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*  1 *

aV X e n e t ic  e p is t e m o l o g y  attempts to explain knowledge, 
and in particular scientific knowledge, on the basis of its 
history, its sociogenesis, and especially the psychological ori
gins of the notions and operations upon which it is based. 
These notions and operations are drawn in large part from 
common sense, so that their origins can shed light on their 
significance as knowledge of a somewhat higher level. But 
genetic epistemology also takes into account, wherever pos
sible, formalization—in particular, logical formalizations ap
plied to equilibrated thought structures and in certain cases 
to transformations from one level to another in the develop
ment of thought.

The description that I |iave given of the nature of genetic 
epistemology runs into a major problem, namely, the tra
ditional philosophical view of epistemology. For many phi
losophers and epistemologists, epistemology is the study of

l



2 G E N E T I C  E P I S T E M O L O G Y

knowledge as it exists at the present moment; it is the anal- 
ysis of knowledge for its own sake and within its own 
framework without regard for its development. For these 
persons, tracing the development of ideas or the develop
ment of operations may be of interest to historians or to 
psychologists but is of no direct concern to epistemologists.. 
This is the major objection to the discipline of genetic epis
temology, which I have outlined here.

But it seems to me that we can make the following reply 
to this objection. Scientific knowledge is in perpetual evo
lution; it finds itself changed from one day to the next. As 
a result, we cannot say that on the one hand there is the 
history of knowledge, and on the other its current state 
today, as if its current state were somehow definitive or even 
stable. The current state of knowledge is a moment in his
tory, changing just as rapidly as the state of knowledge in 
the past has ever changed and, in many instances, more 
rapidly. Scientific thought, then, is not momentary; it is not 
a static instance; it is a process. More specifically, it is a 
process of continual construction and reorganization. This 
is true in almost every branch of scientific investigation. I 
should like to cite just one or two examples.

The first example, which is almost taken for granted, 
concerns the area of contemporary physics or, more specifi
cally, microphysics, where the state of knowledge changes 
from month to month and certainly alters significantly 
within the course of a year. These changes often take place 
even within the work of a single author who transforms his 
view of his subject matter during the course of his career.
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Let us take as a specific instance Louis de Broglie in Paris. 
A few years ago de Broglie adhered to Niels Bohr's view of 
indeterminism. He believed with the Copenhagen school 
that, behind the indeterminism of microphysical events, one 
could find no determinism, that indeterminism was a very 
deep reality and that one could even demonstrate the reasons 
for the necessity of this indeterminism. W ell, as it happens, 
new facts caused de Broglie to change his mind, so that now 
he maintains the very opposite point of view. So here is one 
example of transformation in scientific thinking, not over 
several successive generations but within the career of one 
creative man of science.

Let us take another example from the area of mathe- 
matics. A few years ago the Bourbaki group of mathema
ticians attempted to isolate the fundamental structures of 
all mathematics. They established three mother structures: 
an algebraic structure, a structure of ordering, and a topo
logical structure, on which the structuralist school of mathe
matics came to be based, and which was seen as the founda
tion of all mathematical structures, from which all others 
were derived. This effort of theirs, which was so fruitful, has 
now been undermined to some extent or at least changed 
since M cLaine and Eilenberg developed the notion of cate
gories, that is, sets of elements taken together, with the set 
of all functions defined on them. As a result, today part of 
the Bourbaki group is no longer orthodox but is taking into 
account the more recent notion of categories. So here is 
another, rather fundamental area of scientific thinking that 
changed very rapidly.
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Let me repeat once again that we cannot say that on the 
one hand there is the history of scientific thinking, and on 
the other the body of scientific thought as it is today; there 
is simply a continual transformation, a continual reorganiza
tion. And this fact seems ,to me to imply that historical and 
psychological factors in these changes are of interest in our 
attempt to understand the nature of scientific knowledge. *

I should like to give one or two examples of areas in which 
the genesis of contemporary scientific ideas can be under
stood better in the light of psychological or sociological fac
tors. The first one is Cantor’s development of set theory. 
Cantor developed this theory on the basis of a very funda
mental operation, that of one-to-one correspondence. More 
specifically, by establishing a one-to-one correspondence 
between the series of whole numbers and the series of even 
numbers, we obtain a number that is neither a whole num
ber nor an even number but is the first transfinite cardinal 
number, aleph zero. This very elementary operation of one- 
to-one correspondence, then, enabled Cantor to go beyond 
the finite number series, which was the only one in use up 
until his time. Now it is interesting to ask where this opera-

*  Another opinion, often quoted in philosophical circles, is that the 
theory of knowledge studies essentially the question of the validity of 
science, the criteria of this validity and its justification. If we accept this 
viewpoint, it is then argued that the study of science as it is, as a fact, is 
fundamentally irrelevant. Genetic epistemology, as we see it, reflects most 
decidedly this separation of norm and fact, of valuation and description, 
We believe that, to the contrary, only in the real development of the 
sciences can we discover the implicit values and norms that guide, inspire, 
and regulate them. Any other attitude, it seems to us, reduces to the rather 
arbitrary imposition on knowledge of the personal views of an isolated 
observer. This we want to avoid.
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tion of one-to-one correspondence came from. Cantor did 
not invent it, in the sense that one invents a radically new 
construction. He found it in his own thinking; it had already 
been a part of his mental equipment long before he even 
turned to mathematics, because the most elementary sort 
of sociological or psychological observation reveals that one- 
to-one correspondence is a primitive operation. In all sorts 
of early societies it is the basis for economic exchange, and 
in small children we find its roots even before the level of 
concrete operations. The next question that arises is, what 
is the nature of this very elementary operation of one-to-one 
correspondence? And right away we are led to a related ques
tion : what is the relationship of one-to-one correspondence 
to the development of the notion of natural numbers? Does 
the very widespread presence of the operation of one-to-one 
correspondence justify the thesis of Russell and Whitehead 
that number is the class of equivalent classes (equivalent in 
the sense of one-to-one correspondence among the members 
of the classes)? Or are the actual numbers based on some 
other operations in addition to one-to-one correspondence? 
This is a question that we shall examine in more detail later. 
It is one very striking instance in which a knowledge of the 
psychological foundations of a notion has implications for 
the epistemological understanding of this notion. In study
ing the development of the notion of number in children we 
can see whether or not it is based simply on the notion of 
classes of equivalent classes or whether some other operation 
is also involved.

I should like to go on now to a second example and to
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raise the following question: how is it that Einstein was able 
to give a new operational definition of simultaneity at a 
distance? How was he able to criticize the Newtonian notion 
of universal time without giving rise to a deep crisis within 
physics? Of course his'critique had its roots in experimental 
findings, such as the Michaelson-Morley experiment—that 
goes without saying. Nonetheless, if this redefinition of the 
possibility of events to be simultaneous at great distances 
from each other went against the grain of our logic, there 
would have been a considerable crisis within physics. W e 
would have had to accept one of two possibilities: either the 
physical world is not rational, or else human reason is impo
tent-incapable of grasping external reality. Well, in fact 
nothing of this sort happened. There was no such upheaval. 
A few metaphysicians (I apologize to the philosophers pres
ent) such as Bergson or Maritain were appalled by this 
revolution in physics, but for the most part and among 
scientists themselves it was not a very drastic crisis. Why in 
fact was it not a crisis? It was not a crisis because simultane
ity is not a primitive notion. It is not a primitive concept, and 
it is not even a primitive perception. I shall go into this sub
ject further later on, but at the moment I should just like to 
state that our experimental findings have shown that human 
beings do not perceive simultaneity with any precision. If 
we look at two objects moving at different speeds, and they 
stop at the same time, we do not have an adequate percep
tion that they stopped at the same time. Similarly, when 
children do not have a very exact idea of what simultaneity 
is, they do not conceive of it independently of the speed at
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which objects are traveling. Simultaneity, then, is not a 
primitive intuition; it is an intellectual construction.

Long before Einstein, Henri Poincare did a great deal of 
work in analyzing the notion of simultaneity and revealing 
its complexities. His studies took him, in fact, almost to the 
threshold of discovering relativity. Now if we read his essays 
on this subject, which, by the way, are all the more interest
ing when considered in the light of Einstein’s later work, we 
see that his reflections were based almost entirely on psycho
logical arguments. Later on I shall show that the notion of 
time and the notion of simultaneity are based on the notion 
of speed, which is a more primitive intuition. So there are 
all sorts of reasons, psychological reasons, that can explain 
why the crisis brought about by relativity theory was not a 
fatal one for physics. Rather, it was readjusting, and one can 
find the psychological routes for this readjustment as well 
as the experimental and logical basis. In point of fact, Ein
stein himself recognized the relevance of psychological fac
tors, and when I had the good chance to meet him for the 
first time in 1928, he suggested to me that is would be of 
interest to study the origins in children of notions of time 
and in particular of notions of simultaneity.

W hat I have said so far may suggest that it can be helpful 
to make use of psychological data when we are considering 
the nature of knowledge. I should like now to say that it is 
more than helpful; it is indispensable. In fact, all epistemol- 
ogists refer to psychological factors in their analyses, but for 
the most part their references to psychology are speculative 
and are not based on psychological research. I am convinced
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that all epistemology brings up factual problems as well as 
formal ones, and once factual problems are encountered, 
psychological findings become relevant and should be taken 
into account. The unfortunate thing for psychology is that 
everybody thinks of himself as a psychologist. This is not 
true for the field of physics, or for the field of philosophy, 
but it is unfortunately true for psychology. Every man con- 
siders himself a psychologist. As a result, when an epistemol- 
ogist needs to call on some psychological aspect, he does not 
refer to psychological research and he does not consult psy
chologists; he depends on his own reflections. He puts 
together certain ideas and relationships within his own 
thinking, in his personal attempt to resolve the psychological 
problem that has arisen. I should like to cite some instances 
in epistemology where psychological findings can be perti
nent, even though they may seem at first sight far removed 
from the problem.

My first example concerns the school of logical positivism. 
Logical positivists have never taken psychology into account 
in their epistemology, but they affirm that logical beings and 
mathematical beings are nothing but linguistic structures. 
That is, when we are doing logic or mathematics, we are 
simply using general syntax, general semantics, or general 
pragmatics in the sense of Morris, being in this case a rule 
of the uses of language in general. The position in general 
is that logical and mathematical reality is derived from 
language. Logic and mathematics are nothing but special
ized linguistic structures. Now here it becomes pertinent to 
examine factual findings. W e can look to see whether there



G E N E T I C  E P I S T E M O L O G Y 9

is any logical behavior in children before language develops. 
W e can look to see whether the coordinations of their ac
tions reveal a logic of classes, reveal an ordered system, reveal 
correspondence structures. If indeed we find logical struc
tures in the coordinations of actions in small children even 
before the development of language, we are not in a position 
to say that these logical structures are derived from language. 
This is a question of fact and should be approached not by 
speculation but by an experimental methodology with its 
objective findings.

The first principle of genetic epistemology, then, is this— 
to take psychology seriously. Taking psychology seriously 
means that, when a question of psychological fact arises, 
psychological research should be consulted instead of trying 
to invent a solution through private speculation.

It is worthwhile pointing out, by the way, that in the field 
of linguistics itself, since the golden days of logical positiv
ism, the theoretical position has been reversed. Bloomfield 
in his time adhered completely to the view of the logical 
positivists, to this linguistic yiew of logic. But currently, as 
you know, Chomsky maintains the opposite position. 
Chomsky asserts, not that logic is based on and derived from 
language, but, on the contrary, that language is based on 
logic, on reason, and he even considers this reason to be 
innate. He is perhaps going too far in maintaining that it 
is innate; this is once again a question to be decided by re
ferring to facts, to research. It is another problem for the 
field of psychology to determine. Between the rationalism 
that Chomsky is defending nowadays (according to which
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language is based on reason, which is thought to be innate 
in man) and the linguistic view of the positivists (according 
to which logic is simply a linguistic convention), there is a 
whole selection of possible solutions, and the choice among 
these solutions must be made on the basis of fact, that is, 
on the basis of psychological research. The problems cannot 
be resolved by speculation.

