each of the following cases:

{a) X and Y are the same space and f is the identity map;
(b
(c) the topology on X is discrete;

f is a constant map;

)
(d) the topology on Y is indiscrete.

Exercise 8.2 Prove that a map f: X — Y of topological spaces is continuous
iff it is continuous at every point of X.

Exercise 8.3 Let S be the Sierpinski space of Example 7.7. For any subset A
of a topological space X let x, : X — {0, 1} be its characteristic or indicator
function defined by
1, z €A,
Xa = {

0, z¢A.
Prove that A is open in X iff x, : X — S is continuous.

Exercise 8.4 Prove that equivalence of topological spaces is an equivalence
relation.

Exercise 8.5 Prove that the set of all open intervals {(a, b) : a, b € R,a < b}
is a basis for the usual topology on R.

Exercise 8.6 Prove that a real-valued function f : X — R on a space X is
continuous if for any = € R the sets f~!(x, oc) and f~'(—oc, x) are both open
in X.

[Hint: note that (a, b) = (—o0, b) N (a, )]

Exercise 8.7% Let S = {(z, y) € R? : z, y € Q}. Let B be the family of all
open balls By(z, y) as (z, y) ranges over S and q ranges over all strictly positive
rational numbers. Prove that B is a countable basis for the Euclidean topology
of R2.

Can you generalize this to R"?






9 Some concepts in topological
spaces

Just as in metric spaces, in topological spaces there are notions of closed
sets, closure, interior, and boundary. In fact, this chapter supersedes the
discussion of these concepts in metric spaces. Alternatively, one may view
the latter as an introduction to this chapter. Certainly, many of the results
about closed subscts in metric spaces generalize to similar results in topo-
logical spaces. It is a good idca to compare proofs; sometimes the proof
in this more general context is actually simpler.

Definition 9.1 Let (X, 7) be a topological space. A subset V of X is said
to be closed in X if X \'V is open in X.

The first cxample is immediate from the similarity between Definitions 6.1
and 9.1.

Example 9.2 If V is a closed subset of a metric space (X, d) in the

sensc of Definition 6.1 then it is closed in the underlying topological space
(X, Ta).

This immediately gives specific examples coming from Example 6.2.

Example 9.3 In a space X with the co-finite topology (sce Example 7.9)
any finite subset is closed, since its complement is open.

The next proposition holds since a closed set is one whose complement is
open.

Proposition 9.4 Let X be a topological space. Then
(C1) X, 0 are closed in X;
(C2) if V1, Va are closed in X then Vi3 U Vs is closed in X;
(C3) if Vi is closed in X for alli € I then ﬂ V; is closed in X .
i€l

Proof To prove these we just take complements and apply (T1), (T2),
and (T3). (Remember that taking complements interchanges union and
interscction.) a

Similarly, we can express continuity in terms of closed sets.
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Proposition 9.5 A map f : X — Y of topological spaces is continuous
iff f~Y(V) is closed in X whenever V is closed in'Y.

Proof Again we just take complements and apply Definition 8.1. m|

Just as in metric spaces, subsets of a topological space X are ‘nothing
like doors™: most sets are neither open nor closed, and some sets arc both
open and closed (e.g. X and 0). In particular, we need to beware that in
order to show that a set is closed it is not enough to show that it is not
open.

However, although not all sets in a space are closed, we can make up
any set to a closed set called its closure by adding on any points which
intuitively are very close to, though not actually in. the set. Similarly, we
can get from any set to a rclated open set, called its interior. We shall
explore closure in detail and just outline interior (and boundary), leaving
some of their treatment to the exercises.

Definition 9.6 A poini a is a point of closure of a subset A in a topo-
logical space X if UN A # ) for any open subset U of X witha € U. The
closure A of A in X s the set of points of closure of A in X.

Example 9.7 Given a subset A of a metric space (X, d), the closure A of
A in the underlying topological space (X, 7) is precisely the same as the
closure of A in the metric space (X, d) as in Definition 6.7. This follows
from the similarity of Definitions 9.6 and 6.7.

Example 9.8 In an infinitc space X with the co-finite topology, the
closure of any finite subset is itself while the closure of any infinite subsct
is X.
This follows from Exercise 9.4.

Just as in metric spaces, closure gives rise to an important definition.
Definition 9.9 A subset A of a space X is dense in X if A= X.

Also as in metric spaces we can prove the following properties of closure.
Proposition 9.10 Let A, B be subsets of a topological space X. Then

(b) A C B implies that A C B;

(¢) A is closed in X iff A=A

(d) A=4;

(e) A is closed in X;

(f) A is the smallest closed subset of X containing A.
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Proof Propertics (a) and (b) are clear after a little thought—they fol-
low from Definition 9.6. To prove (c), suppose first that A is closed in X.
We shall show that no point of its complement is in A. For if x € X \ 4
then X \ A is an open in X containing = and (X \ A) N A = @. This
shows that = ¢ A. Thus A C A, and since A C A by (a), we get
A=A

Conversely, if A = A we shall show that X \ 4 is open in X, hence A
is closed in X. For if z € X \ A then x ¢ A, so there is some open sct, say
U, with z € U, and U, N A = {), whence U, C X \ A. So X \ 4 is open
by Proposition 7.2. o

To prove (d), first notc that A C A by (b). Now let z € A and let U
be any open subsct of X containing z. Then UN A # 0, say y € U N A.
Then U is an open sct containing the point y € AsoUNA # 0. This
proves that 2 € A, hence A C'A. So A = A.

Now (¢) follows from (c) and (d). For A = A by (d), so by (c) applied
with A replaced by A we get that A is closed in X.

Finally, we expand on what (f) means and then prove it. It means that
A C A (which we know already from (a)), and also that if B is any closed
subset of X satisfying A C B then A C B. So supposc B is such a closed
sct. By (b) we have A C B. But by (c) we have B = B. So A C B as
required. |

Another way of expressing (f) is to say that A is the intersection, call
it V, of all those sets which are closed in X and contain A. For by (C3), V
is also closed in X, and V contains A, so by the argument in the previous
paragraph we have A C V. But A is itself closed in X by (e), and contains
A by (a), so it is onc of the sets we take the intersection of to form V/,
hence V C A. This proves that V = A.

Again as for metric spaces we can express continuity of maps of topo-
logical spaces in terms of closure.

Propgsition 9.11 A map f: X — Y of topological spaces is continuous
iff f(A) C f(A) for every A C X.

Proof This is Exercise 9.7. O
There arc analogues of Proposition 9.4 for closure.

Proposition 9.12 Let Ay, Ag, ..., Ay be subsets of a topological space
X. Then

m m_
U4 =4

=1 i=1

.
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Proposition 9.13 For each i in some indexing set I, let A; be a subset
of the topological space X. Then

nAi - ﬂ_A—z

iel el

Proof The proofs of Propositions 9.12 and 9.13 are Excrcise 9.6. a

Equality does not necessarily hold in Proposition 9.13 even when the
indexing sct is finitc—we have already seen examples of this in the case
of metric spaces.

As in metric spaces there are two additional concepts that we mention
more briefly: interior and boundary of a subsct in a topological space. The
interior is a ‘dual’ concept to closure.

Definition 9.14 A point a is an interior point of a subset A in a topo-
logical space X if there exists some set U which is open in X and with
aeU QOA. The set of all interior points of A is called the interior of A,
written A.

Example 9.15 The interiors of the intervals [a, b], [a, b), (a, b], (a, b) in
R are all the same, namely (a, b). The interior of Q in R is 0.

We relate interior to closure in the following result.

Proposition 9.16 We have X\ A = X \ A for any subset A of a
space X.

Proof Let z € X. Then z is in X \ A iff any set U open in X and
containing z has non-empty intersection with X \ A. But this is true iff
no set U open in X and containing x is contained in A, which is true iff
zis not in A. 0O

Armed with this result, we can deduce results about interior which are
dual to thosc already proved about closure, as in the following analoguc
of Proposition 9.10.

Proposition 9.17 Let A, B be subsets of a space X. Then
() A C 4

(ii) if A C B then A C B;

(iii) A is open in X zﬁ;l = A;
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(iv) A =A;
(v) A is open in X;
(vi) A is the largest open set of X contained in A.

Proof These may be proved either from scratch or deduced from Propo-
sition 9.10. As a sample we deduce (iii) from Proposition 9.10(iii); the
other parts are Exercise 9.9. By definition A is open in X iff X \A is closed
in X. By Proposition 9.10(iii), X \ A is closed in X iff X \ A = X \ 4,
and by Proposition 9.16, the latter holds iff X \ A=X \ A, which is true
iff A=A 0
Results dual to Proposition 9.11, Proposition 9.12, and Proposition 9.13
are in the exercises at the end of this chapter. The first of these generalizes
Exercise 6.20. The other two could have been stated for metric spaces in
Chapter 6 but have been ‘saved’ until now.
The boundary (or frontier) of a set is defined as follows.

Definition 9.18 The boundary 0A of a subset A of a space X ts the set
A\ A.

Example 9.19 The boundary of each interval [a, b], [a, b), (a, b], (a, b)
in R is {a, b}. The boundary of Q in R is R.

The definition of boundary can be given more symmetrically.

Proposition 9.20 The boundary of a subset A in a space X is ANX \ A

Proof In general, if C, D are subsets of a set X then D\C (X\C)nD
(see Exercise 2.1); we apply this with C, D taken to be A A, respectively.

Using also Proposition 9.16 we have
OA=A\A=(X\A)NA=X\ANA
O

This more symmetric approach immediately gives the following corol-
lary.

Corollary 9.21 We have dA = O(X \ A) for any subset A of a
space X.
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Remark Given a subset A of a metric space (X, d), the interior Aof A
in the underlying topological space (X, 73) is precisely the same as the
interior of A in the metric space (X, d); similarly, the boundary 0A of A
in the underlying topological space (X, 73) is precisely the same as the
boundary of A in the metric space (X, d).

We end this chapter with a brief mention of ‘neighbourhoods’. These
are much used in more advanced textbooks. There is no unanimous agree-
ment about the definition; here is the more common one.

Definition 9.22 A ncighbourhood of a point x in a space X is a subset
N of X which contains an open subset of X containing .

(Some writers insist that a neighbourhood itself should be open in X.)
This concept is particularly useful in discussing the nature of the topology
‘around a point’ in a spacc.

Exercise 9.1 Prove that any subset of a discrete topological space X is closed
in X.

Exercise 9.2 Let X be an infinite sct with the co-finite topology. Determine
which subsets of X are closed in X.

Exercise 9.3 Find open sets U, V C Rsuch that UNV, UnV, UNV, TNV
are all distinct.

Exercise 9.4_Supposc that X is an infinite sct with the co-finite topology, and
A C X. Find A in the cases (a) A finite and (b) A infinite.

Exercise 9.5 Give either a proof of, or a counterexample to, each of the follow-
ing:

(a) If f. X — Y is a continuous map of topological spaces and A is a closed
subset of X then f(A) is a closed subset of Y

(b) If A is open in a topological space X and B C X then ANB =ANB.

(¢) If f: X — Y is a continuous map of topological spaces and B C Y then
f~H(B) = f-4(B).

Exercise 9.6 (a) Let Ay, Ag, ..., A, be subsets of a topological space X.

Prove that
m m
Oa-Ux
i=1 i=1

[3

(b) For cach ¢ in some indexing set I, let A; be a subset of the topological space
X Prove that
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NacN

iel el

Exercise 9.7 Prove that a map f: X — Y of topological spaces is continuous
iff f(A) C f(A) for every A C X

Exercise 9.8 Supposc that X is an infinite set with the co-finite topology and
ACX

Find the interior A in the cases (a) A is finite and (b) A is infinite. Find also
the boundary JA in cach casec.

Exercise 9.9 Let A, B be subsets of a space X. Prove
(a) A C A
(b) if AC B then A C B;
(c) A) is open in X iff A= A
d) A = 4;
(e) Ais open in X;
(f) A is the largest open set of X contained in A.

Exercise 9.10 Prove that a map f: X — Y of topological spaces is continuous
iff for every subset B C Y we have that f! (B ) is contained in the interior of

f=Y(B).

Exercise 9.11 Let Ay, Ay, ..., A,, be subsets of a topological space X. Prove

m m
that the interior of ﬂ A; equals ﬂ A;.

=1 =1

Exercise 9.12 Let X be a topological space and suppose that for cach ¢ in some
indexing sct [ we are given a subsct A; of X Prove that U A, is contained in
iel
the interior of U A;. Give an cxample to show that this containment may be
iel
strict even when there are only two sets involved in the union

Exercise 9.13 Suppose that A is a subset of a topological space X. Prove that
the boundary 94 is closed in X.

Exercise 9.14 Suppose that A is a subset of a topological space X. Prove that
(a) Ais closed in X iff 94 C A.
(b) OA = 0 iff A is open and closed in X.
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Exercise 9.15 Let A be a subspace of a topological space X. Show that 4 is
the disjoint union of A and JA. Deduce that if B is another subspace of X such
that BN A # () then either BNOA # @ or BNA # .

Exercise 9.16 Suppose that A is a non-empty subset of a topological space X.

Prove that X is the union of three mutually disjoint subsets ;1, 0A, and the
interior of X \ A.



10 Subspaces and product
spaces

In this chapter we consider two ways of getting new spaces from old—
subspaces and product spaces.

Example 10.1 The interval [a, b] in the real line, with the topology aris-
ing from the usual metric, is a topological subspace of R with its usual
topology.

Example 10.2 The Euclidean plane with its usual topology is the topo-
logical product of the Euclidean line with itself.

These concepts generalize the analogous concepts in metric spaces, as
we shall check later, but initially we introduce them in the topological
context.

Subspaces

Definition 10.3 Let (X, T) be a topological space and let A be a non-
empty subset of X. The subspace topology on A is Ty = {ANU :U € T}.

Other names for this topology are the induced topology and the relative
topology. It is straightforward to check that T4 is indeed a topology for
A (Exercise 10.2). We call A with this topology a (topological) subspace
of X. Since we looscly use the same name for a topological space and its
set of points, A is referred to as either a subset or a subspace according to
the context; in the latter case it is always assumed to have the subspace
topology. When it is desirable for clarity we use the full notation (A4, T4)
for this subspace.

The next few results are intended to help explain the above choice for
a subspace topology.

Proposition 10.4 Let (X,7T) be a topological space and let A be a non-
empty subset of X with the subspace topology Ta. Then the inclusion map
i:A— X defined by i(a) = a for all a € A, is (Ta, T)-continuous.



98 Subspaces and product spaces

z—2%,.A

iog i

X

Figure 10.1. Subspace topologics

Proof For any subset U C X we have i~1(U) = U N A. In particular, if
UeT then i~Y(U) =UN Aisin Ty, so i is (T4, T)-continuous. O

Corollary 10.5 Let f : X — Y be a continuous map of topological spaces
(X, T), (Y, T') and let A be a non-empty subset of X with the subspace
topology Ta. Then the restriction fla: A = Y is (Ta, T')-continuous.

Proof This follows from 10.4 since f|4 = f o, and a composition of
continuous maps is continuous (Proposition 8.4). O

The next result explores the reason for our choice of subspace topology
further. In it, for simpicity, we drop names for the topologies.

Proposition 10.6 Let X be a topological space, let A be a subspace of X
and let i : A — X be the inclusion map. Suppose that Z is a topological
space and that g : Z — A is a map. Then g is continuous iff iog: Z — X
18 continuous.

Proof Figure 10.1 may be helpful in following this proof. If g is contin-
uous then so is the composition i o g since ¢ is continuous by 10.4.

Conversely suppose that ¢ o g is continuous. Then for any open subset
V of A, we know V = U N A for some U open in X. Hence

g V)=g ' (UNA) =g (H(U)) = (iog) ()

which is open in Z by continuity of i o g. So g is continuous. m|

Example 10.7 Let (X, d) be a metric space and A a non-empty sub-
set of X. Let T = Ty be the topology on X arising from the metric d,
and let dg4 be the subspace metric on A (sec Definition 5.8). Then the
subspace topology 74 on A coincides with the topology arising from the
metric d4.

Proof The proof is Fxercise 10.4. O
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(A, Th—23N (A, T (4, Ta) 231 (A, T
iog i iog i
(a) (X, T) (b) (X, T)

Figure 10.2. Proof of Proposition 10.8

The cxercises at the end of this chapter include ways in which the idea of
a subspace interacts with other concepts we have explored such as closed
scts and closure. Our final result about subspaces is intended to show
that the choice of subspace topology is ‘inevitable’. It is a little more
sophisticated than the results above.

Proposition 10.8 With notation as in Proposition 10.6, the subspace
topology T4 on A is the only topology satisfying Proposition 10.6 for all
possible maps g.

Proof Suppose that 7’ is a topology on A such that for any topological
space (Z, Ty) and any map g : Z — A we have g is (7z, T7')-continuous
iff i 0 g is (7, T )-continuous, where as usual ¢ : A — X is the inclusion.
We wish to show that 7/ = T4. Figure 10.2 may help in following the
proof.

First take Z = A, 7z = 7', and g the identity map of A, as in
Figure 10.2(a). Then g is certainly (7’, T7')-continuous, so i, which is
the same as i 0 g, is (7', T )-continuous. Hence for any U € T we have
i~ (U) € T'. But any V € T4 is of the form U N A or equivalently i~1(U)
for some U € T, so we get T4 C 7'.

Secondly take Z = A, T; = T4, g the identity map of A, as in
Figure 10.2(b). Since i 0 g is the same as %, which is is (74, 7 )-continuous,
g is (T4, T')-continuous, which tells us that any V € 77 is also in Ty, in
other words 7' C Ta4.

From these two inclusions we get 7' = T4 as required. O

Products

Given topological spaces (X, 7x), (Y, 7y), we want to get a sensible
topology for the set X x Y. Here are two ways of motivating the
choice.
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First, when we write parametric equations for a curve in the plane,
say

= z(t
z=2z(t) a<t<h,
y =y(t)

we expect the curve to be continuous as a function from [a, b] to R?
provided the ‘coordinate functions’ z(t) and y(t) are continuous functions
of t (from [a, b] to R). In clementary mathematics this is taken for granted,
or else the curve is defined to be continuous when x and y are continuous
functions of t. Later, the reader may have scen continuity of a function
f : a, ] — R? defined in terms of the Euclidean metrics on [a, b] and R?,
and it is then easy to show that f is continuous iff the first and sccond
coordinate functions are continuous. These coordinate functions are the
compositions px o f and py o f where px, py are the projections of the
plane onto the z-axis and the y-axis, respectively.

More generally for any sets X, Y we can dcfine projections ‘on the
axes’ px : X XY = X, py : X xY =Y by px(2,y) ==, py(z,y) =y
for any (z,y) € X xY. Then amap f: Z — X x Y from any set Z
defines two ‘coordinate maps’ pxof : Z — X, pyof: Z — Y. Conversely
anytwomaps g : Z — X, h:Z —- Y giveamap f: Z - X xY by
the formula f(2) = (g(2), h(z)), and f has the property that its two
coordinate functions arc g, h. If we want to follow the analogy with the
case of a parametrized curve in the planc, then when X and Y have
topologies, it would be good to have a topology on X x Y such that f is
continuous iff both g and h are continuous. It turns out that the topology
in Proposition 10.9 below fits the bill.

Another way of motivating the choice of product topology is to consider
the special case of X =Y = R. How do we characterize open sets of R?
in terms of open sets in X = R and Y = R? If U is an open subset of R?
and z = (x1, z3) € U, then therc exists € > 0 such that B.(z) C U. So for
any €1, €2 such that 0 < ¢7 < € and 0 < €2 < ¢ the rectangle centred on
x with sides of lengths 21, 2e2 parallel to the axes is contained in B, (x)
and hence in U, i.e. (x; — €1, ) +€1) X (2 — €2, 2 + €2) C U. This is
true for every point z in U, so U is a union of such rectangular open sets.
(In gencral the number of rectangles in the union will be vast - think of
the casc when U is an open disc in the plane, for example.) This suggests
a description of the product topology in general.

Proposition 10.9 Suppose that (X, Tx), (Y, Ty) are topological spaces,
and let Tx xy be the family of all unions of sets of the form U x V where
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U€Tx and V € Ty. Then Txxy is a topology for X x Y, called the
product topology.

The space (X x Y, Txyy) is called the topological product of (X, Tx) and
(Y, Ty).

Proof of 10.9. We check that 7x«y is a topology.

(T1) You can get the empty set either by taking the union of no sets of
the form U x V with U € Tx and V € Ty, or by taking @ x 0 since § € Tx
and @ € Tx. So 0 € Txxy. Also, since X € Tx and Y € Ty, we have
XxYe TXxy.

(T2) Suppose that W; and W; are in Tx xy, say

Wi = JUwi x Vi, Wa= | Us; x Vo; for some indexing sets 1, J,
i€l jelJ

where each Uy;, Us; € Tx and each Vi, Vo; € Ty. Then Wy N W is
the union of all the possible intersections (Uy; x Vi;) N (Uja x Va5) (see
Exercise 2.6). But (sce Exercise 2.5)

(Ui x Vi) N (Uz x Vo) = (U1 NUs) x (Vi N Va).

But Uy, Uy € Tx and Vi, Vo € Ty, so Uy NUy € Tx and Vi NV, € Ty
Thus Wi N Wy is in Txxy.

(T3) A union of unions of sets of the form U x V where U € Tx and
V € Ty is again a union of sets of this form, hence is in Txxy . ]

From its definition, the product topology has basis
B={UXV:UETx,V€Ty}.

NB Although this basis is convenient, unfortunately its use
encourages a common error. One should not assume that any
open set in the product is a single ‘rectangular open set’ such
as U x V. In general an open set in X X Y will be the union
of (possibly a very large number of) sets of the form U X V as
above.

The next two results show that our choice of product topology does
have the first property we were hoping for above; they are crucial to
dealing with products. For a slightly sophisticated analysis (as in Propo-
sition 10.8) showing that the product topology is the unique topology that
satisfics these results, we refer to the web site.
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Proposition 10.10 With the notation of Proposition 10.9, the two pro-
gection maps px : X XY — X and py : X XY — Y are continuous,
where px(z, y) =z and py (z, y) =y for all (z,y) € X x Y.

Proof For any U open in X we have p}l(U ) = U x Y, which is open in
X x Y, s0 px is continuous. Similarly py is continuous. O

Proposition 10.11 With the notation of Propositions 10.9 and 10.10,
any map f : Z — X XY from a topological space Z into the topological
product X XY is continuous iff bothpxof:Z —- X andpyof:Z —-Y
are continuous.

Proof In one direction this is easy: if f is continuous then so are the
compositions px o f and py o f, using Proposition 10.10.

Suppose now that px o f and py o f are continuous. To show that f
is continuous, we note that by Proposition 8.12 it is enough to show that
f~YB) is open in Z for any B in the basis B described above. So let U, V
be open in X, Y, respectively. Then

UxV=(UxY)N(XxV)=p (U)Npy (V).
Since inverse image preserves intersections, it follows that

STHUxV) = (' px ONN Ty (V) = (pxof)~ (U)N(pyo f) (V)

which is open in Z as an intersection of two sets which are open by
continuity of px o f and py o f. Hence f is continuous. O

Proposition 10.11 has many applications. Here are three examples.

Proposition 10.12 If f : X — X' and g: Y — Y’ are continuous, then
sois fxg: X xY — X' xY' defined by (f x g)(z, y) = (f(z), g(y)).

Proof We know that px o (f xg) = fopx, since for any (z,y) € X XY,
px o (f x g)(z,y) = f(z) = fopx(z,y).

This kind of fact is readily seen in what is called a ‘commutative diagram’:

in Figure 10.3 the compositions the two ways round the square are equal.

Since both f and px are continuous, so is f o px. Hence px: o (f X g) is

continuous. Similarly py o (f x g) is continuous, so by Proposition 10.11
f % g is continuous. O

This is less intricate than the proof for metric spaces (Proposition 5.19).
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fxg

X xY X'x v!
rx px'
\j \

X —_ X!

f

Figure 10.3. A commutative diagram

Proposition 10.13 For any topological space X let A : X — X x X be
the ‘diagonal’ map defined by A(zx) = (z, z). Then A is continuous.

Proof In this case, if p;, p2 are the projections of X x X on the first
and second factors then both p; o A and ps o A are the identity map of
X, hence continuous. The result follows from Proposition 10.11. O

Proposition 10.14 Let X and Y be topological spaces, and let yg € Y.
Define iy, : X — X XY by iy, (z) = (z, yo). Then iy, is continuous.

Proof The compositions px 04y, : X — X and py oy, : X — Y are
respectively the identity function and the constant function with value
Yo, S0 both are continuous and the result follows from Proposition 10.11.

O

Just as in the case of metric spaces, we may form algebraic combinations
of real-valued functions on a topological space.

