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INTRODUCTION

This section provides an explanation of the polyhedra created in this book. You don't need it
to learn how to fold the models, but if you like modular origami, it will broaden your under-
standing and help you to create your own models.

Modular origami polyhedra are generally made from a number of identical modules. In
this book, in addition to giving instructions for creating models made from identical modules,
we give instructions for creating models made from several different but related modules, for
which we have coined the term “multimodular origami polyhedra.” The modules described in
this book together form a system of related folds like those we have previously written about
9, 11], with extensions—that is, the modules are variations of each other. They originate from
different polygonal shapes, yet lock together. What they have in common 1s a tab-and-pocket
connection between modules and a relationship to a square- or other polygon-based “water-
bomb” base (see below).

A special property of this system is that more than one type of module is used in one
model. Finding a system with many models is interesting; extending it to encompass many
types of modules that fit together is even more interesting. We do this, first, by basing the
modules on different polygons (triangles, squares, pentagons, hexagons, octagons, and
decagons) and, second, by sizing them so that the point of a module made from one polygon
may be fitted into the pockets of modules made from other polygons, and that the edges of
all polygons that are faces of an underlying polyhedron are approximately the same length.
(A polyhedron is a three-dimensional shape with flat faces, straight edges where the faces
meet, and vertices where the edges meet.)

Another special property of the system is its connection with mathematical duality princi-
ples for polyhedra. We start with certain polyhedra whose faces are all regular polygons, and
through a process we call “gyroscoping,” create models that have the edges of a dual polyhe-
dron of the starting polyhedron as the mountain folds and the vertices of a dual polyhedron
of the starting polyhedron as the vertices of the resulting polyhedron. Some of the polyhedra
we construct have potential practical applications in molecular science or crystallography.

In this book we give procedures and algorithms for making polyhedra from our modules,
but consider only some of the possibilities. The first set of polyhedra we work with 1s the
Archimedean solids and their duals, the less familiar Catalans (p. 9). There are thirteen of
each. The Archimedeans have faces that are regular polygons of two or three types, and each
vertex in a polyhedron is surrounded by the same sequence of polygonal faces. The Catalans
are produced from the Archimedeans by a duality process of polar reciprocation [1, 3, 5, 6,
16] which can be described informally as replacing faces by vertices and vertices by faces,
while keeping the same number of edges (which is topological duality) yet being more
specific as to which vertices and which faces are used. In this book we show how to construct
polyhedra derived from Archimedeans by a process of gyroscoping. These gyroscoped
Archimedeans are no longer convex, as the gyroscoping process uses modules based on regu-
lar polygon waterbomb bases. (A waterbomb base is formed from a regular polygon by mak-
ing mountain folds from its center to its vertices and valley folds from its center to the mid-
points of its edges. When the vertices are held in a plane, and the center is raised, a waterbomb
base is formed. It is not convex because the faces go in and out.) While the gyroscoped
Archimedeans are not convex we can observe that their mountain folds and vertices are the
edges and vertices of the related Catalans. We can also locate the original Archimedean on
the model as well as other polyhedra as subsets of the model’s vertices.




The second set of polyhedra we include are what we call buckyballs and hypothetical bucky-
balls. There are fifteen of these and they are made exclusively from the triangular gyroscope
module. A couple of the largest of these models require glue. There are three families of these
polyhedra. They are based respectively on pentagons and hexagons, squares and hexagons,
and triangles and hexagons. We show how to construct five models from each family. The
models get progressively larger, using more and more modules by following a net pattern that
can be enlarged and “grown” while keeping their buckyball or hypothetical buckyball prop-
erties. The starting polyhedron for the pentagon-hexagon-based models is the truncated icosa-
hedron; for the square-hexagon-based models it is the truncated octahedron, and for the tri-
angle-hexagon-based models it 1s the truncated tetrahedron. The pentagon-hexagon-based
models correspond to natural carbon-based buckyballs. It is left as an open question whether
the other hypothetical buckyballs correspond to substances natural or man-made.

The third set of polyhedra we consider are the gyroscoped buckyballs. These can be
thought of as being formed from the buckyballs and hypothetical buckyballs using a gyro-
scope process. We have constructed fifteen of them corresponding to the previously con-
structed buckyballs and hypothetical buckyballs. They turn out to have very pleasing sym-
metries, even though they are not convex. Also, their mountain folds and vertices reveal a dual
polyhedron.

We have also applied the gyroscope process to the model we call the “egg,” a truncated
hexadecahedron whose sixteen faces are equilateral triangles. (The hexadecahedron can be
thought of as two square-based pyramids attached to a square antiprism.) We came up with
this shape, made exclusively from triangle gyroscope modules, through a truncation algo-
rithm, and then gyroscoped it, revealing a dual polyhedron in mountain folds. This model is
Interesting because it is not spherical, but rather elliptical.

Don’t miss the display stand we have designed to hold your models.

We have enjoyed experimenting with different ideas. What is different about the design of the
models in the book is that after a first intuition, we set out intentionally to explore the ideas
further. This was definitely not doodling. There are other possible models that we have not
written about and for which we do not include pictures, namely the Johnson solids and their
truncations [2]. (The egg is an approximation of a truncation of a Johnson solid.) Since the
Johnson solids have as their faces only regular polygons, they are good candidates for gyro-
scoping. We hope you will enjoy experimenting with all ninety-two of these models too.