I do not want to give the impression that genetic episte
mology is based exclusively on psychology. On the contrary, 
logical formalization is absolutely essential every time that 
we can cany out some formalization; every time that we 
come upon some completed structure in the course of the 
development of thought, we make an effort, with the col
laboration of logicians or of specialists within the field that 
we are considering, to formalize this structure. Our hypoth
esis is that there will be a correspondence between the 
psychological formation on the one hand, and the formaliza
tion on the other hand. But although we recognize the im
portance of formalization in epistemology, we also realize 
that formalization cannot be sufficient by itself. W e have 
been attempting to point out areas in which psychological 
experimentation is indispensable to shed light on certain 
epistemological problems, but even on its own grounds there 
are a number of reasons why formalization can never be 
sufficient by itself. I should like to discuss three of these 
reasons.

The first reason is that there are many different logics, and 
not just a single logic. This means that no single logic is 
strong enough to support the total construction of human
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knowledge. But it also means that, when all the different 
logics are taken together, they are not sufficiently coherent 
with one another to serve as the foundation for human 
knowledge. Any one logic,1 then, is too weak, hut all the 
logics taken together are too rich to enable logic to form a 
single value basis for knowledge. That is the first reason why 
formalization alone is not sufficient.

The second reason is found in Godel's theorem. It is the 
fact that there are limits to formalization. Any consistent 
system sufficiently rich to contain elementary arithmetic 
cannot prove its own consistency. So the following questions 
arise: logic is a formalization, an axiomatization of some
thing, but of what exactly? W hat does logic formalize? This 
is a considerable problem. There are even two problems 
here. Any axiomatic system contains the undemonstrable 
propositions or the axioms, at the outset, from which the 
other propositions can be demonstrated, and also the unde- 
finable, fundamental notions on the basis of which the other 
notions can be defined. Now in the case of logic what lies 
underneath the undemonstrable axioms and the undefinable 
notions? This is the problem of structuralism in logic, and it 
is a problem that shows the inadequacy of formalization as 
the fundamental basis. It shows the necessity for considering 
thought itself as well as considering axiomatized logical sys
tems, since it is from human thought that the logical systems 
develop and remain still intuitive.

The third reason why formalization is not enough is that 
epistemology sets out to explain knowledge as it actually is 
within the areas of science, and this knowledge is, in fact
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not purely formal: there are other aspects to it. In this con
text I should like to quote a logician friend of mine, the 
late Evert W . Beth. For a very long time he was a strong 
adversary of psychology in general and the introduction of 
psychological observations into the field of epistemology, 
and by that token an adversary of my own work, since my 
work was based on psychology. Nonetheless, in the interests 
of an intellectual confrontation, Beth did us the honor of 
coming to one of our symposia on genetic epistemology and 
looking more closely at the questions that were concerning 
us. At the end of the symposium he agreed to co-author with 
me, in spite of his fear of psychologists, a work that we called 
Mathematical and Psychological Epistemology. This has 
appeared in French and is being translated into English. In 
his conclusion to this volume, Beth wrote as follows: “The 
problem of epistemology is to explain how real human 
thought is capable of producing scientific knowledge. In 
order to do that we must establish a certain coordination 
between logic and psychology.”  This declaration does not 
suggest that psychology ought to interfere directly in logic— 
that is of course not true—but it does maintain that in 
epistemology both logic and psychology should be taken 
into account, since it is important to deal with both the 
formal aspects and the empirical aspects of' human knowl
edge.

So, in sum, genetic epistemology deals with both the 
formation and the meaning of knowledge. W e can formu
late our problem in the following terms: by what means does 
the human mind go from a state of less sufficient knowledge
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to a state of higher knowledge? The decision of what is 
lower or less adequate knowledge, and what is higher knowl
edge, has of course formal and normative aspects. It is not 
up to psychologists to determine whether or not a certain 
state of knowledge is superior to another state. That, decision 
is one for logicians or for specialists within a given realm of 
science. For instance, in the area of physics, it is up to phys
icists to decide whether or not a given theory shows some 
progress over another theory. Our problem, from the point 
of view of psychology and from the point of view of genetic 
epistemology, is to explain how the transition is made from 
a lower level of knowledge to a level that is judged to be 
higher. The nature of these transitions is a factual question. 
The transitions are historical or psychological or sometimes 
even biological, as I shall attempt to show later.

The fundamental hypothesis of genetic epistemology is 
that there is a parallelism between the progress made in the 
logical and rational organization of knowledge and the cor
responding formative psychological processes.' Well, now, if 
that is our hypothesis, what will be our field of study? Of 
course the most fruitful, most obvious field of study would 
be reconstituting human history—the history of human 
thinking in prehistoric man. Unfortunately, we are not very 
well informed about the psychology of Neanderthal man or 
about the psychology of Homo siniensis of Teilhard de 
Chardin. Since this field of biogenesis is not available to us, 
we shall do as biologists do and turn to ontogenesis. Nothing 
could be more accessible to study than the ontogenesis of 
these notions. There are children all around us. It is with
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children that we have the best chance of studying the devel
opment of logical knowledge, mathematical knowledge, 
physical knowledge, and so forth. These are the things that I 
shall discuss later in the book.

So much for the introduction to this field of study. I 
should like now to turn to some specifics and to start with 
the development of logical structures in children. I shall 
begin by making a distinction between two aspects of think
ing that are different, although complementary. One is the 
figurative aspect, and the other I call the operative aspect. 
The figurative aspect is an imitation of states taken as mo
mentary and static. In the cognitive area the figurative func
tions are, above all, perception, imitation, and mental 
imagery, which is in fact interiorized imitation. The opera
tive aspect of thought deals not with states but with trans
formations from one state to another. For instance, it in
cludes actions themselves, which transform objects or states, 
and it also includes the intellectual operations, which are 
essentially systems of transformation. They are actions that 
are comparable to other actions but are reversible, that is, 
they can be carried out in both directions ( this means that 
the results of action A can be eliminated by another action 
B, its inverse: the product of A with B  leading to the identity 
operation, leaving the state unchanged) and are capable of 
being interiorized; they can be carried out through represen
tation and not through actually being acted out. Now, the 
figurative aspects are always subordinated to the operative 
aspects. Any state can be understood only as the result of 
certain transformations or as the point of departure for other
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transformations. In oilier words, to my way of thinking the 
essential aspect of thought is its operative and not its figura
tive aspect.

To express the same idea in still another way, I think that 
human knowledge is essentially active. To know is to assimi
late reality into systems of transformations. To know is to 
transform reality in order to understand how a certain state 
is brought about. By virtue of this point of view, I find my
self opposed to the view of knowledge as a copy, a passive 
copy, of reality. In point of fact, this notion is based on a 
vicious circle: in order to make a copy we have to know the 
model that we are copying, but according to this theory of 
knowledge the only way to know the model is by copying it, 
until we are caught in a circle, unable ever to know whether 
our copy of the model is like the model or not. To my way 
of thinking, knowing an object does not mean copying it— 
it means acting upon it. It means constructing systems of 
transformations that can be carried out on or with this ob
ject. Knowing reality means constructing systems of trans
formations that correspond, more or less adequately, to 
reality. They are more or less isomorphic to transformations 
of reality. The transformational structures of which knowl
edge consists are not copies of the transformations in reality; 
they are simply possible isomorphic models among which 
experience can enable us to choose. Knowledge, then, is a 
system of transformations that become progressively ade
quate.

It is agreed that logical and mathematical structures are 
abstract, whereas physical knowledge—the knowledge based
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on experience in general—is concrete. But let us ask what 
logical and mathematical knowledge is abstracted from. 
There are two possibilities. The first is that,, when we act 
upon an object, our knowledge is derived from the object 
itself. This is the point of view of empiricism in general, and 
it is valid in the case of experimental or empirical knowledge 
for the most part. But there is a second possibility: when we 
are acting upon an object, we can also take into account the 
action itself, or operation if you will, since the transforma
tion can be carried out mentally. In this hypothesis the ab
straction is drawn not from the object that is acted upon, 
but from the action itself. It seems to me that this is the 
basis of logical and mathematical abstraction.

In cases involving the physical world the abstraction is 
abstraction from the objects themselves. A child, for 
instance, can heft objects in his hands and realize that they 
have different weights—that usually big things weigh more 
than little ones, but that sometimes little things weigh more 
than big ones. All this he finds out experientially, and his 
knowledge is abstracted from the objects themselves. But 
I should like to give an example, just as primitive as that one, 
in which knowledge is abstracted from actions, from the 
coordination of actions, and not from objects. This example, 
one we have studied quite thoroughly with many children, 
was first suggested to me by a mathematician friend who 
quoted it as the point of departure of his interest in mathe
matics. W hen he was a small child, he was counting pebbles 
one day; he lined them up in a row, counted them from left 
to right, and got ten. Then, just for fun, he counted them
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from right to left to see what number he would get, and was 
astonished that he got ten again. He put the pebbles in a 
circle and counted them, and once again there were ten. He 
went around the circle in the other way and got ten again. 
And no matter how he put the pebbles down, when he 
counted them, the number came to ten. He discovered here 
what is known in mathematics as commutativity, that is, the 
sum is independent of the order. But how did he discover 
this? Is this commutativity a property of the pebbles? It is 
true that the pebbles, as it were, let him arrange them in 
various ways; he could not have done the same thing with 
drops of water. So in this sense there was a physical aspect 
to his knowledge. But the order was not in the pebbles; it 
was he, tire subject, who put the pebbles in a line and then 
in a circle. Moreover, the sum was not in the pebbles them
selves; it was he who united them. The knowledge that this 
future mathematician discovered that day was drawn, then, 
not from the physical properties of the pebbles, but from the 
actions that he carried out on the pebbles. This knowledge 
is what I call logical mathematical knowledge and not 
physical knowledge.

The first type of abstraction from objects I shall refer to 
as simple abstraction, but the second type I shall call reflec
tive abstraction, using this term in a double sense. "Reflec
tive” here has at least two meanings in the psychological 
field, in addition to the one it has in physics. In its physical 
sense reflection refers to such a phenomenon as the reflec
tion of a beam of light off one surface onto another surface. 
In a first psychological sense abstraction is the transposition
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from one hierarchical level to another level (for instance, 
from the level of action to the level of operation}. In a 
second psychological sense reflection refers to the mental 
process of reflection, that is, at the level of thought a re
organization takes place.

I should like now to make a distinction between two types 
of actions. On the one hand, there are individual actions 
such as throwing, pushing, touching, rubbing. It is these 
individual actions that give rise most of the time to abstrac
tion from objects. This is the simple type of abstraction 
that I mentioned above. Reflective abstraction, however, is 
based not on individual actions but on coordinated actions. 
Actions can be coordinated in a number of different ways. 
They can be joined together, for instance; we can call this an 
additive coordination. Or they can succeed each other in a 
temporal order; we can call this an ordinal or a sequential 
coordination. There is a before and an after, for instance, 
in organizing actions to attain a goal when certain actions are 
essential as means to attainment for this goal. Another type 
of coordination among actions is setting up a correspond
ence between one action and another. A fourth form is the 
establishment of intersections among actions. Now all these 
forms of coordinations have parallels in logical structures, 
and it is such coordination at the level of action that seems 
to me to be the basis of logical structures as they develop 
later in thought. This, in fact, is our hypothesis: that the 
roots of logical thought are not to be found in language 
alone, even though language coordinations are important, 
but are to be found more generally in the coordination of
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actions, which are the basis of reflective abstraction. For the 
sake of completeness, we might add that naturally the dis
tinction between individual actions and coordinated ones 
is only a gradual and not a sharply discontinuous one. Even 
pushing, touching, or rubbing has a simple type of organiza
tion of smaller subactions.

This is only the beginning of a regressive analysis that 
could go much further. In genetic epistemology, as in devel
opmental psychology, too, there is never an absolute begin
ning. W e can never get back to the point where we can say, 
“Here is the very beginning of logical structures.”  As soon 
as we start talking about the general coordination of actions, 
\ve are going to find ourselves, of course, going even further 
back into the area of biology. W e immediately get into the 
realm of the coordinations within the nervous system and 
the neuron network, as discussed by McCulloch and Pitts. 
And then, if we look for the roots of the logic of the nervous 
system as discussed by these workers, we have to go back a 
step further. W e find more basic organic coordinations. If 
we go further still into the realm of comparative biology, we 
find structures of inclusion ordering correspondence every
where. I do not intend to go into biology; I just want to carry 
this regressive analysis back to its beginnings in psychology 
and to emphasize again that the formation of logical and 
mathematical structures in human thinking cannot be 
explained by language alone, but has its roots in the general 
coordination of actions.