Proposition 10.15 If f, g : X — R are continuous real-valued functions
on a topological space X, then so are (a) |f|, (b) f+g, (¢) fg. (d) Ifg
is never zero on X then 1/g is also continuous.

Proof This is exactly the same as the second proof of Proposition 5.17.
For example, fg is the composition

A fxg m
X—XxX — RxR-— R,

where m is multiplication of real numbers. Since each of A, f x g and m
is continuous so is fg. )

Example 10.16 Dcfine f : R? — R? by f(z, y) = (2% + %2, zy). Then f
is continuous.
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Proof Define g, h : R?2 — R by g(z, y) = 22 + % and h(z, y) = zy.
By Proposition 10.11, it is enough to show that g, h are continuous.
Since h is the product of the projections p;, p2 on the coordinates axes,
it is continuous by Proposition 10.15 and Proposition 10.10. Similarly
(z, y) — 2 and (z, y) — 32 are both continuous, so g is continuous by
Proposition 10.15. O

In appropriate circumstances, the product topology is compatible with
product metrics.

Proposition 10.17 Let (X, dx), (Y, dy) be metric spaces. Let Tx be
the topology arising from dx and Ty the topology arising from dy. Let d
denote any one of the product metrics on X XY defined in Example 5.10,
and let Ty be the topology on X x Y arising from d. Then Ty coincides
with the product topology of the spaces (X, Tx), (Y, Ty).

Proof The proof is Exercise 10.14. a

Graphs
The product topology enables us to study graphs of maps.

Proposition 10.18 Suppose that f : X — Y is a continuous map of
topological spaces and that Gy is the graph of f, that is the subset of
X xY defined by Gy = {(z,y) € X xY : f(x) = y}, with the topology
induced by the product topology on X x Y. Then the map x — (z, f(x))
defines a homeomorphism 0 from X to Gy.

Proof The map ¢ : Gy — X defined by ¢(z, f(z)) = z is the set-
theoretic inverse of 6, since both the composition z — (z, f(z)) — =
and the composition (z, f(z))— z — (z, f(z)) are identity maps. Since
¢ is the restriction to the subspace G of the projection px : X XY — X,
it is continuous by Propositions 10.10 and 10.5. To see that 6 is continu-
ous we invoke Proposition 10.11: the compositions px o § and py o 8 are
respectively x — z (the identity map of X) and z — f(z) (the map f),
and both of these are continuous . Thus ¢ and 6 arc mutually inverse
homeomorphisms. a

Example 10.19 The real line and the parabolic subspace P of R? given
by P = {(z,z?) : £ € R} are homeomorphic

This follows from Proposition 10.18 applied to the map z — z2.
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Postscript on products

The definition of product topology extends by induction to any finite
number of factors. In particular, it follows from Proposition 10.17 and
induction that the product topology on R® = R xR x ... x R (n factors)
coincides with the topology arising from the Euclidean metric.

In fact one can define topological products of infinitely many topologi-
cal spaces; that is beyond the scope of this book (but see for example
Section 8 of Willard (2004)).

We end this chapter with a straightforward but useful criterion for a
subset of a product to be open in the topological product.

Proposition 10.20 With notation as in 10.9, W C X x Y is open in
X xY iff for any (z, y) € W there exist subsets U, V of X, Y respectively
which are open in X, Y and with (z,y) e U x V C W.

Proof Suppose that W € Tx«y. By definition, then W is a union of
sets of the form U x V with U € Tx, V € Ty. If (z, y) € W then (z, y)
is in at least one such set U x V, and then (z,y) e U xV C W.

Conversely if the criterion is satisfied, then for cach (z, y) € W there
exist Uz, ) € Tx and V(g ) € Ty such that (z, y) € Ug,y) X Vi y) S W.
It is casy to check that

W= U Uzyp*xViey
(z,y)eW

so W is the kind of union that qualifies to be in the product topology.
O

Exercise 10.1 Let X = {a, b, ¢} T = {0, X, {a, b}, {a, ¢}, {a}} A = {a, b}.
Find the subspace topology 74 for A.

Exercise 10.2 Let (X, 7) be a topological space and let A be a non-cmpty
subset of X. Prove that the family 74 = {ANU : U € T} is a topology for A.

Exercise 10.3 Suppose that A is a non-empty subset of a set X, and let 7 be
the co-finite topology on X (sce Example 7.9). Prove that 7 induces the co-finite
topology on A.

Exercise 10.4 Given a metric subspace (A, d4) of a metric space (X, d), let
T = 7, be the topology on X induced by d. Prove that the relative topology Tx
induced on A by T coincides with the topology on A induced by the metric d 4.
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Exercise 10.5 Suppose that (A, T4) is a subspace of a space (X. 7) and that
V C X is closed in X. Prove that V N A is closed in (A, 74).
[Hint: use Exercise 2.2: A\ (VNA)=AN(X\V)]

Exercise 10.6 Suppose that (A. T,) is a subspace of a topological space (X, T)
and let W C A.

(a) If W is open in A (that is, if W € T4) and A is open in X (that is. if
A€ T) then W is open in X (that is, W € T).

(b) If W is closed in A and A is closed in X then W is closed in X.

Exercise 10.7 Suppose that f: X — Y is a map of topological spaces. Prove
that f is continuous in cach of the following cases.
(a) X = U U; where {U; . i € I'} is a family of open subsets of X and f|U;
icl
is continuous for each i € [I.
n
(b) X = U V; where each V; is a closed subsct of X and f}V; is continuous

i=1
for each 1.

[Hint: Recall Excrcise 3.13.]

Exercise 10.8 Given subsets A C B of a topological space (X, T), with A # 0§,
let 74, Tp be the subspace topologies on A. B induced by 7. Prove that T4
coincides with the topology on A induced by 7g.

Exercise 10.9 Let A C X, C X, where X, is a topological space, X; is a
subspace of Xo and A is a subset of Xy, and let 3; denote the closure of A in
X; for i = 1, 2. Prove that

(a) By = By N Xy,

(b) if X, is closed in X5 then B} = Bs.

Exercise 10.10 Suppose that X, Y are spaces with subspaces A C X, BCY,
and that f. X — Y is a homeomorphism with f(A) = B. Prove that the maps
g:A—- Band h: X\ A— Y\ Binduced by f are both homeomorphisms.

Exercise 10.11 Suppose that X, Y are topological spaces cach with the discrete
topology. Prove that the product topology for X x Y is discrete.

Exercise 10.12 Suppose that S is the Sierpinski space of Example 7.7. Find
the product topology of § x §

Exercise 10.13 Suppose that (X, 7x), (Y, Ty) are spaces each with the
co-finite topology (sec Example 7.9) Show that the product topology on X x Y
is not in general the co-finite topology.
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[Hint: Consider U x Y in the case when U is a non-empty open set and Y is
infinite.]

Exercise 10.14 The goal of this exercise is to prove Proposition 10.17. Let
(X.dx), (Y, dy) be metric spaces. Let Tx be the topology arising from dx
and Ty the topology arising from dy. Let d denote any one of the product
metrics on X x Y defined in Example 5.10, and let 73 be the topology on X x Y
arising from d. Prove that 7y coincides with the product topology of the spaces
(X TX) (Y, TY)

Exercise 10.15 (a) Prove that W is open in a topological product X x Y then
px (W) is open in X and py (W) is open in Y.

(b) Give an example of a closed set W C R x R whose projection p; (W) on
the z-axis is not closed in R.

Exercise 10.16 Suppose that X, Y are spaces and that A C X, B C Y. Prove
that
(i) the interior of A X Bis A x B,
(i) Ax B=A4xB,
(iii) (A x B) = ((8A4) x B)U (4 x (0B)).

Exercise 10.17 Suppose that X x X is the topological product of a space X
with itself. Prove that £ : X x X — X x X defined by t(z, z') = (z'. z) is a
homeomorphism.

Exercise 10.18 Suppose that X, X', Y, Y’ arc spaces and that X xY, X’ xY’
have the product topologies. Suppose also that f : X — Y, g : X/ — Y’ are
homeomorphisms. Prove that if the map f x g. X xY — X’ x Y’ is defined by
(f x g)(z, y) = (f(z), g(y)) then f x g is a homeomorphismn

Exercise 10.19 For cach of the following maps f from a subset X of the real line
into the real line, draw a rough sketch of the graph and prove that z — (z, f(z))
gives a homeomorphism from X onto Gy.

() X =(-1,1), f&) = 2.

(b) X = [0, o0), f(r)={(fsm(1/x)' o

Exercise 10.20* Prove that the topology on a space X is discrete iff the di-
agonal A is open in the topological product X x X. Recall that A = {(z, z) :
re X}






11 The Hausdorff condition

Motivation

So far in this book, we have been marching relentlessly towards generality.
In this chapter we take a small step backwards, admitting that for many,
though not all, purposes topological spaces are rather too general, and
it is good to impose an extra condition on our spaces. To motivate this
condition, let us try to generalize the idea of convergence of a sequence
of real numbers to topological spaces.

Recall from our study of metric spaces that a sequence (z,) in a met-
ric space (X, d) converges to a point z € X if given any (real num-
ber) € > 0, there exists (an integer) N such that z,, € B.(z) whenever
n > N.

As we know from Chapters 6, 7, the way to generalize this to topolog-
ical spaces is to replace open balls by open sets.

Definition 11.1 A sequence of points (x,) in a topological space X con-
verges to a point x € X if given any open set U > x there exists (an
integer) N such that x, € U whenever n > N.

However, convergence in a topological space does not always satisfy our
intuition, as the next example illustrates.

Example 11.2 Let X be a topological space with the indiscrete topology
(sec Example 7.5). Then any sequence (z,) in X converges to any point
z € X. For given any open set U containing x, we must have U = X
(since the only open sets are @ and X) so z,, € U for all n > 1.

Let us pinpoint what has led to this nonsense, by considering how to
prove uniqueness of limits of rcal number sequences. If we analyze the
proof of Proposition 4.13, we see that it can be stated as follows. Sup-
pose that the real number sequence (z,) converges both to z and to
Y. Then if y # z, we can choose ¢ = |z — y|/2, so that B.(z) and
B(y) are disjoint, and since z, is supposed to belong to each of these
for sufficiently large n, we get a contradiction. In Example 11.2, on the
other hand, there are no disjoint open sets U, V such that z € U,
yeV.
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Separation conditions

Definition 11.3 A topological space X satisfies the Hausdorff condition
if for any two distinct points x, y € X there exist disjoint open sets U, V
of X such thatx €U, ye V.

We refer to a topological space which satisfies the Hausdorff condition as
a Hausdorff space.

A distinguished professor used to embed this definition in his students’
minds by saying that a space is Hausdorfl if any two distinct points can
be housed off from each other by disjoint open sets.

Proposition 11.4 In a Hausdorff space, any given convergent sequence
has a unique limit,

Proof We simply replace the open balls B.(x), B:(y) in the proof at the
end of the motivation section by disjoint open sets containing x, y respec-
tively. This generalizes Proposition 4.13, the same result for sequences
in R. 0O

Proposition 11.5 Any metrizable space (X, T) is Hausdorff.

Proof Suppose that d is a metric such that 7 = 7. If z, y € X with
y # x, then d(z, y) > 0. Take ¢ = d(z, y)/2. Then (sec Exercise 5.5) the
open balls B.(x), B¢(y) are disjoint open sets containing x, y respectively.

O

This of course gives us a large number of examples of Hausdorff spaces,
and shows that any non-Hausdorff space is not metrizable either.

Example 11.6 Let X be any infinite space with the co-finite topology.
Then X is not Hausdorff (and hence not metrizable).

Proof Suppose that z, y are distinct points of X, and let U, V be any
open sets of X containing x, y respectively. Since x € U, we know U # 0,
so since U is open in the co-finite topology we must have that X \ U is
finite. Similarly X \ V' is finite. Hence X \ (UNV) = (X \U)U (X \ V)
is also finite. Since X is infinite, we must have U NV # § (in fact it must
be infinite). a

The proof of the next proposition is Exercise 11.4.

Proposition 11.7 (a) Any subspace of a Hausdorff space is Hausdorff.
(b) The topological product X xY of spaces X and Y is Hausdorff iff
both X andY are Hausdorff.
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(¢) If f: X =Y is an injective continuous map of topological spaces
and Y is Hausdorff then so is X.

(d) If spaces X and Y are homeomorphic then X is Hausdorff iff Y is
Hausdorff. In other words, Hausdorffness is a topological property.

The Hausdorff condition is just one of a hierarchy of ‘separation
axioms’ which a space may or may not satisfy. There is some disagree-
ment about the names of the various conditions, including the following
samples.

Definition 11.8 A topological space is regular, (normal) if given any
closed subset V. C X and point x € X \'V (closed set V' disjoint from V')
there exist disjoint open subsets U, U’ of X such thatV C U and x € U’
(VI CU').

Exercise 11.1 Show that if X is a space with the indiscrete topology and having
at least two distinct points then X is not Hausdorff.

Exercise 11.2 (a) Show that if X is a Hausdorff space, every ‘singleton’ set
{z} (i.e. a set containing just a single point) is closed in X.

(b) Prove that if a finite space is Hausdorff then it must have the discrete
topology.

Exercise 11.3 Suppose that xy, x4, ..., £, are distinct points in a Hausdorff
space X. Show that there exist pairwise disjoint open subsets U;. Us, . ., U, of
X such that xz; € U; for every i € {1. 2, ..., n}.

Exercise 11.4 Prove Proposition 11.7.

Exercise 11.5 Suppose that f : X — Y is a continuous map of a topological
space X to a Hausdorff space Y. Prove that the graph G of f is a closed subset
of the topological product X x Y.

Exercise 11.6 (a) Prove that if z is any point in a Hausdorff space X, then
the intersection of all open subsets of X containing z is {x}.

(b) Give an cxample to show that the conclusion of (a) does not imply that
X is Hausdorff.
[Hint: Think about the co-finite topology on an infinitc sct.]

Exercise 11.7 (a) Recall the definition A = {(z, =) : * € X'} of the diagonal
subset A of X x X. Prove that a space X is Hausdorff iff A is closed in the
topological product X x X.
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(b) Let S be the Sierpinski space of Example 7.7. Show that a space X is
Hausdorff iff the characteristic function x, : X x X — S is continuous, where

A=XxX\A.

Exercise 11.8 Suppose that X, Y are spaces, with Y Hausdorff, and that A is
a subspace of X. Prove that if f, g : A — Y are continuous and f(a) = g(a) for
all a € A then f = g.

Exercise 11.9% Let X be a metric space with metric d, and for any point z € X
and non-empty subset A C X, let d(x, A) be as in Exercise 6.16 and definc the
map fa : X — R by fa(z) = d(z. A). Recall Exercise 6.16 asserts that fa is
continuous.

Suppose that A, B are non-empty disjoint closed sets in X. Defineg: X — R
by g = fa — fg. Prove that g='(—o0, 0) and g~ !(0. oc) are disjoint open sets
containing A. B respectively. (This essentially shows that any metrizable space
is normal we just have to check the special case in which at least onc of A, B
is einpty.)

Exercise 11.10 Let f, g : X — Y be continuous maps of a topological space
to a Hausdorff space. Show that C = {z € X : f(z) = g(z)} is closed in X.
Deduce that if f : X — X is a continuous self-map of a Hausdorff space then
the ‘fixed-point set’ F = {z € X : f(z) =z} is closed in X.
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Motivation

Intuitively a connected space is one which does not fall apart into two
or more pieces. To make this mathematical we need a precise definition
of ‘fall apart’. We should probably agree that in the real line the sub-
space [0, 1] is connected while the subspace [0, 1]U[2, 3] is not. But what
about the subspace Q of R, or the subspace of the plane consisting of the
graph of y = sin(1/z) for £ > 0 together with the line segment on the
y-axis joining the points (0, —1) and (0, 1) (see Figure 12.1)? It is not
so easy to decide intuitively whether these should be considered to be
connected.

In this chapter we discuss two slightly different formulations of con-
ncctedness. The first is the more basic for the study of continuity. As an
application we re-prove the intermediate value theorem, Theorem 4.35.
The second formulation, path-connectedness, is possibly closer to intu-
ition. We then compare the two kinds of connectedness.

Both kinds of connectedness are used in the study of functions of
a complex variable, at a few crucial stages (see Priestley 2003). In a
sense they also form the beginnings of algebraic topology. For example,
we shall show that connectedness of a space is a topological invariant.
Thus one of the easiest ways to prove that two spaces are not homeo-
morphic, if it works, is to see that one is connected while the other is
not.

Connectedness

From the point of view of continuity, one meaning which may be assigned
to the statement that a space X ‘falls apart’ into two pieces A and B
is this: X is the disjoint union of A and B, and moreover we can define
continuous maps on X (to other spaces) whose values on A ‘bear no
relation’ to their values on B, by which we mean that the values on A
and the values on B arc completely independent of cach other. To be less
vague, and to get down to a specific test, let f: X — R be defined by:

0 ifzeA,
f(‘”)_{l if z € B.
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Ty

Figure 12.1. Topologist’s sine curve

Then f fulfils the intuitive property that its values on A are independent
of its values on B. If f is continuous on X, it is rcasonable to think of
A and B as mutually independent picces of X, as far as continuity of
real-valued functions on X is concerned. As we shall see in Exercise 12.2
this specific test is equivalent to any more comprehensive test along the
same lines that one might envisage, of the ‘independence’ of A and B with
regard to continuous maps on X. Moreover, in view of Proposition 10.6,
it is just as good to think of our f above as taking values in the discrete
subspace {0, 1} of R. We are now close to a definition of what it means for
X not to be connected; by negating this we get the definition of connected.

Definition 12.1 A topological space X is connected if there does not
exist a continuous map from X onto a two-point discrete space.

If you prefer to avoid negatives, you could say instead that X is connected
if any continuous map from X to a two-point discrete space is constant.

Throughout the discussion of connectedness we shall give the
two-point space {0, 1} the discrete topology.

There is an equivalent of Definition 12.1 which is often taken as the defi-
nition. To state it, we need the idea of a partition.

Definition 12.2 A partition {4, B} of a topological space X is a pair of
non-empty subsets A, B of X such that X = AUB, AN B =0, and both
A and B are open in X.

It follows that A and B are also closed in X, since they are each other’s
complements. The term partition is overworked in mathematics; for
cxample, in set theory it would mean just a decomposition into disjoint
subsets. One has to remember that here it has the mecaning appropriate
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to topological spaces. For this reason some prefer the term ‘disconnection’
to ‘partition’, but the latter is more usual.

Proposition 12.3 A topological space is connected iff it admits no
partition.

Proof We prove this by showing that X is disconnccted iff it does admit
a partition.
First suppose {A, B} is a partition of X. Define f: X — {0, 1} by

{0 ifze A,

J(z) = 1 ifzeB.

Since A, B are non-empty, f is onto {0, 1}. The complete list of open sets
in {0, 1} is {0, {0}, {1}, {0, 1}}, and the inversc images of these under
f are 0, A, B, X which arc all open in X so f is continuous. Hence by
Definition 12.1 X is not connected.

Conversely suppose that f: X — {0, 1} is a continuous map onto the
discrete two-point space. Then it is casy to sce that {f~1(0), f~1(1)} is
a partition of X. ]

Corollary 12.4 A topological space X is connected iff the only subsets
of X which are both open and closed in X are X, ().

Proof We prove that X is disconnected iff there is a non-empty open
and closed subset of X which is not all of X.

If {A, B} is a partition of X, then A and B are both open and closed
in X and neither is X or (). Conversely if A is open and closed in X and
is neither ) nor X, then {A, X \ A} is a partition of X. O

Henceforth we shall use interchangably the three forms of definition of
connectedness (given in 12.1, 12.3, 12.4).

Example 12.5 (a) Any discrete space with at lcast two points is
disconnected.
(b) Any indiscrete space is connected.

Proof (a) Such a space X admits a partition, since all its subscts are
open in X.

(b) The only open sets are X and @, so these arc the only open and
closed sets. 0

Definition 12.6 A non-empty subset A of a topological space X is
connected if A with the subspace topology is connected according to
Definition 12.1. Conventionally we regard the empty set as being
connected.
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Our next aim is to show that the connected subspaces of the
real line (with its usual topology) are precisely the intervals listed in
Chapter 2. We first characterize intervals by their property of
‘betweenness’.

Proposition 12.7 A non-empty subset S C R is an interval iff it satisfies
the following property: if z,y € S and z € R are such that x < z < y
then z € S.

Proof If S is one of the intervals listed in Chapter 2 then clearly it has
this property. Conversely suppose that S is a non-empty subset of R with
this property. Let

a=infS or —oo if S is not bounded below,

b=supS or oo if S is not bounded above.

We shall prove that (a, b)) C S C [a, b, where to avoid listing special cases
we make the temporary convention that a bracket [ or | placed next to
+o0o means the same as a parenthesis (or), and that if @ = b then (a, b)
means §.

First, suppose z € (a, b). Then z > a so by definition of a as infS
(or since S is not bounded below) therc exists x € S with z < 2. Sim-
ilarly there exists y € S with ¥y > z. So by hypothesis, 2 € S. This
proves (a, b) C S. The inclusion S C [a, b} follows from the definitions
of a, b. But if (a, b) C S C [a, b] then S can only be one of the listed
intervals. |

We can use this to prove half of the result we want.
Theorem 12.8 Any connected subspace S of R is an interval.

Proof Suppose that S is not an interval. By Proposition 12.7, therc exist
z,y € Sand z € R\S with z < 2 < y. Then {(—o0, 2)NS, (2, 0)NS}is
a partition of S. For by definition of the subspace topology, each of these
scts is open in S; cach is non-empty since they contain x, y respectively;
and clearly they are disjoint and have union S, since z ¢ S. a

Example 12.9 Q is not connected.
This is a special case of Theorem 12.8. An explicit partition is given by
considering {(—o0, @) N Q, (a,00) NQ} for any irrational number c«.

Theorem 12.10 Any interval I in R is connected.
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Proof There are various proofs of this, all ultimately based on the com-
pletencss property of real numbers.

Suppose that I is an interval in R and suppose for a contradiction that
{A, B} is a partition of I. Let a € A, b € B and suppose without loss of
generality that a < b. (Otherwise we may exchange the names of A and
B.) Since a, b € I and I is an interval, [a, b] C I.

Let A= ANJa, b] and B’ = BN [a, b]. Since A and B are closed in I
and [a, b] C I, we may apply Exercise 10.5 to see that A’ and B’ are closed
in [a, b]. Since also [a, b] is closed in R we map apply Exercise 10.6(b) to
deduce that A’ and B’ are closed in R. Let ¢ = sup A’. Then ¢ € A’ since
A’ is closed (Example 6.8(c) and Proposition 6.11(c)). Hence ¢ < b since
b€ B’ and A’ N B’ is empty. But A’ is open in [a, b], so for some § > 0
we have (¢ — 4, ¢+ 68)N[a, b] C A’. Since ¢ < b, there exist points in
(e, ¢+ d) N [a, b] greater than ¢, and such points lie in A’ contradicting
the choice of c. m|

We may also deduce Theorem 12.10 from the intermediate value theo-
rem (Theorcm 4.35). In fact the result that intervals are connected is
equivalent to the intermediate value theorem, as we shall see later.

Proof of 12.10 from the intermediate value theorem. Suppose that I is
an interval and that f : I — {0, 1} is a continuous map onto the two-point
discrete space. Let g : I — R be the composition of f followed by inclusion
i of {0, 1} into R. Since f and 7 are continuous, so is g. Since f is onto,
f(a) =0, f(b) =1 for some a, b € I. Now let J be the closed interval with
end-points a, b and think about the intermediate value theorem applied
to the real-valued continuous function g on J. Then g should take on
the valuc 1/2 somewhere in J. But ¢ takes on as values only 0, 1. This
contradiction shows that I is counected. O

Proposition 12.11 Suppose that f : X — Y is a continuous map of
topological spaces and that X is connected. Then f(X) is connected.

We paraphrase this result: ‘a continuous image of a connected space is
connected’.

Proof We first show that it is cnough to prove this in the case when f
is onto. For suppose f is not necessarily onto. Define f; : X — f(X) by
fi(z) = f(z) for all z € X. Then by Proposition 10.6 f; is continuous
since f is continuous. Also, fi is onto. Since f(X) = f1(X), it is enough to
show that f1(X) is connected. Thus in Proposition 12.11 we may replace
f by fi, and it is therefore enough to prove the proposition when f is
onto.
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So suppose that f is onto, suppose for a contradiction that {U, V'} is
a partition of Y, and consider {f~}(U), f~1(V)}. Since U, V are non-
empty and f is onto, f~'(U), f~1(V) are also non-empty. Since f is
continuous and U, V are open in Y, it follows that f~1(U), f~1(V) are
open in X. Since UNV = (. also f~1(U)Nf~ (V) = f~1(UNV) = 0. Since
UUuV =Y.also f~H{UYUF Y (V)= f~YUUV) = f~Y(Y) = X. But this
means that {f~'(U), f~1(V)} is a partition of X, and this contradiction
proves the result. O

Corollary 12.12 Connecctedness is a topological property.

