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Preface

This is the second volume of a series of three volumes (the other ones being [5] and
[6]) devoted to the mathematics of mathematical olympiads. Generally speaking,
they are somewhat expanded versions of a collection of six volumes, first published
in Portuguese by the Brazilian Mathematical Society in 2012 and currently in its
second edition.

The material collected here and in the other two volumes is based on course
notes that evolved over the years since 1991, when I first began coaching students
of Fortaleza to the Brazilian Mathematical Olympiad and to the International Math-
ematical Olympiad. Some ten years ago, preliminary versions of the Portuguese
texts also served as textbooks for several editions of summer courses delivered at
UFC to math teachers of the Cape Verde Republic.

All volumes were carefully planned to be a balanced mixture of a smooth and
self-contained introduction to the fascinating world of mathematical competitions,
as well as to serve as textbooks for students and instructors involved with math clubs
for gifted high school students.

Upon writing the books, I have stuck myself to an invaluable advice of the
eminent Hungarian-American mathematician George Pólya, who used to say that
one cannot learn mathematics without getting one’s hands dirty. That’s why, in
several points throughout the text, I left to the reader the task of checking minor
aspects of more general developments. These appear either as small omitted details
in proofs or as subsidiary extensions of the theory. In this last case, I sometimes
refer the reader to specific problems along the book, which are marked with an *
and whose solutions are considered to be an essential part of the text. In general,
in each section I collect a list of problems, carefully chosen in the direction of
applying the material and ideas presented in the text. Dozens of them are taken from
former editions of mathematical competitions and range from the almost immediate
to real challenging ones. Regardless of their level of difficulty, generous hints, or
even complete solutions, are provided to virtually all of them.

A quick glance through the Contents promptly shows that this second volume
deals with plane and solid Euclidean geometry. Generally speaking, Chaps. 1 to 9
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viii Preface

deal with plane geometry, whereas the remaining ones with solid geometry. We now
describe the material covered a bit more specifically.

The text begins in a somewhat informal way, relying on the reader’s previous
knowledge of the basics of geometry and emphasizing simple geometric construc-
tions. This is done purposefully, so that the axiomatic method does not engulf the
exposition, from the start, with an amount of formalism unnecessary for our goals.
Nevertheless, as the text evolves and deeper results are presented, the synthetic
method of Euclid gains paramount importance, and from this time on several
beautiful classical theorems, usually absent from high school textbooks, make their
appearance.

After a quick review of the most elementary concepts and results, Chaps. 2 to 5
discuss the central ideas of congruence, locus, similarity, and area. Apart from what
is usually expected, a number of additional topics and results are discussed, among
which Ptolemy’s problem on the locus of points with prescribed ratio of distances
to two other given points, the collinearity and concurrence results of Menelaus and
Ceva, some of Euler’s classical results on the geometry of the triangle, the notion
of power of a point with respect to a circle and Apollonius’ tangency problems,
and the isoperimetric problem for triangles. Also, from a theoretical standpoint, a
careful development of the notion of area and circumference of a circle is presented
in Chap. 5.

The last four chapters dealing with plane geometry present analytic geometry,
trigonometry, vectors, and some projective geometry as distinct, though interrelated,
tools for the study of plane Euclidean geometry. We do this without being too
encyclopedic, so as not to overshadow the central ideas. On the one hand, we believe
this way we make it easier for the reader to grasp the role of each such portion
of knowledge amid the whole of geometry. On the other hand, such additional
methods are applied both to expand the theory and to get further insight on previous
results and examples. For instance, the text brings three sections on conics, two in
Chap. 6 using analytic and synthetic tools, and a third one in Chap. 10, using simple
solid geometry concepts to extend to conics a bunch of results of projective nature,
discussed in Chap. 9.

Reflecting the current trend in mathematical competitions, our exposition of
solid geometry is shorter than that of plane geometry. Nevertheless, it covers all
of what is usually present in high school curricula, as well as some other more
profound topics. Among these, we would like to mention the representation of
conics as conic sections, the use of central projections to the study of some
projective properties of conics, the discussion of some aspects of the interesting
class of isosceles tetrahedra, the presentation of a complete—though simple—proof
of Euler’s theorem on convex polyhedra, the classification and construction of all
regular polyhedra, as well as the computation of their volumes, and a glimpse on
inversion in three-dimensional space. Since the reader is expected to reach the solid
geometry chapters with a thorough grounding on plane geometry, some of these
topics are partially covered amid the proposed problems. However, whenever we do
so, we provide essentially full solutions to them.
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Several people and institutions contributed throughout the years for my efforts
of turning a bunch of handwritten notes into these books. The State of Ceará
Mathematical Olympiad, created by the Mathematics Department of the Federal
University of Ceará (UFC) back in 1980 and now in its 37th edition, has since
then motivated hundreds of youngsters of Fortaleza to deepen their studies of
mathematics. I was one such student in the late 1980s, and my involvement with this
competition and with the Brazilian Mathematical Olympiad a few years later had a
decisive influence on my choice of career. Throughout the 1990s, I had the honor
of coaching several brilliant students of Fortaleza to the Brazilian Mathematical
Olympiad. Some of them entered Brazilian teams to the IMO or other international
competitions, and their doubts, comments, and criticisms were of great help in
shaping my view on mathematical competitions. In this sense, sincere thanks go
to João Luiz de A. A. Falcão, Roney Rodger S. de Castro, Marcelo M. de Oliveira,
Marcondes C. França Jr., Marcelo C. de Souza, Eduardo C. Balreira, Breno de A. A.
Falcão, Fabrício S. Benevides, Rui F. Vigelis, Daniel P. Sobreira, Samuel B. Feitosa,
Davi Máximo A. Nogueira, and Yuri G. Lima.

Professor João Lucas Barbosa, upon inviting me to write the textbooks to the
Amílcar Cabral Educational Cooperation Project with Cape Verde Republic, had
unconsciously provided me with the motivation to complete the Portuguese version
of these books. The continuous support of Professor Hilário Alencar, president of
the Brazilian Mathematical Society when the Portuguese edition was first published,
was also of great importance for me. Special thanks go to my colleagues—
Professors Samuel B. Feitosa and Fernanda E. C. Camargo—who read the entire
English version and helped me improve it in a number of ways. If it weren’t for
my editor at Springer-Verlag, Mr. Robinson dos Santos, I almost surely would not
have had the courage to embrace the task of translating more than 1500 pages from
Portuguese into English. I acknowledge all the staff of Springer involved with this
project in his name.

Finally, and mostly, I would like to express my deepest gratitude to my parents
Antonio and Rosemary, my wife Monica, and our kids Gabriel and Isabela. From
early childhood, my parents have always called my attention to the importance of
a solid education, having done all they could for me and my brothers to attend the
best possible schools. My wife and kids fulfilled our home with the harmony and
softness I needed to get to endure on several months of work while translating this
book.

Fortaleza, Brazil Antonio Caminha Muniz Neto
December 2017



Contents

1 Basic Geometric Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Congruence of Triangles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Loci in the Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4 Proportionality and Similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5 Area of Plane Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

6 The Cartesian Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

7 Trigonometry and Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

8 Vectors in the Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

9 A First Glimpse on Projective Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

10 Basic Concepts in Solid Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331

11 Some Simple Solids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377

12 Convex Polyhedra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403

13 Volume of Solids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427

14 Hints and Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449

Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 535

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 537

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 539

xi



Chapter 1
Basic Geometric Concepts

This book is devoted to the study of Euclidean Geometry, so named after the famous
book Elements [11], of Euclid of Alexandria.1

We will guide our discussions, as much as possible, by the use of logical
reasoning. However, we shall not be too seriously concerned with the problem of
listing an exhaustive set of postulates from which one could construct Euclidean
Geometry axiomatically.2 To such a program, we refer the reader to [12] or [19].
For more than we shall present here, we suggest [1, 7, 14, 16, 24–26] or [27].

In this chapter, we present the most basic concepts and results involved in the
construction of Euclidean Geometry in a plane.

1.1 Introduction

The reader certainly has a good idea, from both daily experience and previous
studies, of what is a point, a line and a plane. Therefore, we shall assume these
notions as primitive concepts, so that we shall not present formal definitions of
them. We shall further assume that every line is a set of (at least two) points.3

1Euclid of Alexandria, Greek mathematician of the fourth and third centuries BC, and one of
the most important mathematicians of classical antiquity. The greatest contribution of Euclid to
Mathematics, and to science in general, was the treatise Elements, in which he systematically
exposed all knowledge of his time in Geometry and Arithmetic. The importance of the Elements
lies in the fact that it was the first book ever written in which a body of mathematical knowledge
was presented in an axiomatic way, with all arguments relying solely on Logic.
2An axiom or postulate is a property imposed as true, without the need of a proof. The use of the
axiomatic method is one of the most fundamental characteristics of Mathematics as a whole.
3For the time being, we also implicitly assume that all points under consideration are contained in
a single plane, and that there exists at least three points not situated in the same line.