*  2  *

H aving demonstrated that the roots of logical and
mathematical structures are to be found in the coordination 
of actions, even before the development of language, I 
should like now to look at how these coordinations of ac
tions become mental operations, and how these operations 
constitute structures. I shall start by defining what I mean 
by an operation in terms of four fundamental characteristics.

First of all, an operation is an action that can be inter
nalized; that is, it can be carried out in thought as well as 
executed materially. Second, it is a reversible action; that is, 
it can take place in one direction or in the opposite direc
tion. This is not true of all actions. If I smoke my pipe 
through to the end, I cannot reverse this action and have it 
back again filled up with the same tobacco. I have to start 
over again and fill it with new tobacco. On the other hand, 
addition is an example of an operation. I can add one to one

21
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and get two, and I can subtract one from two to get one 
again. Subtraction is simply the reversal of addition—exactly 
the same operation carried out in the other direction. There 
are types of reversibility that I should like to distinguish at 
this point. The first is reversibility by inversion or negation; 
for instance, + A  — A  =  0, or + 1  — 1 = 0 .  The second 
is reversibility by reciprocity. This is not a negation, but is 
simply a reversal of order. For instance, A =  B, the recipro
cal is also true: B =  A. The third characteristic of an opera
tion is that it always supposes some conservation, some in
variant. It is of course a transformation, since it is an action, 
but it  is a transformation that does not transform every
thing at once, or else there would be no possibility of revers
ibility. For instance, in the case of arithmetical addition we 
can transform the way we group the parts together. W e can 
say 5 +  1, or 4 +  2, or 3 + 3 ,  but the invariant is the sum. 
The fourth characteristic is that no operation exists alone. 
Every operation is related to a system of operations, or to a 
total structure as we call it. And I should like now to define 
what we mean by structure.

First of all, a structure is a totality; that is, it is a system 
governed by laws that apply to the system as such, and not 
only to one or another element in the system. The system 
of whole numbers is an example of a structure, since there 
are laws that apply to the series as such. Many different 
mathematical structures can be discovered in the series of 
whole numbers. One, for instance, is the additive group. 
The rules for associativity, commutativity, transitivity, and 
closure for addition all hold within the series of whole num
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bers. A second characteristic of these laws is that they are 
laws of transformation; they are not static characteristics. 
In the case of addition of whole numbers, we can transform 
one number into another by adding something to it. The 
third characteristic is that a structure is self-regulating; that 
is, in order to carry out these laws of transformation, we 
need not go outside the system to find some external ele
ment. Similarly, once a law of transformation has been 
applied, the result does not end up outside the system. R e
ferring to the additive group once again, when we add one 
whole number to another, we do not have to go outside the 
series of whole numbers in search of any element that is not 
within the series. And once we have added the two whole 
numbers together, our result still remains within the series. 
We could call this closure, too, but it does not mean that 
a structure as a whole cannot relate to another structure or 
other structures as wholes. Any structure can be a substruc
ture in a larger system. It is very easy to see that the whole 
numbers are a part of a larger system, which includes frac
tional numbers.*

I should like now to examine the three mother structures *
of the Bourbaki mathematicians and to raise the question 
of whether these mother structures correspond to anything

*  The reader may ask here whether "structures" have real, objective 
existence or are only tools used by us to analyze reality. This problem is 
only a special case of a more general question; do relations have objective 
independent existence? Our answer will be that it is nearly impossible to 
understand and justify the validity of our knowledge without presupposing 
the existence of relations. But this answer implies that the word existence 
has to be taken to have a multiplicity of meanings.
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natural and psychological or are straight and mathematical 
inventions established by axiomatization.*

As you know, the aim of the Bourbaki was to find struc
tures that were isomorphic among all the various branches 
of mathematics. Up until that time, these branches, such as 
number theory, calculus, geometry, and topology, had all 
been more or less distinct and unrelated. W hat the Bourbaki 
set out to do was find forms or structures that were common 
to all these various contents. Their procedure was a sort of 
regressive analysis—starting from each structure in each 
branch and reducing it to its most elementary form. There 
was nothing a priori about it; it was the result of an induc
tive search and examination of mathematics as it existed. 
This search led to three independent structures that are not 
reducible one to the other. By making differentiations with
in each one of these structures or by combining two or more 
structures, all the others can be generated. For this reason 
the structures were called mother structures. Now the basic 
question for epistemology is whether these structures are 
natural in any sense as the natural numbers are, or whether 
they are totally artificial—simply the result of theorizing and 
axiomatizing. In an attempt to resolve this problem, let us 
look in more detail at each of the three mother structures.

The first is what the Bourbaki called the algebraic struc
ture. The prototype of this structure is the mathematical 
notion of a group. There are all sorts of mathematical

*  W c shall not analyze the question here, but the more general concept 
of “ category” already mentioned has equally a psychological counterpart. 
W c refer the interested reader to Vol. X X III of the Etudes d’epistdmologie 
genet/que: Episteinologie et psychologic de la lonction  (1968).
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groups: the group of displacements, as found in geometry; 
the additive group that I have already referred to in the 
series of whole numbers; and any number of others. Alge
braic structures are characterized by their form of revers
ibility, which is inversion in the sense that I described above. 
This is expressed in the following way: p * p_1 =  0, which is 
read as, “ the operation p multiplied by the inverse operation 
p to the minus one equals zero.” * '

The second type of structure is the order structure. This 
structure applies to relationships, whereas the algebraic 
structure applies essentially to classes and numbers. The 
prototype of an order structure is the lattice, and the form of 
reversibility characteristic of order structures is reciprocity. 
We can find this reciprocity of the order relationship if we 
look at the logic of propositions, for example. In one struc
ture within the logic of propositions, P and Q  is the lower 
limit of a transformation, and P or Q  is the upper limit. P  
and Q, the conjunction, precedes P  or £), the disjunction. 
But this whole relationship can be expressed in the reverse 
way. W e can say that P  or Q  follows P and Q, just as easily 
as we can say that P  and Q precedes P or Q. This is the form 
of reversibility that I have called reciprocity; it is not at all 
the same thing as inversion or negation. There is nothing 
negated here.

The third type of structure is the topological structure 
based on notions such as neighborhood, borders, and ap-

*  The usual definition of algebraic structure as a set on which equiv
alence relations are defined leads to the same properties as the definition 
we use here (in particular: to every theory of the equivalence relations 
will correspond a theory of classes).
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proaching limits. This applies not only to geometry but also 
to many other areas of mathematics. Now these three types 
of structure appear to be highly abstract. Nonetheless, in the 
thinking of children as young as 6 or 7 years of age we find 
structures resembling each of these three types, and I should 
like to discuss these here. Before I do, however, I shall tell 
a little story in an attempt to show that my drawing this 
parallel between the mother structures and children's opera
tional structures is not completely arbitrary.

A number of years ago I attended a conference outside 
Paris entitled "M ental Structures and Mathematical Struc
tures.”  This conference brought together psychologists and 
mathematicians for discussion of these problems. For my 
part, my ignorance of mathematics then was even greater 
than what I admit to today. On the other hand, the mathe
matician Dieudonne, who was representing the Bourbaki 
mathematicians, totally mistrusted anything that had to do 
with psychology. Dieudonne gave a talk in which he de
scribed the three mother structures. Then I gave a talk in 
which I described the structures that I had found in chil
dren's thinking, and to the great astonishment of us both 
we saw that there was a very direct relationship between 
these three mathematical structures and the three structures 
of children's operational thinking. W e were, of course, im
pressed with each other, and Dieudonne went so far as to 
say to me.- “This is the first time that I have taken psychol
ogy seriously. It may also be the last, but at any rate it's the 
first.”

In children’s thinking algebraic structures are to he found
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quite generally, but most readily in the logic of classes—in 
the logic of classification. I shall take my example from the 
operations of simple classification, that is, just dividing a 
group of objects into piles according to their similarities, 
rather than the more complex procedure of multiplicative 
classification according to a number of different variables at 
the same time. Children are able to classify operationally, in 
the sense in which I defined that term earlier, around 7 or 
8 years of age. But there are all sorts of more primitive clas
sifying attempts in the preoperational stage. If we give 4- or 
5-year-olds various cutout shapes—let's say simple geometric 
configurations like circles, squares, and triangles—they can 
put them into little collections on the basis of shape. The 
youngest children will make what I call figural collections; 
that is, they will make a little design with all the circles, and 
another little design with all the squares, and these designs 
will be an important part of the classification. They will 
think that the classification has been changed if the design 
is changed.

Slightly older children will forgo this figural aspect and 
be able to make little piles of the similar shapes. But while 
the child can carry out classifications of this sort, he is not 
able to understand the relationship of class inclusion. It is in 
this sense that his classifying ability is still preopera tional. He 
may be able to compare subclasses among themselves quan
titatively, but he cannot deduce, for instance, that the total 
class must necessarily be as big as, or bigger than, one 
of its constituent subclasses. A child of this age will agree 
that all ducks are birds and that not all birds are ducks. But
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then, if he is asked whether out in the woods there are more 
birds or more ducks, he will say, "I don’t know; I’ve never 
counted them.” It is the relationship of class inclusion that 
gives rise to the operational structure.of classification, which 
is in fact analogous to the algebraic structures of the mathe
maticians. The structure of class inclusion takes the follow
ing form: ducks plus the other birds that are not ducks 
together form the class of all birds; birds plus the other 
animals that are not birds together form the class of all 
animals; etc. Or, in other terms, A +  A' =  B ,B  +  B ' =  C, 
etc. And it is easy to see that this relationship can readily 
be inverted. The birds are what is left when from all the 
animals we subtract all the animals but the birds. This is 
the reversibility by negation that we mentioned earlier: 
A — A — 0. This is not exactly a group; there is inversion, 
as we have seen, but there is also the tautology, A +  A =  A. 
Birds plus more birds equal birds. This means that distribu- 
tivity does not hold within this structure. If we write A +  A 
— A, where we put the parentheses makes a difference in 
the result. (A +  A) — A =  0, whereas A + ( A  — A) — A. 
So it is not a complete group; it is what I call a’ grouping, 
and it is an algebra-like structure.

Similarly, there is a very primitive ordering structure in 
children’s thinking, just as primitive as the classification 
structure. A very simple example is the structure of seriation. 
We have given children the following problem. First we 
present them with a collection of sticks of different lengths. 
The differences in length are small enough so that it takes a 
careful comparison to detect them; this is not an easy percep
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tual task. Some are between Vs and a 14 inch different in 
length, and there are about ten such sticks, the smallest 
being about 2 inches long. Then we ask the children to put 
them in order from the smallest to the biggest. Preopera- 
tional children approach this problem without any structural 
framework (in the sense that I have been describing struc
tures) , That is, they take a big one and a little one, and then 
another big one and a little one, and then another big one 
and a little one, but they make no coordinations among 
these pairs of sticks; or they may take three at a time—a 
little one, a middle-sized one, and a big one—and make sev
eral trios. But they will not manage to coordinate all the 
sticks together in a single series. Slightly older children at 
the end of the preoperational stage succeed in putting all 
the sticks together in a series, but only by trial and error; 
they do not have any systematic approach. By contrast, chil
dren from about the age of 7 years have a totally different 
way of going about this problem. It is a very exhaustive 
systematic approach. They first of all find the very smallest 
stick, then they look through the remaining sticks for the 
smallest ones left, then they look for the smallest one that 
is left again, and so on until the whole structure, the whole 
series, has been built. The reversibility implied here is one 
of reciprocity. When the child looks for the smallest stick 
of all those that remain, he understands at one and the 
same time that this stick is bigger than all the ones he has 
taken so far and smaller than all the ones that he will take 
later. He is coordinating here at the same time the relation
ship “bigger than” and the relationship “smaller than."
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There is even more convincing evidence of the opera- 
tional nature of this structure, and that is the fact that at 
the same time children become capable of reasoning on the 
basis of transitivity. Let us say that we present two sticks 
to a child, stick A  being smaller than stick B. Then we hide 
stick A and show him stick B together with a larger stick C. 
Then we ask him how A and C compare. Preoperational 
children will say that they do not know because they have 
not seen them together—they have not been able to com
pare them. On the other hand, operational children, the 
children who proceed systematically in the seriation of the 
sticks, for instance, will say right away that C is bigger than 
A, since C  is bigger than B and B is bigger than A. Accord
ing to logicians, seriation is a collection of asymmetrical, 
transitive relationships. Here we see quite clearly that the 
asymmetrical relationships and the transitivity do indeed 
develop hand in hand in the thinking of small children. It 
is very obvious, moreover, that the structure here is one 
whose reversibility is reciprocity and not negation. The re
versibility is of the following sort: A is smaller than B im
plies that B is larger than A, and this is not a negation but 
simply a reciprocal relationship.

