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Translators' Introduction:

A Guide For Psychologists

SOME of those who are drawn by the psychological title to choose
this book from the display shelf may be tempted to put it down
when they discover how many pages are filled with v's and D 's or

p's and q's. But their interest is not misplaced, for this is not a work
on logic. It is a book which should be relevant both to the experi-
mental psychologist interested in cognition and to the clinical

psychologist or psychiatrist who deals with children or adoles-

cents and who would like to know more about ego development.

Logic does appear, both in that it is the more strictly logical

aspects of the child's and the adolescent's thinking which make
up the subject matter of the book and in that logical notation is

used to provide a structural model of their thought processes. But

this, we think, is not sufficient reason for putting it down, even
for the person whose traumatic experiences with high-school
mathematics have erected barriers around that part of the cogni-
tive field labeled "abstract symbolism."

Nevertheless, the book poses a number of problems for the

reader who is not familiar with the authors* methods and basic

assumptions and who has no formal training in logic. On the one

hand, it is a new installment in a long series of empirical works on
the child's mental processes: it goes one step more up the genetic
scale and covers the transition to adolescence. But in addition
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and in this respect it goes far beyond most of the earlier works

it is an attempt to isolate and describe the mental structures on

which these reasoning processes are based. It is here that logic

comes in. The empirical material is complemented by a structural

analysis which uses symbolic logic as a tool. The set of mental

structures which characterize the reasoning of the /-ii-year-old
child is isolated and differentiated from the structures which char-

acterize the reasoning of the 12-is-year-old adolescent.

As the authors state in the preface, this is a collaborative work
based on an after-the-fact convergence. Professor Inhelder is pri-

marily an experimental child psychologist and, at the time the

work was conceived, was engaged in the study of adolescent

reasoning. Professor Piaget, on the other hand, is an interdisci-

plinary thinker, and, besides the better known work on the

thought of the child, he has also done independent work in logic.

In comparing results of their respective recent work, it was dis-

covered that Prof. Piaget's logical analysis provided the appro-

priate structural model for the data on adolescent reasoning col-

lected by Prof. Inhelder.

Their collaboration rests on a view of the relationship between

logic and psychology which Piaget has exposed elsewhere.1 To
sum it up briefly, logic and psychology are two independent dis-

ciplines: the first is concerned with the formalization and refine-

ment of internally consistent systems by means of technically

purified symbolism; the second deals with the mental structures

that are actually found in all human beings, independent of

formal training or the use of particular notational symbols and

regardless of consistency or inconsistency, truth or falsehood.

But, although the formalization of systems as an activity in its

own right belongs to logic alone, logic may be applied as a the-

oretical tool in the description of the mental structures that gov-
ern ordinary reasoning, as is done here. As an attempt to describe

such structures, the present work is obviously of interest to the

psychologist. But, since Piaget's work presupposes some under-

standing of the methods and concepts of two fields (and he does

not attempt to translate concepts across academic boundaries for

the uninitiate) his innovations are not easily assimilated. For this

iSee Piaget, Logic and Psychology (New York: Basic Books, 1957).
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reason we will try, in this "Guide/* to furnish a few landmarks for

the psychologist, experimental or clinical, by defining in terms
more familiar to American psychology a few of the basic concepts
used.

Although, over the last few decades, child psychology has on
the whole been a more prominent focus of attention in the United
States than in Europe, the work of the Piaget school has had little

significant influence on this side of the Atlantic. The failure of

the concepts to spread can be explained partially from the fact

that, both theoretically and methodologically, Piaget occupies a

sort of midway point between the main currents in American

psychology. His direct plunge into complex human functioning
and his neglect of tables of statistical significance or systematic

response variation in favor of running commentary on selected

protocols in the presentation of data have separated him from

those groups which most emphasize methodological rigor. But his

work is equidistant from that of the clinically-oriented psycholo-

gists and those currents which touch on sociology, social psy-

chology, or anthropology, since he has no grounding in motivation

theory and for the most part has chosen problems relative to

cognitive functioning taken in isolation from any motivational

variables. Moreover, since both sides of the American psycho-

logical world tend to divorce themselves from any philosophical

tradition, his rationalist framework and ventures into philosophy
have not been easily assimilated by either. Perhaps one could say

that Piaget uses logic in a way analogous to the American use of

theories of motivation (either reinforcement theory or psycho-

dynamics) as an external frame of reference for study of the learn-

ing process.

But within its own framework, the Piaget method is both flexible

and coherent and in a sense reconciles clinical and experimental

approaches. Its basis is genetic i.e., intelligent behavior is ana-

lyzed with respect to the growth continuum. It is experimental in

that constant problems or questions are presented to children

of varying ages in samples large enough for general significance

to be attributed to the differences found between age levels e.g.,

over 1500 subjects were tested for this work. Sometimes tests have

been used; in these cases, success at a particular age is judged
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on the basis of a statistical norm.2 Other quantitative devices, such

as counting the occurrence of certain types of logical connectives

relative to age in the spontaneous speech of children, have been

used. For further problems, where response types may only par-

tially correlate with age, medians have demonstrated that the age
variable accounts for at least some of the systematic variation.3

Thus some measurable growth in intelligence has been isolated.

But Piaget has not restricted his work to the gathering of meas-

urable data. Like most clinicians, he has been very much con-

cerned with some of the limitations and systematic biases inherent

to quantifiable tests. Given the goal of describing the spontaneous

intelligence of the child rather than his intelligence as seen through
adult eyes, he usually chooses questions and evaluates answers

in a way which the psychiatrist will find more sympathetic than

will the experimental psychologist. Some works in particular

The Child's Conception of the World 4 are based almost entirely

on an intuitive attempt to explore an inner world and use no

methodological paraphernalia beyond the skillful choosing of

questions and evaluation of answers.

But, actually, the bulk of the research is neither experimental
nor clinical in these two polar senses. It depends little on quan-
tification of specific responses since intelligence is considered as

a whole and often, as in the present study of prepositional logic,

in its most complex and highly integrated forms. Nevertheless, it

is systematic and empirical in that various aspects of the child's

intelligence have been taken up in turn and examined through
the presentation of the same well-defined questions to large sam-

ples of subjects. And since a continual effort has been made to

test hypotheses and reformulate the theoretical whole during
more than twenty-five years of work, a solid body of knowledge

2 A test is not considered passed until 75 per cent of the children tested suc-

ceed. See Piaget, Judgment and Reasoning in the Child (Humanities Press,

1952)-
& See Piaget, The Moral Judgment of the Child (Free Press, 1948). It was

discovered that children's expectations in regard to punishment differ sig-

nificantly with age and at least to some extent independently of family social-

ization methods,
*
Piaget, The Child's Conception of the World (Humanities Press, 1951).

See the introduction to this work for a view of the relationship between testing
and clinical method and a conception of the latter as used for the understand-

ing of the child's mentality.
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has been obtained. The criticism has been made that neglect of

motivational factors detracts from the significance of the results.

But, as Piaget states in the Genetic Epistemology,
5 the difference

between science and philosophy is that the former tries to relate

everything to everything else whereas the latter tries to delimit

problems and find specific methods for dealing with them. The
problems concerning validity of this schema across cultural lines,

variation in function of motivational factors, etc., are still open.
6

In the last chapter of this work, the authors go beyond the purely

cognitive and attempt to draw out the consequences of intellec-

tual development for the affective and social psychology of the

adolescent.

Over the series of works which attack intelligence at different

points on the growth continuum and focus on different functions,

the over-all aim has been to trace the development of intelligence
as it comes to deal with increasingly complex problems or as it

deals with simple problems in increasingly more efficient ways.
The following are the four major stages of growth which have
been delineated; the present work deals primarily with the transi-

tion from the third to the fourth. 7

The first, covering the period from birth to about two years, is

the sensori-motor stage. This is when the child learns to coordinate

perceptual and motor functions and to utilize certain elementary
schemata (in this context, a type of generalized behavior pattern
or disposition) for dealing with external objects. He comes to know
that objects exist even when outside his perceptual field and

coordinates their parts into a whole recognizable from different

perspectives. Elementary forms of symbolic behavior appear, as

5
Piaget, Introduction & r&pistemologie gntique (Presses Universitaires

de France, 1950), Vol. I, p. 7.
6 Some attempts have already been made to combine the findings of Piaget

with those of psychoanalysis. Piaget himself takes up problems relative to

affectivity and discusses the relationship between his own theory and that of

Freud in Play, Dreams, and Imitation in Childhood (Norton, 1952), and
Charles Odier, in Anxiety and Magic Thinking (International Universities

Press, 1956), attempts to relate the psychoanalytic theory of regression to

Piaget's model of the early stages in ego formation. See also Rapaport, David,

ed., Organization and Pathology of Thought (Austen Riggs Foundation, 1951 ).

pp. 154-92.
7 Concise definitions of the stages can also be found in Tanner and Inhelder,

eds., Discussions on Child Development (Tavistock Publications, 1956), and

Piaget, The Psychology of Intelligence (Routiedge & Kegan Paul, 1956).



Otii TRANSLATOKS INTRODUCTION

for example in the child who opens and shuts his own mouth while

"thinking" about how he might extract a watch chain from a half-

open matchbox. Expressive symbolism is also seen, as when

Piaget's daughter at one year and three months lies down and

pretends to go to sleep, laughing as she takes a corner of the

tablecloth as a symbolic representation of a pillow.
8 From the

behavioral standpoint, this period is covered in The Origins of

Intelligence in Children 9 and from that of the organization of

the perceptual field and the construction of the permanent object
in The Construction of Reality in the Child.10

The preoperational or representational stage extends from the

beginnings of organized symbolic behavior language in particu-

laruntil about six years. The child comes to represent the external

world through the medium of symbols, but he does so primarily

by generalization from a motivational model e.g., he believes

that the sun moves because "God pushes it" and that the stars,

like himself, have to go to bed. He is much less able to separate
his own goals from the means for achieving them than the opera-
tional level child, and when he has to make corrections after his

attempts to manipulate reality are met with frustration he does so

by intuitive regulations rather than operations roughly, regula-

tions are after-the-fact corrections analogous to feedback mecha-

nisms (cf. note p. 246). In the balance scale problem (Chap. 11),

for example, we see that the preoperational subjects sometimes

expect the scale to stay in position when they correct a disequilib-

rium by hand. They may, from an intuitive feeling for symmetry,
add weight on the side where it lacks but may equally well add
more on the overloaded side from a belief that more action leads

automatically to success.

Protocols on this stage are found throughout the works, includ-

ing this one. The Child's Conception of the World gives it the most

attention from the standpoint of thought content. The Child's

Conception of Space
n takes up where The Construction of Reality

leaves off in dealing with the perceptual aspect and the structuring
of the spatial field.

8
Play, Dreams, and Imitation in Childhood, p. 96.

$ International Universities Press, 1952.
10 Basic Books, Inc,, 1954.n

Piaget and Inlielder, The Child's Conception of Space (Routledge &
Kegan Paul, 1956).
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Between seven and eleven years, the child acquires the ability to

carry out concrete operations. These greatly enlarge his ability to

organize means independently of the direct impetus toward goal

achievement; they are instruments for dealing with the properties
of the immediately present object world.

The stage of concrete operations has probably been more exten-

sively studied than any other, but it is also that at which the

greatest gaps are found in the list of English translations. The
Child's Conception of Physical Causality

12
is especially interest-

ing in that it covers many of the experiments used here, but it was
written before the major phase of theoretical development. The
Child's Conception of Space is theoretically closer to the present
work and is in a sense its complement in covering the transition

from the preoperational stage to the stage of concrete operations;
it presents more fully some of the logical formulations used as the

base line for discussing the transition to adolescence.

The fourth and final phase, preparatory to adult thinkuag, takes

place between twelve and fifteen years and involves the appear-
ance of formal as opposed to concrete operations. It is covered for

the first time in detail in this work. Its most important features

are the development of the ability to use hypothetical reasoning
based on a logic of all possible combinations and to perform con-

trolled experimentation.

Both the third and the fourth stages are operational as distin-

guished from the first two. The concept of operation has been
elaborated gradually since Piaget's early work, partly in response
to criticisms from Anglo-Saxon psychology

13 that the verbal

aspects of intelligence had been overemphasized at the cost of

actions. An operation is a type of action: it can be carried out

either directly, in the manipulation of objects, or internally, when
it is categories or (in the case of formal logic) propositions which

are manipulated. Roughly, an operation is a means for mentally

transforming data about the real world so that they can be organ-
ized and used selectively in the solution of problems. An opera-

tion differs from simple action or goal-directed behavior in that

it is internalized and reversible. According to the authors: 14

12 Harcourt, Brace and Co., 1930.
18 Logic and Psychology, p. ist.

14 Definition given by the authors.
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An operation is a reversible, internalizable action which is bound up
with others in an integrated structure.

From the equilibrium standpoint [see Chap. 16], a transformation is

reversible when it gives rise to complete compensation. From the struc-

tural standpoint [see Chap. 17], it is reversible when it can be canceled

by an inverse transformation (as for example the direct and inverse

operations comprising the "group" of transformations found in formal

thinking) .

The simplest definition of a reversible operation as it can be

observed in concrete stage behavior is an action already performed
which is symmetrically undone: e.g., the child who puts a weight
on the balance scale and realizes that it tips too far can take it

off and search systematically for a lighter one, rather than add
more weight simply for the sake of corrective action. With the

advent of operations, the margin of trial-and-error is greatly de-

creased because the child selects means on the basis of an internal

structure (in this example the structure is a serial order of weights).

But even the most complex operations of prepositional logic are

seen as having their beginnings in actions which when internalized

develop into highly differentiated mental structures.

From the theoretical standpoint, it is the structural integration

of concrete and formal operations which is the principal concern

of the present work. Although the number of intelligent acts of

which a child is capable at any given age obviously depends on

learning in a quantitative sense and on the situations which he

happens to confront, the range of available operations can be

described in terms of a limited number of interdependent struc-

tures. The structures found and the way in which they are in-

tegrated depends on the stage of development considered; each

set of structures can be related to a particular group of logical

forms. Thus the concrete structures depend on the logic of classes

(for class-inclusion operations) and the logic of relations (for

serial-ordering), whereas the adolescent's propositional logic de-

pends on the integration of "lattice" and "group" structures in

the structured whole. This obviously does not mean that the child

or the adolescent acquires class logic or propositional logic in a

formal sense. Rather, it means that in dealing with concrete prob-
lems he arrives at answers which imply the presence of certain

logical forms although he does not isolate them from content as
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does the logician. The logical forms both are present in the child's

reasoning and serve as a structural model for analysis of it

The structures are integrated at each stage in the sense that

each partial operation is used in relation to the totality of those

which are available: 15

Structural integration occurs when elements are brought together in a
whole which has certain properties as a whole and when the properties
of the elements depend partially or entirely on the characteristics of

the whole. Some examples are: classifications, serial orders, correspond-
ences, matrices, "groups," lattices, etc.

Each set of structures has its limitations in terms of the field which
can be covered. The concrete stage protocols show the point at

which the limits of the "grouping" structures are reached, neces-

sitating the development of a new form of integration.

Below are some definitions of the operations based on the "group-

ing" structure which develop during the concrete stage (see Mays'
introduction to Logic and Psychology for a more formal set of

definitions):

i. Class inclusion operations. These relate to the child's abil-

ity to manipulate part-whole relationships within a set of cate-

gories. In order to define the operations for class inclusion,

logicians use the terms addition, subtraction, and multiplication
in a qualitative sense which is analogous to their use in defining

arithmetical operations. Two classes can be added up so that they
are included in a larger one: boys + girls = children; children +
adults = people i.e., A -f- A'= B. By the same token, a part can

be subtracted from the whole: people adults = children. When
the child can do this systematically, reversibility is present in that

when the child needs to generalize or discriminate he can pass

from the part to the whole and back again.

Likewise, classes can be multiplied. The child obtains four sub-

classes by discriminating between objects or properties accord-

ing to two intersecting criteria: A (geometric figures) divided into

B (squares) and B' (circles) and multiplied by (X) AI (their colors)

B (red) and B\ (green) gives BBi + BB'i + B'Bi + B'B'i (red

squares, red circles, green squares, and green circles). These are

the double-entry tables referred to frequently in the text. The
i 5 Definition given by the authors.
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class multiplication operation is the means the 7-n-year-old
child uses for discriminating between two (or more) independent
variables.

Such relationships seem obvious, but experiments have shown

that they are not made systematically when the preoperational

child uses categories. Before the age of about seven, for example,

children, given a box containing about eighteen brown and two

white beads, all wooden, and asked whether there are more brown
or more wooden beads, reply that there are more brown ones

because only two are white,16 That the categories are available

and observations correct is shown by the fact that the younger

children, when asked the questions separately, give correct an-

swers as to the relative proportions of brown, white, and wooden
beads. However, without class inclusion operations they cannot

deal with the parts and the whole at the same time, and thus they
make a false generalization.

2, Serial ordering operations. These operations relate to abil-

ity to generalize along a linear dimension or to arrange objects

(or their properties) in series. They are based on the logic of rela-

tions rather than class logic: the signs are > and < (greater than

or less than). At about seven years, when the child is given a set

of sticks to arrange in order of size, he proceeds by taking the

smallest first (or the largest), then the smallest of those which are

left, and so on, rather than beginning at random and rearranging
when discrepancies are noticed. Mentally he is able to conclude,

from A > B and B > C, that A > C. Other empirical factors are

ordered in the same way at different points during the concrete

stage e.g., weights are ordered later than lengths, at about nine

to ten years. When he has acquired serial ordering operations, the

child is able to register in detail the changes in magnitude of a

given variable e.g., in the angle problem (Chap, i), he sees that

the ball's course changes in direct relation to his angle of firing.

Actually, in the mental operation he puts the angles into a series

of increasing magnitude of which each member corresponds to

a trial.

Secondly, given two independent series, the child learns to find

correspondences between them (sign <-). In other words, he be-

gins to relate two variables accurately by observing concurrent
16 The Psychology of Intelligence, p. 133.
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changes. In the angle problem he sees that the series of angles of

firing corresponds to the series of angles in the ball's course to-

ward the goal, thus he is able to adjust his firing correctly. As

opposed to the preoperational child, he comes to know which
means goes with which end.

In sum, the concrete operations are based on the logic of classes

and the logic of relations; they are means for structuring immedi-

ately present reality. During the formal stage, on the other hand,
the adolescent comes to control formal logic. Rather than reason-

ing with directly given data alone, he begins to reason with propo-
sitions and with hypotheses. The concept of the "concrete opera-
tion" was developed as a means of applying logical analysis to the

child's operations when he is dealing directly with objects and
thus of avoiding the fallacy of judging the child's intelligence in

terms of that of the logician. But in the study of adolescent rea-

soning, which is much closer to that of the logician than that of

the seven-year-old child, the concept of operation has by no means
been abandoned. Rather, formal logic is also conceived of as a

set of mental operations, although they are based on a different

structure. From one standpoint the formal operations differ from

the concrete in that they are performed on propositions rather

than directly on reality:
17

they are a set of transformations which

can be made as a way of generalizing from the data at hand. As

opposed to concrete operations which are limited to the empiri-

cally given, they make it possible for the subject to isolate vari-

ables and to deduce potential relationships which can later be
verified by experiment.
The propositions on which formal operations are performed

refer both to variables hypothesized as causal and to the effects

they produce in the experimental situation. In the flexibility prob-

lem, for example (Chap. 3), where the adolescent is able to isolate

and combine variations in flexibility (which depends on a number
of factors), what the subject does from the behavioral standpoint

is to ascertain a number of facts and formulate them as proposi-

tions e.g., "This rod is steel; it is also long," "That rod is steel,

but it is shorter," etc. These refer to the potentially causal prop-
erties of the rods he has chosen to test. He also ascertains the

17 This does not mean that fonnal logic is verbal and concrete logic is non-

verbal. (See pp. 252-254.)
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results of his experiments e.g., a long steel rod bends, a short

brass one does not, a short steel one does, etc. The formal opera-
tions enable him to combine these propositions mentally and to

isolate those which confirm his hypotheses on the determinants

of flexibility. The combinatorial system is the structural mechanism

which enables him to make these combinations of facts.

In other words, formal operations are ways of transforming

propositions about reality so that the relevant variables can be

isolated and relations between them deduced. The operations de-

scribed (see p. 103, the sixteen binary operations) are different

kinds of combination, any one of which may be appropriate de-

pending on the particular situation observed. The frequently

recurring term "association" refers to an observed conjunction of

facts e.g., "this rod is steel" and "this rod (the same) bends enough
to touch the water." The kind of relationship formulated depends
on the particular association of facts observed: e.g., implication

means that every time one variable appears in the experimental

situation, a particular result is present every time the string of a

pendulum is lengthened, the amplitude of the swing increases

and if this variable is not present, that result is never present the

amplitude cannot be increased without lengthening the string.

The formula for implication is p D q. Another type of combina-

tion is disjunction e.g., the situation in the flexibility problem
when the subject sees that sometimes short rods bend but at other

times they do not (p.q v p.q v p.q v p.q) you can have short rods

that bend, or short rods that do not bend, or long rods that bend,
or long rods that do not, with v symbolizing "or/* The p's and q's

with their negations p and q stand for the observation that a given
variable or its result is or is not found in the experimental situa-

tion. When the disjunctive relationship is observed, the subject

concludes that length alone does not determine flexibility. Since,

unlike the concrete level child, he does not have to limit his con-

sideration to a single relationship at a time, he can then proceed
to the consideration of other variables which might determine it.

He "feeds" his information into a general mechanism the com-
binatorial system or structured whole which assimilates the facts

in the form of propositions and arranges them according to all

possible combinations (the logical term is composition). He can

move around among these possibilities (there is reversibility and
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complete compensation) so as to select a situation that would tell

him which other variables are involved and which of a number of

potential explanations in fact explain what he saw: for example,
that length alone does not determine flexibility so that another

factor was involved for the short rod that bent; length does par-

tially determine flexibility so that, in the situation in which the

long rod did not bend, there was a counteracting factor, etc. Thus
the prepositional operations always operate as a whole and as a

whole which is structured internally. The adolescent both dis-

criminates between parts (variables or specific events which occur,

such as the rod's bending beyond the degree required for flexibil-

ity, etc.) and generalizes to an over-all explanation of the results

and to other potential situations. As in Gestalt psychology, the

development of thought is seen as moving toward the construc-

tion of wholes, but, as is emphasized to a greater extent, it also

moves toward a finer discrimination of elements within the whole.

The structured whole is structured precisely in the sense that the re-

lationships between its parts are separable as well as integrated.
18

In reading the book, various aspects of the structural model are

best seen in individual experimental problems. Thus, the com-

binatorial system is presented in its purest form in the coloring

liquids problem (Chap. 7) where the experiment itself calls for

the systematic combining of a number of variables given as dis-

crete; the differences between the adolescent method, which goes
around the full circle of possibilities each time, and the child's

method of one-by-one combination, which always leaves some
18 In the translation "structured whole" we have had to sacrifice some of

the connotations of the original in the interest of securing a meaningful and
communicable equivalent. The French term is ensemble des parties, where
ensemble means both "whole" (with the implication of integration as used by
Gestalt psychology) and "set" as used by mathematical set theory. For logicians

the term should be translated "the set of all sub-sets." Readers of Mays' trans-

lation of Logic and Psychology will notice a terminological difference in that

he has used "structured whole" for the more general structures ffensemble.

There are structures d'ensemble, which we have translated as "structural inte-

gration" or "integrated structures," at both concrete and formal stages, but

the type of structure found differs between the two. The combinatorial system
or "structured whole," on the other hand, is the particular type of structural

integration which characterizes formal thinking. Moreover, the term structure

d'ensemble is employed by a school of mathematicians, in particular the

Bourbaki, whose structural research lies at the foundation of this work. Here

also, ensemble means "set" as used in set theory as well as "whole" or "inte-
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steps untouched, become obvious in the protocols. The contrast-

ing process in which discrete variables have to be extricated from
a situation where they appear in combination is described in

Chap. 3, the multivariate flexibility problem. There one sees that

at the concrete stage the variables somehow tend to stick together
once given combinations have been observed in sharp contrast to

the easy detachability from the given which they acquire at the

formal level. In sum, the structured whole, by virtue of which the

subject is able both to combine parts into a whole and to separate
them from it, might be impressionistically characterized as a sort

of mental scaffolding held up by a number of girders joined to

each other in such a way that an agile subject can always get from

any point vertically or horizontally to any other without trap-

ping himself in a dead end. The other structural forms the 'lat-

tice*' and the "group** we had better leave to the logicians.

ANNE PABSONS



Preface

THE DOUBLE TITLE of this work [on the original French edition, it

was De La Logique de I'enfant & la logique de Tadolescent: Essai

sur la construction des structures operatoires formelles] does not

indicate simply that the authors collaborated in a new way, or

simply a desire to distinguish between their respective contribu-

tions to a common task. Actually it reflects the twofold nature of

the questions which they have asked, and it in no way impairs the

ultimate unity of the conclusions. With reference to the choice of

this title, there is an anecdote worth citing, particularly because
it is a good example of how experimental and deductive methods
can at the present time converge in the area of the operational

analysis of intelligence, given a deductive analysis based on pre-
cise logical techniques. It happened that the second author left

his experimental work for a while in order to complete his Genetic

Epistemology* Treatise on Logic, and an Essay on the Transfor-
mations of Logical Operations. The aim of the two latter works

is to furnish a possible symbolic model of the actual processes of

thinking. During this period the first author and her assistants

undertook a systematic empirical study of the induction of physi-
cal laws in children and adolescents. But this genetic study of

experimental induction led to two unexpected results.

ipiaget, Introduction d rpi$tmologie gntique (Presses Universitaires

de France). Volume I will appear shortly in English translation.
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First, in our earlier works we had repeatedly stressed the impor-
tance of the stage of development beginning at 11-12 years. In

our new study it became increasingly clear that this stage was not

simply the culmination point of the /-n-year stage (when con-

crete operations are worked out by the child) but also involved a

period of new structuring leading to another level of equilibrium

at about 14-15 years. So it seemed possible to describe the adoles-

cent's thought in terms of the structuring of certain methods of

experimental induction, and above all in terms of those methods

of systematic verification not found in the child.

As to the second result, the methods of discovery and experi-

mental proof found in the adolescent but not in the child were

shown to be bound up with an entirely new set of operational

structures. These are based on prepositional logic and a "formal"

mode of thought as distinguished from the "concrete" operational

thought found between 7 and 11 years. (The latter requires only
a limited number of operations taken from the logic of classes

and relations.)

The second author intervened at this point, and for the follow-

ing reasons, which well illustrate the convergence referred to

above between the results of experiments and those of deduction.

It became clear that the well-known techniques of prepositional

logic were inadequate to analyze the integrated structures of

operations found in the adolescent's formal thinking. For we also

had to make use of the group of four transformations (inversions

and reciprocities) which one of us has described as necessary to

the functioning of the mechanisms of formal thought.
2

Now, the outstanding feature of the data of the empirical in-

vestigation was that they showed that formal thought is more
than verbal reasoning (prepositional logic). It also entails a series

of operational schemata which appear along with it; these include

combinatorial operations, propositions, double systems of refer-

ence, a schema of mechanical equilibrium (equality between
action and reaction), multiplicative probabilities, correlations, etc.

But in trying to explain how these operational schemata and prep-
ositional logic develop together, we found it was not enough to

2 See Piaget, Trait6 de Logique (Colin, 1949), pp. 264-^286, and especially
Essai sur les transformations des operations logiques (Presses Universitaires
de France, 1952), Chap. II. Neither of these works is available in English.
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refer only to the specific operations of propositional logic. For in

addition and this is most important we have to refer to the

"integrated structures" on which they are based-f.e., to the dual

structure of the lattice and the group of four transformations

(Klein group or Vierergruppe) analyzed by the second author in

his work on the transformation of propositional operations.
In other words, while one of us was engaged in an empirical

study of the transition in thinking from childhood to adolescence,
the other worked out the analytic tools needed to interpret the

results. It was only after we had compared notes and were making
final interpretations that we saw the striking convergence between
the empirical and the analytic results. This prompted us to col-

laborate again, but on a new basis. The result is the present work.

But this is not all. The operational structures of adolescent logic

are not only interesting in themselves; they also cast a backward

light on an earlier set of structures, those of the child's concrete

logic. Actually, the only logical operations the child can handle at

the concrete level are the "elementary groupings" of classes and

relations; the class groupings are based on a form of reversibility

which can be called inversion (negation), and the groupings of

relations on another such form, called reciprocity. At this stage

there is no general structure to integrate transformations by inver-

sion and transformations by reciprocity into a single system. But

analysis of the set of four transformations found in the proposi-

tional logic of the adolescent shows how the two forms of con-

crete operational reversibility finally do come to be coordinated

into a single system.
3 Meanwhile, the combinatorial system of

propositional lattices develops as a result of a generalization of

classification. In other words, it seems clear that the twofold struc-

ture found in formal thought is the end product of a series of co-

ordinations as they attain a final level of equilibrium. (This is no

bar to new integrations and continual growth in adult thinking.)

Therefore, an analysis of the mechanisms of formal thought is

indispensable if we are to draw up an operational theory of intel-

ligence which aims at a step-by-step explanation of the successive

and hierarchical organization of thinking as it develops.

This book has two aims: to set forth a description of changes

3 The four transformations: inversion; reciprocity; inversion of the re-

ciprocal, or reciprocation of the inverse; and identical transformation.
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in logical operations between childhood and adolescence and to

describe the formal structures that mark the completion of the

operational development of intelligence. To tie these together the

authors have tried to present the material in a way that would
stress the close relationship between the two. Each of the first

fifteen chapters (Parts I and II) includes an experimental part by
the first author and a brief final analysis by the second author.

This analysis aims to isolate the formal or prepositional structures

found in each case.4 Chapters 16 and 17 (beginning of Part III)

are the work of the second author, whereas Chapter 18 is a joint

production. In addition, the specific problems of experimental
induction analyzed from a functional standpoint (as distinguished
from the present structural analysis) will be the subject of a

special work by the first author.5

BAKBEL INHELDER

JEAN PIAGET

* For a more detailed presentation of the symbolism of prepositional opera-
tions employed in the chapter conclusions and in Chap. 17, see Trait de
Logique, Chap. V.

translators' note: The experimental diagrams from this work have been
included in this translation.
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Part I

THE DEVELOPMENT

OF PROPOSITIONAL LOGIC

IF WE are to explain the transition from the concrete thought of
the child to the formal thought of the adolescent, we must first

describe the development of propositional logic, which the child

at the concrete level (stage II: from 7-8 to 11-12 years) cannot

yet handle. Experimentation shows that after a long period dur-

ing which only operations appropriate to class and relational

groupings and to the numerical and spatiotemporal structures

which resulted from them are used, the beginnings of stage III

(substage III-A, from 11-12 years to 14-15 years; and substage
III-B, from 14-15 years onward) are distinguished by the organ-
ization of new operations performed on the propositions them-
selves and no longer only on the classes and relations that make
up their content.

To study the questions raised by this development, we must

analyze how children or adolescents at stage III go about solving

problems -which appear purely concrete but which experiments
indicate can be resolved only at stage III and which actually pre-

suppose the use of interpropositional operations. Part I of the

present work will be devoted to this analysis.





The Equality of Angles

of Incidence and Reflection

and the Operations

of Reciprocal Implication
1

OUR AIM in this chapter, and in the remainder of Part I, is not

a systematic study of the concept of the equality of two angles.

Actually, we already know how the concept is constructed: that

it is first acquired at the level of concrete operations.
2 But it is

precisely the fact that the concept is akeady so well known by
the time the formal level (stage III) is reached that makes the

reasoning process involved in the discovery of the equality be-

tween the angles of incidence and reflection so instructive. One of

the aims of this study, then, is to isolate the operational mecha-

nisms involved in the formal reasoning process itself, when this

reasoning rests on notions already constructed at the concrete

level.

The experimental apparatus consists of a kind of billiard game.

Balls are launched with a tubular spring device that can be piv-

oted and aimed in various directions around a fixed point. The

1 With the collaboration of H. Aebli, former research assistant, Laboratory

of Psychology, Science Faculty, University of Geneva, professor, ficole

normale sup&ieure, Zurich; L. Muller, former research assistant, Institut des

Sciences de 1'fiducation, University of Geneva; and M. Golay-Barraud, stu-

dent, Institut des Sciences de 1'fiducation.
2 See Piaget and Inhelder, The Child's Conception of Space (Routledge &

Kegan Paul, 1956), Chap. XII, and Piaget, Inhelder, and Szeminska, La

Geometrie spontange de ?enfant, Chap. VTH. (Not transl.)

3
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ball is shot against a projection wall s and rebounds to the interior

of the apparatus. A target is placed successively at different

points, and subjects are simply asked to aim at it. Afterwards, they

report what they observed.

But the equality between the angles of incidence and reflection

is discovered only at stage III-A (11-12 to 14 years) and is often

not formulated until stage III-B (14-15 years). Our problem is to

understand why a concept as familiar after 7-9 years as that of

the equality of two angles is utilized in the induction of an ele-

mentary law only at this late date and, especially, why formal

operations are necessary for its use. We shall try to answer this

question by retracing briefly the ground covered by the child be-

fore his arrival at the formal level, then by examining the latter

more closely.

Stage I

In the course of stage I (up to about 7-8 years) subjects are most

concerned with their practical success or failure, without consid-

eration of means; often even the role of rebounds is overlooked.

The result is that, except toward the end of the stage, the trajec-

tories are not generally conceived of as formed of rectilinear seg-

ments but rather as describing a sort of curve:

DAN (552)* succeeds at first: "I think it works because it's in the same

direction'
9 He adjusts the plunger by himself, but proceeds by em-

pirical trial-and-error. Then he asks spontaneously: "Why do you have

to turn the plunger sometimes? . . . No, you have to put it there

[he fails]. If it could be pushed a little further" [he does this and suc-

ceeds]. But, although he knows how to control the rebounds success-

fully, DAN has no idea that they are made up of angles: the curve he

describes with his finger is not tangent to the wall; he takes into ac-

count the starting point and the goal but not the rebound points.

WIRT (5 ; 5): "It came out here and it went over there. . . . I'm sure to

make it" etc. He succeeds occasionally but describes the trajectories

3 With a rubber buffer.
*
Figures within parentheses indicate age in years and months i.e., five

years; two months.



FIG. 1 . The principle of the billiard game is used to demonstrate the

angles of incidence and reflection. The tubular spring plunger can be

pivoted and aimed. Balls are launched from this plunger against the

projection wall and rebound to the interior of the apparatus. The
circled drawings represent targets which are placed successively at

different points.
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with his finger only in the form of curves not touching the walls of the

apparatus; he considers only the goal as if there were no rebounds.

NAN (5 ; 5), on the other hand, is astonished by the detour made by
the ball which first touches the walls. "It always goes over there." But

he does not succeed in adjusting his aim: "Oft, it always goes there.

, . . it witt work later."

PIT (5 ; 5) notes about one of his tries [a failure] : "It was straight [as

if this were an exception]. Why didn't it hit it? I thought I hit it"

[no comprehension].

ANT (6 ; 6) becomes aware of the existence of rebounds at the same
time that he notices the rectilinear character of the trajectory seg-

ments: "It [the ball] hits there, then goes over there" [his gesture in-

dicates straight lines],

PER (6 ; 6), in contrast, in spite of his age, resorts to the curvilinear

model: "It goes there and it turns the other way" [gesture indicating
a curve].

The reactions of this stage are extremely interesting, for al-

though the children demonstrate by their behavior that they know
how to act in the experimental situation, sometimes success-

fully, they never internalize their actions as operations, even as

concrete operations, In a general sense, by concrete operations we
mean actions which are not only internalized but are also inte-

grated with other actions to form general reversible systems.

Secondly, as a result of their internalized and integrated nature,

concrete operations are actions accompanied by an awareness on

the part of the subject of the techniques and coordinations of his

own behavior. These characteristics distinguish operations from

simple goal-directed behavior, and they are precisely those char-

acteristics not found at this first stage: the subject acts only with

a view toward achieving the goal; he does not ask himself why
he succeeds. In the experiment under consideration he is not

aware of either the rectilinear nature of the trajectory segments
or the existence of rebounds except toward the end of the stage

(toward 6 or 6-7 years); consequently he cannot take note of the

presence of angles at the rebound point.



Stage II (Substages II-A and II-B)

Substage II-A is distinguished by the appearance of concrete

operations in the sense just defined:

VIR (7 ; 7) succeeds after several attempts. He points out and then

draws trajectories with two distinct rectilinear segments, saying: "To

aim more to the left, you have to turn [the plunger] to the left!'

TRUF (7 ; 10): *7 know about where it will go"; in fact, he shows by
his gestures that he realizes that the angle of rebound is extremely

acute when the plunger is raised and extremely obtuse when it is low-

ered. Thus, he shows us that he has a vague global intuition of the

equality between the angles of incidence and reflection. But he does

not make it explicit, since he fails to divide the total angle indicated by
his gesture into two equal angles,

BEND (8 ; o): "It's the corner [the angle of rebound] that makes it turn;

you change the contour [the size of the angle] when you change the

plunger" [inclination of the plunger]. He demonstrates as did the pre-

ceding subject that the angle is extremely acute when the plunger is

slightly inclined and extremely obtuse when it is sharply inclined. We
ask him what he means by the contour, and he points to the opening
of the angle with a gesture indicating that he is thinking of the very

generation of the angle by the progressive rotation of the plunger and

of the rebound of increasing amplitude which results.

DESI (8 ; 2): "The ball always goes higher when the plunger & higher"
Then: "The ball will go there [further] because the plunger is tilted

more; I put my eyes high up [
= I pinpoint the rebound point] and

from the rubber [
= the rubber band attached to the wall on which

the ball rebounds] I look at the round pieces" [
= the disks serving

as goals].

At substage II-B the preceding operations, which give rise to a

model that includes straight lines and angles, are complemented

by an increasingly more accurate formulation of the relations be-

tween the inclination of the plunger and that of the line of re-

flection:

MC (9 ; 4): Tow have to move the plunger according to the location

of the target; the ball has to make a slanting line with the target."
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(9 ; 6): "The more I move the plunger this way [to the left i.e.,

oriented upwards], the more the ball will go like that [extremely acute

angle], and the more I put it like this [inclined to the right], the more

the ball will go like that" [increasingly obtuse angle]. KAR reaches the

point of discovering that the ball returns to the starting point when
the plunger is "straight" i.e., perpendicular to the rebound wall.

BAER (9 ; 6): "How do you explain it?" "I* has to be at the same distance

as the target" [he points out the angle increasing with the withdrawal

of the target and not the length of the line between plunger and re-

bound point or between the latter and the target].

ULM (9 ; 8) : "As you push the plunger up, the ball goes more and more
like that [acute angle], and the more I put it like that [inclined to the

right], the more the ball will go like that" [obtuse angle]."But, tell

us more about what you are looking at." "I am still looking at that

[the goal], and that's all, because it turns with the plunger" [because
the direction of the path between the rebound and the goal changes
with the inclination of the plunger],

DOM (9 ; 9): "It hits there> then it goes there" [he points out the equal

angles, repeating his phrase for different inclinations of the plunger].

Thus we see that the subjects succeed in isolating all of the

elements needed to discover the law of the equality of the angles
of incidence and reflection, yet they can neither construct the law

a fortiori nor formulate it verbally. They proceed with simple
concrete operations of serial ordering and correspondences be-

tween the inclinations of two trajectory segments (before and
after the rebound), but they do not look for the reasons for the

relationships they have discovered. And they do not consider the

segments except from the standpoint of the directions taken; thus

the idea o dividing the total angle made up of the two segments
into two equal angles (incidence and reflection) fails to occur to

them.

However, in contrast to the stage I subjects, substage II-A and
II-B subjects no longer limit themselves to overt performance but

internalize their actions in the form of operations of placing or

displacing: thus they have become aware of the facts that the

plunger can be adjusted to specific slopes, that the trajectory of

the ball is composed of two rectilinear segments, and, above all,
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of the fact that these two segments form an angle (whose peak
coincides with the rebound point) whose size varies according to

these slopes. They manage to order serially these latter inclina-

tions, distinguishing between "sharper" or "more to the left?

"higher" etc., and "less sharp" etc., which amounts simply to a

translation of the more or less well-ordered operations that they
know how to execute beginning with stage I into coordinated

operations of serial ordering. Similarly, they succeed in ranking
the degrees of incline or the directions of the trajectory segments
included between the rebound point and the goal ("the ball keeps

going higher" or lower, it "will go here" or there, etc.). Finally,

and particularly important, they establish a correspondence be-

tween the slope or direction of the plunger (and consequently of

the first segment of the ball's trajectory) and the inclinations or

directions of the second segment: "The more the plunger is (in-

clined, etc.), the more the ball will go (downwards, etc.)."

If the increasing inclinations of the plunger (and of the first seg-

ment of the trajectory for the ball leaving the plunger) are symbol-
ized by the letters a, /?, y, etc. and the inclinations of the second

segment (between the rebound point and the goal) by the signs

a', /?', y', etc., the serial ordering and correspondence operations
which subjects of this second stage can perform are as follows:

a < )8 < . . . or of < p* < y' . . . and (i)

a -
a', ft <H> /3', y <H> y', etc. (2)

(where the sign <- stands for the correspondence).

Why, then, does the correspondence between the two rank or-

derings fail to lead to the discovery of the law of the equality of

the angles of incidence and reflection? It is because the subjects

stick to the concrete rank ordering and correspondences without

looking for the reasons behind this correspondence, just as the

subjects at stage I knew what to do to attain their goal but did

not look for the reasons behind their reactions (displacement of

the plunger, etc.). The stage II subjects stick to dealing with facts

whose accuracy is due to serial ordering and correspondence

operations, but they do not seek to explain these facts further in

terms of the formal operations of implication, etc., which are the

conditions of hypothetico-deductive thought.
Since they do not seek an explanation of the observed facts,
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they must remain at the level of rough, global observation, cer-

tainly a great advance over that of stage I but still too global to

lead to an analytic breakdown of the observed angles. Thus,

because they are content to point out slopes of directions and to

deal with the total angle composed of the two segments of the

trajectory (BEND: the "contour"; ULMS "It turns"; etc.), they do not

divide this total angle into the two equal parts that would give

us the angle of incidence and the angle of reflection. That is why,

although the subjects are very close to the discovery of the law

and already possess all of its elements, it is not yet discovered;

the formal operations needed for the quest for an explanatory

hypothesis are lacking.

The Formal Stage (Substages III-A and III-B)

At this last stage the subjects finally discover the law of the equal-

ity of angles. At first the discovery is slow and partial, including

verification or rejection of several specific hypotheses, then com-

plete and rapid because subjects are oriented by the hypothesis

that there is a necessary equivalence between two successive seg-

ments of the trajectory.

First, let us look at a case typical of substage III-A:

BON (14 ; 8) first invokes the launching force, then realizes that the

trajectories are the same whether the balls are shot hard or soft. Next

he invokes the role of the "distances, how you have to place the rod."

Then he establishes concrete correspondences in the same way as the

stage II subjects: "Ifs the position of the lever [of the plunger]: the

more you raise the target, the more you raise it here" [the lever]. He
uses a ruler to mark the trajectory of the ball between the rebound

point and the target in such a way as to verify its correspondence with

the orientation of the plunger. Then he hypothesizes that the angle is

always a right angle: "It has to make a right angle with the lever"

But after several trials he concludes: "No, above [
= when the plunger

is straightened] it won't work" "It isn't ever a right angle?'* "Yes,

that's correct for one position" "And without that?"
<fWhen you turn,

one should be smaller, the other larger. Ah! They are equaF [he points
out the angles of incidence and reflection].
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Thus, in the later stages there is a search for a general hy-

pothesis which can account for the concrete correspondences be-

tween the inclinations as soon as they are found. Subject BON
thinks first of the right angle, then ascertains that the total angle
is sometimes acute, sometimes obtuse; then he breaks it down to

form two equal angles (incidence and reflection).

But the hypotheses found at substage III-A are still very close

to concrete correspondences in that they attempt only to express
the general factor which the correspondences contain. Substage

III-B, on the other hand, is distinguished by a new exigency
which is absent at substage II-B and still implicit at III-A: the

need to find a factor which is not only general but also necessary

i.e., which will serve to express beyond the constant relations

the very reason for these relations.

In other words, the subjects at substage III-B are not com-

pletely satisfied with the establishment of a correspondence be-

tween the inclinations of the plunger and the line included be-

tween the buffer and the target, as are those of II-B. Nor are they
satisfied with the search for a single constant factor which trans-

lates these correspondences, as are those of III-A. Initially they
ask themselves why a certain difference in inclination Xi of the

plunger necessarily corresponds to a difference x2 in the buffer-

target line. This pursuit of a necessary reason, in certain cases

going as far as an immediate appeal to the concept of necessity,

is what distinguishes formal thinking, with its operations of impli-

cation or equivalence (
= reciprocal implication), from concrete

thinking, with its simple statements of constancy. This is demon-

strated by the following subject, who begins, like BON, with the

hypothesis of the right angle but soon afterwards turns to a search

for necessity:

DEF (14 ; 8) imagines at first that the two trajectory segments always

form a right angle. But after three trials he says: "The more the target

approaches the plunger, the more the plunger must [necessity] also

approach the target" [which signifies evidently that the two inclina-

tions of the plunger and of the line between the target and the buffer

imply each other reciprocally]. "What do you mean by *must also

approach the target?* ""For example, if there were a line here [he

indicates a line perpendicular to the buffer], the ball would come back



12 THE DEVELOPMENT OF PROPOSITIONAL LOGIC

exactly the same way" Then he puts the plunger at 45: "That makes

a right angle here and you have about the same distance as there"

[
= the two angle openings]. Then he continues with several angles

chosen at random and again verifies his law of equality. We object that

the law may not be a very general one: "It depends on the buffer too;

it has to be good and straightand also on the plane it has to be com-

pletely horizontal. But if the buffer were oblique, you would have to

trace a perpendicular to the buffer and you would still have to take

the same distance from the plunger [to the line and from it] up to the

target: the law would be the same" The buffer is turned around, re-

placing the rubber by wood: "Perhaps the wood is less elastic: the

ball would be sent back with less force'' "Then what about your
law?" "The law doesn't vary."

Even in this first case we see several new factors appear which

psychologically distinguish formal from concrete thinking: the

requirement of necessity ("the plunger must also, . . ." "it would
have to be the same width here and there/' "you still would have

to take the same distance again," etc.); the ability to formulate

hypotheses or hypothetical constructions not given by direct ob-

servation (trace an ideal perpendicular from the buffer, etc.); con-

fidence in the generality of the law because it is conceived of as

necessary, thus as holding true even if conditions are modified

("the law doesn't vary," etc.).

It is clear that new operations appear at this level (after a pre-

paratory period beginning with substage III-A) which are super-

imposed on the concrete operations. Specifically, of what do these

new operations consist? This should be made clear in the course

of the examination of the following protocols, to be considered

jointly with the preceding one.

GUG (14 ; 4), after several trials, says: "The more you go toward the

right angle [i.e., the more the plunger approaches a position perpen-
dicular to the buffer] the closer to the starting point the ball comes

back"-"Is that always true?" "Yes, or at least I think so: ijou'd have

to check" He continues his trials and, when there is chance dispersion

due to deficiencies of the apparatus, he concludes: "There must be

something wrong." After several new trials he concludes: "You have

to find the angle" and he looks first for equality in the complementary
angles included between the walls of the apparatus and the plunger or

the line buffer-goal. At last he discovers that: "You have to trace the
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perpendicular" [in relation to the buffer]. He then realizes the constant

equality between the angles of incidence and reflection.

MUL (14 ; 3) begins with a series of correspondences: "I was here and

it went in this direction," etc.; "You change the angle to see how it

goes." By systematically diminishing the total angle, he discovers the

fundamental proposition: T/ I shoot it straight, at a right angle [i.e.,

when the plunger is perpendicular to the buffer], it will come right

back." Then he inclines the plunger progressively, according to the

angles ai, /3 9 yi, etc., and ascertains that, as these angles increase,

their complementaries ai' fti'9 yi' decrease [of, ft standing for the

angles included between the plunger and the buffer]: "The smaller

you make the angle here [ai', /V, etc.], the larger the angle there"

[ai, $L, yi]. Then he perceives the equality which he had been seek-

ing from the time he understood that, in the case where the plunger
is perpendicular, the ball returns to its starting point. "This angle [ai']

is the same as that one fag']; you have to make it parallel to that one

[a2
/
] I o/m going to see [he checks for several different angles]. Yes,

I think that's it. You have to carry over exactly that angle" [the com-

plementaries ai', and c^'j etc.].

POM (15 ; 5) also begins by noting the correspondences between the

angles: "I look a bit at an angle. . . . The higher up you want to aim,

the under the angle has to be" [he calculates on the complementary
as did MUL]. In order to verify this hypothesis, he spontaneously places

the plunger perpendicular to the buffer: "If the lever is straight, the

ball returns exactly." Afterwards he adjusts the plunger in three differ-

ent positions, but without moving the target and without firing, and

concludes immediately: "You have to have two angles: the inclination

of the lever equals the angle that the trajectory of the ball makes"

[from the buffer to target],

LAM (15 ; 2): "The rebound depends on the inclination [of the

plunger], . . . Yes, it depends on the angle. I traced an imaginary
line perpendicular [to the buffer] : the angle formed by the target and
the angle formed by the plunger with the imaginary line will be the

same."

(15 ; 4): "tfs a right angle [several trials]. No, this slant has to be

the same as that one." When there are chance misses due to the

apparatus, he says, *7 didn't move; the gadget isn't fair"

GOD (15 ; 9), after several fruitless trials: "You would have to find the

rebound angle." First he indicates ai' = az as did MUL. Then he traces
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the perpendicular and points out the angles of incidence and reflec-

tion: "The two must be equal."

FORT (16 ; o) begins with several trials: "You have to move the lever

according to the target position and vice versa [reciprocity]. "You must

have an angle there, but it isn't always the same [he continues his

trials]. It's obvious that everything changes." Then: "You have to think

in straight lines. To the extent that the lever is displaced, you find the

same distance in the other direction: you have to displace it according

to the mean [ = the perpendicular from the rebound point to the buff-

er which he has spontaneously designed]. The two distances [the

angle openings], the two sides, always indicate the angles" [of inci-

dence and reflection].

JAN (16 ; 4): "You have to find the corresponding angle: the more

acute the target angle, the more the lever goes towards the middle and

vice versa." "Can you measure it?" "It's more or less a right angle.

No, it varies here the same way as there" [same design as FORT].

BERG (16 ; 6), after analogous explanations, is shown a wooden buffer

rather than the rubber one: "I think that it's the same law. Yes, Fm
sure of it. I take the perpendicular and I focus on the distances. Yes,

now the angles have to be equal."

Although they differ from each other in a number of respects,
these examples of reasoning have in common several essential ele-

ments which must be differentiated before we can describe the

differences between formal and concrete thinking as they relate

to the experimental problem under consideration.

In the discovery of the law, the general starting point for these

subjects seems to be the fact that the establishment of the con-

crete correspondences between the inclines of the plunger and
the path of the ball after it strikes the buffer seems to lead auto-

matically to the idea of a necessary reciprocity i.e., each incline

implies the other and vice versa. For example, this is expressed

by FORT: "You have to move the lever according to the target and
vice versa." But this reciprocity, which adds the idea of mutual

implication to that of one-to-one reciprocal correspondence, does

not in itself entail the realization that the two angles are equal

(as FORT, who is at first struck by the variation of the angles,

demonstrates).
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The bridge from the idea of reciprocity to that of equality
and this is the second point common to all of the answers is

actually furnished by the assertion (explicit, or in certain cases

purely mental) that the ball returns to the starting point when the

plunger is perpendicular to the buffer. Then it follows that if the

null incline of the plunger implies the null incline of the ball's

return course, any inclination of either implies an equal inclina-

tion of the other.

Once in possession of this double assertion (mutual implication
of inclines and return of the ball to its starting point in the case of

null incline), the subject will either imagine a perpendicular to

the buffer from the rebound point, which leads him to discover

the equality of the angles of incidence and reflection; or he will

look for the complementary angles (located between the plunger
and the buffer or between the former and the trajectory of the

ball after the rebound), which step also leads him to the idea of

equality.

In either case, the construction of the law is due to the quest
for a necessary explanation of the observed inclinations; the serial

orders and correspondences established prior to this point are

not in themselves sufficient for the subject to discover the rela-

tionship between the angles, or even for him to break up the total

angle included between the two successive segments of the trajec-

tory into two partial angles.

Conclusion: The Transition from (Concrete) Cor-

respondence to (Formal) Reciprocal Implication

In spite of what we have just said about the discoveries of our

stage II subjects, we have yet to understand just what formal

thought adds to concrete operations in the specific case, since sub-

jects at stage II seem a posteriori so close to the formulation of

the law. What is the contribution of formal operations to the solu-

tion of a problem that at first glance seems to require nothing
more than correspondences and equalization? Actually, the con-

text of stage III reactions is quite different from that of preceding

stages: reasoning by hypothesis and a need for demonstration

have replaced the simple stating of relations. In other words,
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henceforth thought proceeds from a combination of possibility,

hypothesis., and deductive reasoning, instead of being limited to

deductions from the actual immediate situation.

The distinction between the one-to-one correspondence of the

angles of incline (at stage II) and the reciprocity leading to the

idea of the equality of angles (discovered at stage III) is ex-

tremely fine as long as we are not in a position to state exactly
what the differences are between the operations used at these two

stages. Nevertheless, there is a difference. And though it is slight

in this first case, it does give us an example of the general opposi-
tion of concrete and formal operations that we shall encounter

again in increasingly clearer form in the following chapters.
The difference can be stated as follows: Although concrete

operations consist of organized systems (classifications, serial or-

dering, correspondences, etc.), they proceed from one partial link

to the next in step-by-step fashion, without relating each partial

link to all the others. Formal operations differ in that all of the

possible combinations are considered in each case. Consequently,
each partial link is grouped in relation to the whole; in other

words, reasoning moves continually as a function of a "structured

whole."

Stated in symbolic terms, when two classes, AI and A2 , with

their complementaries, A\ and A'2, are taken, concrete class

logic furnishes only four elementary products (AiA2 + AiA'2 +
A'iA2 + A'iA'2). On the other hand, formal logic, taking the two

propositions p and q with their negations p and q, furnishes six-

teen possible combinations derived from the four elementary

prepositional conjunctions (p.q) v (p.q) v (p.q) v (p.q), which de-

fine respectively relations of implication, disjunction, etc., de-

pending on whether the conjunctions are taken one-by-one,

two-by-two, three-by-three, the four together, or none at all. The

implication of q by p, for example, corresponds to the sum of

three conjunctions, (p-q) v (p*q) v (p.q)', the implication of p by q

corresponds to the sum of (p.q) v (p.q) v (p.q); and the equiva-

lence of p and q (or reciprocal implication) corresponds to the sum
of the two conjunctions (p.q) v (p.q). But, in order to affirm the

truth of one of these three links, p D q or q D p or p = q, one also

has to establish the respective falsehood of (p.q) for p^q, of

(p.q) for qOp, and of (p.q) as well as of (p.q) for p = q.
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In other words, the difference between the concrete level sub-

jects (who do not go beyond the formulation of term-by-term cor-

respondences between the inclinations of the plunger and the

course of the ball from the buffer to the target) and the formal
level subjects (who look for necessary reciprocity immediately)
can be wholly accounted for by distinguishing the step-by-step

operations based on simple correlations found in class and rela-

tional groupings from the combinatorial operations based on the

"structured whole" which constitute prepositional logic. Thus,

subjects at stage II are limited to stating successively the corre-

spondences in question and to constructing from the resulting
table that the more the plunger is inclined, the more the course

of the ball between buffer and target is inclined. Certainly this

could be called a law, but it is a law which is a simple summary
of formulations made one by one.

In contrast, stage III subjects view the experiment from the

start both in terms of the total number of possibilities and in terms

of necessary relations, since they possess operations which both

are combinatorial and contain the potential assurance of deductive

necessity. In their first correspondence operations they do not

merely take note of the empirical relationships but immediately

proceed to search for an explanation i.e., they consider the cor-

respondences as implications. Of course, in a sense the implica-

tion p D q is still a statement of fact, equivalent to establishing

that the case (p.q) never occurs. Still, in order to establish this it

is necessary to consider the four possibilities (p.q) v (p>q) v (p*q) v

(p.q); in any case, the implication is nothing more than the addi-

tion of three possibilities (the first, the third, and the fourth) com-

bined by the operation (v) which signifies "or" i.e., it is an addi-

tion of what is possible and not of "realities."

Actually, when faced with a correspondence p.q (let p be the

term for a certain angle of incline of the plunger and q the term

for the corresponding angle of incline of the course of the ball

between the buffer and the target), the stage III subjects are not

restricted to pointing out the existence of the conjunction, as are

those of stage II, who are satisfied at this point. They exclude the

possibility (p.q) i.e., they introduce by hypothesis an implied link

between p and q; but they also exclude (p.q) i.e., they also in-

troduce by hypothesis an implied link between q and p. Thus
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they proceed immediately from stating the conjunction p.q. to

stating the hypothesis of a reciprocal implication p i q, with the

assumption that this reciprocity p q or p = q (which is not in

itself an equality of content but a simple equivalence from the

point of view of the truth of the propositions) covers the equality
of some real factor.

At this point, the reasoning process of the i4-i6-year-old sub-

jects, based from the start on the twofold consideration of pos-
sible combinations and necessary links, is elaborated into a true

hypothetico-deductive construction. Unlike stage II subjects, who
are limited to noting the occurrence of various correspondences,

4

the adolescents at stage III sooner or later (and often very early)

try to uncover the general principle underlying the special case of

null inclination. Having established that the ball returns to its

starting point, they immediately draw the conclusion that the

corresponding inclinations must be equal and consequently the

angles which determine them must also be equal; after verifica-

tion with one or two they generalize the conclusion to all cases.5

In symbolic terms, the subject's reasoning at substage III-B is

approximately the following (see as an example the extremely
clear case of DEF):

p q, because (p.q) v (p.q) are true and (i)

(p.q) v (p.q) false where p and q state corresponding inclinations

having the respective values x and y. But

(* = o) i (y = o), and (2)

(*= a)i(0 = ) (3)

where a is a determinate inclination > o. Therefore,

* c V, and (4)

AagAy (5)

where A x and A y are the angles of incidence and reflection (or

their complementaries).

4 Which may include the case in which the plunger is not inclined and the

ball returns to the starting point, but from which they do not abstract the gen-
eral principle.

5 Note that the elementary reasoning by recurrence is itself accessible at

the concrete level (see La G$omtrie spontanSe de I*enfant, Chap. IX, no. 4).

It appears so late in this case because all of the subject's deduction is directed

by preliminary reciprocal implications.
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In sum, the discovery of the equality of the angles is the result
of the reciprocal implication between the corresponding inclina-
tions postulated from the start and not the inverse; this reciprocal
implication differs from simple concrete correspondence by the
fact that it results from a calculation of possibilities and not

merely from an account of the empirical situation.



The Law of Floating Bodies

and the Elimination

of Contradictions
1

A GIVEN NUMBER of disparate objects are presented to the subject,
who is asked to classify them according to whether or not they
float on water. Then (the classification completed) he is asked to

explain the basis of his classification in each case. Next, the sub-

ject himself experiments, having been given one or several buck-
ets of water; finally, he is asked to summarize his observations,
this latter request suggesting that he is to look for a law, if this

has not already spontaneously occurred to him.2

Unlike the law considered in the problem presented in the first

chapter, the law of floating bodies cannot be derived from con-

cepts which are entirely accessible at the level of concrete opera-
tions. Neither the conservation of volume nor, consequently, of

density, is worked out in systematic fashion before substage III-A

(11-12 years); however, the conservation of weight and certain

schemata preparatory to the concept of density are acquired at

substage II-B.

1 With the collaboration of J. Nicolas, former research assistant, Laboratory
of Psychology, and M. Meyer-Gantenbein, former research assistant, Labora-
tory of Psychology.

2 With the older subjects, in addition to the objects to be classified we
present three cubes of equal volume having different densities and an empty
cube with "plexiglass" or plastic walls (with a density of about one) to facili-

tate accurate comparisons with the density of water.

20
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But given that the law to be found is that objects float i their

density or specific gravity is less than that of water, two rela-

tionships are essential to the solution of the problem: density

i.e., the relation of weight to volumeand specific gravity i.e.,

the relation between the weight of the object (its density if it is

solid, or the weight of its matter plus that of the air which it

contains) and an equivalent volume of water.

In addition, the problem requires the construction of a classifi-

cation including both the class of bodies which float on water and
the class of bodies which do not float plus two other eventual

classes that of bodies which may float in certain situations and

not in others (such as empty bodies which can be either full of

air or full of water) and that of bodies which remain suspended.
The law ultimately to be discovered states a relation between only
two large classes; that of bodies whose density is less than the

density of water and that of bodies whose density is greater.

Thus the law states a single and noncontradictory relationship.

But in order to construct it empirically the subject first has to

eliminate a series of contradictions that frequently characterize

the early stages. For example, at first the explanation may be

formulated in terms of weight alone, although in fact it is some-

times the heavier, sometimes the lighter bodies which will float.

Secondly, the element common to several different explanations

(weight, volume, air, etc.) must be isolated. Although the simplest

contradictions can be overcome by means of concrete operations

alone, the elimination of the more subtle ones, and particularly

the formulation of a unified explanation, requires the use of im-

plications i.e., the intervention of formal prepositional operations.

In the light of these considerations we feel that the problem of

floating bodies, like that of the equality of angles, is an appropri-

ate choice for a preliminary analysis of the transition from con-

crete to formal thinking.

Stage I (Substages I-A and I-B)

The stage I reactions (until about 7-8 years) are very interesting,

for they are far from demonstrating that a search for a single

and noncontradictory explanation is primitive. We find instead

that the youngest children are satisfied with multiple and often
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contradictory formulations. Furthermore, although the problem
calls for classification of objects into two groups (floating and non-

floating bodies), a substage I-A must be distinguished during
which the subject does not even formulate this elementary di-

chotomy because successive judgments in time relative to a single

object are still contradictory.

Although the children of this first substage, once they have de-

termined whether or not a particular object floats, may come to

predict that it conserves its properties, because they lack a general

frame of reference they do not extend the same properties to

other analogous objects. Furthermore, they do not always conceive

of these properties as constant even for an identical object:

IEA (4 years) says, for example, of a piece of wood that "it stays on top.

The other dag I threw one in the water and it stayed on top." But a

moment later:
<e

Wood? It will swim anywhere.'
9
"And this one?" [a

smaller piece].-"The little wood will sinfc."-"But you told me that

the wood would swim." "No, I didn't say so" On the first presenta-

tion of a wire, he says, "The wire goes to the bottom" [he has not done

the experiment].-"And this weight?" [metal] .-'It will swim."- 'The

wood?" "It will swim anywhere" 'The wire?" [third presentation].

"It will swim" Finally, for two metal needles of identical appearance
he says the opposite: "This one?"-*!* wtU float,

"-"And that one?"-

"lt will sink." We must add that although IEA generalizes little, his

explanations can be reduced to the format: "The pebble?" "It will

$ink"-'"Why?"-"Because it stays on the bottom"

MIC (5 years) predicts that a plank will sink. The experiment which
follows does not induce him to change his mind: [He leans on the

plank with all his strength to keep it under the water.] "You want to

stay down, silly!" 'Will it always stay on the water?" "Don't know."
-"Can it stay at the bottom another time?"-"Y0s."

Classification cannot follow from such responses. First, there is

no basis for sorting the objects into floating and nonfloating
classes. One way to construct these two classes would be to in-

voke a constant quality which would in itself furnish the explana-
tion of the fact that a given object floats or fails to float However,
at this stage the subjects do not yet use such explanations and are

restricted to looking for the cause in the description of a particular
case.
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One could maintain from another standpoint that the subjects
could classify the objects a posteriori after having observed their

properties in the experiment. However, in this case as well the

properties would have to be perceived as constant. Thus classifi-

cation is no less impossible, since for these subjects: (i) The same

object does not necessarily conserve its properties over time (cf.

the wire for IEA and the plank for MIC); (2) Different properties

may be attributed to two identical objects (cf. the needles for

EGA); (3) Analogous objects may also be given different properties

(cf. the small piece of wood which sinks and the large one which
floats IEA).

The reader could object that the child's reasoning is not actually

contradictory in that it is analogous to the reasoning of the mete-

orologist who knows that the same cloud may send forth rain at

a given moment and not at another, or that of two similar clouds

one might produce rain and the other not. Here the fluctuations

or lack of constancy appear in reality itself and not in the think-

ing of the observer. Nevertheless, the meteorologist seeks to gen-
eralize. In spite of the risks inherent in his profession, he goes on

to assume that one can fit deductions to the empirical world; he

ascribes discrepancies to the operation of chance factors and con-

cludes that under constant conditions his predictions would be

accurate. In contrast, the substage I-A child does not try to fit de-

ductions to the situation and does not yet know how to distin-

guish the deductible from the random and he does not assume

that results will be similar under equivalent conditions. Rather, he

assumes invariance and deductibility only in certain cases (cf. the

wood which floats because it floated "the other day" IEA). But

that is exactly the point; since his assumptions vary from case to

case he is not able to discern either the reasons for invariance or

the reasons for variation.8

Thus, to attribute the probabilistic reasoning of the meteorolo-

gist to the subjects at substage I-A would be to commit the "fal-

lacy of the implicit." As additional evidence we can say that, since

from substage II-A on the subjects do seek invariances and do

s Translators' note: For further experimental evidence concerning the fail-

ure of the substage I-A child to understand probabilistic reasoning, see Piaget
and Inhelder, La Gdnese de ride de hasard chez I'enfant (Presses Universi-

taires de France, 1951).
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construct classes having general qualities, there is no reason why
we should not interpret the successive reactions as they appear

genetically. Thus, beginning with substage II-A an attempt to

eliminate contradictions can be assumed, whereas for the substage
I-A subjects, to assume either an attempt to discover contradic-

tions or a radical impermeability to them would be equally mis-

leading; rather, we must speak of indifference before contradic-

tions when the causal problem cannot be resolved. (The problem
is not resolved at substage II-A either, but the child does assume

the possibility of a coherent solution and this expectation is suf-

ficient to urge him to try to resolve contradictions.)

At substage I-B the child tries to classify the objects in a stable

way into floating and nonfloating, but he does not achieve a

coherent classification for the following three reasons (the first of

these is logically legitimate, but the other two relate to preopera-
tional thinking): (i) Since the law is not discovered (although he

begins to look for it), the subject is satisfied with multiple explana-
tions or a series of subclasses difficult to arrange hierarchically;

(2) In the experimental situation, he finds new explanations and

thus adds new divisions to his classification but does not reformu-

late the whole; (3) There are contradictions between some of

these classes.

TOSC (5 ; 6) divides the objects presented into two classes prior
to the experiment: class B (objects remaining above water) and
class B' (objects which sink). Class B includes seven subclasses:

(Ai) Objects which "swim" or float because it is their nature:

boats and ducks ("My little duck that swims like the real ones").

(A2 ) Small objects ("little tiny pebbles" tokens, needles). (A3 )

Light objects (small pebbles float "because they arent heavy"
and thus belong simultaneously to A2 and A3, but an aluminum

plate floats because it is light although it is not small). (A4 ) Flat

objects (example: "This pebble, because it's so flat
99

). (A5) Thin

objects (a wooden blade). (A6) Objects which are the same color

as the receptacle ("Why will this plank stay on top?" "Because

they are both the same color" [the plank and the bucket]).

(A7)~Objects which have already floated (example: a piece of

wood '"because it stayed up before").

Class B' includes the following subclasses: (Ai) Objects "that

don't belong on the water* by nature (for example, a piece of a
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candle: "Where will it go?"-"To the bottom."-
t

Whyr'--"Because
the candle doesn't belong on the water." We put it in the water:

"It floats. Why?" "Because it swims on the water!' Thus the

candle is classified parallel to subclass A! of class B.). (A2 ) Large
objects. (A3) Heavy ones (with the same difficulty in identifica-

tion and the same interference as for A2 and A3 of class B).

(A7) Those that "went to the bottom before." (A8 ) Long objects

(a copper wire sinks "because it's long"). (A9) Those which have
been shoved (example: a metal cover).

We notice in this classification some effort at assimilation

(small = light, and sometimes thin = flat and flat = small), but

it fails because the criteria adopted are inadequate. Initially the

child assumes that class B is composed of only two subclasses

which, moreover, are heterogenous; there are the objects which
float by function or nature (Ai) and the "small ones" (A2). The

subject does not seek the common quality which defines the first

category. For the second, he thinks that the quality "small" in-

volves other properties, such as light, etc. However, before the

experiment, when he enumerated the objects thus collected, the

subject felt he had to specify (without either order or hierarchy)
the connotations of the concept "small": light, flat, and thin. In

addition, new criteria unrelated to the preceding were brought in

at particular points i.e., the color. Finally, a global category

analogous to that of AI was constructed (but after the fact): that

of objects which have already stayed above water.

As for the objects in B', those which sink, we find three sub-

classes which correspond in the negative to AI, A2 , and A3 . But

the categories derived from flat, thin, or color have no negatives;

reciprocally, two new subclasses (A8 and A9) have no correspond-

ing class in B.

Summing up, this type of classification (of which there are other

analogous examples) can be defined by the following character-

istics: (i) The subclasses are not all disjunctive; (2) They do not

all have negatives; (3) They do not allow for grouping either by

simple hierarchy (inclusions and complementarities) or by mul-

tiple hierarchy (double- and triple-entry tables). Thus, for the

child, the experiment complicates rather than simplifies matters.

For TOSC, for example, it is responsible for the post facto introduc-

tion of subclasses A8 and A9 in class B' without correspondence
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in B. It is true that 'long" could be the opposite of "small," but

that is the point; the subject predicted that the wire would float

because it was "thin" (A5 )
and afterwards that it sinks because it

was 'long" (A8), although long is not conceived as contrary to

"thin" for "thin" derives from "small" by specification.

Thus the diversification of subclasses without hierarchy must

sooner or later introduce a contradiction. Actually, in TOSC'S

reasoning the contradiction was present from the start, for two

interfering classes, "small" and "light," were implicitly regarded
as identical or included within each other; classification by simple

class inclusion was not differentiated from the double-entry table

system. This type of confusion of two potential sorts of classifica-

tion is accentuated as each new addition is made until the contra-

diction becomes explicit e.g., 'length" makes an object sink and

"thinness" makes it float, but the copper wire is both long
and thin; by the same token, "smallness" makes an object float and

"heaviness" makes it sink, but several objects are both small and

heavy.
Several typical examples of the types of contradiction found

at substage I-B are presented below:

TOSC (5 ; 6, same subject), after having said in reference to the plank:

"It goes to the bottom." "Why?" "Because it is heavy" adds a little

while later "because it is big." Then he sees that the plank floats and

explains the fact as follows: "It's too big and then there's too much
water" [to touch the bottom]. A moment later he tries to hold it at the

bottom with another plank and a wooden ball; the two come back up
"because this plank is bigger and it came back up." "And why does

the ball come up?" "Because it's smaller" "And this cover?""!* will

come back up" "Why?" "Because it is smaller than this piece of

woody than the plank" "Try" "It stayed down because I pushed too

high up"

BEZ (5 ; 9) explains the floating by the weight [inversely to TOSC] :

"Why do these things [previously classified] go to the bottom?" "They
are little things"- *Why do the little ones go to the bottom?"-"B0-
cause they aren't heavy, they don't swim on top because it's too light."

"And these?" [class of floating objects]. "Because they are heavy, they
swim on the water."We go on to the experiment: the key sinks "because
it's too heavy to stay on top" whereas the cover sinks "because it

f
$

light." Comparing two keys: the larger does not stay above water
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"because it's lighf-'And the little one?"-"!* will go to the bottom

too."-"W}iy?"-"Because it's too light."

GIO (6 ; o) "These things [previously classified] go to the bottom?"

"Yes, that one" [the wooden ball]. "Why?" "Because it's heavy."
"And these?" [the class of floating objects]. "That one swims because

it's light." We do the experiment with the cover. It floats "because it's

light." 'And if you push it?" [It sinks.] "It's because it's light, and

light things never stay on fop." "And that plank?" "It will stay on

top"-"Why?"-"Because it's heavy."-"WhyF-'Because it's big"-
"And if you lean on it?" [He does.] "It comes back up because it's

light." "And this?" [large needle]. "It goes to the bottom because it's

big."-"And that [metal plate] if you push?"-"!* will stay at the bot-

tom"-"Why?"-"Because it's light"

ELI (6 ; 10): "That?" [candle].-*!* goes to the bottom"-"Wl)y?"-
"Because it's round."-"And that?" [ball] .-"It stays on top/-"Why?"
"Because it's round too." Thus the contradiction does not relate only

to the weight. "And that needle?" [placed on the water].-"!* floats

because it's light."-"And if you push?"-"!* will go under/ -"Why?"-
"Because it will be heavy." Here contradiction goes with nonconserva-

tion.

In reference to analogous observations, a logician once main-

tained that such assertions are not contradictory, just because the

same result can be due to either of two opposite causes; for

example, persons who pay taxes that are low proportionate to

their wealth may be either those who are very rich or those who
have hardly anything. But children at the present stage are far

from such a subtle schema, and it seems to us that three lands of

considerations demonstrate that they remain indifferent to con-

tradictions or, more accurately, that they do not perceive their

continual contradictions:

i. From the beginning, the subjects predict a simple distribu-

tion but according to two contrary explanations (which already
reveal the ambiguity of the concepts used). The bodies that float

are either those that are light because they are small, or those

that are heavy because they are large. However, each of these

two explanations already includes a number of implicit contradic-

tions, for light and heavy do not coincide with small and large
and the floating is due to relative and not to absolute weight.
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2. The experiment does not set the child right, but he tries to

reconcile the whole by adopting either explanation alternately

without perceiving the incompatibility; bodies float or sink

equally well if they are large, small, heavy, or light (or even, by
association, because they are round, long, etc.). Thus the con-

tradiction is made explicit, but it is not any closer to being

noticed, doubtless because of the initial ambiguity of the pairs

small X light and heavy X large.

3. The same assertions judged mutually compatible by the

subjects at substage I-B would appear irreconcilable beginning
with substage II-A. Here we find the best proof that they do not

constitute the reflection of an implicit coherence but rather of a

thinking process in a state of disequilibrium for lack of instru-

ments of coordination (operational classification, etc.) which will

attain equilibrium only at the point when concrete operations are

structured.

Stage II (Substages II-A and II-B)

The behavior of the 7-g-year-old subjects is marked by an effort

to remove the main contradiction to which they have submitted

previously without reaction: that certain large objects can float

and certain small ones sink without, however, barring the pos-

sibility that in general the light ones float and not the heavy. The
contradiction tends at this point to be surmounted by a revision

of the concept of weight, now seen in relation to that of volume

i.e., the child begins to renounce the notion of absolute weight in

order to look toward density and, above all, toward specific

gravity.

Specific gravity refers to the relationship between the weight of

a given volume of a body and that of an equal volume of water,

and density refers to the weight of a cubic centimeter of the body
considered. But we will take these two concepts in a more ele-

mentary sense. We will speak of density when the subject ex-

plicitly relates the weight and the volume i.e., when the concept
is understood as a relationship and of specific gravity when the

subject understands that for the same volume each substance has

a characteristic weight. (In the latter case the subject does not
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refer explicitly to the volume.) Thus, substage II-A children

acquire the beginnings of the conception of specific gravity and

try to resolve the earlier contradictions by invoking it.

The two problems that arise at this stage in the development
of logical operations are: (i) Do the stage I contradictions tend to

disappear of themselves because the subject grasps the notion of

specific gravity, or is it in trying to surmount these contradictions

that he constructs the concept in question? (2) If the latter is true,

how does the child come to perceive the contradictions with the

aid of concrete operations alone?

KER (7 ; 6) classifies as floating objects wood, matches, corks, a cover,

metal clamps, an eraser, small nails, and a small cylinder of hollow

metal; as nonfloating a key, some stones, a metal disk, a needle, and a

heavy wooden ball. After the experiment he constructs a third class,

that of objects which float or sink depending on whether they are

empty or filled with water the cover and the needle [whose eye may
permit the water to pass]. The first two classes are defined by 'Tight"
and "heavy," but notice that KER wavers between two possible mean-

ings of these notions; the earlier or absolute sense [the small nails for

the 'Tight" and the large ball of wood for the "heavy"] and the new or

relative sense-i.e., the specific gravity. "The little pebble goes to the

bottom?"-"yes/-"But isn't it light?"-"No, ifs stone *-*And the

nail?" [He does the experiment] ''Ifs because it's iron."
9

BAR (/ ; 11) first classifies the bodies into tibree categories: those which
float because they are light [wood, matches, paper, and the aluminum

cover]; those which sink because they are heavy [large and small keys,

pebbles of all sizes, ring clamps, needles and nails, metal cylinder,

eraser]; and those which remain suspended at a midway point [fish].

"The needle?"-"!* goes down because ifs iron."-"And the key?"-
"It sinks too ""And the small things?" [nails, ring clamps]. "They
are iron too" "And this little pebbleP" Tfo heavy because ifs stone.

9'

-"And the little nauT-"/^ just a little heavy."-'And the cover, why
does it stay up?" "It has edges and sinks if ifs filled with water"

"Why?"~-"Because ifs iron."

DOT (7 ; 6): "That baDP"-*7* stays on top. Ifs wood; ifs light
"-'

this key?"-"G0$ down. Ifs iron; ifs heavy "-"Which is heavier, the

key or the ballP'"The ball."-"Wby does the key sink?
9'-<e

Because
it is heavy."- 'And then the nail?"-*7ft light but it sinks anyway. Ifs

iron, and iron always goes under?
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The principal difference between these reactions and those of

substage I-B lies in the real effort made to resolve the contradic-

tions. This is done by improving the classification system by the

utilization of class inclusion operations. These permit the subject

to distinguish systematically between "all" and "some" by means

of the reversible addition A + A' = B and B - A' = A, from

which it follows that A < B. As soon as this operation permits
him to determine the accurate inclusion of the part in the whole,

the subject is led to the most significant discovery of the first

operational level; that small objects do not always weigh less than

large ones or, in other words, that it is false to consider all small

objects as light and all large ones as heavy. In the case of floating,

in particular, all the objects which float are not small and all those

which sink are not large. Thus the child succeeds in making a

double-entry classification with reference to weight and volume

which gives four possibilities: the small light objects, the small

nonlight objects, the large light, and the large heavy. As a result

of the operation of class inclusion, the subject becomes sensitive

to contradiction and, by coordinating two classes now perceived
as distinct from each other, can separately formulate a double-

entry table. There would be contradiction if weight and volume

were identified in the presence of these four subclasses.

Thus the child is led to revise his notion of weight and to place
the concept of absolute weight .#., of weight equal to the volume

or to the quantity of matter in opposition to a new concept of

weight perceived as relative to the matter under consideration

i.e., of weight as a quality of distinct types of matter which is a

rough approximation of specific gravity. But we must insist that

the way they achieve this rough restructuring of the concept of

weight one which avoids the inconsistencies of earlier formula-

tionscannot be understood without considering the new logical

apparatus composed of concrete class and relational operations.

Actually, even reporting on the experimental data relative to

weight and to the quantity of matter presupposes that the parts
are distinguished from the whole for a given class ("all" and

"some") i.e., the presence of a coherent structure is indispensable
in order to avoid contradictions.