© Springer International Publishing AG, part of Springer Nature 2018
A. Caminha Muniz Neto, An Excursion through Elementary Mathematics, Volume II,
Problem Books in Mathematics, https://doi.org/10.1007/978-3-319-77974-4_1
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2 1 Basic Geometric Concepts

Figure 1.1 shows points A and B and lines r and s (we shall denote points and
lines by upper case and lower case Latin letters, respectively). Roughly speaking,
we could say that Plane Euclidean Geometry studies the properties of points and
lines situated in a plane.

The following discussion will serve as a basis for all further developments of the
theory. Throughout, all statements made without proofs should be taken as axioms.

Given a point P and a line r , there are only two possibilities: either the point P

belongs to the line r or it doesn’t; in the first case, we write P ∈ r (P belongs to
r) whereas, in the second, we write P /∈ r (P does not belong to r). In Fig. 1.2, we
have A ∈ r and B /∈ r .

At this point, it is natural to ask how many lines join two different given points.
We assume (as an axiom!) that there is exactly one such line. In short, there is exactly
one line passing through two distinct given points (cf. Fig. 1.3). In this case, letting

r be such a line, we denote r = ←→
AB , whenever convenient.

A point A on a line r divides it into two pieces, namely, the half-lines of origin
A. By choosing points B and C on r , each one situated in one of these two pieces,

we can denote the half-lines of origin A by
−→
AB and

−→
AC. In Fig. 1.4, we show the

portion of line r corresponding to the half-line
−→
AB (the portion corresponding to

the half-line
−→
AC has been erased).

Given two distinct points A and B on a line r , the line segment AB is the portion
of r situated from A to B. We write AB to denote the length of the line segment
AB (and, unless we explicitly state otherwise, such a length will be measured in
centimeters). In order to decide whether two given line segments are equal (i.e.,
have equal lengths) or, on the contrary, each of which has greatest length, we can
use a compass, transporting one of these line segments to the line determined by the
other. This is done in the coming.

Fig. 1.1 Points and lines in a
plane

A

B

r s

Fig. 1.2 Relative positions of
points and lines

r

A

B
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Fig. 1.3 Two distinct points
determine one single line

r

A

B

Fig. 1.4 Half-line
−→
AB, of

origin A
r

A
B

Example 1.1 Transport line segment AB to line
←→
CD and decide whether AB >

CD or vice-versa.4

Solution

B

A

C

D

CONSTRUCTION STEPS

1. Place the nail end of the compass at A and open it until the other end is exactly
over B.

2. By maintaining the opening of the compass, place its nail end at C and draw an

arc that intersects half-line
−→
CD at a point E, so that CE = AB.

3. Compare the lengths of line segments AB = CE and CD.
��

We can also use straightedge and compass to add line segments and to multiply
a line segment by a natural number, as the next example shows.

4This is the first one of a series of examples whose purpose is to develop, in the reader, a relative
ability on the use of straightedge and compass. In all of them, we list a sequence of steps which,
once followed, execute a specific geometric construction. After attentively reading each of these
examples, we strongly urge the reader to reproduce the listed steps by him/herself to actually
execute the geometric constructions under consideration. Finally, and for the sake of rigor, we
observe that a geometric construction does not constitute a proof of a geometric property, for it
necessarily involves precision errors and particular choices of positions. Its main purpose is to help
developing geometric intuition.
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Example 1.2 Let line segments AB and CD be given, as shown below. Draw line
segments EF and GH , such that EF = AB + CD and GH = 3 AB.

Solution

B

A D

C

CONSTRUCTION STEPS

1. With the aid of a straightedge, trace a line r .
2. Mark on the line r a point X and, then, transport line segment AB to r , obtaining

a line segment EX, such that EX = AB.
3. Transport line segment CD to r , starting at the point X, to get the point F , such

that XF = CD and X ∈ EF . Line segment EF has length equal to AB+ CD.
4. Compose an analogous chain of steps to construct a line segment GH as in the

statement of the example. To this end, note that 3 AB = AB + AB + AB.
��

We shall make a last (though important) remark on line segments: given points
A and B, we define the distance d(A,B) between them as the length AB of the
line segment AB:

d(A,B) = AB.

Besides points, lines, half-lines and segments, circles will be of great importance
in our study of Plane Euclidean Geometry. In order to define them in a precise way,
let a point O and a real number r > 0 (that should be thought of as the length of a
line segment) be given (Fig. 1.5). The circle of center O and radius r is the set of
points P in the plane that are at a distance r from O , i.e., such that OP = r .

In a more concrete way, the circle of center O and radius r is the plane curve
we get when we fix the nail end of a compass at the point O , fix its opening as
equal to the length r and let its pencil end complete a whole turn around O . The
complement of a circle in the plane consists of two regions, a limited one, called its
interior, and an unlimited one, called its exterior. More precisely, the interior of
the circle of center O and radius r is the set of points P in the plane, whose distance
from the center O is less than r , i.e., such that OP < r (cf. Fig. 1.6); analogously,
the exterior of such a circle is the set of points P in the plane whose distance from
the center O is greater than r , i.e., such that OP > r . Sometimes, we shall refer to
the set of points P in the plane for which OP ≤ r as the (closed) disk of center O

and radius r .
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Fig. 1.5 The circle of center
O and radius r

O

P

r

Fig. 1.6 Interior of the circle
of center O and radius r

O

P

r

Fig. 1.7 Elements of a circle

Γ

O
AB

P

r

C

D

As a general rule, we shall denote circles by upper case greek letters. For
instance, the circle of Fig. 1.7 is denoted by � (one reads gamma), and we usually
write �(O; r) to stress that O is the center and r is the radius of �.

Given a circle � of center O and radius r , we also say that every line segment
joining O to a point of � is a radius of it; for example, in Fig. 1.7, line segments
OA, OB and OP are all radii of �. A chord of � is a line segment joining two of its
points; a diameter of � is a chord that passes through O . In the notations of Fig. 1.7,
AB and CD are chords of �, and AB is also a diameter. Every diameter of a circle
divides it into two equal5 parts, called two semicircles of the circle; conversely, if a
chord of a circle divides it into two equal parts, then such a chord must necessarily
be a diameter of it.

Concerning Fig. 1.7, the reader has surely noticed that a bold line traces out one
of the portions of � limited by points C and D. Such a portion corresponds to one

5Of course, at this point we rely on the reader’s intuition, or previous knowledge, for the meaning
of equal.
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of the arcs of � whose endpoints are C and D, and will be denoted by
�

CD. Since
two points on a circle determine two different arcs, in order to distinguish between

the two possible arcs
�

CD, we shall generally refer to the minor arc
�

CD, or else to

the major arc
�

CD. Hence, we should more properly say that the bold portion of �

in Fig. 1.7 is the minor arc
�

CD. Another possibility (quite useful when the ends of
the arc form a diameter of the circle) would be to choose another point on the arc
we wish to refer to, and then denote it with the aid of this extra point; in Fig. 1.7,

for instance, we could have written
�

CPD to denote the major arc
�

CD.

Example 1.3 Draw the circle of center O and passing through the point A. Then,
mark all possible points B on this circle, such that the chord AB has length equal
to l.

Solution

O

A

l

CONSTRUCTION STEPS

1. Put the nail end of the compass at O , with opening equal to OA. Then, draw the
circle of center O and radius OA.

2. As in item 1., draw the circle of center A and radius l.
3. The possible positions of point B are the intersection points of the circles drawn

in items 1. and 2.
��

Problems: Sect. 1.1

1. Let A, B, C and D be distinct points on a line r . How many half-lines are
contained in r and have one of these points as origin?

2. Points A, B and C are all situated on a line r , with C ∈ AB. If AB = 10cm and
AC = 4 BC, compute AC.

3. Let A, B, C and D be distinct points on a line r , such that D ∈ −→
AC, B ∈ −→

DC

and AC = BD. Prove that AB = CD.
4. On a line r points A, B and C are given, so that B ∈ AC, AB = 3cm and

AC = 5.5cm. Use a compass to find, on the segment AB, a point D such that
AD = BC.
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5. With the aid of straightedge and compass, mark points A, B and C on the plane,
such that AB = 5cm, AC = 6cm and BC = 4cm.

1.2 Angles

The concepts of angle and angle measurement are absolutely fundamental to almost
everything we will do in the rest of these notes. Prior to discussing them, we shall
need to introduce another important notion, which is the object of our first formal

Definition 1.4 A region R in the plane is said to be convex if, for all points A,B ∈
R, we have AB ⊂ R. Otherwise, R is said to be a non-convex region.

According to the previous definition, for a region R in the plane to be non-
convex, it suffices to find points A,B ∈ R such that at least one point of the line
segment AB does not belong to R (Fig. 1.8).