The third type of structure, according to the Bourbaki 
mathematicians, is the topological structure. The question 
of its presence in children's thinking is related to a very 
interesting problem. In the history of the development of 
geometry, the first formal type was the Euclidian metric 
geometry of the early Greeks. Next in the development was 
projective geometry, which was suggested by the Greeks but
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not fully developed until the seventeenth century. Much 
later still, came topological geometry, developed in the nine
teenth century. On the other hand, when we look at the 
theoretical relationships among these three types of geom
etry, we find that the most primitive type is topology and 
that both Euclidian and projective can be derived from top
ological geometry. In other words, topology is the common 
source for the other two types of geometry. It is an interest
ing question, then, whether in the development of thinking 
in children geometry follows the historic order or the theo
retical order. More precisely, will we find that Euclidian 
intuitions and operations develop first, and topological 
intuitions and operations later? Or will we find that the 
relationship is the other way around? W hat we do find, in 
fact, is that the first intuitions are topological. The first 
operations, too, are those of dividing space, of ordering in 
space, which are much more similar to topological opera
tions than to Euclidian or metric ones.

I should like to give you a couple of examples of the topo
logical intuitions that exist at the preoperational level. Pre- 
operational children can of course distinguish various 
Euclidian shapes—circles from rectangles, from triangles, 
etc—as Binet has shown. They can do this at about 4 years 
of age, according to his norms. But let us look at what they 
do before this age; If we show them a circle and ask them 
to copy it in their own drawing, they will draw a more or 
less circular closed form. If we show them a square and ask 
them to copy it, they will again draw a more or less circular 
closed form. Once again, if we show them a triangle, they
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will draw just about the same thing. Their drawings of these 
shapes are virtually indistinguishable. But if, on the other 
hand, we ask them to draw a cross, to copy a cross, they will 
draw something totally different from their drawings of the 
closed figures. They will draw an open figure, two lines that 
more or less come to a cross or touch each other. In gen
eral, then, in these drawings we see that the children have 
not maintained the Euclidian distinctions in terms of differ
ent Euclidian shapes, but that they have maintained the 
topological distinctions. Closed shapes have been drawn as 
closed, and open shapes have been drawn as open.

Perceptually, of course, children do recognize distinctions 
among Euclidian shapes, but in their representations of 
these shapes to themselves they seem not to make such dis
tinctions. One might think that this is just a question of 
muscle control, that the children are not able to draw 
squares. But we can give them another problem that de
mands seemingly just as much muscle control. W e can 
show them three different figures in which there is a large 
circle and a small circle, but in the first the small circle is 
inside the larger, in the second the small circle is outside 
the larger, and in the third the small circle is on the border- 
half inside, half outside. Three-year-olds who do not yet 
draw squares as distinct from circles nonetheless copy these 
figures accurately, at least preserving the relationships of 
inside, outside, and on the border. Some children even find 
descriptive ways of referring to the third figure, saying that 
the small circle is half outside, for instance. This implies
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that they see it as not inside and not outside but on the 
border, and all these are topological relationships.

Some authors have maintained that the distinction be
tween rectilinear and curvilinear figures is just as primitive 
as these distinctions among inside, outside, and on the bor
der. Rectilinear and curvilinear figures, of course, have no 
distinction within topology; they are only different within 
Euclidian geometry. In reply to these authors, I should like 
to cite the work of two Montreal psychologists, Monique 
Leurendau and Adrien Pinard. These psychologists repeated 
all our research on geometry and spatial representation, tak
ing twenty subjects at each age and doing every experiment 
with each one of the subjects, which is something that we 
have never done. And they proceeded to do a very thorough 
analysis, both qualitatively and statistically, of the behavior 
of each of these children. They used ordinal statistics, such 
as Gutman developed. Their analysis revealed that, indeed, 
sometimes children seemed to be distinguishing curvilinear 
from rectilinear figures, but in every instance they were 
actually using topological relationships to make the distinc
tion. That is, the figures were different in topological rela
tionships as well as in the Euclidian relationships of straight 
lines or curved lines, and the children were basing their judg
ments on the topological aspects of the figures.

So far I have attempted to demonstrate that the three 
mathematical mother structures have natural roots in the 
development of thinking in individuals. I should like now 
to show how, in children's thinking, other structures can 
develop out of combinations of two or more of the basic
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structures. I indicated earlier that this is the source of the 
many and varied mathematical structures in all the different 
branches of mathematics. The example I shall take from 
psychology is the notion of number, which is not based on 
only one of the three primitive structures, but rests on a 
combination of two of them.

I have referred to the operation used by Cantor in the 
construction of transfinite numbers, namely, the operation 
of one-to-one correspondence. Let us start now by looking 
at how this operation develops in children’s thinking. W e 
have done an experiment of the following sort. W e line up, 
let us say, eight red tokens in front of a child and then give 
him a pile of blue tokens and ask him to put out just as 
many blue tokens as there are red ones. In a very early stage, 
the child will make a line of blue tokens about as long as 
the line of red tokens but will pay no attention to whether 
or not there is actually the same number of blues as reds. 
A little more sophisticated behavior is to operate on the 
basis of one-to-one correspondence, that is, taking a blue 
token and putting it right underneath a red one. But this is 
what I call optical correspondence, because the child will 
consider that the one-to-one correspondence depends upon 
this tight spatial relationship between each blue and each 
red. If we change the spatial disposition without adding, or 
taking away any tokens—we simply spread out or squeeze 
up one of the lines—the child will say that things are 
changed now and that there are no longer as many blue 
tokens as red ones. If we count one row and get eight and 
then ask him how many tokens he thinks are in the other
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row, which has been spread out, he will say, “There must be 
nine or ten.”  Even if he counts each row, eight in the shorter 
row and eight in the longer row, he will say, “ Yes, there are 
eight here and eight there, hut still there are more there; 
it is longer.” Finally, the one-to-one correspondence be
comes operational, and at that time there is conservation of 
number in the sense of the realization that the number does 
not change just because the spatial arrangement changes. 
In this instance, once the child has established one:to-one 
correspondence by taking a blue token for every red one, no 
matter how we change the shapes, he will be able, without 
counting or even without thinking very hard, to say that 
the numbers must still be the same because of the one-to- 
one correspondence that he established at the outset. One- 
to-one correspondence seems to be, then, the basis for the 
notion of number.

This brings to mind immediately Russell and W hite
head's work in Principia A'lafchematica, where they define a 
number as the class of equivalent classes—equivalent in the 
sense of numerical equivalence established through one-to- 
one correspondence. If we have a class that consists of five 
people, for instance, and a class that consists of five trees, 
and a class that consists of five apples, what these three 
classes have in common is the number 5. And it is in this 
sense that Russell and Whitehead state that a number is a- 
class of equivalent classes. Now this view of the basis for 
the idea of a number does seem to be justified, as I said a 
moment ago, since, in fact, the number seems to be derived 
from one-to-one correspondence. But there are two types
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of one-to-one correspondence, and it is important for us to 
look at which type Russell and Whitehead used.

On the one hand, there is one-to-one correspondence 
based on the qualities of the elements. An element of one 
class is made to correspond to a specific element of another 
class because of some qualities that the two classes have in 
common. Let us suppose, for instance, that the classes we 
mentioned a moment ago (five people, five trees, five ap
ples) are paper cutouts and that five different colors of 
paper are used. Therefore there are five paper people—red, 
orange, green, yellow, and blue; five paper trees, one of each 
of the same colors; and five paper apples, again of the same 
colors. The qualitative one-to-one correspondence would 
consist of putting the red person in correspondence with the 
red tree and the red apple, the green person in correspond
ence with the green tree and the green apple, etc. This is, 
in fact, the procedure of double classification—constructing 
a matrix by classifying on two dimensions at once.

The other type of one-to-one correspondence is not 
based on the qualities of the individual elements. Russell 
and Whitehead's famous example of equivalent classes 
makes a correspondence between the months of the year, 
Napoleon’s marshals, the twelve apostles, and the signs of 
the zodiac. In this example there are no qualities of the 
individual members that lead to a specific correspondence 
between one element of one class and one element of an
other. W e cannot say, for instance, that St. Peter corre
sponds to the month of January, which corresponds to 
Marshal Ney, who corresponds to Cancer. When we say
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that these four groups correspond to one another, we are 
using one-to-one correspondence in the sense that any ele
ment can be made to correspond to any other element. Each 
element counts as one, and its particular qualities have no 
importance. Each element becomes simply a unity, an 
arithmetic unity.

Now this is a very different operation from the operation 
of one-to-one correspondence based on qualities, which is 
used in classification and which gives rise to matrices, as I 
just described. The one-to-one correspondence, in which 
any element can correspond to any other element, is a very 
different operation. Elements are stripped of their qualities 
and become arithmetic unities. Now it is very clear that 
Russell and Whitehead have not used the qualified one-to- 
one correspondence that is used in classification. They have 
used the correspondence in which the elements become 
unities. They are, therefore, not basing number only on 
classification operations as they intend. They have, in fact, 
got themselves into a vicious circle, because they are at
tempting to build the notion of number on the basis of 
one-to-one correspondence, but in order to establish this 
correspondence they have been obliged to call upon an 
arithmetic unity, that is, to introduce a notion of a non
qualified element and numerical unity in order to carry out 
the one-to-one correspondence. In order to construct num
bers from classes, they have introduced numbers into classes.

Their solution, then, does not turn out to be an adequate 
one. The problem of the basis of the notion of number, the 
epistemological problem, remains, and we must look for
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another solution. Psychological research seems to offer one. 
When we study the development of the notion of number 
in children's thinking, we find that it is not based on classi
fying operations alone but that it is a synthesis of two dif
ferent structures. W e find that along with the classifying 
structures, which are an instance of the Bourbaki algebraic 
structures, number is also based on ordering structures, that 
is, a synthesis of these two different types of structures. It 
is certainly true that classification is involved in the notion 
of number. Class inclusion is involved in the sense that two 
is included in three, three is included in four, etc. But we 
also need order relationships, for this reason: if we consider 
the elements of the classes to be equivalent (and this of 
course is the basis of the notion of number), then by this 
very fact it is impossible to distinguish one element from 
another—it is impossible to tell the elements apart. W e get 
the tautology A -j- A =  A; we have a logical tautology in
stead of a numerical series. Given all these elements, then, 
whose distinctive qualities we are ignoring, how are we 
going to distinguish among them? The only possible way is 
to introduce some order. The elements are arranged one 
after another in space, for instance, or they are considered 
one after another in time, or they are counted one after 
another. This relationship of order is the only way in which 
elements, which are otherwise being considered as identical, 
can be distinguished from one another.

In conclusion, then, number is a synthesis of class inclu
sion and relationships of order. It depends on an algebraic 
type of structure and an ordering type of structure, both at
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one time. One type of structure alone is not adequate.
I think that it is really quite obvious, if not trite, that 

number is based on two different types of operation. In 
fact, if we look at any theoretical formulation of number, 
we will find that in the number theories based on ordination 
there is always an element of inclusion. Similarly, in theories 
based on cardination there is always an element of order.

I should like to discuss one final area before leaving this 
analysis of the types of operational structures used in chil
dren's logical thinking. At the level of concrete operations 
being examined, that is, from the age of 6 or 7 years to the 
age of I I  or 12, there are two types of reversibility: negation 
and reciprocity. But they are never synthesized in a single 
system, so that it is possible to go from one type of reversi
bility to the other within the same system. At the level of 
formal operations, which, as I have said, start to appear at 
about 11 or 12 years of age, new logical structures are built 
that give rise, for instance, to the logic of propositions in 
which both types of reversibility are equally available. For 
example, we can look at this implication: P implies Q;  its 
negation is P and not Q.  But the reciprocal, O implies P, is 
just as readily available within the system, and it too has 
its negation, Q and not P. This last has a new relationship 
with respect to the initial implication, and we can call it 
the correlative.