The models 1n this book are all new except for the truncated icosahedron, the truncated
octahedron, the truncated tetrahedron, and the egg. The only family of polygonal modules
for polyhedra that we know of with equal edge lengths was published in [10].
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BACKGROUND MATERIAL

A. ARCHIMEDEAN SOLIDS

Our first group of models 1s based on pairs of polyhedra, specifically Archimedean solids and
their dual Catalans [2]. The Archimedean solids were known as early as 400 B.C., although
they were named at a later date after their rediscovery by Kepler and others. They are also
called semiregular solids. They are the only convex polyhedra other than the Platonic solids
with regular polygons for faces and with vertices that all have the same sequence of polygons
meeting around them. The Platonic solids each have only one type of face; the Archimedean
solids each have two or three types of faces.

The Archimedeans are related to the larger set of Johnson solids, which have regular polygons
as faces but more than one type of vertex, as well as to the set of uniform polyhedra which have
all vertices alike and all faces alike but not necessarily regular, and which are not necessarily

convex. The Archimedeans are convex. We consider all thirteen of the Archimedean solids in
this book [2]. |

- B. DUALITY

Other properties of the thirteen Archimedean solids that we found useful for designing mod-
els relate to their associated spheres. All vertices of an Archimedean solid lie on a sphere,
called the circumsphere, and their edges are tangent to a midsphere at the midpoints of the
edges. These properties lead naturally to the standard dual, a polyhedron whose edges are
perpendicular to both the Archimedean edges and to the segments from the center of the
polyhedron to the midpoints of the Archimedean edges. The set of thirteen such duals 1s his-
torically designated the Catalan solids. Perhaps the most striking feature of a Catalan solid 1s
that 1t 1s composed of just one kind of face that 1s not a regular polygon. A face of a Catalan
solid can be simply constructed by the Dorman-Luke construction [3, 4, 6, 16], which is based
on a dualization process known as polar reciprocation [6], with respect to the midsphere.
Although topologically equivalent to the Catalan solid, a proportionately different (non-stan-
dard) dual occurs when we replace each Archimedean face center with a vertex and each
Archimedean vertex with a face. Such an interchange of parts produces a dual with the same
number of edges as the Archimedean, and the new faces remain all of one kind.

C. GYROSCOPED ARCHIMEDEANS

Each polyhedron in our first group of models has been produced from an Archimedean
through the gyroscoping process and is a melding of that Archimedean and its dual Catalan.
We have chosen to designate these new gyroscoped polyhedra with the names of the
Archimedeans they are derived from, although they could just as easily have been named after
the dual Catalans; they have properties derived from each.

Specifically, these gyroscoped Archimedeans are made up of gyroscope modules that cor-
respond 1n type to the faces of the Archimedean, namely, triangular, square, pentagonal,
hexagonal, octagonal, or decagonal (see modules section). The gyroscope modules function
as waterbomb bases with tabs and pockets to lock them together, so the models are not con-



vex. However, amazingly, the moutainfolded edges of the new polyhedra correspond to the
edges of the Catalans they are based on: we can see duality happening. Each face of an
Archimedean has a vertex placed on it by placing a gyroscope module on 1t with the moun-
tainfolds of the gyroscope module going from its vertex to the midpoints of the edges of the
face of the Archimedean, thereby interchanging the face of the Archimedean with the vertex
of the gyroscope module, on the gyroscoped Archimedean.

D. GYROSCOPE MODULES

A gyroscope module is placed on the face of an Archimedean in such a way that 1t 1s not appar-
ent at first where the original face is. The mountain folds going from the vertex of the gyroscope
module to the tabs and pockets of the module meet the edge of the pocket at the midpoint of an
edge of a face of the underlying Archimedean. That is, the edges of the pockets of the gyroscope
module lies along the edges of the faces of the Archimedean, but the pockets are shorter than the
edges of the faces. Because of this, there are open spaces on some of the models.

As for the faces of the Catalan, they are formed by the mountain folds of the gyroscope
module because of certain of their properties. Two gyroscope modules interlock with a tab
from one module and a pocket from the other module. The edges of the pockets from both
modules meet, so that they are perpendicular to the mountain folds that go through them in
a straight line. This property further shows how the models are related to a duality process
because the edges of an Archimedean are perpendicular to the edges of 1its dual. Also, the
edges of an Archimedean are bisected by the edges of its dual, and so the mountain folds of
the gyroscope modules on an Archimedean bisect the edges of the Archimedean.

E. BUCKYBALLS

The second group of models we have designed includes the buckyballs, otherwise known as
the fullerenes, as well as the hypothetical buckyballs. The third group comprises the gyro-
scoped forms of the buckyballs and the hypothetical buckyballs (pp. 24-38)

Buckminsterfullerene, or C60, is a carbon substance discovered in 1985 by Robert F. Curl,
Jr. and Richard E. Smalley of Rice University, and Harold W. Kroto of the University of
Sussex, England, who received the Nobel Prize for Chemistry in 1996 for this work. It was
named after the designer/philosopher R. Buckminster Fuller because 1ts molecular structure,
a truncated icosahedron (like the surface pattern of a soccer ball), resembles the geodesic
domes designed by Fuller. Previously, graphite and diamonds were the only known pure car-
bon substances (and their molecular structure is much simpler geometrically). _

At the time of their discovery it was felt that buckyballs held much promise for practical
applications, and some progress toward such applications has been made. Possibilities are
thought to include drug delivery systems, HIV-blocking drugs, better protective coatings, and
improved carbon dating. Recently, other cased structures, of silicon, have been discovered and
have raised similar hopes [3].