A line r in the plane divides it into two convex regions, called the (closed) half-
planes bounded by r . By definition, the line r is considered to be a part of each
one of them. On the other hand, given points A and B, one in each of these two
half-planes, we always have AB ∩ r 
= ∅ (cf. Fig. 1.9).

Definition 1.5 Let
−→
OA and

−→
OB be two distinct half-lines in the plane. An angle

or angular region) of vertex O and sides
−→
OA and

−→
OB is one of the regions in

which the plane is divided by the half-lines
−→
OA and

−→
OB.

An angle can be convex or non-convex; in Fig. 1.10, the angle at the left side is
convex, whereas that at the right side is nonconvex. We shall denote an angle with

sides
−→
OA and

−→
OB by writing 
 AOB; the context will make it clear whether we

are referring to the convex angle or to the non-convex one.
Now, it is our purpose to associate to each angle a measure of the region of the

plane it occupies. To this end (cf. Fig. 1.11), let us consider a circle � centered at
O , and divide it into 360 equal arcs; then, take two of the 360 partitioning points,
say X and Y , which are the ends of one of these 360 equal arcs. We then say that
the measure of the angle 
 XOY is one degree, and denote this by writing

A

B
A B

Fig. 1.8 A convex region (left) and a non-convex one (right)
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Fig. 1.9 (Closed) half-planes
determined by the line r

r

A B

AO

B

A

O

B

Fig. 1.10 Two angular regions in the plane

Fig. 1.11 Degree as unit of
measure of angles

Γ

O

X

Y

X̂OY = 1◦.

Actually, there is a problem with our definition of degree, as given above. How
can we know that it doesn’t depend on the chosen circle �? In other words, how can
we know that, if we choose another circle �′, also centered at O , and divide it into
360 equal parts, then we will obtain an angle 
 X′OY ′ which could be said to have
the same measure as 
 XOY ?

In order to answer this question, let us consider Fig. 1.12, in which we have two
circles � and �′, both centered at the point O , and two points A,B ∈ �. Letting A′

and B ′ be the points of intersection of the half-lines
−→
OA and

−→
OB with �′, we shall

assume as an axiom that the fraction of � represented by the bold arc
�

AB equals
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Fig. 1.12 Well definiteness
of the notion of degree

Γ
Γ

O

A
B

A

B

the fraction of �′ represented by the bold arc
�

A′B ′. Therefore, if in the definition of
degree we had taken a circle �′, also centered at O but of radius different from that
of �, then we would have got the same angle representing 1◦.

From the definition of degree, it is clear that a complete circle corresponds to
360◦. On the other hand, given an angle 
 AOB, there remains the question of how
one can actually measure it. In order to answer such a question,6 we start by making
the following construction: we draw any circle �, centered at O , and mark the points

A′ and B ′ in which � intersects the sides
−→
OA and

−→
OB of 
 AOB (cf. Fig. 1.13).

Then, we compute the fraction of the total length of � the arc
�

A′B ′ represents.
The measure ÂOB of the angle 
 AOB will be equal to that fraction of 360◦. For

instance, if the length of the arc
�

A′B ′ equals 1
6 of the total length of �, then the

measure of 
 AOB will be

ÂOB = 1

6
· 360◦ = 60◦.

Remarks 1.6

i. We shall say that two angles are equal if their measures are equal.
ii. In order to avoid any danger of confusion, we shall always use different

notations for an angle and its measure. More precisely, 
 AOB will always refer

to the angle with vertex O and sides
−→
OA and

−→
OB (which is a region in the

plane), whereas ÂOB will always refer to the measure, in degrees, of the angle

 AOB.

6Strictly speaking, the following argument is fallacious, for, among other things, it invokes the
notion of length of an arc of a circle, something which has not yet been defined. Nevertheless, it
develops quite a useful intuition for the measurement of angles that is enough for our purposes
along these notes. For a thorough discussion of the measurement of angles, we refer the reader to
[19].
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Fig. 1.13 Measuring the
angle 
 AOB

Γ

O A

B

A

B

iii. In context, we will also frequently use lower case greek letters to denote
measures of angles.7 For example, we shall write ÂOB = θ (one reads teta) to
mean that the measure of the angle 
 AOB is θ degrees.

The next example teaches us how to use straightedge and compass to construct
an angle with a prescribed vertex, side and measure. The construction steps to be
listed will be justified when we study the SSS postulate of congruence of triangles,
in Sect. 2.1.

Example 1.7 Construct an angle with vertex O ′, such that one of its sides is
contained in the line r and its measure equals α.

Solution

α

r

O

��

7The exception will be the lower case greek letter π (one reads pi). As we shall see in Chap. 5, we
will reserve π to denote the area of a disk or radius 1.
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Fig. 1.14 An angle of 180◦

A
O

B

180◦

A

B

O

θ < 90◦

A

B

O

θ = 90◦

A

B

O

θ > 90◦

Fig. 1.15 Acute (left), right (center) and obtuse (right) angles

CONSTRUCTION STEPS

1. Draw a circle of some radius R, centered at the vertex O of the given angle, thus
marking points X and Y along the sides of it.

2. Draw another circle of radius R, this time centered at O ′, and mark one of the
points, say Y ′, in which it intersects line r .

3. Mark X′ as one of the points of intersection of the circles �(O ′;R) and
�(Y ′; XY).

4. The angle 
 X′O ′Y ′ has measure equal to α.

As we have pointed out before, each diameter of a circle divides it into two equal

parts. Therefore, if 
 AOB is such that
−→
OA and

−→
OB are opposite half-lines (i.e.,

such that A, O and B lie on the same line, with O ∈ AB—see Fig. 1.14), then
ÂOB = 180◦.

We shall rarely encounter angles whose measures are greater than 180◦. Thus,
in all that follows and unless stated otherwise, whenever we write 
 AOB we will
be referring to the convex angle 
 AOB (i.e., to the angle 
 AOB such that 0◦ <

ÂOB ≤ 180◦. Accordingly (cf. Fig. 1.15) we shall say that an angle 
 AOB is acute
if 0◦ < ÂOB < 90◦, right if ÂOB = 90◦ and obtuse if 90◦ < ÂOB < 180◦. We
call the reader’s attention (cf. Fig. 1.15), to the particular way of denoting a right
angle.

It will be sometimes useful to have a special name attached to two angles whose
sum of measures equals 90◦; from now on, we shall say that two such angles are
complementary. This way, if α and β are the measures of two complementary
angles, then α + β = 90◦. Also, in such a case we shall say that the angle of
measure α (or that α itself) is the complement of the angle of measure β (or of β

itself), and vice-versa. For example, two angles whose measures are 25◦ and 65◦
are complementary, since 25◦ + 65◦ = 90◦; we can then say that one angle is the
complement of the other, or that 25◦ is the complement of 65◦ (and vice-versa).
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Fig. 1.16 Opposite angles

 AOB and 
 COD

O

A

B

D

C

αβ

γ

The first proposition of Euclidean Geometry we shall prove provides a sufficient
condition for the equality of two given angles. Before we can state and prove it, we
need yet another piece of terminology.

Definition 1.8 Angles 
 AOB and 
 COD (with a common vertex O) are said to
be opposite (we abbreviate OPP) if their sides, in pairs, are opposite half-lines.

As indicated, angles 
 AOB and 
 COD in Fig. 1.16 are opposite, for
−→
OA and

−→
OC, as well as

−→
OB and

−→
OD, are opposite half-lines. Note that the same is true of

angles 
 AOD and 
 BOC.

Proposition 1.9 Two opposite angles have equal measures.

Proof In the notations of Fig. 1.16, since
−→
OB and

−→
OD are opposite to each other,

we have α + γ = 180◦. Similarly, β + γ = 180◦, so that

α = 180◦ − γ = β.

��

Problems: Sect. 1.2

1. Assume that the intersection of two convex regions of a plane is a nonempty
set. Prove that it is also a convex region.

2. If we add the measure of an angle to the triple of the measure of its complement,
we get 210◦. What is the measure of the angle?

3. Compute the measures of two complementary angles, knowing that the com-
plement of the double of one of them equals one third of the measure of the
other.

4. The measures α and β of two opposite angles are expressed, in degrees, by
9x − 2 and 4x + 8. Compute the measure, in degrees, of α + β.

5. Compute the measure of an acute angle, knowing that it exceeds the measure
of its complement in 76◦.

6. * If two lines intersect, prove that one of the angles formed by them equals 90◦
if and only if all four angles formed by them equal 90◦.
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7. In the figure below, the angle α equals one sixth of the angle γ , plus half of the
angle β. Compute α.

αβ

γ

8. Five half-lines, of same origin O , form five angles that cover all of the plane
and have measures, in degrees, respectively proportional to the numbers 2, 3, 4,
5 and 6. Compute the measure of the greatest of these five angles.

