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To my parents



Preface

Karst is a complex system, the evolution of which is governed
by a complicated network of feedback loops. A two-way in-
teraction exists, such that processes change properties of the
system, and vice versa, changed properties of the system may
activate new processes, and so on. To fully understand karst
systems one must know as much as possible about the pro-
cesses which determine karst evolution. Many of these have
their basis in general laws of physics and chemistry, and can
often be expressed in terms of mathematical equations.

When I started research on karst processes, looking at
regular stalagmites, I wondered whether, in all the variety of
shapes existing in speleothems, there might be a general law
which could explain principle properties such as shape and
rate of growth.

To a physicist it is challenging to try out his rather ab-
stract and simplifying scientific thinking on real objects in na-
ture. This starting point led me to deposition and then to dis-
solution of calcite and to its application in limestone rocks,
and a new picture of karstification emerged, which I believe
leads to a deeper understanding of what happens in karst.
Many terms, which have often been used as descriptions,
such as, for instance, fractures easily penetrable by water, or
solutional widening of fractures by calcite aggressive solu-
tion, now gain a well-defined meaning, derived from the
physics and chemistry underlying these descriptive terms.
They can thus be used more concisely when discussing karst
processes. I have therefore attempted the adventure of writ-
ing a book dealing with basic principles of physics, physical
chemistry, and also geology, and combining them to under-
stand dissolution and precipitation of limestone and the
consequences of this in the process of karstification. The re-
sult is that the book covers a wide range of knowledge from
several disciplines and may possibly, because of its hetero-
geneity, not be so easy to read.

This, however, is the price to be paid if one starts to look
at complex natural systems from an interdisciplinary point of
view. The book is organized in three distinct parts, which
may be read separately for a first understanding. This might
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then give motivation to look into the other parts with in-
creased interest.

The idea of writing this book came to us, when we met in
1986 at a colloquium of the “Schwerpunktprogramm: Hydro-
geochemische Vorginge im Wasserkreislauf in der gesittig-
ten und ungesattigten Zone”, supported by the Deutsche For-
schungsgemeinschaft. This program brought many experts
from different disciplines together and provided a most in-
spiring atmosphere, for which I thank the DFG and Prof.
G. MattheB, the coordinator of the program.

I want to express my thanks to Prof. H. W. Franke, Prof.
M. A. Geyh, Prof. A. Bogli, Dr. S. Kempe, and W. Uffrecht
for their encouragement when I started to work in this field.
Many people have devoted their time to showing me their
caves and I have learned a lot from them. I express may grati-
tute to K. H. Pielsticker, D. Stoffels, K. Stiibs, U. Tauchert, S.
Gamsjéger, and especially to B. Schillat.

During a visit to karst areas in the United States, when [
was starting to write this book, I profited greatly from most
inspiring discussions and field trips. I wish to express my
thanks for this and for their generous hospitality to Dr. R. O.
Ewers, R. A. Jameson, R. Kerbo, Dr. A. N. Palmer, Dr. J. F.
Quinlan, Dr. J. Thrailkill, and Dr. W. B. White. I also thank
Dr. P. T. Milanovic for showing to me the karst and its land
use projects in the region of Dubrovnik, Yugoslavia.

Many people have helped to complete this work. I want
to thank all of them. Dr. D. Buhmann, who worked with me
for several years on problems of calcite dissolution, has con-
tributed much in this field and has also designed the many
programs for the computational work. His careful reading of
the manuscript has led to many valuable suggestions, which
have much improved the text. I also thank Prof. E. Usdowski
and Prof. H. D. Schulz for their cooperation and fruitful dis-
cussions. They also have contributed much to the improve-
ment of the text. G. Ankele has drawn many of the diagrams,
and B. Bodeker has produced the typescript.

Finally, I thank my wife and my children for suffering
the frame of mind into which one sinks when writing a book,
which one hopes is worthwile.

Bremen, June 1988 WOLFGANG DREYBRODT
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1 Introduction

There is nothing in the world softer and more gentle than water.
But in subduing the firm and the hard nothing is equal to it.

That the soft defeats the strong and the firm is overcome by the
gentle, everybody knows, but nobody acts accordingly.

Laotse

Carbon dioxide is an ubiquitious gas present in the earth’s atmosphere, in the soil
air, and in dissolved form in rainwater as well as in groundwater, in rivers, lakes
and in the ocean. In dissolved form it constitutes H,COj,, carbonic acid, which
is the motor of erosion and weathering of rocks. Figure 1.1 shows the CO, pressure
as its negative decadic logarithm for various environments. For CO, dissolved in
water this is the pressure which would be in equilibrium with the aqueous CO$®
dissolved.

The major part of CO, responsible for weathering and erosion of carbonate
rocks is derived from CO, in the soil air, which enters precipitation water percolat-
ing through the soil. In soils, CO, is produced by bacterial decomposition of organic
matter, and also by root respiration.

Therefore biological activity is an important determinant of weathering and
erosion. An extensive review of the role of CO, in the freshwater and in the rock
cycle has been given by Kempe (1979a,b) and Degens et al. (1984).

This book deals with the solutional activity of carbon dioxide containing water
to limestone rocks exposed at the earth’s surface. The interaction of limestone
and aggressive water penetrating into its primary fissures and voids creates an
unique landform known as karst. Since limestone is an abundantly occurring sedi-
mentary rock karst landforms are widely distributed and cover about 20% of the
earth’s surface. Depending on many factors such as the climatic regime of the area,
amount of water infiltrating into the rock, geological setting of the rock, position
of inflows and outflows of water and the type of primary fracture system in the rock,
karst landforms can show a variety of differing features. Thus, alpine karst in
Europe, where the strata are folded, is distinctly different from karst landforms in
the United States, where the strata extend evenly without any folding over large
distances.

There is one common characteristic, however, to all karst areas: the devel-
opment of a subsurface drainage system as the process of karstification proceeds.
Thus, in all areas of karst initially active surface drainage by fluvial systems
is replaced by subsurface circulation of water. In the mature state of karst
all meteoric water after very short travel distances sinks into the ground and
occurs in karst springs at the base level of erosion, leaving the elevated parts
of the landscapes entirely dry without any surface water. This book is concerned
with the question as to how this complex process of a subsurface drainage
system development can be described from its initial state to maturity by
the physics and chemistry underlying the geological conditions with determine
karstification.
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1.1 The Process of Karstification

Figure 1.2 shows a sequence of limestone landform evolution from which the basic
process of karstification can be envisaged. Initially (a) a limestone block is situated
between two impermeable, insoluble layers of rock. Consequently, in the first stage
a fluvial system drains the surface of the area. Onset of karstification begins when
at some place in this area limestone is exposed to the surface, thus providing direct
access of surface water into the limestone rock (b). This may happen by fluvial
erosion of the caprock. Furthermore, some output of water has to be provided at
alower level, which delivers the hydraulic head by gravity driving the water through
the primary narrow fissures in the limestone block. It is of no concern, how this first
input-output configuration is established. It may as well be created in an area where
limestone is exposed to the surface initially and a lower lying output is provided by
valley incision. Therefore, Fig. 1.2 gives just one example.

Once a suitable input-output configuration exists, surface water penetrates into
the fissures of the rock establishing a water table close to the surface. Since the width
of the primary fissures is in the order of several 10 g, only an insignificant fraction
of the meteoric and surface water can be transported through the limestone. In
contrast to insoluble, non-carbonate rocks, limestone is dissolved by carbonic
acid-containing water and a gradual enlarging of the primary fissures increases the
amount of water transported through the limestone. This in turn enhances the
amount of limestone removed by dissolution. Thus, a positive feedback loop leads
to a progressive enlargement of secondary porosity and a complex limestone aquifer
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Fig. 1.2a—e. Development of karstification (for details, see
text)

results. Large amounts of water can be stored in the many fissures and voids in the
rock which have been enlarged to only small dimensions below 0.1 cm. On the other
hand, complicated three-dimensional conduit systems, i.e. water-filled caves de-
velop, which emerge as large karst springs at the output and drain the aquifer. This
process changes the surface landforms. With the development of effective conduit
drainage, sinkholes are formed on the surface, which guide the surface water
undergound. Erosion of the covering caprock proceeds until the bare limestone
rock is exposed to the surface (c) accepting meteoric water and circulating it
underground by percolation, thus establishing new routes of groundwater flow.
During this process of increasing permeability of the limestone mass, lowering
of the groundwater table occurs until base level is reached. At the same time, the
complicated interplay of changing groundwater routes and changing input-output
configurations dissects the limestone mass (d). When finally base level is reached
again, a fluvial system is established at this level and residual limestone hills are
left isolated on a fluvial plane (e). It is obvious that differing boundary conditions
exert significant influence on the evolution of the landform. Where the lime-
stone mass reaches much deeper into the ground than the lowest possible base
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level, quite different landforms will result, as is the case in the Dinaric karst in
Yugoslavia.

Furthermore, the regional tectonics of joint systems will largely determine the
first exploitable flow parts. Sediments such as flysch and dolomite may serve as
hydrological barriers, thus enhancing the complexity of karst systems.

This variety of karst landforms has led to several attempts to classify karstlands.
Cvijic (1924-1926) divided karst into three types. Holokarst is encountered in areas
consisting entirely of soluble carbonate rocks. It is the most completely developed
karst and is constituted of well-jointed massive and pure limestone with a karstifica-
tion level reaching below existing base levels. Holokarst exhibits vast, bare and
rocky land with poor vegetation and ample characteristics of karst, such as large
caves, closed depressions and lack of river valleys. A typical example of holokarst
is the Dinaric karst in Yugoslavia and Greece.

Merokarst is an incomplete karst with properties of non-karstic areas. The
process of karstification has not yet proceeded very much and the land misses the
typical karst characteristics. Commonly, the rock is covered by arable soil and rich
vegetation. Although caves are present, drainage patterns are not very complex and
underground river courses can be followed.

These two types of karst show an important difference with respect to the
carbon dioxide contents of the water entering into the limestone. In merokarst
meteoric water percolates through the vegetated soil zone and therefore attains high
CO, concentrations and consequently a high capacity of dissolving limestone. In
holokarst the CO, content of meteoric water is derived from the atmosphere and
is several orders of magnitude lower.

Merokarst and holokarst are defined as states belonging to the early and final
sequences of karstification respectively. It is suitable therefore to define transitional
types of karst as a karst landform exhibiting features of both holo- and merokarst
respectively.

Differences resulting from the geological setting of the rock lead to hydro-
geological consequences. From this two important classifications can be given
(Milanovic 1981).

Platform karst is characterized by horizontal or gently sloping strata which
extend over large areas. Often the base level of karstification is determined by the
underlying impervious rock. Typical examples are karst landforms in the USA
(Kentucky).

In contrast to platform karst, geosyncline karst develops in distinctly folded
structures, which also consequently exhibit faulting and ruptured carbonate rocks.
This geological setting is ideally suited for the development of holokarst. A third
classification scheme distinguishes deep and shallow karst (Katzer 1909). In deep
karst impervious beds are located at great depth reaching often below sea level.
Therefore, karstification is not limited by such strata as in the case of shallow
karst, where carbonate layers are of limited thickness and eventually become
exposed by karstification and concurrent surface erosion, as in the example of
Fig. 1.1

There are many other classifications relating to climate or to the morphological
appearance of specific karst features, which have been summarized by Milanovic
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(1981) or Sweeting (1972). In this context only a few cases are presented in order to
show some of the structural conditions which determine karstification.

1.2 Approaches to an Explanation of Karst Development

Understanding the process of karstification requires as a first step a descriptive
formulation of karst systems. Therefore, the first question to be answered is “what
is it like”? From analogues, which are observed in various regions, explanations in
terms of “why is it s0”, then may be inferred.

One important principle in the descriptive approach is to relate different
properties of karst systems to each other. In the following a few such relations are
discussed as typical examples.

1. The circulation of water in karst terranes is related to their geological charac-
teristics. The relation of the directions of cave passages, which constitute early
groundwater routes of the system, to the tectonics of the joint systems in the rock
can give information as to how and under which conditions joint systems control
development of karst. There are many other relations between properties of karst
water systems and geological structure, such as anticlines, synclines and other
structural features.

2. The response of karst springs to flood events gives information on the type of
aquifers comprising the karst water system. There are karst springs with discharge
responding almost immediately to flood events as one limiting case in contrast to
those which show only a very slow and delayed increase of discharge. The first type
can be related to a conduit drainage system, where large passages act like pipes.
The other extreme is a diffused type of aquifer where water flows through the many
small, interconnected fissures and voids. These have high flow resistance and large
storage properties. Therefore, they show a sluggish reaction to pulse flood events
like a heavy rainstorm. From detailed analysis of the hydrographic properties of
those springs, one agrees nowadays that karst systems are constituted of two
interconnected aquifers. The first is a conduit aquifer, which is most effective in
draining the system, whereas the second, diffused aquifer represents a storage
IESEervoir.

3. Surface karst development is closely related to the state of underground karstifi-
cation. Development of collapse features is only possible in areas where large
caverns exist underground. The connection of water drainage systems on the surface
to those in the subsurface, e.g. in merokarst, reflects the state of karstification
underground. Dye tracing of surface waters and the observation of reappearance
gives valuable information on underground karstification and helps to identify
groundwater basins.

4. The investigation of caves and the morphology of cave passages gives valuable
information on cave development. Two phases of cave development can be rec-
ognized. In the early state the groundwater table is high and cave conduits can
develop, completely filled with water in the phreatic zone. These passages show
circular or lenticular shapes and their morphology indicates clearly the dominance
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of solutional corrosion in their origin. In a later state cave passages will, in part, be
abandoned by groundwater, and water flow with a free surface exists in the now
vadose region. Cave passages originating under these conditions show vertical
entrenchment and develop into canyons.

Relations of cave levels to the position of former river valleys give further
valuable information on the evolution of cave systems.

From the tremendous amount of field observations, which has been reviewed
to some extent in recent textbooks, e.g. Bogli (1980), Jennings (1985), Jakucz (1977),
Milanovic (1981), Pfeffer (1978), and Trudgill (1985) as well as review articles by
Hanshaw and Back (1979) and Stringfield et al. (1979) and a recent V.T. Stringfield
Symposium edited by Back and La Moreaux (1983), a general picture of the process
of karstification has emerged: Karstification is a process due to the dissolving action
of groundwater as it penetrates into soluble carbonate rocks. Onset of this process
occurs at the moment when a configuration of input and output of groundwater
has been established in the karstifiable rock mass, which provides the hydraulic
gradient to drive water through an interconnected system of primary fissures of
microsize in the order of several 10 p.

Little is known on the initial phase of karstification since direct observation is
not possible. It is inferred, however, that a system of penetrable primary fissures
and fractures must exist, which is enlarged by solutional aggressivity of ground-
water, thus initiating the first secondary permeability for the future karst water
aquifer. Flow in these fractures is certainly laminar as can be concluded from their
presumabile size and the existing hydraulic gradients. Under favourable conditions
some of the solutionally enlarged, initial microchannels may evolve into a network
of first conduit pipes of a few millimetre diameter and turbulent flow will set in.
Under these flow conditions the amount of limestone rock removed by solution will
increase for two reasons: (1) Solution rates will increase due to the turbulence which
effects fast transport of dissolved species into the bulk solution. (2) The throughput
of aggressive water increases and thus the capacity of dissolving limestone.

Therefore, once a certain diameter of first channels is exceeded, an effective
drainage system develops. This eventually changes the input-output configuration
and the relation between drainage at the surface and underground creates the
well-known karst features. At the same time, the diffuse system is altered, increasing
the permeability of the rock comprising it. The development of both the diffuse and
conduit aquifer system proceeds with mutual influence between the two and will
finally lead to the mature karst system.

In this picture many questions remain open. Thus, the term penetrable or
favourable fissures and joints is not an explanation but merely a word stating the
fact that at some time ago karst initiation has started. The question to be asked
would be: What is a penetrable fracture in terms of its dimension and the field of
hydraulic gradients in the initial “fracture aquifer”? Even if this question could be
answered, the next point to be determined is, how far can water flow in a fracture
without losing its power of solutional enlargement of this fracture; and related to
this, how much limestone can be removed by a certain volume of water flowing
through the fissures?
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These questions can no longer be answered by the descriptive approach. In-
stead, an interdisciplinary approach has to be taken, employing the chemistry of
the system limestone-water-carbon dioxide and also the physics of hydrodynamics
of flow in fractured systems as well as in pipes constituting the conduit aquifer.

Thrailkill, in a classical paper (1968), discussed those “chemical and hydro-
logical factors in the excavation of limestone caves”.

He investigated flow patterns in pipe networks simulating laminar and tur-
bulent flow in karst aquifers and concluded that the flow pattern is similar under
laminar and turbulent flow, provided the lateral extension of the karst aquifer is
wide relative to its depth and permeability is distributed evenly. He investigated the
chemical evolution of vadose water percolating through the rock on its way to the
water table and concluded that most of this water is saturated with respect to calcite
when arriving at the water table. To explain enlargement of karst porosity in the
shallow phreatic zone he looked for reasons of renewed undersaturation. By postu-
lating a minimum cave of 500-m length and 1-m average diameter to be excavated
in 100000 years by receiving rain water of the infiltration of the 1-km? area above,
he defined a standard minimum undersaturation of 0.0108 ppm Ca2?*. Under-
saturations of this magnitude are possible by the temperature effect. When water
cools down by only 1°C, undersaturations already 50 times as high are predicted
from the mass action laws of CO,—H,0—-CaCOj systems. A similar undersatura-
tion results by the mixing effect (Mischungskorrosion) proposed by Bogli (1964). This
effect states that the mixture of two saturated CaCOj; solutions, with differing CO,
concentrations and consequently differing Ca?* concentrations regain renewed
aggressivity upon mixing. Although these considerations show that the develop-
ment of caverns and karst aquifers is not in contradiction to the hydrodynamics of
flow and the laws of equilibrium chemistry, as one should expect, they are still
lacking important principles which govern the evolution of karst systems.

Since karst evolution is a process in space and time two important questions
have to be asked, which cannot be answered from equilibrium chemistry.

The first question pertains to the spatial extension of karst systems. This is
related to the question, how far under given conditions calcite-aggressive water can
flow until it becomes saturated and is no longer capable of dissolving limestone,
thus enlarging the cross-section of its flow path. The second question deals with
time which is needed to develop a mature karst system from its initial state.

The key to answering these questions is the kinetics of calcite dissolution. If the
reaction of calcite dissolution is extremely fast, water once in contact with calcite
(limestone) becomes saturated in a very short time. Therefore, dissolution of lime-
stone by water penetrating into primary fractures will stop after very short travel
distances and only surface denudation in limestone areas would result. One would
expect an evenly distributed lowering of limestone surfaces. Thus, the characteristics
of karst, i.e. underground circulation of water, could never develop. In other words,
if dissolution were an infinitely fast process, karst landforms would not exist at all.
On the other hand, if one assumes that the reactions proceed extremely slow, as a
consequence water penetrating into primary fractures would keep its solutional
power evenly over extremely long distances. Enlargement of flow routes is then
expected to proceed with equal rates everywhere and a homogeneous distribution
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of secondary permeability would result, in contrast to that observed in nature.
Furthermore, extremely slow kinetics of the reaction as a consequence would show
extremely small amounts of limestone dissolved per area and time unit. Thus, the
rates of enlargement would be extremely small and the time required to establish
karst aquifers could be in principle infinitely long in case of infinitely slow reactions.
To understand karst processes detailed knowledge of calcite dissolution kinetics is
therefore necessary as was first realized by White and Longyear (1962).

It is one of the main purposes of this book to discuss in detail the complicated
matter of the kinetics of dissolution and also the precipitation of calcite and to relate
these results to the development of karst systems.

