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HOW TO FOLD IT

The Mathematics of Linkages, Origami, and Polyhedra

What do proteins and pop-up cards have in common? How is opening a
grocery bag different from opening a gift box? How can you cut out the
letters for a whole word all at once with one straight scissors cut? How
many ways are there to flatten a cube?

You can answer these questions and more through the mathematics
of folding and unfolding. From this book, you will discover new and old
mathematical theorems by folding paper and find out how to reason
toward proofs.

With the help of 200 color figures, author Joseph O’Rourke explains
these fascinating folding problems starting from high school algebra and
geometry and introducing more advanced concepts in tangible contexts
as they arise. He shows how variations on these basic problems lead
directly to the frontiers of current mathematical research and offers
ten accessible unsolved problems for the enterprising reader. Before
tackling these, you can test your skills on fifty exercises with complete
solutions.

The book’s web site, http://www.howtofoldit.org, has dynamic
animations of many of the foldings and downloadable templates for
readers to fold or cut out.

Joseph O’Rourke is Olin Professor and Chair of the Computer Sci-
ence Department, a Professor of Mathematics, and Director of Arts
and Technology at Smith College. His research is in computational
geometry, developing algorithms for geometric computations. He has
won several awards, including a Guggenheim Fellowship in 1987 and
the NSF Director’s Award for Distinguished Teaching Scholars in 2001.
He has published more than 150 papers, more than 30 of which were
coauthored with undergraduates. He has taught folding and unfolding
to students in grade school, middle school, high school, college, and
graduate school, and to teachers – of grade school, middle school, and
high school – professors, and researchers. This is his sixth book.
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Preface

Cutting out the paper-doll figures below requires 64 straight scissors cuts if done
without folding the paper. However, folding the paper along the dashed vertical
creases lets you cut out all four people by just cutting one outline in the folded
paper. Then you only have to do one-quarter of the work – 16 straight snips of the
scissors rather than 64. Noticing that each figure is symmetric about a vertical
line through the center of its octagonal head (humans have bilateral symmetry!)
and additionally folding along that line permits cutting out all four people with
eight straight scissors cuts, now through eight layers of paper. Wouldn’t it be
nice if there were a way to fold the pattern so that you could get away with
a single straight slice of the scissors? Well, believe it or not, there is such a
folding!

This beautiful “Fold and One-Cut” result is the topic of Chapter 5 in this book.
We will see in that chapter that it is already not so straightforward to cut out a
single irregular triangle in the center of a piece of paper with just one scissors cut.
But understanding the trianHgle is a big step toward understanding how to cut out
the four paper dolls. Folding the paper in preparation for cutting out a triangle
reveals in its creases a theorem we all learned as teenagers (and most of us
forgot!): The three angle bisectors of any triangle meet at a single point. Seeing
the angle bisector creases converging at a point makes this abstract theorem
(proved by Euclid) concrete and unforgettable.

Figure 0.1. Paper-doll people for cut out.

ix
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This is the ideal at which I am aiming in this book. The nine chapters are
unified by the notion of folding, but also unified by focusing on tangible con-
structions with rich mathematical content. I want you to be able to see the
mathematical structure present in concrete, physical objects. The book is par-
titioned into three parts reflected in the title, which can be viewed loosely as
concentrating on folding one-dimensional objects (linkages), two-dimensional
paper (origami), and three-dimensional objects (polyhedra). (I will henceforth
use 1D, 2D, and 3D as abbreviations.)

This book grew out of a monograph, Geometric Folding Algorithms: Linkages,
Origami, Polyhedra, aimed more at graduate students and researchers in com-
puter science and in mathematics. Both my coauthor, Erik Demaine, and I have
taught aspects of this material at various educational levels, from fifth-grade
through high school, and found that the tangibility of the topics made them
accessible through physical intuition. My goal in this book (which parallels the
structure but not the content of Geometric Folding Algorithms) is to capitalize
on the readers’ physical intuition to introduce them to a variegated world of
fascinating mathematics.

I assume only high-school mathematics: a little algebra, a little geometry,
trigonometry only in a few marked exercises, no calculus or anything beyond. No
computer science knowledge is presumed. Occasional boxed material explains
technical terms and theorems that some readers will know but others will not (for
example: vectors; the triangle inequality; convexity). Further terms are explained
in the Glossary. Each chapter aims to reach one or a few mathematical gems.
Because each topic is much larger than what I present, each chapter ends with
an “Above & Beyond” section to explore more advanced results. I’ve avoided
literature citations in the text, saving them for Chapter 10, “Further Reading.”

Technical Terms and Symbols

I should explain two conventions from technical mathematical writing that may
be unfamiliar to the reader. The first is that technical terms are italicized when
introduced and defined, to alert the reader that a word or phrase is being given
a special, usually technical meaning that may differ from its use in ordinary
language. For example, in Chapter 1, I define the “shoulder” of a chain linkage
in analogy with a human shoulder but with a specific meaning in the context of
that chapter. The most important technical terms are gathered and defined in
the Glossary. To avoid ambiguity, I underline for emphasis, reserving italics for
technical definitions.

Second, there is a certain style of introducing symbols in mathematical writ-
ing to both shorten and make more precise the discussion. A typical example is,
“Let x be a point on the polyhedron P in Figure 3.” This means: Henceforth (for
the duration of this discussion), we will use the symbol x to mean an arbitrary
point on the polyhedron and the symbol P to mean the specific polyhedron
illustrated in Figure 3. Sometimes the symbol introduction is flagged by “let . . .

be,” and sometimes it is implicit, as in the case of P above.
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What Is a Proof?

Many students learn “two-column” proofs in high school, and then never take
any higher-level mathematics courses, or, if they do, those courses do not con-
tain proofs. For example, many calculus courses focus almost solely on the
“calculating” aspects of calculus. Two-column proofs are the exception rather
than the rule in mathematics. They may be the norm for formal proofs, where
every step is justified by reference to an axiom or some previously established
theorem. But most proofs in mathematics are a mixture of prose and symbols,
often supplemented by reference to figures labeled with those symbols. A proof
is something like a legal brief. It is intended to convince an appropriately pre-
pared reader that a formal proof could be formulated, even though it rarely is.
To achieve this, a proof must cover all cases, delve into every logical corner, and
provide cogent reasons why the reader should “see” that all claims in the proof
must be true. A proof is generally written for a particular audience, which defines
what is “an appropriately prepared reader.” The proofs that professional math-
ematicians write for one another would not be convincing for those without
similar training.

This book contains many proofs, for I believe that proofs are the heart of
mathematics. The audience member I am assuming for these proofs is an
attentive reader who has taken (or is currently studying) standard high-school
mathematics. I say “attentive” because I will describe a concept in one chapter
and expect the reader to both master it and remember it in a later chapter
(aided by a back-reference or the index). But the mastery will not require any
background beyond high-school mathematics.

I also include several “proof sketches,” which are a cut below a proof in that
they do not pretend to handle every logically possible case, or to be stand-alone
convincing. Proof sketches are intended to give the reader a feel for how a full
proof might go. Often they leave out messy details and ask the reader to believe a
claim that those details can all be worked out (and in fact, have all been worked
out in the professional literature).

Theory Versus Applications

Despite the tangible aspect of folding, the material in this book focuses on the
theoretical, as the emphasis on proofs indicates. A parallel and quite interest-
ing book could be written that instead emphasized the applications of folding,
only citing the underlying theory when appropriate. My tack has been nearly the
obverse: I plunge into the theory and only cite the applications. I do this for two
reasons. First, the underlying mathematics is beautiful in itself, a beauty that
can only be fully appreciated by immersion in the details, and conveying this
is one of my primary goals. Second, time and again, advances in mathematics
seemingly divorced from reality have proved to have significant applications,
sometimes much later. To cite just one example unrelated to folding, the Aus-
trian mathematician Johann Radon invented in 1917 what is now known as the
“Radon transform.” Although his motivation was to extend the theoretical notion
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of integral from calculus to a special situation, the Radon transform is now used
daily in hospitals the world over to reconstruct images taken by Computer-Aided
Tomography (CAT) scanners. So the mathematical theory is both beautiful and
often surprisingly useful.

Exercises

Each chapter contains a number of exercises, with answers in the back of the
book (Answers to Exercises). I have partitioned them into three types: Practice –
Questions to affirm basic understanding of the immediately prior material, often
only requiring a bit of calculation; Understanding – Questions that require a
thorough grasp of the preceding material, often applied to a slightly new sit-
uation; and Challenge – Problems that ask for substantive extensions and/or
significant investments of time. The lines between these three classes are not
sharp, nor are those lines the same for all readers. In any case, I encourage the
reader to read each exercise, work out as many as circumstances permit, and in
any case, to please look at the answers, which often enrich the material.

Templates on the Web

At a number of junctures in the book, particularly in the origami chapters, the
reader is invited to cut out or fold a particular illustrated diagram. Each such
diagram is available on the book’s Web site, http://howtofoldit.org/.
Each can be downloaded and printed. The Web site contains other useful
supplementary information.

Open Problems

This book includes many unsolved problems, usually called open problems in
mathematics. These are clear statements that have not yet been settled as either
true or false by a proof. Sometimes researchers are convinced a hypothesis
is true even though they cannot prove it. In such a case, the hypothesis is
designated as a conjecture. Some open problems have resisted all attempts over
many years. However, most progress in mathematics occurs not by settling these
long-unresolved problems but rather by answering recently posed questions.
So I have included a number of new problems (a few concocted while writing
this book), which may be open primarily through lack of attention. Rarely are
the frontiers of mathematical knowledge accessible to the amateur, but one
attractive aspect of the topic of folding is that many of its unsolved problems are
accessible to the novice and might be solved by just the right clever idea. Please
let me know if you crack one of them! They are listed in the Index under “open
problems” for ease of access.

http://http://howtofoldit.org/
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2 Linkages

Linkages are mechanisms built from stiff, inflexible bars, which we will call rigid
links, connected at freely rotating joints. You may have a linkage on your desk
similar to the one depicted in Figure I.1. Many machines contain linkages for
particular functions. Every car contains a crankshaft, a mechanism for con-
verting the linear motion induced from the sparked explosion of gasoline in
a piston chamber to the rotary motion turning the drive shaft. We’ll explore
three linkages, each with a clean mathematical story to tell, and each related
to developments on the frontiers of mathematics and computer science today:
robot arms, pantographs, and fixed-angle chains. We’ll analyze the “reachabil-
ity region” for robot arms viewed as a linear chains of links. The pantograph is
a mechanical copying and enlarging mechanism with myriad uses, especially
during the industrial revolution. Fixed-angled chains are superficially similar to
robot arms, but are primarily of interest as models of protein backbones.

Although here we are emphasizing the relevance of these linkages, our focus
will be on the mathematics behind their operation.

Figure I.1. A desk-lamp linkage. The linkage flexes at the circled joints, but is
structurally rigid otherwise.



1 Robot Arms

Robot arms, despite their sophistication as machines, are particularly simple if
you think of them as linkages. The arm in Figure 1.1(a), developed by a British
robotics firm, is designed to apply adhesive tape to the edges of pieces of plate
glass for protection. It has a fixed base (the shoulder) to which are attached three
rigid links, corresponding roughly to upper arm, lower arm, and hand, or, in
the technical jargon, the end effector. The rotation settings at the motorized joints
determine theexactpositioningof thehandas itperforms its functions. The force
dynamics and engineering aspects of robot arm design are quite interesting and
challenging. However, we will focus on one simple question: determining what
is called the workspace of the robot – the spots in space it can reach. We will
pursue this question in almost absurd generality, permitting the arm to have an
arbitrarily large number of links, each of an arbitrary length.

Model. First we need to reduce a complex physical robot arm to a simple mathe-
matical model so that it can be analyzed. Typically, the initial abstraction chosen
is crude, ignoring many physical details, and then, once analyzed, gradually
made more realistic and complicated.

We reduce each robot arm piece to a straight-line segment of fixed length –
a rigid link of mathematically zero thickness. Each joint motor is reduced to
a mathematical point of zero extension joining the two incident links that it
shares. So we have reduced the physicality of a real robot arm to segments and
the endpoints of those segments; see Figure 1.1(b).

There are two more crucial physicalities to model: intersections and joint
motions. Of course, no two distinct physical objects may occupy the same space
at the same time, so the links should not be permitted to intersect – share points –
except sharing the point at a common joint. However, we start our analysis with

3



4 Robot Arms

Shoulder

Hand
v1

v3 v0

v2

(a) (b)

Figure 1.1. (a) A robot arm. (b) Arm modeled by linkage. v0 labels the shoulder
joint, and v3 the hand.

the physically unrealistic assumption that intersections are ignored. Similarly,
although most robot joints have physical constraints that prevent a full 360◦ rota-
tion in two dimensions (2D), or free rotation in all directions in three dimensions
(3D), we assume no joint constraint – so each is a universal joint, one that has
total freedom of rotation. Later in exercises and in Chapter 3, we will constrain
the joints.

So our mathematical model of a robot arm is a chain of n links, where n is
some natural number 1,2,3, . . ., each a fixed-length segment of some prespeci-
fied length, connected by universal joints. For the robot arm in Figure 1.1, n = 3:
3 links, 3 joints (including the motorized shoulder). The hand/end effector is
not a joint, just a link endpoint. Indeed, the number of links and the number of
joints is always the same, n, under this convention of viewing the shoulder, but
not the hand, as a joint.

Now the question is: Under this model, what is the totality of locations in
3D space that an n-link robot arm can reach? This set is called the reachability
region of the arm.

At this point, we invite the reader to guess the answer that this chapter will
soon establish more formally. Reasoning from your own shoulder-to-hand link-
age may be misleading, because humans have definite (and complex) joint
constraints. Perhaps it will help intuition to imagine a specific example. Sup-
pose we have 3-link arm whose link lengths are 10, 5, and 3. What is the region
of space that the hand endpoint can reach? Hint: It is not a sphere of radius 18!

Box 1.1: Theorem

In mathematics, the term theorem is used for a concise statement of a central
result, whereas a lemma is a result that is a stepping-stone on the way to a the-
orem. A corollary is a near-immediate consequence of a theorem. Although we
will not use the term, a proposition is often used for a relatively straightforward
theorem.
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1.1 Annulus

Rather than keep the reader in suspense, let us immediately move to the answer
to this question, which we encapsulate in a theorem (see Box 1.1):

Theorem 1.1

The reachability region of an n-link robot arm is an annulus.

Now we should explain the term annulus. In 2D, an annulus is the region
between two circles with the same center but different radii. Such circles are
called concentric. The 3D analog, the region between two concentric spheres of
different radii, is generally called a “spherical shell,” but we opt to use “annulus”
regardless of the dimension. See Figure 1.2(b). Right now we concentrate on 2D
and consider 3D later (p. 19). For our 3-link example with link lengths 10, 5, and
3, the reachability region is an annulus with outer radius 18 and inner radius 2.
That the inner radius is 2 is by no means obvious; it will be established later in
Theorem 1.2.

There are two special cases that we further include under the term “annulus”:
(1) If the radii of both circles are equal, the region reduces to just that circle
itself; (2) if one radius is zero, the region is the entire disk enclosed by the circle.
A circle can be viewed as a rim “wire” whereas a disk includes the points inside
the wire.

r−

r+v0

(a) (b)

r−
r+

v0

Figure 1.2. (a) 2D annulus: the region between two concentric circles. (b) 3D annu-
lus (also known as a spherical shell): the region between two concentric spheres.
Common centers are labeled v0.
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Box 1.2: Induction

Induction is a proof technique that can be used to establish that some claim is
true for all numbers n = 1,2,3, . . .. It is akin to climbing a ladder: If you know
how to move from any one rung to the next, and you know how to reach the first
rung, then you can climb to any rung, no matter how high. To reach the first
rung, we only need prove the result holds for n = 1, the base of the induction.
Moving from one rung to the next requires proving that if the theorem holds
for n − 1 (you’ve reached that rung), then the theorem holds for n, where n
is an arbitrary natural number. Then the theorem must be true for all n, “by
induction,” as they say: From n = 1, we can reach n = 2, and from there we can
reach n = 3, and so on.

Annulus Proof. The proof of Theorem 1.1 uses a method known as induction;
see Box 1.2.

The base case is straightforward: A 1-link arm can reach the points on a circle,
and by our definition, a circle is an annulus. Now we could jump immediately
to the general case using induction. But let’s look at n = 2 to build intuition; say
the two link lengths are r1 and r2. This 2-link arm can reach all the points on a
circle of radius r2 centered on any of the points on a circle of radius r1. Figure 1.3
illustrates the idea. Imagine sweeping the red r2-circle around, centered on each
point of the blue r1-circle. The swept pink region R2 is an annulus.

Let us now consider the general case, an n-link arm, n > 1. Following the
induction paradigm, we assume that we have established the theorem for arms
up to n − 1 links. Then we know if we remove the last link of a given n-link arm

R2

r2
r1

Figure 1.3. A 2-link arm can reach points in an annulus.
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v0

Rn-1

Rn

r
pp

Rn-1

v0

(a) (b)

Figure 1.4. (a) Rn−1 with one possible arm of n − 1 links reaching a point p. (b) Rn

is formed by adding the points on circles centered on every point p in Rn−1, with the
radius r of these circles equal to the length of the last link of the arm.

(call it An), the shorter arm’s reachability region is an annulus, because it has
only n − 1 links. (We have just employed the “induction hypothesis”: n − 1 link
arms reach points in an annulus.) Let us call the shorter arm An−1 and its region
Rn−1. We seek to find Rn, the reachability region for An.

Let p be any point in Rn−1. We know that the hand of An−1 can reach p, as
in Figure 1.4(a). Now imagine adding the removed final link back to An−1. This
permits An to reach all the points on a circle centered on p, where the circle’s
radius r is the length of that last link. So we can construct Rn by adding the points
on a circle of radius r centered on every point p of Rn−1. See Figure 1.4(b).

Here I rely on the reader’s intuition to see that Rn is again an annulus: Adding
all these circles to an annulus results in a fatter annulus. Points p on the outer
boundary of Rn−1 reach out to a larger-radius circle bounding Rn, larger by r, and
points on the inner boundary of Rn−1 reach inward to a smaller-radius circle,
smaller by r. Circles around points p in the interior of Rn−1 fill out the remainder
of the annulus. If r is enough to reach the center of Rn−1, then Rn becomes a
disk, which we have defined as an annulus.

1.1.1 Radii

Our proof that the reachability region is an annulus does not directly yield the
radii of the annulus. In particular, it would be useful to know under what con-
ditions the reachability region is a disk, that is, when the hand can touch the
shoulder. We now address this question.

Because the answer will depend on the arm’s lengths, we will need some
notation for those. Call the lengths of the n links (�1,�2, . . . ,�n), and call the outer
and inner radii of the annulus r+ and r− respectively. The outer radius is easy:
The furthest reach of the arm is achieved by straightening each joint, stretch-
ing the arm out straight. Recalling our 3-link example with lengths (10,5,3),
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10

5

10
5

v0

v1

v2

v1

v2

Figure 1.5. Annulus for the 2-link arm with lengths (5,10) (red) is the same as for
the arm with lengths (10,5) (blue).

r+ = 10 + 5 + 3 = 18. In general,

r+ = �1 + �2 +·· ·+ �n .

Computing the inner radius r− is less straightforward. A key idea that helps is
hinted at by Figure 1.5, which shows that the reachability annulus for an arm
consisting of two links of lengths 5 and 10 is independent of whether the longer
or the shorter is the first link, incident to the shoulder. Somewhat surprisingly,
this independence holds more generally:

Lemma 1.1

The reachability region of a robot arm is independent of the order of the link
lengths: It only depends on the numerical values of those lengths, not the order
in which they appear along the chain of links.

I will argue for this lemma before explaining its relevance to computing r−.
Let v0 be the location of the shoulder joint of the arm, and v1,v2, . . . ,vn−1,vn the
positions of the remaining joints, or, as they are commonly known in geometry,
the vertices of the chain. (The singular is vertex.) The last vertex vn is the position
of the hand, not considered a joint (because there is nothing beyond that it
joins). In any particular configuration of the arm, the vertices are at particular
points in the plane. We take v0 to be the origin of the coordinate system in which
we express the points: v0 = (0,0).
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Box 1.3: Vectors

We illustrate the notion of a vector with the 3-link arm shown in Figure 1.6(a),
whose shoulder is at v0 = (0,0) and whose vertices are located at v1 = (1,1),
v2 = (1,0), and v3 = (0,3), with the shoulder at the origin v0 = (0,0). The lengths
of the links are �1 =

√
12 + 12 =√

2, �2 = 1, and �3 =
√

12 + 32 =√
10. We can view

each successive vertex as displaced from the previous one. So v2 is obtained
from v1 by moving vertically down one unit, and v3 is obtained from v2 by one
step left horizontally and three up vertically. These displacements are vectors,
and can be computed by subtracting the points coordinate by coordinate. We
will use uppercase letters with over-arrows to indicate vectors. So,

−→
V1 = v1 − v0 = (1,1)− (0,0) = (1,1)

corresponds to moving right and up 1,

−→
V2 = v2 − v1 = (1,0)− (1,1) = (0,−1)

corresponds to moving down 1, and

−→
V3 = v3 − v2 = (0,3)− (1,0) = (−1,3)

corresponds to 1 left, 3 up. Because we chose v0 = (0,0),
−→
V1 = v1 − v0 is the

same as v1: (1,1). The length of these vectors is exactly the link length which

they “span,” for example, the length of
−→
V3 is

√
10.

There is a certain ambiguity when we represent a point by its coordinates and
a vector by its coordinate displacements, for they both look the same as pairs
of numbers: Thus the point v1 has the same coordinate representation as the
vector

−→
V1. But a point is a location in the plane, whereas a vector is a displace-

ment in the plane. Every point in the plane can be viewed as a displacement
from the origin – a viewpoint that is often convenient.

Two vectors are added by adding their displacements coordinate by coordi-
nate. So the sum of the vectors (1,1) and (0,−1) is (1,0), which, not surprisingly,
is v2: −→

V1 +−→
V2 = (v1 − v0)+ (v2 − v1) = v2 − v0

which is v2 because v0 = (0,0).

The key to the proof of this lemma is to think of the vertices of the joints as
reached by a series of vector displacements from the shoulder. Vectors are an
important concept we will use in several chapters; see Box 1.3. Let us represent
the vector displacement between adjacent vertices with the symbol

−→
Vi , with−→

Vi = vi − vi−1, where the subscript i can take on any integer value between 1
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1

0

–1

2

3

4

v2v0

v1

v3

v0

v3

123 132 213

231 312 321

(a) (b) (c)

(d) (e) (f)

1

0

–1

2

3

4

Figure 1.6. A 3-link arm reaching from v0 = (0,0) (white circle) to v3 = (0,3) (red
circle). All six possible permutations (indicated below each figure) of adding the three
vector displacements all reach to (0,3).
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and n. So the hand vertex vn can be reached from the shoulder at the origin by
adding up these vector displacements in sequence:

vn = −→
V1 +−→

V2 +·· ·+−→
Vn .

Now, we all know that the addition of a series of numbers is commutative, that
is, the result is independent of the order in which we sum them. For example,
1+2+3 = 3+2+1. The order of summation can be “commuted” without altering
the result. You may already be able to see that vector addition is also commu-
tative, because we add vectors coordinate by coordinate, and coordinates are
numbers for which the commutative property holds. Figure 1.6 shows that the
other five different possible orders in which to add the three vectors for the
example all reach the exact same point.

Exercise 1.1 (Practice) Vector Sum Commutativity. Let three displacement

vectors be
−→
V1 = (2,0),

−→
V2 = (1,3), and

−→
V3 = (−1,1). Starting from the shoul-

der at the origin v0 = (0,0), draw out, in one figure, all six different ways to

add the three vectors, and show that they all reach the same point
−→
V1 + −→

V2 +−→
V3 = (2,4).

So now we proved Lemma 1.1: Any point in the reachability region of an arm
can be reached by shuffling the links, and therefore displacement vectors, of
that arm.

Inner Radius. Now we return to the task of computing the inner radius r− of
the annulus. Let L be the length of a longest link among �1,�2, . . . ,�n; suppose
�k = L. We shuffle the links so that �k is first, knowing by Lemma 1.1 that the
reachability region is unchanged. Thus, in Figure 1.5, we place link of length 10
before that of length 5. So the arm now consists of link lengths:

(�k ,�1,�2, . . . ,�k−1,�k+1, . . . ,�n) .

Let M be the sum of the lengths beyond the first, that is, excluding �k :

M = �1 + �2 + . . .+ �k−1 + �k+1 + . . .+ �n .

Case 1: M < L. The reshuffling makes it clear that if M < L, then the hand can-
not reach the shoulder, that is, vn cannot reach v0 because M is not sufficient
to stretch back from v1 to v0. The closest it can reach is L − M , and this is r−;
see Figure 1.7.
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L
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vn v0

v1

vn

M

r+

r−

Figure 1.7. When L>M , the inner radius is r− = L − M .

Box 1.4: The Triangle Inequality

The triangle inequality is a simple relationship that is surprisingly useful. For
any triangle whose side lengths are A, B, and C (see Figure 1.8),

C ≤ A + B . (1.1)

This encapsulates in one form the fact that a straight line is the shortest distance
between two points. If you are standing at one endpoint x of the length C
and desire to reach the other endpoint y, you can do no better than follow
the segment xy. Moving instead along two straight paths, which must form a
triangle to reach from x to y, is always longer. See Figure 1.8(a).

Of course there is nothing privileged about C in Eq. 1.1. It must be that
A ≤ B + C and B ≤ A + C as well.

Another inequality holds for any triangle:

|A − B| ≤ C . (1.2)

Here |A−B| means the absolute difference between A and B: A−B if A is larger,
B − A if B is larger, and zero if A = B. This relationship follows from Eq. 1.1. If
A ≥ B, then it follows from A ≤ B + C , and if B ≥ A, it follows from B ≤ A + C .

A type of converse of the triangle inequality holds as well: To any three
numbers {A,B,C} satisfying

|A − B| ≤ C ≤ A + B (1.3)

there corresponds a triangle with those side lengths. Figure 1.8(b) indicates
why: When Eq. 1.3 holds, a circle centered at x of radius A intersects a circle
centered at y of radius B.
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C = 4 C = 5 C = 8

A = 6.3 B = 6.3

A = 4 B = 3

C = 5

A = 4 B = 3

A = 2.04 B = 6.02

4 ≤ 6.3 + 6.3

5 ≤ 4 + 3

8 ≤ 2.04+6.02

x y

x y
(a)

(b)

Figure 1.8. (a) The triangle inequality. (b) The converse of the triangle inequality.

Exercise 1.2 (Practice) Triangle Inequality. Which of these triples of numbers
satisfy the triangle inequality? For those triples that do satisfy the inequality,
sketch the corresponding triangle.

A B C � yes/no

10 5 3 ___
10 5 6 ___
4 5 3 ___
4 5 10 ___

Case 2: M ≥ L. When M ≥ L, we’d like to claim that vn can reach v0, which
means that the annulus becomes a disk, and r− = 0. This is intuitively plau-
sible, as we have more than enough length M to reach from v1 back to vn.
But the linkage is not infinitely flexible like a rope – it can only bend at its
joints – so we need an argument to be certain. The proof we provide relies on
the triangle inequality, described in Box 1.4.

Assume M ≥ L, and partition the chain of length M from v1 to vn into two parts
whose lengths M1 and M2 are as close to 1

2 M as possible. The difference between
M1 and M2 will not exceed L, because if it did, the gap could be narrowed by
moving a link (necessarily of length ≤L because L is the longest) from the larger
to the smaller side of the partition. Now the three lengths {L,M1,M2} satisfy the
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L

vn

v0 v1

Lvn v0 v1

M

M1M2

(a) (b)

Figure 1.9. (a) M ≥ L. (b) A triangle can be formed from lengths {L,M1,M2}.

triangle inequality:

|M1 − M2| ≤ L ≤ M1 + M2 .

This implies that a triangle can be formed with those side lengths, as illustrated
in Figure 1.9, which places vn at v0, as claimed.

So we have finally settled the radii of the annulus, which we summarize in a
theorem:

Theorem 1.2

The outer radius of the reachability annulus of an n-link arm is

r+ = �1 + �2 +·· ·+ �n ,

and the inner radius is

r− =
{

L − M if L > M
0 if L ≤ M ,

where L is the length of a longest link in the arm, and M the sum of the lengths
of all the other links.

We have reached our first goal: a precise description of the reachability region
of an n-link arm. Remarkably, all the analysis so far holds for 3D as well as 2D.
In particular, Theorem 1.2 accurately describes the radii of the two spheres that
define the 3D reachability annulus.

Exercise 1.3 (Practice) Reachability Radii. For each of the link lengths listed
below, compute the inner and outer annulus radii r− and r+.

Link Lengths r+ r−

(1,2,3,4,5) ___ ___
(1,2,10,3,4) ___ ___
(1,1,1,1,5) ___ ___
(12,2,5,4) ___ ___
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1.2 Reaching Angles

Although we now know, given any point p, whether or not a given robot arm
can reach p, we do not as yet know to which values the joint angles should be
set in order to reach p. And this is of course crucial if the robot is to perform a
specific task that requires its visiting a prescribed sequence of positions within
its workspace. We now turn our attention to this question, first concentrating
on finding joint angles that place vn at p, and only later looking at how to reach
that configuration.

So our question is:

Question 1. Given an n-link arm An, specified by its link lengths, An = (�1, . . . ,�n),
and a point p within it reachability annulus Rn, which set of joint angles at
v1,v2, . . . ,vn−1 place the hand vn at p?

This is a more difficult question than finding the reachability region in the first
place, requiring a more nuanced analysis. The first step toward simplifying the
question is to rephrase it in terms of joint positions, ignoring the angles:

Question 2. Given an n-link arm An, and a point p in Rn, find positions for its
joints v1,v2, . . . ,vn−1,vn such that vn = p.

The reason Question 2 is equivalent to Question 1 is that, knowing the joint
positions, we can compute the joint angles using trigonometry. The reason
Question 2 is easier is that the joint positions are determined by circle inter-
sections, so they can be found by geometric constructions. We will now answer
Question 2, but via more of a “sketch” than a completely detailed analysis, riding
a bit above some messy details. We progress through n = 2, n = 3, and n>3.

2-Link Reachability Angles. We are given A2 = (�1,�2) and p = v2, and we con-
tinue the convention that v0 = (0,0). So it only remains to compute the position
of the middle joint v1. Knowing positions for {v0,v1,v2} determines the joint
angles.

We know the collection of points (the locus of points, as geometers say) reach-
able from v0 by the first link only is a circle of radius �1 centered on the shoulder
v0. Now we reverse the viewpoint and think of how the arm must look if it reaches
out to p. With the second link at v2 = p, the joint v1 must lie somewhere on the
circle of radius �2 centered on v2. So now we have two constraints on where
v1 must lie: It must lie both on an �1-circle centered on v0, and on an �2-circle
centered on v2 = p. So the v1 points that place v2 at p are points of intersection
of these two circles! Thus we have a choice of two different arm positions that
place v2 at p. This is the crucial observation.