Proof Suppose that f: X — Y is a homeomorphism of spaces. If X is
connected then so is Y by Proposition 12.11. Similarly if Y is connected
then X is connected by Proposition 12.11 since f ! : Y — X is continuous
and onto. O

Corollary 12.13 With the hypotheses of 12.11 the graph G; of f is
connected.

Proof This follows from 12.12 since G is homecomorphic to X by Propo-
sition 10.18. O

Corollary 12.14 Suppose that f : X — R is continuous and X is con-
nected. Then f(X) is an interval.

Proof This follows from Proposition 12.11 since connected subsets of R
are intervals. m|

Corollary 12.15 (Intermediate value theorem) If f : [a. b)) — R is con-
tinuous then it has the intermediate value property.

Proof This follows from the previous corollary since intervals have the
betweenness property. a

Next we prove some general results about connectedness.
Proposition 12.16 Suppose that {A4; : i € I} is an indezed family of
connected subsets of a topological space X with A; N A; # 0 for each pair
i, j€1. Then UAi is connected.

el
Proof Suppose that f : U A; — {0, 1} is continuous. For each i € I the
i€l
restriction f|a, : A; — {0, 1} is continuous, hence constant since A; is
connected. Morcover, for any i, j € I we have A;NA; # 0. so the constant



Connected spaces 119

values f that takes on A;, A; are the same. Hence f is constant, so U A;
il
is connected. O

Corollary 12.17 Suppose that {C; : i € I} and B are connected subsets
of a space X such that for everyi € I we have C;NB # 0. Then BU U C;
is connected. el
Proof First apply 12.16 to the pair B, C; for a particular ¢ € I, to get
that BUC; is connected. Then apply 12.16 to the family {BUC; : i € I}.
]

Theorem 12.18 The topological product X x Y of spaces X, Y is con-
nected iff both X, Y are connected.

Proof Recall in this proof that by definition X and Y are non-empty.
First, if X xY is connected, so arc X and Y since these are the continu-
ous images of X x Y under the projections px, py (sce Proposition 10.10).
Conversely suppose that X and Y are connected. For each y € Y the
subset X x {y} of X x Y is connected by 12.11 since it is the continuous
image of iy : X — X x {y} given by iy(z) = (z, y). Similarly, for fixed
zy € X, the subset {zp} X Y of X x Y is connected. But for any y the
intersection X x {y} N{zo} x Y = {(x0, y)} is non-empty, and the result

follows from Corollary 12.17 since X x Y = ({zo} xY) U U X x {y}.
yeyY
O

Proposition 12.19 Suppose that A is a connected subset of a space X
and that A C B C A. Then B is connected.

Proof Suppose that f: B — {0, 1} is continuous. Then f|4 is constant
since A is connected. Suppose without loss of generality that f(a) = 0
for all @ € A. (Otherwise interchange the roles of 0 and 1.) Now suppose
for a contradiction that f(b) = 1 for some b € B. Since {1} is open in
{0. 1}, f~1(1) is open in B so f~!(1) = BN U for some U open in X.
Now U is open and contains the point b which is in A, so U N A # §,
sayac UNACUNB= f~1(1). So f(a) = 1, which is a contradiction.
Hence B is connected. a

Path-connectedness

There is another kind of connectedness which is probably more intuitive
than the kind we have looked at so far.
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Definition 12.20 For points =, y in a topological space X, a path in X
from z to y is a continuous map f : [0,1] — X such that f(0) = z,
f(1) =y. We say that such a path joins z and y.

Definition 12.21 A topological space X is path-connected if any two
points of X can be joined by a path in X.

As in the case of ‘connected’, we say that a non-empty subset A C X
is path-connected if with the subspace topology it satisfies 12.21, and
conventionally we say the empty set is path-connected.

Example 12.22 (a) For any n > 1, R™ is path-connected. More generally
any convex subsect C' of R" is path-connected.

(b) Any annulus in R? is path-connccted, where an annulus means a
ring-shaped set of the form {(z, y) € R? : a < (z —¢)? + (y — d)? < b} for
some real numbers a, b, ¢, d with 0 < a < b).

Proof (a) By definition of convexity, any two points in C' may be joined
by a straight line segment in C.
(b) This is Exercise 12.14. O

Scveral of the results we have proved for connectedness arc also true
for path-connecctedness, and these are on the web site.

Comparison of definitions

Proposition 12.23 Any path-connected space X is connected.

Proof This follows from connectedness of the unit interval in the recal
line. For suppose X is path-connected and g : X — {0, 1} is continuous.
Suppose for a contradiction that g is not constant, so there exist , y € X
with g(z) = 0 and g(y) = 1. Let f : [0, 1] — X be a path in X from z
to y. Then the composition go f : [0, 1] — {0, 1} is continuous onto,
contradicting connectedness of [0, 1]. m]

This proposition gives the main way of checking that a space is
connccted- we show that it is path-connected hence connected. This is
not infallible, since a space can be connected without being path-conected
(this is truc of the space indicated in Figure 12.1, as explained on the
web site).

Next here is a usecful result which is particular to path-connectedncss;
it states the intuitively obvious fact that if we go along a path from z to
y and then along a path from y to z, the result is a path from z to z.
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Lemma 12.24 Suppose that f, g : [0, 1] — X are paths in a space X
from x to y and from y to z, respectively. Let

h(z) = {f(2t) telo, 1/,
g(2t—1) te1/2,1].

Then h is a path in X from x to z.

Proof First, h is well defined, since when ¢ = 1/2 the two parts of the
definition of h ‘fit together’: f(2t) = f(1) =y, g(2t — 1) = g(0) = y.
Also, the restriction h|[0, 1/2] = f o k where k : [0, 1/2] — [0, 1] is given
by k(t) = 2t. Since f and k are both continuous, h|[0, 1/2] is continuous.
Likewise h|[1/2, 1] is continuous. Now h is continuous by Excrcise 10.7(b).
Finally, h is a path in X from z to z, since we have h(0) = f(0) = z and
h(1) = g(1) = 2. O

Although the converse of Proposition 12.23 is false in general, we do
have the following result.

Proposition 12.25 A connected open subset U of R™ is path-connected.

Proof Figure 12.2 may help in following this proof.

If U is empty, the result is true by convention. Otherwise choose a
point zg € U. We shall show that the set V C U of all points in U which
can be joined to zy by a path in U, and its complement U \ V are both
open. Since they arc clearly disjoint and have union U, they would form
a partition of U if they were both non-empty. So one of them must be
empty. But zy € V, so V = U, and this will give the result.

Figure 12.2. A connected open subset of the plane is path-connected
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To show that V is open in U (in fact in R™) suppose x € V. Thenx € U
and since U is open in R™, there is some € > 0 such that Be(xz) C U. Now
any point y in Bc(x) may be joined to z by a straight line segment in
B.(x) and hence in U, so using Lemma 12.24 we sce that any point in
B:(x) may be joined by a path in U to xy. Hence B:(z) C V and we see
that V is open in R™ and hence in U.

We show that U \ V is also open in U by a similar argument. Suppose
that x € U \ V, and let € > 0 be such that B.(z) C U. If any point y in
B (x) could be joined to zg by a path in U, then so could z by composing
with the straight line segment from y to z. So B.(z) CU\V,and U\ V
is open in R™ and hence in U. By the commentary above, this completes
the proof. a

The same proof shows that any two points in a connected open subset
U of R™ may be joined by a polygonal path (the juxtaposition of finitely
many straight line segments) in U, or cven one in which each segment is
parallel to one of the coordinate axes.

» Proposition 12.25 remains true, with cssentially the same proof,
when R” is replaced by any normed vector space. <

We have looked at when a space intuitively falls apart or is all of one
piece. More generally we can consider ‘how many picces’ it falls into; this
leads to the idea of components, discussed on the web site.

Connectedness and homeomorphisms

It is intuitively clear that R and R? are not homeomorphic. Here is one
way to prove this: supposc for a contradiction that f : R — R? is a
homeomorphism. Then by Exercise 10.10, f induces a homeomorphism
FIR\ {0} : R\ {0} — R2\ {f(0)}. But R\ {0} is not connccted whereas
R? with a point removed is path-connected and hence connected. This is
a contradiction by Corollary 12.12, so R and R? are not homeomorphic.

We can argue similarly in many cases. For another cxample. the
interval 7 = [0, 1] and the circle S' = {(z, y) € R? : 22 + y? = 1} arc not
homeomorphic. For suppose there were a homeomorphism f : I — S'.
Then there would be an induced homeomorphism of {0, 1/2) U (1/2. 1] to
SU\ {f(1/2)}. But the first of these two spaces is disconnected whercas
S!' with a point removed is path-connected hence connected. The web site
has further examples of this line of argument.

Exercise 12.1 Which of the following subsets of R? are (a) path-connected (b)
connected?
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(i) Bu((1,0)) UBi((-1, 0));

(ii) _((_10_))U Bi((-1.0));

(i) Bi((1.0)) U B1((-1, 0));

(iv) the ‘rational comb’ { ¢.y)€R? . geQ,ye 0,1} U (Rx{1});
(v) the set of all points in R? with at least one coordinate in Q.

Exercise 12.2 Suppose that {A. B} is a partition of a topological space X and
that f: X — Y is a map to another space Y. Prove that if the restrictions f|A
and f|B are both continuous then f is continuous.

Exercise 12.3 Prove that any infinite set with the co-finite topology (see
Example 7.9) is connected.

Exercise 12.4 Suppose that 7, 73 are two topologies for a set X, and that
Ty C T5. Does it follow that (X, 77) is connected if (X, 72) is connected? Does
it follow that (X, 73) is connected if (X, T7) is connected?

Exercise 12.5 Suppose that for cach i € {1, 2, ..., n} that A; is a connected
subset of a space X, such that A; N A; 41 # @ foreach 7 € {1,2, ..., n—1}.

Prove that U A; is connected. Does this result extend to an infinite sequence
i=1
{A;) of connected subsets?

Exercise 12.6 A map X — R from a space X is said to be locally constant if
for cach z € X there is some open sct U with z € U and f|U constant. Prove
that if X is connected then every locally constant map f : X — R is constant.
[s this still true if R is replaced by an arbitrary topological space?

The next few exercises, 12.7-12.10, can be done using just the intermediate
value theorem; as we have seen this is intimately related to connectedness of real
intervals.

Exercise 12.7 Show that any polynomial equation of odd degree with rcal
coeflicients has at least one real root.

Exercise 12.8 Prove that any continuous function f : [a, b] — [a, b] has a fixed
point, that is a point = € [a, b] such that f(z) = z.

Exercise 12.9 Supposc that f: [0, 1] — R is continuous and that f(1) = f(0).
Show that for n € N, n > 2 there exists x € [0, 1] such that f(z + 1/n) = f(x).
[Hint: For g(z) = f(z)— f(z + 1/n), show g(0) + g(1/n) + ... + g((n—1)/n) = 0.
Now observe that either all the g(i/n) are zero, or two successive oncs have
opposite signs.|
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Exercise 12.10% Suppose that f : R — R is a function such that for every z € R
the set f~1(z) contains exactly two points. Show that f cannot be continuous.

Exercise 12.11 Give ecither a proof of, or a countercxample to, each of the
following.

(a) Suppose that X, Y are spaces with subsels A, B. Suppose that neither X'\ 4
nor Y \ B is connected. Then X x Y\ (A x B) is not connected.

(b) Suppose that A, B are subscts of a space X and that both ANDB and AUB
are connected. Then A and B are connected.

(¢) Suppose that A, B are closed subsets of a space X and that both AN B and
AU B are connected. Then A and B are connected.

Exercise 12.12 Prove that the function space C[0, 1] of all continuous real-
valued functions on [0, 1] with the sup metric (sec Example 5.13) is path-
connected and hence connected.

Exercise 12.13 Suppose that f : X — Y is a continuous map from a path-
connected space X onto a space Y. Show that Y is path-connected.

Exercise 12.14 Prove Example 12.22(b), that an annulus in R?, (i.e. a set of
the form {(z,y) € R? : a < (z — ¢)?2 + (y — d)? < b} for some rcal numbers
a, b, ¢, d with 0 < a < b) is path-connccted.

Exercise 12.15 Prove that a space X is connected iff every non-empty proper
subset of X has non-empty boundary.
[Hint: Sec Exercise 9.14(b).]

Exercise 12.16 Supposec that A, B are subscts of a space X with B connected
and suppose that B has a non-empty intersection with each of A and X \ A.
Prove that B must also have non-empty intersection with dA.

[Hint: Recall Excrcises 9.15 and 9.16.]

Exercise 12.17 Suppose A, B are connected subsets of a space X such that
AN B # (. Prove that AU B is connected.

Exercise 12.18 Given any space X, prove that there is a connected space Y
containing X as a subspace and such that Y \ X consists of a single point.
[Hint: Let ¢ ¢ X and consider the family of subsets of X U {t} consisting of @
together with {U U {t} : U € T} where T is the topology on X ]

Exercise 12.19* Give an example of a sequence of closed connected subsets V;,

oo
of the Euclidean plane such that V,, 2 V,,4; for each n € N but n V. is not

n=1
connected.
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Motivation

The subject matter of this chapter is probably the most important single
topic in this book. There is more than one way of framing the definition of
compactness. The definition in this chapter is appropriate for topological
spaces. Another important definition, which works well in metric spaces,
will be studied in Chapter 14 and related to the present definition.
Recall from the introduction that we are aiming to prove some ba-
sic results about continuous functions in a general setting, and that the
following is an example of the kind of result we wish to generalize.

Proposition 13.1 A continuous function f : [a, b] — R is bounded on
[a, b].

We shall begin with a slow build-up towards one way of proving this
and generalizations of it. Let us set out by supposing that the function
f: A — Ris defined on some general subset A of R. We ask ‘Is f bounded
on A?’, in other words ‘Does there exist a fixed real number K such that
|f(z)] € K for all x € A?” We go from the known to the unknown in
tackling this question.

STEP 1. If A is a finite set, say that A = {a1, ag, ..., a,} then the answer
is ‘“Yes’. We may take K = max{|f(a1)|, |f(a2)l, ..., |f(ar)[}.

T
STEP 2. If A is a finite union of subscts, A = U A; and if we know that

i=1
f|A; is bounded for cach i € {1, 2, ..., r}, say |f(z)| < K; for all z € A;,
then again the answer is ‘Yes'. We may take K = max{ K3, Ko, ...,, K,}.
Then any z in A isin A; for some i € {1, 2, ..., r},and |f(z)| < K; < K.

Example 13.2 We now look at an example of a function which is not
bounded, although it is continuous. Let A = (0, 1) and define f(z) = 1/z
for £ € A. Given any rcal number K we can find a real number z € (0, 1)
such that 0 < z < 1/K, so f(z) = 1/x > K. So no K is large enough to
bound f on all of (0, 1).
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STEP 3. However, we do get something when f is continuous. For suppose
that A C Rand f: A — R is continuous. Let us apply the € —é definition
of continuity at a point a € A, with ¢ = 1 say: thus there exists § > 0 such
that | f(z)— f(a)] < 1 whenever z € A and z € Bs(a). Hence for all such
we have |f(z)| = [f(z) — f(a) + f(a)] < [f(z) - f(a)| +]f(a)] < 1+]f(a)l.
The & here in general depends on a (and also on f). Let us write it in
the meantime as d(a). So for continuous f, given any a € A there exists
a single bound K, = 1+ |f(a)| for |f(x)| which works for all z in some
neighbourhood of a (precisely, on AN Bs(g)(a))-

STEP 4. Now reccall that the original question is whether there is a single
bound for |f(x)| which serves for all z € A. We cannot in general answer
this affirmatively by taking the maximum of the K, in Step 3, because
in general there are infinitely many K, involved (onec for each a € A)
and the set of thesc K, may not be bounded above. However, suppose
for a moment that A is contained in the union of some finite number
of the Bs)(a) occurring in Step 3. Then, since f is bounded on each
AN By, (a), it follows by Step 2 that f is bounded on A.

Let us examine more closely the assumption that allowed us to reach
this conclusion: originally we just had A C U Bjs(ay(a), and we then as-

acA
sumed that A is contained in the union of just finitely many of these

neighbourhoods. Now Bj(q)(a) depended on f as well as a, so if we want
to set down a condition on A which will enable us to prove by the above
argument that any continuous function of A is bounded, we had better
assume something like the following property.

PROVISIONAL DEFINITION A subset A C R is compact if whenever
it is contained in the union of a family of open balls, it is contained in the
union of finitely many of these balls.

The above discussion shows that if A C R is compact in the above sense
and f: A — R is continuous then f is bounded on A.

As it stands, our provisional definition makes sense with R replaced by
any metric space. As usual, replacing open balls by open sets generalizes
it to any topological space.

Before stating the definition precisely, let us consider what compact-
ness enables us to do. The conclusion of Step 3 is called a ‘local’ statement,
because it asserts something only for a neighbourhood of each point. On
the other hand, the statement that f is bounded on A is called a ‘global’
statement, since it describes a property of f on the whole domain A.
Compactness of A allows us to pass from the local to the global, in deal-
ing with continuous functions.
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Definition of compactness

The definition of compactness may conveniently be expressed in the lan-
guage of covers.

Definition 13.3 Suppose X is a set and A C X. A family {U; : i € I}
of subsets of X is called a cover for A if A C U U;.

i€l
Definition 13.4 With notation as in Definition 13.3, a subcover of a
cover {U; : i € I} for A is a subfamily {U; : j € J} for some subset J C I
such that {U; : j € J} is still a cover for A. We call it a finite subcover
if J s finite.

Definition 13.5 If U = {U; : i € I} is a cover for a subset A of a
topological space X and if each U; is open in X then U is called an open
cover for A.

Definition 13.6 A subset A of a topological space X is compact if every
open cover for A has a finite subcover.

In particular, 13.6 gives a definition of a space X being compact. This
rather intricate definition takes a bit of getting used to. It is important
to notice precisely what it is saying: given any open cover U of A, there
is a finite subfamily of & which is enough to cover A. For example, this
is very different from saying that ‘A has a finite open cover’ indced,
the latter is truc for any subset A of a space X, since {X} is such a
finite open cover. To emphasize that you have to allow yourself to sct
out from any open cover, here is an cxample of a non-compact subsct
of R.

Example 13.7 The open interval (0, 1) in R (with its usual topology) is
not compact.

Proof Notice that if we begin with the open cover {(0, 1)} then of course
it has a finite subcover—it is itself finite. We deliberately look for an ‘awk-
ward’ open cover with no finite subcover. Consider for example the family
of open sets {(1/n, 1) : n € N,n > 1}. This does cover (0, 1): given any
x € (0, 1) we have z > 1/n for sufficiently large n, and then z € (1/n, 1).
But any finite subfamily. say {(1/ns, 1), (1/ng, 1),..., (1/n, 1)} covers
only (1/N, 1) where N = max{n;, ng, .... n,}. So (0. 1) is not compact.

0

On the other hand, an important theorem which we shall prove shortly
says that any closed bounded interval [a, b] in R is compact. In the mean-
time, we give a couple of easier examples.
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Example 13.8 (a) Any finite subset A = {a1, aq, ..., an} of a space X
is compact.
(b) Any space with the co-finite topology is compact.

Proof (a) Suppose Y = {U; : i € I} is any open cover of A. Then
for each r € {1, 2, ..., n} we have a, € U;, for some i, € I, and then
{Ui,, Ui,, ..., Ui, } is a finite subcover of Y for A.

(b) Suppose X is a space with the co-finite topology, and let U be
any open cover of X. We know that at least one of the sets in U, say Uj,,
is non-empty, since X is non-empty. Since U, is open, X \ U;, must be

finite, say X \ U;, = {21, Z2, ..., zn}. Foreach r =1, 2, ..., n we have
z, € U;, for some i, € I. Then {U;,, U,, ..., U, } is a finite subcover of
U for X. 0

Now that we have a definition of compactness, we may ask ‘What is it
good for?’ There are at least two general answers worth thinking about.

(1) It allows us to pass from the local to the global in the sense explained
in the section on motivation. In particular, the discussion there essen-
tially proved that any real-valued continuous function on a compact
space is bounded, though we shall shortly repeat that proof.

(2) The second answer has been well expressed in Hewitt (1960): com-
pactness is the next best thing to finiteness, as far as continuous func-
tions are concerned. Hewitt points out that many statements about
functions f: X — Y are:

(i) true and trivial if X is a finite set;

(ii) truc for continuous f when X is compact;

(iii) false, or very hard to prove, cven for continuous f, when X is
non-compact.

We have alrecady seen (2) illustrated for the statement ‘f is bounded
on X’ when Y =R.

» In a sense similar to (2), finite-dimensionality of a vector space is a
substitute for finiteness when we are dealing with linear transformations.
Consider for example the result that a linear transformation from a finite-
dimensional vector space to itself is injective iff it is onto. <

Remarks (a) Some textbooks take ‘compact’ to mean our Definition 13.6
plus the Hausdorff condition.

(b) The mathematician H. Weyl is credited with a striking comment
about compact subsets of the plane: ‘If a city is compact, it can be guarded
by a finite number of arbitrarily short-sighted policemen’.
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Compactness of closed bounded intervals
Theorem 13.9 Any closed bounded interval [a, b] in R is compact.

Here is a proof which uses the completeness property of R rather directly.
It is somctimes called ‘the creeping method’. There is a further proof in
Excrcise 13.15.

Proof Supposec that U is a cover of [a, b] by sets open in R. Let
G={z€R:x>a and [a, z] is covered by a finite subfamily of U}.

Let us call points in G good (for U). We want to show that b is good.
We note that if z is good and a < y < z then y is also good: for [a, y]
is covered by any finite subfamily of U that covers [a, z]. Since [a, a] is
contained in a single set of U, we know that a € G so G is non-empty.

If G is not bounded above, then there exists z € G with £ > b, so b is
good.

Suppose that G is bounded above, and let ¢ be sup G. If ¢ > b then we
may choose z € G with x > b, and again b is good.

Suppose for a contradiction that ¢ < b. Note that ¢ # a since a € U, for
some U, € U, and since U, is open there exists § > 0 with [a, a+J) C U,
so all points in [a, ) are good. Hence ¢ € (a, b].

Now there is some U, € U with ¢ € U,. Since U, is open, there is some
e > 0 such that (¢ — ¢, ¢+ ¢) C U,. Since ¢ > a, and by definition of
¢ = sup G, there exists x € G such that £ > a and £ > ¢ — €. Since z
is good, [a, z] is covered by a finite subfamily of U; if we add U, to this
finite subfamily we get a finite subfamily of ¢ which covers [a, ¢ + £/2].
So ¢+ ¢/2 is good, contradicting the fact that ¢ is an upper bound for G.
Hence ¢ > b and as we have scen this shows that b is good as required.

O

You may find it instructive to examine where this proof breaks down
if you try to apply it to (a, b] or [a, b).

Properties of compact spaces

Which subsets C of R™ are compact? In this section, we show that it is
necessary for C to be bounded, and closed in R™. (These are corollaries of
more general results.) Later we show that for subspaces of R™ these con-
ditions are also sufficient. However, as we shall see they arc not sufficient
in general metric spaces although they make sense there.

Proposition 13.10 Any compact subset C of a metric space (X, d) is
bounded.
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Figure 13.1. Compact subsets of metric spaces are bounded

Proof Let a be any point in X. For any ¢ € C we may choose an integer
n > d(a, ¢) and then ¢ € By(a). This shows that {Bp(a) : n € N} is
an open cover of C. By compactness, there is some finite subcover of

C, say {Bn,(a), Bn,(a), ..., By (a)}. But LTJ B,,,(a) = By(a) where N

i=1
is the maximum of {ny, ng, ..., n,}, so C C By(a) and C is bounded as
required (Figure 13.1). O

Corollary 13.11 Any compact subset of R" is bounded.

Proposition 13.12 Let C be a compact subset of a Hausdorff space X.
Then C is closed in X.