1.3 Organization of the Book

The book is divided into three parts. The first part comprises Chapters 2, 3, 4
and 5 and provides an introduction to the equilibrium chemistry of the system
H,0-CO,-CaCO, (Chap. 2) and an introduction to the basic principles of mass
transport (Chap. 3) and chemical kinetics (Chap. 4). Chapter 5 deals with the
principles of laminar and turbulent flow in fractures and pipes and introduces the
basic elements of Darcy flow.

The next two chapters, constituting part two, deal with the kinetics of calcite
dissolution and precipitation. Chapter 6 gives a critical review of the current
literature and introduces into empirical expressions from which dissolution rates
can be calculated once the chemical composition of the solution at the dissolving
calcite surface is known. Chapter 7 investigates calcite dissolution under boundary
conditions which are similar to those existing in karst aquifers. By combining
principles of mass transport by molecular or turbulent diffusion (Chap. 3), equi-
librium chemistry (Chap. 2) and the chemical kinetics of conversion of CO, into
aggressive carbonic acid H, CO,, with the results of Chapter 6, dissolution rates of
calcite are derived, which later can be applied to specific problems in karstification.
From this theory it is also possible to predict precipitation rates of calcite from
supersaturated solutions.

The last part of the book deals with the consequences of the results of calcite
dissolution kinetics on the development of karst systems. Chapter 8 introduces
general principles constituting the elements of karst systems. It discusses the relation
of fracture systems to the orientation and the type of cave passages. An introduction
to the hydrologic properties of karst aquifers is given. Finally, descriptive models
of cave development and karstification are reviewed from the recent literature.
Chapter 9 combines the principles of calcite dissolution as discussed in Chapter 7
and those of hydrodynamics of Chapter 5 to give in the framework of the elements
presented in Chapter 8 models of initial karst development. This is done by consider-
ing Darcy flow in two-dimensional porous media, modelling bedding plane partings
or joints. Examples are given how flow fields change upon enlargement by dissolu-
tion. In a next step the concept of penetration length is introduced to derive
numbers, giving the length water can flow until its dissolution rates have dropped
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to 109 of the initial value. The consequence of these numbers derived for different
regimes of dissolution kinetics, close and far from equilibrium, to initial and mature
karstification processes are discussed. Mathematical models are presented showing
the evolution of first initial flow paths in space and time. These results are also
discussed in view of recent geomorphological theories of karst evolution. The last
section of Chapter 9 discusses rates of surface denudation in terms of equilibrium
chemistry and dissolution kinetics.

Chapter 10 deals with the precipitation of calcite in karst environments. In the
first part the morphology and growth rates of regular stalagmites are discussed in
some detail and compared to field observations. In the second part results of calcite
precipitation in surface streams are presented and interpreted in terms of the theory
represented in Chapter 7.



Part 1
Basic Principles from Physics and Chemistry



2 Chemistry of the System H,O-CQ,-CaCQO;

2.1 Reactions and Equilibria

Weathering of limestone rocks, at the surface and underground, is due to the
reaction:

CaCO,; + CO, + H,0 - Ca?* + 2HCO; .

This is a global reaction equation and, according to Plummer et al. (1978), it
comprises three different attacks of the system H,O-CO, to the calcite surface.
They are:

CaCO; + H* =Ca?* + HCOg5 ;

CaCO, + H,COy=Ca?* + 2HCO;3 ;

CaCO; + H,0=Ca?** + CO}™ + H,0.
From these equations it is evident that the reaction of the system H,O-CO, with
CaCO, is governed by the concentrations of the species H*, HCO; , CO%™,H,CO,
and Ca2* at the calcite surface.

To elucidate the chemical equilibria between these species, we first treat the

pure carbonic acid system H, O—-CQ, prior to any dissolution of CaCOj.
The chemical reactions in this system are:

CO% + H,0=CO0% + H,0.

This process describes transfer of CO, from the gas phase into the solution, where
the aqueous species CO3? is formed. The equilibrium between CO% and CO3? is
given by:
_(COo3Y)
> oy’

@.1)

or by Henry’s law, which relates the partial pressure pco, of the surrounding
atmosphere to the activity of the dissolved CO,

(CO5%) = Ky peo, - (2.1a)

The parentheses indicate activities, which are related to concentrations by activity
coefficients y as will be discussed below. Concentrations are given by square
brackets. Ky and K, are related by:

Kp=Ky R-T. (2.1b)
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T is the absolute temperature and R the gas constant. CO, reacts with water to
form carbonic acid:

H,0 + CO,=H,CO;,

with the mass action equation:

(CO%*) =K, (H,CO;3) . 22)
Often one defines [H,CO%] = [CO3%] + [H,COs]. Then Eq. (2.2) reads:
(CO3) 1\
=1+ . 2.2
H,con \' 7K, 229

H,CO, dissociates into H" and HCO; :
H,CO,=H" + HCO; ,

with the mass action law

(H")(HCO3)
(H,c0%)
or (2.3)
H*")(HCO;
(—%(:—653_) = K1‘(1 + Ko) = KH2C03 .

The next dissociation step is:
HCO; =H* + CO3%~
with 24

(H")(CO3M)
— = K2 .
(HCO;)
Finally, we have the dissociation of water with:

(H)(OH) =Ky, . (2.5)

In Egs. 2.1 to 2.5 the mass action equations have been written using activities. These
are related to the concentrations by activity coefficients which depend on the ionic
strength I of the solution, defined by:

I=%ZZf-ci‘ 2.6)

Z, is the charge of the i-th species in the solution and c; its concentration in mol 171,
For a solution of CO, in pure H, O:
I=4([H*] + [OH"] + [HCO5] + 4[CO%7]). (2.6a)

Activities and concentrations are related to each other (Garrels and Christ 1965) by:

(@) =»-[]. 2.7)
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Table 2.1. Activity coefficient y for various ions encountered in karst water at T = 15°C calculated by
the extended Debye-Hiickel expression (intermediate values can be estimated by linear interpolation)

Ion Ionic strength I Ionic radius
0.001 0.005 0.01 0.05 0.1 a[A]

H* 0.967 0.935 0915 0.856 0.828 9

Mg?* 0.874 0.760 0.694 0.522 0.450 8

Ca?* 0.8372 0.751 0.680 0.489 0.407 6

Coi- 0.870 0.745 0.669 0.461 0.370 4.5

SO;™ 0.870 0.743 0.667 0.456 0.363 4

HCO;, Na* 0.965 0.929 0.904 0.822 0.776 4

OH",CI” 0.965 0.927 0.902 0.815 0.765 3

The individual ion activity coefficients are usually calculated by the extended
Debye-Hiickel equation as:

logy, = —Azf-—\/—l—. (2.8)
1 + Ba;\/I

The values A and B are dependent on temperature (A = 0.4883 + 8.074 x 1074¢,
B = 0.3241 + 1.6 x 10™*t), t is the temperature in °C. The values a, represent ionic
radii. Table 2.1 lists ionic radii and gives activity coefficients calculated from Eq.
(2.8) for various ionic strengths and ions encountered in karst water. As can be seen
from Eq. (2.8) and Table 2.1 y; - 1 with I approaching zero. In natural karst water
the ionic strength is well below 0.1 and the extended Debye-Hiickel theory can be
used with confidence.

For uncharged species such as CO, and H,COj the activity coefficients are
given (Plummer and Mackenzie 1974) by:

=10~ 1, if 1<01. 2.9)

The dissociation of carbonic acid into bicarbonate HCO3 and carbonate CO2™ is
governed by pH as a master variable. This can be derived as follows.
The total amount of carbon in a CO,—H, O system is given by:

C; = [H,CO¥] + [HCO;] + [CO%]. (2.10)
We define the molar fractions:
[H,CO3] [HCO;] [CO3]
%ZT; 1=(:7T; %:T. (2.11)
Combining these equations we find:
L _ 1+ [HCO; ] [CO5] (2.12)

% [H,CO%]  [H,CO%]’
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Fig. 2.1. Jonic fractions of
10 H,CO% as 24, HCOj asa, and
CO?™ as a, as a function of
pH in the solution. Note that
” . the scale of the .ordinate is

2 4 6 8 10 12 pH % logarithmic

IONIC  FRACTIONS o

3

Using mass action Egs. (2.3) and (2.4) and converting activities into concentrations
by Eq. (2.7) yields:

K, K; K, )‘1
ao={1+ + . (2.13a)
¢ ( Yuco,yulH' 1 ¥avco,[H™ 12

Similarly, one obtains:

+ K -1
oy = <1 n [(H" 1vuco,vn n 2)’1-1co3+ ) : (2.13b)
K, VHVCO3[H 1
2 H+ 2 H+ -1
o, = <1 n VHVCO3[ ] 4 L ]yHyCO3> _ 2.13¢)
KK, Kz)’}lco3

Figure 2.1 visualizes these ionic fractions as a function of pH for the case of a very
dilute solution, where all the y, are equal to 1.

In the region pH < 4 virtually no HCO; and COZ2" is present and only H, CO%
exists. With increasing pH carbonic acid dissociates, forming HCOj . Thus, below
pH = 8.3 practically no CO?~ is present. Above pH = 8.3 HCOj starts to dis-
sociate until at pH 12 only CO2~ ions exist.

It should be noted here that this behaviour depends only very weakly on
temperature and ionic strength (Loewenthal and Marais 1978). The data in Fig. 2.1
therefore are representative with sufficient accuracy for the realm of karst waters.
One important conclusion from this diagram is that in most cases of karst waters
the species CO4~ can be neglected, since karst waters very rarely exhibit pH values
higher than 8.3.

If CaCOy; is dissolved, the equilibrium between dissolved species and the solid
is given by the solubility product K _:

K. = (Ca?*)(CO3 )y, (2.14)
where (Ca®*),, and (CO37),, are the activities at equilibrium. To describe the
saturation state of a solution, one uses the saturation state:
(Ca®*)(CO37)

X .

Q= (2.15)

c
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The solution is undersaturated for 2 < 1, saturated for 2 = 1 and supersaturated
for Q > 1.

Ca?* reacts with HCOj3 and CO2~ to form ion pairs. The corresponding ion
pair activities are related to mass action constants according to the equations:

K, -(Ca?*)-(HCO;) = (CaHCOY);
K,-(Ca?*)-(COZ™) = (CaCO3). (2.16)

In the case of natural karst water these species can be neglected safely in all
calculations and will therefore not be included in our further considerations.

The most recent data of mass action constants and their temperature de-
pendence for the system H, O-CO,—-CaCO; are given in Figs. 2.2 to 2.7 (Plummer
and Busenberg 1982). It should be noted that very often the values of mass action
constants K are given as pK related to K by:

pK = —logK, K =107%K, 2.17)

Table 2.2 summarizes the empirical temperature dependence of all mass action
constants defined above.

To calculate equilibria in an electrolytic system one has to observe the neu-
trality of electrical charges in the solution. The equation of electroneutrality states
that the sum of all positive ionic charges is to be balanced by that of all the negative
ones. In the case of a pure H,0-CO,-CaCOj system and neglecting ion pairs, this
is formulated as:

2[Ca**]+ [H*] =[HCO;] + 2[CO% ] + [OH]. (2.18)

In the region between pH = 4 to pH = 8.4 with an accuracy of 2%, this equation
can be relaxed to:

2-[Ca?*] = [HCO;]. (2.18a)
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Table 2.2. Temperature (K) dependence of mass action constants

References®

logKy; = 108.3865 + 0.01985076T — 6919.53/T — 40.45154 log T + 669365/T> 1)
logK, = —356.3094 — 0.06091964T + 21834.37/T — 126.8339 log T — 1684915/T? (1)
logK, = —107.8871 — 0.03252849T + 5151.79/T + 38.92561 log T — 56371.9/T2 1)

K, = 1.7 x 107%/K, 2)
log Ky = 22.801 — 0.010365T — 4787.3/T — 7.1321 log T 3)
logK; = 1209.12 + 0.31294T — 34765.05/T — 478.782 log T (1)
logK, = —1228.732 — 0.299444T + 35512.75/T + 485.818 log T (1)
logK¢e = —171.9065 — 0.077993T + 2839.319/T + 71.595 log T (1)

#(1) Plummer and Busenberg (1982); (2) Wissbrun et al. (1954); (3) Harned and Hamer (1933).

This can be seen from Fig. 2.1, which shows [CO3~] « [HCO; ] for pH < 8. From
this an important conclusion on ionic strengths in karst waters can be drawn. In
aqueous solutions of pure CaCO; the ionic strength is given by a sufficiently
accurate approximation (Eq. 2.6a) as:

I=3-[Ca%*]. (2.19)
In the presence of Mg2* derived from dolomite or magnesian calcites, then:
I=3-([Ca**] + [Mg>*]). (2.20)

This is of high practical interest as it allows one to obtain the ionic strength I directly
from the concentration of the metal ions. In equilibrium calculations, therefore, once
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the concentrations of the metal ions are known, the activity coefficients no longer
depend on the concentration of the carbonic ion species and iterative procedures
to calculate I and the related activity coefficients are not necessary.

2.2 Boundary Conditions for Achieving Equilibrium

Dissolution of calcite by CO,-containing water in natural systems proceeds under
a variety of different boundary conditions:

1. In the saturated zone of karst aquifers or porous calcareous soils there is no
interface between an atmosphere and the solution and consequently no mass
transport of CO, into the solution. Therefore, during dissolution of calcite, CO,
is consumed from the solution.

2. In all situations where water flows in contact with limestone rocks and a
CO,-gas phase, e.g. in rivers, mass transport of CO, is effective between
the liquid-gas interface. Thus, the CO, consumed by dissolution of calcite is
replaced.

These two situations are generally defined as closed and open system conditions
and most of the geological dissolution processes are described in terms of these two
extreme situations.

There is a general intermediate condition, however, the extreme limits of which
constitute the open and the closed system.

3. In the unsaturated zone of any aquifer a situation exists where a limited volume
V, of solution is in contact with calcite and also forms a surface to a limited
volume V, of a CO,-containing atmosphere. In this case, in contrast to the open
system where V, is assumed to be extremely large, any mass exchange between
this atmosphere and the solution changes the CO, composition of both the
atmosphere and the solution. Thus, open system conditions are the limiting case
with V, — oo and the closed system is achieved with V, — 0.

2.2.1 The General Case

The purpose of this section is to formulate the chemical composition of the H,O—
CO,-CaCOj system during the process of dissolution for the general intermediate
condition. As stated above, this includes the two extreme cases of open and closed
systems.

Figure 2.8 illustrates this general case in the unsaturated zone of a porous
calcareous medium. The volume of the solution is V,. This solution is in contact to
a limited volume of gas, V,. Dissolution of CaCOj; proceeds sufficiently slow, so
that all carbonic species are in equilibrium to each other. Furthermore, we assume
that the aqueous CO, is in equilibrium with the atmospheric CO,.

In an idealized pure system H,O-CaCO;-CO, the chemical composition of
the solution can be calculated once the initial CO, pressure of the atmosphere and
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a) calcareous grain
b) Volume of solution V|
¢) Volume of gas Vg

Fig. 2.8. Illustration of the intermediate case in a
porous medium. The total value of the gas phase is
V,, the total volume of the solution is V,

the Ca?* concentration of the solution are known. This is of utmost importance,
since in many geologically relevant situations (cf. Chap. 6) the dissolution rates are
determined by this composition.

Each mole of CaCO;, dissolved releases 1 mol Ca?* ions and 1 mol carbonate
ions. The total amount of carbon in the system is therefore given by conservation
of carbonate species, i.e. C-atoms:

M; = ([Ca’*] + [HCO;]; + [H,CO%]; + [CO37]) 'V, + [CO5T;V,
= ([HCO5] + [H,COx] + [CO§‘])-V1 + [CO5] "V, (2.21)

The right hand side of Eq. (2.21) gives the amount of C as calculated from the
concentrations of all carbon-containing species in the liquid and in the gas phase.
This is equal to amount of carbon atoms present in the pure H,O—CO, solution,
prior to dissolution of calcite, augmented by the amount of Ca**-ions dissolved,
since each CaCOj released from the solid adds also one carbon atom to the solution.
According to Henry’s law we have:

[H,CO%] _<1 L )—1'

COg] = —
[CO3] KyRT K,

(2.22)

The initial values [ J; are those of the initial H,O—CO, system prior to dissolution,
ie., with [Ca?*] = 0. They are given by:
[H,CO3]; = Kpr:Oz(l + 1/Ko);
[HCO;5]; = ([H,CO3];- Kl/)’;ﬁ;icog)m 5
[CO% ;= 0. (2.23)

As a second master equation for the purpose of our calculation we have to observe
the equation of electroneutrality, which reads:

2[Ca%*] + [H*] = [HCO;] + 2[CO27] + [OH"]. (2.24)
Subtracting Eq. (2.21) from Eq. (2.24), and employing the mass action laws, Eq. (2.3)
and Eq. (2.4), we obtain:

!

[Ca’* ]+ [H"]—v— ﬁli‘v:j + (w-[H+] K ) [HCO3]1=0. (225

i

- [HY]
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and similarly by multiplying Eq. (2.21) by 2 and subtracting Eq. (2.24):

2v—[H"] + [I:I,Y] =[HCO5](1 + 2w -[H*]) (2.26)
The abbreviations are:

v =f{-[H,CO%], + [HCO3];; f=1+ %x;

n=Vg/Vyi; Kw = Kw/vuvon ;

K} = KaJuco,/Milco,; W = I 1890, (227)

K,
Combining Egs. (2.25) and (2.26) leads to a fourth-order polynomial in hydrogenion
concentration which can be solved numerically:

[Ca®*] + [H"] — v — Ky/[H*] + (W[H"] — K3/[H"])
“(2v — [H*] + K/[H*])-(1 + 2w - [H*]) =0. (2.28)

The activities involved in Eqgs. (2.26, 2.27, 2.28) can be calculated with sufficient
accuracy by approximating the ionic strength:

I=3-[Ca2*]. (2.29)

Therefore, no iteration procedure in computing [H*] is necessary. Once [H*] is
known [HCOj3 ] can be obtained by Eq. (2.25). [H,CO%], [CO2~] and [CO%] then
are ecasily derived from the mass balance equations.

Open and closed system conditions are included in this general formulation by
using f = 1 in the closed system and f = oo (i.e. f = 10%) in the open system.

In most cases of practical interest in a natural system pH is below 8 and the
carbonate and OH™ species can be neglected in Egs. (2.21) and (2.24). Then Eq.
(2.28) is reduced to a quadratic which can be employed much more conveniently:

[H*]*> + [H*]-[Ca?*] + l/w) + &([Ca“] —v)=0. (2.30)

The solution of this equation can be used to calculate all the other species as
described above. It is given by:

1 1 1 4 1
[H]=— 5(2[Ca2+] + ;) + 5\/4[03“12 + WV to7 (2.30a)

Figure 2.9 shows the hydrogen ion concentration [H*] as a function of dissolved
[Ca?*]. The results of the exact calculation employing Eq. (2.28) and the approxi-
mation of Eq. (2.30) are compared for the evolution of the closed system, i.e. f = 1.
Deviations in the values of [H*] are only significant for pH > 8. Below this value
the approximation can be used with confidence in all cases. In the closed system
[H*] drops very rapidly with increasing Ca?* concentration and is very sensi-
tive to changes in [Ca?*]. The evolution of [COZ~] for a variety of intermediate
cases is illustrated in Fig. 2.10. The carbonate concentration is shown in a mirror-
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Fig. 2.9. Hydrogen ion concentration [H*] as a function of [Ca®*] in the solution as the system
approaches equilibrium. The numbers give the values of V,/V, = . The dashed lines show the approxima-
tion according to Eq. (2.30). The initial CO, pressure is 8 x 1073 atm

Fig. 2.10. Carbonate ion concentration [CO2~] as a function of [Ca?*] in the solution as the system
approaches equilibrium. The numbers give the values of V,/V, = x. The dashed lines show the approxima-
tion according to Eq. (2.30). Initial conditions as in Fig. 2.9

like curve compared to [H*]. A steep increase of [COZ27] is observed as [H*]
decreases.