In general, two circles intersect in two distinct points; see Figure 1.10(a). This
is the generic situation – the “typical” or “normal” situation. However, there
are special cases, known as degenerate situations in technical mathematical
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Figure 1.10. (a) Generic situation: two intersection points for v1; (b–d) Degenerate
cases: 1, 1, or infinitely many intersection points.

language, where two intersecting circles meet at just one point (Figure 1.10(b,
c), or in an infinite number of points (d)). Of course two circles could have no
intersection at all, but because we assumed p is within the reachability region of
the arm, we know there must be some nonempty intersection. One way in which
we are only sketching the computations is that we opt to ignore the degenerate
situations, leaving it to the reader’s intuition that the details could be worked
out with sufficient patience. So, with that caveat, we have the solution to 2-link
reachability: Intersect the two circles as in Figure 1.10(a), select one of the two
intersection points for v1, and then calculate the angles using trigonometry. We
will not actually descend into these trigonometric details; our only goal is to
show that it could be done.

Exercise 1.4 (Practice) Number of Ways to Reach. Suppose a 2-link arm is
given by lengths �1 = 3 and �2 = 1, that is, A2 = (3,1). With v0 = (0,0), how
many distinct ways are there to reach v2 = (3,1)? How many to reach v2 = (0,2)?

3-Link Reachability Angles. Our strategy is to reduce the question for a 3-link
arm A3 = (�1,�2,�3) to one of several 2-link questions, which we’ve just seen how
to handle. Again we are given a point p in the reachability region R3 of this arm
A3. As in the 2-link case, the locus of possible positions for v1 is the circle of
radius �1 centered on v0. Now we know that the reachability region of the 2-link
arm A2 = (�2,�3) is an annulus centered on v1. Let us call this annulus Q2. We can
imagine v1 rotating continuously around its circle of possible locations, and Q2

rotating along with its moving center v1. Q2 sweeps out the reachability annulus
R3, as depicted in Figure 1.11(a). Because we know p is in R3, we know at some
position(s) of v1, p must be inside Q2; otherwise p would not be reachable by the
arm A3.
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v2
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v1
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Annulus inner rim

Figure 1.11. The black circles of radius �1 are possible positions for v1. (a) p = v3 is
reached by aligning �2 with �3. (b) p = v3 is reached by anti-aligning �2 and �3.

Now there are only three logical possibilities:

Case 1. At some v1 position in this imagined rotational sweep of the annulus
Q2, p lies on the outer boundary of Q2, either just entering or exiting Q2. This
is the situation illustrated in Figure 1.11(a).

Case 2. At some v1 position, p lies on the inner boundary of Q2, as illustrated
in (b) of the figure.

Case 3. p remains inside Q2 throughout the entire sweep: It never touches the
inner or outer boundary of Q2. This occurs, for example, when �1 = �2 = �3 = 1
and p = ( 1

2 , 1
2 ): Q2, a radius-2 disk, covers p for every position of its center v1.

In Case 1, the positions for v1 and v2 can be found by solving the 2-link prob-
lem (�1, �2 + �3). In Case 2, the joint positions can be found by solving the 2-link
problems with lengths (�1, |�2 − �3|), where |�2 − �3| is the positive difference
between the second and third link lengths: �2 − �3 when �2 is longer than �3 as
in Figure 1.11(b), and �3 − �2 when �3 is longer. In Case 3, every position of v1

leads to a solution. So we can pick one – say, v1 on the horizontal line through
v0 – and then solve the 2-link problem with lengths (�2,�3) centered on this
position of v1.

So we have arrived at a method for solving a 3-link problem: solve three 2-link
problems corresponding to the above three cases, and at least one of them must
have a solution, which then leads to positions for the joints of A3. Again knowing
these joint positions permits computing the joint angles.



18 Robot Arms

Exercise 1.5 (Practice) 3-link Reaching. For a 3-link arm given by lengths A3 =
(3,1,2), find at least two distinct ways to reach the point v3 = (2,2). (Note A3 is
an extension of A2 from Exercise 1.4.)

Exercise 1.6 (Understanding) 3-link Unique Reaching. For the 3-link arm with
link lengths A3 = (2,1,2), describe the sets of points in the plane for which there
is only one way for A3 to reach. A point p is “uniquely reached” if there is only
one setting of the three joint angles (at v0, v1, and v2) to place v3 at p.

n-Link Reachability Angles. We now jump to the general case, an n-link arm
An (still in 2D), n>3. There are several possible routes here to a solution, but I
will emphasize one via the surprising “Two Kinks” Theorem, surprising to me at
the time of its discovery by a college student, John Kutcher.

Define a kink as any joint angle that is not straightened by aligning the two
links it connects, that is, a kink angle is any different from 180◦. Of course any
3-link arm can reach a point in its reachability region with (at most) two kinks,
because it only has two interior joints (v1 and v2). The Two Kinks Theorem says
that it never need be more complicated than this for longer arms: An n-link
arm can reach any point in its reachability region with at most two kinks! See
Figure 1.12 for an illustration. Perhaps this is not so surprising in light of the
argument we used (p. 14) to show that when M ≥ L, the hand vn can reach the
shoulder v0, for that construction incidentally showed it can reach the shoulder
with just two kinks; see again Figure 1.9. We will not argue further for the Two
Kinks Theorem, but just proceed assuming it is true. As in Figure 1.9, the theorem
also pinpoints which joints might need to be kinked and which can be aligned.

The Two Kinks Theorem reduces solving an n-link arm problem to solving a
3-link arm, which we reduced to solving 2-link arms. So, in the end, the entire
calculation reduces to intersecting two circles!

v0

p=vn

v3

v2

Figure 1.12. Any point p within the reachability region of an n-link arm can be
reached with at most two kinks at either end of one particular link, in this case, at v2

and v3.
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(b)

v1

(a)

v0

p=v2

p=vn
v0

Figure 1.13. (a) The intersection of two spheres is (generically) a circle. (b) The
intersection of a 3D annulus with a plane through the center/shoulder v0 is a 2D
annulus.

3D Reaching Angles. We mentioned there is no difference in computing the
reachability region in 2D or in 3D. This is not the case with computing the
angles, but the difference is minor. Consider first a 2-link arm in 3D, and follow
the same logic we used previously. The shoulder is fixed at v0, the hand at v2 = p.
The middle joint v1 must lie on the sphere of radius �1 centered on v0, and
simultaneously on the sphere of radius �2 centered on v2. So v1 lies on the
intersection of these two spheres, which is (generically) a circle, as illustrated
in Figure 1.13(a). This is another “abundance of riches” situation: Rather than
choosing from among the two solutions in 2D, here we have an infinite number
of solutions from which to choose. All we need is a strategy to reduce our options.

There is an easy resolution. Given an n-link arm and a point p in its 3D
annulus Rn (the region between the spheres), slice Rn by a plane that contains
v0 and p. As Figure 1.13(b) illustrates, this plane intersects Rn in a 2D annulus.
We can simply solve the 3D problem within this plane, and use those angles.
Thus 3D reduces to 2D.

Dynamic Reconfiguration. Given initial and final angles at the joints of an n-
link arm, the easiest way to move continuously between the two configurations is
to simply interpolate the angles. We imagine a clock ticking in small increments
from t = 0 to t = 1 between initial and final angles. If the initial angle at a joint is
α and the final angle β, as measured, say, counterclockwise from the horizontal,
then at time t , the angle is α + t(β − α). This expression evaluates to α at t = 0
and to β at t = 1. In between, it ramps up linearly between those values. See
Figure 1.14. When interpolating angles, it generally makes sense to take the
shorter of the two routes around the circle of angles from initial to final angle. So
in Figure 1.14, we move the angle at v1 forward from its initial −45◦ (the angle of
v1v2 with respect to the horizontal) to its final 90◦, a turn of 135◦, while we move
the angle at v3 from its initial −45◦ to its final −150◦ by turning backward 105◦
(rather than forward by 255◦).

Now here, as throughout, we have ignored self-intersection of the arm. If
that were taken into consideration, this simple-minded interpolation would not
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Figure 1.14. Initial angles (green) with respect to horizontal: (45◦,−45◦,45◦,
−45◦,45◦); Final angles (red): (120◦,90◦,120◦,−150◦,0◦). One self-crossing intermediate
configuration is highlighted.

suffice, as intermediate configurations self-cross. We touch on this issue briefly
in the next section.

Exercise 1.7 (Understanding) Noncrossing Motion. Suppose that instead of
measuring angles with respect to the horizontal, angles are measured with
respect to the previous link, with the convention that the angle at v0 is
measured with respect to the +x axis (the horizontal to the right). So the
initial angles in Figure 1.14 are (45◦,−90◦,90◦,−90◦,90◦) and the final angles
(120◦,−30◦,30◦,90◦,150◦). If these angles are linearly interpolated, will the chain
self-cross at some intermediate configuration?

1.3 Above & Beyond

In this section, we look at more realistic and complex robot arm tasks. Beyond the
simple reachability questions we have explored, matters become significantly
more complicated.

Stowing a Robot Arm (Ruler Folding). Suppose we want to stow an n-link robot
arm into a small space. Such stowing is needed, for example, for the robot arms
used on the Space Shuttle and International Space Station. The natural method is
to fold it flat, perhaps alternating the joint angles between fully turned clockwise
to fully turned counterclockwise, aligned and anti-aligned links. However, this
only produces a compact configuration if the links are all about the same length.
For an arbitrary n-link arm, it is less clear how to fold it flat compactly.
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Figure 1.15. A Carpenter’s ruler.

An alternative formulation of the problem is obtained by viewing the arm as
a strange carpenter’s ruler (Figure 1.15), with measuring segments of differing
lengths. We want to fold the ruler flat so that, end to end, it has the smallest total
length possible for its link lengths. We are insisting that it be completely flat,
having effectively no thickness.

This is not a reachability question, which only specifies where the hand vn

is to be located. Instead, here we specify this particular, flat, minimal-length
configuration as the goal. See Figure 1.16 for a challenging example.

It turns out this problem is extremely difficult to solve in general. There is a
technical term for this level of difficulty: The problem is said to be NP-complete.
Effectively this means that, for sufficiently large n, no one knows a practical
method for deciding whether or not a given arm/ruler can fold to less than a
prescribed length. There is a method – try all possible foldings – but for large
enough n, this is infeasible. For example, if we had a computer spend only one
nanosecond (one billionth of a second) trying each possibility, it would run for
more than a trillion years before yielding an answer for n = 100, for it must test
all 2n = 2100 ≈ 1030 foldings. This is not to say that every instance of the ruler-
folding problem is difficult: Particular instances may be easy to solve. But no
one knows of an efficient method for solving an arbitrary instance.

Exercise 1.8 (Understanding) Ruler Folding. Suppose a 5-link ruler has lengths
A5 = (23,15,16,17,9). What is the overall smallest length into which it can be
folded?

Obstacles. Generally there are obstacles within the workspace of the arm that
need to be avoided; for example, the very object on which the arm is work-
ing. Even if we continue to let the arm self-cross, computing reachability
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Figure 1.16. An unfolded arm/ruler of n = 14 links (red), of lengths (116,58,1,
13,5,8,8,3,7,6,5,2,58,116) counterclockwise. It can fold flat (blue) to be only 116 units
long by carefully arranging the short middle ten links.

while avoiding collision with obstacles is again extremely difficult, reaching
an even higher level of difficulty than NP-complete, known to the experts as
PSPACE-complete, another intractability (measure of hardness) classification.
The consequence under this level of difficulty is essentially the same as under
NP-complete: There is no known practical method for solving a reachability
question for n-link arms where n is large.

The same holds true if we have no obstacles but disallow self-intersection:
Reachability in 3D is again PSPACE-complete, although the technical difficulty
of this task in 2D remains unresolved today.

However, all these negative results hold only for arbitrary n-link arms for large
n. And most robot arms have n at most 10. (The relevant number in 3D is not
so much the number of links, but rather the number of degrees of freedom. The
robot arm in Figure 1.1 has 3 links but 6 degrees of freedom.) For such “small-n”
arms, a rich collection of ad hoc techniques have been developed that permit
solving all the problems we have considered. Solving them is challenging, but
not out of reach. In fact these problems are being solved on a routine basis every
day by robot design manufacturers.

You might wonder why researchers care about pinning down the precise dif-
ficulty of various tasks for n-link arms for arbitrarily large n when usually n ≤ 10.
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There are at least two reasons. The first is to gain a deep understanding of a
theoretical problem for its own aesthetic sake, and also because, as I emphasized
in the Preface, time and again theoretical knowledge has later found practical
application. The second is that there are robot arm-like structures for which n is
indeed large. One example is snake or serpentine robots, used for search-and-
rescue missions or for surgery, which might have n = 30. A rather different and
quite important example is the backbone of a protein molecule, where values of
n = 10,000 are reached. The intractability results then force researchers to use
clever approximations. We will touch on this topic in Section 3.2.

Exercise 1.9 (Challenge) 2D Angle-Limited Linkages: One Constraint. Let a
2-link arm have link lengths (1,r), where r is some fixed number greater than 0.
Suppose the first link may only turn within a 90◦ range, but the second link is free
to rotate the full 360◦. To be specific, let us say that the first link makes an angle
at the shoulder v0 to the +x-axis of between 0◦ (horizontal) and 90◦ (vertical).
Draw and describe the reachability region of the endpoint v2 of the second link,
under three conditions: (1) r ≤ √

2/2, (2)
√

2/2 < r ≤ 1, and (3) r > 1.

Exercise 1.10 (Challenge) 2D Angle-Limited Linkages: Two Constraints. Con-
tinuing the previous problem, also constrain the v1 joint to only turn within a 90◦
range. To be specific, the angle “v0v1v2 is between 90◦ (perpendicular to v0v1)
and 180◦ (aligned with v0v1). Again draw and describe the reachability region
of the v2 endpoint. Are there critical values of r at which the structure of the
reachability region changes?



2
Straight-Line Linkages and
the Pantograph

The robot arm / polygonal chain we studied in Chapter 1 is among the simplest
of linkages. It is fundamentally linear – one link after another. Creating cycles
(loops) in a linkage constrains its possible movements and simultaneously
renders it more useful and more difficult to analyze. More useful because con-
strained movements can form the basis of a variety of mechanisms, as we will
soon see. More difficult to analyze because the motions of joints are determined
by several interacting constraining equations. In this chapter, we recount the
pursuit of a linkage that can “draw a straight line,” and analyze the simple but
useful pantograph linkage using vectors. There are fewer theorems and more
“stories” in this chapter – something of an interlude for the reader between the
heavy lifting in the previous chapter and that to come in the next chapter.

2.1 Straight-Line Linkages

Although linkages have been used since medieval times – in saw mills, in
mechanical clocks, in looms, in printing presses – their golden age was the
eighteenth century, driven by the demands of the steam engine, which pow-
ered the Industrial Revolution. One particular need was for a mechanism to
constrain a piston rod to move along a straight-line path within the steam-
pressured hydraulic cylinder; see Figure 2.1. Any deviation from straight-line
motion induces lateral forces that quickly wear down the rubbing parts. This led
James Watt, after whom the unit of power (wattage) for a light bulb is named, to
patent in 1784 the clever 3-bar linkage shown in Figure 2.2(a).

24
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Figure 2.1. Piston and steam cylinder. Ideally the piston rod should move along a
vertical line.

The joints x and y are pinned – fixed to the plane but free to rotate about
their fixed centers. Joints a and b move on equal-radii circles centered on x and
y respectively, whereas point c (not a joint), the midpoint of ab, moves passively
along between. It is point c that moves nearly on a straight line.

This makes some intuitive sense, in that joint a is pulled leftward and b right-
ward on their circles, with c staying approximately balanced between. However,
the actual motion of c is rather intricate: c follows a figure-8 curve known as
a “lemniscate,” which, in this instance, has two long, nearly straight sections,
shown in (b) of the figure. Positioning the joints x and y so that the rota-
tions about them are not too large ensures that c remains on just one of those
sections.

Watt was aware that the central motion was not precisely straight, but it suf-
ficed for his purposes, and was employed successfully in steam engine designs.
Although today we celebrate Watt for his pioneering improvements to the steam
engine, his own assessment valued this “parallel motion” linkage above all his
other accomplishments: “I am more proud of the parallel motion than of any
other mechanical invention I have ever made.”

Exercise 2.1 (Understanding) Watt Linkage Angle Range. Suppose the three
bars of a Watt linkage are all the same unit length, |xa| = |ab| = |by| = 1; here
the notation |xa| represents the length of the segment whose endpoints are x
and a. (Earlier we used | | for the absolute value of an enclosed number. Both
uses are common in mathematics.) And suppose the circle centers are placed
as illustrated in Figure 2.2: separated horizontally by |xa| + |by| = 2 and verti-
cally by |ab| = 1. Compute the angle range for joint a on its circle: How far can
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Figure 2.2. (a) Basic Watt linkage. (b) Dynamics of point c.

the link xa turn counterclockwise about x, and how far clockwise? [Requires
trigonometry.]

Although Watt’s linkage addressed the practical need for straight-line motion,
the quest for a linkage that achieved exact straight-line motion continued. The
reason this is so difficult to achieve is that linkage motion is fundamentally a
combination of circular motions: Each link endpoint follows a circle centered
on the joint at its other end. To achieve straight-line motion requires somehow
playing off several moving circular motions against one another to miraculously
result in some point on the linkage moving in a perfectly straight line.
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Path of c
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Figure 2.3. (a) Chebyshev linkage: |xa| = |yb| = 5, |ab| = 2; (b) The trace of point c
is nearly straight within a portion of its locus.

The next significant step was taken by the Russian mathematician Pafnuty
Lvovich Chebyshev, who was fascinated by linkages. In the 1850s, he invented
another approximate straight-line drawing linkage, shown in Figure 2.3(a). It
is essentially Watt’s linkage crossed, but requires specific lengths to function
appropriately, and it behaves rather differently, as shown in (b) of the
figure. It achieves an even closer approximation to a straight line than does
Watt’s linkage. Chebyshev used his linkage in a “Foot-Stepping Machine”
that was displayed at the 1878 World’s Fair in Paris. His mathematical work
toward straight-line linkages led to what are now known as “the Chebyshev
polynomials.”

The elusive goal of exact straight-line motion was finally achieved in 1864 by
Charles-Nicolas Peaucellier, a captain in the French army. He received a prize,
the Prix Montyon, from the Institute of France for his discovery. A student of
Chebyshev, Lipman Lipkin, independently discovered the same mechanism in
1871, and so it is sometimes called the Peaucellier-Lipkin linkage.

This remarkable linkage is illustrated in Figure 2.4(a). Joints x and y are
pinned, and rods xa and xb keep joints a and b on circle Cx , and rod yc keeps
joint c on circle Cy , which also includes x (so |xy| = |yc|). The mechanism is
“driven” by moving c on Cy , which causes the rhombus abcd to expand and nar-
row symmetrically about the diagonal ab. As the cell abcd is rotated clockwise,
the gap between the circles Cx and Cy narrows, squeezing the cell, amazingly
just enough so that joint d stays precisely on a vertical line L! Establishing this
mathematically is a bit involved, and we will not attempt it.

When Lord Kelvin (after whom our low-temperature unit is named) worked
a model of the device, he is reputed to have remarked that “it was the most
beautiful thing he had ever seen.”
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Figure 2.4. (a) Peaucellier linkage. (b) Geometry of linkage. x and y are pinned; d
moves along vertical line L.

2.2 Pantograph

From the 100-year struggle to find a linkage that draws a straight line, the reader
may have drawn two conclusions: (1) the motion of even simple linkages is subtle
and difficult to analyze mathematically; and (2) this is all ancient history. The
first conclusion is correct, but the second is not. Although there is no question
that the need for linkages has diminished with the rise of electricity and then
electronics, linkages still abound. Besides the automotive crankshaft mentioned
in the Preface, every car contains a clever 4-bar linkage (Figure 2.5) to convert
the rotary motion of a motor to the familiar slap-slap back-and-forth arc of
the windshield wipers. Many other everyday examples may be noticed by the
discerning eye.

Returning to the first conclusion, perhaps the most useful linkage whose
motion is simple enough to permit a clean and thorough mathematical under-
standing is the pantograph. This word has two meanings today: an instrument
for copying drawings at reduced or enlarged scale, or a linkage with similar
structure and a variety of uses. An example of the latter is the mechanism on
top of an electric train designed to maintain electrical contact with the overhead
power wires; see Figure 2.6. But here we concentrate on the former meaning, a
copying linkage whose functioning is more straightforward than the straight-line
linkages we’ve seen in the previous section.



Pantograph 29

x

y z

a

Wipers

Motor

Figure 2.5. Windshieldwiper linkage. Joints x, y, and z are pinned. Joint a is driven
around a circle by a motor at x, causing the wipers to rock back and forth in parallel.

Figure 2.6. Train pantograph.

A pantograph consists of four bars, two long and two short. We start by assum-
ing both long bars are of length 2 and both short bars of length 1. Let xc and cz
be the two long bars, as in Figure 2.7. The short bars are attached with swivel
joints to the midpoints a and b of the long bars, and arranged so that acby is a
parallelogram (which happens to be a rhombus in this particular figure). If joint
x is pinned to the plane, this linkage has the property that whatever curve is
traced by point y is duplicated at twice the scale by the movement of point z.
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x y z

a b

c

Figure 2.7. A pantograph. Joint x is pinned. The movement of joint y is duplicated
and doubled by point z.

x
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Figure 2.8. Extending the pantograph to nested parallelograms.

Thus it is an enlarge-by-2× mechanism, or, reversing the logic (letting point z
drive y), a diminish-by- 1

2× device.
Later we will answer the question of why anyone would need such a device

in the age of copiers with magnification buttons. For now we seek a detailed
understanding of how it works.

A basic intuition can be attained by adding two more long bars to complete
the outer parallelogram, as shown in Figure 2.8. Because the inner parallelogram
acby is half the size of the outer parallelogram xczd, and because they move in
concert, it is natural that the inner movement is at half the scale of the outer
movement. To convert this intuition into a more precise statement, we turn
again to vectors (the reader may want to revisit Box 1.3).

Let
−→
A and

−→
B be the two vectors along the linkage which, placed head-to-

tail starting at x, reach y. As in Chapter 1, these vector displacements can be
calculated by subtracting the coordinates of the relevant points (Figure 2.9):

−→
A = a − x

−→
B = y − a
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Figure 2.9.
−→
A +−→

B = y − x and
−→
A′ +−→

B′ = z − x.

−→
A +−→

B = a − x + y − a

= y − x

Let
−→
A′ and

−→
B′ be the similar vectors that reach z:

−→
A′ = c − x

−→
B′ = z − c

−→
A′ +−→

B′ = c − x + z − c

= z − x

We stipulated that the length of the long and short links were 2 and 1
respectively, so we know that:

−→
A′ = 2

−→
A

−→
B′ = 2

−→
B

Now putting together these three relationships yields:

z − x = −→
A′ +−→

B′ = 2
−→
A + 2

−→
B = 2(

−→
A +−→

B ) = 2(y − x) .

If we place the origin of a coordinate system at x = (0,0), then
z − x = z and y − x = y. Then the above equation says that the coordinates
of z are always exactly double the coordinates of y in this coordinate system. So
whatever drawing is traced by y is traced at twice the size by z.

This analysis easily leads to the alterations needed for the pantograph to

achieve different scale factors: To achieve a factor of 3, we want
−→
A′ = 3

−→
A and−→

B′ = 3
−→
B , as in Figure 2.10(a); to achieve a factor of 1 1

2 , we want
−→
A′ = 3

2
−→
A and−→

B′ = 3
2
−→
B , as in (b). Commercial pantographs have marked holes to make it easy

to reconfigure the links for different magnifications.
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Figure 2.10. Pantographs with different magnifications. (a)
−→
A′ = 3

−→
A : scale factor

×3 (300%). (b)
−→
A′ = 3

2
−→
A : scale factor × 3

2 (150%).

Exercise 2.2 (Practice) Fivefold Pantograph. Design a pantograph to achieve
fivefold magnification.

Exercise 2.3 (Understanding) Two-Thirds Pantograph. Design a pantograph to
achieve two-thirds reduction.

Another consequence of our analysis is that points x, y, and z always lie on
a common line: They are collinear. This follows because z = ky, where k is the
scale factor. Suppose k = 3 and, for specificity, let y = (1,2) and z = 3y = (3,6).
Then the slope of the line through x = (0,0) and y is 1

2 (the ratio of vertical over
horizontal displacement), and the slope of the line through x and z is 3

6 = 1
2 .

Clearly these slopes will always be the same, because the coordinates of z are
just k times the coordinates of y. Therefore, y and z lie on the same line through
x, and so all three are on a common line at all times.

Let us summarize our analysis in a theorem:

Theorem 2.1 (Pantograph)

For a pantograph whose joints are labeled as in Figures 2.7 and 2.10, when x is
pinned to the plane, point z traces a scaled version of the path followed by joint
y. The scale factor is |xc|/|xa|, the ratio of the lengths of the long links to that of
the short links.

Although pantographs are no longer needed for enlarging drawings, they are
still used in machining parts, and in particular for etching and engraving. See,
for example, Figure 2.11.
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Figure 2.11. Industrial pantograph built by Gravograph Ltd. Model IM3.

The fine Lettering on the inside of a wedding ring is almost invariably pro-
duced by a pantograph-tracing stylus that runs over the text at a large scale,
linked to the engraving tool that follows at a much reduced scale.

Although pantographs remain in use today, some of the most interesting
applications lie in the past. For example, Thomas Jefferson used a pantograph to
make copies of his extensive correspondence. Figure 2.12 shows the “polygraph”
on display at Monticello, his home in Virginia. Here the goal is not magnifica-
tion, just duplication, which slides toward the more generic use of the word
“pantograph.” We can view duplication as a limiting case of the pantograph as
presented in Figure 2.10 as the magnification scale factor k gets smaller and
smaller, approaching 1 from above. In Figure 2.13(a), the scale factor is slightly
larger than 1, and an extension of y to y ′ separates the controlling point y ′ from
the follower point z. The limit of this process, achieving exact duplication, is
simply a parallelogram (b), echoes of which are visible in Jefferson’s pantograph.

A most unusual application of a pantograph is provided by the 18th-century
chess-playing automaton known as “The Turk” (Figure 2.14). The inventor,
Wolfgang von Kemplen, managed to astonish the courts of Europe, many of
whose members were only too ready to believe that a clockwork mechanism
could achieve such wizardry. Others were convinced it was a trick, but no one
guessed the precise mechanism in over twenty years of touring. Among the skep-
tics was Charles Babbage, arguably the inventor of the first computer, whose
encounter with (and loss to) the Turk helped trigger a train of thought that even-
tually led to his notion of a truly general-purpose computer. As the skeptics
suspected, there was an operator hidden inside, one (among the several who
served in that role) a Viennese chess master. But even among those convinced
of fraud, the mechanism of deceit eluded them. The heart of the mechanism was
a pantograph that permitted the hidden operator to move a pointer on a small
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Figure 2.12. Thomas Jefferson Polygraph (i.e., pantograph), 1804. Slanted pen
holders are visible, as are parallelograms.

(b)(a)
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y �
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→

Figure 2.13. (a) A pantograph with scale factor k = 1.1; (b) The limiting parallelo-
gram. The bottom bar xy ′ serves to brace the structure into two pairs of parallel bars,
effectively replacing the bracing provided by ay and by in (a). Now z and y ′ trace exact
duplicate curves.

interior chess board, and have his or her moves duplicated at slightly larger scale
by the Turk above via a pantograph traveling up his sleeve. A twist below closed
the gloved fingers of the Turk’s hand on a piece, a counter twist released his grip.
The effect was apparently mesmerizing.
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Figure 2.14. The Turk, with pantograph linkage traveling down his left arm.
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2.3 Above & Beyond

In light of the difficulty of designing a linkage to draw a straight line, it was
audacious of the barrister and amateur mathematician Alfred Bray Kempe to
explore in 1876 whether there is a linkage that will trace any given curve. The
goal is to have one driver joint (like y in the pantograph) and one joint identified
as the writing stylus (like z in the pantograph). The curve to be drawn is arbitrary,
except that it must be bounded within a finite region of the plane (an obvious
necessary condition), and he stipulated that it must be definable by a collection
of algebraic equations. Restricting to algebraic curves excludes y = log x and its
ilk, but admits a wide variety of complex and beautiful curves, including those
that approximate nonalgebraic curves arbitrarily closely.

Kempe provided a beautiful and intricate solution, but over time it was
realized that there were technical flaws in the proof, which took more than a
century to completely resolve. Today Kempe’s result is accepted as a theorem,
with several independent proofs, including a patched version of his original
proof. Because the algebraic curve may have the cusps and multiple pieces
characteristic of handwriting, the result is often phrased today as:

Theorem 2.2

There is a linkage that signs your name! (Figure 2.15).

The proofs of “Kempe’s Universality Theorem” are constructive but would
produce such complex linkages, that I doubt if they have ever been applied to
actually create a signing linkage. To give a hint of the possibilities, Figure 2.16
shows a linkage that signs a crude ‘J ’, hardly the ‘J ’ of John Hancock!

So far we have not made a distinction between linkages whose links never
cross one another and those where they might. The former are planar link-
ages, in that they may be viewed as lying in a plane. Watt’s linkage (Figure 2.2)
is planar, whereas Chebyshev’s linkage (Figure 2.3) is not. Chebyshev’s link-
age must be built on two levels so that the yb link can slide over the xa link.
Similarly, the Peaucellier linkage (Figure 2.4) needs two levels to accommodate

Figure 2.15. There is a linkage that traces a thin version of this collection of curves.
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d=h

e

f

g

z

Figure 2.16. Joints a and e are pinned to the plane. Joint b is the driver, moving
around a circle centered on a. Both abcd and efgh are contraparallelograms, parallel-
ograms with one corner flipped over the diagonal. x and y are midpoints of bc and fg
respectively. Point z is the writing stylus.

links xa and xb sliding over link yc. The complex constructions lying behind
the signs-your-name theorem (Theorem 2.2) generally produce nonplanar
linkages. It is unknown if the same generality can be achieved solely with planar
linkages:

Open Problem: Planar Signing (General Case)
Is there a planar linkage that signs your name?

As this may be a challenging problem, let me pose a simpler, specific, hope-
fully more accessible version, which I label an open “subproblem” because it is
only a small piece of the larger issue:

Open Subproblem: Planar Signing Digits
Are there a planar linkages that draw repre-
sentations of each of the ten digits, 0,1,2,
3,4,5,6,7,8,9?
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We could say that the Peaucellier linkage solves the problem for the digit 1
by restricting its range of motion to avoid link crossings. The Watt linkage has
the digit 8’s underlying shape as the locus of point c, but c cannot reach all parts
of that locus, as Exercise 2.1 showed. There is a linkage invented by Frans van
Schooten, a 17th-century Dutch mathematician, that draws an ellipse, which we
could interpret as the digit 0, but the linkage seems fundamentally nonplanar.
So, with only the digit 1 solved, there are nine challenges remaining!



3
Protein Folding and
Pop-Up Cards

We conclude our exploration of linkages by returning to the polygonal chains
that were the focus of Chapter 1, but now with angle constraints. If you struggled
through Exercises 1.9 and 1.10, you know that angle constraints greatly compli-
cate the possible motions of the chain. But in many applications, there are angle
constraints, so they must be confronted. We consider two applications in this
chapter, which are, surprisingly, related: protein folding and a certain pop-up
card. Despite the whimsical chapter title, the real focus will be the “maxspan of
90◦-chains,” the mathematical structure shared between the two applications.
Several techniques and ideas from the previous chapters will resurface here,
including induction and the triangle inequality.