Proof Let z be some fixed point in X\ C. We shall show that there exists
an open set U, containing x and with U, C X\ C; then by Proposition 7.2
X \ C is open, and hence C is closed, in X.
For each ¢ € C, by the Hausdorff condition there exist disjoint sets
Ue, V. open in X and with x € U, c € V..
At this stage we note that if C' were finite, say C = {c1, ¢2, ..., ¢}
T

we could take U, = ﬂ U., and achieve our goal of getting an open set U,

i=1
with z € U, and U, NC = 0. Figure 13.2 illustrates this in the case when
r=2.
However, more generally we can use compactness as a substitute for
finiteness. For {V, : ¢ € C} is an open cover of C, and by compactness
T

there is a finite subcover, say {V¢,, Ve, ---, Vo, }. Let Uy = ﬂ U.,. As a

i=1
finite intersection of open sets, U, is open in X. Clearly = € U,, since
x € U, for all i. We shall see that Uz C X \ C.
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g @4” U, AU, = U,

Figure 13.2. Proof of Proposition 13.12

Foreachi=1,2....,r, we have Uy C U, so U, NV, C U NV, = 0.
Hence

T r

U,NC C U,N (U v) = U(UxﬂV,.z.) =0, so U, C X\C as required.
=1 i=1

O

Corollary 13.13 Any compact subset of R™ is closed in R™.

Proposition 13.12 gives another proof that singleton point sets (and more
generally finite sets) in a Hausdorff space are closed.

There is one more definition related to compactness which is sometimes
useful.

Definition 13.14 A subset A of a topological space X is said to be rel-
atively compact in X if A is compact, where the closure is taken in X.

For example, (0, 1) is relatively compact in R since [0, 1] is compact, but
it is not relatively compact in (0, 1) since there its closure is still just
(0, 1).

Continuous maps on compact spaces

Proposition 13.15 If f : X — Y is a continuous map of topological
spaces and X is compact then f(X) is compact.

Proof Supposc that i is an open cover of f(X). Since f is continuous,
f~YU) is open in X for every U € U. The family {f~}(U) : U € U} covers
X since U covers f(X). Hence by compactness of X, there is a finite sub-
cover, say {f~1(Uh), f~Y(Us), ..., f~Y(U;)} and then {Uy, Uy, ..., U.}
is a finite subcover of f(X). a
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This result is often stated as ‘the continuous image of a compact space is
compact’.

Corollary 13.16 Compactness is a topological property.

This follows just as the analogous result for connectedness did.

Corollary 13.17 Any continuous map from a compact space to a metric
space is bounded.

This follows since the image is compact and hence bounded. It proves
Proposition 13.1 in a gencral setting.

Next we consider a bounded real-valued function f : X — R on a space
X. Since X is non-empty so too is f(X); since also f(X) is bounded,
sup f(X) and inf f(X) exist. These are called ‘the bounds of f on X’ and
in general they may or may not be in the set f(X). If they are, we say ‘f
attains its bounds on X°.

Corollary 13.18 If f : C — R is continuous and C is compact then f
attains its bounds on C. This means there is at least one cg € C such that
f(co) = inf f(C) and at least one c¢; € C such that f(c;) = sup f(C).

Proof From Proposition 13.15 we know that f(C) is compact, and hence
bounded and closed in R by Corollary 13.11 and Corollary 13.13. But for
any non-empty bounded subset A C R we know that sup A, infA € A
(sec Exercise 6.9) so here sup f(C) and inf f(C) are in f(C) = f(C), in
other words, f attains its bounds on C. o

Corollary 13.19 A continuous real-valued function on [a, b] attains its
bounds.

Compactness of subspaces and products

We saw above that any compact subset of R™ is bounded and closed in R™.
In the next section, we show conversely that closed bounded subscts of
R™ arc compact. In order to do this, it is convenient to prove two general
results.

Proposition 13.20 Any closed subset C of a compact space X is com-~
pact.

Proof Let U be any cover of C by sets open in X. Since C is closed
in X, X\ C is open in X. If we add it to U we get an open cover of
X. But X is compact, so there is a finite subcover, say {Un, U, ..., U }.
This certainly covers C since it covers all of X. Morcover, if X \ C' is one
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of these U; then we may throw it out and the remaining r — 1 sets will
still cover C. If X \ C is not one of the U; then we leave {U;. Uy, ..., U}
alone. In either case we get a finite subcover of U for C. So C is
compact. c

Theorem 13.21 A topological product X xY of spaces X, Y is compact
iff both X and Y are compact.

Proof In one direction the proof is easy: if X x Y is compact then X and
Y are compact as the continuous images of X x Y under the projection
maps px, py -

Now suppose that X and Y are compact. The proof that X x Y is
compact is one of the trickier proofs in topology at this level. We shall
take it in easy stages.

Let W be any open cover of X x Y. We shall call a subset A C X good
(for W) if AxY is covered by a finite subfamily of W. We want to prove
that X is good.

STEP 1. If Ay, Ay, ..., A, C X are all good, then so is their union
A. For given any i € {1, 2, ..., r} there is a finite subfamily say W; of
W which covers 4; x Y. Then A x Y is covered by the finite subfamily
WiUWa U...UW, of W.

STEP 2. We next show that X is locally good, in the sensc that for
each z € X there is an open subset U(x) of X such that z € U(z) and
U(z) is good.

Proof Consider a fixed z € X. For each y € Y, (z, y) € W(y) for some
W (y) in W, since W covers X x Y. By Proposition 10.20 there exist sets
U(y), V(y) open in X, Y such that (z, y) € U(y) x V(y) € W(y). The
family {V(y) : y € Y} is an open cover for Y, so by compactness of Y
there exists a finite subcover, say {V(y1), V(y2), ..., V(yr)}. Let

Uz) =U(y) NU(y2) O ... 0 U(yr)-

The idea of this move is illustrated schematically in Figure 13.3. For each
iin {1, 2, ..., r} we have

U(z) x V(yi) CU(ys) x V(yi) € W(yi), so

r T T

Ue) x Y = U(x) x V() = JU) x V(5:) U

i=1 i=1 i=1
so U(x) is good. Also, z € U(z) and U(z) is open in X, as a finite
intersection of open sets. m]
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Figure 13.3. Construction of a good neighbourhood of «

STEP 3. Finally we usc compactness of X to pass from the local to
the global in X. For each z € X let U(z) be a good open set in X with
x € U(z), as provided by Step 2. Then the family {U(z) : z € X} is an
open cover of X, so by compactness of X therc is a finite subcover say
{U(x1), U(za), ..., U(xs)}. Since each U(x;) is good, so is their union
by STEP 1, and this is all of X. So X is good, as required. O

Remark Theorem 13.21 extends casily by induction to the product of
any finite number of compact spaces. It is true also for infinite products
of compact spaces. In its general form it is referred to as Tychonoff’s
Theorem, and has many applications, for example in analysis. Since we
restrict to finite products in this book, we refer to Willard (2004) for the
general case.

Compact subsets of Euclidean spaces

Theorem 13.22 (Hcine-Borel theorem) Any closed bounded subset C
of R™ is compact.

As an illustration, we prove this first for n = 1. Suppose that C C R
is bounded and closed in R. Since C is bounded, C C |a, b] for some
a, b € R. Now C is closed in [a, b] by Excrcise 10.5 and [a, b] is compact
by Theorem 13.9, so C is compact as a closed subset of a compact space
(Proposition 13.20). We note that compactness of [a, b] is both a spe-
cial casc, and the basis of the proof, of this one-dimensional Heine- Borel
theorem.

Proof Suppose that C C R" is bounded and closed in R™. Since C
is bounded, it is contained in the n-fold product [a, b]" of some closed
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bounded interval [a, b] by Excrcise 5.7. Since [a, b] is compact by The-
orem 13.9, so is its n-fold product by induction using Theorem 13.21.
Also, C is closed in [a, b]™ by Exercisc 10.5, so C' is compact as a closed
subspace of a compact space. m]

Remark In more general metric spaces, a subset may be bounded and
closed without being compact—as a simple example consider (0, 1) as a
subset of itself. There are more interesting examples in the web site, where
compact subsets of function spaces arc ecxamined.

Compactness and uniform continuity

Definition 13.23 A map f : X — Y of metric spaces X, Y with metrics
dx, dy is said to be uniformly continuous on X if given € > 0 there
exists 0 > 0 such that dy(f(z), f(a)) < € for any z, a € X satisfying
dx(z, a) < 4.

Notice that this is stronger than ordinary continuity in that é can de-
pend on & but not on a; that is the significance of the word uniformly.
Ordinary continuity of f is a local property in that it says something
about the behaviour of f in some neighbourhood of each point in X.
Uniform continuity is a global property since it says somecthing about
the behaviour of f over the whole space X. Since compactness allows
us to pass from the local to the global, the next proposition is not
surprising.

Proposition 13.24 If f : X — Y is a continuous map of metric spaces
and X is compact then f is uniformly continuous on X.

For the proof of this result and more on uniform continuity we refer to the
web site. However, we note one further result about uniform continuity
here.

Proposition 13.25 If metrics dy, d for a set X are Lipschitz equivalent,
then the identity map of (X, dy) to (X, d2) is uniformly continuous as is
its inverse.

The proof is Exercise 13.16.

An inverse function theorem

We end this chapter with a type of inverse function theorem which will
be used several times later on.

Proposition 13.26 Suppose that f : X — Y is a continuous one—one
correspondence, where X is a compact space and'Y is a Hausdorff space.
Then f is a homeomorphism.
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Proof Since f is injective and onto, we know that there is an inverse
function f~! : Y — X; we just have to prove that f~! is continuous.
Suppose that V is closed in X. It is enough to show that (f~!)~1(V) is
closed in Y. By Proposition 3.20 (f~1)"}(V) = f(V).

Now the rest of the argument follows from three implications:

V closed in X = V'is compact = f(V)is compact = f(V)is closed inY.

These implications follow because a closed subset of a compact space is
compact (Proposition 13.20), the continuous image of a compact space
is compact (Proposition 13.15) and a compact subspace of a Hausdorff
space is closed (Proposition 13.12). So (f~1)~}(V) = f(V) is closed in Y
as required. O

Corollary 13.27 If f : X — Y is a continuous injective map from a
compact space X into a Hausdorff space Y, then f determines a homeo-
morphism of X onto f(X).

This follows from Proposition 13.26 and Proposition 10.6.

Example 13.28 If f : [a, )] — R is a continuous monotonic function,
then it has a continuous inverse function f~1 : f([a, b]) — [a, b] which is
also monotonic.

Exercise 13.1 Prove that any indiscrete space is compact.
Exercise 13.2 Prove that a discrete space is compact iff it is finite.

Exercise 13.3 Show that if A and B are compact subsets of a space X then so
is AU B.

Exercise 13.4 Which of the following subsets of R, R? arc compact?

(i) [07 1);

(ii) [0, 00);

(i) QN [0, 1];

(iv) {(z, y) e R?: 2? + 4% = 1};
V) {(z, y) e R?: || + |y| < 1}
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(vi) {(z, y) € R? : 22 + 9% < 1};
(vii) {(z,y) eR?: 2> 1,0< y < 1/x}.

Exercise 13.5 Given topologies 7, 7’ on a set X with 7 C 7', prove that if
(X, T7) is compact then so is (X, T).

Exercise 13.6 Prove that the following is a necessary and sufficient condition

for a space X to be compact: if {V; : ¢ € I} is any indexed family of closed

subsets of X such that ﬂ V; is non-empty for any finite subsct J C I then
7€J

ﬂ V; is non-empty.

iel

[Hint: Take complements and apply the definition of compactness.|

Exercise 13.7 Obtain another proof that finite subsets of a Hausdorff space are
closed using the result that a compact subset of a Hausdorff space is closed.

Exercise 13.8 Prove that if X C R is not compact, then there is a continuous
function f: X — R which is not bounded.

[Hint: Consider separately the cases X is not bounded and X is not closed
in R.]

Exercise 13.9 Prove that if X C R is not compact, then there is a continuous
function f: X — R which is bounded but does not attain its bounds.

Exercise 13.10 Prove that if C, C’ are compact subsets of a Hausdorff space
X then CNC’ is compact.

Exercise 13.11 Suppose for every n € N that V,, is a non-empty closed subset

0
of a compact space X with V,, D V,,1 ;. Prove that Vo = ﬂ Vo # 0.

n=1

Exercise 13.12* With the notation of Exercise 13.11, suppose that X is as
compact. Suppose that U is open in X and that V,, C U. Prove that V,, C U
for some n € N.

[Hint: Consider the sequence of sets W,, = V,, N (X \ U).]

Exercise 13.13* Suppose that X is a compact Hausdorff space and suppose
that f: X — X is a continuous map. Let Xy = X, X; = f(Xp) and inductively
define X,, ;1 = f(X,) forn > 1.

e o]

(a) Show that A = ﬂ Xn is non-empty. [Hint. Remember Exercise 13.11.]

n=0
(b) Show further that f(A) = A. [Hint: To show that a € A is in f(A)
apply Exercise 13.11 to the sets V,, = f "1(a) N X, ]
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Exercise 13.14 Suppose that X is a compact metric space with metric d and
that f : X — X is a continuous map such that for every z € X, f(z) # = Prove
that there exists € > 0 such that d(f(x), x) 2 e for all z € X.

[Hint: Show that the map g : X — R defined by g(z) = d(f(z). z) is continuous
so attains its bounds.]

Exercise 13.15 (Bisection method) Give another proof of the one-dimensional
Heine-Borel theorem along the following lines Let U be any open cover of [a. b].
Assumne for a contradiction that there is no finite subcover, and put ¢; = (a+b)/2.
Then at least one of [a. ¢1], [¢1, b] is not covered by any finite subfamily of U.
Let [ay. b1] denote one of those subintervals which is not so covered. Repeat
this argument inductively to get two real sequences (an), (b,) such that for all
neN,

(1) An < an+ < bn-rl g bn
(ii) by —a, = (b-a)/2™;
(iil) |an. bn) 18 not covered by any finite subfamily of U
Deduce that (a,,), (b,) both converge to some ¢ € [a, b] and get a contradiction

by showing that for sufficiently large n the interval [a,. b,] is contained in a
single set U from U.

Exercise 13.16 Suppose that metrics dy, dy for a set. X arc Lipschitz cquiva-
lent (Definition 6 33). Prove that the identity map of X is uniformly (dy, d2)-
continuous and also uniformly (dsz. di)-continuous.

Exercise 13.17 Use the inverse function theorem above to prove that if 7y, 7Ty
are topologics on a set X such that 73 € 75 and the spaces (X. 77), (X. T2)
are respectively Hausdorfl and compact, then 7) = 7. Deduce that there is
no Hausdorfl topology on [0. 1] which is strictly coarser than the Euclidean
one.

Exercise 13.18 ¥ Suppose that F is a family of real-valued continuous func-
tions defined on a compact space X. with the properties.

(i) flz) 20 forallz € X and all f € F.

(ii) if f. g € F then f4 g F:

(iii) for each f € F there is some point zy € X such that f(x;) =0
Prove that therc is some point g € X such that f(xzg) =0 for all f € F.
(Hint' argue by contradiction.]

Exercise 13.19* Prove that any compact Hausdorff space is regular. Then
prove that it is normal (See Definition 11.8.)
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Exercise 13.20 *

(a) Suppose that px : X x Y — X is the projection map on the first factor of
a topological product X x Y, where Y is compact. Prove that if W C X x Y is
closed in X x Y then px (W) is closed in X.

{b) Give an example to show that in general (a) is false if we omit the hypoth-
csis that Y is compact

Exercise 13.21 Suppose that f: X — Y is a map from a space X to a compact
space Y and that its graph G is closed in X x Y. Prove that f is continuous.
[Hint: for any subset V C Y prove that f~'(V) = px(Gy Npy*(V)). Apply this
to V closed in Y, using Proposition 9.5. Use also Exercise 13.20(a).]

Exercise 13.22* For any topological spacc (X, 7). let X’ = X U {co} where
20 is any object not in X. Let 7’ be the union of 7 with all sets of the form
V U{oc} where V C X and X \ V is compact and closed in (X, 7). Prove that
(X', T') is a compact space containing (X, 7) as a subspace.

(Then (X', T') is called the Alexandroff one-point compactification of (X, 7).)






14 Sequential compactness

We recall the form of Bolzano Weierstrass theorem stated in Chapter 4:
any bounded scquence of real numbers has at lecast one convergent subse-
quence. (You may have seen an equivalent form, which says that any
bounded infinite subset of real numbers has at least one limit point;
the sequence version is more relevant to our purposes.) The Bolzano—
Weierstrass theorem is closely related to the one-dimensional Heine—Borel
theorem. For example, we have proved that a continuous real-valued func-
tion on a closed bounded interval [a, b] is bounded and attains its bounds
using the Heine-Borel theorem (more precisely, the special case for [a, b]);
cqually well this can be proved using the Bolzano—Weierstrass theorem—
in analysis textbooks it is often proved that way, for example see Theorems
4.3.1 and 4.3.2 of Hart (2001).

In this chapter we generalize the Bolzano—Weierstrass property of rcal
numbers to give an alternative approach to compactness called sequential
compactness. Scquential compactness is often useful in analysis, both for
theoretical purposes, proving existence theorems for solutions of certain
problems, and also for practical purposes, giving numerical approxima-
tions to solutions.

We discuss sequential compactness exclusively for metric spaces, al-
though the concept makes sensc more generally. Later in the chapter we
pin down and generalize the connection between the Heine-Borel theo-
rem and the Bolzano—Weierstrass theorem by showing that for any metric
space scquential compactness is equivalent to compactness in the sense of
the previous chapter.

Sequential compactness for real numbers
We begin with a few examples rclated to the Bolzano—Weierstrass
theorem.
Example 14.1 Consider the following scquences of real numbers:
(@) 1,0,1,0,1,...;
(b) 1,0,2,0,3,0,...;
(¢) 1,2,3,4,...
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The sequence in (a) is bounded but not convergent. However, there are
many convergent subsequences: any subsequence which eventually settles
down to taking either odd terms only, or even terms only, is convergent.
We note that the cxistence of at least onc convergent subsequence is
guarantecd by the Bolzano-Weierstrass theorem.

The sequence in (b) is unbounded, but we can still find convergent
subsequences-—any subsequence which eventually settles down to pick out
only zero terms is convergent. So an unbounded sequence can easily have
convergent subsequences.

However, in (c) no subsequence is bounded so no subsequence is
convergent.

Definition 14.2 A subset S C R is called sequentially compact if every
sequence in S has at least one subsequence converging to a point in S.

The Bolzano Weicrstrass thecorem in Chapter 4 says that any bounded
sequence of real numbers has a convergent subsequence. From this we
casily deduce

Proposition 14.3 Any closed bounded subset S C R is sequentially
compact.

Proof Let (z,) be any sequence in S. By Theorem 4.19 there is at least
one convergent subsequence (zp, ). Since S is closed in R the limit of (x5, )
is in S (by Corollary 6.30). So S is sequentially compact. ]

The converse is also true.

Proposition 14.4 Any sequentially compact subset of R is closed and
bounded.

This is a special case of Excrcises 14.2 and 14.4, and we omit the proof.
The next theorem is an immediate consequence of Proposition 14.3 and
Proposition 14.4.

Theorem 14.5 A subset S C R is sequentially compact iff it is bounded
and closed in R.

We showed in Chapter 13 show that a subset of R is compact iff it is
bounded and closed in R (this is the one-dimensional Heine-Borel theo-
rem); with Theorem 14.5 this gives the following result.

Theorem 14.6 A subset of R is compact iff it is sequentially compact.

Sequential compactness for metric spaces

The next definition generalizes the notion of sequential compactness to
metric spaces.
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Definition 14.7 A metric space X is sequentially compact if every se-
quence in X has at least one subsequence converging to a point
of X.

Definition 14.8 A non-empty subset A of a metric space (X, d) is sc-
quentially compact if, with the subspace metric da, it satisfies Defini-
tion 14.7. Conventionally the empty set is considered to be sequentially
compact.

Example 14.9 (a) Any finitc metric space is sequentially compact.
(b) Any bounded closed subset of R is sequentially compact.

Proof (a) Given any sequence in a finite metric space X, at least one
point of X must be repcated infinitely often in the sequence. The oc-
currences of such an infinitely repeated point give a constant, hence a
convergent, subsequence.

(b) This is Proposition 14.3. O

In the rest of this chapter we prove the following generalization of
Theorem 14.6. Its proof is slightly sophisticated —for example, some of
it proceeds by contradiction rather than direct construction. We shall
illustrate some of the moves with related cxamples.

Theorem 14.10 A metric space is compact iff it is sequentially
compact.

Remark For subsets of R this is Theorem 14.6.
As we have mentioned, sequential compactness makes sense more gen-
erally, and in fact the analoguc of Theorem 14.10 holds in some spaces

which are not metrizable, but this is beyond our scope; sce for example
17G in Willard (2004).

Towards proving Theorem 14.10 we first show that a compact metric
space is sequentially compact. For this we use the following result.

Proposition 14.11 Let (z,) be a sequence in a metric space X and let
r € X. Suppose that for each € > 0 the neighbourhood B:(x) contains x,,
for infinitely many values of n. Then (z,) has a subsequence converging
to .x.

Example 14.12 Consider the following real sequence
1,1,2.1/2,3,1/3,...,n, 1/n,...
Then 0 is such that for any € > 0 the neighbourhood B(0) contains
Iy, for infinitely many n, since it contains every term of the form 1/n in
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the sequence for n sufficiently large (namely, n > 1/¢). The subsequence
of (z,,) formed by taking every second term is (1/n) which converges to 0.

Proof of 14.11. Let n; be such that z,, € Bj(z). Suppose inductively
that positive integers ny < ng < ... < n, have been chosen so that
&n, € Byi(z) for cach i = 1, 2,..., r. Since By(;41)(x) contains x, for
infinitely many values of n, it must contain z, for some n > n,; we
take n,1 to be such an n. This inductive procedure shows that (z,) has
a subsequence (zn,) with z, € By () for all r, so this subsequence
converges to . O

NB Notice that the condition says that B.(z) contains x, ‘for infi-
nitely many values of n’, not that it contains ‘infinitcly many different
points in the set {z, : n € N}. In particular, (z,) might be the se-
quence (z, z, z,..., Z,...) and this would satisfy the hypotheses of the
proposition.

Corollary 14.13 Suppose that a sequence (xy,) in a metric space X has
no convergent subsequences. Then for each x € X there exists €, > 0 such
that B (x) contains z,, for only finitely many values of n.

Example 14.14 (a) In R consider the sequence (n), which has no con-
vergent subscquence. Now for any x € R we may take €, = 1 and the
neighbourhood B, (z) contains at most two terms in the sequence (n) (it
contains only one term when x is an integer).

(b) In the metric space X = (0, 1] consider the sequence (1/n). Every
subsequence is ‘trying to converge to 0’, which is not in X. So (1/n) has
no convergent subsequences in X. For any £ € X we have 0 < z < 1,
so 1/(N +1) € z < 1/N for some integer N > 0. Let us now choose
€z =1/(N+1)—1/(N+2). Then e, > 0 and z — e, > 1/(N + 2). Hence
Bc_(z) contains 1/n only for n < N + 1, so only finitely many terms of
the sequence (1/n). (In fact with some more cffort one can show that it
contains at most two terms of the sequence.)

Now we can prove

Theorem 14.15 Any compact subset X of a metric space Y is sequen-
tially compact.

Proof Suppose that (z,) is a sequence in compact X and suppose for a
contradiction that (z,) has no convergent subsequence. By Corollary 14.13,
for every x € X there exists €, > 0 such that B._(x) contains z, for only
finitely many n. The family {B,, (z) : ¢ € X} is an open cover for X, so
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there is a finite subcover. Each set in this finite subcover contains z,, for
only finitely many values of n. But this implics that the whole of X con-
tains x, for only finitely many values of n, which is nonsense since (z,,)
is a sequence in X. So (z,) must have a subsequence converging to some
point . Now X is compact and hence closed in Y by Proposition 13.12.
So z is in X by Corollary 6.30. Thus X is sequentially compact. O

The proof that a sequentially compact metric space is compact is
longer, and it is convenient first to prove two preliminary results.

Definition 14.16 Let U be any family of subsets of a metric space X
covering a subset A C X. A Lebesgue number for U is a real number
with € > 0 such that for any a € A the ball B.(a) is contained in some
single set from U.

Example 14.17 Consider the open cover of [0, 1] by the sets (—1, 3/4)
and (1/4, 2). Then € = 1/4 is a Lebesgue number for this cover. For
let z € [0,1). If 0 < z < 1/2 then z + 1/4 < 3/4 and it follows that
(x—1/4, x+1/4) C (-1, 3/4), whileif 1/2<z <1thenz-1/4>1/4
and (z — 1/4, z +1/4) C (1/4, 2).

Proposition 14.18 Any open cover U of a sequentially compact metric
space X has a Lebesque number.

If ¢ is a Lebesgue number for U then so is any § with 0 < § < €. The
proof of Proposition 14.18 is by contradiction; it gives no idea how to find
a specific Lebesgue number. (A more direct proof, but one which works
only for finite covers, is developed in Exercise 14.14.)