For the open system the decrease in [H*] is much less steep as the system
approaches equilibrium and so is the increase in [CO3™]. The intermediate cases
show a behaviour which is between the two extremes, tending more to be like a
closed system for » < 2 and like an open system for » > 10. Figure 2.11 shows the
saturation state Q2 (cf. Eq. 2.15) for the same conditions as in Fig. 2.10.

Figure 2.12 gives the results for the H, CO¥ concentration in the solution which
is in equilibrium with the pco, of the surrounding atmosphere. Only in the open
system does this value remain constant. In all other cases there is a linear decrease
of this value as [Ca2" ] increases. This behaviour results from the stoichiometry of
calcite dissolution, which consumes one CO, molecule for each Ca** ion being
released. It can also be derived as an approximation of Eq. (2.21). In all cases where
Pco, = 3 x 107* atm, [HCO;3]; is small compared to [H,CO%]; and can be
neglected. For pH < 8.2 we also can neglect [COZ~] and OH™] in Egs. (2.21) and
(2.24). Combining these relaxed equations, we obtain:

1
[H,CO%] = [H,CO%]; — [Ca®*] T (231
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Fig. 2.11. Saturation state (2 as a function of [Ca** ] in the solution as the system approaches equilibrium.
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Fig. 2.12. [H,CO%] as a function of [Ca?*] in the solution as the system approaches equilibrium. The
numbers give the values of V,/V, = x. The dashed lines show the approximation according to Eq. (2.31).
Initial conditions as in Fig. 2.9

Thus, the slope of the lines in Fig. 2.12 is given by 1/f, where fis defined in Eq. (2.27).
There are slight deviations between the exact solution and the approximation of
Eq. (2.31) as is indicated by the dotted lines for ¥ = 0 and » = 1. For % > 2 these
deviations are negligible.

2.2.2 Change of Boundary Conditions

In karst systems one very often encounters the situation where water flows with a
free surface dissolving limestone under open system conditions. Then the water
sinks into the ground and the conditions change to the general case, i.c. water
dissolves limestone in the presence of a limited volume of gas with initially the same
partial pressure as in the open system. To deal with this problem, we assume that
open system conditions with a partial pressure pgoz in the atmosphere prevail until
the Ca?* concentration has reached the value [Ca2*]°. Then dissolution shall
proceed in the general case with V,/V| = ».
Conservation of carbon species, cf. Eq. (2.21), then reads:

([Ca®"] ~[Ca®*1° + [HCO5]° + [H,CO%$1° + [CO371%)-V, + V, [CO51°
= ([H,CO%] + [HCO; ] + [COZ7])-V, + V,-[CO¥] . (232)
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The [ ]1° refer to the chemical composition attained when dissolution conditions
change from the open system to the intermediate case. The [ ] refer to dissolution
in the intermediate condition. In all cases [Ca2*] > [Ca2*]°.

Proceeding as in section 2.2.1 we obtain similarly equations analogous to Egs.
(2.25), (2.26), (2.28) and (2.30) provided we replace v by:

v¢ = f-[H,CO%*]° + [HCO; 1° + [CO2™1° — [Ca2*]°.

To calculate the chemical evolution under these circumstances, we first calculate
the evolution for the open system as in section 2.2.1 up to the value [Ca?* ]°. From
this we obtain [H,CO$]° [HCO; ]° and [CO2~]°. Using these to find v* we use
the calculation for the general case with » for approaching equilibrium. Figure 2.13
gives the evolution [H*] for such a case for various x.

2.2.3 Saturated CaCO; Solutions

In principle the solubility of calcite can be calculated from the above expressions
by additionaly employing the solubility product of Eq. (2.14) and determining
numerically the corresponding saturation concentration [Ca®*],, with Q2 = 1.

In all cases of practical interest, however, approximations can be used which
are sufficiently accurate.

To find the pH value in equilibrium with calcite at a given p¢o, we use the mass
balance Eqgs. (2.1) to (2.4) expressing activities by concentrations.

[H,CO%]1 = Ky Pco, (1 + 1/Ky); (2.1a, 2.2a)
}’H[H+]VH003[HCO§] =K,[H,CO5]. (2.3)
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Combining these yields:

- K KuPco
[HCO; ] = ———F3.
’ VHCOSVH[H+]
Expressing
H*][CO3%"
[HCO;] = VHYCos[ 1[CO;7] ’ 2.4)
YHC03K2

one obtains [CO37] as a function of peo, and [H*]. Substituting this into the
equation describing the solubility product:

K. = Yca¥co, [Ca?"1eq  [CO3 Ieq » (2.14)
one has
7calCa?*1.q K Ko KyPeo
K, = 4 = (2.33)
e [H'1Z
With the relaxed charge balance equation:
2-[Ca**] = [HCO;3] (2.18a)

substituted into Eq. (2.33) we obtain the final result for the hydrogen ion activity
in equilibrium with a calcite-saturated solution, and with a CO,-containing atmo-
sphere of pco,:
K2K,K3y

H*)? = 1 *27*HICa, 2 2.34

( )eq 2Kc}'ﬂco3 (pCOZ) ( )
The saturation value of [Ca®*],, can be obtained similarly. Dividing Eq. (2.3) by
(2.4) gives:

K, VI%IC03 . [HCO;]Z

— = — . 2.35a
K. ~ 7c0,[H;COF][COZ ] (235
Substituting [H,CO#] by Eq. (2.1) and [CO2~] by Eq. (2.14) leads to:
& _ VI?ICO3VCa ‘[HCOy fq ’ [Ca2+]eq . (2.35b)
K, K .KyPco,
With relaxed charge balance, Eq. (2.18a), we find
K,K_.K
[Ca2*]3 e (2.35¢)

eq = Pco, 7v 3 -
4 € 4K2YCaV}21C03

Equations (2.34) and (2.35) can be used directly for the open system, since pco,
remains constant during the dissolution process. To obtain the saturation values
for all the other cases as a function of the initial pt,_, one has to remember that
Pco, drops during dissolution, since each Ca®* released into solution consumes one
CO, molecule.

Recalling that prior to dissolution pH is low, such that [H,CO;]; >
[HCO3]; » [CO3~]; and that for pH < 8, [HCO; ] » [COZ™] by combining Egs.
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(2.21) to (2.24), we find:

[Ca’"]

=py — . 2.36
Pco, = Pco, K (1 + 1/Ky) ( )

Introduction this into Eq. (2.35) for [Ca**],, leads to a cubic equation from which
[Ca%*],, can be calculated.

Figure 2.14 plots the solubility of CaCOj; in terms of [Ca?*] as a function of
the initial pto, in the atmosphere of the system prior to any dissolution, for a variety
of ratios V,/V,. With increasing volume of the gas the curves approach that of
the open system. All the curves have been calculated by an exact equilibrium
calculation.

For the open system the curve is redrawn on a logarithmic plot (Fig. 2.15). The
dashed curve is calculated from Eq. (2.35), for T = 20°C. For p¢o, > 1073 atm the
agreement between the exact and approximate calculation is almost perfect. A slight
deviation becomes noticeable for peo, < 1073 atm.
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Figure 2.16 replots relation (2.35) for the open system as a function of [H, CO¥].
The region below the curve denotes undersaturated solutions; the area above
corresponds to supersaturated solutions. From the non-linearity of the saturation
curve a very important conclusion can be drawn. Consider an equilibrated solution
(point A) under closed system conditions. If this solution mixes with a saturated
solution of a different composition (point B) under closed system conditions, then
the composition of the resulting solution is represented by point C. Depending on
the ratio of the volumes of the two mixed solutions, this point lies on the straight
line, connecting A and B in the region of undersaturation. Therefore, mixing of two
differently saturated waters leads to renewed calcite aggressivity of the solution in
a pure H,O-CO,—-CaCOj, system. In general for natural waters containing foreign
ions, mixing can also result in supersaturation, depending on the particular com-
positions of the waters involved (Wigley and Plummer 1976). The importance of
undersaturation by mixing for processes of karstification was first pointed out by
Bogli (1963) and was considered in more detail by Dreybrodt (1981a).

2.2.4 Mixing of Saturated Waters in the Closed System

To estimate the effect of renewed dissolution by mixing of saturated waters in a
closed system, one has to know: (1) How much CaCOj; can be dissolved? (2) What
is the evolution of the chemical composition during the approach to equilibrium?
The answer to the first question addresses the problem, how much limestone can
be removed in a karst system, and has been discussed by Thrailkill (1968). Knowl-
edge on the chemical composition of the solution is important, since from this dis-
solution rates determining the evolution of a karst system in time can be calculated.
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In principle, both problems can be soived by using the procedure described in
section 2.2.1. The conservation of carbonate species, Eq. (2.21), is to be replaced by:

N V,
Cr=[Ca?*]+ Y (H,CO%],, + [HCO3],,) 3
n=1

= [HCO;] + [H,CO*] + [CO27]. (2.37)

This refers to N different saturated solutions with volumes V,, Ca? concentrations
[Ca®*].q.n and initial [H,CO%]; ,. [Ca**], [HCO5] and [CO37] refer to the
concentration of the mixed solution with total volume V = Y V,. Equations (2.10)
to (2.24) remain unchanged. Consequently, in order to obtain the composition of
the mixed solution, one has to replace v in Eq. (2.28) by:

N Vn
vt =) ([H,CO%l;. + [HCO5 Ji.n) 5/ (2.38)
n=1

and use all the cotresponding equations in section 2.2.1 with this new value of v™.

A much simpler way, however, is a graphic method represented in Fig. 2.16.
Here, we plot the calcite equilibrium curve in dependence of H, CO%. For simplicity,
we consider the case of two waters mixing, represented by points A and B. Before
mixing, their concentrations are [Ca2*],, [HCO; 1,, [H,CO#%],, n = 1, 2. Within
the approximation of Eq. (2.13) we obtain for the concentrations immediately after
mixing:

v V.
[Ca®* ], =5 [Ca®* ]+ [Ca™" 1,
and (2.39)
\ V.
[H,COt ], = 57 [H,CO%T, + 5/ [H,COL1, .

This is represented by point C, where AC/CB = V,/V,.
Since further dissolution proceeds according to Eq. (2.31), we have:

[H,CO3] = [H,CO% ], — [Ca®"] + [Ca®'], (2.40)

as reaction path. This path is drawn as a straight line with slope —1 starting at
point C. The intersection of this line with the equilibrium curve gives the new
equilibrium at point D. Thus, the amount of CaCO, which can be dissoived by
renewed aggressivity can be read from the point C’ and D’ at the ordinate.

2.2.5 Influence of Foreign Ions on Calcite Dissolution

Karst waters are rarely derived from the pure system H,O-CaCO;—CO,. Mostly
due to dolomite or magnesian calcites and due to gypsum and anhydrite, which
usually are also encountered in karst areas, one finds Mg2* and SO2Z” in quite
considerable amounts. In many cases one also observes Na®, K* and C1™. All these
ions change the ionic strength of the solution, thus affecting the ionic equilibria.
Furthermore, if minerals are dissoived which have one ion in common with CaCOs;,
such as MgCO; or CaSO,, equilibria are changed by the common-ion effect.
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Therefore, not only does the chemical evolution of the system change as dissolution
proceeds, but also the solubility of calcite is altered in the presence of foreign ions.

To discuss this in more detail, we assume that in addition to the species resulting
from the pure system the following substances might have been added:

1. strong acid H, A, e.g. HCl or H,SO,;

2. strong base B(OH), , e.g. NaOH or Ca(OH),;

3. substance Me, CO; with the CO3” ion in common with CaCO,, e.g.
MgCO;, Na,COy;

4, substance Ca(An)nAn with the Ca?" as the common ion;

5. substance, which dissociates into indifferent ions X*% and Y~% which do not
react with either Ca®>* or CO3 7, e.g. resulting from NaCl, etc. (+Z, and —Z,
denote the charges of these ions).

We furthermore assume that all substances added are fully dissociated. In a
system with » = V,/V; as described in section 2.2.1 the conservation of carbonic
species now reads:

([Ca“] ~ 1 rAn] + L Me] + [H,CO#T, + [HCO3 T, + [CO%‘L)-\G
Npp, Iy
1 [CO8T,V, = ([H,CO$] + [HCO; ] + [COZT)-V, + [COS]-V, .
(2.41)

If we assume that the solution evolves from meteoric water in equilibrium with a
given initial [CO%];, the initial conditions are those of Eq. (2.23).

The equation of charge balance is:

2[Ca%*] + [H*] + [F] = [HCO; ] + 2[CO%"] + [OH™] (2.42)
with the total charge [F] of the foreign ions as

[F] = Zg[B] + Zy [Me] + Z,[X] — Zo[A] — Zso[An] - Z,[Y]  (242a)

Z relates to the charge of the corresponding ion.
Using the same procedure as in section 2.2.1, we obtain:
K/
[Ca?*]+ [F]1+[H"]— V" — [HY]
+ (w-[H*] + K3/[H"])-(2v" — [H"] — [F]1+ Ky/[H"])
Qw-[H 1+ 1)

from which [H*] can be calculated. [HCO; ] is found from the relation:

=0 (2.43)

i

[HCO;1-@w-[H*]+ 1) = 2vF — [H*] — [F] + E-EY—] . (2.44)

[CO27 7], [H,CO¥], [CO%] can then by computed by observing the mass action
laws, vF is given by:

1 1
vF = f-[H,CO%], + [HCO; ], + — [Me] —
Ny n

[An]. (2.45)

An
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The ionic activity coefficients have to be calculated by using the ionic strength,
including all the species dissolved.

For pH < 8.3, again by neglecting [CO3~ ] and [OH ], the fourth-order poly-
nomial in [H*], eq. (2.43) can be approximated quite accurately by the quadratic:

[H*]* + [H*](2[Ca?*] + [F] + l/w) + &([Ca”] + [F]—vF)=0. (2.46)

Thus, Eqgs. (2.43) to (2.46) constitute the most general case of the chemical evolution
of karst water.

The calcite saturation values can now be obtained by calculating the chemical
composition for a given Ca concentration. From this the saturation state Q is found.
Using a half-step procedure, the value of [Ca?*] corresponding to 2 = 1 is found
numerically.

The result for such a calculation for the open system is visualized in Fig. 2.17,
where the equilibrium concentration [Ca®*],, is plotted as a function of pco, in
equilibrium with the solution, for various values of [F].

Note that [F] < 0 corresponds to the presence of acids or substances of the
type Ca(An), . whereas [F] > 0 derives from bases or Me,, CO;. If only indifferent
substances are added, [F] = 0. An approximative expression for the equilibrium
concentration can be easily derived as in section 2.2.3. In the presence of foreign
ions the relaxed equation of charge balance reads:

2[Ca%*] + [F] = [HCO;]. (2.47)
Substituting this into Eq. (2.35b) leads to:
K,;K.K
[Ca®* .y (2[Ca™ g + [F? = =M peg (248)
27ca¥HCO;
which can be also written by using Eq. (2.35¢):
F 2 p p 2
[Ca?*],, ([Ca“]eq + Q) _ ([Ca?* Tz, ) - a0, (2.482)
2 yCa(YHCO3)
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The index p refers to the corresponding equilibrium value of [Ca?*] and activity
coefficients in the pure H, O—CQO,-CaCQ, system. If Ca* is added as a common
ion, [F] < 0. The corresponding saturation curves are shown in Fig. 2.17. They are
located above the saturation curve with [F] = 0. If the addition of Ca?* as a
common ion would not change the solubility of CaCOj, then the new equilibrium
curve would just be the sum of the two concentrations. This is shown for [F] =
—5 x 1072 as a dashed curve. The real saturation curve lies below this dashed line,
thus showing that the calcite solubility is decreased.

The influence of foreign ions to calcite solubility can be classified into several
independent mechanisms.

1. Ionic strength effect: If indifferent substances such as NaCl are added [F] =0
because of charge balance. Ionic strength, however, is changed and therefore the
activity coefficients become smaller. Thus, the change of ionic strength increases
calcite solubility, an effect which is always operative, but is small in karst waters.

2. Common-ion effect: Addition of common ions into a pure calcite-saturated solu-
tion increases the ionic activity product and therefore the solution becomes super-
saturated. Thus, the common-ion effect in any case decreases calcite solubility. This
can be easily seen from Fig. 2.17. For [F] > 0, i.e. CO%~ added as a common
ion, this is evident. For [F] < 0, i.e. when Ca?* is added as common ion this can
be seen by comparing the dashed upper curve with the curve resulting from
[F] = —5-1073. The dashed curve results by adding 2.5 mol 1™ of Ca?* as common
ion to the pure system CaCO;-H,0-CO, in equilibrium and assuming no com-
mon ion effect to exist. The curve with F = —5 x 1073 mol 17! results also from
adding 2.5 mol 17! of Ca?* as a common ion but with the common ion effect present.
The reduced calcite solubility is seen from the fact that it is situated below the dashed
curve.

3. Acid effect: Adding an acid such as HCI to a saturated solution shifts the pH to
a considerably lower value. This drastically decreases the activity of CO3~ (cf.
Fig. 2.1) and therefore additional calcite is dissolved. As we can see from Egs. (2.48a)
and (2.42a) adding 2 mmol HCI to 1 litre solution is equivalent to adding 1 mmol
CaCl, and leads to the same value of [Ca®*],,. In both cases [F] = —1 mmol 17",

4. Base effect: If bases are added, the pH is shifted to higher values, thus increasing
the activity of CO2~ (cf. Fig. 2.1). Therefore, the ion activity product is increased
and calcite precipitates from the solution. Again, as in the case of the acid effect,
addition of a base is equivalent to addition of CO2~ as a common ion provided the
corresponding values of [F] are equal.

5. Ion-pair effect: As we have discussed in section 2.1, Eq. (2.16), the presence of ion
pairs, such as CaHCOJ$, CaHCOY, does not change the calculations in any signifi-
cant amount in the case of natural karst water. In the presence of SO2~, however,
ion pairs CaSOJ are generated to quite a considerable amount with the mass
action law:

(Ca?*)(SO2™) = K, - (CaSOY). (2.49)

At20°CK,; =35 x 10"*mol17. Thus, at a concentration [Ca?*] =2 x 1073 mol 17!
and [SOZ™] =5 x 107* mol 17*, the amount of Ca2" incorporated into ion pairs
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is about 10% of total Ca2*. This reduces the ionic activity product and enhances
calcite solubility. If we add Me, (SOZ7) the concentration of Ca?* in the solution
is:

[Ca2*] = [Ca?*]' — [CaSOY], (2.50)

where t refers to total Ca.
From the relaxed electroneutrality we have:

2[Ca?*] + Zy[Me] = [HCO; ] + 2[SOZ7]. (2.51)
Conservation of sulphur mass gives:
1

[SO27] + [CaSOS] = [Me] - —. (2.52)
M

Combining these equations yields:
[Ca?"1[SOZ ™ 1yca¥so,

[HCO;]=2[Ca**] + 2 < (2.53)
7
Introduction into Eq. (2.35b) yields:
SOZ— . -2/3 o) ) 2\ 1/3
[Ca“]eq — [Ca2+]epq.<1 + %) <M> ) (2.54)
7 yCa(yHCO3)

Since, however, we are interested in total dissolved Ca, expressing [Ca®*], using
Eg. (2.50), (2.49) by [Ca®*]" and by regarding the approximation we obtain:

[SOZ 1vca 7’so4>1/3 ) <3’ga (Yhco, )2>1/3
K, Yea(Yhco 3)2

From this equation one immediately visualizes that calcite solubility is increased
quite considerably in the presence of sulphates.