However, the notion of weight approximated in this way re-

mains insufficient. As yet it is no more than a quality inherent in
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various types of matter, not a relation between the weight and

the volume. The reason for this is simple. As we have seen else-

where, at this level the child cannot yet conceptualize either the

conservation of weight or the conservation of volume, and the

only invariant available to him is the quantity of matter; thus he
is not able to make any accurate composition of the relationship
between weight and volume from the standpoint of the relations

between bodies or their internal configurations, It would serve no

purpose to refer back to earlier experiments, which are com-

pletely confirmed by the present results.4 It is sufficient to note

that, without conservation or composition of the relationships

referring either to weight or to volume, specific gravity could not

be conceived as other than a simple quantity inhering in each

respective substance.

Moreover, given the incompleteness of the concept of specific

gravity, the failure to distinguish between the concepts of abso-

lute weight and of specific gravity naturally persists at this level.

This is a residual source of contradictions in spite of the visible

effort of the child to overcome them. (See, for example, in KER'S

report, the large wooden ball which he sometimes conceives of

as heavy, sometimes as light; likewise the nail, etc.) Furthermore,
the subject vacillates between the two concepts he applies to

weight because he is not entirely aware of the fact that he is

dealing with two concepts, though he can distinguish them to

some extent. Actually, in order to distinguish the two explicitly,

he would have to possess the operational means for such a distinc-

tion. But we have just seen that he does not possess them. Even
the serial ordering of weights between objects of the same volume

is not acquired until substage II-B, 5
Thus, the nascent notion of

specific gravity marks only the beginning and not the completion
of the separation of the variables of weight and volume. It is the

expression of the discovery that not all the small objects are light

nor all the large ones heavy; but the concept remains at this stage

of preliminary classification and does not yet reach a higher level

of organization.

4 Piaget and Inhelder, Le Dfoeloppement des quantitfe chez I'enfant (De-
ladhaux and Niestle, 1940). See Chaps. I-III and especially VIII-IX on the

composition of relationships between weight and volume.
5 DSveloppement des quantits, p. 233.
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At about 9 years or 9 ; 6, weight begins to be conserved by the

child.6 Thus, from then on he knows how to apply to weight the

concrete operations of serial ordering and equalization and even,

up to a certain point, of measuring. As for specific gravity and

density, he is no longer limited to qualifying the various materials

in terms of simple weight: iron is heavy, wood light, etc. Instead,

he introduces a new general explanatory scheme: the objects with

high specific gravity are more "full" than the others. 7
But, since

volume is not automatically conserved at this stage, we do not

yet see the formulation of an operational relationship between

the two.

For this reason, in comparing the weights of specific bodies to

the weight of water (which begins at this stage), the child does

not relate the object's weight to that of an equal volume of water

but rather to the water contained in the entire receptacle.
8

It is on this point that a new residual core of contradiction can

be observed during this stage. 'Although several of the contradic-

tions of the preceding level are eliminated as a result of the

progress which we have just described, in contrast the subjects

still assimilate the weight of the body, compared with that of the

total volume of water, to a substantial force or to a motor activity,

giving rise to a new group of dynamic explanations which are

mutually contradictory. In addition, the notion of "filled," in spite

of the fact that it permits the unification of the explanations relat-

ing to solid homogenous matter, gives rise, in the case of hollow

objects (boats, covers, etc.), to the hypothesis that the latter float

because they are filled with air. However, without being wrong,
this explanation provides another source of possible difficulties.

The following examples illustrate these various types of reac-

tion:

6 The term "conservation" is used in a sense specific to the authors* mean-

inga particular empirical factor (weight, volume, etc.) remains an invari-

ant in the child's mind throughout observed changes of state. The timing
of the appearance of conservation for various factors differs, but those dis-

cussed here all appear during the concrete stage.
7 Dveloppement de$ quantites, p. 173.
8
Cf. Piaget, The Child's Conception of Physical Causality (Harcourt Brace

and Co., 1930), Chap. VI: at this stage a boat which can float on a lake would
be too heavy for the Rhone, etc.
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BAR (9 years): [class i] Floating objects: ball, pieces of wood, corks,

and an aluminum plate, [class 2] Sinking objects: keys, metal weights,

needles, stones, large block of wood, and a piece of wax. [class 3]

Objects which may either float or sink: covers. Later BAR sees a needle

at the bottom of the water and says: "Ah! They are too heavy for the

water, so the water cant carry them." "And. the tokens?" "I don't

know; they are more likely to go under." "Why do these things float?"

[class i]. "Because they are quite light." "And the covers?" "They
can go to the bottom because the water can come up over the top"
"And why do these things sink?" [class 2]. "Because they are heavy"
-"The big block of wood?"-"!* will go under"-"Whyr~"There is

too much water for it to stay up" "And the needles?" "They are

lighter" "So?" "If the wood were the same size as the needle, it

would be lighter" "Put the candle in the water. Why does it stay up?"
"I don't know" "And the cover?" "It's iron, that's not too heavy

and there is enough water to carry it" 'And now?" [it sinks]. "That's

because the water got inside" "And put the wooden block in."

"Ah! Because it's wood that is wide enough not to sink" "If it were a

cube?" "I think that it would go under." 'And if you push it under?"

"I think it would come back up" 'And if you push this plate?"

[aluminum]."/* would stay at the bottom." "Why?" "Because the

water weighs on the plate." "Which is heavier, the plate or the

wood?" "The piece of wood" "Then why does the plate stay

at the bottom?" "Because it's a little lighter than the wood, when
there is water on top there is less resistance and it can stay down. The
wood has resistance and it comes back up." "And this little piece of

wood?" "No, it will come back up because it is even lighter than the

plate" "And if we begin again with this large piece of wood in the

smallest bucket, will the same thing happen?" "No, it will come back

up because the water isn't strong enough: there is not enough weight

from the water."

BRU (9 years): "The water can't carry the pebbles. The wood can be

carried" "And if it is pushed under?" "I* will come back up because

the water isn't strong enough: it doesn't have enough weight" [
= this

time the weight operates to maintain it at the bottom and no longer
to carry it!]. And a moment later, "The wood comes up when you let

go because it springs up"

The case of BAR clearly illustrates most of the characteristics of

this stage. In the first place, he classifies the objects according to
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specific gravity and not absolute weight; there were three excep-

tions, two of which are due to ignorance (wax and aluminum),
and one (the large piece of wood) to the fact that it is related to

the total volume of water in the bucket. At one point the subject

even gets at an explicit relation between the weight and the vol-

ume of the body; the needle is heavier than the piece of wood
because "if the wood were the same size as the needle, it would
be lighter." Why, in this case, after such a favorable beginning, is

the subject unable to find the law, at the end losing himself in an

increasing number of contradictions? His failure results from the

fact that in relating weight and volume, he has not yet found a

general operational form (logical multiplication for equal volumes

and different weights or for equal weights and different volumes)
and has stayed within the limits of the particular case of the com-

parison of iron and wood. In addition, whenever the principal

relationship relevant to the formulation of the law appeared

i.e., that between the weight of the body under consideration and

that of the water he did not compare weights with equal volumes

(body and water) but the weight of the object and that of the total

quantity of water; "heavier than water" signified "too heavy for

the water to be able to carry them." But once he began to con-

ceptualize the relationship between weights in terms of active

forces, all explanations became possible as his observations pro-
ceeded and sooner or later he was bound to entangle himself in a

contradiction. This is brought out at the end of our questioning
of BAR (as well as the text cited from BRU) up to the point where
BAR returns to the explanation in absolute weight, which is easier

to reconcile with his dynamic imagination.
These initial efforts at unification and internal consistency

which, for lack of adequate operational instruments, are not

crowned with final success, reappear in the cases which are most

difBcult from the standpoint of an integrated explanation; the

case of hollow objects, where the air plays a part, and that of the

needle, which floats in certain cases because of the surface ten-

sion. Thus, certain subjects who explain the specific gravity by the

notion of more or less filled generalize the case of covers or boats,

which float when they are empty (but supported by the air) and
sink when they are filled with water, up to the point of using it

as a prototype for the specific gravity of all sorts of objects.
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RAY (9 years): "The wood isn't the same as iron. It's lighter: there are

holes in between." "And steel?" "It stays under because there aren't

any holes in between'
9

DUM (9 ; 6): The wood floats "because there is air inside"; the key does

not "because there isn't any air inside''

But the analogy cannot be considered valid except on condition

that the "holes" in the wood stay closed. This leads to the follow-

ing type of explanation given in the case of needles poised deli-

cately on the surface of the water:

RAY (9 years, same subject): "The needle pricks and goes in the water

because it is thin and heavy." "Look" [it floats]. "AW It's because

there was a hole in the other needle that went under." "But this one

has a hole too."- . . . -"And that ring clamp?''-"It will go to the

bottom because there are holes; the water comes in."

AND (10 ; o): "The needle floats because there is a little hole." "And
if it were big?

9

'-"It falls "-"How can you tell beforehand?"-"/* de-

pends on whether it is big or small. If the water doesn't come over the

top of it, it stays up"
On the whole, substage II-B shows significant progress in the

direction of internal consistency and in the search for a single

explanation based on the preliminary relating of the weight to the

volume presupposed by the schema of more or less "filled." How-
ever, since the volume of water envisaged is not that of the dis-

placed water but rather of the total quantity of water contained

in the receptacle, the relationship between the weight of the body
and that of the water remains one between active forces, thus

reintroducing a complexity rich in contradictions. The probability

that they will appear is greater when the air is seen as intervening
and holes, open or closed, are assigned a role. In short, for lack

of operational relations sufficiently worked out to dominate the

sum of the relationships between weight and volume, the explana-

tion, although vaguely intuited, is not clearly discovered, and a

coherent system is not as yet formulated.

Stage III

We have put a great deal of emphasis on the preoperational levels

and the concrete operational stages with two purposes in mind;
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in order to point out, first, what a long road thought processes

must tread before even the attempt to find a single noncontradic-

tory explanation appears, and second, why the completion of a

model for such explanations cannot be achieved without the aid

of formal operations even in the present case, in which the law to

be found can be stated by using purely concrete operations. We
must now try to analyze the role of the formal operations needed

to discover the law. But the problem is somewhat more complex
than that in the case of the law of equality of angles studied in the

preceding chapter. Actually, in the latter case, in themselves the

correspondences between the inclinations found at substages II-A

and II-B gave a first approximation of the law; only the reason for

these correspondences remained beyond the subject, and formal

thought introduced nothing more than an element of necessary

implication to a set of relations which were already exactly formu-

lated. In the present example, on the other hand, the law is not

completely discovered at substage II-B, and formal thought is

indispensable to its formulation in a complete form. This differ-

ence can be given two explanations, which are as follows:

In the first place, even if the relation between densities, once

it is found, can be expressed in a purely concrete form, formal

schematization is still needed to work out the relevant concepts.
The concept of density in fact presupposes that of volume. How-
ever, we have stated before that the conservation of volume is

not worked out conceptually before the beginnings of the formal

level i.e., toward 11-12 years.
9 Without a doubt the reason for

this is that, in contrast to simple forms of conservation, which the

subject masters by simple additive compensations, the conserva-

tion of volume throughout changes of form presupposes the ability

to handle proportions.
10 However, we shall see in the course of

chapters 11-14 of the present work why the concept of proportion
does not itself appear before the formal level, when it arises in

connection with certain general properties of the group structures

characteristic of prepositional operations.

In the second place, formal operations are particularly impor-
9 Le DSveloppement des quantits chez I*enfant, Chap. Ill and La G6-

om&rie spontanSe de I'enfant, Chap. XIV.
10 If the three dimensions of a volume, x, y, and z, are transformed into

xf, y'9 and d, there is conservation when xyftftf = tf/z, from the formula
xyz = xV^. These are multiplicative compensations, thus proportions.
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tant in the case of the law of floating bodies in order to make

possible both the exclusion of the too-simple interpretations of

stage II and the purely imaginative construction of a hypothesis
which does not correspond to any of the directly observable con-

crete data. The stage II explanations are not actually absurd and
do not directly contradict the facts, and, if they are to be excluded,
the fact that they are not coherent enough must be felt. But this

can be done only by a thought process able to deduce the conse-

quences of simple hypotheses with necessity. On the other hand,
to relate the weight of the body under consideration to the weight
of an equal volume of water is to invent a situation which has no

empirical correlate, because only the total volume of the water in

the receptacle is actually observed, whereas the conceptualization
of a volume of water equal to that of the object to be compared is

the product of a subtler separation of variables which once more

requires hypothetico-deductive thought

Doubtlessly the subjects we are going to examine now are much
more likely to use acquired knowledge, for they are approaching
the academic level where they deal with such questions. But when
this acquired knowledge does not correspond to the mental struc-

tures indispensable to their assimilation this is immediately rec-

ognized in the questioning, and we have not used the cases

prematurely influenced in this way. In addition, we have seen

how, as early as 9 years of age, subject BAB compares wood and

iron at equal volumes. The generalization of the same mental

operation to the water itself is made so naturally in the course of

stage III that it is hard not to allow for the role of spontaneity
in the progressive structuring of the data, even if it is hastened by
the surrounding social environment. The following examples, be-

ginning with two intermediate cases, illustrate this stage:

FRAN (12- ; i) does not manage to discover the law, but neither does he

accept any of the earlier hypotheses. He classifies correctly the objects

presented but hesitates before the aluminum wire. "Why are you hesi-

tating?" "Because of the lightness, but no, that has no effect." "Why?"
"The lightness has no effect. It depends on the sort of matter: for ex-

ample, the wood can be heavy and it -floats.

99 And for the cover: *I

thought of the surface" "The surface plays a role?" "Mat/be, the

surface that touches the water, but that doesn't mean anything
9'

Thus

he discards all of his hypotheses without finding a solution.
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FIS (12 ; 6) also, in the transition phase between stages II and III,

comes close to solution, saying in reference to a penny that it sinks

"because it is small, it isn't stretched enough. . . . You would have

to have something larger to stay at the surface, something of the same

weight and which would have a greater extension."

ALA (11 ; 9): 'Why do you say that this key will sink?" "Because it is

heavier than the water." "This little key is heavier than that water?"

[the bucket is pointed out]. "7 mean the same capacity of water would

be less heavy than the key" "What do you mean?"-"Y0w would put

them [metal or water] in containers which contain the same amount

and weigh them."

JIM (12 ; 8) classifies floating or sinking objects according to whether

they are "lighter or heavier than water." "What do you mean?" "Yow

would have to have much more water than metal to make up the same

weight" "And this cover?" "When you put up the edges, there is

air inside; when you put them down, it goes down because the water

comes inside and that makes more weight" "Why does the wood
ftoati^-TJecawe it is light" "And that little key?"-"No, this piece of

wood is heavier ""So?"- "If you measure with a key [
= with the

weight of a key], you need more wood than lead for the weight of the

key" "What do you mean?" "If you take metal, you need much more

wood to make the same weight than metal"

MAL (12 ; 2): "The silver is heavy, that's why it sinks" "And if you
take a \xee?""The tree is much heavier, but it is made of wood"
"The silver is heavier than that water?" [bucket]. "No, you take the

quantity of water for the size of the object; you take the same amount

of water" "Can you prove that?" "Yes, with that bottle of water. If

it were the same quantity of cork, it would float because the cork is less

heavy than the same quantity of water.
9' And again: "A bottle full of

water goes to the bottom if it is full because it's completely filled with-

out air, and that bottle stays at the surface if you only fill it halfway."

We see how, rejecting any suggestion that they relate the

weight of the objects in question to the weight of all the water in

the receptacle, these subjects reach the point of comparing the

first weight to that of an equivalent volume of water. FRAN begins
by assigning a possible role to the contact surface; FIS believes

that a piece of metal would float if, without adding to its weight,
its "extension" could increase; then ALA, JIM, and MAL are able
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to reason about the amount of water equal to the volume of the

object. "You take the quantity of water [equal to] the size of the

object/' says MAL, for example. Thus the "more or less full" schema
used at substage II-B is transformed into a relationship between
the weight and the correct volume (for FIS, the "stretch" becomes
the relationship of weight to "extension") and finally between the

weight and volume of the object in question and the correspond-

ing weight and volume of water displaced by that object.

These facts raise three related problems: (A) How does the

subject start to discard the hypotheses he has had up to this

point? (B) How does he go about constructing the new hypothesis?

(C) How does he go about verifying it?

A. On the first question, it is worth noting that from this point
on the subject discards only crude hypotheses without verifica-

tion, whereas he is more and more likely to verify the superior

hypotheses. He even discards the first almost without explicit

reasoning, as when FRAN says, "That has no effect," or "That

doesn't mean anything." In other words, he finds that in order to

refute an explanation it is sufficient to invoke verbally or mentally
a case where the purported factor is associated with the opposite
effect, Thus FRAN eliminates absolute weight in saying, "For ex-

ample, wood can be heavy and it floats." Likewise, ALA and MAL
discard all comparison with the total volume of water in the

receptacle, knowing well that the variations of this volume leave

the floating or nonfloating of the bodies in question unchanged. In

comparison with stage II, the innovation is the same in the case

of floating bodies as in the problem of the equality of angles
studied in Chap, i; the subject views the problem in terms of all

possible combinations in such a way as to draw out their implica-

tions or nonimplications instead of noting the empirical links

simply in order to draw tables of correspondences or classifica-

tions from them. We have seen in the first chapter how implica-

tion is substituted for simple correspondence, and in a moment
we will return to the subject of implication in reference to the con-

struction of the new hypothesis characteristic of this stage. But

the elimination of the hypotheses deemed inadequate is accom-

plished by the following three procedures, each of which supposes

comprehension of nonimplication.

In the first place, if we call p the assertion that the bodies will
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float and let q be any factor associated with p for example,

lightness (absolute) the subject will find that to state the occur-

rence of the association p.q is all that is needed to discard the

factor q; for example, the large block of wood is heavy, neverthe-

less it floats. It is known, in effect, that p.q is the negation of the

implication p D q:

(i)

In the second place, the subject may note the two possibilities

combined (p.q) v (p.q) i.e., of p.(q v q) which constitutes the

operation we may speak of as the affirmation of p independently
of the truth or falsity of q. But this operation contains p.q and

amounts also to discarding p D q. This is what FRAN, for example,

says when he declares that "the wood can be heavy (or light) and

it floats":

p.(qvq) = (p.q)v(p.q). (2)

Finally, the subject may not retain a factor because he knows
that all the possible combinations are true. For example, if p states

that the bodies float and q that there is a large quantity of water

in the receptacle at the present level, the subjects do not attribute

any more importance to statement q because they know well

that one can observe the occurrence of all four combinations,

(p.q) v (p.q) v (p.q) v (p.q) i.e., one object may float equally well

on much or little water, another may sink in the same two situa-

tions. But this operation with four conjunctions, which is called

"tautology" or "complete affirmation," again contains the non-

implication (p.q):

(p*q) = (p.q) v (p.q) v (p.q) v (p.q) . (3)

B. As for the explanation of how the child gets to the hypothe-
sis found at stage III according to which 'lighter (or heavier)

than the water" signifies also "at equal volumes," it can be ex-

plained in terms of what we have said for both the operations and

the concepts themselves.

As for the concepts, the child at stage II has already learned

that one body may be heavier than another with equal volume

(see BAR'S comments on the wood and on the metal of which the

needle is made), but he believes that the weight of the body in
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question is to be compared to the total volume of the water in

the receptacle. The stage III child, on the other hand, rejects the

latter hypothesis. All that remains for him to do is to relate the

weight of the body to that of a quantity of water no longer any
quantity whatsoever but a quantity equal to the volume of the

body itself. In other words, the discovery distinctive of stage III

is nothing more than the generalization of the mode of compari-
son roughly formulated at stage II for two solid bodies, but
henceforth it is applied to the water itself as well as to the object

judged heavier or lighter than it. That this comparison should be
more difficult when it involves a solid body and water than when
it involves two solid bodies should be obvious, since the volume
of water equal to the volume of the immersed solid has no visible

contours and can be conceptualized only after a preliminary
abstraction. But this discovery is nothing less than the resultant

of all the previous conceptualization of relative weight or specific

gravity.

Thus, from the standpoint of the relevant operations this com-

parison with a hypothetical equal volume touches on a reasoning

process of which we will find numerous examples later and which

consists of considering the variation of a single factor "all other

things being equal." If we let p be the assertion that a given

object floats and p the assertion that it does not, q the assertion

that its volume is equal to that of a certain quantity of water,

r the assertion that it is lighter than that quantity of water, and

r the assertion that it is heavier, the relationship which the subject

establishes is the following:

p.q.r. v p.q.r , (43)

which is in fact the schema of proof based on the assumption "all

other things being equal." But this expression is itself equivalent

to the product of two formal operations, (p g r) and (q.r) v (q.r)

i.e., the reciprocal implication (or equivalence) between the

floating of the body and its weight (relative to the same volume of

water) and the assertion that weight and volume vary independ-

ently. The operation (p.q) v (p.q) i.e., proposition (2) by means

of which the subject shows that a given factor does not play a

causal role, can also be recognized in the operation (q.r) v (q.r).

Thus the explanation discovered at stage III covers all possible
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cases including hollow objects without requiring the assignment
of a causal role to the opposing forces of water and air or to any
sort of hole. In the case in which the weight of a body equals that

of the water (at the same volume) we have, of course (if p =
neither floats nor sinks and r = neither heavier nor lighter than

water):

p .q.r vp .q.r . (4b)

For example RAY (12 ; 7) says, in reference to a very thin cube

of plastic (whose density is approximately equal to that of water),

that if it were filled with water "It would stay in the middle, in the

liquid, because the weight is the same."

After the multiple attempts at unification seen throughout stage

II, the subjects finally attain a unified noncontradictory explana-

tion; the two principal previous sources of contradiction (absolute

weight and active forces) are eliminated by the single hypothesis
of density or of the relation between weight and volume.

C. If we study the verification processes used by the subjects,

we find they confirm completely what has been said earlier and,

in particular, allow us to verify the fact that the subjects' reason-

ing no longer operates in a simple formulation of relationships or

concrete correspondences but requires a formal combinatorial sys-

tem. Whereas at the first preoperational level the subject is not

capable of any proof, at the level of concrete operations (sub-

stages II-A and especially II-B) he does not feel spontaneously
the need for it, but he can furnish it if asked. However, in keeping
with the entire logic of concrete operations, which is simply a

matter of organizing the reading of the raw experimental results

(by classification, setting up of relationships, etc.), at this point
the only method of verification of which he conceives is to accu-

mulate facts until more or less complete certainty is reached but

without going beyond the general i.e., without introducing neces-

sary links by isolating these facts from their contextual interde-

pendence and deducing the relations thus isolated.

BON (11 ; o) wants to prove that "all wooden objects float" Therefore

he puts two in the water [wooden cube and the ball] : "1 only have to

put the two things in the jar. They both float. All wooden objects

float."
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But how valid is this jump from "some'' particular cases to "all/*

which reminds one of the amplifying induction that classical logic
wanted to regard as a fundamental reasoning process? In the

absence of probabilistic reasoning (excluded at substage II-B),

it is only a worthless extrapolation, for p.qO(pDq) gives

(pDq)v (p.q) 9 therefore p.q D (p
*
q)-i.e., "some wooden objects

float" could imply any one of several results in a particular case.

At the level of formal thought (from substage III-A on), on the

other hand, proof consists in demonstrating the truth or falsehood

of a particular or general assertion which takes into account (or

tries to take into account) the total number of possible combina-

tions, thus permitting the subject to group combinations in a

demonstrative fashion. However, grouping these combinations is

exactly the same as selecting the cases where a single factor

varies (the others being held constant) so as to isolate universal

relationships from simple contingent conjunctions and above all

so as to be able to discover necessary relationships between vari-

ables. Such a composition of relations requires that we must
resort to what we have called in Chap, i the "structured whole"

(the combinations having o, i, 2, 3, and 4 conjunctions); thus it

contrasts to the simple additive and multiplicative class inclu-

sion i.e., "some" and "all" characteristic of concrete operations.
In other words, the verification process found at stage III makes

explicit use of the schema "all other things being equal" to which
we have just compared the explicative hypothesis of which the

subject conceives [4a, 4b], Two further remarks should be made
with regard to both the difference between substages III-A and

III-B and the relationship between the present problem and prob-
lems which will be taken up in the following chapters.

As a general rule and in its authentic form, the schema "all

other things being equal" appears only at substage III-B, as we
shall see later in reference to flexibility: but then the problem is,

given n factors A, B, C, D, . . . independent of each other, to

vary A leaving B, C, D, etc., unchanged. But in the present case

the two factors, weight and volume, are not independent in this

sense, since the subject is trying to determine the relation between

them and to link them in a new concept i.e., density. Thus, in

comparing an object to the water it floats on, it is easier to vary

weight and leave volume constant than to hold several independ-
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ent factors constant (such as temperature, pressure, etc.), as one

would in studying the role of weight. This is why the schema "all

other things being equal/' in the elementary form it takes for the

present problem, appears as early as substage III-A:

GER (12 ; 7) to prove that the coin has a higher density than water

says: "If there were a jar filled with water and another just like it filled

with pennies . . . [the latter would be] heavier and would go to the

bottom of the lake'
9

AL (12 ; 8): "With the same volume, the water is lighter than that key."

To prove it: T would take some modeling clay, then I would make an

exact pattern of the key and I would put water inside: it would have

the same volume of water as the key . . . and it would be lighter."

But it is still true that it is only at substage III-B that this

schema acquires its general value. Actually, for the present ques-

tion, it is only toward 13-14 years of age that it gives rise to the

search for a common metric unit. Some of the objects we used in

our experiments were (among others) a cube of wood, a cube of

iron, and an empty plastic cube (density about i), all three of the

same volume. But it is striking to see the subjects at substage
III-B turn sooner or later to these units; they are the only subjects

who do so spontaneously:

LAMB (13 ; 3) correctly classifies the objects that sink: *7 sort of felt

that they are all heavier than the water. I compared for the same

weight, not for the same volume of water" "Can you give a proof?"

"Yes, I take these two bottles, I weigh them. . . . Oh! [he notices

the cubes] I weigh this plastic cube with water inside and I compare
this volume of water to the wooden cube. You always have to compare
a volume to the same volume of water.""And with this wooden ball?"

"By calculation." "But otherwise?" "Oh, yes, you set the water level

[in tie bucket]; you put the ball in and let out enough water to main-

tain the original level.'
9

'Then what do you compare?" "The weight

of the water let out and the weight of the ball."

WUR (14 ; 4): "I take a wooden cube and a plastic cube that I fill with

water. I weigh them, and the difference can be seen on the scale

according to whether an object is heavier or lighter than water."

Here we notice that the factor left invariant, as well as the

common unit sought, is always seen in terms of volume, although
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theoretically it would be equally possible to say that for equal
weights of water and of the object in question, the latter would
float if it had a greater volume (cf. the case of FIS and his piece
of money which would float if it had greater extension). But

experimental verification would be more difficult in this case.

Thus, generally, verification at stage III consists of two pro-
cedures: (i) separating out variables according to combinations
not given by direct observation, and (2) the composition of these

relationships according to operations of conjunction and implica-
tion such as those of proposition (4). It is in this respect that, in

the present problem as in the case of the equality of the angles of

incidence and reflection, in the end the required law must be
worked out formally even though the discovery of this law has
been prepared by a long process of concrete structuring. But,
without a doubt, in neither case are the possible combinations

numerous enough for the role of formal operations to be clearly

distinguished from that of concrete operations and particularly
for the schema "all other things being equal" to acquire all its

general significance. For this reason we need to pass on to the

analysis of more complex problems.



Flexibility and the Operations

Mediating the Separation

of Variables
1

THE FLEXEBUJTY of a rod depends on the material it is made of, its

length, its thickness, and the form of its cross-sections. All other

things being equal, the degree to which it bends varies as a func-

tion of the weight that is placed at its tip. To study the reasoning

processes mediating the separation of variables and the verifica-

tion of their respective roles, it seemed worth while to give our

subjects a problem involving much greater empirical difficulty

than the earlier ones, though not requiring for its solution con-

cepts essentially more complex. In the case of floating bodies, we
have just had a glimpse of the importance which the schema "all

other things being equal" plays in hypothetico-deductive think-

ing. But the interference of five distinct variables, as in the flexi-

bility problem, furnishes a situation particularly favorable for the

study of the formation of this experimental schema and of the

formal operations which it presupposes, for if a complete solution

is to be attained each factor must be varied independently and
the others held constant.2

1 With the collaboration of A. M. Weil, former research assistant, Institut

des Sciences de 1'fiducation, and J. Rutschmann, research assistant, Labora-
tory of Psychology.

2 The experimental technique is as follows: The experimenter presents the

subject with a large basin of water and a set of rods differing in composition
(steel, brass, etc.), length, thickness, and cross-section form (round, square,

46
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Stage I

If we are to understand in what way formal operations comple-
ment concrete operations at stage III, we must first find out what
the latter contribute to the separation of variables; but in order

n

O

FIG. 2. Diagram A illustrates the variables used in the flexibility ex-

periment. The rods can be shortened or lengthened by varying the

point at which they are clamped (see B for apparatus used). Cross-

section forms are shown at the left of each rod; shaded forms represent

brass rods, unshaded forms represent non-brass rods. Dolls are used

for the weight variable (see B). These are placed at the end of the rod.

Maximum flexibility is indicated when the end of the rod touches the

water.

rectangular). Three different weights can be screwed to the ends of the rods.

In addition, the rods can be attached to the edge of the basin in a horizontal

position, in which case the weights exert a force perpendicular to the surface

of the water. The subject is asked to determine whether or not the rod is

flexible enough to reach the water level. His methods are observed and his

comments on the variables he believes influence flexibility are noted; and

finally, proof is demanded for the assertions he makes.
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to do that we must start by describing responses at the preopera-

tional level (until about 7 years). The reactions of this stage are

simple; in all his explanations the child is limited to describing

what he sees. As neither classifications nor organized operations

of serial ordering are yet available, he fills in his observations

with precausal linking (finalism, animism, moral causality, etc.):

BIG (5 ; o) puts 200 grams on the 40 cm. square steel bar: "It doesn't

touch the water" [the rods to be compared represent mobile "bridges"

attached to a plank which in turn represents a "road"]. At the end of

these bridges are found small dolls, or "fishermen," which reach the

edge of the water if the "bridges" bend enough. Next he takes up the

round brass rod 7 mm.2 in diameter which, unlike the steel bars above,

touches the water. "Why?" "Because it is lower down." For the round

steel rod, 22, cm. long, diameter 16 mm.2
: "Why doesn't it touch the

water?"-"Bec<mse the bar is too high." "Why does it stay too high?"

"Because it's on a plank [
= attached to a plank, but so are all of the

rods!]. "But why with that one [brass] and not with this one?"

"Because it's too smalF [ = too short]. "And why didn't it work with

the first one?" [40 cm.]. "ft didn't work because there is wood [the

attachment plank] . . . [attached] to the second there is wood too.

I am going to try again [he begins again]. No, that doesn't work."

"Why?'
9

'Because it's heavier and it goes down in the water." 'And

this one?" [new rod]. "It doesn't work because ifs too high . . . /*

etc.

(5 ; 5) after a number of trials puts 100 grams on a rod and waits

as if it were going to descend in a moment. "Why don't all the sticks

go down the same way?" "Because the weight has to go in the water"
Then he places 200 grams on a thick rod and 100 grams on a fine

one: 'Which one bends the mostP'-'Tto one" [the fine rod].-"Why?"
'The weight is bigger here [he points out 200 grams on the other

one]; it ought to go into the water" [We put 200 grams on the thin

one, which then touches the water. He laughs.] "Why does it touch
now?" "Because it has to"

We see that these subjects are generally limited to a simple

report of what they perceive; the rod does not touch the water
because it remains too high or it touches the water because it

descends too low, etc. Finalism and moral causality ("It has to"),

etc., are added. They also start to formulate relations, which

process has a certain logical interest for us in that the child is
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satisfied with undifferentiated, overly-general classes. Just as,

when making the transition from definitions which correspond in

form to the finalism and moral causality of primitive explanations,
he defines by generic classes which lack internal differentiation

(as when he states that "a mama" is "a lady" without referring
to her children), so at the present level (which immediately fol-

lows the level of precausal explanations) objective relational

processes do appear but in terms of generic rather than specific

inclusions. Thus RIG declares that a certain bar does not touch the

water because it is attached to the plank, although those that do
touch the water are similarly attached.3 An instant later he takes

up the same explanation again; "Because there is woocF (
= the

plank), but adds spontaneously "There is wood (attached) to the

second too." In explaining why a thin rod bends more than a

heavy one, HUG limits himself to noting that the heaviest weight
is on the rod that bends the least, as if to imply that both

"should" (in the moral rather than the logical sense) touch the

water. There is still a great gap between this kind of inclusion,

exclusively generic because its form is even more primitive than

that of concrete operations, and the formal type of implication

that will eventually succeed the latter.

Stage II (Substages II-A and II-B)

With the appearance of concrete class and relational operations,

it becomes possible to report on raw empirical data through the

use of classificationscoherent and differentiated serial ordering

and correspondences but this is not in itself sufficient to assure

the separation of variables i.e., to assure the organization of a

valid experiment.

MOR (7; 10), after having put the weight on a narrow rod which

reaches the water, says: "It won't fall the same way with this one

[thick] "because the other one is thinner.*
9
Then he changes the weight:

"This one isn't so heavy as the other one
9

'; he places the heavy weight
on a short rod and the light one on a long rod, predicting that the

3 Cf. Piaget, The Moral Judgment of the Child (Free Press, 1948): The sub-

ject SCHMA (6 ; 6) thinks that a little liar fell in the water because he lied,

but that if he had not lied he would nevertheless have fallen in '^because the

bridge was old."
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curve will be sharper "because the other weight is lighter than this

one." The experiment does not confirm his prediction, and then he

lengthens the short rod: "Oh! with the [thick] one you have to do

that . . .

"
etc. The subject is asked to summarize what he has dis-

covered up to that point by ordering the rods serially according to

flexibility: "Which one bends most?" "This one because it is the thin-

nest:'-"Next?"-"That one" [long and thin, metal].-"Next?''-'That

one" [short, wood].-"Next?"-"T7iw one [thicker]; it goes with the

weight" [heavy].-"Next?''-"That one [heavy, metal]; it didnt go in

the water because 1 had to do that* [lengthen it],

BAU (952): "Some of them bend more than others because they are

lighter [he points out the thinnest] and the others are heavier."

"Show me that a light one can bend more than a heavy one [he is

given a short thick rod, a long thin one, and a short thin one]. [He

places 200 grams on the long thin rod and 200 grams on the short thick

one without noticing the fact that the thin rod that he has chosen is

also the longest.] "You see." "Show me that the long one bends more
than the short.'* Again he puts 200 grams on the same two rods and
this time the result is supposed to demonstrate the role of length. "If

I take away the long one, can you compare again to find out whether

it's the lightest rod that bends more?" "Yes, this one and that one"

[the two short rods, one thick, one thin]. "Which is better, to compare
these two or to compare the way you did before?" "These two" [long
and thin, short and thick]. "Why?" "They are more different"

These two cases are sufficient to show us both the progress
made over stage I and the inability of the subjects at substage
II-A to separate out the experimentally relevant variables.

As before, the advance over stage I lies in the fact that the sub-

ject becomes capable of systematically registering the raw data

i.e., the facts as directly observed though not as they might be
selected with the question in mind of the verification of a hypothe-
sis or the separation of variables. The registration of data is sys-

tematic in that, instead of depending on the formulation of a

simple global relationship (such as the unspecified generic class

inclusion found at stage I), the subject is capable of differentiated

classification, serial ordering or equalizations, correspondences,

etc., which are all accurate when considered independently. For

example, MOR manages to compare lengths, thicknesses, weights,

etc., by serial ordering and even to set up a series of five rods
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arranged in order of observed inclinations. Furthermore, each one
of these operations is correct including the last one, which is the

most complicated. But taken together they prove nothing when
the subject is left to his own initiative. When the experimenter
chooses two terms of comparison with respect to a certain factor,

all other things being equal, the operation of comparison that the

subject accomplishes seems meaningful. But when the subject is

left to himself, everything is mixed up. Thus, the series of five

inclinations that MOR arranges to summarize what he has observed

by himself is a multifactor confusion from which nothing can be
deduced. Likewise, in order to demonstrate the role of the width

(which moreover he confounds with the weight), BAU compares
two rods, one of which is the narrowest but also the longest. After-

wards he chooses the same elements to demonstrate the role of

the length, and when we try to encourage him to separate the two
factors he answers that it is best to compare the terms which differ

most widely.
In such cases the difference is clear between (i) the formal

operations that would enable the subject to separate out the

variables by use of the indispensable combinatorial system and

(2) the concrete operations needed to report the facts but insuf-

ficient to structure an experiment which could utilize this separa-

tion. Less clear are the reasons why concrete operations are

insufficient. Before analyzing this problem further, let us reexam-

ine the reactions of substage II-B; these add explicit multiplica-

tive schemas to the operations used at substage II-A, which appeal

only to implicit logical multiplication (BAU knows that his rod

is "more different" because "at the same time" thinner and longer,

but he does not say so and proceeds by simple addition of

relations).

The only change found at substage II-B is the successful use

of multiplications between asymmetrical relations. While the sub-

jects at substage II-A do not use logical multiplications except

under the elementary form of one-by-one correspondences, at

substage II-B subjects use double-entry tables with orders ori-

ented serially in different directions 4 as well as multifactor group-

ings (several links for the same result):

*
Cf. the coordinate axes for space which also appear towards 9-10 years

(The Child's Conception of Space, Chaps. XIII-XW).
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OT (9 ; 3) begins by referring to length: "You see that because the bar

is longer it can go down better" "And if you take two bars of the

same length?" [he is given a thin and a thick one]. "There it goes

down further, because it is thinner than the other which is fat, and

that one isn't." Next he determines the influence of weight and pre-

dicts for a short rod: "That wont work: the rod is too short and the

weight is too light for the rod.
9'

HAE (10 ; 9) discovers the roles of the material the rods are made of,

thickness, and length. "Can you tell me without trying whether that

[weight] will reach the water with this rod?"'7 could9 but by pulling

it in [only] a little; it's made of the same metal as the other one but

it is thicker, so you wouldn't have to pull it in as much as the other."

Thus [A same metal as B] X [thicker] X [longer] = [same inclina-

tion]. In addition there is understanding of the compensation between

two relations oriented in opposite directions: [less thin] X [longer] =
[thinner] X [shorter].

This last example indicates the appearance of both double or

triple-entry tables (condition of the multiplication of transitive

asymmetrical relations, with or without compensations) and mul-

tifactor multiplication (several causes are possible for the same

effect).

Still, subjects at this level are unable to verify the action of one

factor by leaving all of the other known factors constant. Likewise,

although they understand the compensation of length and thick-

ness for identical matter, they do not know how to generalize the

concept of compensation to the mutual compensation of all known
factors. Why this should be so raises a problem. The subjects'

failure to generalize is even more difficult to explain when we
consider the fact that they seem to be in possession of all the

requisite operational instruments. But although the subject ox,

for example, when given two bars of the same length, well under-

stands that the thinner one will bend more, when asked to demon-
strate the role of thickness he compares bars of unequal width

without assuring equivalence among the other factors and does

not realize that his verification is worthless. Likewise HAE
does not proceed any more skillfully, in spite of his discovery of a

potential compensation between two specific factors. Everything
seems to indicate that we have come across two different systems
of thought: one, the concrete, permitting simply the composition
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of relations and of classes which depend on the immediate data,
and the other, the formal, permitting a restructuring of necessary
links.

The concrete system consists of tables of associations or corre-

spondences either of classes or of relations. For purposes of simpli-
fication we can express this in the language of classes. Let us call

Ai the class of rods which are 50 mm. or more long and A'i that

of rods < 50 mm.; A2 the class of weights of 300 grams or more
and A'2 that of weights < 300 grams; A3 will be the class of brass

rods and A'3 that of non-brass rods; etc. Finally, X will be the

class of rods touching the water and X' that of rods which do not.

Remember that when joined together the two classes A and A'

give the total class B.

In this case we have, for the two couples of classes (a single

factor and its result X or X'), the double-entry table:

(BO X (X + XO = AiX' + AiX + A'i + A'iX'. (i)

For two factors and their result there are eight combinations

(triple-entry table):

(Bx) X (Ba) X (X + X') = AiA2X + AaAaX' + AXA'2X + , ,

AnA'sX' + A'iA2X + A'iA2X' + A'iA'2X + A'^X'. w
Similarly, from three factors and their results, sixteen combina-

tions can be derived, from four factors, thirty-two combinations,

and finally from five factors and their results X or X' there are sixty-

four combinations. In the course of the experiments, in a more or

less empirical way (depending on his level) the child executes

these sixty-four combinations fully or partially; they allow him to

correlate the variation of factors with the result X or X' (the com-

binations are in fact even more numerous, since the factors of

length, thickness, weight, and inclination themselves give rise to

more variations than A or A' and since the class of A'3 of non-brass

rods is in fact subdivided).

First, we must find out whether or not the subject at substage

II-B can construct such tables. It is likely that he can when one

or two factors are involved, because he uses reasoning based on

congruent structures and we know how easy it is for subjects of

7-10 years to structure serial correspondences. For three to five

factors they can proceed by addition of new elements in succes-
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sion (doubling the preceding table each time). But it is obvious

that a complete calculation would not be possible, and, further-

more, it is not needed as long as the subject works with immedi-

ate correspondences from one element to the next.

Furthermore, in the presence of a single factor and its result,

X or X', it is generally sufficient for the child to find an immediate

correspondence in order to establish the relation between AI and
X: if AiX + A'iX' occurs and the combinations A'iX and AiX' are

null (
= not given in observation because nonoccurring), it is clear

the subject will conclude that AI influences X. But if all four com-

binations or the three combinations AiX -f A'iX+ A'iX' occur

empirically, the method of formulating simple correspondences
between AI and X (or between their negations) will no longer

suffice; the subject must hypothesize a second factor which oper-
ates in the case A'iX (i.e., a factor which produces X for causes

other than AI). However, although he knows how to do this for

the simple cases (when the width compensates the length, etc.),

his efforts are less and less systematic when the number of factors

increases and the experimenter does not simplify the experiment
in his successive presentations of the factors to the child. In other

words, at the stage of concrete operations (II-A and II-B) the

subject knows how to observe the experiment in terms of the vari-

ous correspondences which actually occur, which means that he

can construct increasingly more complex tables from the empirical
associations (positive and negative). But he does not know how
to interpret his tables except when immediate correspondences
are sufficient. And he does not know how to separate variables

when they are too thoroughly mixed.

The reason for this failure is that in order to separate variables

one needs to vary each in turn while holding the others constant

("all other things being equal"). To do so, it no longer is enough
to consider the table as a whole in which all the correspondences
are simultaneously given; the associations AiX, etc., must be

analyzed situation by situation so that one may see which are

linked and which are mutually exclusive. But to arrive at this

analysis the subject would have to use a complete combinatorial

system, one which is no longer the mere construction of a table of

associations such as tables (i) with its 4 associations or (2) with

its 8 associations. This complete combinatorial system involves
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considering the associations one-by-one, two-by-two, etc., so that

16 combinations can be derived from table (i) or 256 combina-
tions from table (2) instead of the 4 or 8 derived from the double-
or triple-entry tables. In other words, while tables (i) and (2)
constitute simple wholes composed of 4 or 8 parts (or associations)

brought together, the combinatorial system necessary for the for-

mal analysis of the associations is based on what can be called a

"structured whole," which here is composed of 16 combinations

in case (i) and of 256 in case (2).

Moreover, we have already seen in chapters i and 2 that this

complete combinatorial system is precisely the mark of formal

thought, for its structure goes beyond additive or multiplicative

groupings of classes and relations (with their simple concrete

inferences founded on the transitivity of class inclusions (or of

relational linkings) and engenders the structuring of prepositional

logic. Actually, for two propositions p and q the 16 possible opera-
tions (conjunction, disjunction, implication, incompatibility, etc.)

correspond exactly to these 16 combinations which can be derived

from table (i), and for three propositions p, q, and r the 256 pos-
sible operations (which, moreover, are all reducible to composi-
tions of binary operations) correspond to the 256 combinations

that can be derived from table (2).

In other words, if the substage II-B subjects do not yet isolate

the variables but simply establish the empirically given corre-

spondences, it is because they have not acquired the combina-

torial system which constitutes prepositional logic. The result is,

on the one hand, that they do not know how to combine empirical

results in such a way as to demonstrate which among the possible

associations of variables actually occurs and, on the other, that

they do not know how to reason by implication, etc., in such a

way as to combine the various factual data that they observe in a

form that is both necessary and conclusive. However, these two

failures can actually be reduced to a single one, since the same

combinatorial system will permit the stage III subjects to devise

experiments for separating variables and to deduce the results of

these experiments by the means of interpropositional operations.

Moreover, we must emphasize that it is because this same prop-

ositional logic is not available that the reasoning process which

would be used to prove the empirical hypotheses remains inacces-
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sible at substages II-A and B. Assuming A -> B and B - C (where
- can be an inclusion, an equality, or a transitive asymmetrical

relation), the concrete reasoning consists in concluding A -> C.

This sort of inference is found in the reactions of HAL and OT.

But this utilization of transitive relations does not give rise to an

interpropositional operation such as an implication. It amounts

only to combining classes or relations among each other on the

basis of a certain order of class inclusion.

In contrast, propositional operations consist in combining vari-

ous empirical associations on which multiplicative classes are

based in all possible ways: implication, for example, would be
defined as deriving from the combination AiX + A'iX + A'iX' the

affirmation that p D q (if p = the affirmation of AI and q = that of

X), for if only (p.q) v (p.q) v (p-q) occur and never p.q (corre-

sponding to AiX'), then q is always true when p is true. These are

the new combinations which, as we shall see later, distinguish the

thinking typical of the stage III subjects and which at the same
time give rise to both deductive capacity for demonstrative rea-

soning and experimental capacity for the isolation of the relevant

variables as each one may influence the end result.

Stage III (Substages III-A and III-B)

This level is characterized both by the incipient formal thinking
revealed in the appearance of hypothetico-deductive reasoning
and by an active attempt at verification. However, at first the sub-

ject is not able to handle the complete range of interpropositional

operations; as a result, even though we may observe the genesis
of implication, exclusion, etc., we do not yet find him able to

organize a systematic proof conforming to the schema "all other

things being equal" except in certain cases and even then not for

all of the relevant factors.

PEY (12 ; 9) speculates that if the rod is to touch the water it must be

'long and thin." After several trials, he concludes: "The larger and
thicker it is, the more it resists" "What did you observe?" *TAfe one

[brass, square, 50 cm. long, 16 mm.2 cross-section with 300 gram
weight] bends more than that one [steel; otherwise the same condi-

tions which he has selected to be equal]: it's another metal. And this
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one [brass, round] more than that one" [brass, square; same condi-

tions for weight and length, but 10 and 16 mm.2
cross-section]. "If

you wanted to buy a rod which bends the most possible?""! would
choose it round, thin, long, and made of a soft metal."

AULE (12 ; 10) wants to prove that a long rod bends more than a short

one. He takes the two steel bars, one round and 22 cm. long, the other

square and 50 cm. but, not noticing that they do not have the same
cross-section form, he adjusts both of them to 22 cm. for length; "This

one [round] bends more because it is thin" [they have the same

width, but one is round, the other square]. "What have you proved?"
"I don't think I've proved anything. Oh! Yes, that the round ones

bend more than the square!'

DUR (11 ; 10): "There are flat ones, wider ones, and thinner ones and

longer ones. If they are both long and thin, they bend still more."

"Could you show me that a thin rod bends more than a wide one?"

[He puts 100 grams on the round steel rod 50 cm. long and 16 mm.2

cross-section and 200 grams on the round steel rod 50 cm. long and
10 mm.2

cross-section.] "That one bends more" [10 mm.2 cross-sec-

tion]. "I would like you to show me only that the thin one bends

more than the wide. Is that way right?" [He takes off the loo-gram

weight and puts 200 grams on the 16 mm.2
rod.] "You see, this is the

right way."

KRA (14 ; i): "Can you show me that a wide one bends less than the

narrow?" [He puts 200 grams on the round steel bar 50 cm. long

and 10 mm.2 cross-section and 200 grams on the square brass rod

50 cm. long and 16 mm.2
cross-section.] "This one [thin steel] goes

down more" "Why?" "It is round, more flexible, the steel is less

heavy, it is round and narrower." "Fine, but I would like a rigorous

proof that it's because it is narrower/' [He places 200 grams on tihe

round steel rod 50 cm. and 16 mm.2 and 200 grams on the round

steel rod 50 cm. and 10 mm.2
.] "You see, this one bends more because

it is less wide""Bi8LVO. Can you demonstrate the same thing with

others?" "Yes. [Steel, square 50 cm. and 16 mm.2 instead of round

steel of 16 mm.2
; thus the comparison is no longer exact.] This one

[narrow and round] bends more, it is less heavy" 'And can you dem-

onstrate the role of the form?" He puts 200 grams on the rectangular

brass rod, 50 cm. long and 16 mm.2 cross-section. "Why does this

one [round, steel] bend more?" "Because it is round." "Is that the

only reason?" "The brass is also heavier" [he then spontaneously dis-

cards the steel rod and takes a square brass rod 50 cm. and 16 mm.2
].
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The subjects' set at stage III is essentially new in comparison
to the set that characterizes concrete operations; it consists of not

being satisfied with empirical events as directly given but in re-

garding them from the start as one aspect of a larger domain, the

domain of the possible. In effect, stage II subjects are limited to

recording the successive data in terms of all the relations and
classes required by their diversity, but they neither separate out

variables nor elaborate hypotheses or proofs. On the other hand,

substage III-A subjects from the start conceive of reality as a

product of various factors arranged in a set of possible combina-

tions. This results in the appearance of two formerly insignificant

behavior patterns: the formulation of hypotheses, which consists

of the restructuring of these possible combinations as they might
occur empirically, and attempts at proof, which consist of deter-

mining which of the possibilities in fact do occur.

No doubt, the initial reactions of each of the preceding subjects

do not seem to differ from those observed at stage II. They con-

sist of describing empirical givens by means of relations and clas-

sifications. But, whereas the stage II subject accepts everything

pell mell, believing that in this way he has gotten to reality itself,

stage III subjects use preliminary concrete descriptions only as

material for setting up hypotheses and proofs; the result is a

more active set.

This new behavior can be observed in the choice of rods to be

compared i.e., in the tendency to compare them only from a

standpoint bearing on a delimited question. Whereas the stage II

subject compares any rod whatever to any other, limiting himself

to a statement of the most obvious relations, the stage III subject
understands that if he is to establish a given relationship, it is

important to select certain pairs of rods rather than others. It is

this choice, which is the most easily observed new reaction at

stage III, that allows us to demonstrate the nature of the logical

operations utilized.

The most important of these operations, or at least the one

which nearly always orients the substage III-A subjects' analysis
at the beginning of the experiment, is the formal operation of

implication by which the subject assumes that a determinate fac-

tor produces the observed consequences in all cases. At stage II,

a comparable causal relationship was established by simple corre-
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spondence-for example, the longer the rod, the more flexible

but this type of reasoning cannot be legitimately generalized to all

cases. The operation of implication takes a similar statement of

correspondence as its starting point (the conjunction p.q translat-

ing AX). However, at substage III-A two new forms of behavior

appear, resulting in three types of statement that distinguish the

formal operation of implication from concrete correspondence.

First, a more or less systematic effort is made to determine the

consequences of eliminating or diminishing factor A, as compared
to the simple search for association between factor A and its result

X, which we found at the concrete level (although this effort is not

completely systematic before substage III-B); thus subjects at the

formal level can determine that in certain cases effect X is itself

eliminated or diminished (the association A'X' is found), whereas

in certain others it is conserved because it can be produced by
factors other than A (association A'X). The unified relation

AX + A'X + A'X' (or in propositions: p.q v p.q v p.q) thus consti-

tutes a system of interpretation which is broader than simple

correspondence because it integrates three possibilities simultane-

ously (either AX or A'X or A'X') and because in this way it can

bring into a single whole the results of several different groupings
of classes and relations.

In this case we have an elementary example of the combina-

torial system discussed above that handles "structured wholes":

in the case of implication the three parts (or associations) AX,

A'X, and A'X' are integrated in the manner presented above,

whereas in the case of disjunction or incompatibility they are

linked in other ways. Moreover, the ability to handle the combina-

torial system which appears at substage III-A is manifested not

merely in the appearance of this or that operation but in their

system as such-z.e., by all of the sixteen binary operations and

by the possibility of linking a determinate number of them in such

a way as to give rise to operations of an advanced sort.

Moreover, and this is the second behavior pattern new to sub-

stages III-A and III-B, the formation and the utilization of this

total system are manifested in the development of proof and nota-

bly in the schema "all other things being equal." The latter as-

sumes the utilization of a set comprising several distinct types of

implications integrated with other operations. From substage
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III-A on, we observe a search for demonstration which is oriented

toward proof and the control of experimental conditions, but the

difficulties which prevent its realization are equally evident. In

fact, the subjects are not capable of more than partial proof. For

example, in order to give proof of the influence of the type of

metal, PEY compares two bars, one copper, the other steel, while

holding all the other factors constant; but in order to prove the

influence of width he compares rods of 10 and 16 mm.2 cross-

section with unequal section forms (round and square) without

realizing that he is then faced with two independent factors.

Likewise DUR varies width and the weight simultaneously before

correcting for the lack of equivalence between the two. We are

certainly dealing here with a search for equivalence in the condi-

tions of comparison, but we still find difficulties in achieving it.

In order to have a better grasp of the nature of the operations

required by the schema "all other things being equal" and of the

dependence of these operations on the total combinatorial system
referred to above, let us begin by comparing the reactions found

at substage III-A with those of substage III-B; during this latter

stage proof becomes rigorous for the experiment under consid-

eration.

One good illustration will suffice:

DEI (16 ; 10): "Tell me first [after experimental trials] what factors

are at work here." "Weight, material, the length of the rod, perhaps
the form" "Can you prove your hypotheses?" [She compares the

200 gram and 300 gram weights on the same steel rod.] "You see, the

role of weight is demonstrated. For the material, 1 don't know"
"Take these steel ones and these copper ones." "I think 1 have to take

two rods with the same form. Then to demonstrate the role of the

metal I compare these two [steel and brass, square, 50 cm. long and
16 mm*2 cross-section with 300 grains on each] or these two here

[steel and brass, round, 50 and 22 cm. by 16 mm.2
]: for length I

shorten that one [50 cm. brought down to 22]. To demonstrate the

role of the form, I can compare these two" [round brass and square

brass, 50 cm. and 16 mm.2 for each.] "Can the same thing be proved
with these two?" [brass, round and square, 50 cm. long and 16 and

7 mm.2
cross-section] .-"No, because that one [7 mm.2

] is much nar-

rower." "And. the width?" "1 can compare these two" [round, brass,

50 cm. long with 16 and 7 mm.2
cross-section].



THE OPERATIONS OF THE SEPARATION OF VARIABLES 61

Our problem is to understand how the subject acquires such a

systematic method one whose apparent simplicity should not mis-
lead us, for only at 14-15 years can subjects spontaneously organ-
ize and utilize it without error.

If we refer back to proposition (2) (on page 53), which gives
the eight basic associations possible for two factors and their

results X or X', we must first assume that the subject begins by
establishing the facts, as at stage II, by means of concrete classi-

ficatory and correspondence operations. For example, for the

factor B2 (weight) and the factor B3 (metal), he may obtain the

following table of observations:

A2A3X = 300 gr., brass, inclination X (maximum);
A2A3X' = 300 gr., brass, inclination X' (because it is too short,

etc.);

A2A'3X rz 300 gr., steel, inclination X (sufficiently thin, etc.);

A2A'3X' = 300 gr., steel, inclination X7

;

A'2A3X rz 200 gr., brass, inclination X (sufficiently long or thin,

etc.);

A'2A'3X' = 200 gr., brass, inclination X7
;

A'2A'3X = 200 gr., steel, inclination X (sufficiently long, etc.);

A'2A'3X' nr 200 gr., steel, inclination X7
.

Such observations show the subject from the start that the fac-

tors A2 and A3 are not the only relevant ones, since the same com-

bination A2A3 may give either X or X'. This table is actually

extracted from the table of sixty-four associations corresponding
to the subject's potential observations. But the innovation found

at stage III is that, having organized a complex situation by means
of concrete operations, the subject does not consider his sets of

facts as a final ordering from which it would be sufficient to ex-

tract such and such relations and correspondences. Instead he

views them as a starting point for new combinations such that,

in associating each one of these eight base associations one-by-one,

two-by-two, three-by-three, etc., he can extract a new set of oper-

ations corresponding to the "structured whole" of the initial tables.

These are the new operations that make possible the separation of

variables, owing to the utilization of a set of implications in com-

bination with the simple conjunctions.

To state the new reasoning process in prepositional terms, let
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us call p, q, r, s, and t the propositions which affirm the presence
of factors AI, A2,

A3 , A4 , and A5 respectively and p, q, r, s, and f

the propositions which deny their presence, and let us designate

by x and by x the propositions which affirm the results X and X'

respectively. The verification schema "all other things being

equal" thus amounts to nothing more than varying one of the

factors corresponding to p or q, etc., and leaving the others un-

changed. For example, for AI corresponding to p, we have

(p.q.r.$.t.x) v (p.q.r.s.t.x), (3)

which amounts to saying that for two rods supporting 300 grams

(
=1 q\ of brass (

=
r), thin (

=
s), and with round section forms

(
=

*), it is sufficient to shorten the initial length of 50 mm. suffi-

ciently (p transformed to give p) if we are to modify the result

(x transformed to give x).

Thus we see that PEY compares two rods such that (p.q.r.s.t.x) v

(p.q.r.s.t.x) (
=

r): in order to demonstrate the role played by the

factor metal in this case the equivalence (r.x) v (r.x) acquires a

demonstrative value because the other propositions (p.q.s.t) re-

main unchanged i.e., that (p.q.r.$.t.x) v (p.q.r.s.t.x) are chosen

among the totality of possible propositions. Furthermore, this

choice presupposes an understanding of the fact that, if proposi-

tions (p.q.s.t) are not kept unchanged (thus if the facts that they

express are not held constant), the effect x could result from a

cause other than r: the equivalence (reciprocal implication)

(r.x) v (r.x) is thus actually derived from an implication (r.x) v

(r.x) v (r.x) and consequently is integrated with all the implica-

tions conceived of as possible between p, q, r, s, t, and x. In other

words, to hold four out of five factors constant is equivalent to

granting that each one could in turn give rise to the same com-

binations. That is why the process of verification based on the

schema "all other things being equal'* is so complex and actually

involves the whole interpropositional combinatorial system.
The proof of this is that at substage III-A this type of demon-

stration is still only partially understood. The subject we have just

cited, PEY, later reasons unsystematically when he tries to verify

the role of the section form (round = i or square = t). He varies

t and t and the width ( = s) simultaneously i.e. he sets up the

proposition (p.q.r.s.t.x) v (p.q.r.s.t.x). In this case it is clear that
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nothing concerning the role of t alone can he deduced from

(s.t.x) v (s.t.x). This sort of error is found again and again through-
out substage III-A. On the other hand, at substage III-B the proof
is rigorous; for example, subject DEI applies the same schema (3)

separately to all the factors which she distinguishes and does it

without any error. In other words, the formal combinatorial sys-
tem based on the "structured whole" (in contrast to the one-by-
one multiplications which furnish it with its base associations) is

under construction during substage III-A but is completed only
at III-B.

Another acquisition that these same studies show to be specific
to the formal level (substages III-A and B) is the capacity to deter-

mine qualitatively certain compensations between heterogeneous
relations. We have already seen the operation of certain logical
calculations for compensation which are based on the multiplica-
tion of concrete relations. Thus HAL (10 years) discovers that a

rod made of the same metal as another but thicker rod may bend
an equal amount providing it is lengthened. In this case, the

compensation is explained by the following operations: if F
designates the transition from thicker to thinner and L the transi-

tion from shorter to longer and F and L the inverse transitions,

we have:

This compensation is easy to understand in terms of simple

multiplication of inverse relations because these relations are

homogeneous. Both thickness and length are spatial dimensions,

and, since they work in opposite directions, it is easy to multiply

them by each other in a compensatory manner to obtain the same

product. We have already observed the same phenomenon in

reference to the conservation of quantities:
5 a tall and narrow

beaker may contain the same quantity of water as a low wide

beaker because the increase in width may compensate for the loss

of height. Although in both cases three dimensions (including two

which are distinct) and an operation of logical multiplication are

involved, in the case of quantities the relevant operation is more

5 See Piaget and Szeminska, The CMcFs Conception of Number (Routiedge

& Kegan Paul, 195*)* Chap. I.
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additive than multiplicative. This is because of the subject's im-

pression that it is possible to displace certain parts of the object
taken from the width in the direction of the length and vice versa,

thus leading him to an additive equalization of products.

Let us now examine the following cases of compensation:
1. For equal lengths, a round thin steel bar has the same

flexibility as a round thicker brass bar;

2. For equal lengths, a round thin steel bar has the same flexi-

bility as a flat brass bar with a larger cross-section surface;

3. For equal lengths, a round thick steel bar has the same

flexibility as a square narrower steel bar.

These pairs of bars are shown to the child, who is asked to

explain only why the rods bend equally for the same weights.

Nevertheless, these three problems are correctly explained only
at the formal level; problem i in substage III-A and problems
2 and 3 in III-B, with maximum difficulty for 3. Why this disparity

among the three problems?
In problem i the fact that the first rod is thin compensates for

the lesser flexibility of its steel composition. But since these two
factors are dissimilar, the subject must first separate out the

relevant variables. At the same time he must perceive them as

acting concurrently if he is to multiply the concrete relationships

between them. Here we see an analogy between this double re-

quirement and the verification schema "all other things being

equal/' Actually, in both cases the subject must cancel the effect

of one of the factors in order to determine the effect of the other.

Since the two factors are always present simultaneously, in both

cases he must limit himself to holding constant only the factor to

be canceled out (mentally or experimentally). Thus, he actually
cancels not the effect itself but rather possible variations in the

effect.

However, at the concrete level relationships between the

metallic composition of a rod and its flexibility or between thick-

ness and flexibility are formulated in rough form simply by noting
the data in varied situations without equalizing other factors. The
result is that in situations where compensations are exact, such as

in problem i, stage II subjects cannot be certain that the differ-

ence in flexibility due to metallic composition is being compen-
sated by thickness alone. On the contrary, ascertaining that the
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lengths and degree of curvature are the same, they are led to

believe that the metallic factor (or eventually thickness) is less

important than they had formerly believed. So it is only when the

factors are both separated and integrated at the same time i.e.,

at the level where implication replaces simple concrete corre-

spondencethat the subject is able to conceive of two factors as

compensating each other exactly, even though he does not know
how to determine the quantitative influence of each factor. When
this equivalence is achieved and the subject has worked out the

separation of variables, his thinking turns to the variations that

are possible under pure, unmixed conditions, and it is not limited

to actual and mixed variations. It is from this that formally de-

duced compensations derive ("if it were . . . that should be this

case ..."). They arise in cases where compensation by corre-

spondences or concrete multiplications is inadequate.
The same holds for problems 2 and 3, but since in these cases

form and thickness compensate each other while the forms them-

selves also differ, the thickness (section surface) is not given per-

ceptually but must be formulated as a hypothetical possibility.

Thus the greater difficulty of these latter problems, problem 3 in

particular, is accounted for. Nearly everything must be deduced

by the subject. In problem 3 the section surface is hard to discern.

As for the intellectual operations, there is (aside from implica-

tions) a sort of proportion mediating the subject's understanding
of these compensations which is interesting because, since we
have not given our subjects any metrical or numerical data, it is

a pure qualitative or logical schema. The starting point is a double

implication (which we write for statements p and q, which desig-

nate any two factors, it being understood that in the case of metal

and thickness, r and s are used, or that in the case of thickness

and section surface, s and t, etc.):

p.q D x and p.qDx or x D (p.q) v (p.q) . (5)

This double implication signifies that the presence of factor p9

in combination with the absence (or diminution) of factor q gives

the same result (designated by x) as the absence (or the diminu-

tion) of factor p and the presence of that designated by q.

In this case, tihe formulation is as follows: (i) conjunctions

(p.q) and (p.q\ which individually express a relationship of re-
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ciprocal exclusion between p and q (let p wq = p.q v p.q\ lead

to the same consequence, in the present case x: (z) thus, not only
are they reciprocal but factors p and q can be substituted for

each other without influencing the result. The notion of a certain

logical proportion by reciprocity (R) follows. It is general for

(p.q) v (p.g). But here it serves as a schema for compensation
itself. For in this case reciprocity signifies an operation whose
value is equal but which is oriented in the opposite direction

(diminution or reinforcement):

This expression signifies (depending on whether it is read

diagonally, vertically, or horizontally): (a) that p.q = R(p.qr);

(b) that p v q = E.(p v q); (c) that p.q = R(p.?); and (d) that

p.p = R(q.q) since o = Ro.

We will come across many similar examples of logical propor-

tionality either independent of all metrical data or prior to

numerical determination. For the moment it is enough to note
that the problem involves not only prepositional reasoning but,
in addition, a formal structuring of the elements themselves. This

formal structuring is the subject matter of the second part of

this work.



4

The Oscillation of a Pendulum

and the Operations

of Exclusion
1

WE HAVE JUST SEEN how the subject goes about separating out
factors in order to determine their respective effects in a multi-

factor experimental setup. The present chapter takes up the

reactions of the child and adolescent in an analogous situation 2

with the difference that only one of the possible factors actually

plays a causal role; since the others have no effect they must be
excluded after they have been isolated. Such is the case for the

pendulum. The variables which, on seeing the apparatus, one

might think to be relevant are: the length of the string, the weight
of the object fastened to the string, the height of the dropping
point (

= amplitude of the oscillation), and the force of the push
given by the subject. Since only the first of these factors is actually

relevant, the problem is to isolate it from the other three and to

1 With the collaboration of A. Morf, research assistant, Laboratory of Psy-

chology and Institut des Sciences de Ifiducation; F. Maire, former research

assistant, Laboratory of Psychology; and C. Levy, former student, Institut des
Sciences de Ffiducation.

2 The technique consists simply in presenting a pendulum in the form of

an object suspended from a string; the subject is given the means to vary the

length of the string, the weight of the suspended objects, the amplitude, etc.

The problem is to find the factor that determines the frequency of the oscilla-

tions.
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FIG. 3. The pendulum problem utilizes a simple apparatus consisting

of a string, which can be shortened or lengthened, and a set of varying

weights. The other variables which at first might be considered relevant

are the height of the release point and the force of the push given by
the subject.
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exclude them. Only in this way can the subject explain and vary
the frequency of oscillations and solve the problem.

Stage I. Indifferentiation Between the Subject s Own
Actions and the Motion of the Pendulum

The preoperational stage I is interesting because the subjects'

physical actions still entirely dominate their mental operations
and because the subjects more or less fail to distinguish between
these actions and the motion observed in the apparatus itself. In

fact, nearly all of the explanations in one way or another imply
that the impetus imported by the subject is the real cause of the

variations in the frequency of the oscillations:

HEN (6 ; o) gives "some pushes" of varying force: "This time it goes

fast . . . this time it's going to go faster"-
er

fhsit's true?" "OW Yes"

[no objective account of the experiment]. Next he tries a large weight
with a short string: Ifs going faster [he pushes it]. It's going even

/aster." "And to make it go very fast?" "Yow have to take off all the

weights and let the string go all by itself [he makes it work but by
pushing], I'm putting them all back, it goes fast this time" [new

pushes]. As for the elevation: "If you put it very high, it goes fast"

[he gives a strong push]. Then he returns to the weight explanation:

"If you put on a little weight, it might go /aster/* Finally we ask him
if he really thinks that he has changed the rate. "No, you can't; yes9

you can change the speed"

DUG (7 ; 3) is a little more advanced in that he finds several

(nonsystematic) correspondences between the lengthening of the

string and the increase in frequency. But he cannot prevent him-

self from pushing constantly and he counts the oscillations badly,

always influenced by his expectations.

One can see, then, that because of the lack of serial ordering
and exact correspondences the subject cannot either give an

objective account of the experiment or even give consistent ex-

planations which are not mutually contradictory. It is especially

obvious that the child constantly interferes with the pendulum's
motion without being able to dissociate the impetus which he

gives it from the motion which is independent of his action.
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Stage II. The Appearance of Serial Ordering and

Correspondences but Without Separation of Vari-

ables

Stage II subjects are able to order the lengths, elevations, etc.,

serially and to judge the differences between observed frequencies

objectively. Thus they achieve an exact formulation of empirical

correspondences but do not manage to separate the variables,

except insofar as the role of the impetus is concerned.

At substage II-A serial ordering of the weights is not yet

accurate:

JAC (8 ; o) after several trials in which he has varied the Length of the

string: "The less high it is [ = the shorter the string], the faster it

goes." The suspended weight, on the other hand, gives rise to inco-

herent relationships:
<t
With the big ones [

= the heavy ones] it falls

better, it goes faster, for example, It's not that one [500 grams], it's

this one [100 grams] that goes slower'
9

But after a new trial, he says

in reference to the xoo-gram weight: "It goes faster,
3' <4What do you

have to do for it to go faster?" "Pwfr on two weights.""Or else?"

"Don't put on any: it goes faster when it's lighter." As for the dropping

point: "If you let go very low down, it goes very fast'' and "It goes

faster if you let go high up" but in the second case JAC has also short-

ened the string.

Since the ordering serially of the other factors is accurate, the

subject discovers the inverse relationship between the length of

the string and the frequency of the oscillations at this and suc-

ceeding levels, However, since he does not know how to isolate

variables, he concludes that the first variable is not the only
relevant one in the problem. Moreover, if he attributes causal

roles to the weight and the dropping point as well, it is because

he varies several conditions simultaneously.
In spite of the marked progress seen at substage II-B, which is

due to an accurate ordering of the effects of weight (in the raw

data), the factors cannot always be separated:

BEA (10 ; 2) varies the length of the string [according to the units two,

four, three, etc., taken in random order] but reaches the correct con-

clusion that there is an inverse correspondence: *7f goes slower when
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it's longer." For the weight, he compares 100 grams with a length of

two or five with 50 grams with a length of one and again concludes

that there is an inverse correspondence between weight and frequency.
Then he varies the height of the drop without changing the weight or

the length [without intending to hold them constant, but by simplifi-

cation of his own movements] and he concludes: "The two heights go
at the same speed." Finally he varies the force of his push without

modifying any other factor and again concludes: "It's exactly the

same."

CRO (10 ; 2), Likewise, cannot separate weight and length. However, in

contrast to BEA, he does vary the dropping point. He begins with a

long string and 100 grams, then shortens the string and takes 200

grams that he drops from a higher point: "Did you find out anything?"

"The little one [100 grams] goes more slowly and the higher it is

[200 grams with a short string] the faster it goes" But afterwards he

puts 50 grams on the same short string: "The little weight goes even

faster" However, the subject neglects this last case: "To go faster,

you have to pull up the string [diminish the length] and the little one

goes less fast because it is less heavy" Then: "Do you still wonder

what you have to do to make it go faster?" "The little weight goes

faster" 'How can you prove it?" "You have to pull up the string"

[diminish the length].

PER (10 ; 7) is a remarkable case of a failure to separate variables: he

varies simultaneously the weight and the impetus; then the weight, the

impetus, and the length; then the impetus, the weight, and the eleva-

tion, etc., and first concludes: "It's by changing the weight and the

push, certainly not the string" "How do you know that the string has

nothing to do with it?" "Because it's the same string" He has not

varied its length in the last several trials; previously he had varied it si-

multaneously with the impetus, thus complicating the account of the ex-

periment. "But does the rate of speed change?" "That depends, some-

times it's the same. . . . Yes, not much. . . . It also depends on the

height that you put it at [the string]. When you let go low down, there

isn't much speed." He then draws the conclusion that all four factors

operate: "It's in changing the weight, the push, etc. With the short

string, it goes faster" but also "by changing the weight, by giving a

stronger push" and "for height, you can put it higher or lower"

"How can you prove that?" "Yow have to try to give it a push, to

lower or raise the string, to change the height and the weight" [He
wants to vary all factors simultaneously].
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MAT (10 ; 6) goes so far as to set up the simultaneous variation of fac-

tors as a principle. "How do you know that it goes faster when there

is more weight?"
<fWhen you put on a big weight, it goes faster.''

"Did you find that out?" "Yes, by raising the string [ = by diminish-

ing its length], then you put on the big weight at the same time."

These cases are extremely instructive because they show the

difference between concrete and formal operations. From the first

standpoint, the subjects can handle all the forms of serial ordering
and correspondence which make the variation of the four factors

possible and assure the reporting of the result of these variations,

but they know how to draw from these operations nothing more
than inferences based on their transitiveness (from the model
A < C if A < B and B < C). They remain inept at all formal rea-

soning. From the second standpoint, they commit the following
two errors: (i) In varying several factors simultaneously so that

AI A2 A3 A4 are transformed to A'i A's A'a A'4 and in ascertain-

ing the change from the result X to X', they think they have

shown that each one of the factors in turn implies X'. Put into

prepositional language, the error amounts to concluding from

(p.q.r.s)Dx that (pDac).(g Dx).(rDx).(sDx), without suspecting
the existence of other possible combinations (see MAT for two
factors: p.qDx therefore qO#); (2) Reciprocally, subject PER,

having varied all of the factors except one (the length of the

string) and not being very sure whether or not the result has been

modified, concludes that the single constant factor must be in-

effective ("Anyway it's not the string . . . because it's the same

string!"). In other words, from p.q.r.s (x) v p.q.r.s (x v x) he con-

cludes pDx.
Thus it is evident that the subjects still lack some logical instru-

ment for interpreting the experimental data and that their failure

to separate out the factors is not simply the result of mental lazi-

ness. Just as BAU (Chap. 3) varied two factors simultaneously in

the comparison of the flexibility of rods so that the results would
be "more different," so do MAT and the preceding subjects ex-

plicitly propose to modify all factors simultaneously so as to

accomplish more impressive transformations. At this stage the

subjects lack a formal combinatorial system. Since they are accus-

tomed to operations of classification, serial ordering, and corre-
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spondences, they are limited to simple tables of variation and do
not conceive of the multiplicity of combinations which can be
drawn from them. Since they have no combinatorial system based
on the "structured whole/' they do not even begin to isolate the

relevant variables.

Substage III-A. Possible but not Spontaneous Sepa-
ration of Variables

At the lower formal level, substage III-A, the child is able to

separate out the factors when he is given combinations in which
one of the factors varies while the others remain constant. In this

case he reasons correctly and no longer according to the kinds of

inference of which we have just seen several examples. But he

himself does not yet know how to produce such combinations in

any systematic way i.e., formal operations are already present
in a crude form, making certain inferences possible, but they are

not yet sufficiently organized to function as an anticipatory

schema.

JOT (12; 7) believes that "you have to putt down [lengthen] the

string'' He suspends 20 grams and varies the length: "It goes more

slowly when you lower [lengthen] the string and faster when it's high

up." "That's all?" "Maybe the weight does something'
9

But to verify

this, he takes 100 grams and lengthens and shortens the string, then

50 grams, lengthening and shortening the string again: "Yes, it goes

faster high up [ = when the string is short]; it's the string." In other

words, he varies the string instead of the weight. Then he changes the

weight while again varying the string in the same way. This process
makes it possible to draw a conclusion, providing that the respective

frequencies are remembered from one situation to another, but it com-

plicates the matter uselessly. When the subject is asked to give proof
of the influence of length, he is satisfied with a pure deduction: "When
the string is long, it takes more time to go from one end to the other.

When it is short, it takes less time*'

ROS (12 ; 8) immediately discovers the role of length by lengthening
and shortening the string with the same weight. Then he reduces the

weight, but at the same time shortens the string [200 grams with the

long string and 20 grams with the short string]. His conclusion is that
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"the weight has an effect too." He proceeds in the same manner to

control for the role of impetus and concludes that the "impetus plays

a part too!
9
But he is doubtful about the weight and half sees the need

to leave the other factor, that of length, invariant; he shortens the

string, attaching 50 grams and 100 grams successively. The result does

not change and his doubts grow: "I have to do it over again to be sure

it's right." Then he begins again, but once more he varies both weight

and length. This time he doubts the role of the length and takes 20

grams while lengthening and shortening the string. "When it's smaller

[
= shorter], the weight goes faster. It's because I didn't put on the

same weight; that's why [why nothing is proved]. Now I'll put on the

same weight." Nevertheless, he still believes that the weight has an

influence. Then we change the weights and lengths in front of him

simultaneously: "Does that prove anything?" "No, because you have

to put on the same weight." 'Why?" "Because the weight makes it

go faster" [!].

LOU (13 ; 4) also compares 20 grams on a short string to 50 grams on

a long string and concludes that "it goes faster with the little weight."

Next, rather curiously, he performs the same experiment but reverses

the weights [50 grams with a long string and 100 grams with a short

one]. However, this time he concludes that "when it's short it goes

faster" and "I found out that the big weight goes faster
9

'; however, he

does not conclude that the weight plays no role. "Does the weight
have something to do with it?" "Yes [he takes a long string with 100

grams and a short one with 20 grams]. Oh, I forgot to change the

string [he shortens it, but without holding the weight constant]. Aft,

no, it shouldn't be changed." "Why?" "Because I was looking at [the

effect of] the string."-'But what did you sQe?"-"When the string is

long, it goes more slowly." LOU has thus verified the role of the length
in spite of himself but has understood neither the need for holding
the nonanalyzed factors constant nor the necessity for varying those

which are analyzed.

These transitional cases are of an obvious interest. They demon-

strate, even better than the examples from substage II-B, the

difficulty which arises in distinguishing factors and in the method
"all other things being equal." In the first place, as among the

substage II-B subjects, we find the tendency deliberately to vary
two factors simultaneously, and even (as for LOU) the tendency
not to vary the particular factor under consideration. But almost

in spite of themselves and under the influence of nascent formal
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operations, these same subjects feel that in proceeding as they
do they are not proving anything, so they manage either actually
to transform the factor which they want to leave unchanged (as

LOU) or to vary all factors by turns without knowing how to focus

their analysis on the point being analyzed (as JOT). In such cases,

the conclusion is accurate insofar as it relates to the factor of

length, the only effective factor; but because the subjects lack

combinations which would make exclusion possible, it is not

accurate for weight or impetus, etc. In other words, the formal

logic in the process of formation is for these subjects superior to

their experimental capacity and has not yet adequately structured

their method of proof; consequently, they are able to manipulate
the easiest operations, those which state that which is and estab-

lish the true implications. But they fail in the case of the more
difficult ones, those which exclude that which is not and deny the

false implications.

Substage III-B. The Separation of Variables and

the Exclusion of Inoperant Links

For the pendulum problem, as for flexibility (Chap. 3), substage
III-B subjects are able to isolate all of the variables present by
the method of varying a single factor while holding "all other

things equal." But, since only one of the four factors actually plays
a causal role in this particular problem, the other three must be

excluded. This exclusion is a new phenomenon that contrasts

sharply with substage III-A, where such an operation was- still

impossible, and with the flexibility experiment where it was

unnecessary.