The fifteen buckyballs and hypothetical buckyballs we construct are made of pentagons
and hexagons, squares and hexagons, and triangles and hexagons. These are all regular poly-
gons, SO we were able to use the gyroscoping process on them, revealing a dual in the moun-
tain folds, thus creating another group of models. We show a process for constructing each
family of buckyballs and hypothetical buckyballs. Only the 3-1-1, 4-1-1, and 5-1-1 are regular
polyhedra; the others are approximations.



K. THE EGGS

The last models we present are the “egg” and the “gyroscoped egg.” The egg is unusual
because it has an elliptical rather than spherical shape. The gyroscoped egg truly looks like a
decorated holiday egg. The egg is a truncated hexadecahedron. It has forty-eight vertices and
so can be made from forty-eight triangle gyroscope modules. It consists of two square rings
on 1ts ends, each surrounded by four hexagonal rings, which are themselves surrounded by
eight more hexagonal rings and eight pentagonal rings (p. 8). Note that the egg is not a
Johnson solid, so it does not have exactly regular faces.
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GALLERY OF POLYHEDRA

A. THE EGG AND THE GYROSCOPED EGG

The Egg
(Truncated
Hexadecahedron)

48 triangle modules

arranged 1n:
2 square rings

8 pentagon rings

16 hexagon rings

o
ey '

i
e

o

Gyroscoped Egg

2 square gyroscope
modules

3 pentagon gyroscope
modules

16 hexagon gyroscope
modules




B. ARCHIMEDEANS, CATALANS, AND
GYROSCOPED ARCHIMEDEANS

Summary: Archimedeans and their Dual Catalans
This page is a summary of the pairs of polyhedra that are bases for the gyroscoped Archimedeans that follow.

ARCHIMEDEAN CATALAN ARCHIMEDEAN CATALAN
DY ©® 8
1. Truncated Tetrahedron  Triakistetrahedron 7. Snub Cube  Pentagonal Icositetrahedron
o ©
2. Cuboctahedron Rhombic Dodecahedron 8. Icosidodecahedron  Rhombic Triacontahedron
R e © 8
3. Truncated Octahedron  Tetrakishexahedron 9. Truncated Icosahedron  Pentakisdodecahedron
& OB

4. Truncated Cube Triakisoctahedron 10. Truncated Dodecahedron Triakisicosahedron

-
o D 6@

5. Rhombicuboctahedron Trapezoidal Icositetrahedron 11. Rhombicosidodecahedron Trapezoidal

E Hexecontahedron

6. Truncated . . 12. Truncated Disdyakis Tria-
Cuboctahedron / Dlsgyakﬁs'd Icosi- contahedron
Dodecahedron dodecahedron
13. Snub Pentagonal 5

Dodecahedron Hexecontahedron



1. Gyroscoped Truncated Tetrahedron

Truncated Triakis-
Tetrahedron tetrahedron

Gyroscope
Modules:

4 triangles and

4 hexagons




2. Gyroscoped Cuboctahedron

Rhombic
Cuboctahedron Dodecahedron

yroscope
Modules:

8 triangles and

squares

e
2 St

23
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3. Gyroscoped Truncated Octahedron

Iruncated Tetrakis
Octahedron hexahedron

Gyroscope
Modules:

6 squares and

3 hexagons




4. Gyroscoped Truncated Cube

Truncated Triakis-
Cube octahedron

Gyroscope
Modules:

8 triangles and

6 octagons







6. Gyroscoped Truncated Cuboctahedron

Truncated Disdyakis
Cuboctahedron Dodecahedron

Gyroscope
Modules:

12 squares,

8 hexagons, and

6 octagons




7. Gyroscoped Snub Cube
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32 triangles and

6 squares
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Gyroscope
Modules:

12 pentagons and

20 hexagons




10. Gyroscoped Truncated Dodecahedron

Truncated Triakis-
Dodecahedron Icosahedron

Gyroscope
Modules:

20 triangles and

12 decagons




20

Gyroscope
Modules:

20 triangles,

30 squares, and

12 pentagons



12. Gyroscoped Truncated Icosidodecahedron

Iruncated Disdyakais
Icosidodecahedron Triacontahedron

~. /\BB = Gyroscope
Modules
30 squares,

20 hexagons, and

12 decagons




13. Gyroscoped Snub Dodecahedron

Snub ' Pentagonal
Dodecahedron Hexecontahedron

Gyroscope
Modules:

30 triangles and

12 pentagons




C. SEEDS FOR GROWING BUCKYBALLS, BUCKYBALLS,
HYPOTHETICAL BUCKYBALLS, AND THEIR
GYROSCOPED FORMS

.. 24 Triangle
Gyroscopes form

Triangle
Gyroscope ' ig;;gelll‘sof 7

Module (one-

piece triangle

module) |
13 Triangle Gyroscopes

form 3 hexagons

TETRAHEDRON CUBE DODECAHEDRON
DERIVATIVE DERIVATIVE DERIVATIVE [16]
3 Basic Derivative
polygons equally ‘ '
spaced around 3 "
hexagons; each .
polygon touches 2