3.1 Fixed-Angle Chains

In both the robot-arm polygonal chains we talked about in Chapter 1 and the
linkages in Chapter 2, all joints are “universal,” meaning that there is complete
rotational freedom at each joint. In this chapter, we explore open polygonal
chains with the angle fixed at each joint, which are called fixed-angle chains.
You might think that fixing the angle is the opposite extreme of allowing univer-
sal motion, and initially might seem to totally rigidify the chain into one fixed
configuration. But in fact, motion is still possible in 3D: What is called revolute
or dihedral motion.

Look at the 3-link chain in Figure 3.1(a), with both joint angles fixed to 90◦.
We’ll call this a 90◦-chain. The first and third links can revolve about the middle
link while still maintaining 90◦ at the joints, as shown in (b) of the figure. You

39
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(a) (b)

(c) (d)

90°

90°

90°

90°

Figure 3.1. Dihedral motion of a 3-link 90◦-chain. The 90◦ angle between adjacent
links remains fixed, while the two planes swivel on the shared middle link.

can think of this revolute motion as the swinging motion of two doors sharing
a common hinge along the middle link, say a front door and a swinging screen
door; see (c-d) of the figure. This is called “dihedral motion” by molecular biol-
ogists, who view it as the relative motion of the two planes containing the doors:
two (di-) planes (-hedral). The angle between the planes/doors is not fixed, but
the angle at the joints between the two links remains 90◦. The reason molecular
biologists care about fixed-angle chains is that they serve as a model of protein
backbones, to which we now turn.

3.2 Protein Backbones

A protein molecule is a long chain of atoms with short, attached side chains
consisting of clusters of several atoms each. The central backbone consists of
repeated copies of the common 3-atom core of an amino acid. Amino acids are
fundamental building blocks of life; they come in twenty different varieties but
all sharing a common core. The sequence of atoms along the backbone consists
of nitrogen (N) and carbon (C) atoms, three per amino acid: NCC NCC NCC... . A
typical protein is constructed from between 100 and 1,000 amino acids, although
some (e.g., the muscle protein titin) contain as many as 30,000 amino acids.

Proteins fold into complex 3D shapes, as you can see from Figure 3.2, which
shows a small protein of 36 amino acid bonds strung along the highlighted back-
bone. Although we could imagine many shapes into which a given protein might
fold, the chemical properties and biological environment conspire to ensure that
each folds nearly unerringly into one particular shape, its so-called native state.
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(a)

(b)

Figure 3.2. A small structural protein, a variant of the “villin headpiece.” [2PPZ
in the Protein Data Base]. (This protein “manages” the actin molecule, the engine of
our muscles.) (a) Backbone of 36 amino acid cores highlighted (red), each consisting of
three atoms, CCN, surrounded by bonds indicating the side chains. (b) Sphere model
of the same molecule, with each atom a sphere.

Misfoldings are rare and are at the root of certain diseases, such as Mad Cow dis-
ease. These misfoldings aside, the 3D native state is completely determined by
the sequence of different amino acids along the chain. The great unsolved “pro-
tein folding problem” is to predict the 3D native state from the one-dimensional
sequence of amino acids.

The reality of protein folding is extremely complicated, not only geometri-
cally, but also in terms of the chemical and electrostatic bonds, the biology of
the cell environment, and the physics of molecular dynamics. A gross simplifi-
cation of this messy situation will lead us to the purely geometric motion of a
fixed-angle chain. The simplification occurs in four steps. First, we will ignore all
side chains, leaving only the backbone of the protein, a linear chain of 3-atom
cores of amino acids. Comparing Figure 3.2(a) and (b) shows what a significant
(and unrealistic) simplification this is. Second, we will treat the bond angles
between adjacent atoms along the backbone as fixed. This is nearly true. Third,
we assume the chain permits free dihedral motion about each of its bonds. This
is definitely not true, because one bond per amino acid (the so-called “peptide”
bond) only permits two dihedral angles, 0◦ and 180◦. Fourth, we will ignore all
chemical and electrostatic forces, leaving only the geometry of dihedral motions
and the restriction that the chain cannot pass through itself.

These four simplifications reduce the protein in Figure 3.2 to a chain of
3 × 36=108 links: three links per amino acid core. Figure 3.3 shows a closeup
of a small portion of the backbone and the corresponding chain of links.

Now we have left messy reality so far behind that fixed-angle chains hardly
deserve to be called “models” for protein molecules. At most we can say they



42 Protein Folding and Pop-Up Cards

C

C

N

C

C

N

Figure 3.3. Two CCN amino acid cores along the backbone (red), with most side-
chain atoms suppressed. The chain and bond angles are superimposed.

are inspired by proteins. And we will see that their possible motions are already
quite intricate.

These four simplifications lead us to study fixed-angle polygonal chains. Two
further simplifications focus in on a particularly interesting class of these chains.
First, we assume the fixed angle is 90◦ at every joint. The actual bond angles along
a protein backbone lie roughly in the range of 109◦ to 122◦, so this is a rough
approximation of the reality of protein chains. Second, we assume that the link
lengths are all the same, which we take to be 1. The actual bond lengths between
atoms along the backbone of a protein vary a bit, but not much, roughly between
1.33Å and 1.52Å.

So we have arrived at unit 90◦-chains – each link of length 1, each joint angle
fixed at 90◦ – and we will analyze these throughout the remainder of the chapter.
We will occasionally contrast these unit 90◦-chains with variants without these
two final assumptions – allowing different link lengths, or angles different from
90◦, but the unit 90◦-chains will remain our focus.

3.3 Maximum Span

Chemists have long been interested in the statistical distribution of the end-to-
end lengths of polymers, a class of chain-like molecules that includes proteins
and plastics. To understand the distribution, they need to know the maximum
possible end-to-end distance, known as the maximum span, or maxspan for
short, of the chain. Our goal is now to understand which configurations of a
90◦ unit chain achieve the maxspan.

If we didn’t assume that all angles are 90◦ or that all lengths are the same,
the problem is complex, but now almost completely understood through recent
advances (see Further Readings, p. 143). Complications arise because the maxs-
pan is generally achieved by a fundamentally 3D configuration, consisting of
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Figure 3.4. An 11-chain in maxspan configuration. Its link lengths are (1,5,1,1,
10,3,6,1,8,10,6), and its span is 39.35. Vertices on the span segment s = v0v11 are
marked. (a) Oblique view; (b) Overhead view.

twisted sections aligned along the line determined by the two end vertices of the
chain.

Figure 3.4 shows an example that drops the unit-length assumption but
retains the 90◦-angle assumption. This is an 11-link 90◦-chain in a maxspan
configuration, whose link lengths vary from 1 to 10. Let its vertices be labeled
(v0,v1, . . . ,v11). The span is the segment s = v0v11, in this case of length about
39.35. The vertices v3 and v8 lie directly on s, partitioning the chain into three
planar (i.e., flat) sections. That the sections are planar is more evident in the
overhead view shown in (b) of the figure: the two end sections {v0,v1,v2,v3} and
{v8,v9,v10,v11} lie in a plane parallel to the xy-plane, and the middle section
{v3,v4,v5,v6,v7,v8} lies in a vertical plane parallel the the z-axis.

Exercise 3.1 (Practice) 3-Link MaxSpan. What is the maxspan of the 3-link
90◦-chain with link lengths (1,2,3), if all three links lie in the same plane?

Exercise 3.2 (Challenge) 3-Link MaxSpan. Can you increase the span of the
(1,2,3) linkage from the previous exercise by rotating the 3rd link out of the
plane containing the first two links?

A natural alternative to the twisted configuration in Figure 3.4 is the planar
staircase configuration, which simply alternates left and right turns at each joint,
maintaining the chain in a plane. Figure 3.5 illustrates this for the same 11-link
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Figure 3.5. The chain from Figure 3.4 laid out in the staircase configuration has a
shorter span:

√
322 + 202 ≈ 37.74.

chain, and reveals that this planar configuration has a smaller span: 37.74 vs.
39.35 for that in Figure 3.4.

These complications disappear if we reinstate both the 90◦ assumption and
the unit-length assumption, for the maxspan configuration of a unit 90◦-chain
is always flat:

Theorem 3.1 (Unit-90)

The maxspan configuration of a unit 90◦-chain of n links is achieved by the
planar staircase configuration.

Figure 3.6 illustrates staircase configurations for unit 90◦-chains.
The fact that the claim of this theorem is false if the links are not the same

length shows that there must be some subtleties here. Fortunately those sub-
tleties can be skirted for these specific chains. We now sketch a proof of the
Unit-90◦ Theorem 3.1, first discovered and proved by a college student, Nadia
Benbernou. The proof takes a path through two concepts, both illustrated in
Figure 3.4: alignment and piercing.

3.4 Alignment

We start with a lemma on alignment, which says, essentially, that if we align two
chains end to end, each of which is in maxspan configuration, then the combined
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(a) (b)

(c)

Figure 3.6. (a,b) Staircases; (c) Not a staircase, because the turns do not alternate.

chain is in maxspan configuration. This lemma is very general, because it does
not rely on either the 90◦ assumption nor on the unit-length assumption.

Lemma 3.1 (Alignment)

If C1 and C2 are both in maxspan configuration, and if joining their spans
end-to-end along the same line meets the joint-angle constraint at the join, then
the new chain C is in maxspan configuration.

Proof: We opt here for aiming for the intuitive essence of the proof: the
triangle inequality that we employed in Chapter 1 (Box 1.4). This states that the
length of one side of a triangle is at most the sum of the lengths of the other two
sides. If the three triangle side lengths are a, b, and c, the claim of the triangle
inequality is that c ≤ a + b.

Now think of a and b as the maxspans of C1 and C2, and c the span of their
join C . By the triangle inequality, c ≤ a +b. So the largest c could ever be is a +b.
And that a + b span of C is achieved by aligning the largest spans of C1 and C2.
If, when the maxspans of C1 and C2 are aligned, the angle at the join vertex is the
required fixed angle, then we have achieved a valid configuration of C , realizing
the maxspan c. Λ

Alignment is nicely illustrated in Figure 3.4, as it turns out the the three flat
subchains (v0 to v3, v3 to v8, v8 to v11) are each in maxspan configuration, and
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the alignment shown manages to maintain the 90◦ angle at the joints v3 and v8,
so the lemma says the whole chain must achieve the maxspan.

3.5 Piercing

We will reach our goal of proving the Unit-90◦ Theorem 3.1 by establishing a
stronger theorem that will easily imply Theorem 3.1 as a more specific, special
case. This relies on a notion that is again nicely illustrated by the 11-link chain
in Figure 3.4. The end-to-end spanning segment in that figure, s = v0v11, pierces
each link of the chain in order, where pierce here means “passes through a point
of,” perhaps just an endpoint. So s touches the first link at v0 (which counts
as piercing), passes through the midpoint of the second link, touches the third
and fourth links at their shared vertex v3, and so on. Let C = (v0, . . . ,vn) be a
chain with vertices vi . We’ll say that a chain is in a piercing configuration if the
spanning segment v0vn meets every link of the chain in order. The staircase
chain in Figure 3.5 is not in piercing configuration, because several links are not
pierced by the spanning segment.

Theorem 3.2 (Piercing)

If a chain C is in a piercing configuration, then C is a maxspan configuration.

We will settle for a sketch of the proof to avoid unrevealing details. The proof
is by induction on n, where n is the number of links in the chain. (Induction
was introduced in Box 1.2, p. 6.) Both 1-link and 2-link chains are automatically
piercing, and for each, their only configuration is the maxspan configuration. So
the theorem holds for the base of the induction, n = 1 and n = 2.

Now, following the induction paradigm, we assume the theorem has been
established for n = 1,2, . . . ,n − 1 links, and using this knowledge, we seek to
establish it for n links. If we are successful, we establish the theorem for all n.

Let C = (v0, . . . ,vn) be some piercing configuration of the n-link chain, with
spanning segment s = v0vn. We aim to show that C must be a maxspan con-
figuration. Because the configuration C is piercing, we know that s pierces the
penultimate link vn−2vn−1 of C . Now there are several cases depending on where
s pierces this link. However, looking at the two cases illustrated in Figure 3.7
should suffice to convince the reader.

In the first case (a), s pierces vn−2vn−1 at some interior point x, where x is
neither endpoint vn−2 nor vn−1. Let C1 = (v0, . . . ,vn−2,x) be the chain up to x,
and C2 = (x,vn−1,vn) be the 2-link remainder of C . Then C1 has n − 1 links (it is
missing the last link vn−1vn) and is piercing because C is piercing and s1 = v0x
is a subsegment of s = v0vn. So we can apply the induction hypothesis to C1 and
conclude that it is in maxspan configuration. C2 falls into the n = 2 base case,
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vn

vn–1

vn–2

v0
x

vn

vn–1

vn–2
v0

x

(a) (b)

Figure 3.7. Piercing proof cases. (a) s = v0vn pierces vn−2vn−1 at an interior point x;
(b) s pierces vn−2vn−1 at its vn−2 endpoint.

and so is in maxspan configuration. Finally, C1 is aligned with C2, in that their
individual spans line up along s. To apply the Alignment Lemma (Lemma 3.1),
we only need to verify that the fixed-angle requirement at x is satisfied. One can
view the angle at x fixed to be 180◦, satisfied because x is an interior point of
that vn−2vn−1 link. So indeed the Alignment Lemma applies and leads to the
conclusion that the joined chain C is in maxspan configuration, and we have
settled case (a).

Case (b), when s pierces vn−2vn−1 at the endpoint vn−2, differs in that C1 has
only n − 2 links, but the induction hypothesis covers all n up to n − 1, so this is
settled by a similar argument. In this case, the joint angle at x must satisfy the
fixed-angle constraint because we assumed that C is a legal configuration of the
chain in the first place, and again the Alignment Lemma applies.

Other cases occur when the last link, or the last two links, lie right along s,
but they present no new issues. It is here that we are passing over details that
would be needed in a formal proof. In all cases, induction applies, establishing
Theorem 3.2. This ends the proof sketch.

Notice that the statement of this theorem makes no assumptions on link
lengths or on joint angles or on planarity. So, like the Alignment Lemma, it
is quite general. Now we apply the Piercing Theorem to our unit 90◦-chains.
Recall the claim of the Unit-90◦ Theorem (Theorem 3.1) is that the staircase
configuration achieves the maxspan.

If we have staircase configuration of a unit 90◦-chain of n links, there are
only two fundamentally different configurations, one for even n and one for
odd n. Both configurations are obviously piercing; see Figure 3.8. When n is
odd, the spanning segment pierces each but the first and last links at an interior
point. When n is even, the spanning segment passes through every other vertex,
and so every link is pierced at one of its endpoints. So the Piercing Theorem
(Theorem 3.2) applies and shows those configurations must achieve the maxpan.
This is precisely the claim of the Unit-90◦ Theorem (Theorem 3.1).

Exercise 3.3 (Practice) Staircase Span. What is the maxspan of the two chains
shown in Figure 3.8? Find general formulas for the maxspan of unit 90◦-chains
of n links, distinguishing between n even and n odd.

The generality of the Piercing Theorem (Theorem 3.2) permits a strengthen-
ing of Theorem 3.1 to any unit chain with the same fixed angle at every joint
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(a) (b)

Figure 3.8. Unit 90◦-chains in staircase configuration are piercing: (a) n = 5;
(b) n = 4.

(a)

(b) (c)

(d)
150° 10°

100° 45°

Figure 3.9. Unit α-chains are piercing, for any fixed angle α. Here all n are odd.

(see Figure 3.9), but we will not pursue this and other generalizations. Instead
we turn now to a surprising application of the Unit-90◦ Theorem (Theorem 3.1).

3.6 Pop-Up Spinner

Pop-up books and cards have been around since the 18th century and recently
have seen a surge in popularity through the elaborate designs of pop-up masters
like Robert Sabuda and Matthew Reinhart. But the most stunning and ele-
gant pop-up effect I have encountered is the pop-up spinner card, invented
in Japan by an unknown student at Musashino Art University in 1988. Its nested
diamond-frames spin about a central axis as the card opens, with the inner
frames spinning faster than the outer frames, creating a dazzling dynamic effect,
as (tepidly) depicted in Figure 3.10. When the card is fully opened flat, one sees
a simple pattern of nested diamonds (squares tilted at 45◦) cut directly into the
card – unlike other impressive pop-up effects, this one does not rely on complex
attachments.

The engine behind all pop-up design is conversion of the card/page opening
motion to pop up the parts of the construction and drive their motion. The
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Figure 3.10. Pop-up spinner card opening animation, by Akira Nishihara.

(a)

(b)

Cut
Mountain fold
Valley fold

a bc

Card midline

Figure 3.11. (a) Pop-up spinner card design. (b) Nested diamond details: cuts and
folds.

heart of the pop-up spinner, and the key to understanding its operation, is –
surprisingly! – the Unit-90◦ Theorem (Theorem 3.1). To see this, we need to study
its construction in detail. Figure 3.11 shows a template for the construction,
distinguishing cuts, mountain folds, and valley folds. As their names imply, a
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mountain fold is a crease that bumps outward, while a valley fold is a crease that
dents inward. Try cutting the pattern on card stock and crease as indicated – no
description can fully convey the beauty of the physical action. See Box 3.1.

Box 3.1: Cut & Fold the Pop-up Spinner

Either draw the pattern with a ruler on card stock, or download the tem-
plate from this book’s web site http://www.howtofoldit.org and print
on the heaviest weight paper your printer will accept. First crease the card
down its midline, one long mountain fold. Don’t worry that at this point some
of the valley folds along that midline are folded backward. Now cut the dia-
mond diagonal cut lines with scissors, stopping just at the central zig-zag, as in
Figure 3.12. Fortunately, scissors suffice: No razor knife is needed as in many
intricate constructions. Reverse the folds along the card midline that should
be valley folds. Lay the design flat. Now, starting at point a in Figure 3.11 and
proceeding across to b, crease the zig-zag segments with your fingers, alternat-
ing valley/mountain as indicated. Once every crease is folded the correct way,
you can sharpen the creases with additional pressure. At this point you should
be able to start twisting and compressing from the center point c outwards,
reversing the animation snapshots in Figure 3.10. Then open: Voilá!

Figure 3.11 is too complicated for grasping the structure, so we will analyze
portions of it separately. At a first glance, it is not evident how it all hangs together
as one connected piece. Figure 3.13(a) shows the cuts for just two of the nested
square diamonds, revealing clearly that a horizontal strip remains free of cuts.
Figure 3.13(b) shows how a zig-zag of mountain/valley creases runs through the
uncut strip, which in Figure 3.11 is seen to connect the left and right tips of the
outermost diamond. Call these tips a and b.

a c

Card midline

Figure 3.12. Cutting the pop-up spinner template, Figure 3.11(a).

http://http://www.howtofoldit.org
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(a) (b)

Figure 3.13. (a) Nested diamond-frames are connected. (b) Uncut strip containing
zig-zag mountain/valley folds.

a

b

c

Figure 3.14. The zig-zag chain of mountain/valley creases, shown stretched out
from a to b in Figure 3.11(b), curls up when the card is closed, forming a compressed
spiral.

Now, here is the key observation: This mountain/valley zig-zag path is a unit
90◦-chain! It is a chain of creases in the horizontal strip, with the angles fixed to
90◦ by the construction. When the card is closed, this chain (call it C) is curled
up into a spiral like a coiled spring, as I have crudely depicted in Figure 3.14. The
diamond-frames attached to C are twisted from their flat position as many times
as the chain spirals around. When the card is opened, the two endpoints of C at
the diamond tips a and b get stretched apart, forcing the chain to head toward its
maxspan configuration. But we know from the Unit-90◦ Theorem (Theorem 3.1)
that the maxspan configuration is the planar staircase configuration. So C must
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a bc

a� b�

c�

Figure 3.15. Minimal pop-up spinner, with innermost spinner tip c′ identified.
(Exercise 3.4)

uncurl from its initial, highly nonplanar state to the planar state, unwinding the
initial spiral with all its attached diamond-frames. Those larger frames nearest
a and b unwind the least; those more deeply nested, smaller frames nearest the
centerpoint c have the most to unwind, and so spin faster. The inverse variation
of frame size with spin speed adds to the elegance of the motion.

Exercise 3.4 (Understanding) Spinning Motion. The “minimal” functioning
pop-up spinner follows the design in Figure 3.15. Point c′ in this figure is the
innermost tip of the spinner, where two cuts meet on the card midline. Describe
the 3D motion of c′ as the card opens, with respect to the points a′ and b′, which
remain fixed to the left and right card halves.

3.7 Above & Beyond

3.7.1 Folding@Home

Our narrow focus on fixed-angle chains has moved rather far from the protein-
folding problem that inspired that focus. Although detailed geometric analysis
is one line of attack on the protein-folding problem, there have been notable
successes via atom-to-atom force simulations – something like a vast Sim City
simulation for proteins. A typical simulation starts at an unfolded state of the
protein, computes the forces between atoms from known physical principles,
moves each atom slightly according to the total force vector applied over one
small time step, and repeats. These simulations are computationally intensive
for two reasons. First, experience has shown that the simulation time step – the
time between simulation snapshots – must be on the order of 1 nanosecond
(ns), one billionth (10−9) of a second, whereas the real time it takes for a protein
to fold is typically many thousandths (10−3) of a second, that is, millions (106)
of nanosecond time steps. So the simulation has to run for millions of time
steps, often many millions. Second, what the simulation must do within each
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time step is itself daunting, for accurate simulations must incorporate the forces
between each of perhaps 10,000 atoms with one another – and that’s 50 million
atom-to-atom interactions!

In the face of these computational challenges, researchers have resorted to
massively parallel computation, either through development of special-purpose
computers, such as IBM’s Blue Gene, or by harnessing many ordinary comput-
ers. The champion of the latter approach is the Folding@Home project, which
developed software to run on idle computers. Whenever a machine with this
software has been idle long enough for screen-saver to kick in, it starts working
on simulating a “folding pathway” for a particular protein, sending its partial
results to a server at Stanford University, which integrates all the data it receives.
At this writing, 350,000 workstations around the world are participating in this
project.

A notable early success of Folding@Home was an accurate and scientifically
revealing simulation of the 36-amino acid protein known as the “villin head-
piece,” which we used as illustration in Figure 3.2. This is a good target molecule
not only because it is small (so there are fewer atom-to-atom forces to compute),
but because it is one of the fastest folding proteins known, folding in as little
as 700 ns (so it doesn’t need millions of simulation steps). Although the villin
headpiece contains only 36 amino acids, the simulation includes 3,036 water
molecules surrounding the protein; these represent the cellular fluid, which
plays a crucial role in folding. Thus the simulation tracks approximately 10,000
atoms.

3.7.2 Locked Chains

Returning to the geometry of fixed-angle chains, we end this chapter with
an unsolved problem suggested by protein folding but simple enough to be
approachable in isolation, and perhaps solved by an enterprising reader. Let us
say that a configuration C of a chain is locked if it is tangled in such a way that
there is at least one other configuration C ′ of the same chain that is inaccessi-
ble from C by continuous motions without self-intersection. In other words, a
configuration C is locked if it can only reach some other configuration C ′ by por-
tions of the chain passing through itself. In technical mathematical language, a
locked chain means that the configuration space of the chain is disconnected –
some spots of the space are inaccessible from other spots. Because protein chain
links have nearly the same length, it is especially interesting to know whether a
“near-unit” 90◦-chain can lock. To make this concept more precise, define the
length ratio L of a chain to be the ratio of the length of its longest link to the
length of its shortest link. So unit chains have length ratio precisely L = 1, and a
near-unit chain has length ratio larger but close to 1. The unsolved question is:
What is the smallest L that permits a 90◦-chain to lock?

To date, the smallest length ratio found for a locked 90◦-chain is L >
√

2 ≈
1.414, achieved by the chain shown in Figure 3.16(a). In this 6-link example,
4 links have length 1, while the end links (v0v1 and v5v6) have length slightly
more than

√
2. An attempt to untangle the chain as in Figure 3.17 just barely
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v6

v4

v5

v2
v1

v3

v0

v6

v4

v0v2v1

v3

v0

(a)

(b)

√2+ε

√2+ε

1

1 1

1

Figure 3.16. (a) Initial position of 6-link chain. (b) Unreachable planar configura-
tion. ε is some small positive number.

Figure 3.17. Three positions in an attempted opening motion. (See http://
howtofoldit.org for an animation.)

fails with those lengths. Thus the configuration in Figure 3.16(a) cannot reach
the planar configuration in (b). It is unknown if any 90◦-chain with length ratio
smaller than 1.414, even if composed of hundreds or thousands of links, can
lock. In particular, this is an unsolved (“open”) problem:

Open Problem: Locked Unit 90◦-Chain?
Can a unit 90◦-chain lock?

Exercise 3.5 (Challenge) Locked 4-Chain. Show that there is a locked 36◦-chain
of four links and nearly unit link lengths. By “nearly unit,” I mean lengths that
could be chosen to be arbitrarily close to 1. Notice that 36◦ is the angle at the tips
of a pentagonal star.

http://http://howtofoldit.org
http://http://howtofoldit.org
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Origami is an art form with roots in Asia more than 1,000 years in the past,
and likely coinciding with the invention of paper nearly 2,000 years ago. The
Japanese word ‘origami’ literally means ‘fold, paper.’ Interest in the mathematics
of origami arose only in the last century, and a focus on “computational origami”
only since the 1990s.

In this part, I have selected three approachable topics. The first two con-
cern “flat foldings,” a specialized form of origami. We first concentrate on
single-vertex flat folds that, although not very exciting as origami, include some
beautiful mathematical regularities. These regularities will help us in the next
chapter explain the amazing “Fold and One-Cut” theorem, which is perhaps the
prettiest result so far obtained in mathematical origami. And we close this Part of
the book with another surprising but more specialized theorem, the “Shopping
Bag” theorem.



4 Flat Vertex Folds

Although an origami folding generally produces a 3D object, such as the
ubiquitous crane, intermediate stages of the folding are often flat, that is, paral-
lel layers of paper squashed into a plane, as in Figure 4.1. In fact, flat origami as
an end-product is its own well-developed art form.

In this chapter, we examine some of the surprising regularities present in
flat origami, and then touch on the perhaps even more surprising technical
unknowns lurking in a problem as commonplace as folding a map.

4.1 Mountain and Valley Creases

When you fold a sheet of paper in half, you create a straight-line crease that
extends from one edge of the paper to an opposite edge. A crease snaps fibers in
the paper, which is why the crease imprint remains after the creasing pressure
is released, and why you cannot erase a crease completely by uncreasing – the
fibers remain broken. Origami creases need not in general extend from edge to
edge of the paper being folded. With some care, you can crease a line segment
in the interior of the paper, with neither endpoint at the paper edge.

Creases come in two varieties: those created by a mountain fold and those by
a valley fold, with natural meanings; see Figure 4.2. Traditionally, valley folds are
indicated in origami diagrams as dashed lines − − − − −, and mountain folds
by a dash-dot pattern, − · − · − · −. Because these patterns are easily confused
by the eye, we opt for the unconventional red for mountain and green for valley.
(Memory aide: red sunset hitting peaks, lush green valleys.) Whether a crease
represents a mountain or a valley fold depends on the point of view: From the
underside, a mountain fold becomes a valley fold, and vice versa.

57
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Figure 4.1. The standard origami crane, shown as a flat folding, before wings flap
into 3D.

Mountain fold Valley fold

Figure 4.2. Mountain and valley folds.

4.2 Single-Vertex Flat Folds

There is already a rich mathematical structure in one of the simplest flat origami
constructions: a flat folding containing a single vertex. A vertex in an origami
construction is any point not on the boundary of the paper at which two or more
creases meet. A simple example is the result of folding a sheet of paper in half
twice: once top-to-bottom, and then left-to-right, which produces a vertex at
which four creases meet; see Figure 4.3, in which the two sides of the paper are
colored different shades.

Box 4.1: Folding Creases

Folding a crease that goes straight through a vertex is as easy as folding a sheet
of paper in half. Folding a crease that stops at a vertex requires a somewhat
different technique. One method is to fold the crease lightly right through the
vertex, and then only firm up the crease (perhaps by pressing against a table)
for the desired half. The method I use myself is to first draw the crease on
the mountain side with a ruler. Then I hold the paper in the air and pinch at
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several spots along the crease between my thumb and forefinger, up to but not
through the vertex. Only once it has been precreased in this way do it set it on
a table and sharpen the crease, either by sliding my thumbnail along it, or –
better – pressing the edge of a ruler along the crease.

(a)

(b)

x

x

Figure 4.3. Degree-4 vertex: (a) Mountain/Valley creases on lighter side of paper;
backside is darker. (b) Flat folding. The three valley creases become mountain creases
on the darker side.

(b)

(a)

x

x

Figure 4.4. Degree-6 vertex: (a) crease pattern; (b) folding. Some sheets are shown
partially transparent.

More complicated examples can be made by terminating a crease at the
vertex, for example, as in Figures 4.4. and 4.5.

Exercise 4.1 (Practice) Four Mountain Creases. Create four mountain creases
meeting at a central vertex, as shown in Figure 4.6, as follows. Fold a piece of
paper in half, top to bottom. Now unfold completely, and fold it in half, left
to right so that the two perpendicular creases are both mountain creases (or
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(b)

(a)

x

x

Figure 4.5. Degree-8 vertex: (a) crease pattern; (b) folding.

x

Figure 4.6. Four mountain creases meeting at vertex x. (Exercise 4.1)

valley creases from the opposite side). Open the paper again. Convince yourself
by manipulation that the paper cannot fold flat with just those four creases
mountain-folded and meeting at the central vertex x (as they do in Figure 4.3(b)).

Is there any pattern to the single-vertex flat foldings we’ve examined so far?
I encourage the reader to experiment with sheets of paper and formulate con-
jectures. Perhaps the first regularity to become apparent is that the number of
creases meeting at the vertex must be even in order for the pattern to fold flat:
4 in Figure 4.3, 6 in Figure 4.4, 8 in Figure 4.5. And if we consider the midpoint
of the single crease formed by folding the sheet in half, a special type of vertex
where two mountain folds meet along the same line (collinearly), then again
there must be an even number: 2.

Indeed this regularity holds universally:

Theorem 4.1 (Even Degree)

A vertex in a flat folding has even degree.



The Maekawa-Justin Theorem 61

x

Figure 4.7. The crease pattern of Figure 4.4(a) with different mountain/valley
folding labels.

In this case, degree has nothing to do with angular measure, but rather is the
technical term for the number of creases coming into (incident to) the vertex.
This theorem will turn out to be a consequence of a deeper regularity that we
will see in the next section. Exercise 4.1 shows there must be more here, because
there four creases would not fold flat. Another clue is the six-crease example in
Figure 4.7, where the creases follow the same lines as in Figure 4.4 but with a
different mountain/valley folding. Try as you might, you cannot fold this dia-
gram flat. There must be both some imbalance between mountain and valley
folds, and some near-balance. The regularity here is captured in a beautiful the-
orem named after the two people who first discovered it (independently of one
another) in the 1980s, Jun Maekawa and Jacques Justin.