EME (15 ; i), after having selected 100 grams with a long string and a

medium length string, then 20 grams with a long and a short string,

and finally 200 grains with a long and a short, concludes: "It's the

length of the string that makes it go faster or slower; the weight doesn't

play any role" She discounts likewise the height of the drop and the

force of her push.

EGG (15 ; 9) at first believes that each of the four factors is influential.

She studies different weights with the same string length [medium]
and does not notice any appreciable change: "That doesn't change the
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rhythm" Then she varies the length of the string with the same 200-

gram weight and finds that "when the string is small, the swing is

faster!
9

Finally, she varies the dropping point and the impetus [suc-

cessively] with the same medium length string and the same 200 gram
weight, concluding for each one of these two factors: "Nothing has

changed"

The simplicity of these answers is in contrast to the hesitation

found at substage III-A, but this must not mislead us. The answers

are the result of a complex elaboration whose operational mecha-
nism must now be isolated.

Let p be the statement that there is a modification in the length
of the string and p the absence of any such modification; q will be

the statement of a modification of weight and q the absence of

any such modification; likewise r and s state modifications in both

the height of the drop and the impetus and r and s the invariance

of these factors. Finally, x will be the proposition stating a modi-

fication of the result i.e., of the frequency of the oscillationsand

x will state the absence of any change in frequency.
When EME varies the length of the string with equal weights

(and successively for three different weights), she states the truth

of the following combinations:

(p.q.x) v (p.q.x) v (p.q.x) v (p.q.x) . (i)

This is to say that the modification of the length corresponds,
with or without modification of weight, to a modification of the

frequency and that the absence of the first transformation corre-

sponds, with or without modification of weight, to the absence of

the result x.

On the other hand, none of the four combinations (p.q.x) v

(p.q.x) v (p.q.x) v (p-q.x) is verified because when p is present
x is never present and reciprocally when x is present p is never

present.

But expression (i) can be broken down into two operations.

First, when the subject says: "It's the length of the string which

makes it go faster or slower," he expresses the reciprocal implica-
tion between p and x i.e., p x. Secondly, between q and x there

is no single linkage, since the four possible combinations

(q.x) v (q.x) v (q.x) v (q.x) all occur, (This can be written in the

form (q
*

x), in which case we say there is a tautology or "com-



THE OPEBATIONS OF EXCLUSION 77

plete affirmation.") This is what the subject expresses when he

says: "The weight has no effect." As for the relationship between

p and 9, it can be written p.(q v q) or, abbreviated, p [g]-t.0.>
there is affirmation of p with or without q\ likewise, we have

p.(q v q)i.e., negation of p with or without q. (The affirmation

and negation brought together are the same as p
*

q).
Thus expression (i) can be written:

c
*
*) = P-(q v q) g x , or, abbreviated,

p[q] g*.

We see in these formulae that the exclusion of weight as a cause

of variation in the frequency of oscillations results simply from
the subject's realization of (p

*
ac) i.e., from the fact that all of the

combinations possible between q and x occur: to exclude weight
means to exclude the choice of any particular linkage between

q and x .

The reasoning process is the same for the exclusion of height of

the drop and impetus. However, since the subject takes both the

length and the weight into account when he analyzes the role of

the height of the drop (r and f), there are eight true combinations:

(p.q.r.x) v (p.q.f.x) v (p.q.r.x) v (p.q.r.x) v (p.q.r.x) v

(p.q.f.x) v (p.q.r.x) v (p.q.f.x)
= (p

c
x).(q

*
x). (r

*
*) (3)

= p[qvr] g x,

where the expression p [q v r] stands for p.(q v r) v p.(q.r).

Furthermore, when he studies the role of the impetus ($ or s)

the subject also takes into account the length, the weight, and the

height of the drop. In this case, he finds sixteen true combinations:

(p.q.r.s.x) v (p.q.r.$.x) v (p.q.r.c.x) v (p.q.r.$.x)

v (p.q.r.s.x) v (p.q.r.s.x) v (p.q.r.s.x) v (p.q.r.s.x)

v (p.q.r.s.x) v (p.q.r.s.x) v (p.q.f.s.x) v (p.q.r.s.x) (4)

v (p.q.r.s.x) v (p.q.r.s.x) v (p.q.r.$.x) v (p.q.r.s.x)

(P* x).(q*x).(r*x).(s*x)=p[qvrvs] x.

Thus we see that the exclusion of the three inoperant factors

(which at first seemed so simple) as well as the reciprocal impli-

cations of the length and the result x actually presuppose a com-

plicated combinatorial operation which the subject cannot master

except by ordering seriately the factors which are to be varied
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one-by-one, each time holding the others constant. For example,
in expression (4), the first two combinations (p.q.r.s.x) v (p.q.r.s.x)

are sufficient for the subject to deduce that frequency does not

imply the operation of impetus (s.x) and it is sufficient that he add

the last two combinations to conclude (s
*
x)i.e., to exclude

completely the role of this factor. But it goes without saying that,

in order to choose the conclusive combinations in this way, he

must have at least an approximate idea of all of the rest. This fact

explains why the isolation of variables by the method "all other

things being equal" and the exclusion of inoperant factors appear
at such a late date, being reserved for substage III-B.

The best proof that such a combinatorial system is needed is

that the substage III-B subject is not satisfied with drawing exact

conclusions from the demonstrative combinations that he con-

ceives of in the course of the experiment with such apparent sim-

plicity. He avoids as well all of the paralogisms that we have

noted at substages II-B and III-A. But, in comparing the correct

inferences found at substage III-B with the earlier false ones, we
see that the choice is again dictated by the presence of one or two

conclusive combinations. Once more they presuppose a degree of

mastery of the system of all possible combinations.

For example, in the case of the hypothesized influence of weight

(q), the subject may hesitate between operation (3), p [q] x and

the operations (p v q) or (p.q) x . . . assumed at substage
III-A and signifying that the change of frequency is due either to

the length or the weight or to both at once (p v q) or else that it is

always due to both at once (p.q)- In such cases, we would have:

[(p v qr) g *] = (p-q.x) v (p.q.x) v (p.q.x) v (p.q.x), and (5)

[(p.q) g x] = (p.q.x) v (p.q.x) v (p.q.x) v (p.q.x). (6)

Here we see that expression (5) does not differ from expressions

(i) and (2), themselves mutually equivalent, except for the pres-

ence of (p.q.x) and the absence of (p.q.x). And expression (6) does

not differ except for the presence of (p.q.x) and the absence of

(p.q.x). But the adolescent at substage III-B certainly knows how
to exclude (p.q.x) and (p.q.x), since he verifies accurately the false-

hood of p.x and p.x (
= changes of frequency without modification

of length or the reciprocal) even while admitting the truth of q.x
and of q.x (

= simultaneous variation of frequency and weight or
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invariance of both) when the length factor operates at the same
time.

It should be clear that the fact that a mode of reasoning which
was freely accepted up to substage III-B is then rejected again
presupposes a certain choice among the possible combinations
i.e., among those which are to be excluded as well as the true ones.
To refer to a concrete case, the reader will recall that ROS (in
III-A) varies weight and length simultaneously and concludes that
the first is operant: from the combinations (p.q.x) v (p.q.x) he
extracts q D* or x Oq. But the distinctive feature of EME'S experi-
ment (in III-B) is that she is not satisfied with these two combina-
tions and thus retains the truth of the four combinations contained
in expression (i), notably, (p.q.x), which excludes x D q (for q.x =
variation of the frequency without modification of weight) and
(p.q.x), which excludes q D x (for q.x = variation of weight with-
out result for the frequency). Of course a similar selection is

found in connection with the height of the drops and impetus.
Analyzing all the inferences accepted by a substage III-B subject
and all those which he rejects, one must assume that he has knowl-
edge of the combinations of expression (4), This knowledge itself

presupposes a knowledge of the sixteen other rejected combina-
tions i.e., a choice among thirty-two basic combinations.8 Such
choices imply, after all, a selection among a set of basic combina-
tions. Once more we see that this selection implies the operation
of the formal combinatorial system based on the "structured

whole/* "whereas concrete operations amount simply to construct-

ing correspondences from which these basic combinations are

composed.
8 In the case of flexibility (five factors and the result) tibere are even more

i.e., sixty-four basic combinations. But to give proof of the influence of each
factor it is sufficient to retain them separately by couples of combinations,
whose model is furnished by operation (3) presented in Chap. 3, which can
be taken in turn.



Falling Bodies

on an Inclined Plane

and the Disjunction Operations
1

THE EXPERIMENTAL APPARATUS consists of a plane adjustable to

various angles of incline. A ball can be rolled down the plane; it

bounds when it hits a springboard at the base. The problem is to

find the relationship between the height of the point from which
the ball is released and the length of its bound. Naturally the

subject will not be able to calculate the parabolic form of the

curve the ball describes, but he will be able to discover that its

length varies only as a function of the height of the release-point

(learning to exclude the effects of the mass or weight of the ball).

In part, the solution of the problem depends on the way in which
the factors are presented.

Stage I. Global Intuition Without Operational

Registering of the Experimental Data

Even before 7 years, the correspondence between the angle of

incline and the length of the bound is perceived intuitively, but
the height at which the ball is released is not separated from the

angle of incline and weight is constantly assigned a role. However,
this latter role is not always consistently formulated,

i With the collaboration of H. Aebli and L. Miiller.
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VER (5 years): "That one goes to 2 [the second compartment from the

lower extremity of the plane] because it is too small. If it were big like

that [gesture], it would go here" [8],

STU (6 ; 5) discovers that a marble reaches the fourth compartment
for a given slope, then the second "because the gadget was lowered."

'What are we going to do to make it go there?" [6]. "Lower it more

[failure],-No, you have to put it higher up. I want it to go here [8]:

I have to put it way up [approximate success]. Yes; to go near you
have to put it way down and to go far you have to put it higher up"
As for the mass, he believes that a small ball will not go as far.

PIT (6 ; 6): "Where will this ball go?"-"Way down to the bottom: if$

T^flttfer/''Watch [we take a small ball which goes to the same place],
"It's because it's high up"

MIC (6 ; 10): to make it go far, you have to "raise up the trough."
"And if you can't?" "Yow have to throw it hard [it reaches the third

compartment]. Ifs because it isn't high up, it doesn't go fast."

FIG. 4. The inclined plane can be raised or lowered by moving the

peg on which it rests to different holes in the board. These also serve

as an index for measuring height. Marbles of varying sizes are re-

leased at different heights on this plane, hit a springboard at the

bottom, bound in parabolic curves, and come to rest in one of the com-

partments (numbered 1 to 8). These are the subject's index to the length

of the bound.
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VAL (7 ; i): "Because it rolls fast and it still has force." "Tlnis one?"

"It will have enough force to get there [4: failure]. But it had force

anyway; you have to go up a little more"

WAG (6 ; 7): "I'm going to put on that big one; I'm going to put it

further down, otherwise it will go too far because it has more weight;

when it is heavy, it goes too fast and it goes too far; it is heavy: that

makes force." 'And. that one?" "The very tiny little one won't go so

far because it won't have any force, it isn't heavy." Experiment: it

does go far. "Because it was far! It should have fallen faster than the

others because it's small. I am going to try a big one: maybe it will go
all the way to the bottom [experiment]. Yes, because it is big it went

far. I have to watch a middle-sized one [it falls at the same point as

the last two]. Yes, it's because it's heavy: it falls faster [new experi-

ment: idem]. It's because it's small, it's not heavy, so that's why! It

didn't go very far" [now he denies the fact]. Another ball: "Because

it is heavy, it falls faster because it has a lot of force. I am going to

put on the big one: it wants to go far because it [the slope] is very

steep."

In each one of these cases we find some intuitive understanding

obviously drawn from the child's experience (slides, sleds, small

vehicles, etc.): the steeper the slope, the further and more quickly
an object falls. But the height at which the ball is released is not

separated from the angle of incline, and the weight (judged pro-

portional to the size) is attributed a systematic role. But the spe-

cific role assigned to weight changes; in general a heavier marble

is thought to roll further but if necessary this can also be the case

for the smaller ones. In this respect inconsistent observations do

not yet correct the subject, and when he is in a difficult spot he

either contradicts himself or denies the facts (WAG uses the two

processes alternately). This is the case because neither serial

ordering nor correspondence operations, which can integrate

separate statements coherently, are as yet organized. Restricting

oneself to an untalkative subject like STU, one could gain the

impression that an exact correspondence is formed between the

angle of incline and the length of the bound. But when we con-

sider a subject who says all that he thinks, or even a little more,
we can see that this intuition does not go beyond the global level

because it appears in a general form without differentiating

operations.
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Stage II. Attempts at Operational Correspondences
and Usual Exclusion of Weight

Beginning at substage II-A, correct formulations of correspond-
ences can be observed, but they are not yet systematic and of

course they lack the formal procedures essential to the separation
of variables. However, even at this point, depending on the way
in which the balls are presented, the subject often manages to

exclude the factor of weight insofar as it is incompatible with any
serial correspondence:

GUI (752). To make the ball roll further "You have to put it higher

up." "And to get [down] here?'' [extremity]. "Way up [experiment].

Ah! Yes. It's the last" [compartment]."And for this one?" [first com-

partment]. "Yo have to lower it [notch] because it slides less."

"And here?" [toward the middle]. "Higher up, because it slides

faster," etc.

LAU (8 ; 2) indicates same correspondences for the angles of incline.

As for the sizes, LAU declares spontaneously: "The balls will go in the

holes [at greater and greater distances] in order of size" [expected

serial ordering]. "What do you mean by *in order of size'?" "The

smallest goes to the nearest and the biggest goes to the furthest hole;

those in the middle go to the middle" [he does the experiment] ."So?"

"They go all over the place. Size has nothing to do with it; they were

all about the samef
9

At the end: "According to where you put the

slide [inclined plane] they go in the holes. You put it way up to make
the marble go further: it depends on the height of the slide" "And
the size of the marbles?" "The size doesn't do anything"

sera (8 ; 8), likewise,
<e

You have to lower it, raise it" etc. At the end:

"It depends on the size?" "Oh! No. They go in any old box, and then

you raise it to make them go further" etc.

Here there is exact serial ordering of the slopes and lengths of

the bounds, with approximate correspondence between the two

("the more . . . the more") approximate because the subject

does not think of the elevation and does not even consider the

possibility of separating the distance covered on the downward

path from the slope of the plane. But, since the deviations are not

large, the correspondence works in a rough way.
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But what is remarkable is the exclusion of weight, an exclusion

which, though not commonplace, is easy to obtain, as is shown by
the very clear cases of LAU and SCHI. But you will recall that in the

pendulum problem weight was excluded only at substage III-B;

the 12-14-year-old subjects (III-A) were not able to separate the

relevant variables. On the other hand, the hypothesis that weight

plays a role in the fall is very natural and is common even at the

adult level among those who have forgotten their physics courses.

Thus, the exclusion of this factor at substage II-A, when subjects

are unable to make use of any formal prepositional operation,

poses a problem for us.

It seems to us that the explanation lies in the fact that in this

particular case the factors of weight and slope dissociate them-

selves from each other without the subject's having to supply any

operational activity. Actually, when LAU wants to verify his expec-
tation that there is a correspondence between the size of the

marbles and the length of their bounds, the idea does not occur

to him to vary the slope at the same time because the slide is

immobile unless it is intentionally moved. But in the case of the

pendulum, where the problem is to estimate the frequency of

oscillations and where the subject must adjust the weights to the

strings, he will always be tempted to change the weight and

the string at the same time as a way of obtaining clearer results

("more different," as LAU said). In addition, he has to use a system-
atic method to separate out the variables. The factors of slope
and weight, however, are automatically dissociated. Conse-

quently, in this problem it is easy for the child to see that balls

of varied sizes may reach nearly the same place, in direct con-

tradiction to his expectations.
The second reason for the ease with which weight is excluded

has to do with the obvious lack of correspondence between weight
and the length of the bound. In the pendulum problem, on the

other hand, even after negative observations the subject could

still ask himself whether or not the weight plays some role. The

systematic experiments which result in a selection of crucial com-
binations among the total number of possibilities and which do
not appear before substage III-B are needed for the exclusion

of this factor.

In addition to serial ordering and more systematic correspond-
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ences, substage II-B is distinguished by the beginning of disso-

ciation of the height of the release-point from the slope. It is

interesting to note that it is at this same level in other experiments
as well (cf. the dumping apparatus in Chap. 13) that the height
factor is first differentiated and formulated in terms comparable
with the others. But this nascent differentiation does not go far

enough to allow the subject to exclude slope in favor of the height
alone; to do so would presuppose a systematic active verification

procedure designed to determine whether the two factors are

actually independent or not

JEA (8 ; 10) orders the angles of incline systematically: "Now 3 be-

cause I just tried 2.? etc., then says, "The more it goes down, the faster

it goes." Afterwards, he ascertains that with a gentler slope [4 instead

of 7]: "If you put it further [ = higher], it's as if you moved it a

notch" Thus, the attempt at systematic serial ordering forces him to

discover that the factor of height is distinct from the factor of angle of

incline.

(9 ; 9) : "It'8 combined; if you raise it [he has successively raised

the slide to 3, 4, and 5], it makes a bigger jump here. Tm going to

watch the bound. [He takes a smaller ball and begins again: 3, 4, 5,

6, 7, and 8.] Ifs the same for the big one and the little ones; it's the

height that does it [determines the length of the bound]. The lightness

has nothing to do with it" But he does not dissociate height and slope

further.

BLI (10 ; 2) varies the slope: "If the slope is steeper, the batt goes jur-

ther"-"AiLd the sizes?"-"AZZ the balls will go in the same hole; that

can't change all of a sudden" He checks on a little one, then returns to

the slope, and, after an error in prediction, he says: *7 put it too far

backwards [ = too high], so I have to put it further down [experi-

ment]. Ifs too low down [new trial, still without varying the slope

again]; you have to put it higher up because it has less force when it

slopes less" [ = he compensates for the small angle of incline by releas-

ing the ball at a greater distance, thus at a greater height]. After sev-

eral new trials: *7 know now. It always goes behind the same door

[
= in the same compartment] for the same height" He tries to for-

mulate a correspondence between the slope and the length of the

downward path so that he can reach the same hole each time [3]:

25 cm. for the incline 10, 30 cm. for 8, 35 cm. for 6, and 40 cm. for 4.
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The experiment confirms his expectations and he concludes: "The

more you raise it, the more holes there are" [ = the longer the

bound].

We see above that general correspondences of the type "the

more . . . the more" no longer suffice at this stage; rather, the

subjects become interested in organizing systematic correspond-

ences, for example in following the ascending order i, a, 3, ...

for the angle of incline so that they are able to note the corre-

sponding order of lengths for the bounds. (Moreover, neither of

these series is numbered on the apparatus; the angles of incline

are determined by a succession of holes in which the peg which

fixes the slide is inserted and the compartments are distinguished

by means of varied designs house, pine tree, etc.)

Although the correspondence is accurately formulated at this

stage, there are three reasons why it cannot be verified completely.
In the first place, as was our intention, the holes determining the

slope do not correspond exactly to the compartments. In the sec-

ond place, there are possible chance fluctuations (due to jigglings,

etc.). Thirdly, if he is not careful, the subject may vary the dis-

tances involuntarily; at the interior of the slide is a centimeter

scale of such a sort that for a given slope one can still put the ball

at either 25, 30, 35 cm., etc., thus varying the height of the release-

point independently of raising or lowering the slide. Hence, an-

other source of possible deviation from the initial correspondences.
Faced with these variations in the correspondence between the

slope and the length of the bounds, the subject tries to determine

which factors have influenced the result and in which ways. First,

weight occurs to nearly all the subjects with very few exceptions

(such as BLI). But this factor is discarded in the course of the ex-

periment for the same reason as at substage II-A: absence of any
observed correspondence (see MID).
The factor of height remains; at this substage the subjects gen-

erally discover its role as a result of the greater precision of their

attempts at correspondence. For example, when JEA encounters

irregularities in his correspondence, he notices the fact that 'If you
put it further away (thus higher), it's as if you moved it up a

notch" i.e., that for a slope of 4 you can give the ball a higher

starting point and obtain the same result as for a slope of 7 with

a lower starting point. As for BLI, he goes so far as to determine a
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series of metrical equivalents according to the logical formula

higher X less slope = lower X greater slope, thus reaching the
same compartment every time.

However, these subjects are far from the discovery that height,
not slope and distance, is the only relevant factor, although height
can be calculated from slope and distance combined (according
to BLI'S formula). The problem of the exclusion of slope in favor

of height is quite different at substages II-B, III-A, or III-B

from that of the exclusion of weight or amplitude in favor of

length in the pendulum problem. For it is a question not of ex-

cluding one independent factor in favor of another, but rather of

excluding a particular relationship in favor of another of which
it is a part. Actually, at equal heights neither slope nor distance

plays a role if it is varied; there is not, on the one hand, a factor

slope and, on the other, a factor distance, or height; there is a

logical multiplication, "slope X distance height," in which only
the product (height) counts. The two multiplicands, in fact, never

operate as separate factors. But this fact does not yet occur to the

subject and it is understood only with difficulty at stage III. In

other words, the subject at substage II-B thinks of slope and dis-

tance as if two independent factors were involved, one of which
has a role that seemed obvious from the beginning, the other a

role which he has just discovered. Moreover, he conceives of them
as two factors that can compensate each other (of. BIJ). He has yet
to see that height alone counts, and that in order to find a corre-

spondence between the length of the bounds of the ball and the

determinant causal factor, the height, it is sufficient to consider

the latter without regard to slope or distance. It is true that the

child sometimes seems to have understood ('It's the height that

does it,'* MID), but we have here no more than inadequately dif-

ferentiated statements.

Stage III. Necessary Compensations Between Angle

of Incline and Distance (III-A) Followed by Discov-

ery of Height as the Sole Determining Factor (III-B)

Substage III-A (12-14 years) hardly differs from II-B for this

problem except in the method used. Subjects at substage II-B

begin by finding systematic correspondences between slope and



88 THE DEVELOPMENT OF PROPOSITIONAL LOGIC

length of the bounds and discover the role of the distance only

secondarily. But the preadolescents of substage III-A produce

hypotheses more easily and from the start try to catalogue the

factors. They do this in such a way that they are able to separate

slope and distance as coexistent factors more quicldy. But they do

not discover (any more than the preceding subjects) the role of

the height as the single sufficient factor because they fail to pro-

ceed according to the habitual method used at substage III-B

isolation of factors by one-at-a-time variation, "all other things

being equal." The result is that, in reading the responses of sub-

stage III-A, one is especially struck by the widespread appearance
of the idea of compensation between slope and distance, an idea

which has already been found at substage II-B:

ROU (12 ; i): "The highest possible and it will get here" [the furthest

compartment]. But the slope continues to play a separate role: *7

thought that it would go with less force because it fell off steeply.
9' He

then discovers the compensation: "When it was higher [angle of in-

cline], you had to put it one lower down [distance], and when it's

lower [angle of incline], you have to put it one higher up" [distance],

and "if you go up [distance], you have to take down the slide 5 or 10

degrees, and when you raise it you have to start lower down 9

[dis-

tance]. He then takes a slope of 4 and [lowers] his starting point 5 cm.

at a time to aim for progressively nearer compartments: "When it

stays fixed [slope], you have to lower [the starting point] in steps of

5 cm." Conclusion: "Each time the angle gets smaller by 5 degrees

you have to go down 5 cm."

STRO (12 ; 6): "The more the slide is horizontal [
= less inclined], the

more you have to put the ball aside" [
= increase the distance]. Next

he makes some complicated calculations: "You can base it on the

points [slope] and the intervals [distance]; you multiply each hole."

-"How?" "A little more, a little less" [actually he does not get beyond
the qualitative concept of compensation].

HER (13 ; 6) first tests the role of weight and concludes: "That doesn't

have too much to do with it; it's as if they were the same" "Sure?"

-"Quite sure" Then, like the preceding subjects, he realizes that in-

creasing the distance is equivalent to raising the slide.

As ROU, in particular, shows us when he analyzes the role of
distance at equal angles of incline, as soon as these subjects pro-
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ceed to a systematic study of the variables combined with the

concept of compensation which is general at this level, they are

led to the hypothesis that height is the single relevant factor. The

hypothesis is actually proposed and verified at substage III-B:

SAL (13 ; 3) begins with the hypothesis that mass is the determining
factor: "The little one will certainly go faster" But the facts do not

confirm his expectations. "Does size have an effect?" "No, I don't

think so. The large one would naturally go further, but since the little

one goes faster on the downgrade, they compensate each other.'
9 He

goes on to the variations in slope, then proposes "to take the same

slope with a higher starting point.'
9
Next he varies the two simul-

taneously and discovers the compensation: "Now I am going to vary
the height [ = slope] and the distance; they compensate each other!"

"And with extreme variations, would you get something?" "Yes

[trials]. That makes me think that it always has to take off from the

same heightfrom the same horizontal point" [ = thus height inde-

pendently of slope and distance!]. "Are you sure or is it a hypothesis?*'

"Whatever slope you take, a large or a small ball gets there [ = to

the same compartment] if it takes off from the same height" The ex-

periment that he devises as a control consists of taking the same height
for slopes of 3 and 9: "There you really have extremes!"

HOW (16 ; 4) begins by discarding the weight hypothesis: "I would

have expected the difference in weight to have changed the distance"

[ = the length of the bound]. Then he studies the role of slope, then

distance: **Yo have to make the ball start less high up," etc. Next he

ascertains the possible compensation: "If you raise [the slide] you
have to start from lower down." Finally lie is asked to formulate the

law: "It depends on where you start the ball. The line is constant, but

the angle moves" -"What line?" [He points out the guiding points

which make it possible to determine common heights for different

slopes.] "The balfs starting point is constant." *What do you mean?"

-Tfc* height."

As usual, substage III-B subjects differ from intermediate sub-

stage III-A subjects in that they try to separate out the variables.

In this task III-A subjects fail to dissociate them for two reasons

aside from the usual ones. First, at equal slopes distance and

height vary concurrently; thus they do not distinguish the two

factors from each other and generally call "higher* or 'lower"

what they actually measure in distance covered on the inclined
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plane (cf. ROU and STRO). Thus, they believe that they have ac-

counted for height when in fact they have not formulated a clear

relationship. In the second place, in asserting that distance and

slope compensate for each other, they actually limit themselves to

a statement of covariance without looking for the invariant that

results from it, since they partly confuse this invariant, height,

with the distance itself. In contrast, substage III-B subjects try to

separate out the variables by the usual method of varying each

factor in turn while holding all of the other factors constant. In

this case, where there is mutual compensation of slope and dis-

tance, they vary each relationship separately before varying them

together (cf. SAL: "Take the same slope and start from higher up";

then, "Now I am going to vary height and distance"). Finally, this

allows them to distinguish clearly among all three factors slope,

distance, and height and not just between two of them as they
have done up to this point. In addition, as the first two factors

compensate each other, the subjects immediately look for the in-

variant that the compensatory mechanism presupposes; they are

no longer satisfied with simple covariance.

But how do they come to decide that the constant is height and

not either of the other two factors? Of course the discrimination

is a result of their experimentation, but, as SAL shows, a prelimi-

nary deduction is involved. The starting point of this deduction is

the compensation itself. The subject sees that if a given slope is

conserved, distance and height increase or decrease simultane-

ously; if, on the other hand, the height is conserved, the slope
increases while the height decreases or vice versa in such a way
that the height, product of the compensation, is at the same time

the invariant postulated to account for the occurrence of identical

results even when the other two factors are modified, "Whatever

the slope is," says SAL, you have to look for "the same height."
Even more forcefully, HOW states, "The line (height) is constant"

even though "the angle moves." These seem to be the reasons for

the discovery of the height factor; they also explain its late

appearance.
In analyzing the reasoning of these adolescents, as usual we

come first across a selection of the true combinations among the

possible ones. Furthermore, since the subject does not make a

trigonometric calculation but is restricted to observing the empiri-
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cal covariations of the factors (both among themselves and with

the experimental result), the combinations found will bear on the

covariations as much as on the effect produced. (In fact, one may
consider this as the innovation of the present experiment com-

pared to those found in Chaps. 3 and 4.)

Let us call p the statement of the conservation of slope and

p the statement of a variation in this factor; call q and q the

same statements made in reference to distance; r and f the same
in reference to height; finally, we can designate by XQ and the

statements affirming or denying invariance in the result obtained

(length of the ball's bound).
In this case, the true combinations that the subject states (from

the standpoint of invariance or variation of each factor in relation

to the others) are the following:

(p .9 .r ) v (p .q f
) v (pQ.qQ.rQ} v (po.qQ.rQ} v (PO-^O^O). (1)

Thus the excluded combinations are: p q r (when slope but not

distance varies, the height must vary as well), p q r (reciprocally,

if distance varies without slope, height also varies), and p qQr (for

if slope and distance do not change, height must also remain

constant).

But from combination (i) a twofold consequence results which

is correctly drawn by the subject when he is able to utilize the

disjunction operation:

ft D (p v q )] v [r D (p .g ) v (po.go)] ; (a)

i.e. ? a modification of height (of the release-point) presupposes a

modification of either slope or distance or both, whereas mainte-

nance of the same height presupposes either variation of both

slope and distance at the same time or conservation of both.

But it is clear that we also have:

[p D (q v F )] v [p D
(qfo-fo)

v (ft-fo)], and (3)

[q, D (po v Fo)] v [q D (p .r ) v (p .q<>)]> fea)

But the subject assumes that height alone (r .F ), not either of the

two other possible factors, actually plays the causal role. The rea-

son for this is that the three implications r D (po-qO v (p -9o);

p D (q.rQ) v (^ .F ) and q D (p .r
)
v (p .f

) contained in expres-

sions (2) and (3a) are no longer isomorphic if the direction of the
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sign of the relevant changes is taken into account. Thus proposi-

tions p , 9< and f can be broken down into two pairs of propo-

sitions fiat we shall call p, q, and r when they state respectively

an increase in slope, in distance, and in height; p, q, and f when

they state respectively decreases in the same factors. In this case

we have:

p D[(q.r)v(q.f)v(q .r )]

9 D[(p.r)v(p.f)v(p r )] (4)

r<>3[(p.q)v(p.q)v(pQ.q )]',

i.e., the conservation of height r can be assured by the compensa-
tions (p.q) or (p.q) as well as by the absence of change (p .g ), as

is not true for either p or g -

At this point, the subject hypothesizes (see SAL):

r i x, or (f g So), (5)

which amounts to saying that either fQ.x or rQ.x must be true

(height and result either vary together or are both conserved).

The experiment then gives the true combinations:

(Po><7o**o)
V

(po>q<>.X ) V(p ,<7 .*o) V (po-9o.*o) V (po^o^o). (6)

The following combinations are excluded: p .q .x (since change
in slope without modification of distance transforms height and

does not lead to the same result ff ); p^q^x* (for reciprocally, p .qQ

implies a change in height) and p .</o.*o (for conservation of slope

and distance could not produce the change aJ
).

We see above how the true combinations (6) coincide with com-

binations (i); therefore the role of the height as the single neces-

sary and sufficient factor is verified. It is worth noting that the

above subjects are not satisfied with controlling the result of the

variations in height (p .qQ.x ) or (p ^ ^o) or (p .<7o.*o)>
but also

demonstrate the validity of
(p<>.q

.xQ) as counterproof, Subject SAL

even varies slopes from 3 to 9, concluding: "Here you really have

extremes!"



The Role

of Invisible Magnetization

and the Sixteen Binary

Propositional Operations
1

THE EXPERIMENTAL PROBLEMS set for the subjects in Chaps, i to

5 were designed to show a gradation in the sorts of difficulties

overcome by the combinatorial method inherent in formal think-

ing and adolescent prepositional logic. To conclude the first sec-

tion, we should like to examine briefly another rather simple

problem, one which has already been used in one of our previous

studies;
2 it will serve to show how the stage III subjects utilize

disjunctions and exclusions in integration with the entire set of

binary operations. The problem is to determine why a metal bar

attached to a nonmetallic rotating disk stops with the metal bar

pointing to one pair of boxes instead of any other boxes placed
around the disk; actually, the crucial pair contain several magnets
concealed in wax. (Everything is placed on a board which is

divided into sectors of different colors and equal surfaces.)

1 With the collaboration of M. Denis-Prinzhorn, former research assistant,

Laboratory of Psychology.
2
J. Piaget and B. Inhelder, La Gendse de ?id4e de hasard chez Tenfant,

Chap. m. (Not transl.)
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Stage I. Preoperational Disjunctions and Exclusions

We need not refer to the responses of the youngest subjects (sub-

stage I-A), for they have been described in our previous study.

FIG. 5. One pair of boxes (the starred ones) contains concealed mag-

nets, whereas the other pairs contain only wax. The large board (A)

Is divided into sectors of different colors and equal surfaces/ with

opposite sectors matching in color. A metal bar is attached to a non-

metallic rotating disk (8); the disk always stops with the bar pointing

to one pair of boxes. The boxes (which are matched pairs as to color

and design) can be moved to different sectors, but they are always

placed with one of a pair opposite the other. The boxes are unequal
in weight, providing another variable.
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But at substage I-B, a rough sketch of what at stage II we will

call concrete disjunctions and exclusions (for example, the disk

stops "here or there," "it's not that one/' etc.) already appears in

the form of intuitive representations:

voi (6 ; 5) thinks that the disk will stop on the blue "because the

blades [on the disk, which act as brakes] are blue," and, since it stops

on the green [the magnet boxes have for the moment been placed on

the green sectors of the board], he explains that "green goes well with

yellow" [the boxes are yellow]. Next he predicts "on the green, because

it always stops on the green" He opens the magnetized boxes: "There

is wax" but he does not find this fact helpful in explaining the phe-
nomenon and adds, "It doesn't come from that either" [the designs

decorating the boxes]. The magnets are put on the red sector. "Where
will it stop?" "I don't know; here or there" [red or green]. In the end

he is limited to the explanation "There is something in the boxes" but

without saying why some of them stop the disk while others fail to.

WEB (6 ; 9): "Maybe there, because there is a star" [decorating the

magnet box]. Then: "It will always stop on the red."-"Why?"-'I don't

know. It's too heavy here" [the blades serving as brakes]. "What
could be done to see if it's really that?"-"Tafc0 them off

9

[this is done].

"Where is it going to stop?' -"On the &Ze."-(Experiment: red.) 'It

was really that?" [the blades]. "No." 'Then how does it happen that

it stops here?" 'You push too hard [force of the disk]. I'm going to try

gently [it again stops on the red]. Ah! I see. I'd say it's too heavy [he

opens the boxes and compares them]. That one is the heaviest" [the

box with stars containing the magnets; it is not actually the heaviest].

"And like that?" [the experimenter puts the magnets on the blue and

the disk stops there]. "Ah! I know, I'm happy I found out. Maybe the

star is more useful, so it's heavier [
= strong], because at night it lights

the streets. Even between two houses you always see the star" "But is

this one a real star?" "No, it's made of paper, but maybe it sue-

The elementary form of the operation which later becomes

interpropositional disjunction is based on the observation that two

classes are partially or entirely disjunctive. The subject need not

possess concrete class operations before he realizes intuitively that

the needle can stop on any color: "here or there," as voi says. His

phrase expresses the beginnings of a development which leads

both to the inclusion of partial classes in a total class and to the
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notion of the possible. The needle, he means to say, will stop on a

color (B) which will be green (A) or red (A')-i.e., an intuitive

addition A + A'= B with disjunction (either A or A'), although

systematic operations are not yet present.

As for exclusion, it appears in its most elementary form as lack

of correspondence. In this case as well, intuitive correspondences
and noncorrespondences (based on perceptual configurations) may
appear before operational correspondences (in which equivalences
are conserved when the configuration changes).

3 But when voi

rejects the explanation based on the content of the boxes (because
not only the boxes in front of which the disk stops but all of them
are filled with wax) or on the designs which distinguish the boxes

("it doesn't come from that either") he can do no more than note

the lack of correspondence; he cannot organize his observations

in a detailed way.
WEB'S behavior is more advanced when he proposes to take off

the disk brakes (blades) to see whether or not they have anything
to do with the disk's stopping; this proposal is a preliminary type
of verification. He discards other causes (force, etc.) in the same

way because their removal does not eliminate the effect. We see

here the beginnings of correspondence or the perception of non-

correspondence with consequent reversals of behavior which

forecast the transformation of this behavior into reversible opera-
tions. But the end of the interrogation shows that this nascent

structuring is not carried very far yet. In the first place, when
WEB tries to explain the stops as a result of weight, he does not

compare all of the weights and is satisfied with two or three com-

parisons whose results are erroneous. Later, and more important,
he goes so far as to attribute the stopping to the star design which
he sees as "useful*' (

= efficacious) and "heavy" ( = strong); he

does this because the star has "succeeded," although it appears

only symbolically as a paper representation.

Substage II-A. The Beginnings of Concrete Disjunc-
tions and Exclusions

When concrete operations are organized by reversible coordina-

tion of behavior, the rough forms of disjunction and exclusion
3 See The Chil&s Conception of Number, pp. yoff.
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which we have just noted begin to be systematically structured as

a function of the nascent groupings of classes and relations:

KEL (7 ; 3) first says that the needle may stop "here or there or there;

you cant tell in advance" Then he rapidly discovers that the needle

always stops on the same color [violet]. Next the experimenter puts

the box with the star design on the red sector; the needle stops there.

"It's because you changed that" [blades serving as brakes for the disk].

The experimenter repeats the trial. "No, it's the boxes! The stars were

on the violet before, now on the red," etc. But he does not allow him-

self to say any more.

MAMB (8 ; 3). First: "It depends on whether you turn it -faster or

slower." He holds to this idea for a long time: "Maybe you turned it

too hard" etc. Finally, since the needle always stops on the star: "It's

because the [starred] boxes are heavier" "And these?" [the heavier

boxes]. "Maybe they are too heavy, so it doesn't work'"

BER (959): "One of them is light, the other heavy, and one a little less

heavy" He realizes that the starred boxes are the same weight as those

marked with a circle, heavier than the squares, and less heavy than the

diamonds. **Yes, maybe ifs the weight"
4

(9 ; 10) has weighed all of the boxes: "The square is lighter, then

come the star and the circle" "So why does it stop in front of the

star?" "Because the square is next to the star and it is lighter."

KER (10 ; o) also hypothesizes that it "has to do with the weight in the

boxes and in the disk," attempting to reconcile the ambiguities by
using a notion of mean weight, defined in terms of the over-all dis-

tribution of the individual boxes. "Do you want to see if you are

right?" He compares equal boxes: stars and circles. "This one is pretty

heavy; it's the same weight as the star.
9'

"But where does the needle

stop?''-"On the star "-"Then it's the weight anyway?"-"!* must be

the weight because they are in order [
= the weight is distributed in

a certain manner which he describes in pointing out the boxes]. That

one [diamond] is heavier. The two round ones are the same weight;
the two square ones too [but lighter]. So Tm sure it must be the

weight." "Which are the heaviest?" He indicates the diamonds.

"Then it stops there?"-"No/-"And the weight still has an effect?"-

4 See La Gendse de ?id6e de hasard chez Tenfant, p, 96 (Dan, Desp, and

Tos), p. 97 (Ful, intermediate), and pp. 100-101 for similar cases.
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"Yes, of course' [he is thinking of an equilibrium between all of the

weights which results in the needle's stopping at the mean weights'].

In our work on the child's notion of chance we have discovered

a number of analogous cases in which subjects hypothesized that

only the mean weights stop the disk e.g., "It's only the middle

ones which stop it" (FUL 8 ; 4); 'It's the weight of these boxes,

because they are neither very heavy nor very light" (DUF 9 ; 4).

In these cases we see a curious mixture of concrete disjunctions

and exclusions (or nonexclusions); it serves to show both the

progress made over the preoperational level and the deficiencies

of nonformal operations in comparison with the true exclusions

of prepositional logic.

We have already observed the child's behavior for disjunction

in studying chance and lotteries.
6 At this level, when he draws

elements from a collection B, he discovers that he may sometimes

come across representatives of subclass A and at other times rep-
resentatives of subclass A', although at the preceding level he

generally believed that he would come across one rather than the

other. In the present problem we can see this elementary form of

operational disjunction, based on the structuring of classes and

relations, in part revealed by the way in which the notion of

weight is employed. The subject believes that the choice of stop-

ping point can be explained conclusively only in terms of weight;
on the other hand, he discovers the diversity of weights in the

experimental situation. Consequently, he assumes that the weight

may act in one of three ways; the effect results from the heaviest

or the lightest or from an intermediate value (not "too heavy," as

MAMB says or "neither too heavy nor too light'* as DUF says). We
see that this type of disjunction is based on a simple approxi-
mated serial ordering. As KER expresses it: 'It's in order" of three

categories, ranging from the heaviest to the lightest.

This solution of the problem, based on the disjunction of rela-

tions, is a subtle one; still, it raises a delicate point with regard to

exclusion. The fact that there is only correspondence between
some of the weights and the disk's stopping points rather than

between the weights as ordered serially and the degree of fre-

quency or exactness of its stopping does not induce the subject

*lbid.
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to exclude the weight factor at this stage. However, at substage
II-B and subsequently, weight is excluded for this reason. At sub-

stage II-A, on the other hand, absence of complete correspond-
ence simply limits the effect of weight in the subjects' eyes to the
effect of a hypothetical optimum weight which is assumed to be
in the middle range. But why is this weak hypothesis maintained
at substage II-A when it is rejected at II-B?

One very simple explanation can be offered. It is of particular
interest from the standpoint of the psychology of exclusion; more-

over, it relates to facts which we have studied extensively in an-

other work.6 At substage II-A conservation of weight is not yet

organized and none of the concrete operations of serial ordering,

equalization with transitiveness, correspondence, etc., which have

already been acquired in a number of other areas, are as yet ap-

plied to it.
7 In contrast, at about 9-10 years (the beginning of

substage II-B), all of the relevant operations are organized simul-

taneously and conservation is assured. Since at substage II-A

weight is not always structured from the standpoint of concrete

operations, it may still be conceived of as an active force giving
rise to multiple and inconsistent effects. (We have observed ex-

actly the same phenomena and the same inconsistencies in Chap. 2

for the floating bodies problem.) In other words, the child cannot

make systematic exclusions because weight has not yet been given
a place in the system of operations essential to the formulation of

accurate correspondences.
In reading the responses of BER and especially of KER, we dis-

cover the surprising fact that they have recognized that the

weights of the starred boxes (
= those where the needle stops)

and the circles (
= where the needle does not stop) are equal,

even though this discovery does not shake their belief in the effect

of weight. However, if one remembers that they do not order the

weights exactly and that the equalities are not transitive, the fact

is less astonishing. A particular weight can be seen as possessing

a potentiality for attracting the needle which cannot be replaced

by any other equal weight.
*
J. Piaget and B. Inhelder, Le D^veloppement des quaniiUs chez I'enfant,

Chaps. II, VI, X and XI.
i We know, for example, that serial ordering of five distinct weights with

equal volumes is accomplished only at the mental age of 10 as defined by the

Binet-Simon tests.
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VOG'S arguments are also interesting; after he has weighed all

of the boxes, he maintains that the starred one stops the disk

because of its medium weight but adds the provision that it is

placed beside the square which is lighter. His combination of two

weights has none of the distinctive characteristics of an opera-

tional composition; rather he describes an interplay of forces

which cannot be translated into terms of conservation. The same

holds for the notion of total action of all of the weights "in order"

to which KER refers; moreover, HER is unable to make his concep-
tion more explicit.

But even if the weight explanation does not result in an accu-

rate exclusion, the substage II-A subjects can still utilize concrete

exclusions for various other factors which they first suppose to be

causal the disk brakes, force of pushes, etc. In such cases the

incorrect hypotheses are more or less rapidly abandoned as soon

as the lack of correspondence is seen.

Substage II-B. The Concrete Exclusion of Weight

At substage II-B concrete operations for handling weight have

been structured (a delay of two to three years beyond the develop-
ment of such operations for lengths and simple quantities); the

result is that the subjects have quite a different attitude toward

the present problem:

DUP (10 ; 9) begins with the hypothesis that weight is a causal factor:

"It depends on how the weight is placed. This box [magnets] is the

heaviest [he weighs all of them]. Oh! It's the middle one! The heaviest

is the diamond; that one [square] is empty and these two here [the

starred box containing the magnets and the box marked with a circle]

are the same [he weighs them again]. Yes, about the same." Then he

spontaneously puts the circled boxes in the position of the starred

boxes in order to verify his hypothesis, but again the disk stops in front

of the star: "You can't do anything about it, it's always the same thing!
It's complicated." He finds no better explanation but does abandon

weight.

SAN (10 ; 8) "Does the weight do anything?" "Oh, no. That one is

heavier than the star [than the box containing the magnets], and it

goes on the star?'
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PAU (11 ; 11): "The round one and the star are the same weight, so it

may fall on either one of the two [he performs the experiment a sec-

ond time]. Yes, but there is something that does it because it always

falls here" [stars] . He weighs all of the other boxes and concludes by
reasoning [in a form already hypothetico-deductive]: "If it were the

weight, it would fall on the heaviest and not the medium ones."

The effects on these subjects of operations of serial ordering or

serial correspondence as well as those of equalization with transi-

tiveness, newly acquired for weight, are evident. From the fact

that there is no term-by-term correspondence between the weight
and the disk's stopping points, SAN and PAU conclude that the

weight plays no role. Similarly, from the fact that two equal

weights do not produce the same effect, DOT and PAU also con-

clude that this factor is ineffective. They both try one of two

counterproofs. They either replace the magnet box with one of

equal weight (though, of course, not containing a magnet), or they

repeat the experiment to be certain that the disk stops only in

front of one of the two. In sum, once operations are applied sys-

tematically to structuring a particular dimension such as that of

weight, concrete operations are adequate to assure the possibility

of excluding factors when there is neither correspondence be-

tween classes and relations nor transitiveness.

Stage III. Prepositional Disjunctions and Exclusions

Although the exclusion of weight is already possible at substage
II-B by the utilization of concrete operations, the formal opera-
tions of disjunction (pvq~p.qv p.q v p.q) and simple (p.q v

p.q) or reciprocal (p.q v p.q) exclusion present additional advan-

tages. First, they allow some variety in the selection of disjunc-

tions or exclusions; but more important, they locate these various

possibilities in the total set of combinations. The combinatorial

power of the structured whole then in itself determines implica-

tions and nonimplications or incompatibilities. To observe these

advantages, we can turn to a case which will be referred to again
in a later work by one of the authors from the standpoint of

inductive strategy:
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GOU (14 ; 11): "Maybe it goes down and here it's heavier [the weight

might lower the plane, thus resulting in the needle's coming to rest at

the lowest point] or maybe there's a magnet" [he puts a notebook

under the board to level it and sees that the result is the same].

"What have you proved?"-"There is a magnet [he weighs the boxes].

There are some that are heavier than others [more or less heavy], 1

think it's more likely to be the content" [in substance]. 'What do you
have to do to prove that it isn't the weight?" He removes the diamond

boxes which are the heaviest. "Then 1 changed positions. If it stops at

the same place again, the weight doesnt play any role. But I would

rather remove the star boxes. We'tt see whether it stops at the others

which are heavier [experiment]. It's not the weight. It's not a rigorous

proof, because it does not come to rest at the perpendicular [to the dia-

mond boxes]. The weight could only have an effect if it made [the

plane] tip. So I'll put two boxes, one on top of the other, and if it

doesnt stop that means that the weight doesn't matter: [negative ex-

periment]. You see ""And the color?" "No, you saw when the posi-

tions of the boxes were changed. The contents of the boxes have an

effect, but it's especially when the boxes are close together; the boxes

are only important when they are close [he puts half of the boxes at

a greater distance]. Ifs either the distance or the content. To see

whether it's the content Tm going to do this [he moves the starred

boxes away and brings the others closer]. It falls exactly between the

round ones which are near and the stars which are far off. Both things
have an effect and it's the result of two forces [experiment in which
the star is moved away by successive steps]. It's more likely to be dis-

tance [new trial]. It seems to be confirmed, but I'm not quite sure.

Unless it's the cardinal points [he takes off the stars]. No, it's not that.

The stars do have an effect. It must be the content. If it isn't a mag-
net, I don't see what it could be. You have to put iron on the other

boxes. If the magnet is there [disk], it will come [to] these boxes. If it

is in the boxes [stars] there is iron under the disk [he removes the

starred boxes]. I'm sure that it's the boxes."

We see here the great difference between substage II-B sub-

jects, who are limited to serial correspondences or transitive

equalities, and the stage III subject, who utilizes the formal

combinatorial system and as a result does not experiment until

he has made deductions from his preliminary hypotheses. Like
the II-B subjects, GOU hypothesizes the relevance of weight, but
he reasons from a set of possibilities as to ways in which it would
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be manifested if in fact weight had an effect (tilting the appara-

tus). This hypothetical reasoning not only gives him the idea of

verifying whether the plane is horizontal but even the idea of

placing two boxes together in order to increase the weight.

Moreover, GOU uses prepositional rather than concrete opera-
tions. Most important, they are based on the set of sixteen binary
combinations in continuous transition from one to the next; their

consistent integration is demonstrated with particular clarity.

The following operations can be distinguished in his protocol:

(1) Disjunction (p vq) = (p.q) v(p.q) v(p.q): 'It's either the

distance or the content (or both)";

(2) Its inverse, conjunctive negation (p.q): changing the posi-

tion of the boxes verifies the hypothesis that neither weight
nor color is the determining factor;

(3) Conjunction (p.q): both content and distance are effective;

(4) Its inverse, incompatibility (p.q)
~

(p.q) v (p.q) v (p.q): the

effect of the magnet is incompatible with moving the boxes

from the center for the needle may stop without the boxes

being moved and vice versa, or neither occurs.

(5) Implication (p^q) = (p.q) v(p.q) v(p.q): if a magnet is

attached to the disk, it will stop in front of the boxes contain-

ing iron;

(6) Its inverse (p.q): when it does not stop, nonimplication is

shown;

(7) Converse implication (qDp) = (p.q) v (p.q) v (p.q): if there

is a magnet in the box, it will stop the disk;

(8) Its inverse (p.q) operates in (i), (4), (10), etc.;

(9) Equivalence (p q)
=

(p.q]\v(p.q): to assert that weight
has an effect is equivalent to asserting that the needle stops

because of inclination of the plane;

(10) Its inverse, reciprocal exclusion (pvyq) = (p-q)v(p.q): the

fact that the plane is horizontal excludes the weight factor,

for either the plane is horizontal and weight has no effect or

weight has an effect and the plane is not horizontal;

(11) Independence of p in relation to q-i.e., p [q] = (p.q) v (p.q):

the stopping point may coincide either with a color or with

its absence; thus color is excluded as a variable;

(12) Its inverse (which is also its reciprocal) p [q] = (p.q) v (p.q):

failure to stop may also coincide with the color or its absence:
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( 13H 14) Independence of q and q in relation to pi.e., q [p]

and q [p]: tbese operations are found in (15);

(15) Complete affirmation or tautology (p
*
q)
=

(p.q) v (p.q) v

(p.q)
v (p.q): all possible combinations, thus absence of par-

ticular links, for example between the box which contains

the magnet and the colored sector on which it has been

placed;

(16) Its inverse, complete negation or contradiction ( ): to deny
that weight has an effect and to reassert it would be a con-

tradiction.

The above examples all come from the protocol of a single sub-

stage III-B subject; thus we are not exaggerating when we claim

that it is possible for subjects at this level to work in turn with

each of the sixteen binary combinations of prepositional logic. Of

course, at substage III-A the keyboard is not yet complete (for

examples of this intermediate substage, see our previous study on

the problem of magnets).
8 But when formal equilibrium has been

attained the combinatorial system which characterizes the "struc-

tured whole" pays off in full, and the subject is no longer satisfied

with reasoning based on simple concrete correspondences. For

example, when GOU has observed the noncorrespondence of the

stopping points with weights, he does not feel that his proof is

adequate ("rigorous") because he realizes that if weight acted to

produce an inclination of the plane, it could be combined with

other factors.

In sum, even in a problem as simple as the present one (chosen

to conclude the first section because of its very simplicity), the

transition from concrete to formal operations is distinguished by
the appearance of a complete combinatorial system whose vari-

ous types of disjunction and exclusion are continuously linked to

implications. Lacking in even the most advanced children at

substages II-A and II-B, this is what gives the hypothetico-

deductive new look to the responses of stage III subjects; it

manifests itself even in the small details of experimentation.

8 La Gen&se de Fidde de hasard, pp. 101-106.



Part H

THE OPERATIONAL SCHEMATA

OF FORMAL LOGIC

THE TRANSFORMATIONS of thought that characterize the first stages
of adolescence during stage III (notably at substage III-B) can
in no way be reduced to the formation of prepositional operations
of the sort we found in connection with the sixteen binary opera-
tions (after having analyzed more complicated examples involv-

ing ternary operations, etc.) On the contrary, the analyzable facts

of the growth of experimental reasoning are interesting because

they show us that a number of new operations and concepts
emerge in close linkage with the establishment of prepositional

logic; they require intellectual capacities greater than those of

the concrete level and derive from the operational transformations

entailed by the total structures ("groups" and lattices") inherent

in prepositional logic rather than the prepositional operations
themselves.

Thus far we have seen that prepositional logic is always bound

up with a combinatorial system based on the "structured whole"

as opposed to the simple class inclusions that make up the "group-

ings" of classes and relations of concrete logic. But this "struc-

tured whole" and the combinatorial system it presupposes form
more complex structures which, in contrast with these elementary

groupings, fuse the two great modes of reversibility into a single
whole i.e., inversion (or negation) characteristic of "groups'* and

reciprocity (or symmetry) characteristic of lattices." Thus the

operations or new notions -which we have just mentioned and
which we are going to study in this second section have this com-

mon characteristic of deriving from specific properties of these to-

tal structures as such i.e., their general transformations and no
105



J06 THE FORMAL OPERATIONAL SCHEMATA

longer only from the particular operations to which they give rise.

Thus we will designate by the term "operational schemata" those

operations and new notions which are relative to total transforma-

tions of a system as opposed to the particular operations analyzed
in the first section. In the first instance they will be the combina-
torial operations themselves, no longer conceived of in their purely

prepositional aspect but in their general form. Next, they will in-

clude the notions relative to inversion and reciprocity which

appear in all the problems that relate to the physical notion of

equilibrium or of action and reaction. In addition, they will con-

sist of certain notions of conservation, whose discovery requires
the use of formal thought. They also include the notions of pro-

portions, whose mathematical form derives from a more general

qualitative logical form. And last we have the notions of correla-

tion, in certain respects close to the notions of proportion.
In sum, we are dealing with a set of schemata whose dual

nature stems from the fact that, whereas their structuring pre-

supposes formal reasoning, they also derive from the most general
characteristics of the structures from which this same formal

thought arises.



7

Combinations

of Colored and Colorless

Chemical Bodies

WE HAVE constantly seen that the formation of prepositional

logic, which itself marks the appearance of formal thought, de-

pends on the establishment of a combinatorial system. The struc-

tured whole depends on this combinatorial system which is

manifested in the subjects' potential ability to link a set of base
associations or correspondences with each other in all possible

ways so as to draw from them the relationships of implication,

disjunction, exclusion, etc. Faced with an induction problem in

which subjects at concrete stage II would be limited to classifica-

tions, serial ordering, equalizations, and correspondences, the

substage III-B adolescents combine all of the known factors

among themselves in terms of all of the possible links. But the

problems given the subjects up to this point have involved factors

which can be disassociated and combined at will or simply made
to correspond without going beyond the level of observation or

of "raw" experiment. One may wonder what would happen if we
posed a problem that involved combinations directly i.e., one

that involved elements or factors whose combination is indis-

pensable if variable results are to be obtained. Will subjects at

1 With the collaboration of M. Noelting, research assistant, Laboratory of

Psychology, and doctor in chemistry.
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substage II-B or even II-A discover a combinatorial system to

meet the requirements of the experiment, one which would

demonstrate the independence of this combinatorial system in

relation to propositional logic? Must one await the formal stage

for the establishment of this experimental combinatorial system,

and will the stage II children accomplish nothing more than scat-

tered empirical combinations without a total system such as we
have seen elsewhere (in studying the formation of the mathe-

matical operations of combinations, permutations, and arrange-

ments)?
2

The best technique with regard to this matter is to ask subjects

to combine chemical substances among themselves. In experiment

1 + 3 2 1+3+g

FIG. 6. This diagram illustrates Experiment I in the problem of

colored and colorless chemicals. Four similar flasks contain colorless,

odorless liquids: (1) diluted sulphuric acid; (2) water; (3) oxygenated
water; (4) thiosulphate. The smaller flask, labeled g, contains potassium
iodide. Two glasses are presented to the subject; one contains 1+3,
the other contains 2. While the subject watches, the experimenter adds

several drops of g to each of these glasses. The liquid in the glass con-

taining 1+3 turns yellow. The subject is then asked to reproduce the

color, using all or any of the five flasks as he wishes.

2 La Gen&se de ?id4e de hasard chez Venfant, Chaps. VII to IX.
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I, the child is given four similar flasks containing colorless, odor-

less liquids which are perceptually identical. We number them:

(i) diluted sulphuric acid; (2) water; (3) oxygenated water;

(4) thiosulphate; we add a bottle (with a dropper) which we will

call g; it contains potassium iodide. It is known that oxygenated
water oxidizes potassium iodide in an acid medium. Thus mixture

(i + 3 + g) will yield a yellow color. The water (2) is neutral, so

that adding it will not change the color, whereas the thiosulphate

(4) will bleach the mixture (i + 3 + g)* The experimenter pre-
sents to the subject two glasses, one containing i -f- 3, the other

containing 2. In front of the subject, he pours several drops of g
in each of the two glasses and notes the different reactions. Then
the subject is asked simply to reproduce the color yellow, using
flasks i, 2, 3, 4, and g as he wishes.

A second experiment (II) made use of combinations which were
not between substances alone but between some substances and
an indicator. Take Ac = a burette containing sulphuric acid N/4;
B = a burette containing caustic soda N/4; E = three glasses of

pure water, and Ind = a little phenolphthalein in three other

glasses of water. The combinations in this case are:

(Ind X B)

(Ind X Ac) = colorless

(E X B) = colorless

(E X Ac) = colorless

(Ind X B X Ac) = colorless

(Ind X B X E) = pink

(E X Ind) = colorless

(B X Ac) = colorless

In practice the ternary combinations are rare and serve only as

a counterproof for the older children; they are not needed to

produce color. As for B X Ac, this combination is excluded in

practice because two burettes are involved.

The result obtained by means of these two experiments demon-

strates that a systematic combinatorial system appears only at

substage III-A. At substage II-A the subject is limited to multi-

plying all of the factors i to 4 by g. At substage II-B a preliminary

attempt at combination by trial-and-error is observed, but it is

unsystematic.
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Stage I. Empirical Associations and

Precausal Explanations

At the preoperational level subjects are limited to randomly asso-

ciating two elements at a time and noting the result in explaining

it by simple phenomenalism or by other forms of prelogical

causality:

NOD (5 ; 5): [Ind X B]
e<

SyrupI"-[Ind X Ac] "Wofer."--"Can you make

some more syrup?" "Yes. "You have to do this [he shakes the water,

then reproduces Ind X B]. It's syrup again."-"Caa you [change it

back] to water?"- Tea [Ind X Ac], Its water again:'^
t

Vfhy?"-
e
The

syrup has gone away' [he points to a bottle of methylorange one meter

away].

MAM (5 ; 9): [Ind X B] "Ifs like wine. [Ind x Ac] It's like water."-

"Is there any color?" *7tf went down to the bottom, it went away like

that [gesture, then Ind X B]. Some red [Ind X Ac]. The red runs

away in the glass. The color disappeared at the bottom. 'You don't see

it any more. It melted."

EG (6 ; 6): [Ind X B] "It turned pink. Maybe there is paint in the glass.

[Ind X Ac] Maybe the piece melted. Maybe the paint flattened out

completely in the glass. [Ind X B] Rose. Maybe it's because the water

changes. Maybe it changes at the surface of the water [Ac X Ind X E].

Maybe it's because when you have taken some white water in the tube,

there is a bar that stops it and ifs the pink water that runs out."

AR (6 ; 9): [Ind X B] "This time you put some red water inside. [Ac X
Ind] It cant get red because the red has gone away in the water over

there [the first]. [B X Ind] It's formed, it's getting colored. It can come
back better in that water over there than in this. [E] It can't ever come
back there [E] because it's the same color but ifs not the same water."

Preoperational thinking of this type contains neither proof nor

even hypothesis. The apparent hypotheses of EG "maybe it's

because . . ."are nothing more than fictions, for they make no

reference to verification and she simply replaces or fills in the real

world with imagery. Since they are not placed in a precise con-

text of actions, these representations remain precausal; the color

is a sort of active element that emanates from the water (it's the



COLORED AND COLORLESS CHEMICAL BODIES Hi

water that "changes") but may "go away," "go down to the bot-

tom," "flatten out" to the point where it becomes invisible, or fly

away to a beaker more than one meter away. The color can also

"come back" but only to certain beakers of "water" and not to

others. Appropriately, the subject may even shake the uncoopera-
tive beakers (subject NOD, for example).

Substage II-A. Multiplication of Factors by "g

At the time concrete operations appear it is interesting to note the

extent to which subjects spontaneously and systematically asso-

ciate the element g with all of the others (in the case of experi-

ment I) but without any other combination. If the subject is

directly encouraged to combine several factors simultaneously, a

few tentative empirical procedures are elicited but they are not

followed up:

REN (7 ; i) tries 4 X g, then 2, X g, i X g, and 3 X g: "I think I did

everything. ... 7 tried them all!
9
"What else could you have done?"

*7 don't know." We give him the glasses again: he repeats i X g,

etc. **You took each bottle separately. What else could you have

done?" "Take two bottles at the same time" [he tries i X 4 X g, then

2 X 3 X g, thus failing to cross over between the two sets (of bottles),

for example i X 2, i X 3, a X 4, and 3 X 4]. When we suggest that

he add others, he puts i X g in the glass akeady containing 2 X 3

which results in the appearance of the color: "Try to make the color

again." "Do I put in two or three? [he tries with 2 X 4 X g, then

adds 3, then tries it with i X 4 X a X g]. No, I don't remember any

more/' etc.

GAY (7 ; 6) also limits himself to 4 X g, i X g, 3 X g, and z X g, and

discovers nothing else. "Could you try with two bottles together?"

[Silence.]-"Try."-[4 X i X g] "It doesn't work."-"Try something

else."-[3 X i X g] "There it &r-"And that one [a], do you think

that it will be as yellow?"-[No trial]-"What do you think makes the

color, the three together or only two?" "Here" [3]. "And that one?"

[i]. "There isn't any color."-"And that one?" [g].-"Y0s, it's there

inside." "Then what good are i and 3?" "There isn't any color"

IM (7 ; 6) also begins with 4 X g, 2 X g, 3 X g, and i X g, but since

nothing happens he adds more drops to 3 X g, then to the entire series.
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After this [which is new] he mixes the four together, but in the se-

quence 3X2X1X4, adding the drops each time: "It didn't come.

It's gone away again" [the color appeared after 3 X 2 X i X g, but

he did not stop at this point and the color disappeared with 4].

"What made it go away?" "Because I put in too much water"

[
= liquid from the four bottles. ) Til take away that bottle [4]. Begin

again/* Again he makes the whole mixture, without understanding the

suggestion about exclusion. "It didn't come back because I put in too

much

CUR (8 ; 11) also proceeds one by one with g: "Nothing happens. You

cant do it unless you put everything in the same glass." He mixes the

four without success, then hypothesizes not that he has put in too

much but that he should have chosen another order: "Nothing hap-

pens. I should have started with that one" [a]. He does this, but since

he does not control the permutation operations any better than the

combination operations, he follows the sequence 2, 3, 4, i, g, then he

adopts any sequence whatsoever: "The color doesn't come because I

did it in reverse." Finally [always with the intention of blending the

four] he follows the sequence i X 2 X 3 X g: "It's becoming yellow!"
But immediately he adds 4 and has to begin all over again. "Put in as

few as possible." "The fewest possible, that's two."

The reactions at this stage are of interest because, although
these subjects are in possession of logical multiplication opera-
tions of one-by-one correspondence, the idea of constructing
combinations two-by-two or three-by-three, etc., does not occur

to them.

From the standpoint of combination operations, the only spon-
taneous reactions of the subject are either to associate each one
of the bottles i to 4 in turn to the dropper g or to take all four at

the same time. In both cases combinations are involved, but only
the elementary and limited combinations that operate in multipli-
cative "groupings" of classes and relations (i.e., associations or

correspondences between one term and all the others).

Even when he sees he has failed, the subject does not use two-

by-two combinations without prompting by the experimenter. On
the other hand, his two hypotheses are either purely quantitative

("too much water" or not enough, the result being a new distribu-

tion of drops) or have to do with serial ordering (CUE). But this

appeal to order is also prompted by a grouping structure, since
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the serial ordering which is acquired from 7 years on rests on

sequences. But here again the subject's reaction is to introduce a

single change in order or to invert this sequence; he fails to try
all of the possible sequences that combinatorial permutation

operations allow. In sum, no true combinatorial operation has

appeared as yet, but only correspondences and serial ordering

i.e., first-degree combinations based on fixed class inclusions.

Another interesting point is that, with the color already formed,
the subject is well aware that liquid 4 is "a kind of water which
takes away the color.*

9

But when he is in the process of bringing

together the four elements iX^X3X4Xg and the color,

which has appeared after he has combined the first three ele-

ments with g, disappears under the influence of 4, he no longer
has the idea of a possible exclusion between 4 and the color; he

simply declares that the color has disappeared for various reasons.

Because it helps to point up the opposition between noncom-
binatorial and combinatorial structures, we should note that at

this level the child does not think of attributing color to the com-

bination of several elements as such. Rather, he thinks in terms

of such and such an element taken by itself, whether or not it

combines with others. For example, GAY thinks that the color is

in 3; then he withdraws it from 3 in order to assign it to g, as if it

could be linked to only one liquid at a time.

The experiments in which indicators are used differ from those

involving solutions in that in the former the two-by-two combina-

tions are sufficient for a complete classification of the color-pro-

ducing cases (base B X Ind) and of the three nonproductive
cases. Can we then say that the concrete operation of logical

multiplication can alone furnish the solution of the problem?

Interestingly enough, it is adequate for the extraction of the law

(favorable and unfavorable cases) but not sufficient for its expla-

nation. This is so for exactly what we have just seen in reference

to the color attributed to a single liquid.

At substage II-A the elements of this second apparatus give rise

to the following associations. In certain cases, the glasses (E and

Ind conceived of as identical) are associated successively with the

base B and the acid Ac. But from 7 years on complete tables of

four cells, (B X Ind) + (B X JE) + (Ac X Ind} + (Ac X E), are

obtained just as often, thus making possible discovery of the law:
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SEHNE (7 ; 5) associates [Ind X B] pink, [Ind X Ac] colorless, [E X B]

colorless. "There isn't any more pink"; again [E X B]: "The pink

doesn't come any more'' [Ind X B] "Pink again" "Can you take

away the red?" "You put in a little white" [he associates Ind x Ac and

E X Ac]. "They're all the same, these four glasses?" [E and Znd]-
"No. . . . ?es [he tries Ind X B and E X B]. N0/-"Why?"-<7*
comes only in two glasses. These two are pink and these two white"

[correct]. "And the burettes?" "No, here pink [B] and here white"

[Ac]. "Can you take the pink away from this glass?" [Ind X B].

"Yes" [he pours in some acid].

However, these multiplicative operations differ from complete
combinatorial reactions in two ways. First, it does not occur to

the subject to combine the two glasses between themselves

(E X Ind) even after having established their differences, nor to

combine the two burettes: thus he is restricted to the four base

combinations (glass E X burette B) -+- (glass Ind X burette B) +
(glass E X burette Ac) + (glass Ind X burette Ac). Secondly,
even in discovering the law (Ind X B = pink), the subject does

not conclude that the color is due to the combination; rather, he

thinks that the base and the indicator contain it, thus making use

of the notion of the potential in the sense of a "disposition to pro-
duce pink" and not yet in the sense of a possible combination, with

a resultant which is distinct from the effects linked to each of the

elements of the combination.

Substage II-B. Multiplicative Operations with the

Empirical Introduction of n-fct/-n Combinations

The substage II-B reactions are analogous to the preceding ones

but with a visible progress, namely, the appearance of n-by-n
combinations. However, the subject does not as yet discover any
system; only tentative empirical efforts are involved:

KIS (9 ; 6) begins with [3 X g] + [i X g] + [2 X g] + [4 X gj, after

which he spontaneously mixes the contents of the four glasses in an-

other glass; but there are no further results. "O.K., we start over

again." This time he mixes 4 X g first, then i X g: "No result." Then
he adds 2 X g, looks and finally puts in 3 X g. "Another try [i X g,

then 2 X g, then 3 X g]. Ah! [yellow appeared, but he adds 4 X g].
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Oh! So that! So that's [4] what takes away the color. 3 gives the best

color."-"Can you make the color with fewer bottles?"-"No." "Try"

[he undertakes several 2, by 2 combinations, but at random].

ALB (10 ; 4) begins with iX2X3X4Xg, then changes the order:

3XiX4X2Xg. "It's different, because the first time I went in

order and this time I didn't. [He puts 2X4XiX3Xg.] Gives

nothing'
9

[he tries several more permutations at random, then aban-

dons the effort]. "Do you have to take all of them?" "No, you can

take 2 or 3 if you want [he tries unsystematicaliy and succeeds by
chance]. It changes!"

TUR (11 ; 6) begins with i X g, etc. "That doesn't work. You have to

mix all four [he does this]. That doesn't work either [he changes the

order several times without success, then tries two-by-two combina-

tions: iX4Xg, 2X3Xg, 3X4Xg, then 2 X i X g]. I wonder

if there isn't water in all of them!" Then he spontaneously moves on to

three-by-three combinations [ X g],but without order: 3 X 4 X i X g,

then 2 X 3 X 4 X g, then i X 4 X 2 X g, then 3 X 1 X 2 X g.

"That's #."-"What do you have to do for the color?"-"Pw* in 2."-

"All three are necessary?" On# at a time [always with g] it doesn't

work. It seems to me that with two it doesn't work; a liquid is missing."

"Are you sure that you have tried everything with two?" "Not sure

[he tries in addition 2 X i X g, already attempted, then 3 X i X g].

It works! It's i and 3!" "Tell me what effect the bottles have."

"i is a colorant, 2 prevents the color; no it doesn't prevent it because

it worked. 3 takes away the effect of 2, and 4 doesn't do anything."

We see that, as at substage II-A, these subjects begin by mul-

tiplying each element by g or by taking them all at once, but

finally they spontaneously use two-by-two or three-by-three com-

binations (each tune with g). This is the true innovation of this

substage, since at substage II-A this type of combination had to

be called forth by the experimenter. But the fact that these com-

binations are not systematic defines the upper limit of this sub-

stage: TUR, who is the most advanced of the cases cited, does not

even attain the six possible two-by-two (X g) combinations.

As for the cause of the color, it is still sought in particular

elements rather than in their combination; TUR locates the color

in i only and misinterprets the roles of 2, 3, and 4. Others discover

the negative effect of 4 but by direct (and fortuitous) formulation

and without having a specific method of proof.
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In connection with the indicators (experiment II), the only

notable innovation is the appearance of combinations between

two glasses (E X Ind); this shows that there is no longer only a

double-entry multiplicative table but a search for all of the pos-

sible combinations. But the explanation remains the same:

M:ER (9 ; 3) tries E X B; Ac X Ind; Ind X B; E X Ac: "'There [B],

it makes it get red and in that glass [Ac] it stays white." "And in the

glasses, is it the same?" "The water isn't the same" "Which one

gives the color?"-'7n both of them, in the glass [Ind] and in there"

[B].-"Are they the same?" [B and Ind].-'Yes."-"Can you show me?"

[He combines Ind X B (red), then Ind X E (colorless)] "Oh! No,
it's not the same and that [B] isn't the same as that" [Ac]. "In the

four, is it different?"-"Y0s.--"Tell me what there is in that one" [B].

"It makes it get red."- 'And there?" [Ac]. "That bleaches the

water."-"And that?" [E].-"There isn't any pellet" [with red dye].-
"And there?" [Ind].-"There is a pellet."

Notice here the new combination X Ind, devised to see

whether B and Ind are similar (a proof which, moreover, is not

complete). But the explanation remains the same as at substage
II-A: the color is thought to be virtually contained in B and in

Ind (potential) or that there is a "color pellet" hidden (invisible

content).

Substage III-A. Formation of Systematic

n-by-n Combinations

The two innovations which appear at the formal level are the

systematic method in the use of n-by-n combinations, and an

understanding of the fact that the color is due to the combination
as such:

SAR (12 ; 3): "Make me some more yellow." "Do you take the liquid

-from the yellow glass with all four?* "I won't tell you/' [He tries

first with 4 X % X g, then 2 X g X 4 X g] "Not yet. [He tries to smell

the odor of the liquids, then tries 4 X i X g] No yellow yet. Quite a

big mystery! [He tries the four, then each one independently with g;
then he spontaneously proceeds to various two-by-two combinations

but has the feeling that he forgot some of them.] Td better write it

down to remind myself: i X 4 is done; 4 X 3 is done; and 2X3.
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Several more that I haven't done [he finds all six, then adds the drops
and finds the yellow for i X 3 X g]. Ah! it's turning yellow. You need

i, 3, and the drops."-'Where is the yellow?"- . . . -"In there?"

[g]-"No, they go together "-'And 2?"-'7 don't think it has any effect,

ifs water" "And 4?" "It doesn't do anything either, it's water too.

But I want to try again; you can't ever be too sure [he tries 2 X 4 X g].

Give me a glass of water [he takes it from the faucet and mixes

3 X i X water X gi.e.9 the combination which gave him the color,

plus water from the faucet, knowing that iX2X3X4Xg pro-
duce nothing]. No, it isn't water. Maybe it's a substance that keeps it

from coloring [he puts together i X 3 X a X g, then i X 3 X 4 X
g] Ahl There it is! That one [4] keeps it from coloring.

99

"And
that?" [2] .-'It's water."

CHA (13 ; o): "You have to try with all the bottles. I'll begin with the

one at the end [from i to 4 with g]. It doesn't work any more. Maybe
you have to mix them [he tries i X 2 X g, then i X 3 X g]. 1* turned

yellow. But are there other solutions? Til try [i X 4 X g; 2 X 3 X g;

sX4Xg; 3X4Xg; with the two preceding combinations this

gives the six two-by-two combinations systematically]. It doesn't work.

It only works with" [i X 3 X g]. "Yes, and what about 2, and 4?"
"2 and 4 don't make any color together. They are negative. Perhaps

you could add 4 in i x 3 X g to see if it would cancel out the color

[he does this]. Liquid 4 cancels it all. You'd have to see if 2 has the

same influence [he tries it]. No, so 2, and 4 are not alike, for 4 acts on

1X3 and 2 does not." "What is there in 2 and 4?" *7n 4 certainly

water. No, the opposite, in 2, certainly water since it doesn't act on

the liquids; that makes things clearer." 'And if I were to tell you
that 4 is water?" "I/ this liquid 4 is water, when you put it with

i X 3 it wouldn't completely prevent the yellow from forming. It isn't

water; it's something harmful."

We see the complete difference in attitude between these sub-

jects and those at substage II-B, in spite of the fact that the latter

attempt some n-by-n combinations. The new attitude found at

substage III-A can be noticed both in the combinatorial methods

adopted and in the reasoning itself.

From the point of view of method, two achievements are worthy
of note. The first is the establishment of a systematic n-by-n com-

binatorial system complete for the numbers involved in this ex-

periment. For example SAR, who is afraid of forgetting certain

associations, makes out a written list, and CHA works out the six
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two-by-two combinations without hesitation. We again encounter

(though in a form which is all the more significant since it is

more spontaneous) what we have seen in another work in study-

ing the operations of combination with instructions which them-

selves suggest the operation.
3 The second achievement is just as

important from the point of view of the utilization of these com-

binations (for it is obviously the needs linked to this use or, in

other words, functional considerations which determine the com-

pletion of the corresponding structure): once the combination

i X 3 X g which brings about the color is found, the subject, not

satisfied with a single solution to the problem, does not stop there

but looks for others. Thus his main interest is not success by the

intermediary of a particular combination but an understanding of

the role which this combination plays among the total number of

possible combinations.

This leads us to the advances made in reasoning. The way sub-

jects use combinatorial operations demonstrates that they are not

concerned with particular mathematical operations at this point

(moreover, the required operations have not yet been taken up
in class by these subjects); but certainly we are dealing with a

general logical structure, analogous to that of the multiplicative

groupings utilized at substage II-A and tending to round out the

structure after substage II-B.

At the same time as they combine the factors involved in the

experiment among themselves (the liquids presented in the four

flasks), stage III subjects form their judgments according to a

combinatorial system having the same form, that of the sixteen

binary propositions (combinations one-by-one, two-by-two, three-

by-three, four, or zero of the four base possibilities p.qvp.qv
p.q v p.q). In other words, when these subjects combine factors

in the experiment, by the same token they generate a combina-

torial system which corresponds to the observed facts. This is

how they determine the links of conjunction, implication, exclu-

sion, etc., by means of which they interpret the experimentally
established combinations. Moreover, this fact explains the prog-
resscorrelated with that of the combinatorial operations them-

selveswhich is noted in their deductive reasoning and in the

formulation of verbal statements.

*Ibid., Chap.VH.
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This reasoning bears on elements 2 and 4 in particular. Element
2 is judged neutral because it is sometimes present, sometimes

absent, in a colored combination as well as in others. If p desig-
nates the presence of color and q the presence of element 2, then
the subject sees that one can have:

(p.q) v (p.q) v (p.q) v (p.q)
= (p

*
q) , (i)

thus excluding the possibility of any positive or negative effect

for 2: "It's water/' conclude SAR and CHA. On the other hand, be-

tween liquid 4 and the color there is reciprocal exclusion or

incompatibility, as CHA says clearly:

(p.q) v (p.q) = (pw q\ or (2)

(p.q)v(p.q)v(p.q) = p/q (3)

(where q now designates liquid 4).

But, from the fact that he has formulated the association p.q

(in combinations i X 4; 3 X 4; etc.), at first SAR believes that 4 is

neutral, just as is 2, so he replaces 2 with 4 in a combination

(iXsX^Xg) and perceives that i X 3 X 4 X g fades, whence
the associations (p.q) v (p.q) which characterize reciprocal exclu-

sion.

Secondly, this formal mode of reasoning i.e., founded on the

combinations of factors and consequently on combinations of the

statements themselves naturally leads the subject to a new con-

ception of the cause of the color. This cause is no longer sought in

one or another of the elements but in their being brought together

or, more precisely, in the very fact of their combination. For

example, SAR refuses to locate the color in g because "they go

together* (
= it's the whole [mixture] i X 3 X g as such which

is the cause); CHA refers to elements which make "or don't make

any color together"; and another subject, SEE (12 ; 6), declares:

"This one (3), joined to i and to g, gives the color: 3 all alone does

nothing and x alone does nothing either." From this, if p, q and

r = the statements concerning the effects of i, 3, and g and if

x = the statement that the color appears:

acD(p.qr.r) and no longer xDr. (4)

As for the reactions of the subjects at this level to experiment II

(in which indicators are used), they add nothing new to the pre-
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ceding. Nevertheless, it is interesting to note that even after hav-

ing carried out no more than the four base combinations cor-

responding to a double-entry multiplicative table, the substage

III-B subject already concludes that the color is a result of the

combination as such, according to the schema which we have just

described:

VIR (13 ; 4) associates Ind X B, E X Ac, Ind X Ac, and E X B:

"What do you think about it?" "Simply that there is chemical water

in two glasses and ordinary water in the other two . . . with one col-

umn [burette] it turned red and with the other nothing happened."
~"So where does the color come from?" "It's only the contact of the

two waters . . . when they touch each other the color appears." Then

he passes on to combinations Ind X E and even Ac X B and to three-

fold combinations to study successive reactions.