3 Basic Derivative
polygons equally
spaced around 3
hexagons; each
polygon touches 1
hexagon

3-3-1

B cons 3-3-2 4-3-2 5-3-2

3 Basic Derivative -
polygons equally
spaced around a
cluster of 7
hexagons; each
polygon touches 2
hexagons

3-7-2 -7-2 >-7-2

3 Basic Derivative
polygons equally
spaced around a
cluster of 7
hexagons; each
polygon touches 1
hexagon



1. 3-1-1

Ring of one hexagon with
each triangle touching one
' edge of hexagon

| Modules:
12 triangles or
4 triangles and

4 hexagons

3-1-1 Gyroscoped
3-1-1 Truncated Truncated
Tetrahedron Tetrahedron




3-3-2 Hypothetical
Bucky

2. 3-3-2

Ring of three hexagons

with triangle touching edge
of two hexagons 1 |

In a ring
Modules

16 triangles or

4 triangles and

6 hexagons

3-3-2 Gyroscoped




3-3-1 Hypothetical
Bucky

3. 3-3-

Ring of three hexagons
with triangle touching edge

of one hexagon in a ring
Modules:

28 triangles or

4 triangles and

12 hexagons

3-3-1 Gyroscoped




4. 3-7-2

Ring of seven hexagons with
triangle touching one edge of

two hexagons 1n a ring
Modules:

36 triangles or

4 triangles and

16 hexagons

3-7-2 Hypothetical
Bucky -7-2 Gyroscoped




S. 3-7-

S8

3-7-1 Hypothetical
Bucky

Ring of seven hexagons
with triangle touching edge

of one hexagon in a ring
Modules:

48 triangles or

4 triangles

22 hexagons

3-7-1 Gyroscoped

—— ==

o e ———— Ee
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6. 4-1-1

Ring of one hexagon with
square touching one edge
of one hexagon 1n ring

Modules:
24 triangles or
6 squares and

, 8 hexagons

4-1-1 Truncated -1-1 Gyroscoped
Octahedron Truncated Octahedron




. 4-3-2

Ring of three hexagons with
square touching one edge of

' two hexagons 1n a ring
Modules:

32 triangles or

squares and

12 hexagons

4-3-2 Hypothetical
Bucky 4-3-2 Gyroscoped




. 4-3-

Ring of three hexagons
’ with square touching one
' .. - edge of one hexagon 1n ring
' . Modules:
| 56 triangles or

. squares and

24 hexagons

~ 4-3-1 Hypothetical
Bucky 4-3-1 Gyroscoped




A

4-7-2 Hypothetical
Bucky

. 4-7-2

Ring of seven hexagons
with square touching edge

of two hexagons in a ring
Modules:

72 triangles or

6 squares and

32 hexagons




- 4-7-1 Hypothetical
Bucky

Ring of seven hexagons
with square touching edge

of one hexagon in a ring
Modules:

96 triangles or
6 squares

44 hexagons

4-7-1 Gyroscoped




11. 5-1-1

Ring of one hexagon with
pentagon touching one

edge of one hexagon in ring
Modules:

60 triangles or |

12 pentagons and ~

20 hexagons

>-1-1 C60 Truncated >-1-1 Gyroscoped
Icosahedron C60

|
|




‘ 12. 5-3-2

Ring of three hexagons with
entagon touching two edges

of one hexagon in ring
Modules:

80 triangles or

12 pentagons and

30 hexagons

' 5-3-2 Gyroscoped
-3-2 C80 Bucky C80 Bucky

———————————————— T T

i




-3-1 C140 Bucky

T e e e —_,q-—-—_-q—n-—-m

Ring of three hexagons
with pentagon touching one

edge of one hexagon in ring

Modules: *
140 triangles or

12 pentagons and '-

60 hexagons f

5-3-1 Gyroscoped
C140 Bucky




14. 5-7-2

Ring of seven hexagons with
pentagon touching edge of

two hexagons 1n a ring

' Modules:
- 180 triangles or

12 pentagons and

30 hexagons

‘ 5-7-2 CI180
yroscoped




15. 5-7-

- Ring of seven hexagons witl
pentagon touching edge of

one hexagon 1n a ring

Modules:
240 triangles or

- 12 pentagons and

110 hexagons

>-7-1 Gyroscoped
)-7-1 C240 Bucky C240 Bucky
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MODEL CONSTRUCTION

A. MODEL SELECTION

When selecting a model to make, you should first consider what 1s involved. In the Gallery
(p. 7) you will find photos of the models, with information on the number and type of mod-
ules needed for each. For models made from more than one type of module, you will often
need a different size paper for each type of module. This 1s to allow the modules of different
types to fit together. In a following section, we give some sizings for each model’s modules.
These s1zings produce manageably sized models with modules that are not too hard to fold.
Some of the larger buckyballs and their gyroscoped forms as well as the gyroscoped
Archimedeans that contain octagons and decagons are larger and require some glue.

B. MODULE SELECTION

When making models with only pentagons and hexagons, the pentagon and hexagon expand-
ed spike ball modules can be substituted for pentagon and hexagon gyroscope modules. We
include them because they have better locks, using connectors. As you might guess, these
modules involve more folding and must be made large so that the connector will be a man-
ageable size.

C. MODULE SIZING

S1zing the modules 1s the key to making the models. In this section our first goal 1s to present
some sizing sets that will allow you to make models which are not too big and yet use mod-
ules that are a convenient size that are not too hard to fold. A sizing i1s based on a part of the
starting polygon or square for the module. Different construction methods for polygons may
make certain ways of sizing easier than others. Our determination of the sizing sets 1s based
on an empirical and pragmatic method akin to what scientists did with crystals a long time
ago. Basically, we folded modules and partial models and measured them, or the holes where
modules need to fit.