A similar effect exists in the presence of Mg?* due to the reaction with HCO3
according to the mass action law:

(Mg2?*)(HCO;3) = K4+ (MgHCO?) . (2.56)

K ~ 0.1 mol I7*. This reaction reduces [HCOj ], the result being a slight increase
in calcite solubility in the order of 1%. The saturation value resulting from the
presence of a substance containing Mg?*, but not the common ion CO3™, can be
calculated as above by observing charge balance and Eq. (2.56):

[Ca]' = [Ca®*]&,- <1 + (2.55)

M 2+,
[HCO;]-(I AL gK ] yng“C"s) = 2[Ca?*] 2.57)
8 YMgHCO,
as
Mag2+ 23 /0P (nP 2\1/3
[Ca]leq=[caz+:|§q‘<1 +[ g ]VMgYHc03> ,(VCa(YHcoJZ) . (2.58)
YMgHCO, yCa(yHCO3)

All the mathematics of the evolution of chemical cmposition of a CaCO;-H,O-
CO, system in the presence of foreign 1ons can be condensed into one computer
program (TURBO-PASCAL). This program is given in Table 2.3.
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Table 2.3. Computer program for the calculation of the chemistry of an H,0-CO,-CaCO; system
including the influence of a foreign ion for the open, closed and intermediate system

PROGRAN equilibrium (Input,Dutput);

USES transcend;
CONGT K3=1.707E-4;

VAR acid,alpha,alphas,an,fusdruck,B,base,Ca,Caend,cat,C021,C03,Ctot,
deltala,elneu,f,foreign,gasnala,gasnalll,gasnal,qaesaHC03, gansall,
HCO3 HCO31, Hplus,H2C035,H2C0351,ionicstrength, Izus, kappal ,kappa2,kappal,
kappad,kappads,KH,Kriterium,KS,Ki,Kis,K0,KL,K2 Kb, Loga,0H, 0nega,PCOZ,
PCOZend ,PHcenter ,PHend PHstart ,PHI,R,rate,T,7C,Vgas, X scat,yan :REAL;

Factor K,Krit,nan,ncat X1,X2,zacid,zan,zbase,zcat,zx,2y : INTEGER;
#1,82,03,04,05,086,07,08 :CHAR;
Drucker + INTERACTIVE;
PROCEDURE Inputl;
begin
write ('Common ion with CaCO3 ? <y/nd 'k readln {B3);
it 83 in ['Y','y'] then begin
write {'Cation <y/n} °); readin (B6);
write {'Anion  <y/n} '} readin {(87);

if 06 in ['V','y'l then begin
write (‘Give concentration of cation : '); readln (catl;
write {'Bive charge of cation (z) ¢ '); readln {zcat);
end else cat:=0.0;
if 07 in ['¥','y’1 then begin
write {'Bive concentration of anion :  '); readln {an);
write ('Bive charge of cation {z) ¢ ')} readln (zan);
end else ani=0.0;
end;
write {'other foreign ions {no common ions with CalB3) ? <{y/n} ")
readln (08);
if 88 in ['Y',’y'] then begin
write ("Cations :  croncentration

]
~—
-

readln (xcat);

write {* ":14, 'charge {z] = '}; readin {1x);
write {"Anions : concentration = ') readln f{yan);
write (' “:16,'charge {2} = '} readln {2y);
end else begin 2z

zys=0;
end;
end;
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Table 2.3. (continued)

PROCEDURE Inputl;
begin
write ('Give temperature {C) BH
readln (TC);
write ("Give 02 pressure {ate} °');
readln (PCO2);
write ('Calculation of rates in steps of Deltala. Bive Deltala °,
‘{molfl) + Ny
readln (DeltaCaj;
writeln ('Bive ratio of voluee of gas to volume of solution.’);
write (' ':20,7 V(gas! : V(solution) = 'I;
readlp (Vgas);
writeln ('neglect OH- und CO3-- in the equation of electro neutrality ?°);
write ('(= approzimation by a quadratic equation} <{y/n} : 'J;
readln (81);
writeln; write ('Foreign ions present 7 <y/nd ')
readln (02);
If 02 in [°Y','y'] then begin
write {"acid ? {y/n} ) readln (83};
if B3 in ['Y','y'1 then begin
write (‘concentration of acid (mol/l) ¢ '); readln {acid);
write {'charge of acid (z}) :+ '); readln (zacid);
end else zacid:=0;
write {'base ? {y/n} ‘) readln (B4);
if 84 in [°Y','y’] then begin
write ('concentration of base faol/1) : '); readln (base);

write {'charge of base {z} : '); readln (zhasel;
end else zbase:=0;
input2;
end;
end;
{# )

PROCEDURE Init;
begin
rewrite (Drucker, printer:’);
T = TC + 273.14;
R = 0.082057;
LOGA := Ln(i0);
KRIT := 0
€a 1= 1.0E-4;
KS:= exp (-LOGA¥(B.15087602 + TC#0.0136633623 - TC*TC#3.5812701E-5));
X:= 108.3885 - 6919.53/T + 0.019835076#7 - 40.45154xLog(T);
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Table 2.3. (continued)

KH:= exp (LOGA®(669365.0/ (T#T)+X));
KW:= exp (LOGA®(22,801 - 4787.3/T7 - (.0103465%7 -7.1321#Lag(T)}}}
Kbs= exp (LODGA¥{-3356,3094 + 21834,37/T -b,0919964E-2¢T + 125,8339
#og(T) - 1684915.0/{T€T)});
K2:= exp {(LOBA#{-107.B871 + 5151.79/T - 0.03252849+T + 38.9256{
#log(T) - S43713.9/(T#T1));
K0:= K5 / Kb
Kl:= KS#K6 / (K5+Kh);
B:= 3.077 - 0.0146+1C;
fi= 1 +¥gas / {(( 1+1/KO) + KH £ R T };
kappal := exp (LDGA#(0.198 - 444,0/T));
kappal := exp (LOGA®{2.84 - 2177.0/T}};
kappa3 := exp (LOBA®{-5,Bb - 317.0/T});
kappads:= exp (LOGA®{(-2.38 + 0,0252#TC});
if 81 din [°Y','y’1 then factor:= 0
else factor:= I;
writeln (Drucker ,Chr(14)," Open / Closed - mixed systea');
writeln (Drucker);
writeln (Drucker,” Calciua’,’ ":10,’Rate’,” ’:6,'satur.index’,
" 'sby Hplust, ' Te11,°C03--7)y
writeln (Drucker,’ ':12,°HCO3-'," ':11,°HZCO3'," ':11, 'C(total)’);
writeln (Druckerl;
end;

(8 =mmmmmmeecmeee %)
PROCEDURE activities;
VAR Al,Bl,rootlsreal;

begin
A1 := 0,48809 + TC * B,074E-4;
BY := 0.3241 + TC # L.b6E-4;
if Krit = 0 then ionicstrengths= 3#La

else ionicstrength:= 0,5 # {4#Ca + 4303 + OH + Hplus + HCO3);
If 82 in U'Y','y'] then ionicstrength := ionicstrength + Izus;
root] := sgrt (ionicstrength);

gagmaCa := exp {-Loga®(Al#d#rpotl / {1+Bi#S#rootl) + (.163#ionicstrengthl);
gasmaHC03:= exp (-Loga*® Al¥ rootl / ({+B1#3,4%rootD));
gassaOH := exp (-Loga# A1% rootl / (1+B143.5#rpotD));
gammal := exp {-Loga* Al* rootl / (1 + Bl#9%rootD));
gamsal03 := exp (-Loga® Al#d#root] / (1+B1#3,4#rootll);

KWs:= KN / {gammaH¥gammalH);
end;
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Table 2.3. (continued)

PROCEDURE Initialvalues;
begin
f02I  := KH # PCOZ;
HZCO3SI:= CO2I # (1 + 1/KQ),
HEO31 := sgrt (H2CO3SI ® K1)y
Alpha := f % HZCQ3ST + HCO3I;
¥ 02 in ['Y','y'1 then begin if zcat

{ then ncat:
else ncat:
i1 then nan:
else nan :
Alphab := cat/ncat - an/nan;
Alphas= Alpha + Alphab;

1

no

3

i
if zan Z
i

end;
end;
{# ~mmmmmmmeeeee ¥)
PROCEDURE PHvalue {PHvalueireall;
begin
Hplus := {exp {-Loga#PHvalue})/gammaH;

=
fusdruck:= Ca + Hplus + Foreign - Alpha - Factor#fls/Hplus +
{f + gammaH¥gammaHCO3*Hplus/K1 - Factor#KZ¥gamaaHCO3/
{nammaH*gaamalO3#Hplus)] * (2#Alpha - Hplus - Foreign +
Factor#K¥s/Hplus) /7 (1 + Z%f¥gammaH*ganmalCO3#Hplus/Kil;

end;

I ¥)
PROCEDURE dissalutionrate;
begin

kappad:= {enp (-Btloga)) # exp{{Ln(KH®{1+1/K0}/{HZCO38)))20.611);
if (HICO3S/KH) »= 0.03 then kappad:= kappads}
rate := tappal*gammaH¥Hplus + kappaZ#H2CO35 + kappad - kappad#Ca*HCO3
*gammaCa*ganmalCll;
end;

PROCEDURE iterations;
begin
PHeenter:=0.0;
repeat
activities;
PHstart := 0.0;
PHend :=12.0;
PH1 1= PHcenter;
FHcenter:= 0.3 % (PHstart + PHend);
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Table 2.3. (continued)

39

repeat

PHvalue (PHstart};
if Ausdruck ¢ 0 then §l:=-1

else  Xli=l;

PHvalue {PHcenterl;
if Ausdruck < 0 then ¥Z:=-1

if (X142} = 0 then begin  PHend

until

else  ¥Zi=1;

PHcenter :
end

PHcenter;
0.5 ¢ (PHstart+PHend]

else begin  PHstart := PHcenter;
PHcenter := 0.5 # (PHstart+PHend}

end

(PHend - PHstart} <= 1E-3;

Kriterium := abs {{(PHi-PHcenter! / PHcenter);
1= Krit + 1

Krit
OH
HCO3

£o3

Kis / Hplus;
{Z#Alpha - Hplus - Foreign + Factor#0H )} 7 {1 +

2#frganmaH¥gansatClIsHplus/klly

H2C035:= Hplus*gammaH*HCOI#gammaHlOI/KL;

LToT

:= HCO3 + CO3 + HZL035;

until Kriteriua {= 0.0{;

end;

PROCEDURE print!;

begin
writeln
writeln
writeln

sriteln
writeln
writein
writeln
writeln
writeln
writeln
writeln
writeln

{Drucker};
{Drucker,’
{Drucker,’

{Brucker,’
{Drucker,’
{Drucker};
{Drucker,’
{Drucker,’
{Drucker,’
{Brucker,’
{Drucker,’
{Drucker,’

1= K2#HCO03#gapmalCOZ / (gameal03#gammaHsHplus);

concentrations at La saturation:’)y

19,'C03: ,CO3, ':B, HCO3:
PCOZ : *,PCOZend,’ ats’

constants: '};

T7KHE CLEH,C i, Ke
$7,K0= KO, 'iB, K=
G7,°K2= K2 thy Kes
“17,°K8= K5,

' HOO3) 3
i

'K
‘K1)
' Kbl

14, ‘pH-value: ' ,PHcenter:3:3," ":10, 'calcium: *

Caend);

-LOB(KS) = "o-LOBIKE};

kappal= ,kappal,’ ":7, kappaZ= ',kappall;

3



40 Chemistry of the System H,0-CO,~CaCO,

Table 2.3. (continued)

writeln (Drucker,’ kappal= ',kappa3,’ ':7, kappad= ', kappad);
writeln (Druckeri;
writeln {Drucker,” activity coefficients:’};
writeln {Drucker,” ":7,°H¢"," "17,°0H-"," ":7,°HCQ3-, 0 ':§,°C03--7,
© iS5, 'Cat+’," :3,'ionic stremagth’l;
end;

PROCEDURE printd;
begin
writeln {(Drucker); writeln (Druckeri;
writeln (Drucker,” ":4,'C02 pressure: ',PLO2:7:5,° ate’,’ 15,
“temperature: °,TC:5:2,0 07)y
writeln (Drucker,’ ":4,'ratioc of voluse of gas te voluee of solution:’};
ariteln (Drucker,” ":8,'¥g / ¥s = ",Voas:B:1);
printl;
writeln (Drucker,” “;gammaH:B:3,” ',gammalH:B:3," ',gammahCD3:8:35,
" gammalliZaNes,”  ",qamealard:5,’ "yionicstrengthl;
writeln (Drucker);
writeln (Drucker,” dissolution rate at the end of the calculation: °,

ratel;
writeln (Drucker,” electroneutrality: ' elneul;
writeln {Drucker,’ saturation index: ",omeqa:7:4,’ ¢ IAP= 7,

omega*ks,’ }'};
I 6l in ['Y',"y'] then writeln {(Drucker, approximation by guadratic’,
" equation = OH- and CO3-- omitted in electro’,

‘neutrality’);
end;
I e $)
PROCEDURE print2;
begin
printd;

If 82 in ['Y','y'1 then begin

writeln {Druckerl);

sriteln {Drucker,” concentration and charge of foreign ions:’};

i 83 in ['Y','y’] then writeln {Drucker,’ ':7,'acid: ',acid,” mol/l’,
© 'ih, ‘charge: ',zacid);

if 84 in I'¥','y’]1 then writeln (Drucker,” ':7,’baser ',base,” mol/l’,
" "1k, 'charge: ',zbase);

if 86 in ['¥","y'] then writeln (Drucker,’ ':7, common ion; cation:
cat,” mol/17," ":4, 'charge: ",zcat);

if @7 in U°V7,"y'1 then writeln (Drucker,’ ':7,’coemon ignj anion:
an,’ mol/1°," ":4,’'charge: ',zan);

1
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Table 2.3. (continued)

if 88 in [7Y","y'1 then begin
writeln {Drucker,’ ":4,'no common ion with Cald3 :'};
witeln (Drucker,” ":7, cation: ',ucat,” mel/l7," 15,
"anion: C,yan,’ molf17)g
end;
writeln (Drucker,’ calculated parameters:’,” ":B,'I {additiopall=
Izus};
writeln (Drucker,” Charge F = ",foreign,” 14, alpha (additionall= "’
(alphail;
end;
end;

PROCEBURE printd;

begin
writeln {Drucker,’ ',Caril,’ ":3,Rate:12,” ":4,0pega:B:5," ":i
Hplus: 12, "14,C03: 121

end}

{+ --- pmain program --- #)
begin
Inputl; Init; Initialvalues;
if 82 is ['Y','y'l then begin
Izug 1= 0.5 # {zacid¥zacid®acid + zbase#zbase*base + zcat#zcat#cat +
zankzankan + zxdzzdéycal + zydzyyan);
Foreign i= zbase#base + zcat#rat + zu#xcat - zarid#acid - zantan
- Iykyan;
end
else Foreigni= 0.0;
Ki= g
repeat
Iterations;
dissolutionrate;

Omega := GammaCa # GammaCod # Ca * CO3 / K5
Laend := La;

print3;

if ODmega = 1.0 then begin  deltaCa:= 0.3%deltala;
Ca 1= [a - deltala;
Ki=1;

end
else begin  if K = 1 then deltala:= {,5#deltaCa;
Lai= Catdeltala;
end;
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Table 2.3. (continued)

Kriti=0;
until abs{ Omega - 1.0} <{= {E-3;
elney  := Hplus + Z#Caend - OH - HCO3 - Z¥CO3 + Foreign;
PCOZend := HZCO3S /7 (KH ¢ {1 + 1 7 KOY};
printl;
clase (Drucker);
end.

It asks in an interactive way for all the relevant input parameters such as s,
Pco,, temperature, presence of common ions, their concentrations, other indifferent
ions, their corresponding charges and concentrations, presence of bases and acids
and the corresponding parameters. The chemical composition of the system can
then be computed as a function of Ca2* concentration from 0 to saturation in steps
of ACa?*. The output of the program lists dissolution rates due to the PWP
equation {cf. Chap. 6), saturation state 2, [H,CO;], [HCO5 ], [CO27], [Cy]
and [H*].

Note that the ion-pair effect is not included in the computer program listed
above.

Attention: Due to the expression Ausdruck in the procedure PH-value numeri-
cal problems may result for very large f — co. Therefore the ratio of volume of gas
to volume of solution V,/V, = x (cf. Eq. (2.27)) should be limited to 10°, which is
an upper value to calculate the limiting case of the open system with high precision.



3 Mass Transport

Mass exchange between a liquid phase and a solid, such as in dissolution and
precipitation of calcite, requires some kind of transport mechanism, which in the
case of dissolution removes the ionic species released from the solid surface into the
bulk of the solution, and vice versa in the case of precipitation transports the species
from the bulk to the surface, where they are built into the crystal lattice.

If such transport mechanisms did not exist, dissolution would not be possible,
since close to the surface there would be an increasing concentration of the ionic
species dissolved, until the ionic activity product reaches the value of the solubility
product and dissolution would stop. Correspondingly in the case of precipitation,
a depletion layer close to the solid surface would stop further deposition.

There are two ways to establish mass transport: The first way is by convection
or more generally by flow of the liquid, which displaces a parcel of the solution due
to the influence of external forces, such as gravity, away from the solid surface, thus
removing dissolved species. The other is diffusion, which results from a statistical
movement of the dissolved species. It may be driven by Brownian motion, or by
other random motions such as eddies in turbulent flow or mechanical motions as
they occur statistically when a solution is driven through porous media.

In this chapter we will discuss the principles of diffusion and will develop the
equations of mass transport including both diffusion and convection.

3.1 The Random Walk Problem as Principle for Diffusional
Mass Transport

We consider a particle, which has been removed from the solid, and is positioned
at its surface. Due to the thermal motion, the particle is kicked irregularly by the
surrounding molecules. Each kick displaces the particle by an average distance 1
into a direction selected by chance with equal probability. If the particle hits the
surface of the solid, it is reflected. We further assume that the average time between
two kicks is 7. The question is now, how far in average does the particle move away
from the surface after a time t? From Fig. 3.1 it is quite clear that from this, mass
transport of particles away from the surface results, since the surface cannot be
crossed by the particles, and therefore one direction of the motion is preferred. To
discuss this problem from a more general view, we consider the situation of Fig. 3.2,
where we assume that a particle in the bulk of the solution can move freely in any
direction. Let us assume that after N — 1 kicks the particle has moved to the position
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NOONAN N

Fig. 3.1 Fig. 3.2

Fig. 3.1. Transport of a particle released from a solid surface by random walk. L, is the distance after
25 steps

Fig. 3.2. Random walk of a particle in the bulk of the solution

(N - 1) with coordinates (Xn_;,Yn—1> Zn—1)- After one more kick, which displaces
the particle by the distance 1, it has arrived at a new position (N) with coordinates
(xn—1 *+ 1, ¥n—1 + 1, Zy—; + 1,). The new distance L is then:

Lri = (x1%1—1 + y1%1—1 + ZI%I~1) + (lf + ly2 + 15) + 2(L,xnoy + 1yYN—1 + lLzn—y)
=Li-y + 17+ 2(Lxnog + Lyn-g + Lznoy) . (3.1

Now we put the particle back to its position (N — 1) and repeat the process,
considering that each direction of displacement by the kick is equally probable.
Doing this may times and taking the average of all the results of the distances L
obtained, we get:

L3 =12, +12. (3.2)
The last term in Eq. (3.1) vanishes since for each value of 1, there is an equally
probable event with the negative value (—1,). This is also true for 1, and 1,, since all
directions occur with equal probability. o

It is obvious that for N = 1, i.e. after the first kick, the average distance L? is

equal to 12. Thus, after two steps L2 = I* + L = 2-12. Repeating this up to N, we
obtain:

LZ =N, (3.3)

a particularly simple result.
If the average time between two kicks is 7, then after N kicks the time, t = Nz
has elapsed. Therefore, the average distance after that time is:

— 12
LZ=—-t. 3.9
T
The average velocity v of the particle is:

v=1/t (3.5)
and we finally obtain

LZ=v-1t. (3.6)
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Thus, the square of the average distance is proportional to the time. The constant
v-1 contains the statistical parameters of average velocity and the average distance
between two kicks.