It is evident that even before passing on to the combinations

beyond his initial double-entry table schema, vm already had a

combinatorial interpretation of the color.

Substage III-B. Equilibration of the System

In experiment I the difference between substages III-A and III-B

is only one of degree, actually it is not at all necessary in this case

to apply the method "all other things being equal/' since the fac-

tors are already presented in a dissociated state. Thus, the only
innovations of substage III-B are that the combinations, and more

particularly the proofs, appear in a more systematic fashion i.e.,

this level appears as a point of equilibrium in relation to the pre-

ceding level which is a phase of organization:

ENG (14 ; 6) begins with 2 X g; l X g; 3 X g; and 4 X g: "No, it

doesn't turn yellow. So you have to mix them." He goes on to the six

two-by-two combinations and at last hits i X 3 X g: "This time I

think it works.
99

"Why?" "It's 3. and 3 and some water" *You think

it's water?" 'Yes, no difference in odor. I think that it's water."

"Can you show me?" He replaces g with some water: i X 3 X water.

"No, it's not water. It's a chemical product: it combines with i and 3
and then it turns into a yellow liquid [he goes on to three-by-three
combinations beginning with the replacement of g by 2 and by 4 i.e.,

1X3X2 and 1X3X4]. No, these two products arent the same
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as the drops: they cant produce color with i and 3 [then he tries

i X 3 X g X 2]. It stays the same with 2. I can try right away with 4
[i X 3 X g X 4]. It turns white again: 4 is the opposite of g because

4 makes the color go away while g makes it appear" "Do you think

that there is water in [any of the] bottles?" '7'ZZ try [he systematically

replaces i and 3 by water, trying i X g X water and 3 X g X water,

having already tried i X 3 X water]. No, that means 3 isn't water

and i isn't water." He notices that the glass i X 3 X g X 2 has stayed
clearer than i X 3 X g. *7 think 2, must be water. Perhaps 4 also? [He
tries i X 3 X g X 4 again] So it's not water: 1 had forgotten that it

turned white; 4 is a product that makes the white return"

Thus the results are the same as in III-A (save that the neutral

character of 2, had not been established systematically at the

earlier level). But they are discovered by a more direct method

because, from the start, the experiment is organized with an eye to

proof. This method may be described as a generalization of sub-

stitution and addition. For example, having established the fact

that the color is due to i X 3 X g> the subject replaces g by 2

then by 4 to see if they play equivalent roles; then he immediately

goes back to i X 3 X g and adds 2 and 4 alternately to the mix-

ture in order to determine the effects of these additions. But it

should be understood clearly that substitution as well as addition

is already operating in the stage III-A combinatorial system.
When the subject constructs the combinations i X 2, i X 3, and

iX4? the very construction of these associations implies the sub-

stitution of 3 and then of 4 for 2; and when he makes the transi-

tion from two-by-two to three-by-three combinations, he adds the

alternative elements 3 and 4 to a given couple (for example i X 2)

i.e., 1X2X3 and 1X2X4 Moreover, as we have seen, sub-

stage III-A subjects already use these substitutions and additions

to prove certain effects. Thus, the only innovation appearing at

substage III-B is the greater speed with which the subject under-

stands the use he may make of these substitutions and additions

in the determination of the respective effects of the elements dur-

ing the actual construction of these combinations. Thus, first and

foremost, progress is to be sought in the organization of the proof

and in the integration of methods of discovery and methods of

proof. From the start, the combinatorial system becomes an instru-

ment of conclusive deduction.
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On a more general level, the lesson to be drawn from this ex-

periment is that it points up the close correlation that exists be-

tween the mode of organization or the over-all structure of the

combinatorial operations on the one hand and those of the formal
or interpropositional operations on the other. At the same time that

the subject combines the elements or factors given in the experi-
mental context, he also combines the prepositional statements

which express the results of these combinations of facts and in this

way mentally organizes the system of binary operations consisting
hi conjunctions, disjunctions, exclusions, etc. But this coincidence
is not so surprising when we realize that the two phenomena are

essentially identical. In other words, the system of prepositional

operations is in fact a combinatorial system, just as from the sub-

ject's point of view the only purpose of the combinatorial opera-
tions applied to the experimental data is to make it possible for

him to establish such logical connections. Nevertheless, we had
to show empirically that such an intimate relationship between
the combinatorial operations and the prepositional operations
does exist, and in order to do this we have had to examine the

reactions of the child and the adolescent to an experimental situa-

tion that did not impose either kind of operation by any sort of

instructions but in which they would have to be discovered and

organized in a completely natural and spontaneous way.



8

The Conservation of Motion

in a Horizontal Plane
1

THE FIRST formal operational schema we described had to be the

schema of combination operations, since the lattice structure

which characterizes the system of prepositional operations implies

a combinatorial system. On the other hand the second opera-

tional schema, which we are now going to study, derives from the

group structure and the reversibility by inversion which is its

distinctive feature. As we will elaborate at greater length in the

following discussion, the system of formal operations constitutes

both a lattice and a group and thus unites transformations by

reciprocity and transformations by inversion into a single cluster.

The experimental problem involves a ball 2 launched by a

spring device and rolling on a horizontal plane. If no external

obstacle interferes, it will maintain a uniform rectilinear motion

(principle of inertia). Actually, a number of factors prevent the

free operation of inertia friction, which slows the ball down as

a function of weight, air resistance, which slows it down as a func-

tion of volume, the irregularities of the plane, etc. As a result, two

interesting problems arise which must be resolved by formal

thought: (i) the problem of what is ideally or theoretically pos-

i'With the collaboration of A. M. Weil and J. Bal, fonner student, Institut

des Sciences de Education.
2 The material consists of a set of balls of various weights and volumes.
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sible i.e., not realizable in fact. In other words, how does the

subject come to understand the conservation of motion by inertia

given that it is never observable? From the physical and mathe-

matical viewpoint, conservation of motion is a group invariant;

but we would like to know whether an understanding of conserva-

tion also presupposes mediation of the reversibility by inversion

that characterizes the groups of transformations from the purely

logical and qualitative viewpoints of our subjects. We will try to

show that this is the case. (2) The problem of the relative pos-

sible^., of the possibilities which are realizable in fact modi-

fication of the movement by retarding factors and interferences

among these factors explaining the irregularities and fluctuations

of the course of a particular ball.

The subject's task is to predict the stopping points while vary-

ing the size and weight of the balls and to explain the observed

movement. Our interest in the problem lies in the fact that, if

concrete operations of serial ordering and correspondence forma-

tion allow the establishment of some relationships between the

FIG. 7. Conservation of motion in a horizontal plane is demonstrated

with a spring device which launches balls of varying sizes. These roll

on a horizontal plane/ and the subjects are asked to predict their

stopping points.
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properties of the balls and the stopping points, the idea o con-

servation o movement by inertia escapes the realm of the "con-

crete/' for such conservation cannot actually be achieved under

ordinary experimental conditions.

Stage I. Absence of the Operations "Necessary -for

an Objective Account of the Experiment and the

Use of Contradictory Explanations

The very young subjects react to this experiment as they react to

the problem of floating bodies (Chap. 2) i.e., with a group of

precausal predictions and explanations possessing certain regu-
larities but mutually contradictory: the light balls will go further

because they are easier to set in motion and the large ones because

they are stronger; or there is no motion without force (the force

residing in the moving body or the force of the mover) and the

motion stops of itself by extinction of the force imparted by the

initial push, by fatigue, or by a tendency to rest.

RA (5 ; 4) tries to prolong or to stop the motion of the ball by framing
it with his hands, which are placed parallel to it without touching.

Sometimes the small and sometimes the large balls are supposed to go
the furthest, the first because they are light and the second because

they are heavy, but when a heavy one does not go far, it is "because

it's too heavy."

BREI (6; 4): "Will they all go the same distance?" "No, there are

some that will go further." "Which ones?" 'That one" [small wooden

baXL].~"Why?"-'Because tfs smaller "-"Axe there others which will go
further?" "That one [also a small wooden ball], because its smaller9

and that one" [large, copper]. "Why that one?' "Because it's bigger9

and that one [large, aluminum] because it's big" We ask the child

to show where these four balls will stop and he answers: "There [7-8
units for the small wooden ball], because ifs smaller. That one [large,

aluminum] there" [13-14]. The small aluminum ball is also placed at

13-14 as is the small copper one; the large wooden ball at 5-6 "because

it's bigger, and that one there [large, aluminum, at 19-20] because it's

big. This one here [small wooden, at 2,4] because it's smaller" It is

evident that the small ones are expected to go near or far [from 7-8
to 24] because they are small and the large ones near or far [from 5-6
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to 19-20] because they are large. Next we ask for explanations, which

we find similar but with a certain note of finality about them: "It didn't

get very far because it didn't have a flag."

MEY (6 ; 8). The little wooden ball "won't go very far because ifs

smatt^-^And that one?" [large wooden ball]-"!* can't go very far

because it's big." Then: "The two big ones will go less far because

they're big. . . . The three little ones won't go as far as the big ones."

The contradictions among the predictions bear witness to the

absence of any law in the child's mind. His explanations do not

achieve a greater coherence but relate all types of motion to a sort

of animated force.

Substage II-A. Attempts to Eliminate Contradictions

and Corrections after the Experiment

Although the conservation of motion may not always be seen (the

motion is regarded as being due to a force in the Aristotelian

sense, and the cessation of movement is spontaneous) and al-

though the predictions are based on variable factors (false or

correct), henceforth there is a certain internal consistency in the

assertions as well as in the utilization of experimental results:

pm (7 ; 6): "Some of them will go further than others"-'Why?
>'- e

This

one will go -further because it is big and that one less far because it is

small [the first one is put in motion]. Ifs less far than I thought."

"Why?" "Because ifs heavy."

NIC (8 ; o): "The big one will go further because the little ones have

more weight."
9 And "that one won't go as far because ifs big, heavy,

and made of iron."

HAL (8 ; 3): "The big ones won't go as far because the little ones are

lighter" When a ball comes to rest close to the starting point:
t

lfs

because it is heavier than I thought" and, comparing a small copper
ball to a large aluminum one, "They go to the same place because they
have the same weight"

But the difficulty with an explanation in terms of force, such as

used at this level, is still that of reconciling the force with which



CONSERVATION OF MOTION IN A HORIZONTAL PLANE 127

the object is launched with the force of the moving body and
under conditions when the latter is heavy and when it is light.

HOR (8 ; 6): "This one [large, aluminum] will go further because it is

heavy' [force itself is tied to the weight]. She rolls the copper ball. "It

doesn't go as far because it is sm0ZZ/
>

-"And the other?" "I didn't push
it hard enough" Next the large wooden ball: "It wiU go all the way to

the bottom because ifs light."

In spite of the effort to eliminate them, a residue of contradic-

tions is left from the fact that the heavy balls have a greater force

when in motion but are less easily set in motion, whereas the light
ones have less force but are more easily launched.

Substage II-JB. The Beginning of the Reversal of

the Problem in the Direction of the Causes of Slow-

ing Down

The explanations used at this level are not different from the pre-

ceding ones, in spite of the increasing but fruitless effort to unify
the factors. However, since the child is increasingly sensitive to

chance variation in the results, he exhibits a tendency to reverse

the problem and to explain the causes of the slowing down rather

than the cause of motion. He is not aware of this tendency. More

particularly, little by little weight ceases to be perceived as a

cause of motion and comes to be thought of as the (indirect) cause

of the balls' coming to rest. Moreover, to the extent that subjects

understand that the variability of the stopping points is due to

the factors of volume, weight, and force of launching, they are

more likely to think that weight and volume have a braking effect

and even less likely to maintain that light weight and small size

are causes of the prolongation of motion. These two kinds of

assertions seem to be equivalent; the following will show that this

is not true in the least:

JAD (10 years), referring to a zone of dispersion of about 20 cm., says

of one ball, "It is too heavy to go any further" [than the extreme point]

but at the same time "it is too light* to come to rest before the zone.

This kind of assertion shows clearly that the subject tends to

invert the problem of motion. But he is that much less likely to
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suspect that his explanations remain the same as at substage II-A.

In particular, he thinks of the air as promoting the motion by
current backlash (dvTwrepi<n-ao-i) rather than as an obstacle.

Substage III-A. Explicit Reversal of the Problem

of Motion During the Experiment

The great difference between this level and the preceding ones

is that from this point on the objective of the explanation is re-

versed; the problem is no longer to understand why the ball

advances but what blocks its movement at a given moment,

As we have just seen, this reversal begins in substage II-B, but

unconsciously. In contrast, although at first the III-B subjects are

preoccupied in their predictions with motion, the experiment

immediately leads them to focus their attention on the causes of

the balls* slowing down or stopping. Thus, for these subjects the

cessation of motion is no longer a positive state, the repose or

aim of movement; instead, it becomes a negative state which

must be explained by the intervention of new factors working
in opposition to the positive state of motion.

MAL (12 ; 3); "For a ball to go far?" "You have to pull the trigger

[spring] hard
9

[experiment], "So, why didn't it go further?" 'Yes,

but it's a bad stretch [plane insufficiently smooth]; it won't go so far"

CHAP (13 ; 3) predicts that the large ones will go further because they
are heavier. After the experiment, he reverses his explanation. "Why
do the light ones go further?"--"!* depends on whether there is wind."

"What?" "Ifs the wind [ = air] that stops them from going on.

When there isn't any wind, the light ones go far because nothing stops
them."-'And the heavy ones?"- 7 don't know."

(13 ; 3): "The air keeps it back and it doesn't go as far."

Thus, starting with substage III-A, subjects touch on two
causes of the cessation of motion: friction (terrain) and air resist-

ance.

Without doubt the progress involved in reversing the explana-
tion is due to the need to unify nascent formal thought Since
neither weight nor volume are causes of motion and (in contrast
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to explanations based on this conception) the ball goes further in

proportion as it is both small and light, it follows that there is

no simple cause for the continuation of motion. But it is more
difficult to acknowledge multiple causes for motion itself (which
may be considered the prototype of any simple phenomenon)
than for the factors relating to the cessation of motion. However,
even here the subject begins by looking for a unified explanation.
He does so in spite of having seen the spread in results and chance

fluctuations, which themselves were one of the reasons for his

reversal of the question. That is why he does not succeed at first

in this new line of attack Time after time he fails to determine

all the relevant variables simultaneously. Thus, CHAP discovers

the factor of air resistance but fails to think of the friction for the

heavy balls. MAL does the opposite, etc.

Substage III-B. Conservation of Motion

Finally, substage III-B leads to the fundamental explanation
which results from the reversal of the positions taken at substage
III-A: the conservation of motion by inertia. It should be said

that all of the subjects do not solve the problem. Naturally, cul-

ture plays its diffuse role here. ( Society had to wait for Galileo

and Descartes with the "intellectual mutation," as A. Koyr called

it, which resulted from their discovery.) But for certain subjects

the rediscovery of the principle of inertia seems quite spontane-

ous, whereas for others there is, at least, a personal reconstruction

of what they had learned:

DEV (14 ; 6) from the first experiment [large wooden ball]: "It stopped

because the air resists" "And this one?" [a small wooden ball, pre-

diction]."!^ about the same, but the ball Is smaller: there is less re-

sistance from the air and it will go further." "Is it the same for all of

the balls?" "No, the bigger they are, the stronger the air resistance."

"And for the small, heavy one?" "A heavier baft takes of less easily,

but goes further because it has force in itself
9

[weight = force!].

[Experiment] "So?" "That comes from the surface and the friction.

The resistance varies with the substance the balls are made of: the

wood is rougher, it scrapes more; the metal balls are smooth and witt

scrape less." [Experiment: small aluminum and large wood.] "Air
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resistance is proportional to size and weight [l]."-
ttAnd if you com-

pare this large aluminum ball with the small brass one?" "Oh! No,

they take off with the same force. Only air resistance and friction come

into play. . . . This ball [brass] is heavier and there will be more

friction." Conclusion: "And if there were no air resistance, the ball

would continue to roll.'
9

RAS (14 ; 4) "Theoretically it should go to the end, but it's completely

illogical* [he means by illogical that which is contrary to the facts of

direct experience]. Comparing a small and a large ball, he says again:

"The friction is less for the little one. Air resistance also plays a role.

Theoretically, you would have to move it in a vacuum."

DESB (14 ; 9): "If you send them off with a push of the same strength,

it [resting point] depends on weight, friction, and volume" Next, he

doubts that volume plays any role, but in comparing a small and a

large ball, he says: "The small one will go better because it has less

friction, less air resistance^-'Th&t's all?"- 7/ ifs truly horizontal" *

The protocols show that the reasoning which leads to the con-

servation of motion is extremely simple and is furnished in the

most explicit form by DEV. The first stage consists of establishing
the causes of the balls' slowing down or stopping. If we let p be
the statement concerning slowing down or stopping, and let

q, r, s, t, etc., be statements of friction or air resistance, irregu-
larities of the track, of an eventual lack of (perfect) horizontality,

etc., then:

. .
.). (i)

Inversely, at the second stage the subject asks himself what
should be the result of the negation of all of these factors, this

negation implying a corresponding negation of statement p, that

of slowing down. This is equivalent to the assertion of the con-

tinuation of motion:

q.r..t ... Dp. (2)

It is interesting to compare this form of conservation, which is

specific to formal thinking, with numerous concrete forms of con-

servation (wholes, lengths, weights, etc.; conservation of volume
3 See other cases of this stage or other protocols from the same subjects in

the third section of Chap. 15.
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and surface area imply formal thought only because of the pro-

portions). In both cases, conservation is achieved because of the

role played by reversible operations (reversible by inversion or

negation). When a modification arises as the result of the experi-
mental actions, they allow a correction to be made for it by a

transformation in the opposite direction (and thus a return to the

null transformation). But in the case of concrete thinking this

inverse transformation, even if it occurs only mentally, is of the

same order as experimental modifications which alter the system
and could in fact be carried out by the subject. For example,
the transformation of a stretched-out section of modeling clay can
be annulled by pushing it into a more compact mass, for what the

object has gained in length it has lost in thickness. Thus it is pos-
sible to restore it by actions involving inverse modifications.

In contrast, in the case of the conservation of motion, opera-
tional reversibility occurs at the mental level only and does not

correspond to any transformation which can be realized in full

by the subject even in a laboratory situation. Even if one could

eliminate all the causes of slowing down (though it is in fact

impossible), one would still have to make use of an infinite amount
of space and time to verify the principle of inertia completely.

Nevertheless, the substage III-B subject manages to discard

mentally the causes of stopping by thinking in terms of what is

theoretically possible (but which cannot occur in fact) or, in

other words, in terms of purely hypothetico-deductive implica-
tions.

Having done this, once more a reversible operation (i) and

(2) suffices; here it is the counterposition (equivalence of p D q
and q D p\ but in this case it rests on the double negation of

(pvqvrv . . .) resulting in (p.q.r. . . .) (thus of p or q or

r . . . resulting in neither p nor q nor r . . .) and of p result-

ing in p.

One may, if one wishes, say that this reversibility comes back

to the famous principle toUitur causa, tollit effectus, but on the

one hand in order to eliminate the causes in the particular case

the subject must think in terms of what is theoretically possible;

on the other hand, since these causes cannot be eliminated in fact,

the operation amounts to inverting an implication to give its con-

verse by changing signs. Thus, the subject is proceeding on the
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basis of pure implications and no longer on the basis of trans-

formations which can actually be effected.

We now see both the similarity and the differences between
the several forms of conservation: all are based on a group prin-

ciple ('which is qualitative or logical before becoming quantita-
tive or metrical), but conservation may be achieved either by
concrete operations of classes and relations 4

(or at an even earlier

stage by the integration of parts into a whole object) or, as at the
formal stage, by the use of interpropositional operations alone.

*In this case the group aspect corresponds to the reversibility of the
"grouping*" i.e., to the nontautological transformations (identical with those
of Boolean algebra).



Communicating Vessels
1

IN THE PROBLEM of the conservation of motion, we encountered
the simplest form of the operational schemata relating to group
structure, for the construction of this notion by the adolescent

rests directly on formal reversibility by inversion. In the equi-
librium problems, of which the problem of communicating ves-

sels gives us a first example, we come to a more complex variety
of schema resting on group structure. In every equilibrium the

two possible forms of reversibility operate simultaneously: inver-

sion., which corresponds to the additions or eliminations effected

in the parts of the system which come into equilibrium, and reci-

procity, which corresponds to the symmetries or compensations
between these parts (thus to actions which are both equivalent as

regards their respective products and oriented in opposite direc-

tions). But, inversions and reciprocities also form a group between
themselves.

In order to illustrate our point and, more particularly, in order

to understand more clearly in what way the operational schema

corresponding to the notion of equilibrium is at the center of the

mechanisms of formal thought, we have to remind ourselves that

beyond the operations themselves in the strict sense of the term

iWith the collaboration of F. Pitsou, former research assistant, Institut

des Sciences de Education, and A. M. Weil.
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(or "operators")-^., the operations of prepositional logic, such

as disjunction (pvq), implication (pDq), etc. there are more

general transformations which transform particular operators into

others. Thus an operator such as pvq can be transformed by
inversion or negation into p.q, a transformation that we may desig-

nate by N, so that N(p v q] = p.q. But (p v q) can also be trans-

formed by reciprocity R, so that R(p v q)
= p v q = p/q. Again

(p v q) can be transformed, by correlativity C (i.e., by permuting
the v and the .), so that C(p v q) = p.q. Finally, the operator

(p v q) may be transformed into itself by identical transformation

I, so that I(p v q) = (p v q). Thus, one can see that I, N, R, and G
form a commutative group of four transformations among them-

selves, for the correlative C is the inverse N of the reciprocal R,

so that C = NR (and C = RN as well). Likewise, we have

R = CN (or NC) and N = CR (or RC). Finally, we have I = RCN
(or CRN, etc.).

This group is of psychological importance because it actually

corresponds to certain fundamental structures of thought at the

formal level, for inversion N expresses negation, reciprocity R
expresses symmetry (equivalent transformations oriented in oppo-
site directions), and correlativity is symmetric with negation. This

explains why the notion of equilibrium, which at a very early age

gives rise to certain rough intuitions (balance, etc.), is not really

understood before the formal level, when the subject can both

distinguish and coordinate inversions, reciprocities, and correla-

tivities (inversions: for example, increase or diminish a force in

one of the parts of the system; reciprocities: compensate for a

force by an equivalent force, thus assuring symmetry between the

parts; correlativities: reciprocity in negation).

Although they may be relatively simple in certain concrete

cases, these transformations actually require dunking and state-

ments of a very abstract sort in most problems involving action

and reaction, for here the difficulty is to grasp that X is at the

same time equal to Y and acting in the opposite direction from it.

In such cases, the instruments necessary for thinking go beyond
prepositional logic to include its fundamental group I N R C.

This is what we shall see in the following chapter in reference to

the problem of the equilibrium between the pressure of a piston
and the resistance of liquids; but at this time take note of the
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same question as it relates to the preliminary problem of the

equilibrium of communicating vessels.

In the case of communicating vessels, reciprocity serves to

express the compensatory actions between separate vessels; trans-

formations by inversion express the rise and fall of the water level

(Changes in water level are brought about not by adding or taking

away water but by raising and lowering the receptacles.) In appa-
ratus A, the subject raises or lowers the vessels by hand by adding
or taking away the stands on which they rest. In apparatus B, he
raises or lowers the two vessels with levers, and in apparatus C,

he can only move one of the vessels, the other being stationary,

Since the receptacles have neither the same shape nor the same

volume, in some cases one has to exclude these two factors to find

the law. But air pressure can be disregarded, for it is equivalent
for the two columns of liquid.

2 On this last point acquired knowl-

edge may intervene, but we still want to know how well the

adolescent can understand and make use of this knowledge, so

the problem of formal operations remains decisive here and the

influence of school is no bar to our analysis.

Stage I. Lack of Differentiation Between the Actions

of the Subject and the Transformations of the Object
and Absence of Reciprocity

The stage from 4-5 to 7-8 years is highly interesting from the

point of view of the development of operations. No operation is

yet possible at this stage, for the child fails to dissociate his sub-

jective action from objective transformations and there is no

reversibility between successive actions. The result is that the

subject succeeds neither in predicting nor in understanding the

2 The liquid used was only water and there was no difference in density
between the contents of the two vessels. In systems of communicating vessels,

the pressures are proportional to the weights of the liquids (pressure is the

quotient of force divided by surface area). The fundamental principle in-

volved is the following: the difference between two pressures pi pa exerted

at two points by liquid of density d in equilibrium is equal to the weight zd
of a cylinder of liquid having as a base a unit of surface area and for height
the vertical distance between the two points: pi p3= zd (where zd repre-
sents the pressure force measured in grams).
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symmetry of the objective effects in the relations between the two

containers:

GUY (5 ; 6). Apparatus B: He pulls the lever at the two sides alter-

nately and concludes: "If 1 puU there [I] the water goes away, and

then it comes up there [II]. If you pull there [II] the water goes

here" [I]. Apparatus A: He lowers the vessel to the left and holds the

one on the right in an inclined position: "There is more water here

[right]. Look, there is more water there [left]: I lowered it here and

the water went there!
9

"Why does it go down?" "I don't know; it's

because it doesnt want to go back up" Apparatus C: "I get it: the

water has to go there" [when he pulls at the other side].

We see that the child has a perfect understanding of the fact

that, when he pulls on one side, thus raising the receptacle, the

water passes to the other side; but he does not understand that a

difference in height is involved. For apparatus A, designed so as

to make the differences in water level more visible, he thinks that

it is enough to tilt a beaker to make the water flow into the other.

And when we insist that the water level goes down, he is limited

to saying that it does not want to go back up. Furthermore, it

should be noted that this reaction is not specific to the problem
of communicating vessels. For example, during this same stage the

child does not know that the water in rivers always flows down-
ward.3 But in this particular case this lack of understanding is

reinforced by the subject's failure to dissociate his own actions

(pulling, tilting, etc.) from the objective process. The effect is that

reciprocity is understood only when it occurs between the act of

pulling and its results and not when it occurs between the rise and

fall of the liquid which tends towards an equalization of levels.

Substage II-A. The Translation of Actions into Objec-
tive Operations and the Discovery of the Elevation

Relationships

The role of elevation is discovered. The higher one beaker is in

relation to the other, the more the water level rises in the latter as

it falls in the former. This observation is certainly based on the
3 See Piaget, The ChMs Conception of Physical Causality, pp. 104-114.
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subject's actions as he raises or lowers the beakers with levers or

directly, but these actions are translated into operations which
bear on the results obtained and describe those results in terms of

objective relations dissociated from the subject's own activity:

NEL (7 ; 11): "It always goes up more in that one when I raise this one
and it goes down when I go down."

TAG (8 ; 10). Apparatus B: We hide the right beaker and we ask the

subject to bring the water level up to the third marker. The subject
succeeds but only in a rough way and says, "I looked about here'

9

[she
looks at the height of the other beaker]. Apparatus A: "Before you had
to pull; now you have to put on the stands and that raises the beakers."

Then she draws the same conclusions as NEL.

But as far as the explanation itself goes, it does not at all deal

with the equilibrium between weight and pressure; instead, sub-

jects assume that water merely descends in the higher beaker to

enter the lower one simply because that one is lower. As for

explaining how the water level rises in this latter beaker (since it

enters at the lower end of the receptacle), at this stage subjects
refer to the impetus, rate of speed, air, etc.:

MIC (7 ; 10): "Did you understand how the water moves?"-'T0u have
to lower [the beaker in which the water is to rise], then the water
comes . . . it flowed."

TEA (8 ; i): "The water went through the pipe and into the other one!"

"What did you see?" To see the speed. The water doesn't diminish
as fast [in the small one] as in the big tube, because the tube is thinner

and has less air than the big one. Tm surprised that the big tubey which
has more air, works, and that one which has less works too: maybe it's

because it's longer. If there is a big block of air, the water would move
less quickly"

Thus the air aids or blocks depending on whether it pushes or

already occupies the place.
The progress made at this level over stage I is quite clear. The

subject now describes the rise and fall of the water level and no
longer only his own actions of pulling the lever or moving the

beaker. On the other hand, it is hard to see the difference between
these reactions and those of substage II-B unless we refer to the
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spatial structures which are available to the subjects. As we have

demonstrated elsewhere,
4 at substage II-A the child is not yet able

to represent the horizontality of the water level in a tilted recep-

tacle because he does not try to base his observations on reference

points outside this receptacle and limits himself to the interior

relations. It is only toward 9-10 years, at the stage when co-

ordinate systems are structured, that the horizontal and the verti-

cal acquire a precise representative meaning. But it so happens
that in the present experiments the subjects of substage II-A do

not yet perceive the equality of level attained by the water in the

two receptacles; they discover simply that the water goes down
in one as it rises in the other until it stops moving in both. Further-

more, they know that the water level drops in the beaker in the

higher position and rises in the lower one, but these relations of

elevation are applied only to the receptacles themselves and do

not always imply that the two water levels will finally be equal

i.e., that the line that unites the two levels will be horizontal. That

is why, when one of the beakers is hidden and the child is asked

to attain a certain elevation (see TAG: the third stage for appara-
tus B), he can only succeed in a rough way and focus on the

height of the other beaker and not its water level.

All in all, then, subjects have just about begun to get a glimpse
of the notion of system equilibrium. And what notion they have

boils down in essence to raising and lowering the beakers with a

view toward raising or lowering the water level. Doubtless, a

preliminary inversion (raising and lowering the beakers) and reci-

procity (the water goes down in one vessel as it rises in the other)
are present. But lacking is the condition of equivalence which
alone would allow the child to coordinate these transformations

the final equality of the two water levels.

Substage II-B. Final Equality of Water Levels

but Without an Explanation

As we know, subjects become able to handle concrete opera-
tions at substage II-B. This substage also marks a kind of upper
limit in the structuring of the equiKbrium schema, that is, insofar

*
Piaget and Inhelder, The ChilcFs Conception of Space, Chap. XIII.
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as the subject does not bring in any formal operations. Owing to

the construction of systems of spatial reference (natural coordinate

axes) the child discovers the law of the equality of water levels

in the two receptacles for conditions of system equilibrium (the

water line in both beakers falls on a single horizontal line). But in

this way subjects can only enunciate the law without discovering
its causes, for a statement of the law depends on class and rela-

tional operations alone, and these are sufficient to determine the

relevant correspondences, but an explanation of the law requires

the intervention of the four groups of interpropositional transfor-

mations cited at the beginning of this chapter.

xi (8 ; 9):
e<When I pull here, the other [beaker] fills up; when I pull

there, the other one fills up too/' "The water is at No. 2; put it at

No. 3." He succeeds. "How did you do it?" "I saw that when the

water goes up here it goes down over there; so I did the opposite . . .

[etc.]/' At one point, he makes a mistake [the point to be reached is

hidden each time]. He then takes the ruler and measures [the dis-

tance] from the table to the number indicated. Then he refers to the

same elevation on the visible beaker at the other side in order to deter-

mine the water level. Another time, he places the ruler horizontally

to assure the equality of the levels.

MIC (9 ; 11) succeeds in determining the water level correctly when
one beaker is hidden: "How did you know?" "Because 1 calculated

the height here and I looked there for the same thing"

soc (10 ; 9): "The water is at the same level When I raise it here, the

water goes up there, but there is always the same capacity, even if it

goes up"-~"What do you mean by capacity?" "Tftere is always the

same amount of water [he knows well that the volumes differ]: the

water stays at the same height on both sides."

DOM (11 ; 4): "The level is exactly the same. The water rises quickly
in this tube and -falls less quickly in the bottle. That comes -from the

volume of the beakers, but in contrast the water will always stay at

the same level." Apparatus A: "And the level?*' "I* wiH change. No,
rather it will always be the same [on both sides], but the [absolute]

height will change'
9

GAS (10 ; 6) measures the elevations and verifies the horizontal level.

He is presented with a long tube communicating with a very large

crystallizer: he predicts that the levels will still be identical.
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Thus, one can see that these subjects discover both the equality

of water levels and the means of verifying this equality once a

reference system based on the coordinates of immediate physi-

cal space (vertical and horizontal) is established. Verification is

effected either by checking whether the line uniting the two sur-

faces is horizontal (xi and GAS) or by measuring their respective

heights (xi, MIC, and GAS). This transition from the qualitative to

the metrical shows us well enough how preoccupied the subject is

with coordinate axes and with substituting the concept of equi-

librium based on the equality of water levels for the concept of

equilibrium found at substage II-A i.e., based on rising and fall-

ing. In this case transformations by inversion amount to the raising

or lowering of the level in one of the beakers, whereas, henceforth,

reciprocity includes the whole set of transformations which relate

the level of liquid in one receptacle to the level of the liquid

in the other.

What is the nature of the mechanism of these transformations?

The concrete operations available to the subject at this stage do

not allow him to answer this question; by their temporal and spa-

tial serial ordering and correspondences, they allow him to deter-

mine the conditions of equilibrium, but by no means do they allow

him to grasp the play of forces involved. In the course of proceed-

ing from a statement of the law to its explanation, some subjects,

like soc, invoke an equality of "capacities" or "amounts," but since

it is evident that the volumes differ, in the final analysis this quan-

tity amounts to nothing more than the equality of the elevations

themselves i.e., the equality of water levels. A ten-year-old sub-

ject specified that the water always goes "as low as possible." This

demonstrated that henceforth the tendency of the water to fall is

accounted for in terms of its weight (as we had known as the result

of other experiments); but weight itself is no longer often called

upon as an explanation of the equilibrium, since the volumes
involved are clearly different. In sum, from this point on the equi-
librium is well described, thanks to the concrete operations which
make it possible for spatial and temporal inversions and reciproci-
ties to be established. But by no means is it explained, for the

child fails to make use of inversions and reciprocities bearing on
the actions and reactions themselves.
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Substage III-A. Preliminary Explanation and
Formal Structuring

At this first formal level we can observe, in contrast, an important

reworking of the operations and the explanation. The conservation

of volume is finally acquired and the volume is finally distin-

guished from the quantity of matter and the weight.
5 This leads

to the paradoxical fact that substage III-A subjects seem to find

it impossible to accept a situation that did not bother substage
II-B subjects at all i.e., the equality of levels when the volumes

(as well as the shapes of the receptacles) differ. Far from gen-

eralizing the law to all cases, as at substage II-B (where, by the

way, the generalization is limited, since it bears on the levels

alone), substage III-A subjects start by restricting the scope of the

law to those cases in which shapes and volumes are equal. They
expect that the equality of levels will no longer hold for unequal
forms and volumes. When the experiment contradicts their expec-

tations, they limit their conclusions to the cases actually observed

and refuse to make any generalization that would admit of what
seemed to them to be an exception. We have here a neat example
of mutual interference between the operations constitutive of the

law and explanatory or causal operations. More precisely, in be-

coming explanatory the stage III operations lead the subject to

limit the generalization based on concrete or legitimate operations

(legitimate because here they bear on the levels alone and not yet

on the equilibrium of actions and reactions).

What goes into these new operations? At this stage equilibrium

in communicating vessels is no longer conceived of as the simple

flow of water from a higher level to a lower one until equality of

levels is achieved, but as a system of actions and reactions whose

inversions and reciprocities are stated in mechanical and not

merely in spatiotemporal terms. That is why the subjects require

equality of weight based on equal volumes before they are willing

to talk about equality of levels, and that is why they deny that two

vessels of unequal capacity can verify the law. They have failed

5 See Piaget and Inhelder, Le Dfoeloppement des qwntitis chez Venfant,

Chaps. Ill and VIII-IX.
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to understand the compensation resulting from the relationship

between the weight of the vertical column of water and the

surface area of the base of this column.

AND (12 ; 9) establishes the equality of levels in all positions. "And if

instead of this one we used a bottle with a conic shape?" "It wouldn't

work because the shape is conic." "But you told me that the levels

were always the same?" "They're the same providing the diameter is

the same at all heights of the beaker. Here [with conic and cylindrical

formsl the elevations . . . you couldn't manage to compensate [one

with the other]. It's the shape of the beaker that plays a role." He
does the experiment and is astonished to discover the same level,

"How do you explain it?' "Probably that the shape of the vessel

doesn't matter"-"Why 'probably ?"-"Because the facts are therer

[cf. the opposition between facts and theory so characteristic of formal

thinking]. "Why is it the same level?" "Because it [the conic beaker]

widens toward the top" [the opening is at the bottom]. "But if it

were?" [turned upside down]. "I* wouldn't be the same level [!]."

"What happens when the water is in the pipe?" "It isn't the same level

because the tube is thinner than the beaker"

BON (12 ; 8) affirms that the levels are the same. With apparatus b,

he takes exact vertical measurements when one of the beakers is hid-

den: "Whenever you lift one container, the water rises in the other, so

the water should rise or fall in both" "Does it always happen like

that?" "Yes, always. . . . No, not in all cases> not when the beakers

are not of the same width." "But in this apparatus [C] are the beakers

of the same width?" "No, but the length of the pipe and the width

of the beaker can contain the same quantity of water" "And here

[long tubular beaker to the left and large crystallizer on the right (cf.

the case of GAS at substage II-A)]?" "The water here (crystallizer)

will only go up to here" [much lower level than the other]. "Why?"
"Because the beaker is larger"

BAN (13 years). Apparatus A: He raises both beakers "to see if by rais-

ing the two together I get the same level in both as when they were
down below" Next: "To add some water in one, you have to take out

the same amount in the other. When I put the beakers in different

positions [in relation to each other], I can always see [that the level

is] the same for both." "And if you put a narrow bottle in that one's

place?" "No, if I have a large one and a small one because the vol-

ume is larger . . . the level is always higher"
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PIE (14 ; 3), identical beakers: "If one bottle is [placed] higher than

the other, the water goes into the other
9

because "for the quantity, it's

the same thing." But with unequal beakers, "When there is the same

quantity in the two glasses, the level in the tube will be higher, because

it is thinner" When one of the beakers is hidden, he answers: "I can't

figure it out, because the diameter of the two glasses isn't the same"

We see the difference between these subjects and those of sub-

stage II-B even though they often use the same words. Henceforth

"compensation" (AND) is a matter of "quantities" understood in

the sense of sources of equal forces (because of the equality of

weight and volumes) as if it were a balance scale. Thus unequal
levels should correspond to unequal quantities. When they per-
ceive facts to the contrary, the subjects resign themselves to them,
as for example AND ("because the facts are there"), but refuse to

generalize to other cases. In sum, they do not know the details of

the explanation. But if we consider only what they do know, we
find that they reason in a coherent manner and furnish a very

revealing example of the logical subordination of a general law to

the concrete case and of the assimilation of that case to the formal

transformations of inversion and reciprocity projected into the

real world. In fact, one might say that these subjects are of inter-

est to us precisely on account of their ignorance of the exact expla-
nation: though they have received no academic instruction about

communicating vessels, they still sketch out an interpretation

based on compensation (as AND says) i.e., on the fact that each of

the two quantities of liquid exerts a pressure on the other, the two

pressures being, by this very fact, oriented in opposite directions.

Certainly we have here a differentiation and a coordination of

the transformations of inversion (raising or lowering the levels)

and reciprocity (actions and reactions of one of the quantities of

water on the other). The only limitation of this explanation is that

the subject does not yet know how to generalize it to the case of

unequal quantities; still, the principle is accurate. Before trying

to give a precise statement of this reasoning, let us examine the

reactions of substage III-B, which we have not yet considered.

Unlike the earlier reactions, these are influenced by academic

knowledge (which, moreover, has been assimilated only to the

extent that it fits into the schema whose development we have

just noted).
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Substage III-B. Formal Generalization of

Acquired Knowledge

Finally, at substage III-B, the spontaneous schema of explanation

outlined during substage III-A is filled in with information gained

through education; thus the contradiction between the equality

of water levels and the eventual inequalities of the amounts of

liquid is eliminated. But one can easily see that this contribution

from without does not modify the structure of the reasoning:

PIC (13 ; 6): "These levels are always equal because the forces com-

pensate each other"; according to PIC these forces are air pressure and

the weight of the water.

MIN (14 years): "I/ you have two beakers of the same sizes or different

sizes, the water will come up to the same level in both, because the

larger the beaker, the more air presses on a large surface; and vice

versa, the smaller the beaker, the more the water will act on a small

surface, so an equilibrium is reached" "Always?" "No. When you
have two chambers, if there were more air pressure in the chamber
where you put the bottle on the left and less pressure in the chamber
where you put the bottle on the right, the level at the left would be
lower."

In other words, having a more or less clear understanding of

the fact that the pressure of the liquid is relative to the surface

area of the vertical column at its base, the subject explains the

phenomenon of communicating vessels in a fashion analogous to

that used at substage III-A, but generalizes to the case of unequal
quantities. Thus the essential point in the explanation is that even
in the case of unequal volumes the pressures compensate each
other in function of the height of the columns "so equilibrium is

reached," as MIN says, this time referring to beakers having differ-

ent capacities.

The Notion of Equilibrium and the Group of Four

Interpropositional Transformations I N R C

In order better to understand the nature of the formal structuring
which culminates in the operational schema of equilibrium, it
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seems worth while to compare what can be called the concrete

reciprocities of stage II with the formal reciprocities of stage III.

The preliminary form of reciprocity appears for the first time at

substage II-A with the discovery (inaccessible to stage I subjects)
that the higher one of the beakers (I) is in relation to the other

(II), the more the water rises in the second beaker. The discovery
of this relationship entails the following operations:

Serial ordering of heights:

A! < B! < Ci < . . . (i)

taking the other beaker as a point of reference;

Serial ordering of the levels of elevation as they increase in the

lower beaker (with interior references to this beaker):

A2 < B2 < C2 < . . .
; (2)

An (ordered) correspondence between the two sets of serial

orderings:

Ai < Bi < Ci < . . .
,

$ $ $ (3)

A2 < B2 < C2 < . . .
;

In the case of reversal of the situation, the elevations occupied

by beaker I may be ordered serially in descending order:

. . Ci > Bi > Ai > , (4)

as may be done for the levels in II:

. . . C2 > B2 > A2 . (43.)

The correspondence is in this case established in reverse order.

Thus concrete reciprocity consists of a symmetry between the

two correspondences:

(A! -> A2) <F (A2 <- Ai). (5)

At substage II-B, a system of external reference is added to

these relationships, allowing the introduction of the notions of the

horizontal and of the equality of levels in terms of rate of flow.

We have treated the operations needed to construct this spatial

system elsewhere.6 Here we may limit ourselves to noting that the

6 Piaget and Inhelder, The Child's Conception of Space, Chap. XIII.
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serial orderings and correspondences (i)-(s) are replaced by a

correspondence between the actual water levels in the two beak-

ers. If we call + A, + #, + C, etc., the increasing elevations in-

cluded between the horizontal (the line of final equality) and the

levels in the higher beaker, and A, - B, - C, the correspond-

ing increasing heights included between the line of equality and

the levels in the lower beaker, the substage II-B child establishes

the correspondence:

Thus the reciprocity depends on the equality of the differences

+ X and X and their continuous compensation, which occurs

until the difference is zero (when the line which eventually unites

the two levels is horizontal). So reciprocity boils down to a spatial

symmetry (but without an adequate causal explanation). As for

the inversion operations, they consist of increasing or diminishing
the differences A, B, zt C, etc. This operation may be

effected by addition or by elimination of quantities of liquid in

one of the two vessels; this is accomplished easily by raising or

lowering this beaker. Hence (if A' is the difference between the

increasing heights A and B):

A + A' = B, etc., and B - A'= A . (7)

But no total operational system as yet allows the subject to fuse

reciprocities by correspondence and increases or decreases of dif-

ferences into a single whole. That is why the subject is limited

to describing the equilibrium and cannot manage to understand

it as a single causal system. When the notion of compensatory
actions and reactions appears at stage III, two innovations come
into play: the spatial reciprocity of levels becomes a reciprocity
of pressures; this constitutes a single operational system with

inversion operations.

This coordination of inversions and reciprocities can be formu-

lated in the following manner: Let us call p and q the statements

concerning the effects of any two pressures exerted at separate

points on the liquid contained in beaker B. Let us call p and q
the statements that these effects are canceled out, either by inver-

sion of their causes (thus of diminutions in beaker A until the
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initial elevations are eliminated) or by compensation under the

influence of pressures operating in opposite directions.

Thus there are four possibilities:

I(pvq), (8)

direct transformation or effects of the pressures exerted by liquid
A on liquid B;

N(p v q) = p v q = p.q , (8a)

inverse transformation or elimination of the effects p and q;

v q) = p v q , (8b)

reciprocal transformation or effects of the pressures exerted by
liquid B on liquid A;

C(p vq)=pvq = p.q, (Be)

correlative transformation i.e., inversion (
= negation) of the re-

ciprocal, thus canceling out the opposite (negative) effects p v q,
which is equivalent to the simultaneous assertion of p and q
i.e., p.q.

Such is the reasoning schema which the stage III subject uses.

He understands that the point of equilibrium is reached when
values x and t/, corresponding respectively to the pressures repre-
sented by p v q and by p v q, are equal. As long as one has x > y
or x < y, the liquids are actually still in motion in tubes A and B.

On the other hand, any movement ceases when the liquids reach
the same level (represented by r) because:

r=)[x(pvq) = y(pvq)]. (9)

Although substage II-B subjects perceive the horizontal level

common to tubes A and B, they are unable to explain it. Stage III

subjects interpret it as due to an equality between pressures,
stated by the double reversibility of transformations I N R C.



10

Equilibrium
in the Hydraulic Press

1

THE INCREASINGLY more advanced explanation which the subjects

give of the phenomenon of communicating vessels has just shown
us the importance of the formal transformations of inversion and

reciprocity and of the I N R C group that they form among
themselves, according to the possible combinations, for the estab-

lishment of the operational equilibrium schema. But the drawback
of the experiment with communicating vessels is that the pressure
intrinsic to the liquid is completely overlooked by our subjects.
A detailed account of the explanation is not found until it is given
in terms of acquired knowledge. In the apparatus dealt with in

this chapter, two communicating vessels again appear, but one of

them is provided with a piston which may be loaded with varying

weights; thus, the pressure exerted on the liquid is directly pro-

portional to the weights. (It is to be noted that the piston is

propelled not by an external force but by its own -weight.)

Now, there is a reaction of the liquid corresponding to the

action of this weight (the displacement of the liquid under pres-
sure is inversely proportional to its resistance), but here, too, the

resistance reaction can be made tangible by varying the density

1 With the collaboration of A. M. Weil; A. Tissot, former research assistant,
Institut des Sciences de I'fiducation; and M. Wikstrom, &l&oe dipldmee,
Institut des Sciences de Tfiducation.
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FIG. 8. The equipment used for this problem
in equilibrium involves two communicating
"vessels'

7
of different sizes and shape. Vessel A

is provided with a piston that can be loaded

with varying weights. The amount of pressure

exerted by the piston (which is dropped into

the vessel by the subject) is varied by adding

weights.
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of the liquid i.e., by using water, alcohol, or glycerine in turn,

To the question o equilibrium is added that of the actual trans-

mission of forces; the problem is to understand that the force

exerted by the piston is transmitted in a uniform manner through
the entire liquid and that the equilibrium between action and

reaction relates not only to the surface of the liquid (or the lowest

point in the apparatus) but to the entire system.

Therefore, in this particular case the problem of the relation-

ship between concrete and formal thought is to understand how
the subject makes the transition from simple observed correspond-
ences between the weights and the displacements of the liquid to

an explanation expressing the complete transmission of force as a

function of weight and inversely as a function of density. Thus

it is not only the general operational schema for equilibrium which

reappears here but, more particularly, the equality of action and

reaction. The subject matter is especially promising for the study
of the role played by the I N R C group in thinking.

Stage I. Lack of Understanding of the Role of Weight

(Substage I-A) Followed by Global Understanding
Without Either Serial Ordering or Operational Cor-

respondences

At substage I-A, the subject does not even make an unequivocal

prediction that the water will rise in the thin tube (B) as a result

of the weight of the piston because, if the "heavy one" has force

^eaned on
7*

or "pushed" by assimilation to his own action), the

Tight one" is likely to "rise" (by assimilation to raising itself).

Moreover, no conception of conservation of quantities is present
at this level. Thus the water in the tubes will not necessarily be
conserved and the tubes may be filled or emptied without ade-

quate reason.

KOT (5 ; 6): "The water will go up [he points out tube B]; it has to fitt

tip to go up "-"If I use this piston?"-"!*'* going to fitt up."-"And if I

put on this box?" [500 grams] "It could fill up more [this is done].
If3 because it [the box] presses "-"If I take off tie box?*'"ft witt go
down."

ee

WheTQ?
>9 t<

Like before." He puts on the s-kflogram box.

"A little higher." He replaces the box by the i,5oo-gram box. "A little
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lower. It's the heavy ones that go the lowest [in B!]. The little ones

cant lift anything high.
2 The big one and the fat ones can bring it up

close [small displacement]. The heavy ones cant, but the little ones go

high up" [contradiction]. 'Take the little ones."[He tests their

weight.] "This one must be the smallest [1,500 grams; he puts it on],

It went up a little anyway! I think the lightest is this one [500 grams]
and I think that this one is the heaviest [2 kilograms; the two extremes

are evaluated accurately, but the rest of the serial ordering is wrong:

1,000 > 1,500 grams, etc.]. Oh! This one [2 kilograms] is the smallest

[he puts them all on in turn]. This one goes the lowest" [500 grams],

-"Why?''-"It's the biggest [he puts on 2 kilograms]. Oh! But that one

that goes up highest: you see that it's the smallest "'Why the small-

est?''-"It's the lightest, and also the smalkst."-'It's the lightest?"-"!

feel it when I carry it [he lifts them in turn without comparing them

two by two], Yes" "Why does the water go up most with that one?"

"Because it presses, it makes the water go up" "It you put on a

small one?** "That makes the water go up very high." 'And a light

one?" "It's like the fish in the water: they can raise themselves [he

puts 1,500 and 1,500 grams together]. It goes up high" 'Why?'*

"Because that [he points out one of the two i,5oo-gram boxes] is the

heaviest" [!].

JOG (6 years): "It's the water that went up again!" "Why?" 'Because

the tube [piston] was put on top; that made the water go up." ""And

if you put this box on top, will it change?" "It will go up more" [he

points out a level that is too low]. We do the experiment and point
out the predicted level. "Why not there?" "It was too heavy" [thus

the weight is seen as the cause of the rise]. "Next?" He uses 1,500

grams and 1,000 grams and sees that the first results in a greater rise

in the water level. 'Why?*'--"Because it's less heavy than the yellow"

[this is not true; moreover he now sees the lack of, rather than presence

of, weight as causing the rise!].

These cases were worth citing because they show the initial

incoherence of the reasoning which later reaches the level of for-

mal logic. In the first place, we see that these subjects can neither

serially order the weights correctly nor allow for the equality of

size of the boxes which contain them (although they are all exactly

alike). Secondly and in connection with this preoperational per-

spectivethe heavy weight may cause the water to rise more or

2 The boxes (from 500 to 2,000 grains) all have the same volume.
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less and the light one may in turn fail to press on the water or,

on the other hand, cause it to rise. It may even happen that two

superposed weights cause the water to rise quite high because

one of the two is erroneously judged lighter than the other; thus,

nonadditivity is an additional source of contradictions. In sum,

the child cannot possibly formulate any law yet, for he lacks

operational coherence.

At substage I-B, the child understands in general terms that the

heavier the weight, the more the water rises in tube B, but he is

not yet using serial ordering, correspondence, or exact predictions,

for completed operations are still lacking:

JAC (6 years), after several trials, predicts that the 1,500-gram box will

produce the same result as the 2-kilogram box "because it's just as

heavy." The water does not rise as high. Next the experiment is done

over again with the 2-kilogram box. He predicts once again that the

level will be the same "because they are the same." The water rises

higher. "Why?"~-'
u
Because it's heavier." "And that one [500 grams]

will go where?" "I don't know." 'To the same place?" "No, because

it is less heavy." "And that one [1,500 grams]; can you guess where it

will make the water go?" "No" [however he weighs it]. "Why does

the water come up here?" [B]. "Because there is something that

touches the water, the pipe [piston] presses on it. It presses more or

less and it always makes it go up."

MON (6 years): "Because there is more weight and that makes it go
higher up. The piston sinks in more [in A] and there will be more
water there" [inB],

DEL (7 years) gives the same explanations but also tries to recognize
the weights by the sizes. But the goo-gram box seems to him larger
than the i,5oo-gram box, whence spring several contradictions:

"heavy" goes with "big"; the "heavy one" makes the water rise more,
but the 'less big/' too.

Thus there is progress in comparison to substage I-A in the

sense that as a general rule the weight becomes the cause of the

rise of the water. However, since the weights are badly ordered
and the equalizations badly established, a certain amount of in-

determinacy often renders the predictions inaccurate.
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Substage II-A. Exact Serial Ordering of the Weights
and Correct Correspondence with the Water Levels

With the appearance of concrete operations, the weights and the

water levels are made to correspond; the weights being found to

be either equal to or different from 500 grams, their serial ordering
does not cause any more difficulty (which is not the case before

substage II-B when the differences are less perceptible). But

progress stops at this point. For, as regards the density of the

liquid, up until 9 years (on the average) the child thinks that the

heavier the liquid, the higher it will rise, because its weight is

added to that of the piston which makes the water rise. Thus, at

this first operational level there is no notion of liquid resistance

i.e., of a reaction oriented in the opposite direction from the pres-

sure action thus no notion of reciprocity in the realm of forces:

SOL (7 ; 11): "If the piston sinks in further, the water goes up more.
9*

The 2-kilogram box will cause the water to rise more than the one of

1,500 grams "because it's loaded.'
9

"What does that depend on?"

"On the weight that's inside "-"If it is heavier?"-"!* goes up higher."

"And lighter?" "Lower. If you had a very big weight, it would go

[gesture], it would gush out from up above"

COR (7 ; n) same reactions with water, after which we substitute alco-

hol: ''Why doesn't this box go up as high now?"-'The box got lighter.
9'

-"Why?"-"It'$ not the same liquid"-*WhB.t difference does that

make?" "Maybe the liquid goes up higher. Ifs because the liquid is

heavier, it has more weight" "This [alcohol] is heavier?'* "Yes, it's

heavier [since] it goes up higher; that makes the weight and then it

makes it go up."

PAL (8 years). Experiment with glycerine: "The water is heavier, so

everything will go a little higher because it's heavy." 'Why doesn't

it go as high with the glycerine?" "Because the glycerine is lighter."

"But weigh it yourself* [two equal volumes]. "I was wrong, it's the

opposite'
9

"So why does it rise when it's heavier?" "Because it doesn't

have enough force to rise higher." Thus there is a contradiction; weight
involves force, but the glycerine does not come up to the level.
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These facts are interesting from two points of view: the child's

physics and his logical operations. From the first point of view, he
does not perceive action and reaction, but thinks that the force of

the pressure exerted by the piston and the boxes releases in the

liquid a force due to their own weight and oriented in the same
direction. We have here a new example of the influence, which is

general at this age, of the two motors schema.3 The external motor
sets off the action of the internal motor, and the two work together
for the execution of the same movement. (This Aristotelian schema
is frequently used in the child's explanations, even for the move-
ment of projectiles.) These same subjects do have a notion of

action and reaction in the case of balance, but it is intuitive (for
it is simply linked with visible displacements) and lacks opera-
tional generality. In the present situation, they have none, al-

though they may compare the increasing weights of alcohol,

water, and glycerine at equal volumes and see the inverse corre-

spondence between the weights and the rise of the liquid in

tube B (with the same boxes placed on the piston of tube A).
The reason for this is that the principle of action and reaction

cannot be understood in terms of concrete operations alone. Class

groupings presuppose inversion and relational groupings presup-
pose reciprocity, but neither taken by itself provides any mecha-
nism for the integration of the two in a single operational system
such as the I N R C group. But the principle of action and reac-

tion is based on this group: it entails the intervention in the sub-

jects* reasoning of logical transformations which include both

reciprocal and inverse operations and coordinations between
them. Inverse operations alone may assure the coordination of

operations in the same direction (e.g., understanding that taking
off weight diminishes the pressure), but reciprocal transforma-
tions are required for equating operations which are oriented in

opposite directions (e.g., for understanding that a greater liquid

density compensates rather than adds -force to the weight on the

piston so that the more dense the liquid, the less the rise of the
water in tube B). The integrated group by definition implies
formal operations or a "structured whole" as opposed to elemen-

tary groupings of classes and relations.

Thus, because he lacks formal operations, the subject at this
8 See J. Piaget, The Chtttfs Conception of Physical Causality, Chaps. I-V.
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level does not come to understand the relations between action

and reaction, just as in the case of communicating vessels he gets
as far as a spatial reciprocity of rises and falls without discovering
the reciprocal relationship of operative forces themselves. It is

clear that, at this substage (II-A), equilibrium between liquid and
a piston of variable weight pressing on it is not conceived of as an

equilibrium process but as a one-way process; the piston exerts its

force on the liquid in the departure tube (A), and the liquid acts

not in return but (even in tube B) in the direction of the piston
itself and adds its own force (because of its weight) to that of the

piston. But the transmission of force does not raise any problem
because, strictly speaking, it is not a transmission. It still consists

of releasing or activating the force of the liquid with the force of

piston and weight placed on it. Thus the serial ordering of weights
and the correspondence between them and the attained levels are

still a long way from being an expression of the law or even

a fortiori an understanding of it.

Substage II-B. Intuitive Formulation of the

Notion of Resistance

The stage from 9 to 11 years is a transition stage, during which

the subject begins to get a glimpse of the fact that the liquid

resists as a function of its density. Some children say even at this

point that in tube B the water rises less than the alcohol because

the alcohol is lighter. But that does not yet mean that they have

mastered the problem from the point of view of action and re-

action. In particular, they wait for the piston to fall to the bottom

of large tube A5
as if it fell to the bottom of any receptacle what-

ever and as if counter pressures were irrelevancies. Thus, the

column of water in narrow tube B is always conceived of not as

exerting a reaction in a direction opposite to that of the piston

pressure and coming into equilibrium with it but only as resisting

the rise somewhat as a function of the liquid's weight.

HED (10 ; 3) predicts that "it's going to rise here [B], and here [A] it

witt go doww.~--Experiment.-~"Oh! I thought it would go up higher."

-"Why?" "Because the piston didnt go aU the way [as he expected]

and the water didn't go all the way up.
9'

"And with that box?" [i kilo-
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gram] .-"Way up there" [higher].-"And if we take it off?"-"! will go

down again."-'And with that box?" [2 kilograms].-"!* will go higher

because it's heavier." The water is replaced by alcohol; he expects the

same levels: "It teas higher "-'Why?
9-''Because it [the alcohol] is

lighter"->"And with that box?"~'There" [a little lower than with

water],

FRA (10 ; 10): "The tube [piston] is going to fall and the water will

overflow because when you put something heavy in a container full of

water, then there is more volume and that makes it overflow."

HAF (11 years), contradicting HID, attributes to the lightness of the

water the fact that it comes to rest lower than the alcohol: "It's not

the same liquid now"-<e

Why?"-
<e

Maybe it weighs less" [the water;

we began with alcohol].-
c

Why?"-"But it doesn't go as high. . . . It's

the liquid that weighs less. It's surely the liquid since the boxes are

the same. The first time [alcohol] the liquid was heavier, since it went

higher. When the liquid is heavy, it has more weight, more pressure: it

goes down faster here" [in A]. "And here [in B] the liquid doesn't

press?" "No, since it's this one [in A] that goes there" [in B].

This reasoning is extremely clear and less contradictory than

it seems, for sometimes the subject thinks of the liquid which

drops in tube A, sometimes of the liquid that rises in tube B.

When considering tube A, he expects the heaviest liquid to fall

the most easily, with the aid of the piston, and consequently the

level to be highest in B (HAF). On the other hand, in considering
tube B, he thinks that the heaviest liquid rises with the most diffi-

culty and consequently that the level will be lower (HID). In both

cases, it is less a question of resistance offered by the liquid in the

sense of an equal and opposite reaction in relation to the piston
than a variable resistance to the rise with a variable facility for

the descent; whence the idea that the piston "sinks in'* to the

bottom of tube A without any resistance, as HID and FRA expect.

Thus, at the last of the stages prior to formal operations, the

subject can make accurate predictions of the effect of the weights
on the piston and sometimes even of that of the densities of the

liquids used, but he does not as yet formulate (from his predic-

tions) any total explanation in terms of an equilibrium principle.
The reason is that he lacks the operational instruments which
would permit coordination of inversions and reciprocities (the
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I N R C group). But there is no doubt of the fact that weight is

still conceived of in absolute terms (as a "pressure" says HAF) and
is not adequately related to volume although its conservation and

rudimentary quantification are present. Even at this point, density

gives rise to the intuition of "filled" or full but not as yet to the

operational relations which will constitute the notion of compres-

sion-density found at stage III.

Stage III. Reciprocity of Action and Reaction

The best index of the appearance of the notion of reaction, or of

resistance oriented in the opposite direction from that of the pres-

sure of the weight, is the subject's attitude toward the drop of the

piston in tube A. Whereas up to this point the piston was seen as

sinking into a liquid without resistance and even as tending to

descend with it as a function of its own weight, from this point
on the descending piston is seen as meeting resistance propor-
tional to the density of the liquid. Density, in turn, comes to be

conceived of as a relationship between weight and volume i.e.,

as the result of a more or less great compression of matter into

an equal volume. But to conceive of a resisting force, capable of

equilibrating the force of the pressure according to a set of varied

compensations until it stops the piston in its descent, the subject

must introduce a reciprocity between the density (conceived of

as a compression capable of resistance) and the pressure of the

weights. In other words, the subject joins a reciprocal transforma-

tion in a single I N R C group with the inverse transformations

(of adding or subtracting weights). This integration is made

initially at substage III-A:

TRI (11 ; 2): "It's the weight of the boxes. It's that [piston] that pushes

the water.** "And if you change the liquid, will that have an effect?"

"Yes. Some liquids are heavier than others'' "If you use alcohol?"

"I think that alcohol is heavier [simple factual error]. So it wiU rise less

because it's harder to move" [resistance!]. He does the experiment

without comment on our part. "No, the alcohol is lighter'
9

"Why do

you think that now?" "Because the weight of the box makes it rise

more." "What does that?" "Because the weight of the box makes it

go up higher. The weight [of the box] can push better"
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DUM (11 ; 2). After the water, we perform the experiment with alco-

hol: "It will go tip less because the weight of the liquid is heavier."

"The alcohol is lighter than the water. So?"-"ft will go up higher."

"Why?"-"17i0 lighter the liquid, the more the piston will be

less . . ." [less resisted].-"Less what?"- 'Since the alcohol is lighter

than the water, the piston will descend more" "You said less* ""No,
the piston descends more. The liquid is lighter, so the piston sinks in

more" "Why?" "Because the liquid is lighter than the water." 'And

it follows that the piston sinks in more?" 'Because the piston isn't

held back as much by the weight of the alcohol"

YA (11 ; 6). Same reactions. "Why doesn't the piston go all the way
to the bottom?" "Because the piston no longer has enough force to

bear down. It is held back because the liquid is heavier than the

piston"

RTV (13 ; o): The water goes up to there "because it has to come back

to the same weight in both tubes" *But why doesn't the water rise

any higher?' "Because the piston can't come down any more."

"Why?"--
<e

Because the water holds it back." Having pressed down on

the piston with his hand, he sees that it returns to the initial position
and says, "If you press on the piston, the water has more force"

These responses show clearly that from this point on the subject
is aware of the existence of action and reaction. The weight of the

liquid or, more exactly, its density (for henceforth the subjects

speak only of weight relative to volume) is no longer a factor pro-

moting the pressure of the piston but, to the contrary, is an ob-

stacle to this pressure and thus a factor whose action is oriented

in the opposite direction; thus it is a reaction. The liquid, when
it is lighter than the water, actually rises more in B, because the

piston, reinforced by the weights, "can push better
'

(TRI) or is

less held back" (DUM). With respect to tube A, on the other

hand, the piston "can't go down" below a certain point "because

the water holds it back" (RIV and YA).

Thus, the discovery characteristic of substage III-A is that the

system involved is an equilibrium of opposed forces and no longer
a one-way process. But before trying to formulate the reasoning

involved, let us examine the further problems which the subjects
have yet to solvethe way in which the force of the piston is

transmitted and the place in which the action and reaction attain

equality and come into equilibrium.
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The first question is solved from substage III-A on, since the

pressure of the piston is no longer considered a triggering device

or an excitation of the force intrinsic to the liquid (due to its

weight). Rather, it is viewed as an action exerted through the

entire liquid from the beginning (descent of the liquid in tube A)
up to the arrival (rise and coining to rest in tube B) and bringing
on a reaction in the opposite direction resulting in a final state of

equilibrium.
But at what point does equilibrium come about? Can it be

localized at a particular point, or is the total quantity of the liquid
involved by degrees? This particular question cannot be clarified

prior to substage III-B. The reactions of this latter substage are

roughly analogous to those of the preceding. As regards this ques-

tion, several substage III-B subjects still imagine that there is a

particular place where the opposing forces meet each other. This

would be at the bottom of the rubber tube connecting the two

glass tubes i.e.9 the lowest point of curvature of the system. In

contrast, other subjects come to understand that, from the point
of contact between the piston and the liquid up to the level

reached by the liquid in tube B, there is action and reaction. On
the one hand, the pressure of the piston makes itself felt through-
out the liquid. On the other hand, since the reaction is a function

of the density (which is conceived of as a compression), it surges
at every point of the volume occupied by the liquid in such a way
that throughout there are both action and resistance, the latter

tending to repulse the action exerted on the liquid; the action and

reaction are thus equal at every point.

The following are examples of each of these response types:

BOI (14 ; 6): "If you put on that box?" "It wiU rise higher because of

the pressure" [experiment] . "Why not higher?*" "The pressures at the

bottom of the tube [of the rubber tube] are equal" "Row do you
know?" "Because the apparatus [piston] doesn't fall and doesn't rise,

and, reciprocally, because the water neither rises nor faZfc/* "And

when I put on a box?" *7t*$ heavier. The result is a higher column of

water [in B] and also a larger weight [in A], and it comes into equi-

librium at the bottom of the tube"*Why?'''-"Because the pressure is

the same at the bottom of the tube* "But that doesn't explain the com-

bination of the weights?" "Yes, it does, because the water is dislodged

by the weight [in A]: It comes into equilibrium at a certain moment be-
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cause the weight of the water [of the column of water in B] increases

when it rises.
9'

"What makes the water rise?*' "The weight of the

boxes; it makes a greater pressure at the bottom of the tube and that

dislodges the water."

IAC (14 ; 6): "The pressure is the same [from both sides] at the bottom

of the tube [cf. BOX'S conception]. No, the water comes into equilib-

rium if it communicates by a tube and the pressure is transmitted in

full." "Does the elevation play a role?" "No, the water will transmit

the pressure the same way if both columns are high or low'
9

The re-

sistance is also conceived as the same throughout.

Thus we see that the substage III-B responses (in which the

influence of acquired knowledge may occasionally be perceived)

add little to those of substage III-A, which are more spontaneous.

Conclusion. Stage III Reasoning and the Formal

Operational Schema for Equilibrium

In order to analyze the formal operations needed to understand

the notions of equilibrium or equality between action and re-

action, one must first remember that causality is a system of opera-
tions applied to transformations in the real world in such a way
that each one of these transformations can be assimilated to an

operation of the subject while at the same time is conceived as

accomplished by the objects themselves. Thus, we must first estab-

lish the transformations which our subjects attribute to the system
under consideration and then look for the operations or logical

transformations to which these real modifications are assimilated.

But the principal transformations involved in the system are the

four following:
I. The action exerted by the pressure of the weight of the piston

and by the weights added to its own weight;
II. The suppression or diminution of this action by eliminating

the weights added or the weight of the piston itself;

III. The reaction due to the resistance of the liquid, which it-

self constitutes a pressure, one which, however, is oriented in the

opposite direction and which is dependent on the height and

density of the liquid;
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IV. The elimination or diminution of this resistance by elimi-

nating part of the liquid or by substituting a liquid of less density.

But we notice that although transformations (I) and (II) can be
assimilated to direct and inverse operations, transformations (III)

and (IV), in contrast, are symmetrical with the first two; they too

consist of operations which are direct and inverse in relation to

each other, but which act in the opposite direction from the first

two. Transformation (III) thus constitutes a reciprocal of transfor-

mation (I) and transformation (IV) a reciprocal of transformation

(II). Whereas (IV) is the inverse of (III), in contrast (III) is not

the inverse of (I), since it does not cancel it but simply neutralizes

the effect by compensation. In other words, the composition of

(I) and of (III) results not in the cancellation of the pressures but

in their equivalence, and thus in an equilibrium.

Consequently, here again we find a mechanism isomorphic to

the group of four transformations I N R C. Therefore we should

not be astonished if we find this same I N R C structure in the

very reasoning of the child in a form analogous to that which we
have already seen at work in the experiment of the communi-

cating vessels, although here we find it in slightly different form

since in this case the reasoning bears directly on pressures and

resistances:

I. The first operation consists of stating the intervention of a

pressure in tube A under the influence of one weight or the other:

let this be (p v q);

II. The inverse operation consists of stating the cancellation

of this action: let this be (p.q);

III. According to the stage III subjects, each pressure p or q
has a corresponding resistance which we may designate by
p' or q'i.e., (p'vg') and which is expressed in the column of

liquid B by the weight of the portion going beyond the level of

the liquid in column A;
IV. The inverse of III will consist in stating the cancellation

of p' and q'i.e, 3 (p'.q').

The discovery unique to stage III is that transformations (II)

and (III) are reciprocal i.e., that there is compensation between

them. But to hold that compensation occurs is tantamount to

regarding the intervention of a resistance in B (expressed by p'}

as equivalent to the elimination of a pressure in A. The adolescent



162 THE FORMAL OPERATIONAL SCHEMATA

realizes that, without the resistances in B, the pressures exerted in

A would cause the liquid to rise much higher and that to each

pressure p corresponds an equal resistance p'. Thus (p' v q') can

be written in the form (p v q). Whence:

l(pvq)

Thus one can see that transformation (III) is clearly the recipro-

cal R of transformation (I) and that (IV) is the correlative C
i.e.9 the NR or the RN of transformation (I). Thus, the equivalence
between pressures and resistances is expressed in two ways (posi-

tive R and negative C). Since the reciprocal (p v q) of the opera-
tion (p v q) is the symmetrical operation in which the same com-

binations (p.q v p.q v p.q) and (p.q v p.q v p.q) are found, though
with a change of signs, it expresses the fact that equivalent forces

oriented in opposite directions are involved, and thus the opera-
tion is distinguished from the inverse N. In other words, the in-

verse cancels the direct operation while the reciprocal does not

cancel it; instead, it compensates it by a symmetrical operation of

the same value but with a change of signs.

This distinction between the reciprocal and the inverse causes

all the difficulty in the problem of action and reaction, and the

subject cannot make the distinction before the formal stage. Until

then, although the child clearly understands the inverse operation

(i.e., can cause the water in B to drop again by cutting down the

weight in A) he does not understand the reciprocal operation. He
conceives of it as a simple prolongation of the direct operation and
not as a symmetrical operation oriented in the opposite direction

and compensating for the direct operation (
= the liquid does not

resist the pressure but acts in the same direction). This is so be-

cause, if the subject is to understand the four transformations

(I-IV) when he has not intuitively distinguished between their

respective actions (as in the case of the balance), he must possess
an operational mechanism made up only of formal operations.

Thus, the late appearance of this discovery.

As for fixing the equilibrium at a particular point (stated in the

proposition r, subject RIV describes its conditions when he says
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that the water in B stops at a fixed level "because it has to come
back to the same weight in both tubes/* In other words:

ND[x(pv 9)=y(pv9)] (a)

where x and y are the values assigned to (p v q) and to (p v q}.
Unlike those in communicating vessels, the equilibrium points

do not form a horizontal line from one tube to the other but vary
according to weights p v q and to the resistances, which them-
selves depend on the density of the liquids. With that exception,
the explanation of the phenomenon presupposes the same formal
schema. Thus, it is not by chance that the mechanisms of action

and reaction are discovered at the same substages, III-A and III-B.

We have seen this to be true with respect both to a piston acting
on a liquid and to communicating vessels. And we shall soon see

that it holds for the case of the balance scale. In these three cases,

an understanding of the physical processes presupposes an opera-
tional schema putting into effect simultaneously the inverse and

reciprocal transformations which remain separated at the level

of concrete groupings and which are linked into a whole only

through the I N R C group. But in this, as in all the other cases

examined up to this point, the difference between concrete and
formal thinking relates to the construction of the "structured

whole/' It is the double reversibility characteristic of this whole

(which at the same time allows for the lattice and group struc-

tures) -which constitutes the I N R C group, whereas the two forms
of reversibility remain separated in the elementary concrete

groupings inversion is found only in class groupings and reci-

procity in relational groupings.



11

Equilibrium in the Balance
1

IN A PROBLEM using a simple balance-type weighing instrument, a

seesaw balance, we again find the operational schema of equilib-
rium between action and reaction. But the experiment was set up
in a way that would force the question of proportionality. When
two unequal weightsW andW are balanced at unequal distances

from an axis L and I/, the amounts of workWH and WH' needed
to move them to heights H and H' corresponding to these dis-

tances are equal. Thus, we have the double (inverse) proportion:

W/W= U/L = H'/H

The result is that finding the law presupposes the construction

of the proportion W/W' = U/L and spelling out its explanation

implies an understanding of the proportion W/W = H'/H. It

seemed to us that it would be interesting to study how this pro-

portionality schema develops as it is linked with the equilibrium
schema. As a result of previous research we know that in all realms

(space, speed, chance, etc.) the notion of proportions does not

appear until formal substage III-A. Now we are going to find out

why this is so.

1 With the collaboration of F. Matthieu, former research assistant, Institut

des Sciences de Tfiducation, and J. Nicolas. In reference to the same subject,
see the previous study of Mme. Refia Ugurel-Semin, Istanbul University
Yayinlari (1940), no, pp. 77211.
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FIG. 9. The balance scale is here shown in two forms: (A) a conven-

tional balance with varying weights which can be hung at different

points along the crossbar; (B) a balance equipped with baskets which

can be moved along the crossbar to different points and in which dolls

are used as weights.
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Stage L Failure to Distinguish Between the Subject's

Action and the External Process (I-A) Followed by

Integration of Intuitions in the Direction of the Com-

pensation of Weights (I-B)

From about 3 to 5 years, subjects give responses which, given our

interests, are instructive. As we have said before, in general

causality is an assimilation of external processes either to the sub-

ject's own actions or to his operations, but with the delegation of

one or the other to reality itself. In the case of an apparatus such

as a balance scale, the notion of an equilibrium between one's

body weight and other weights is constructed very early, but the

notion is undifferentiated and extends beyond weight itself to

include the muscular force of an upward or even a downward

push. (Moreover, the weight is thought to be linked with the

actions of pushing up or pressing down.) The balance is first

assimilated to this sort of undifferentiated action and not to a sys-

tem of compensation operations between weights nor a fortiori to

weight X length. In fact, no form of concrete operations exists at

this level for there are only representational regulations i.e., in-

struments of global compensation without systematic reversibility.

The result of this situation is that the substage I-A subjects can-

not guarantee equilibrium simply by distributing weights but

intrude in the working of the apparatus with their own actions,

which they fail to distinguish from the actions of the objects that

they are trying to control.

MIC (4 ; 6), presented with two equal weights at distances of 14 and 9:

**Why is one way down and the other up high?" He continually raises

and lowers the arms of the apparatus, believing that they will maintain

the forces and positions he delegates to them. ''Can you make it

straight [horizontal gesture] so it will stay there all by itself?" Neither

"yes" or "no."-"How was it before?"-"Ltfe? thaf [horizontal]-"You
can't do it with the weights?" He shakes his head and tries to main-

tain the horizontal position with two unequal weights, raising and

lowering the arms several times. "Can you do it without your hand?"

[We have him weigh the weights with his hands, then he works at a
new set of trials. We suggest that he add weight to one side or the

other, etc,] Conclusion: "You caritr [attain the horizontal position].
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MAR (4 ; 8) suspends two weights on one side without putting any-

thing on the other, with the aim of reaching horizontal equilibrium!

One can see that, in constantly interfering with the apparatus
in order to correct the position of the balance arm, the subject

expects the apparatus to conserve the results of his manipula-
tions. Thus, the instrument and his own actions are not distin-

guished. But, although barring the notion that the balance con-

stitutes an independent equilibrium, the lack of differentiation

does not preclude his making predictions about some more or less

constant effects. It is true that for our purposes the most striking

aspect of these predictions is their negative aspect. For example,
at this level the child does not yet think that equilibrium implies
the equality of weights (even at equal distances); thus MAE puts
two weights on one side and none on the other in order to attain

the horizontal. The heavy side moves upward and the light one

downward, as well as the reverse. The relationship between

weights is not formulated; the epithet "too heavy" may be applied
to a single weight suspended to one arm without its counterpart,
"too light," being used. There is no conservation of weight. The

subject tries constantly to repeat with new weights what he has

just accomplished by chance with others, without paying any
attention to differences in weight. However, through improved
regulation these subjects come to see that weight has a relative

influence. Generally they suspend at least one weight at each side

for purposes of symmetry. Often they add new weights to the

others to improve the equilibrium, but they add them not to

the side where weight is lacking (which would tend to equalize the

weights) but to the side where the weight already is largest with

the idea that several weights will improve the situation.

But the adding characteristic of this level is not yet operational.

Although it does constitute the beginning of the additive opera-

tion, the operation is not achieved because of lack of equalization

between parts (A + A') and the whole B (compensating A + A'

on the other arm). Most important, it is not an operation, because

reversibility is lacking; at this point elements are not removed

with the deliberate aim of equalizing the weights. When the sub-

ject removes a weight, it is only in order to try a new and different

course of action after earlier attempts have failed.
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Generally, the subject is not concerned with the question of

the distances from the axis and does not look for any equality or

coordination between the distances and the weight. Nevertheless,

operations may start to take form here in that the subject may
establish a preliminary form of symmetry. However, once again
this is not an operation in the strict sense. First, coordination with

the weight is lacking; secondly, this symmetry is related generally

to the two extremities of the arms and does not include equaliza-

tions for the intermediate distances.

In contrast, from about 5 to 7-8 years (substage I-B) one can

see increasing integration of these intuitive representations mov-

ing toward reversible operations.

MAL (5 ; 8) notes that the arms are not horizontal: "You have to put
another [weight] on the other side. I know what has to be done; put
still another one there because there isn't any weight here [she adds

it]. These here must be lighter than those over there. You have to take

two that have the same weight." Next: "You could take one off' [be-

cause it is too heavy on one side]. MAL does not spontaneously dis-

cover the influence of distance, but when a weight is moved in front

of her she says: "You brought that one up closer9 that makes more

weight. If it were at the end9 it wouldn't work and there it makes
more weight''

GAS (5 ; 9): "You could put one at the other side: the same [he takes

a weight of the same color but having a very different weight]. That
doesn't work: maybe there is a little too much weight there."