First, consider how to make the buckyballs and the egg. These models are made exclusive-
ly from triangle gyroscope modules, so you can make the module any size you like and two of
them will still lock together. We like to divide an 8.5" x 11" sheet into strips after first divid-
ing the 8.5" edge into halves or fourths, giving triangles with altitudes of 4.25" or 2.125"
(p. 52). These are convenient sizes for modules, are not too hard to fold, and produce man-
ageably s1zed models. It 1s also convenient to divide the 11" edge into eighths. These modules
are harder to fold and the model 1s more difficult to assemble. You may also start with
squares, or make a triangle tessellation (p. 51).

For each of the gyroscoped Archimedeans, gyroscoped buckyballs gyroscoped hypotheti-
cal buckyballs and the gyroscoped egg you will need two or three different modules. The mod-
ules for a particular model cannot, in general, all be constructed from squares of the same
size; 1f they are, the modules will not fit together. There are, however, some cases 1n which you
may start with squares of the same size, e.g. if the model 1s a buckyball of pentagons and
hexagons only.



We now discuss our methods for constructing modules that fit together.

We have come up with three ready-to-use module sizing sets. If you want to combine dif-
ferent modules 1n the same model, use sizes from the same sizing set. More generally, we also
give basic sizing relationships.

Sizing set 1: This sizing set was chosen because 3" squares and strips are convenient to use.
1. triangle module from 3" strip (altitude 3")
2. square module from 3" square
3. pentagon module from 4.25" square (diagonal of pentagon 4.25")
4. hexagon module from 4.25" square (diagonal of hexagon 4.25")
5. octagon module from 10.2" square (starting square 10.2")
6. decagon module from 15.25" square (distance between opposite edges 12.8")

Sizing set 2: This sizing set was chosen because 8.5" squares are the largest that can con-
veniently be made from 8.5" x 11" paper. The largest module is made from one
of these squares.

. triangle module from 1.6875" (1'V") strip (altitude 1.6875")

. square module from 1.6875" (1'/6") square

. pentagon module from 2.4" square (diagonal of pentagon 2.4")

. hexagon module from 2.4" square (diagonal of hexagon 2.4")

. octagon module from 5.75" square (starting square 5.75")

. decagon module from 8.5" square (distance between opposite edges 7.14")
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Sizing set 3: This s1zing set was chosen because 2.125" (2'4") is one fourth of 8.5" and this
1s convenient for making strips.
l. triangle module from 2.125" strips (8.5" x 117 sheet divided into four strips)
2. square module from 2.125" square (8.5" divided by 4)
3. pentagon module from 3" square (diagonal of pentagon 3")
4. hexagon module from 3" square (diagonal of hexagon 3")
5. octagon module from 7.25" square (starting square 7.25")
6. decagon module from 10.8" square (distance between opposite edges 9.1")

General sizing factors: Sizing factors for a module based on a polygon are based on one part
of the starting polygon or the starting square used to obtain the starting polygon. We use the
designations AT, SST, SS, D5, SSH, SSO, and D10 to indicate what is being measured for the
different starting polygons. For the triangle module, the altitude of the starting triangle (AT)
or the length of the side of the starting square (SST) is used, depending on the construction
method. For the square, hexagon, octagon and decagon the side of the starting square (SS,
SSH, SSO, SSD) 1s the measure used. For the pentagon and hexagon, the distance being sized
1s the diagonal of the finished pentagon (D5) or hexagon (D6). It turns out that D6 = SSH.

Dimensions measured:
SST  the side of the square for a triangle
AT the altitude of a triangle
SS the side of the square for a square
D5 the diagonal of a finished pentagon
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SSP  the side of the square for a pentagon

D6 the diagonal of a finished hexagon

SSH the side of the square for a hexagon

SSO  the side of the square for an octagon

SSD  the side of the square for a decagon

D10 the distance between opposite edges of a decagon

Here are the sizing factors:
Modules in one model:

Triangle and hexagon SST = .81 x SSH

Triangle and square SST =1.15xSS, SS = AT
Triangle and pentagon SST = .81 x D5

Triangle and octagon SST = .34 x SSO = 1.15x AT
Triangle and decagon SST = .27 x D10

Square and hexagon SS=SSH/1.4=.71 x SSH
Pentagon and hexagon D5 =SSP = SSH = D6

(all squares the same size if using template)
Triangle, square and pentagon SS =.71 x D5 = AT
SST =8SSx 1.15= .81 xD5
Square, hexagon and octagon SSO /3.4 =SS
SS = .29 x SSO
SSH = .42 x SSO
Square, hexagon and decagon SS = D10/4.28
SS =.23x DI0
SSH=14xSS=14x.23xDI10=.33xDI0
SSD =1.19 x DI0

D. NETS AS GUIDES; NAMING SYSTEM
FOR THE POLYHEDRA

First, a word about hypothetical buckyballs. Hypothetical buckyballs are our invention. In
making new buckyballs, we saw a pattern and extended 1t to make other polyhedra in a simi-
lar way, but replacing the buckyball’s twelve pentagons with either six squares or four trian-
gles. We tried 1t and 1t worked. It 1s an open question whether the hypothetical buckyballs cor-
respond to something in nature, as the buckyballs do.