So far we have observed only one particle, but we have repeated the process
many times. We might further assume that there are many particles concentrated
in a small volume around the origin of the coordinate system at time zero, and that
there are no particles elsewhere. The question now to be answered is: How many
particles will be found at exactly the distance L after time t? The answer to this
question is: There will be none, since there is no chance that a series of steps sums
up to a particular number out of an infinite amount. Therefore, we have to ask for
the average number of particles N found at a distance between L and L + dL. For
the one-dimensional case one finds the number N of particles at the distance
between x and x + dx from the origin as:

n 3x2
N = )dx = ——2— ——Jdx.. 3.7
c(x, t)dx i exp( 4vlt> X (3.7)
3

This is a Gaussian distribution, which is given here without proof. Since it represents
a number divided by a volume, it is proportional to the average concentration of
the particles observed. Of course, these numbers are average numbers and fluctua-
tions are present. In real chemical solutions, however, the particle numbers are so
high that the fluctuations are of no concern and the interpretation as concentrations
is adequate. Figure 3.3 shows the concentrations as they have evolved after increas-
ing times.

It is clearly seen that the initially well-localized concentration of particles is
spread out as time increases. The half-width of the corresponding distribution is
given by:

X}, =0924-v-1-t. (3.8)

Fig. 3.3. Concentrations evolving from
a point source at t =0 for various
times. The distribution of particles
spreads out with increasing time.
Numbers on curves are values of \/D—t .

1
D= VT (cf. also Eq. 3.16)
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From this figure it is also easy to visualize that random walk establishes a radial
mass transfer from the initial centre into the bulk of the fluid. The amount of this
transfer is related to the product v-1.

3.2 The Laws of Diffusion

To calculate the flux, i.e. the number of particles per unit area and time, crossing a
given surface, we imagine a unit surface perpendicular to the x-axis in Fig. 3.4.
During the time 1, all the particles with average velocity v, = v, which are within
the distance 1 to the left of the plane, can pass this plane from left to right and
correspondingly, all the particles within distance 1 to the right of the plane with
velocity v = —v, can pass from right to left.

If c(x) is the concentration of particles, then the total number of particles passing
through the plane at x = 0 is given by the difference of these two numbers. From
the right we have:

N, =dc(x +1)-1. ' (3.92)

N, is the number of particles passing during time 7 and c¢(x + 1) is the concentration
at position x + 1. The factor § results from the fact that on the average, ¢ of the
particles has a velocity along the positive x-axis, since all directions are equivalent.
Correspondingly, we have for the number N, from the left:

N, =Ltcx—1)-1. (3.9b)
The total flux, i.e. the number of particles crossing the unit area per time unit is:
N, — N 11
M: szg-—[c(x—l)—c(x+l)]. (3.10a)
7 T

Since 1 is a very small distance, this can be expanded into a Taylor series:

12 de(x) _Dac(x)

1
F=—-—
x 3 1 0x 0x

. (3.10b)

/ / / Fig. 3.4. The flux of particles through the middle area results

' v from particles within a distance of the average step length 1
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This is Fick’s first law of diffusion, stating that the mass flux is driven by local
changes in concentration. The diffusion coefficient D is related to the statistical
parameters:
11 1

D=--=-v-l, 3.10c
3t 3 ( )
which also determine the random walk distance after time t in Eq. (3.6).

In an analogous way we can calculate the flux in the y and z direction, thus
obtaining as a general result:

F = —Dgradc(x,y,2) (3.10d)

for the three-dimensional case of a stagnant medium.
If, however, the medium flows with velocity v we have to add a flux resulting
from advective transport. Thus, the total flux is given:

F = —Dgradc(x,y,2) + v-¢(X,y,2) . (3.11)

Once we know the fluxes entering into a volume through its surfaces we can derive
an equation which gives the spatial and time dependence of the concentration. In
Fig. 3.5 we regard a small volume AV represented as a cube with Ax, Ay, Az. The
change of concentration inside this cube results from the fluxes into the cube and
those out of it and from the rate of production of particles inside the cube:

dc(x)  de(x + Ax)])

9
a—:AxAyAz - AyAz-(—D[

0x 0x
N Axdz(_D[ac(y) _dcly + AY):D
dy Jy
N AyAx(—D[aC(Z) _ dc(z + Az)jl)
oz oz

+ v, [e(x) — c(x + 4x)]Aydz
+ v,[c(y) — c(y + 4y)dx- Az
+ v, [c(z) — c(z + 4z)]4x- Ay + RAxAyAz. (3.12)

Fz¢Az

\ Fee
Y L#(__ { _/_)‘\_,_-___ax Ax

___”*T,}i\wy Az
AY TR Y
Fig. 3.5. Control volume A4V = AxdyAdz

==X and fluxes in and out of it
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The left side of the equation represents the change of the particle number in the
volume AxAyAz = AV in time t. The first term in the brackets on the right side
represents the difference of the particle flow into the volume and that out of it via
diffusion. The terms containing v,, v, and v, result from convective flow of the liquid
into the faces of the cube. R represents a production rate of particles in the volume
due to chemical reactions. The change of particle number in the volume 4V during
a time At, represented on the left side of the equation, has to be equal to the total
number of particles flowing into that volume during time minus the number of
particles flowing out of the volume, plus the amount produced by the chemical
reaction, represented by R. Dividing Eq. (3.12) by 4x4yA4z and replacing the
differences by the derivatives, we obtain Fick’s second equation:

dc(x,y,z,t)

o + vgradc(x,y,z,t) = D4c(x,y,2z,t) + R. (3.13)

3.2.1. Some Basic Solutions

In karst areas we encounter dissolution processes of limestone under a variety of
boundary conditions. Dissolution occurs in water-filled joints of very narrow aper-
ture as well as in situations where dissolved material diffuses into large water bodies,
e.g. in big rooms underground.

In all these cases the diffusional transport of dissolved ionic species into the
bulk of the liquid is one of the processes determining the total dissolution rate. It
is therefore necessary to know the behaviour of diffusion of these situations in time
and space. Therefore, in this section we discuss some basic solutions of Eq. (3.13)
and their properties. For simplification, the discussion is restricted to solutions of
Eg. (3.13), in its one-dimensional form and to the case of a stagnant solvent without
any chemical reactions. Therefore, v = 0 and R = 0. We have therefore to deal with:

Jc(x, t) 2%c(x, t)

s =D 7 (3.14)

There is ample literature dealing with solutions of Eq. (3.14) (Carslaw and Jaeger
1959, Crank 1975, Luikov 1968). We therefore will not give derivations of the
solutions, but will mainly discuss their properties.

3.2.1.1 Point Source

We assume that at time t = 0 the concentration c(t, x) of a diffusion species is limited
to an infinitely small space dx at x = 0. Thus, we have with n, equal to the total
number of particles:

ny/dx for ——<x<—
c(0,x) = 2 2 (3.15)

0 elsewhere .
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The solution for times t > 0 is given by a Gauss distribution:

n, x2 )
c(x, t) = exp| — — (3.16)
(9 JA4nDt p( 4Dt

Figure 3.3 illustrates this situation, which was also obtained from the random walk
problem (cf. Eq. 3.7). At t = 0 we have a sharply defined concentration close to
x = 0, which spreads out as time increases. The total area of each concentration
distribution represents the total number of particles. Since this number is conserved,
it is equal to the area of the initial rectangular distribution. The half-width of each
distribution is given by:

X2, =276D-t. (3.17)

This is related to the average distance L, the particles have moved away from the
origin. Comparing this to the resuits of our random walk consideration in section
3.1, we see that the solution of the equation of diffusion (Eq. 3.14) exactly reflects
the results of random walk.

3.2.1.2 Diffusion into a Semi-Infinite Body

We assume a large plane wall of solid bordered by an infinite body of water to its
right. At t = 0 the concentration of the dissolved species is ¢, at the border, at x = 0
and zero elsewhere. During the entire process of dissolution, we assume the con-
centration to be constant ¢ = c; at x = 0. This is the situation, which occurs when
chemical surface reaction rates are so fast that equilibrium at the surface between
the solid and the species in the solution is achieved very quickly. The solution c(x, t)
of Eq. (3.14) is given by:

(X, ) = ¢4 [1 - erf<2 th>] , (3.18)

where the Gauss error function erf(U) is given by:

2 u

erf(u) = T [ exp(—u?)du. (3.18a)
T 0

Figure 3.6 shows the concentration for several times t > 0. The distance x,,, where

the concentration has dropped to ¢, /2, increases with time and is given by:

Xyp = /Dt (3.19)

which again reflects the behaviour of random walk.

To find the mass flux transported from the wall into the liquid according to
Fick’s first law, Eq. (3.10), we have to calculate the first derivative of c(x,t) with
respect to x at x = 0.

de(x, t) Dc,

F=-D = _ . .
xx=0_ _/nDt (3.20)




cix,t)/co

50

Mass Transport

05

N

0

Fig. 3.6. Diffusion into a semi-infinite
body of solution: concentrations
evolving in time. At t > 0 the concen-
{72 { tration at the wall is constant c,. At
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This shows that the flux from the wall decreases with time. The reason for this is
that the concentration close to the wall increases with time. From the view of
random walk now the number of particles moving towards the wall increases with
increasing concentration close to the wall and compensates for the particles moving
into the bulk. This reduces the total flux into the bulk.

3.2.1.3 Diffusion in Confined Conduits

The case in which water flows in joints in the saturated zone can be modelled by
water flowing between two parallel planes, constituted by the limestone rock. Their
distance is 2-a. We assume that at t = 0 and for all times later, the concentration
of dissolved species at x = =+ a is in equilibrium with the wall, c(+a,0) = c.,. Else-
where it is at a constant level at t = 0; c(x,0) = ¢,. The concentration c(x,t) as it
develops in time can be given as a series:

C

c(x,t) — ¢ = 2(—1)°*t < x) ( 2D't>
= lm Y S cos( g |rexp |~ 5 )

eq Co n=1 Hn

a

_2n—1.
)

™ . (3.21)

It is important to note that for times t > 0.4-a2/D only the first term in the sum
contributes, since the exponentials for n > 1 drop off rapidly in comparison. For
times t > 4-a?/D the system has come to an equilibrium with constant concentra-
tion c(x,t) = c,, everywhere. Figure 3.7 shows the concentration for various times
given in multiples of decay time T, defined below. This is in contrast to the previous
cases, where the solid is bordered by an infinite body of water and a stationary state
cannot be achieved. In the case of water bodies with finite dimensions, however, the
system approaches equilibrium with the exponential decay time T, which in any
case is proportional to the square of a length, characteristic for the extension of the
water body, and is inversely proportional to the diffusion coefficient. In this case:

d= 2
2D

4a?
(3.22)
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Fig. 3.7. Diffusion into a solution confined by two
parallel planes with distance 2a. For t > 0 the con-
centration at the walls, x = +a, is constant c . At
t = 0 the concentration in the solution is c,. The
S — numbers on the curves give the time in units of T, =
-1 0 1 x/a 4a%/n°D

{clx,t) - ol / {Ceg-Co)

For t > 0.4a2/D the mass flux from the walls is given by the derivative of c(x, t):

2D 2Dt
F(ta) = +(cqq — co)-Texp<— i ) (3.23)

Note that F is a vector directed away from the wall. With increasing dimension of
the waterbody, diffusional mass transport decreases.

Therefore, also in cases where mass transport is controlled by several competing
processes, such as chemical kinetics on the surface and in the solution, with increas-
ing dimension of the waterbody, transport by diffusion will be lowered. On the other
hand, since chemical kinetics are independent of the dimension of the waterbody,
there always will be, with increasing dimension, a limit beyond which diffusion
becomes the slowest process and controls mass transport entirely.

So far we have discussed boundary conditions, where the concentration at the
walls is at equilibrium with the dissolving solid. Under many geological conditions
of dissolution of minerals there are different boundary conditions. If the reaction
rate of a dissolving mineral depends by some rate law on the chemical composition
of the solution, a flux is prescribed at the solid surface. In the case of only slowly
changing concentrations in the solution, this flux remains practically constant in a
pseudostationary state. This is exactly what happens in the dissolution of limestone
(cf. Chap. 7).

Therefore, the boundary conditions are:

Jc _ +E
ox/+a D’

(3.24)

where the value F prescribes the flux from the walls.
Note that instead of concentration, now its derivative with respect to x is
prescribed at x = +a. With this boundary condition the solution reads:

F F-a 3x*>—a? F-a 2 2-(=1) UnX
_-t - e — . el
a + D 6a? D ,,; u2 cos a

n

gDt
-exp| — " (3.25)

c(x,t) — ¢y =
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Fig. 3.8. Diffusion into a solution confined by two parallel planes with distance 2a: concentration
evolving in time. Flux F from the walls is constant. At t = 0 the initial concentration is c,. Numbers on
curves give the time in units of T, = a?/n?D

Fig. 3.9. Diffusion through a layer with thickness &: concentration evolving in time. At x =0 the

concentration is c,, and at x = ¢ it is ¢, for t > 0. Initially at t = O the concentration in the layer is c,.
Numbers on the curves give the time in units of Ty = £2/n2D

where

U, = N7, T, = (3.25a)
The first term in Eq. (3.25) results from the fact that due to the constant flux from
the wall, the concentration increases linearly in time. The second term denotes a
stationary parabolic concentration profile, which is established after approximately
t > 4T,. T, is the decay time of the time-dependent third term. Figure 3.8 illustrates
the concentration distributions for various times given in multiples of T;.

To complete the series of important examples, we discuss finally a very common
case.

If water flows turbulently on limestone, there is a small layer of liquid between
the surface of the rock and the turbulent core, where mass transport is effected by
molecular diffusion. In the turbulent core, however, due to the chaotic movement
of water parcels there is perfect mixing between them and the concentration is
constant with respect to space.

Mass transport is therefore determined by molecular diffusion through a layer
of thickness ¢, with prescribed concentrations c,, at the wall and ¢, at the boundary
with the turbulent core. The concentration c(x, t} is then given by:

1) — © 2 (=1 - Dt
et —c_ X _t)ﬂm(ﬂnu).exp(_uﬁg_z);
€

Cow —C & n=1 n

U, = nw; T, = . (3.26)
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Thus, a linear concentration profile is established which is approached with the
decay time T,. This stationary profile is given by:

c(x, 00) = —%(cw —c)tey. (3.262)

Figure 3.9 shows the concentrations in the layer for various times in multiples of
T;. The flux transported through the layer in the stationary state is:

F= %(cw —c). (3.27)

3.3 Diffusive and Advective Mass Transport

It is most common in geological processes that dissolution of minerals occurs in
moving water bodies. This can happen in laminar flow in narrow joints and partings
of the rock. If the dimensions of flow conduits are in the order of a few centimetres,
usually turbulent flow occurs. Therefore, to describe mass transport, one has to
consider also the terms of advective mass transport in Eq. (3.13):

Jc

6t+vgradc=DAc. (3.13)

In the case of laminar or turbulent flow, one usually replaces v, which depends on
the spatial coordinates by its average value, thus assuming plug flow with constant
velocity v.

It is easy to obtain the solution to this equation, if the solution in a stagnant
medium, i.e. v = 0, is known. To illustrate this, we observe the solution from a frame
of reference, which is fixed to a small volume of the liquid, thus moving with velocity
v relative to a fixed frame. To visualize this, we may imagine a river flowing with
velocity v. Into this river we inject, as a point source, a given amount of a dye. For
an observer moving with a boat, which drifts down the river with the speed v, the
dye spreads according to the stagnant solution of Eq. (3.16). An observer standing
on the bank of the river, however, sees the same spreading but simultaneously the
dye moves away from him with velocity v.

In general, the solution in the fixed frame of reference is related to that in a
stagnant medium, i.e. v = 0, by replacing the spatial coordinates r in the stagnant
solution by:

r=r—vt. (3.28)

Thus, the spreading of the point source and its propagation in the river for the
one-dimensional case can be directly obtained from Eq. (3.16) as:

X, ) = —2 - ex (—(";VQZ—> (3.29
VT Jampt P\” 4Dt ) 29)
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Thus, the advective term in Eq. (3.13) just describes this coordinate transformation,
provided v is a constant everywhere.

3.3.1 Diffusion in Turbulent Flow

In laminar flow each small element of volume dV moves on a streamline during its
propagation in the flow and its velocity can be predicted at any moment. There is
no interference with other elements of volume, and accordingly no mixing of the
liquids contained in it, into neighbouring elements (cf. Chap. 5). Mass transport
between two neighbouring elements is only possible by molecular diffusion.

In turbulent flow, however, large statistical fluctuations of velocity occur at any
point. There are large variations of the velocities both parallel and perpendicular
to the average flow velocities. Due to their stochastic character they cannot be
predicted, i.e. each particle moves on a chaotic path. These fluctuations cause
mixture between small volume elements which are sufficiently close to each other.
The average distance a volume element can travel until losing its individuality by
mixing with other volume elements, is called mixing length.

Let us now consider a specific particle located in such a volume element, for
instance a cation dissolved from a mineral. This cation moves with the volume
element in average a distance L on a chaotic pathway which results from the
fluctuations of velocity. The average velocity of this statistical motion is U. After
the particle has moved this distance L, a new volume element around the cation
can be defined, which is driven with average velocity U in another direction for the
average distance L. This is a random walk process. It is superposed to the random
walk process of molecular diffusion, which occurs on a much smaller spatial scale.
Therefore, turbulence increases mass transport by diffusion and as a consequence
the constant of diffusion in Eq. (3.23) has to be increased according to Eq. (3.10a):

D=4vi+iU-L=D_+D,. (3.30)

Here, the first term gives the contribution due to molecular diffusion and the second
term, resulting from turbulent diffusion, is called eddy diffusion. Since the scale of
L is larger than 1 by many orders of magnitude, D, also exceeds D, by many orders
of magnitude. Estimations of D, for turbulent flow in pipes are given by Skelland
(1974) and Bird et al. (1960). The fact that mass transport is critically determined
by the flow conditions of the solvent is of utmost importance in geological processes.
Therefore, consideration of flow conditions is an absolute must, when regarding
dissolution or precipitation processes in real cases.

3.3.2 Hydrodynamic Dispersion

Water flowing in porous media, e.g. sand or porous rocks, on a macroscopic scale
follows streamlines, which can be derived from the hydraulic heads in the aquifer
according to Darcy’s law (cf. Chap. 5). On a microscopic scale, however, due to the
statistical structure of the media, the individual particles follow a tortuous pathway
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through the interstices between the grains. Thus, in a situation, where on a macro-
scopic scale, flow velocity is uniform everywhere, on a microscopic scale a water
particle follows a random pathway through the labyrinth of open spaces between
the grains with varying velocities. If a dye is injected into such an aquifer at a given
point for a short time, the dye molecules are transported by advection along the
streamline and simultaneously, due to the random motion of the flow on a micro-
scopic scale, they are dispersed and spread out. Experiments show that the amount
of spreading, transverse to the flow, is different from that longitudinal to it. This
effect of spreading is called hydrodynamic dispersion and is discussed in detail in
Bear (1972).