9. Construct, with straightedge and compass, an angle whose measure equals the
sum of the measures of the angles 
 AOB and 
 A′O ′B ′ of the figure below:

A

B

O A

B

O

10. Points A, B and C are chosen on a circle of center O , such that the measures

of the minor arcs
�

AB,
�

BC and
�

AC are all equal. Compute the measures of the
angles 
 AOB, 
 BOC and 
 AOC.

11. Three half-lines of the same origin O form three angles that cover all of the
plane. Show that at least one of these angles is greater than or equal to 120◦,
and at least one of them is less than or equal to 120◦.

1.3 Convex Polygons

Let A, B and C be three given points in the plane. If C is on the line
←→
AB , we say

that A, B and C are collinear; otherwise, we say that A, B and C are non collinear
(cf. Fig. 1.17).

Three non collinear points A, B and C form a triangle ABC. In this case,
we say that A, B and C are the vertices of the triangle ABC, and that the line
segments AB, AC and BC are the sides or edges of ABC. The triangular region
corresponding to the triangle ABC (also denoted by ABC, whenever there is no
danger of confusion) is the bounded portion of the plane whose boundary is the
union of the sides of ABC (the dashed portion of the plane in Fig. 1.17).
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Fig. 1.17 Three non
collinear points

rA B

C

Fig. 1.18 Triangle and
triangular region ABC

A B

C

a
b

c

Given a triangle ABC, whenever there is no danger of confusion we shall also
refer to the lengths of the line segments AB, BC and AC as the sides of the triangle.
In this case, we usually write (cf. Fig. 1.18) AB = c, AC = b and BC = a. The
sum of the lengths of the sides of a triangle is its perimeter, which will be denoted,
from now on, by 2p. Hence, p is the semiperimeter of the triangle and, in the
notations of Fig. 1.18, we have

p = a + b + c

2
. (1.1)

Angles 
 A = 
 BAC, 
 B = 
 ABC and 
 C = 
 ACB (or their measures
̂A = B̂AC, ̂B = ÂBC and ̂C = ÂCB) are the interior angles of the triangle.

Triangles are usually classified in two different ways: with respect to the lengths
of their sides or with respect to the measures of their interior angles. For the time
being, let us see how to classify a triangle with respect to the lengths of its sides.
Since each triangle has exactly three sides, the only possibilities for their lengths are
that at least two of them are equal or that they are pairwise distinct. Thus, we have
the following definition.

Definition 1.10 A triangle ABC is said to be:

(a) Equilateral, if AB = AC = BC.
(b) Isosceles, if at least two of AB, AC and BC are equal.
(c) Scalene, if AB 
= AC 
= BC 
= AB.

Note that, by the previous definition, every equilateral triangle is also isosceles.
However, the converse statement is not true; for instance, for the triangle ABC at
the center of Fig. 1.19, we clearly have AB = AC 
= BC, so that it is isosceles but
not equilateral.

If ABC is an isosceles triangle with AB = AC, we say that the third side BC

is a basis for the triangle. Thus, each side of an equilateral triangle is a basis of it,
but we rarely use this term in the context of equilateral triangles. In other words, we
usually reserve the word basis for the unequal side of an isosceles triangle which is
not equilateral.

A triangle is a particular type of convex polygon, according to the definition that
follows.
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B C

A

B C

A

B C

A

Fig. 1.19 Equilateral (left), isosceles (center) and scalene (right) triangles

Fig. 1.20 A convex polygon
of five vertices (and sides)

A1 A2

A3

A4

A5

Definition 1.11 Let n ≥ 3 be a natural number, and A1, A2, . . . , An be n distinct
points in the plane. We say that A1A2 . . . An is a convex polygon if, for 1 ≤ i ≤ n,
the two following conditions are satisfied (in both items below, we take An+1 =
A1):

(a)
←→
AiAi+1 does not contain any of the other points Aj .

(b)
←→
AiAi+1 leaves all of the other points Aj in a single half-plane, of the two it
determines.

The points A1, A2, . . . , An are the vertices of the convex polygon A1A2 . . . An;
the line segments A1A2, A2A3, . . . , An−1An, AnA1 (ou, whenever there is no danger
of confusion and is convenient, their lengths) are the sides or edges of it. As with
triangles, the sum of the lengths of the sides of a convex polygon is its perimeter.
Also, the polygonal region corresponding to the convex polygon A1A2 . . . An is the
bounded region of the plane whose boundary is the union of the sides of the polygon.
Figure 1.21 shows the polygonal region corresponding to the convex polygon of
Fig. 1.20.

As in Figs. 1.18 and 1.21, it can be shown that the polygonal region correspond-
ing to a convex polygon is a convex region. From now on, we shall assume this to
be true, without further comments.

A diagonal of a convex polygon is any of the line segments AiAj that is not a
side of the polygon; for example, the convex polygon A1A2 . . . A5 of Fig. 1.20 has
exactly five diagonals: A1A3, A1A4, A2A4, A2A5 and A3A5. In Proposition 1.12,
we shall prove that every convex polygon of n sides has exactly n(n−3)

2 diagonals
(see, also, Problem 1).
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Fig. 1.21 The polygonal
region corresponding to the
polygon of Fig. 1.20

A1 A2

A3

A4

A5

Fig. 1.22 Exterior angles of
the convex polygon
A1A2A3A4A5 at A1

A1 A2

A3

A4

A5

The interior angles of the convex polygon A1A2 . . . An are the convex angles

 Ai−1AiAi+1 (with the convention that A−1 = An and An+1 = A1), or simply

 Ai , if there is no danger of confusion. In particular, A1A2 . . . An has exactly n

interior angles. The exterior angles of A1A2 . . . An at the vertex Ai are the opposite
angles that are the supplements of the interior angle of the polygon at Ai . Figure 1.20
shows the interior angles of the convex polygon A1A2 . . . A5, and Fig. 1.22 shows
the exterior angles of A1A2 . . . A5 at vertex A1.

In general, we say that a convex polygon A1A2 . . . An is a convex n-gon, in
reference to the fact that it has n sides (and n vertices). However, we use to say that
the polygon is a quadrilateral if n = 4, a pentagon if n = 5, an hexagon if n = 6,
heptagon if n = 7, octagon if n = 8 and a decagon if n = 10. Also concerning
specific numbers of sides, we shall sometimes label the vertices of a polygon with
upper case distinct Latin letters. For instance, we shall generally let ABCD denote
a quadrilateral and, in this case, we will always assume, unless stated otherwise, that
their sides are AB, BC, CD and DA. Analogous remarks are valid for pentagons,
hexagons and so on.

The following proposition counts the number of diagonals of a convex n-gon.

Proposition 1.12 Every convex n-gon has exactly n(n−3)
2 diagonals.

Proof If n = 3 there is nothing to prove, for triangles have no diagonals and
n(n−3)

2 = 0 for n = 3. Suppose, then, that n ≥ 4. Joining vertex A1 to the other
n − 1 vertices A2, . . . , An we obtain n − 1 line segments, two of which are sides
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Fig. 1.23 Diagonals of a
convex n-gon departing
from A1

A1
A2

A3

An−1

An

of the polygon (A1A2 and A1An) and the remaining n − 3 (A1A3, . . . , A1An−1)
are diagonals (cf. Fig. 1.23). Since an analogous reasoning is valid for every other
vertex of the polygon, we conclude that exactly n − 3 diagonals depart from each
vertex.

Adding all of these diagonals would give us a total of n(n − 3) diagonals (i.e.,
n− 3 diagonals for each of the n vertices). Nevertheless, this reasoning has counted
each diagonal AiAj exactly twice: one when we counted the diagonals departing
from Ai and the other when we counted those departing from Aj . Hence, in order
to obtain the correct number of diagonals, we have to divide n(n − 3) by 2, thus
obtaining n(n−3)

2 diagonals. ��

Problems: Sect. 1.3

1. Use the principle of mathematical induction (cf. [5], for instance) to prove the
formula for the number of diagonals of a convex polygon.

2. A convex polygon is such that, from one of its vertices, we can draw as many
diagonals as those of a convex hexagon. How many sides does the polygon
have?

3. Three convex polygons have numbers of sides equal to three consecutive natural
numbers. Knowing that the sum of their numbers of diagonals is equal to
133, compute the number of sides of the polygon with the largest number of
diagonals.



Chapter 2
Congruence of Triangles

This chapter is devoted to the study of the usual sets of necessary and sufficient
conditions for two triangles to be considered the same, in a sense it will soon be
made precise. We also discuss here the important fifth axiom of Euclid (known as
the axiom of parallels), as well as several interesting and important consequences
of it, most notably the triangle inequality. Finally, in the last section of the chapter,
several special types of quadrilaterals will make their first appearance.

2.1 The SAS, ASA and SSS Cases

Let’s start by considering the following example.

Example 2.1 Use straightedge and compass to construct an equilateral triangle
ABC whose sides have lengths equal to l.