This more complex type of structure is brought into evi
dence when we give children problems involving double 
frames of reference and space—for instance, problems of 
relative motion. Let us say that we have a snail on a little
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board. If the snail moves to the right, we can take that as 
the direct operation. And the inversion, or negation, would 
be the snail moving to the left. But the reciprocal of a move 
by the snail to the right would be a move by the board to 
the left, and then the correlative would be a move by the 
board to the right. If the snail moves to the right on the 
board and at the same time the board moves to the left, 
with respect to an external frame of reference, it is as if the 
snail did not move at all, with respect to an external frame 
of reference. With respect to an external frame, there are 
two ways of reversing the snail's motion: one is for the snail 
to move back again; the other is for the board to move. Be
fore children are able to synthesize the two types of reversi
bility in the single system, that is, before the age of 11 or 
12 years, they cannot resolve problems of this sort, which 
require a coordination between two different types of mo
tion with two possible frames of reference.



*  3 *

T
X  h a v e  d isc u sse d  the logical mathematical structures. Now 
I should like to write briefly about the relationship between 
these structures and language on the one hand, and the 
relationship between these structures and sensory-motor ac
tivities on the other hand, in order to deal with the problem 
that I raised. The decisive argument against the position 
that logical mathematical structures are derived uniquely 
from linguistic forms is that, in the course of intellectual 
development in any given individual, logical mathematical 
structures exist before the appearance of language. Lan
guage appears somewhere about the middle of the second 
year, but before this, about the end of the first year or the 
beginning of the second year, there is a sensory-motor in
telligence that is a practical intelligence having its own 
logic—a logic of action. The actions that form sensory-motor 
intelligence are capable of being repeated and of being gen

41
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eralized. For example, a child who has learned to pull a 
blanket toward him in order to reach a toy that is on it 
then is capable of pulling the blanket to reach anything else 
that may be placed on it. The action can also be generalized 
so that he learns to pull a string to reach what is attached 
to the end of the string, or so that he can use a stick to move 
a distant object.

Whatever is repeatable and generalizable in an action is 
what I have called a scheme, and I maintain that there is a 
logic of schemes. Any given scheme in itself does not have 
a logical component, but schemes can be coordinated with 
one another, thus implying the general coordination of 
actions. These coordinations form a logic of actions that are 
the point of departure for the logical mathematical struc
tures. For example, a scheme can consist of subschemes or 
subsystems. If I move a stick to move an object, there is 
within that scheme one subscheme of the relationship be
tween the hand and the stick, a second subscheme of the 
relationship between the stick and the object, a third sub- 
scheme of the relationship between the object and its posi
tion in space, etc. This is the beginning of the relationship 
of inclusion. The subschemes are included within the total 
scheme, just as in the logical mathematical structure of 
classification subclasses are included within the total class. 
At the later stage this relationship of class inclusion gives 
rise to concepts. At the sensory-motor stage a scheme is a 
sort of practical concept.

Another type of logic involved in the coordination of 
schemes is the logic of order: for instance, in order to



G E N E T I C  E P I S T E M O L O G Y 43

achieve an end we have to go through certain means. In this 
example there is an order between the means and the goal. 
And, once again, it is practical order relationships of this 
sort that are the basis of the later logical mathematical 
structures of order. There is also a primitive type of one-to- 
one correspondence. For instance, when an infant imitates 
a model, there is a correspondence between the model on 
the one hand and his imitation on the other. Even when he 
imitates himself, that is, when he repeats an action, there 
is a correspondence between the action as carried out one 
time and the action as carried out the next.

In other words, we find here, in sensory-motor intelli
gence, a certain logic of inclusion, a certain logic of ordering, 
and a certain logic of correspondence, which I maintain 
are the foundations for the logical mathematical structures. 
They are certainly not operations, but they are the begin
nings of what will later become operations. We can also 
find in this sensory-motor intelligence the beginnings of 
two essential characteristics of operations, namely, a form 
of conservation and a form of reversibility.

The conservation characteristic of sensory-motor intelli
gence takes the form of the notion of the permanence of an 
object. This notion does not exist until near the end of the 
infant's first year. If a 7- or 8-month-old is reaching for an 
object that is interesting to him and we suddenly put a 
screen between the object and him, he will act as if the 
object not only has disappeared but also is no longer accessi
ble. He will withdraw his hand and make no attempt to 
push aside the screen, even if it is as delicate a screen as a
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handkerchief. Near the end of the first year, however, he 
will push the screen aside and continue to reach for the 
object. He will even be able to keep track of a number of 
successive changes of position. If the object is put in a box 
and the box is put behind a chair, for instance, the child 
will be able to follow these successive changes of position. 
This notion of the permanence of an object, then, is the 
sensory-motor, equivalent of the notions of conservation that 
develop later at the operational level.

Similarly we can see the beginnings of reversibility in the 
understanding of spatial positions and changes of position, 
that is, in the understanding of movement in space within 
which the child moves at the time of the culmination of 
sensory-motor intelligence. At the beginning of the second 
year children have a practical notion of space which includes 
what geometers call the group of displacements, that is, the 
understanding that a movement in one direction can be 
canceled by a movement in the other direction—that one 
point in space can be reached hy one of a number of dif
ferent routes. This of course is the detour behavior that 
psychologists have studied in such detail in chimpanzees 
and infants.

So this is again practical intelligence. It is not at the level 
of thought, and it is not at all in the child’s representation, 
but he can act in space with this amount of intelligence. 
Furthermore, this kind of organization exists as early as the 
second half of the first year before any use of language for 
expression. And this is my first argument.

My second argument deals with children whose thinking
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is: logical but who do not have language available to them— 
namely, the population of the deaf and dumb. Before I 
discuss the experimental findings on intelligence in deaf 
and dumb children, I should like to discuss briefly the na
ture of representation. Between the age of about 1 Vi years 
and the age of 7 or 8 years when the operations appear, the 
practical logic of sensory-motor intelligence goes through a 
period of being internalized, of taking shape in thought at 
the level of representation rather than taking place only in 
the actual carrying out. of actions. I should like to insist 
here upon one point that is too often forgotten: that there 
are many different forms of representation. Actions can be 
represented in a number of different ways, of which lan
guage is only one. Language is certainly not the exclusive 
means of representation. It is only one aspect of the very 
general function that Head has called the symbolic func
tion. I prefer to use the linguists’ term: the semiotic func
tion. This function is the ability to represent something by 
a sign or a symbol or another object. In addition to language 
the semiotic function includes gestures, either idiosyncratic 
or, as in the case of the deaf and dumb language, systema
tized. It includes deferred imitation, that is, imitation that 
takes place when the model is no longer present. It includes 
drawing, painting, modeling. It includes mental imagery, 
which I have characterized elsewhere as internalized imita
tion. In all these cases there is a signifier which represents 
that which is signified, and all these ways are used by indi
vidual children in their passage from intelligence that is 
acted out to intelligence that is thought. Language is but
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one among these many aspects of the semiotic function, 
even though it is in most instances the most important.

This position is confirmed by the fact that in deaf and 
dumb children we find thought without language and logi
cal structures without language. Oleron in France has done 
interesting work in this area. In the United States I should 
like to mention especially the work of Hans Furth and his 
excellent book, Thinking without Language. Furth finds a 
certain delay in the development of logical structures in 
deaf and dumb children as compared with normal children. 
This is not surprising since the social stimulation of the 
former is so limited, but apart from this delay the develop
ment of the logical structures is similar. He finds classifica
tions of the sort discussed before; he finds serration of the 
type discussed before; he finds correspondence; he finds 
numerical quantity; and he finds the representation of space. 
In other words, there is well-developed logical thinking in 
these children even without language.

Another interesting point is that, although deaf and dumb 
children are delayed with respect to normal children, they 
are delayed much less than children who have been blind 
from birth. Blind infants have the great disadvantage of not 
being able to make the same coordinations in space that 
normal children are capable of during the first year or two, 
so that the development of sensory-motor intelligence and 
the coordination of actions at this level are seriously im
peded in blind children. For this reason we find that there 
are even greater delays in their development at the level of 
representational thinking and that language is not sufficient
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to compensate for the deficiency in the coordination of 
actions. The delay is made up ultimately, of course, but it 
is significant and much more considerable than the delay 
in the development of logic in deaf and dumb children.

In approaching my third argument I should like to point 
out again that Chomsky has reversed the position of the 
logical positivists on the question of the relationship be
tween logic and language. According to Chomsky, logic is 
not derived from language, but language is based on a kernel 
of reason. Transformational grammars, in whose develop
ment Chomsky played a leading role, seem to me to be of 
great interest and to show very clear similarities to the oper
ations of intelligence that have been discussed. Chomsky 
goes so far as to say that the kernel of reason on which the 
grammar of language is constructed is innate, that it is not 
constructed through the actions of the infant as I have 
described but is hereditary and innate. I think that this 
hypothesis is unnecessary, to say the least. In point of fact, 
it is very striking that language does not appear in children 
until the sensory-motor intelligence is more or less achieved. 
I agree that the structures that are available to a child at 
the age of fourteen or sixteen months are the intellectual 
basis upon which language can develop, but I deny that 
these structures are innate. I think that we have been 
able to see that they are the result of development. 
Hence the hypothesis that they are innate is, as I have 
said, unnecessary. The main thing that I should like to 
emphasize in Chomsky’s position is that he has reversed 
the classical view that logic is derived from language by



G E N E T I C  E P I S T E M O L O G Y

maintaining that language is based on intellectual structures, 
My final argument will be based on the work of Madame 

Hermine Sinclair, who studies the relationships between 
operational level and linguistic level in children between 5 
and 8 years of age. Mme Sinclair was a linguist before she 
came to study psychology in Geneva, and at her first con- 
tact with our work she was convinced that the operational 
level of children simply reflected their linguistic level; that 
is, she was maintaining the position of the logical positivists. 
I suggested to her that she study this question, since it had 
never been investigated closely, and see what relationship 
existed between the operational level and the linguistic level 
of children. As a result Mme Sinclair performed the follow
ing experiment. First she established two groups of children. 
One group consisted of conservers; that is, they realized 
that, when a certain amount of liquid was poured from a 
glass of one shape into a glass of another shape, the quan
tity did not change in spite of the appearances. The other 
group consisted of nonconservers: they judged the quantity 
of liquid according to its appearance and not according to 
any correlation between height and width, or any reasoning 
in terms of the fact that no liquid had been added or taken 
away. Then Mme Sinclair proceeded to study the language 
of each of these groups of children by giving them very 
simple objects to describe. Usually she presented the ob
jects in pairs, so that the children could describe them by 
comparing them, or could describe each object by itself. She 
gave them, for instance, pencils of different widths and 
lengths. She found noticeable differences in the language
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used to describe these objects according to whether the 
child was a conserver or a nonconserver. Nonconservers 
tended to describe objects in terms that linguists call scalers. 
That is, they would describe one object at a time and one 
characteristic at a time—"That pencil is long” ; “That pencil 
is fat” ; “ It is short” ; and similar observations. The con- 
servers, on the other hand, used what linguists call vectors. 
They would keep in mind both the objects at once and 
more than one characteristic at once. They would say, “This 
pencil is longer than that one, but that one is fatter than 
this one” —sentences of that sort.

So far the experiment seems to show a relationship be
tween operational level and linguistic level. But we do not 
yet know in what sense the influence is exercised. Is the 
linguistic level influencing the operational level, or is the 
operational level influencing the linguistic progress? To find 
the answer, Mme Sinclair went on to another aspect of this 
experiment. She undertook to give linguistic training to the 
nonconserving group. Through classical learning theory 
methods she taught these children to describe the objects in 
the same terms that the conservers used. Then she exam
ined again the children who had previously been noncon
servers but who had then learned the more advanced lin
guistic forms to see whether this training had affected their 
operational level. (Let me point out that she did this ex
periment in several different areas of operations, not only 
for conservation but also for seriation and other areas.) 
Well, in every case she found that there was only minimal 
progress after the linguistic training. Only 10 per cent of
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the children advanced from one substage to another. This 
is such a small proportion that it leads one to wonder 
whether these children were not already at an intermediate 
phase and right on the threshold of the next substage. Mme 
Sinclair's conclusion on the basis of these experiments is 
that the intellectual operations appear to give rise to lin
guistic progress, and not vice versa.