Thus, from this point on the child understands that weight is

needed on both sides to achieve a balance and even that the

weights should be approximately equal. But he does not yet know
how to proceed toward this equalization in a systematic way.
Similarly, henceforth he succeeds in adding and subtracting, but
without accurate equalizations. His actions are successive correc-

tions, (thus regulations) and are not yet strictly reversible.

We see how these two sorts of regulations by equalizations
and by addition or subtraction furnish the starting point for

future transformations by reciprocity (symmetries) and by inver-

sion, relative to the weight. As for the distances, there is progress
in the tendency toward symmetry (the weights are no longer put
at equal distances only at the extremities but also in the region
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close to the axis). Sometimes the subject discovers the role played

by changes in distance (cf. MAL). But there are as yet no sys-

tematic correspondences of the type further = heavier.

Substage II-A. Concrete Operations Performed on

Weight and Distance but Without Systematic
Coordination Between Them

From this point on, weights are equalized and added exactly,

while distances are added and made symmetrical. But coordina-

tion between weights and distances as yet goes no further than

intuitive regulations. The subject discovers by trial-and-error that

equilibrium between a smaller weight at a greater distance and
a greater weight at a smaller distance is possible, but he does not

yet draw out general correspondences:
2

(7 ; 7) begins with E 3 and D 3, then replaces them with G 3 and

F 3 (thus equal distance and an attempt to find equal weights), adds

two other weights, takes off some, then all, and finally weighs two

equal weights [E] in his hands, counts equal numbers of holes [14]

and places E 14 at each side. Afterwards he looks for other forms of

equilibrium; he adds the weights, moves them, takes off some, and

finally has GED on one side and P 3 on the other: "That's it [em-

pirical compensation of weight and distances]. It's just like when
there weren't any [when the arms were horizontal without weight];
it's the same weight on each side." He begins again with large weights

[for which there are no matched pairs], "I should have put one on

each side. Since there aren't any, I had to put three on one side and

two on the other. It stays straight because it's the same weight on each

side." He predicts that equal distances are necessary for two unequal

weights, but he does not find the law: Heavier ? nearer. "If you put
on C and E, where would you have to place them?""! would say one

hole and another hole [ = two different distances], but they shouldn't

go the same way [at equal distances] or it wouldn't make the same

weight."

2 From now on we will indicate objects of increasing weight by the letters

A, B, C, etc. Increasing distances (which are measured for the child at three

equidistant points where the hooks for the weights are attached) are indicated

by the numbers i, 2, 3, etc.



170 THE FORMAL OPERATIONAL SCHEMATA

NEM (7 ; 4) discovers empirically that C on the left at a distance of 10

balances E on the right at a distance of 5. We ask him to place C on

the right and E on the left, but he does not succeed in inverting the

distance relationship. After the experiment, he exclaims, "AW Yow

have to do the same thing as before but in the opposite way!"

Thus, from this point on the subject can order serially the

weights he comes across as well as determine whether they are

equal. He can add them in a reversible manner and correctly

compare one pair of weights with another pair. What is more, he

knows how to make use of the transitiveness of the relations of

the equality or inequality of the weights. Moreover, all these

operations reappear when he compares distances, but with the

additional correspondence between distances oriented in opposite
directions (symmetries relative to the axis).

Applied to the problems of the balance, these operations allow

subjects to obtain the following results (by logical multiplication

of relations):

Two equal weights BI and B$ situated at equal distances La

come into equilibrium by symmetry:

(B! X L.) = (B, X L,). (i)

Thus, one of the weights is conceived of as compensating the

other by reciprocity. Two equal weights BI and Ba at unequal dis-

tances Ly and Lv do not balance each other:

(Bi X L.) (B2 X Ly) if x 3* y . (a)

Two equal weights BI and B2 at unequal distances Lx and Ly

do not come into equilibrium either:

(Ax X L.) < (B2 X La). (3)

Moreover, in each one of these relations the subject can sub-

stitute for one object an equivalent set of others through additive

operations:

Ci^Aa + A'a + B'a) (4)

and the same holds for distances.

On the other hand, in the case of unequal weights AI and Ba
and of unequal distances L^ and Ly, coordination is not yet pos-
sible at substage II-A. Even when the subject discovers by expert-
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mentation that a large weight at a small distance to the right of

the axis balances a small weight at a large distance to the left, he

does not know how to invert these relations from one side to the

other and discovers too late that he should have "done the same

thing but in the opposite way" (NEM).

Substage II-B. Inverse Correspondence of

Weights and Distances

The example just described (unequal weights and distances) is

resolved at substage II-B, not yet by metric proportions (with

the occasional exception of the relationship between i and 2) but

by qualitative correspondences bordering on the equilibrium
law: "The heavier it is, the closer to the middle."

FIS (10 ; 7) sees that P does not balance F "because it's heavy: that

one [F] is too Kg/rt."-"What should be doneP"-"Mooe it forward

[he moves P toward the axis and attains equilibrium], I had to pull it

back from 16 holes [arbitrary] to see if it would lower twice [arbitrary]

the weight'
9

"What do you mean by that?" "It raises the weight"
"And if you put it back over there?*' [moves P away]. "It would make
the other one go t/p." "And if you put it at the end?" [F]. "It would

go up still more
9'

[F], etc. Conclusion: When you have two unequal

weights "you move up the heaviest" [toward the median axis]. But ns
does not measure the lengths even for the relations of i to 2,.

ROL (10 ; 10): "You have to change the position of the sack because

at the end it makes more weight.'
9 He moves the lightest away from

the axis: "No, it's heavier" He is presented with G at 2 and A at 14:

they balance "because that one is there [A at 14] and it is less heavy
than the other one."

The difference between these reactions and those of substage
II-A is clear. At the earlier stage, when the subject comes across

two weights which do not come into equilibrium, he works mostly
with substitutions additions or subtractions. In this way he

achieves certain equalizations by displacement, but only excep-

tionally and by groping about (regulations). On the other hand,
at the present stage the subject who comes to two unequal weights
tries to balance them by means of an oriented displacement on the
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hypothesis that the same object "will weigh more" at a greater
distance from the axis and less when brought closer to it. He is

working toward the law, but without metrical proportions and by
simple qualitative correspondences.

Thus, the new operation mediating the determination of the

conditions of equilibrium is a double serial ordering of weights
A < B < C < . . . and distances LI > L2 > L3 > . . . but with
bi-univocal inverse correspondences:

A < B < C < . . .

$ t $ (5)

Li > Lo > L3 > . . .

which can be translated into reciprocities (expressed in the lan-

guage of relational multiplication):

(A X Li) = (B X La) = (C X Ls) = . . , etc. (6)

But it is clear that such qualitative operations are inadequate
to establish the law. The logical multiplications of type (6) allow

some inferences but leave certain cases indeterminate:

heavier X same distance = greater force,

less heavy X same distance = less great force,

same weight X further (from the axis) = greater force,
same weight X less far = less great force; but (7)
heavier X further = indeterminate,
less heavy X less far = indeterminate; and
heavier X less far = less heavy X further

(but only under certain metrical conditions).

However, at this level the subject can quantify the weights (he
knows that B = 2.A; etc.) as well as the distances (measurable by
the number of holes). Given these facts, why must we await
formal stage III before the schema of proportions is organized?
We might say (hat it is a matter of book-learning, but, in con-

tradiction, we are able to present some examples (analogous to

those which we have already published elsewhere 3
) in which the

3 See Piaget and Inhelder, The Child's Conception of Space, Chap. XII;
No. 9; Piaget, Les Notions de mouvement et de vitesse chez Fenfant, Chap.
IX, nos. 2 and 3; Piaget and Inhelder, La Genese de Tid6e de hasard chez
Tenfant, Chap. VI, nos, 5 and 6.



EQUILIBRIUM IN THE BALANCE 173

proportionality schema is organized before any academic knowl-

edge enters. Thus, it is probable that this schema requires, as a

necessary and sufficient condition, a qualitative operational sys-
tem that is both differentiated and unified, analogous to the

I N R C group. This hypothesis is even more plausible when we
consider that in this particular case a set of balanced actions and
reactions is involved similar to that whose understanding we have

analyzed in Chaps. 9 and 10.

Stage III. Discovery and Explanation of the Law

When the experimenter restricts himself to a procedure such as

the foregoing, where the subject is allowed to hang the weights

simultaneously on the two arms of the balance, subjects start to

discover the law at substage III-A. It takes the form of the

proposition W/W L'/L (where W and W are two unequal

weights and L and U the distances at which they are placed);

this law is so immediately obvious that it does not give rise to a

particular causal explanation even during substage III-B. ('It's a

system of compensations," as CHAL will tell us.) But, when the

experiment proceeds by successive and alternate suspensions of

the weights, the subject's attention turns to the inclinations and

the distances in height to be covered; this may lead him to an

explanation in terms of equal amounts of work (displacement of

forces). It is true that, although this explanation is already pos-

sible at substage III-A, it only rarely appears before substage
III-B. Nevertheless we have observed it in several cases and

think it worth analyzing.

First, we will present a case of the discovery of the law at sub-

stage III-A:

HOG (12 ; 11): for a weight P placed at the very tip of one arm [28

holes], he puts C + E in the middle of the other arm, measures the

distances, and says: "That makes 14 holes. It's half the length. If the

weight [C + E] is halved, that duplicates" [P]. "How do you know
that you have to bring the weight toward the center?" [to increase the

weight]. "The idea just came to me, I wanted to try. If I bring it in

half way, the value of the weight is cut in half. I know, but I can't ex-

plain it. I haven't learned." "Do you know other similar situations?**
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"In the game of marbles, if five play against four, the last one of the

four has the right to an extra marble" He also discovers that for two

distances of i and 1/4 you have to use weights i and 4; that for two

distances of i and 1/3 you need weights i and 3, etc.: "You put the

heaviest weight on the portion that stands for the lightest weight

[which corresponds to the lightest weight], going from the center."

The rapidity with which the subject makes the transition from

the qualitative correspondence to the metrical proportion seems

at first to indicate the presence of an anticipatory schema. How-

ever, the analogy that the subject established between the bal-

ance and the game of marbles shows that this schema is taken

from notions of reciprocity or of compensation. So we have to

examine how, starting with substage III-B, the subjects proceed
from the same conception to a search for an explanation in the

strict sense of the term (with the apparatus using alternate sus-

pensions):

CHAL (13 ; 6) quickly discovers that "the greater the distance, the

smaller the weight should be. It's staying up."
e

Why?
>' e

It is com-

pensated there and there'
9

'What is compensated?" "The distances

and the weights; it's a system of compensations. Each one rises in turn.

For equal distances you need equal weights, and if it's inclined it

rights itself and goes down on the other side" [We propose a test

with two weight units at a distance of 5 and one at a distance of 10.]

"What will the angles be?" "Larger on one side [he points out the

two-unit side] and smaller on the other [experiment]. Oh! No, the

same angles!" He outlines them: "The distance compensates for the

ttf<3zg7it"-"What distances do they cover?" [heights H and H' are

pointed out]. "The smallest weight covers a greater distance and the

large weight a shorter distance" "And what forces are required?"

[strings which can be used to raise and lower the weights are pointed
out]. "For the smallest, there is more distance to pull, for the large

one, less distance" "So where is more force required?" '"Here [two

units]. Oh! No, its the same: the distance [he is speaking of height]
is compensated by the weight."

SAM (13 ; 8) discovers immediately that the horizontal distance is in-

versely rekted to weight "How do you explain that?" "You need
more force to raise weights placed at the extremes than when it's closer

to the center . . . because it has to cover a greater distance." "How
do you know?" "If one weight on the balance is three times the other,
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you put it a third of the way out because the distance [upward] it

goes is three times less" "But once you referred to the distance [hori-

zontal gesture] and once to the path covered?" "Oh, that depends on

whether you have to calculate it or whether you really understand it.

If you want to calculate, it's best to consider it horizontally; if you
want to understand it, vertically is better. For the light one [at the ex-

tremity] it changes more quickly, for the heavy one less quickly"

TIS (13 ; 8) discovers the proportion i to 2 and shows the heights: "If

I replaced this weight [one unit] with that one [two units], it would

only go halfway up . . . [the distance in height] is much longer when
it is at the end of the arm than when it is in the middle" "Does com-

pensation take place?" "Yes, between the force and the height."

"How can you measure it?" "It*s easier to measure the height, but it's

really the same" [as the horizontal distance].

These reactions, found at both substages of stage III, bring us

back to the now familiar schemata of the I N R C group and in

the same form that we found in Chaps. 9 and 10. But, above all,

they show us how the general equilibrium schema is differentiated

in the present case by constructing the proportions W/Wr = L'/L
and W/W' = H'/H. Thus we have two questions to discuss-

first, how is the proportional schema organized; second, how does

it relate to the I N R C group?
In these responses the I N R C group first appears in a form

which we could have described earlier when dealing with the

problem of the oscillations of a liquid in communicating vessels

(Chap. 9). One of the arms of a balance will lower when a weight
is hung on it at a given distance from the axis; when an equal

weight is placed on the other arm in a symmetrical position

(
= at the same distance from the axis as the first weight), this

second arm will lower. "One goes up and then the other," says

CHAL, "and if it's inclined [below the horizontal plane] it comes

back to the middle and goes down on the other side."

In other words, a reciprocal relation operates in this case

(p D q) = R(qr Dp) in which p and q stand for the upward motion

of the arms. But there is something new in the case of the bal-

ance: two factors are operative and they compensate each other;

operating alone, a weight W at a distance L produces the same

inclination as a weight W= riW at a distance U == L/n.
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is astonished by this fact ("the same angles"), then finds it quite

natural because "the distance is compensated by the weight"
The I X R C group reappears in the same form as in the prob-

lem of pressure and resistance in the equilibrium of liquids

(prop. [8], Chap. 9 and prop, [i], Chap. 10). Two kinds of opera-

tions for reestablishing equilibrium can correspond to the opera-

tion in which a weight is placed on one of the arms at a given
distance the inverse N which consists of taking off this weight
or the reciprocal R which consists of putting on equal weight at

an equal distance on the other arm of the balance. Moreover,

whereas the inverse N cancels the original operation, the recip-

rocal R compensates it without canceling it; still, N and R have

the same final result i.e., they bring the arms back into the

horizontal plane. It is not at all surprising that the transformations

described in this connection (prop. [8], Chap. 9, and prop, [i],

Chap. 10) reappear in the present context, for they are based on

an extremely simple intuition already acquired at stage II through

qualitative correspondences. But once again there is the addi-

tional fact specific to the balancedistances compensate weights.

Thus in both forms i.e., as it relates to pressures and resist-

ances, or to oscillations and inclinations the I N R C group
doubles as a proportional schema: an inverse proportion of hori-

zontal distances and weights W/W' = Z//L in the case of pres-

sures and resistances and an inverse proportion of heights and

weights W/W' = H'/H in the case of inclinations. There is a

third proportion it is direct rather than inverse (L/U = H/H'),
of a purely geometric character and obvious to our subjects

(cf. us: "It's really the same*' whether you measure horizontal

distances or height). So our problem is to establish how our sub-

jects construct the first two proportions. Is the construction done

independently and by a direct structuring of the empirical data,

or is it linked to the operational schema of equilibrium based on

the I N R C group?

The Proportional Schema and thelNRC Group

First, we should remember that an understanding of proportions
does not appear until substage III-A; this is true in all spheres
and not only in the balance scale experiments. During substage
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II-B it has often been noted that subjects search for a common
denominator of the two relations that they compare, but this

common relation is thought to be additive. Thus, instead of the

proportion W/W = U/L one would have an equality of dif-

ferences W W = U L. Clearly, the formation of the notion

of proportions presupposes that simple relations of difference be

substituted for the notion of the equality of products WL - WU.
But we must also note that the transition from the difference to

the product rarely takes place from the start in a form that is

metrical. The numerical quantification of the proportion is usually

preceded by a qualitative schema based on a conception of logical

product i.e., by the idea that two factors acting together are

equivalent to the action of two other factors added together. "The

larger the distance, the smaller the weight," says CHAL, using

simple qualitative correspondence (cf. prop. [5]). But he adds,

"They go together."
In other words a small weight combined with a great distance

is equivalent to a large weight with a small distance. These logical

multiplications are outlined at substage II-B (cf. props. [6] and

[7]), but the subjects fail to generalize to all possible cases. Where
does the generalization found at substages III-A and III-B come
from? Without doubt, this is where the notions of compensation
and reciprocity connected with the INRC group come in.

It is clear that when the subject at stage III becomes able to

understand transformations by inversion (N) and reciprocity (R)
and to group them into a single system (I, N, R, and N R = C),

by the same token he becomes able to make use of the equality of

products in a more general form than in the multiplication of rela-

tions (6) and (7). Moreover, this form already implies the notions

of compensation and cancellation. The possibility of reasoning in

terms of a group structure I N R C indicates an understanding
of the equalities NR= 1C, RC = I N, NC I R, etc., the equal-
ities between the products of two transformations. The result is

that the I N R C group is itself equivalent to a system of logical

proportions: ^^ ^^
C*
~
N*

r
I*

~~
N*

since I N = R C (where x= the operation transformed hy
I, N, R, or C).
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For example, let us examine the subjects' reasoning on the

changes of weight and horizontal distance (to simplify notation

we shall disregard the constant weights and distances). Let p be

the statement of a fixed increase of weight and q of a fixed increase

of distance; let us call p and q the propositions stating a corre-

sponding diminution of weight and distance on the same arm of

the balance. Propositions p' and q
f

correspond to p and q, and

p' and q' correspond to p' and q
/ on the other arm. By a process

isomorphic to prop, (i) of Chap. 10, the subjects understand the

following relations of inversion and reciprocity (the I N R C group
but with p.q chosen as the identical operation I):

I (p.q) = to increase simultaneously the weight and the

distance on one of the arms;

N (p v q) = (p.q) v (p.q) v (p.q)
= to reduce the distance

while increasing the weight or diminish the weight while in-

creasing the distance or diminish both; (8)

R (p'-q') compensates I by increasing both weight and dis-

tance on tie other arm of the balance;

G(p'vq'} = (p'.q'}v(p'.q'}v (p'.q'}
= cancels R in the

same way that N cancels I.

But, since R (p'.q
f

) is equivalent to compensating action I (p.q)

with a reaction (symmetry) on the other arm of the balance, we
find that it can be written p.q; and since (p' v q') is also equiva-
lent to compensating the action N by symmetry, we can write it

(pvq). Therefore proposition (8) can be formulated as follows:

- .

( '

C(pvq).

The system of these transformations, which states only the

equilibrium of weights and distances, is in itself equivalent to the

proportionality:
4

4 This logical proportion signifies the following:

(p.q).(pvq) = (p.q).(pvq) =o forl.N = R.C (a)

(p.q) vjp
v q) = (p.q) v (p v q) = (p

*
q) for I vN = R v C (b)

(p.q).(p^^(pvq).(pvq) =(p.q) for L(NR) = C.(NN) (c)

(p.qUp vq)= p.q.(p v q) = o for L(NC) = R.(NN) (d)
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p.q pvq . Ix Cx=

In other words, an understanding of the system of inversions and

reciprocities (8) and (8a) follows directly from an understanding
of this proportional relation; an increase of weight and distance

on one arm of the balance is to the symmetrical increase on the

other arm as an increase of weight or distance on one arm is to a

reciprocal operation on the other.

Undoubtedly, this qualitative schema of logical proportions cor-

responds to the global intuition of proportionality with which the

subject begins. And it is easy to pass on from this qualitative
schema to more detailed logical proportions (involving a single

proposition) and from there to numerical proportions.
In this respect, remember that, for a single proposition p, the

correlative C is identical with I and the reciprocal R identical

with N. From proportion (9) one can construct:

t) Q
*- = -, whence p v p = q v q . (10)

In other words, the increase of weight is to the increase of dis-

tance as the decrease of distance is to the decrease of weight.

Secondly, beyond the direct proportions of types (9) and (10)

the I N R C group includes what can be called reciprocal pro-

portions, where one of the cross-products is the reciprocal R of

the other:

R[(p.q).(pvq)=p.q].

Hence, by virtue of (10) and (11), the reciprocal proportion:

The formulae demonstrate that the two logical proportions

(11) and (12) are isomorphic to the numerical propositions which

can be obtained by giving the same coefficient n either to an
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increase in weight (p) or to an increase in the distance (q). In

other words, if p = nW and q = nL, then:

'O Q , riW n:L f ,~ ~ corresponds to =r = , for example
q p

*

2 .8
(13)

2X8
=

2^4
;

and

p _ p _ nW W:n - .= R corresponds to =r- = -=
, for example

q q
* nL L:n'

2 X 4 4:3

2X8~~8:2*
Formulae (9) to (14) may seem much too abstract to account for

the actual reasoning of our subjects. Actually, this is in part an

independent result of the symbolism which we have introduced;

nevertheless this is how proportions are discovered. Before intro-

ducing numbers as measurements for weight and distance, the

subject usually begins by assuming:

p.q = K (p.q) (15)

(increasing the weight and reducing the distance on one of the

arms is the same as reducing the weight and increasing the dis-

tance on the other arm).

However, proposition (15) is none other than proportion (12),

which then implies (10) and (9) and leads to metrical proportion

(14). Thus we are justified in considering the preceding formulae

symbolic expressions of the actual reasoning of our subjects.

As for the proportion between weight and height, as soon as

they encounter alternating suspensions in the apparatus all the

subjects understand that an increase in distance (q) implies a

determinate increase in height (r), thus:

9 gr. (16)

Consequently proportions (10) and (12) imply:

and
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Finally, the transfer of a weight to a higher point constitutes

work. This is expressed by our subjects in their own words, as

they do not have the technical vocabulary of physics at their dis-

posal: "There is more distance to pull" (CHAL) or "More force to

raise the weight'* (SAM). Actually, if a heavy weight hung at a
small distance from the axis balances a weight n times smaller at

a distance n times larger, it is because the same amount of work
is needed to raise the first to a given height and to raise the second
to a level n times higher than that height. As FIS says, there is

compensation "between the force and the height." This idea of an

equivalent amount of work, half-understood during stage III,

provides the explanation of the phenomenon of equilibrium.
However, since the reaction of these subjects is not completely

spontaneous on this point, we must turn to the next experiment.
There we replaced the overly-simple apparatus of the balance
scale with one for hauling a weight on an inclined plane; we can
see from this experiment how the concept of work is elaborated

beginning with the concrete substage II-B; and we can see how
it is used in the explanations of the formal stage III.
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Hauling Weight
on an Inclined Plane

1

OXCE AGAIN our subjects are given an equilibrium problem; one

not too different from the balance problem but especially de-

signed to bring out work relationships. A toy dumping wagon is

drawn along a rail whose inclination can be varied. The task is to

predict the movements or equilibrium position of the wagon as a

function of three variables the weight it carries, the counter-

weight suspended by a cable fastened to the wagon, and the incli-

nation of the track. This last variable is calculated not in terms
of its angle measured in degrees, but in terms of its sinei.e., of

the (variable) height ft. Thus, the law of equilibrium to be found
is W/M= h/H, where W is the (variable) counterweight, M the

weight of the toy wagon (which itself weighs 4 units, but -which

can be loaded with varying amounts of weight), and H the total

height (the unvarying length of the track assuming it is held

vertically).

Stage I. Failure to Distinguish Between Ones Own
Actions and Objective Processes

At stage I the subject is most likely to explain the situation in

terms of the totality of actions which he can perform on the

apparatus:
1 With the collaboration of A. Morf, H. Olivieri, former research assistant,

Institut des Sciences de Tfiducation, G. Mercier, and D. Royo.
182
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BAG (6 years) pushes the wagon to make it descend: "It goes down?"

"No, it goes up." "Can you do anything else?"-"Push it by hand"
"And to make it go up?" "You drive in the train." "And with the

weights?" He loads the counterweight "I put something on." "Why
does it go up?""! don't know. Because it's heavy." "And to make it

go down?" "I don't know. You could push it.'"

HER (6 years): "What can you faff
9

"Make the wagon go/* "How?"
"With the chain" [he pulls].-"And to make it go all hy itself?" "Take

off the weights [at W]; put the weights on the wagon' [he takes off

two units at W, replacing them at M]. "What else could you do?"

"Put the track up higher" [he puts it at 45].-"Will it go

FIG. 10. A toy dumping wagon, suspended by a cable, is hauled up
the inclined plane by the counterweights at the other end of the cable*

The counterweights can be varied and the angle of the plane is adjust-

able; weights placed in the wagon provide the third variable.
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it will go down [it goes up]. You have to push it.'
9

"If you put it

higher, will it go up?" "No, it will go down because it is slanted"

"What do you have to do to make it go up?" "Pull [the rail is low-

ered]. You have to push it" [he pushes it by hand].

BEL (6 ; 6): "That's [W] to putt with." "How can you make it go?"
"You have to lower that" [he reduces the inclination]. "And what will

the wagon do?" "It will go down [experiment]. It goes up!" "Why?"
"Because it's up high" "And to make it go down?" "You have to raise

the chain [it is raised, and one unit of weight is put on the wagon and
two units at W]. It goes up even morel It can't go down. . .

"

For these subjects, the apparatus is not yet seen as an inde-

pendent set of causes and effects, but is still assimilated to the

actions which they perform. There are two complementary senses

in which this is true. First, the subject does not try to isolate rela-

tionships external to his actions, but locates his own roles in the

same dimension as objective causes; second, the causes them-

selves are still conceptualized by assimilation to a motivational

model. Thus, weight is conceived of as a force which can push or

pull, etc. But it is also true that, at all levels of development,

causality is an assimilation of transformations of reality to the

subject's actions or operations with delegation of their power to

the real world. In other words, when the subject has reached a
certain operational stage of development, modifications of reality
are conceived of as isomorphic to the operational transformations

effected. But when the subject's activity consists of irreversible

actions which are not as yet coordinated into systems of opera-
tions, then reality is represented as a set of equally uncoordinated
forces which cannot possibly be differentiated from one's own
actions.

Substage II-A. Determination of the Role of the

Weights Without Operational Coordination with the

Inclinations

The subject begins to relate the weights in the toy wagon to the

counterweight because the two are homogeneous factors. He is

also aware of the fact that the inclination of the track plays a role,

but he cannot as yet coordinate it with that of the weight:
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GOD (7 years): "What do you have to do to make the wagon go?"

"Pull "-"And if you don't pulF'-'WeB, you can push it."-"And if you
don't push." "Take off the load? [he removes two units of weight from

the wagon which immediately goes up]. "Is there anything else?"

"Yes, you can put on a weight" [he puts the two units at W]. "What

else?" [the subject is shown that the rail can be moved]. "You have

to put it a little lower down.
9'

"O.K. Now, what will happen if I add

here?" [two units at W]. "The wagon will go up/* "And if I put the

weights in the wagon?" "It won't move." [Experiment] "So what do

you do to make it go up?" "You have to add another weight" [he adds

one at W]. "And if I can't do that?" "Oh, you have to take some off

here" [M]. The equilibrium is achieved for a given inclination: "And

if the track is lowered?" "1 dont think it will move" [the weights

are in equilibrium independently of inclination]. Experiment: "It goes

up" "Why?" "Because there were several weights here" [W].

FER (7 ; 10): Same beginning; then, in order to make the wagon go up
one must "take off some weights [M] and put on some weights" [W].

"And if I take off only one weight without adding any?" "It won't

move [experiment]. It moves!" "And to make it go down, what can

you do?" "Raise the chain: lift up the chain and take off a weight"

[W]. But in making predictions FER takes only the weight relationships

into account, as if the equilibrium remained the same for given weights

independently of the inclination.

There is marked progress over stage I. A reversible composition
of weights appears; to add one unit to the counterweight W is

equivalent to removing a weight of the same value from the

wagon M, etc. But these are only simple compositions based on

the assumption that equilibrium between M and W is assured by
a simple weight equivalence, as in the case of a balance (when the

distances from the axis are equal). However, inclination is seen

as playing a partial role; m
the subject predicts tihat steepening the

slope works in favor of descent. However, he does not understand

that steepening the slope automatically reduces the effect of the

counterweight and that more weight is required at W in order to

raise the wagon on a steeper slope than on a gentler one, Thus

inclination is a secondary factor which operates in certain special

cases, but it is not yet taken as a general factor which can be

combined with the others.
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Substage II-B. Discovery of the General Role of

Inclination and Beginnings of the Concept of Work

From the start the subjects of this substage see that three factors

are involved the weight of the wagon, the counterweight, and

inclination. But only gradually do they discover that the equi-

librium between the weights involves more than simple equalities

and varies according to inclination. As they discover this fact, they

try to find the relationship. This leads them to the conclusion that

more work is needed to pull a given weight along a steeper than

along a more gently sloping track:

sou (9 ; 6) notices the weights W and M from the start, then:

do you have this curve? [inclination]. Can you change it?*' "Would

you like to change the slope?" "Yes, to see how it works. Could I put
on another weight?" "Where?

99

'Here [W]: perhaps the wagon wiU

go faster. If the weight is heavy enough, the wagon will go up.

If it isn't heavy enough, it won't move." He has several trials. *7/

you put on more weight [at W] it goes up even faster [he adds on

up to 7 units]. It can't go down because there is too much weight

[he takes off some at W; the wagon descends]. It goes down if I put
on less." Next: *7 don't want to put any weight at all [at W] because

I want to see if it stays down below or if it goes up more slowly." The

wagon goes down; then the subject varies the weights at M to see

whether "it makes a difference if you put several weights here [he

loads M]. It still goes too fast [he takes off weights at W and adds

weights at M until they are equal]. That makes equal weight because

I put 4 weights here [W] and there are 4 weights on the wagon
[(which continues to move); lie adds 2, and 2, 0.5 and 0.5, then 3 and 3].

It doesn't move? No, it moves anyway!" He has now discovered that

equality of weight does not guarantee equilibrium. "At the beginning

you asked me what the curve was for; do you remember?"-"O/i/ Yes,

you can lower the track, then it will go up" "Are you sure?"-"ft wiU

go up [he lowers the rail to i and the wagon goes up], because now it

doesnt slant as much so it's easier for it to go up." Next, sou varies the

inclinations and realizes that when the track is vertical "the weight [W]
win putt the wagon" because the counterweight is sufficient, but he
does not vary it. At 45 and i unit at W he ascertains that the

wagon descends and laughs: "I thought it was going to go up because
it goes up even when it stands up straight" Then, realizing that it still
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goes down at 30: "You have to add or take off weight. You have to

experiment when you see that it goes up or down too much!
9

But he

does not do so systematically.

JAN (10 ; 8): "To make it go up, you have to put a heavier weight
here [W]."-"What else could you do?"-"(7nZoad the wagon."-"And
for the wagon to stay at the same point?" He puts 4 units on the

wagon and 4 at W. "The weights are equal. No, it doesn't move."

"Can you do something with the rail?" "Maybe you could lower it;

it's easier for the wagon to go forward because the track isn't as high."
"If you lift the rail and add weight?" "It will stay poised because

it's harder for it to go up." Then he weighs the wagon and declares

that it is equal to 4 weight units. "So would it remain in equilibrium
if you leave the wagon empty and put 4 weights here?" [W]. "No, it

would go up" [thus he understands that the equilibrium depends on

inclination]. "And if you raise the rail?" "It's harder for it to go up."

"Why?" "Because the wagon gets heavier"

Two main advances in thinking about the problem occur at this

stage: (i) an understanding of the fact that the equilibrium is not

due to a simple equality between weights, and (2) an understand-

ing of the role of inclination Le., more work is needed to pull a

wagon up a steeper incline.

First the subject discovers that placing n units at counterweight
W and n in wagon M does not guarantee an equilibrium; then he
realizes that the wagon itself weighs 4 units, but that p = 4 + M
does not achieve equilibrium either (or does so only if the rail is

vertical). This discovery leads him to focus on the problem of

inclination.

Thus, the child discovers the role of the slope at this level either

because of the preceding reason or because he varies the slope

directly. "Now there is less slant/' says BOU, "so it's easier for it to

go up." "The wagon will go forward more easily," says JAN, "be-

cause the track isn't as high." Furthermore, he understands that

equilibrium will be conserved if inclination and counterweight
are increased simultaneously "because it's harder for it to go up."

Finally, he predicts that at equal weights onW and M the wagon
will go up and that if the slope is increased still more the wagon

"gets heavier."

These latter protocols are instructive in that they show us how
inclination gets to be thought of in the same terms as weight and
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is combined with weight in the form of work. Raising a large

weight a little is equivalent to raising a lighter weight to a higher

point; in other words, the amount of work is the same. JAN ex-

presses this fact directly when he declares that "the weight gets

heavier" if the slope is increased. Although he is not familiar with

the parallelogram of forces,
2 the subject arrives at a pretty accu-

rate intuitive understanding of the relationship between weight

and inclination. Thus, even at the concrete level the concept of

work is accessible in a qualitative form based on the multiplica-

tion of the relations between height and weight.

Now, it is remarkable that both the inverse relationship be-

tween weight and height found in the equilibrium of the wagon
and the notion of work as the upward displacement of weight are

structured at the same substage (II-B) as the discovery of the

inverse correspondence between weights and distances in the bal-

ance. Both deal with the same physical law, but the child does

not know this, since he thinks of neither work nor height in the

balance problem unless the problem is presented in the form of

an alternating suspension apparatus (see Chap. 11). Nor does he

think of the balance in connection with the relations between

weight and inclination dealt with in this chapter. Everything pro-

ceeds as if, at a certain level of development, the entire set of

concrete operations applicable to a given subject arises simultane-

ously in the structuring of that delimited area (an example of such

a delimited area would be the equilibrium of weight as a function

of height and distance).

But there is a gap; the subject does not come to state the law
in its entirety. He clearly takes the three factors into consideration

(W, M,
and inclination) and successively compares them two-by-

two without changing the third. But it is not that he intends to

hold one factor constant each time; he is not trying to apply the

"all other things being equal" proof. Rather, in comparing any two
factors he simply forgets the third, thus leaving it invariant with-

out being aware of the fact. He does not get to formulate the law,

2 The parallelogram of forces states that the portion of weight supported
by the track (and making the wagon lighter by the same amount) increases
as the inclination decreases, whereas the portion not supported by the track
increases in direct proportion to the inclination.
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for he lacks the means to coordinate the entire set of factors simul-

taneously.

It is easy to see why he has failed at total coordination there

are two main reasons and both are intrinsic to the nature of con-

crete operations. First, the relevant correspondences are too com-

plex to be handled by proceeding in successive pairs or trios. It is

true that the subject, since he possesses the required operations,

could make a sufficiently complete inventory of factors. There is

no need to describe the operations of serial ordering, equalization,

and addition of weights at this time, for they have already been
described in connection with the balance (Chap. 11). Obviously,
the subject can also order the inclinations serially. Thus, if he
wanted to, the subject could determine the correspondence be-

tween the weight of the wagon (M) and the counterweight (W)
for each inclination so that he would know when the wagon would
be in equilibrium and when it would go up or down. But one can

see how complex such an empirically constructed triple-entry

table would be. Besides, the idea does not occur to the subject,

and he is content to deal with a few individual cases; hence, the

first reason for his failure at total coordination of the relevant

variables.

The second reason is that if the subject, instead of proceeding

by successive correspondences, tries to utilize the form of logical

calculus available to him i.e., multiplication of relationships (and
he does in fact proceed in this way in determining the relation-

ships of work) then a certain number of products remain indeter-

minate. In other words, we find a parallel to the indeterminacy

already encountered in the case of the logical multiplication of

weights and distances in the balance scale (Chap. 11, prop. [7]).

Starting from an equilibrium point:

Inclination x <-> [Wyo Mz],

the subject can certainly conclude that, if slope x is increased and

y and z are left invariant, the wagon descends, whereas if x is

diminished, it mounts, etc. But if slope x is increased at the same

time as counterweight W ( > y} is increased, or if slope a: is in-

creased while the weight on the wagon M ( < z) is diminished,

the product is indeterminate: the double relation y
> ^ > or ^ /\ ^
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can give rise to a product > , <, or = as long as the given factors

are not extensively quantified.

If an increase, lack of change and a decrease in the weight to

be displaced upward are designated by + m = m? and m
respectively, and an increase, lack of change, and decrease in the

height itself by + h, = h, and h, we see that the double-entry

table which characterizes the concept of work, worked out by
means of logical multiplication at substage II-B, involves two

indeterminate products out of nine (these products expressed in

_[- 5,
.

5, z=
, or rh signifying "more work," "less work,* "same

work,** or "indeterminacy"):

m = m m

(l)

In summary, as long as the subject is limited to using concrete

operations of classes and relations, he cannot determine the law

(even in the form of implicit qualitative proportions found at

substage III-A). The explanation is twofold; first, the correspond-
ences which must be empirically established are too complex, and
second, the products of the multiplications of relations are in part
indeterminate.

Substage III-A. Qualitative Coordination of the
Three Factors, but Without Proportion as a Function

of Height

It is the nature of formal thought to consider an entire set of pos-
sibilities and to deduce from them what is real. With its appear-
ance, subjects use a remarkably different approach to the problem.
Instead of getting lost in the inventory of actual cases an inven-

tory which is in fact inexhaustible because the correspondences to
be determined by successive experiments are much too complex
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in trying to cover all possible cases, the subject very quickly
turns to a selection of crucial cases i.e., the extremes and the

middle. It occurs to him to place the rail horizontally and verti-

cally (an idea which is unexplainable without a preliminary expli-

cation of the possible transformations). Then he determines the

demonstrative intermediate positions.

Thus, from the start the subject seeks to coordinate the three

factors into a single law, itself a qualitative proportional schema.

But since the subjects think in terms of the angle expressed in

degrees and not in terms of its sine i.e>, height they still fall a

little short of discovering the law they are groping for.

LAV (10 ; 6 advanced): "To make it go up you have to put on more

weight [at W], to make it go down, less." "What else can you do to

make it go up?" "Lower the rail.
9"

"And to make it go down?'* "Take

off all the weights [W]. 'You can also put some weights in the wagon.
You can put the track higher up, too, because the wagon comes dowr?

[with more force]. "What do you have to do for the wagon to stay in

place?" "That depends on how you place the track and whether you

put more or less weight on the wagon'
9

[he puts the track at about 45
and finds that 3 units in W balance the wagon]. "Are there other

places where the wagon rests without moving?" "Put the track hori-

zontal and take off the weights here" [W]. Then he measures the

weights needed when the track is vertical after having announced

"4 or 5 [units] because the wagon has a weight of 4? And he discovers

the point of equilibrium for W = 4. *Tell me what you have to do so

the wagon won't move?" "You have to put the track way down with-

out any weight or way up with 4 weights and also put the rail halfway
with 2 weights" [he has not tried it at the midheight; ie., 33]. "Are

there other points?" "Yes, everywhere" [he finds one unit for 15].
"Did you understand everything?" "Yes, the higher up you go [in-

clination of the rail], the more weight you have to put on for the

wagon to stay where it is; the more you go down, the less you need"

END (11 ; 6): "You can take off a weight to make it go down, put on
one to make it go up or raise the track more." Then he experiments by
himself; he starts by lowering the track to the horizontal point, then lifts

it to the vertical and says, *7f you want to put the track straight up
[vertical], you have to put on more weight; you need 4 weights"

"Why 4?" "Because with 4 it doesn't go up. You can compare it with

a bdance-scale: on one side 400 grams and on the other 400 too."
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Next: "I want to see how many weights it takes at 45" [he finds

2.5]. Then he concludes: "The more you lower it9 the more weights

you have to take off. The more you go up, the more you have to add''

scu (11 ; 12): "To make it go up you can lower the track or take off

weight in the wagon or put on some at" [W]. He seeks the equilibrium

positions by varying the slope: "When it is low, there isn't enough

weight in the wagon and the wagon goes up; the counterweight pulls

harder." He weighs the wagon [M = 4], then tries at 33 and estab-

lishes that W = 2 at the equilibrium point. "That's funny: a minute

ago I saw that the wagon weight was 4 and now it's 2 [W 2] and

it pulls a wagon that weighs 4. You have to raise it more to make it

equal [4 = 4] and calculate its relationship to the inclination" He
raises the track higher and higher: "Still not enough [he has reached

80]. That's almost it. It has to be straight [90]. When there is an

inclination the equilibrium changes9 and when it is straight the rela-

tionship is one to one'' But for half of the inclination he tries at 45,
although he had already established 2 units for 33 and does not un-

derstand that height alone plays a role.

CLA (11 ; 6): "To make it go down, you can either pull up the line or

take off some weight from the counterweight [W] or add some in the

wagon" [M].

Unlike the subjects at the advanced concrete substage (II-B),

subjects of the first formal substage (III-A) immediately or very

rapidly coordinate the three factors into a single relationship. At
first this integration is the simple statement of factors in the form
of a ternary disjunction. If we call p the increase in weight atW
(and p its decrease), q the increase of weight at M (and q its

decrease); r the increase (or r the decrease) of the inclination, and
t the rise of the wagon (or t its descent), we see that scu and CLA
start out with reciprocities:

tD(pvqvr) and tD(pvqvr). (2)

In practice these ternary disjunctions can be distinguished by
the fact that the subject no longer modifies two of the factors

without thinking of the third but looks for covariations. From
then on he is quickly convinced that the equilibrium of the wagon
and the counterweight varies according to the inclination, and the

subject makes several tries. Most often the subject tests the ex-
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treme positions almost at once the horizontal position where the

wagon is at equilibrium without any counterweight (W = o) and
the vertical, where it is in equilibrium as if on a balance when the

counterweight is equal to its own weight (W = M = 4). Hence,
the qualitative law: the more the inclination is increased, the

greater the counterweight required to bring the wagon into equi-
libriumuntil the upper limit (vertical inclination) where the

counterweight is equal to the weight of the wagon.
Since he possesses disjunctive operations (2) from the formal

standpoint, the subject also possesses the I N R C group in the

form:

I(p v q v f)

K(pvqv r)

and the utilization of the structure naturally furnishes the schema
of proportionality evident in several cases (in particular LAV):

4
p.q.r p.q.r

'

In other words, all the subjects at this level understand the

possible compensations between p and f and between q and r.

If this group (for this proportionality) and these equivalences
are to result in the formulation of the law h/H = W/M, a fourth

variable corresponding to absolute elevation H (the length of the

rail measured when it is held in a vertical position) must come
into play. Only then would the prepositional reciprocities and

inversions express the reciprocities and inversions operant in the

equilibrated system being analyzed. But the subject calculates the

inclinations in degrees, which results in one constant for H (90)
whatever the apparatus chosen and which leads him to look for

half of the inclination at 45, where the counterweight does not

have the value of 2 but an intermediate value between 2, and 3.

Either the subject generalizes falsely or he is prevented from

discovering a simple law.

In spite of the appearance of formal implications and disjunc-

tions with the consequences that they imply (3) and (4) at this

stage the subject does not manage to exclude the angle (in de-
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grees) in favor of height. This fact may seem curious, since even

at substage II-B the child formulates the concept of work as a

function of the lifting of a weight But this is because at this stage

the subject is limited to qualitative reasoning and is not yet able

to separate the concepts of angle and height. On the other hand,
when the subject at substage III-A wants to go beyond this quali-

tative relation of inclination to find a metrical expression, he

thinks of the angle rather than the height, doubtlessly because the

apparatus governing the inclination of the track describes a

rotating movement.

Substage III-B. Discovery of the Law

As soon as the angle measured in degrees has been excluded in

favor of the height (sine), the subject discovers the proportionality

of heights and weights. But, curiously enough, this exclusion is

not easy (we suggested it to the second of the three following

subjects):

GIL (12 ; 7) is asked to find the equilibrium points and to extract the

law. He finds W = 4 at the vertical, then looks for the midpoint

[W = 2] at 45 and then at 60: "Why?"-*7 count half the dis-

tance [horizontal]. No, that doesnt work. You have to find the" [half-

way point]. He does the experiment for W = 2. "Ifs about 30. But

there is also that [height]. Here, with 2 weights, ifs 32. For 3

weights, you have to put it at 3 [in height]. Anyway, I think so [ex-

periment]. Yes, for i weight [W = i] you have to put the rail at i,

for 2 weights at 2, for 3 weights at 3 and for 4 way up at the top"
"Can you give a single rule?" "Yes, for 2 weights you put it halfway

up. For the halfway height it's half of the weight of the wagon, for

one-fourth ifs a quarter of the total weight," etc.

DEZ (14 ; 3): *7/ the rail is vertical, you have to put enough units here

[W] to make them equal [the weights and M: he finds 4]. The 2

weights are the same, one on each side. For the half, you have to put
on half the weight." "For half of what?"-"O/ the inclination: 45
[experiment: 2.5]. No! Maybe there is friction" 'It's possible, but
it doesn't play an important role." He finds that W = 2 corresponds
to 33. "33, that makes about two-thirds. Look here [height]. Ohl
The height! It isn't the angle that does to, but the height [he tries ele-

vations 1/2, 3/4, and 1/4]. The weight pulling the wagon [W] has to
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be equal to the height; for example, if you have a height of 2 you need

2, over 4, if ifs i, then i over 4" [i and 2 in elevation are the fourth

and the half],

VUL (15 ; 6) determines 4W for M when the rail is vertical; then: "At

33 I find 2; at 15 Z find i; at 60 it should be 4 but it isn't. If it

isn't proportional to the angle, then. . . .""Is there something else

you might consider?" "The height corresponds to the angle. If I take

twice the height: height 2 corresponds to 2 weights. Let's see: eleva-

tion 3 gives 3 in weight. Good, ifs in proportion to the height. Each
time you increase the height by a certain amount, you have to add a

proportionate amount of weight" Summary: "The height is propor-
tional to the weight."

There are two complementary types of response at this stage.
For the first type (DIZ), the discovery of height is a result of sug-

gestion, but the subject immediately formulates the law of pro-

portionality once the suggestion is made. But, in the second type,

height is discovered as a factor because of the search for propor-

tionality i.e., the simple proportionality which is still beyond the

III-A subjects.

In both cases the law is discovered: h/H = W/M. If we let s

stand for an increase in the total height (vertical length of the

rail, which in fact, does not vary in our experiment), the logical

proportion is as follows:

where q.r stands for an increase in the work to be accomplished
and p.s for an increase in the work furnished by the counter-

weight as a function of the total height.

Given the already established equivalences between p and f or

between q and r and given the equivalence between q and s (the

result is the same when the weight of the wagon is increased or

when the value ofH is decreased), proportion (5) can be deduced

from:

Thus, in the present case, the forms of the equilibrium schema

(I N R C group) and the proportionality schema are the same,
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mutatis mutandis, as in the balance-scale problem (Chap. 11). This

isomorphism raises an interesting problem for the psychology of

formal thinking. It is true that the structure of the two laws is the

same. If we call B the heavier of the two weights in equilibrium
on the balance and A the lighter, B corresponds here to the weight
of the wagon (M) and A to that of the counterweight (W). If we
call L the horizontal distance (from the axis) corresponding to

weight A (thus the greater of the two distances for the smaller

of the two weights) and I the distance that corresponds to weight
B (the smallest distance for the greatest weight), then in this case

L corresponds to H and I to h. The formula is:

Z/L = A/B, as h/H = W/M .

However, the intuitive content of the two laws is quite different

(so different that many psychology students take a great deal of

time trying to understand their identity). In the balance problem,
the relations between weight and lengths (I and L measured hori-

zontally on the two arms) are crucial, whereas the heights are

potentially effective factors only if the system is in equilibrium,
unless an alternate suspension apparatus is used (as in Chap. 11);

thus, the concept of work is not immediately elicited. But, in the

case of the wagon, the horizontal distances do not influence the

system; the inclination is intuitively given and the concept of

work is elicited as soon as the system actions are observed. Then
the psychological question becomes: is this difference in intuitive

content the determining factor in the development of operations,

or, on the contrary, is the underlying operational structure its de-

terminant? To answer the question, we must compare the results

for the two problems stage by stage.

In both cases the system processes throughout stage I are ex-

plained by an assimilation to the subject's own action, pulling and

pushing, etc. But, since the balance is noticeably symmetrical,
there is a more rapid equalization of distances and weights (as

intuitive regulations without operations) in that experiment.
At substage II-A operational equalization of weights occurs in

both cases, and the subject understands that distance plays a role

in the case of the balance and that inclination is relevant in the

wagon problem. But the subject cannot combine these heterogene-
ous factors with weight (except in certain special cases).
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At substage II-B the subject discovers the inverse correspond-
ence between the weight and distance for the case of the equi-
librated balance (lighter corresponds to further from the axis and
heavier to closer to it) and discovers as well the fact that the

larger the inclination, the heavier the counterweight needed to

balance the wagon (in the second case). In the latter case, the

coordination between weight and inclination gives rise to the

structuring of the concept of work more work is required to raise

the same weight to a greater than to a lesser height. But in both

cases the coordination remains qualitative. Certain compensations
are understood (heavier = less far, and heavier = less high), but

there is no possibility of solving the more general problem be-

cause of the indeterminacy of logical multiplication.

At substage III-A the subject discovers the metrical proportion
in the balance problem and looks for the same proportion in the

case of the wagon, discovering the qualitative law coordinating
the three factors (weight, counterweight, and inclination). The
time lag in the second case is due to the fact that the height has

to be dissociated from the angle (measured in degrees); half of

the height is not 45 but 33.
At substage III-B the metrical proportion is finally discovered

in the case of the wagon and is explained directly in terms of

work. On the other hand, in the balance problem the metrical law

found at substage III-A appears as a compensation system that

is self-sufficient as long as the two weights are hung up at the

same time; it does not occur to the subject to invoke either height
or work in his explanation. But when the weights are presented

successively with a suspension apparatus that brings out the

alternating differences in height, the subject discovers the inverse

proportion between the weights and the height attained. In the

wagon problem he explains the equilibrium in terms of the equal
amounts of work needed.

Thus, it is clear that between the two lines of development
there are a set of intuitive differences which result from the nature

of the apparatus and from the questions asked of our subjects. So

it is all the more striking that we find the same operational

mechanism underlying the apparent divergences. In both cases,

after the same preoperational representations of stage I and the

same initial operations at substage II-A, the inverse correspond-
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ence is discovered at substage II-B. In both cases the operational
schema of equilibrium is established only when the I N R C group
comes into play at the level of formal or prepositional operations.
And in both cases this leads to the schema for proportions and

compensations in their general form. Thus the differences at the

intuitive level only give rise to slight differences in timing within

stages II and III, while the over-all progression of organization
is the same.
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The Projection of Shadows
1

IN ADDITION to the usual problem of the formal operations needed
to establish the table of possibilities that allows the discovery and
verification of a law, the present research raises a question about

the formal operational schema relative to proportionality. But

we are dealing with a new type of proportionality. Whereas the

proportions in the problems of the balance and of hauling a

weight on an inclined plane derive from a model of physical

equilibrium, the proportions we shall study in connection with the

projection of shadows are of an essentially geometrical nature.

They denote relationships between distances and diameters in a

physical phenomenon that can be explained in terms of simple

projective geometry.
The problem we have set for ourselves is to discover whether

the proportions involved in the present experiments will be dis-

covered at stage III, as in our previous experiments, and whether

or not this discovery is a function of the I N R C group. If it is,

one must think of the I N R C group in a more general sense than

in the earlier problems.
The law to be discovered in this experiment is extremely

iWith the collaboration of Vinh Bang, research assistant, Institut des

Sciences de 1'fiducation; B. Reymond-Rivier, research assistant, Institut des

Sciences de Tfiducation; and F. Marchand.
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simple. Rings of varying diameters are placed between a light

source and a screen. The size of their shadows is directly pro-

portional to the diameters and inversely proportional to the dis-

tance between them and the light source. Specifically, we ask the

subject to find two shadows which cover each other exactly, using
two unequal rings. To do so he need only place the larger one

further from the light, in proportion to its size, and there will be

compensation between distances and diameters.

The stage I reactions need not be presented for this problem.
The preoperational subjects do not understand the formation of

shadows and in another work we have described the representa-

tions of shadow typical of ^-/-year-old children in sufficient

detail to make it unnecessary to take up the question here.2

FIG. 11. The projection of shadows involves a baseboard, a screen

attached to one end of this, a light source, and four rings of varying
diameters. The light source and the rings can be moved along the base-

board. The subject is asked to produce two shadows of the same size/

using different-sized rings.

2 See Piaget, The Child's Conception of Physical Causality, Chap. VIII,
nos. i and 2, and Play, Dreams, and Imitation in Childhood (Norton, 1951),
Chap. EL
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Stage II. Discovery of the Role of the Size (II-A),

then of Distance (II-B)

The II-A child knows that the size of shadows depends on the

size of the object, but his knowledge goes no further:

PEL (7 ; 10) predicts correctly that a ring 10 cm. in diameter will pro-

duce a larger shadow than a ring of 5 cm., etc. "If I move it to this side,

where will the shadow be?" "There" [accurate]. "Does it stay the

same size or does it get bigger or smaller?" "It's the same."

BAR (8 ; 8) starts with the same reactions. Then, through experiment,
he discovers that the shadow of the same ring varies in size with the

distance. He is then asked to produce a single shadow using 4 un-

equal rings: he places the 20 cm. circle at 70 cm. distance, the 10 cm.

at 41 cm., the 5 cm. at 23 cm., and the i cm. at 11 cm.

It is possible to order serially the sizes of the rings and the sizes

of the shadows and to formulate accurate correspondences at

equal distances. In fact we find an accurate serial ordering of

distances, but the subject does not relate this to the size of the

shadows. He starts out with the assumption that the distance does

not modify size (PEL). When corrected by the experiment, he

expects haphazard transformations and does not find regular

correspondences (BAR).

On the other hand, at substage II-B the subjects no longer think

of light as being "everywhere" without rays having a determinate

direction, and they begin to predict the effect of divergent rays.

At least, they establish an empirical correspondence between the

decreasing sizes of the shadow thrown by the same object and

the increasing distances from the light source. In other words,

they understand that the closer the object is to the screen, the

smaller the shadow.

MAND (9 ; 6): "As it advances [toward the light], it [the shadow] al-

ways becomes bigger, because when it is closer [to the screen] it gets

smdler9 and when ifs further away [from the screen] it gets bigger"

NOV (10 ; 5): "You have to put the smallest ring in front [toward the

light source], because it keeps getting bigger" [cf. the cone of light
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rays]. Then, in order to obtain equal shadows he puts the 5 cm. ring
at 44 cm,, the 10 cm. at 55, the 15 cm. at 56, the 20 cm. at 57.

OLI (10 ; 2) puts the 5 cm. ring at 10 and the 10 cm. at 19, then 15 at

38 and 20 at 50. "Why did you put them that way?" "Because with
those [5 and 10 diameters] it's bigger [because closer to the light] and
those [15 and 20 diameters] get smaller."

CHRI (10 ; o) puts the 5 cm. ring at 2 cm., 10 at 15, 15 at 29, and 20 at

42 cm., "because the smallest have to be further back to make the same
size as the big ones: you have to put them at almost equal distances

apart:
9

DEL (11 ; 11) puts the 5 cm. ring at 11 cm., 10 at 21 cm., 15 at 32, and
20 at 43. Then 5 at 41, 10 at 52, 15 at 63, and 20 at 74 cm.

MAU (11 ; 10) puts the 5 cm. ring at 55, 10 at 63, 15 at 71, and 20 at

80 cm.

The qualitative correspondence between the shadow sizes and
distance is clearly formulated, but with two peculiarities which
are extremely instructive for analysis of the opposition between
concrete level compensations obtained through logical multiplica-
tion and the true proportions based on multiplicative compensa-
tions found at the formal level.

The first of these peculiarities is that, although the stage II-B

subjects know how to construct inverse correspondences, they
prefer direct ones. Consequently they tend to calculate the dis-

tances by starting from the screen rather than from the light
source (cf. "it advances" for MAND, "further back" for CHRI; these

expressions are relative to the screen). Nevertheless, certain sub-

jects reach an intuitive understanding of the light cone (cf. NOV,
"it keeps getting bigger"), but when they measure the distances

they do so from the screen so that they can make a direct corre-

spondencethe larger the distance (from the screen) the larger the
shadow (the 5 and 10 cm. rings are "bigger" than those of 15 and
20, says ou).

Nevertheless, they clearly understand the compensation be-

tween the distance and the size of the ring. However, the second
and most important peculiarity of these reactions is that at this

stage the attempts at metrical quantification to which this com-
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pensation gives rise cannot be interpreted as derived from a true

proportion i.e., multiplicative relationships. Rather, they derive

from any constant additive differences whatsoever in the serial

orders and correspondences. For example, after a gap of 11 cm.
between the first two rings, NOV places the following rings i cm.

apart (54, 55, 56, 57 cm.). Likewise MAU puts 8 to 9 cm. between

rings at distances of 55 to So cm., and emu calculates constant

differences of 13 to 14 cm. OLI seems to approach an understand-

ing of proportionality, but he makes a simple dichotomy between
the large and small circles. Then he distinguishes additive dif-

ferences of 9 and 12 cm. within each set, but a one-to-two ratio

between the two. As for DEL, whose chronological age would put
him at stage II, his initial proportion is more or less accurate, but

on the second trial he regresses to an arbitrary additive difference

of 11 with 41 cm. as the starting point.

Stage III. Proportionality in the Correspondences

(III-A), then Generalization and Formulation of the

Law (III-B)

At substage III-A an inverse metrical proportionality between

distances and diameters first appears, but it is not yet generalized

to all possible cases. The subject measures the diameters and the

distances and looks for a metrical hypothesis based on the diver-

gent structure of light rays, taking into account the distance be-

tween the light source and the first ring (the smallest or the

largest):

CHE (12 ; 8) measures the rings and finds that tibeir diameters differ by

5 cm. He concludes that one must "find a distance between them

which is a multiple of 5." He places them correctly in proportion to

size.

DUG (12 ; i), after having placed the 20 cm. ring at 83, says: "Now you
have to count from here to there [to the light source] and divide by 4."

Then he puts the 5 cm. ring at 21, the 15 cm. at 61, but the 10 cm.

at 51. *And if I only give you three rings?*' [5, 10, and 15]. "You

have to count from the largest and divide by three''
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WAL (12- ; 4) divides the shadow of the large ring by the distance, ob-

taining 50/40 = 1.25, and looks for multiples of 1.25 as differences.

Then he places the 5 cm. ring at 25 and the 10 cm. at 50: "It's halfI"

Next, he places the 15 cm. at 75 and the 2,0 cm. at 100: "It works. It's

always 5 cm. more [for the rings] and the lengths are always 25 cm.

more. It's the same scale" "Can you find me another distance with the

shadow the same for all rings?" He places them with 26-cm. distances

between each ring and moves the light back 4 cm. "I mean without

moving the light/' "I don't think you can. You cant enlarge the scale."

The experimenter places the 15 cm. ring at 46; the subject then puts

the 10 cm. at 23, then the 5 cm. at 7, the 10 cm. at 30, the 15 cm. at

53 and the 20 cm. at 76.

It is clear that at this level the subject assumes proportionality
from the start. But the proportion is only found in one or two

instances and is not yet generalized to all cases. All of the pre-

viously developed relationships of concrete serial ordering and

correspondence are coordinated in an organized view of the

whole; all of the relationships are subordinated to the geometrical

representation of divergent rays (in the experiment the subject's

goal is to control his placement of the rings) and the representa-
tion is correctly given the property of proportionality.

In sum, at stage III-A the subject begins to calculate distances

from the light source rather than from the screen, and in his cal-

culation he takes the distance between the light source and the

first ring into account and not simply the distances between the

rings (two new operations not present at stage II).

But he is satisfied when he has verified his hypothesis on a

single case and does not yet conceive of the relationship as

changeable and as capable of taking a series of equivalent forms.

In other words, he does not yet look for the general law, defined

as a system of necessary relations which are adequate to account

for the obtained result.

However, at substage III-B the law is generalized and made

explicit:

WAH (14 ; i): *Y0t* can take any distance as long as the ratio is the

same."

MIC (14 ; 6): "Since the diameters all have regular differences, the dif-

ferences between the distances have to be the same." Then he places



THE PROJECTION OF SHADOWS 205

the rings of 5, 10, 15, and 20 cm. at distances of 8, 16, 24, and 32 cm.,

respectively; next, lie takes another arbitrary distance and finds the

proportion in the same way: "The distances have to have the same

relation to each other as the rings."

FAU (15 ; 6): "For the shadow to be equal, the same with two rings, the

fraction of the axes [distances] has to be equal to the fraction of the

two rings." Then: "The shadow is never smaller than the actual ring."

HUE (15 ; 6) : "The angle made by the light rays gets wider and wider.

For the light to make twice the size [of the shadow], it takes twice

the distance" etc.

MART (16 ; 2) begins getting the rings to coincide: "You have to put
the largest the furthest away9 and the ratio between the diameters of

the rings and the distances has to be the same" He is successful in dis-

covering the proportion.

GUY (16 ; 6): "It should send out a ray like this [he shows us a conic

form] from the small ring. I think that the first ring will give a shadow
whose outline will depend on a kind of ray that increases in size. . .

"

Thus there is a difference between the set of these children and
the set of the substage III-A subjects. From the start their formu-

lations are dependent upon a hypothesis that is both explanatory
and general, and at this stage the hypothesis no longer deals only
with the divergent light rays but includes a conception of the cone

itself. Thus, proportionality is implied by the explanatory schema

itself and holds, as WAH says, at "any distance at all."

But we cannot forget that proportionality was anticipated be-

fore this final view of the whole was constructed. The proportions

are deduced from the whole figure only after the child under-

stands the divergence of light rays, but at substage III-A the

proportionality was discovered without having first projected this

figure. (Moreover, this may often happen at substage III-B.)

What, tihen, is the nature of this proportionality, which does not

stem from a mechanical schema lilce the proportions in the earlier

chapters but is accompanied from the start by geometrical repre-

sentations (the divergence of rays of light, then the shape of the

cone)? In a sense, the stage III subjects discover proportionality

because they have access to prepositional logic and, therefore, are
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able to understand and transform the equality of two products.

This is possible only when the subject can state that a given in-

crease in the diameters of the rings combined with a given in-

crease in distance can give the same results as other combinations

of increases or decreases. On the other hand, it is clear that this

equality of products is understood only as an instrument which
enables the subject to express a multiplicative compensation be-

tween changes in the diameters and the distances.

Let us designate increases in diameter and distance by p and q
respectively, and decreases in diameter and distance by p and q,

Let r be the conservation of the size of a shadow and f its

modification; let r be an increase in shadow size and f a decrease

(thus f = r v f). Then the subject will state the following propo-
sitions. First, in the case of modification of diameters and dis-

tances, conservation r presupposes either the simultaneous in-

crease or the simultaneous decrease of both:

r D[(p.q)]v(p.q). (i)

Second, combinations p.q and p.q always correspond to modi-

fications of the shadow:

(p.q)v(p.q)Dr . (2)

But in two opposite senses:

(p.<7)Dr,and (3)

(p.q) -Dr. (3a)

Finally, the same results can be obtained either by increasing
the diameter or by diminishing the distance and vice versa:

r D (p v 9H.*., r D [(p.q) v (p.q) v (p.q)] (4)

with exclusion of p.q , and

r D (p v <jrH.e., r D [(p.q) v (p.q) v (p.q)] (5)

with exclusion of p.q .

Actually, if r implies (p-q) or (p.q), the reciprocal is not true

and (p.q) or (p.q) can imply either r or f when the diameters and
the distances are modified.

In this way, reasoning by implication reveals to the subject that

the same products can result from either of two different causes;
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thus, he discovers the qualitative schema of proportionality. From
(i) he concludes:

(p.9 )
= R(p.$), (6)

from which, by reciprocity of cross-products:

?= R . (7)
p q

"'

And, from (2), he concludes:

(p.q)=E(p.q), (8)

from which, by reciprocity of cross-products:

But we remember that this proportion (9) corresponds to the

. , nx x i n
numerical proportion =- .

ny y:n
In a general way, the discovery of proportionality in this par-

ticular case results from an understanding of multiplicative com-

pensations. Even at substage II-B, the child is aware of the fact

that a change in the diameter of the circles can be compensated

by a change in distances, but he is unable to interpret this com-

pensation except by an additive formula (equality of differences).

If he is to assign the true multiplicative form to the compensa-
tion, the child must simultaneously distinguish and coordinate

two kinds of general transformations: transformations by inver-

sion, which cancel the modification in question, and transforma-

tions by reciprocity, which compensate it without canceling it

But this is exactly what prepositional operations enable the sub-

jects to do at stage III. In distinguishing two independent vari-

ables, each of whose modifications can be canceled (inversion)

but which also can compensate each other without cancellation

(reciprocity), subjects get to make effective use of a group of four

transformations (of course, they are not aware of this), and the

discovery of proportionality is a direct consequence.
It is striking to note that expression (p.q) in proposition (3)

increasing the diameter and decreasing the distance is the correl-

ative of expression (p v q) in proposition (4), just as expression

(p.q) m proposition foa) is the correlative of expression (p v q) in
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proposition (5). Each of these pairs of propositions (3) and (4) or

(3a) and (5) is linked to an inverse result of the other (r or f).

Thus, we have the group:

l(p v q)

R(pvq)
C(p.g).

Hence, the possible proportion:

pvg pva , Ix Ex
*- 2-=*-=

-1 - thus =r-r- (11)
p.q p.q Cx NX ^ J

where x is (p v q).

But it is unlikely that propositions (10) and (11) actually play
a part in the subjects' reasoning, although they involve nothing
more than propositions (3), fea), (4), and (5), which are them-

selves direct expressions of the stage III statements. Thus we are

dealing with an example of a structure which is merely potential

but which is implied by the actual reasoning we have observed.

On the other hand, one can say that the I N R C group does play
a part in the subjects' thought processes in a simpler "unary"

form, and that this accounts for proportions (7) and (9). If the

increase in diameter is set forth as the identical transformation

(I = p), then its decrease is the inverse transformation (N = p).

But the increase in distance from the light source compensates
for the increase in diameter without canceling it Consequently, it

plays the part of the reciprocal transformation (R = q). Finally,

the negation of the reciprocal produces the same effect as the in-

crease in diameter and thus plays the role of the correlative

(C = q). The following proportions result:

=|
or R

|
(proposition [9]).

The foregoing analysis demonstrates that the I NRG group
has a more general function than that of explaining mechanical

equilibrium. It comes into play when two distinct reference sys-

tems (as in relative motions: see Chap. 17) have to be coordinated,
as we shall see in Part III of the present work. As we see in this

chapter, it even operates in the coordination of changes in two

independent variables when multiplicative compensation of their
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effects is possible (as opposed to the additive compensations first

formulated at the concrete operational stage).

NOTE. It should be noted that logical proportionality is not tied up
only with the I N R C group but can also be derived from the general
structure of proportionality found in the lattice (in a way which seems
to us to involve the I N R C group as well; see J. Piaget, Essai sur les

transformations des operations logiques, pp. 166-68). A lattice is a

partially ordered set of inclusions (and in logic, of propositions and

implications as well), such that for any two elements of the set, x and y,

there is always a least upper bound UB
(
= the smallest element

which includes both x and t/) and a greatest lower bound LB (
= their

intersection). Now, there is a proportional relationship in any lattice

such that =
y^r

. For example, in logic, the proportional rela-

tionship is *--*- z= -
. Passing from the lattice in propositional

p <pv q
* * -

logic to the lattice in whole numbers, we know that LB = the greatest
common divisor (GCD) and UB = the least common multiple (LCM).
We then have:

GCD y i % 6 13- = y ;;, , . for example = or = TT- .

x LCM ' *
4 is 20 60

But, in the shadow problem, the subject could find the logical

proportion directly:

p pvq
where p = (p.qv p.q) and q = (p.q v p.q); and (p, q, and theii

negations carry the same meaning that they do in propositions

[1] to [11]).

However, we have no evidence that the stage III subjects actu-

ally resort to the lattice structure in the solution of the shadow

problem, for this structure is psychologically manifested in quali-

tative reasoning by an explicit utilization of combinatorial opera-

tions, which is not the case here. Moreover, from the formal

standpoint, proportion (12) can be reduced to proportions which

derive from the I NRG group, whereas the converse of this

statement is not true.3

8 See Piaget, Les Transformations des operations logiques, p. 225. (Not

transl.)
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Centrifugal Force

and Compensations
1

THE SCHEMA of proportionality has been examined in several

forms, both in connection with the equilibrium schema (Chaps.
11 and 12) and independently of it (Chap. 13). We now have to

examine one more case in order to define the relationship between
the proportionality schema and the schema of multiplicative com-

pensation. Here we are not speaking of compensation in the most

general sense of the term, in which it is synonymous with reversi-

bility. Rather, we are referring to compensation between hetero-

geneous factors x and t/, such that an increase in the value of one

gives the same result as an increase or decrease in the value of

the other. We have already come across compensations of this

type: in the flexibility problem (Chap. 3); in the balance problem,
where distances and weights compensate each other; in the prob-
lem of traction on an inclined plane, where inclination and

weights are involved; and finally, in the case of shadow projection,
where diameters and distances compensate each other. Still, we
thought it worth while to analyze a new example, one in which
two possibilities are open to the subject. He can construct metrical

proportions (which he could not in the flexibility problem), and
he can isolate the factors that determine equilibrium in terms of

the collaboration of M. Meyer-Gantenbein and L. Vergopoulo,
Institut des Sciences de Tfiducation.
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the "all other things being equal" method (which he could not do
in the traction problem). Our aim is to discover whether, psy-

chologically, proportions carry with them the idea of compensa-
tion or whether it is the other way around.

Three metal balls of different weights are placed on a disc at

three different distances from its center. The disc is rotated faster

and faster until the balls roll off the disc because of centrifugal
force. The problem is to predict in what order they will leave

their initial positions and why. Obviously, the law of centrifugal
force is a complex one i.e., f = mv2

/r where m = mass, r = the

radius (distance from the center), and v2 = r2^2
(where w = the

angular speed). When o2
is replaced by r2^2

, / = mw2r is obtained.

But, since the speed of the disc is constant with the initial accel-

eration, the subject need isolate only factors m and r i.e.> need

understand only the following two relationships: a ball is dis-

placed sooner in direct proportion to its weight and later in in-

verse proportion to the distance from the center. Consequently,
a problem of compensation arises. A heavy ball placed at a point
nearer the center may move at the same time as a lighter one

closer to the periphery. (The three weights are calculated in such

a way as to compensate exactly for the three distances.)

Stage 1. Preoperational Interpretations

Subjects under 7 years refer to all possible factors to explain the

order of succession of movements, including among others the

size and the distance:

COQ (6 ; 11): "One takes off on one side, the other on the other side,

because they don't want to go on the same side."

PAV (6 ; 2): "The ball on the third circle wiU take of -first because it's

nearer the edge. [Large and medium on the same circle. 1 Together. It

doesn't make any difference if they're bigger [experiment]. The big one

took off first because it's heavier. The heavy ones always go first."

CUM (6 years): "They rolled because it turns. I want to put on the little

ones because the big ones roll [experiment]. The big one takes off

first."
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Thus, even at this level the subject is able to account for the

two factors, for he accepts anything he sees and lacks any opera-

tional caution (cf. PAV who goes from "never" to "always" when
he has observed a single case!). More accurately, at this stage the

child does observe the facts but does not have a sufficiently devel-

oped set of inclusions or relationships between "all" and "some"

to establish laws. Moreover, he tends to believe that everything
that occurs has to be as it is. This assumption is both the principle

from which he generalizes and a failure to distinguish between

the moral and the physical.

Substage II-A. Partial Correspondences

When concrete operations appear, the child can correctly order

serially the sizes (or weights) of the balls and formulate the cor-

respondence with the take-off order, but only in those cases in

which the distances are equal (independently of the subject's

manipulations). He also discovers the correspondence between

the take-off order and the distances when the weights are equal.

But the multiplication of the two relationships appears only in

exceptional cases. Moreover, it never occurs when compensation
is involved i.e., when the two factors do not vary in the same
direction.

GUI (7 ; 4): "They aU moved . . . the big ones moved away and

pushed the little ones" Prediction: "They won't move because I put a

big one on [he turns the disc]. They took off anyway [new trial]. That

one stayed because it's too light" "Why?" "The light balls stay; some-

times they take off because it turns fast."The experimenter places

large balls of equal weights at distances D 3 and D 2. 2 "[D 3] was

first, [D 2] second."- *Why?"-
fe

Because it's always first when it is at"

[i].~*Why?"-7* doesn't have far to go/'-The experimenter puts
W2 at D 3 and W i at D 2.-"W2 will be first [He turns the disk],

Both at the same time; the small one [W 2] a little before." 'Does that

surprise ycm?"-"No. The big ones go faster [another trial]. The little

one [W 2] was first and the big one [W i] next, but they got there at

the same time. The big one went first and pushed the little one [actu-

2 Distances D i, Da, and D 3 are numbered from the center in that order;
balls P i, P 2, and PS are numbered in order of increasing weight.
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ally both took off at about the same time on opposite sides]. The big

one was first because it is bigger [another trial: more or less simul-

taneous]. The little one goes first because it only has a little way to go"

MON (8 ; o) prediction: "They will go all over the place if I turn it: it's

the same for all of them [experiment]. The nearer ones go first . . .

those there [near the edge: D 3] go first." He is given two different

weights: "The middle ones go off first because they are lighter [ex-

periment]. No, it's the other way around.
9'

"Con you do it again?"

-*7/ it's like that once, it will be alwaysf-We put Wi at D 3 and Wz
at D i."No, I'm pretty dumb. It [W i] took off before because [W 2]

is nearer the pivot."

MOR (8 ; o) after observations of this sort arrives at the following

logical multiplication: "How are you going to place the balls [W i,

W 2, and W 3] if you want them to take off one after the other?" [He

puts W 3 at D 3, W 2, at D 2, andW i at D i.] "Because the big one is

heavier and ifs further forward, the second is smaller and further

back, and the third is smaller and still further back"

These facts are relevant to the problem of compensation. When
the experimenter dissociates the factors in order to make the

child's task easier, the child discovers what part each plays. The
balls take off according to weight, and those closest to the

periphery are displaced before the most distant. But the subject

could not have found the two laws by himself, since the "all other

things being equal" method does not come into play before stage
III. Also, when, after his independent discovery of the two fac-

tors, the subject is asked to compare balls of different weights
and at different distances, he runs into a number of difficulties.

First, the subject is unable to gauge the simultaneity of take-

off when balls are displaced in opposite directions. (Also, the

experimental apparatus causes some minor discrepancies along
this line.) In other words, the subject is not yet able to eliminate

deviations due to uncontrolled factors.

Secondly, logical multiplication is inadequate for a solution

to the problem. At this level subjects are able to use logical

multiplication effectively when two factors reinforce each other

(cf. MOR). But when the two factors work against each other

simultaneously, the child brings one and then the other into his

explanation, but he fails to understand that they can compensate
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each other. Nor does he look further for a multiplicative product.

This fact raises a problem must we assume that multiplication

of relations remains incomplete and operates only in the intui-

tively favorable cases, or do we have to consider the possibility

that the child regresses when faced with the indeterminate result

of the multiplication "heavier X closer" and "lighter X further

away*? One could argue against the second explanation on the

grounds that the product is just in front of his eyes, since, in fact,

there is compensation. On the other hand, the child fails to per-

ceive it because he does not understand it, or he sees it without

understanding that compensation is involved. Thus, in this par-

ticular case, it is Likely that the operational mechanisms govern-

ing the multiplication of relations are already complete for those

situations in which the product is determinate, but his operational

mechanisms do not yet appear in a form that can be generalized
to products that admit of three possibilities (heavier X closer =
the heavier ball takes off after the lighter ball or before it or at the

same time because of compensation).

Substage II-B. The Beginning of

Concrete Compensation

Unless the problem is simplified by the experimenter, at this level

the subject cannot always explain why two balls of different

weights can take off at the same time if they are placed at differ-

ent distances from the center. He cannot isolate the variables

without help; thus, he cannot conceive of the compensation of

two opposing factors based on possible combinations. But when
the experimenter simplifies the task by varying the factors one at

a time, the child can discover both the role of distance and the

part played by weight. Then, he begins to understand compensa-
tion and in some cases even predicts it:

(9 ; 3). W 3 at D 2 and W 3 at D 3: "They didnt take off at the

same time because one is far away and the other up close" "And
when they are like that?" [W 3 at D i and W 2 at D 3].-*T/iflf one

[W 3! will go first because it's bigger and the other is smaller [experi-

ment: contrary result]. Ifs because it [W 2] is closer to the edge.
9'

'"What makes it change?''-"The weight and the size "-'At that?" [W i



CENTRIFUGAL FORCE AND COMPENSATIONS 215

at D 3 and W 2 at D 2].-"Together, because if you had put this one

[W i] with a big one [W 3] the big one would go -first, but with [W 2]

it goes at the same time because it is little and it has a little distance

and the other is big and it has a longer distance." "And?" [W 3 at D 3,

W 2, at D 2, and W i at D i].-"That one [W 3] will go first because

it's closer to the edge and it is bigger; [W 2] is further from the edge
and smaller and [W i] is less close [than W 2] and less big!' "What
do you have to do to make them both go at the same time?" He puts

W 3 at D i; W 2 at D 2 andW i at D 3 "because the smallest one has

a small distance" [to cover].

CRO (10 ; 2). Experiment: W 3 at D 2 and W 3 at D 2. "They witt go

together because they are both the same size." "And?" [W 3 at D i and

W 3 at D 2]. "The furthest from the center went off first, because it's

nearer the edge."-[W$ at D i and Wz at D i.] "Which one will take

off first?" [W 3] "first because it's heavier"-[W 3 at D 2 and W 2 at

D 3?] 'Both together because that one is smallest but closer to the edge,
the other one is bigger but further from the edge, and the biggest is

furthest from the edge"

Thus the main advance over substage II-A is that, once the sub-

ject knows the respective roles of the two factors, he completes the

coordination (or logical multiplication) of weights and distances.

Of course, the multiplication is performed correctly when the

results are cumulative (Wi X E>i, W2 X E>2, and W3 X DS). But

some subjects explain or even predict (CRO) for case WjDs,
W2D2 , and W3Di, in which the three balls take off at the same

time because the three factors compensate each other. In these

cases the operation is:

( + w) X ( + D) = before (
= W) X ( + D) = before

(
_ w) X (

- D) = after (
= W) X (

- D) = after

( + W) X (
= D)= before W

(
= W) X (

= D) = equality

where : W= =t heavy, it D = more or less distance from the

center.

So once again we encounter the same double-entry table we
found for work relationships (Chap. 12), density, etc., and again

we encounter it at substage II-B.
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One may be tempted to believe that the concept of multiplica-

tive compensation is acquired at this substage. But two circum-

stances contradict this assumption. First, as we have stated above,

the subject does not yet succeed in isolating the factors by him-

self. He does perform the operation correctly when the data are

prepared in advance, but this is not the same as a spontaneous

organization of deductive proof based on his previous structuring

of the relevant elements (the latter is the general procedure of

experimental method and requires the formal combinatorial sys-

tem). Second, the operation of logical multiplication the only one

available to the concrete level subject remains indeterminate in

the cases ( + W) X ( D) and ( W) X ( + >) There may
be compensations in these cases, but they do not follow from

these products. The result cannot be determined completely with-

out making use of proportions, and proportions necessitate formal

thought.