Proof Suppose for a contradiction that therc is no such €. Then in par-
ticular, for any positive integer n the number 1/n is not a Lebesgue num-
ber for Y. So there cxists some point in X, which we shall call z,, such
that By/,(zn) is not contained in any single set of . By sequential com-
pactness of X, the sequence (z,) has some subsequence (2, ) converging
to a point £ € X. Now z € U for some U € U, and since U is open in X,
there exists € > 0 such that By.(z) C U. By convergence of (z,,) to z,
there exists R € N such that z, € B.(z) for all » > R. In particular, we
may choose r > R large enough so that 1/n, < . It is now sufficient to
prove that By, (Tn,) C Bze(x), for then By (zn,) C U, contradicting
the choice of z,, .
Suppose that y € By, (zn,). Then

d(y, z) < d(y, Tn,)+d(zn,, ) < 1/n.+€ < 2, so y € Ba(z) as required.
a
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The other result we need also requires a definition.

Definition 14.19 Given a real number ¢ > 0 and a metric space X, a
subset N C X is called an e-net for X if the family {B.(z) : z € N}
covers X.

Example 14.20 The set of integer lattice points in the plane (the points
both of whose coordinates are integers) is a 1-net for the plane.

This indicates the reason for the name net. In fact the integer lattice
points form an e-net for the plane for any ¢ > 1/ V2, since any point
in the plane is at distance at most 1/v/2 from the nearest lattice point.
However, the interesting e-nets for us are the finite ones.

Proposition 14.21 Let (X, d) be a sequentially compact metric space,
and let € > 0. Then there exists a finite e-net for X.

Proof Suppose for a contradiction that there is some € > 0 for which X
has no finite e-net. We shall construct a sequence in X with no convergent
subsequence, contradicting sequential compactness of X. Let x; be any
point of X. Then {z,} is not an e-net for X, so there exists 9 € X with
d(z2, 1) > €. Suppose inductively that zy, x2,..., , have been chosen
in X such that d(x;, x;) > € whenever 4, j € {1, 2,..., n} and 7 # j.
Since {z1, z2,..., T} is not an e-net for X there exists a point in X,
call it x4, such that d(x,41, z;) > € for j =1, 2,..., n. This inductive
procedure gives us a sequence (z,) in X such that d(xz,, z,) > € whenever
m # n. So (x,) has no Cauchy subsequence and hence by Proposition 6.28
no convergent subsequence. a

Theorem 14.22 Any sequentially compact metric space X is compact.

Proof Suppose that U is an open cover of a sequentially compact metric
space X. By Proposition 14.18 there is a Lebesgue number £ > 0 for U.
By Proposition 14.21 there is a finite e-net, say {z), z9,..., .} for X.
By definition of Lebesgue number, for each i = 1, 2,..., r there is some
single set, call it U; of U such that B.(x;) C U;. Then

X C OBe(xi) - U Ui,
=1

so U has the finite subcover {Uy, Us,..., Uy} for X, showing X to be
compact. a

We end this chapter with an example of a function space which is not
sequentially compact (involving ‘the moving bump’ below).
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1/2 1 /4 172

Figure 14.1. Graphs of fi and f,

Example 14.23 Let (f,) be the sequence of real-valued continuous func-
tions on [0, 1] defined as follows (sec Figure 14.1): for any n > 1,

0 if0<z<1/2"

2ntl(z —1/2™)  if1/2" < x < 1/2" + 1/27 ]
rtl(1/2n=t —z) if 120 +1/27 <z < 1/2n !
0 if1/2"'<z<1

fu(z) =

We consider B = {f, : n € N} as a subset of C[0, 1] with the sup
metric doc. Then we can see that doo(fm, fn) = 1 whenever m # n.
Hence the sequence (fn) in B contains no Cauchy subsequence and hence
no convergent subscquence. Hence B is not compact, and in fact (see
Excrcise 14.12 below) it is not relatively compact in C[0, 1].

The first eleven exercises below could be done by using the equiva-
lence of sequential compactness with compactness and referring to pre-
vious results, but it is suggested that they are attempted without using
Theorem 14.10, in order to gain familiarity with scquential compactuness.
The later cxercises are designed with the idea that sequential compactness
may be the more appropriate way to tackle them.

Exercise 14.1 Prove that the open unit interval (0, 1) is not sequentially com-
pact.

Exercise 14.2 Prove that a sequentially compact metric space is bounded

Exercise 14.3 Prove that a closed subset of a sequentially compact metric space
is sequentially compact.

Exercise 14.4 Prove that a sequentially compact subspace of a metric space X
is closed in X.

Exercise 14.5 Prove that if f : X — Y is a continuous map of metric spaccs
and X is sequentially compact then so is f(X).
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Exercise 14.6 Prove that if metric spaces X; and Xy are homeomorphic then
X is sequentially compact iff X5 is sequentially compact.

Exercise 14.7 Prove that any continuous map from a sequentially compact
metric space to another metric space has bounded image.

Exercise 14.8 Suppose that X is a sequentially compact metric space and that
f: X — R is continuous. Prove that f attains its bounds on X.

Exercise 14.9 Prove that the product of two sequentially compact metric spaces
is sequentially compact.

Exercise 14.10 Prove that a closed bounded subsct of R™ is sequentially com-
pact. (You may assume the result for n = 1.)

Exercise 14.11 Supposc that X is a sequentially compact metric space and we
are given a nested sequence V), 2 Vo D ... of non-empty closed subsets of X.

(e o]
Prove that ﬂ Vn # 0.

n=1
Exercise 14.12 Prove that a subspace C of a metric space X is relatively com-
pact in X iff every sequence in C has a convergent subsequence.

Exercise 14.13 Give another proof that [a, b] is connected along the following
lines. Suppose that {A, B} is a partition of [a, b}, where a € A. Since A, B are
open in [a, b}, for cach x € [a, b] there is some Bj(;) () entirely contained in either
A or B. Let € be a Lebesgue number for the open cover {Bj(;)(x) : z € [a, b]}
of [a,b] and let @ = a9 < a1 < ... < a, = b be such that a; — a;—; < € for
i=1,2,..., n. Deduce that [a, b] C A.

Exercise 14.14* Suppose that X is a sequentially compact metric space and
that 4 = {U,, Us, ..., U,} is an open cover of X. Put C; = X \ U;. Show that
if U; = X for some ¢ € {1, 2,..., n} then any € > 0 is a Lebesgue number for
U. From now on, assume that no U; is X.

(i) Recalling that d(z, C;) = inf{d(z, ¢) : ¢ € C;}, prove that z — d(z, C;)
is a continuous real-valuced function on X all of whose values are non-negative.

(ii) Defining f(z) = % Z d(z, C;), show that f : X — R is continuous with
a positive value for each IE_ 1X

(iii) Using Exercise 14.8, deduce that there exists € > 0 such that f(z) > €
forall z € X.

(iv) For any x € X show that f(z) < max{d(z, C;):i € {1, 2,..., n}}.

(v) For any z € X, show that B.(x) C Uy, where k(z) € {1,2,...,n} is
such that d(z, Cy(z)) = max{d(z, C;) : i € {1, 2,..., n}}. Deduce that ¢ is a
Lebesgue number for U.
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Exercise 14.15* Suppose that X is a compact metric space and Vi D V3 D ...
is a nested sequence of closed subsets of X. Prove that

diam (ﬂ Vn> = inf{diamV, : n € N}.

n=1

Exercise 14.16 Let f,, be as in Example 14.23 above, and for each n € N let
V., be the set {f, : m = n}.
o0

(a) Prove that m Vo =0.
n=1
(b) Prove that diamV,, =1 for any n.
(¢) Deduce that the conclusion of Exercise 14.15 fails in this case.

Exercise 14.17** (a) Let X be a compact metric space with metric d and
suppose that f: X — X satisfies d(f(z), f(y)) = d(z, y) for all z, y € X. Prove
that f is onto (so f is an isometry).

(b) Let X, Y be compact metric spaces with metrics dx, dy. Suppose that the
maps f : X - Y and g : Y — X satisfy dy (f(z1), f(z2)) = dx(z1, x2) and
dx(g(y1), 9(y2)) = dy (31, y2) for all z1, x2 € X and all y;, y2 € Y. Prove that
f and g are both onto (and hence isometries).

(c) Construct a function f : (0, co) — (0, co) which is not onto but nevertheless
satisfies | f(z) — f(y)| = | — | for all z, y € (0, 00).






15 Quotient spaces and surfaces

It would have been logical to discuss quotient spaces immediately after
subspaces and products, but it is convenient before tackling them to have
available some of our compactness results. Also, quotients are sometimes
found more challenging than subspaces and products, although they are
close to popular expositions of topology involving Mobius bands, dough-
nuts, and such gecometric objects. This chapter will give a basic account
of quotient spaces, and at the same time consider a few standard surfaces.
There are further results about quotients on the web site.

Motivation

At this point it would be good to get a sheet of newspaper, a pair of
scissors and some paste, and construct a Mobius band: Take a rectangular
strip of paper, twist one of the shorter ends through 180° and paste it to
the other short end (see Figure 15.1(a)). As the reader probably knows,
the Mobius band has some unusual propertics. For example, try cutting
it parallel to a longer edge of the original rectangular strip and halfway
across the band, and keep cutting until you get back to where you started:
In the end instead of getting two pieces as you might expect, you get
a single twisted cylindrical strip, twice the length of the M&bius band.
On the other hand, if you cut parallel to a longer edge of the original
rectangle and one-third of the way across the band, and keep cutting
until you get back to where you started, the band falls apart into two
interlinked pieces; the shorter is a Mobius band and the longer is a twisted
cylinder. (Although we shall not prove it, a band with an even number of
twists is homeomorphic to a band with no twists, hence the name ‘twisted
cylinder’.)

We can represent in a diagram how we have constructed a Mobius
band: in Figure 15.1(b) the shorter edges are stuck together in the way
that the arrows indicate.

Next take a rectangle of paper again, this time in your mind or in a
diagram. First stick the longer edges together as indicated by the arrows
in Figure 15.2 to get a cylinder. Now stick together the shorter edges as
the arrows suggest. What we get is like the surface of a doughnut, which
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(b)
Figure 15.1. (a) Mobius band and (b) schematic Mébius band

3
7

N
>

Figure 15.2. Torus

is called a torus (the name comes from Greek architecture). This is one
of the standard surfaces which we study in more detail later.

Next, suppose we have a pentagon as in Figure 15.3(a) and we stick the
edges together in the way the arrows in Figure 15.3(b) indicate. Notice
that aftecr we have done the sticking, the vertex a gets stuck to e which
gets stuck to c. Also, a gets stuck to b which gets stuck to d. We often
label these vertices as they appear after sticking, so all the vertices in
Figure 15.3(b) get labelled a. This is like a torus except that there is
a ‘free’ edge going from the vertex a back to itself. So another way of
drawing it is as in Figure 15.4(a). We see that what we have is a torus
with a hole in it, see Figure 15.4(b).

a a

(a) d ¢ (b) a a

Figure 15.3. (a) Pentagon and (b) pentagon with edges stuck together
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(a) (b)

Figure 15.4. (a) Another representation and (b) torus with one hole

In all of these examples we have started with one topological space,
namely a subspace of R?, and stuck some subsets of it together to get
another topological space. This is essentially the idea of quotient spaces.

A formal approach

It is a matter of discussion as to whether diagrams such as Figure 15.2 con-
stitute ‘rigorous’ mathematics. Many people find such diagrams geomet-
rically illuminating and consider it easier to follow what is going on from
them than from lists of formulae—for further examples see Figure 15.10
below. However, in order to put our work in line with the previous treat-
ments of subspaces, products, and so on, we now consider a more formal
approach. It is time to introduce some terminology. The mathematical
term for ‘sticking things together’ is ‘identifying’. For example, to get a
cylinder we begin with a square as in Figure 15.5 and ‘identify ab with
dc’, meaning that each pair such as {z, '} in Figure 15.5 is to be thought
of as just one point in the space that we are constructing. The way to
formalize this idea of identifying edges is via equivalence classes (as for
quotient structures in group theory). Given any topological space X and

1:/

Figure 15.5. Cylinder
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Figure 15.6. Points to be identified for the Mobius band

an cquivalence relation ~ on its points, we form a new space X/~ whose
points are the equivalence classes in X. (Thus there is just one point in
X/~ corresponding to all the points in a given equivalence class in X.)
This is well illustrated by the following example.

Example 15.1 We consider the Mobius band again. Formally we can
define an cquivalence relation on X = [0, 1] x [0, 1] C R, as follows.

For (sy, t1), (82, t2) in X, let (s1, t1) ~ (89, t2) iff one of the following
holds:

(i) s; = sg and t; = t9;

(ii) 851 =0, sa =1, and to = 1 — ty;
(iii) sy =1, 2 =0, and 19 =1 —¢t5.
We can bracket (ii) and (iii) together into one condition:

(iv) {81, 52} = {0, 1} and to = 1 —ty.
It is straightforward to check that this is an equivalence relation. For cx-
ample, to prove symmetry, suppose that (sy, t1) ~ (s2, t2). Then one of
(i), (iv) above holds. If s; = s and t; = t2, then so = s3 and ty = ¢; so
(82, t2) ~ (s1, t1). On the other hand if {s1, s} = {0, 1} and t; =1 -4,
then {s2, s1} = {0, 1} and t; = 1 —t2, so (s2, t2) ~ (1, t1) by (iv). The
proofs of reflexivity and transitivity are Exercise 15.2.

Next is a description of the equivalence classes corresponding to the
above equivalence relation. If 0 < s < 1 then the singleton set {(s, t)}
is an equivalence class on its own for any fixed ¢ € [0, 1]. But for cach
t € [0, 1] the pair {(0, t), (1, 1 —¢)} is an equivalence class, as it should
be since we want to stick these two points together (see Figure 15.6). The
proof of this is Exercise 15.3. Now we can see geometrically that X/~ is
at least the same set as the Mobius band. When we have examined the
appropriate topology for X/~ later, we shall see that X/~ is indeed the
Modbius band.
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Example 15.2 We now consider the torus more formally. We again take
X =0, 1] x [0, 1], but now let (s1, t;) ~ (s2, t2) iff one of the following
holds:

(i) 81 = s and t; = t9;
(ii) {s1, s2} = {0, 1}, t1 = to;
(iii) {t1, t2} = {0, 1}, s1 = s9;
(iv) {81, 82} = {0, 1}, {tl, t2} = {0, 1}.

Again it is straightforward to check that this is an equivalence relation,
although it is slightly lengthy due to the number of cases involved. The
details are on the web site.

The corresponding equivalence classes are:

{(s, t)} forany s, t with0<s<landO<t<1,
{(0, ¢t), (1, t)} for any ¢t with 0 < ¢ < 1,

{(s, 0), (s, 1)} for any s with 0 < s < 1,

{(0, 1), (1, 0), (0, 0), (1, 1)}

Again we can see geometrically that X/~ is at lcast the same set as

the torus, and later when we have topologised X/~ we shall sec that it is
indeed the torus.

We end this section with a purcly set-theorctic result about maps of
quotients.

Proposition 15.3 Suppose that X, Y are sets and ~ is an equivalence
relation on X. Let f : X — Y be a map such that f(z) = f(y) whenever
x ~ y. Then there is a well-defined map g : X/~ — 'Y where if {x} denotes
the equivalence class of x under ~, we define g({z}) = f(z). We say
that ‘f respects the identifications on X’ and we call g the map ‘induced

by f.

Proof To see that g is well defined we need to check that f(z') = f(z)
whenever 2’ € {z}. But if 2/ € {z} then 2’ ~ z so f(z') = f(z) by
assumption. O

The quotient topology

Now given a topological space X and an equivalence relation ~ on it, we
want to put a scnsible topology on X/~ related to the topology on X
and giving us the topology we know we want on examples like the Mébius
band and the torus, coming from their representations as subspaces of
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x

(a)

Figure 15.7. (a) Topologizing a Mébius band and (b) open disc in Mébius
band

Euclidean three-space. We can get a hint of how to do this from the
Moébius band: a ‘small round open set’ in the Moébius band centred on
the point represented by z, ' in Figure 15.7(a) should be the image in
the band of something like the union of an open half-disc around z and
another around z’ as shown. For, if mentally we cut these out and flip one
of them over they fit together to give you an open disc (sec Figure 15.7(b))
in the Mébius band.

This kind of consideration suggests taking as open sets in X/~ those
whose pre-images ‘up in X’ are open in X. Next we formalize the
preceding.

Proposition 15.4 Suppose that (X, T) is a topological space and that
~ is an equivalence relation on X. Denote the set of equivalence classes
by X/~, and let p : X — X/~ be the function which assigns to each
point of X the equivalence class it is in. Let T be the family of all subsets
U C X/~ such that p~'(U) € T. Then T is a topology for X/~, called
the quotient topology, (X/~, T) is called a quotient space (of X), and
p: X — X/~ is called the natural map.

Proof (T1) p~!(X/~)=X €T so X/~€ T. Also, p~*(#) = @ which
isin7 soQisin 7.
(T2) Suppose that U, V arc in 7. Then p~(U) and p~*(V) are in T so
p UNV)=p Y (O)np ' (V) isin T, so UNV isin 7.
(T3) Suppose that U; is in T for each i in some indexing set I. Then
p! (U 01’) =Jp (@),
il icl

which is in 7 since each p~!(T};) is in 7. So U U;isin 7. g
icl
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What Proposition 15.4 says is that U is open in X/~ iff p~1(U) is
open in X. Note that this does not mean that for any open subset U
of X, p(U) is open in X/~; that may be true, but in gencral p~!(p(U))
may be strictly larger than U, and may or may not be open in X (see
Exercise 15.5). However, we do have

Proposition 15.5 The natural map p : X — X/~ is continuous when
X is a space, ~ 1is an equivalence relation on X and X/~ is given the
quotient topology.

Proof This follows since if U e T then by definition of 7 we have
p ' (U)eT. O

Main property of quotients
We now touch on more gencral theory of quotients.

Definition 15.6 A quotient map is a map p : X — Y from a space X
onto a space Y such that V CY is open in Y iff p~1(V) is open in X.

Notice that any quotient map is continuous from the ‘only if’ part of the
definition.

Example 15.7 Let p: X — X/~ be the natural map from a space X to
its quotient under an equivalence relation ~ as in Proposition 15.4. Then
p is a quotient map.

Proof This follows from the definitions of the quotient topology and of
a quotient map. O

The following main property of quotients looks rather formal, but in
fact it is very useful as we shall see.

Proposition 15.8 Suppose that p : X — Y is a quotient map and that
9:Y — Z is any map to another space Z. Then g is continuous iff gop
s continuous.

We picture this in a diagram, Figure 15.8.

Proof If g is continuous then so is g o p since p is continuous.
Conversely suppose that g o p is continuous and let U C Z be open in
Z. Then by continuity of g op, we have (gop)~1(U) open in X. This says
p~1(g~1(U)) is open in X, so by definition of a quotient map g~1(U) is
open in Y. Hence g is continuous as required. a
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X

Y ——>Z
Figure 15.8. Proof of Proposition 15.8

We end this section with a useful special case of Proposition 13.15.

Proposition 15.9 If p : X — Y s a quotient map and A C X is
compact then p(A) is compact.

The circle

Let X be the interval [0, 27] in R, and let ~ be the equivalence relation
defined by: 0 ~ 2, but otherwise no two distinct points of [0, 27] are
equivalent. Then X/~ is homeomorphic to a circle.

It is intuitively clear that the equivalence relation is designed to stick
together the endpoints of the interval to construct a circle. We now prove
this formally.

Proof Let S! denote the circle in R? with centre the origin and radius 1.
Define f : [0, 27r] — S by f(t) = (cost, sint). From familiar properties
of cos and sin we sce that f is continuous, onto, and injective except that
f(0) = f(2m). So f induces a ouc one correspondence g : [0, 27]/~ — S*,
such that f = g o p, where p : [0, 27] — [0, 27]/~. Now g is continu-
ous by Proposition 15.8. Also, [0, 27|/~ is compact by Proposition 15.9,
and S! is Hausdorff as a subspace of the metric space R2. Hence g is a
homeomorphism by Corollary 13.27. o

This is a pattern of argument we shall use several times: to prove that a
quotient space X/~ is homeomorphic to a space Y, we somchow think up
a continuous map f: X — Y onto Y which ‘respects the identifications’,
meaning that f(z1) = f(z2) whenever 7, ~ g, so that by Proposi-
tion 15.3 f induces a well-defined map g : X/~ — Y. Since f is onto so
is g. Also, by Proposition 15.8, ¢ is continuous. We then show that g is
injective as well as onto by checking that f(z1) = f(z2) implies z1 ~ z2.
If we are lucky, we know that X/~ is compact and Y is Hausdorff, so g
is a homeomorphism by Corollary 13.27.
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Figure 15.9. The torus in three-dimensional space

Remark In relation to the circle, we could equally well define an equiva-
lence relation on R by z ~ y iff z and y differ by an integer multiple of 27,
and again the quotient is homeomorphic to a circle. We follow the proof
above, noting that R/~ is compact since it is the continuous image of the
compact space [0, 27] by the composition p o i where i is the inclusion of
[0, 27] in R and p : R — R/~ is the natural map sending cach point to
its equivalence class.

As the reader may know, in this form the example is related to Fourier
series: to be given a continuous 27-periodic function on R is equivalent to
being given a continuous function on the circle.

The torus

We now study the torus in more detail. Recall that we saw the represen-
tation of a torus as in Figure 15.2. Now our coffce-shop experience of a
doughnut is not about a picture like Figure 15.2, but rather about some-
thing you can get your teeth into, as in Figure 15.9. We may describe it
mathematically by taking a circle in the zz-plane and rotating it about
the z-axis. If the circle has centre (a, 0, 0) and radius r then we assume
7 < a lest we get in a tangle when we rotate the circle. A general point on
the circle is (a+ 7 cos@, 0, rsin@). When we rotate this through an angle
¥ we get a general point on the torus of the form

((a +rcos)cosy, (a+rcosf)siny, rsinfd), 0< 6 <2m, 0< ¥ < 2.

So all these points form the surface we shall call T, which looks like the
surface of a doughnut. We shall prove that the space X/~ as in Figure 15.2
is homeomorphic to T.

Proof It is convenient to think of the edges of the square in Figure 15.2
as being of length 27 rather than 1. It is clear that this does not change the
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homeomorphisin class of the space. Let .S denote the square [0, 27| x [0, 27]
in the planc. Define f : S — T by

f(s,t) = ((a+rcost)coss, (a+rcost)sins, rsint).

Note that

(a) each image point is in T, so f is a map to 7.

(b) io f: 8 — R3 is continuous since each coordinate function is contin-
uous. Hence f is continuous by Proposition 10.6.

(c) f respects the equivalence relation ~; for by periodicity of cos and sin
we get f(0, t) = f(2m, t) for any ¢ in [0, 27] and f(s, 0) = f(s, 27)
for any s in [0, 27]; also f(0, 0) = f(2m, 0) = f(0, 27) = f(2~, 2n).

It follows from these three properties that f induces a well-defined con-

tinuous map g : S/~ — T. Since S/~ is compact by Proposition 15.9

and T is Hausdorff as a subspace of the metric space R®, it will follow

from Corollary 13.27 that g is a homeomorphism provided we check that

g is injective as well as onto. Geometrically it is clcar that f is injective

except for (c) above, hence g is injective. But we check this algebraically.

Suppose that f(s1, t1) = f(s2, t2): we want to prove (s1, t1) ~ (2, t2).

We have

(i) (a+rcosty)cos sy = (a+ 7costy) cos sg;

(ii) (@ + rcosty)sinsy = (a + rcosty)sin sg;

(iii) rsint; = rsints.
From (iii) we get sint; = sintz and by considering (i)? + (ii)? we get

(a+rcosty)? = (a+rcosty)? so costy = costa.

(Note that a 4+ rcost; and a + r cos tg arc positive.) Since ¢4, t2 € [0, 27],
from familiar properties of cos and sin we get that either t; = o or else
{t1, t2} = {0, 27‘(’}.
Also, from (i), (ii) and cost; = costa we get coss; = cos sz and also
sin s; = sin sg. So similarly cither s; = sg or {s;, s2} = {0, 2n}.
In any combination of these cases we get (s, t1) ~ (s2, t2) as required.
)

The real projective plane and the Klein bottle

The reader probably has an intuitive idea of what a surface is; we shall de-
fine it later. Rather than studying all surfaces systematically, we are just
illustrating quotient spaces through a few standard surfaces. We obtained
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(a) > (b) —»

Figure 15.10. Two further quotient spaces

the torus as a quotient of a square in which opposite edges are identified
(stuck together) in a certain way. As Figure 15.10 indicates, there are
two morc possibilities for identifying the edges of a square. The surface
in Figure 15.10(a) is called the real projective plane. (The surface in Fig-
ure 15.10(b) is called the Klein bottle, and will be discussed later.) The
real projective plane arises in various contcxts, for example in geometry.
We shall compare several different manifestations, all of them quotient
spaces, and prove that the real projective plane can be embedded in R?;
this means it is homcomorphic to a subspace of R%. It is an cxample of a
non-orientable surface, defined later.