4.3 The Maekawa-Justin Theorem

Theorem 4.2 (Maekawa-Justin)

If M mountain creases and V valley creases meet at a vertex of a flat folding,
then M and V differ by 2: either M = V + 2 or V = M + 2.

We check our examples so far (Table 4.1.), verifying that they do indeed satisfy
Theorem 4.2. We now prove Theorem 4.2.

Let’s start with a circular piece of paper (Figure 4.8(a)) so we are not distracted
by the corners, which are irrelevant to what happens in the neighborhood of the
single central vertex. Now we consider an arbitrary single-vertex flat folding of
the paper; our goal is to prove that M and V differ by 2. Lay the folding flat, as in
Figure 4.8(b). Now look at the side of the folded paper toward the vertex inside
to see a closed zig-zag path of circular arcs, as depicted in (c) of the figure. Each
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Table 4.1. The number of mountain and valley creases
(M and V respectively) in our examples, checking the
Maekawa-Justin theorem (Theorem 4.2).

Theorem 4.2
Figure M V M − V satisfied?

Figure 4.3 3 1 2 X
Figure 4.4 4 2 2 X
Figure 4.5 5 3 2 X
Figure 4.6 4 0 4 ×
Figure 4.7 3 3 0 ×

(b)

(a)

(c)

c1

c2 c3

c4

c5

c6

c7

c8

c1

c2 c3
c5

c6 c7

c8

c8 c1c2

c3

c4

c5

c6
c7

c4

p

x

x

Figure 4.8. The example of Figure 4.5 revisited: (a) Crease pattern on circular
paper. The eight creases are labeled c1, . . . ,c8. (b) Flat folding. (c) Expanded view look-
ing from folded boundary toward vertex. Sharp turns at creases are shown as circular
arcs to illustrate the nesting. Starting direction vector from p toward right.

arc is a piece of the circular boundary flattened between two creases, which,
viewed edge-on, appears as a straight segment. Select any point of the path not
directly at a crease, for example, point p in (c), and imagine walking toward
the right. Let’s view your direction of travel as a vector (see Chapter 1, Box 1.3,
on vectors). Then the start direction vector points at angle 0◦ in the standard
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coordinate system, in which angles are measured counterclockwise from the
positive x-axis, which points toward the right.

Each mountain fold you encounter in your walk rotates your direction vector
through +180◦ (+ meaning counterclockwise), and each valley fold rotates your
vector through −180◦ (− for clockwise). Although it is true that rotation by +180◦
and by −180◦ bring the vector to the same final heading – exactly opposite to the
heading before rotation – the intermediate headings are different. For mountain
turns, the headings point to the exterior of the folding; for valley turns, the
headings point to the inside of the construction.

Now, we know that by the time we return to the starting point p after travers-
ing the entire diagram in (c), we approach p from the left heading right, so again
the vector has direction 0◦, which is the same as 360◦. In other words, we must
twist a total of a full 360◦ by the time we return to start.

So we must have:

M · 180◦ + V · (−180◦) = 360◦

Dividing through by 180◦ leads to M − V = 2. Remembering that M and V are
two sides of the same coin, we know that flipping the paper over in Figure 4.8(a)
would interchange the roles of M and V , and we’d reach the conclusion that
V − M = 2. Combining both possibilities into one phrase: M and V differ by 2.
That is the exactly the claim of the theorem; so we have proved Theorem 4.2.

The Maekawa-Justin theorem easily implies the Even-Degree Theorem
(Theorem 4.1). Suppose M = V + 2. Then:

M + V = (V + 2)+ V = 2V + 2 = 2(V + 1)

and so the total number of creases M + V into a vertex x (as in Figure 4.8a,b)
is even. The same logic applies when starting with V = M + 2 and reaches the
same conclusion: M + V is even.

Most theorems have many proofs, often starting from different background
assumptions. An alternate proof of Theorem 4.2 using polygons is presented in
Box 4.2.

Box 4.2: Proof of Maekawa-Justin Theorem via Polygons

The following proof was found by Jan Siwanowicz when he was a high-school
student. The starting point of his proof is another theorem: The sum of the
internal angles at the n vertices of a polygon is (n−2)180◦. (This in turn follows
from the theorem that every polygon can be partitioned by diagonals between



64 Flat Vertex Folds

c8

c1

c2

c3c5

c6

c7

c4

c8

c1

c2 c3
c5

c6

c7

c4
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(a)

Figure 4.9. An 8-vertex polygon (b) corresponding to Figure 4.8(c), repeated as (a)
here, with 5 mountain vertices {c1,c2,c4,c6,c7} and 3 valley vertices {c3,c5,c8}.

its vertices into n − 2 triangles, so that the total internal angle is that of n − 2
triangles, each of which has angle sum 180◦.) The idea is to view the zig-zag
path in Figure 4.8(c) as a squashed polygon, as in Figure 4.9, which is closer
to how it looks with sharp creases. If we imagine compressing this polygon
completely flat, all the mountain vertices have an internal angle near 0◦, and
all the valley vertices have an internal angle near 360◦. So the total internal
angle sum after complete flattening is:

M · 0◦ + V · 360◦

and this must equal (n − 2)180◦, where n is the total number of vertices of the
polygon. In this construction, each vertex derives from a crease, so n = M +V .
Therefore:

V · 360◦ = (M + V )180◦

and dividing by 180◦ yields 2V = M + V or M − V = 0.

Exercise 4.2 (Practice) Maekawa-Justin Theorem. Exercise 4.1 argued that
four mountain creases lead to an unflattenable vertex. Add additional creases
to Figure 4.6 so that it can flatten, and verify the Maekawa-Justin Theorem
(Theorem 4.2) for your construction.

4.4 The Local Min Theorem

The pattern in Figure 4.10(a) shows that we still haven’t plumbed the depths of
single-vertex flat foldings fully. It satisfies the Maekawa-Justin Theorem (Theo-
rem 4.2) with M = 4 and V = 2, and therefore satisfies the Even-Degree Theorem
(Theorem 4.1) with degree 6. And yet, if you try to fold it flat, you will see it is
impossible. Why? The essence of the impediment is that a 40◦ pie-slice wedge
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x

x

Figure 4.10. (a) A crease pattern that cannot fold flat. (b) Attempting to fold the
40◦ wedge results in paper penetrating itself. Here we’ve restricted the folding to the
semicircle (a) to make the angular relationships clear.

delimited by two valley folds is surrounded by larger angles on either side – 70◦.
This forces paper to pass through itself, as depicted in (b) of the figure. When-
ever we have such a pattern of consecutive wedge angles: {large, small, large},
the folds delimiting the central wedge cannot both be valley, nor can both be
mountain: One must be mountain and the other valley. The central angle is
called a local min, because locally – that is, in its immediate neighborhood – it is
a minimum angle, smaller than its neighbors to either side. We can phrase this
condition in a theorem as follows:

Theorem 4.3 (Local Min)

In any flat folding, any wedge whose angle is a local min must be delimited by
one mountain and one valley fold.

Exercise 4.3 (Practice) Three Theorems Check. Check which of Theorems 4.1
(Even Degree), 4.2 (Maekawa-Justin), and 4.3 (Local Min) are satisfied by the
crease pattern in Figure 4.11.

The three regularities we’ve uncovered so far are what mathematicians call
necessary conditions: Every single-vertex flat folding necessarily satisfies them.
But they may or may not be sufficient conditions: conditions on the crease pat-
tern which, if satisfied, imply the diagram can be folded flat. Indeed our three
conditions, in pairs or even all three together, are not sufficient conditions. The
holy grail in mathematics is a set of necessary and sufficient conditions, which
then completely characterize the situation. For single-vertex flat folds, these are
embodied in the Kawasaki-Justin Theorem.
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Figure 4.11. A single-vertex crease pattern for checking. (Exercise 4.3)

4.5 The Kawasaki-Justin Theorem

The Local-Min Theorem (Theorem 4.3) indicates that the measures of the wedge
angles defined by the crease pattern are important. Let us call the wedge angles
around the vertex in sequential order, θ1,θ2, . . . ,θn. We know from the Even-
Degree Theorem (Theorem 4.1) that n is even, because an even number of
creases determine an even number of wedges. We also know that:

θ1 + θ2 +·· ·θn = 360◦

because the angles completely surround the vertex. The Kawasaki-Justin The-
orem claims that a simple condition on the angles, completely ignoring the
mountain-valley pattern, provides necessary and sufficient conditions for flat
foldability:

Theorem 4.4 (Kawasaki-Justin)

A set of an even number of creases meeting at a vertex folds flat if, and only if,
the alternating sum of the determined wedge angles is zero:

θ1 − θ2 + θ3 − θ4 +·· ·+ θn−1 − θn = 0◦

The term alternating sum means that every other term has opposite sign: The
odd terms θ1,θ3,θ5, . . . are added and the even terms θ2,θ4,θ6, . . . are subtracted.
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Figure 4.12. Illustration of Kawasaki-Justin Theorem 4.4: 31◦ + 41◦ + 108◦ = 39◦ +
58◦ + 83◦.

So the alternating-sum equation is equivalent to:

θ1 + θ3 + θ5 + . . . = θ2 + θ4 + θ6 + . . .

the sum of the odd-indexed angles equals the sum of the even-indexed angles.
The phrase “if, and only if,” is mathematician’s shorthand for claiming necessary
(“only if”) and sufficient (“if”) conditions.

Figure 4.12(a) shows a 6-crease example with six wedge angles:

31◦ + 39◦ + 41◦ + 58◦ + 108◦ + 83◦ = 360◦

Their alternating sum is indeed zero:

31◦ + 41◦ + 108◦ = 180◦ = 39◦ + 58◦ + 83◦

so
31◦ − 39◦ + 41◦ − 58◦ + 108◦ − 83◦ = 0◦

The flat folding guaranteed to exist by the theorem is shown in (b) of the figure.

Exercise 4.4 (Practice) Kawasaki Theorem Check. Check if Theorem 4.4 is
satisfied by the example used in Exercise 4.3, Figure 4.11.

The claim that Theorem 4.4 provides a complete characterization of flat fold-
ability is rather remarkable, because it says nothing explicitly about the pattern
of mountain and valley folds on which we’ve been concentrating! But because
its conditions are sufficient, the alternating angle sum must somehow imply
both the Maekawa-Justin Theorem (Theorem 4.2) and the Local-Min Theorem
(Theorem 4.3). Kawasaki’s theorem implies that there must exist a way to select
creases for mountain folds and other creases for valley folds to make those
theorems work out.



68 Flat Vertex Folds

The proof of necessity proceeds just as with the Maekawa-Justin argument,
analyzing the zig-zag circular paper boundary path, as in Figure 4.8(c) (p. 62).
Again we imagine walking around this path. But now rather than concern our-
selves with the gyrations of the direction vector of travel, we concentrate on how
far we travel, measuring “how far” not in terms of linear distance, but in terms
of angular travel as seen from the central vertex. Let’s use Figure 4.12(b) as an
example. Starting at the leftmost edge of the folding and traveling rightward on
the bottommost flap, we travel an arc of 108◦ with respect to the apex x. At the
mountain fold we reverse direction and travel an arc of 83◦ leftward, then reverse
again and travel 31◦ rightward, and so on. Whether we encounter a mountain
or a valley fold is irrelevant if we are just concerned with total angular travel.
By the time we return to the start point, the total travel must be 0◦. And so the
alternating sum must be zero, which means it is necessarily zero.

That the alternating sum condition is also sufficient for the pattern to be flat-
foldable is not as easy to see, and we will have to leave it as a claim that the
Kawasaki-Justin Theorem 4.4 completely characterizes single-vertex flat fold-
ability. Given any crease pattern incident to a single vertex, and a protractor,
you can tell in advance whether or not it may be folded flat. Moreover, in an
even less obvious manner, the Local-Min Theorem (Theorem 4.3) can be used
to determine a mountain/valley assignment for the creases that will fold it flat.
Indeed, there are in general many such assignments – eight for the pattern in
Figure 4.12(a). Thus, in some sense, single-vertex flat foldings are completely
understood.

Exercise 4.5 (Understanding) Kawasaki Revisited. Exercise 4.1 concluded that
the four creases of Figure 4.6 cannot fold flat. But Theorem 4.4 is satisfied:
90◦ − 90◦ + 90◦ − 90◦ = 0. So it should fold flat. Where is the contradiction?

4.6 Above & Beyond

4.6.1 Flat Foldability is Hard

Flat origami of any artistic interest includes more than one vertex. For exam-
ple, the elegant “oval tessellation” (Figure 4.13) designed by Robert Lang has
136 vertices. Each must, individually, satisfy all the theorems of this chapter,
but it is known that, in general, this does not suffice: There are diagrams with
every single-vertex crease pattern locally “legal,” but the whole pattern cannot
be folded flat. A complete characterization of which patterns of creases are flat
foldable has remained out of reach. Perhaps the first result of what has come
to be known as computational origami implies that it might remain forever
out of reach. Marshall Bern and Barry Hayes proved in the 1990s that deciding
whether a crease pattern (even with mountain/valley labels explicitly provided)
is flat foldable is NP-hard, a computational complexity classification that means:
at least as hard as the NP-complete problems, which we saw, in Chapter 1 (p. 21),
are “intractable.” Many mathematicians believe that any NP-complete problem
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(a) (b)

Figure 4.13. Robert Lang’s Oval Tessellation, 1999.

is not only impractically difficult to solve computationally, but also that it will
forever resist being captured in a concise set of necessary and sufficient con-
ditions (because these would likely lead to tractable computations). Without
the possibility of a complete mathematical classification, the artistic core of flat
origami is not at risk of being overrun by mechanization.

4.6.2 Map Folding Complexity

I close this chapter with an unsolved problem: deciding whether or not a map
crease pattern can be folded flat. Anyone who has struggled with correctly
refolding a map in a car will appreciate the practical difficulty of the task, but
the unsolved problem concerns its computational complexity: Essentially, is
it “tractable” (technically, achievable in polynomial time) or is it intractable
(NP-complete or worse)?

You might wonder why this question is not already settled by the Bern-Hayes
result I mentioned in the previous section. The answer is that map folding is
a very special case. The map is assumed to be rectangular, with the creases
forming a regular grid of squares, with each crease segment labeled mountain
or valley. The Bern-Hayes proof fails on this special case, leaving hope that this
specific problem is tractable.

By this point you are likely wondering: What could be so hard about folding
a map? I encourage you to try to fold the example in Figure 4.14, even with the
help of the illustrated solution. The freedom to tuck layers over/under/inside of
one another gives the problem a rich combinatorial structure that has resisted
understanding. Even to answer the map-folding question for 2 × n maps – two
grid squares high by n grid squares wide – remains unsolved:
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Figure 4.14. (a) A map-folding puzzle. (b) Solution, with several squares labeled
(lightly shaded labels are facing away from viewer).

Open Problem: Map Folding
Is there an efficient method (algorithm) for deciding
whether or not a given rectangular map can fold flat,
with each grid crease segment pre-marked as either a
mountain or a valley fold?

21 43
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4321
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(a)

(b)

Figure 4.15. Folding four stamps. (Exercise 4.6)
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Exercise 4.6 (Challenge) Stamp Folding. If you have a strip of four stamps,
labeled on their tops with the numbers 1, 2, 3, 4 as shown in Figure 4.15(a), how
many different permutations of 1234 can you achieve by folding the stamps
along their perforated connections into a stack? There are 4! = 24 different
permutations of 1234. Can all of them be achieved? The convention for count-
ing is that, after folding, orient the stack so that the 1-stamp (wherever it is) is
facing upward, and then read off the stamp numbers from the stack top to bot-
tom. For example, (b) in the figure shows a folding that achieves the permuta-
tion 4321.



5 Fold and One-Cut

The most impressive result of mathematical origami discovered to date is so
surprising that it has been used as a magic trick by none other than Harry
Houdini, the great magician. The result is this. Make any straight-line draw-
ing on a sheet of paper. For example, you might draw a number of shapes: a
rectangle, a triangle, a star, some block letters, and so on (but no circles or other
curves). See Figure 5.1. Then it is possible to (cleverly!) fold the paper flat so that,
with one straight scissors cut completely through the paper, all the shapes you
drew are simultaneously cut out, leaving the original paper missing exactly those
shapes.

5.1 Examples

Square. This is so hard to believe that we’ll start with a simple example so that
you see that it at least might be possible: a square centered on a square piece of
paper; see Figure 5.2. To cut out this shape, we must fold the paper to place the
four edges of the square aligned on top of one another. Call the four corners of
the square A, B, C , D as in (b) of the figure. Crease the paper with a mountain
fold along diagonal AC . This aligns the bottom edge AB with the left edge AD
underneath, and similarly aligns the right edge BC with the top edge CD. Now
the square boundary has become an L-shape. One more symmetric mountain
fold through B as shown in (c) results in all four edges of the square lying directly
on top of one another in the four layers of the folding. Now cutting AB and the
edges underneath cuts out exactly the square and nothing else.

72
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(a) (b)

(c) (d)

?

Figure 5.1. (a) A straight-line drawing. (b) Flat folding of the paper is cut straight
through by scissors. (c) The shapes are cleanly cut out from the paper and fall out
separately (d).

This is the main idea: fold the paper so that all the edges of the drawing align
one on top of another, and so that nothing else is along this line. Then cutting
through that line cuts all the edges, and nothing else. The surprise is that this
can always be done for any straight-line drawing.

Regular 5-pointed star. Let’s take another example, the regular 5-pointed star
described by Houdini in his 1922 book Paper Magic. He first folds it down the
central line of symmetry to align the left and right halves, and then methodi-
cally aligns more and more of the edges via folds through the star center; see
Figure 5.3. A total of four folds align all ten edges on top of one another (in
eight layers of paper), and one straight cut excises the star. Voilà! This trick was
known to Betsy Ross, for she convinced George Washington to use the regu-
lar 5-pointed star on the American flag because it was easy to produce by fold
and one-cut.

The emphasis here is on the regularity of the star: All its edge lengths are
the same, all the spike angles are equal, and all the dent angles are equal.
For it is this regularity that ensures that a fold that bisects an angle (that
is, splits into two equal angles) places two equal-length edges on top of one
another.
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(a) (b)

(c) (d)

A
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B
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C

Figure 5.2. (a) A square to cut out. (b) Mountain fold along diagonal AC , and then
along opposite diagonal (c) aligns all four edges on top of one another (d).

(a) (b)

(c) (d) (e)

Figure 5.3. Houdini’s method of folding a regular 5-pointed star for one-cut.
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Figure 5.4. An equilateral triangle for fold and one-cut. (Exercise 5.1)

Exercise 5.1 (Understanding) Equilateral Triangle. Fold flat a piece of paper
with an equilateral triangle drawn on it (Figure 5.4) so that the triangle can be
cut out with one straight cut.

(a) (b) (c)

A

D C

B

x y

A

D C

B

x y

(d)

C
B

y

AD

x

Figure 5.5. (a) Mountain-fold bisectors. (b) Valley-fold perpendiculars. (c) Flat
folding ready for one-cut.

Let us now explore examples that take a few steps away from regularity: a
rectangle, and then an irregular triangle.

Rectangle. A rectangle is not as “regular” as a square, because the side lengths
differ. And indeed, bisecting the four corner angles gets us started in the right
direction, by laying the short sides on top of the long sides, but does not complete
the job, because the central portions of the long sides (AB and CD in Figure 5.5(a))
are not yet accounted for. A little experimentation should convince you that a
crease down the center of the rectangle, as illustrated, suffices to draw the two
long sides together on top of one another. But then still we are not finished,
because the points at which the bisectors converge fail to satisfy the Even-Degree
Theorem (Theorem 4.1) from Chapter 4: That theorem says there must be an
even number of creases incident to a vertex of a flat folding, but there are three
incident to x and y in the figure. More precisely, flattening demands that we
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Figure 5.6. Converting a rectangle to a square via a crimp. (Exercise 5.3)

satisfy the Maekawa-Justin Theorem (Theorem 4.2) and have the number of
mountain and valley folds incident to these vertices differ by two. In order to
satisfy this demand and at the same time not destroy the alignment already
achieved of the rectangle edges, we introduce creases known as perpendiculars,
one valley crease each from x and from y, which cross the rectangle sides at right
angles. Now we have M = 3 and V = 1 at x and y, satisfying Maekawa’s Theorem.
There are several choices here for the direction of the perpendicular crease at
each vertex. One is shown in Figure 5.5(b) (we draw perpendiculars dashed),
which leads to the flat-folding in (c) that achieves the needed fold and one-cut
overlapping of all the rectangle’s edges.

Exercise 5.2 (Practice) Perpendiculars. How many distinct ways are there to
draw perpendiculars from x and y in Figure 5.5(b)? (Don’t count symmetric
options as different.) Convince yourself that all lead to a one-cut fold for the
rectangle

Exercise 5.3 (Understanding) Rectangle Crimp. Suppose instead of following
the plan in Figure 5.5, you attempt to fold and one-cut a rectangle as illustrated
in Figure 5.6. First a “crimp fold” consisting of parallel mountain and valley folds
are used to shorten the rectangle to a square, as shown in (b) of the figure. Then
the plan for fold and one-cut of a square illustrated previously in Figure 5.2 is
followed. Will this strategy work?

Triangle. The same strategy employed for a rectangle works for an irregular
triangle. First, mountain-fold crease along angle bisectors of the three triangle
corners. These three bisectors meet at a single point, a (non-obvious!) theorem
known to Euclid. See Box 5.1. Call that single point x. Choose a valley-fold
perpendicular from x to any one of the three sides; see Figure 5.7(a) Now fold
and one-cut as in (b).
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Figure 5.7. (a) Creases for triangle. Perpendicular shown dashed. (b) Flat folding
ready for one-cut.

A B

x

C

(a) (b)

Figure 5.8. (a) Bisectors could conceivably miss converging on a single point.
(b) Bisectors in actuality meet at the center of the inscribed circle.

Box 5.1: Angle Bisector Theorem

The three angle bisectors of a triangle meet in a point. This claim is by no means
obvious; the bisectors could fail to meet at a single point, as in Figure 5.8(a).
However, when you fold the bisectors, it is immediately convincing that they
do in fact meet at a single point; see (b). It amounts to almost a physical “proof.”
This bisector theorem follows from Proposition 4 in Book IV of Euclid. This
proposition concerns inscribing a circle in a triangle, and in the course of the
proof that there is indeed a unique circle that touches all three sides, he proves
that connecting the circle center to any corner bisects the angle at that corner.
Consequently, the three angle bisectors meet at a single point, the center of
the inscribed circle.

So far we have concentrated on single shapes, but the claim of the theorem
is that any collection of shapes can be cut out simultaneously. This is one of
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Figure 5.9. Fold and one-cut of a square and rectangle simultaneously. Creasing
in the order indicated by the labels aligns exactly the edges to be cut.

the many aspects of this complex result that we have to skim over. I invite the
reader to fold the example shown in Figure 5.9 to see that indeed a square and a
rectangle can be both cut out at the same time by one slice of the scissors.

5.2 Fold and One-Cut Theorem

I hope you are now prepared to at least believe that the fold and one-cut theorem
might be true. Here it is:

Theorem 5.1 (Fold and One-Cut)

Any straight-line drawing (one composed of straight segments) on a sheet of
paper may be folded flat so that one straight scissors cut completely through the
folding cuts all the segments of the drawing and nothing else.

Unfortunately, the only known proof of this theorem is quite complicated and
beyond the scope of what we can present here. Its difficulty is indicated by the
tortured history of the proof. The theorem was discovered by three researchers,
whose junior—and driving—member Erik Demaine was 17 years old at the time.
But the proof (they subsequently realized) did not cover all possible drawings,
just “nearly all.” Later, Erik joined three other researchers to create a completely
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x y

Figure 5.10. Growing and shrinking to trace out the straight skeleton.

different proof that did cover all drawings, but subsequently they uncovered a
flaw in that proof. Now the proof has been repaired twice independently, and
the theorem regained. (See the Further Readings chapter for details.)

We will content ourselves with hinting at the “nearly-all” proof, which is
easier to grasp than the final “all” proof. The construction relies on a network
of line segments called the straight skeleton, which coincides with the creases
we have used prior to adding perpendiculars. The mountain-fold creases in
Figure 5.5(a) constitute the straight skeleton of the rectangle. They can be viewed
as the tracks of the four corners of the rectangle if it were continuously enlarged
or continuously reduced by moving all sides parallel to themselves at the same
rate toward the exterior or interior of the rectangle. See Figure 5.10. The central
crease xy corresponds to the rectangle “winking out” to a segment.

This enlargement/reduction process might be clear for a rectangle or triangle,
but it becomes less evident for shapes with “dents” or concavities. Figure 5.11(a)
shows the magnification and reduction for the boundary in a crude represen-
tation of the letter A, resulting in the straight skeleton shown in (b). We will not
pause to define the straight skeleton precisely, but you can sense that it bisects
the angle at every vertex of the shape and produces a network of segments with
its own set of vertices where creases meet. Just as in the rectangle and triangle
cases, each of these vertices may need one or more perpendicular creases to
reach a flat folding that aligns all edges. For example, the seven perpendiculars
added to Figure 5.11(c) suffice for the A-shape, as you can verify by folding the
template.

These are the two main ingredients to the proof: (1) Construct the straight
skeleton of the drawing; (2) Add perpendiculars incident to every skeleton vertex.
It turns out that not every vertex needs a perpendicular, but that’s another detail
we will not pursue. Then it remains to be shown that this construction leads
to a flat folding aligning exactly the segments of the drawing on top of one
another.

For drawings more intricate than we have so far illustrated, the behavior of
the perpendiculars can be complex, as is hinted at in the two-shape Figure 5.9
and especially for the turtle in Figure 5.12. Notice that some perpendiculars in
the turtle example “wander” about the drawing, from their start at a skeleton
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(b)(a)

(c)

Figure 5.11. (a) Growing and shrinking the shape. (b) Straight skeleton. (c) Per-
pendiculars added, and mountain/valley folds indicated by color.

vertex, before escaping to the border of the paper – for example, those ema-
nating downward from the base of the turtle’s neck. It turns out that under
contrived circumstances, this wandering can go on forever, spiraling densely
without leaving the boundaries of the paper. And this is why this proof works
for only “nearly all” drawings: For some special drawings, it requires an infinite
number of creases, and therefore an infinitely thick stack of paper to scissor
through!

Exercise 5.4 (Practice) Verify Turtle Flattening. Check that each of the 24 ver-
tices (junctions of creases) in Figure 5.12 satisfies the Maekawa-Justin Theorem
(Theorem 4.2), as they must in order to fold flat.
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Figure 5.12. Turtle. Perpendiculars are dashed.

Finally, in Figure 5.13 we make good on the claim in the Preface that the paper
dolls can be cut out with a single slice!

5.3 Above & Beyond

The same researchers who discovered the Fold and One-Cut Theorem
(Theorem 5.1) asked an interesting related question: Can every polyhedron be
flattened? The general idea here is perhaps best seen with the natural flatten-
ing of a box shown in Figure 5.14. A box is among the simplest of the class of
3D objects known as polyhedra, which will be the focus of Part III of this book.
A polyhedron is any 3D shape whose surface is composed of flat polygons, known
as its faces, and which is closed in the sense that it could enclose water without
leaking at any orientation. The box has six faces, each a rectangle. Polyhedra can
be quite complicated. For example, the elegant head in Figure 5.15 is a poly-
hedron of more than 2,000 faces. (Note its eyes are paneled with flat faces to
ensure the surface is closed.) The posed question applied to this example asks: If
this polyhedron were a hollow paper model, could it be creased and folded flat?
During the folding and flattening, the surface should not tear or pass through
itself, although it is perfectly permissible to bend the faces as much as needed
during the “crushing” process. We imagine poking a pinhole in the surface to let
the enclosed air escape.

This problem can be viewed as fold and one-cut in one higher dimension.
When describing objects, let’s use 1D, 2D, and 3D to mean one-, two-, and
three-dimensional, respectively. In the fold and one-cut problem, we have a
drawing made of 1D straight segments on a 2D sheet of paper, and the goal is
to flatten all segments to the same 1D line. The polyhedron-flattening problem
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Figure 5.13. Fold and-One-Cut creases for one of the paper dolls in Figure 0.1. Fold
down the vertical centerline first, then fold the octagonal head from the top down to
the neck, then fold the remainder. At spots the flattened paper is 14 sheets thick, so
folding all four people in Figure 0.1 at once will require cutting through 56 sheets!
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Figure 5.14. (a) A 10 × 6 × 20 box. (b) Flattening according to the creases in (a).

starts with a polyhedron (the object comparable to the drawing) made of 2D flat
faces in 3D space, with the goal of flattening all faces to the same 2D plane:

fold and one-cut: 1D segments on 2D paper fold to 1D line
polyhedron flattening: 2D faces in 3D space fold to 2D plane

Just recently, the flattening question was half-answered: yes, every polyhe-
dron has a flattened equivalent. The reason this is only half an answer is that
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Figure 5.15. A polyhedron of 2,290 faces, most of them quadrilaterals.

it remains unknown whether there is a continuous motion from the original
polyhedron to its flat version that avoids tearing and paper penetration. So the
half-result can be interpreted as saying that the polyhedron surface can be cut
up and reassembled to a flat version, taping back together the same two sides
of every cut. But it remains unresolved whether there is a flattening that never
needs to cut the surface, or – equivalently – whether the flattened version can
be continuously “inflated” back to the original polyhedron. This gap remains
despite the intuition that if you simply squash the polyhedron in Figure 5.15
with your boot (remembering to pre-puncture with a pin hole to let the air
escape), it will indeed inexorably flatten.

Open Problem: Flattening Polyhedra
Can every polyhedron be creased and then
continuously flattened?

Exercise 5.5 (Challenge) Flattening a Cube. Find creases that permit flattening
a cube.



6 The Shopping Bag Theorem

In Part I of this book, the linkages we studied all used rigid one-dimensional links.
Although the flat origami foldings we’ve examined in the previous two chapters
end up with flat “faces” between the creases, it is a rare origami folding that can
reach its final folded state without bending the faces during the construction
process. Origami designs that tuck flaps of paper into pockets, such as the map-
folding puzzle in Figure 4.14, clearly require face bending. Even forming the
standard origami crane (Figure 4.1) is impossible if the paper is only bent along
the final creases. As long as bendings do not become creasings, the properties
of paper ensure that the faces of the design – the regions bounded (i.e., outlined)
by the creases – can be smoothed flat in the final design.

The new field of rigid origami is focused on designs that can be folded without
bending the faces. We can think of the faces as rigid steel plates, hinged along
creases to the adjacent plates. Although rigidity limits the range of designs that
can be folded, those that can fold often have useful applications.

We set as the goal of this chapter proving the surprising result that the stan-
dard grocery shopping bag (Figure 6.1) cannot fold flat without bending the flat
portions of the bag. Of course collapsing a grocery bag requires bending at its
creases, but it also requires bending its flat faces. Another way to express this
result is that, were the bag built of metal plates and hinges, then an open shop-
ping bag would be rigid: it could not flex at all. Similarly, a closed shopping bag
would be stuck in its flattened configuration. This is in fact one of the reasons
the shopping bag is such a successful engineering design: Because its faces are
stiff (but not rigid), it tends to stay open rather than spontaneously collapsing,
because collapsing requires bending the resistant bag paper.