Stage III. Spontaneous Isolation of Variables and

Compensation by Proportionality

At substage III-A the subject can organize the experiment with-

out outside help, and he can anticipate compensations by using
a system of prepositional operations. Still, his deductions are

incomplete:

CHAM (10 ; 7, advanced) begins haphazardly by placing W 3 at D 3,

W 2 at D 2 and W i at D i: "They left one after the other!' "Does
that surprise you?" "No. The "biggest should move after [the others!

because it turns more slowly. . . . Oh! No. It's the other way around.

The closer it is to the edge, the faster it turns." To test his hypothesis,
lie puts W 3 at D 3, W 3 at D 2, andW 3 at D i; then, on a new trial,

W i at D 3 and W i at D 2. He varies the distances at equal weights
and uses the extreme weights for the counterproof. "Those [D 3] took

off first. The middle ones go next' [D 2,]. Then, after several new trials

for distance, he discovers that when he puts W 3 at D i and W i at

D 3, they talce off at the same time, but that when he puts W 3 and
W 2, at D 3, "the big one goes first." Next, he compares the problem
to one of equilibrium: "It's a little like a balance scale fin the sense
of movements required for balancingl; it's a question of equilibrium.
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If [W 3] and [W i] are at [D 3] they have no equilibrium; if they

are at \D 2] there is a little more; if it's at [D i] it's still better in

equilibrium; and if it's in the center it's completely in equilibrium. The
closer it [the ball] is to the center, the slower it goes. . . . But if [W$]
is at [D i] and [W i] at the center, the big one goes first" "What

determines the result?" "The size and the holes a little; no, only the

size because the holes are all the same; and the force with which the

ball is thrown off." "What determines the equilibrium?* "The size

of the balls and their places. If you put the same size [W i] at [D 3]

it moves before [W i] at the center. If you want them to go at the

same time, you have to put a big one here" [at D i when W i is at

DEF (11 ; 2) also discovers the role of the weight and distance. He is

asked to predict the result when W"3 is at D i and W 2, is at D 2:

"They will go at the same time. The big one has a larger distance to

cover, but it is heavier and heavier things go faster.
9'

"And?" [W 3
at D i, W 2, at D 2, andW i at D 3]. "They witt go at the same time.

The big one is heavier but has a larger distance to cover, so it comes

out the same."

vis (12 ; 9), after the same train of reasoning: "That's a compensation."

DUB (13 ; 4), after he has discovered the two factors by himself: "Can

you make the balls go at the same time?
9*

"You have to form a pro-

portion: the weight and distance [he putsW 3 at D i andW 2 atD 3].

They didn't go together because of the difference in weight and the

difference in distance. They have to counterbalance each other exactly."

It is worth noting that the subjects adopt a new attitude toward

compensation at exactly the point when they become able to

isolate the variables (without help by the experimenter) and to

experiment spontaneously; they conceive of it both as the product
of an equilibrium and as a proportion. For example, instead of the

former linear representation of the distances as measured from

the center to the edge of the disc, we find that CHAM, viewing
them from a kinematic standpoint, considers them in relation to

the center. The further the ball is from the center, the greater its

motion, whereas the closer it is, the more it approaches a state

of equilibrium. From this stems the inverse proportion between

weight and distances to which DUB explicitly resorts and that vis

terms compensation.
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It is not by chance that these experimental methods and con-

ceptions have converged. For one, the method of isolating vari-

ables results from the combinatorial system that appears at the

beginning of formal thinking. Secondly, the structural integration

of formal thinking requires the I N R C group, which is the

source of both the equilibrium and the proportionality schemata;

both of these are necessary for the appearance of the concept of

compensation.

Thus, the compensation schema which appears at substage
III-A is quite different from the one that we observed at stage II.

At substage II-B compensation is still seen in additive terms,

even though it is a result of multiplications. Compensation is

explained as the logical multiplication of "heavier" or "more

weight" (in the sense of an additive difference) by "closer" (also

seen as an additive difference). But at substage III-A, compensa-
tion stems from a definite feeling for proportionality. For exam-

ple, when DUB says that the "difference in weight" does not

compensate the "difference in distance" in case W3DiW2D3 , and

that it does not "counterbalance," he uses the terms "difference"

and "counterbalance" to mean a relationship between two preposi-

tional relations which can compensate each other exactly for

determinate values.

It is true that the III-A subjects do not make specific mention

of metrical proportions. But, first, they were not asked to do

so, and secondly, they show signs of possessing a qualitative

schema for proportionality that automatically becomes quantita-

tive during substage III-B:

VTR (13 ; o) produces combinations W 3-D 3 and W 3-D 2 by himself,

then W 2-D i and W 3-D i, saying: "It's a law. The lightest one goes
latest in relation to the heaviest" Then W 3-D i and W 3-D 2, and

finally W i-D i and W i-D 2: "The furthest [from the center] went

first." Next he places W 2,-D 3 andW 3-D 2: "They will go at the same
time "because there's an equivalence of weight and an equivalence in

the amount of force. Ifs as if 1 put [W 2] at [Da] and [W i] at"

[D 3].

CAI (14 years): "It depends on how they are placed. If we want them
to take off together, the weight has to be reduced in proportion to

length" "How do you prove it?" "A ball of %, another of %, and
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the third of i
9>

[for distances D 3, D 2, and D i]. "And if the distance

is greater?" "You have to get the same proportional combination."

The proportion foreshadowed at substage III-A now becomes
an actual proportion to which numbers can be assigned (CAI);
the quantitative "equivalences" (VIR) assure compensation. Keep-
ing these protocols in mind, let us return to the problem stated at

the beginning of this chapter. Psychologically speaking, does the

idea of compensation lead to the development of proportions, or

is it the other way around? Or, as a third possibility, are they

interdependent from the start?

Proportions and Compensation

The foregoing analyses (Chaps. 11 to 13) allow us to say that pro-

portionality is a general schema linked to the double reversibility

of reciprocals and inverses (I N R C group); sometimes it takes

the form that we saw in the case of mechanical equilibrium;
sometimes it takes other forms (geometric, etc.). But the diverse

forms of the I N R C group have a common property the opera-
tion of compensatory processes expressed through reciprocity R,
as opposed to simple inversion N. The intervention of judgments
of compensation are common to all the forms of proportionality
discovered by the subjects. Given two independent variables, the

subject constructs the qualitative proportionality schema when he

understands that an increase in one gives the same result as a

decrease in the other. In all cases the structure of proportions

x xf

requires an element of compensation. When one has =
-p

the
y y

products xif = yod constitute a system of compensations such that

any change in tie value of x must be compensated by a modifica-

tion of at least one of these terms if the equality is to be preserved.

However, the intuitive evidence for the idea of compensation

may differ greatly from one case to the next. First of all, it is much
more obvious when compensation guarantees the conservation of

a visible effect (size of a shadow, etc.) than when purely rela-

tional features are involved e.g., conservation of parallelism in

Thales* theorem. Compensation is particularly clear when the
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reciprocal factors assure equilibrium in a mechanical system, etc.

What determines the ease with which proportionality can be

isolated? It depends on whether direct or inverse proportions are

involved and the ease with which factors can be compared from

the standpoint of their units of measurement. For the centrifugal

force problem, the compensations to be analyzed are perceptually
clear. We reduced the weights to but three unit differences

W i, W 2, and W 3 and the distances D to three also as a re-

sult, the proportion W i/W 3 = D i/D 3 is so intuitively obvious

as to eliminate any need for calculation.

It is remarkable that, even in so simple a case, the schema of

compensation still precedes the proportionality schema. In other

words, the subject first wants to isolate the potential conservation

for the same result (i.e., simultaneous take-offs) so that he can find

the proportions, whereas he could have started from the operant

relationships and their proportions in order to come to the idea

of a potential compensation.
Said differently, the subject becomes able to find the inverse

proportion of weights and differences when he discovers that an

increase in weight leads to the same result as an increase in dis-

tance and, therefore, can be compensated by a decrease in dis-

tance. But after having seen that the balls took off sooner in propor-
tion as they were heavy and later in proportion as they were close

to the center, the subject could have set up the inverse proportion
and deduced its possible equivalences and compensations.

If we let p stand for an increase in weight (and thus p its

decrease) and let q stand for an increase in distance from the

center (and thus q a corresponding decrease if p, p, 9, and q apply

only to changes), and if we let r and f stand for the propositions

asserting that one ball takes off before or after another and r

represent the statement that they take off simultaneously, we see

that the subject begins by assuming:

pDr and q^)r, (i)

from which we get:

r D(p^)v(p.9), (2)

which expresses the compensation: A ball has to be both heavier

and closer to the center or lighter and further from the center if
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it is to take off at the same time as another when weight or dis-

tance is modified,

The proportion as stated below is derived from this statement:

p q r . W3 DS

I
= *, for example =

,
or (3)

= (4)

But he could have derived the qualitative propositions below
from (i):

j=R,and (5)

;=4 w
from which he could have derived proportion (4) by transitive-

ness. From (4) he then could have derived the products:

(6)

which results in the possibility of a compensation for r (prop. [2])

which can be verified experimentally. But he does not actually

proceed in this manner; for he discovers the compensation by
concrete operations starting with substage II-B. Moreover, the

subject begins with compensation and works through to propor-
tions not only in the centrifugal force problem but in all of the

cases which we have studied before this one (Chaps. 11 to 13).

Of course, the fact that we usually asked the subjects to find com-

pensations or equivalences may have influenced our findings, but

this was done because after experimenting we found that this was

the easiest path for the adolescent to follow since the compensa-
tions were discovered in a concrete mode at substage II-B in each

of these experiments.
Given the consistency of these findings, we have to look for an

explanation. First we have to go back to the general characteris-

tics of the compensation schema. Let us take two factors, for

which an increase is stated by p or q and a decrease by p or q,

which lead to a final result whose increase is stated by r, decrease

by f, and conservation by r . Two clearly different cases may then

occur:
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First, one can have:

p D r and q D f (7)

(for example, an increase in the diameter of the circles implies an

increase in the size of the shadow, whereas an increase in distance

reduces the size of the shadow: Chap. 13).

In this case, compensation takes the form:

r D(p.q)v(p.q) (8)

where there is a direct proportion between p and q. Let us call

pi and qi (or pi and qj the changes conjointly effected in these

elements and p2 and q2 (or p2 and q2) the changes in the second

pair. Then we have for (8):

(for example, the diameter of the larger of the two circles is to its

distance from the light source (also the larger distance) as the

diameter of the small circle is to its distance from the light source).

But, secondly, one can also have (as in the centrifugal force and
balance problems):

and qOr
(cf. prop. [i]). (10)

In this case, the compensation is:

r D (p.q) v (p.q) (cf. prop. [2]). (11)

Consequently, there is an inverse proportion i.e.,

(12)
z z % q

1

(for example the weight of the large ball is to the greater distance

of the small ball as the weight of the small ball is to the small [er]
distance of the large ball).

Given the above formulations, one can understand why the

compensation schema is more directly accessible than the pro-
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portionality schema. First, compensation is based directly on

qualitative logical relationships such as (7X8) or (io)-(ii),
whereas the proportions acquire an experimentally verifiable

structure only when they are quantified. Consequently, there is

a kind of logical anticipation of proportions (as the respective

equality of two products and two sums) before they are put into

metrical form. This fact enables us to grasp the import of the

anticipatory schema, since it is always derived from the compen-
sation schema. Secondly, the compensation may be additive or

multiplicative as is the case for logical proportions; this is not true

for metrical proportions. This accounts for the initial tendency of

the child to look for proportionality in the equality of additive

differences. Finally, compensation derives directly from the idea

of reciprocity, since (prop. [8]) p.q. is the R of p.q and (prop. [11])

p.q is the R of p.q.

Moreover, for relations, reciprocity is at the core of reversibility,

and reciprocity cannot be combined with inversion N except

through the mediation of the I N R C group, the basis of pro-

portions.
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Random Variations

and Correlations
1

PROBLEMS OF CHANCE are relevant to the study of formal thought
from two standpoints. In a general way, formal thought has the

property of dealing with what is possible and not only with what

is real. But the probability that an event will occur is nothing
more than the relationship between the possible instances of an

event and those which actually occur. Moreover, a probability

estimate of relations or laws presupposes certain special opera-

tional instruments such as the calculation of "correlations" or

"associations." In its simplest form, the notion of correlation is a

formal operational schema related to those we have just studied

particularly the proportionality schema. The aim of this chapter
is to analyze the two-sided problem of how subjects from 5 to 15

years react to chance fluctuations that occur during the experi-

ments and how they construct the correlation schema.

RANDOM VARIATIONS

Nearly all the phenomena studied in the foregoing experiments
involve chance fluctuations. We have emphasized elsewhere 2 that

one of the essential tasks of experimental reasoning or induction

1 With the collaboration of Vinh Bang and S. Taponier, research assistant,

Institut des Sciences de Tfiducation.
2 See Piaget, Introduction a Fepist&mologie g4ntiquef Vol. II, Chap. 6.
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is that o separating the deductible from the random. The earlier

chapters have shown how the child and adolescent organize the

deductible; now we shall examine how they react to chance and
how they assimilate it to the deductible, though they do so indi-

rectly through probability. For this purpose, we are not going to

devise new experiments (we have already devoted an entire vol-

ume to the child's handling of chance).
3 In the present work we

shall simply analyze some of the protocols already collected.

Moreover we shall limit this analysis to two of the experiments
which especially touch on this problem the experiment that in-

volved launching a ball in a horizontal plane (Chap. 8) and the

experiment that involved equilibrium between the pressure of a

piston and liquid resistance (Chap. 10).

Both the stopping points of the balls and the equilibrium levels

reached by the liquid and the piston entail notions of prob-

ability, as neither is strictly constant under any given set of con-

ditions. So the subject must first fit a probability law to the

fluctuations. Secondly, he has to isolate the laws or causes of the

phenomenon under study (motion or equilibrium) in spite of

the fluctuations. But the first task is precisely the problem of the

probability of random variations, and the second that of correla-

tions.

Stage I. Neither Conservation nor

Law of Distribution

At the preoperational level, the subjects' attitudes toward chance

are paradoxical. They expect that under similar conditions given

phenomena will be repeated either identically or in terms of a

definite progression, etc. When they do realize that there are small

fluctuations, they first deny the conservation of the relevant quan-

tities (matter, etc.) and then conclude that the stopping points are

completely arbitrary:

MEY (6 ; 8), in the stopping-point problem, sees that the large alu-

minum ball stopped at a given point [20 cm.]: "And if we throw it

again, where will it go?" "Further" [experiment: 21 cm.l. "And if

you throw it again?
9* "A little further because tt already went -further."

3 Piaget and lohelder, La Gendse de ?ide de hasard chez I'enfant.
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[experiment: 19 cm.].-"Why did it stop there?
99

'Because the little

flag [that marks the stopping points] is still there.
9'

"And if you throw

it again?" "A little further because it goes a little further every time."

(5 ; 9) for liquids, predicts that if the red box [500 grams] is put
back on, the water will return "to the same place" pointing out the

red flag. The water goes a little further; GROS explains this "because

the box is heavier, . . . it goes faster" etc. He is then shown a series

of positions and asked whether or not they are possible for the same
red box: they are all possible. The same for the other boxes.

TAG (6 ; o): "Where will the water go if this box is put back on?

[1,500 grams] ."There. It will go where it was before." "Why?"
(

'l?s the same" [Experiment: the water level is higher.] "Why?"
"Because it's heavier" [the water],

These responses are familiar ones in the protocols of the young
children. They deny chance, but when faced with fluctuations

they believe anything is possible or look for a hidden order (effect

of the flag for MEY) or a temporary disorder masked by invisible

reasons which have to be divined. In both cases, the subject's

attitude is reinforced by his lack of notions of conservation; the

box can become heavier in moving more quickly, the water can

increase in quantity or weight, etc.

Stage II. Diffuse Probabilistic Responses (II-A) then

Determination of a Zone of Distribution (II-B)

After 7-8 years of age, the subject's responses are quite different.

Not only does he cease to be surprised by variability, but his pre-
dictions often take it into account ("it will go about the same

place"). As usual, the appearance of the notion of chance is at first

characterized by a generally negative attitude based on caution

and a feeling that it is hard to make predictions:

BOUT (7 ; 6): "If you throw it [the same ball on the horizontal plane]
10 or 20 times?" "[It can get] there [1.60 m.], there [1.79], or there"

[1.80]. TDo you think it will ever go all the way to the endr-"

DUB (7 ; 5): "[The ball will reach] about the same place" "Can it go
all the way to the end?"-"No."



RANDOM VARIATIONS AND CORRELATIONS 227

And in the liquid problem:

GUI (8 ; o): "Why didn't the water go up as high this time?"- 'Because

a little water went out" [into the piston tube]. "And now, why is it a

little higher?" . . . [no explanation for two trials].

DES (8 ; o), in order to explain the deviations in an upward direction,

first hypothesizes that the clamps are tighter, then says "because I put
it [the box] down harder."

Above all, these diffuse responses show how the subject is dis-

turbed by chance i.e., by that which resists his budding opera-
tions. But by about 9 years, the subjects are no longer satisfied

with characterizing fluctuations in terms of the essentially nega-
tive notion of "about" and try to find systematic causes for them.

When they are asked to predict the results of 10 to 50 successive

trials, they may even come to delimit true zones of variation.

In the liquid experiment (Chap. 10), the search for causes was

particularly stressed:

BUG (8 ; 5): "Sometimes it goes down faster, sometimes slower."

ZBI (9 ; 4): "Maybe 1 let it go harder. . . . Maybe I let the water faU
to here [different starting point] and let the box fall harder"

In the horizontal plane problem, we asked for predictions:

COR (9 years): "Where will it go now?" [the large aluminum ball, 36

cm.]. "The same as before, around there""And. if you try 10 times

in a row, can it go here?" [i m.]. "No/* "And there?" [65 cm.].

"Yes." [Experiment: 42, 36, 37, and 38 cm.] "Can you say now where

it will go?"*Yes, around there" [indicates between 27 and 47 cm.].

"Could it go all the way up here?" [60 cm.]. "Yes, sometimes."

"And there?" [i m.]. "No, between here and there [from 10 to 65

cm.].

WIN (9 ; 8). Small aluminum ball to 1.80, then to 1.62 m.: "Does the

difference surprise you?" "No." "And if you throw it again?" "No*

as far as the first time" [experiment: 1.36, 1.51, and 1.48 m.]. "And

if you threw it 50 times?" "About there" [between 1.27 and 1.95 m.].

jos (10 ; 2). Small brass ball to 27 and 32 cm. "And if you sent it off

50 times?" "There will be bigger spaces between the flags" "Will it

go everywhere?** "No, around here" [20 to 40 cm.].
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LUC (11 ; o). Same ball: "No further than that [37 cm.] and no closer

than that" [20 cm.]. "If you throw this ball 10 times, where is it most

likely to gpT-'Atound here" [28-29 cm.].-
e

Vfhy?"-
f<

Because tfs

about the middle"

FRA (11 ; 8): "If you played 50 times?*' "Between 20 and 50 cm."

"How can you tellP"-"Y0tt see about where it goes"-"W31 there be

more flags in some places?" Tfe$, here [35-40 cm.], because if it's

thrown regularly there will be more in the middle than at the edges."

Whereas, at first, chance was seen in opposition to operations,

during substage II-B it begins to be assimilated to them through
the search for the causes of fluctuations and a determination of

their amplitudes. The result is that subjects set the boundaries for

a zone of variation and, toward the end of the substage, they
understand that the deviations comprise a curve with a higher

frequency in the median region and a lower frequency at the

extremities. In this way FRA intuits the Gaussian curve. In another

work we studied the representation of this curve at different

stages of development
4

Moreover, we are struck by the fact that those substage II-B

subjects who spontaneously point out a zone of variation in the

way seen above are the same ones who from the start perceive at

least two factors as causes of stopping e.g., weight and volume,
volume and matter, etc. (see Chap. 7). But, since the variables are

not yet systematically isolated at this stage, the subjects' assertions

about causality and the variation zone cannot be taken to imply
a latent correlation structure. Rather, they see the variation sim-

ply as the result of a multiplicity of causes and make no effort to

isolate the respective parts.

Stage III. Explanation of the Distribution and
Determination of the Law which Underlies

the Chance Fluctuations

At stage III the subjects begin active experimentation. They also

begin to make allowance for random variations (whose form they
now try to discover) and to isolate the law which underlies them.
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Moreover, isolation of the law sooner or later requires the forma-
tion of a correlation schema.

First, a case from the liquid problem:

BOI (14 ; 6): 'Where will the water go?"-"To the same level as before"

[Higher.] "What do you have to say ahout that?" "It depends on the

jiggling of the apparatus. Maybe it jiggled more." "Sure?" "No. It

could have been clogged up at the top. No, it would be lower; the air

would be compressed"^ we do it again?" "If the experiment is

precise, the water will go to the same level when the piston slides

easiest" "How high will it go when it slides easiest?""!/ you per-

form the experiment several times, you'll find the spot ""II you do
it 5 times?" "Take the average of 5." "When it slides easiest, you get
the average?" "I* will be the best reading we'tt get."

The following examples refer to the stopping point experiment:

CHAP (13 ; 3): "It witt go about there" [0.9 to i m.].-"Can it go all

the way up there?'* [1.60 m.] "No, because it's too heavy." 'And

that one?" [wider and lighter]. "Around here" [1.50 to 1.79 m.].

[Experiment: 1.60 m.]
<e

Why?" "Because it's not as heavy as the

other one.^

RAY (14 ; 4) describes a range of 1.10 to 1.55 m.: "Maybe it's launched

in different ways [he tries to throw the ball with a constant force].

I see; it's the launching force that varies. Theoretically it should go
to the same place. The friction has to be reduced.

9'

"Can. you show

that the friction has an effect?" "Theoretically the small one should

go further. The air resistance varies with the volume [he has now con-

fused friction with air resistance]. If you take two balls of the same

weight with different volumes, you can prove that the friction has an

effect." He performs the experiment and proves his point in spite of

the fluctuation; the number of confirming cases seems sufficient to him.

LEV (15 ; 5) wants to demonstrate the role of volume: "These two balls

have the same weight but not the same volume [experiment]. They
roll [approximately] the same distance, so volume doesnt play the

main role" "A small role or none at all?" "I* plays a small role be-

cause the small wooden one goes further than the big one." Thus he is

aware that there are confirming and nonconfirming cases (without

calculating them) in spite of the small deviation. As for the fluctuation,

he sees it as caused by the launcher: "Sometimes I launch it harder

than others." "What zone?" "Here and there [9 to 20 cm.]. That's
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about the path it takes with a normal launching. The exceptions go to-

ward the edge. It scrapes a bit; you see [traces]; that proves it acts

as a brake."

NIC (15 years) wants to show that the light ball goes further than two

heavier balls of the same volume, but he realizes that there are fluctu-

ations: "My hypothesis should be right but only with small pushes."

"Then the hypothesis is wrong?""// my hypothesis is wrong, I don't

know what to think. I didnt think of the fact that the launchings don't

all have the same force." Thus he maintains the variable of lightness

in spite of the interference of variations in results.

It is easy to see what is new in these responses as compared
with those of stage II. The stage II subjects are limited to de-

scribing the raw experiment with concrete operations, without

separating the variables. In this way they can discover the fluctua-

tions just as they discover everything given in the raw experiment.

They even construct laws of distribution (bell-shaped curve with

maximum frequency at the center). But since they try to arrive at

conclusions without separating the empirically given variables

according to the possible combinations, they can do no more.' In

contrast, the stage III subjects want to find laws by accurately

separating out variables in terms of all possible combinations.

But they run up against the obstacle one that must also be sys-

tematically analyzed of the fluctuation of results. Thus we must
ask what method they use in their analysis.

Sticking to spontaneous reactions and leaving aside for the

moment the subjects* enumeration of the instances which they feel

confirm and those which disprove a particular hypothesis, we find

that stage III subjects make use of a method that brings us to the

problem of correlations.

First, we see that a simple statistical enumeration of cases

(which determines the zone of variation with its high frequency

"middle") is not enough to solve the problem. Thus BOI proposes
to take the mean of the water levels to estimate a normal level

for a given weight, but he realizes, in the case in which the piston

slides most easily, that the mean differs from the "best point
obtained.** NIC, especially, who wants to prove that a heavy ball

does not go as far as a light one, sees that he has to account for

the interference of scatter and realizes that his hypothesis is
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proved only for "small launches" i.e., for the shortest paths
obtained with the light and heavy balls.

Secondly, this results in the formation of a new intellectual atti-

tude specific to stage III, one in which confirming instances are

distinguished from nonconfirming instances. The subject sees that

he must decide which are more frequent. We saw that RAY and

NIC held to their hypotheses in spite of the scatter they noted (and,

in NIC'S case, in spite of the exceptions due to "forceful launch-

ings"). And, because of the number of nonconfirming cases, LEV

reinstates the importance of volume, which at first he wanted to

prove was but a minor factor.

This is why we must try to reconstruct the reasoning of the

adolescent as it bears on the question of confirming and noncon-

firming instances. We have seen constantly that the qualitative

operational schema for proportions (based on interpropositional

links) precedes a metrical treatment of these same proportions. In

the same way, we shall now see how a simple qualitative estimate

of the range of scatter develops in the direction of an operational

schema for correlations.

As an example, let us assume that the subject wants to prove
that the smallest balls go the furthest. Let p be the proposition

that the ball under consideration is smaller than the standard ball

and p the statement that it is larger; let q stand for the fact that

the small ball goes further than the other and q that it does

not go so far. Observation of the fluctuations then leads the

subject to assume the truth of the four possible combinations

(where
*

is the sign for "complete affirmation"):

(p.q) v (p.q) v (p.q) v (p.q)
= (p

*
q). (i)

Now one can see immediately that these four possibilities con-

tain the four cells of the type of association table used in calculat-

smatt (p) large (p)

ing simplified forms of correlation called "coefficients of associa-

tion'* (Yule or Bravais-Pearson formula). In the present instance,
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the subjects do not break down the cases so that they correspond
to the four possibilities, nor do they calculate ratios between the

numbers in the table. Instead of this numerical quantification,

they attempt an intensive quantification (using > or < ) and are

content to stop there. But the intensive quantification seems to

involve estimating both the number of a and d cases in the table

(i.e., p.q v p.q) and the number of b and c cases (i.e., p.q v p.q)

and comparing the two sets. The a and d cases confirm the

hypothesis being tested and the b and c represent the noncon-

firming instances, but our subjects seem to make exactly this com-

parison. Thus their reasoning can be represented as follows

(E stands for the sum that verifies the propositions as to confirm-

ing and nonconfirming instances):

E [(p.q) v (p.q)] 2? E [(p.q) v (p.q)] ; i.e., ,

(a + d)^(b + c).
(2)

Consequently, if the subjects determine numerically the dif-

ference (a + d) (b + c) and its relationship to the whole

(a -f- d) -\- (b + c), instead of being satisfied with the comparison
based on > or <, one could say they are explicitly using a notion

of correlation. Does this mean that correlations are structured

during stage III? A more direct approach will help to answer

this question.

CORRELATIONS

Thus, this latent correlation schema, which may be present at

stage III, needs a more detailed analysis. To study it, we have

devised an apparatus such that the subject can easily count the

cases that confirm and those that fail to confirm a hypothesized

relationship between two variables. It will allow us to see what

relationships will be established between confirming and non-

confirming cases and if these relationships resemble any of the

"association" formulae used in the calculation of correlations.

The problem set for the subjects involves simply a correlation

between eye and hair color. Subjects are shown 40 cards, each

with a face drawn on it. The eyes and the hair are colored accord-

ing to the following four associations:
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a = blue eyes and blond hair (
=

p.q),

b = blue eyes and brown hair (
=

p.q),
c = brown eyes and blond hair (

=
p.q),

d = brown eyes and brown hair (
=

p.q).

The subject is then given a set number of cards and asked

whether he thinks there is a relationship between eye color and
hair color (i.e., not whether there is such a relationship in real life,

but whether one can be discovered in the given data). At the start,

it is possible to proceed in either one of two different ways; one
can let the subject form his own classification (construct the four

boxes of a double-entry table) or give him the cards already classi-

fied according to the four possibilities. The latter method puts
more emphasis on the possible numerical combinations. For ex-

ample, we might apply combinations abed to 4, o, o, and 4 faces

respectively; or to 4, 4, 4, 4; 6, 6, 2, 2; or 13, 8, 3, 8; .etc., ask-

ing the subject in each case to estimate the relevant relationships.

In addition, the subject can be shown two different sets (Le.9

6, 4, 2, 4, and 4, 4, 4, 4) and asked which shows the clearest corre-

lation. Finally, the subject can be asked to remove cards in such

a way as to strengthen the correlation; then he can be asked to

discuss which of the four associations he used as a basis for

eliminating cards.

This is tie experimental situation; it provides us with a number
of interesting responses to examine from the standpoint of prepo-
sitional logicthe only standpoint we are concerned with now
as opposed to questions of calculation or induction in the narrow

sense of the term. If we let p stand for the presence of blue eyes
and q for the presence of blond hair, cases favorable to the cor-

relation will correspond to equivalence (p.q) v (p.q) and noncon-

firming cases will correspond to reciprocal exclusion (p.q) v (p.q).

If one is to show a correlation one must first establish two classes

of individuals, each class corresponding to the conditions stated

in one of the two kinds of links we discussed, (p = q) and (pw q);

then, one has to determine the relationship between these two

classes.

But, from the start, the organization of these classes or these

links raises a number of difficulties. Even at substage III-A the
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subject often begins by considering association a (i.e., p.q} inde-

pendently, without understanding that the d cases (corresponding
to p.q) are just as crucial. And when he tries to relate the a cases

(p.q) to another association, he may at first think of case b (p.q)

rather than case d. In so doing, he proceeds vertically (eyes) or

horizontally (hair) in the double-entry table before he under-

stands that the diagonal comparison has to be made.

Once the initial difficulties have been overcome, the problem
is to discover that correlation is not a simple probability i.e., an

elementary ratio between the confirming cases (a + d) and the

total number of possible cases (a + b + c + d). The basic diffi-

culty in correlations is certainly found here. And herein lies an

explanation of the fact that correlation is not acquired before

substage III-B, whereas simple probability in its multiplicative

form (ratios) is found at substage III-A.5

In its most elementary form i.e., the additive the association

coefficient R is derived from the following formula:

If we let E stand for all the items which confirm a particular

interpropositional link, the expression can be written as follows:

E [(p.q) v (p.q)]
- E [(p.q) v (p.q)] }

E [(p.q) v (p.q)] + E [(p.q) v (p.q)] }
.

(3)

Thus the discovery of the correlation takes place as follows:

After having found the probabilities (a + d) / (a + b + c + d)
and (b + c) / (a + b + c + d), the subject still must learn that

correlation is a function of the difference (a + d) (6 + c)

divided by the total number of cases,

Of course, we do not expect our subjects to invent these formu-
lae anew or to perform a complete calculation amounting to the

same thing. But from the standpoint of the qualitative reason-

ing performed on the numerical combinations, the difference

(a + d) (b + c) can be said to be present when the subject
has constructed the two classes (a + d) and (b + c), which cor-

respond to the two links, (p.q v p.q) = (p = q\ and (p.q v p.q) =
5
Ibid., Chap. V, No. 3, and Chap. VI, No. 6.



RANDOM VARIATIONS AND CORRELATIONS 235

(p w q), and realizes that, if they are of equal probability, the

correlation is zero. Conversely, the correlation is strengthened as

inequality (a + d) > (b + c) increases.

But if it is interpreted in this way, independently of any ex-

plicit formula, we shall see that the idea of correlation is certainly
discovered during substage III-B as a consequence of the utiliza-

tion of prepositional logic. In this context it is not worth returning
to the nonprobabilistic responses of stage I or to the first prob-
abilistic schemata of stage II. Rather, we shall begin with the

analysis of substage III-A, for it is only at this point that the

subject is able to reason about the sets of cards that he is given
without having to appeal to the empirical world (hypothetico-
deductive reasoning).

Substage III-A. Probabilistic Interpretation of Fre-

quencies Considered in Isolation but Without Relat-

ing the (a + d) Cases and the (b + c) Cases

As we would expect, the substage III-A subject can estimate

probabilities as relationships between positive confirming cases

and the cases which are possible relative to the characteristic

under consideration. Consequently, he knows how to judge the

chance that a given individual has blue eyes if he has blond hair

by comparing the number of a cases to the number of b cases

or the sum a + &. But in spite of this, he cannot yet add up the

set of positive and negative confirming cases (a + d) and relate

them to the nonconfirming cases (b + c) or to the set of all pos-

sible cases. Below are some examples:

LYN (12 ; 4): "Can you find a relationship between hair color and eye

color in the cards?" [6, o, o, 6],
e "Yes. These [d] have the same

color eyes as hair" "But for the group as a whole [all of the cards are

shown], is there a relationship between the color of the eyes and the

hairr-*m"-'Herer [d].-"Here it's only brown."-"And here?"

[a]. "Ifs blue. They are aU blue." "And. here [6, 2, 4, 4], is there a

relationship?""Na Yes, the four [sub-sets] separately, but not when

they are together" "Why?" "Because some are yellow [blond] and

6 The number of cards in each set corresponding to the four possible com-
binations are indicated in the order, a, b, C9 d.
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blue, and some yellow and brown.
9'

"And like that?" [4, 4, 4, 4].

"You have more chances here; they are all 4. There if you go wrong,
there are 2, [b] while here there are 4 and 4" [indicates a and &].

"How many chances do you have of finding blond hair if you only see

blue eyes?" "Four and 4; the chance is the same" [a and b].

She is given all the cards to classify; she does it immediately

according to the four associations. Then she is asked to form two

groups so that the chances are higher of finding a relationship
between eye color and hair color in one than in the other. She

gives 3, 3, 4, 4 and 3, 6, 6, 4: "The chances are higher here

(3 3> 4> 4) because you have 3 and 3, and 4 and 4, while there,

6 and 4, and 6 and 3." In other words, although LYN has organ-
ized the sets correctly, she organized them and justified her view

by reasoning about relations a/b and c/d and not in terms of

the diagonal relations (a + d) / (b + c).

MOB (13 ; 6), when he is given the set [10, 2, 3, 9], answers that

"there's a chance of being wrong" In attempting to predict eye color

from hair color or vice versa he points out the nonconfirming cases,

b and c9 but does not calculate the ratios. "And here?" [is, o, o, ia],

"They are the same colors; you re not likely to be wrong" "And this

set?" [8, 4, 6, 5]. "You could be wrong." "And what can you do to

be sure?" [He takes off the b and c cases.] "And if you have these

two groups [8, 4, 4, 8 and 11, i, 7, 5], where are you most sure?"

"Here [11,1, 7, 5] you have less chance of being wrong because there

are fewer exceptions" [he points out the ratio of a to bi.e., 11 to i

but without paying any attention to the 7 c cases].

BON (14 ; 3) claims that "there is no relation between eye color and
hair

9"
for the set [5, i, z, 4]. "Why?" "Precisely because there are

different cards" [he shows b and c].-"And there?" [3, o, o, 3].-"Yes,
because the brown eyes are with the brown hair and the blond hair

with the blue eyes. . . . There is a maximum relationship." "And in

these two sets?" [4, 2,, 2, 4 and 3, 3, i, 5]. "There is no relationship at

aU because you have a different number of people in each part"
"But is it the same in both groups?" "No. Here [4, 2,, 2, 4] you have

4 and 4 and 2 and 2 [beginnings of the diagonal relationship], but

there [3, 3, i, 5] you have 3 and 3 (
= a and 6); ifs the same number

on each side" [from which he concludes that no relationship between
the variables can be demonstrated].
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These cases suffice to bring out the two main difficulties that

stand in the way of the substage III-A subjects. The first, shown

clearly in LYN'S case, is that when she encounters the four com-
binations a( = p.q\ b( = p.q) 9 c( = p.q) and d( = p.q), she

has no difficulty in understanding the relationship between brown
hair and brown eyes or between blond hair and blue eyes, but she

does not understand that it is the same or the reciprocal relation-

ship (p.q and p.q). She places the a cases in opposition to the

b cases and the d cases in opposition to the c cases without seeing
that the a and d cases reinforce each other and form a single
whole i.e., composed of the cases which are favorable to a gen-
eral relationship between eye and hair color.

A second difficulty stems from the same source as the first but its

effect lasts longer (cf. MOK and BON who get around the first dif-

ficulty but are stopped by the second). Once the subject sees

that cases a and d confirm the relationship he seeks and that cases

b and c oppose it, he does not calculate the ratio of confirming
cases to nonconfirming or to possible cases by comparing the sum

(a + d) to the sum (b + c). Instead, unless he is limited to one of

the pairs (either ab or cd, neglecting the other), he compares only
a to b and d to c. For example, when MOR compares the two equal
ratios (8 + 8/4 + 4 and 11+5/1 + 7) he finds the second

more favorable because he compares 1/11 to 4/8. LYN does

the same when she limits herself to the relationships between

a and b and d and c.

One of the interesting facets of the reasoning from relations

ab or cd rather than from diagonals ad and be is the reaction of

the subjects to the cases in which total cases and nonconfirming
instances are equal: ad = be. The subjects are a long way from

understanding that the correlation is exactly zero in such cases.

On the contrary, at this level they tend to assign them special

importance, because when they reason about a and b only (or

d and c only), the positive and negative chances are equal. Thus

LYN prefers set 4, 4, 4, 4 to set 6, 2, 4, 4 because there are "4 and

4; the chances are the same.'* She also concludes that 3, 3, 4, 4

gives a higher correlation than 3, 6, 6, 4. Although this is correct,

she explains it by saying that there is an equality a= b and

c = d "because you have 3 and 3 and 4 and 4." Of the above

subjects, only BON understands that, in case 3, 3, i, 5, a= 3 and
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b 3 proves nothing ("because it's the same number on each

side"), but even he has used reasoning having to do with a and b

only.

In contrast, toward the end of substage III-A, we find a level

intermediate between III-A and III-B in which the subject gradu-

ally comes to the diagonal relationship and begins to consider

combined probabilities (a + d) and (b + c) even though he starts

off with the same kind of reasoning found at substage III-A,

Below are some examples:

BAB (14 ; 3) when he is given the set [5, 2, i, 4] says: "There are sev-

eral with blond hair and blue eyes, but there are others too" [he shows

cases b, d, and c in order]. "Is there a relationship?" "There's a re-

lationship anyway; most of the ones who have blue eyes have blond

hair and most of the ones who have brown eyes have brown hair
99

"How many chances do you have of being right?" "In this group [a]

5 chances and here [d and c] 4 chances of being right and i of being

wrong" "And on the whole?" "Three chances out of 12 of being

wrong [thus (fe 4- c}/(a + b 4- c -f d)] . . . 3 chances out of 12"

"And here?" [6, o, o, 6]. "You have an equal number of chances.

. . . No, you wiU always be right" "And there?" [5, i, 3, 3]. "One

chance in 12 of being wrong; no, there are those too [c] ; no, 4 chances

in i2.
w

"In which of these two groups [5, 2, i, 4 and 5, i, 3, 3] are

you most likely to be right?" "The same: 5 and 5 [he counts the a

cases]. It doesn't make any difference
9'

"And how many chances of

being wrong?" "Three chances in 12 and 4 chances in 12."

"And in these two groups?" [4, 2, 2, 4 and 3, 3, i, 5]. He classifies

the cards, then compares the a cases with each other and the d cases

with each other, then counts the whole: "Four out of 12 come out

wrong here and there!'
9

Finally he is asked to form a set such that no

prediction can be made. He chooses i, i, i, i, then 2, 2, 2, 2, etc.; he
must understand that the correlation is zero in such cases.

VEC (14 ; 6) classifies set 5, i, 2, 4 correctly: 'Is there a relationship?"
-'Not really. There are those" [he puts the a and the d aside].-"So

there is a relationship that has to be eliminated?"-He shows b and c.

"There is a half no, 2/6 and 4/6 [he calculates c over c + d, and
d over c + d] and in the blue eyes 5/6 and i/ff' [he calculates a over

a + b, and b over a + &]. "But if you take the whole group into

account?" "Approximately 9/10 no, 9/12 which are pretty much
covered by the law and 3/12 which are not covered"
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"And with these?" [6, o, o, 6]. "The law is exact; there are no ex-

ceptions at all!
9

"And here?" [4, 2, 3, 3]. "There the proportion is

pretty weak; it's about half and half" "Exactly?" "7/12 in the rule

and 5/12 exceptions'' "Can you say it's a law?" "Less. For the brown

hair you cant say it's a law; it's half and half. For the blond hair, it's

better." "And together?" "Yow could say there's a law but it's not

very regular."

He is asked to form a group in which there is no relationship; he

immediately produces 3, 3, 3, 3: "It cancels out. You can't say it's a

law; 3/6 are covered by rule and 3/6 aren't for the brown hair and

for the blond hair."

Finally he is asked to compare sets 4, 2, 2, 4 and 3, 3, i, 5: First he

compares a to (a + b) and d to (c -f- d). "But for the whole set?"

"There are 4/12, outside the law and 8/12 covered by it. It would be

the same for the whole set."

One can see how much progress has been made since the begin-

ning of substage III-A. Although BAB begins by reasoning about

the blue eyes (a) independently of the brown (d cases), he soon

realizes that the a and d cases make up a single whole confirming
the same law, as opposed to the b and c cases which oppose it

(VEC grasps this fact almost immediately). But there is still a

tendency, of varying strength, to reason about either the a and b

or the c and d cases in isolation (see VEC'S calculation for the first

set, 5, i, 2, 4). But as soon as they are reminded of the totality

of possible cases, the subjects of this intermediate level start

to compare the (a + d) cases added to the (b + c) cases or

(a + b + c+ d). This addition marks the appearance of the

idea of correlation in the strict sense of the word. The distinctive

feature of substage III-B is that the subjects succeed in perform-

ing it at the start and spontaneously.

Substage III-B. Spontaneous Relating of Confirm-

ing Cases to Nonconfirming Cases and to the Sum

of the Possible Cases

After the age of 10 ; 4, we have found exceptional subjects who

respond in terms of the final schema of substage III-B, but it is
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usually toward 14-15 years that the frequency of these cases is

high enough to define a stage. Below are two examples:

DAX (14 ; o) classifies the set [5, i, 2, 4]: "If you look at the hair, can

you find the color of the eyes?** T5fo safe. . . . There are exceptions,

but they are rare; 3 exceptions out of g. In a case like that you can

say that there's no absolute law, but some hind of law" "And here?"

[3, o, o, 3]. "Here you liave an absolute law." "And there?" [4, 2,

3, 3]. "The exceptions are rare compared to the number" [of con-

firming cases]. Is it the same as in the first group?" "No, the excep-

tions aren't so rare: before there were 3 out of 9, now there are 5 out

of j? He is asked for a zero correlation: he gives i, i, i, i. Then he is

asked to compare 4, 2, 2, 4 with 3, 3, i, 5: "There are more chances

of being right here [second group]. No, they are exactly the same."

He is finally asked to form two sets, one containing more irregularities

than the other: he constructs an inverse correlation [i, 2, 2, i and

i, i, i, 3]: "There there are 2 [confirming] and 4 [nonconfirming];

here there are 4 [confirming] and 2" [nonconfirming].

COG (15 ; 2). Set [5, i, 2, 4]: "Most of the people who have brown

hair have brown eyes and most of those with blond hair have blue

eyes." "What is the relationship?" "Not maximum, but not weak . . .

9 people out of 12 have hair the same color" [as eyes]. "And?" [6, o,

o, 6], "It's the maximum" 'And a group where there is no relation-

ship?
1' Tow have to mix them up" [he makes up i, i, i, i]. "And

compare these two groups" [4, 2, 2,, 4 and 3, 3, i, 5]. "The relation-

ships are the same; there are the same number of cards" [!]. "Did

you count them?" 'Tfes. In both groups there are 8/12 [confirming]
and 4/12" [nonconfinning]. "What is the best way of seeing whether

or not there is a relationship?" "You have to compare [a] and [d]

with [b] and [c].
w He describes the four combinations by grouping

them by diagonals.

The qualitative notion of correlation of which we spoke at the

beginning of this section is easily discerned in the substage III-B

responses. First, as soon as he has classified the four possibilities

according to the schema (p.q) v (p.q) v (p.q) v (p.q) (prop, [i]),

the subject realizes that the a
(
= p.q) and d (

= p.q) cases are

linked together (hair color the same as eye color), but by a link of

reciprocity and not of identity (reciprocity here, as always, being
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the same relationship but in the negative: blond X blue, and
not-blond X not-blue):

p.q = R (p.q). (4)

Whence the equivalence (which no longer stands for identity

but for necessary reciprocal correspondence):

(p = q) = (p.q}v(p.q). (5)

Propositions (4) and (5) define the relevant characteristics o

the cases confirming the law. Proposition (5) states the law (cor-

respondence between p which asserts presence of blue eyes and

q that of blond hair, or between p which asserts the presence of

brown eyes and q that of brown hair), whereas proposition (4)

states the relationship adding the two pairs of characteristics

which operate in the law.

In the same way, the subject understands the reciprocity be-

tween the b (
= p.q) and c (

=
p.q) cases:

(6)

Whence the negative equivalence
r characteristic of the b and

c cases:

(7)

where (p = q) = (p w q) (reciprocal exclusion of p and of q).

But the subject sees immediately that the b and c cases consti-

tute the inverse of the a and d cases i.e., the sum of the noncon-

firming cases:

=
[(p.q) v (p.q)], thus ,s

In other words, as soon as he understands the reciprocity be-

tween the confirming cases a and d (i.e., p.q v p.g), the subject

also understands the reciprocity between the nonconfirming cases

b and c and the relationship of inversion (prop. [8]) existing be-

tween the two classes so characterized. Thus, from the start the

substage III-B subject reasons according to diagonals and looks

7 We know that the negative equivalence or reciprocal exclusion (pw q) can

also be written *
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for the numerical relationships between the sum (a+ d), verify-

ing proposition (4), the sum (b -f c), verifying proposition (6),

and the sum of all possible cases. But from this standpoint, what

is new in these cases in equilibrium at substage III-B compared
with the intermediate cases (BAB and VEC) is that, instead of

looking for the ratios (a -f b) I (a + b + c + d) and (b + c) /

(a + & + c + d), the subject relates the (a + d) cases directly to

the (b + c) cases in order to estimate the degree of correlation.

Thus DAN compares 3(6 + c) to g(0 + d) and 5(&-{-c) to

7 (a -f d) and estimates that the first correlation is higher; COG

says explicitly: "You have to compare (a + d) with (6 -f c)" The

consequence of this formulation is that the three following cases

are discovered (if E is the sum verifying the propositions con-

sidered):

E [(p.q)
v (p.q)]

= E [(p.q
v
p.q)]

= zero correlation. (9)

DAN and COG understand this when they form the sets i, i,

i, i, etc,, as showing no relationship at all between the variables.

[(p.q) v (p.q)] > E [(p.q) v (p.q)]
= positive correlation (10)

(which is strengthened as the inequality increases).

This is what the subjects express when they compare two dis-

tributions to estimate their respective equal or unequal correla-

tions.

E [(p.q) v (p.q)] < E [(p.q)
v

(p.q)]
= negative correlation. (11)

This is what DAN sees imperfectly at the end of his interrogation.

Since these differences between the two sets E [(p.q) v (p.q)]

and E
[(p.q)

v
(p.q)]

are evaluated in relation to the total num-

ber of possible cases, we are not going too far in stating that these

subjects make use of the various links operating in proposition (3);

that is, they hold an implicit conception of correlation,
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THE STRUCTURAL INTEGRATION

OF FORMAL THOUGHT

THE GROWTH of thinking may be studied from either of two dis-

tinct and complementary points of view: the first is that of

equilibrium conditions and the second that of structure forma-
tion. From the first perspective, thought processes seem to tend
toward states of increasingly stable equilibrium throughout a

variety of specific forms.1 Here the problem is to isolate the rea-

sons for which an equilibrium state is more or less stable. There
seem to be two main factors which can account for the difference

between the stable and unstable forms: the first concerns the

relative degree of extension of the cognitive field included in a

given equilibrium, and the second, the instruments of coordina-

tion i.e.9 the level of development of the cognitive structures

which are available at any particular age. From the second

perspective, the problem is to determine how the structures arise

and how they follow one another along the genetic series. How-
ever, this structure formation depends on three principal factors:

maturation of the nervous system, experience acquired in inter-

action with the physical environment, and the influence of the

social milieu. But it is also true that the respective and concurrent

operations of these factors are limited by laws of equilibrium,

1 Of course equilibrium is not stable in the sense that it is a state of rest in

a closed system (such as a balance of forces in mechanics). From the psycho-

logical standpoint, a system is in equilibrium when a perturbation which
modifies the state of the system has its counterpart in a spontaneous action

which compensates it. Consequently equilibrium is a function of the actor's

behavior. The eqidlibrium laws express the probability of the occurrence of

various possible forms of compensation in function of neuro-physiological

conditions, physical environment, and social milieu.

243
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which determine the best forms of adaptation compatible with
the sum of these operant social and physical conditions. Thus

equilibrium and structure are really two complementary aspects
of any organization of thought.
The first of the following chapters will take up the problem of

formal thinking from the standpoint of equilibrium, and the sec-

ond from the structural point of view. The concluding chapter
sums up what we know about the differences between the child's

thinking, which is preoperational or limited to the use of con-
crete operations, and the adolescent's thinking, which follows
directions unknown to the child as a result of the growth of
formal logic.



16

Formal Thought from the

Equilibrium Standpoint

THERE is no doubt that the most distinctive feature of formal

thought stems from the role played by statements about possibility
relative to statements about empirical reality. Thus, compared to

concrete thought, formal thought constitutes a new equilibrium,
one that can now be analyzed from the two perspectives just out-

lined: the extension of the cognitive field that it entails, and the

coordinating instruments operative in its functioning. However,
we will first analyze briefly the equilibrium characteristics of the

stages prior to formal thought.

Preoperational Thinking.,
Concrete Operational Thinking,
and Formal Thinking

I. At the end of the sensori-motor period, during which intelligent

behavior is limited to coordinating actions, the appearance of

symbolic processes enables the child to organize elementary

representations. Thus a distinctive form of thinking is worked out

between 2 and 7-8 years; signs of it can be found throughout the

empirical data presented in this work (see stage I).

245



246 THE STRUCTURAL INTEGRATION OF FORMAL THOUGHT

This type of thinking is preoperational, i.e., prelogical,
1 and it

differs from concrete operational thought on three points:

(i) When the child considers static situations, he is more likely

to explain them in terms of the characteristics of their configura-

tions at a given moment than in terms of the changes leading
from one situation to another; (2) When he does consider trans-

formations, he assimilates them to his own actions and not as yet
to reversible operations. We can reduce these two differences to

one by saying that at the level of preoperational thought the static

states of a given system and its modifications do not yet form a

single system, whereas at the level of concrete operations the static

states will be conceived as resulting from transformations in the

same way as the results of various operations are also subordi-

nated to the operations. (3) Nevertheless, even at this level we
find tendencies toward the organization of integrated systems.

And we can discern in them an orientation toward certain forms

of equilibrium. However, the only instruments available to the

subject for the organization of such systems are perceptual or

representational regulations, in contrast to actual operations.
2 The

difference between these two sorts of mechanisms is that reversi-

bility remains incomplete in the first case but is achieved in the

second.

The primacy of static situations over transformations is not too

clearly shown by the facts described in this book because the

problems given our subjects have to do with transformations for

the most part. However, all we have seen in our earlier research

on the absence of notions of conservation before 7-8 years illus-

1 Wallon, who has adopted the same point of view with modifications of

our vocabulary, speaks of "precategoricaT thinking, meaning thinking which
cannot deal with the links between subject and predicate. But this aspect of

preoperational thought is not sufficient to cover all of its characteristics. **Pre-

categoricaT is a term which remains relative to the linkages characterizing
class logic. Although it is true that preoperational thinking does not come to

control the most elementary "groupings'* of class logic, it is no less able to

deal with the elementary groupings of the logic of relations. Thus it is "pre-
relationar to as great an extent as precategorical. The term "preoperational"
has the advantage of covering both aspects at the same time, and in addition
it emphasizes operations i.e.9 action more than the verbal side of thinking.
Verbal productions can by no means fully account for the structures of intel-

ligence.
2
Regulations are incomplete or approximate compensations, in contrast to

operations wnich entail complete compensations.
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trates this aspect of preoperational thinking. When, after having
transferred a given quantity of liquid into a beaker which is more

elongated than the initial container, the 4-6-year-old child believes

that the quantity has increased because the form of the container

is different, he has based his assertion on the static perceptual

configuration; he has perceived each state of the system individu-

ally instead of envisaging the situation in terms of a reversible

transformation which leaves the quantity constant. In the present

experiments, analogous static perceptions are found in connection

with the problem of equilibrium between the pressure of a weight
and the resistance of a liquid, a case in which neither the quantity
of liquid nor the weights involved are conserved (Chap. 10). Like-

wise, in the balance-scale problem (Chap. 11), the substage I-A

subjects do not know how to take away a weight when they want
to reestablish the equilibrium (inverse operation) and are limited

to continually adding weight to one side or the other in an irre-

versible succession of states, without returning to the earlier

situations.

On the other hand, the second difference is clearly shown by
the data collected in this study on the stage I subjects. Instead

of considering the experimental apparatus as a system of autono-

mous causal relations, these subjects fail to distinguish between

the physical processes which they observe and the effects of their

own actions; often they assimilate the objective relationships to a

conception of causality based on the model of these actions (using

the impetus, "push," etc,, as explanations; see, for example,

Chap. 12).

This means that the system transformations are assimilated to

the child's own action and static situations are explained in terms

of characteristics of the perceptual configuration; as a result there

is no homogeneity between the two areas and the only instru-

ments of coordination between them are regulations. On the static

side, it is simply a matter of perceptual regulations, this being
the case where in the child's eyes the configuration takes the place

of an explanation (for example, the elementary equalizations of

the weights on the balance are due to a simple perceptual sym-

metry; Chap. 11). On the dynamic side, these regulations take the

form of the corrections and adjustments inherent in the child's

action. These latter regulations foretell the advent of operational



248 THE STRUCTURAL INTEGRATION OF FORMAL THOUGHT

processes in orienting the child's actions toward reversibility.

Although they do not result in complete compensations, such

regulations do thrust a small wedge of potential transformations

(i.e., elementary processes based on "possibilities" as distinct from

"reality") into a type of cognition which is still almost completely
bound to reality (either in the sense of external perceptual reality

or in the sense of imagined actions).

II. With the appearance of concrete thought, the system of

regulations, though maintained in an unstable state until this

point, attains an elementary form of stable equilibrium. As it

reaches the level of complete reversibility, the concrete operations

issued from the earlier regulations are coordinated into definite

structures (classifications, serial orders, correspondences, etc.)

which will be conserved for the remainder of the life span. Of
course this is no bar to the organization of higher systems; but

even when higher systems emerge, the present system remains

active in the limited area of the organization of immediately given
data. What then is the nature of this form of equilibrium?

First, the dichotomy between static situations and transforma-

tions no longer obtains in those cognitive spheres organized by
concrete thinking; from this point on static situations are subordi-

nated to transformations in that every state is conceived of as the

result of a transformation. For example, the subject regards each

position of the balance-scale (Chap. 11) as the result of previous
additions and subtractions of weight or of equalities and in-

equalities introduced between the weights on the two arms of the

apparatus and between the distances from the center, etc.

Secondly, to say that the system of transformations is in equilib-
rium means that these transformations have acquired a reversible

form and the potentiality for coordination according to fixed laws

of composition. Thus, from this point on transformations are

assimilated to operations. Operations result from the internaliza-

tion of actions and preoperational regulations from the earlier

stage.

Thirdly, compared to preoperational or intuitive thought, con-

crete operational thought is characterized by an extension of the

actual in the direction of the potential. For example, to classify

a set of objects means that one constructs a set of class inclusions

such that at a later point new objects can be included in sys-
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tematic relationship with those already classified and such that

in this way new class inclusions are continually possible. Similarly,

to order objects serially permits further possible subdivisions, etc.

But at the beginning of the reasoning process these "possibilities'*

inherent in concrete operations do not at all expand into a set of

hypotheses, as will be the case for formal possibilities.

But the equilibrium attained by concrete thought covers only
a relatively narrow field. Consequently, the boundaries of this

field remain unstable. These two circumstances make the elabora-

tion of formal thought necessary.

The equilibrium field of concrete operations is limited in the

sense that, like any equilibrium, the characteristics of such opera-
tions are determined by the compensation of potential work

(operations) compatible with the system links; however, these

links are limited both by the form of the operations involved and

by the actual content of the notions to which they are applied.

From the standpoint of form, concrete operations consist of

nothing more than a direct organization of immediately given
data. The operations of classification, serial ordering, equaliza-

tion, correspondence, etc., are means for inserting a set of class

inclusions or relations into a particular content (for example:

lengths, weights, etc.), means which are limited to organizing
this content in the same form in which it is presented to the sub-

ject. The role of possibility is reduced to a simple potential pro-

longation of the actions or operations applied to the given con-

tent (as, for example, when, after having ordered several objects

in a series, the subject knows that he could do the same with

others, this by virtue of the same schema of expectation for serial

ordering that enabled him to perform his actual serial ordering).

From the standpoint of content, concrete thought has the limit-

ing characteristic that it cannot be immediately generalized to

all physical properties. Instead, it proceeds from one factor to

another, sometimes with a time lag of several years between the

organization of one (for example, lengths) and the next (for

example, weights). This is because it is more difficult to order

serially, to equalize, etc., objects whose properties are less easy to

dissociate from one's own action, such as weight, than to apply
the same operations to properties which can be objectified more

readily, such as length. Thus, from the standpoint of content, the
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"potential transformations compatible with the system links"

which determine the boundary line between real and possible

operations are still more limited than is implied by the form of the

operations involved; this is a second reason why the form of pos-

sibility characterizing concrete operations is nothing more than

a limited extension of empirical reality.

Aside from these two kinds of limitation of the equilibrium field

of concrete operations, it should be noted that, although the

equilibrium is stable at the interior of a given field, it becomes

unstable at its boundaries. In other words, although each field of

concrete organization easily attains stable forms of equilibrium,

instability reappears when fields have to be coordinated. There

is no general concrete composition; that is to say, after the subject
has classified or has ordered a set of properties serially, etc., or

after he has found the correspondences between series with two

or more different properties, concrete thought does not solve all

the problems raised by the interference of heterogeneous opera-
tions or by the intersection of different properties. Thus, from the

concrete point of view, the comparison of a weight and an upward
displacement may be sufficient to determine the amount of "work"

required in some cases (heavier X higher = more work). But the

arrangement of factors may remain indeterminate and alio-transi-

tive in others (heavier X less high= more or less work or the

same work). In the latter cases the problem cannot be solved with

concrete thought.

In sum, concrete thought remains essentially attached to em-

pirical reality. The system of concrete operations the final equi-
librium attained by preoperational thought can handle only
a limited set of potential transformations. Therefore, it attains no

more than a concept of "what is possible," which is a simple (and
not very great) extension of the empirical situation. This char-

acteristic of concrete thought is particularly clear in the present

research, where the child's concrete thought and the formal

thought of the adolescent or preadolescent may be compared at

every point. The adolescent and preadolescent start by formulat-

ing sets of hypotheses and then choose experimentally the ones

which are compatible with the facts. But, strictly speaking, at the

concrete level, the child does not formulate any hypotheses. He
begins by acting; although in the course of his action he tries to
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coordinate the sequence of recordings of the results he obtains, he
structures only the reality on which he acts. But if the reader

objects that these cognitive organizations are in fact hypotheses,
we would answer that in any case they are hypotheses that do no
more than outline plans for possible actions; they do not consist of

imagining what the real situation would be if this or that hypo-
thetical condition were fulfilled, as they do in the case of the

adolescent.

III. Finally, in formal thought there is a reversal of the direc-

tion of thinking between reality and possibility in the subjects*
method of approach. Possibility no longer appears merely as an
extension of an empirical situation or of actions actually per-
formed. Instead, it is reality that is now secondary to possibility.

Henceforth, they conceive of the given facts as that sector of a

set of possible transformations that has actually come about; for

they are neither explained nor even regarded as facts until the

subject undertakes verifying procedures that pertain to the entire

set of possible hypotheses compatible with a given situation.

In other words, formal thinking is essentially hypothetico-
deductive. By this we mean that the deduction no longer refers

directly to perceived realities but to hypothetical statements

i.e., it refers to propositions which are formulations of hypotheses
or which postulate facts or events independently of whether or

not they actually occur. Thus, the deductive process consists of

linking up these assumptions and drawing out the necessary con-

sequences even when their validity, from the standpoint of

experimental verification, is only provisional. The most distinctive

property of formal thought is this reversal of direction between

reality and possibility; instead of deriving a rudimentary type of

theory from the empirical data as is done in concrete inferences,
3

formal thought begins with a theoretical synthesis implying that

certain relations are necessary and thus proceeds in the opposite

direction. Hence, conclusions are rigorously deduced from prem-
ises whose truth status is regarded only as hypothetical at first;

only later are they empirically verified. This type of thinking

proceeds from what is possible to what is empirically real.

We may ask whether there is a simpler way to characterize

formal thought than by referring to the notion of hypothesis or

3 Based on the transitiveness of inclusions of classes or relations.
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possibility. Now, the most prominent feature of formal thought is

that it no longer deals with objects directly but with verbal ele-

ments; and at first we tried to contrast formal and concrete

thought in terms of this distinguishing factor. In fact, it is often

sufficient to translate a concrete operation into simple propositions

and deny the subject the use of manipulatable objects for working
out the operation in question for the problem to become insoluble

before the formal level. This is the case for the verbal problem:
TEdith is lighter than Suzanne and Edith is darker than Lily;

which is the darkest of the three?" It seems that no factors are

required for the solution other than a coordination of relations

"more x" and "less re,

1*

as in any serial ordering of asymmetrical

transitive relations. However, starting with the age of 7, the child

knows how to arrange small strips of wood in a series according
to length; he places the smallest of those which are left over each

time next to the strip he had just set in the series. Thus, for any
element E he coordinates the two relations E > D, C, B, A (al-

ready placed in the series) and E < F, G, H, etc. (remaining

elements). Thus, he can handle the two relations "more #" and

less x." Nevertheless, the verbal problem concerning complexion
is not solved until 11-12 years, although the concrete serial order-

ing of shades is no more difficult than setting lengths in series.

However, this is not the whole problem, for all verbal thought is

not formal and it is possible to get correct reasoning about simple

propositions as early as the 7-8-year level, provided that these

propositions correspond to sufficiently concrete representations.

Even if the content of the complexion problem requires nothing
more than serial order operations, the fact that it cannot be solved

in exclusively verbal terms until several years after the child can

solve it with the aid of physical props shows us that some other

factor is at work here. If we consider the mental images involved

in the problem we see how difficult it is for the subject to set up
the data in his own mind (because only the relations are given).
The result is that the subject is unable to translate the data into

representational imagery and has to formulate them in exclusively

hypothetical terms if he is to see the necessary consequences. This

conjunction between what is possible and what is theoretically

necessary makes it indispensable that the serial ordering opera-
tions used be inserted into a set of implications, made up of the
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relations which are to be ordered serially, which serve as an inter-

propositional form for the intrapropositional content itself.

When verbal statements are substituted for objects, a new type
of thinking prepositional logicis imposed on the logic of classes

and relations relevant to these objects. Here we see a second
fundamental property of formal thinking. However, prepositional

logic offers a much greater number of operational possibilities

than simple groupings of classes and relations. So in the first in-

stance and from the functional standpoint, formal thought differs

from concrete thought in that it offers a greater number of opera-

tions, aside from the question of operational structures (to which
we shall turn presently). The proof of this is that prepositional

logic appeared in its most characteristic forms as readily when the

subject dealt with our experimental apparatus as when he was con-

fronted with a purely verbal task. In the former case, rather than

have the subject apply his reasoning to data that were already

formulated, he was urged to set his own problems and work out

his own methods for solving them. Thus, one can see that the role

of formal thought is not simply to translate into words and propo-
sitions concrete operations that could have been performed with-

out its benefit anyway. On the contrary, it is in the course of

experimental manipulations that a new series of operational possi-

bilities arise during the early stages of formal thought; it consists

of disjunctions, implications, exclusions, etc. These operate as soon

as the subject starts to take in the factual data and organize the

experiment. They are even imposed on simple groupings of classes

and relations. Again, this is because, from the moment of contact

with factual problems, formal thought starts off with hypotheses

i.e.9 possibilities instead of limiting itself to a direct organization

of perceived data. Thus, in spite of appearances and current opin-

ion, the essential characteristic of prepositional logic is not that

it is a verbal logic. First and foremost, it is a logic of all possible

combinations, whether these combinations arise in relation to

experimental problems or purely verbal questions. Of course,

combinations which go beyond a simple registration of data pre-

suppose an inner verbal support; however, the real power of

prepositional logic lies not in this support but rather in the com-

binatorial power which makes it possible for reality to be fed into

the set of possible hypotheses compatible with the data.
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When we saw that a purely verbal criterion was inadequate to

define formal thought, we sought to define it in terms of a third

property; formal thought as a system of second degree operations.

Concrete operations may be called first degree operations in that

they refer to objects directly. For example, this is the case in the

structuring of relations between given elements. But it is also pos-

sible to structure relations between relations, as for example in the

case of proportions (our experiments show that proportions are

not mastered before the formal level). In this sense proportions

presuppose second degree operations, and the same may be said

of prepositional logic itself, since interpropositional operations are

performed on statements whose intrapropositional content con-

sists of class and relational operations. And obviously this notion

of second degree operations also expresses the general charac-

teristic of formal thought it goes beyond the framework of

transformations bearing directly on empirical reality (first degree

operations) and subordinates it to a system of hypothetico-

deductive operations i.e., operations which are possible.

In the light of the foregoing, it seems to be the case that the

most general property in terms of which we can characterize for-

mal thought is that it constitutes a combinatorial system, in the

strict sense of the term. Although it seems more restricted than

the characteristics we mentioned earlier, this property implies all

the others and thus is more general than they are. So the main

feature of prepositional logic is not that it is verbal logic but that

it requires a combinatorial system. Secondly, the combinatorial

operations are second degree operations: permutations are serial

orders of serial orders; combinations are multiplications of multi-

plications, etc. They do not in fact appear until the formal level,

either in the form of explicit
4 mathematical operations or in the

implicit form that they take in our present research (Chap. 7, etc.).

But even this opposition between combinatorial and noncombi-

natorial operations can be derived from the difference between

possibility and reality; only a formal combinatorial system fur-

nishes the total number of possibilities, and on the experimental
level the search for new combinations is exactly what character-

izes hypotheses. So however general it may be, the combinatorial
4 See La Gen&se de Tid6e de hasard chez I'enfant, Part III.
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nature of formal thought is secondary to a still more general prop-

erty i.e., the subordination of reality to possibility.

Thus, aside from the structural consequences it implies, the

most fundamental property of formal thought is this reversal of

direction between reality and possibility. And so we must use this

essential difference between concrete and formal thought as a

starting point in accounting for the form of equilibrium found

at this last stage in the development of thought.

Reality and Possibility in Formal Thought

We have just seen that concrete thought is the form of equilib-

rium toward which preoperational thought tends. When it ap-

pears, static situations and transformations are integrated into

a single system such that the former are subordinated to the lat-

ter and such that the latter form an operations structure attain-

ing reversibility by mutual compensation of the transformations.

But we have also seen that the scope of this equilibrium is still

limited, as much because of the form of the operations as because

of the resistance of the content. Since the instruments of general

coordination between the concrete operational groupings are lack-

ing, the subject still regards what is possible as but a direct exten-

sion of empirical reality. With the more complex instruments of

coordination found in formal thinking, a new form of equilibrium

appears, encompassing all the partial fields covered by concrete

thought and coordinating them into a general system. The links

of this system are at once the second order operations and the

combinatorial system by means of which prepositional logic

comes to assign reality a place within a structured set of possible

transformations. But before we can understand the nature of this

new equilibrating process, we must first spell out the meaning of

possibility and reality in formal thought.

I. The possibilities entertained in formal thought are by no

means arbitrary or equivalent to imagination freed of all control

and objectivity. Quite to the contrary, the advent of possibilities

must be viewed from the dual perspective of logic and physics;

this is the indispensable condition for the attainment of a general
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form of equilibrium; and it is no less indispensable for the estab-

lishment of the requisite connections utilized in formal thought.

A. From the point of view of physics, we know that a state of

equilibrium is characterized by compensation between all of the

potential modifications compatible with the links of the system.
Even in experimental physics i.e.., in the science relating to real-

ity in its most material aspect the notion of possibility plays an

essential positive role in the determination of the conditions of a

state of equilibrium. To the extent that psychology feels the need

to consider states of equilibrium as well, it is thus a fortiori indis-

pensable to resort to the notion of possibility expanded into the

notion of "potential" actions or mental transformations (in the

sense that the physicist uses when he speaks of potential accelera-

tion or potential energy). But, since the concept of equilibrium
even plays a role of some importance in perceptual theory, as

Gestalt psychology has shown us, it is even more useful in the

analysis of intellectual operations; for once an operational sys-

tem is established it may remain unchanged for the remainder of

a person's life.

So we are not being vague in stating that at the formal level the

subject subordinates reality to possibility and that this assertion

can be related directly to the theory of equilibrium states. First,

it means that when faced with a determinate situation the subject
is not limited to noting the relations (between the given elements)
that seem to thrust themselves on him. Rather, in order to avoid

inconsistencies as new facts emerge, from the start he seeks to

encompass what appear to be the actual relations in a set of rela-

tions which he regards as possible. In other words, to equilibrate
his successive assertions (which is equivalent to avoiding contra-

diction by subsequent facts), the subject tends to insert links,

which in the first instance he assumes as real, in the totality of

those which he recognizes as possible; he does this in a way that

allows him later to choose the true ones by the examination of

certain transformations performed accurately within the set of the

possible links, Possibility plays its role in this way from the

moment of the first spontaneous attitude taken by the formal level

subjects; and from their subjective point of view, it is the very
condition of the equilibrium of their thought.
But the following point arises as soon as we shift from the sub-



FORMAL THOUGHT FROM THE EQUILIBRIUM STANDPOINT 257

ject's to the observer's point of view: if the subject is to conceive

of the total set of possible links or transformations in a given
situation, he has to deduce them by means of adequate logical

operations. But this set of operations is still a system of potential
transformations with respect to physical equilibrium. (Of course,

only a part of the set is utilized in a particular situation or prob-

lem.) Only the operations actually at work in a given situation are

for the moment "real"; the others are merely potential. There are

two reasons why these potential operations (or logical transforma-

tions) are as necessary to functional equilibrium as the ongoing
or "real" operations: (i) they insure reversibility, and (z) they
can be developed as they are needed for the acquisition of pos-
sible new links.

Summarizing, in order to conceive of what is possible, formal

thought must have a wide range of operations ready for any par-

ticular situation, operations in addition to those which are being
made use of at any given moment. These potential operations are

a necessary condition of equilibrium for two reasons: (i) they

correspond to what equilibrium theory terms "potential transfor-

mations," and (2) equilibrium actually exists to the extent that

these potential transformations compensate each other exactly. Or,

in operational language, it exists to the extent that these possible

operations form a system that is strictly reversible from the logical

standpoint.

B. There is a second sense in which possibility plays a role in

formal thinking, namely the logical sense. In a new perspective it

will show us once more that the role of possibility is indispensable

to hypothetico-deductive or formal thinking. Logically, formal

possibility is the required correlate of the notion of deductive ne-

cessity. An assertion that refers to empirical reality only, such as

an existential or predicative judgment, could not be considered de-

ductively necessary; it is true or false insofar as it corresponds or

does not correspond to a factual datum. But a deduction logically

derived from a hypothesis (or from a factual datum assumed hypo-

theticaUy) is necessarily true from the formal point of view inde-

pendently of the value of the assumed hypothesis. The connection

indicated by the words "if ... then" (inferential implication)

links a required logical consequence to an assertion whose truth

is merely a possibility. This synthesis of deductive necessity and
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possibility characterizes the use of possibility in formal thought,

as opposed to possibih'ty-as-an-extension-of-the-actual-situation in

concrete thought and to unregulated possibilities in imaginative
fictions. But what is the nature of formal possibility? Anything
which is not contradictory may be called possible. But the non-

contradictory, strictly speaking, is the totality of reversible trans-

formations performed in such a way that the composition of an

operation and its inverse result in a product termed "identical"

or null: p.p = o. Thus, whereas from the standpoint of physics

operational reversibility signifies the exact compensation of poten-
tial transformations (or operations), from the logical standpoint it

refers to deductive necessity.

In the end, these two aspects of the concept of possibility, stem-

ming from physics and logic, are psychologically equivalent. In

feeding an actual set of conditions into a set of possible trans-

formations, formal thought guarantees its own equilibrium by

insuring that the structures it elaborates will be psychologically
conserved. At the same time it assures its value as a necessary

logical instrument in that it makes use of these structures as

deductive instruments. The mental equilibrium being determined

by a general operational structure, the notion of possibility acts in

two capacities as an equilibrium factor and as a logical factor.

Which of these is brought into play depends on whether the

observer deals with a problem from the standpoint of explanation,

which is for the most part the point of view of the observing

psychologist, or from the standpoint of understanding, which is

above all the subject's own point of view. This is why the reversal

of direction between reality and possibility, which marks the

advent of formal thought, is a turning point in the development
of intelligence, at least insofar as intelligence may be thought of

as an organization tending toward a state of equilibrium that is

both stable and mobile.

II. But we must go one step further, for psychological equilib-

rium cannot be reduced entirely to physical equilibrium. The

comparison between physical and psychological explanation of

the equilibrium state is as instructive for pointing up their differ-

ences as for pointing up their common aspects.

In physics a system such as a balance is said to be in equilib-
rium when afl of the potential energies (elevations of the weights
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at one side or the other as expressed as angular displacements)

completely compensate each other. From the standpoint of possi-

bility., on the other hand, the balance could be displaced in a

particular direction and consequently an opposing force would

appear which would reestablish the equilibrium. But as long as

these transformations do not actually take place, the "potential

energy" which defines the intervention of possibility in equilib-
rium theory does not, strictly speaking, exist outside of the mind
of the physicist. Certainly it is possible to maintain that it plays a

role in reality, but it is an essentially negative role; it explains
the fact that nothing changes if the system is not modified from
without. Thus, in a state of physical equilibrium, one must distin-

guish a "reality" which is causal and temporal and a set of "possi-

bilities" which are deductive, extemporaneous, and which reside

in the brain of the physicist who constructs the theory about

reality.

Psychologically, a system in equilibrium, such as the total num-
ber of relations understood by a subject who has succeeded in

explaining the mechanism of the balance, has two aspects to it,

one referring to reality and the other to possibility. On one hand
the subject really performs certain mental operations and organ-
izes certain relationships which really apply to the object which

he has before his eyes at a given moment for example, because

he perceives and conceives it effectively, the subject asserts that

the balance is horizontal and that a 2-kg. weight at a distance of

10 cm. from the axis compensates a weight of i kg. at 20 cm. from

the axis suspended from the other arm. But these real operations

and relations, real in the sense tihat they are used at a given mo-

ment, are not sufficient to account for the equilibrium attained in

the act of understanding, since in the latter an entire set of pos-

sible or potential operations and relations intervenes. However,
the line of demarcation between possibility and reality is much
more difficult to trace in psychology than in physics. But it is just

this difference between the two forms of equilibrium which is

most instructive for the study of formal thought and which we

may now analyze more closely.

First of all, we must distinguish carefully between two mean-

ings of the word possibility as it is used here. First, one may
speak of possible operations and relations in designating those
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which the subject himself regards as possible i.e., those which he

knows he is able to perform or construct, even without actually

trying them out We shall call this instrumental possibility. The
reader will see immediately that this is identical with our earlier

description of possibility from the subject's point of view. But one

could also mean by possibility the operations and relations that

the subject would be capable of performing or constructing with-

out his thinking of doing so i.e., without the subject's becoming
aware of the contingency or even of his own capacity with regard
to it. We shall call this structural possibility. Thus, it is possibility

defined by the observer rather than the subject.

Let us return to our example concerning "instrumental possi-

bility." In ascertaining the compensation between a 2-kg. weight
at 10 cm. and a i-kg. weight situated at 20 cm. from the axis, the

subject, although not performing the physical actions, may as-

sume that he might move tte 2-kg. weight by 5 cm. away from

the axis and likewise the i-kg. weight outward by 10 cm. In so

doing, he does not go beyond the realm of potential actions (actu-

ally, he does not move anything); still, the subject will deduce

that these two hypothetical displacements will maintain the ini-

tial equilibrium because the inverse proportion of the weights and

the distances will remain constant, etc. Returning to reality (the ac-

tual apparatus), he could verify his assertion. But, as he is deduc-

tively certain of the result, he could dispense with this verification.

In both cases, these possible actions will help him and will even

be indispensable to him if he is to understand the empirical data

(horizontal position of the balance for 2 kg. at 10 cm. and i kg.
at 20 cm.); thus, he will interpret the real relations as a function

of a set of potential actions and explain them as necessary conse-

quences of these possible operations or actions which are com-
bined among themselves.

But one can see immediately that these "instrumentally pos-
sible" operations or relations are, from the psychological point of

view, as real as the initial "real" operations or relations. It is only
from the subject's point of view that they appear as possibilities.

In other words, the subject distinguishes what is physically pres-
ent from the transformations which it would be possible to in-

troduce in the perceived system. But even when the subject's

performance is based purely on potential actions, these possible
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transformations are thought over and thus, psychologically, may
consist either in representations or in real operations. Hence, "the

instrumentally possible" is but a particular modality of the real

thinking of the subject. This modality gains a special importance
at the level of formal thinking when, as a result, the modality of

"reality" can be subordinated. Although this may contribute to

the stabilization of operational equilibrium to the extent that the

transformations effectively realized are further conditioned by
the transformations which the subject conceives of as possible, on
the psychological level this realm of the "instrumentally possible"
is not wholly comparable with potential transformations in the

theory of equilibrium in physics. To be more exact, it does not

correspond to anything in the physical realm, since it is interme-

diate between pure reality (immediately present relations) and

pure possibility (the "structurally possible") whereas in physics
no tertium intervenes between the immediate and the potential.

It is an entirely different situation in the case of "structural

possibility." For at the level of psychological equilibrium, "struc-

tural possibility" is wholly equivalent to the "potential transfor-

mations" of a physical system in equilibrium. Alongside the

operations which he has actually performed (either as actions as

such or as effective perceptions or as simple hypotheses "instru-

mentally possible"), the subject could have performed others,

which he has not either in action or thought. Instead of imagining
a displacement of 5 and 10 cm. for the 2- and i-kg. weights

respectively, he could have modified the weights themselves (in

act or mentally), or he could have diminished a distance on one

side and a proportional weight on the other, etc. It may even

happen that, without explicitly referring to it, the subject acts as

if he had utilized the operational schema of proportions; the same

question which for another subject would not have provoked a

conscious reaction for lack of an underlying structure would be

for the subject in question a starting point for an immediate

organization of new, well-formulated relationships. Thus, such

observations, which are common, will furnish the proof but only

after the fact that a determinate operation was "structurally pos-

sible" for one subject while it was not for the other. In short, in

any act of intelligence one must always consider both real opera-

tions, in the sense of those actually made use of in the subject's
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conscious thought, and "structurally possible" operations, in the

sense of those which the subject does not perform, but could per-

form. As we have seen above, it is this possibility, relative to the

operational structures which are available to the subject, which

constitutes possibility from the observer's point of view and which

thus corresponds in the field of physics to the potential transfor-

mations not actually realized.