The real projective plane

Before describing the equivalent forms of the real projective plane, here

is some notation. Let S denote the sphere in R given by the equation

224+ 92+ 22 =1.Let DY = {(z,y,2) e R®: 22 + 2 + 22 = 1, 2 > 0}

be the closed upper hemisphere of S. Let D be the disc in R? given by

D= {(z,y) eR2: 22+ 42 < 1}.

Proposition 15.10 The following quotient spaces are all homeomorphic:

(a) R3\ {0} /~ where x ~ y iff y = Az for some non-zero A € R;

(b) S/~ where ~ identifies each pair of antipodal points of S;

(¢) DY/~ where ~ identifies each pair of antipodal points on the boundary
circle of D*;

(d) D/~ where ~ identifies each pair of antipodal points on the boundary
circle of D;

(e) the space in Figure 15.10(a).

Each of these spaces may be called the real projective plane, from the
viewpoint of topology. Before embarking on the proof, here are a few
comments about the various forms. (There is more background on the
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Figure 15.11. Proving part of Proposition 15.10

web site.) Modern projective geometry uses the form (a), in which we
think of the projective plane as the space of lines through the origin in
3-dimensional space, and we shall therefore call it P. On the other hand
Kepler’s early ideas about extending plane Euclidean geometry, so that
pairs of distinct lines always meet in a unique point, relate to (d). Finally
we specify explicitly what ~ means in (e): we begin with [0, 1] x [0, 1]
and define (s1, 1) ~ (s2, t2) iff one of the following holds.

(1) s1 = 82, t1 = ta;

(i1) {s1. s2} ={0, 1} and to =1 —t3;
(iii) {tl, t2} = {0, 1} and s =1 — s7.

The proof that this is an equivalence relation is on the web site.

Proof of 15.10 We prove in detail that the spaces in (a) and (b) are
homeomorphic, and outline the other proofs (details are on the web site).
Let us denote any of the quotient maps involved in this proof by p. In
Figure 15.11 the map i is the inclusion of S in R®\ {0}, and r:R*\ {0} = S

- T

1edl
both i and r arc continuous (note that ||z|| # 0 for z € R3\ {0}). Now
for any x € 5,

is given by r(z) where ||z|| is the length of z. It is familiar that

(poi)(—x) = p(—x) = p(x) = (poi)(z),

in other words p o ¢ respects the identifications on S, so it induces a
continuous map g : S/~ — P as in Figure 15.11, such that poi = gop.
We next show that similarly p o r respects the identifications on R3\ {0}.
For any A # 0 and any = € R3\ {0} we have

oeni - () > ) =+ (3

Now if A > 0 then A/|A\| =1 and p (ﬁr(z)) = p(r(z)), while if A < 0
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Figure 15.12. Cowparing two forms of P

then A/|[A| = —1 and p (ﬁr(x)) = p(—r(x)) = p(r(x)). So in either case

(por)(Az) = (por)(x), and por respects the identifications on R3\ {0}
as claimed. Thus p o r induces a continuous map h : P — S/~ as in
Figure 15.11, such that hop=por.

Finally we check that both compositions h o g and g o h are identity
maps. First given any r € S we have r(i(z)) = r(z) = z/||z|| = z since
|lz]] = 1, so r o i is the identity map of S, and

(hog)op=ho(gop)=ho(poi)=(hop)oi=(por)oi=po(roi)=p.

Now p : S — S/~ is onto, so ho g is the identity map of S/~. Similarly
for any x € R?\ {0} we have i(r(z)) = i(z/||z|]) = z/||z]|, s0

(90 R)(p(e)) = 9((h o p)()) = g((por)(x)) = (g 0 P)(r(z)) =
@MXMM)=Mﬁw%m)=p(ﬁh)=p@L

where the last equality follows since 1/]z|| # 0. Now p : R3\ {0} — P is
onto so g o f is the identity map of P. This proves that P and S/~ arc
homeomorphic.

For the rest of the proof it is uscful to know that P is Hausdorff. We
could give a direct proof of this, but it also has an indirect proof: from
above there is a homcomorphism between P and S/~; Proposition 15.11
below gives a continuous injective map from S/~ into R4; so P is Hausdorff
since R? is (Proposition 11.7(c)).

We now outline the proof that the spaces in (b) and (c) are homeomor-
phic. We use Figure 15.12, which is similar to Figure 15.11.
In Figure 15.12 the map j is inclusion. We may check that p o j respects
the identifications on D% so induces a continuous map g : D/~ — S/~.
It can be checked that g is a one-one correspondence. But D/~ is com-
pact by Proposition 15.9 and S/~ is Hausdorff, so g is a homeomorphism
by Corollary 13.27.
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Figure 15.13. Square inside disc

An informal way of proving that the spaces in (c) and (d) are home-
omorphic is to say ‘just sit on DT and flatten it down to D’ (the identi-
fications on the boundary are unchanged). The formal version is on the
web site.

Finally, to see that the spaces in (d) and (e) are homeomorphic, we
may fit a square inside D as in Figure 15.13. Now map the square radially
outwards onto the disc. The identifications on the boundary of the square
correspond to those on the boundary of D shown in Figure 15.13. But a
little thought shows that these simply mean that antipodal points on the
boundary of D are identified. o

The last thing we prove about the real projective plane is that it is home-
omorphic to a subspace of R*; we say ‘the real projective plane can be
embedded in R*’.

Proposition 15.11 There is a homeomorphism from P to a subspace
of R4

Proof In view of Proposition 15.10 we can operate with any of the forms
of P listed there. We choose S/~. Define a map f : S — R* by

2

flz,y, z) = (z° — y2, Ty, yz, 2T).

Since each coordinate function is continuous, this is a continuous map into
R4. Tt respects the identifications on S: for (z1, y1, 21) ~ (z9, yo, 22) im-
plies that (z1, y1, 21) = £(z2, Y2, 22), giving f(z1, y1, 21) = f(z2, Y2, 22)-
Hence by Proposition 15.8, f induces a continuous map g : S/~ — R* such
that f = gop where p: S — S/~ is the natural map. Since S/~ is com-
pact by Proposition 15.9 and R* is Hausdorff, it is now enough by Corol-
lary 13.27 to prove that g is injective. We recall that for this it is enough to
prove that f(mh W, 21) = f(m21 Y2, 22) 1mp1ies (271, U1, Z‘[) ~ (1132, Y2, 22),
for points (z1, y1, 21), (2, Y2, 22) in S. The algebra needed to do this is
on the web site. |
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Figure 15.14. Figurc-of-cight deformed to embedding

The Klein bottle

The final surface we consider in detail is the Klein bottle, which is repre-
sented in Figure 15.10(b). We find it convenient to change the scale, not
affecting the topological type.

Definition 15.12 The Klein bottle K s the quotient of [0, 27] x [0, ]
by the equivalence relation defined by: (z1, y1) ~ (x2, y2) iff one of the
following holds

(i) z1 = o2 and y; = yo;

(ii) {y1, y2} = {0, 7} and z2 = 27 — x3;
(iii) {z1, z2} = {0, 27} and y1 = yo;
(iv) z1,x2 € {0, 2w} and y1, yo € {0, 7}.

The proof that ~ is an equivalence relation is on the web site. It is strongly
recommended that you type ‘Klein bottle’ into a search engine on the
internet; there are some good pictures, for example of a glass model of
the Klein bottle immersed in Euclidean three-space. ‘Immersed’ means
roughly that it is embedded except that it intersects itsclf in a manner
that is not too wild. You can perhaps persuade yourself that the next
proposition is true as follows. A figure-of-eight in the plane is an immersion
of a circle, and it can be deformed slightly to become an embedding of a
circle in three-space by taking a small interval around the self-intersection
point in one of the intersecting pieces of the circle, and moving it into the
third dimension to become a small arc which ‘misses’ the other piece of
the circle (Figure 15.14). It is plausible that one can likewise get rid of
the self-intersection circle of a Klein bottle in three-space (Figure 15.15)
by deforming slightly in the fourth dimension so that the bottle ‘misses’
itself in R%.

Proposition 15.13 The Klein bottle can be embedded in R*.

Proof Write X = [0, 27] x [0, 71]. Definc f : X — R* as follows: for
(z,y) € X, let

flz, y) = ((2+ cosz) cos 2y, (2 + cosx)sin 2y, sinx cosy, sinzsiny).
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Figure 15.15. Immersion of the Klein bottle in three-space

Since each of its coordinate functions is continuous, f is continuous. Also
f@2r—2z,m)=(2+cosz, 0,(—sinz)(—1), 0) = f(z, 0).

Similarly
f@2r, y) = (3cos2y, 3sin2y, 0, 0) = f(0, y).

From this it follows that f respects the identifications on X and therc-
fore induces a continuous map g : X/~ — R% Since K is compact (by
Proposition 15.9) and R* is Hausdorff, it remains to show that g is
injective, or f(xy, y1) = f(x2, y2) implies (x1, y1) ~ (22. y2) for (1. y1),
(z2, y2) € X. Now f(x1, y1) = f(z2, y2) gives
(i) (2 + cosxzy) cos2y; = (2 + cosxa) cos 2ysa;
(i) (2 + coszy)sin2y; = (2 + cosza) sin 2ys;
(iii) sin ] cosy; = sin T2 cos Y2;
(iv) sinx) siny, = sin 9 sin yo.
Taking (i)2+(ii)? gives (2 4+ cosz1)? = (2 + cosz2)? so cos; = cos Ta.
Now using (i) and (ii) again we get cos 2y; = cos 2y2, sin 2y; = sin 2y,. So
either y1 = yo or {2y1, 2y2} = {0, 2x}, i.e. {y1, y2} = {0, 7}.
Casc 1: Suppose y; = y2. Then (iii) and (iv) give sinz; = sinxy. Since
we saw earlier that cosz; = cosxa, we get that either £y = o2 or else
{z1, 22} = {0, 27}.
Case 2: Suppose {y1, y2} = {0, #}. Then (iii) gives sinz, = —sinxg, and
since cosx; = cos xp we get xo = 27 — 7.
We can check that in any combination of these cases, (z1, y1) ~ (22, ¥2).
(]
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Figure 15.16. (a) Octagon (edges stuck together) and (b) octagon cut (and
deformed)

Remark In view of Propositions 15.11 and 15.13 the reader may suspect,
or may already know, that neither the real projective plane nor the Klein
bottle can be embedded in R®. A proof of this which is both rigorous
and acccssible is difficult to find. There is a heuristic (which means non-
rigorous) argument for the real projective planc on the web site.

Cutting and pasting

Further geometric motivation for quotient spaces is afforded by a tech-
nique called ‘cutting and pasting’. The idea is that we can cut a space into
scveral picces and as long as we join the cut cdges together again in the
correct direction at some stage, it is intuitively clear that the topological
type of the object is not affected.

Suppose an octagon has its edges stuck together as in Figure 15.16(a).
As it stands, it is a little difficult to visualize what this gives. But suppose
we cut it along the straight line ae, and consider the two pieces separately,
as in Figure 15.16(b), with arrows on the two edges of the cut to show
that they should be stuck together at some stage. We know from earlier
that each of these picces on its own is a torus with a hole in it, and the
boundaries of the holes are supposed to be stuck together. It is geometri-
cally clear that what we get finally is a double torus, or surface of a kind
of pretzel—see Figure 15.17.

For another cxample, suppose we have a hexagon with edges stuck
together in the way that the arrows indicate in Figure 15.18. Again it is
not immediately obvious what this gives. But suppose that we cut it into
three pieces along the dashed lines, and as in Figure 15.19 put arrows on
the cut edges to show how they should be assembled.

Now let us reassemble it in stages. First put the two triangles together
to get Figure 15.20.
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Figure 15.17. Double torus

(a) d (b) d=b

Figure 15.18. (a) Hexagon and (b) hexagon with edges stuck together

Now straighten up the parallelogram and stick it to the other piece
as in Figure 15.21. We see that the pasting instructions are equivalent to
those for a torus in Figure 15.2, so what we get is a torus.

The shape of things to come

We have provided only a taster of surfaces above. There are more general
approaches, and one can classify ‘all’ surfaces up to homeomorphism. A
more modest goal would be to classify all ‘closed’ surfaces. A general
definition of a closed surface is: a compact Hausdorff space each point of
which is contained in an open set which is homeomorphic to an open disc
in the plane. So a closed surface is locally Euclidean. The need to include

P

N
iy
<

Figure 15.19. The hexagon cut up
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Figure 15.20. Hexagon partially reassembled
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Figure 15.21. Surface reassembled—two equivalent forms

‘Hausdorfl’ here may secm surprising; the web site has a pathological
example to illustrate why we need this condition.

Closed surfaces naturally divide into orientable and non-orientable
ones. The quickest way to explain this division is to say: a surface is
non-orientable iff it contains a Mobius band. For example, Figure 15.22
illustrates that the Klein bottle is non-orientable.

We look briefly at one way of constructing closed surfaces, again using
quotient spaces.

(1) Attaching handles to a sphere: take a sphere S? with two open discs
removed and glue in a cylinder to make a surface homecomorphic to a torus
(Figure 15.23). Explicitly, let (S%\ (D; U D2)) U (S! x I) be the disjoint
union of a 2-sphere with two open discs removed, and the cylinder given
by the product of a circle S! with a closed unit interval I. We then form

<

N\

1\\\\\\\,

Figure 15.22. A Mobius band in a Klein bottle
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N

Figure 15.23. Adding a handle to a sphere

the quoticnt space by the equivalence relation telling you how to stick the
ends of the cylinder to the boundaries of the holes in the sphere. More
gencrally, we can attach g such handles in an orderly fashion and get what
is called an orientable surface of genus g.

(2) Sewing a Md&bius band into a sphere: take a sphere with just one hole
in it, and attach a Mobius band by sticking its boundary circle onto the
boundary of the hole. What do we get? Cutting and pasting will tell.
First, the sphere with an open disc removed is topologically the same as
a closed disc. So what we get is like sewing the boundary of a disc to
the frec edge of a Mobius band. In Figure 15.24 we first cut the disc in
half then sew on the semi-circular parts of their boundaries as the letters
indicate. What we get is homeomorphic to a real projective plane. Again,
more generally we can sew in g Mobius bands in an orderly fashion.

The (topological) classification of closed surfaces says: any orientable
closed surface is homeomorphic to a sphere with g handles for some integer
g = 0, while any non-orientable closed surface is homeomorphic to a

B
L\
A -
C _ SN
N
C —— A
D D

Figure 15.24. A spherc with a Mobius band sewn in
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sphere with g Mdbius bands attached for some integer ¢ > 0. There is
actually more to the result than this: it tells you how to find out what g
is for a given surface in terms of a number called its Euler characteristic.
For further information we refer for example to Lawson (2003).

Exercise 15.1 In this question a triangle includes the interior as well as the
edges, and identifying line segments ab, cd means that each point on ab is iden-
tified with its image under the linear map from ab onto ¢d which maps a to ¢
and b to d.

Without rigorous reasons, explain geometrically what you get if

(a) in the real interval {0, 2] you identify the points 0, 1, and 2;

(b) in the disjoint union of two triangles abe, zyz, you identify the pairs of
edges ab, zy; be, yz; ca, zx; (so ab is identified with zy and so on).

(¢) in a triangle abe, you identify the edges ca, ab;
[Hint: for (c) try ‘cutting and pasting’, cutting from a to the mid-point of bc.]

Exercise 15.2 Recall that for a Mébius band we let X = [0, 1] x [0, 1] and for
(s1, t1), (82, t2) € X, we let (s1, t1) ~ (82, t2) iff one of the following holds:
(1) 81 = sy and ¢ = #s;
(ii) 83 =0. so=1and t; =1 — #;
(lll) 81:1, SQ:Oand t2=1—t]
Show that this relation is reflexive and transitive.

Exercise 15.3 For the equivalence relation in Exercise 15.2 show that the equiv-
alence classes are as follows: if 0 < s < 1 then the singleton sct {(s. t)} is an
equivalence class on its own for any fixed ¢t € [0, 1], while for cach t € [0, 1] the
pair {(0, £), (1, 1 — ¢)} is an equivalence class.

Exercise 15.4 Let M be the Mabius band obtained from [0, 1] x [0, 1] by iden-
tifying the points (0.y) and (1. 1 — y) for each y € [0, 1]. Show that cutting
along the image in M of the line segment joining the points (0, 1/2) and (1, 1/2)
produces a space homcomorphic to S' x [0, 1). Show also that cutting along
the images in M of the line segment from (0,1/3) to (1, 1/3) and the line seg-
ment from (0,2/3) to (1, 2/3) produces the disjoint union of an ‘open’ Mébius
band (identification space of [0, 1] x (0, 1)) and a cylinder (homeomorphic to
[0, 1] x (0, 1)).

Exercise 15.5 Let f : [0, 2r] — S! be the map defined by f(t) = (cost,sint).
Show that [0, 7) is open in [0, 27] but f([0, 7)) is not open in S!.

Exercise 15.6 Define an equivalence relation on [0, 1] by: z ~ y if and only
if either both of x, y are rational or both are irrational. Check that this is an
cquivalence relation, and prove that the corresponding quotient space is the
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two-point space with the indiscrete topology. (Note that [0, 1] is Hausdorff but
[0, 1)/~ is not Hausdorff.)

Exercise 15.7 Prove that the following is a necessary and sufficient condition
for amap f: X — Y from a space X onto a space Y to be a quoticnt map: a
subsct V of Y is closed in Y iff f='(V) is closed in X.

[Hint: use Corollary 3.8.]

Exercise 15.8 Prove that the composition of two quotient maps is again a
quotient map.

Exercise 15.9 Define an equivalence relation on R? by (z, y) ~ (', v/) iff z— 2’
and y — y’ are both integral mutiples of 2. Prove that the quotient space R?/~
is homcomorphic to the torus T C R® defined by

T ={({a+rcosb)costp, (a+rcosh)siny, rsinf);0 < ¥ < 2w, 0< 6 < 27},

where 0 < r < a.

N W



16 Uniform convergence

Motivation

We now move towards the third of a trio of important concepts: con-
nectedness, compactness and completeness. We shall study completeness
in the context of metric spaces. An important ingredient in establishing
completeness for several of our metric spaces will be uniform convergence.
In this chapter, we begin the study of uniform convergence in an elemen-
tary fashion; later in the chapter we express it in terms of convergence in
function spaces.

The study of uniform convergence may be motivated as follows. Many
particular functions in analysis are studied by means of sequences or se-
ries. Likewise existence proofs for solutions of differential and other equa-
tions often produce the solution as the limit of a sequence of functions.
In such cases, we wish to know whether the limit is continuous. (Simi-
larly, although we do not study this here, we want to know whether we
can differentiate or integrate the limit by differentiating or integrating
each term in the sequence and taking the limit.) Uniform convergence
contributes to sufficient, though not usually necessary, conditions for en-
suring that the limit function is well-behaved if the terms in the sequence
arc well-behaved.

Definition and examples

Initially we shall be concerned with rcal-valued functions defined on some
subset D C R, usually an interval. Suppose that (f,) is a sequence of
real-valued functions, and that the domain of each contains D. If we fix
attention on a particular point z € D, the values of the functions f, at x
give a scequence (fn(z)) in R. Suppose that for cach z € D the sequence
(fa(z)) converges. Then we may define a new function f : D — R by
putting f(z) = nlg{.lo fn(z).

A slightly different viewpoint is to suppose given a sequence of real-
valued functions {f, : n € R} and a real-valued function f, all with
domain D, and to make the following definition.

Definition 16.1 The sequence ( f,) converges to f pointwise on D if for
each x € D the real number sequence (fn(z)) converges to f(x).
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Figure 16.1. Uniform convergence

Pointwise convergence is sometimes not very well-behaved; for example
we cannot deduce continuity of f from continuity of all the fj,.

Example 16.2 Let f,(z) = 2" for all x € [0, 1] and f(z) = lim f,(z).
n—oc

Then
_J0, z€ [0, 1),
M) = { 1, z=1.

Thus the pointwise limit function is discontinuous at 1 although every f,
is continuous. (The reader can gain insight here by drawing the graphs of
foforn=1,2 3 4.)

In certain situations (e.g. in Fourier series) this kind of thing must
happen. But often we should like the limit function to be continuous.
Uniform convergence helps to ensure this.

Definition 16.3 A sequence (fy) of real-valued functions defined on a
domain D C R converges to a function f uniformly on D if given e > 0
there exists N € N such that |f,,(z) — f(z)] < € for alln > N and all
zeD.

If this is fulfilled we write ‘ f, — f uniformly on D’ and call f ‘the uniform
limit of f,,’. Clearly if f, — f uniformly on D then f, — f pointwise on
D. Uniform convergence is stronger in that given ¢ > 0 there must cxist
an integer N which does the neccessary job for all £ in D simultaneously,
while for pointwise convergence, given £ > (0 we may use a different N;
for each x in D. Thus uniform convergence is global in D.

Here is a graphical interpretation of uniform convergence. Suppose
D = [0, 1] and let us draw the graph of f (Figure 16.1). Uniform con-
vergence of (f,) to f on D means that if we draw the ribbon of vertical
width 2¢ > 0 centred on the graph of f, then no matter how small ¢ is,
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there is some stage in the sequence beyond which the graph of every f,
lies within this ribbon.

Remarks (a) Suppose that a sequence (a,) of real numbers converges to
a. Forany DCR, let fr, : D - R, f:D — R be the constant functions,
fa(x) = an, f(z) = a for all x € D. Then it is easy to sce that (f,)
converges to f uniformly on D.
(b) If (fn) converges to f uniformly on D and D’ C D then clearly (f,)
converges to f uniformly on D'

We now show that convergence in Example 16.2 is non-uniform. To do
80, we put the negative of Definition 16.3 into the following usable form:
therc exists some £g > 0 such that for any NV € N there is an z € D and
an n > N such that |f,(z) — f(z)| = €. In Example 16.2 we may take
2o = 1/2. The idea now is to show that no matter how large the integer
N is, we may choose an x € [0, 1], close to but not equal to 1, such that
xN > 1/2. For such z we have |fn(z) — f(z)| = [zV = 0| = 2N > 1/2, so
convergence is not uniform on [0, 1]. If we take « = 27/ then 2V = 1/2
as required.

Warning The same proof shows that convergence of (") to the zero
function is not uniform on [0, 1) cither. It is tempting to think that by
dropping one ‘bad’ point the convergence will become uniform.

On the other hand, if we take D = [0, a] for some a € (0, 1) then it
is true that £™ — 0 uniformly on D as n — oo. For given € > 0 we may
choose N large enough so that ¥ < e. Then for any » > N and any
x € [0, a] we have |z" — 0| < a" < aV <e.

This success may be explained as follows. For fixed a € (0, 1) we werc
able to locate an upper bound a™ for |fn(z) — f(z)| on [0, a], and then
we used the fact that a® — 0 as n — oc. This suggests a criterion for
uniform convergence, which is really just a translation of the definition.

Proposition 16.4 Let f, f,, : D — R be real-valued functions on D.
Then f, — f uniformly on D if M, = sup |f.(z) — f(x)| exists for all
reD

sufficiently large n and M,, — 0 as n — oo.

Proof Supposc that M,, — 0 asn — oc. Given £ > 0 there exists NV € N
such that 0 € M,, < € whenever n > N. Since by definition of M,, we
have |f,(z) — f(z)] < M, for all z € D, we get |fn(z) — f(z)| < € for all
n> Nandall z e D.

Conversely suppose that f, — f uniformly on D as n — oo. Then
given ¢ > 0 there exists N € N such that |f,(z) — f(z)| < /2 for all



176 Uniform convergence

n > N and all x € D. Now the set S, = {|fa(z) — f(z)| : z € D}
is bounded above by €/2, so M, =sup S, <e/2<¢ for all n > N as
zeD
required. a
Along with clementary calculus, this criterion often allows us to de-
termine whether particular sequences are uniformly convergent. We give
positive and negative cxamples of this.

Example 16.5 Let f,(z) = n?z(1—z)" for z € [0, 1}. We check first that
(fn) converges pointwise to the zero function on [0, 1]. For if z =0 or 1
then f,(x) = 0 for all n so certainly (f,(x)) converges to 0. If x € (0, 1),
then 0 < fn(x) < n%(1 — )" so (fa(z)) converges to 0 by Exercise 4.9.
Let us test for uniform convergence. To find

M, = sup lfn(m) - f(CL')| = Sup fn(m)
z€l0,1] z€[0,1]

we use calculus. We calculate f!(z) = n%((1 —z)""![1 — (n + 1)z]). Since
n(0) = 0= fr(1), while fr(x) > 0 for z € [0, 1], the maximum of f, in
[0, 1] is attained where f}(z) = 0in (0, 1), namely at = 1/(n+1). This
tells us that

n2nn B nn+2
(n+ 1)ntl — (n 4 1)ntl

Hence by Proposition 16.4 convergence is not uniform on [0, 1].

n = — 00 as n — 00.