I should like to leave this discussion of language and 
logic now and look at the type of thinking, the type of 
logical reasoning, that children are capable of in what I call 
the preoperational stage, that is, ages 4, 5, and 6 years, be
fore the onset or the development of logical operations. 
Although logical structures are not fully developed at the 
preoperational stage, we do find what can be called semi
logic. In my earlier works I used to call this articulated in
tuitions, but since then we have done a good deal more 
work in this area. It seems quite clear now that the thought 
of children of these ages is characterized by semilogic in a 
very literal sense; it is a half logic. W e have here operations 
that are lacking in reversibility; they work only in one direc
tion. This logic, then, consists of functions in the mathe
matical sense of that term, that is, as described by mathema
ticians: y =  (t)x. A function in this sense represents an 
ordered couple or an application, but an application that 
moves always in one direction. This kind of thinking leads 
to the discovery of dependency relationships and of covaria
tions, that is, that variations in one object are correlated 
with variations in another.

The remarkable thing about these functions is that they
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do not lead to conservation. Here is one example. W e have 
a piece of string attached to a small spring. It extends out 
horizontally, goes around a pivot, and hangs down vertically. 
Now when we put a weight on the end of the string, or 
increase a weight already there, the string is pulled so that 
the part that is hanging down vertically is lengthened with 
respect to the part that is horizontal. Five-year-olds are per
fectly able to grasp the relationship that with the greater 
weight the vertical part is longer and the horizontal part is 
shorter, and that when the vertical part becomes shorter the 
horizontal part becomes longer. But this does not lead to 
conservation. The sum of the vertical part and the horizon
tal part does not stay the same for these children.

Here is another example of a function in the sense of an 
application. W e give children a number of cards, on each 
of which there is a white part and a red part, and also give 
them a number of cutouts of different shapes. Their task 
is to find a cutout that will cover up the red part on the 
card. It need not correspond exactly, but it simply must 
cover the red part completely. The interesting thing is that 
these children understand the relationship many-to-one, 
since they realize that there are a number of different cutout 
shapes all of which can completely cover the red, but this 
does not permit them to construct a good classification 
system based on the relationship of one-to-many. Here is 
another case of half of a logical structure. In the language 
of the Bourbaki mathematicians many-to-one is a function, 
but one-to-many is not a function.

More generally, the reason that functions are so interest
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ing is that they demonstrate still more clearly the impor
tance of relationships of order in preoperational thinking. A 
great many relationships that for us are metric are simply 
ordinal for children: measure does not come into their judg
ments at all.* A very good example is the conservation of 
length, which has been mentioned. If two sticks are the 
same length when they are side by side, and one is pushed 
over to the side, we continue to judge them to be the same 
length because we take into account both ends, and we 
realize that the important thing is the distance between the 
left-hand end and the right-hand end in each case. Preopera
tion al children, however, do not base their judgments on the 
order of the end points. If they are looking at one end of 
the sticks, their judgment of length is based on which one 
goes farther in that direction. There are a great many experi
ments in which children’s reactions are based on ordinal 
relationships rather than on quantitative ones, and it seems 
to me that this occurs because they are using- a logic of 
functions rather than a complete operational logic.

Another characteristic of this semilogic is the notion of 
identity, which precedes the notion of conservation. W e 
have seen that there is a certain notion of identity in sensory- 
motor intelligence, and a child realizes that an object has a

* I am aware of the fact that not all logicians follow the Bourbaki school, 
and that for intuitionists the intuition of the series of numbers is more 
fundamental than the concept of set or of structure. This corresponds 
psychologically to the fact that purely ordinal tasks are sometimes trans
formed by the child into quantitative ones. It will be a task for the future 
to analyze the relation between these two types of logic and these two 
types of behavior.
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certain permanency. This is not a case of conservation in 
the sense that we use the term, since the object does not 
change its form in any way—-it simply changes its position. 
But it is a case of identity, which is one of the starting points 
for the later notion of conservation. W e have also studied 
the notion of identity in the preoperational thinking of 
children from the age of about 4 years. W e have found that 
there is nothing more variable than the notion of identity, 
which by no means remains the same throughout the in
tellectual development of a child. W hat it means for some
thing to preserve its identity changes according to the age 
of the child and according to the situation in which the 
problem is presented.

The first thing to keep in mind is that identity is a 
qualitative notion and not a quantitative one. For instance, 
a preoperational child who maintains that the quantity of 
water changes according to the shape of its container will 
nonetheless affirm that the water is the same—only the 
quantity has changed. My colleague, Jerome Bruner, thinks 
that a notion of the principle of identity is sufficient as a 
foundation for the notion of conservation. For my part, I 
find this position questionable. To have the principle of 
identity one has only to distinguish between that which 
changes in a given transformation and that which does not 
change. In the case of the pouring of liquids, children have 
only to make a distinction between the form and the sub
stance. But in the notion of conservation, more is required. 
Quantification is rather more complex, as we have seen, 
especially since the most primitive quantitative notions are
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the ordinal notions just described, which are not adequate 
in all cases of quantitative comparison. It is not until chil
dren also develop the operations of compensation and re
versibility that the quantitative notion of conservation is 
established.

But I should like to give some new examples of how the 
notion of identity changes with development. W e have 
done a number of different experiments, in which Gilbert 
Boyat has been one of the principal collaborators. In this 
research we have found a first level where identity is semi- 
individual and semigeneric. A child will believe that objects 
are identical to the extent that one can do the same things 
with these objects. For example, a collection of beads on a 
table is recognized as being the same as the same beads in 
the form of a necklace, because one can take the necklace 
apart and make a pile of the beads or string them together 
again and make a necklace. Or a piece of wire in the shape 
of an arc is recognized as being the same piece of wire as 
when it is straight, because it can be bent into an arc or 
straightened into a straight line. A little later the child be
comes slightly more demanding in his criteria for identity. 
It is no longer sufficient that an object be assimilated to a 
certain scheme. The identity becomes more individualized. 
At this stage he will say that a piece of wire is no longer the 
same piece when it is in the shape of an arc, because it no 
longer has the same form.

One interesting experiment of this sort came up rather 
fortuitously in the course of another experiment. Children 
were ordering squares according to size, and in the course of
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this activity one child put a square on a corner instead of 
along the edge and then rejected it, saying that it was no 
longer a square. W e then started another experiment in 
which we investigated this more closely, presenting a cutout 
square in different positions and asking questions of the 
following types. Is it the same square? Is it still a square? 
Is it the same piece of cardboard? Are the sides still the 
same length? Are the diagonals still the same length? W e 
put these questions, of course, in terms that made sense to 
the children we were interviewing. W e found that the chil
dren, until the age of about 7 years, denied the identity: it 
is no longer a square; it is no longer the same square; the 
sides are no longer the same length;, it is longer now in this 
direction; the angles are no longer right angles; etc.

In the area of perception there are similar experiments 
to be done. W e are all familiar with the phenomenon of 
apparent motion or stroboscopic motion. One object ap
pears and disappears, and as it disappears another object 
appears, and as the second object disappears the first object 
appears again. If this is done at the right speed, it looks as 
if one and the same object is moving back and forth be
tween the two positions. It occurred to me that it would 
be interesting to study identity through this phenomenon 
of stroboscopic motion, by having one of the objects a 
circle and the other a square. W hen the object moves to one 
side it looks as if it is becoming a circle, and when it moves 
to the other side it looks as if it is becoming a square. It 
looks like a single object that is changing its shape as it 
changes its position. First of all, I should point out that it
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is much easier for children to see this apparent motion than 
for adults. The thresholds are much wider. Almost any speed 
of alternation or a great range of speeds of alternation gives 
rise to this impression of apparent motion for children, 
whereas for adults the limits are much narrower. The inter
esting thing in this experiment of ours is that, in spite of 
this facility that children have in seeing stroboscopic mo
tion, they tend to deny the identity of the object. They 
will say, “ It is a circle until it gets almost over to here, and 
then it becomes a square,” or “ It is no longer the same ob
ject-one takes the place of the other.” Adults, on the other 
hand, see a circle that turns into a square and a square that 
turns into a circle. They find this strange, but nonetheless 
it is what they see; the same object changing its shape. The 
notion of identity, then, in this experiment rises very 
clearly as a function of age. And this is only one of many 
experiments in which we have found similar results.

The last experiment that I should like to mention is 
carried out by Boyat on plant growth. He started by experi
menting with the growth of a bean plant, but that took too 
long, so instead he uses a chemical in a solution, which 
grows in a few minutes into an arborescent shape looking 
something like a seaweed. Periodically, as a child watches 
this plant grow, he is asked to draw it, and then with his 
drawings as reminders he is asked whether, at the various 
points in its growth, it is still the same plant. W e refer to 
the plant by the same term the child uses for it—a plant, 
seaweed, macaroni—whatever he happens to use. Then we 
ask him to draw himself when he was a baby, and himself a
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little bigger, and still a littler bigger, and as he is now. And 
we ask the same questions as to whether all these drawings 
are drawings of the same person, whether the person is al
ways he. At a relatively young age, a child will deny that 
the same plant is represented in his various drawings. He 
will say that this is a little plant, and that is a big plant—it 
is not the same plant. In referring to the drawings of him
self, however, he will be likely to say that all show the same 
person. Then, if we go back to the drawings of the plant, 
some children will be influenced by their thoughts about 
their drawings of themselves and will say now that they 
realize that it is the same plant in all the drawings, but 
others will continue to deny this, maintaining that the plant 
has changed too much, that it is a different plant now. Here, 
then, is an amusing experiment which shows that the 
changes taking place within the logical thinking of children 
as they grow older affect even the notion of identity itself. 
Even identity changes in this field of continual transforma
tion and change.*

* Philosophers have often asked under what conditions "things" or 
"persons" remain the same. W e want to stress that strict identity (in the 
logical or Leibnizian sense) cannot be meant in these controversies. Strict 
identity corresponds to the semantical fact that one concept or one object 
may in a given language have several names. This being taken into account, 
it is obvious that our experiments refer often to physical identity or psy
chological identity, relations the evolution of which we have been able to 
follow, and which are characterized by the fact that in contradistinction 
with the concepts of number, space, tune they do not reach, even for 
the adult, a stage of stable equilibrium. This fact, illuminated by our 
genetic analysis, may explain the heated controversies about physical or 
psychological identity in the Anglo-Saxon literature.





4  ^

T
-1-Jet us look  more closely now at the development of the 
notions of speed and time. The traditional view of speed 
and time leads us into a vicious circle. Speed is defined as a 
relationship between time and space, and yet time can be 
measured only on the basis of a constant speed. This sets 
the stage for a study in genetic epistemology, namely, the 
search to find out whether one of these two notions is more 
basic than the other, and whether we can escape from the 
vicious circle by deriving the less basic notion from the 
more primitive one. Tire hypothesis that I am going to 
defend here is that the more primitive notion is the more 
complex and the less differentiated, namely, the notion of 
movement, including speed. I shall try to show that time 
can be defined as a coordination of movements or of speeds 
in the same sense as space is a coordination of changes 
of position. Changes of position, of course, are simply

59
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movements considered without taking the speed of the 
movement into account. Space, then, is a coordination of 
movements without taking speeds into account, whereas 
time, in my hypothesis, is the coordination of movements, 
including their speeds.

W e come here to the striking parallel that exists between 
time and space. This is a classical parallel, of course, found 
throughout the writings of Newton, of Kant, and of an 
endless number of other philosophers, to relativity theory, in 
which the two are partially fused. But there are three im
portant differences between space and time in spite of this 
parallelism, and I should like to discuss them. First of all, 
time is irreversible; unfortunately, once we have lived 
through a day we cannot go back and live through it again. 
Movements in space, however, are reversible; we can go 
from point A to point B, and then we can go back from 
point B to point A. The second difference is that space can 
be considered separately from its contents. It is true that 
one aspect of space is tied to its contents and cannot be 
separated from it, namely, physical space, as in relativity 
theory. Nonetheless, we can consider space separately from 
its contents. The science of this independent space is the 
science of pure geometry—pure in the sense that it is in no 
way limited by physical space. Time, on the other hand, 
cannot be considered separately from its contents. Tim e is 
always tied to speeds, and speeds invariably have not only 
a physical but also a psychological reality. W e cannot create 
a pure science of time or a pure chronometry in the same 
way that we can create a pure geometry. The third differ-
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ence, which is of great importance psychologically, is that 
we can perceive a whole geometric figure. Let us consider 
a figure as simple as a straight line—we can perceive a whole 
line as simultaneous. A temporal duration, however, no 
matter how short it is, cannot be apprehended all at once. 
Once we are at the end of it, the beginning can no longer 
be perceived. In other words, any knowledge of time pre
supposes a reconstruction on the part of the knower, since 
the beginning of any duration has already been lost and 
we cannot go back in time to find it again. Knowledge of 
space is therefore much more direct and simpler from the 
psychological point of view than knowledge of time.