84
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Figure 6.1. A shopping bag.

In the previous two chapters, we concentrated on static, 2D origami designs.
In contrast, the focus in rigid origami is on 3D, and in particular on the 3D
dynamics as the creases are hinged. Here we see again the dihedral motions we
encountered in Chapter 3 – for example, in Figure 3.1 – but now the motions are
more intricate because they are related in patterns more complicated than those
along a single fixed-angle chain. Before turning to the Shopping Bag Theorem,
we examine two rigid origami folds that demonstrate these beautiful 3D motions.

6.1 Two Rigid Origami Examples

6.1.1 The Miura Map Fold

The Japanese astrophysicist Koryo Miura designed a clever rigid origami fold
in the 1970s for the purpose of unfolding a satellite solar array in space. The
individual solar panels are inflexible, so rigidity must be maintained. A version
of his fold was used for the Japanese radio astronomy satellite launched in 1997.
Its solar panels unfold to 10 meters in diameter; see Figure 6.2.

The panel unfolding is based on what is now known as the Miura map fold.
Starting with a rectangular piece of paper, it is made with horizontal creases
forming strips and zig-zag vertical creases in the mountain-valley pattern shown
in Figure 6.3(a). Because the creases partition all but the left and right portions
of the paper into parallelograms, it is more natural to start, not with a rectangle,
but with a piece of paper whose boundaries have been snipped to match the
parallelograms, as in (b) of the figure.

Exercise 6.1 (Practice) Miura Map Creases. Verify that the Maekawa-Justin
Theorem (Theorem 4.2) is satisfied at each vertex of Figure 6.3.
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Figure 6.2. The Japanese radio telescope with its solar panels unfolded.

(a) (b)

Figure 6.3. (a) Miura Map folding pattern for rectangle. (b) For nonrectangular
paper tiled by parallelograms.

If the paper is creased sharply and cleanly, and squeezed between diagonally
opposite corners, it collapses beautifully, as depicted in Figure 6.4. As its name
implies, the Miura Map fold is especially useful for folding maps: see Figure 6.5.
As these figures indicate, bending occurs at all the creases simultaneously –
rather unlike the usual origami folding. The ultimate end result is that the entire
sheet of paper folds flat into the space of one of its “primal” parallelograms.
It is this remarkable compaction that makes the Muira Map Fold so useful for
stowing and deploying solar panels. Or maps!
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(a)

(c) (d) (e)

(b)

Figure 6.4. A Miura Map folding collapsing from (a) flat to partially collapsed (e).

Figure 6.5. Various Miura map foldings.
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However, the emphasis in this chapter is another essential property for the
application: The parallelogram panels do not bend during the 3D collapsing
motion (or the reverse expanding motion). Thus they can be rigid solar cells
joined by hinges along the folding segments. Let’s look at another beautiful
rigid origami motion known as the “square twist.”

Exercise 6.2 (Practice) Eight Rigid Right Triangles. Crease a square in half twice,
then twice more along its diagonals, to achieve the mountain/valley crease pat-
tern shown in Figure 6.6. Convince yourself that it folds rigidly to a star-like
shape, an ‘X’ when viewed from above the central vertex.

Figure 6.6. A crease pattern to fold as rigid origami. (Exercise 6.2)

6.1.2 The Square Twist

The “square twist” is a way of rigidly folding the crease pattern shown in
Figure 6.7, leading to the pleasing motion shown in Figure 6.8. When flattened,
the original square sheet is compacted to a square half the size. This fold is often
used repeatedly to make intricate (and usually colorful!) “origami tessellations.”
We will see that the pattern of creases at the four vertices of the twisting square
is the same pattern of creases found on the side of a shopping bag.

Figure 6.7. Crease pattern for the square twist.
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(a) (b)

(c) (d)

x

γ

β
α

δ

Figure 6.8. The square twist. (a) is slightly creased from Figure 6.7. By (d), the
folding is nearly flattened to one-half its original size. Labels in (b) correspond to
Figure 6.10(b) further in the chapter.

6.2 Dihedral Angle Constraints

If you try the Miura Map fold or the Square Twist, you can sense that the motions
depicted in Figures 6.4 and 6.8 are forced: Once you start to fold one crease, all
the others follow in lock step, and simultaneously. Indeed this is true for degree-
4 vertices, which are the only type of vertices that appear in either construction.
(See p. 61 for a reminder of the meaning of “degree” in this context.) The forcing
relationship is mathematically rather complicated. The only proofs I know use
3D geometric techniques beyond what we can present here. However, although
the precise justification may be technically difficult, the relationship itself is
quite believable, especially if you play with the constructions. So the way we will
proceed is to gather together in this section a number of lemmas – none of which
we will prove, but each of which is, I hope, believable. Accepting these lemmas
will permit us to sketch a proof of the Shopping Bag Theorem.

We need four lemmas, each of which concerns 3D dihedral angles. When
concentrating on flat foldings in Chapter 4, we naturally focused on the angles
between creases as measured within the paper surface – planar angles. But with
rigid origami, which is fundamentally about 3D motions, it is the angles in 3D
that matter. In Chapter 3 (p. 39) we introduced the notion of a dihedral angle: the
angle in 3D between two planes. That is the key notion we need now, because
that is precisely what is forced in the rigid motions we have just seen.
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Figure 6.9. A cube and a tetrahedron. (Exercise 6.3)

Exercise 6.3 (Practice) Dihedral Angles. Refer to Figure 6.9. Calculate: (a) the
(internal) dihedral angle between a pair of faces of a cube that share an edge, and
(b) the (internal) dihedral angle between a pair of faces of a regular tetrahedron.
[Trigonometry is needed for the tetrahedron.]

Box 6.1: Greek Letters for Angles

In honor of the ancient Greek mathematician Euclid, the “Father of Geometry,”
it is common to use Greek letters to represent angles. The use is not only
honorific. It is often much less mentally taxing to mark an angle α than to cite
it as, say, “BAC , which is typical in U.S. high-school textbooks. The first four
letters of the Greek alphabet, corresponding to the English a,b,c,d, are used
the most frequently. See the table below.

Name Symbol

alpha α

beta β

gamma γ

delta δ

theta θ

When just one angle needs to be identified, the common convention is to use
θ . Or when many need identification (as in the Kawasaki-Justin Theorem 4.4),
subscripting θ is typical: θ1,θ2, . . .. We will follow these conventions – consider
it training for reading professional mathematics!
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6.2.1 Degree-4 Lemma

The first lemma we need is the mathematically deepest:

Lemma 6.1 (Degree 4)

If four creases meet at a vertex in the middle of the paper (surrounded by 360◦
of paper), then the dihedral angles of opposing creases are equal.

The lemma is easiest to see when the creases form perpendicular compass direc-
tions, as illustrated in Figure 6.10(a). The crease out the East side of x must be the
same as the crease to the West side in the sense that the 3D dihedral angle along
segment ax must equal that along the segment xc: so α = γ . The two are tied
together through the collinearity of {a,x,c}. (Recall from p. 32 that “collinear”
means “lying on the same line.”) The same holds for the North-South creases
bx and xd: β = δ. The lemma is far less obvious when the creases are not per-
pendicular, but it remains true, for example, for each vertex of the Square Twist
construction shown in Figure 6.10(b). Again there is forced equality between the
dihedral angles of opposing creases: α = γ and β = δ. This can best be seen in
the top left corner of Figure 6.7(b) – or better yet, by folding the square twist
yourself !

6.2.2 Plus-Sign Lemma

The second lemma is easy to see, but we first need to establish some conventions
on the exact meaning of the dihedral angle at a crease. A dihedral angle of 180◦

c

b

a

d

γ

β

α

δ

x

c

ba

d

γ

βα

δ
45°

90°

90° 135°

(a) (b)

x

North

South

EastWest

Figure 6.10. (a) Creases meeting orthogonally. (b) Creases meeting as in the
Square Twist fold, Figure 6.8(b). In both cases, it must be that α = γ and β = δ.
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(a) (b)
(c)

γ

α

x

γ

β α

δ
x

60ºγ

β

α

δ

x

δ

Figure 6.11. (a) The + sign creases. When β and δ are folded at some nonflat
dihedral angle (here 60◦), then either α = γ = 180◦ as in (b), or α = γ = 0◦ as in (c).

means entirely uncreased, whereas a dihedral angle of 0◦ = 360◦ is a sharp fold
bringing the paper on either side of the crease into contact (whether a mountain
or valley fold will not matter). These extreme dihedral angles correspond to
the flat foldings studied in Chapter 4, so we will call them flat angles. Nonflat
dihedral angles – angles intermediate between 0◦ and 180◦ – have a fundamental
3D structure.

Lemma 6.2 (Plus Sign)

If four creases meet perpendicularly (as in Figures 6.10(a) and 6.11(a)) and an
opposing pair is folded to a nonflat dihedral angle, then the other pair must be
folded to a flat angle.

I encourage the reader to fold a + sign into a sheet of paper and experiment as
in Figure 6.11 until the claim of the lemma feels right.

6.2.3 Degree-3 Lemma

The third lemma we need says, essentially, degree-3 vertices are impossible.

Lemma 6.3 (Degree 3)

If exactly three creases are incident to a vertex x, no two of which lie on the same
line, then all their dihedral angles are 180◦ (i.e., they are not creases), so x is not
a true vertex – the neighborhood of x is flat.

(Recall from p. 61 that a “neighborhood” of a point is a small region surrounding
the point.)
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Figure 6.12. Collapsing the corner of a shopping bag.

The Even-Degree Theorem (Theorem 4.1) from Chapter 4 showed that a ver-
tex must have even degree, but that was in order to fold flat. Lemma 6.3 is saying
that, even in 3D, under the rigid origami model, you cannot fold the paper to
a surface where the creases create a vertex of degree 3. Look again at the con-
figuration in Figure 6.10(b). If the segment dx is uncreased (δ = 180◦), then the
degree-4 vertex x reduces to degree-3 and the Degree-4 Lemma (Lemma 6.1)
then says that bx must be uncreased as well (β = 180◦). Now x is reduced to
degree 2. And a degree-2 vertex is only possible if the two incident creases align
along the same line, in which case x is not a true vertex.

6.2.4 Bag Corners

The last lemma we need concerns the corner of a shopping bag, where a vertex
is surround by 270◦ of paper – three 90◦ angles – rather than the usual 360◦ of
paper. We will specialize the lemma to just what we need:

Lemma 6.4 (Bag Corner)

If the dihedral angle θ in Figure 6.12, along the vertical crease incident to the
corner a, is 0◦, then the whole corner is flattened.

There is more that could be claimed to justify the 3D motion illustrated in the
figure, but we only need that closing that one dihedral angle forces the entire
construction to fold flat. Again this lemma becomes plausible through physical
manipulation of a such a corner.

6.3 The Shopping Bag Theorem

Let a grocery shopping bag (Figure 6.1) have width W , depth D, and height H . At
my grocery store, W = 12 inches, D = 7, and H = 17. Because H ≥ 1

2 D, two 45◦
valley creases from the bag corners meet at a point d on the side of the bag, as
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H
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c'
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b�
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aa'

cc� dd�

bb�
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bb�
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(a) (b)

(c)

aa�

cc�

bb�

(d)

0° < θ < 180° 0° < θ < 180°

θ

Figure 6.13. (a)Model of a “tall” open grocery shopping bag. θ is the dihedral angle
between the front and right faces. (b) Network of creases between vertices. The arc
from b to b′ represents the crease along the back of the bottom. (c) When 0 < θ < 180◦,
creases cd, cc′, c′d′ disappear. (d) And now the creases incident to d and d′ disappear,
leaving an open shopping bag.

illustrated in Figure 6.13(a). We say that any bag with H ≥ 1
2 D is a tall shopping

bag (to distinguish it from a short bag latter).
Crease cc′ in the figure is the valley fold that permits collapse of the bag,

at which time cc′ is tucked behind the aa′ mountain fold. Call any state of the
bag – open, closed, or intermediate – a configuration of the bag.

Theorem 6.1 (Shopping Bag)

If the faces of a tall shopping bag are rigid, then the bag may be either fully
opened (as illustrated) or fully collapsed flat. It has no other configurations. In
particular, the bag is rigid in either the opened or flattened configuration.

We now offer a proof sketch of this theorem by repeated use of Lemmas
6.1–6.4. It is a sketch rather than a formal proof, not only because we did
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not prove any of the lemmas we are using, but also because even accepting
those lemmas, we still rely on intuition at several junctures. Warning: The proof
requires some patience and concentration as it marches methodically through
cases and subscases!

We label the vertices as in Figure 6.13(a). Part (b) of the figure displays the
network of crease connections between the vertices in a way that will make the
reasoning easier to follow. We partition the analysis into three cases that exhaust
all possibilities, with the cases depending on the dihedral angle (call it θ) along
the vertical crease incident to vertex c from above: θ is nonflat, θ = 0◦ (closed
flat), and θ = 180◦ (opened flat).

Case 1. θ is nonflat, so it lies between 0◦ and 180◦. This case covers the standard
open bag, when θ = 90◦. Figure 6.13(a,b) shows that c is a degree-4 vertex at
which the creases meet perpendicularly. So the Plus-Sign Lemma (Lemma 6.2)
applies, and says that the cross creases must have dihedral angle either 0◦ or
180◦. We consider each option in turn.
(a) The dihedral angle along cc′ and cd is 180◦, that is, there is no crease.

Applying the Degree-4 Lemma (Lemma 6.1) to c′ says that the outgoing
crease c′d′ must also have dihedral angle 180◦—again, no crease. So the
network of creases has been reduced to that shown in Figure 6.13(c).
Now apply the Degree-3 Lemma (Lemma 6.3) to vertex d (and symmetri-
cally, d′): These degree-3 vertices must be flat – in effect, not there either.
Now the network is reduced to Figure 6.13(d), which shows that both the
front of the bag, and its sides, are uncreased. And so we have the fully
open configuration of the bag.

(b) The dihedral angle along cc′ and cd is 0◦, that is, it is folded closed flat.
If the dihedral angle along cd is 0◦, the Degree-4 Lemma (Lemma 6.1)
says the outgoing crease db is also 0◦. This forces the right side of the bag
to fold flat, and the left side follows symmetrically. Thus, both the front
and sides are folded flat, and we are in the flat configuration of the
bag.

Case 2. θ = 0◦. The Degree-4 Lemma (Lemma 6.1) implies that the crease ca
incident to the bag corner is also at 0◦. The Bag-Corner Lemma (Lemma 6.4)
now says that the entire corner is flat, which then forces the whole bag to fold
flat.

Case 3. θ = 180◦. This last case is impossible. If we don’t crease down the verti-
cals incident to a and to a′, then the bag splays out (roughly like the network
drawings in Figure 6.13[b,c,d]), and there is just not enough paper to wrap
around the back and close the bag.

Thus all lines of reasoning lead to just the two configurations of the bag: either
fully opened, or folded flat in the standard manner. Because there are just two
isolated configurations, the bag cannot rigidly move between them. Next time
you open or close a shopping bag, see if you can sense the bending of the faces,
which this theorem says are necessary for any movement to be possible!
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(a) (b)
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Figure 6.14. (a) A box with H short enough so that the valley creases from the
corners do not meet. (b) Flat folding of the box.

Gift-Box Folding. We called the standard shopping bag a tall shopping bag
because its height is at least half its depth, H ≥ 1

2 D. If instead H < 1
2 D, then the

vertices d and d′ on the side of the bag disappear, because the 45◦ creases from
the bag corners do not have enough height H to meet. The result is something
closer to a gift box (without a top), and indeed this can now fold to a flat configu-
ration in the rigid origami model, with all intermediate positions achievable. See
Figure 6.14. (Note that this is different from the flattening of a box considered in
Chapter 5 (Figure 5.14), which permitted bending of the faces.) Given that our
proof sketch of the Shopping Bag Theorem 6.1 traced logic along the network of
creases, it is perhaps not surprising that if that network is fundamentally altered,
the proof no longer holds.

6.4 Above & Beyond

You can think about the rigid origami examples in this chapter as objects that
transform between two different shapes by movements articulated at hinges:
from a compact storage form to the fully unfolded solar panels; from an open
gift box to a flattened gift box, and so on. In this sense, rigid origami constructions
are akin to the “transformer toys” so popular now. The mathematical equivalent
of a transformer toy is a 3D hinged dissection. There is a dissection between
a pair of objects if there is a partition of one object into pieces that may be
reassembled to form the other object. A hinged dissection is a dissection where
the pieces are hinged at vertices so that the whole hangs together as a single piece
(it is connected), and the transformation can be effected by rotations about the
hinges. 2D dissections have been a staple of puzzle enthusiasts for over a century,
and there is an extensive literature on the topic. But here we concentrate on
3D, where less is known. Any rigid origami construction with two preferred
configurations can be viewed as a 3D hinged dissection where the pieces of the
dissection happen to be thin: the rigid faces of the construction.

Exercise 6.4 (Practice) Four Hinged Squares. Figure 6.15 shows a 4×1 rectangle
made from four unit squares hinged together. Can it be hinged in the plane to
produce a 2 × 2 square so that squares 1 and 4 are diagonally opposite, that is,
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1 2 3 4

Figure 6.15. Four squares hinged to a rectangle. (Exercise 6.4)

they share only a corner, not a side? During the hinging motions, one square is
not permitted to overlap another.
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Figure 6.16. Hanegraaf’s hinged dissection of a 2 × 1 × 1 block (a) to a cube (g).

Although many fascinating hinged dissections of 3D objects have been found
by now, to me the pinnacle of the art is the amazing hinged dissection between
a 2 × 1 × 1 rectangular block and a cube shown in Figure 6.16. This dissec-
tion was found in the 1960s by Anton Hanegraaf, a Dutch civil engineer with a
passion (and talent!) for dissections, answering an open problem circulating at
the time. Dissections between this pair of objects were known, but not hinged
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dissections. His elegant 7-piece hinged dissection resolved the issue. The seven
pieces into which the block in Figure 6.16(a) is partitioned are shown in (b). Four
hinges along a line connect pieces {1,2,3,4} together. These rotate counterclock-
wise (c), carrying pieces {5,6,7}along, to produce an intermediate block (d). Four
different hinges, again along a line, connect pieces {4,5,6,7}, which rotate clock-
wise (e) to produce the cube (e, f). Because the cube must have the same volume
as the 2×1×1 block, the cube’s side length is 3√2, the cube root of 2, about 1.26.

Exercise 6.5 (Practice) Hanegraaf Block. What are the dimensions of the
intermediate block in Figure 6.16(d)?

A famous question posed by the mathematician David Hilbert in 1900 asked
if any pair of objects (polyhedra) with the same volume have a dissection into
polyhedral pieces of one to the other. The answer no soon followed: For example,
there is no dissection of a regular tetrahedron to a cube.

Another question, at least implicit a century ago, asks: If two 3D objects
do happen to have a dissection, then do they also have a hinged, dissection?
Although this is not definitively settled as of this writing, there has been a recent
breakthrough on the same question in 2D, which was also unresolved. A group
of researchers (including three college students) proved that every pair of 2D
shapes of the same area have a hinged dissection, building on the long-known
fact that, unlike in 3D, there is, always a dissection in 2D. Whether their proof
technique can extend to 3D remains unclear. In any case, this venerable topic is
very much alive today.
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The third and final part of this book explores folding and unfolding the surface
of a polyhedron, a 3D solid shape whose surface is made of flat faces. We break
the tradition of the previous two parts of always including at least one beautiful
theorem in each chapter, for a central question in unfolding polyhedra has so
resisted solution that there are as yet no general theorems. We explain this cen-
tral open problem, “Dürer’s Problem” for convex polyhedra, in the next chapter,
and follow that with a variation for “orthogonal polyhedra” on which there are
results to report. We close with the inverse of unfolding, folding a piece of paper
to a polyhedron, which has at its core a beautiful and powerful theorem of the
Russian geometer Alexandr Alexandrov. Investigation of folding polyhedra has
led to many surprises and leads to several unsolved but accessible problems for
the reader to ponder.



7 Dürer’s Problem: Edge Unfolding

7.1 Albrecht Dürer’s Nets

In 1525, the German painter and thinker Albrecht Dürer published his master-
work on geometry, whose title translates as “On Teaching Measurement with
a Compass and Straightedge.” The fourth part of this work concentrates on
polyhedra: the Platonic solids, the Archimedean solids, and several polyhedra
“discovered” by Dürer himself. Figure 7.1 shows his famous engraving, “Melen-
colia I,” in which he used a polyhedron of his own invention a decade earlier.
His book presented each polyhedron by drawing a net for it: an unfolding of
the surface to a planar layout. The net makes the geometry of the faces and the
number of each type of face immediately clear to the eye in a way that a 3D draw-
ing, which necessarily hides part of the polyhedron, does not. Moreover, a net
almost demands to be cut out and folded to form the 3D polyhedron. Figures 7.2
and 7.3 show two examples of Dürer’s nets. The first is a net of the snub cube,
which consists of six squares and 32 equilateral triangles. The second is a net
of the truncated icosahedron, consisting of 12 regular pentagons and 20 regular
hexagons. We know the spherical version of this polyhedron as a soccer ball.

Dürer’s nets, an apparently original representational invention, have since
become a standard presentation method for describing polyhedra. For example,
Figure 7.4 shows a modern display of nets for the so-called Archimedean (or
semiregular) solids. But in the nearly 500 years since Dürer’s work, no one has
proved that a net exists for every convex polyhedron, even though there are
often several or even many different nets for any given polyhedron. It is this
long-unsolved problem that we will examine in this chapter.

101
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(a) (b)

Figure 7.1. Dürer’s 1514 engraving, “Melencolia I,” with polyhedron enlarged.

Figure 7.2. Dürer’s net for a snub cube.
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Figure 7.3. Dürer’s net for a truncated icosahedron.

7.2 Convex Polyhedra

To understand Dürer’s problem, we need to understand what a polyhedron is,
what specifically a convex polyhedron is, and what a net is.

Polyhedron. A polyhedron is the surface of a 3D solid object, composed of
flat, convex polygonal faces. We will be concerned in this chapter only with poly-
hedra without holes, so we exclude polyhedral tori and other such objects that
could be hung on a thread through a hole. Each face of a polyhedron is bounded
by edges that are straight segments. Edges meet at vertices, the sharp corners on
the surface. We briefly introduced the concept of a polyhedron in Chapter 5, but
for our current purposes, we need this more precise characterization.
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Great rhombicuboctahedron

Truncated dodecahedron

Small rhombicuboctahedron

Small rhombicosidodecahedron

Snub cube

Cuboctahedron
Truncated tetrahedron

Snub dodecahedron

Great rhombicosidodecahedron

Truncated octahedron

Icosidodecahedron

Truncated cube

Truncated icosahedron

Figure 7.4. Nets for the 13 Archimedean solids. The nets here for the snub
cube and for the truncated icosahedron are both different from those used by Dürer
(Figures 7.2 and 7.3).

Figure 7.5. The five Platonic solids: tetrahedron, cube, octahedron, dodecahedron,
icosahedron.

The most famous polyhedra are the five “regular” Platonic solids shown in
Figure 7.5, known for at least 2,500 years. Despite the name “solid,” our definition
of a polyhedron is the thin surface enclosing the volume, rather than the solid
itself.
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a
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θ=238º

Right turn

Left turn

(b)(a)

v

Figure 7.6. This polygon is not convex because (a) a clockwise traversal makes a
left turn, or (b) not all the points on ab are in the polygon. Here v is a reflex vertex.

Box 7.1: Convexity

A shape S is convex if, for any two points a and b in S, all the points of the line
segment ab connecting those points are also in S. As Figure 7.6(b) illustrates,
if a polygon has a vertex v at which the internal angle θ is greater than 180◦
(a reflex vertex), then one can find two points a and b on either side of v such
that the segment ab is partially exterior to the polygon. Conversely, if ab is
wholly inside for every possible a and b, then there can be no dents. The same
holds for 3D polyhedra as well.

Convexity plays an important role in mathematics. My college’s library has
twenty-two books with “convexity” in their title, including one named sim-
ply “Convexity”! We describe convexity from the point of view of angles on
the boundary of a shape. But a little thought shows that the angles of a con-
vex polygon being less than 180◦ is a consequence of the formal definition
above.

Convex Polyhedron. ThePlatonic solidsareall convexpolyhedra,whichmeans,
essentially, they have no dents. In 2D, a convex polygon is a closed figure
composed of straight edges joined at vertices, with the property that if you
walked around the boundary clockwise, you would make only right turns at
each vertex. A left turn would constitute a dent. See Figure 7.6(a). Another way
to think about this is that the internal angle at every vertex of a convex polygon is
less than 180◦. A vertex at which the internal angle exceeds 180◦ is called a reflex
vertex (which is more memorable than calling it a “concave vertex”). Box 7.1
gives a more formal definition of convexity.

In 3D, just as a convex polygon has no reflex vertices, a convex polyhedron
has no reflex edges. Recall that the dihedral angle (which we encountered on
p. 89) is the 3D angle at the join of two planes. For a convex polyhedron, the
dihedral angle formed by the two faces meeting at each edge is less than 180◦.
For the cube, this dihedral angle is 90◦ at each convex edge (as we saw earlier
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in Exercise 6.3[a]). The polyhedron we showed in Figure 5.15 is a nonconvex
polyhedron with many reflex edges – for example, those ringing the elegant
neck.

Net. Now that we know what a convex polyhedron is, we finally define what
constitutes a net. A net is an unfolding of the surface of a polyhedron produced
by cutting the polyhedron along some of its edges and flattening the surface to
a single, nonoverlapping piece in the plane.

The key aspects of this definition are:

1. The net is planar.
2. It is a single piece.
3. It is the result of cutting polyhedron edges. This is called an edge unfolding.
4. It is non-self-overlapping in the plane, so that noncut points do not unfold

on top of one another.

These four properties mean that we could cut out a net drawn on paper with
scissors, crease along edges, and fold back to the 3D polyhedron. Our definition
is intended to capture the standards Dürer set down by his example. His net
for the truncated icosahedron (Figure 7.3) is just barely nonoverlapping, with
some pentagons almost touching some hexagons, as is the net for the same
polyhedron in Figure 7.4. It makes sense to permit boundaries to touch, because
that would still allow the net to be cut out with scissors. What is forbidden is more
substantial overlap, where cutting out the net would slice through the interior
of some faces.

Exercise 7.1 (Understanding) Melencolia Polyhedron. Is the drawing of the visi-
ble faces of the polyhedron in Dürer’s “Melencolia I,” shown earlier in Figure 7.1,
consistent with the interpretation that it is a cube with two diagonally opposite
vertices cut off (truncated)?

7.3 The Open Problem

Now we can pose the unsolved question, which we take the liberty of calling
“Dürer’s Problem” even though there is no evidence that he recognized it as
claim that needed proof:

Open Problem: Dürer’s Problem
Does every convex polyhedron have a net?

Despite almost 500 years of many people drawing nets for convex polyhedra,
no one has come up against an example that has no net. On the other hand,
there is no proof that every convex polyhedron does have a net, despite years of
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(a)

(b) (c)

x

z y

x

z

y

x

z
y

Figure 7.7. (a) Cube with corner truncated. (b) Overlapping unfolding. (c) A net:
nonoverlapping.

effort since the problem was first formalized as a precise mathematical question
in 1975.

You might think that it is obvious that a convex polyhedron has a net, because
when the surface is cut open and flattened, it “spreads out,” and so there should
be plenty of room in the plane to avoid overlap. This is certainly true for the regu-
lar and semiregular polyhedra that have been the focus of attention for hundreds
of years. It might not even be clear how overlap can ever occur. Figure 7.7(b)
shows an unfolding of a cube with one corner truncated that leads to overlap.
But (c) of the figure shows that it is easy to avoid the overlap by cutting slightly
differently to reposition the problematical face.

Still, it could be that a more complicated and irregular convex polyhedron,
such as the egg-shaped object in Figure 7.8, may not have a net. There are an
infinite number of convex polyhedra, so resolving Dürer’s problem requires a
proof.

Julie DiBiase proved (when a college student) that every tetrahedron – that is,
every convex polyhedron with exactly four vertices – has a net. But even this is
not as obvious as it might seem. Consider the thin, nearly flat tetrahedron shown
in Figure 7.9(a). One choice of cutting leads to overlap (b), although again it is
easy to find other cutting choices, such as (c), that do produce nets for this
tetrahedron.

Exercise 7.2 (Understanding) Cube Net. Can a cube be cut along edges and
opened to a net in such a way that the cuts form one, single connected path,
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Figure 7.8. A convex polyhedron whose 100 vertices are randomly sprinkled on
the surface of an ellipsoid.
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(b)
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c d
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dc

Figure 7.9. The four faces are colored blue on the outside and red on the inside.
(a) A nearly flat tetrahedron. Edge ad is in back. (b) Overlapping unfolding from cutting
the edges ab, bc, and cd. (c) A net obtained by cutting the edges ac, cd, and db.



Spanning Cut Tree 109

Figure 7.10. A nonconvex polyhedron of 36 triangle faces that has no net.

with no “branching”? In other words, could the cuts be achieved by one trail of
a knife over the surface, without ever lifting the knife off the surface?

7.3.1 Nonconvex Polyhedra

I have emphasized that Dürer’s open problem is only unsolved for convex poly-
hedra. In the late 1990s, several groups of researchers independently discovered
nonconvex polyhedra that have no net. One of these discoverers, Alexei Tarasov,
was a high school student at the time (now he’s a professor). Figure 7.10 shows
an especially elegant example, a “spiked tetrahedron,” found by Erik Demaine
when he was 18 years old, in collaboration with several others (now Erik is also
a professor). I will not give a proof here that this polyhedron has no net. But, as
you can imagine, the proof must show that every possible edge unfolding leads
to overlap, and there are many possible edge unfoldings.

Because any proof that a polyhedron has no net must grapple with “every
possible edge unfolding,” we next take a look at some necessary properties edge
unfoldings must possess.

7.4 Spanning Cut Tree

The skeleton of a polyhedron is the network of edges and vertices on the surface –
effectively a wireframe view of the polyhedron without its faces. It is a portion
of the skeleton that is cut to make a net. We call an edge of the polyhedron that
is cut as part of an unfolding a cut edge. Figure 7.11 shows a set of seven cut
edges that unfold a cube to the “Latin-cross” net. Five of the 12 edges of the cube
skeleton are not cut in this unfolding. What we seek are a set of conditions on
the collection of cut edges that must hold for the unfolding to be a net. We first
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Figure 7.11. The Latin-cross unfolding of the cube. The cut edges are marked in
yellow.

state the necessary conditions using technical jargon, after which the terms will
be explained:

Lemma 7.1

The cut edges of an unfolding that produces a net for a polyhedron form a
spanning tree of the skeleton of the polyhedron.

We need to explain the phrase “a spanning tree of the skeleton.”
A tree is a collection of edges that never forms a cycle or loop. It is called a

tree because the edges “branch out.” The branches of a tree cannot dovetail and
connect, for that would form a cycle of edges. A cycle must be avoided because it
will surround some collection of faces and separate the surface into two or more
pieces, as in Figure 7.12. Finally, a spanning tree is a tree that touches every
vertex. So the eight vertices of a cube are each touched by the spanning cut
tree in Figure 7.11. A more complex example is shown in Figure 7.13(b), which
displays the cut edges that Dürer used to obtain his net of the snub cube. A close
look shows that these edges indeed form a spanning tree of the polyhedron’s
24 vertices.