Solution

l

CONSTRUCTION STEPS

1. Mark an arbitrary point A in the plane.
2. Use the compass to draw the circle of center A and radius l.
3. Mark an arbitrary point B on this circle.
4. Use the compass to draw the circle of center B and radius l.

© Springer International Publishing AG, part of Springer Nature 2018
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Problem Books in Mathematics, https://doi.org/10.1007/978-3-319-77974-4_2
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5. Letting C denote any of the two points of intersection of these two circles, we
get the desired triangle ABC.

��
In the above example, we have constructed a triangle having certain pre-

established properties (in this case, being equilateral). While solving the example,
we implicitly assumed that there was essentially one triangle satisfying the desired
properties; in other words, we tacitly assumed that any other equilateral triangle of
side lengths equal to l we could have constructed should be regarded as equal to the
one we actually constructed, for it would differ from this one only by its position in
the plane.

The discussion of the previous paragraph motivates a notion of equality (rig-
orously speaking, equivalence) for triangles, which receives the special name of
congruence: we say that two triangles are congruent if it is possible to move one
of them in space, without deforming it, until we make it coincide with the other one.

Thus, if two triangles ABC and A′B ′C′ are congruent, there must exist a
correspondence between the vertices of one triangle and those of the other, in such
a way that the interior angles at corresponding vertices are equal and the sides
opposite to corresponding vertices are also equal. Figure 2.1 shows two congruent
triangles ABC and A′B ′C′, with the correspondence of vertices

A ←→ A′; B ←→ B ′; C ←→ C′.

For such triangles, we have, then
{

̂A = ̂A′; ̂B = ̂B ′; ̂C = ̂C′
AB = A′B ′; AC = A′C′; BC = B ′C′ .

It is immediate to see that the notion of congruence of triangles has the following
properties1:

1. Symmetry: it does not matter if we say that a triangle ABC is congruent to a
triangle DEF or that DEF is congruent to ABC, or even that ABC and DEF

are congruent. Indeed, if we can move ABC is space (without deforming it) until
we make it coincide with DEF , then we can certainly move DEF backwards,
until superpose it with ABC.

Fig. 2.1 Two congruent
triangles

A

B C A

B

C

1The reader with some previous knowledge of Euclidean Geometry will promptly notice that we
do not list below the reflexive property of congruence of triangles. In this sense, whenever we refer,
in a certain context, to two triangles, we will implicitly assume that they are distinct ones.
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2. Transitivity: if a triangle ABC is congruent to a triangle DEF and, in turn,
triangle DEF is congruent to a third triangle GHI , then ABC will be also
congruent to GHI . This is so because we can move ABC is space until make
it coincide with GHI in two steps: first we move ABC until it coincides with
DEF and, then, we continue the motion until it coincides with GHI .

From now on, we will write

ABC ≡ A′B ′C′

to denote that triangles ABC and A′B ′C′ are congruent, with the correspondence
of vertices

A ←→ A′; B ←→ B ′; C ←→ C′.

It would be interesting (and useful) if we had at our disposal a minimal set
of criteria to decide whether two given triangles are congruent or not. Moreover,
they should be as simple as possible, in order to ease the checking of the desired
congruence. Actually, more than one such set of criteria do exist, and these are
usually referred to as the cases of congruence of triangles.

In what follows, we will study the usual cases of congruence of triangles under
an informal point of view. Each such case is preceded by an example involving
construction with straightedge and compass, whose solution motivates the case
under study.

Example 2.2 Use straightedge and compass to construct a triangle ABC, knowing
that BC = a, AC = b and ̂C = γ .

Solution

a
b γ

CONSTRUCTION STEPS

1. Mark a point C in the plane and draw a half-line
−→
CX.

2. Construct an angle X̂CY = γ , thus determining another half-line
−→
CY .

3. On the half-lines
−→
CX and

−→
CY mark points B and A such that AC = b a BC =

a, respectively.
��

Upon executing the construction steps above several times, we become more and
more confident that, if we choose any two distinct positions for the vertex C and two
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Fig. 2.2 The SAS
congruence case

A

B C A

B

C

different directions for the side
−→
CX of angle 
 XCY , then we will get two triangles

ABC which can be qualified as being congruent to one another. This discussion
motivates our first case of congruence, known as the SAS case.

Axiom 2.3 (SAS Congruence Case) If two sides of a triangle and the interior
angle formed by them are respectively equal to two sides of another triangle and
to the interior angle formed by them, then the two triangles are congruent.

In symbols, for triangles ABC and A′B ′C′ as in Fig. 2.2, the SAS congruence
case assures that

AB = A′B ′
AC = A′C′
̂A = ̂A′

⎫

⎬

⎭

SAS�⇒ ABC ≡ A′B ′C′,

with the correspondence of vertices A ↔ A′, B ↔ B ′, C ↔ C′. In particular, it
follows that

̂B = ̂B ′, ̂C = ̂C′ and BC = B ′C′.

Let us now consider the following example.

Example 2.4 Use straightedge and compass to construct a triangle ABC, knowing
that BC = a, ̂B = β and ̂C = γ .

Solution

a

β γ
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Fig. 2.3 The ASA
congruence case

A

B C A

B

C

CONSTRUCTION STEPS

1. Draw a line r and mark points B and C on it, such that BC = a.

2. Draw a half-line
−→
BX such that ĈBX = β.

3. Line r divides the plane in two half-planes. In the one that contains X, draw the

half-line
−→
CY such that B̂CY = γ .

4. Mark point A as the intersection of the half-lines
−→
BX and

−→
CY .

��
As in the previous example, by repeating the construction steps above several

times, choosing distinct positions for the side BC (subjected, of course, to the
restriction BC = a), the construction of triangle ABC rests completely determined
by the measures angles 
 B and 
 C ought to have. In other words, in doing so we
will obtain triangles in distinct positions, but will see no problem in qualifying all
of them as being congruent to the one originally constructed. This motivates our
second case of congruence, called the ASA case.

Axiom 2.5 (ASA Congruence Case) If two angles and the included side of a
triangle are respectively equal to two angles and the included side of another
triangle, then the two triangles are congruent.

In symbols, for triangles ABC and A′B ′C′ as in Fig. 2.3, the ASA congruence
case assures that

̂A = ̂A′
̂B = ̂B ′

AB = A′B ′

⎫

⎬

⎭

ASA�⇒ ABC ≡ A′B ′C′,

with the correspondence of vertices A ↔ A′, B ↔ B ′, C ↔ C′. In particular, it
follows that

̂C = ̂C′, AC = A′C′ and BC = B ′C′.

Let’s now turn to the example that motivates our third congruence case.

Example 2.6 Use straightedge and compass to construct a triangle ABC, given
AB = c, AC = b and BC = a.
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Solution

a
b

c

CONSTRUCTION STEPS

1. Draw a line segment BC such that BC = a.
2. Draw the circles of center B and radius c, and of center C and radius b.
3. Mark point A as one of the intersection points of the circles constructed in item 2.

��
As in the two previous examples, by choosing a different position for the side BC

(maintaining, of course, the condition BC = a), and performing the subsequent
constructions prescribed above, we would get another triangle, which would qualify
as congruent to the originally constructed one. This motivates our third congruence
case, the SSS case, stated below.

Axiom 2.7 (SSS Congruence Case) If the three sides of a triangle are, in some
order, congruent to the three sides of another triangle, then the two triangles are
congruent.

In symbols, for triangles ABC and A′B ′C′ as in Fig. 2.4, the SSS congruence
case assures that

AB = A′B ′
BC = B ′C′
CA = C′A′

⎫

⎬

⎭

LLL�⇒ ABC ≡ A′B ′C′,

with the correspondence of vertices A ↔ A′, B ↔ B ′, C ↔ C′. In particular, this
gives

̂A = ̂A′, ̂B = ̂B ′ and ̂C = ̂C′.

It is worth remarking that the ASA and SSS congruence cases follow from the
SAS case, in the following sense: given two triangles in the plane, it can be shown
that the validity of a set of conditions ASA or SSS imply that the two triangles

Fig. 2.4 The SSS
congruence case

A

B C A

B

C



2.2 Applications of Congruence 25

satisfy a set of conditions SAS. Nevertheless, for the purposes of these notes, such
deductions would not give us any substantial gain, and hence we shall not discuss
them here. (For a careful exposition, we refer the reader to [19].)

We shall present the last two cases of congruence of triangles in Corollary 2.22
and Problem 1, page 36, showing how these two additional cases follow from the
ASA and SSS cases.

Finally, we observe that, once the congruence of two given triangles is established
and whenever there is no danger of confusion, we shall omit the correspondence
between their vertices. Since this usage will be followed several times along these
notes, for the sake of understanding we urge the reader to check carefully the implied
vertex correspondence every time we establish some congruence of triangles.