The underlying pair of polyhedra for the buckyballs and hypothetical buckyballs is either
the 1cosahedron-dodecahedron, the octahedron-cube or the tetrahedron-tetrahedron. The
polyhedra 1n a pair are duals, so the number of vertices of the first 1s equal to the number of
faces 1n the second. If we cut off (truncate) the vertices in the first polyhedron just right we
get a polyhedron with faces of the second polyhedron and hexagons. The buckyballs are
based on the truncated icosahedron and have twelve pentagons and varying numbers of hexa-
gons as faces. Hypothetical buckyballs are based either on the truncated octahedron or the
truncated tetrahedron. Those based on the truncated octahedron have six squares and vary-
ing numbers of hexagons as faces. Those based on the truncated tetrahedron have four trian-
gles and varying numbers of hexagons as faces.



The first polyhedron 1in the pair of polyhedra consists exclusively of equilateral triangles
and 1s an approximation to a sphere. We have constructed nets that correspond to a single
equilateral triangle of one of these polyhedra, the icosahedron, octahedron or tetrahedron.
This equilateral face 1s divided into hexagons and connected with either pentagons, squares
or triangles to give an overall pattern. The buckyballs have pentagons attached to hexagons.
We have extended this pattern to hypothetical buckyballs, in which squares are attached to
hexagons or triangles to hexagons. However, 1t should be noted that the buckyballs, hypo-
thetical buckyballs, and the eggs are made up exclusively of triangle gyroscope modules.

The triangles, squares, pentagons, and hexagons we refer to in the buckyballs or hypothetical
buckyballs are rings of triangle gyroscope modules, in which each module corresponds to a ver-
tex of the polyhedron. It 1s in the gyroscoped polyhedra that we see other types of modules.

After we invented and constructed the hypothetical buckyballs, we developed a system for
designating them. In this system, each polyhedron has a three-position numerical designator,
based on the pattern of the equilateral triangle that 1s repeated 1n all the basic polyhedra. The
number 1n the first position indicates whether the face of the polyhedron 1s a pentagon (5),
square (4) or triangle (3). The number 1n the second position indicates what type of cluster of
hexagons fills up an equilateral triangle face of a basic polyhedron (icosahedron, octahedron,
or tetrahedron); we consider polyhedra in which the second number 1s either 1, 3, or 7, indi-
cating a cluster of one hexagon, three hexagons meeting at a point, or seven hexagons with
one in the middle and six surrounding it. The number in the third position indicates the rela-
tion between the polygon indicated by the first-position number and the cluster of hexagons
indicated by the second-position number. The third-position number 1s always either 1 or 2.
A 1 means that three of the polygons indicated by the first-position number surround the clus-
ter indicated by the second-position number symmetrically and that each of them touches
only one edge of one hexagon in the cluster. (For the buckyballs, this corresponds to Tom
Hull’s “PPO,” “pentagons pointing out” [16 ]). A 2 means that three of the polygons indicat-
ed by the first-position number surround the cluster indicated by the second-position number
symmetrically and that each of them touches one edge of two hexagons in the cluster. (For
the buckyballs this corresponds to Tom Hull’s “PPI,” “pentagons pointing in” [16]). Note that
a model with a third-position number of 2 has fewer modules than a model with a third-posi-
tion number of 1. '

The basic polyhedra, therefore, are 5-1-1, 4-1-1, and 3-1-1—the truncated icosahedron, the
truncated octahedron and the truncated tetrahedron. The buckyballs we have constructed are
5-1-1 (C-60), 5-3-2 (C-80), 5-3-1 (C-140), 5-7-2 (C-180), and 5-7-1 (C-240). The hypothetical
buckyballs based on the octahedron or cube are the 4-1-1, 4-3-2, 4-3-1, 4-7-2, and 4-7-1, and
those based on the tetrahedron are the 3-1-1, 3-3-2, 3-3-1, 3-7-2, and 3-7-1.

K. MODEL ASSEMBLY

As with all modulars, 1t 1s recommended that you start assembling modules and keep adding
to the partial assembly, rather than make several partial assemblies and then connect them.
When connecting two different modules, the one made from the polygon with the greater
number of sides 1s the receiving module because its pocket and tab are wider. However, the
length of the entering tab 1s usually longer than the depth of the receiving pocket, so the tip
of the entering tab must be folded over itself to allow the tab to fit into the pocket so that the
edges of the pockets meet. Always first compare the length of the tab to the depth of the
pocket to see if the tab needs to be shortened.
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Also, while most of the models will stay together on their own, if they are large or will be handled a lot it
1s a good 1dea to use glue selectively to hold them together. For example, the crimps in the pentagon and hexa-
gon modules are places where a drop of glue would be useful (see p. 47).

When making large gyroscoped buckyballs, gyroscoped hypothetical buckyballs, and the gyroscoped egg,
we recommend that you glue all the hexagons together to make a framework and then pop the triangles,
squares, or pentagons into the holes, without glue.

The largest member of each family, whose designation ends in -7-1, 1s most conveniently made by first mak-
Ing a hexagon framework, then making subassemblies of the basic polygon surrounded by hexagons, then
inserting the subassemblies into the openings in the framework. This can be seen from the coloring of the
modules 1n the photographs.

S1zing Starting Polygons
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The altitude of a triangle equals the }
side of a square. The diagonal of a
square equals the diagonal of a
pentagon and hexagon for the
simple modules. The diagonal of the

‘ pentagon equals the distance |
Simple Modules between opposite sides of a hexagon Expanded Spike

for Expanded Spike Ball Modules. Ball Modules

How to Identity Buckyballs up to C240

C60 (5-1-1) Basic pentagon based Buckyball: Truncated Icosahedron. Each hexagon
1s surrounded symmetrically by 3 hexagons and 3 pentagons.