Example 16.6 Let f,(z) = xe™™" for z € [0, 1]. Again we may show
that (fr) converges pointwise to the zero function on [0, 1]. Also, working
as in Example 16.5 we may show that M, is attained at z = (2n)~1/2
and takes value (2cn)~'/2 — 0 as n — oo. Thus convergence is uniform
on [0, 1].

Example 16.7 Finally we give an example in geometric language, fea-
turing the functions f,, defined in Example 14.23. (It is suggested that you
look back at Figure 14.1 to follow this.) Then (f,) converges pointwise
on [0, 1] to the zero function. First, f,(0) = 0 for all n. Also, if z > 0
then for all n sufficiently large ‘all the action has passed to the left of z’
0 fn(z) = 0. Explicitly, whenever 1/2"~1 < z, we have f,(z) = 0. But
is this convergence uniform? We can see geometrically that it is not, by
thinking about a ribbon of vertical width 1 centred on the zero function,
so having its upper boundary at height 1/2. Then no matter how large
n is, the graph of f, will have a spike sticking out above the ribbon.
Analytically, in this case M,, = 1 for all n, and M,, / 0 as n — oo.
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Proposition 16.4 also has a theoretical application: we can use it to rein-
terpret uniform convergence as (ordinary) convergence in a function space
with the sup metric. Let (B(D, R), d) be the metric space of all bounded
real-valued functions on D, with the sup metric

doo(f, 9) = sup | f(x) — g(z)|.
xeD

It follows from Definition 6.25 that if f, — f in the space (B(D, R), dw)
then doo(frn, f) — 0 as n — oo. But by Proposition 16.4 this means that
fn — f uniformly on D as n — oo.

We can also talk about uniform convergence of functions that are not
necessarily bounded: for example (1/z + 1/n) converges to 1/z uniformly
on (0, 1), although every function involved is unbounded on (0, 1). In fact
this can still be interpreted as convergence in a suitable function space,
but we shall restrict attention to bounded functions in our function spaces.

Cauchy’s criterion

Recall that Cauchy sequences were important in the section of Chap-
ter 4 on sequences of real numbers. Just as there is a concept of uniform
convergence, so too there is a concept of being uniformly Cauchy.

Definition 16.8 A sequence (f,) of real-valued functions defined on a
domain D C R is said to be uniformly Cauchy on D if given € > 0 there
exists an integer N such that |fm(z) — fu(z)| < € for allm, n > N and
allx € D.

As usual, the ‘uniform’ feature is that the same N has to work for all
z € D, so the condition is global in D. Again here we emphasize that we
are restricting to the case when all the functions concerned are bounded.
In this case, as for convergence, a sequence (fp) as above is uniformly
Cauchy iff it is Cauchy as a sequence in (B(D, R), dw) in the sense of
Definition 6.27.

Theorem 16.9 (Cauchy’s criterion for uniform convergence.) Let (fy) be
a sequence of real-valued functions defined on D C R. Then (f,) converges
uniformly on D iff it is uniformly Cauchy on D.

Proof The ‘only if’ part is similar to the corresponding part of Theo-
rem 4.18 and is omitted.

Suppose that (f,) is uniformly Cauchy on D. For each z € D the real
sequence (fp(z)) is Cauchy and hence, using completeness of R, (fn(z))
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converges to a real number which we label f(z). This determines a real-
valued function f on D. Our goal is to show that (f,) converges to f
uniformly in D.

Given ¢ > 0 there exists an integer N such that |fn(z) — fn(z)] < e
for all m, n > N and all x € D. There are two ways of stating the rest of
the proof.

(a) For each x € D, convergence of (fn(z)) to f(z) tells us there is an
integer n(z) such that |f,(;)(z) — f(z)] < €, and moreover we may choose
n(z) 2 N. Hence for any m > N and all z € D we have

lfm(2) — F(@)| < |fm(2) = fa@) (@) + | fa@) () — F(@)] < 2.

(Note that N is independent of x € D, although n(z) is not.)

(b) In the equality |fim(z) — fn(z)] < e for m,n > N and all x € D we
may keep m fixed and let n — 00, to get |fm(z) — f(z)| < eforallm > N
and all x € D.

Either way, (f,) converges uniformly on D. a

Remarks (a) Cauchy’s criterion for uniform convergence has the advan-
tage that the limit function need not be known in advance in order to
prove uniform convergence. This is particularly useful when we are trying
to define a function as the limit of a sequence of functions.

(b) When all the functions involved are bounded, Cauchy’s criterion
says that the metric space (B(D, R), d) is like the real numbers —
any Cauchy sequence in it converges. We study such spaces further in
Chapter 17.

(c) As for sequences in R we can translate the above results into the
language of series (of functions), and develop tests for uniform convergence
of such series.

Uniform limits of sequences

Theorem 16.10 If f,, : (a, b) — R is continuous at ¢ € (a, b) for every
n € N and if f, — f uniformly on (a, b) then f is continuous at c.

Proof This is a 3z-argument. Given € > 0, by uniform convergence
there exists N € N such that |f,(z) — f(z)] < € for all n > N and
all z € (a, b). Now fn is continuous at ¢ so there exists § > 0 such
that |fn(z) — fn(c)] < ¢ for all z € (a, b) with |z ~ ¢| < 4. Hence for
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any such z,
|f(z) = fO)] < |f(x) = In(@)] + |Fn(2) — fn(e)l + [fnle) — fle)] < 3e,
which shows that f is continuous at c. O

Remarks (a) Theorem 16.10 shows how uniform convergence can some-
times validate the interchange of two limiting processes. We shall sce that
it says

lim lim fp(z) = lim lim f,(z).
Ir—C Nn—oo n—o0 r—cC

For the inner limit on the left-hand side is f(z) by convergence of ( f,,(x))
to f(z), and the inner limit on the right-hand side is f,,(¢) by continuity
of fn at ¢. So the whole equation says that the limit as £ — ¢ of f(z) is
the limit as n — oc of fy(c), namely f(c). This says f is continuous at c.

(b) In terms of function spaces of bounded functions, Theorem 16.10 says
that in B = (B((a, b), R), dx), the subspace C,, of those functions which
are continuous at ¢, is closed in B. For if f € C. then by Excrcise 6.26
there is a sequence (f,) in C. converging to f (in the sup metric), and
by Theorem 16.10 f € C.. So C. is closed in B. Since any intersection of
closed scts is closed, it follows that for any subset C' C (a, b) the subspace
Cc of B cousisting of those functions which are continuous on C, is closed
in B.

Theorem 16.10 may be a little austere, but it has uscful consequences.

The one-sided analogue works similarly, and using this as well we get

Corollary 16.11 Suppose for each n € N the function f, : [a, b] — R is
continuous, and that (fy,) converges to a function f uniformly on [a, b].
Then f is continuous on [a, b].

One practical outcome of this is an casy way of detecting non-uniform
convergence, when it works.

Corollary 16.12 Suppose that the pointwise limit of a sequence (fy) of
continuous functions on [a, b] is not continuous on [a, b]. Then the con-
vergence is not uniform.

Example 16.13 Let fy(z) = 1/(1 4+ nz) for z € [0, 1]. Then f, is con-
tinuous, and if the pointwise limit of (f,) is written as f then

_J0o ze(0,1]
f(x)~{1 z=0.

The fact that the pointwise limit is discontinuous shows that the conver-
gence is not uniform.
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Generalizations

% Uniform convergence makes sense for sequences of maps from any set D
to any metric space X . In particular, uniform convergence for sequences of
bounded maps from D to X can be expressed as ordinary convergence in
the metric space B(D, X) with the sup metric. If D is a topological space
and ¢ € D we may consider the subspace C, C B(D, X) of those maps
which are continuous at ¢. The proof of Theorem 16.10 readily extends
to show that C. is closed in B(D, X). The same result holds when c is
replaced by a general subspace C of D. %

T
Exercise 16.1 Suppose that D C R is of the form D = U D; and that a
i=1
sequence of functions f, : D — R is uniformly convergent on D; for each
i=1,2,..., r. Show that (f,) is uniformly convergent on D.

In Exercises 16.2, 16.4, 16.5, 16.8 suppose that D C R and that f,, g, are
real-valued functions defined on D.

Exercise 16.2 Given that (f,), (gn) converge to functions f, g uniformly on D
prove that (Af, + pgn) converges to Af + ug uniformly on D for any A\, p € R.

Exercise 16.3 Which of the following formulae for f,(z) defines a sequence of
functions (f,) converging uniformly on [0, 1]?

(i) z/(1+nz); (i) noe~ " (iil) nz™(1—x); (iv) n'/2z(1-2z); (v) nm(l—xz)"2;
(vi) 2 /(1 + z™); (vii) n™Fz" cosnz.

Exercise 16.4 Suppose that (f,,) converges to a function f uniformly on D.
Prove that if cach f,, is bounded on D then

(a) f is bounded on D;

(b) there is a uniform bound for the f,, i.c. there exists K € R such that
|fe(z)| < K forall z € D and all n € N.

Exercise 16.5 Suppose that (f,), (¢») converge to f, g uniformly on D and
that for each n the functions f,, g, are bounded on D. Prove that (f,.gn) con-
verges to fg uniformly on D.

[Hint: use Exercise 16.4.]

Exercise 16.6 For each n € N let f,(x) = 1/z and g,(z) = z/(1 + nz?) for
all z € (0, 1). Prove that (f,,) and (g,) converge uniformly on (0, 1) but (fng.)
does not converge uniformly on (0, 1).

Exercise 16.7 Construct functions f, : R — R none of which is continuous at
0 but such that (f,) converges uniformly on R to a continuous function.
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Exercise 16.8 Suppose that (f,,) converges uniformly on D to a function f and
that f, is uniformly continuous on D for each n (recall Definition 13.23). Prove
that f is uniformly continuous on D.

Exercise 16.9%* (Dini’s Theorem) Suppose that f, : X — R is a continuous
function on a compact topological space X and that fp(z) = foy1(z) for all
n € N and all z € X. Suppose also that (f,) converges pointwise to a continuous
function f on X. Prove that (f,,) converges uniformly on X.






17 Complete metric spaces

We saw in Chapter 4 how useful the completeness property of R is. From a
theorctical viewpoint, completeness lets us solve equations such as z2 = 2
in R which have no solution in Q. Here is a practical version of the same
phenomenon; we shall refer back to it a couple of times in this chapter.

Example 17.1 Let the sequence (s,) be defined recursively as follows.

1 2
Put s; =2 and, for any integer n > 1, put sp4; = 3 (sn + —) .

Sn
Then (s,) converges to v/2.
Proof First we show inductively that 1 < s, < 2 for all positive integers
n. This holds for n = 1, and if we assume 1 < s, < 2 then 1 < 2/s, <2
so from the definition of s,1 and the inductive hypothesis 1 < $p,41 < 2.

Next we show that s2 > 2 for all integers n > 1. This certainly holds
for n = 1. Now (sp, —2/s,)? > 0 gives s2 +4/s2 > 4,s0forn > 1

1 2\%? 1 4
s%+1=1<sn+g> =Z<S$’+;§+4>>2'
n

We can now show that (s,) is monotonic decreasing. For

Sz: = % (1 + %) <1 using .9,21 > 2.
This is the stage at which we need completeness: the sequence (sy) is
monotonic decreasing, and bounded below by 1, so by Proposition 4.16
(whose proof relics heavily on the completeness property of R) (s,) con-
verges to a limit, say s. Now the algebra of limits applied to the formula
defining s,,4; in terms of s, gives 2s = s+ 2/s, 50 5 = /2. O

Remark Readers who know some numerical analysis will recognise in
Example 17.1 Newton’s method for finding v/2 more precisely, for find-
ing successive approximations to v/2. The method is fairly fast, enjoy-
ing what is called quadratic convergence; the first four terms of (s,) are
2, 3/2, 17/12, 577/408. The fourth term already agrees with v/2 to four
decimal places.
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In more general contexts it is often desirable to have an analogous
completeness property, for example in order to guarantee existence of so-
lutions to certain problems. The completeness property in Chapter 4 is
convenient for studying continuity of real-valued functions of a real vari-
able, but it uses the order properties of R, and these do not gencralize to
metric spaces. However Cauchy’s criterion for convergence of real number
sequences is closely associated with Proposition 4.4, and it makes sense
in any metric space. If it is true in a metric space X —that is if every
Cauchy sequence in X converges—then we call X complete. In this chap-
ter we study completencss of metric spaces We then study some applica-
tions via a particular result that uses completeness, Banach’s fixed-point
theorem.

Definition and examples

Definition 17.2 A metric space X is complete if every Cauchy sequence
in X converges (to a point of X ).

Example 17.3 (a) R is complete by Theorem 4.18.

(b) Q is not complete, for any sequence in Q which converges in R to
an irrational number such as v/2 is a Cauchy sequence in Q which does
not, converge to any point in Q.

(¢) (0,1) C R is not complete, for the sequence (1/n) is a Cauchy
sequence in (0, 1) which does not converge to any point in (0, 1).

More examples of complete metric spaces, arising from the previous chap-
ter, will be given shortly.

Example 17.3(a) and (c) show that completeness is not a topological
property, since (0, 1) and R arc homeomorphic. However, it is invariant
under uniform equivalence, in the sense of the next proposition.

Proposition 17.4 Suppose that X, Y are metric spaces and there exists
a bijective map f : X — Y such that both f and f~! are uniformly
continuous. Then X is complete iff Y is.

The proof is contained in Exercise 17.6.

Corollary 17.5 If metrics di, dy on a set X are Lipschitz equivalent
(in the sense of Definition 6.33) then (X, di) is complete iff (X, dg) is
complete.

Proof This follows since the identity map of X is uniformly continuous
in both directions (see Proposition 13.25). O
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The secret of Example 17.3(b), (c¢) is that these are not closed in R.

Proposition 17.6 A complete subspace Y of a metric space X is closed
in X.

Proof Suppose z € Y. By Exercise 6.26 there is a sequence (y,,) in Y’
converging to z in X. Since (y) is convergent it is Cauchy. So (y,) is
a Cauchy sequence in Y and by completeness of Y it must converge to
a point in Y. By uniquencss of limits this mecans x € Y, so Y is closed
in X. a

The converse is also true.

Proposition 17.7 A closed subspace Y of a complete metric space X is
complete.

Proof Suppose that (y,) is a Cauchy sequence in Y. By completeness
of X, there is an « € X such that (y,) converges to z. Then, by Corol-
lary 6.30, £ is in Y, so Y is complete. ]

Example 17.8 The closed intervals [a, b], (—o0, b], [a, o) are complete.

Next we study a few more basic results about completeness.
Proposition 17.9 Any compact metric space X is complete.

Proof Let (z,) be any Cauchy sequence in X. Recall from Chapter 14
that both our possible definitions of compactness for a metric space imply
sequential compactness, so from Definition 14.7 there is a subsequence
(Ty(r)) converging to a point x € X. The proof will now be completed by
the next lemma, which tells us that the whole sequence (z,) converges
to x. O

Lemma 17.10 If a Cauchy sequence (xy) in a metric space X has a
subsequence converging to z € X then (z,) converges to z.

Proof Call the metric d and supposc that the subsequence () con-
verges to z. Let ¢ > 0. Since (z,) is Cauchy, there exists an integer N
such that d(zm, zn) < € for all m, n > N. Since (z,(,)) converges to ,
there is some integer R such that d(z,(,), ) < e forallr > R. Letn > N,
and choose r > R such that n(r) > N. Then

d(Tn, T) € d(Tn, Tne)) +d(Tp(r), T) < 2€.

Hence (z,) converges to = as required. O
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The converse of Proposition 17.9 is not true in gencral (e.g. R is complete
but not compact).

Proposition 17.11 The product of two metric spaces (X, dx), (Y, dy)
is complete iff (X, dx) and (Y, dy) are complete.

Proof By Corollary 17.5 we may use any one of dy, ds, ds to prove
this, since these are Lipschitz equivalent metrics. We choose d., whose
definition we now recall: for (x1,y1), (22, y2) € X XY

doc((x1, Y1), (72, y2)) = max{dx(z1, ¥2), dy (y1, y2)}-

Suppose that (X, dx) and (Y, dy ) arc complete, and ((z,,, yn)) is a Cauchy
sequence in (X X Y, dy). Then dx(zm, zn) < doc((Tms Ym)s (Tn, Yn))s
from which it follows easily that (z,) is Cauchy. Likewise (y,) is Cauchy.
By completeness of (X, dx) and (Y, dy) then (x,) converges to some
z € X and (y,) converges to some y € Y. Now ((zn, yn)) converges to
(z, y) For given € > 0 there is an integer N; such that dx(z,, z) < ¢ for
all n > Ny and an integer No such that dy (yn, ¥) < € for all n > N,. So
for any n > max{N, N2} we have

doc((Zny Yn), (z, ¥)) = max{dx(zn, z), dy (yn, ¥)} < €.

Hence ((xn, yn)) converges to (z, y).

Conversely, suppose (X X Y, d) is complete. Let () be a Cauchy
sequence in (X, dx) and let y be any point in Y. Then one can check that
(€n, y) is Cauchy in (X XY, d), for des((Tm, y), (zn, ¥)) = dx(Tm, Tn).
So by completeness of (X x Y, dw) the sequence ((xy, y)) converges to
some point (z,y’) in X x Y. It is clear that then ¥’ = y and (z,,) converges
to z. Hence (X, dx) is complete. Similarly (Y. dy) is complete. a

Corollary 17.12 The product of a finite number of metric spaces is com-
plete iff all the factors are complete.

Corollary 17.13 R" is complete for each n € N.

There arc two more results about completeness, due to Cantor and Baire,
which arc valuable for advanced applications: we consider them on the
web site.

Now we consider more examples of complete metric spaces, among
function spaces that featured in the previous chapter. (There arc further
examples, involving sequence spaces, on the web site.)
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Example 17.14 The space (B(D, R), dy,) of bounded real-valued func-
tions on a domain D C R, with the sup metric dy,, is complete. We have
alrcady mentioned this in Remark (b) after Theorem 16.9.

As we shall see below, this is important for guaranteeing solutions to
certain problems just as the completeness property of R was important
for Example 17.1.

% More gencrally we may consider the space B(D, X) of all bounded
functions from a set D to a metric space X, with the sup metric d as
before.

Proposition 17.15 The space (B(D, X), ds) is complete iff X is com-
plete.

Proof A close scrutiny of the proof of Theorem 16.9 reveals that it uses
nothing about D, and only the completeness of R, so the same proof
shows that (B(D, X), ds) is complete if X is complete. The converse is
easy: If X is not complete, take any Cauchy sequence (z,) in X which
fails to converge in X, and the corresponding sequence of constant func-
tions (with values z,) will yicld a non-convergent Cauchy sequence in

B(D, X). % O

Example 17.16 Let (B(D,R), ds) be as in 17.14, where D C R, and
as usual we take the Euclidean topology on D. We shall show that the
subspace C(D, R) of continuous bounded real-valued functions on D is
complete. First let C, be the subspace of those bounded functions which
are also continuous at some given point ¢ € D. From Theorem 16.10 we
deduce that C. is a closed subspace of B(D, R) and hence by Proposi-
tion 17.7 it is complete. Now C(D, R) is the intersection of the family
{Cc: ¢ € D} so it too is closed in B(D, R) and hence complete.

% More generally, if X is any topological space and Y is any complcte
metric space then the space of all continuous bounded maps from X to
Y, with the sup metric, is complete by a similar argument. %

Example 17.17 The space (X, d1) of continuous real-valued functions on
[0, 1] with the L! metric of Example 5.14 is not complete. We shall look
at this in detail since it is a rich source of fallacies. To construct a Cauchy
sequence which does not converge in L1[0, 1] we define f, : [0, 1] — R
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0 / 1/2 1 =z
171
2 n

Figure 17.1. Graph of f,

for n > 2 by
0, ze 0,1 -1],
fn(‘r): 17 S [%, 1],
n(e+z-3), =€l

Then (f,) is a Cauchy sequence in L![0, 1]: for given € > 0 let N be an
integer with N > 1/e and m > n > N; then f,,(z) = fo(x) except in
1 11
the interval I, = [5 o 5]’ and |fm(z) — fu(z)] < 1 for z € I, (see
Figure 17.1). We therefore get

1
di(fm, fn)z/ |fm — fnl <1/n<1/N <e forall m>n>N.
0

It remains to prove that (f,) does not converge in (X, d;). First here
are two fallacious proofs.

(a) For z € [0, 1/2), fao(z) — 0 as n — oo, and for z € [1/2, 1],
fn(z) — 1 as n — o0o. Hence the limit function f is not continuous on
[0, 1], (f(z) is zero on [0, 1/2) and 1 on [1/2, 1]), is therefore not in X,
80 (frn) does not converge in X.

What this proves is that (f,) converges pointwise to a discontinuous
function on [0, 1]. From this we can conclude only that (f,,) docs not con-
verge uniformly to f it is still conceivable that there is some continuous
function to which it converges in the L! metric d;. To clarify the fallacy
here, suppose we let gn, = fn|[0, 1/2] and consider (g,,) in the space X’
analogous to X but with [0, 1] replaced by [0, 1/2]. Then the argument in
(a) would say that (g, ) converges to the discontinuous function f|[0, 1/2]
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hence does not converge in X’. However, in fact (g,) does converge in

1/2
(X', d1), namely to the zero function g, since / lgn — 9| =1/2n—0
0

as n — o0.
1

(b) Let f be asin (a).Then/ |fn — fl =1/2n — 0 as n — oo. Hence

(fn) converges to f in the L! metric, and since limits of sequences in a
metric space are unique, (f,) cannot converge to a continuous function
in the L' metric.

This is closer: at least it uses the right metric. But it will still not do as
it stands. For f belongs to, say, the set R of Riemann-intcgrable functions

on [0, 1]. (Note that X C R.) Now the formula d;(f, g) = / |f — g| does

not definc a metric in this larger set, but only what is caﬁcd a pseudo-
metric, for the axiom (M1) in general fails: for example f and g might
differ at only a finite set of points, and we would have dy(f, g) = 0 but
f#3g

(c) However, we can develop (b) into a valid proof. Let f be as before,
so di(fn, f) — 0 as n — oo. Suppose that (fn) does converge to a

continuous function g in the L' metric, so fn—9/—0asn — oo.
g

Since

£ (z) — g(z)] < |f(2) = fal@)] + | frlz) — g(z)| forall z €0, 1],
it follows by integration that

1 1 1
S/ |f-0|</ |f‘fn|+/ |fn“9|=0na say.
0 0 0

1
Since 6, — 0 as n — oo and / |f — g| is independent of n we deduce

that this latter integral is zero. By the proof of Lemma 5.15, f(z) = g(x)
at any z € [0, 1] at which f — g is continuous. Since g is contmuous on
[0, 1] by hypothesis and f is continuous on [0, 1] except at 1/2, it follows
that g(x) = f(z) for ¢ # 1/2, which is clearly impossible for a continuous
function g. Hence we finally have a proof that (X, d;) is not complete.

If a metric space X is not complete, we can construct a complete
metric space X, called the completion of X, such that X is (isometric to)
a dense subspace of X; this is like extending from Q to R. The general
construction is described on the web site.
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Banach’s fixed point theorem

Our applications of completeness will be made via this theorem, which is
one of metric space theory’s most attractive results. On the theoretical
side, it unifies the proofs of several existence theorems for solutions of
algebraic, differential, integral and functional equations. The theorem,
when it works, tells us that the solution is unique as well. It employs a
constructive method which is of also interest in numerical analysis.

Definition 17.18 Given any self-map f : S — S of a set S, a fixed point
of f is a point p € S such that f(p) = p.

For example, a rotation of a disc around its centre has the centre as a fixed
point. The conscientious reader will already have proved in Exercise 12.8
that any continuous self-map of [a, b] has at least one fixed point. We begin
with a special case of Banach’s theorem which proves, under stronger
hypotheses than continuity, that there is a unique fixed point. We need
some terminology. Let D C R.

Definition 17.19 For given positive real numbers o and K, a function
f D — R satisfies a Lipschitz condition of order a on D, with constant
K, if

|f(z) = f(y)| < K|z —y|* forall z,yeD.

The next proposition, whose proof is Exercise 17.7, is intended to relate
Lipschitz conditions to familar properties.

Proposition 17.20 (a) If f satisfies a Lipschitz condition of order a > 0
on D then f is uniformly continuous on D.

(b) If f satisfies a Lipschitz condition of order a« > 1 on [a, b] then f
is constant on [a, b].