I should like now to develop my hypothesis that the no
tion of speed is more fundamental than the notion of time, 
and that time is a coordination of speeds, by examining 
what is involved in both the notion and the perception of 
speed. But before I do that, I must make clear one distinc
tion that will be important in what I should like to say: 
when we are considering temporal notions, there are two 
different kinds. The first is the notion of temporal order or 
the succession of events (A comes before B, B comes before 
C, C comes before D , etc.). The second is the interval be
tween two-events, that is, the length of time from A to B, 
and the length of time from B to C. It is quite clear that 
the order of temporal events can be considered without 
paying any attention to the duration or the interval of time. 
W e shall use the term duration to refer to the intervals 
between temporal events, and the term order to refer to
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the simple succession of events when we are not paying any 
attention to the time intervals.

W e have found that the classical notion of speed as a 
relationship between the spatial interval and the temporal 
duration appears very late in child development, about 9 or 
10 years of age. By contrast, as early as the preoperational 
period, that is, even before the age of 6 years, there are 
intuitions of speed that are not based on this ratio. This 
primitive intuition is based on succession; it is an ordinal 
intuition and is not based on durations. This notion of 
speed that is not based on temporal duration turns out to 
be important in our attempt to escape from the vicious 
circle. This early intuition is based on the phenomenon of 
passing. If one moving object catches up with and overtakes 
another moving object, even very small children will say 
that the former object is going faster than the latter. This 
primitive intuition of speed* based on overtaking is derived 
from ordinal spatial relations and ordinal temporal relations 
without needing any measures at all. At one point in time 
automobile A was behind automobile B, and at a later point 
in time automobile A was ahead of automobile B. This is

* In order to show how careful one must be, before qualifying something 
as "a primitive intuition/' let us for a moment consider the meaning of 
the concept of "overtaking" or "passing/* Even here, although it is clear 
that we have no coordination of measured space and measured time, we 
might say that we have a coordination of a temporal order and a spatial 
order. Indeed, what does “overtaking”  or "passing” really mean?

1. In a first moment mlf object A follows object B.
2. In a second moment m2, A and B arc on the same level.
3. In a third moment m3, A precedes B.
Obviously the temporal series (mlr m2, mg) is coordinated with the 

spatial series (AB, BA ).
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sufficient for a child's earliest intuition of speed. It is very 
easy to show that this intuition of speed precedes any no
tion of speed in the classical sense as a relationship between 
a spatial interval and a temporal interval. I should like to 
mention two experiments that we have done to reveal this 
precedence of intuition.

In the first experiment we have two tunnels, side by side. 
One of them is longer than the other, and children have no 
difficulty seeing this and pointing to the longer one. Then, 
for each tunnel we have a miniature doll. The dolls are set 
up to move on tracks at fixed speeds. In the first phase of 
the experiment we have the dolls enter the tunnels at ex
actly the same time and emerge from the tunnels at exactly 
the same time. It is clear that the doll in the longer tunnel 
must have gone faster, but the unanimous reply from my 
youngest subjects is that the two dolls moved at the same 
speeds. The children admit that the dolls went into their 
tunnels at the same time and came out of them at the same 
time and that one of them had a much longer tunnel to go 
through, but nonetheless they assert that the two went at 
the same speed because they came out at the same time. 
This is purely an ordinal argument. In the next phase of the 
experiment we take off the tunnels so that the children see 
the dolls moving. Once again, the dolls cover the distance 
in the same time but one of them has a longer distance to 
cover. This time the very same children say that the doll 
covering the greater distance goes faster because they can see 
it pass the other one. They are not coordinating the constant 
speeds with the different lengths; they are simply reacting
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to the fact that one of the dolls overtakes the other. In the 
third phase of the experiment we put the tunnels back over 
the tracks and repeat the first phase. A great number of our 
4- and 5-year-old subjects go right back to what they said 
in the first phase, namely, that the two dolls go at the same 
speed because they come out at the same time. Even if we 
remind them of the second phase, in which they said that 
one was going faster than the other, they will reply that 
yes, they remember that, but now the dolls are going at the 
same speed because they are coming out at the same time.

In another experiment, which is very simple to do, we 
have two concentric tracks on which, let us say, cyclists are 
moving. Children will recognize that the outside track cov
ers a longer distance than the inside track. W e have the 
cyclists going around the tracks side by side, so that they get 
back to the point of departure at the same time. Once again, 
the children will say that the cyclists travel at the same 
speed because they return to the same spot at the same time. 
The fact that the outside track is a longer distance, that the 
outside cyclist has farther to go, is simply irrelevant to these 
children's judgments of speed. The only thing that is perti
nent to their definition of speed is overtaking, and since the 
cyclists remain side by side no overtaking occurs. Their 
judgments of speed are clearly not based on any relationship 
between length of space on the one hand, and the length of 
time taken to cover that space on the other hand. This 
points the way out of the vicious circle, it seems to me, since 
we see here a notion of speed that is quite different from
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the classical relation of a measure of space related to a 
measure of time.

Before dealing with other aspects of the notion of speed 
and with some aspects of the notion of time, I should like 
to consider here some experiments in the perception of 
speed. It is quite clear that we can perceive that one object 
is going fast or slow, even though it is not passing another 
object or being passed by another object. W e do not have 
to compare one moving automobile with another in order 
to see that the automobile is going fast or slow. Upon what 
is a judgment of this kind based? In an attempt to answer 
this question we have studied the perception of speed. W e 
have worked with both adults and children, since perception 
changes much less with age than intelligence does. I shall 
start by citing the work of an American psychologist, Brown, 
who studied this subject some time ago and attempted to 
show that our perceptions of speed result from a relationship 
between our perceptions of space and our perceptions of 
time, that is, our subjective impressions of space and our 
subjective impressions of time. This, of course, is the oppo
site of what I have been maintaining, and I should like to 
tell you about a few of our experimental findings that are 
relevant to this debate.

There is a classical perceptual illusion upon which we 
based a number of our experiments. The subject looks at a 
line along which an object moves at a constant speed from 
left to right The left half of the line is broken up by small 
vertical marks, whereas the right half is clear. It is a general 
perceptual phenomenon that the moving object appears to
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go faster when it is passing the vertical crosslines than it 
does during the motion across the other half of the line. 
With this same experimental situation we can ask subjects 
to judge not only the speed but also the length of time 
required for the mobile to move across the left-hand half, 
compared with the length of time to move across the right 
half, and we can ask for their judgments on the lengths of 
the two parts of the line. W e do not tell them that half of 
the line is crossed with vertical marks and the other half is 
not; we simply ask their judgments on the relative lengths of 
the crossed part and the open part. In this way we can 
determine whether or not Brown's position is justified. W e 
can see whether a given subject’s judgments of speed, spa
tial distance, and time interval are consistent with the rela
tionship that speed equals space over time. W e carried out 
these experiments with adult subjects, and, of course, we 
saw the subjects in three different sessions. No one subject 
judged time and speed, or distance and speed, in the same 
session. Nevertheless, when we compared the judgments 
made by each subject, we found that 60 per cent of the sub
jects were inconsistent in their judgments. A subject might 
say, for instance, that it took the same amount of time for 
the moving object to cross the left-hand part as to cross the 
right-hand part. In another session he might say that the 
left-hand part was a shorter distance than the right-hand 
part. And in still another session he might say that the mo
bile went faster over the left-hand part than over the right- 
hand part. These are clearly incompatible judgments if he 
is operating on the relationship of speed equal to space
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divided by time. In children the number of inconsistencies 
was even more marked: closer to 75 or 80 per cent of the 
children were inconsistent. At any rate it is quite clear 
that the results for both adults and children do not accord 
with Brown’s point of view.

W e are obliged, then, to look for another hypothesis to 
explain our perception of speed. My hypothesis is that the 
perception of speed is based on the same sort o f ordinal 
relationships as the notion of speed. I think that we can 
find this to be the case in three different kinds of situations.

In the first situation there are two moving objects and 
one of them passes the other. In point of fact, in our experi
mentation we have found that there is an illusion of accelera
tion in the speed of one moving object at the moment that 
it passes the other. Overtaking thus seems to play a role not 
only in our intuition of speed but also in our very perception 
of it.

In the second situation there is but a single moving ob
ject, and it would seem difficult here to find where the 
ordinal relationship of overtaking comes in. But in this sit
uation let us say that our eyes are free to move- as they will. 
Hence, in fact, there are once again two moving things—on 
the one hand the object that we are looking at, and on the 
other hand our eyes. If we consider, for example, the experi
ment just discussed, in which an object moves across a line 
and encounters vertical crosslines as it goes, we see that 
while the eye follows that moving object it stops for a tiny 
moment at each of the crosslines, and during this very brief 
stop the object moves on ahead so that the movement of the
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eye always seems to be having to catch up from behind. 
This would explain why the object seems to be moving 
faster over the crosslined part of the line than over the other 
part.

The third situation is one in which there is again only one 
moving object and in which our eyes remain fixed, looking 
at a fixed point. I can fix my gaze on that “ No Smoking” 
sign, for instance, and without moving my eyes I can tell, 
more or less, whether a person who walks in front of it is 
going fast or slow. Once again, we seem hard put to find a 
case of one moving object overtaking another to serve as a 
basis for our judgment of speed. In this case, as the mobile 
moves across the field of vision, it excites simultaneously a 
certain number of retinal cells. I call the collection of cells 
that are stimulated at any given moment the train of excita
tion, and this is the source of the two moving objects in this 
situation, namely, the first cell in the train of excitation and 
the last cell in the train—the locomotive and the caboose, 
if you will. The faster an object moves across our field of 
vision, the greater is the distance between the first cell and 
the last cell, and it is this increase in distance that leads to 
our judgment of an increase in speed. This same explana
tion, by the way, accounts for the fact that in this third sit
uation, when a mobile moves across our field of vision and 
our eyes are fixed, it seems to speed up as it passes the foveal 
region. The cells are denser in this region, so that as the 
mobile reaches there, there are more cells between the begin
ning and the end of the excitation train. This is what gives
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rise to the impression that the object seems to speed up at 
this point.

I have only two final remarks to make on the ordinal 
nature of our perceptions and intuitions of speed. One con
cerns the physiological work of Letvin at the Massachusetts 
Institute of Technology. Letvin has been studying, among 
other things, the retinal sensitivity of frogs and has found 
that there is a primitive perception of speed. He finds no 
such primitive perception of time, however.

My. second remark refers to the work of two French 
physicists. They were attempting to establish a new axioma- 
tization of physics that could serve as a basis of relativity 
physics. Among other things they wanted to be able to 
avoid the problem of the vicious circle in the notions of 
speed and time. These two physicists had the great merit to 
look into psychological studies of the notion and the per
ception of speed and time, and they came upon our work. 
They found in our hypothesis of the ordinal notion of speed 
a way to introduce into their formal structure a notion of 
speed that was independent of temporal duration, and this 
is what enabled them to escape from the vicious circle. It 
is interesting to me that in this way the influences from 
one branch of investigation to another have come full circle. 
It was the author of the theory of relativity who suggested 
to us our work, which in turn proved to be useful to other 
physicists in building the axiomatic basis of the theory of 
relativity.

I should like now to consider the notion of time. Whereas
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we have seen that there is a primitive intuition of speed, this 
is not at all the case with time; the notion of time is an 
intellectual construction. It is a relationship between an 
action—something which gets done—and the speed with 
which it is done.

It is very easy to show that in the development of the 
notion of time in small children this relationship is not a 
primitive intuition. Judgments of time are based on how 
much has been accomplished or on how fast an action has 
taken place, without the two necessarily having been put 
into a relationship with one another. Let us look at the 
development of the notion of simultaneity, for instance. In 
one of our experiments the experimenter has two little 
dolls, one in each hand, that walk along the table side by 
side (they do not actually walk; they go in hops, tapping the 
table together at the end of each hop). The child says go; 
the two dolls start off at exactly the same time and the same 
speed. The child says stop, and the two dolls stop, once 
again side by side having gone exactly the same distance. 
In this situation children have no problem in admitting that 
the dolls started at the same time and stopped at the same 
time. But if we change the situation slightly, so that one of 
the dolls has a slightly longer hop each time than the other, 
then, when the child says stop, one doll will be farther 
along than the other. In this situation the child will agree 
that the dolls started at the same time, but he will deny 
that they stopped at the same time. He will say that one 
stopped first; it did not go as far. W e can then ask him, 
"W hen it stopped, was the other one still going?” And he
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will say no. Then we will ask him, “W hen the other one 
stopped, was this one still going?”  And he will say no again. 
This is not, then, a question of a perceptual illusion. Finally, 
we will ask again, “Then did they stop at the same time?” 
The child will still say, “No, they did not stop at the same 
time because this one did not get as far.”  The notion of 
simultaneity-two things happening at the same time—sim
ply does not make sense for these children when it refers to 
two qualitatively different motions. It makes sense for two 
qualitatively similar motions taking place at the same speed, 
as in'the first situation described, but when two different 
kinds of motions are involved it simply makes no sense. 
There is no primitive intuition of simultaneity, and two 
movements are qualitatively different. This is going to re
quire an intellectual construction.