C80 (5-3-2) Each hexagon is surrounded symmetrically by 4 hexagons and 2
pentagons.

C140 (5-3-1) Each hexagon 1s surrounded by 5 hexagons and 1 pentagon.

C1380 (5-7-2) Each pentagon 1s surrounded by 5 hexagons + 1 hexagon at each
vertex of a dodecahedron.

C240 (5-7-1) Each pentagon 1s surrounded by 5 hexagons + 1 hexagon at each

vertex of a dodecahedron + 1 hexagon at each edge of a dodecahedron.
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Module Quantities Needed

Gyroscoped Archimedeans

Wenninger’s Name and Number [7] tri sq pent hex oct dec

Gyroscoped Truncated Tetrahedron 4 4
Gyroscoped Truncated Octahedron 6 3
Gyroscoped Truncated Cube 8 6
Gyroscoped Truncated Icosahedron 12 20
Gyroscoped Truncated Dodecahedron 20 12
Gyroscoped Cuboctahedron 8 6
Gyroscoped Icosidodecahedron 20 12
Gyroscoped Rhombicuboctahedron 8 18
Gyroscoped Rhombicosidodecahedron 20 30 12
Gyroscoped Truncated Cuboctahedron 12 8§ 6
Gyroscoped Truncated Icosidodecahedron 30 20 12
Gyroscoped Snub Cube 32. 6
Gyroscoped Snub Dodecahedron 80 12
Buckyball Gyroscoped Buckyball
tr1 tr1 sq pent hex .
3-1-1 12 4 4 truncated tetrahedron
3-3-2 16 4 6
3-3-1 28 4 12
3-7-2 36 4 16
3-7-1 48 4 22
4-1-1 24 6 8 truncated octahedron
4-3-2 32 6 12
4-3-1 56 6 24
4-7-2 72 6 32
4-7-1 96 6 44
. 5-1-1 60 12 20 truncated 1cosahedron
5-3-2 80 IZ2 3N
5-3-1 140 12 60
5-7-2 180 12 80
5-7-1 240 12 110
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Growing Buckyballs: Building and Counting the Modules

Tetrahedron
Derivative
Truncated
Basic Tetrahedron
3-1-1
(4) 3-sided rings
12 modules
Chamferred 3-3-2
Derivative:
slicing off an
edge
Basic + one 12 + 4 = 16 modules
module at

each corner
of the derivative

Snub 3-3-1
Derivative:

Basic + one

module at 1244+ 12 =28
each corner + modules

2 modules at

each edge of

derivative

Basic + 3-7-2
6-sided ring

at each 12 + 24 = 36
corner of modules
derivative

Basic + 3-7-1
6-sided ring

at each 12 + 36 =48
edge of modules
derivative
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Cube
Derivative

Truncated
Octahedron
4-1-1
(6) 4-sided rings
24 modules

4-3-2

24 + 8 = 32 modules

4-3-1

24 + 8 + 24 = 56
modules

4-7-2
24 + 48 = 72
modules
4-7-1

24 + 72 = 96
modules

Dodecahedron
Derivative

Truncated
Icosahedron
5-1-1
(12) 5-sided rings
60 modules

d-3-2

60 + 20 = 80 modules

>-3-1

60 + 20 + 60 = 140
modules

5-7-2
60 + 120 = 180
modules
5-7-1

60 + 180 = 240
modules




How and Where to Apply Glue

When joining two different modules, check to see that the length of the tab, dis-
tance B-D, fits inside the depth of the pocket, distance B-C. If the tab is too long, fold
over the tip D so the tab fits inside the pocket. When properly connected, the edges B
on both modules will touch. D on the entering module slides between B and C on the
recerving module.

- Center

A

Section through a moun-

tain crease on a simple

pentagon module or a . ) B Pocket
simple hexagon module C '

Tab

Corner

Apply a drop of glue N

here on every module

A

At every connection, apply a
drop of glue here on the tab of
the receiving module
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K. FOUR-SIDED DISPLAY STAND FROM A
PENTAGON WATERBOMER BASE

by Bennett Arnstein

Looking up at the inside 5

=

V

. /N

Looking down from the outside. ' ‘

Sink the point using the moun-
tain creases as a boundary.




[V POLYGON CONSTRUCTION

SYMBOLS

B. How TO MAKE AN
~ EQUILATERAL 1RIANGLE

C. How 1O MAKE A PENTAGON
D. How TO MAKE A HEXAGON
E. How TO MAKE AN OCTAGON
F. How TO MAKE A DECAGON
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POLYGON CONSTRUCTION

A. SYMBOLS

"~ Mountain Fold

Valley Fold

Fold

Fold and Unfold

Unfold

Repeat

Repeat Twice

Repeat Three Times

A P=>B
L

B 1s an edge
view of A

Turn Over

Rotate Without
Turning Over

Fold second
crease against

first, refold first

Fold point A to
point B




B. HoOw TO MAKE AN EQUILATERAL 1RIANGLE

by Bennett Arnstein




D2

3. From a Strip

Width of strip = altitude of triangles

1o make n triangles, start with
a strip whose length=

(n/2 + .5)(altitude x 1.15)

where width of strip = altitude
of triangles




C. How 1O MAKE A PENTAGON
Traditional, USA

1. From a Square

See full-page enlargement of figure 2 for template.

10

Discard
This
Portion

>3



by Bennett Arnstein | - 100 % . o I
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Enlarged view
of figure 2 of
How to Make a
Pentagon p.53.
Mark upper
edge at 35 %
point and pro-
ceed from fig-
ure 2 of folding
instructions for
How to Make a
Pentagon p.53.