Problems: Sect. 2.1

1. (a) Give an example showing two congruent triangles for which it is not possible
to rigidly move (i.e., to move without deforming) one of them in the plane,
until make it coincide with the other. Nevertheless, show how one can rigidly
move one of them in space, until make it coincide with the other.

(b) In what sense do the two congruent triangles of the example given in item
(a) differ from one another, so that such a difference explains the fact that we
cannot perform the motion along the plane?

2.2 Applications of Congruence

In this section we collect some useful applications of the congruence cases studied
in the previous one. Such applications will appear so frequently along the rest of the
book that we advise the reader to memorize them as fast as possible.

We start with some terminology.

Definition 2.8 Given an angle 
 AOB, its bisector is the half-line
−→
OC, contained

in 
 AOB and that splits it into two equal angles. In this case, we also say that
−→
OC

bisects 
 AOB. Thus,

−→
OC bisects 
 AOB ⇐⇒ ÂOC = B ̂OC.

We shall assume, without proof, that the bisector of an angle, if exists, is unique.
The next example shows how to construct it.

Example 2.9 Use straightedge and compass to construct the bisector of the angle

 AOB given below.
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Solution

O

B

A

CONSTRUCTION STEPS

1. Draw the circle with center O and some radius r , and mark its intersection points

X and Y , respectively wit
−→
OA and

−→
OB.

2. Choose an opening s > 1
2 XY , draw the circles centered at X and Y and with

radii s, and let C be one of their intersection points (C 
= O). The half-line
−→
OC

is the bisector of 
 AOB.

In order to justify why the construction steps described above really do the job,
start by observing that, with respect to triangles XOC and YOC, we have OX =
OY = r and XC = YC = s. Since OC is a common side of these two triangles,
it follows from the SSS congruence case that XOC ≡ YOC. Therefore, X̂OC =
Y ̂OC or, which is the same, ÂOC = B ̂OC. ��

In a triangle ABC, the internal bisector relative to the side BC (or to the vertex
A) is the portion AP of the bisector of the internal angle 
 A of the triangle, that
goes from A to the point P in which it intersects side BC. Point P ∈ BC is the foot
of the internal bisector relative to BC. Analogously, we have in ABC the internal
bisectors relative to the sides AC and AB (or, which is the same, to the vertices B

and C, respectively), so that every triangle has exactly three internal bisectors. At
this point, it is instructive for the reader to draw a triangle ABC, together with its
internal bisector relative to the vertex A and the corresponding foot; in this respect,
see also Problem 1.

Combining the SSS and SAS cases we can construct the midpoint of a line
segment, i.e., the point that divides the segment into two equal parts. The next
example shows how to do it.

Example 2.10 Use straightedge and compass to construct the midpoint of a line
segment AB.
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Solution

A

B

CONSTRUCTION STEPS

1. Fix an opening r > 1
2 AB and draw the circles centered at A and B and with

radii r . Let X and Y be their intersection points.

2. The intersection point M of the line
←→
XY and the line segment AB is the midpoint

of AB.

Indeed, with respect to triangles AXY and BXY , we have AX = BX = r and
AY = BY = r . Since XY is a common side of both of these triangles, it follows
from the SSS congruence case that AXY ≡ BXY . Hence, ÂXY = B̂XY or, which
is the same, ÂXM = B̂XM . Now, with respect to triangles AXM and BXM , we
have AX = BX and ÂXM = B̂XM . However, since XM is a side of both these
triangles, it follows from the SAS congruence case that AXM ≡ BXM . Therefore,
AM = BM . ��

In a triangle ABC, the median relative to the side BC (or to the vertex A) is the
line segment that goes from the vertex A to the midpoint of side BC. Analogously,
we have in ABC the medians relative to the sides AC and AB (or, which is the
same, to the vertices B and C, respectively), so that every triangle has exactly three
medians. At this point, we suggest the reader to draw a triangle ABC, together
with its median relative to the vertex A and the midpoint of side BC; we also urge
him/her to take a look at Problem 1.

Given lines r and s in the plane, we say that r is perpendicular to s, that s

is perpendicular to r or simply that r and s are perpendicular if r and s have a
point in common and form an angle of 90◦ at such a point (in this respect, see also
Problem 6, page 12). We shall write r⊥s to denote that r and s are perpendicular.
The next example shows how to use the congruence cases studied before to construct
the line perpendicular to another given line and passing through a given point.

Example 2.11 Given in the plane a line r and a point A, use straightedge and
compass to construct a line s, such that r⊥s and A ∈ s.

Solution There are two distinct cases to consider:

(a) A /∈ r:

r

A
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CONSTRUCTION STEPS

1. Center the compass at A and draw an arc of circle that intersects r at two
distinct points, say B and C.

2. Construct the midpoint M of the line segment BC and let s = ←→
AM.

To see that the construction above is correct, we start by establishing the
congruence of triangles ABM and ACM . This follows from the SSS case, for
AB = AC, BM = CM and AM is a common side of these two triangles.
Then, we get A ̂MB = ÂMC. However, since ÂMB + ÂMC = 180◦, we

conclude that A ̂MB = ÂMC = 90◦ or, which is the same, that
←→
AM⊥r .

(b) A ∈ r:

r
A

CONSTRUCTION STEPS

1. Center the compass at A and draw a semicircle that intersects r at points B

and C.
2. Now, draw two circles of radii R > 1

2 BC, centered at B and C, respectively;

if A′ one of the intersection points of these two circles, then
←→
A′A⊥r .

Later, in Sect. 2.4, we shall show that the choice R > 1
2 BC really forces the

two circles to have intersection points. Taking this for granted by now, we have
ABA′ ≡ ACA′ by the SSS case and, hence, A′

̂AB = A′
̂AC. On the other hand,

since A′
̂AB + A′

̂AC = 180◦, it follows that A′
̂AB = A′

̂AC = 90◦. ��
In the notations of the previous example, if A /∈ r and s is the perpendicular to r

passing through A, then the intersection point of lines r and s is called the foot of
the perpendicular dropped from A to r .

Remark 2.12 Given in the plane a point A and a line r , it is possible to show that the
line s, perpendicular to r and passing through A, in indeed unique (in this respect,
see Problem 17, page 39).

We consider again a point A and a line r in the plane, with A /∈ r . We then define
the distance from A to r as the length of the line segment AP , where P is the foot
of the perpendicular dropped from A to r (cf. Fig. 2.5). In other words, letting d

denote the distance from A to r , we have d = AP .
In Sect. 2.4 (cf. Corollary 2.24), we shall prove that the length of the segment

AP is smaller than the length of any other line segment joining A to a point P ′ ∈ r

(i.e., with P ′ 
= P ); in the notations of Fig. 2.5, this means that d < AP ′.
Given a triangle ABC, its height or altitude relative to the side BC (or to the

vertex A) is the segment that joins A to the foot of the perpendicular dropped from
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Fig. 2.5 Distance from point
A to line r

r

A

P

d

P

Fig. 2.6 ABC isosceles ⇒
̂B = ̂C

A

B C
M

A to the line
←→
BC . In this case, we usually say that the perpendicular foot is the foot

of the altitude relative to BC. Analogously, we have in triangle ABC the altitudes
relative to sides AC and AB (or to the vertices B and C, respectively), so that ABC

has exactly three altitudes. At this point, we urge the reader to draw a triangle ABC,
together with its altitude relative to the vertex A and the corresponding foot (in this
respect, see also Problem 1).

We finish this section by studying a very important property of isosceles
triangles, which will be used several times in the sequel.

Proposition 2.13 If ABC is an isosceles triangle of base BC, then ̂B = ̂C.

Proof The proof of this result is a direct consequence of the explanation we gave for
the correctedness of the construction presented for the midpoint of a line segment.
Nevertheless, we repeat it here for the reader’s convenience.

Let M be the midpoint of side BC (cf. Fig. 2.6). Since BM = CM , AB = AC

and AM is a common side of triangles AMB and AMC, the SSS congruence case
assures that these two triangles are congruent. Therefore, ÂBM = ÂCM . ��
Corollary 2.14 The measures of the interior angles of an equilateral triangle are
all equal.

Proof It suffices to note that every side of an equilateral triangle can be seen as a
basis for it, when looked at as an isosceles triangle. ��

Problems: Sect. 2.2

1. Use straightedge and compass to construct the internal bisectors, the medians and
the heights of the triangle of Fig. 2.7.
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Fig. 2.7 Internal bisectors,
medians and altitudes of a
triangle

A

C

B

We shall now make some comments on the problem above. Firstly, it is
immediate from the given definitions that the internal bisectors and the medians
of a triangle are always contained in the corresponding triangular region; on
the other hand, this is not necessarily the case for the altitudes, as you can
easily see upon solving the last part of the problem. Moreover, after performing
these constructions, one will probably notice that the internal bisectors of the
given triangle all pass through a common point, the same happening with the
medians and the altitudes. Such a property has nothing to do with the triangle
we have; actually, to prove that the internal bisectors (respectively the medians,
the altitudes) of every triangle pass through a single point will be the object of
Sect. 3.2.