Exercise 7.3 (Understanding) Octahedron Spanning Trees. What is the fewest
number of edges in a spanning tree of an octahedron (Figure 7.14)?

Now we can prove Lemma 7.1. If the cut edges do not form a collection of
trees (a forest), then they contain at least one cycle, by the definition of “tree.”
We’ve already seen that this leads to violation of the one-piece condition of the
definition of a net (p. 106). The cut edges are connected by the boundary of the
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Figure 7.12. A cycle of cut edges separates out a piece of the surface. (The
polyhedron here is the small rhombicuboctahedron.)
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Figure 7.13. (a) A tree. (b) Dürer’s spanning cut tree on the snub cube. The
tree in (a) is structurally the same as the tree in (b). The base face B (on which the
polyhedron rests) and several vertices are labeled in both.

Figure 7.14. Octahedron to cut open. (Exercise 7.3)
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net, so they must form a single tree, rather than a collection of disconnected
trees.

Suppose the tree is not spanning. That means that there is some vertex v of
the polyhedron not touched by any cut edge. But this means that v retains its
3D structure, and so cannot be flattened. This violates the planarity condition of
the definition of a net. For the net to be planar, the cuts must span the vertices.

Thus we have established Lemma 7.1: The cut edges must form a spanning
tree to have any hope of producing a net. So the spanning tree condition is
necessary. Does this help us to solve Dürer’s problem? The lemma effectively
covers three of the four conditions on a net, but does not address the crucial
fourth condition: The net should be nonoverlapping. And indeed the spanning
tree condition is far from sufficient to guarantee a net. In fact, the cuts used to
produce our overlapping examples (Figures 7.7 and 7.9) do form spanning trees.

To this day, no one has discovered necessary and sufficient conditions for
a collection of cut edges to unfold to a net. Consequently, any potential coun-
terexample to the conjecture that every convex polyhedron has a net must thwart
every possible spanning tree. And there are a lot of spanning trees! For the egg-
shaped polyhedron in Figure 7.8, there are more than 500,000 different spanning
trees.

Exercise 7.4 (Challenge) All Cube Nets. Find all the different nets for a cube.

7.5 Some Polyhedra with Nets

The investigation of Dürer’s Problem has as yet yielded no grand theorem, let
alone a definitive answer. However, a few special classes of convex polyhedra
are known to have nets. To describe these classes, we will use the concept of the
convex hull. In 2D, suppose we mark a set of points in the plane by pounding in
nails at each point, leaving a portion of the nail above the plane, and then stretch
a rubber band around these nails. The convex hull of the points is the polygon
determined by the shape of the stretched rubber band. Perhaps you can see that
it is always a convex polygon – no concavities. In 3D, we have to imagine a set of
points fixed in space. The convex hull of the points is the the convex polyhedron
determined by wrapping a set of points in 3D as tightly as possible with plastic
wrap. I “constructed” the polyhedron in Figure 7.8 by computing (via a complex
computer program) the convex hull of random points on an ellipsoid.

Now with this notion, we can define the classes of polyhedra for which nets
are known. Let B be a convex polygon in a plane. Make a second copy of B
directly vertically above B, lying in a parallel plane; call that copy A. The convex
hull of the vertices of A and B is a right prism, “right” because all the vertical
side faces (the lateral faces) are rectangles with right angles. If we permit A to
shift around, remaining in a plane parallel to the base face B, the result is still
a prism, but now an oblique prism, whose lateral faces are parallelograms. See
Figure 7.15(a,b). Both of these classes are subclasses of a more general shape, a
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prismoid, whose side faces are trapezoids. Now A and B are no longer congruent
copies of one another, but each edge of A is parallel to one of B. I proved that
every prismoid has a net, as illustrated in Figure 7.15(c): All lateral edges are cut,
and all but one edge of A is cut, and the shape unfolds like the petals of a flower
exposed to the sun. The only delicate part of the proof is deciding which edge of
A not to cut. Not all choices always lead to non-overlap (although they do in this
example).

A related class of shapes includes the pyramids. A pyramid is the convex hull
of a base convex polygon B and a single point a (the apex) anywhere above
B. The natural petal unfolding determined by cutting every edge incident to a
leads to a net; see Figure 7.16(a). A dome is a generalization of a pyramid with the

(a)

(c)

(b)

AA

B

A

A

B

Figure 7.15. (a) A right prism. (b) An oblique prism. (c) Unfolding of a prismoid to
a net.

BB

(a) (b)

a

Figure 7.16. (a) A net for a pyramid. (b) A net for a dome.
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Figure 7.17. A deltahedron formed by partitioning the faces of a truncated tetra-
hedron (one of the Archimedean solids in Figure 7.4) into equilateral triangles.

property that every face shares an edge with the base convex polygon B, just as in
a pyramid, but now there is no apex vertex that all faces touch; see Figure 7.16(b).
Again the petal unfolding leads to a net, a theorem for which there are now three
different proofs.

One more class, “higher-order deltahedra,” was proved to always have a net
by Daniel Bezdek, as part of his award-winning ninth-grade Canadian Science
Fair project. These are polyhedra whose surface is composed entirely of equilat-
eral triangles, including faces (e.g., hexagons) partitioned into several triangles.
See Figure 7.17 for an example.

These few classes – prismoids (including oblique and right prisms), domes
(including pyramids), and deltahedra – are the only infinite classes of convex
polyhedra for which it has been proved that they each have a net.

A related class of polyhedra for which there is as yet no proof that nets always
exist is the prismatoids. A prismatoid is the convex hull of two different convex
polygons A and B lying in parallel planes. It is very similar to a prism or a prismoid
(and its name is similarly confusing!), but in general, the lateral faces are not
quadrilaterals, but rather triangles, as shown in Figure 7.18. Although this is

A

B

Figure 7.18. A prismatoid, the convex hull of two convex polygons lying in parallel
planes.
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only a tiny piece of Dürer’s open problem, it is at this writing unsolved. I invite
the enterprising reader to tackle this “open subproblem.”

Open Subproblem: Edge-Unfolding Prismatoids
Does every prismatoid have a net?

Exercise 7.5 (Practice) Unfolding Right Prisms. The right prism in Figure 7.15(a)
is a prismoid and all prismoids have petal unfoldings to nets. Can you think of
a different way to unfold a right prism? Your method should work for any right
prism.

7.6 Above & Beyond

If we don’t restrict ourselves to only cutting along edges of the polyhedron (Con-
dition [3] in our definition of a net), we can find some beautiful theorems. I will
describe one of these to conclude this chapter.

A general unfolding lets us make arbitrary cuts to produce the unfolding. The
cuts can run anywhere through the polyhedron faces. Our goal is the same: find
a collection of cuts that unfold the surface to a single, planar, nonoverlapping
piece. Let us call this a general net. There are now several different proofs that
every convex polyhedron has a general net. All of them depend on the concept of
a shortest path on the surface between two points a and b. As its name suggests,
a shortest path is the minimum-length route to travel from a to b on the surface –
the optimal path for an ant to walk between the two points.

Two Properties of Shortest Paths. Shortest paths have many mathematical
properties, two of which are important for this result. First, a shortest path never
passes right through a polyhedron vertex: It is always shorter to go around a
vertex than through it, just as it is always shorter to avoid the peak of a hill while
hiking. Second, when a shortest path crosses a polyhedron edge, it does so in
such a way that the planar unfolding of the two faces sharing the edge straightens
the path: A shortest path unfolds straight across every edge. See Figure 7.19.

Exercise 7.6 (Practice) Shortest Paths on Cube. Let x be the point in the middle
of the top face of a cube, and a, b, and c points on a vertical edge as illustrated
in Figure 7.20: a and c are the edge endpoints, and b is the midpoint of the edge.
(a) To which of the three points a, b, c (if any) is the shortest path on the surface
from x unique, so that there is exactly one shortest path from x to that point?
(b) Find all the shortest paths from x to a, b, c, including those paths tied for
shortest.
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Figure 7.19. A shortest path (green) crossing an edge of a polygon unfolds to a
straight segment (red).

x

c

b

a

Figure 7.20. Find the shortest surface paths from x to a, b, and c. (Exercise 7.6)
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Figure 7.21. (a) 2×1×1 box. Box faces are labeled: Bt,F,T,R,L,Bk for Bottom, Front,
Top, Left, Right, and Back respectively. (b) Star unfolding with respect to x.
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One unfolding that always produces a general net is the star unfolding.
This concept was introduced by the great Russian mathematician Alexandr
Alexandrov in 1948, but only proved to be nonoverlapping in the 1990s.

It works like this. Pick any point x on the surface of the polyhedron not at a
vertex, where the shortest path from x to each vertex is unique. Now draw the
shortest path from x to each vertex of the polyhedron in turn. Figure 7.21(a)
illustrates these paths for a rectangular box, with x in the middle of the bot-
tom face. The collection of these paths satisfies Lemma 7.1: They form a tree
that spans the vertices. The star unfolding is produced by cutting all the short-
est paths and unfolding, as shown in (b) of the figure. Each shortest path
unfolds to a straight line segment, as required by the second property of shortest
paths.

Although nonoverlap looks almost obvious in this symmetric example, it
is less obvious, although now proved, for more generic convex polyhedra.
Figure 7.22 shows a more typical star unfolding. If you cut the unfolding
in (a) out of paper, and tape together the cuts between adjacent copies of
x (open circles), it will form the particular convex polyhedron of 11 vertices
shown in (b) of the figure (in a highly nonobvious way!). Moreover, it uniquely
folds to this polyhedron, by a theorem of Alexandrov that we will explore in
Chapter 9.

Exercise 7.7 (Practice) Refolding a Star Unfolding. This is an exercise for read-
ers with both patience and some manual dexterity! Cut out the unfolding in
Figure 7.22(a) (you can download it from this book’s website), and tape together
adjacent cuts from x to each numbered vertex, and verify that you do obtain the
polyhedron with vertices labeled as in (b).
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Figure 7.22. (a) The star unfolding of an 11-vertex polyhedron, illustrated in (b) to
a different scale. The unfolding in (a) folds (away from the viewer) to the polyhedron
in (b), joining each pair of adjacent edges between two x’s and the numbered vertex
between.



8 Unfolding Orthogonal Polyhedra

We just learned that every convex polyhedron has a general net, and we saw an
example in Figure 7.10 of a nonconvex polyhedron that does not have a net (cut-
ting along edges only). This naturally raises the question: Does every nonconvex
polyhedron have a general net? This is yet another unsolved problem. As with
Dürer’s problem, no counterexample is known, but there is not much evidence
that the answer to the general unfolding question is yes. If every polyhedron
does have a general net, it would certainly make a stunning theorem!

Because this problem seems difficult, researchers have focused on a spe-
cial class of nonconvex polyhedra known as orthogonal polyhedra, where
“orthogonal” means “at right angles.”

8.1 Orthogonal Polyhedra

You can think of orthogonal polyhedra as those you could build out of Lego
blocks. An orthogonal polyhedron is a polyhedron where each edge is parallel
to one of the axes of a standard right-angled xyz-coordinate system. If all edges
are parallel to an axis, then all faces are parallel to a coordinate plane: either
xy (horizontal) or xz (vertical, front or back) or yz (vertical, side, left or right).
Any pair of faces of an orthogonal polyhedron that share an edge either lie in
the same plane (they are coplanar) or meet at right angles to each other, that is,
orthogonally.

The general unfolding question was answered in 2007 for orthogonal poly-
hedra: yes, all orthogonal polyhedra have a general net. The proof is rather
complicated, so I will only describe it in general terms in the “Above & Beyond”
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section. In the rest of the chapter, we look at a more approachable special case,
and again challenge the enterprising reader with an unsolved problem.

Box 8.1: Arrays

An array is a rectangular arrangement of numbers, like that shown in
Figure 8.1(a). The term “array” is used in computer languages, whereas
“matrix” is used in mathematics to represent an array of numbers that often
is viewed as a unit and manipulated in various ways. In this chapter, we use
arrays solely as a convenient representation of a rectangular collection of ter-
rain heights. Arrays have rows and columns with the natural interpretations.
One number in the array occupies an array cell.

8.2 Orthogonal Terrains

The special class of polyhedra we examine is known as orthogonal terrains.
Suppose we have a rectangular grid divided into squares, and on each square
we place a block of some height. Each square is 1 unit on a side, a unit square.
This results in a polyhedral representation of a Digital Elevation Model (DEM).
The heights can be arranged in a rectangular array of numbers. (See Box 8.1 on
arrays.) If an array cell has height h, then a 1×1×h block or tower is placed on
the corresponding unit square in the rectangular base. An example is shown in
Figure 8.1.

DEMs are typically obtained from satellite radar data. The U.S. Geological
Survey offers the National Elevation Data set covering the whole United States
in a grid whose square cells cover 30×30 meters. So the entire DEM is an array
of roughly 150,000×100,000 cells, one height per cell – 60 GB to download! It is
a curious thought that a polyhedral version of this model has a net, for that is
the claim:

Theorem 8.1

Every orthogonal terrain polyhedron has a net.

So here is a class of nonconvex polyhedra that do have an edge unfolding that
avoids overlap. We should make clear, however, that to find this unfolding we
need the freedom to cut along any seam between adjacent towers, even if the
faces meeting there are coplanar, and so the dihedral angle (see p. 40) is 180◦.

Our explanation of the steps of the proof of this theorem will rely on a series
of illustrations. We will imagine that we are standing in the −y halfspace in the
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Figure 8.1. An array of heights, and the corresponding orthogonal terrain, with
the frontmost and rightmost tower heights indicated.

coordinate system displayed in Figures 8.1 and 8.2. The “front” of the polyhedron
is the collection of faces nearest us, forming the “front wall.” The “back” is the
wall farthest away, and the “left” and “right” walls are to the left and right sides
as we face the front.

1. To find the edge unfolding, we start by cutting along the top edges of the
right, left, and back walls as in Figure 8.2(b), and unfold these three walls to
the base xy-plane as units, leaving them attached to the rectangular base.

2. Next, we swing the base and its three dropped wall attachments 180◦ about
the line at the bottom of the front wall, as in Figure 8.2(c).

3. Now we cut all but the top edge of the tallest front tower. If there is more than
one tallest tower, we choose any one to remain attached. (In our example,
two towers are tied at height h = 5.) This lets the front wall swing out about
this uncut edge, as in Figure 8.2(d), ultimately placing the base and all four
attached walls in the same horizontal plane at z = h. You can see that so far
none of these unfoldings cause overlap.

4. The fourth step is the heart of the process. At each unit on the y-axis, there
is a left-to-right sequence of faces running parallel to the x-axis on the top
of the polyhedron, connecting all those towers at the same y coordinate; see
Figure 8.3. We call this an x-strip. An x-strip consists of horizontal 1×1 top
faces, one per tower at that y coordinate, connected by vertical left and right
faces up and down each tower side, forming a snake-like, sinuous strip.
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Figure 8.2. Unfolding the walls and base of P.
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Figure 8.3. An x-strip, for the frontmost towers in Figure 8.1.

We cut along both sides of each x-strip, except for one edge on either
side, whose specification we defer to the fifth step below. These cuts permit
us to unfold each x-strip as a unit, into a (long) rectangle stretching in the
x-direction. Figure 8.4(a → b → c) illustrates the process. For example, the
first x-strip, running along the edge of the front face, eventually stretches out
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to a 24×1 rectangle (see ahead to Figure 8.5). We unfold all x-strips this way
simultaneously.

Exercise 8.1 (Practice) x-strip length. Verify the claim that the strip shown
in Figure 8.3 unfolds to a 24×1 rectangle.

5. The trickiest part of the unfolding is choosing “bridge” rectangles that connect
the x-strips so that we can avoid overlap. For each pair of adjacent x-strips,
we look at the height differences between the towers in the front and back of
the two strips. Then we choose the bridge between them to be the connecting
vertical rectangle with the greatest height difference. If several rectangles tie
for tallest, any one may serve as the bridge. The bridge rectangle may be a
front tower face or a back tower face.

If we look at the first two strips of our example in Figure 8.1, we see that
the frontmost strip has a tower of height 2 with a tower of height 7 directly
behind it in the second strip. The front rectangle of height 5 connecting the
two strips (marked in Figure 8.4) is selected as the bridge between these two
strips.

Now, when the second strip is laid out in the plane containing the base, it
is separated from the first strip in the y-direction by the height of the bridge
and aligned horizontally so that the bridge connects the strips. As mentioned
earlier, all edges along the front edge of the second strip are cut except for
the edge of the bridge rectangle. Figure 8.4 shows how the stretching of the
x-strips horizontally and the bridge separation are achieved simultaneously.
An overhead view of the final net is shown in Figure 8.5(a).

One more detail: If two adjacent strips are identical, they are unfolded next
to one another without a separating gap. We can imagine there is an “empty
bridge” selected anywhere between them.

(a) (b) (c)

x

z y

5
bridge

5
5

Figure 8.4. Unfolding the top faces of P into x-strips connected by y-bridges.
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Figure 8.5. (a) Overhead viewof final net for the polyhedron in Figure 8.1(b). Bridge
rectangles are shaded blue. (b) Overlapping unfolding corresponding to Figure 8.6.

Choosing the tallest rectangles as bridge rectangles avoids overlap because
all other vertical faces between the strips are shorter or at least no longer than
the bridge, and so when they are attached to one strip they do not overlap with
the layout of the next strip. In the first two strips of Figure 8.5(a), the bridge of
height 5 pushes the layout of the second strip in the y-direction far enough to
avoid overlap with all the shorter rectangles attached to the first strip. As this
bridge displacement is repeated for each successive strip, overlap is avoided.

There is some boundary touching when several rectangles are tied with the
bridge for tallest. But this is still a net: You could cut the shape out of paper and
fold exactly to the polyhedron by reversing the unfolding procedure.

This completes the proof of Theorem 8.1.

Exercise 8.2 (Practice) 2 × 2 Terrain. Draw out the unfolding of this 2×2 terrain,
following the steps in the proof of Theorem 8.1.[

3 4
1 2

]

Exercise 8.3 (Understanding) n × n × 1 Box. Suppose every cell of a n×n terrain
has height 1: ⎡

⎢⎢⎢⎣
1 1 1 · · ·1
· · · · · ·
1 1 1 · · ·1
1 1 1 · · ·1

⎤
⎥⎥⎥⎦
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Following the unfolding procedure as described, draw out the unfolding for
arbitrary n.

8.3 Grid Unfoldings

Orthogonal terrains are a rare class of nonconvex polyhedra for which there is a
procedure for edge unfolding to a net. Even minor generalizations of the class of
polyhedra bring us to the unknown. For example, suppose we simply remove a
few towers so that the base of the polyhedron is no longer rectangular. Figure 8.6
shows the polyhedron of Figure 8.1 with four towers removed, so that the base
has a dent in its right side. Following the proof steps of Theorem 8.1 leads to the
overlapping unfolding shown in Figure 8.5(b). What went wrong?

The second and third x-strips are separated by a bridge of height 3, but the
backs of the four towers in the second row adjacent to the gaps have heights 5,
4, 7, and 7. These rectangle heights are too tall to be accommodated in the gap
created by the bridge, and overlap results.

No one has found a procedure that guarantees an edge unfolding to a net for
the class of orthogonal polyhedra consisting of vertical towers on an arbitrary
base, a class called Manhattan towers in the literature. However, there is a pro-
cedure that produces a general net (p. 115) by using cuts through faces rather
than solely along edges.

A general net permits arbitrary cuts as long as the final unfolding is a net. For
orthogonal polyhedra, however, it is natural that the cuts be parallel to the axes
rather than completely arbitrary; it is also natural to try to minimize the number
of cuts inside faces. This leads to an intermediate class between edge unfoldings

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 6 6 4 6 3 2 6 7 5
4 7 4 4 6 3 2 2 5 6
4 5 4 6 5 4 4 2 3 7
2 5 4 5 7 7 3 3 4 4
2 5 6 7 6 4 7 6 5 2
3 5 6 7 7 6 5 5 5 5
3 3 4 4 4 5 5 6 6 7
3 4 2 5 4 5 0 0 0 0
4 1 3 5 3 6 5 4 7 7
2 1 3 1 4 4 5 5 2 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x

z
y

Figure 8.6. An array of heights, with four cells of zero height. The corresponding
orthogonal polyhedron has a gap in the third row.
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and general unfoldings, known as grid unfoldings. Imagine each face partitioned
into a finer grid, with grid lines parallel to the axes, with all cuts along the grid
lines. For Manhattan towers, there is a procedure that produces a general net if
every face is first refined by a 5×5 grid, and all cuts are along these grid lines.
This procedure will produce a general unfolding of the polyhedron in Figure 8.6,
although it would be complicated to work out.

We can think of the net for orthogonal terrains guaranteed by Theorem 8.1
as being cut along a 1×1 grid, that is, the faces are not divided up at all. So here
is another challenge to the reader. Find a procedure for unfolding Manhattan
tower polyhedra to a general net, with cuts following a grid coarser than 5×5.
Because no counterexample is known, perhaps a 1×1 grid is possible, a true edge
unfolding.

Open Subproblem: Unfolding Manhattan Towers
Does every Manhattan towers polyhedron have an
edge unfolding to a net?

8.4 Above & Beyond

We opened this chapter by mentioning that, although unfolding nonconvex
polyhedra to a general net is unsolved, it is now established that all orthogo-
nal polyhedra have a general net. The procedure that establishes this produces

B1

B5

B4
B3

B2

Figure 8.7. An orthogonal polyhedron, analyzed in Figure 8.8.
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nets similar to grid unfoldings, with all cuts parallel to the axes. Unlike the sit-
uation with a grid unfolding, however, there is no standard-size grid that we
know will always suffice. Instead each face might need be partitioned into a
very fine grid, with the consequence that the unfolded net will have extremely
thin sections. Let’s look at how this works on the small example in Figures 8.7
and 8.8.

The orthogonal polyhedron consists of five “blocks” labeled B1,B2,B3,B4, and
B5 in the figure. The unfolding starts at the point of B1 marked s Figure 8.8 (s for
“start”) and ends immediately to the left of that, at the point t (for “termination”).
The unfolding “peels” the surface in a thin strip that winds around each block
in a helical fashion, jumping from one block to another at various stages. The
peels cover the top, bottom, left, and right faces; the front and back face are
handled differently. Let us track the peel in the figure until the pattern becomes
clear.

At s the yellow strip heads off to the right, spiraling around block B1 in a
clockwise direction until it jumps to B2, the large, central block. Note that the
yellow spiral leaves a gap for the purple spiral to (much later) return, interleaving
as it spirals counterclockwise around B1 and ends at t . The yellow spiral only
tracks along the top of B2 for a short distance before it descends to block B3.
Once it reaches the front face of B3, yellow turns to green and the strip climbs
back up to the top of B2, and makes its way leftward over to B4.

After spiraling around B4, the strip (now yellow again) makes one complete
cycle around B2 and then climbs up to the backmost block B5. It spirals around
B5, turns around on its back face, and then threads back around B5 (now green),
over to B4 again (purple), threading the gap left in the earlier encounter with B4,
rises to B2 (now tan), revisits the front block B3, then back up to B2 (now purple),
and finally around B1 again to terminate at t , just left of s.

The net itself is almost impossible to illustrate. Just a small piece of its begin-
ning is shown in (b) of the figure. All the jags and turns of the spiraling strip are
carefully chosen so that, when laid out in the plane, the strip unfolds to a rising
and falling staircase-like shape. The strip always stretches out left to right; it
never curls around leftward after taking a rightward step. The staircase nature of
the strip unfolding guarantees that it never overlaps itself. After the top, bottom,
left, and right faces of the polyhedron are stripped away, the front and back faces
are hung in pieces like laundry from a clothesline, with the marked arrows point-
ing down. The left-to-right nature of the staircase ensures that there is always
room for this hanging. The result is an extremely long and thin peeling of the
entire surface into a single piece, a general net.

The example in Figure 8.7 hardly needs such a complicated unfolding! But
the point is that the procedure works for any orthogonal polyhedron, no matter
how complex.

Finding a simpler net – for example, one that cuts along a coarser, fixed-size
grid – remains unsolved.
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B1

B5

B4

B3

B2

B1

B3 B3

B2

t

(a)

x

z

y

(b)

s

s

Front

Front

Front

Front

Right

Bottom

Figure 8.8. (a) Five-block example from Figure 8.7. The hidden bottom and right
faces are projected out to mirrors so the paths may be tracked. The strip changes color
as it alters direction of spiraling. (b) Start of the unfolding (not to same scale), with
front face pieces (hashed with arrows) labeled.
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Figure 8.9. An orthogonal torus to edge-unfold. (Exercise 8.4)

Exercise 8.4 (Challenge) Orthogonal Torus. Find an edge unfolding of the
orthogonal torus shown in Figure 8.9, composed of eight cubes glued together.

Finally, we conclude with the counterpart of Dürer’s unsolved problem with
which we opened the chapter, another unsolved problem of more recent vintage:

Open Problem: General Unfolding
Does every nonconvex polyhedron have a general net?



9
Folding Polygons to Convex
Polyhedra

The previous two chapters focused on unfolding the surface of a polyhedron to
a net. It may seem that the reverse process – folding – could harbor no more
secrets than unfolding. But there is a surprisingly rich structure here, and, as
usual, many unresolved questions.

The situation is this. Someone presents you with a polygon cut out of paper,
which may or may not be a net for a polyhedron, either an edge-unfolding net or
a general net. Your task is to fold it to a polyhedron if possible. Because so little
is known about nonconvex polyhedra, we concentrate almost exclusively (until
the Above & Beyond section) on convex polyhedra (see p. 105 for the defini-
tion), where some deep theorems have been obtained and interesting questions
raised. We will see that the richness of folding stems from that surprising fact
that a net can often refold to many different different polyhedra, not just the one
from which it originally derived.

For those familiar with origami polyhedra folding, that is not what is meant
here. Let us stipulate that to fold a polygon to a polyhedron means to make
creases that allow the polygon be folded to form the surface of a 3D polyhedron,
without any wrapping overlap on the surface and without leaving any gaps.
Origami foldings of, for example, a cube have extensive overlap. We want a
folding to be the exact inverse of the unfoldings considered in previous chapters.
A polygon is any planar (nonoverlapping) shape whose sides are all straight
segments. Thus a polygon looks like a net. But it is only a net if it is the unfolding
of a polyhedron.

The two examples in Figure 9.1 show that an equilateral triangle is a net
for a regular tetrahedron, and that the Latin cross is a net for the cube, as we

130
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(b)(a)

Figure 9.1. (a) Folding an equilateral triangle to a regular tetrahedron. (b) Folding
the Latin cross to a cube.

saw earlier in Figure 7.11. Both are nets because in the reverse cut-open-and-
unfold view, the cuts in both these examples are along polyhedron edges. The
reader may be surprised to learn that the equilateral triangle can fold to an
infinite variety of different convex polyhedra, and that the Latin cross can fold
to precisely 23 different convex polyhedra! My goal in this chapter is to explain
these two claims.

Figure 9.2. Can this polygon fold to a cube? (Exercise 9.1)

Exercise 9.1 (Practice) Folding to Cube? Can the polygon shown in Figure 9.2
fold to a cube by creasing along the dashed lines?

Exercise 9.2 (Understanding) Bow Tie. Can the “bow-tie” polygon in Figure 9.3
fold to a convex polyhedron? If so, to which polyhedron?

Figure 9.3. A polygon to fold. (Exercise 9.2)
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c

b

a

β

Figure 9.4. An unfoldable polygon Pu.

9.1 Questions

Consider again the situation where you are given a polygon and asked to fold
it to a convex polyhedron if possible. A natural first question is: Is it always
possible? In other words: Does every polygon fold to some convex polyhe-
dron? The answer is no, and the proof is simple enough to present in its
entirety.

The question can be answered by a single counterexample of an “unfoldable”
polygon. We now show that the one in Figure 9.4 – call it Pu – indeed cannot be
folded.

The key observation is that the total angle surrounding any true vertex v
(corner) of a convex polyhedron is less than 360◦. To use the technical language
introduced earlier, the sum of the face angles incident to v is less than 360◦. This
result is one reason why a sixth Platonic solid does not exist: Gluing together
three equilateral triangles to a vertex produces the tetrahedron, four yields the
octahedron, five the icosahedron, but six times 60◦ equals 360◦ makes a flat
region, not a true vertex. Another way to phrase this constraint – more useful
for our purposes – is that the total angle surrounding any point p on a convex
polyhedron (vertex or not) is ≤ 360◦. When the angle is exactly 360◦, p is not
a vertex. This constraint does not hold, incidentally, for nonconvex polyhedra,
for which there is no limit to the total face angle that might surround a surface
point.

The consequence of the angle constraint is that when we glue the perimeter
of any polygon to itself to form the folding (actually taping is more physically
realistic, but we’ll use the word “glue”), we can never glue more than 360◦ around
any one point, for otherwise, the polyhedron would not be convex.

Recall our earlier classification of the vertices of a polygon as either convex,
having internal angle < 180◦, or reflex, having internal angle > 180◦ (p. 105). The
polygon Pu in Figure 9.4 has three consecutive reflex vertices (a,b,c), with a very
small complementary exterior angle β at b. All other vertices are convex, with
interior angles 90◦, which is larger than β.
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Now we imagine how we might glue up the perimeter in the vicinity of the
problematic vertex b. We have only two options. Either we “zip” together edges
ba and bc, or some other point or points of the perimeter glue into the exterior
β-gap at b. The first possibility forces a to glue to c, exceeding 360◦ there, vio-
lating the angle constraint. So this option is ruled out. The second possibility
cannot occur with Pu, because no perimeter point has a sufficiently small inter-
nal angle to fit inside β at b. This constraint rules out the second possibility, and
shows that Pu cannot fold to any convex polyhedron.

So now we know that sometimes polygons can, and sometimes they cannot,
fold to a convex polyhedron. The natural next question is: Which polygons can
fold to a polyhedron? Already here we reach the frontier of knowledge: There
is as yet no satisfactory answer to this question. In particular, there is no char-
acterization of which polygons fold and which do not, except in certain special
cases, which we will explore below. Nevertheless, there is now an algorithm,
implemented in publicly available software, that will take any specific polygon
as input and tell you whether it can fold, and if so, give some information about
the convex polyhedra to which it can fold. Before we can explain this somewhat
mysterious statement, we turn to the powerful theorem that sits at the heart of
this research.

9.2 Alexandrov’s Theorem

Alexandrov’s theorem is a deep and beautiful result, whose statement, fortu-
nately, is elementary and so easily grasped. However, his 1948 proof is quite
intricate and challenging even for professional mathematicians, and remains a
subject of continuing study today. In fact, exactly 60 years later, a new proof
was discovered, still intricate and challenging but with one advantage over the
original, which we will explain in Section 9.5.