Three mechanisms are operative in hydrodynamic dispersion. The first occurs
in the individual pore channels, where flow is laminar in most cases. In these
channels the molecules travelling in the centre have higher velocities than those
close to the walls. This induces a spread longitudinal to the flow. A second process
contributing mainly to longitudinal dispersion is due to the fact that different pore
channels are of differing width and therefore flow velocities vary accordingly. The
third mechanism comes from the branching of the pore channels. This resembles
most closely the random walk, since each molecule travels in average freely a way
along the channel until by branching, it is forced statistically in a new direction.
This mechanism is the main contribution to transverse dispersion.

Figure 3.10a illustrates the porous medium as a channel network with statisti-
cally distributed directions, widths and lengths of the channels. The random path
taken by an individual molecule on its travel through the medium is also shown.
Figure 3.10b shows how velocity distribution in one individual channel changes due
to a varying cross-section. These velocity distributions also cause dispersion, since
particles in the middle of the channel are transported faster than those at the edges.

The coefficient of diffusion due to transverse dispersion is related to the param-
eters of random walk, the average channel length and the average velocity v. A
length characteristic for the porous medium is the average grain diameter d. Thus,

Fig. 3.10. a Random walk in a
porous medium; b distribution
of velocity in a single channel
between two grains
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with this length representing the average distance in random walk, the diffusion
constant due to transverse dispersion is written as:

D§s = Dm<1 + %E) =D,(1+P,). (3.31)
This relation is found experimentally to be true for Peclet numbers P, between 1
and 10. The Peclet number is given by v-d/D and compares transverse coefficient
diffusion to molecular diffusion coefficient (Bear 1972).

Longitudinal dispersion is related to transverse dispersion for Pe > 0.5 by an
experimentally determined relation (Blackwell et al. 1959):

Disf = 88 D™ Pe-'7 . (3.31a)

So far we have discussed mass transport of an injected substance. But hydrodynamic
dispersion also governs mass transport in the case of dissolution of minerals from
the grains composing the porous medium.

If water flows in an individual pore channel of length 1 and width w, dissolving
material from the grains, a concentration gradient perpendicular to the pore walls
builds up within a time Tj,. This time is given, depending on the boundary conditions
of dissolution, either by Eq. (3.22) or (3.25):

W2

T~ ——
4 .
2D,

(3.32)

This concentration gradient builds up due to molecular diffusion in an individual
parcel of liquid, the residence time of which in the channel is t = 1/v. After this time
the solution leaves the channel and mixing occurs. The ratio T/t now gives the
number of mixing processes, which occur due to confluences from different channels
at each interconnecting point within time t. For Ty/t > | mixing destroys the
gradients forming in the pores by molecular diffusion. On a macroscopic scale,
concentration gradients are then determined by mechanical dispersion with high
coefficient of diffusion D.. In the case T;/t « 1 dispersion can be neglected and
molecular diffusion determines the dissolution process. Note that the ratio t/T is
approximately equal to the Peclet number. As in the case of turbulent flow, also
in porous flow hydrodynamic conditions determine the coefficient of diffusion
and must therefore be regarded in every geological consideration of dissolution
processes.

3.4 Diffusion Coefficients and Their Magnitudes

3.4.1 Molecular Diffusion

In most geological problems one has to deal with diffusion of small molecules. These
may be either neutral species, such as gases N,, O,, CO, and H,S, or ionic species,
such as Ca?*, HCO;, CO?~,H*, OH™ and many others. All these small molecules
have diffusion coefficients of comparable magnitude in the order of 107> cm?s™?!.
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Table 3.1. Molecular coefficients of diffusion for various species encountered in karst water

D,,(107% cm?s7)

Temperature (°C) 2
Ion 0 18 25
H* 56.1 81.7 93.1
OH~ 25.6 449 527
Ca?* 3.73 6.73 7.93
Mg?t 3.56 5.94 7.05
co? 4.39 7.80 9.55
HCO;3 — — 11.8
SOz~ 5.00 8.90 10.7
Cl~ 10.1 17.1 20.3
Na* 6.27 11.3 13.3
CO, 5.6 16.0 20.1 b

®Li and Gregory (1974). * Landolt-Bornstein (1969)

Table 3.1 lists the numbers for a variety of ionic species in the temperature region
between 0°C and 25°C, showing that the diffusion coefficients increase with tem-
perature. The two smallions H*, OH™ show coefficients which are larger by a factor
of between 5 and 10, whereas some metal ions are smaller by about a factor of 2
from the average (Li and Gregory 1974).

Thus, for instance, if CaCl, dissolves in water one could expect the CI™ species
to diffuse more quickly into the solution than the Ca?* species. If this, however, did
happen there would be a separation of charges. These induce electric fields which
retard C1™ and enhance Ca?* motion in such a way that charge neutrality of the
solution is maintained. Thus, the diffusional motion of both ions is tied together. It
can be described by a common coefficient of diffusion, which is an average between
the two individual ones.
"~ For a binary electrolyte (A**)v + (B™*)v™, where z+ denotes the ionic
charges and v+ the stoichiometric coefficients, the joint coefficient of diffusion is
given by:

D — (z, +z_)D,D_

333
Yoz, Dy +z_D_ (3:33)

This formula was first derived by Nernst. Its derivation can be taken from standard
text books, e.g. Jordan (1979). It should be mentioned that the coefficients of
diffusion depend also on the concentrations of ions encountered. In the realm of
groundwater, however, this is of minor influence and can be neglected.
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For gases in an aqueous solution the constants of diffusion are in the region
between 1 x 1075 to 2 x 1075 cm?s™! (Lerman 1979).

34.2 Eddy Diffusion

In turbulent flow we find an increase in the effective constant of diffusion when
moving away from the wall into the turbulent core. Bird et al. (1960) gave a crude
method to calculate the constant of eddy diffusion from the velocity distribution
encountered in a straight tube of radius R (cf. Chap. 5).

For hydraulic gradients in the order of 1072 one finds that eddy diffusion
constants D, are enhanced by a factor of n in comparison to the molecular D,

D, = oD, , (3.34)

with n between 102—105. In the centre of the tube, n is crudely estimated by:

n= /@)3- /gvsz103,/R3J, (3.35)

where R is the radius of the tube, g earth’s acceleration 981 cm s ™2, v is the kinematic
viscosity and J the hydraulic gradient (cf. Chap. 5).

34.3 Hydrodynamic Dispersion

The magnitudes of the effective diffusion coefficients are determined by the Peclet
number (cf. Egs. 3.27, 3.28).

The Peclet number is determined by the average grain diameters composing
the medium and the average velocity of a particle along its statistical way. Thus, a
wide variety of diffusion enhancement is possible.
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In the dissolution of limestone, transport of the ions from the surface of the solid
into the bulk of the solution by diffusion is only one step. When the chemical
processes at the surface are so fast that ions removed by diffusion into the bulk are
immediately replaced by those released from the solid, i.e. the surface concentration
of Ca* is at saturation, then diffusion determines the dissolution rate entirely. If,
however, this is not so, then chemical rate laws, i.e. chemical kinetics, have to be
considered when dealing with dissolution rates. In CaCQOj dissolution there are two
chemical processes which are sufficiently slow to play an important role in determin-
ing dissolution rates, i.e. the amount of CaCO; removed from the solid per unit
area and time.

One is a heterogeneous process at the surface, where the chemical composition
of the solution at the surface determines the rates. The other process is homogeneous
and converts CO, in the bulk of the solution into H* and HCOj. The protons
thus delivered are needed to react with CO32 released from CaCOj; into HCOj.
Thus, accumulation of CO3Z~ is prevented and the ionic activity (Ca*)-(CO2")
product is kept sufficiently low for further dissolution to proceed as long as H*
can be delivered. In this chapter we will provide the basic knowledge on chemical
kinetics, which is necessary to understand the role it plays in dissolution of
limestone.

4.1 Rate Laws of Elementary and Overall Reactions

4.1.1 Elementary Reactions

The conversion of CO, in an aqueous solution by hydration into H,COj:
H,0 + CO,=H,CO;, 4.1

is a process, in which a CO, molecule approaches an H,O molecule sufficiently
close and in a geometrically appropriate way so that the two molecules fit sterically.
Then the reaction takes place. Such a process where the reaction partners are the
true species, written down in the reaction equation, is called an elementary reaction.
Since H, O, CO, and H, CO, finally reach chemical equilibrium, it is obvious that
at equilibrium each elementary reaction (forward reaction) has to be balanced by
a corresponding back reaction, which also is an elementary reaction. In our case
H,CO; decomposes into H, O and CO,. If this back reaction is extremely slow in
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comparison to the forward reaction, chemical equilibrium is shifted to the side of
the reaction products, i.e. the reaction appears to proceed only in one direction.
In general, we may write an elementary reaction as:

n,-A +ngB S5 n,P +1,Q . (4.2)

This means that by a collision of n, molecules of the kind A and ng molecules of
kind B, reaction products P and Q are formed. Since in each process the molecules
have to approach at least to a limiting reaction distance, the number of reactions
per second is related to the probability that a sufficient number of molecules of each
kind is present at the same time in a small volume in the dimension of the reaction
distance, e.g. a sphere with the diameter of this distance.

The probability of finding one molecule in a given volume is proportional
to the concentration of the species. The probability of finding n molecules simul-
taneously in this volume is the n’th power of the probability of finding only one.
Thus, the number of elementary reactions per unit volume and time is given by:

ke [A]™-[B]™ = R;. 4.3)

ke is a factor called the rate constant. The stoichiometric factors n appear as
exponents, since the probability of finding at the same time two molecules of A is
proportional to [A]?, or of finding at the same time one of A and one of B is
proportional to [A]-[B] and so on.

From Eq. (4.3) one can derive the change of concentrations in time. In each
individual reaction process n, molecules of species A and ng molecules of species
B are removed from the solution. Therefore,

d[A
B gt] = 0k [A]™-[B]™ =n,-R;
d[B
—% = ngk-[A]™[B]™ = ng R, . (4.4)

The negative sign is due to the fact that the number of molecules decreases. The
sum of the exponents (n, + ng + ---) is termed the order of the reaction. In each
individual process correspondingly reaction products are formed and we have also:

d
% = npk¢ [A]™ [B]™ = npR¢;
t
d
d_? = nok;[A]™-[B]™ = noR;. @5)

It is important to note that the reaction rates are determined by the concentrations
of the species and not by the activities.
Reaction (4.2) is balanced by the back reaction:

npQ + npP X5 n, A + ngB. (4.6)

The change in concentrations from this reaction is analogously:
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dP
“dt = npk,[P]™-[Q]"™ = npR;,;

d
92 = gk, [PT™[QI = ngRy

dA
T = naka[PI™ [Q1 = Ry ;

o = naka [P [QT = nyR, @7

Thus, the total rates are the combination of the forward and backward contri-
butions:

1 d[A] 1 d[B]
n, dt ng dt
1 [dP] 1 d[Q]

np dt g dt +k[A]"™- [B]™ — k,[P]™ - [Q]". (4.8)

= —k[A]™-[B]™ + ko [P]™-[Q]";

The equations can be extended correspondingly if more reaction and product
species exist.

In case of equilibrium, forward and backward reactions cancel each other and
all the derivatives become zero. From this one obtains:

k Al"s-[B]™

b K = % (4.9)

K, [Q]™ [P]"
which is the mass action law, written in concentrations.
4.1.2 Opverall Reactions
Experimental investigations on the kinetics of chemical reactions:

n,A + ngB =5 noQ + n,p P, (4.10)
often reveal rate laws of the type:

1 d[A] _ 1 d[B] d[P] d[Q]

— = = —Np—— = —Ny

n, dt ng dt dt dt

= k[A]"-[B]"-[P]*-[Q]™, (4.11)

where the n" are no longer related to the stoichiometric coefficients but can take any
value, positive or negative. These rate equations are no longer stoichiometrically
true as those of elementary reactions. The reason for this is that Eq. (4.10) describes
an overall reaction, which comprises intermediate reactants and products, which
do not occur explicitly in the overall reaction equation.
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Systems CO,~H,O and CaCO4~CO,-H,0

H CO3
COz(g) CO%HC@CE{:—* CaC0,4
OH=~=—=H,0 «<—=H"* . . . . .
20 H Fig. 4.1. Chemical reactions during dis-
solution of CaCO; according to the sys-
Gas Solution Solid tem CO,-H, O (Usdowski 1982)

The generally used reaction equation for dissolution of limestone:
CaCO; + H,0 + CO, —» Ca?* + 2HCOj;

is such an overall reaction, since it comprises three reactions not appearing explicitly
in this equation.

Figure 4.1 gives an illustration of these processes. COj enters from the gas phase
into the liquid-forming aqueous COj% which converts into carbonic acid H,COj,
dissociating into HCOj5 and CO?", thereby delivering H* which reacts with the
carbonate ions released from the solid to HCOj5 . Furthermore, a parallel reaction
converts CO3? into HCOj3 by removing OH™ from the solution.

Thus, overall reactions can be decomposed in a series of elementary reactions,
which might be consecutive and parallel as illustrated schematically by the reaction

scheme:
A—»B—»C—»D\) 4.12)
F——P

where all the reactions are now elementary reactions with individual rate laws. The
decomposition of an overall reaction into elementary reaction steps reveals the real
reaction mechanism. The rate laws can then be written as combinations of those of
the elementary reactions. When all these reactions proceed with comparable rates,
very complicated expressions can result. In some cases, however, only one of the
elementary processes determines the rates. This is then called the rate-determining
reaction. In consecutive reactions it is the process with the slowest reaction, which
represents a bottleneck. This is the same situation as on traffic lanes where the
narrowest part of the roads determines the number of cars which can pass in a given
time interval.

In the case of several parallel reactions the situation is opposite, since the fastest
process now determines the rates. To illustrate how rate equations of the type in
Eq. (4.11) result, Lasaga (1981) has given the example of ozone decomposition:

20, - 30, . (4.13)

This reaction has a mechanism where the first step is a reversible reaction:

(1) 03:_%,02+o, (4.14)
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decomposing ozone into atomic and molecular oxygen. This is followed by the slow
reaction:

2 O+ 0,%20,, (4.15)

where the back reaction is extremely slow and can be neglected.
The rate laws of the elementary reactions are:

A k10,1~ k10,110] - k:[0.1[01
afo,1 . .
[dt ) k10,1 K [0,1[0] = 2k,[01[0;]. (4.16)

Since k, is very small, one can assume that the concentration of oxygen atoms
reaches a steady state, such that the number of atoms removed by reaction (2) is
equal to those delivered by reaction (1). The concentration [O]; in this steady
state can be obtained by replacing [O] by [O]; and observing that the derivative
is zero:

Ki[0]  _k{[O5]

(Ol = 1= R = , (4.17)
ki[0,]1 +k,[O3]  k{[O,]
since
ki[O,]>» k,[Os].
Inserting this for [O] in Eq. (4.16) one finds:
d[O 2kTk, [057?
[ 2] — 1 2[ 3] :k/[03]2[02]—1’ (418)

itk [0,]

in agreement with experimental observations. The overall rate constant k' is re-
vealed as being composed of the rate constants of the elementary reactions.

So far we have considered overall reactions proceeding in only one direction.
Since, however, each of the elementary reactions is reversible, i.e. has a back reaction
of sufficiently large rates, in general also the overall reaction shows a back reaction,
with corresponding rate equations. The condition for equilibrium is the balance of
both reactions. In contrast to the elementary reactions, in general no mass action
equation can be derived from the overall reaction, since the exponents in overall
reaction rates are not stoichiometrically true.

There is, however, a very important principle of detailed balance stating that
at equilibrium of the overall reaction each elementary reaction is at equilibrium
also. From this follows that at equilibrium each forward rate is balanced by the
opposing backward rate in all the individual elementary reactions acting in the
overall process. This principle of detailed balancing provides a link between ther-
modynamics and kinetics, if the reaction mechanism is known. It relates, according
to Eq. (4.9), one of the two kinetic constants for each elementary reaction to the
corresponding equilibrium constant.
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REACTANTS [A].[B] PRODUCTS[P).IQ]
E af E Qp
AE
|
Fig. 4.2. Potential barrier associated with the activation
REACTION PATH energies of forward and backward reactions )

4.1.3 Temperature Dependence of Rate Constants

To accomplish an elementary chemical reaction the molecules involved have to
approach a certain distance. This has to be done in such a way that more com-
plicated molecules also have to fit sterically into each other. The approach must
therefore be in a special pathway, denoted by a reaction coordinate. Note that the
following arguments relate to an elementary reaction exclusively.

Chemical reactions involve the rearrangement of molecules by distorting mo-
lecular structures or breaking bonds. After the reaction a relaxation to the final
product takes place. The first step requires an activation energy E,¢. The relaxation
to the final product releases an energy E,,.

This is illustrated in Fig. 4.2, which shows the energy as a function of the reac-
tion coordinate. Thus, the forward reactants need at least the energy E,; to overcome
the activation barrier. The back reaction needs the energy E,,, to form the original
reactants from the products. The probability for a particle to have an energy higher
than E is given by Boltzmann statistics to be proportional to exp(—E/RT), where
T in °K ist the temperature and R the gas constant. The reaction rate is then
proportional to a collision factor A, giving the number of collisions per time
appropriate for a reaction, and the number of reactants (or products in the back
reaction) with energy E > E,; (E,, in the back reaction). A is usually slightly
dependent on T; A = A(T):

RT

Eab
RT

E
RF=AKD'“P<— “)IAT“{BTB

Rb = Ab(T) CXp <——- > [Q]“Q- [P]np . (419)

From this we find the rate constants k to be:

E,
m:mmekaQ;

k, = A(T)" exp (-i{’) . (4.20)
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This is an Arrhenius-type equation. Since in an elementary reaction k; and k,, are
related to the equilibrium constant, we have:

ke _AM BB\ (4B
8Tk T A exp< RT > B K"exp( RT> ' 20

This is the general equation for the temperature dependence of equilibrium con-
stants. The energy difference 4E is the energy released in the reaction and is nearly
equal to the enthalpy change in most reactions.

The size of the activation energy determines the temperature dependence of
the reaction rates and furthermore provides information on the type of reaction
mechanism.

Reactions may occur by a diffusion controlled mechanism. In this case there is
an immediate reaction once the reactants have met, without the necessity of over-
coming barriers. Therefore, the rate constants are proportional to the flux of
reactant A towards reactant B, i.e. into a sphere with B in the centre and with a
radius equal to the distance which is necessary for the reaction to take place. This
flux is proportional to the coefficients of diffusion. These coefficients in general also
show an Arrhenius-type temperature dependence with low activation energies
(4E < 20 kJ mol™!). This is also true for heterogeneous reactions, where diffusional
fluxes determine dissolution or precipitation rates.

In the case of chemically controlled reactions (surface controlled in hetero-
geneous reactions), the activation energies are higher, as for instance in dissolution
of calcite, which shows activation energies 4E ~ 32 kJ mol™! for two of three
parallel, concurrent elementary reactions (Plummer et al. 1978). These reactions are
important at pH > 6 and will be discussed in Chapter 6. At low pH mainly attack
of hydrogen ions effects dissolution of CaCQj, as is the case of dissolution of calcite
in HCI. Here, one finds activation energies of 4E = 8 kJ mol™, showing that
diffusional transport of H* to the calcite surface determines the reaction rate
(Plummer et al. 1978, Sjoberg 1983).