But if we are to construct a theory of the psychological mecha-

nisms involved in operational equilibrium, we must give separate

consideration to each one of these two distinct meanings of the

notion of possibility even though, in this case, we are faced with

three analytic levels (the real, the instrumentally possible, and the

structurally possible) and not two (the real and the potential) as

is the case in physics. Indeed, the instrumentally possible is closely

related to the structurally possible of which it constitutes a first

stage of realization i.e.., it is insofar as the subject has access to a

large enough number of structurally possible operations that he is

enabled to imagine the instrumentally possible transformations.

Without a certain set of structural possibilities (and the conse-

quences of this lack are clearly evident at the preoperational and
even the concrete operational levels), he could not do more than

ascertain the state of the facts he perceives in reality, whether

static states or transformations in process, and would not succeed

in representing to himself the hypothetical transformations which
serve for devising new experiments. Thus instrumental possibility

depends on structural possibility, but the first is more impover-
ished than the second. For this reason, even if the former derives

from the latter at each instant, the two varieties must be carefully

distinguished, for the second is both theoretically and practically
of a much greater importance.

In these terms we can return to the comparison between the

physical and psychological concepts of equilibrium.From the phys-
ical point of view, only reality is of a causal nature, for the

potential or the possible plays a positive role only in the mind of

the physicist; in other words, possibility is only an instrument of

calculation or deduction, whereas reality alone is causal. But the

situation is entirely different in the case of operational equilib-
rium. For, in this realm, reality and possibility are both of a

psychological nature i.e., both have their locus in the subject's
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mind and causally intersect only within the mechanisms which
make up the subject's mental life. It is true that it could be main-

tained that only reality and the "instrumentally possible" (which
in this case is still part of psychological reality) play a role in the

subjects' minds, whereas the "structurally possible" is a concept
that refers not to the subject himself but to the psychologist who
attempts to analyze and explain the subject's behavior. In this

case there would be complete parallelism between the physical
and psychological points of view. However, to the extent that the

"instrumentally possible" is conditioned by the "structurally pos-
sible" and all of the research described in this work leads to this

conclusion we must exclude the notion of not attributing the

structurally possible to the subject as such.

But then we are led to the paradoxical consequence that, in a

state of psychological equilibrium, possibility (both structural and

instrumental) plays as important a causal role as real operations.

It could even be maintained that the whole of mental life is domi-

nated by this sort of causality of the possible.

As for "instrumental possibility," this assertion does not con-

tain anything that is especially surprising and it corresponds to

the universally acknowledged fact that "hypothesis" plays a role

in the functioning of thought. The causal function of instrumental

possibility is actually hypothesis behavior, behavior which permits
the subject to go beyond what he perceives or conceives while

admitting the validity of the present situation and to involve him-

self in that which can be conceived without an immediate deci-

sion concerning its verification. From sensori-motor trial-and-error

transfer to the most sophisticated experimental hypothesis, adap-
tation to present reality is complemented by a progressive adapta-
tion to future reality. Thus possibility enters the adaptation

process, in the field of adaptations indispensable to action, in the

form of the potential future, since, when an internalized action

becomes an operation, possibility intervenes at each bifurcation

i.e., in every case in which the subject, after having imagined
where each of two or several possible courses of action leads,

must make a choice. Finally, at the formal level, hypothesis inter-

venes from the moment of contact with reality insofar as immedi-

ate fact is thought to admit of giving rise to several interpretations.

But this causality of the "instrumentally possible" has nothing
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mysterious about it, since to think about a possible event by virtue

of thinking itself is (and we repeat) to perform one or several

real operations.

On the other hand, the potential causality related to the "struc-

turally possible" raises a completely different problem but one

which is much more important how can the operations actually

performed be causally affected by operations which are not acces-

sible to the subject, at least not at the conscious level, and which

sometimes remain latent to such a degree that they never belong
in an explicit form to the subject's realm of available knowledge?
Let us first note that such a problem is by no means limited to

the psychology of logical operations or even to psychology in

general. In embryological theory for example, note is taken of

partial or total "potentialities" whose appearance is linked with

a determinate level of development and only a portion of which is

actually realized. So it is difficult to accept the notion that these

limited realizations are independent of the entire system of "poten-
tialities" from which they carry a given segment of possibility over

into reality. If, in psychology, we accept the view that the devel-

opment of mental functions is linked to the maturation of the

nervous system (a hypothesis which is a simple extension of the

embryological point of view just mentioned) it follows as a matter

of course that a coordination could appear in a potentially gen-
eral form although it would first give rise to certain specific

applications only. These latter, though the only ones realized,

depend on the system of possible coordinations which appear
as innate possibilities and which are more or less retarded in

maturation.

Without committing ourselves to such hypotheses, we may note

that the causality of possibility is resorted to in an implicit way
more often than one would think by those studying mental proc-
esses and even general biology. But as regards our present prob-

lem, the frequency of certain synchronisms bears witness to the

causal role of possibility; for these synchronisms would seem
to be inexplicable if one or more integrated structures were not

organized at a given moment as sources or reservoirs of possible

operations. Only some of these come to be realized, but their

realization is a function of the total system and consequently a

function of the potential as much as the actual.
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Beginning at the level of concrete operations, we have observed

the striking fact that although they do not see the relationship
between two objectively analogous problems and do not know
that they are applying similar operations to them, on the average,
the subjects react synchronously in the same manner to the two

problems at a given level. For example, if the substage II-B sub-

jects' responses to the balance scale problem are compared to their

responses for the toy-dumping-wagon problem (Chap. 12), it is

clear that at 9-10 years the subjects begin to establish an inverse

correspondence between weights and distances (from the axis) in

the first case and begin to understand in the second that the more
the rail is inclined, the more the wagon weighs. But in the second

case they bring in the concept of work while in the first case they
have no conception of it; nevertheless, the operations of relating

weights to distances from the center or to the height is the same

in both cases. In either situation, the child understands that the

force exerted by the weight changes as a function of the spatial

relationships. Likewise, weight is related to volume at the same

levels in the most varied problems without the subject's appealing

explicitly to analogies. A great many examples of the same type
could be furnished from the concrete level.

At the formal level, the synchronization of like reactions in the

face of analogous problems is still more striking. For, in contrast

with the preceding level, the operational form is entirely dissoci-

ated from thought content. Beyond the possibility of reasoning

formally i.e., by implications, exclusions, disjunctions, etc. we
see concepts of proportions and especially combinatory considera-

tions 5
appearing at the same level in the most diverse areas. It is

as if the system of possible operations were an internal network

along which a given thought content, once it had engaged the

network, spread out immediately in all directions at the same time.

Thus the causal role of possibility is manifested as a kind of

action of implicit schemata on explicit operations, the latter being
determined not only by the cognitive acts actually performed just

prior to the new operation but by the totality of the operational

field constituted by the possible operations.

Certainly, nothing is more dangerous than recourse to the

5 Not taught in class. The schema of proportions also appears in many cases

before its scholastic introduction.
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implicit i.e., to the potential. But there are safeguards permitting
the dissociation of the abusive usage of the concept (such as the

passage from the potentiality to the act) and its legitimate usage.
The true potential differs from the false in that it is calculable

and is simply a response to the exigencies of the conservation of

the total system (as the potential in physics). But in the case of

"structurally possible" operations we are faced with a legitimate

potential, since there are algebraic instruments which enable us

to uncover the role of general structures and to calculate their

extension as well as the elements. The following chapter wiU
demonstrate this point.

Meanwhile, let us limit ourselves to the following conclusion:

in a state of physical equilibrium reality alone is causal and pos-

sibility relates only to the mind of the physicist who deduces this

reality; in contrast, in a state of mental equilibrium the succession

of mental acts is affected not only by the operations actually per-

formed but also by the entire set of possible operations insofar as

they orient the subject's searching toward deductive closure. For

in this case it is the subject who deduces, and the possible opera-
tions are part of the same deductive system as the real operations
he performs.

6

The Problem of Structures

Despite this difference between physical and mental processes,
it remains true that in both cases a system is in equilibrium when
all of the potential transformations compatible with the system
links compensate each other. This physical definition of equilib-
rium corresponds in the mental field to the following considera-

tions: the state of factor reality corresponds to the operations

explicitly performed by the subject, whereas the potential trans-

formations correspond to the possible operations that the subject
could perform and that he may explicitly perform later on but

which he has not or has not yet performed at the moment con-

6 From the standpoint of applied psychology, this is equivalent to saying
that a subject should be evaluated not only by what he actually does but also

by what he could do in other situations i.e., by his "potential" or his apti-
tudes.
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sidered; the system links correspond to the givens of the problem
posed Le. 9 to the content on which his operations are exercised.

Our problem is to find the point at which it can be said that

equilibrium is attained for such a mental system.
In the first place, it is not attained as long as the problem is not

solved i.e., as long as it is still necessary to perform explicit

operations. But here we must distinguish between two cases:

(i) where the subject possesses all of the methods and all of the

operations required for the solution; and (2) where he has not yet

acquired them. Naturally, in the second case it would not be

possible to speak of equilibrium, since a more or less considerable

effort must still be provided before the question posed may be
considered as resolved. In the first case, if there is still disequilib-

rium, it is only momentary and partial i.e., relative to the single

new problem whose solution is not immediately visible. For the

rest i.e., for the entire set of methods and operations which the

subject utilizes in the solution of problems of this class it can be

said that even in a permanent sense equilibrium is attained, since

the subject has become capable of solving all similar problems.

Thus, as in a physical equilibrium, equilibrium of this type is

characterized by the compensation of the total number of poten-
tial transformations. This is equivalent to saying that once the

data are given the subject can submit them to an indefinite

number of operational transformations beyond those which he

chooses in trying to answer the question posed but that these

transformations are relative to a structure (the integrated structure

of the operations available to the subject) and that this structure is

reversible. There is then an equilibrium, because to each trans-

formation that the subject could perform (as a function of the

operational structure considered) there is a corresponding inverse

possible transformation that could also be realized. Or, stated in

simpler fashion, the system is in equilibrium when the operations

which the subject is capable of constitute a structure such that

these operations can be performed in either one of two directions

(either by strict inversion or negation or reciprocity). Thus, it is

because the total set of possible operations constitutes a system
of potential transformations which compensate each other and

which compensate each other insofar as they conform to laws of

reversibility that the system is in equilibrium. The operational
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reversibility and the system equilibrium constitute, after all, a

single unified property, and it is because the possible operations

are reversible and mobile (i.e., can be combined in all ways, but

with a complete liberty for a return to the initial starting point)

that possibility acts in a continuous manner on the choice of new

operations to be performed.
If such is the nature of operational equilibrium, the solution

of the problem of formal thought is to be sought in an analysis of

the structural integration which characterizes formal operations in

contrast to concrete operations. On the one hand, the functioning
of the equilibrium such as we have just attempted to describe

implies the existence of an integrated structure, since only an in-

tegrated structure can explain the presence and the extent of the

possible operations as well as their influence on the performed

operations. On the other hand, as we have seen, formal thought is

characterized by reversal of direction between reality and pos-

sibility in that the first is subordinated to the second and the

second acquires an importance unknown up to this point. But

here as well, if we are to determine the proportions between real

operations and possible operations at the concrete and formal

levels as well as the indefinite extension of the second to this

latter level, we must compare the structural integrations of the

operations involved in the two cases. This comparison will be

undertaken in the next chapter.

But first, several further remarks are in order on the choice of

the logico-mathematical instruments which we shall make use of

in this analysis. When the problem is to determine the "factors"

involved in a mental effort or simply the correlations between
various returns, it seems obvious to psychologists that the mathe-

matical methods of factorial analysis or probability calculation

should be used, since they do not bias the results. But we must
ask ourselves whether there are methods which are as precise as

these in their calculational technique (and as objective as analytic

instruments) which can resolve the question of the structural

integration of operations.

The answer is yes. For several decades, mathematicians have

striven to isolate the integrated structures which are found in the

most varied areas but whose structural laws are independent of

any application to a particular realm. Synthesizing the results
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already acquired in this field and adding the original contribu-

tion that their efforts at revising the principles of mathematics

have made possible, the Bourbaki in their remarkable works have

reached the conclusion that there are three kinds of basic struc-

tures of which the multiple combinations explain all of the others:

(i) algebraic structures whose prototype is the "group"; (2) the

order structures one of whose principal forms is the "lattice*'; and

(3) the topological structures relative to the continuum.

But, leaving aside the topological structures, since they are not

relevant here,
7 we see that group and lattice structures are com-

mon to both mathematical and logical operations. In other words,
the general analytic instrument forged by mathematicians is as

valuable in the qualitative study of the structures found in think-

ing as in any other structural research. It is easy to discern the

lattice structure in the prepositional calculus of symbolic logic,

and we have shown elsewhere the multiple forms under which the

group of four transformations (Vierergruppe or "Klein group")
8

reappears.
Thus it is not as logic (for logic has no more place in psychology

than psychology does in logic), but as a calculus or an algebra that

we are here using symbolic logic. Considered in this perspective,

symbolic logic is badly needed at this point as an analytic tool

for at least two reasons.

First, such an analytic instrument is generally the only possible

one for determining the exact extent of possible operations. We
know, for example, that with i, 2, 3, 4, ... propositions, it is pos-

sible to organize respectively 4, 16, 256, 65,536, etc., operations,

and it is even easy to enumerate them one by one an interesting

exercise up to the 256 ternary operations. Moreover, it makes it

possible to demonstrate that these numbers, increasing by the

square with disconcerting rapidity in proportion to the operations

which will actually appear in the subjects* performance in an

experimental situation, are not actually independent of each other;

thus it is possible to reduce the 256 ternary operations to pairs or

trios of binary operations or unitary-binary operations.

But especially, and this is most important for the problem at

7 But topological structures do correspond to what we call infralogical

operations (see Chap. 17, p. 273, note 2).
8 See Piaget, Essai $ur les transformations des operations logiques.
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hand, using symbolic logic as a means of analysis makes it pos-

sible to show that these sets of operations do not consist of simple
series of juxtaposed elements; on the contrary, these collections of

elements have structure as wholes. These wholes are the inte-

grated structures of formal propositional operations (equivalent to

the concrete groupings of classes and relations) which it would be

instructive to analyze in order to resolve the psychological prob-
lems posed in the present work. In this respect, symbolic logic

allows for an analysis which goes more deeply into the heart of

intelligence than arithmetical or statistical calculations. Whereas
the latter bear either on the results of operations or on "factors"

which do not directly furnish meaning, the qualitative analysis

available to symbolic logic reaches the structures themselves

i.e., the operational mechanism as such and not simply its results

or its more or less general conditions.

Of course, such a use of structural analysis implies that experi-

mental results and theoretical analysis will be continually com-

pared with each other. From the experimental standpoint, intel-

ligence is first a coordination of acts then operations which orient

themselves step by step toward certain forms of equilibrium. But

these equilibrium forms, which are of vital importance in the

explanation of development, can be analyzed from both perspec-

tives, the genetic or experimental and the theoretical. In genetic

logic, empirical research consists of determining, by tests appro-

priate to the various levels of evolution, which operations are

involved in the subject's cognitive acts and how these operations
are gradually organized into structures to the point where certain

empirically verifiable forms of equilibrium are reached. On the

other hand, theoretical analysis describes these same structures in

their general or abstract aspects so as to show how the most com-

plex can be derived from the simplest, and it determines the sys-

tem of possible operations which would permit the utilization of

this or that actually performed operation.
It is clear from the start that these two types of research can

be mutually reinforcing in furthering our understanding of

cognitive equilibrium states. We have tried to understand the

transition from the concrete to the formal level in the thinking of

childhood and adolescence by proceeding from this continual

comparison of their results, after having sought in vain for the
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criteria of formal thought in verbal primacy, in second-degree

operations, etc.

Moreover, it is clear that such recourse to the theoretical analy-
sis of structures in no sense constitutes logical investigation.

Throughout, the question is a psychological one; the calculus of

symbolic logic is brought in as an analytical instrument insofar

as it is a more general algebra than the elementary algebra
founded on numerical operations. If we may compare those sci-

ences in the process of growth with the sciences which have
attained full control of their methods, experimental psychology
can be seen as corresponding, on the mental level, to experimental

physics in the study of matter, -with pure symbolic (or axiomatic)

logic corresponding to mathematics. As for the discipline which
deals with constructing a theory of mental operations by means
of symbolic calculus, its relationship to experimental psychology
would be comparable to the present day relationship between

laboratory and mathematical physics. It would remain a branch
of psychology, as mathematical physics is a branch not of mathe-
matics but of physics. But it would utilize the algebra of symbolic

logic as an analytic instrument in the same way that mathematical

physics now makes use of the techniques and notation of mathe-

matics.



17

Concrete and

Formal Structures

IN THE LAST CHAPTER we distinguished between concrete and

formal equilibrium in that the second entails a gradual extension

of the totality of potential or possible operations. In the present

chapter, we will go on to compare the total structures which fit

each of the two equilibrium states.

The Groupings of Concrete Thought

As we have just seen (Chap. 16), any state of equilibrium can be

recognized by a characteristic form of reversibility. Consequently,
in those cases where the equilibrium reached by thought processes

is of an operational nature (as at stages II and III), this reversi-

bility acts as the vital mechanism for the structural integration

which each particular form of equilibrium calls up.

Reversibility is defined as the permanent possibility of return-

ing to the starting point of the operation in question. From a

structural standpoint, it can appear in either of two distinct and

complementary forms. First, one can return to the starting point

by canceling an operation which has already been performed

i.e., by inversion or negation. In this case, the product of the

direct operation and its inverse is the null or identical operation.
272
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Secondly, one can return to the starting point by compensating
a difference (in the logical sense of the term)-i.e., by reciprocity.
In this case, the product of the two reciprocal operations is not

a null operation but an equivalence.
Inversion and reciprocity are necessary conditions of equilib-

rium for the most elementary behavior as well as for the most

highly organized operations. Thus, with variations in form they
are found at all developmental stages. Even at the perceptual
level (although there is as yet no complete reversibility), we find

inversion operative when elements are added or taken away and

reciprocity in symmetries and similitudes. But since we are not

directly concerned with the preoperational forms of inversion and

reciprocity in the present work, we shall only analyze the forms

found in concrete and formal operations.

But when we compare the structural integrations of concrete

and formal thought, we immediately encounter important differ-

ences between them. Whereas formal structures bring together
both inversions and reciprocities in a single system of transforma-

tions (in the I N R C group), concrete structures or "groupings'*

of classes and relations derive from either inversion (classes) or

reciprocity (relations), but entail no general synthesis of the two

forms of reversibility.
1

To summarize our descriptions of the respective structures, we

may remind the reader that in the most general sense concrete

logical operations are actions performed on objects to bring them

together into classes of various orders or to establish relations be-

tween them. One can also distinguish infralogical operations from

concrete classifications or relational operations; their function is

to integrate the parts of objects into a spatio-temporal whole

i.e., a permanent object and to place or displace these parts in

continuous configurations.
2 However, from the standpoint of the

present work, infra-logical operations can be reduced to the

logical operations of class inclusion or relations.

However, the integrated structures of classes and relations

1 Of course, there are many systems of classes and relations which do syn-

thesize the two, but these systems are based on the "structured whole" and

not on simple groupings. Moreover, since they are isomorphic with preposi-

tional systems, they do not appear before the formal level.

2 Moreover, these operations can be described in terms of topological struc-

tures (see Chap. 16, p. 269, note 7)-
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which govern concrete operations are limited to bringing classes

or relations together by a class inclusion or contiguous linkage
which moves from one element to the next. Since they involve

only contiguous class inclusions and fail to organize the combi-

natorial system essential to the "structured whole," which alone

makes possible the synthesis of inversions and reciprocities in a

single system, they do not develop beyond incomplete groups or

semi-lattices.

It is in this sense that concrete class structures consist exclu-

sively of simple (additive) or multiple (based on multiplicative

tables or matrices) classifications. Since the concrete level subject

has no combinatorial system to furnish all of the sub-sets of classes

which potentially can be formulated within a given system, for

him each class depends once and for all on those with which it is

included at a given moment (A is included in B, B in C, etc.) and

is formulated by opposition to its complement in relation to the

class immediately above it (A'~B A; B' = C B; etc.).

These structures are based exclusively on reversibility by inver-

sion. They permit the subject to add two contiguous classes to

form a single one (A +& = B) or to subtract a class from the

whole formed by addition (A = B A'); he can also multiply
two classes by each other (Ai X ^2 = AI A2) or abstract one from

the whole formed in this way (Ai A2 : A2 = AI); but the general

form of reciprocity fails to appear in these systems.

Concrete structures of relations coordinate complete equiva-
lences (equalities) or partial equivalences (alterites) in the case of

symmetrical relations or serially ordered differences in the case

of asymmetrical transitive relations (ordered series or serial link-

ages). In addition, they enable the subject to handle multiplicative

systems (correspondences, etc.). Thus the reversibility character-

istic of concrete systems of relations consists of reciprocity. For

example, a symmetrical relation such as A ~ B is identical with

its reciprocal B A. For asymmetrical relations, if A < B is true,

its reciprocal B < A is false; but if they are both true (A ^ B)

they can be reduced to A = B i.e., to an equivalence. An asym-
metrical relationship such as A < B expresses the existence of a

difference between the terms A and B; if this difference is can-

celed or if it is expressed in the opposite direction in the form

B > A, the equivalence A = B, or A = A is again encountered
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without the terms themselves being canceled. Thus we see that

such systems cannot handle reversibility by inversion (negation),
for inversion bears on the terms of the relations involved .e., on

classes, and not on the relations themselves.

In sum, the elementary "groupings*' which constitute the only

integrated structures accessible at the concrete operational level

can be distinguished from formal structures on two counts:

1. The groupings are systems of simple or multiple class inclu-

sion or linkage, but they do not include a combinatorial system

linking the various given elements n-by-n. As a result they do not

reach the level of a fully developed lattice structure, which would

imply such a combinatorial system ("structured whole"); instead,

they remain in the state of semi-lattices;

2. The mechanism of reversibility consists either of inversion

(for classes) or reciprocity (for relations), but the two are not

integrated into a single system. Consequently, they do not coincide

with the group structure of inversions and reciprocities (the

I N R C group which will be discussed more fully below) and

remain in the state of incomplete groups.

To clarify the point, let us return to the multiplicative group-

ings or several-entry tables (matrices), the most complex group-

ings brought into play in concrete thinking. In the flexibility prob-

lem (Chap. 3) we saw how the stage II subject constructs tables

for class multiplication. Here we must limit ourselves, for pur-

poses of simplification, to the classes of brass rods (Ai) and non-

brass rods (A'i), and rods which are sufficiently flexible (A2) or not

sufficiently flexible (A'2 )
to reach the desired level. We see that

the stage II subject can easily construct the four following multi-

plicative classes:

Ai A2 + AI A'2 + A\ A2 + A'a A'2 .

Now let us suppose, as is actually the case, that all four pos-

sibilities occur in fact. The subject cannot conclude from his table

alone either that brass rods tend to be more flexible or the con-

trary. How will he go about trying to solve the problem after he

realizes this?

At the concrete level (stage II), the subject will simply continue

to classify or to order the empirical data in series, for he does not

know how to set up more than multiplicative associations and



276 THE STRUCTURAL INTEGRATION OF FORMAL THOUGHT

correspondences. For example, he might ascertain the occurrence

of classes AiA2A3 (where A3 stands for circular cross-section bars)

and AiA'oA'a, from which he will conclude that inflexible brass

rods (AiA'o) do not bend because they do not have a circular

section form (A'3); etc. With this method he may come to isolate

a certain number of factors by successive associations (between

classes) and correspondences (between relations) (Chap. 3), but

he will never be able to enumerate the factors exhaustively or to

demonstrate conclusively the effects of those factors which he

does discover, since he lacks a systematic method, notably the

procedure of varying a single factor at a time while holding the

others constant.

What then is the structural basis of this systematic method? If

we turn by way of illustration to the behavior of the stage III

subjects in the same experimental situation, the difference be-

tween simple multiplicative associations and n-by-n combinations

becomes apparent. The formal level subject, when he encounters

the four initial classes AI A2 + AI A'2 + -A'l ^2 + A'i A'2 and after

he has discovered that factors other than AI and A\ must be

called upon to explain the result of A2 or A'2, will immediately
ask himself how many combinations are possible within the frame-

work of these four classes. Thus he will formulate hypotheses of

this type:

1. If no disturbing factors are present, only cases AI A2 -j-

A'i A2 + A\ A'2 actually occur (case AI A'2 does not occur if AI
is not accompanied by a factor excluding A2). Once these three

associations are set up, the subject is led to assume that factor AI,

once isolated, always entails result Ag, but that it is not the only
factor which can produce this result (implication);

2. But it could also happen that only cases AI A'2 + A'i A2 +
A'i A'2 occur (in this case AI A2 being the result of the interven-

tion of a factor producing A2 in spite of the presence of AI). The
occurrence of these three associations would signify that there is

a relation of incompatibility between AI and A2 .

In short, instead of simply multiplying classes by successive

associations, the stage III method is based primarily on sorting the

four classes AI A2 + AI A'2 + A'i A2 + A'i A'2 within the set of

the combinations possible when they are taken n-by-n. There are
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sixteen possible combinations, which can be enumerated as

follows:

( i) o (6) A! A2 + Aa A'2 (11) A'i A2 + A'i A'a

(a) AI A2 (7) A! A2 + A'i A2 (ia) AI A2 + Al A'a + A'i A2

(3) A! A'a (8) A! A2 + A\ A'2 (13) A! A2 + Ax A'a + A'i A'a

(4) A'i A2 (9) A! A'a + A'i As (14) AX A2 +A'i A2 + A\ A'2

(5) A'i A'a (10) A! A'a + A\ A'2 (15) AI A'a + A\ A2 + A'i A'a

(16) A! A2 + A! A'a -f A'i A2 + A'i A'a

Obviously, it would be useless for the subject to construct such

a table in its complete form. The main point is simply that when
he encounters the four cases AI A2 + AI A'a + A'i A2 + A'i A'2,

the potential relationships between AI and A2 are seen as multiple,

(And the experimental behavior of the adolescent demonstrates

conclusively that he actually proceeds in this way.) In fact, the

expectation on which the reasoning of the adolescent is based

from the moment he first observes the associations of variables

and results which actually occur is that there is a multiplicity of

possible links; he assumes that only certain associations will re-

main true once the other factors are eliminated. In other words,

the initial choice of the true relationships necessarily implies a

combinatorial system. Hence (as we have repeatedly emphasized),
however simple it may appear on the surface, the utilization of

proof based on the schema "all other things being equal" is in

itself a reliable sign of the presence of the combinatorial struc-

tures. For unless he tries to select the combinations which occur

from the total number of possibilities, the subject would not feel

the need to go beyond the empirically occurring associations to

separate out the variables. Rather, he would be limited to accumu-

lating new associations. On the other hand, if he is to isolate the

combinations which actually occur, he has to begin by conceptu-

alizing at least some of the possible combinations; thus he must

make use of a combinatorial system.

In conclusion, the concrete grouping structures lack the com-

binatorial system inherent in the organization of the "structured

whole." Said differently, prepositional operations (implication,

etc.) are not utilized at the concrete level, since these interpropo-

sitional operations are based on the same combinatorial structure.
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So the first difference between elementary groupings of classes

and relations (classifications, serial orders, and multiplicative cor-

respondences) and the combinatorial structure is that the former

are only semi-lattices while the combinatorial structure is a com-

plete lattice. What is more, each of the operations comprised in the

structured whole has both an inverse and a reciprocal. Hence the

second essential difference between concrete groupings and

the system of formal operations is that the former does not have

any single group linking inversions and reciprocities in the midst

of elementary groupings; the structured whole can be said to be

present as soon as this group comes into play.

However, it is not enough to point out the differences between

concrete and formal operations or to bring them all together in the

development of a "structured whole." We must go on to examine

how the transition from concrete to formal prepositional opera-

tions actually comes about. In other words, we must find out what
leads the n-12-year-old child to organize "structured wholes."

The Transition from Concrete Operations of Classes

and Relations to Interpropositional Operations

As a methodological experiment, we took the successive asser-

tions of some stage II and stage III subjects and tried to reduce

them entirely to logical formulae; our purpose was to see in which
cases the subjects reasoned through arrangements of classes and

relations and in which cases they used propositional operations.
The attempt was very instructive. It was nearly impossible to

decide between the two when we took any particular isolated

statement as a point of reference. The question is psychologically

meaningful only when the subjects' entire reasoning or a suf-

ficiently systematic series of inferences is taken as a context. Con-

sider, for example, the proposition: "This rod bends because it is

made of steel." Can we say that it involves a class operation, in

this case one which would be based on the transitiveness of

inclusions and belongingness: "This bar is steel" and "All steel

bars are flexible"? Or is it a true implication: "If a bar is steel,

then it is flexible"? The second alternative would presuppose con-

sideration of the three conjunctions (p.q) v (p.q) v (p.q). Similarly,
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does a proposition which contains the word "or" translate a simple

partial disjunction into classes or the prepositional disjunction

(pvg)? Etc.

But it is fruitless to look for an exclusively verbal or linguistic

criterion e.g., considering all statements containing the words
"if ... then" as implications while regarding the statements

which do not contain them as inclusions or correspondences, etc.

Rather, only certain expressions are conclusive indices. When a

subject says, "If it were (such and such a factor) that played a

part, then you should find (such and such an unobserved conse-

quence)," one can be sure of the hypothetico-deductive and con-

sequently prepositional nature of the operations involved. But in

the majority of cases language remains implicit and the subject
does not disentangle the details of his inferences. Moreover, the

details of verbal expression vary between subjects and sometimes

even from moment to moment for a single subject. All in all, the

subjects* language expresses their thoughts only in a rough way.
A second and more adequate method is to compare all of the

statements and particularly the actions of a single subject It then

becomes clear whether he is limited to a simple registration of

the raw experimental results, forming only the classifications,

serial orders, and correspondences he sees as sufficient for solving

the problem, or whether he tries to separate out the variables. The
latter implies both hypothetico-deductive reasoning and a com-

binatorial system; when they appear, we have to interpret the

stated judgments as prepositional expressions, since the links be-

tween the successive statements (whether explicit or implicit) con-

sist in interpropositional operations.

But the third and surest method of differentiation (which is

actually a simple specialization of the second) is to analyze the

proofs employed by the subject If they do not go beyond observa-

tion of empirical correspondences, they can be fully explained in

terms of concrete operations, and nothing would warrant our

assuming that more complex thought mechanisms are operating.

If, on the other hand, the subject interprets a given correspond-

ence as the result of any one of several possible combinations, and

this leads him to verify his hypotheses by observing their con-

sequences, we know that prepositional operations are involved.

However, in using such a procedure, are we merely begging
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the question? Let us go over our method. We begin by defining

concrete operations as independent of any combinatorial system,

whereas formal operations are said to require a combinatorial sys-

tem. Now, we readily admit that on the basis of language alone

we cannot tell whether an isolated statement is concrete or formal.

To do so we must examine the subject's train of reasoning; this

examination enables us to distinguish between the presence and

absence of a combinatorial system, but it subordinates the distinc-

tion between formal and concrete to a preconceived interpreta-

tion. The reader may object that this allows us to take any series

of statements of a subject and translate it according to whim into

either prepositional language (even statements made at the earlier

stages) or class and relational language (up to and including the

later stages). There is no doubt that it is always possible to

express prepositional operations in the language of classes at the

formal level. But, this can be done only on condition that a "struc-

tured whole" is introduced i.e., a combinatorial system as distinct

from the elementary groupings which can alone be observed in

the 7-8- to n-12-year stages. Conversely, the operations inherent

to these groupings (classifications, etc.) could be expressed in

prepositional language. But, if this were done, our analysis of the

interpropositional combinatorial system would not be exhaustive,

and we would be using a complex language for describing phe-
nomena which do not go beyond much simpler structures in the

subject's mind. This would be a mistake in psychology analogous
to explaining the first "natural" numbers (which the child con-

structs on his own) in terms of a more general mathematical struc-

ture applicable to all "real" numbers.

If we accept the task of describing the structures which actually

operate in the subjects' minds, we have to use the criteria fur-

nished by the combinatorial system in distinguishing between
concrete ("elementary groupings'* of classes and relations) and
formal ("lattice" and "group" of prepositional operations) opera-
tions. But it is also clear that the transition is not completely
discontinuous and that there must be many intermediate steps.

We must now give an account of continuity of steps between
these two clearly distinguished types of operations.

Moreover, both the continuity in development shown by the
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existence of transitional phases and the difficulty of determining
the exact boundary line between concrete and formal thinking
described above are highly significant; they show us the degree to

which more sophisticated forms of thinking, rather than being
immanent from the start, derive from earlier forms. If someone
wanted to say that an a priori form of reasoning accounts for the

development of formal structures, he would have to accept the

burden of proof for the fact that this a priori form emerges so late.

Of course, he could always call on the effect of a late-maturing
nervous structure, and such a structure is probably a necessary
condition of the development of combinatorial operations. But
the neurological explanation cannot in itself be sufficient because

the occurrence of transitional phases shows that the new opera-
tions derive from earlier ones. Given this fact, it must be that a

continuously operating equilibration factor plays a role beyond
that of purely internal conditions of maturation, and the problem
is to understand how a tendency toward equilibrium or its results

can lead the subject to organize a formal combinatorial system.
Of course, it is important to attribute part of the developmental

process to practice and to acquired experience. But it is equally

important not to overemphasize their roles, for if experience were

the only determining factor in learning, both the correct registra-

tion of the empirical data and their translation into the language
of prepositional logic would be present at the earliest levels (here

we see the theses of "logical empiricism"). If this were so, we
should not understand why data reading remains inadequate for

such a long period or why prepositional logic appears so late. But

if operations are conceived of as a series of increasingly more

complex coordinations deriving from one another, with the sim-

plest proceeding from irreversible action, it becomes clear why
the final equilibrium, based on combinatorial operations, is estab-

lished so late. The subject has to separate means from goals

before he can render his behavior reversible. The first reversible

coordinations are elementary groupings that are still very close to

object manipulation. Then, since he does not begin immediately

to dissociate form from content in any complete manner, he must

reconstruct these various groupings in the heterogeneous empiri-

cal factors which experience presents one after the other. It is
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only after the different contents of experience are structured by

degrees that a general formal mechanism begins to emerge through
coordination of heterogeneous factors into a whole.

Thus, the circumstances in which the transition from concrete

to formal logic occurs are these: after the subjects have struc-

tured a number of qualitatively heterogeneous factors (linear

lengths, surfaces, weights, rates of speed, time, etc.) at various

stages (or at the same stage but without perceiving the interrela-

tionships), they discover that in many real situations variables are

interdependent i.e., that the independently structured factors

may overlap. For example, one effect may be the result of sev-

eral concomitant causes, or a single causal factor may be masked

by several noncausal but concomitantly varying factors. Whereas

concrete operations proceed from one dimension to the next,

sooner or later reality will present a multifactor situation in which

variables are mixed.3 For such complex situations, new operational

instruments have to be forged.

When this happens, the subject may employ either one of two

methods, depending on whether he tries to coordinate the results

of concrete operations i.e., to resolve the apparent contradic-

tions due to the interaction of factors in a complex situation or

whether he tries to coordinate several of the concrete grouping

operations among themselves. Both of these methods lead the sub-

jects to discover formal prepositional logic. They entail: (I) sepa-

rating out the raw empirical data i.e., the variables structured

through concrete operations alone in such a way as to coordinate

the results of concrete operations as a function of the various

possible combinations; and (II) coordinating the various group-

ings of classes and relations into a single systematic whole. Fur-

thermore, however different these two procedures may appear on

the surface, it can be shown that they can be reduced to a single

mechanism, for both are based on the combinatorial system. Thus
the real problem is to understand the origins of this system.

I. Our observations show that at the level of concrete opera-
tions the subject tries to structure reality as completely as pos-
sible but that he remains close to reality in its raw form i.e., as it

3 If, in fact, the causal series are completely independent, such a mixture
of variables becomes a random distribution, but, to the extent that it is not

random, some mutual dependence is present.
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appears without isolation of variables. When the subject classi-

fies, orders, formulates correspondences, etc., he registers the facts

directly without adopting a critical attitude toward the empirical
world or adopting systematic methodological precautions. This is

due to the fact that as concrete operations develop in the 7 to

12-year-old child their function is to structure reality factor-by-

factor; there may be a time lag of several years between dimen-

sions (lengths are structured at 7-8 years, weights at 9-10 years,

etc.).

When a problem involves several independently structured fac-

tors (thus several heterogeneous variables) which interfere with

each other, sooner or later the subject comes up against results

which are somewhat inconsistent or even contradictory. For ex-

ample, he may ascertain that event x is nearly always associated

with event y (thus most brass bars have a high flexibility), but he
also finds cases in which x.y and even x.y appear i.e.9 there are

exceptions to the rule. Or the reverse may occur: the subject may
observe that in general there is no correspondence between two
variables (x.y and x.y) and yet find certain cases in which x.y and

x.y occur. In short, the more accurately he analyzes reality at the

concrete level (i.e., by simple correspondences between distinct

variables), the more likely he is to discover the mixture of partial

regularities and exceptions that it contains which he cannot ex-

plain with any degree of certainty. Of course, the subject at first

neglects both partial regularities and exceptions, but when he

begins to take the demands of the experiment seriously he finds

himself blocked in his attempt to describe the raw data in con-

crete terms.

Hence, sooner or later a new attitude toward the experiment

emerges. Our observations show that in a number of subjects it

appears in rough form during the concrete stage but it is not gen-

eralized until the formal level. This attitude is revealed in the act

of separating out variables, a process which we must now try to

understand in formulating our conclusions on the transition from

child to adolescent thinking. We can ask the following questions:

(A) In what forms does this attitude originate?; (B) In what forms

does it generalize, and why does it generalize at such a late date?;

(C) Finally, how and why is it necessarily linked with the struc-

turing of a combinatorial system?
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A. Even at the concrete level there are certain forms of isola-

tion of variables, and they deserve careful examination. When he

wants to know if a given factor influences a given result, even the

stage II subject can carry out certain verification procedures; some
of them are exclusively observational, others are experimental. To
illustrate the first type, we can cite procedures which lead the

subject to exclude a factor by attributing it to chance. For ex-

ample, in the magnet experiment (Chap. 6), when a subject sees

the needle stop on a particular color, he may at first be tempted
to assign a causal role to the color. But after observing the random
distribution of stops, he rejects his hypothesis.

In talking about this case, we must be sure to make the distinc-

tion between separating out a factor and excluding it. Separating
out a factor can be imposed by simply observing what occurs in

the experiment, for observation reveals cases where the color in

question is sometimes present and sometimes absent. In some
situations the subject may proceed from this separation of vari-

ables by presence or absence of the factor in the experimental
results to an active and experimental separation and in this way
controls the occurrence or nonoccurrence of the factor in question.

For example, in the pendulum experiment (Chap. 4), he might

verify the hypothesis that impetus plays a causal role by actually

giving a push to the pendulum in certain cases and not pushing it

in others.

However, in neither of these cases (observation or experimenta-

tion) do we have true isolation of variables; when isolation ap-

pears at the concrete level, it is isolation by negation i.e., the

factor whose role is to be evaluated is seen by the subject to be

present in the experimental results in some cases and absent in

others (observation) or introduced by the subject in some cases

and eliminated in others (experimentation). Thus, transformations

by inversion or negation appear, but reciprocities do not i.e., the

first, but not both forms of reversibility. The limitations of this

method are clear in cases where a factor cannot be physically
eliminated (e.g., the weight of an object, the length of a rod, etc.).

The concrete level subjects do not succeed in neutralizing it,

whereas the stage III subjects are able to do so (mentally) and
thus to calculate its effects.

A second difference between the elementary separations of
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stage II and the true formal isolation of variables is apparent in

cases involving two or more variables x, y, etc. The concrete level

subject is only able to introduce or eliminate variable x in order

to see if x itself plays an active role and not as a means of study-

ing variations in y. For example, in the pendulum problem he

pushes or does not push the pendulum only when he wants to

know whether or not impetus is causally effective. He does not

do so with a view toward studying the effects of length of the

wire, etc. On the other hand, the formal level subjects may elimi-

nate factor x not only in order to control its own influence but
also when they wish to analyze the variations of y without per-
turbations due to the presence of x. Furthermore, this second

difference can explain the first; thus it is the more important of

the two.

B. Thus the two discoveries found at the beginning of the for-

mal level are (i) that factors can be separated out by neutraliza-

tion as well as by exclusion and (2) that a factor can be eliminated

not only for the purpose of analyzing its own role but, even more

important, with a view toward analyzing the variations of other

associated factors. Once these discoveries are made, isolation can

be generalized to all cases, as happens during stage III (and com-

pleted during substage III-B). Consider, for example, a long brass

bar whose flexibility is greater than that of a short steel bar. If the

variable type of metal is not isolated from the variable length,

the subject does not know whether the first bends more than the

second because it is brass or because it is longer. If the concrete

level subjects solve the problem at all they solve it by multiplying

correspondences and ascertaining that sometimes type of metal

and sometimes the length plays the causal role. But, since any real

bar has both metal and length, not only do these subjects fail to

exclude either factor in order to analyze the role of the other, but

the idea of doing so does not even occur to them. On the other

hand, the formal level subjects know (frequently during substage

III-A and always at III-B) that, in order to determine the role of

the metal, length must be eliminated (and vice versa) while the

other factor is varied simultaneously by adding or taking away.

Moreover, they know that the variable not being analyzed at a

given moment may be neutralized by simple equalization as well

as actual removal when its nature prevents the latter. Thus, they
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will hold the length constant in order to analyze the role of the

metal and vice versa.

Given that these two discoveries are made, the crucial question

from the genetic standpoint is: how can they arise from the

limited capacities of the concrete level?

The origins of these new attitudes must doubtlessly be sought
in the reversal of direction which results from the increasing com-

plexity of the solutions obtained by concrete methods. The stage

II subjects are not blocked when they meet a difficulty; they con-

tinue to move forward. But they simply multiply correspondences

and make new attempts to find relationships, hoping that some-

thing meaningful will automatically emerge from the abundance

of data. Sooner or later they have to retrace their steps, for if too

complicated linkages are built up, the variables left unanalyzed
at one moment will later reappear as disturbing influences. At

this point the behavioral innovation unique to stage III appears.

It consists of setting aside y in order to analyze x free from dis-

turbing interference and vice versa. Thus the need to exclude one

factor so as to vary another results from a reversal of direction in

structuring correspondences; it involves an attitude toward ab-

straction or separating out variables instead of toward multiplica-

tion or association of empirical correspondences. Furthermore, it

appears when the subject is faced with excessive complexity and
too many contradictions in the raw empirical situation.

Given this complexity, certain variables can be eliminated by
inversion or negation, but this is not true for all of them. Thus the

second innovation of stage III is that of generalizing the method
of excluding perturbating factors in cases where these factors do

not involve negation. In this case it is no longer one of the terms

(a property or an event) that is negated but the difference be-

tween the terms, In other words, the variable to be excluded is

neutralized by the simple procedure of equalizing the expressions
of that variable encountered in the experimental situation. Now
this is no longer inversion but reciprocity. As an example of this

procedure, if a subject wants to determine the role of metallic

composition (variable x) in the flexibility of a pair of rods, he holds

length (variable y) constant. This equivalence results from the

elimination of the differences between the lengths of the two rods,
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just as negation results from the elimination of the factor itself in

the case of impetus.
The result is that the separation of variables found at the formal

level ushers in reversibility by reciprocity at the same time as

reciprocity by inversion. Thus, it involves a parallel use of the two
forms of reversibility which renders them functionally equivalent
The importance of this fact for the structural integration of

stage III is clear.

C. We still do not know why these two new attitudes neces-

sarily carry with them the structuring of a combinatorial system.
But from the moment he is committed to isolating variables, the

subject finds himself faced with new possibilities. For example,
after having isolated length from metal in the flexibility problem,
he must neutralize variables such as thickness and cross-section

form, and, as an immediate consequence of the method adopted,
he must continually ask himself whether he has left out a variable.

How can he be sure he is on the safe side in such a situation?

Naturally the first method would be to find all possible associa-

tions between variables, using 2-by-2, 3-by-3, etc., comparisons.
But this form of thinking does not go beyond the simple multipli-

cative operations of the concrete level (double-, triple-entry tables,

etc.), and we have shown that these associations or multiplicative

correspondences are inadequate for the solution of the problems
we posed, although of course they must be established before

further reasoning is possible. Only afterwards, when these base

associations have been structured, can the subject choose the

crucial combinations from the total number of possible ones. Thus

it must be at this point that the combinatorial system makes its

appearance. It is conceivable that each one of the variables that

appear together in the experimental situation plays an independ-

ent causal role, in which case the crucial combination is the one

in which the factors are varied one at a time, the others being held

constant (e.g., the flexibility problem, Chap. 3). But it is also

possible that two or three variables have to work together to pro-

duce the observed effect (as in the case of the colored liquids,

Chap. 8). Or two variables might be mutually exclusive in the

production of the effect, or one might work in the opposite direc-

tion from the other (as the decolorant in Chap. 7), etc. We see
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that separating out variables may lead to any one of a number of

distinct possibilities which can be formulated by means of impli-

cations, equivalences, disjunctions, conjunctions, exclusions, in-

compatibilities, etc., depending upon the particular case. When
these possibilities already exist in the subject's mind as expecta-

tions i.e., when as a result of previous acquisitions he possesses

a wide enough range of possible combinations it is evident that

they can guide the separation of variables by a feedback effect

which we can understand easily. However, if the subject is not

aware of these possibilities but still manages to discover how to

separate out variables toward the end of the period of concrete

operations, the experimental isolation of variables itself leads him
to the combinatorial system, because the crucial combinations

vary as a function of the individual situation, and because in each

situation the discovery of the crucial combinations (a discovery
which is itself due to the isolation of variables) presupposes a

choice among the possible associations. For example, for two fac-

tors x and /, the fact of varying x alone while leaving y constant

(thus x.y + x.y) constitutes a choice of the crucial combinations

(x.y -f- x.y) among the four possible associations (x.y + x.y +
&y + *)-
In sum, the isolation of variables necessarily leads the subject

to combine the base associations among themselves n-by-n and
thus to substitute for the simple multiplication and correspond-
ence operations which gave rise to the base associations the com-

binatorial system which characterizes the "structured whole."

II. Now that we understand why isolation of variables (itself

the result of a need to coordinate the increasingly entangled re-

sults of concrete operations of formulating relations and corre-

spondence) necessarily ends up at a combinatorial system, we still

have to show how the combinatorial system is structured and

gives rise to formal thinking. This can be accomplished by analyz-

ing the ways in which the concrete operations rather than their

results are coordinated. It is this coordination which gives rise

to the combinatorial system inherent to prepositional logic and

consequently to formal thinking.
After the factors in the experimental situation relevant to the

solution of a given problem have been classified, ordered serially,

and equalized, and correspondences set up, etc., it may still be
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necessary to integrate the operations performed up to this point
into a single system before the problem can be solved. Thus, the

need for integration results from the need to coordinate the

results of concrete operations when they do not have sufficient

internal consistency.

However, the subject does not possess any operations which
allow him to integrate the various groupings of classes and rela-

tions into a single system directly unless he goes beyond simple
additive or multiplicative class inclusions. In other words, he has

to integrate them into a "structured whole" i.e., that very com-
binatorial system whose organization in the subject's thought we
are now trying to understand. By contrast, either for classes or for

relations (but not for both at the same time), there is a grouping
more general than the others in the sense that it contains them or

that they derive from it by successive specifications. The most

general concrete grouping is the multiplicative grouping (of

classes or relations) consisting of double- (or triple-, etc.) entry
tables. For two events or properties, x and y, this method of

grouping the data involves structuring the elementary associa-

tions x.y + x.y -f- x.y + x.y. However, as consideration of the

isolation of variables and the resultant combinatorial system has

just demonstrated, new problems arise for the subject as soon as

he has to decide which of these associations are true and how to

select sub-sets. What does he do in this situation? It is very impor-
tant that we see that the choice or determination of sub-sets of

true associations from among the possibilities x.y +x.y+ -J/+%$
results from the use of simple classification operations. However,
at this stage they are applied to the associations (x.y, etc.) them-

selves and are generalized to all possible cases. The subject groups
case x.y with case x.y, or case x.y with x.y, etc., as if he were

grouping objects characterized by common properties, whereas

in fact the problem is to group associations ie., situations in

which two properties appear together (or one without the other,

etc.) or where two events appear together (or one without the

other, etc.).
4 In other words, the subject organizes the "struc-

4 For example, in the flexibility problem (to which we have already referred

in section I of this chapter), he will classify the brass rod with a circular

cross-section which reaches a given degree of flexibility (xyz) with the steel

rod of the same form which does not attain the same degree (xyz): from

whence the class xyz + xyz; etc.



290 THE STRUCTURAL INTEGRATION OF FORMAL THOUGHT

tured whole" by means of a new classification procedure in which

the multiplicative system x.y + x.y + x.y + x.y serves as a base;

by this means he applies the simplest of groupings (classification)

to the most general (the table of logical multiplications) and ends

up with a sort of second-degree grouping which coordinates all of

the groupings in a higher order system, since he cannot integrate

them directly. Furthermore, the second-degree grouping formu-

lated by application of the generalized classification 5 to multi-

plicative associations is none other than an n-by-n combinatorial

system. The consequences of this fact for the development of

formal thinking are the following:

i) In the first place, the generalized classification of associations

x.y, etc., finally develops into a new mode of composition. Up to

this point, the classifications utilized by the subjects are based

essentially on simple class inclusions (for example, sparrow <
bird < animal < living creature) congruent with the most ele-

mentary groupings: A+ A'= B, B + B' = C, etc., or other clas-

sifications made according to two possible criteria (the Genevans

plus the other Swiss = the Vaudois plus the other Swiss) i.e.9

AI + A'i = A2 + ^7
2 etc. (vicariance). However, when the sub-

sets of associations within a multiplicative grouping must be inte-

grated by class inclusion in taking the different possibilities into

account, the mode of composition will be completely different

and will lead to an n-by-n combination by generalization of

vicariance. In order better to understand this development, let

us denote the four base associations derived from x and y by the

numbers i to 4:

i = x.y ; 2= x.y ; 3 = x.y and 4= x.y .

Sixteen classes result from the various possible inclusions (cf.

the table on page 277):

(o);

(i), (2), (3), (4);

(i + 2)> (i + 3), (i + 4), (a+ 3), (a + 4), (3 + 4);

(1 + 2 + 3), (i + a + 4), (i + 3 + 4) ? (* + 3 + 4);

(1+2 + 3+4)*
5 This generalized classification is what we have called elsewhere vicari-

ance. In itself, it constitutes a distinct "grouping" of classes. Translators' note:

since the term vicariance is specific to the work of Piaget, we have left it in

the original. See Traite" de logique, pp. 113-17, for definitions and examples.
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Thus the structure of these classes, which the subject gradually
builds up in his mind either by structuring empirical situations

or by deducing from the possible combinations, differs radically
from the structure of concrete groupings. In groupings o concrete

operations, a given elementary class (A) is included exclusively in

the higher classes of which it is a part (B, C, etc.) once and for

all, even though it may be momentarily excluded (for example,
birds belong to the class of vertebrates, and the vertebrates minus
birds give fish, amphibians, etc,). For associations i to 4, on the

other hand, each base association i (x.y) or 2 (x.y), etc., re-

appears in seven higher-order classes (for example, i reappears in

1 + 2, 1 + 3, 1+4, 1 + 2 + 3, 1+2 + 4> i + 3 + 4> and in

1+2 + 3 + 4); each double link (1 + 2, etc.) appears in three

higher-order classes; and each triple link reappears in the same
whole 1+2 + 3 + 4. In other words, the new system which
results from this combinatorial operation is no longer a simple
classification (nor even a vicariance between classes of the same

ranks): it is a generalized classification or a set of all possible
classifications compatible with the given base associations. But
this is exactly the same as the lattice structure, based on the

"structured whole" of n-by-n combinations, in contrast to the

structure of elementary groupings.

2) As a result, the negation of a given combination (for ex-

ample, the conjunction x.y, association i) no longer has to be

built up from element to element in a series of complementary
classes each included under the next largest class, as happens in

the concrete groupings (where A is the class of sparrows and B
that of birds, the complement selected by the subject for A is not

the absolute negation A i.e.y all of reality with the exception of

sparrows but A' i.e., birds other than sparrows; where C is the

class of animals, B
f
will be that of animals other than birds, etc.).

Rather, the negation of a combination will be the conjunction of

other elements i.e., its complement with regard to the whole;

thus the conjunction x.y (association i will have for negation

x.y + x.y + x.y (i.e., 2 + 3 + 4) i.e., incompatibility (x/y}.

3) As a result, the system built up in this way includes both

inversions (the negation discussed above) and reciprocities

(x D y and y D x, etc,); thus inversions and reciprocities are inte-

grated in a group of four transformations. Naturally, the subject
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does not become conscious of the group in its abstract form, but,

as we shall see presently, it has a number of repercussions in his

thinking.

4) In a general sense, instead of dealing with objects directly

i.e., classes of objects or relations between them the combi-

natorial composition comes to handle more and more complex

assemblages and their transformations. For example, the subject

will eventually want to know whether two properties x and y are

mutually exclusive (from whence x.y + -J/)
r whether they are

simply disjunctive although they may appear together (from
whence x.y + x.y -j- x.y). When he asks such a question, the sub-

ject's reasoning deals not with reality directly but rather with

reality as a function of possibility. Here addition
( + ) is no

longer an addition of real cases but an addition of possibilities,

for the real cases cannot always occur simultaneously. This is why
the fundamental operation of prepositional logic is noted v in the

sense of "or": thus x v y signifies "either x.y is true, or x.y, or x.y, or

two of these cases out of three, or all three." The formula is

equivalent to saying that the expression xvy is an addition of

seven possibilities. Moreover, this is certainly what the integration

of the possible associations means to the subject.

5) Finally, and by the same token, the combinatorial composi-
tion deals with propositions. Even during the concrete stage (and

moreover, in preoperational thinking), reasoning is obviously
based on propositions, with or without perceptual presence of

the objects described. But the concrete operation consists in

^composing and recomposing the content of the propositions

le., classes and relations as constituents of the proposition. Thus,
at the concrete level a proposition is still linked to another not by
virtue of its being a proposition but exclusively on account of its

logical content, consisting of structures of classes and relations

corresponding to actual objects. On the other hand, as soon as the

proposition states simple possibilities and its composition consists

of bringing together or separating out these possibilities as such,
this composition deals no longer with objects but rather with the

truth values of the combinations. The result is the transition from
the logic of classes or relations to prepositional logic. We will

return to this point in the following pages.
In sum, thinking becomes formal as soon as it undertakes the
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coordination of concrete groupings into a single system (of the

second degree) because it deals with possible combinations and
no longer with objects directly. However hesitating, however in-

complete the first trials of formal thinking at the beginnings of

stage III may be, we can nevertheless see a tendency toward a
new form of equilibrium which is characterized by a new type of

structural integration deriving from both the lattice and the group
of inversions and reciprocities. Although equilibrium is not
achieved immediately, it will be achieved at substage III-B be-

cause operations cannot be coordinated without such processes

resulting sooner or later in a system of necessary compensations,
as the whole history of earlier operational thinking at the con-

crete level and even that of the intuitive regulations of the pre-

operational level goes to show.

The System of Sixteen Binary Operations

Now that we have described in a general way the transition from
concrete to formal or propositional operations, we have to see

whether the subject at substages III-A and III-B is actually able

to use the sixteen binary operations of propositional logic, distin-

guishing each one from the others and putting them together as

he makes inferences.

i and 2. Complete affirmation (p
*
q) and negation (o).

6

The formation of the operation p
*
q and its negation is easily ex-

plained. The first, which is the assertion of the possible occurrence

of any one of the four base associations (p.q v p.q v p.q v p.q) is

only the translation of the four associations already understood

in a concrete double-entry table in terms of propositions p and q.

In the flexibility experiment (Chap. 3), when the subject classifies

the rods into brass or non-brass and circular or noncircular sec-

tions, he discovers that all four possible associations occur. As a

result, even at the concrete level he is able to conclude that, in

the apparatus furnished, these two properties are in part linked

together and in part disjunctive. But the operation does not take

on propositional meaning until it is placed in opposition to the

other possible combinations. When he tries to find out whether

6 These two operations correspond to expressions (16) and (i) of the table

on p. 277.
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property x carries with it or results from property y, the subject

will conclude from the occurrence of the four associations that

the two properties can be assumed to be independent of each

other but mutually compatible. (These two assertions remain

subject to the qualification of later proofs if the variables have

not yet been separated out.) For example, in the pendulum prob-
lem (Chap. 4), if p states an increase in weight and q an increase

in acceleration, it is possible to have p.q v p.q v p.q (if in p.q and

p.q, the length of the pendulum has been increased at the same

time, and if, in p.q only the weight has been changed). Observa-

tion of these empirical associations (without isolating the other

variables) will furnish sufficient demonstration that weight is not

decisive. But for an accurate exclusion, the subject has to use

other operations.

3 and 4. Conjunction (p.q) and incompatibility (p/q).
7

Conjunction p.q may have either one of two meanings; the gen-
eral one holds when the association p.q is linked to others, the

particular one when association p.q is the only true combination

(by exclusion of p.q, etc.).

In the first sense, conjunction p.q is only the prepositional

expression of the multiplicative operation already known at the

concrete level for the case in which two classes AI and A2 are

associated with each other: AI X ^2= AiA2 ;
or if A+A'= B, the

association A X B gives AB, which is identical to A itself (ex-

ample: vertebrate birds constitute the same class as birds). But,

on the concrete level, the multiplicative class AB is included only
in B (and in C, etc., if C includes B), and class AiB2 is included

only in BiB2; etc. On the other hand, conjunction p.q can be

integrated with seven other formal combinations (p^q, pvq,
p = q y q Dp, p

*
qr, etc.) which cannot be included in each other.

Thus, when confronted with the conjunctive association p.q, the

formal level subjects will not draw conclusions before they have
determined the other associations (p.q, etc.) with which it inte-

grates. This reaction is uncertain at substage III-A; it is systematic
at III-B. In particular, the stage III subjects struggle against the

temptation to conclude too quickly from the occurrence of p.q
the assertion of an equivalence p g q or of a simple implication

7 These two operations correspond to combinations (a) and (15) of the table
on p. 277.
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p D q. The contrast becomes evident when the subjects of sub-

stage III-A and III-B are compared: at III-A, the subject gives
in too rapidly to this temptation without taking care to verify
whether or not p.q is accompanied by p.q and p.q.
On the other hand, in its more restricted sense the conjunction

p.q signifies that the single association p.q is true, with the three

others excluded. From the standpoint of experimental methodol-

ogy, the subject has to test the three other possible associations if

he is to assume p.q in this particular sense. But once established,
the conjunction p.q acquires the strong sense of the necessary
union of two properties in a definition (static) or two factors which
must come together for a given result to be obtained. In the color

experiment (Chap. 7), the substage III-A and III-B subjects man-

age to discover a ternary conjunction by this procedure (sulphuric

acid, oxygenated water, and potassium iodide have to be brought

together for the yellow color to be produced). However, it is

interesting to see that this discovery presupposes the utilization

of a combinatorial system: each one of the variables is tried out

with all of the others 2-by-2, 3-by-3, and the 4 together. Only the

elimination of some variables calculated from the false combina-

tions makes it possible for the subject to discover the conjunction

p.q.r (where p, q, and r state the respective intervention of the

three causal factors) and the law (p.q.r.} D s (where s stands for

the color). Doubtless, in this case, the combinatorial system deals

with objects before it deals with propositions, but we have seen

that the two systems are isomorphic and that the subject trans-

lates his physical combinatorial system into a prepositional com-

binatorial system.
The inverse of the operation of conjunction p.q is incompatibil-

ity (p/q = p.q v p.q v p.q), which means that the characteristics

denoted by p and q are never conjunctive that is to say, that

where one is present the other or both are absent. Thus, in the

color experiment the subject discovers as follows that one of the

liquids bleaches the mixture (expressed by p.g.r) referred to above.

If 5 states the presence of color and s states its absence and t

and t the presence or absence of the fourth liquid, the subject

ascertains that only the combination s.tvs.tvs.t is verified. But

does he need formal operations to make this discovery? On the

one hand, beginning with substage II-B (9-11 years), the subject
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discovers that thiosulphate bleaches the liquid when it is colored

and has no effect when it is not. On the other hand, if younger

subjects are given a set of geometric figures comprising black

squares, white circles and rectangles, etc., and various other

shapes of different colors, they see right away that the group can

be divided into (non-white squares) + (white non-squares) -J-

(neither square nor white figures); this constitutes a distribution

of multiplicative associations of isomorphic classes involving an

incompatibility. But, as we said earlier in this chapter, we cannot

tell whether or not the subject's reasoning derives from preposi-

tional logic until the total set of his experimental procedures and
verbal statements have been examined. The substage II-B subject

discovers the bleaching influence of thiosulfate only in mixing the

liquids at random, without systematic combinatorial procedures,
and the younger subject who classifies shapes and colors notes the

absence of white squares only when he perceives a gap in his

multiplicative table (which consists of simple 2-by-2 associations

and not n-by-ra combinations). Thus we would not want to speak
of incompatibility p/q except for those subjects capable of plac-

ing this combination in opposition to the set of fifteen other com-

binations in the system or to the principal ones among these

(p.q, pvq, p^>q, etc.). For to do this would be to commit the

"fallacy of the implicit." However, the stage III subjects, who
utilize a complete combinatorial system in their experimental
trials on the colorants and who also express the results by means
of adequate statements, are able to place their combination in

opposition to the fifteen others.

5 and 6. Disjunction (pvq) and conjunctive negation (p.q}*

Disjunction pvq signifies that p is true or q is true or both are

true. Thus it serves to express the case where an effect may be
due to two causes acting either independently of each other or

conjointly: p vq p.q vp.q vp.q. Thus its negation p.q ex-

presses the simultaneous absence of both causes. We have seen

repeated examples of this operation, even in its ternary form

pvqvr, as for example in the case of the dumping apparatus

(Chap. 13): 'To make it go down, you could either pull up the

line or take off some weight (on the counterweight) or add some
8 These operations correspond to combinations (12) and (5) of the table

on p. 277.
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in the wagon" (CLAU; 11 years). Comprehension of the inverse

follows immediately: (p.q.f) Ds (where s = no change).
Here also, it is clear that, beginning at the concrete level, we

find cases in which the subject ascertains the absence of A'iA'a
after having multiplied two classes BI and B2; thus, the remain-

ing associations AiA2 + AiA'2 + A'iA2 will constitute the equiv-
alent of a disjunction. But here also, the prepositional disjunction
must be distinguished by the fact that it is placed in opposition
to the fifteen other possible combinations.

7 and 8. Implication (p^q) and nonimplication (p.g).
9

Implication pDq which expresses the combination (p.q)v

(p.q) v (p.q) is employed by the subject every time a cause, ex-

pressed by proposition p, produces an effect, expressed by q, but

is not the only cause which can produce the same effect. In the

preceding example, where the descent of a wagon (expressed

by s) can be related either to an increase in the incline of the

track (p) or the diminution of the counterweight (q) or an increase

in the load carried by the wagon (r), the subject knows that

p D s, q D 5, and r D s; in the case p D s, one actually has p.s (when
the first factor is in actual operation) but also p.s (when it is the

two others) and, naturally, p.s (when none are operating).

In the case of implication, more than in that of any other propo-
sitional operation, we can get the illusion that it is found even at

the concrete level. From the class standpoint, it corresponds to

the inclusion A < B (where B = A + A'). If we call S the class

including the set of events described by proposition s (the wagon's

descents) and P the class of descents linked to a greater inclina-

tion of the track (cf. prop, p), the inclusion P < S will signify

P + P' = S-i.e., that all Fs are S's, but that there are some S's

which are not P's (which then correspond to the descents due to

changes in weight: cf. propositions q and r). Thus, the implica-

tion p Ds could be expressed by the inclusion P < S. From the

standpoint of relations, the same implication corresponds, on the

other hand, to a multifactor correspondence: to the effects S cor-

*

respond the causes P, Qy R, whence the correspondence S

* Corresponding to combinations (14) and (3) in the table on p. 277.

s
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in which P corresponds unequivocally to S, but this unequivocal

relationship is not reciprocal (one cause corresponds only to its

effect, but the same effect may correspond to several causes).

However, here again, the difference between a true implication

and a many-one correspondence can be recognized psychologi-

cally by the progression of the totality of the subject's reasoning.

As long as he proceeds by inclusions or correspondences (stage

II), the subject is limited to classifying and ordering serially the

raw experimental data, whereas the discovery of implication as

such consists of differentiating it from the other possible combina-

tions (p v q, p = q, etc.). Moreover, this discovery is distinguished

by the fact that the subject begins to separate out the potential

factors; his goal is to verify exactly which combinations occur

among the possible combinations compatible with the given
situation.

But, although by this criterion the propositional implication is

clearly psychologically distinct from class inclusion, it is still

worth while to try to find out how the transition between them is

accomplished. Moreover, it is important to remember that even at

stage III the subject begins by classifying the data, by relating

them, etc.; in other words, one must keep in mind that a concrete

structuring of the data is an indispensable prerequisite of the

propositional structure. Thus, we must ask: what are the most

spontaneous forms of implication and what are their relations to

the corresponding concrete linkages?

But, implication can be expressed in at least three equivalent

ways: p D q; p v q and p = p.q, expressions which can be trans-

formed to give the same product p.q vp.qvp.q . For example, if

p expresses the fact that a rod is thin and q the fact that it is

flexible, it does not matter whether the proposition is stated: "If

it is thin, then it is flexible" (p D q); "Either it is not thin, or it is

flexible" (p v q); or "To say that it is thin is equivalent to saying
it is both thin and flexible" (p = p.q). It should also be noted that,

according to a well-known law of lattices, given p = p.q, it fol-

lows that q = p v q, an equivalence which is itself equal to p D q
(for its transformation also gives p.q vp.qvp.q). This said, it

seems clear that the simplest psychological form of implication
must be p = p.q . For, before he can maintain Tf this rod is thin,

then it is flexible,** the subject must assure himself that thin always
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means thin and flexible. Moreover, p = p.q and q = p v q are the

most direct translations o the product A X B = A and the sum
A + B B, foundations of the inclusion A < B.

The negation of implication is nonimplication p^q = p.q *

This operation, like all those which are formed from a single pair

(we have seen this in reference to p.q) can appear either in an
isolated state or integrated with others in the following seven
different forms: p/q, pvq, qOp, pwq, p[q], q[p], and, of

course, p
*
q .

In its isolated form, the negation of implication is frequently

employed by the subjects to prove nonintervention of a possible
factor. For example, in the case of the pendulum (Chap, i), in-

creasing the weight (expressed by p), leaving all other factors

equal, and ascertaining that the acceleration does not increase (q) 9

will convince the stage III subjects that the weight plays no role:

p.q = (pDq). But, here as always, the formal character of this

operation (by contrast with the statements of noncorrespondence
characteristic of the concrete level) can be seen in its integration
with the totality of the combinatorial system before concluding
on the basis of observation of p.q that it must be a case of non-

implication, the stage III subject assures himself that he has

eliminated all other combinations which include not only p.q but

also p.q. For this reason when he studies the effects of the vari-

able under consideration, he holds the other variables constant

in such a way as to isolate the occurring combinations from the

possible ones.

9 and 10. Reciprocal implication (qOp) and its negation

Naturally, implication qOp alone does not have a meaning
which differs from that of p D q, since it is always possible to call

q proposition p and vice versa. Thus the operation q I) p has no

distinct consequences except as compared to an operation p D q

already determined or in the course of being determined. In this

case the two problems which arise for the subjects are the fol-

lowing:
If the link pDqis true (for example, p the statement of an in-

crease in the angle of incidence in the billiard experiment (Chap.

i) and q = an increase in the angle of reflection) is the link qDp
10 Corresponding to combinations (13) and (4) of tibe table on p. 277.
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also true? This would mean that, in ascertaining an increase in

the angle of reflection, the subject will conclude that the angle of

reflection also increases even if he has not been able to observe the

firing conditions). If it is, we then have (p Dg).(g Dp) = (p = q)

i.e., there is prepositional equivalence between p and q (
= p

and q are always both true or both false).

If the linkage p D q is not yet established but remains doubtful

throughout the experimental trials, the subject may ask himself

whether it is p D q or q D p which is the true implication. For

example, in the case of indicators and colorants (Chap. 7), the

subject may ask himself whether it is the last liquid added that

colors the mixture (the dominant hypothesis for the youngest sub-

jects: the last flask used contains the coloring potentiality) or

whether it is the mixture which colors each component, including
the last. Thus the problem is, does pD<7 or qOp. Moreover, it

is immediately obvious that the fact of raising or even of grasping
such a question is itself an index of formal fluidity. Even more
than the others, the operation q D p does not acquire operational

meaning until it is related to the system as a whole.

As for the negation of q Dp i.e., p.q it warrants the same
comments as the operation p.q, discussed under (8). Let us note

only that the integration of the two nonimplications p.q and p.q
is a reciprocal exclusion i.e.,, p.q w p-q which will be discussed

further below.

11 and 12. Equivalence (p q) and its negation, reciprocal
exclusion. 1*

Prepositional equivalence is neither an identity nor an equal-

ity but simply the assertion that two propositions are always
both true or both false. From the standpoint of classes i.e.,

of the set of objects to which the propositions apply equiv-
alence corresponds to the identity of a single class, but a class

which is multiplicative as well as additive. For example, the

equivalence between "This animal is a protozoon" (A) and "This

animal is a unicellular invertebrate" (B) corresponds to the same
additive class, for if A' = pluricellular invertebrates, the equiva-
lence corresponds simply to A = B A'. But the equivalence
between 'This animal has a vertebral column'* and "This animal

has a spinal marrow" corresponds to the product o two classes,
11 These operations correspond to combinations (8) and (9) on p. 277.
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Ai and A2 . Thus, from the standpoint of relations, equivalence
means that there is a one-to-one reciprocal correspondence which
is always reflexive but not necessarily reflected. In the pendulum
experiment (Chap. 4), the increase in length (stated by p) cor-

responds to an increase in oscillation rate (stated by q), and the

converse is also true; whence (p D q).(qDp) = (p=i q). The sub-

ject understands this equivalence when, after having constructed

the implication p D q, he succeeds in discovering that the effect

(q) has no other possible cause except (p) and the two variables

always have to correspond.

Reciprocal exclusion pw q is the negation of the equivalence
and describes the integration of the two nonimplications p.q v p.q,

just as equivalence states the product of the two implications

p D q and q D p. From the class standpoint, exclusion describes

mutually-exclusive membership in each of two entirely dis-

joint classes. From the standpoint of relations, it describes an

inverse correspondence. For example, in the balance experiment

(Chap. 11), if the subject considers all of the equilibrium states

in which the balance is horizontal, he finds that for any increase in

weight (stated by p), there is a corresponding decrease in distance

(q), and for any increase in distance (9), there is a corresponding
decrease in weight (p): whence p.q v p.q. In this case the re-

ciprocal exclusion describes two serial orders in inverse corre-

spondence. As for correspondence with classes, we can refer

back to the example of the colorants cited above in discussing

incompatibility. The only difference between incompatibility and

reciprocal exclusion relates to the presence or absence of associa-

tion p.q; this may be important when the problem is to know

whether either p or q is always true, but usually neither is found,

since in this case the association p.q describes a situation in which

nothing happens.

13 and 14. The affirmation and negation of pi.e,, p[q] and

.

Operation p[q] is equivalent to p.q v p.q, and its negation

p[q] to p.q v p.q. Thus, both operations amount to affirming (or

denying) that p is true when q is either true or false. In other

words, both operations affirm (or deny) p independently of q.

Furthermore, this particular relationship of relative independ-
12 These two operations correspond to combinations (6) and (11) on p. 277.
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ence but not exclusion is extremely important for the functioning

of formal thought; ordinarily, it is because they possess operations

p[q] and p[q] that the stage III subjects are able to discover that

a hypothetical variable does not actually contribute to or deter-

mine the production of a given phenomenon. In other words, if

the variable stated by p appears both in the case in which the

event stated by q does not occur (q) and the case in which it does

(q), it must be that the variable stated by p is not the cause of the

event described by q. Thus, it is because he possesses operation

p[q] that the subject is able to exclude the hypothesis that a given
variable is influential. Conversely, if p[q] occurs i.e., p.q and p.q
the absence of the variable stated by p does not prevent the

event described by q from occurring or not occurring; this con-

firms the necessity of excluding the hypothesis that the variable

stated by p influences the result. But operations p[q] and p[q]
entail only simple exclusion and not reciprocal exclusion as in

pwq, for although both p[q] and pwq contain p.q, operation

p[q] also contains the association p.q, absent inpwq and p/q.
For example, in the magnet experiment (Chap. 4), the weight of

a box can be increased (an increase which can be stated by p).

Sometimes the needle will stop in front of this box on the next

trial (thus q), and in other cases it will not (q). Consequently, the

subject concludes from the combination p.q v p.q that increasing
the weight has no effect and that the stopping or nonstopping of

the needle (q or q) is due to other variables. Conversely, non-

increase in weight (stated p) is also accompanied by both the

events described in q and qi.e., p.q v p.q = p[q]. This counter-

proof confirms the earlier conclusion.

15 and 16, The affimation of q and its negation i.e., q[p] and

The two operations q[p] and q[p] have the same structure

as the above except for permutation of p and q. Actually q[p]
is equivalent to p.q v p.q and q[p] to p.q v p.q. Thus considered

in isolation, they add nothing to the system, but, compared to

the previously described operations, they make new combina-
tions possible.

For example, if p[q] and q[p] are both true at the same time,

and they alone are true, p.q v p.q vp.q is obtained, thus pvq.J
13 These two operations correspond to combinations (7) and (10) on p. 277.
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pq and q[p] are both and alone true, one obtains p.q v p.q v p.q,
thus q Dp . If p[q] and q[p] are both and alone true, one obtains

p.q v p.q v p.q, thus p^q. And if p[g] and q[p] are both and
alone true, one obtains p.q v p.q v p.q, thus p/q. Moreover, each

one of these compositions may describe an effective structuring
of the data at one point during the subject's run of trials. Thus

operations q[p] and q[p] are not simple replicas of p[q] and p[q]
but play a real role in discovery.

The Application of the System of Sixteen Binary

Operations and the Process of Formal Reasoning

We have just seen that each of the binary prepositional operations
describes the particular partial structure of one or several of the

eight elementary "groupings" of classes and relations on the plane
of concrete operations. Once the eight "groupings" (which we
know are worked out simultaneously, although they are applied
to different dimensions in succession) are available, one might say
that concrete level subjects have an operational range equivalent
to that of the sixteen fundamental prepositional operations and

functionally equivalent to a combinatorial system. However, we
do not think that this is the case, for there are no general trans-

formations by which the concrete level subject can pass from one

of the groupings of classes or relations to another. But the preposi-

tional operations, on the other hand, form a single system such

that it is possible to move with accuracy from any one of its six-

teen elements to each of the others. For this reason, as we have

seen, the coordination of the groupings of classes and relations

into a single system requires the introduction of a new structure,

that of the "structured whole" with its n-by-n combinatorial sys-

tem. The starting point in the formation of the latter is the mul-

tiplicative groupings; but in addition it involves a generalization

of the classification applied to elementary associations (the second-

degree groupings described earlier). Once organized, this single

system constitutes the system of sixteen binary prepositional

operations.

But the question which arises next is: is the subject aware of

the fact that the system of prepositional operations exists as a
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system? If we mean, by "aware/' does he think about the system
as a system, it is obvious that he is not, because such a conscious

logic never existed prior to the work of logicians. However, as

Brunschvicg said, logic is like literary criticism, which codifies

the laws of poetry which has already been written but is not

present at its creation. In the realm of the adolescent's action

logic, which as yet has nothing to do with the formulated logic

of the logician, we can only mean by "awareness of the system"
that a motivated attempt to look for relationships between the

possible operations within the set is made for its own sake. In this

sense, the substage III-B subjects seem to be aware of the sys-

tem,
14

although a phase of gradual organization where little

coordination is found takes place during substage III-A. They
know when they see an elementary association p.q or p.q, etc.,

that it may be included in any one of several combinations (p
*

q,

p[q],oj:pDq, for example), and they can verify its truth or false-

hood more or less systematically. Conversely, when they assume

a complex combination such as p D q as a hypothesis, they know
how to verify it by going back to its elements p.q and p.q or by
looking for a counterproof in the falsehood of p.q.

This continuous linking of various operations or possible com-

binations within a system has two further consequences; the first

relates to the subject's train of inferences or reasoning, and the

second to the working of integrated operational structures as such.

We have just examined the role of the sixteen binary opera-
tions in the thinking of the formal level subjects. However, they
do not in themselves constitute reasoning or inferences. They
describe only more or less complex judgments but not actual series

of inferences, Even the implication p D q is limited to asserting
a link which can be reduced to a single judgment p = p.q. Given

this, two questions arise: (i) What is the nature of the actual

reasoning of our subjects? (2) Do we have to formulate a new set

of links over and above those which we have already described

in order to account for the essentially deductive aspect of spon-
taneous formal thinking?

Logicians are careful to distinguish the two realms of elemen-

14 Of course it is possible to be aware of an operational system without
knowing how to translate it into algebraic symbols; for example, this is true
for serial ordering operations.
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tary operations from the mechanisms of inference. First, they
make the distinction on the basis of the operations themselves:

for example, in a deduction such that [(pDq).(q Dr)] D[pDr]
("if p implies q and p implies r, then p implies r"), the three

implications /Og, qOr, and pDr will be considered as simple
or "material" implications, and the implication linking the first

two to the third as "inferential" implication. The latter can then

be considered an operation of a new and original type. Secondly,
from a logical standpoint, it goes without saying that the solu-

tion of the problem of deduction or "decision
*

requires the use of

new axioms and a much more complicated formal construction

(with distinction between logical syntax and semantics, etc.) that

is not necessary in the theory of elementary operations.

However, none of these problems need concern us here, as it

may be that the distinction between the two domains is only
relevant to the needs of axiomatization or normative logic.

15

From the psychological standpoint, which alone is relevant here,

we need to know only whether stage III subjects use operations

in their reasoning other than those described above and, if not,

how they go about reasoning with these same operational mecha-

nisms. The answer which the facts force on us is very simple.

Insofar as the judgments stated by the subjects correspond to

operations in the propositional system, and insofar as these opera-

tions can be formulated by means of algebraic symbols (as we
have formulated them here), the reasoning of these subjects cor-

responds to the transformations which link these operations to-

gether. No further operations need be introduced since these

transformations correspond to the calculus inherent to the algebra

of propositional logic. In short, reasoning is nothing more than

the propositional calculus itself. Although, in the subjects*

thought, this calculus is linked to current speech patterns, it

can be expressed symbolically in terms of the algebra of prop-

ositional logic.

For example: no subject, after he has established any implica-

tion p D q by observing three associations p.q, p.q, and p.q and

after he has done the same with the implication qDr(=zq.rv
q.rvq.r), doubts that the result is the implication p Dr ( = p.r v

15 In particular, we do not need to distinguish syntax from semantics, for

the operations which our subjects use have meaning from the start.