I will simplify and specialize his theorem to our needs. First, let us define an
Alexandrov gluing of a polygon to be just what we need for a folding to a convex
polyhedron. There are three conditions that must be satisfied for a gluing to be
Alexandrov:

(a) The gluing must entirely consume the perimeter of the polygon with sections
that match up: Every point p of the perimeter must be matched with one
or more points of the perimeter. Here we allow isolated points to match
with themselves, as we did in Figure 9.4 when considering “zipping” in the
neighborhood of b.

(b) The gluing creates no more than 360◦ angle at any point. This constraint is
our surface-angle condition for convex polyhedra.

(c) The gluing should result in a topological sphere, that is, a surface that could
be deformed to a sphere. In other words, not a donut-like torus (Figure 8.9),
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or a shape with several holes, but rather what amounts to a lumpy, closed
bag.

This third condition is difficult to state precisely without introducing technical
language from topology. Regardless, I hope it is clear that if a gluing has any
hope of producing a convex polyhedron, it must be an Alexandrov gluing, for
the three conditions just specify what is obviously necessary – no gaps, the 360◦
condition, and producing a roughly spherical shape.

Exercise 9.3 (Challenge) Alexandrov Gluing. Can you find a way to glue the
boundary of the polygon in Figure 9.2 to itself so that it satisfies the three
conditions above, and therefore is an Alexandrov gluing?

Here is Alexandrov’s 1948 theorem:

Theorem 9.1 (Alexandrov)

Any Alexandrov gluing corresponds to a unique convex polyhedron (where a
doubly covered polygon is considered a polyhedron).

Let us ignore the parenthetical caveat for a moment to emphasize what
this theorem is saying: The obvious necessary conditions for a polygon to fold
to a polyhedron are also sufficient! Not only that, the resulting polyhedron is
unique. This means that any time you can find an Alexandrov gluing, you can
be sure it will create a convex polyhedron. We will see that one catch is that
Alexandrov’s proof was an “existence proof”: So you have created a particular
convex polyhedron but you don’t know what it looks like!

We have already seen two Alexandrov gluings in Figure 9.1, but their fold-
ings were obvious, both owing to their regularity and because the crease lines
are self-evident. But consider the unusual folding of an equilateral triangle in
Figure 9.5(a), which as we will see, produces the tetrahedron shown in (b) of the
figure.

Let us first check that it is an Alexandrov gluing. Condition (a) is satis-
fied because no perimeter sections are left unmatched. Condition (b) is met
at the gluing together of {x,A,B,C}, whose angles sum to 360◦ exactly, and at
the four “pinch” or fold points {a,b,c,d} glued to themselves, with each angle
180◦, forming the flat side of the triangle. All other points glued together are
180◦ + 180◦ = 360◦. That condition (c) is satisfied is perhaps best verified by
taping a folded paper triangle according to the gluing instructions and seeing
that the result is a sort of bag. I encourage the reader to try this. The triangle
need not be perfectly equilateral, and any point x about a third of the way from
corner A will suffice to produce this shape. Alexandrov’s theorem says that the
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Figure 9.5. Alexandrov gluing of an equilateral triangle. (a) The three corners
{A,B,C} all glue to point x. The four fold points {a,b,c,d} become the four vertices of
the resulting tetrahedron in (b), two of whose faces are �abd and �bcd. The folding
of (a) to produce (b) is toward the viewer. Note that the angles at the three vertices
{A,B,C} “disappear,” forming 180◦ at x on tetrahedron edge ab.

resulting shape is a particular convex polyhedron. In fact it is the irregular tetra-
hedron, shown in (b) of the figure, which you might be able to coax out of your
taped-triangle bag with some nudging.

Another Alexandrov folding of an equilateral triangle is obtained by sim-
ply creasing it down one altitude and folding it in half to a doubly cov-
ered, flat 30◦−60◦−90◦ triangle. And this is the reason for the exception
clause in Alexandrov’s theorem: Gluings might produce zero-volume flat
“polyhedra.”

9.3 Folding Convex Polygons

We remarked earlier that the equilateral triangle folds to an infinite variety of
distinct convex polyhedra. In fact, this is true for every convex polygon (Recall
(p. 105) that a convex polygon is one without dents: every vertex is convex.)
We now show that this surprising claim follows from Alexandrov’s Theorem
(Theorem 9.1).

Take any convex polygon and mark a point x anywhere on its boundary. Walk
around half the perimeter of the polygon and mark the resulting point y. Let us
use the square shown in Figure 9.6(a) as an example. Next glue the perimeter
half from x to y to the half from y to x. This is possible because these perimeter
halves have the same length. Now we argue that this is an Alexandrov gluing.
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Figure 9.6. (a) A perimeter-halving folding of a unit square. x is 1
4 from the lower

left corner, and y is 1
4 from the upper right corner. The length 2 perimeter half is

glued symmetrically as indicated. The folding produces (not obviously!) an octahedron.
(b) Crease pattern of edges, and vertices of octahedron. As in Figure 9.5, the corners
of the square “disappear” in the folding.

Certainly it consumes all the perimeter (a), because one-half of the perimeters
gets glued to the other half. The key is requirement (b): No more than 360◦ is
glued at any one point. At the fold points x and y, the amount of angle is ≤ 180◦:
Exactly 180◦ if the fold point is not at a vertex, and less if the fold point is a
vertex. Any other two points glued together either sum to exactly 360◦ if neither
point is a vertex of P, or to less than 360◦ if one or the other is a vertex of P. It
is here that convexity of P is used: Any convex vertex has an interior angle less
than 180◦. That the gluing is a topological sphere (c) can be seen if one views the
perimeter-halving gluing as zipping up a pocketbook.

So, Alexandrov’s theorem says that every perimeter halving folds to a con-
vex polyhedron. The folding of Figure 9.6(a) leads to an octahedron following
the crease pattern in (b). Now if we imagine sliding x around the boundary,
and y correspondingly, we obtain a “continuum” of foldings, an infinite vari-
ety. Although it is not obvious that among this continuum there are also an
infinite number of different (noncongruent) polyhedra, that is nevertheless the
case.

Figure 9.7 shows the continuum achieved by perimeter-halving foldings of
a square, which I worked out together with three college students. Starting
from the doubly covered 1 × 1

2 rectangle achieved by creasing down a midline
(3-o’clock position in the diagram) the continuum continues clockwise to the
doubly covered right triangle achieved by creasing down a diagonal (9-o’clock
position). This corresponds to sliding x from the midpoint of an edge of the
square to an adjacent corner. Continuing sliding x repeats the shapes in mirror
image (clockwise from 9- to 3-o’clock). The octahedron to which Figure 9.6(b)
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Figure 9.7. Continuum of perimeter-halvings of square. Four crease patterns
are shown. The octahedron at the 6- and 12-o’clock positions corresponds to
Figure 9.6(b).

folds shows up twice, one the mirror image of the other, at the 6- and 12-o’clock
positions. Incidentally, this figure represents only a portion of the polyhedra
foldable from a square. The full variety is even richer!

As a practical experiment, you can cut out of paper any convex polygon, start
creasing it at an arbitrary x, and “zip” up the boundary from there with tape, and
eventually arriving at y; no measurement of the perimeter need be made. The
result will be a handbag- or pita-like shape, which, by Alexandrov’s theorem,
may be coaxed (with patience!) to reveal the creases that fold it into its unique
polyhedral form.

So far researchers have explored the “space” of all foldings of regular poly-
gons, but there remains as yet little general understanding of the phenomenon.
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9.4 The Foldings of the Latin Cross

We have just canvassed the foldings of convex polygons. How about nonconvex
polygons? Here we enter largely unknown territory. My coauthors (including
five college students) and I decided to explore the foldings of the Latin cross,
as a test case. What we found, to our surprise, is that the Latin cross folds not
only to the cube (Figure 9.1(b)), but to 22 other distinct convex polyhedra: two
flat quadrilaterals, seven tetrahedra, three pentahedra, four hexahedra, and six
octahedra. See Figure 9.8. Here no continuum exists – the reflex vertices block the
sliding possible with convex polygons that leads to the continuum of Alexandrov
gluings.

How these foldings are achieved is by no means obvious. Figure 9.9 illustrates
just one of the 23 foldings in detail, a delicate folding to a tetrahedron. The other
foldings are equally intricate.

Latin cross: Cube:

Flat quadrilaterals:

Tetrahedra:

Pentahedra:

Hexahedra:

Octahedra:

Figure 9.8. The 23 polyhedra foldable from the Latin cross.
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Figure 9.9. Folding the first of the tetrahedra in Figure 9.8.

Aside from this one detailed example, we are left largely without a general
theory encompassing the foldings of nonconvex polygons:

Open Problem: Folding to Convex Polyhedra
Which polygons fold to convex polyhedra? Is there
a characterization of the shapes of polygons that do
fold to convex polyhedra, distinguishing them from the
shapes that do not?
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Box 9.1: Algorithm

An algorithm is a definite procedure for accomplishing some computational
task, with clearly specified steps. The steps of the algorithm must be precise
enough so that they could be implemented in some appropriate program-
ming language. Thus every algorithm is potentially encapsulated in a computer
program, although many algorithms remain theoretical descriptions without
programmers actually implementing them in software. An example is the
procedure for unfolding an orthogonal polyhedron to a net from the previ-
ous chapter: It is an algorithm (described in a published paper), but it has not
been implemented, largely because it would be rather difficult to do so.

It turns out, for subtle reasons, the reverse relationship does not hold: Not
every computer program implements an algorithm! This is because a pro-
gram might never stop running, but for it to constitute an algorithm, it should
eventually produce an answer.

9.5 Above & Beyond

As mentioned previously, there is an algorithm (and software) to take any given
polygon and list all of its Alexandrov gluings. (See Box 9.1 on “algorithm.”) But
to which (unique) polyhedra these gluings correspond is unknown. The reason
is that Alexandrov’s 1948 proof of his theorem is what mathematicians call an
“existence” proof: He proved that a unique polyhedron “exists” corresponding
to any Alexandrov gluing, but his proof gives no hint what the polyhedron looks
like. You might wonder, then, how all the polyhedra you have seen in this chapter
were derived from their Alexandrov gluings? The answer is that my students and
I constructed the polyhedra displayed in Figures 9.7 and 9.8 by laborious ad hoc
techniques that cannot extend much beyond octahedra.

This situation dramatically changed recently when a group of researchers in
Germany discovered a new proof of Alexandrov’s theorem, which is a “construc-
tive” proof, the opposite of an existence proof: The logic of the proof leads to a
method to construct the polyhedron whose existence is guaranteed by the the-
orem. The construction is, alas, rather complicated, requiring the solution of a
particular “nonlinear differential equation” for which only approximate numer-
ical approaches are known. Nevertheless, they have implemented software that
(approximately) solves the differential equation and constructs the unique 3D
shape guaranteed by Alexandrov’s theorem from a gluing. It remains to be seen
if this advance will lead to new insights into the world of foldings.

I close the book with an amazing theorem: Every polygon folds to some (usu-
ally nonconvex) polyhedron! This is true even if the foldings are restricted to
perimeter halvings. For a time I thought that the example in Figure 9.10 was a
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y

x

Figure 9.10. This polygon folds to a nonconvex polyhedron. Points x and y divide
the perimeter into two equal halves. The folding “zips” the perimeter closed from x
to y. A short initial segment in the neighborhood of x is indicated: The red portion of
the boundary glues to the symmetric blue portion. This perimeter gluing continues
around to y.

counterexample to this hypothesis, but instead this does fold to a nonconvex
polyhedron. However, I have no idea what the polyhedron looks like!

The theorem was proved (in 1996) by two students of Alexandrov, appro-
priately enough: Yuri Burago and Viktor Zalgaller. Their theorem says that any
gluings of polygons (including a perimeter-halving folding of a single polygon)
can be realized in 3D as a polyhedral surface. The surface is in general noncon-
vex, and has a large number of flat triangle faces. Their proof is constructive but
quite complicated. At one point they incorporate an intricate idea of John Nash,
famous for both his mathematical results (he shared the 1994 Nobel Prize in
Economics) and for being the subject of the 2001 movie A Beautiful Mind. The
complexity of the techniques used in their proof leaves me without a clear idea
of what the polyhedron that results from the folding in Figure 9.10 looks like. I
don’t know, even roughly, how many faces it has! But I know it exists.

Here we have very much reached the frontier of current knowledge. Perhaps
by the time you read this there will be a simpler proof of the Burago-Zalgaller
theorem, as this is an active area of current research. Check the web site
http://www.howtofoldit.org for updates!

http://http://www.howtofoldit.org


10 Further Reading

Here I provide two types of resources: first, general “further reading” on the top-
ics covered in each chapter, usually more technical and detailed presentations
of similar material (there is rarely any less technical presentation available). Sec-
ond, some of the original sources for the material are cited, even if they are at the
graduate-student level. I try to indicate the level of expertise needed to benefit
from each resource.

The most frequent citation you’ll see below is to my own monograph, Geo-
metric Folding Algorithms: Linkages, Origami, Polyhedra, coauthored with Erik
Demaine, out of which this book grew. I’ll refer to this throughout as Geometric
Folding Algorithms. This monograph is targeted at graduate students and pro-
fessional researchers, but strives to be largely accessible with considerably less
preparation. It has 421 scholarly citations, and rather than repeat many of these
here, I concentrate on what is directly relevant to the material presented in this
book.

Erik D. Demaine and Joseph O’Rourke. Geometric Folding Algorithms:
Linkages, Origami, Polyhedra. Cambridge University Press, July 2007.
http://www.gfalop.org.

Chapter 1

Much of the material on reachability, including the Two-Kinks Theorem, is
described in more detail in my college textbook Computational Geometry in C,
Chapter 8. The Above & Beyond material on intractability is covered in Chapter 5
of Geometric Folding Algorithms. NP-completeness is covered in any algorithms
textbook. I recommend one here but there are plenty of others.
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Joseph O’Rourke. Computational Geometry in C. Cambridge University Press, 2nd
edition, 1998.

Thomas H. Cormen, Charles E. Leiserson, Ron L. Rivest, and Cliff Stein. Introduction
to Algorithms. MIT Press, Cambridge, MA, 3rd edition, 2009.

Chapter 2

Kempe’s remarkable idea for a linkage that “signs your name” (a formulation
that was only articulated a century later) is described in his still readable 1887
monograph, How to Draw a Straight Line. The recounting of the history is drawn
from the delightful book, How Round Is Your Circle, which includes a chapter
on straight-line linkages, written in an accessible style. The fascinating story of
The Turk is drawn from the book of the same title by Tom Standage. For more
technical details on linkages – including Kempe’s Universality Theorem – see
Chapter 3 of Geometric Folding Algorithms.

Alfred Bray Kempe. How to Draw a Straight Line: a Lecture on Linkages. Macmillan &
Co., 1877.

John Bryant and Chris Sangwin. How Round Is Your Circle?: Where Engineering and
Mathematics Meet. Princeton Univ. Press, 2008.

Tom Standage. The Turk: The Life and Times of the Famous Eighteenth-Century Chess-
Playing Machine. Walker & Co., 2002.

Chapter 3

The Unit-90◦ Theorem (Theorem 3.1) is due to Nadia Benbernou, who discov-
ered it when she was a college student. A generalization of the Piercing Theorem
(Theorem 3.2) that establishes necessary and sufficient conditions for any fixed-
angle chain to be in maxspan configuration can be found in a technically
advanced paper presented at a conference on “reconfigurable mechanisms and
robots.” The Folding@Home web site is athttp://folding.stanford.edu/.
If the one open problem I cited (p. 54) is not enough to keep you occupied,
many others on locked chains are detailed in Chapter 6 of Geometric Folding
Algorithms.

Nadia Benbernou. Fixed-angle polygonal chains: Locked chains and the maximum
span. Undergraduate thesis, Smith College, 2006.

Nadia Benbernou and Joseph O’Rourke. On the maximum span of fixed-angle chains.
In Proceedings of the 18th Canadian Conference Computational Geometry, pages
93–96, 2006.

Ciprian S. Borcea and Ileana Streinu. Extremal configurations of manipulators
with revolute joints. In Reconfigurable Mechanisms and Robots, pages 279–284.
American Society of Mechanical Engineers, 2009.

Chapter 4

The material in this chapter is covered in great technical detail in Chapters
12–14 of Geometric Folding Algorithms, including a proof of the sufficiency of
Kawasaki’s Theorem (Theorem 4.4) that I did not provide in this book. Perhaps
the most accessible presentation of this material is that in Thomas Hull’s Project

http://http://folding.stanford.edu/
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Origami, Activity 16, on which I relied heavily. This entire book is a rich source of
the mathematics of origami, aimed at college instructors, but much of it accessi-
ble to students. The roots of computational origami are described in a paper by
the Demaines in Origami 3, the proceedings of the 3rd conference on aspects of
origami. The Bern-Hayes result (in the Above & Beyond section) that shows that
flat foldability is intractable was presented at a discrete algorithms conference.
Bern and Hayes are also coauthors of the Fold and One-Cut Theorem in the next
chapter.

Thomas Hull. Project Origami: Activities for Exploring Mathematics. A K Peters, 2006.
Erik D. Demaine and Martin L. Demaine. Recent results in computational origami.

In Origami 3: Proceedings of the 3rd International Meeting of Origami Science,
Mathematics, and Education, pages 3–16. A K Peters, 2002.

Marshall Bern and Barry Hayes. The complexity of flat origami. In Proceedings of the
7th ACM-SIAM Symposium Discrete Algorithms, pages 175–183, 1996.

Chapter 5

The original “nearly all” proof of the Fold and One-Cut Theorem (Theorem 5.1)
based on skeletons was found by Erik Demaine, Marty Demaine (son and father
respectively), and Anna Lubiw, the academic adviser of both Demaines, and pre-
sented at the annual discrete algorithms conference. The original disk-packing
proof was found by Erik collaborating with Marshall Bern, David Eppstein,
and Barry Hayes, and presented two years later at Origami 3. The flaw in this
latter proof was discovered by Bern and Hayes. They repaired it in a paper
presented at a conference in Sao Paulo, Brazil, and Erik and I repaired it in
Chapter 17 of our book, Geometric Folding Algorithms. The latter remains the
most detailed exposition of the full, correct proof. The Brazil paper is also the
one that “half-answers” the flattening question (p. 83).

Erik D. Demaine, Martin L. Demaine, and Anna Lubiw. Folding and one straight
cut suffice. In Proceedings of the 10th Annual ACM-SIAM Symposium Discrete
Algorithms, pages 891–892, January 1999.

Marshall Bern, Erik D. Demaine, David Eppstein, and Barry Hayes. A disk-packing
algorithm for an origami magic trick. In Origami 3: Proceedings of the 3rd Interna-
tional Meeting of Origami Science, Mathematics, and Education, pages 17–28. A K
Peters, 2002.

Marshall Bern and Barry Hayes. Origami embedding of piecewise-linear two-
manifolds. In Proceedings of the 8th International Latin American Symposium
Theoretical Informatics, pages 617–629. Springer LNCS 4957, 2009.

Chapter 6

Koryo Muira called what is now known to us as the Muira Map Fold the “Devel-
opable Double Corrugation Surface” in Origami 3. The best source on rigid
origami is again Hull’s Project Origami. My presentation relies on his descrip-
tions of the Muira Map Fold, the Square Twist, and dihedral angle relationships
(Activities 18–22). Figures 6.4 and 6.8 are based on his Mathematica animations.
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The Shopping Bag Theorem (Theorem 6.1) is from Origami 4. Hinged dissections
are described in Frederickson’s delightful book, Hinged Dissections: Swinging
and Twisting. My Figure 6.16 is based on his Figure 20.1. The breakthrough
result that every 2D dissection may be converted to a hinged dissection was
presented at a computational geometry conference in 2008.

Koryo Miura. The application of origami science to map and atlas design. InOrigami 3:
Proceedings of the 3rd International Meeting of Origami Science, Mathematics, and
Education, pages 137–145. A K Peters, 2002.

Devin J. Balkcom, Erik D. Demaine, Martin L. Demaine, John A. Ochsendorf, and
Zhong You. Folding paper shopping bags. In Origami 4: Proceedings of the 4th
International Meeting of Origami Science, Mathematics, and Education, pages
315–334. A K Peters, 2006.

Greg N. Frederickson. Hinged Dissections: Swinging & Twisting. Cambridge Univer-
sity Press, 2002.

Timothy G. Abbott, Zachary Abel, David Charlton, Erik D. Demaine, Martin L.
Demaine, and Scott D. Kominers. Hinged dissections exist. In Proceedings of the
24th Annual ACM Symposium on Computational Geometry, pages 110–119, 2008.
To appear in the journal Discrete & Computational Geometry, 2011.

Chapter 7

The material in this chapter is drawn from Chapter 22 of Geometric Folding
Algorithms. The first explicit formulation of Dürer’s open problem appeared in
a 1975 paper by Geoffrey Shephard, although others, including Richard Guy,
wondered about it much earlier. Figure 7.4 is based on nets computed by Eric
Weisstein’s code Archimedean.m, and PolyhedronOperations.m available
at http://www.mathworld.wolfram.com/packages/. Joseph Malkevitch
discusses the history of the discovery of polyhedra in the book Shaping Space,
including the 13 versus 14 Archimedean solids controversy (mentioned in the
Glossary under “semi-regular polyhedron”).

Geoffrey C. Shephard. Convex polytopes with convex nets. Mathematical Proceedings
of the Cambridge Philosophical Society, 78:389–403, 1975.

Joseph Malkevitch. Milestones in the history of polyhedra. In Marjorie Senechal
and George Fleck, editors, Shaping Space: A Polyhedral Approach, pages 80–92.
Birkhäuser, Boston, 1988.

Chapter 8

For the material in this chapter, I can only cite more technical versions. I
wrote a survey that explains grid unfoldings, and organizes the confusing wel-
ter of partial results on orthogonal polyhedra. The Manhattan towers algorithm
(Figure 8.6) and the algorithm to unfold any orthogonal polyhedron (Figure 8.8)
are detailed in two journal articles.

http://http://www.mathworld.wolfram.com/packages/
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Joseph O’Rourke. Unfolding orthogonal polyhedra. In Jacob E. Goodman, Janos Pach,
and Richard Pollack, editors, Proceedings Snowbird Conference Discrete and Com-
putational Geometry: Twenty Years Later, pages 307–317. American Mathematical
Society, 2008.

Mirela Damian, Robin Flatland, and Joseph O’Rourke. Epsilon-unfolding orthogonal
polyhedra. Graphs and Combinatorics, 23[Suppl]:179–194, 2007. Akiyama-Chvátal
Festschrift.

Mirela Damian, Robin Flatland, and Joseph O’Rourke. Unfolding Manhattan towers.
Computational Geometry: Theory & Applications, 40(2):102–114, 2008.

Chapter 9

An earlier version of this chapter appeared in a “yearbook” published by the
National Council of Teachers of Mathematics. Both are drawn from the more
detailed presentation in Chapter 25 of Geometric Folding Algorithms, which
contains references to the relevant literature.

The final Burago-Zalgaller theorem appeared in a Russian journal (translated
to English), and I posted a short note describing their result to the electronic
“arXiv.”

Joseph O’Rourke. Folding polygons to convex polyhedra. In Timothy V. Craine
and Rheta Rubenstein, editors, Understanding Geometry for a Changing World:
National Council of Teachers of Mathematics, 71st Yearbook, pages 77–87. National
Council of Teachers of Mathematics, 2009.

Yuri D. Burago and Viktor A. Zalgaller. Isometric piecewise linear immersions
of two-dimensional manifolds with polyhedral metrics into R3. St. Petersburg
Mathematical Journal, 7(3):369–385, 1996. Translated by Sergei G. Ivanov.

Joseph O’Rourke. On folding a polygon to a polyhedron. arXiv:1007.3181v1 [cs.CG].
http://arxiv.org/abs/1007.3181

http://http://arxiv.org/abs/1007.3181
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algorithm. See Box 9.1.

array. See Box 8.1.

amino acid. See protein.

annulus. The region between two concentric (same center) circles in 2D. Thus
the region takes the shape of a washer or ring. In 3D, the region between two
concentric spheres is often called a spherical shell.

Archimedean solids. The 13 semiregular polyhedra, discussed by Archimedes in
a now-lost manuscript, only known because Pappus cited his discovery of “the
thirteen polyhedra” 500 years later. Rediscovered by Johannes Kepler in 1620.
See also the entry on semiregular polyhedron, which explains that perhaps we
should say there are 14 Archimedean solids.

commutative. A mathematical operation is commutative if changing its order of
application does not change the result. Addition and multiplication of numbers
is commutative, but subtraction is not: 7 −5 
= 5−7. For analyzing linkages, the
fact that vector addition is commutative is often helpful.

configuration. A configuration of a geometric object is a particular positioning
of that object in the plane or in space. A configuration of a linkage specifies
the position of each joint at particular spots, which then determines the ori-
entation of each link, and so the angles between adjacent links. A linkage with
particular lengths can be viewed as an abstract object that has many possible
configurations, which together form its configuration space. Similarly, specify-
ing the dihedral angles at the creases of a shopping bag (Chapter 6) determines
a configuration of the bag.

convexity. See Box 7.1.

degree. Degree is both a measure of angle, one-360th of a full circle, and a count
of the number of lines or edges coming into (incident to) some point. The latter
use derives from a subfield of mathematics called graph theory, which analyzes
spanning trees and skeletons of polyhedra, among other graphs. The number
of creases in an origami construction that are incident to a vertex is called the
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degree of that vertex. Here a “crease” is not considered to constitute a crease
unless the dihedral angle differs from 180◦.

degenerate. A degenerate situation or configuration is a very special one, often
somehow missing all the features of a nondegenerate situation. For example,
if you collapse a triangle so that one angle becomes 180◦ and the other two
0◦, the resulting shape (which would appear visually as a line segment) can be
considered a zero-area degenerate triangle. The flat zero-volume polyhedra that
might result from Alexandrov’s Theorem (Theorem 9.1) are degenerate polyhe-
dra. Generically the intersection of two circles in the plane is either empty or
two points, but as we saw in Figure 1.10, there are degenerate situations where
two circles intersect in a single point of tangency, or coincide and so intersect
throughout their circumferences.

degrees of freedom. The number of distinct parameters needed to specify the
configuration of a linkage. Often abbreviated dof. A 2-link arm in the plane, with
the shoulder pinned to the plane, has two degrees of freedom: one angle to
specify the orientation of the first link and one to specify the orientation of the
second link. A 2-link arm in 3D has four degrees of freedom, as it requires two
angles (say, longitude and latitude) to specify the position of each arm.

dihedral angle. The angle formed at the ‘V’ between two planes, measured in
3D. For example, Figure Ans.21 shows that the dihedral angle between the faces
of a regular tetrahedron is about 70.5◦.

dissection. A shape B is a dissection of shape A if A can be partitioned into a
finite number of pieces and rearranged to form B.

edge unfolding. A cutting of the surface of a polyhedron along its edges that
permits the surface to be flattened to a plane. If the unfolded surface avoids self-
overlap in the plane, it is called a net. A general unfolding removes the restriction
that the cuts follow edges of the polyhedron.

induction. See Box 1.2.

linkage. A collection of rigid links or rods, modeled as line segments, hinged
together at joints. A linkage that forms a single path is called a robot arm. Typ-
ically the first joint is pinned to a fixed point, the shoulder, about which it may
freely rotate. Often interest is focused on determining where the last point of
the arm, the hand, can reach. This last point might be the tip of welding gun for
an industrial robot in an automotive factory. Linkages with connections more
complex than just a single path are often called mechanisms.

necessary. A condition that must hold for a claim to be true. For example, it is
necessary that two polyhedra have the same volume for there to be a dissection
of one to the other. However, this volume condition is not sufficient: There are
polyhedra of the same volume that are not dissections of one another. A cube
and regular tetrahedron of the same volume are examples, although the proof of
this fact (by Max Dehn in 1901) is not simple. The goal in much of mathematics
is to find conditions that are both necessary and sufficient. This was achieved for



Glossary 149

2D dissections: Any two polygons with the same area have a dissection. In this
case, “same area” is both (obviously) necessary and (not obviously!) sufficient.

net. A planar polygon that results from cutting the surface of a polyhedron along
edges (see edge unfolding). If the polygon instead derives from cuts that do not
all follow edges of the polyhedron, it is called a general net.

NP-complete, NP-hard, PSPACE-complete. These are all technical terms clas-
sifying the difficulty of problems in terms of their “computational complexity.”
The distinction between them is beyond what we can describe here, but they
all mean “intractable” in the sense that no one has found an algorithm to solve
any of them efficiently, and moreover it seems unlikely that any such algo-
rithm exists. “Efficiently” could be interpreted as, say, finishing in less than one
hundred years on the fastest conceivable computer.

origami folds. A mountain fold is a crease in paper that appears like a mountain
ridge. In origami instructions, it is notated as a dot-dash pattern, − · − · −·,
although I use a solid red line in the color drawings. A valley fold is a
crease that appears like a valley, traditionally notated by dashes −−−−−, and
with solid green lines in my drawings. Every mountain fold is a valley
fold from the other side, and vice versa.

pantograph. A linkage that is used to copy, enlarge, or shrink a drawing. The
word is also used for linkages that have a similar structure but are used for a
train to maintain electrical contact with overhead wires.

Platonic solid. See regular polyhedron. Although known perhaps 1,000 years
before Plato, they bear his name because of the role they played in his dialog,
Timaeus, around 360 B.C. The five solids (Figure 7.5) were described precisely
by Euclid in the Elements around 300 B.C.

polygon. A planar figure composed of straight segments joined at vertices, and
forming a closed loop. Pairs of adjacent segments meet at their shared vertex, but
otherwise pairs of nonadjacent segments do not touch one another. A polygon
encloses some area inside, and the remainder of the plane is outside of or exterior
to it.

polyhedron. A surface consisting of flat sections called faces, each of which is
a portion of a plane. A polyhedron is the 3D analog of a polygon. Particular
examples include the regular and semiregular polyhedra.

protein. A molecule made of amino acids arranged in a linear chain. There are
20 different amino acids found in organic life, each composed of between 13
and 27 carbon (C), nitrogen (N), hydrogen (H), and oxygen (O) atoms. They all
have a common core, consisting of a nitrogen atom with two attached hydrogens
(NH2), a carbon with an attached hydrogen and side chain R (CRH), and another
cluster centered on a carbon (COOH). The variation among the different amino
acids comes in the variety of attached side chains R. The core of the core forms
the CCN backbone of a protein described in Section 3.2.
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regular polygon. A polygon with all angles equal and all edge lengths equal: an
equilateral triangle, a square, a regular pentagon, etc.

regular polyhedron. A polyhedron each of whose faces is the same regular poly-
gon, and with each vertex surrounded by the same number of faces. There are
just five, the five Platonic solids.

rhombus. A four-sided planar figure, with all four sides the same length. A square
is a special version of a rhombus, and a rhombus is a special version of a
parallelogram. Plural: rhombi.

semiregular polyhedra. A polyhedron each of whose faces is some regular
polygon, and with each vertex surrounded by the same number and type of
faces, “similarly arranged.” There are two different notions of what constitutes
“similarly arranged,” one of which leads to 14 polyhedra, the other to 13. (Unfor-
tunately, the distinction cannot be easily explained, as it involves “orbits under
symmetries.”) The 13 are generally known as the Archimedean solids, although
it may be that Archimedes had in mind the definition that leads to 14 polyhedra.
The 14th has an impressive name: the pseudorhombicuboctahedron!

sufficient. See necessary.

theorem. See Box 1.1.

tree. A graph without cycles. A cycle is a loop of edges starting and returning to
a vertex. Every tree of n vertices has n − 1 edges. So the tree that looks like a ‘Y’
has four vertices and three edges.

triangle inequality. See Box 1.4.

truncation. The operation of clipping off a vertex v of a polyhedron by slicing
it with a plane that has v to one side and the remainder of the polyhedron
to the other side. For example, the truncated icosahedron (Figure 7.3) can be
constructed by clipping off each of the 12 vertices of a regular icosahedron. Each
truncation results in a pentagon, and the 20 triangular faces of the icosahedron
each get clipped to hexagons.

vector. See Box 1.3.

vertex. A vertex is a point, but a point distinguished in some way. The joint
between two links of a linkage is a vertex (Chapters 1–3). The corners of a polygon
or a polyhedron (Chapter 7–9) are vertices (that’s the plural of “vertex”). The
spot in the center of a piece of paper with incident creases is an origami vertex
(Chapter 4). It can happen that a point is distinguished as a vertex even though
there is no corner or “bump” there, because, for example, the two edges of the
polygon incident to it form an angle of π .