2. * Let a point A and a line r , with A /∈ r , be given in the plane. We say that a point

A′ is the symmetric of A with respect to r if
←→
AA′⊥r and r passes through the

midpoint of the line segment AA′. Show how to construct A′ with straightedge
and compass.2

3. Use straightedge and compass to construct a triangle ABC, given the lengths
AB = c and BC = a, as well as the length ma of the median relative to A.

4. Use straightedge and compass to construct a triangle ABC, given the lengths
AB = c and AC = b, as well as the length ma of the median relative to A.

5. Use straightedge and compass to construct a triangle ABC, given the length c of
side AB, the length βa of the internal bisector relative to A and the measure α

of 
 BAC.
6. * Let ABC be an isosceles triangle with basis BC. Prove that the internal

bisector, the median and the altitude relative to BC coincide.
7. * Let ABC be a given triangle and P , M and H be the feet of the internal bisector,

the median and the altitude relative to A, respectively. If P and H or M and H

coincide,3 prove that ABC is isosceles with basis BC.

2A reflection along a line is the transformation of the plane that associates to each point its
symmetric with respect to a fixed line. So, this problem opens the way to the study of reflections
along lines as geometric transformations. We shall not pursue such a viewpoint here; instead, we
refer the reader to the superb book [24].
3The case M = P will be dealt with in Problem 19, page 83.
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8. * Let � be a circle of center O , and let AB be a chord of it. If M is a point on the
line segment AB, prove that

←→
OM⊥←→

AB ⇔ AM = BM.

2.3 Parallelism

Given two distinct lines in the plane, there are only two possibilities for them: either
they have or do not have a common point; in the first case, the lines are said to be
concurrent; in the second, they are said to be parallel (cf. Fig. 2.8).

Given a line r and a point A, with A /∈ r , we would like to study the problem of
constructing (if it indeed exists) a line parallel to r and passing through A. To this
end, we need the following auxiliary result, known as the exterior angle inequality.

Lemma 2.15 In every triangle, the measure of each exterior angle is greater than
the measures of the interior angles not adjacent to it.

Proof Let ABC be a given triangle and M be the midpoint of side AC (cf. Fig. 2.9).

Mark a point B ′ on the half-line
−→
BM , such that M is the midpoint of BB ′. Since

AM = CM , BM = B ′M and ÂMB = C ̂MB ′ (OPP angles), the SAS congruence
case gives AMB ≡ CMB ′, and hence B ′

̂CM = B̂AM . Therefore,

X̂CA > B ′
̂CA = B ′

̂CM = B̂AM = B̂AC.

Analogously, one proves that ŶCB > ÂBC (and note that X̂CA = ŶCB). ��
The next example shows how to perform the most important of all elementary

constructions with straightedge and compass, namely, that of a line parallel to
another one and passing through a given point.

Fig. 2.8 Concurrent (left)
and parallel (right) lines

Fig. 2.9 The exterior angle
inequality

A

B C

M

B

X

Y
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Example 2.16 Use straightedge and compass to construct a line s, parallel to a given
line r and passing through the point A.

Solution

r

A

CONSTRUCTION STEPS

1. Take points C and X on r and join A to C.
2. Construct an angle 
 CAY such that ĈAY = ÂCX and X and Y are in opposite

half-planes with respect to
←→
AC .

3. Line s = ←→
AY is parallel to r .

In order to prove that the construction delineated above actually gives a parallel

to r , suppose, by the sake of contradiction, that
←→
AY intersects r at a point B (cf.

Fig. 2.10). Let’s look at the case in which C ∈ BX (the cases B ∈ CX and X ∈ BC

can be treated in totally analogous ways).
By construction, we have

B̂AC = Y ̂AC = ÂCX;

on the other hand, since 
 ACX is an external angle of triangle ABC, it follows
from the previous lemma that

B̂AC < ÂCX,

which is a contradiction. Therefore, the lines
←→
AY and r are indeed parallel. ��

In his book Elements, Euclid imposed the uniqueness of the parallel line as a
postulate, known in literature as the fifth postulate, or as the parallels’ postulate.
Nevertheless, for most of the mathematicians that studied Euclid’s book, since
Classical Antiquity to the Early Modern Period, such a postulate seemed to be much
more complex than the four previous ones,4 and this made them think that it would
be possible to deduce it, as a theorem, from these four previous ones. However,
all attempts to find out such a proof were in vain. It then happened that, in the

4Namely: through two distinct given points there passes only one line; every line segment can be
extended into a line; given a point and a line segment having this point as an end, there exists a
circle centered at that point and having the given line segment as a radius; all right angles are equal.
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A

B C
X

Y

Fig. 2.10 Construction of a parallel to a given line through a given point

beginnings of the nineteenth century, the Hungarian mathematician János Bolyai
and the Russian mathematician Nikolai Lobatchevsky, working independently,
showed that it was really necessary to assume the uniqueness of the parallel as a
postulate. More precisely, what they did was to construct another type of geometry,
known today as Hyperbolic Geometry, in which the first four postulates of Euclid are
still valid, albeit through a point not belonging to a given line there passes infinitely
many lines parallel to the given one.5

All of the above being said, we now formally assume the uniqueness of the
parallel as a postulate.

Postulate 2.17 (Fifth Postulate) Given in the plane a line r and a point A, with
A /∈ r , there exists only one line parallel to r and passing through A.

In view of the above postulate, Example 2.16 showed how to use straightedge
and compass to construct the parallel to a given line, passing through a point not
belonging to it. Nevertheless, a much simpler construction will be seen in Sect. 2.5
(cf. Example 2.32).

If two lines r and s are parallel, we will write r ‖ s.
Now that we have the fifth postulate at our disposal, we can state and prove some

of the most important results of Euclidean Geometry.
For the first of them, let be given, in the plane, lines r , s and t , such that t

intersects r and s at the distinct points A and B, respectively. In the notations of
Fig. 2.11, angles α and β form a pair of alternate interior angles, while angles
α and γ form a pair of consecutive interior angles with respect to line t . The
following criterion for the parallelism of two given lines will be proved to be quite
useful.

Corollary 2.18 In the notations of Fig. 2.11, we have

r ‖ s ⇔ α = β ⇔ α + γ = 180◦.

Proof Note firstly that, since β + γ = 180◦, we have α = β ⇔ α + γ = 180◦.
Thus, it suffices to prove that r ‖ s ⇔ α = β.

5For an elementary introduction to Hyperbolic Geometry, as well as for a discussion of the
unsuccessful efforts to prove the fifth postulate, we recommend to the reader references [11] and
[19].
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Fig. 2.11 Alternate and
consecutive interior angles

r

s

t

γ β

B

α

A

Fig. 2.12 Sum of the
measures of the interior
angles of a triangle

A

B C

YX

In Example 2.16, we have already seen that α = β ⇒ r ‖ s. Thus, we are left
to establish the converse implication. To this end, let r and s be parallel lines. Then,
by the fifth postulate, s is the only line parallel to r and passing through B, so that it
can be constructed exactly as described in Example 2.16. Therefore, it follows from
the description of that construction that α = β. ��

Yet another consequence of the above discussion, and an extremely relevant one,
is that of the following result.

Theorem 2.19 The sum of the measures of the interior angles of any triangle equals
180◦.

Proof Let ABC be a triangle and
←→
XY be the parallel to

←→
BC passing through A (cf.

Fig. 2.12). By Corollary 2.18, we have ̂B = B̂AX and ̂C = ĈAY , so that

̂A + ̂B + ̂C = ̂A + B̂AX + ĈAY = 180◦.

��

Corollary 2.20 The interior angles of every equilateral triangle are equal to 60◦.

Proof By Corollary 2.14, every equilateral triangle has three equal angles. On the
other hand, the previous theorem assures that their sum is equal to 180◦. Hence, they
must all be equal to 1

3 · 180◦ = 60◦. ��
The next result is known in mathematical literature as the exterior angle

theorem, and is a sharp refinement of Lemma 2.15.

Corollary 2.21 In every triangle, the measure of each exterior angle is equal to the
sum of the measures of the two interior angles which are not adjacent to it.
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Fig. 2.13 The exterior angle
theorem

A

B C
X

Fig. 2.14 A right triangle (at
left) and an obtuse triangle (at
right)

A

B

C AB

C

Proof In the notations of Fig. 2.13, it suffices to see that

ÂCX = 180◦ − ̂C = ̂A + ̂B,

where we used Theorem 2.19 in the last equality above. ��
Theorem 2.19 also allows us to classify a triangle with respect to the measures of

its interior angles. Indeed, it guarantees that every triangle has at most one interior
angle greater than or equal to 90◦, for if ABC was a triangle with ̂A ≥ 90◦ and
̂B ≥ 90◦, we would have

̂A + ̂B + ̂C > ̂A + ̂B ≥ 90◦ + 90◦ = 180◦,

which is an absurd.
In view of the above, an acute triangle has three acute interior angles, a right

triangle has (exactly) one right interior angle and an obtuse triangle has (exactly)
one obtuse interior angle (see Fig. 2.14). If a right (resp. obtuse) triangle ABC is
such that ̂A = 90◦ (resp. ̂A > 90◦), we also say that ABC is right at A (resp.
obtuse at A).