4.2 Approaching Equilibrium

In this section we give the differential equations and their solutions in time for a
few common types of reactions. These solutions describe the time dependence of
the concentration of reactants and products, when the reaction proceeds towards
equilibrium. From these solutions a mean time can be derived, which gives a
measure for the time until the reaction has come to equilibrium. We will not give
the details of the mathematics. These are given in detail by Capellos and Bielski
(1972).

In the following we discriminate between reversible and irreversible reactions.
Reactions are irreversible when the rate constant of the back reaction is extremely
small, i.e. the back reaction practically does not occur. Reversible reactions are
those, in which both forward and back rates are non-zero and cancel at equilibrium
in a dynamical way.
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4.2.1 TIrreversible Reactions
42.1.1 First-Order Reactions

These reactions are of type A — B with rates:

d[A]
—q = kAL (4.22)

Integration yields:
[A](t) = [Aloexp(—kt), (4.23)

where [A], is the concentration of A at t = 0. If we assume B not to be present at
t =0, i.e. [B], = 0, one obtains:

[BI(t) = [Alo(1 — exp(—kt)]. (4.24)

After the reaction has been completed A ist totally converted into B.
From Eq. (4.23) one defines the mean lifetime or time constant:

Ty=—. 4.25
iy (429)

After this time the concentration of A has fallen to 1/e = 0.368 of its initial value,
ie. [A] (Ty) = 0.368 [Al,-

One also defines a half-lifetime T;,,, which elapses until 50, of the initial A
has been converted to B:

Ty, = 0.693-T, . (4.26)

4.2.1.2 Consecutive First-Order Reactions

These reactions are of the type:
AXLB XD,
D is the final product, B and C are intermediates.

We assume [A](0) = [A], at time t = 0 and all the other species to be zero at
t = 0. The differential equations read:

d[A]
dt
d[B]
dt
drcy
dt
d[D] _
dt

—k,[A];

—k,[B] + k,[A];

—k,[C] + k,[B];

+k,[CT. (4.27)
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The solutions read:
[A] = [Alo-exp(—kyt);

k,kyexp(—k,t) B k,k;yexp(—k,t)
(k, —k)ks —ky)  (k; —ky)(k; —kj)

[D] = [A]o‘l:I -

_ kykyexp(—kst) ] (4.28)
(ky — k3)(k; — k3)
The solutions for the intermediates are of no interest here, since we are only
interested in the time dependence of the final products. The time constant of the
[A](t)is given by k,. The products, however, follow a complicated behaviour, made
up of three exponentials with time constants determined by the rate constants k;,
k, and k5. When one of these constants is small compared to the others, e.g. k, < k3,
ki, Eq. (4.28) is approximated by:

[D] = Ag[1 — exp(—k,t)], (4.29)

since the two exponentials with k,, k; decay rapidly in comparison to the ex-
ponential with k,. Thus, the slowest reaction becomes rate-limiting in consecutive
reactions. This is true also for n stage reactions, with n consecutive steps.

4.2.1.3 Parallel First-Order Reactions

We consider reactions occurring simultaneously of type:
AXLB ;
A2 C;
AED.
The differential equations are:
dg# = —(k, +k, + k3)[A] = —k[A];

dIB] _ | 1.
o = kilAL:

da[c] )
ar k,[A];

d[D]
dt
The solutions can be obtained by direct integration;

[A] = [Al,-exp(—kt);

=k;[A]. (4.30)

k
[B] = [AJOT‘-U —exp(—kt)];
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k,
[C]= [A]o‘f'[l —exp(—kt)];

k,
[D] = [Ao]' 2+ [1 — exp(—k0)]. (431)

In this case all products and the reactants change with one common exponential.
In contrast to consecutive reactions, irreversible parallel reactions are determined
by the largest rate constant, since the total reaction constant k is determined by the
sum of the individual reaction constants.

4.2.1.4 n-th Order Reactions

Often one encounters empirical rate laws of the type:

d[A]
——— = =k[AT". 432
= =k[A] 432)
This is the case in many processes of dissolution or precipitation, where [A] means
(¢ — c4):c, concentration in the solution and c§? the equilibrium concentration.
The solution of Eq. (4.32) is obtained by direct integration as:

1 1
[Al" [AT3!
The half-lifetime of the reaction is obtained by substituting [A] = [A],/2:

pLa |
T I e———————————— .
Y7 (n — Dk[A ]! (4.34)

=(n— 1)kt. (4.33)

Note that T,, depends on the initial concentration of [A]. The derivation of
Eq. (4.34) is only true of n # 1.

Figure 4.3 shows the time dependence of [A]forn=2,n=3,n=5,n= 10
compared to the first-order reaction. All the reactions share a numerically equal
rate constant k and start with an equal concentration [A],. The reactions become
slower with increasing n.

Fig. 4.3. Time dependence of con-
centration [A](t) for an n'-order
reaction. Numbers on the curves de-
note order n of the reaction. The
time is given in units of [A137'/k.

T For [A], = 1 the time scale is identi-
0 5 LY 5 kt/(AlyT cal for all orders of reaction
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4.2.2 Reversible Reactions

4.22.1 First-Order Reactions

+

The reaction is A=B. It shows the simplest case of two opposing first-order

-
reactions. The differential equations are:
A
AAT a1k + 81k
dt
B
ii_(%{l =[A]-k* — [B] k™. (4.35)

The initial conditions at t = 0 are [A](0) = [A],, [B](0) = 0.
With these conditions we find the solutions:
AkT + kT exp[— (kT + k)t]}
k+k ’
k{1 —exp[—(k™ + k)t]}
kt +k” '

[A]=[Alo

[B] =[Alo-

(4.36)

Equilibrium is approached with a time constant, determined by the sum of the two
rate constants. At equilibrium, i.e. in the limit t — oo, we find:

A k™
M 43

4222 First-and Second-Order Reactions

These reactions of the type:
k+
A=B+C
-

occur in the dissociation of acids. The rate equation for [A] is:
d[A]
dt
The initial conditions are [A](0) = [A],, [B](0) = [C](0) = 0.
The rate equations for [B] and [C] are then identical, since in the reaction for
all times [B] = [C] = [X]:
d[X]
dt

—~k*[A] + k [B][C]. (4.38)

k*([Alo — [X1) — k7 [X]*. (4.39a)

For [A] we have written:

[A] = [Alo — [B] = [A], — [X]. (4.39b)
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At equilibrium the derivatives are zero and we have:
kT[X12 = k" ([Ao] — [X]eq) , (4.40)

where [X].,, is the equilibrium value of [B] and [C].
The solution for [X] reads then:

[Xlea | [Alo[X]eq + [Alo[X] — [X][X].,

k*t=
t 2[Alo — [Xleq [Alo([X]eq — [XD

(4.41)

with

k+ k+ 2 k+
[X]eq = T + \/(QF> + F[Ajo . (4.42)

4.3 The Kinetics of the Reaction H,O + CO,=H* + HCOj3

Conversion of carbon dioxide into hydrogen ions and bicarbonate is the first step
in weathering processes of limestone, since the hydrogen ions are the aggressive
reactants in the dissolution of CaCOj5. The conversion process depends heavily on
the pH of the solution and is slowest in the region of pH ~ 7.5. This is the realm of
karst water. In average the time constants for the reaction are about 10 s in this
region. From these values one can easily realize that the kinetics of this process may
be rate determining in the removal of limestone.
The overall reaction:

H,0 + CO,=HCO; + H*

is composed of two parallel reactions. At pH < 8 the predominant pathway is
reaction I;

ki
CO, + H,0=H,CO;, @
which is followed by an instantaneous reaction;
H,CO,=HCO; + H*.
The rate constants in this last reaction are so large that equilibrium is established

in a very short time, i.e. less than 1 ms. Therefore, during the conversion process,
where the first reaction is rate-limiting, equilibrium exists such that:

[H,CO;] = [H"] [HCO;]VHVHCO3/KHZCO3 . (2.3)
The rate equations for the reaction are given by:
d[CO,] _
= ~K{[H,0][CO,] + ki [H,CO;]
= —ki[CO,] + ki Kyco, Puuco, [HT1[HCO5 T;
d[HCO;3 ]

dt =k{[CO,] — kl_KﬁicoJHVHco:,[HJr] [HCO;]. (4.43)
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Note that in both equations by definition the activities of H, O are equal to 1.
From this the overall reaction I can be written as:

ki
H,0 + CO,=H" + HCO3 ,
k

a

with the rate constant

k,= k;KHZCOJ’H}’Hcog - (4.44)

A second parallel reaction contributes significantly above pH = 8. This reaction II
is:
k3
CO, + OH™ =HCO; , Imn
k3

with rate equations:

M%) - ktrco,110H1 + k3 1HCO; 1;
9[—H§t—05—] — k{[CO,][OH"] — k;[HCO; ] . (4.45)

Adding Egs. (4.43) and (4.45) we obtain the total rate equations:

d[CO,]
dt

= —(ki +k;[OH"][CO,] + (k,[H'] + k3)[HCO;]

_ d[HCO5] :
= (4.46)

Thus, the total reaction is:
kf
H,0 + CO,—=HCO; + H*,
k,

with pH-dependent rate constants:
k* =k{ +k3j[OHT], k™ =k,[H"] +k; . 4.47)

The numerical value of k7, k7, k3 and k5 and their temperature dependence have
been investigated by many authors. They are reviewed by Kern (1960) and by
Usdowski (1982). Table 4.1 lists the temperature dependence and the values of these
constants and gives some analytical expressions.

Figure 4.4 gives the log k* as a function of pH. Below pH = 8, essentially
reaction I contributes. The rise in log k* beyond pH = 8 is due to increasing
[OH™], which increases the rates of reaction II. The right-hand ordinate of Fig. 4.4
relates to values of k™ also shown as a function of pH. At low pH the back reaction
is dominant, thus shifting equilibrium to H, COj,.
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Table 4.1. Reaction rate constants for CO, = HCOj; + H* conversion as a function of temperature (°K)

(Usdowski 1982)

°C —logk? logky logk? —logk;
s7! s7! mol™ 57! st
0 2.68 0.32 3.04 5.33
5 241 0.55 3.23 4.99
10 2.17 0.78 341 4.66
15 1.55 1.01 3.59 4.34
20 1.76 1.22 3.76 402
25 1.58 143 393 372
logk? = 329.850 — 110.54log T — 17265.4/T
logk; = 13.558 — 3617.1/T
logk} = 13.635 — 2985/T
logk; = 14.09 — 5308/T; T = °K; log = log,,
-1 [s']
[s7'] s
3 1
10 ; :gIO
4 T = 25° =
24 -2
107 -10°
6 (¢
= =
2 L2
101 0_._. :_810-1 |
6 Lo <
4-1 4
24 |2
10° o] .7,10'2
5] -6
s o
21 2
1 -3
10 ;] 10
& 5
1 k* - L
22‘ 2 . Fig. 44. Rate constantsk* and k™~
0 T 7 T T T T - T 10 for the overall reaction CO,=
4 5 6 7 8 9 10 11 12 13 H* + HCOj3 as a function of pH
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Fig. 4.5. Concentrations of CO3? and HCO; as a function of time (left hand part) in the reaction
CO3%1 + H,0 - HCO3 + H™ under conditions of a closed system. The right hand part shows forward,
backward and netto reaction rates during the reaction (Stumm and Morgan 1981)

4.3.1 Examples

To obtain some insight into the kinetics of CO, conversion and how fast they
proceed, we discuss first the following situation. Into pure water with pH =7 a
certain amount of CO, is dissolved instantaneously and then the system is closed.
We ask for the process of equilibration between CO, and HCOj. One important
point is that for each CO, converted, one HCO;3 and one H is produced. Thus,
the pH value of the solution changes with time. Initially, pH js at 7. With conversion
of CO, the pH drops. In the region of pH < 7, however, only the parallel reaction
I contributes, which is a first- and second-order reversible reaction of Section 4.2.2.2
with [H*] = [HCOj ]. The rate equations are given by Eq. (4.43).

Figure 4.5 shows the time evolution of CO, and HCOj3 and also the reaction
rates as calculated from Eqs. (4.43) and (4.41). The initial concentration of dissolved
[CO%] = 1 x 107> mol I7*. Equilibrium is established within 20 s.

As a second example we take the case where CO3% is dissolved in a buffered
solution with constant pH. In this case the concentrations of H,CO; and HCO3
are related to the total amount of dissolved carbonate species 2[C] = [H,CO;] +
[HCO;] + [CO37]:

Z[C

[H,CO,] = €] — % Z[C];

1+ Ky,co, Ki,co, K2

VH'?HC03[H+] ’))]%I'YC03[H+]2
2[C

[HCO;] = - [€] = o 2[C]. (4.48)

14 [(H ]?’HVHCO3 + Kz?nco3

KHZCO3 YuYco, [H*]

These equations are analogous to Egs. (2.10) to (2.13). The only change is substitut-
ing [H,CO%] by [H,CO;] and K, by Ky co,-
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The total forward reaction is then:

dfCO.] _ —k*[CO,] (4.49)
dt
and the back reaction gives:
d[CcO
L " 2] _ (k7o + k;ap)X[C] = k' X[C]. (4.50)

Provided that at t = O the initial carbonate species is exclusively CO, we have:
[CO,], = [CO,] + 2[C]. 4.51)

The total reaction rate is then obtained by adding forward and back reaction rates
as:

d[CO,]
dt
This is a pseudo first-order equation (cf. Sect. 4.2.2.1).
Equilibrium is approached by an exponential with time constant:
1
Skt 4k

Figure 4.6 shows the half-lifetime and the time to attain 999 of the equilibrium
values as a function of pH.

—(k* +k7)[CO,] + K'[CO,1°. (4.52)

Ty (4.53)

sec

10'4 +

. Fig. 4.6. Time for 509, (curve A)and 99% (curve
B) equilibration in the reaction converting
. CO, into carbonate species Y [C] (Usdowski
2 . § 8 10 12 pH 1982)
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The process is slowest at pH & 7.5 as we stated before.

The third example is important in calcareous solutions. In this case a large
concentration of HCOj due to the calcite dissolved is present. Therefore, in a good
approximation we can assume HCOj; to be constant if not too large amounts of
CO, are added to the solution.

The reaction rate is then given:

d[CO,] _
dt

—k*[CO,] + k" [HCO51]. (4.54)

Since [HCOj ] is constant and in such a buffered solution the change of pH on
addition of CO, is moderate. Therefore, k™ in the last term in Eq. (4.54) can be
considered as constant. Thus, the reaction is pseudofirst-order and proceeds ex-
ponentially with a time constant:

T, = L/k* . (4.55)

The value of k* can be taken from Fig. 4.4. Below pH = 7, T; = 38 s, above pH = 8
there is a strong increase and at pH = 10, T, = 1 s.

4.4 Mixed Kinetics

So far we have discussed two extreme cases. In the first one, mass transport is entirely
determined by diffusion, whereas in the other one chemical rate laws control the
processes exclusively. In many processes, however, both diffusion and chemical
reactions, are of comparable effectiveness, and we have the case where diffusion and
rate laws simultaneously control what happens.

To obtain some insight into this regime of mixed kinetics we consider the
following situation as illustrated in Fig. 4.7. The concentration of a molecular
species, dissolved from the surface of a solid, has concentration c, at the solid-liquid
interphase at x = 0. There is a layer of thickness ¢ where diffusion is controlled by
the molecular diffusion coefficient D. Outside this layer the liquid is in turbulent
motion and the coefficient of eddy diffusion is high, such that no concentration
gradients can exist and everywhere in this region ¢ = cg. For simplicity we assume

2N
V&QL
] C5Res
TURBULENT

~C
. (.\\\\j:{)
Co >\/C = Cg C,
g ( f\’) L/\ Fig. 4.7. Boundary conditions for transport of chemically react-
. 9 . oo .
ing species dissolved from a solid at x = 0 (see text)

x=0 x=¢€
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that the volume of the turbulent region is extremely large, such that the solution is
infinitely diluted and ¢z = 0. Now the molecules in the liquid react in a homo-

geneous, first-order chemical reaction with reaction rate:
dc
— = —kc. 4.56
dt (4.56)

Mass transport of the species by molecular diffusion from the surface across the
layer into the turbulent region is described by Fick’s second law, Eq. (3.13):

Jc o%c
—=D— —kc. 4.57
ot oxr ¢ (*37)
In the stationary state the time derivative is zero and we have:
0%c
Feh kc . (4.58)

The solution to this equation reads:

c(x) = Aexp(—x/A) + Bexp(+x/1); A=./D/k; (4.59)

and A and B are calculated from the boundary conditions:

A —co exple/d) ] B - coexp(—e/A)
" exp(—e/A) — exp(e/d)’ " exp(—s/h) — exp(e/d)

Figure 4.8 illustrates this solution for three cases. In the first case, 1 « & This is
shown for 4 = 0.1¢ and A = 0.2¢. There is a steep descent of the curves which is
determined by an exponential decay resulting from the first term in Eq. (4.59). Thus,
the molecules after penetrating the distance A, called the diffusion length, have
undergone a chemical reaction. Therefore, 4 is the penetration distance, which
molecules can diffuse in average until a chemical reaction occurs. The larger the
rate constant k, the shorter is the distance. So A > ¢ is the case of fast chemical
reaction and the entire reaction proceeds within a small layer with thickness A.

If the reaction is slow, i.e. k is small, we have the other limiting case, where
A > &. The linear curve in Fig. 4.8 results for 4 > 3e. Here, mass transport is entirely

(4.592)

1.0
0.5
23
05
i 02
¢! Fig. 4.8. Stationary concentrations for mass transport by dif-
0 T fusion and a simultaneous, first-order chemical reaction for the

boundary conditions as described in Fig. 4.7. Numbers on the
X/€ curves give values of /e (see text)
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by diffusion, since the reaction is so slow that all molecules can cross the layer ¢
without reacting. In this limiting case. Eq. (4.59) can be approximated to a high
degree of accuracy to:

c(x) = co- (1 - %) . (4.60)
A solution identical to Eq. (4.60) is obtained from Fick’s second law without a
chemical reaction, i.e. k = 0 (cf. Eq. 3.26).

The intermediate case, where A = ¢ is illustrated by A = 0.5¢. Most of the
molecules are transported into the bulk by diffusion: There is, however, a chance
of reaction for a sufficiently large part of them. This is the reason why the curve
bends below the linear one.

The flux from the surface at x = 0 can be calculated by differentiation of Eq.
(4.59) as:

dc D 1+ exp(—2¢/4d)

-D———=—¢y——-—-———=F.. 4.61
oxx=0 4T _exp(—2e/d) (4.61)
In the case 4 > ¢, i.e. pure diffusional control, the flux is:
D
F="e,. (4.62)
e

The ratio of flux F, with a chemical reaction to the flux F; without a reaction is
given by:

( F. & 1+ exp(—2¢/4)

“TE A Tew(—2) e

Thus, the presence of a fast chemical reaction enhances mass transport from the
wall of a solid by factor f,. This is often called chemically enhanced diffusion.

One interesting point is that this chemically enhanced flux no longer depends
on the thickness ¢ of the water layer, as soon ¢ exceeds ¢ > 34. Figure 4.9 shows
the flux F given by Eq. (4.61) as a function of the thickness ¢ of the layer. The flux
approaches a constant value for ¢ > 21. We will encounter this situation as an
important feature in the dissolution of calcite (cf. Chap. 7).