(c) If f : [a, b] — R is continuous on [a, b] and differentiable on (a, b)
with | f'(z)| < K for all z € (a, b) then [ satisfies a Lipschitz condition
of order 1 with constant K on [a, b].

It is (c) that often allows us to deduce that a given function satisfies a
Lipschitz condition.

Example 17.21 Consider the real-valued function of a real variable with

formula ) 0

Then f defines a function f : [1, 2] — [1, 2], and this function satisfies a
Lipschitz condition of order 1 with constant 1/2 on [1, 2].



Complete metric spaces 191
Proof This is closely connected to Example 17.1, in which sp+1 = f(s5).

The proof that f maps [1, 2] into itself is the samc as the proof that
1 < sp < 2 implies 1 € $p41 < 2. To get a Lipschitz condition, note that

f’(r)=1<1—x3>, so |f'(z |<1 for all z € [1, 2].

N

The result now follows by Proposition 17.20(c). o

Remark If we wanted a smaller K. for examplc to use in Proposi-
tion 17.27 below, we could prove that f(z) > V2 for all z > /2 and
that f(z) < 3/2 for all z € [v/2, 3/2]. Thus f maps [v/2, 3/2] into itsclf,
and on thls interval we may take K = 1/18.

Theorem 17.22 If [ : [a, b] — [a, b] satisfies a Lipschitz condition of
order 1 with constant K < 1 on [a, b] then f has a unique fized point
p in [a. b]. Moreover, if x1 is any point in [a, b] and T, = f(xn-1) for
n > 1, then (z,,) converges to p. The same result holds if [a, b] is replaced
throughout by (—o0, b] or [a, 0o

This is a special case of Banach’s fixed point theorem, which will be proved
in gencral later. Figurc 17.2 illustrates two possible cases.

Example 17.23 The function f : [1, 2] — [1, 2] defined by

1

f@) =3

5 (IL‘ + —i—) has a unique fixed point p in [1, 2].

This fixed point p is the limit s of the sequence in Example 17.1. It satisfies
2p = (p+2/p) so p= V2.

Figure 17.2. Banach’s theorem for [a, b]
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Contraction mappings

Lipschitz conditions easily generalize to metric spaces. The kind of condi-
tion we arc concerned with has an appealing geometric interpretation.

Definition 17.24 Let (X, d) be a metric space. A map f: X — X isa
contraction if for some constant K < 1 we have d(f(z), f(y)) < Kd(z, y)
forallx,y in X.

Lemma 17.25 Any contraction of a metric space X is uniformly contin-
uous.

Proof With the above notation, let ¢ > 0 and take § = ¢/K. For any
z, y € X satisfying d(z, y) < & we have d(f(z), f(y)) < Kd(z, y) < € as
required. O

Theorem 17.26 (Banach’s fixed point theorem) If f : X — X is a
contraction of a complete metric space X then f has a unique fized point
pin X.

Proof FEristence Let x1 be chosen arbitrarily in X and inductively let

ZTn = f(xn-1) for n > 1. We shall prove that (z,) is a Cauchy sequence.
First we notc that by an easy induction d(z,11, z,) < K"~ 'd(z2, 71)

for all 7 > 1. Now for m > n, by repeated usc of the triangle inequality,

d(Tm, Tn) < A(Tm, Tin—1) + A(Tm-1, Tm-2) + ... + d(Tn+1, Zn).
Hence
ALy ) < (K™ 2+ K™ 3 4 4+ K" Dd(zg, 1)
= K" Y K™ L K™ L Dd(z, 1)

_ Kn—l(l _ Km—n)
B 1-K

n—1

1-K

d(.'L'Q, xl)

<

d(z2, x1).

Now K" ! — 0 as n — oo, since 0 < K < 1. Hence for any € > 0 we
have d(z,, Tn) < € whenever m > n and n is sufficiently large (specifi-

n—1
1-K
a Cauchy sequence. Since X is complete, (x,) converges to some point
p € X. By continuity of f at p (Lemma 17.25), f(z,) — f(p) as n — oo.
But f(zn) = zp+1 — p as n — oo, so f(p) =p.

cally, when n is such that d(z2, 1) < €). This proves that () is
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Uniqueness If f(p) = p and also f(q) = ¢ then

d(p, q) = d(f(p), f(g)) < Kd(p, q)-

Since K < 1 this is a contradiction unless d(p, ¢) = 0. Hence ¢ = p and
the fixed point is unique. a

From a practical point of view, the next result is also of interest.
Proposition 17.27 With the notation and hypotheses of Theorem 17.26,

Kn—l

<
d(p’ .’L'n) ~= l—K

d(.’IJ2, .’L'1).

n—1
1-K
n fixed and let m — oo. Then z,, — p, and by continuity of d (see
Exercise 5.17) d(@m, ) — d(p, ) as m — oo. In the limit we get the
result. a

Proof As above, for m > n we have d(z.,, T,) < d(x2, 1). Keep

In this crror estimate of how far z, is from p, the right-hand side can be
calculated in specific cases without knowing p in advance.

Remarks (a) Banach’s fixed point thecorem is also known as the con-
traction mapping theorem.

(b) There are many variations on the contraction mapping theme. For
example, it is enough to assume that some iterate f(™ of f, rather than
f itsclf, is a contraction (sec Exercise 17.13). However, as Exercises 17.11
and 17.12 illustrate, we cannot simply drop completeness or the uniform
factor K.

(c) The statcment that f is a contraction depends on the choice of
metric d. It is possible that d and d’ arc uniformly equivalent metrics
on X, in which case (X, d) is complete iff (X, d') is complete, and that
f: X — X is a d-contraction but not a d’-contraction. This gives scope
for ingenuity in the choice of metric in applications, sce for example the
proof of Theorem 17.31 below.

Applications of Banach'’s fixed point theorem

We end with some applications of Banach’s fixed point theorem, in addi-
tion to Theorem 17.22. There is a further application on the web site —an
inverse function theorem for functions of several real variables.
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Example 17.28 First consider the (possibly unfamiliar) equation

b
~ ) / K(z, y)o(y)dy + f(z),

where K and f arc known, and the problem is to find . This is called
an integral equation. Integral equations help in the qualitative study of
differential equations, as we shall illustrate below. Also, certain applied
mathematics problems naturally give rise to integral equations.

Suppose that in the above, K : [a, b] X [a, b)) = R and f: [a, b] = R
are continuous and that A € R. We shall prove that if || is sufficiently
small then there is a unique continuous function % : [a, b] — R satisfying
the integral equation.

Let X = C[a, b] be the space of all continuous real-valued functions on
[a, b] with the sup metric dy as in Example 5.13. By Example 17.16 X
is complete. Define F' : X — X as follows: for any function ¢ € X, let
F (%) : [a, b] — R be given by

b
F@)(z) = A / K(z, y)b(y) dy + f(z),

for all z € [a, b]. It follows easily from integration theory that F(1) is
continuous on [a, b], so F(¢) € X. We shall prove that for |A| sufficiently
small, F' is a contraction.

Since [a, b] x [a, b] is compact and K is continuous, there exists A such
that |K(z, y)| < A for all z, y in [a, b]. For any ¥4, ¥ € X,

doo(F(¥1), F(¥2)) = sup |F(¢1)(z) — F(t2) ()]

z€(a, b]

= sup /Kx, Y)(¥1(y) — ¥2(y)) dy
z€la, b]

<[A[(b—a)A sup [¥1(y) — ¥2(y)l,

y€la, b]

where the last inequality follows from integration theory.

Since sup |¥1(y) — Y2(y)| = doo (1, ¥2), it follows that F is a con-
r€la, b

traction provided |A| < {(b—a)A}~t. By Theorem 17.26, F' has a unique
fixed point in X for such A. But F(v) = 3 means that ¥ is a solution
to the original integral equation, so the integral equation has a unique
continuous solution for such .

Theorem 17.29 uses Remark (b) above, whose proof is Exercise 17.13.
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Theorem 17.29 Suppose that K : [a, b] x [a, )] = R and f : [a, b)] = R
are continuous. Then the (Volterra) equation

+ [ " K(z. y)dly) dy

has a unique continuous solution ¢ on [a, ).

Proof Let T be the triangular set {(z, y) : a < y < x < b}. Since T is
bounded and closed in R?, it is compact. Let A be an upper bound for
|K(z, y)] on T. Let X be the complete metric space of continuous recal-
valued functions on [a, b] with the sup metric dy. Define F': X — X by

F(¢) /K:L'y y)dy for all z € [a, b].
Then  dulF(01), F(02)) = sup | [ K (o 1)(610s) = o) dy
ze[ab]

< (b—a)Asup |¢1(y) — d2(v)

y€la, b]
= (b~ a)Adw (1, ¢2).

This is not enough to make F' a contraction, unless (b —a)A < 1. But we
can now use Exercise 17.13: to get a unique fixed point for F it is enough to
show that some iterate F(™ of F' is a contraction. Inductively suppose that

IF(T)(¢1)($) — F(r)(¢2)(l’)| < & ;Ia)rAr

doo(¢1, ¢2) for all z € [a, b].

This certainly holds for 7 = 0, taking F®) to mean the identity function.
Then for any z € [a, b],

|FTH (1) (2) — FUTD (o) ()|

= [ K e - ’<’><¢2)(y)]dy\

<a| [T a o eay
_ plrt+l
%A’“dw(m, o).

Hence in particular

doo(F™ (¢1), F™(¢2)) < “’——)L‘"

doo(¢1, ¢2) for all integers n >0
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and all ¢1, ¢2 € X. Since (b—a)"A"/n! — 0 as n — 00, we see that the it-
erate F'(") is a contraction for n sufficiently large. Hence by Exercise 17.13,
F has a unique fixed point in X, which tells us that the original Volterra
integral equation has a unique continuous solution on [a, b]. O

Example 17.30 Wc end with the Cauchy-Picard theorem of differential
equations, which says that under suitable conditions on f, the initial value

problem

dy

FraaRACIEOL y(zo) = yo
has a unique solution in a small enough neighbourhood of (z¢, yo). More
precisely:
Theorem 17.31 Suppose that f : D = [zg—a, To+a]X [yo—b, yo+b] — R
is continuous and satisfies the ‘Lipschitz condition’

|f(z, 1) = f(z, y2)| < K|y1 —y2| for all (z, y1), (x, y2) € D, some K > 0.

Let M be an upper bound for |f(z, y)| on D, and let ¢ = min{a, b/M}.
Then on I = [xo — ¢, To + c| there exists a unique solution y of the differ-
ential equation % = f(z, y) such that y(xo) = yo.
Proof The traditional proof uses a method of successive approximations
and properties of uniform convergence, which are codified in Banach’s
fixed point theorem. We first prove a weaker version which uses the sup
metric, and then show how fiddling with the metric gives a proof of the
full theorem.

We need to use a few facts from calculus. First we see that a function y
is a solution of the initial value problem on I iff y is a continuous solution
of the integral equation

y(z) =yo+/x f(t, y(t))dt on I.

For suppose y is a continuous solution of this integral equation. Since y
and f are continuous, the integrand is continuous on I; remembering how
to differentiate such an integral we see that dy/dz = f(z, y), and putting
x = zg we sce that y(zo) = yo. Conversely if y(x) satisfies the initial value
problem on I then integration over the interval from xg to z tells us that

/x y'(t)dt = /z f(t, y(t))dt for any z € I.

0

By the Fundamental theorem of calculus, the left-hand side of this equa-
tion is y(z) — y(xo), so y(z) satisfies the integral equation, and y(z) is
continuous on / by integration theory.
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Now we apply Banach’s fixed point theorem to the integral equation.
We first prove a weak version of the Cauchy-Picard theorem, in which I
is replaced by the (probably shorter) interval I’ = [zg — ¢/, ¢ + /] where
¢ < min{a, b/M,1/K}. Let and let X’ C CI’ be the space of continuous
rcal-valued functions y on I’ such that |y(z) —yo| < b for all z € I'. Then
X' is closed in CI', since if |y(z) — yo| > b for some z € I’ then the same
will be true for all functions in CI’ close enough to y(z) in the sup metric,
so the complement of X’ in CI' is open in CI'. Hence X' is complete, since
CI' is completc by Example 17.16. Now define F : X’ — X’ by

F)@ =w+ [ " H((t, () do

First, F(y) € X’ when y € X'; for F(y) is continuous on I’ by integration
theory; also,

F(y)(z) - ol = / " y(t))dts <dM<h

for any x € I'. Next, F is a contraction, for if ¥, y2 € X’ then

doo (yl ) 192) sup

|z—zo| <L’

< Kdoo(y1,2), and K < 1.

/ {F(t, ;) — f(¢, yg(t))}dt’

Hence F' has a unique fixed point, which is a unique continuous solution
of the original initial value problem on I’.

However, we can establish existence and uniqueness over all of I by
using a different metric on CI (scc Remark (c) above). For yi, y2 € CI
define

d(y1, y2) = sup e~ K==y, () — yo(a)].
zel
Note that for any ¢t € I we have

e Klt=2ol |y (1) — ya(t)] < sup e~ Klz=2ol |y, (z) - yo(x)| = d(y1, v2),
€

so for any t €

lyi(t) — ya(t)] < d(y, yo)eXlt—oel.

The metric d is Lipschitz equivalent (see Definition 6.33) to the sup metric
on CI, since e~ K¢ L e~ Klz~2ol ] for all z € I. Hence CI with this metric
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is complete (see Exercise 17.4). Let X C CI consist of the y in C[ satisfying
ly(x) —yo| < b for all z € I. This is a closed subspace of CI just as before,

so is also complete. Define F' : X — X as before. We can check that
F(y) € X when y € X. But now for y;, y2 € X,

[ G mo) - s et }dt}

/ Klus(t) (t)ldt’

x
[l
To

_K|.l?——-’l'()| (eKI:c—mu| _ 1)

d(F(y1), F(y2)) =supe —Klz=l
rel

<sup ¢ —Klr—z|

zel

< d(y1, y2) sup e~ K=ol
rel

=d(y1, y2)sup e
xel

= d(y1, ya) sup (1 — e~ Klz=2ol)
zel

< (1-e %d(y1, y2).

Hence F is a contraction, since 1 — e~ ¢ < 1. This shows that the
original initial value problem has a unique solution over the interval I,
thereby establishing the full force of Picard’s Theorcm. o

Exercise 17.1 Prove that any discrete metric space is complete.
Exercise 17.2 Which of the following are complete?
(i) {1/n.n e N}u{0}, (ii)) Qn[o, 1). (ii) {(z.y)€eR?:2 >0,y > 1/z}.

Exercise 17.3 Prove that in any metric space
(a) the union of two complete subspaces is complete,

(b) the intersection of a family of complete subspaces is complete (provided
it is non-empty).
[Hint: for (a) you could use Lemma 17.10.]

Exercise 17.4 Prove that if metrics d, d’ on a set X arc Lipschitz equivalent
(see Definition 6.33) and (X. d) is complete then so is (X, d').

Exercise 17.5% Rccall the following metrics for R from Exercisc 5.4'
(@) d(z, y) = |2°~y°|, (b)d(z,y) = [e"—<Y|, (c)d(z, y) = [tan~(z)—tan™"(y)|.

For which of these metrics is (R, d) is complete?
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Exercise 17.6* Suppose that f : X — X' is a one-one correspondence of
metric spaces such that f is uniformly continuous and f~! is continuous.

(a) Prove that if (z,) is a Cauchy sequence in X then f(z,) is a Cauchy
sequence in X',

(b) Prove that if (y,) is a convergent sequence in X’ then (f~'(y,)) is a
convergent sequence in X.

(c) Deduce that if X’ is complete then X is complete.

(d) Deduce that completeness is an invariant of uniform equivalence (recall
that a uniform equivalence is a bijective map which together with its inverse is
uniformly continuous).

Exercise 17.7 Prove Proposition 17.20, that

(a) If f satisfies a Lipschitz condition of order & > 0 on D then f is uniformly
continuous on D.

(b) If f satisfies a Lipschitz condition of order @ > 1 on [a, b] then f is
constant on {a, b].

(c) If f is continuous on [a, b] and differentiable on (a, b) with |f/(z)| < K
for all z € (a, b) then f satisfies a Lipschitz condition of order 1 with constant
K on [a, b].

[Hint: use the mean value theorem for (b) and (c).]

Exercise 17.8 Use Theorem 17.22 to prove that the equation % + 72 — 1 =0
has a unique solution in [0. 1].

Exercise 17.9 Show that the cosine function cos : [0, 1] — [0, 1] is a contrac-
tion. Find an approximate solution to the equation cosx = z, correct to two
decimal places.

Exercise 17.10 Let z; = v2 and for n > 1 let In+1 = V24 /Tp. Use
Banach’s fixed point theorem to show that (z,) converges to a root of the
equation 2% — 422 — x + 4 = 0 lying between /3 and 2.

Exercise 17.11 Define f : (0, 1/4) — (0, 1/4) by f(z) = x2. Show that f is a
contraction which has no fixed point.

Exercise 17.12 Define f . [1, 00) — [1, oc) by f(z) = = + z~!. Show that
[1, oc) is complete and |f(x) — f(y)] < |z — y| for any distinct z, y € [1, co), yet
f has no fixed point.

Exercise 17.13 (a) Suppose that f : X — X is a map of a complete metric
space X and for some integer k, the itcrated map f*) = fo fo.. o f (k times)
is a contraction. Prove that f has a unique fixed point p in X and * that for
any x € X the sequence (f{™(x)) converges to pX.
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(b) Show that the cosine function cos : R — R is not a contraction but that
cos'? is a contraction.

Exercise 17.14 Let X = {z, y, z}, let d be the discrete metric on X and let
d(z,y)=2, dy,x)=2, d(z,2)=2, d(2,2)=2, d(y,2)=1, d(z,y)=1
d(z,z)=d'(y, y) =d'(z,2z) = 0.

(a) Show that d’ is a metric for X which is Lipschitz equivalent to d.
(b) Define f : X — X by f(z) =w, f(y) =2z, f(z) = z. Prove that f is a
d’-contraction but not a d-contraction.

Exercise 17.15% Let f: X — X be a map of a compact metric space X such
that d(f(z), f(y)) < d{(z, y) for any distinct points z, y € X. Prove that f has
a unique fixed point.

[Hint: show that inf{d(x, f(z)) : x € X} is attained, and get a contradiction
unless this inf is zero.]

Exercise 17.16 Let C[0, 1] denote the complete metric space of continuous real-
valued functions on the closed interval [0, 1] equipped with the sup metric.

1
(a) Show that the function I : C[0,1] — R defined by I(f) = / f(z)dz is
0

continuous.
(b) Let g € C[0,1] and let F : C[0,1] — C[0, 1] be defined by

1
F)(z) = g(x) + 5 / sin(zt)y(t) dt.

Show that F' is a contraction mapping and deduce that the equation y = F(y)
has a unique solution in C[0, 1].
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map between metric spaces, 40
in terms of open balls, 53
in terms of inverse images of open
sets, 55
in terms of inverse images of closed
sets, 62
in terms of closure, 64
in terms of interior, 74
in terms of sequences, 75
map between topological spaces
in terms of inverse images of open
sets, 83
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continuous: (cont.)
map between topological spaces (cont )
in terms of inverse images of closed
sets, 90
in termns of closure, 91
in terms of interior, 95
contraction
mapping theorem, 193
of a metric space, 192
convergent sequence
of real numbers, 21
in a metric space, 68
in a topological space, 109
convex function, 35
countable sct, 6
countable basis, 86, 87
cover of a set, 127
open cover, 127
cutting and pasting, 167

De Morgan’s laws, 5
dense
subset, of a metric space, 63
subset of a topological space, 90, 189
diagonal map:
of a metric space, 49
of a topological space, 103, 111
diameter, 50, 58, 73, 149
Dini’s theorem, 181
discrete:
metric, 41, 42, 52, 55, 61, 70, 79,
198, 200
topology, 79, 80, 81, 84, 87, 94, 106,
107, 111, 114 115, 117, 136
disjoint, 5
domain, 6

e-net, 146

empty set, 5

equivalence relation, 6, 7

equivalent
topologically equivalent metrics, 69
topologically equivalent metric spaces,

71

topological spaces, 84

Etheridge, A M., v

Euclidean distance, 38

finer topology, 80
fixed point of a map, 123, 190
frontier.

of a set in a metric space, 67

of a set in a topological space, 93
function, 5
function space, 45 47

Index

graph, 6, 104, 111, 139
greatest lower bound, 18, 19

half-open interval, 7
Hanbury, E, v
Hausdorff:

condition, 109, 169, 172

space, 110, 111, 130, 136, 138
Hewitt, E., vi
Heine-Borel theorem, vi, 134, 141
homeomorphism:

of metric spaces, 71

of topological spaces, 84, 122, 136

iff, 5
inclusion map, 97
indexing set, 5
indicator function, 87
indiscrete topology, 79, 84, 136
induced:
metric on a subset, 43
topology induced by a metric, 79
topology induced on a subset, 97
inf (infimum), 19
injective, 6, 15
interval, 7, 116, 117
integral equation, 194
interior
of a subset in a metric space, 66
of a subset in a topological space, 92,
107
intermediate value
property, 27
theorem, 33, 118
intersection:
image of an intersetion under a map,
10, 11
inverse image of an intersection under a
map, 10,11
of open sects in a metric space, 56
of closed sets in a metric space, 62
of closures in a metric space, 64, 74
of open sets in a topological space, 77
of closed sets in a topological space, 89
of closures in a topological space, 92, 95
of interiors in a topological space, 95
of topologies, 80
interval, 7, 116, 117
inverse image of a set under a map, 9
inverse map, 14
inverse function theorem, 135
invertible, 14
isometry, 72, 149

Kepler, 162
Klein bottle, 160, 165, 166



Index

L! metric, 47
L? metric, 47
Lacey, A. A, vi
least upper bound, 18
Lebesgue number, 145, 148
left-hand limit of a function, 26
limit
of a function, 25
of a sequence, 21
point in a metric space, 65
Lipschitz.
condition, 190, 191, 196, 199
equivalence of metric spaces, 71, 184
equivalent metrics, 70, 138
locally constant map, 123
locally Euclidean, 168
lower bound, 18

map, 6

metric space, 39

metrizable, 79, 110

Mobius band, 151, 154, 169, 171
monotonic, 23

natural map, 156
neighbourhood, 94
non-orientable, 169

normal space, 111, 112, 138
Norman, C W., v

normed vector space, 40

one-one correspondence, 6
onto map, 6, 15
open
ball, 51
cover, 127
interval, 7
set
in a metric space, 54
in a topological space, 77
orientable, 169

partition

of a set, 8, 15

of a topological space, 114
path-connected, 120, 121, 122, 124
pointwise couvergence, 173
polynomial function, 32, 123
Powell, S., vi
product:

maps on metric spaces, 48

maps of topological spaces, 102

metrics, 42, 43, 58, 104, 106, 107

metric space, 43, 186

topology, 101, 104, 119, 133
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projections, 49, 102, 139
projective plane, 160, 161, 162 164
pretzel, 167

quotient
map, 157, 172
topology, 156

rational function, 32
real projective plane, 160, 161, 162-164
regular space, 111, 138
relative topology on a subset, 97
relatively compact, 131
restriction of a map, 6, 43
reverse triangle inequality
for real numbers, 20
in a metric space, 57
right-hand limit of a function, 26

second countable, 86
sequence:
of real numbers, 20
in a metric space, 68
in a topological space, 109
scquentially compact subset:
of the real numbers, 142
of a metric space, 143
Sierpinski space, 80, 112
simple jump discontinuity, 28, 35
singleton set, 5, 9
subcover, 127
subspace
metric, 43, 105
topology, 97
sup (supremum), 19
sup metric, 46

Thomas, R.P W, v
topological
equivalent metrics, 69
equivalence of metric spaces, 71
invariants, 85, 118, 132
product, 101
space, 77
topology, 77
torus, 152, 155, 159, 172
triangle inequality
for real numbers, 20
for Fuclidean spaces, 41
for metric spaces, 39

underlying topological space, 79
uniform.
uniformly Cauchy, 177
uniformly continuous map of metric
spaces, 135, 138
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uniform (cont )
uniform convergence, 174
uniform equivalence of metric spaces,
184, 199
uniform limits. 178
uniform metric, 46
union.
image of a union under a map, 10, 11
inverse image of a union under a map,
10, 11
of bounded sets, 51
of closed sets in a metric space, 61
of closures in a metric space, 64, 74
of closed sets in a topological space, 89

Index

of closures in a topological space, 91, 94
of connected sets, 118

of interiors in a topological space, 95

of open sets in a metric space, 57

of open sets in a topological space, 77

upper bound, 18

Volterra (integral equation), 195

word metric, 44
Weyl, 1, 128

zero set of a function, 30
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