Answers to Exercises

Chapter 1

Answer to Exercise 1.1. See Figure Ans.1.

Answer to Exercise 1.2. The first triple fails, because, even though C = 3 ≤ 15 =
A + B, it is not the case that |A − B| = 5 ≤ 3 = C . The second triple does satisfy
the triangle inequality: C = 6 ≤ 15 = A + B, |A − B| = 5 ≤ 6 = C . The third does
as well, the famous 3-4-5 right triangle. See Figure Ans.2. The fourth triple does
not, because C > A + B.

Answer to Exercise 1.3.

Link Lengths r+ r−

(1,2,3,4,5) 15 0
(1,2,10,3,4) 20 0
(1,1,1,1,5) 9 1
(12,2,5,4) 23 1

Answer to Exercise 1.4. There are two ways to reach v2 = (3,1), and one way to
reach v2 = (0,2). See Figure Ans.3(a).

Answer to Exercise 1.5. There are an infinite number of solutions. Two are
shown in Figure Ans.3(b). A solution must place v2 at the intersection of the
red circle of radius �2 = 1 centered on v1, and the green circle of radius �3 = 2
centered on v3 = (2,2).

Answer to Exercise 1.6. Possible uniquely reaching configurations occur when
a joint angle is either 180◦ or 0◦: stretched out straight or jack-knifed closed
completely. In those cases, the link lengths add or subtract, and a circle with
radius their sum centered on the shoulder v0 can be traced out by the “hand”
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(0,0)
V1

→

V2

→

V3

→

v2 = (2,4)

x

y

Figure Ans.1. The six permutations of adding
→
V 1,

→
V 2,

→
V 3 all reach v2 = (2,4).

3

4

556

10

Figure Ans.2. Triangles made from lengths (10,5,6) and (4,5,3).

3

3 1

1

(0,0) 3

3
1

22

1

(0,0)

(a) (b)

(2,2)
(0,2)

(3,1)

Figure Ans.3. Ways for A2 = (3,1) to reach (3,1) and (0,2).

v3. All the points on the circle of radius 2 + 1 + 2 = 5 can only be reached by
stretching all joints out straight. All the points on the circle of radius 2−1+2 = 3
can only be reached by forming a zig-zag with the 2nd link opposing the 1st and
3rd. But the points on the circle of radius 2 + 1 − 2 = 1 can be reached also by
2 − 1 − 2: reversing just the third link is equivalent to reversing the 2nd and 3rd.
See Figure Ans.4.
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3

5

1

1 22

Figure Ans.4. The points on the circles of radius 5 and 3 are uniquely reachable
by an A3 = (2,1,2) arm.

Figure Ans.5. Interpolating turn angles avoids self-crossing. One intermediate
configuration is highlighted.

Answer to Exercise 1.7. Indeed there is no self-crossing of the chain when the
turn angles are interpolated in this specific example. See Figure Ans.5.

It would take some effort to prove this formally for this specific example, and
it is not true in general.

Answer to Exercise 1.8. The ruler can folding into length 24, by turning every
joint to 0◦; see Figure Ans.6. Thus 23−15+16 has length 24, and then −17+9 fits
inside that length. Note that although 23+17 = 15+16+9, and so the ruler can
be arranged so that v0 = v5, that folding has overall length 31. So arranging for
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23

15
16

17

9

24

Figure Ans.6. The most compact folding of the “ruler” A5 = (23,15,16,17,9).

1

1

r < √2/2 r = √2/2

1

1

1

1

1

1

r > 1
r = 1

v0

v1

v2

v0

v1

v2

v0

v1

v2

v0

v1

v2

v0

v1

v2 √2/2 < r < 1

1

1

Figure Ans.7. The joint at v0 is limited to a 90◦ range, but the joint at v1 can turn
a full 360◦.

the hand to touch the shoulder does not necessarily result in the most compact
folding.

Answer to Exercise 1.9. See Figure Ans.7. When r is much smaller than 1, the
region is outlined by two quarter-circle arcs of radius 1+ r and 1− r, connected
by two semicircle arcs of radius r. This continues up to the critical value of
r = √

2/2. For r >
√

2/2, a “lune-shaped” hole opens up, into which v2 cannot
reach. This lune grows in size as r is increased until it contacts the boundary
at r = 1, when the inner arc degenerates to a point at v0 (because 1 − r = 0).
So the region is outlined by three semicircle arcs and includes a lune hole. For
r > 1, the lune is larger but still connected to the outer boundary at a point
along a 45◦ line from v0. The lune never touches the right outermost quarter-
circle arc.
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1

1

r < 1

1

1

r > 1

1

1

r = 1

v0

v1

v2

Figure Ans.8. Both the joint at v0 and the joint at v1 are limited to 90◦ ranges.

Answer to Exercise 1.10. See Figure Ans.8. The region is outlined by three circle
arcs: a quarter circle arc of radius 1 + r, attached on either end to quarter-circle
arcs of radius r, which are connected by a rotated quarter-circle arc of radius√

1 + r2. The lune from the previous problem never appears, because it was
formed by rotations at v1 that are outside its 90◦ range here. This shape is perhaps
best thought of as sweeping the quarter circle of radius r through 90◦.

Chapter 2

Answer to Exercise 2.1. The extreme configuration for a counterclockwise
around x occurs when the middle link ab aligns with by, as shown Figure Ans.9.
Let h and δ be the height and base of the shaded right triangle in the figure.
We must have (1 − δ)2 + h2 = 1 because the radius |xa| of the upper circle is 1.
And we must have (1 + δ)2 + (1 + h)2 = 4 because |ay| = 2. Solving these two
equations leads to δ = 1

5 and h = 3
5 . So the angle at x with respect to the hori-

zontal is determined by a triangle with base 4
5 and height 3

5 . So that angle has
tangent 3

4 , and so is tan−1 3
4 ≈ 36.9◦. In this configuration, point b has moved

clockwise the complement of that angle, about 53.1◦. Because of the symmetry
of the linkage, this means that point a moves between 36.9◦ counterclockwise
and 53.1◦ clockwise, for a total of 90◦.

Note that the total 90◦ excursion holds regardless of the length of the mid-
dle link, as long as the other two are the same length, because the extreme
configurations naturally map out the rectangle visible in Figure Ans.9.

Answer to Exercise 2.2. We want A′ = 5A. So we could choose |xa| = 1 and
|xc| = 5. This means that |ay| = 1 and |by| = 4. So the two long links of length 5
include a 1 × 4 parallelogram acby.

Answer to Exercise 2.3. This is accomplished by the pantograph in
Figure 2.10(b): A magnification by 3

2 at point z is a reduction by 2
3 at point y.

So just letting z drive y in that pantograph achieves a two-thirds reduction.
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a

b

c

x

y

1

1

1

3/5

4/5

1/5

36.9°

53.1°

δ

h

Figure Ans.9. Extreme configuration for Watt linkage formed of three unit-length
links.

1

2

3

1

2

3

v0 v0

v3 v3

√8 √20

Figure Ans.10. The two planar configurations of a (1,2,3) 90◦-chain.

Chapter 3

Answer to Exercise 3.1. There are only two distinct planar configurations of a
3-link 90◦ chain: either two left turns at the joints, or a left and right turn; see
Figure Ans.10. The first case leads to a span of

√
22 + 22 = √

8 ≈ 2.8, whereas the
second staircase configuration achieves the maxspan of

√
42 + 22 = √

20 ≈ 4.5.
Note that this accords with the Piercing Theorem (Theorem 3.2).

Answer to Exercise 3.2. No, the span cannot be increased by rotating the third
link out of the plane. Figure Ans.11 shows why. If the first two links are kept
fixed and the third rotated through its full freedom of motion, v3, the tip of the
third link, traces out a circle of radius 3 centered on v2, with the disk of the circle
perpendicular to the v1v2 middle link. The question then becomes: Are any of
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(a) (b)

v0 v1

v2
v31 2

3
v0 v1

v2

v3

1

2
3

Figure Ans.11. Two views of rotating v3 out of the plane of {v0,v1,v2}.

the points on this circle (blue in the figure) further away from v0 than is the
planar span of

√
20? Those distances from v0 are drawn green in the figure. That

they are all shorter than
√

20 becomes more plausible if we imagine a sphere of
radius

√
20 centered on v0, indicated by the two red great circles in the figure.

The blue circle of possible v3 positions lies entirely inside the
√

20 sphere, and
just touches it at the one point that corresponds to the maxspan, achieved by
the staircase configuration.

In fact it is a theorem (due to Nadia Benbernou) that the maxspan of any
3-link fixed-angle chain is achieved in a planar configuration.

Answer to Exercise 3.3. The 5-link chain in Figure 3.8(a) has span
√

32 + 22 =√
13 ≈ 3.6, whereas the 4-link chain in (b) has span

√
22 + 22 = √

8 ≈ 2.8. For n
even, the maxspan is √

(n/2)2 + (n/2)2 = n/
√

2 ,

and √
((n + 1)/2)2 + ((n − 1)/2)2 =

√
n2 + 1/

√
2

for n odd.

Answer to Exercise 3.4. As the card opens, point c′ revolves around a circle that
is centered on the segment a′b′, which lengthens in 3D with opening. Segment
a′b′ is perpendicular to the disk bounded by the circle, which remains in the
card “midplane” throughout. Point c′ traverses half of the circle, 180◦. Point c
also moves on the same circle, but only covers 90◦.

The same motion holds for spinners with longer spirals: The central tip c′
spins on a circle about a′b′.

Answer to Exercise 3.5. Weave four links of a regular 5-pointed star as shown in
Figure Ans.12. Both v0 and v4 are above the plane containing {v1,v2,v3}, and both
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v0

v1

v4

v2

v3

Figure Ans.12. A locked 4-chain with fixed 36◦ angles.

v

Figure Ans.13. Four mountain creases want to create four interleaved valley
creases.

the first and last links, v0v1 and v3v4, are slightly longer than the middle three
links. Thus spinning the last link v3v4 link about v2v3 results it in banging into
the first link v0v1 near its tip v0. And so the configuration cannot be unraveled
into a planar zig-zag staircase.

There is nothing special about 36◦; it just makes it easier to see. Any fixed
angle smaller than 60◦ leads to a similar locked-chain configuration (although
that is by no means obvious).

Chapter 4

Answer to Exercise 4.1. Manipulation of the paper in 3D seems to force val-
ley folds between the four mountain creases, as depicted in Figure Ans.13.
Flattening this shape into the plane “erases” two of the four valley creases, a
consequence of the Maekawa-Justin Theorem (Theorem 4.2).
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x
x

Figure Ans.14. Add two valley creases to permit four mountain creases to flatten.

Answer to Exercise 4.2. Adding two valley creases at 45◦ between any pair of
mountain creases allows the construction to be flattened. The two distinct ways
to do this are shown in Figure Ans.14. The Maekawa-Justin Theorem is verified:
M − V = 4 − 2 = 2. Note that flattening the 3D shape in Figure Ans.13 leads one
of the two patterns in Figure Ans.14.

Answer to Exercise 4.3. Figure 4.11 satisfies the Even-Degree Theorem (Theo-
rem 4.1) because the vertex had even degree: 8. It satisfies the Maekawa-Justin
Theorem (Theorem 4.2) because M − V = 5 − 3 = 2. However, it fails to satisfy
the Local Min Theorem (Theorem 4.3) because the 30◦ wedge between five- and
six-o’clock is a local minimum – being surrounded on both sides by 60◦ angles –
but it is delimited by two mountain folds. Similarly the 30◦ wedge between eight-
and nine-o’clock violates the Local-Min Theorem.

Answer to Exercise 4.4. The alternating angle sum is:

30◦ − 60◦ + 30◦ − 60◦ + 30◦ − 60◦ + 30◦ − 60◦ =
30◦ + 30◦ + 30◦ + 30◦ − 60◦ − 60◦ − 60◦ − 60◦ =

120◦ − 240◦ =
−120◦ 
= 0

Therefore, the pattern in Figure 4.11 cannot fold flat, which the previous exercise
established via the Local-Min Theorem (Theorem 4.3).

Answer to Exercise 4.5. Indeed the Kawasaki-Justin Theorem (Theorem 4.4)
is satisfied, and so it must be possible for those creases to fold flat. But not
necessarily with any given mountain-valley folding. And we have seen those in
Figure 4.6 fail. Theorem 4.4 only guarantees that there is some mountain-valley
labeling of those creases that folds flat, and indeed there is, as shown by the first
example of the chapter, Figure 4.3, labeling three as mountain folds and one as
a valley fold.
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1234 2341 3412 4123

4321

1243 2431 4312 3124

2134 1342 3421 4213

3214 2143 1432

Figure Ans.15. The 16 different permutations of 1234 achievable by folding a stack
of labeled stamps. (Based on http://theory.cs.uvic.ca/inf/perm/StampFolding.html)

Answer to Exercise 4.6. 16 of the 24 permutations of 1234 are achievable. They
are listed in Figure Ans.15, with the stack top to the left, and the convention that
the stamp label is to the left of the stamp’s arrow. The stamp-1 arrow points
upward in each diagram by the stipulated counting convention. As an example
of what’s missing here, the permutation 1324 would bury the 3-stamp between
the 1- and 2-stamps without any way to connect to stamp 4.

There is no formula known for the number of permutations achievable in
this fashion for a strip of n stamps, although the number has been calculated
with computers. For example, for n = 20, more than 2 billion permutations
are achievable: 2,050,228,360 to be precise. However, the number of possible
permutations of 20 numbers is much, much larger: 20! ≈ 2×1018, compared to
2×109—a billion times larger!

http://http://theory.cs.uvic.ca/inf/perm/StampFolding.html
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(a) (b)

A

CB

x

AB

x

Figure Ans.16. Folding an equilateral triangle for one-cut.

Figure Ans.17. Different ways to draw perpendiculars to fold and one-cut a
rectangle.

Chapter 5

Answer to Exercise 5.1. Mountain-fold the sheet of paper in half through the
apex A of the triangle, placing right corner C underneath left corner B. Now fold
to bisect the angle at B; see Figure Ans.16(a). These foldings align all three edges
below the vertex x, the centroid of the triangle (b), and one straight cut through
those aligned edges cuts out precisely the original triangle.

Answer to Exercise 5.2. There are four distinct ways do draw in perpendiculars,
as illustrated in Figure Ans.17. All the other possibilities (e.g., two perpendiculars
straight up), are symmetric with one of these (e.g., two perpendiculars straight
down). They all lead to a one-cut fold similar to Figure 5.5(b). These are not the
only ways fold a rectangle for fold and one-cut, incidentally, as the next exercise
demonstrates.

Answer to Exercise 5.3. Yes, the rectangle crimp method works – try it! This is
the typical mathematician’s strategy of reducing a new problem to a previously
solved problem: in this case, rectangle to square. However, one must be cautious
here, because the method does not work on a longer rectangle, such as that
illustrated in Figure Ans.18. Although the crimp produces a square from the top
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(a)

A

D C

B

(b)(a)

A

D C

B

(b)

A

D C

B

Figure Ans.18. A rectangle more than twice as wide as it is high fails fold and
one-cut via crimping.

view, underneath there remains a central portion of the horizontal sides that are
not aligned with other edges, as indicated in (b). Now cutting out the square as
before will cut out two squares rather than a rectangle, leaving behind what’s
left over in the middle of the rectangle. The problem can be surmounted by
crimping twice. I don’t pursue this idea further in the text because it seems too
specialized a method to lead to the general fold and one-cut theorem.

Answer to Exercise 5.4. Counting mountains and valley creases entering each
vertex (including perpendiculars) verifies that M and V always differ by 2.
Twenty-three of the vertices have degree 4, so there are either three mountains
or three valleys incident to each of these. One vertex (in the head of the turtle)
has degree 6, M = 4 and V = 2.

Answer to Exercise 5.5. One way to flatten a cube is shown in Figure Ans.19(a).
The top and bottom faces are uncreased. The left and right faces get dented in
half with valley folds. The front face gets six creases meeting at the face center x,
which becomes a vertex in the flat folding (b); the back face is creased in an iden-
tical pattern meeting at y. (Note that the Maekawa-Justin Theorem [Theorem
4.2] is satisfied at x and y.) The cube squashes vertically.

Chapter 6

Answer to Exercise 6.1. Each interior vertex has either three mountain creases
and one valley crease incident to it, or the reverse: three valley and one mountain.
So M − V = 3 − 1 = 2 or V − M = 3 − 1 = 2, and the Maekawa-Justin Theorem
is verified. Note that this theorem only applies to interior vertices, not to points
where creases reach the paper boundary.

Answer to Exercise 6.2. The reader may recognize this from Exercise 4.1 and
Figure Ans.13. It folds to the shape indicated in Figure Ans.20, with all eight
isosceles right triangles sharing a vertical edge.
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v4 v5

v6

v3

v2

v1

v0

v7

(a) (b)

v0

v7

v4

v6

v2

v1

v3

v5

x

x
y

y

Figure Ans.19. Flattening a cube.

Figure Ans.20. A rigid folding of Figure 6.6.

Answer to Exercise 6.3. (a) Cube faces meet at right angles, so the dihedral angle
between adjacent faces is 90◦. (b) Each pair of faces of a regular tetrahedron share
one edge, at which they form the same dihedral angle: ≈ 70.5◦. This is the angle
whose cosine is 1

3 , that is, it is cos−1 1
3 . This can be derived as follows. If the length

of each edge of the tetrahedron is 1, then the altitude of each face is
√

3/2. The
centroid of an equilateral triangle face falls at 1

3 of the altitude. So the triangle
illustrated in Figure Ans.21 has base

√
3/6 and hypotenuse

√
3/2. So cosθ = 1

3 .
And θ is the dihedral angle.

Answer to Exercise 6.4. No, labels 1 and 4 cannot end up diagonally opposite.
No matter how the rectangle in Figure 6.15 is hinged to a square, one can read
off the labels 1234 clockwise, because the hinges are never broken so the squares
must retain their original order. See Figure Ans.22. With such an ordering, the
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√3/6

√3/2

1 θ

Figure Ans.21. Construction shows that the dihedral angle θ satisfies cosθ = 1
3 .

1 4

2 31 2

4 3

1
2

4
3

1

2 3

4

Figure Ans.22. Hingings of the 4×1 rectangle in Figure 6.15 to a square. One
intermediate position is shown.

odd numbers 1 and 3 are diagonally opposite, and the even numbers 2 and 4 are
diagonally opposite.

Answer to Exercise 6.5. It is clear from Figure 6.16(b) and (f) that the base is
1× 3√2. In order to have volume 2, the height must be (

3√2)2. Using exponents to
represent the roots, its dimensions are:

1 × 2
1
3 × 2

2
3 ,

roughly 1 × 1.26 × 1.59.
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Chapter 7

Answer to Exercise 7.1. Although the polyhedron has the same structure as
a cube with two diagonally opposite vertices truncated by parallel planes –
producing the visible top triangular face and another triangular bottom face on
which the polyhedron is resting – the consensus of scholars (yes, this is the focus
of scholarly debate!) runs against the truncated cube hypothesis. It appears that
the faces prior to truncation are not quite squares as they would be for a cube,
but rather rhombi, shapes all of whose four sides have the same length but not
necessarily meeting at right angles. So the polyhedron is a “truncated rhombo-
hedron.” There is less agreement on the rhombus angle marked in Figure Ans.23,
with estimates ranging from 72◦ to 82◦.

Answer to Exercise 7.2. Yes, the up-and-down path shown in Figure Ans.24(a)
cuts open the cube to the net in (b). Such a single-path cut is not always available,

80°

Figure Ans.23. The angle measured on the 2D drawing itself is approximately 80◦.

F

Bt

L

Bk
T

R

F

BtL

Bk

TR

(a) (b)

Figure Ans.24. Net for a cube produced by a single cut path.
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Figure Ans.25. Every spanning tree for an octahedron uses five edges.

because some polyhedra have no path of edges that touch each vertex once.
Such a path is known as a Hamiltonian path in the literature. For the cube there
are three different Hamiltonian path nets. You’ll find the others if you work on
Exercise 7.4.

Answer to Exercise 7.3. This is a bit of a trick question, because every spanning
tree of an octahedron uses five edges. Figure Ans.25 shows two. In fact, every
spanning tree of any polyhedron has the same number of edges! If the polyhe-
dron has n vertices, every spanning tree has n−1 edges, because every tree of n
vertices has n edges. The octahedron has six vertices, and so all of its spanning
trees have five edges.

Figure Ans.26. The 11 distinct nets for a cube.



Answers to Exercises 167

A

B

F

a

b

Figure Ans.27. An alternate unfolding of a right prism.

Answer to Exercise 7.4. There are 11 different (incongruent) nets for a cube,
as listed in Figure Ans.26. The challenge here is make a complete list without
missing any nets, or listing any more than once.

Answer to Exercise 7.5. At least as natural as the petal unfolding, which cuts
between and separates all the vertical, lateral faces, is to keep all the lateral faces
of the prism together. This can be accomplished by selecting some vertical edge
ab to cut (see Figure Ans.27), and then cutting all but one edge of the top A and
all but one edge of the bottom B. One could select the top and bottom uncut
edges to be edges of the same face F as illustrated. Now all the side faces unfold
to a rectangular strip bounded on the right and left by the two sides of the ab
cut, with A and B attached above and below the strip at face F .

Answer to Exercise 7.6. Only the path from x to a is unique, along the diagonal
of the top face. Both b and c have two shortest paths from x, passing to either side
of the corner a. See Figure Ans.28. The paths may be constructed by unfolding
the front and right faces attached to the top, and drawing straight lines from x
to the points b and c.

Answer to Exercise 7.7. There is no “answer” here, but I have folded this myself,
and it indeed works as described. It is very difficult to see the polyhedral struc-
ture in the vicinity of x, where 11 “images” of x come together, but the more

x

c

b

a
F

R
T

x

c

b c

b

aF

RT

Figure Ans.28. Shortest paths from x to a, b, and c. T , F , and R indicate Top, Front,
and Right faces respectively.
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prominent edges on the back in Figure 7.22(b) (connecting the vertices 6, 7, 8, 9,
10, 11) do emerge with some nudging.

Chapter 8

Answer to Exercise 8.1. We need to count the rectangles visible in Figure 8.3.
There are 10 blue top rectangles, because the example terrain base is 10×10.
The heights of the orange left and right side rectangles can be determined by
taking the difference in adjacent tower heights. This yields this sum for the side
rectangles:

1 + 2 + 2 + 3 + 1 + 3 + 2 = 14

so indeed the total length is 10 + 14 = 24, which can be verified in the final
unfolding Figure 8.5(a).

Answer to Exercise 8.2. Figure Ans.29 shows the unfolding. The bridge between
strips is of height 2, a tie between the towers of heights 1 and 3, and the towers
of heights 2 and 4.

Answer to Exercise 8.3. Figure Ans.30 shows the unfolding for n=10. Because
all strips are identical, all bridges are “empty bridges.” So all x-strips unfold
directly abutting against one another.

4

1

2

3

x

z

y

4

1 2

3

4

1 2

3

4

1
2

3

x

y

Figure Ans.29. Unfolding of 2x2 terrain. Several heights are marked.
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x

y

Figure Ans.30. Unfolding of a 10×10×1 box.

Answer to Exercise 8.4. There are many ways to unfold this torus, one of which
is shown in Figure Ans.31. The main challenge is to find spots for attaching the
inner ring of faces a, b, c, d.

A

B

8

2
1

6
5

3

7

4

82 1653 74

A B C D

dca b

d c

C

D

Figure Ans.31. Unfolding of an orthogonal torus. Selected faces are labeled. The
inner ring of faces are a and b (obscured), and c and d.
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Chapter 9

Answer to Exercise 9.1. No, Figure 9.2 cannot fold to a cube, as you already knew
if you worked through Exercise 7.4: It does not appear in that list of 11 nets in
Figure Ans.26. Attempts with paper result in two faces overlapping, leaving one
cube face as a hole. However, that polygon can fold to several other polyhedra by
creasing differently, including polyhedra with five, six, and eight faces. Warning:
These are very difficult to find! The curious may look ahead to Exercise 9.3.

Answer to Exercise 9.2. It folds to a cube, as shown in Figure Ans.32.

F
R

T

Bt

F F

Bk Bk

L
Bk

RLBt T

Figure Ans.32. The bow-tie polygon folds to a cube.

Answer to Exercise 9.3. There are several ways to achieve an Alexandrov glu-
ing, none straightforward. Perhaps the easiest to see is the gluing shown in
Figure Ans.33. The two problematic reflex corners, labeled 4 and 8 in the figure,
are “zipped” closed, by gluing together the two corners labeled 1, and the two

1 2

6

3 2 1

4
1

567

875

Figure Ans.33. An Alexandrov gluing of Figure 9.2. The dashed edges are creases
of the resulting polyhedron.
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points labeled 7. This ensures that the final angles glued in at 4 and 8 are each
270◦, satisfying criterion (b) that the angle must be at most 360◦. If one then
creases at point 3, the remaining identifications shown are forced, using up the
perimeter as per criterion (a). Cutting this out of paper and taping the identified
boundary sections indeed results in a type of bag, criterion (c). If you crease
along the dashed lines, you will see an octahedron emerge, a polyhedron with
eight triangular faces, and six vertices at points 1, 3, 4, 5, 7, and 8.
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algorithm, 140
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map folding, 70
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amino acid, 40–42, 149
angle bisector, 77
annulus, 5, 14, 147
Archimedean solids, 101, 104, 145,

147, 150
array, 120

chain
alignment, 44, 45
locked, 53, 54
near-unit, 53, 54, 158
piercing, 46, 143
unit 90◦, 42, 44, 47, 51, 54

configuration, 147
degenerate, 148
locked, 53, 158
maxspan, 42–44
piercing, 46
of robot arm, 8
of shopping bag, 94, 147
space, 53, 147
staircase, 43, 44

convex hull, 112, 114
convexity, 105

degree
angle measure, 147
number of incident creases, 61, 89,

148
degrees of freedom, 22, 148
dihedral angle, 39–41, 89, 90, 148, 163
dissection, 96, 148

hinged, 96–98, 145

edge
of drawing, 73
of polyhedron, 103
reflex, 106
unfolding, see unfolding, edge

ellipse, 38

face
of polyhedron, 81, 83, 100, 103,

149
in rigid origami, 84

folding
flat, 57, 58
a map, 69, 70
stamps, 71, 160

Folding@Home, 52

induction hypothesis, 7

joint, 8, 148, 150
angle, 15, 17, 18
fixed-angle, 39
kinked, 18
pinned, 25, 148
universal, 4, 39
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Kawasaki-Justin theorem, 66, 68
Kempe’s universality theorem, 36, 143

lemniscate, 25
line segment, 3
link, rigid, 2, 3, 148
linkage, 2, 24, 148

angle-limited, 23, 154, 155
Chebyshev, 27
pantograph, 2, 28, 30, 32, 33, 35,

149
Peaucellier-Lipkin, 27, 28
planar, 36, 37, 43
signing, 36, 37
Watt, 25, 26, 155, 156
wiper, 29

locus, 15

Maekawa-Justin theorem, 61, 63
map, 69, 70
mathematical model, 3
matrix, 120
maxspan, 42, 143
Melencolia I, 101, 102, 106, 165
Miura map fold, 85–87, 144

necessary and sufficient, 65, 69, 148
net, 101, 106, 115, 126, 148, 149

for cube, 112, 116
general, 115, 117, 119, 125, 126, 129,

149
Latin cross, 109, 130, 131, 138, 139

NP-complete, 21, 68, 142, 149
NP-hard, 68, 149

one-cut, fold and, 72, 78, 81
open problem

Planar Signing (General Case), 37
Planar Signing Digits, 37
Dürer’s Problem, 106
Edge-Unfolding Prismatoids, 115
Unfolding Manhattan Towers, 126
General Unfolding, 129
Locked Unit 90◦-Chain, 54
Map Folding, 70
Flattening Polyhedra, 83
Folding to Convex Polyhedra, 139

origami fold, 57–61, 67, 70, 76, 149
mountain/valley fold, 50, 57, 149

pantograph, see linkages, pantograph
Platonic solids, 104, 105, 149, 150
polygon, 63, 103, 130, 140, 149

convex, 105, 112, 135
doubly covered, 134
regular, 149, 150
unfoldable, 132

polygonal chain, see chain
polygraph, 33, 34
polyhedron, 81–83, 103, 104, 141, 149

convex, 105, 106, 108, 134, 136
Dürer’s, 101, 106
deltahedron, 114
dome, 113
flattening, 81–83
Manhattan tower, 125, 126
orthogonal, 119, 126
orthogonal terrain, 120, 121, 125
prism, 112, 113, 115
prismatoid, 114, 115
prismoid, 113
regular, 104, 149, 150
semiregular, 147, 150
skeleton, 109, 110

pop-up spinner, 48, 49
proof, xi

constructive, 36, 140, 141
existence, 134, 140
induction, 4, 6, 46
sketch, xi

protein
backbone, 23, 40–42, 149
folding problem, 41, 52
villin headpiece, 41, 53

PSPACE-complete, 22, 149

reachability, 22
angles, 15, 16, 18
region, 4, 5, 8, 14

rhombus, 27, 150, 165
rigid origami, 84, 85, 88, 89, 144
robot arm, 3, 4
ruler folding, 20, 21

shortest path, 115–117, 167
skeleton

of polyhedron, 109
straight, 79, 80
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span, maximum, 42, 143
spherical shell, 5, 19, 147
square twist, 88, 89

torus, 103, 129, 169
tree, 110, 150, 166

spanning, 110–112, 166
triangle inequality, 12, 13, 45, 150, 151
truncation, 106, 150
Turk, The, 33, 35, 143

unfolding
edge, 101, 106, 126, 128, 148, 149
general, 115, 119, 129, 148

grid, 125, 126
overlapping, 107, 108
petal, 113, 114
star, 116, 117

unsolved problem, see open problem

vector, 9, 30, 62
addition commutative, 8, 11, 147

vertex, 150
of polygonal chain, 8
convex, 105, 135
origami, 58–60, 147
of polyhedron, 103, 132
reflex, 105, 132
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