This template
1S based on a
folding tech-
nique learned
from Bernie
Slotnick and
some mathe-
matical analysis
by Jasper
Paulsen.

2. Pentagon Template 1: From a Square
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How to Use the Pentagon Template 2

by Bennett Arnstein —
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FIG. 1: Fold sheet of paper in half to arrive at FIG. 2. FIG. 3: Slide the folded sheet along line EF on
the template until the folded corner K lies in line AC. Mark points M, C, and N on the folded sheet
and draw lines MC and CN using a ruler. With a pair of sharp scissors cut lines MC and CN
through both layers of the folded sheet. The pentagon, folded in half, 1s KMCN.



D. How TO MAKE A HEXAGON

by Bennett Arnstein

From a
Rectangle

| / \
l Repeat steps on y)
right side of paper

Alternative:
Use a triangle tessella-
tion like the one on p. 52

5
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E. HOwW TO MAKE AN OCTAGON

The distance SSO is used in sizing the octagon module so
that it mates with other types of modules.

12
11

10




F. How TO MAKE A DECAGON

by Bennett Arnstein

Start with figure 6 of How to Make a Pentagon.

Discard this
portion

59
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MODULE CONSTRUCTION
FROM POLYGONS

A. BASIC TAB AND POCKET LOCK

1. One-Piece Triangle Module

by Bennett Arnstein

This module 1s the one-piece version. The two-piece version is the gyroscope of [11].
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Point

Pocket

2. One-Piece Square Module

by Bennett Arnstein

| : } Point
i .--f' | S

Pocket



3. Simplified Pentagon Module

’ o Point
Vf - - Pocket
Pocket
kvﬁf 'y
POIIlt _ ':f -
10 g . '
Pocket

11 Point Pocket

63



64

4. Simplified Hexagon Module

Start with a hexagon -

Fold top
layer only
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5; How to Petal-Fold a Squashed Vane

See octagon and decagon modules, pp.67 and 70.

T'he mountain creases in figure 3 form naturally as point B
swings down and points A and C come together.




6. Octagon Module

Octagon analog of one-piece square module and pentagon module.




638

Squash the vanes

16

11

Petal-fold the vanes

15



A pockets mate with triangles or squares.
B tabs/pockets mate with hexagons or
octagons.
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7. Decagon Module: Abbreviated Instructions

The procedure 1s exactly analogous to that of the octagon module.
Only the critical steps are shown.

A pockets mate
with triangles or
squares.

B tabs/pockets
mate with hexagons
or decagons.




B. LARGE MODELS: HEXAGON/PENTAGON
POCKET AND CONNECTORS

1. Expanded Pentagon Spike Ball Module:

Lockable with Connectors
by Bennett Arnstein g{

e T——— — L ——— E— T — — — _

11

The crease passes through
points in 12




¥

Squash the
vanes

13

2. Expanded Hexagon Spike Ball Module:
Lockable with Connectors




3. Locking Connector for Pentagon and
Hexagon Spike Ball Modules

|~
a—]

Measure the width of the opening of the pocket on a hexagon module. This 1s length b.
Calculate length a using a = b x 11/6. Cut out rectangles of size a x b, one rectangle for each
connector. Follow the directions below. Note that in figures 2 and 3 there 1s no exact location
for the creases. The purpose of these creases 1s to hide the excess paper inside the connector.

13
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4. Locking Expanded Spike-Ball Modules
with Connectors in the Pockets

Hexagon modules are always locked together. Hexagon and pentagon modules are locked
together when they are connected at the beginning of construction of a model when there
1s room to get behind the modules and fold over the tip. To connect a hexagon to a penta-
gon, first msert the connector into a pocket on the hexagon and lock it by folding over the
tip of the pocket and then creasing sharply the radial crease running through the pocket.
Then, connect the locked pair to the pentagon by inserting the other end of the connector
into a pocket on the pentagon. Lock by first folding the tip of the pocket and then creasing
sharply the radial crease running through the pocket.

Two hexagon modules locked together by folding
over the tips of the pockets.

When a pentagon module fits inside a five-sided space sur-
rounded by five hexagons, it is not necessary to lock the pent-
gons to the hexagons. Instead, place a connector in each pocket
of the pentagon module and lock the connectors by folding over
the tips of the pockets. Next, insert the remaining connector
point into a hexagon pocket without locking it.
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CRAFTS & HOBBIES/ORIGAMI

MULTIMODULAR

ORIGAMI
POLYHEDRA

Rona Gurkewitz and Bennett Arnstein

Explore the relationship between origami and mathematics with this
well-illustrated guide to creating a world of multifaceted wonders. Written by
a mathematician and a mechanical engineer, it strengthens origami’'s link to
mathematics and expands its relationship to crystallography.

Through a series of photographs, diagrams, and charts, the authors illustrate
the correlation between the origami waterbomb base and the mathematical
duality principle of Archimedean solids. They then show how to apply the
correlation to models of the buckyball (a carbon-60 molecule resembling a
soccer ball, named for R. Buckminster Fuller, designer of the geodesic dome).
Using the fascinating process of gyroscope transformation, origamists can
transtorm buckyballs into ever more interesting shapes.

Detailed instructions and clear diagrams offer paper folders a step-by-step path
through the intricacies of multimodular origami polyhedra. These remarkable
projects will challenge origami devotees in addition to providing perfect
adjuncts to classroom demonstrations of geometric principles.