Slightly older children will admit that the two dolls 
stopped at the same time, but they will still have trouble 
with the question of whether the dolls walked or moved 
for the same length of time; that is, they will have trouble 
with questions of the time interval or time duration. They 
will say that the dolls started at the same time, and they 
stopped at the same time, but that one walked a longer time 
because it got farther. It is very clear here that the notion 
of time is being based on the amount of action carried out 
or the speed at which the action is carried out, but these 
two have not been put into a relationship with one another 
to give rise to a consistent notion of temporal duration. A 
period of time cannot be dissociated from what is accom
plished during this period.
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Another experiment is even simpler for studying these 
same notions. Using a Y-shaped tube, we can attach the 
stem of the tube to a tap of water so that there is an equal 
flow out of each of the branches. Each branch can flow into 
a separate container. If the two containers are the same 
size and shape and we question the children about the water 
flow when we turn on the tap, the children will admit that 
the water starts to flow into the two containers at the same 
time, stops flowing at the same time, and has flowed the 
same length of time into both of them. However, if we have 
differently shaped containers, so that the water rises higher 
in one than in the other after a given amount of time, the 
children have the same problems again, saying that the water 
ran for a longer time into the container where it has risen 
higher.

In many of these cases we can point out to the child the 
time consistencies involved by giving him a watch or other 
time instrument, but when we do this we find that it does 
not help at all, because these children have no notion of 
the constancy of the speed of the measuring instrument. 
As they see the situation, if the watch goes farther one time 
than another, the reason may very well be because it is going 
faster at that time. Or if sand runs through two egg timers 
in the same length of time but the child really thinks the 
two events took different lengths of time, he simply main
tains that the sand went faster in one egg tinier than in 
the other, or it went faster in the same egg timer one time 
than it went in another. There is simply no notion that the 
speed remains constant in these instruments.
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As a final remark on the preop era tional notions of time 
I should like to mention that some children think that 
faster means a longer period of time. For instance, we ask 
them how long it takes them to walk to school. A child 
may say a quarter of an hour, Then we will ask him whether, 
if he runs to school, it takes longer than a quarter of an hour 
or shorter than a quarter of an hour. The child will often 
say that it takes longer than a quarter of an hour because, 
once again, he has been unable to make the proper relation
ship between the amount of work done and the speed at 
which it is done in order to produce from this the relative 
amount of time that passes. It is as if he is reasoning in this 
way: faster means more gets done, and getting more done 
means spending-more time.

A word or two about subjective time or psychological 
time may also be helpful, Offhand it may seem that this is 
quite a different question, since we appear to have a direct 
impression of subjective time, but on looking more closely 
we see that, in fact, the same relationship is in play here. 
Our subjective impressions of time depend, on the one 
hand, on the actions that we are carrying out or the amount 
of work that is accomplished and, on the other hand, on 
the speed at which the work is being accomplished. Wiry, 
for example, does time seem shorter when we are doing 
something that interests us? The answer is a very simple 
one. Dewey, a long time ago, and Claparede, too, have 
pointed out that interest reinforces or accelerates the speed 
with which work is done.

In this area I find myself in partial disagreement (but
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only partially) with my colleague Fraisse, a specialist in the 
psychology of time. He believes that the subjective impres
sion of time is a function of the number of events or the 
number of changes that the subject notices. In other words, 
the more varied are the contents of our experience, the 
longer the time seems to be. W hat seems to be missing 
behind this hypothesis is the notion of the number of events 
in relationship to a fixed unit of time, that is, a notion of 
the frequency of the events. I think that this element of 
frequency, which is a form of speed, is hidden within 
Fraisse's framework. Let us look at the following experi
ment, which Fraisse did first and we repeated. Various pic
tures are shown to children during 1 minute of time. In one 
situation they are shown sixteen pictures in a minute; in 
another situation, thirty-two pictures in a minute. Small 
children under the age of 7 years judge that the time is 
longer when they see thirty-two pictures in a minute than 
when they see sixteen pictures. This seems to support 
Fraisse’s hypothesis, but if we do the same experiment with 
slightly older children—7- or 8-year-olds—we find the reverse 
judgment. These children seem to judge that the time is 
shorter in the situation when they see thirty-two pictures. 
It seems quite clear that here the speed of the events must 
be playing a role in the judgment of them, and, in fact, it 
seems to be playing the deciding role.

I shall conclude my remarks on the notion of time by 
saying that it requires a construction—an intellectual con
struction on the part of children—based on operations that 
are parallel to those involved in logical, mathematical think
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ing. Three kinds of operations are involved in the notion of 
time. First of all, there are the operations of sedation, of 
ordering events in time: B  conies after A, C comes after B, 
D  comes after C, etc. Second, there are the operations that 
are similar to the operations of class inclusion: if event B 
follows event A and event C  follows event B, then we must 
be able to conclude operationally that time interval A C is 
longer than time interval AB. This corresponds in the logic 
of classes to the notion that the whole is greater than a part, 
or a whole class—the total class—is greater than a subclass. 
And, finally, we have the operations of measurement of 
time, which are the synthesis of the two other kinds of 
operations, just as the operations involving number are the 
synthesis of operations of ordering and of classification.*

* It may be asked how it is possible for somebody who defines intelli
gence by means of reversible structures to make intelligible the notion of 
time, precisely characterized by pure irreversibility. Our answer is simple: 
this physically irreversible time is, in thought, reversible (we can go back 
and forth, from present to past and from past to present) by means of our 
reversible interiorized operations.





Conclusion

r n

X  hese  few examples may clarify why I consider the main 
problem of genetic epistemology to be the explanation of 
the construction of novelties in the development of knowl
edge. From the empiricist point of view, a "discovery” is 
new for the person who makes it, but what is discovered 
was already in existence in external reality and there is there
fore no construction of new realities. The nativist or apriorist 
maintains that the forms of knowledge are predetermined 
inside the subject and thus again, strictly speaking, there 
can be no novelty. By contrast, for the genetic epistemolo- 
gist, knowledge results from continuous construction, since 
in each act of understanding, some degree of invention is 
involved; in development, the passage from one stage to the 
next is always characterized by the formation of new struc
tures which did not exist before, either in the external world 
or in the subject’s mind. The central problem of genetic

77



G E N E T I C  E P I S T E M O L O G Y7 8

epistemology concerns the mechanism of this construction 
of novelties which creates the need for the explanatory fac
tors which we call reflexive abstraction and seif-regulation. 
However, these factors have furnished only global explana
tions. A great deal of work remains to be done in order to 
clarify this fundamental process of intellectual creation, 
which is found at all the levels of cognition, from those of 
earliest childhood to those culminating in the most remark
able of scientific inventions.
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Intelligence, in deaf and dumb children, 45 
Intelligence, practical, 41, 44 
Interiorized imitation, 14 
Intuition, articulated, 50 
Intuition, primitive, 7, 62 
Inversion: reversibility by, 22 
Irreversibility of time, 60, 75

Knowledge: epistemology as study of, 2; factors in understanding 
nature of, 4, 7; states of, 12 ff.; active quality of, 15; concrete 
quality of physical, 16; logical mathematical, 17; of space and 
time, 61; development of, 77

Language: as based on reason, 10; relationship between
mathematical structures and, 41 ff.; practical intelligence 
evident before use of, 44 ff.

Language development: in relation to logical structures, 9 
Laws of transformation, 23 
Leurendau, Monique, 33
Linguistic level of children: in relation to operational level, 48 
Linguistic structures, 8
Logic: linguistic view of, 9; many kinds of logics, 10 ff.
Logical positivism, 8, 48 
Logical reality, 8
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Logical structures: development of, in children, 14; abstract 
quality, 15; basis of, 18; development of, in deaf and dumb 
children, 46

Mari tain, Jacques, 6
Mathematical and Psychological Epistemology {Piaget and Beth), 

12
Mathematical groups, 25 
Mathematical reality, 8
Mathematical structures, 3, 22; abstract quality, 15; relationship 

between language and, 41 ff.; relationship between sensory- 
motor activities and, 41 ff.

Mathematics: fundamental structures of, 3 
McCulloch, W. S., 19 
Mental imagery, 14, 45 
Mental operations, 21 ff.
Michaelson-Morley experiment, 6 
Microphysics: changing state of knowledge in, 2 
Mother structures of Bourbaki mathematicians, 23 ft., 26, 33 
Motion, relative, 39
Movement, notion of: hypothesis of, 59 ff.

Natural numbers, notion of, 5 
Negation: reversibility by, 22, 28, 39
Number: as a synthesis of class inclusion and relationships of 

order, 38
Number, notion of, development of, in children's thinking, 5, 34,

38; on basis of one-to-one correspondence, 37 
Number theories: bases for, 39

Oleron, Pierre, 46
One-to-one correspondence, 4, 34 ft., 43
Operational level of children: in relation to linguistic level, 48
Operations: development of, 2, 43; defined, 21 ff.
Operative aspect of thinking, 14 
Optical correspondence, 34 
Order, logic of, 42
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Order structure, 25; in children’s thinking, 28, 38 
Order (term), 61 
Ordinal coordination, 18 
Overtaking, concept of, 62

Passing, phenomenon of, 62
Perception: as figurative function of thinking, 14
Permanence, notion of, 43
Physics: changing state of knowledge in, 2
Pinard, Adrien, 33
Poincare, Henri, 7
Position, changes of, 59
Princ/pia M ath e m a tic s  (Russell and Whitehead), 35 
Propositions, logic of, 25, 39
Psychological factors : in epistemological analysis, 7 ff.

Rationalism, 9
Reality, logical and mathematical, 8
Reciprocity: reversibility by, 22, 25, 29, 30, 39
Rectilinear figures: as distinct from curvilinear figures, 33
Reflexive abstraction, 78
Relativity theory, 7, 60
Representation, 45
Reversibility: in sensory-motor intelligence, 43, 44; of movement 

in space, 60
Reversible actions, 21, 29 
Russell, Bertrand, 5, 35 ff.

Scalers, 49 
Schemes, logic of, 42 
Self-regulation, 78 
Semilogic in children, 50, 52 
Semiotic function, 45
Sensory-motor activities: relationship between mathematical 

structures and, 41 ff.
Sensory-motor intelligence: internalizing of, 45; notion of identity 

in, 52
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Sequential coordination, 18 
Seriation, structure of, 28 
Set theory, 4
Simultaneity, notion of, 6ff., 70, 71 
Sinclair, Hermine, 48
Space: as coordination of changes of position, 59; parallel between 

time and, 60
Speed: notion of, 7, 59 fF.; intuition of, 62 ff.; perception of, 65 ff. 
Stroboscopic motion, 55 
Structuralist school of mathematics, 3 
Structure: defined, 22 ff.
Structure of ordering, 3 
Structures: hypothesis of innate, 47 
Systems of transformations, 14 ff.

Temporal notions, 61
Thinking without Language (Furth), 46
Thought: as a process, 2 ff.; figurative and operative aspects, 14 ff.; 

hypothesis of, 18
Time: notion of, 7, 59 ff.; parallel between space and, 60;

irreversibility of, 60, 75; an intellectual construction, 70, 74; 
subjective, psychological time, 73; kinds of operations involved
in> 75

Topological geometry, 31 
Topological intuitions, 31
Topological structure, 3, 25; in children's thinking, 30 
Train of excitation, 68 
Transfinite numbers, 34 
Transitivity: reasoning on basis of, 30

Unity, arithmetic, 37
Universal time, Newtonian notion of, 6

Vectors, 49

Whitehead,-Alfred North, 5, 35̂  ff.
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