306 THE STRUCTURAL INTEGRATION OF FORMAL THOUGHT

p.r v p.r).
Does he have to bring in at a later point, in addition

to the elementary implications, the inferential implication dis-

cussed above [(pDq).(q Dr)] D [p Dr], or is the calculation suffi-

cient to impose (p D r)? If we multiply (p D q) by (q D r) by means
of operation (.), we obtain the following ternary composition:

(p.q v p.q v p.q).(q.r v q.r v q.r)
=

p.q.r v p.q.r v p.q.r v p.q-f

However, one can see immediately that these four trios contain

(p.r v p.r v p.r), therefore (pDr). Thus they furnish the sought-
after conclusion, which, moreover, can be calculated in an even

more direct way.
16

But to what do these calculations refer in the subject's mind,
since he possesses neither symbols nor symbolic logic? In this

particular case, they merely correspond to the subject's awareness

that implications are transitive. First, the subject has an idea of

implication which he may express in the words: "If x9 then y"

(without the reciprocal's being true) or "if y, then 3" (without

reciprocity). In addition, if the subject really has this idea (based
on the composition of cases such as x.y v x.y, etc., and on a purely
verbal expression of these combinations) we can say with some

justification that he has the ability to group these implications into

a single sequence: "If x implies y and if y implies z, then x

implies z," since the same conceptions and the same combina-

tions corresponding to simple verbal expressions are sufficient for

the organization of such a transitive series. (Moreover, they are

acquired during the concrete stage for serial ordering of asym-
metrical transitive relations: A < B, B < C, thus A < C

.) Thus,
to say that this reasoning amounts to an operational calculus does

16 The reader should remember that p D q may also be written p = p.q.

Secondly, q in these cases is equivalent to q = pvp.q. We then have the
series of equivalences (where = stands for the identity of two kinds of sym-
bolism) :

(p D q) =s (p p.q). (i)

(q D r) = (q = q.r). (2)

q~pvp.q (this follows from i). (3)

p = p.q.r (product of i and 2). (4)

p = l(p.r).(p vp.q)] = p.r (product of 3 and 4). (5)

(p = p.r)
=

(p => r). (6)

Thus property (6)-i.e,9 par, results from (i) and (2).
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not imply any mysterious power of intelligence on the subject's

part, if one assumes that the act of intelligence is the grouping
of operations among themselves. The only mystery (but it subsists

in all interpretations of logical reasoning) is that after a certain

stage of development, language is adequate to allow for an

approximate expression of the combinations that symbolic logic
translates into abstract symbols in another context.

Now, if reasoning consists of an operational calculus which the

subject performs continuously,
17

it follows that the entire set of

operations that is available to him constitutes an algebraic struc-

ture which can operate as much as a totality (by its structural

laws) as in terms of the respective effects of its particular opera-
tions. We have seen that the structuring of a combinatorial sys-

tem presupposes the elaboration of a "structured whole" and

consequently of a lattice structure with the general laws of rec-

iprocity which characterize it. As for the group structure, it

appears in the use of the sixteen binary operations in the sys-

tematic utilization of negation or inversion (for example, in the

fact that an association p.q is understood as contradicting the

link p"3q, etc.).

But must we look even further and ask whether we can see

that these fundamental structures play a role in the psychologi-

cal functioning of prepositional operations and, especially, in the

constructive reasoning to which they lead? By fundamental struc-

tures, we mean, of course, the group of four transformations:

direct, inverse, reciprocal, and inverse of the reciprocal.
18 We

firmly believe that this is the structure actually .present, but in

order to demonstrate this we must examine what may be called

the operational schemata, as opposed to the particular operations

that constitute these schemata.

The Formal Structured Operational Schemata

It is clear that, from the start, the psychological functioning of

the sixteen binary operations requires structural organization or

17 and having the potentiality of reduction to operations (v), (.), (=),

andN.
18 The I N R C group.
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integration, since these operations constitute a system even in the

mind of the subject. (This is true whether or not this system im-

mediately acquires the properties of the I N R C group, which

will be given further consideration in the following discussion.)

Secondly, this structure entails certain forms of reversibility which

assure a continuous compensation among the operant transforma-

tions, and by this very fact it defines a certain equilibrium state.

Moreover, an equilibrium state is a system which entails poten-

tial transformations, since their algebraic sum expresses exactly

the compensation of possible modifications in both positive and

negative directions. Psychologically, this means that, alongside
the operations actually performed by the subject, the system itself

implies a set of potential transformations which may become
manifest or remain latent depending on particular conditions (see

Chap. 16).

The problem of operational schemata has to be raised precisely

because of the existence of such potentialities; operational

schemata are defined as the concepts which the subject potentially

can organize from the beginning of the formal level when faced

with certain kinds of data, but which are not manifest outside

these conditions. From the point of its appearance during sub-

stage III-B, and often even during III-A, formal thinking makes

its presence known not only by the constant utilization of the

sixteen binary propositional operations and some ternary or

superior combinations which derive from them but also by the

sporadic elaboration of some concepts or schemata which are

inaccessible at the concrete level because their development pre-

supposes the earlier operations. These operational schemata con-

sist of concepts or special operations (mathematical and not ex-

clusively logical), the need for which may be felt by the subject
when he tries to solve certain problems. When the need is felt,

he manages to work them out spontaneously (or simply to under-

stand i.e., to rework them in cases when academic instruction

has already dealt with the relevant concepts). Before the formal
level he is not able to do this.

So we have a very important psychological phenomenon here:

the synchronized emergence of a set of concepts or operations
whose interrelationships are not clear at first (because they are

not interdependent in the way the sixteen binary operations are),
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but which are nevertheless bound up with each other as a result

of deeper links. The roots of this relationship must be sought in

the combined structure of the lattice and the group, which is

the structure of formal thought.
If the interconnectedness of these operational schemata is not

immediately discernible, it is because the subject constructs them
in a way which on the surface is analogous to the way he works

out a number of concepts that are useful to him i.e., by the in-

termediary of prepositional operations, but in a sequence which is

determined by unpredictable needs resulting from experimental
conditions and the nature of the particular problems. For ex-

ample, in the course of the experiments described in chaps, i

to 6, the stage III subjects have elaborated concepts such as the

laws of flexibility, the oscillations of the pendulum, the equality

between the angles relevant to the rebounds of a ball, the law of

floating bodies, etc., by means of formal operations. However,
none of these concepts is itself formal from a structural stand-

point. Although they do not appear before the formal level be-

cause use of formal operations is a prerequisite to their discovery
or construction, they are not formal as concepts because they
relate to particular experimental situations or to the geometry of

physical bodies. But among the concepts or operations that the

subject apparently organizes in the same way i.e., by deduction

or invention in the experimental situation after he has observed

empirical combinationsthere are some which reappear in the

most varied situations or in reference to the most diverse prob-

lems. Our analysis shows that these concepts have somewhat

different properties from the others.

In this category, for example, we would include the notion of

proportions. It is applied to several problems whose content is

unrelated: equilibrium between action and reaction, combina-

torial probability, or even mathematical operations of combi-

nations, etc. Such notions have three common features: (i) They
are more general than the others and thus constitute operational

schemata susceptible of varied applications rather than concepts

in the narrow sense of the term; (2) From the standpoint of psy-

chological development, they are less discovered in objects than

deduced or abstracted with the subject's own operational struc-

tures serving as the starting point; (3) They all show some rela-
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tionship to the lattice or group structures, and several of them,

to the I N R C group of inversions and reciprocities.

The simultaneous appearance of these schemata at the begin-

ning of the formal stage (III-A) is so important to us because of

these three features. Insofar as the operational schemata are

bound up with the structural integration which defines the type
of equilibrium found in formal thought, one may ask whether the

capacity to organize such schemata (a capacity which, may we

repeat, can remain latent but becomes manifest when required

by the nature of the problems to be solved) does not constitute

one of the manifestations of the potential transformations inherent

in any form of equilibrium, especially when the equilibrium has a

structure as complex as the integrated group and lattice found

in the system of formal operations.

I. The combinatorial operations. The "structured whole," which

can be drawn from a set of 4 elements p.q, p.q, p.q y and p.q
considered i-by-i, 2-by-2, 3-by-3, all 4, or o, constitutes a system

= 16 combinations; this combinatorial system gives rise to
2
of 22

the 16 binary operations (likewise the 16 X 16 = 256 ternary

operations, etc.). However, we have never encountered a stage III

subject or an adult (logicians excluded) who has successfully cal-

culated these 16 possible combinations or who has even become
aware of the existence of such a combinatorial system in any
explicit form. The deliberate and reasoned use of these combina-

tions is as foreign to the subject who begins to reason formally as

are the laws of harmony to the child or to the popular singer who
retains a melody or whistles an improvised tune.

But it happens that in the color experiment (Chap. 7), where the

subjects are given four flasks containing various liquids and a

dropper containing a fifth but are not given any instructions about

the combinations, it is precisely at substage III-A that they begin

spontaneously to make systematic i-by-i, 2-by-s, 3-by-3, and

4-by-4 combinations.

Secondly, as we have shown elsewhere,
19

if children are given

5 or 6 cups containing various colored tokens with explicit instruc-

tions to make up all possible pairs with tokens taken from the

cups, again it is only at substage III-A that a systematic method

La Gen&se de Vidfe de hasard chez Fenfant, Chap. 8.
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is used to solve the problem. At the concrete level, the combina-
tions remain incomplete and are obtained by simple trial-and-

error. As for the permutations
20

(6 permutations between 3 tokens
of different colors and 24 permutations between tokens of 4 col-

ors) and arrangements
21

(find all the numbers which can be con-

structed with 2, 3, 4, ... figures), it is only at substage III-B

that these operations are acquired systematically i.e., without

explicit formulation of mathematical expressions, but with a per-
formance based on an exhaustive method.

There are four ways of explaining the convergence between the

spontaneous appearance of mathematical combinatorial opera-
tions (which are not taught in school at the ages considered) and
the equally spontaneous organization of the prepositional combi-

natorial system. First, one could say that it is nothing more than

a coincidence. Secondly, one could consider the (mathematical)
calculation of the combinations as the primitive acquisition and
the prepositional combinatorial system as a derivative application.

Third, the prepositional combinatorial system could be consid-

ered the primitive acquisition and the mathematical combinations

the derivative applications. Finally, one could assume that, from

the standpoint of the psychological functioning of operations in the

subject's thinking, the two kinds of combinatorial systems consti-

tute a single unified mechanism.

The first possibility seems to us untenable on the basis of prob-

ability. Of the hundreds of subjects examined (more than 1500

for the problems of experimental induction and at least 300 for

the mathematical combinatorial operations), the synchronism of

processes described could not be attributed to chance. Secondly

it is difficult to hold to the view that two related kinds of acquisi-

tions, one logical and the other mathematical, could be observed

at the same ages without any communication being established

between the corresponding pigeon-holes in the brain or the mind,

even if such pigeon-holes can be said to exist.

The second possibility is improbable, first from the develop-

mental standpoint; and secondly, because its meaning only seems

to be clear. Against it, it can be said first that it contradicts the

developmental data usually found because a mathematical opera-

., Chap. 8.

21 Ibid., Chap. 9-
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tion is generally more complicated than the corresponding logical

operation. In fact, the difference between the mathematical com-

bination operations and a logical combinatorial system is that the

first relate to simple units, whereas the second relates to qualities

of objects of which no one is exactly equivalent to another. But it

can be said that the unit is more abstract than the qualified object

because it presupposes a preliminary elimination of all qualities.
22

Thus it is doubtful that the formation of mathematical combina-

tion operations precedes that of the logical combinatorial system.

But even if this were the case, what would be the meaning of the

hypothesis according to which the latter results from the applica-

tion of mathematical operations formed earlier? It is important for

the reader to understand that our subjects did not discover and

do not know any mathematical formulas for the calculation of

combinations. What they do discover is an operational procedure
which is actually only a simple method of action and not knowl-

edge consciously thought over and formulated. Thus, to say that

this procedure first applies to any objects whatever and is finally

generalized to logical thought and its deductive operations has no

clear meaning, since logical thinking is already effective in the

operations applied to objects. Hence, the only question is whether

the nascent combinatorial system deals first with objects as units

or first with qualities of objects; but, may we repeat, numerous

22 In the case of the prepositional combinatorial system, the elements are

the associations p.q, p.q, p.q, and p.q, which are not mutually equivalent
and are even qualitatively quite distinct. It is true that we are dealing here
with stated associations relating to objects or qualified events, which implies
a greater degree of abstraction. However, the reader will remember that this

prepositional combinatorial system arises from the general classification of

elements in a double-entry table found in concrete multiplicative groupings.
Thus at its source, this combinatorial system deals with simple associations

of descriptively qualified objects. In the case of colorants, the given elements
are conceived of as potentially qualitatively different, but they are in fact

perceived as indistinguishable except by their rank order numbers. In pftrt,

this case involves a combination of units. Finally, in the token example, the
situation is equally mixed. Each element is a unit, but selected in a qualita-

tively defined set (by color). Thus it is hardly possible, if analysis is restricted

to the several examples of combinatorial systems cited above, to decide which
are the simplest and which are the most complex. Although the propositional
combinatorial system is purely logical, it makes for variable difficulty (in

actual application) according to the given data. As for the other two cases,
both involve a mixture of logical and mathematical structures and thus can-
not be compared to the first without ambiguity.
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analogies (formations of numbers compared to that of classes and
relations, etc.) favor the latter solution.

Does this mean that we have to reverse the terms of the second

argument and adopt the third? In one sense, yes, but since the

logical combinatorial system is also structured in action and not
in pure reflection, this third argument does not differ essentially
from the fourth. After all, what does the use of the prepositional
combinatorial system mean for a subject in the process of working
out formal structures? Simply this, that when confronted with
facts to be explained, he combines their qualitative links accord-

ing to all the combinations accessible to him (and formulates a

complete system without knowing it, in the case of the n-by-n
combinations of binary associations). Faced with objects to com-

bine, he does nothing else, save that he may add an enumeration

of units to the qualitative combination; for permutations (serial

ordering of series), he does the same, etc.

Thus it looks as if the combinatorial operations constitute an

operational schema that is quite general beginning with a par-
ticular stage in development (III-A): in other words, a method
or a way of proceeding which on some occasions is adopted

spontaneously without conscious or explicit decision and on

others used intentionally when the subject is faced with prob-
lems whose solution requires a systematic table of combinations.

This schema is formal and not concrete, since we have demon-

strated that the essential difference between the concrete group-

ings and the logic of stage III derives from the absence or pres-

ence of a systematic table. Finally, we do not have to remind the

reader at this point how this table is linked to the lattice structure

and the construction of the "structured whole." Nevertheless, we
have kept our promise to return to the combinatorial operations

so as to make them the first of the "operational schemata" consid-

ered in this chapter. The combinatorial operations do not actually

belong to the set of prepositional operators and do not derive from

them; on the contrary, they are the prerequisite condition of their

development (and as such they are quite different). Secondly, they

can be generalized to new situations as soon as they serve in this

development. Thus, these psychological properties show how the

combinatorial operations plunge their roots into a deeper reality,

the reality of the integrated structure in which the propositional
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operators originate and they express some of its laws of

totality.

II. Proportions. If the combinatorial operations express some
of the laws of totality found in the lattice constituted by the

"structured whole," in contrast, the proportional schema effects

the transition between the schemata originating in the lattice 23

and those which are integral with the group structure, more par-

ticularly, the group of inversions and reciprocities (I N R C).

Mathematical proportions consist simply of the equality of two
ratios x/y = xVy'. Their formation raises a psychological problem

only because it does not take place during the concrete opera-
tional stage. The subject at this level can already construct

fractions or numerical ratios as naturally as he equalizes differen-

tially distributed quantities. Moreover, from the qualitative stand-

point, beginning with the concrete level, we see evidence of an

operation that Spearman has called the "eduction of correlates" in

which the subject formulates the links in a double-entry table in

such a way as to forecast proportions: for example, "Rome is to

Italy as Paris is to France/* This is why we wonder why the 8-

to n-year-old subjects are not able to discover the equality of two

ratios which form a proportion, and why the discovery is not made
before the formal level. But in the course of the above experi-

ments (Chaps. 11 to 14), we have been able to observe repeatedly
that proportions are not acquired before substage III-A; this has

been shown in the most diverse areas (space, speed, probabilities,

etc.). It is not enough to explain it as a result of timing in the aca-

demic curriculum. In the first place, we have seen subjects con-

struct the notion in the experimental situation before they have

learned it in school. Secondly, if it could be understood earlier,

we can be sure that its presentation in the academic program
would accelerate the timing of acquisition! Thus we have to look

for the explanation of its late comprehension in the actual struc-

ture of the operations available to the subjects at the different

levels.

But, like all the other operational schemata considered here, the

proportional schema has two aspects, one logical and the other

mathematical. In its general logical form, a proportion is the

equivalence of the relations connecting two terms a and ft to the
23 See the Comment at the end of Chap. 13.



CONCRETE AND FORMAL STRUCTURES 3J5

relations connecting two other terms y and 8. Thus, by definition
we have:

- = 2. if
W a '8 = fry (3) *& = y-5 and a./? = y.8

For example:

= because / \ - - = ,

'

^\
/ P _i

q p (3) P*q == q^P &&Q- p.q ^ Q.p .

Defined in this way, the logical proportions derive from both
the group structures of inversions and reciprocities (I N R C) and
lattice structures. A given prepositional expression (a) is to its

reciprocal (/5) as the negation of the latter (y) is to the negation
of the first (8):

For example:

or =
p\q p.q

9

q Dp p.q

etc., which verifies properties (i) to (4).

On the other hand, the conjunction (the logical product or

lower bound) of any two elements of a prepositional lattice, for

example p and q, is to one of them as the other is to their disjunc-
tion (sum, or upper bound):

p.q a . , r p.q Q\!P\^ L- = 2 whose complete form is r \ = --
.

P pvq
*

p[q] pvq

Thus, the notion of logical proportions is inherent in tihe inte-

grated structure which seems to dominate the acquisitions specific

to the level of formal operations (stage III). For this reason, one

can ask whether the elaboration of the operational schema of

proportions does not derive from these logical proportions, whose

late appearance would be explained by their necessary relation-

ship to the structural integration of the formal stage. Actually,

whenever a system of proportions comes into play, before the

subject arrives at the calculation of numerical relations, he isolates

an anticipatory schema for qualitative proportionality. Second,
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tliis schema, simply a logical one at first, leads at a later point to

the discovery of metrical proportions. For example, in the balance

problem the subject first discovers that a given increase in weight
can be compensated by a proportional increase in the distance

from the central axis: in placing a light weight at a great distance

and a heavy weight at a small distance, he reaches equilibrium

and concludes that the four values have a proportional relation-

ship. But, at first, the compensation as well as the proportion are

exclusively qualitative. If we let p stand for the statement of an

increase in weight and q an increase in distance, and p and q the

corresponding decreases, the subject begins by conceptualizing

simply the following links:

p = Rg and ~ ^~ ,
from whence p.p = q.q and p v p = q v q ;

i.e., that the increase in weight is to the corresponding decrease

in distance as an increase in distance is to the corresponding de-

crease in weight (still independently of any measurement).
The qualitative schema which serves as a starting point for the

subject in the discovery of proportionality seems to be of this type.

Essentially, it is based on the reciprocity of weights and distances

which the experiment suggests to him: the increase in weight can

be canceled by taking away the added weight (Np ==
p), but it is

equally possible to compensate this increase by reducing the

distance (p
= R^ or Rp = q). When this is done, the preceding

proportion can also be written: 24

*- = R ~ , from whence p.q = R(p,q).

The subject's reasoning usually appears in this latter form: in-

creasing the weight and reducing the distance (p.q) is equivalent
to (R = compensates) decreasing the weight and increasing the

distance.

Once these two schemata have been acquired, the subject can

24 In other words, if p.q = R(p.q) we have also p.q = R(p.q) and

p.p = R(q.q)-i.e.t (o=:Ro) for p.Cp p.p and q.Cq q.q since Cp~p
and Cp = p.



CONCKETE AND FORMAL STRUCTURES 317

at a later point insert the numerical values which are furnished by
his measurements, for a metrical proportion corresponds to each

one of the two (see proportions [13] and [14] in Chap. 11):

^ p q , nx n:v
to = ~

corresponds = -
,

q p ny n:x 9

,P r>P j noc
and to = R ~ corresponds ~

r ,

q q
r

ny y in

Thus, the acquisition of the operational schema of numerical or

metrical proportions presupposes qualitative expectations in the

form of compensations by equivalence and in the form of logical

proportions. The latter are part of the integrated structure from
which prepositional operations are derived. Such would thus be
the explanation of the late appearance of the concept of propor-
tions and the synchronism which is observed between its appear-
ance and the emergence of the combinatorial operations and

the other operational schemata which we will take up presently.

No doubt, it would seem that one could obtain the proportional
schema by numerical quantification with a system of class prod-
ucts as a starting point. Certainly it is prepared for by the use of

Deductions of correlates" mentioned above. But the analysis of this

elementary structure shows that it does not yet have the general

properties found in prepositional proportions.
25

III. Coordination of two systems of reference and the relativity

of motion or acceleration. The third operational schema relates

to our earlier research and not to experiments included in this

work.26 Nevertheless, we think it important to discuss them here,

both to demonstrate the general nature of the phenomenon of

25 For example, in the correlate "hair is to mammals as feathers are to

birds," let us call Ai epidermic organs including both hair and feathers and

A'i other organs and call A2 the organs of mammals and A'* those of birds

(assuming that Ai + A'i = Bi and As + A'a = B2). We then have the cor-

relate AiAa/BiAjj^AiA's/BiA'a. But it is not possible to conclude that

(Ai A' + Bi A'2) =r (Bi As + Ai A'2) (i.e., the hair of mammals plus the organs

of birds = the organs of mammals plus the feathers of birds), etc. Rather, the

similarities in relationships are closer to prepositional proportions, but on the

condition that they do not deal with mutually identical relations.

26 See J. Piaget, Les Notions de mouvement et de vitesse chez Fenfant,

Paris, (Presses Universitaires de France), 1946, Chaps. 5 and 8.
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formal operational schemata and to prepare the reader for an

understanding of the example to follow; this example concerns

mechanical equilibrium, which is dependent upon the same struc-

ture.

In this experiment, a snail is set in motion on a plank which can

be moved either in the same direction as the motion of the snail or

in the opposite direction. The subjects at the concrete level know

very well that the snail can move from left to right, then return

from right to left by an inverse operation which cancels the pre-

ceding. Likewise, they know that if the snail is immobile on the

plank, moving it from left to right will cause the snail to end up
at the same point (in relation to an external frame of reference)
and that the opposite motion would return him to his starting

point. But it is not before the level of formal operations that

predictions can be made for both sorts of motion simultaneously,
for in this case two systems of reference must be coordinated, one

of which is mobile and the other immobile. The difficulty lies, for

example, in understanding the fact that a movement from left to

right made by the snail can be compensated by a displacement
of the plank from right to left; in this case the snail remains in the

same place (in relation to the frame of reference) without any
reverse movement.

Similarly, we set up a number of toy cyclists to move with uni-

form rhythm and rate in front of an observer. We ask whether the

observer will see more cyclists in the same period of time if he
remains stationary before his door, if he walks in the opposite
direction from the cyclists, or if he walks in the same direction as

they do. This problem too is solved only at stage III, and for the

same reasons. But at this level, the subject shows a good under-

standing of relativity: one subject told us, for example, that if the

observer marches against the cyclists, "it's as if he didn't move and
as if the cyclists went faster."

Actually, the difficulty in these problems lies in distinguishing
and combining two types of transformation: (i) cancelation (for

example, when the snail returns from B to A after having moved
from A to B); and (2) compensation (for example, when the snail

goes from A to B while the plank is displaced from B to A). Thus
the problem involves the coordination of two systems, each in-

volving a direct and an inverse operation, but with one of the
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systems in a relation of compensation or symmetry with respect
to the other.

Moreover, one can see immediately that this coordination is the

same one that is attained by the I N R C group, since N is the

inverse of I, and C of R, whereas R is symmetrical to or compen-
sates I (reciprocity). So the problem is to distinguish inversion N
from reciprocity R at the same time that one is coordinating them.

This is why the problem cannot be solved before the formal level,

when a schema based on the I N R C group is in operation.
In other words, if we call I the snail's motion from A to B, N

will be his motion from B to A; R will be the plank's motion from
B to A (thus R= C of N) and C will be the plank's motion from

A to B (thus C of I = N of R). But there is no need to work out

further this schema of reasoning, for we will now see its equiva-
lent in the problem of mechanical equilibrium.

IV. The concept of mechanical equilibrium. When the proc-
esses operating in a system of mechanical equilibrium can be

directly understood, thanks to perceptual configurations, the

subject does not have much trouble in grasping the notion of the

equality of opposite directions and he does so from the concrete

stage on. For example, this would be true in the case of a balance

with fixed weighing pans, where the distances from the central

axis do not vary and where the elements in equilibrium are of the

same nature (weight) and can be seen to act in opposite direc-

tions from each other. But, in this case, no general equilibrium
schema is worked out, and difficulties appear the moment the

subject is faced with an apparatus in which the elements in

equilibrium are no longer of the same nature and, particularly,

in which only the action is visible while the reaction remains in-

visible except for its results. The late appearance in the history of

science of the principle of equality between action and reaction,

which was unknown to the Greeks, is evidence that such a diffi-

culty exists. Likewise, from the individual standpoint, the gen-

eral equilibrium schema is not organized before the level of

formal operations; and we shall now try to explain why this is

the case.

The first reason is natural enough: since the notion of equilib-

rium requires compensation between the potential transforma-

tions of the system, it is a typical example of the notions which
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establish a connection between reality and possibility. As such, it

requires the organization of the cognitive instrument which is

especially adapted to possibility i.e., formal thought. However, if

this were the only reason, the notion of equilibrium could be con-

sidered as one of those which, although requiring prepositional

operations as preconditions of discovery, would not necessarily

be formal in structure.

A second reason immediately comes to mind which leads us to

compare the equilibrium schema and the operational schemata

of combination and proportion which, as we have just seen, are

structurally formal as well as formal in terms of the means by
which they are organized. In other words, the notion of equilib-

rium requires simultaneously the distinction and the intimate

coordination of two complementary forms of reversibility inver-

sion and reciprocity. Inversion takes place in an equilibrium
state whenever the elements of the system are modified by adding
or taking away an element and, thus, when transformations are

involved whose compensation form is the null operation. On the

other hand, there is reciprocity when transformations performed
in opposite directions do not annul each other (the null opera-
tion signifying the absence of actions) but only compensate each

other in terms of a form of compensation we call equivalence; the

equality of action and reaction is the general form of this com-

pensation by reciprocity. Furthermore, inversion and reciprocity
are always integrated here. In adding or in taking away some
elements of a part of a system (inversion), one modifies with the

same stroke the relations of reciprocity between this part of the

system and those parts which equilibrate it. In reverse, to modify
the equivalence (reciprocity) between elements acting in opposite

directions, obviously one must take away or add something; this

is an inversion transformation.

Moreover, this interdependence of transformations by inversion

and by reciprocity implies a formal structure. As we have seen,
it is only on the level of formal operations that these two forms
of reversibility can be integrated into a single system. As opposed
to elementary groupings which depend either on inversion

(classes) or reciprocity (relations), the propositional operations all

have an inverse (N), a reciprocal (R), and a correlative (C)~Le.,
the inverse of the reciprocal. With the identical transformation (I),
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these transformations constitute a commutative group such that

NR = C, CR = N, CN = R and NRG = I .

But these are exactly the four transformations of the group
used by the subjects in explaining equilibrium in a mechani-
cal system. As we have just seen, in order to understand such
a system a subject must be able to simultaneously differentiate

and coordinate its modifications, using both inversion and rec-

iprocity. We have here a situation which is highly instructive

from the psychological standpoint. Naturally, the subject knows

nothing about the "group" as a matter for theoretical reflection,

but he uses elementary group structures operationally even at

the concrete level (for example in the composition of arithmetical

additions and subtractions, since they constitute a group of two

transformations). When he begins, at the formal level, to analyze
mechanical systems in equilibrium, he has to differentiate and
coordinate the operant transformations as objective modifica-

tions of physical reality; he also structures them according to a

group model as a result of the laws of his thought processes. Con-

sequently, this operational model, which happens to be that of

any equilibrium, corresponds to the internal equilibrium of his

own logical operations without his being aware of it. This occurs

in such a way that, in the explanation of a mechanical system
in equilibrium, the group of inversions and reciprocities (I N R C
group) comes into play on two completely different levels at the

same time. First, it governs the prepositional operations which

the subject uses to describe and explain reality; as such it con-

stitutes an integrated structure at the interior of his thought, a

structure of which he is naturally not aware. But second, as a

direct result of the first function, it is projected outside into the

phenomena under analysis (since, in the given data, these consist

of a physical system whose equilibrium represents the very prob-

lem to be resolved). Thus the group gives rise to the operational

schemata which the subject uses in this and similar situations to

account for the physical modifications he finds and their coordina-

tion.

For example, in the experiment in which the piston exerts

pressure on a liquid (Chap. 10), the four transformations to be

distinguished are the following: (i) first, there is an action of the
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weight of the piston and the additional weights which can be

placed on it (direct transformation); (2) inversely, one can take

off either the weights placed on the piston or the piston itself

(inverse transformation); (3) furthermore, there is reaction of the

liquid in the form of a resistance which is a function of its

quantity and density (reciprocal transformation); and (4) finally,

one can diminish either the quantity or density of the liquid in

replacing it with a smaller amount or a less dense liquid (inverse

of the reciprocal). Moreover, in examining our subjects, we find

that their principal difficulty is understanding that the mass of the

liquid exerts pressure, a pressure that acts in the opposite and

not in the same direction as that of the piston. Thus, understand-

ing the equilibrium requires not only understanding of the trans-

formations which play the direct and inverse roles (i and 2) but

also an understanding of the specific modifications constituted by
cases (3) and (4). The liquid's resistance (3) is also a pressure, but

one which is both equivalent to that of the piston and oriented in

the opposite direction in such a way that it is a reciprocal and

not an inverse transformation, although at the same time it acts in

the same direction as the inverse transformation. As for the inverse

transformation of the reciprocal (4) i.e., the diminution of the

liquid's resistance it acts in the same direction as the direct

transformation (i) but is not identical to it.

Thus we are not exaggerating when we say that understanding
such a system entails both the differentiation and coordination

(equally difficult and interdependent) of the four transformations

isomorphic to the I N R C group. In this and similar examples,
the notion of mechanical equilibrium certainly corresponds to an

operational schema structured at the formal level. Its structuring
can be explained by the now constant use of inversions and rec-

iprocities in carrying out prepositional operations (for example

pDq transformed into p.q, or into qOp). Just as any casual

explanation consists of deducing modifications in the empirical
world by assimilating them to cognitive operations,

27 the inter-

pretation of mechanical systems by means of the operational
schema of equilibrium means (as described above) assimilating
the distinct and integrated modifications of the physical sys-

**Cf. J. Piaget, Introduction & I'&pist&nologie gtntiique, vol. II, Chap. 8,

# 10. To appear in English translation.
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tern to the fundamental I N R C transformations on which the
structural integration of the formal operations used mentally to

understand the physical system is based.

V. The notion of probability. We now turn to a group of con-

cepts deriving simultaneously from one or two of the above

operational schemata which play a sufficiently general role to

permit us to rank them with the others in the set of formal opera-
tional schemata.

The first is the notion of probability in the form which reaches
the formal level of development at stage III i.e., when it acquires
a general combinatorial structure. In our study of the develop-
ment of conceptions of chance,

28 we learned that the discovery
of (spatio-temporal and physical or logico-arithmetical) inde-

terminacy, as opposed to what is operationally determined, entails

even for the concrete level subject a preliminary separating out

among what is possible, what is real, and what is deductively

necessary (which remain undifferentiated at the preoperational

level); whence stems the appearance of an elementary notion of

probability by relating favorable and possible cases.29 However,
at the concrete level, the determination of what is possible (and

consequently the determination of what is probable) is limited to

those cases in which an operational composition is accessible to

the subject i.e., to the cases of additive composition in contrast

to combinatorial compositions: for example, when elements A
are drawn from a collection B formed of two parts A + A' (thus

A = B A'). Thus concrete possibility is nothing more than a

prolongation of reality, in situations in which variables are mixed

randomly and are indeterminate; the concrete probable still re-

lates to elementary operational groupings. But at the formal level,

as we have seen (Chap. 16), possibility is extended to the point

where stage III subjects* deduction begins with possibility

(hypothesis), to end up at reality conceived of as a realized sector

of the total number of possible combinations. It follows that the

notion of probability acquires an inherently broader extension and

greater accuracy. It is still a relationship between the confirming

and the possible cases, but both begin to be calculated as a func-

tion of the combinations, permutations, or arrangements com-

28 La Gendse de Tidfa de hasard chez l
r

enfant.
2d For example, when drawing from a collection of specified sub-sets.
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patible with the given elements. The difference is clearly revealed,

for example, when the problem is to draw pairs or trios of ele-

ments from collections containing several varieties of objects

according to a specified numerical distribution. Whereas the con-

crete level subjects fail because they lack a combinatorial sys-

tem, those at stage III succeed without any regular difficulty.

'Thus the combinatorial conception of probability can be con-

sidered a formal operational schema, a schema whose formation is

easily explained in the light of the general operations examined

above. We need not refer back to the examples of probabilistic

attitudes noted in the present research in regard to partial chance

distributions of results (see Chap. 15).

VI. The notion of correlation. Correlation is a notion which

derives simultaneously from that of probability and from a struc-

ture close to the one governing proportions. Let us take the set of

four possible base associations which can be formulated between

two prepositional affirmations and negations: p.q v p.q v p.q v p.q .

Like many others discussed in this work, this set corresponds to

the four compartments of a double-entry table referring to the

product of two classes (Ai Az + AI A's -f- A'i AS + A'i A'2 ) avail-

able from the initial stages of the concrete level. But, two of these

possible associations p.q v p.q express the equivalence between

p and q, thus a term-by-term correspondence between the values

involved in case of serial ordering. For this case, we can speak of

perfect positive correlation. But the two other associations,

p.q v p.q, if they are taken alone, express reciprocal exclusion

between p and q, thus an inverse correspondence or a perfect

negative correlation. On the other hand, if all four associations

occur and they correspond to an equal numerical distribution

of the events stated by the propositional conjunctions, there is a

zero correlation.

But when the stage III subject wants to find out whether
there is a relationship between the facts described by p and q9

when the empirical distribution is irregular (thus involving a mix-

ture of chance interferences and underlying causality), he uses

a method based on these operations. Since the subjects do not

know any metrical formula for correlations (in fact know nothing
about mathematical probability), they are limited to the use of

a logical schema. They have to guess at the corresponding
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numerical frequencies and simply compare the number of con-

firming cases, corresponding to p.q v p.q, to the number of non-

confirming cases, corresponding to p.q v p.q. If one of the sets

is numerically superior to the other with a sufficiently observable

margin, they conclude that there is a causal relationship, whether

positive or negative, and explain the minority cases by the inter-

ference of chance variables.

The problem is to understand why this conception of correla-

tion does not appear during the concrete stage. First, one could

answer that we are dealing with a probabilistic notion which is of

great complexity even at this point. A correlation is sought only
when a causal relationship remains in part veiled by partial

chance distribution, and in order to think of separating out these

two sorts of elements one has to distinguish the probable from

the determinate i.e., the set of confirming cases within the four

possible associations. However, we have just seen that the

schema of combinatorial probability is a formal one. But, is it

really a question of combinatorial probability, or is the additive

mode of composition of the concrete level adequate to solve

the problem? The search for correlation does in fact require a

combinatorial system, since the subject's problem is not simply to

classify the four possible cases but to distinguish the various

realized and realizable combinations among them. In order to

place p.q v p.q in opposition to p.q v p.q, the subject must sepa-

rate out these two combinations (equivalent to p = q and to

p vv q) from the 16 possible combinations such that p.q v p.qi.e.,

p[q] or p.q v p.qvp.q-i.e., p^q, etc. In this sense the correla-

tion schema depends on the prepositional combinatorial system.

That is why it appears late and cannot be observed before the

level of formal operations (Chap. 15).

But the notion of correlation is also related to the concept of

proportions, in that the associations p.q, p.q, etc., which appear

in the logical structure of correlations (as well as the correspond-

ing numerical values) can be put in the form of proportions. Thus,

one of these possible propositions has the special importance of

being a negative proportion
30 from the logical standpoint, and

so For a definition of the concept of negative logical proportion, see

J. Piaget, Essai sur les transformations des operations logiques, Appendix,

pp. 226-227.
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of corresponding to a null correlation i.e., the proportion:

,

p.q p.q>

where

(p.q).(p-q)
=

(p.?).(p.<7)
= o,

(p.q) v (p.<?)
= N[(p.<?) v (p.<?)], and

(p.qr)
v (p.q)

= N[(p.?) v (p.q)].

From the numerical standpoint, if p corresponds to n, q to m,

p to n7
, and q to m'; we have:

n.m n'.m , , , , , ,-_ -= ~- - from whence n.m.n'.m' = n.m.n.m .

n.m n.m

Thus, this proportion is always true, whatever the numbers

n, m>
n'9 and m' (and not only if n' is the inverse of n and m'

of m). Secondly it corresponds to a correlation which is always

zero, since n,m.n
/
.m' n.m'.n'.m= o.

VII. Multiplicative compensations. The multiplicative com-

pensations are directly related to the notion of proportions, since,

if one has x.y = xf.y', one by definition also has x/yf = \f/y. But

from the psychological standpoint, although there is no doubt

that the organization of proportions always begins with the dis-

covery of compensations (see II below), the latter does not always

imply the former. Second, there are additive compensations (for

example, when one element simply gains what another has lost)

whose comprehension naturally begins at the concrete level and,
for this reason, comes long before understanding of multiplicative

compensations.
We have studied these cases of multiplicative compensations

with regard to the potential canceling out of effects between cer-

tain factors in flexibility (Chap. 3), etc. But we had already en-

countered a noteworthy case in another study relative to conserva-

tion of volume. If a subject wants to justify the fact that a given
volume is conserved even though its form is changed, he needs to

understand that what the volume gains or loses in one dimension
is compensated by what it loses or gains in the other two. It is

clear that a multiplicative compensation, which as always implies
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the organization of possible proportions, is involved. Take, for

example, a parallelepiped of 3X4X5 units which is trans-

formed into another of 6 X 3 X 3-33. ... It is evident that if

volume is conserved by multiplicative compensation of dimen-

sions, it is because when one of the sides is doubled (from 3 to 6)
the product of the other two is reduced by one half (4 X 5 = 20
and 3 X 3-33 . . . = 10). Thus the compensation is based on a

proportion such that:

fli _ b2 X c2

02
~~

&i X ci
'

or any other analogue.
But the important fact for the theory of operational equilibrium

is that the child does not come to control the notions of multiplica-
tive compensation and conservation of volume until the age when
he discovers proportions in other areas. But he makes the discov-

ery without metrical calculation and without realizing that the

numerical calculation of the compensations that he conceptualizes

qualitatively implies the use of proportions.
31

Thus, everything

appears to indicate that when an operational schema is organized,
the subject discovers its various consequences simultaneously,

even without explicitly bringing together the various aspects of

the schema. In this case, on the one hand he discovers certain

multiplicative compensations, but without realizing that they

imply proportions, and on the other he discovers certain propor-

tions, but without extracting multiplicative compensations from

them. In a manner which is even more general, he discovers simul-

taneously notions of proportions, equilibrium, correlations, multi-

plicative compensations, etc., without realizing that they stein

from a common operational base and without knowing anything
about the nature of the group (the I N R C group) from which

they derive.

For multiplicative compensation, this situation is especially

striking. The subject comes to the idea of compensation qualita-

81 To find the stage when conservation of volume develops, we simply

immersed a small ball or a cylinder of modeling day in one glass, and a sec-

ond cylinder which is lengthened or shortened, etc., in a second glass; con-

servation of volume is revealed by the equality of the water levels.
In^this

situation, conservation of volume is understood at 11-12 years. See Devel-

opponent des quantities, Chap. 3.
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tively, without using any calculation. Thus he acts in conformity

with a sort of schema of expectations, consisting of operations

which he could perform to demonstrate the compensation, which

is taken for granted. In other words, the compensation is in this

way recognized as possible and often as necessary before the

operational procedures which could justify it are made explicit.

But it is evident that this does not mean that the subject does not

employ any operations when he encounters a volume whose form

has been changed. His operational schema appears as an expec-

tation only in relation to metrical operations which he does not

actually perform (or in relation to allied schemata with which he

does not establish any links), but it does require qualitative oper-
ations. They enable him to understand that what is taken away on

one dimension is not simply put back qualitatively but is conserved

as part of a product. We have here something analogous to

what can be observed when the subject has the feeling that a

proportionality exists before calculating it. In this second case, he

understands in advance that the problem involves the identical

transformation of the same relationship, while in the first case,

multiplicative compensation, he expects the return of the same

product. In the second case, he does not establish a link between

the notion of proportions and that of multiplicative compensation
because he fails to make explicit the metrical operations antici-

pated by the qualitative logical schema.

VIII. The forms of conservation which go beyond direct em-

pirical verification. We have summarized the development of the

notion of conservation of volume from the schema of multiplica-
tive compensation. However, although the conservation of vol-

ume is acquired only at the beginning of the formal stage, it has

this in common with the conservation concepts structured during
the concrete stage although empirical evidence is not enough for

their discovery (since they require an operational composition),
it does suffice for complete verification. In contrast, there are

other conservation concepts that empirical evidence verifies only
in the negative sense that it never contradicts them. But it cannot

verify them completely in a positive way, because this verification

could not take place within the given limits of space and time or

would contradict physical conditions which the experimenter has

to accept. An important example is the principle of inertia. If
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the subject wants to demonstrate the conservation of uniform
rectilinear motion in a controlled experiment, he has to face the
fundamental difficulties that any motion which is created experi-

mentally is eventually slowed down by external obstacles and that

his observation is limited in space and time. Thus, the inertia

principle has to be deduced and verified from its implied conse-

quences. Strictly speaking, it does not give rise to observable

empirical evidence.

However, in relation to the structure of the I N R C group of

four transformations to which we have already referred in ex-

planation of the formation of the notion of equilibrium, the sub-

stage III-B subjects do come to discover an elementary process
whose starting point is the obstacles which would stand in the

way of verification i.e., the causes of loss of motion. The reason-

ing which follows is extremely simple but that much more sig-

nificant. From the fact that when any object loses motion (stated

by p) the intervention of observable variables is implied (stated

by q v r v s . . .), they come to the hypothesis that in eliminating
all of these variables (i.e., q.r.s . . .), all loss of motion would be
eliminated at the same time; the result would be conservation of

motion (m) with its rate of acceleration (see Chap. 8):

If pD(qvrv$ . . .), then q.f.s . . . Dp, where pDm.
We can see how this reasoning uses simultaneously negation OP

inversion (N) and contraposition which is a form of reciprocity (R).

The Integrated Structure of Formal Operations as a

Final Form of Equilibrium in Mental Operations

The conclusion we may draw from the foregoing analysis is that

the various operational possibilities implied by the integrated

structure comprising the lattice and group found in formal think-

ing give rise to the organization of operational schemata. These

schemata often differ greatly from each other and are not linked

together by the subject, but they appear in more or less inte-

grated form and even synchronously during stage III.

Therefore, the next problem is to understand the psychological

correlates of this structural integration. Since it is the source not
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only of the prepositional operations first utilized at stage III but

also of the operational schemata whose vital role in the intellec-

tual behavior of this level has just been summarized, it appears
to play a continuous role in the causal structuring of the subject's

behavior and thinking. Moreover, he does not become aware of

it in spite of its general importance. Given this fact, it could not

be a product of acquired experience. And it could not be the

expression of an a priori form of the mind, since it does not

appear until the last stage of mental growth i.e., at the level

which defines the end of childhood and points the way across

adolescence to adult achievement. One could assume that it is

linked to late-maturing nervous coordinations, but this, however,
still leaves us with the problem of why it does not appear in its

totality as soon as it is organized and put into operation in cer-

tain determinate organs but rather is limited to partial manifesta-

tions such as those discussed above. On this count, an argument
which locates such a structure in the nervous system rather than

in the mind or in the intellectual unconscious does not further

solution of the problem. The real question is whether or not this

integrated structure exists "somewhere" ready-made or whether

its existence is of another nature. At this point we find that if

we want to give it a place in the causal mechanism of intelligence

and at the same time give due consideration to the specific char-

acteristics of its mode of action, we have to conceive of it as a

type of equilibrium. (Moreover, this leads us back to the consider-

ations set forth in the last chapter and the beginnings of the

present one.)

In other words, if the integrated group and lattice structure

found in formal thinking is a type of equilibrium, it must exist as

a set of possibilities among which only the operations and opera-
tional schemata actually organized in performance are manifest.

The others must exist only as latent transformations which may
appear in performance in the appropriate situation.

Given this, we can understand why the subject would not be
aware of the general structure as a totality; this totality is formed
in part of simple possibilities. But we also can understand why
this totality plays a causal role, since, as we have seen (Chap.

16), psychological possibility can orient manifest mental pro-
ductions. The set of latent transformations actually constitutes a



CONCRETE AND FORMAL STRUCTURES 331

system in the strict sense of the term; its structure obeys group
and lattice laws in such a way that the new organizations o the

cognitive field as a whole, made after some parts have already
been organized, do not occur at random but are directed toward

filling in the totality according to laws of composition dominated

by the relationships of inversion and reciprocity. (This is par-

ticularly true of the operational schemata discussed in the present

chapter.)

We have yet to understand why this form of equilibrium is the

inevitable result of all of the earlier mental development and why
for this very reason it can be considered final in relation to later

stages (adult thinking). First, we have to remember that, from

stage to stage in mental development, the equilibrium of actions

or operations at each new plateau is both more stable and covers

a more extensive field than the preceding ones. Although even

perception obeys an equilibrium law, as Gestalt theory has dem-

onstrated, this equilibrium covers nothing more than momentary
states whose conditions are continuously modified ("displace-

ments of equilibrium/' as physicists say). Sensori-motor actions

encompass perceptions and movements in systems which are

somewhat more extensive, but which are bound to present situa-

tions and subject to the same displacements. With the use of

representations, the equilibrium field is widened still more in

preoperational behavior, but the coordinations effected still de-

pend on immediately present configurations and are thus always
dominated by the succession of displacements of equilibrium.

With the structuring of concrete operations, on the other hand,

the complete reversibility of the nascent operational systems
assures that the equilibrium will maintain a limited stability

within the limits of the various fields corresponding to the

"groupings" which have been structured. But since the form of

these operational systems has not yet been entirely disentangled

from the empirical content, we still encounter successive levels of

equilibrium, defined in function of the heterogeneous factors to

be structured; as yet there is no general form of equilibrium which

cuts across these various operations independently of content. But

finally, with the appearance of formal thinking, such a form is

organized; its necessity is related to the dual requirements that

coordination be achieved between a set of operations of diverse
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kinds and that the form be liberated from particular contents.

Thus this general form of equilibrium can be conceived of as final

in the sense that it is not modified during the life span of the

individual (although it may be integrated into larger systems

[polyvalent logics]) and in the sense that it integrates into a single

system the groupings which were without operational linkages

among each other up to this point. Moreover, it necessarily results

from previous development, because structural evolution must be

conceived of as a growth of equilibrium, thus as a directed evolu-

tion. This does not mean that it is determined by a final cause.

The increase of entropy in physics is a good example of a progres-
sion toward equilibrium or of directed evolution which is inde-

pendent of any finalism; the evolution of operations obeys an

analogous law, although there are these two differences: (i) opera-
tional equilibrium increases in mobility as it increases in stability;

and (2) potential or possible transformations play the kind of

causal role specific to mental reality that we have analyzed above.

Thus, to consider the integrated structure which directs formal

thinking as a form of equilibrium is not the same as to satisfy a

simple need for symmetry in relations to physics and even less to

support a philosophical thesis. On the contrary, it is a simple con-

sequence of the fact that psychology is not logic. Since it is not

logic, it cannot be satisfied with explaining facts by means of an

abstract structure. The facts with which its investigations deal

are actions, and notably the internalized or mental actions which
we call operations. These actions and operations act and react

on each other according to causal laws, whereas consciousness

translates them in the form of implications in the largest sense

of the term (i.e., links between concepts and between values).

From the causal standpoint, they may give rise to more or less

equilibrated confusion or end up with the organization of equili-

brated structures. Empirical observations show the importance of

the second potentiality. Where structure is present, psychology
must make use of a tool which permits deduction of its possibili-

ties and prediction of effects so that equilibrium forms can be
defined. Such a tool is found in symbolic logic; but for psychology
its algebra is nothing more than a symbolic translation whose

principal utility is that of a means of analysis. The empirical

reality behind this symbolic translation is the field of coordinated
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behavior. The concept o equilibrium proves indispensable to

causal explanation from this standpoint; it makes it possible for

us to understand how at a given level of development intelligence
takes up simultaneously all of the directions opened up in this

field as a function of the potential transformations which char-

acterize it as well as of the portions already structured. If neu-

rological considerations come to round out our explanation at

some later date, the structures of groupings, lattices, and groups
will reappear in this new perspective, and, as a result, these laws

of equilibrium will prove to be more general than when linked

to behavior patterns alone. Already cybernetics permits us to

understand how this linkage is possible, since the solution of a

problem in a homeostat also proceeds by successive equilibrations

within a system with a combinatorial structure (lattices) and

essential laws of reversibility (regulations and groups).
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Adolescent Thinking

IT is SURPRISING that in spite of the large number of excellent

works which have been published on the affective and social life

of the adolescent we hardly need remind the reader of the studies

of Stanley Hall, Compayre, Mendousse, Spranger, Charlotte

Buhler, Landis, Wayne Dennis, Brooks, Fleming, or Debesse, or

those by psychoanalysts such as Anna Freud and Helene Deutsch,
and by sociologists and anthropologists such as Malinowsld and

Margaret Mead, not to mention others so little work has ap-

peared on the adolescent's thinking.
The few detailed studies of adolescent thinking which do exist

are all the more valuable because of their scarcity. But, until now,
there have not been enough to approximate a coherent outline of

the whole. On the one hand, intelligence tests such as Terman's,

Burt's, and especially Ballard's nonsense phrases have furnished

information on the hypothetico-deductive nature of formal

thought. With a different emphasis a number of works on adoles-

cent mathematical and physical thought Johannot, Michaud, etc.

have brought out the residues of infantile thinking found

throughout adolescence; they result from a sort of overflow of

concrete level problems onto a more abstract plane.
In the light of this deficit, in this final chapter, we should like

to see whether the results of the earlier chapters on the experi-
334
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mental thinking of adolescents in situations which impel them
toward both action and thought at the same time enable us to

set down the broad lines of this picture which neither tests nor

the study of verbal (or even mathematical) thought have outlined

before.

From the standpoint of logical structures, this work seems to

imply that the thinking of the adolescent differs radically from
that of the child. The child develops concrete operations and
carries them out on classes, relations, or numbers. But their struc-

ture never goes beyond the level of elementary logical "group-

ings" or additive and multiplicative numerical groups. During the

concrete stage, he comes to utilize both of the complementary
forms of reversibility (inversion for classes and numbers and rec-

iprocity for relations), but he never integrates them into the

single total system found in formal logic. In contrast, the adoles-

cent superimposes propositional logic on the logic of classes and
relations. Thus, he gradually structures a formal mechanism

(reaching an equilibrium point at about 14-15 years) which is

based on both the lattice structure and the group of four trans-

formations. This new integration allows him to bring inversion

and reciprocity together into a single whole. As a result, he comes

to control not only hypothetico-deductive reasoning and experi-

mental proof based on the variation of a single factor with the

others held constant (all other things being equal) but also a num-
ber of operational schemata which he will use repeatedly in

experimental and logico-mathematical thinking.

But there is more to thinking than logic. Our problem now is

to see whether logical transformations fit the general modifications

of thinking which are generally agreed sometimes explicitly but

often implicitly to typify adolescence. We should like to show

briefly not only that they do but also that the structural trans-

formation is like a center from which radiate the various more

visible modifications of thinking which take place in adolescence.

However, we must begin by eliminating a possible source of

ambiguity. We take as the fundamental problem of adolescence

the fact that the individual begins to take up adult roles. From
such a standpoint, puberty cannot be considered the distinctive

feature of adolescence. On the average, puberty appears at about

the same ages in all races and in all societies, although there is
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widespread opinion to the contrary. (In fact, a short delay has

been verified in Canada and in Scandinavia, but not the wide

gap between north and south, etc., that legend would have us

believe.) But the age at which adult roles are taken up varies con-

siderably among societies and even among social milieus. For our

purposes, however, the essential fact is this fundamental social

transition (and not physiological growth alone).

Thus we will not attempt to relate formal thinking to puberty.
There are, of course, a number of links between the rise of formal

structures and transformations of affective life which we shall

consider in greater detail presently. But these relations are com-

plex and are not one-way affairs. Even at this point, our thinking
would be muddled before we started if we wished to reduce

adolescence to the manifestations of puberty. For example, one

would then have to say that love appears only in adolescence; but

there are children who fall in love and, in our societies, what dis-

tinguishes an adolescent in love from a child in love is that the

former generally complicates his feelings by constructing a

romance or by referring to social or even literary ideals of all

sorts. But the fabrication of a romance or the appeal to various

collective role models is neither the direct product of the neuro-

physiological transformations of puberty nor the exclusive product
of affectivity. Both are also indirect and specific reflections of the

general tendency of adolescents to construct theories and make
use of the ideologies that surround them. And this general tend-

ency can only be explained by taking into account the two factors

which we will find in association over and over again the trans-

formations of thought and the assumption of adult roles. The
latter involves a total restructuring of the personality in which
the intellectual transformations are parallel or complementary to

the affective transformations.

However, even though the appearance of formal thought is not

a direct consequence of puberty, could we not say that it is a

manifestation of cerebral transformations due to the maturation of

the nervous system and that these changes do have a relation,

direct or indirect, with puberty? Given that in our society the 7-8-

year-old child (with very rare exceptions) cannot handle the

structures which the 14-15-year-old adolescent can handle easily,

the reason must be that the child does not possess a certain num-
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her of coordinations whose dates of development are determined

by stages of maturation. In a slightly different perspective, the

lattice and group structures are probably isomorphic with neuro-

logical structures l and are certainly isomorphic with the struc-

tures of the mechanical models devised by cybernetics in imitation

of the brain.2 For these reasons, it seems clear that the develop-
ment of formal structures in adolescence is linked to maturation

of cerebral structures. However, the exact form of linkage is far

from simple, since the organization of formal structures must

depend on the social milieu as well. The age of about 11-12

years, which in our society we found to mark the beginning of

formal thinking, must be extremely relative, since the logic of

the so-called primitive societies appears to be without such struc-

tures. Moreover, the history of formal structures is linked to the

evolution of culture and collective representations as well as their

ontogenetic history. Since Greek adults became aware of some of

these structures only in their logical and mathematical reflection,

it is probable that the Greek children were behind our own. Thus

the age of 11-12 years may be, beyond the neurological factors,

a product of a progressive acceleration of individual develop-
ment under the influence of education, and perhaps nothing
stands in the way of a further reduction of the average age in a

more or less distant future.

In sum, far from being a source of fully elaborated "innate

ideas," the maturation of the nervous system can do no more than

determine the totality of possibilities and impossibilities at a given

stage. A particular social environment remains indispensable for

the realization of these possibilities. It follows that their realiza-

tion can be accelerated or retarded as a function of cultural and

educational conditions. This is why the growth of formal think-

ing as well as the age at which adolescence itself occurs Le., the

age at which the individual starts to assume adult roles remain

dependent on social as much as and more than on neurological

factors.

iWe know that W. McCulloch and W. Pitts (Bull. Math. Biophys.

[Chicago, 1943] Vol. V, pp. 115-133), have applied the schemata of preposi-

tional logic to neuronal connections.
2 See J. Piaget, "Structures operationnelles et cybernetique," Annte P$y-

chologique, Vol. 33 (1953), PP- 379-388.
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As far as formal structures are concerned, we have often taken

special note of the convergence between some of our subjects*

responses and certain aspects of instruction in school. The con-

vergence is so striking that we wonder whether the individual

manifestations of formal thinking are not simply imposed by the

social groups as a result of home and school education. But the

psychological facts allow us to reject this hypothesis of complete
social determinism. Society does not act on growing individuals

simply by external pressure, and the individual is not, in relation

to the social any more than to the physical environment, a simple
tabula rasa on which social constraint imprints ready-made knowl-

edge. For, if the social milieu is really to influence individual

brains, they have to be in a state of readiness to assimilate its

contributions. So we come back to the need for some degree of

maturation of individual cerebral mechanisms.

Two observations arise out of this circular process which char-

acterizes all exchanges between the nervous system and society.

The first is that the formal structures are neither innate a priori

forms of intelligence which are inscribed in advance in the nerv-

ous system, nor are they collective representations which exist

ready-made outside and above the individual. Instead, they are

forms of equilibrium which gradually settle on the system of

exchanges between individuals and the physical milieu and on

the system of exchanges between individuals themselves. More-

over, in the final analysis the two systems can be reduced to a

single system seen from two different perspectives. And this

comes back to what we have said many times before.

The second observation is that between the nervous system and

society there is individual activity i.e.9 the sum of the experience
of an individual in learning to adapt to both physical and social

worlds. If formal structures are laws of equilibrium and if there

is really a functional activity specific to the individual, we would

expect adolescent thinking to show a series of spontaneous mani-

festations expressing the organization of formal structures as it is

actually experienced if adolescence is really the age at which

growing individuals enter adult society. In other words, formal

development should take place in a way that furthers the growth
of the adolescent in his daily life as he learns to fill adult roles.

But first we must ask what it means to fill adult roles? As op-
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posed to the child who feels inferior and subordinate to the adult,

the adolescent is an individual who begins to consider himself as

the equal of adults and to judge them, with complete reciprocity,
on the same plane as himself. But to this first trait, two others are

indissolubly related. The adolescent is an individual who is still

growing, but one who begins to think of the future-ie., of his

present or future work in society. Thus, to his current activities

he adds a life program for later "adult" activities. Further, in

most cases in our societies, the adolescent is the individual who
in attempting to plan his present or future work in adult society
also has the idea (from his point of view, it is directly related to

his plans) of changing this society, whether in some limited area

or completely. Thus it is impossible to fill an adult role without

conflicts, and whereas the child looks for resolution of his con-

flicts in present-day compensations (real or imaginary), the

adolescent adds to these limited compensations the more general

compensation of a motivation for change, or even specific plan-

ning for change.

Furthermore, seen in the light of these three interrelated fea-

tures, the adolescent's adoption of adult roles certainly presup-

poses those affective and intellectual tools whose spontaneous

development is exactly what distinguishes adolescence from child-

hood. If we take these new tools as a starting point, we have

to ask: what is their nature and how do they relate to formal

thinking?
On a naive global level, without trying to distinguish between

the student, the apprentice, the young worker, or the young peas-

ant in terms of how their social attitudes may vary, the adolescent

differs from the child above all in that he thinks beyond the

present. The adolescent is the individual who commits himself to

possibilities although we certainly do not mean to deny that his

commitment begins in real-life situations. In other words, the

adolescent is the individual who begins to build "systems" or

"theories," in the largest sense of the term.

The child does not build systems. His spontaneous thinking

may be more or less systematic (at first only to a small degree,

later, much more so); but it is the observer who sees the system

from outside, while the child is not aware of it since he never

thinks about his own thought. For example, in an earlier work on
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the child's representation of the world, we were able to report on

a number of systematic responses. Later we were able to construct

the systems characterizing various genetic stages. But we con-

structed the system; the child does not try to systematize his ideas,

although he may often spontaneously return to the same preoccu-

pations and unconsciously give analogous answers.3 In other

words, the child has no powers of reflection i.e., no second-order

thoughts which deal critically with his own thinking. No theory
can be built without such reflection.

In contrast, the adolescent is able to analyze his own thinking

and construct theories. The fact that these theories are oversimpli-

fied, awkward, and usually contain very little originality is beside

the point. From the functional standpoint, his systems are signifi-

cant in that they furnish the cognitive and evaluative bases for

the assumption of adult roles, without mentioning a life program
and projects for change. They are vital in the assimilation of the

values which delineate societies or social classes as entities in con-

trast to simple interindividual relations.

Consider a group of students between 14-15 years and the

baccalaureat* Most of them have political or social theories and

want to reform the world; they have their own ways of explaining
all of the present-day turmoil in collective life. Others have liter-

ary or aesthetic theories and place their reading or their experi-

ences of beauty on a scale of values which is projected into a

system. Some go through religious crises and reflect on the prob-
lem of faith, thus moving toward a universal system a system
valid for all. Philosophical speculation carries away a minority,
and for any true intellectual, adolescence is the metaphysical age

par excellence, an age whose dangerous seduction is forgotten

only with difficulty at the adult level. A still smaller minority turns

from the start toward scientific or pseudo-scientific theories. But

8 For an example, see Play, Dreams and Imitation in Childhood, Chap. IX.
4 Translators' note: baccalaureata. French examination taken at the end

of secondary school or about 18-19 years of age. Although, in its details, the

analysis of the adolescent presented below fits the European better than the
American pattern, one might suggest that even if metaphysical and political
theories are less prominent, the American dating pattern and other phe-
nomena typical of youth culture are a comparable "theoretical" or "as if'

working out of types of interpersonal relations which become serious at a
later point; thus the difference is one of content but not of structure.
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whatever the variation in content, each one has his theory or theo-

ries, although they may be more or less explicit and verbalized or

even implicit. Some write down their ideas, and it is extremely

interesting to see the outlines which are taken up and filled in in

later life. Others are limited to talking and ruminating, but each
one has his own ideas (and usually he believes they are his own)
which liberate him from childhood and allow him to place himself

as the equal of adults.5

If we now step outside the student range and the intellectual

classes to look at the reactions of the adolescent worker, appren-
tice, or peasant, we can recognize the same phenomenon in other

forms. Instead of working out personal "theories," we would find

him subscribing to ideas passed on by comrades, developed in

meetings, or provoked by reading. We would find fewer family
and still fewer religious crises, and especially a lower degree of

abstraction. But under different and varied exteriors the same core

process can easily be discerned the adolescent is no longer con-

tent to live the interindividual relations offered by his immediate

surroundings or to use his intelligence to solve the problems of the

moment. Rather, he is motivated also to take his place in the adult

social framework, and with this aim he tends to participate in the

ideas, ideals, and ideologies of a wider group through the medium
of a number of verbal symbols to which he was indifferent as a

child.

But how can we explain the adolescent's new capacity to orient

himself toward what is abstract and not immediately present (seen

from the outside by the observer comparing him to the child), but

which (seen from within) is an indispensable instrument in his

adaptation to the adult social framework, and as a result his most

immediate and most deeply experienced concern? There is no

doubt that this is the most direct and, moreover, the simplest

manifestation of formal thinking. Formal thinking is both thinking

about thought (propositional logic is a second-order operational

system which operates on propositions whose truth, in turn, de-

pend on class, relational, and numerical operations) and a reversal

of relations between what is real and what is possible (the empiri-

5 Of course, the girls are more interested in marriage, but the husband they

dream of is most often "theoretical," and their thoughts about married life as

well often take on the characteristics of "theories."
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cally given comes to be inserted as a particular sector of the total

set of possible combinations). These are the two characteristics

which up to this point we have tried to describe in the abstract

language appropriate to the analysis of reasoning which are the

source of the living responses, always so full of emotion, which

the adolescent uses to build his ideals in adapting to society. The
adolescent's theory construction shows both that he has become

capable of reflective thinking and that his thought makes it pos-

sible for him to escape the concrete present toward the realm of

the abstract and the possible. Obviously, this does not mean that

formal structures are first organized by themselves and are later

applied as adaptive instruments where they prove individually or

socially useful. The two processes structural development and

everyday application both belong to the same reality, and it is

because formal thinking plays a fundamental role from the func-

tional standpoint that it can attain its general and logical struc-

ture. Once more, logic is not isolated from life; it is no more than

the expression of operational coordinations essential to action.

But this does not mean that the adolescent takes his place in

adult society merely in terms of general theories and without per-
sonal involvement. Two other aspects of his entrance into adult

society have to be considered his life program, and his plans for

changing the society he sees. The adolescent not only builds new
theories or rehabilitates old ones; he also feels he has to work out

a conception of life which gives him an opportunity to assert him-

self and to create something new (thus the close relationship

between his system and his life program). Secondly, he wants a

guarantee that he will be more successful than his predecessors

(thus the need for change in which altruistic concern and youthful
ambitions are inseparably blended).
In other words, the process which we have followed through

fie different stages of the child's development is recapitulated on
the planes of thought and reality new to formal operations. An
initial failure to distinguish between objects or the actions of

others and one's own actions gives way to an enlargement of per-

spective toward objectivity and reciprocity. Even at the sensori-

motor level, tihe infant does not at first know how to separate the

effects of his own actions from the qualities of external objects or

persons. At first he lives in a world without permanent objects
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and without awareness of the self or of any internal subjective life.

Later he differentiates his own ego and situates his body in a spa-

tially and causally organized field composed of permanent objects
and other persons similar to himself. This is the first decentering

process; its result is the gradual coordination of sensori-motor

behavior. But when symbolic functioning appears, language, rep-

resentation, and communication with others expand this field to

unheard-of proportions and a new type of structure is required.
For a second time egocentrism appears, but this time on another

plane. It still takes the form of an initial relative lack of differenti-

ation both between ego's and alter's points of view, between sub-

jective and objective, but this time the lack of differentiation is

representational rather than sensori-motor. When the child reaches

the stage of concrete operations (7-8 years), the decentering proc-
ess has gone far enough for him to be able to structure relation-

ships between classes, relations, and numbers objectively. At the

same stage, he acquires skill in interindividual relations in a

cooperative framework. Furthermore, the acquisition of social

cooperation and the structuring of cognitive operations can be
seen as two aspects of the same developmental process. But when
the cognitive field is again enlarged by the structuring of formal

thought, a third form of egocentrism comes into view. This ego-
centrism is one of the most enduring features of adolescence; it

persists until the new and later decentering which makes possible

the true beginnings of adult work.

Moreover, the adolescent manifestation of egocentrism stems

directly from the adoption of adult roles, since (as Charlotte

Biihler has so well stated) the adolescent not only tries to adapt
his ego to the social environment but, just as emphatically, tries

to adjust the environment to his ego. In other words, when he

begins to think about the society in which he is looking for a place,

he has to think about his own future activity and about how he

himself might transform this society. The result is a relative failure

to distinguish between his own point of view as an individual

called upon to organize a life program and the point of view of

the group which he hopes to reform.

In more concrete terms, the adolescent's egocentrism comes out

in a sort of Messianic form such that the theories used to repre-

sent the world center on the role of reformer that the adolescent
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feels himself called upon to play in the future. To fully understand

the adolescent's feelings, we have to go beyond simple observation

and look at intimate documents such as essays not written for

immediate public consumption, diaries, or simply the disclosures

some adolescents may make of their personal fantasies. For ex-

ample, in the recitations obtained by G. Dumas from a high-school

class on their evening reveries, the most normal studentsthe

most retiring, the most amiable calmly confessed to fantasies and

fabulations which several years later would have appeared in their

own eyes as signs of pathological megalomania. Without going
into the details of this group, we see that the universal aspect of

the phenomenon must be sought in the relationship between the

adolescent's apparently abstract theories and the life program
which he sets up for himself. Then we see that behind impersonal
and general exteriors these systems conceal programs of action

whose ambitiousness and naivet6 are usually immoderate. We
could also consider the following sample taken from the dozen or

so ex-pupils of a small-town school in Rumansch Switzerland.

One of them, who has since become a shopkeeper, astonished his

friends with his literary doctrines and wrote a novel in secret.

Another, who has since become the director of an insurance com-

pany, was interested among other things in the future of the

theater and showed some close friends the first scene of the first

act of a tragedy and got no further. A third, taken up with phi-

losophy, dedicated himself to no less a task than the reconciliation

of science and religion. We do not even have to enumerate the

social and political reformers found on both right and left. There
were only two members of the class who did not reveal any
astounding life plans. Both were more or less crushed under strong

"superegos" of parental origin, and we do not know what their

secret daydreams might have been.

Sometimes this sort of life program has a real influence on the

individual's later growth, and it may even happen that a person
rediscovers in his adolescent jottings an outline of some ideas

which he has really fulfilled since. But in the large majority of

cases, adolescent projects are more like a sort of sophisticated

game of compensation functions whose goals are self-assertion,

imitation of adult models, participation in circles which are actu-

ally closed, etc. Thus the adolescent takes up paths which satisfy
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him for a time but are soon abandoned. M. Debesse has discussed

this subject of egotism and the crisis of juvenile originality. But
we believe that, in the egocentrism found in the adolescent, there

is more than a simple desire to deviate; rather, it is a manifestation

of the phenomenon of lack of differentiation which is worth a

further brief discussion.

Essentially, the process, which at any one of the developmental
stages moves from egocentrism toward decentering, constantly

subjects increases in knowledge to a refocusing of perspective.

Everyone has observed that the child mixes up subjective and

objective facts, but if the hypothesis of egocentrism did nothing
more than restate this truism it would be worth next to nothing.

6

Actually, it means that learning is not a purely additive process
and that to pile one new learned piece of behavior or information

on top of another is not in itself adequate to structure an objec-
tive attitude. In fact, objectivity presupposes a decentering i.e.,

a continual refocusing of perspective. Egocentrism, on the other

hand, is the undifferentiated state prior to multiple perspectives,
whereas objectivity implies both differentiation and coordination

of the points of view which have been differentiated.

But the process found in adolescence on the more sophisticated

plane of formal structures is analogous. The indefinite extension

of powers of thought made possible by the new instruments of

prepositional logic at first is conducive to a failure to distinguish

between the ego's new and unpredicted capacities and the social

or cosmic universe to which they are applied. In other words, the

adolescent goes through a phase in which he attributes an unlim-

ited power to his own thoughts so that the dream of a glorious

future or of transforming the world through Ideas (even if this

6 Translators' note: This passage refers to an opinion more prevalent in

Europe than in America, namely that the authors* work simply demonstrates

a normative view of the child as an irrational creature. In the United States,

where problems of motivation are more often given precedence over purely
intellectual functions both from the normative standpoint and in psycho-

logical research, another but parallel misinterpretation has sometimes been

made; namely, that in maintaining that the child is egocentric, the authors

have neglected the fact that he is capable of love. It should be made clear

in this section that egocentrism, best understood from its root meaning that

the child's perception is cognitively "centered on his own ego" and thus lacks

a certain type of fluidity and ability to handle a variety of perspectives-
is not to be confused with "selfish" or "egoistic."
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idealism takes a materialistic form) seems to be not only fantasy

but also an effective action which in itself modifies the empirical

world. This is obviously a form of cognitive egocentrism. Although
it differs sharply from the child's egocentrism (which is either

sensori-motor or simply representational without introspective

"reflection"), it results, nevertheless, from the same mechanism

and appears as a function of the new conditions created by the

structuring of formal thought
There is a way of verifying this view; namely, to study the

decentering process which later makes it possible for the adoles-

cent to get beyond the early relative lack of differentiation and

to cure himself of his idealistic crisis in other words, the return

to reality which is the path from adolescence to the true begin-

nings of adulthood. But, as at the level of concrete operations, we
find that decentering takes place simultaneously in thought proc-
esses and in social relationships.

From the standpoint of social relationships, the tendency of

adolescents to congregate in peer groups has been well docu-

menteddiscussion or action groups, political groups, youth move-

ments, summer camps, etc. Charlotte Biihler defines an expansive

phase followed by a withdrawal phase, although the two do not

always seem clearly distinguishable. Certainly this type of social

life is not merely the effect of pressures towards conformity but

also a source of intellectual decentering. It is most often in dis-

cussions between friends, when the promoter of a theory has to

test it against the theories of the others, that he discovers its

fragility.

But the focal point of the decentering process is the entrance

into the occupational world or the beginning of serious profes-

sional training. The adolescent becomes an adult when he under-

takes a real job. It is then that he is transformed from an idealistic

reformer into an achiever. In other words, the job leads thinking

away from the dangers of formalism back into reality. Yet obser-

vation shows how laborious and slow this reconciliation of thought
and experience can be. One has only to look at the behavior of

beginning students in an experimental discipline to see how long
the adolescent's belief in the power of thinldng endures and how
little inclined is the mind to subjugate its ideas to the analysis of

facts. (This does not mean that facts are accessible without theory,
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but rather that a theoretical construction has value only in rela-

tion to empirical verification.)

From this standpoint, the results of chaps. 1-15 of this work
raise a problem of general significance. The subjects' reactions
to a wide range of experimental situations demonstrate that after

a phase of development (11-12 to 13-14 years) the preadolescent
comes to handle certain formal operations (implication, exclusion,

etc.) successfully, but he is not able to set up an exhaustive method
of proof. But the 14-15-year-old adolescent does succeed in set-

ting up proofs (moreover, spontaneously, for it is in this area that

academic verbalism is least evident). He systematically uses

methods of control which require the combinatorial system i.e.,

he varies a single factor at a time and excludes the others ("all

other things being equal"), etc. But, as we have often seen, this

structuring of the tools of experimental verification is a direct

consequence of the development of formal thought and preposi-
tional logic. Since the adolescent acquires the capacity to use both
deduction and experimental induction at the same time, why does

he use the first so effectively, and why is he so late in making use

of the second in a productive and continuous task (for it is one

thing to react experimentally to an apparatus prepared in advance

and another to organize a research project by oneself)? Further-

more, the problem is not only ontogenetic but also historical. The
same question can be asked in trying to understand why the

Greeks were limited (with some exceptions) to pure deductive

thought
7 and why modern science, centered on physics, has taken

so many centuries to put itself together.

We have seen that the principal intellectual characteristics of

adolescence stem directly or indirectly from the development of

formal structures. Thus, the latter is the most important event in

the thinking found in this period. As for the affective innovations

found at the same age, there are two which merit consideration;

as usual, we find that they are parallel to intellectual transforma-

tions, since affectivity can be considered as the energetic force of

7 No one has yet given a serious explanation of this fact from the socio-

logical standpoint. To attribute the formal structures made explicit by the

Greeks to the contemplative nature of one social class or another does not

explain why this contemplation was not confined to metaphysical ideologies

and was able to create a mathematical system.
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behavior whereas its structure defines cognitive functions. (This
does not mean either that affectivity is determined by intellect or

the contrary, but that both are indissociably united in the func-

tioning of the personality.)

If adolescence is really the age at which growing individuals

take their place in adult society (whether or not the role change
always coincides with puberty), this crucial social adjustment
must involve, in correlation with the development of the preposi-
tional or formal operations which assure intellectual structuring,
two fundamental transformations that adult affective socialization

requires. First, feelings relative to ideals are added to interindi-

vidual feelings. Secondly, personalities develop in relation to social

roles and scales of values derived from social interaction (and no

longer only by the coordination of exchanges which they maintain
with the physical environment and other individuals).

8

Naturally, this is not the place for an essay on the psychology
of afEects; still, it is important to see how closely these two essen-

tial affective aspects of adolescence are interwoven with the trans-

formations of behavior brought on by the development of formal
structures.

First, we are struck by the fact that feelings about ideals are

practically nonexistent in the child. A study of the concept of

nationality and the associated social attitudes g has shown us that

the child is sensitive to his family, to his place of residence, to his

native language, to certain customs, etc., but that he preserves
both an astonishing degree of ignorance and a striking insensitiv-

ity not only to his own designation or that of his associates as

Swiss, French, etc., but toward his own country as a collective

reality. This is to be expected, since, in the /-n-year-old child,

logic is applied only to concrete or manipulable objects. There is

no operation available at this level which would make it possible
8 Translators' note: "Inter-individual" and "social" are used as oppositional

terms to a greater extent in French than in English. The first refers to face-
to-face relationships between individuals with the implication of familiarity,
and the second to the relationship of the individual to society as a whole, to
formal institutional structures, to values, etc. Here the meaning is that the
child relates only to small groups and specific individuals while the adoles-
cent relates to institutional structures and to values as such.

J. Piaget and A. M. Weil, "Le d6veloppement chez Tenfant de Tidee de
patrie et des relations avec 1'etranger," Bulletin international des Sciences
sociales (UNESCO), Vol. Ill (1951), pp. 605-621,
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for the child to elaborate an ideal which goes beyond the empiri-
cally given. This is only one among many examples. The notions

of humanity, social justice (in contrast to interindividual justice
which is deeply experienced at the concrete level), freedom of

conscience, civic or intellectual courage, and so forth, like the
idea of nationality, are ideals which profoundly influence the

adolescent's affective life; but with the child's mentality, except
for certain individual glimpses, they can neither be understood
nor felt.

In other words, the child does not experience as social feelings

anything more than interindividual affects. Even moral sentiments

are felt only as a function of unilateral respect (authority) or

mutual respect. But, beginning at 13-15 years, feelings about
ideals or ideas are added to the earlier ones, although, of course,

they too subsist in the adolescent as well as the adult. Of course,

an ideal always exists in a person and it does not stop being an

important interindividual element in the new class of feelings.

The problem is to find out whether the idea is an object of affec-

tivity because of the person or the person because of the idea.

But, whereas the child never gets out of this circle because his

only ideals are people who are actually part of his surroundings,

during adolescence the circle is broken because ideals become
autonomous. No commentary is needed to bring out the close kin-

ship of this affective mechanism with formal thought.

As for personality, there is no more vaguely defined notion in

psychological vocabulary, already so difficult to handle. The rea-

son for this is that personality operates in a way opposite to that

of the ego. Whereas the ego is naturally egocentric, personality is

the decentered ego. The ego is detestable, even more so when
it is strong, whereas a strong personality is the one which manages
to discipline the ego. In other words, the personality is the sub-

mission of the ego to an ideal which it embodies but which goes

beyond it and subordinates it; it is the adherence to a scale of

values, not in the abstract but relative to a given task;
10 thus it is

the eventual adoption of a social role, not ready-made in the sense

of an administrative function but a role which the individual will

create in filling it.

10 For the relationship between personality and the task, see I. Myerson,

Les fonctions psychologique$ et les oeuvres (Vrin).
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Thus, to say that adolescence is the age at which adolescents

take their place in adult society is by definition to maintain that

it is the age of formation of the personality, for the adoption of

adult roles is from another and necessarily complementary stand-

point the construction of a personality. Furthermore, the life pro-

gram and the plans for change which we have just seen as one of

the essential features of the adolescent's behavior are at the same
time the changing emotional force in the formation of the person-

ality. A life plan is above all a scale of values which puts some
ideals above others and subordinates the middle-range values to

goals thought of as permanent. But this scale of values is the

affective organization corresponding to the cognitive organization
of his work which the new member in the social body says he will

undertake. A life plan is also an affirmation of autonomy, and the

moral autonomy finally achieved by the adolescent who judges
himself the equal of adults is another essential affective feature

of the young personality preparing himself to plunge into life.

In conclusion, the fundamental affective acquisitions of adoles-

cence parallel the intellectual acquisitions. To understand the role

of formal structures of thought in the life of the adolescent, we
found that in the last analysis we had to place them in his total

personality. But, in return, we found that we could not completely
understand the growth of his personality without including the

transformations of his thinking; thus we had to come back to the

development of formal structures.
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