Fig. 4.9. Chemically enhanced flux F_ (Eq. 4.61) as
a function of ¢/4i. Note that at large ¢ » A the flux
| becomes independent of ¢ and is determined en-
0 i . . tirely by the depth 1 of the reaction zone and the
0 1 2 3ENn constant of diffusion D
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In our example we have implicitly assumed that the concentration ¢, at x = 0
remains constant, irregardless of the extent to which mass transport is enhanced
from the solid by a chemical, homogeneous reaction in the solution. In other words,
the reaction releasing the molecules from the solid is infinitely fast and each molecule
removed from the surface, whether by diffusion into the solution or by chemical
reaction, is replaced immediately. Very often this is not the case and the hetero-
geneous reaction at the surface plays an important role. Again, we consider the
geometry shown in Fig. 4.7. But now we assume that there is no homogeneous
reaction in the solution. Instead, the heterogeneous reaction at the surface of the
solid has finite rates. The flux thus resulting from the wall is given by:

F. = k(ceq — €o) » (4.64)

where ¢, is the concentration at which equilibrium is established, and no further
dissolution is possible, i.e. F, = 0.

The flux removed from the surface by diffusion into the bulk is given by using
Eq. (3.27) which reads then:

D
F, = -|~~g~(c0 —cg) = k%co — cg) . (3.27)

Since in the dissolution process the amount of substance released from the solid
phase equals the amount removed from the surface by diffusion, we have:
F,=F,. (4.65)

From this condition we can calculate the concentration c, at x = 0, which depends
on the reaction rate constant k:

ke, + kicy
Inserting this into Eq. (4.64) one obtains
k-k¢
g (Ceq — Cg) = a(Ceq — Cp) - (4.67)

Thus, the flux established depends simultaneously on the heterogeneous reaction
rate at the surface, ie. k and ¢, and on the transfer coefficient k¢ resulting from
diffusion with diffusion coefficient D across the layer of width .

In the case of a very fast reaction at the surface, i.e. k > k9, the mass transfer
coefficient « is determined entirely by diffusion:

o = k9. (4.68)

In the other extreme limit, i.c. a very slow heterogeneous reaction with k « k¢, we
have:

o=k and Co=Cpq- (4.69)

Here, the heterogeneous reaction is rate-determining and the diffusional flux is
extremely low. Therefore, the force, driving diffusion, i.e. the concentration gradient,
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is small also and cg must be lower than c., only by a very small amount. In the
extreme case of k® = 0, no dissolution takes place at all (F = 0) and cg = ¢, which
also comprises F = 0.

One further remark concerning Eq. (4.67) should be given. The flux F is given
by the concentrations cg and c.,. Both concentrations can be measured and one
has a law, which can be directly verified experimentally. In principle, this law relates
to an overall reaction, since the intermediate steps are hidden in the constant a,
which is also determined experimentally.

In many experiments one finds dissolution rates from solids which can be
expressed by empirical laws:

F= P (ceq - CB)n ’ (4'70)

where n > 0. Values of n up to n = 4 have been observed for instance in dissolution
experiments on calcite (Plummer and Wigley 1976). Empirical laws of this type
usually result from complex mechanisms operating simultaneously.

There may be parallel heterogeneous reactions at the surface with differing
reaction orders and also homogeneous reactions in the solution, for instance the
reaction of CO, into HCOj in the dissolution of calcite.

To really understand therefore dissolution processes one has to disentangle all
these mechanisms.



5 Hydrodynamics of Flow

Flow of groundwater in karst areas covers a wide field of hydrodynamic conditions.
There is diffuse flow through partings in the rocks, such as joints or beddings, which
initially, i.e. prior to widening by dissolution, might have apertures as small as
2 x 1072 cm (Davis 1968). To describe the hydrodynamic properties of these
pathways of flow, one may visualize these partings either as two parallel planes with
a fixed distance, or as a two-dimensional porous medium. In any case flow is laminar
and flow velocities are small, in the order of 1072 cm s™!. Thus, diffuse flow is
characterized by a long retention time of karst water in the rock. The springs fed
by this kind of water, which has sufficient time to equilibrate with respect tem-
perature and chemical composition, usually show only small variations in tem-
perature and are close to calcite saturation. Due to the long retention time of water
and the large storage volume of the aquifer, they react slowly to flood pulses.

In contrast, flow also takes place in pipelike conduits, which have been created
by solutional activity. If the diameter of these conduits exceeds 1 cm, flow in these
pipes becomes turbulent and flow velocities are high in comparison to the laminar
flow regime. Springs fed by these conduits are termed conduit springs. Since the
retention time of water in conduit aquifers is short, these springs show large
variations in temperature and chemical composition. They react very quickly to
flood pulses, since the runoff from a pipe system reacts practically instantaneously
to changes in pressure heads. Examples of both types of springs and their classifica-
tion were first given in much detail by Shuster and White (1971).

Figure 5.1 illustrates these two end-member flow systems. Of course, there are
many intermediate cases possible, e.g. where springs are fed from feeders of both
kinds simultaneously.

The average velocities of karst waters from the above considerations are ex-
pected to be in the range between 107> cm st upto 1 ms™.

Milanovic (1981) reported investigations of average velocities in karst water
flow in the Dinaric karst. From a total of 281 dye tests the histogram shown in Fig.
5.2 was obtained. The diagram shows the most probable velocity to be in the region
of a few cm s, whereas velocities above 20 cm s™! are scarce. This indicates that
in this highly karstified area most of the flow occurs in relatively small conduits
with diameters in the order of a few centimetres. As we have discussed already in
Chapter 3, mass transport of dissolved limestone away from the walls of the rock
depends critically on the hydrodynamic conditions. Therefore, the understanding
of karstification processes must also be based on the knowledge of the basic
principles of hydrodynamics of flow. These will be discussed in the following
sections.
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Fig. 5.1. Schematic representation of flow systems in karst. Diffuse flow system results from flow
through narrow partings. Conduit flow systems are due to pipe flow in cave passages (Shuster and White
1971)

Fig. 5.2. Histogram of the percentage distribution of the most frequent groundwater flow velocities in
the Dinaric karst (Milanovic 1981)
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Fig. 5.3. Trace of injected dye in laminar
i flow (upper part) exhibits a streamline (dotted
%'E'fslﬁj:}ﬁ:ﬁ.?gtféfiﬁ;;:; line). In turbulent flow (lower part) eddies
e - occur

5.1 Laminar and Turbulent Flow

The different types of flow can be visualized by Reynolds’ experiment. From a large
reservoir of water, flow through a circular pipe is maintained as shown in Fig. 5.3.
Dye is injected into the centre of the flow tube. At small flow velocities a streamline
coloured by the dye appears. Each parcel of fluid has its predetermined path to
follow, which therefore is marked as a streamline by the dye injected. If one separates
two different, individual small parcels of water, even though they may deform, their
pathways never cross each other and mixing of the fluid contained in the parcels is
impossible.

If one increases the flow velocity, the previously well-defined path, marked by
the dye, starts to blur and eddies occur. At still higher velocities within a short
distance from the inlet, complete mixing results. In this case we have fully turbulent
flow. In turbulent flow pathways of individual parcels of fluids become chaotic, and
after a short distance of travel, crossing to other pathways occurs with complete
mixing of the contents of different water parcels.

The reason for this behaviour lies in the action of two forces of different origin
on a volume element. One is the friction between neighbouring water layers repre-
sented by the viscosity. The other is the force of inertia, which is related to the
acceleration of volume elements along their pathways. At small velocities accelera-
tions and therefore forces of inertia are small compared to those exerted by viscosity.
Thus, fluctuations which are capable of driving a small volume of water away from
its path, determined by the equation of motion, are damped and flow is along
individual streamlines.

If the velocity increases, then the forces of inertia also increase, which eventually
rule out those of viscosity. Then small water parcels are driven out of their stream-
lines and penetrate into other ones. Thus, flow becomes turbulent and large
fluctuations in velocity arise. The criterion to decide whether flow will be laminar

or turbulent is given by Reynolds number, Ng,. This dimensionless number is given
by:

Nge = (5.1)

where v is a characteristic velocity, e.g. the average flow velocity in the tube, d is a
characteristic geometric dimension, i.e. the diameter of the tube, and v the kinematic
viscosity. In smooth tubes for N, < 2000 flow is laminar. For Ny, > 2000 turbulent
flow is gradually established, which becomes fully turbulent at Ny, = 10000.
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5.1.1 The Law of Bernoulli

Karst water aquifers to a considerable extent can be described as a complex,
interconnected system of conduits with varying dimensions in which accordingly
laminar or turbulent flow exists. This flow is driven by height differences be-
tween the input and the output. The most important equation which governs the
hydraulics of such a system 1s the law of Bernoulli, which relates flow velocities in
a conduit to pressure and elevations.

Let us consider the motion of volume element dV of the liquid. From Newton’s
equation of motion we have:

dV~pi—:=(G+P+Z)-dV, (5.2)
where p is the density, G is the force per volume due to gravitation, P that due to
the pressure p and Z due to friction by viscosity. The work done, after the element
has travelled a distance ds, is obtained by multiplying Eq. (5.2) by ds. The work dW
is done on that element dV by the forces on the right-hand side of Eq. (5.2). Since
the liquid is incompressible, no work for deformation of dV is performed. From
Eq. (5.2):

d
dW = (G + P + Z)dsdV = p~dV~T:ds = pdV(dv-v), (5.3)

d
since ds/dt = v and therefore d—:'ds = v-dv.

2

Using d <v7> = v-dv we obtain:

2
dW=(—pg-dh—dp+st)dV=p'd<v7>'dV. (5.4)

The right-hand side of this equation gives the change in kinetic energy. The first
term in parentheses is due to the change of potential energy given by — pgdh; g is
the acceleration due to earth’s gravity. This represents the loss of energy when a
unit element of volume drops by the height dh, related to ds. The second term (dp)
represents the change in hydrostatic pressure p along ds and gives the work done
by pressure forces. The negative sign denotes the fact that the kinetic energy of an
element of volume increases with decreasing pressure. Finally, the last term Zds is
work done by friction, which is lost as mechanical energy and converted into heat.
Rearranging Eq. (5.4) yields:

2
d<pgh +p +pV2> — Zds = dh,, (5.5)

which by integration gives:

2
h+—p~+v—+hf=const;
rg 28
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Fig. 5.4. Bernouilli’s law illustrated in a tube with
varying cross-section. Without frictional losses
h + p/pg at the inlet and the outlet are equal due
to equal flow velocities. The arrows indicate the
pressure py if frictional loss is existent. In the narrow
part of the tube hydrostatic pressure is low due to
the larger velocity v, > vo; p{ indicates the hydro-
static pressure with frictional loss

zZ
hy = — = -ds. (5.6)
' jpg

This is the usual form of the general Bernoulli equation. Its meaning is visualized
in Fig. 5.4. A fluid flows from height h, through a tube of varying diameter. We
assume entrance and outlet diameters to be equal. The flow velocity is v, at the
inlet and also at the outlet. At h, the hydrodynamic pressure is pg.

1. We first assume friction to be negligible, i.e. h; = 0. Then Eq. (5.6) states that
everywhere in the tube:

2 2

he Py —pg+204 %0 5.7)
g 2g pg 28
By measuring the hydrostatic pressure as indicated in Fig. 5.4, one finds:
p vg—v?
— =(hog —h) + po + >— (5.8)

pe 2g

Thus, hydrostatic pressure increases at the dispense of height loss and decreases
with increasing velocity as is the case in the place with narrow diameter, where
according to mass conservation the equation of continuity holds:

VoAo = V;A,, (59)

where v, is the velocity in that part of the tube with the cross-sectional area A, and
v, is the velocity where the cross-sectional area is A ;.
2. If friction is present, Eq. (5.5) tells us:

Zd 2

dhf=J=d<h+£+L>. (5.10)
rg rg  2g

Thus, there is a continuous loss of energy as the fluid moves along the streamline.

This can be seen in Fig. 5.4, where the arrows indicate the hydrostatic pressure

height p/pg, if friction is present.
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\/\ Fig. 5.5. Velocity distribution in a circular or flat rectangular
|32 h 2 channel in laminar flow

5.1.2 Laminar Flow

We consider a fluid flowing down a circular tube of length 1 and radius R, the
entrance of which is at height h, and pressure p,. The outletis ath, and p,. Laminar
flow in this tube is characterized by a parabolic velocity distribution which is given
by:

p1 — p2 + pg(h; —hy) :(RZ —r1?)-4P

_(R2_ .2
v =R —r%) dnl anl

(5.11)

AP is a generalized pressure comprising the difference in hydrostatic pressures at
both ends of the tube and the head h; — h,, and # is the viscosity.

This equation states that at the wall of the tube, i.e. r = R, the velocity is zero,
as expected due to adhesive forces exerted by the wall to the molecules of the liquid.
The velocity distribution is shown by the arrows in Fig. 5.5.

The average velocity can be obtained by integration:

R> AP R’pg AP _ pgR?

T = 5.12
YT 87 pg'l 8y 612
J is called the hydraulic gradient.
The volume rate of flow Q is then:
R4
Q= nR2V=n8—n~J. (5.13)

The energy head loss h; resulting from friction can be calculated by use of Eq.
(5.10). Regarding the fact that v is constant over the whole length of the tube, one
finds:

h = (h, — hy) + 22— P2 (5.14)
e
which in combination with Eq. (5.12) yields:
8yl _
hfngR2 V. (5.15)

Laminar flow in karst systems very often is along joint partings which can be
modelled by narrow, parallel slits with distance d. In this case one obtains a velocity
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distribution:

o= (i —ha)pg +p, — p, (dz B Zz)’

2q91 4

(5.16)

where the coordinate is perpendicular to the confining plane and z = 0 is at the
centre of the slit. The average flow velocity is:

2 _ _ 2
g red” ((h—hy)+(p, —pa)ieg) _ped” | (5.17)
125 1 125
The volume rate is:
d3
Q=vw-a="EV9 (5.18)
129

where W is the width of the slit. It should be noted that the expressions above are
related to the case of a narrow slit, i.e. W » d.
The head loss by friction h; is given by:

1291
[ e
T pgd?

Flow rates for tubes of non-circular cross-section are calculated by multiplying
Egs. (5.17) and (5.18) by a geometrical correction factor M (Beek and Mutzall 1975).
Figure 5.6 shows this correction factor for various shapes.

Both geometries show commonly the characteristics of laminar flow in general:

1. Average flow velocity or volumetric flow rate depend linearly on the driving
force J called the hydraulic gradient;

2. Energy loss due to friction depends linearly on the average flow velocity.

There is an analogy between laminar flow in conduits and flow of electric
current in resistors due to statement (1) and the continuity equation. The latter
expresses the fact that at each point of any network of conduits the rate of flow to
the point equals that away from it. Thus, any laminar flow network can be simulated
by a corresponding network of resistors and voltages.

(5.19)

5.1.3 Turbulent Flow

In turbulent flow velocity fluctuations of the individual atoms occur. There is,
however, a time-averaged velocity of the flow which describes the transport of the
liquid. Velocity distributions for turbulent flow in conduits are therefore to be
described in terms of this time-averaged velocity. In the following we consider
turbulent flow in a circular conduit. In the centre of this circular tube there will be
clearly a time-averaged flow velocity. Random fluctuations move particles on
chaotic path lines along the average velocity. At the wall of the tube, because of
adhesive forces, the flow velocity is zero and there are also no fluctuations. With
increasing distance from the wall, the velocity and the fluctuations increase until
both velocity and fluctuations reach a maximum.
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Fig. 5.6. Correction factors M for various geometries of conduits for laminar flow velocities (see text)
(Beek and Mutzall 1975)

A crude model of the velocity distribution and fluctuations is presented in Fig.
5.7. Close to the wall one has a viscous sublayer, where the motion of the liquid is
described as in laminar flow. In this region turbulent fluctuations are small and
random motion is almost entirely due to Brownian motion of the molecules. Mass
transport is due to molecular diffusion. Next to this sublayer there is a transition
buffer zone, where velocity and fluctuations increase until the fully turbulent core
is reached. Diffusion by turbulent random motion increases correspondingly which
is characterized by an increase in the effective coefficient of diffusion. In the turbulent
case, flow is fully turbulent, i.e. turbulent random motion determines momentum
and mass transport.
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Fully developed
turbulent flow
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Time averaged velocity

Fig. 5.7. Time averaged velocity in dependence
of distance from the wall of a tube. Random fluc-
tuations are small in the viscous sublayer, but
increase in the buffer zone until they are fully

Viscous sublayer y = Distance developed in the core (Bird et al. 1960)
from wali

The velocity distribution of turbulent flow in a circular pipe cannot be cal-
culated from first principles. One has to use semi-empirical methods (Bird et al.
1960).

Near the wall the velocity distribution can be expressed by:

vi =s*, 0<st <5, (5.20)

where v* and s* are dimensionless and are related to the velocity v and the distance
s from the wall by:

vt :wV;, st = SV*E, v¥ = \/T—T), (5.21)
v n p

where 1, is the shear stress exerted to the wall of the tube by turbulent friction. It
is related to the force acting onto the tube of length 1 and radius R by:

F =1,-2nR1. (5.22)

Thus, the region s™ < 5 defines the laminar viscous sublayer where the velocity
increases linearly with distance from the wall. The buffer zone extends from 5 <
st <26 and v* is given by rather complicated analytical expressions, which will
not be discussed here. They can be found in standard text books, e.g. Stephenson
(1984). For s* > 26 the velocity profile in the turbulent core is given by:

1
*=——Ins* +38. 5.23
v o3¢S + (5.23)
Figure 5.8 plots v* versus s*. The points are experimental data and show good
agreement to the given expressions. Note that s™ is plotted logarithmically.

To obtain the mean flow velocity averaged over the diameter of the tube, one
has to perform an integration of the velocity distribution with respect to s*. Its
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Fig. 5.8. Velocity distribution for turbulent flow in circular tubes. Full line is a semi-empirical expression.
Points are from the experiment (Bird et al. 1960)

result is given by

817,
=, (5.24)
P

VZ
where A is a friction factor, depending on the Reynolds number Ng, only. This is
a very important result as it gives possibilities to determine A; as a function of N,
experimentally.

Since in stationary flow the force exerted by friction along the wall must be
balanced by the force due to gravity and pressure in the same direction, we have:

{pg(h; — h,) + p; — p,}nR* = 27R7,-1. (5.25)

From this we obtain:

_R.4p (5.26
Ty = 77 .26)
Using Eq. (5.24) one finally has:
h 2gd
V==, 5.27

where d, is the diameter of the tube, h is the hydraulic head along the tube length
and is given by:
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4P —
AP 4 PiTPe

=h. (5.28)
g pg

This is the Darcy-Weisbach equation, which states that in contrast to laminar flow,
the average velocity is proportional to the square root of the driving force 4p. For
a straight circular tube Eq. (5.28) states also (cf. Eq. 5.10) that the friction loss h; is
equal to the head h.

The friction factor A; is obtained from Egs. (5.23) and (5.24) and thus depends
on the assumptions made on 1.

For smooth pipes a good semi-empirical approximation is (Stephenson 1984):

1 ,
= 2log(Nge'~/%) — 08 . (5.29)

N

To obtain an expression for the width ¢ of the laminar sublayer we use Egs. (5.26)
and (5.21) to find:

N

&= . (5.30)
p+/Rg-h/l
So far we have considered hydrodynamically smooth pipes. If the wall of the pipe
is rough, we can define roughness by the ratio k/d,, where k is the average height
of the roughness projections. In this case A; can be written (Stephenson 1984) as:

1 k
—= —2log— + 1.14 5.31
\/Z d[ ( )
for large values of k/d,.
Expressions (5.29) and (5.30) can be combined to give the Colebrook-White
formula, covering both smooth and rough pipe walls and also the transition zone:

1 k 51
—=—210g< + 25 > (5.32)

371d, " Ne/7

From the Darcy-Weisbach equation, we can write:

2gh d3?
Nie /2 = %- ‘””. (5.33)
Inserting Eq. (5.33) into (5.32)<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>