Also in the case of right triangles, the side opposite to the right angle is called the
hypotenuse of the triangle, whereas the other two sides are its legs. In the notations
of the Fig. 2.14 (left), BC is the hypotenuse, whereas AB and AC are the legs of
the right triangle ABC. We will have more to say about right triangles in Sect. 4.2.

We finish this section studying yet another set of sufficient conditions for the
congruence of two given triangles, known as the AAS. The last set of sufficient
conditions for the congruence of two given triangles, which works specifically for
right triangles, will be the object of Problem 1.

Corollary 2.22 (AAS Congruence Case) Let two triangles ABC and A′B ′C′ be
given in the plane. If, in the first triangle, two angles and the side opposite to one of
them are respectively equal to two angles and the side opposite to one of them in the
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Fig. 2.15 The congruence
case AAS

B C

A

second triangle, then the two triangles are congruent. In symbols, given triangles
ABC and A′B ′C′, we have:

̂A = ̂A′
̂B = ̂B ′

BC = B ′C′

⎫

⎬

⎭

AAS�⇒ ABC ≡ A′B ′C′,

with the correspondence of vertices A ↔ A′, B ↔ B ′ and C ↔ C′. In particular,
we also have

̂C = ̂C′, AC = A′C′ and AB = A′B ′.

Proof It suffices to note that the conditions ̂A = ̂A′ and ̂B = ̂B ′ imply

̂C = 180◦ − ̂A − ̂B = 180◦ − ̂A′ − ̂B ′ = ̂C′.

Therefore, for the two given triangles, we have

̂B = ̂B ′, BC = B ′C′ and ̂C = ̂C′,

so that, by the ASA case, they are indeed congruent. ��
Also with respect to the AAS congruence case, suppose we know the length of

one side and the measures of two interior angles of a triangle, with one of these
angles being opposite to the given side (Fig. 2.15). The problem of using straight-
edge and compass to construct the triangle will be discussed in Example 2.34.

Problems: Sect. 2.3

1. * Let two right triangles be such that the hypotenuse and one of the legs of one
of them are respectively congruent to the hypotenuse and one of the legs of the
other one. Prove that the two triangles are congruent. This is the hypotenuse-
leg (abbreviated HL) congruence case for right triangles.
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2. * ABC is an isosceles triangle of basis BC, and D ∈ AB, E ∈ AC are points

such that
←→
DE ‖ ←→

BC . If F is the intersection point of the line segments CD

and BE, prove that BF = CF .
3. Let ABC be an isosceles triangle of basis BC. Prove that the altitudes, medians

and internal bisectors relative to the sides AB and AC have equal lengths.
4. In a triangle ABC, we have ̂A = 90◦. Letting P ∈ AC be the foot of the

internal bisector relative to B and knowing that the distance from P to the side
BC is 2cm, compute the length of AP .

5. In the figure below, lines
←→
AB and

←→
CD are parallel. If the measures of the angles


 ABC and 
 BCD are respectively equal to 3x − 20◦ and x + 40◦, compute
the value of x in degrees.

A

D

B

C

6. In the figure below, prove that r ‖ s ⇔ α = β (one says that α and β are
corresponding angles).

r

s

t

α

β

7. In the figure below, if r ‖ s, prove that α + β = γ .

r

s

α

γ

β



38 2 Congruence of Triangles

8. In the figure below, we have ÂBC = 20◦, B̂CD = 60◦ and D̂EF = 25◦. If
←→
AB and

←→
EF are parallel, compute the measure of the angle 
 CDE.

A B
C

D

E F

9. In the figure below, prove that α = D̂AB + ÂBC + B̂CD.

A

D

B

C

α

10. Compute the sum of the angles at the vertices A, B, C, D and E of the five-
pointed star of the figure below.

A

B

C

D

E

11. * Given a convex n-gon, do the following items:

(a) Prove that it can be partitioned into n − 2 triangles, by means of n − 3
diagonals that meet only at vertices of the polygon.

(b) Conclude that the sum of the measures of the interior angles of the polygon
is equal to 180◦(n − 2).

(c) Conclude that the sum of the measures of the exterior angles of the polygon
(one angle per vertex) is equal to 360◦.
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12. * In a triangle ABC, let M be the midpoint of side BC. If AM = 1
2 BC, show

that B̂AC = 90◦.
13. * Let I be the intersection point of the internal bisectors of triangle ABC

departing B and C. Prove that B̂IC = 90◦ + 1
2B̂AC.

14. In a triangle ABC, we know that the measure of ̂A equals 1
8 of the measure of

the obtuse angle formed by the internal bisectors relative to the vertices B and
C. Compute the measure of 
 A.

15. * In a triangle ABC, let Ia be the intersection point of the external bisectors
relative to the vertices B and C. Prove that B̂IaC = 90◦ − 1

2B̂AC.
16. A triangle ABC is isosceles of basis BC. Points D on BC and E on AC are

such that AD = AE and B̂AD = 48◦. Compute ĈDE.
17. * Given a line r and a point A in the plane, prove that there is exactly one line

s such that r⊥s and A ∈ s.
18. In triangle ABC, point D ∈ BC is the foot of the internal bisector relative to

A. Prove that ÂDC − ÂDB = ̂B − ̂C.
19. Triangle ABC is isosceles of basis BC. Points D and F on the side AB, and E

on the side AC are chosen so that BC = CD = DE = EF = FA. Compute
the measure of 
 BAC.

20. (TT) ABCDEF is a convex hexagon whose diagonals AD, BE and CF meet
at a common point M . If M is the midpoint of each of these three diagonals,
prove that ̂A + ̂B + ̂C = 180◦.

21. ABC is an isosceles triangle of basis BC, in which the altitudes relative to the
equal sides measure 10cm each.

(a) If P is a point on the basis BC, compute the sum of the distances from P

to the sides AB and AC.

(b) Let Q be a point on the line
←→
BC , though not on the basis BC. Compute the

absolute value of the difference of the distances from Q to the lines
←→
AB

and
←→
AC .

22. (Soviet Union) Triangle ABC is isosceles of basis BC and such that B̂AC =
20◦. We mark points D ∈ AC and E ∈ AB such that D̂BC = 60◦ and ÊCB =
50◦. Compute B̂DE.

2.4 The Triangle Inequality

The main purpose of this brief section is to prove that, in every triangle, the length
of each side is less than the sum of those of the other two. This will be the object of
Theorem 2.26. For the time being, we start by relating the lengths of the sides of a
triangle to the measures of their opposite angles.
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Fig. 2.16 Comparing sides
and angles of a triangle

B C

A

P X

Proposition 2.23 If ABC is a triangle such that ̂B > ̂C, then AC > AB.

Proof Since ̂B > ̂C, we may draw (cf. Fig. 2.16) half-line
−→
BX, which crosses the

interior of ABC and satisfies ĈBX = 1
2 (̂B −̂C). Letting P be its intersection point

with side AC, it follows from the exterior angle theorem that

ÂPB = ĈBP + B̂CP = 1

2
(̂B − ̂C) + ̂C = 1

2
(̂B + ̂C).

However, since ÂBP = ̂B − 1
2 (̂B − ̂C) = 1

2 (̂B + ̂C), it follows that ABP is an
isosceles triangle of basis BP . Hence,

AB = AP < AC.

��

Corollary 2.24 If a triangle ABC is such that ̂A ≥ 90◦, then BC is its greatest
side. In particular, in a right triangle the hypothenuse is the greatest side.

Proof It suffices to note that, if ̂A ≥ 90◦, then ̂A is the greatest angle of ABC, so
that, by the previous proposition, BC is its greatest side. ��
Corollary 2.25 Let ABC and A′B ′C′ be two given triangles, such that AB =
A′B ′ and AC = A′C′. If B̂AC < B ′

̂A′C′, then BC < B ′C′.

Proof Out of the half-planes determined by straight line
←→
AC , let α be the one

containing B. Letting D be the point of α such that AD = A′B ′ and D̂AC =
B ′

̂A′C′, we have DAC ≡ B ′A′C′ by the SAS congruence case, so that DC =
B ′C′. It then suffices to show that DC > BC or, by Proposition 2.23, that
D̂BC > B̂DC. There are two different cases to look at:

(i) A and D lie in a single half-plane, from those determined by
←→
BC (cf. Fig. 2.17,

left): since ABD is isosceles of basis BD, we get

D̂BC > D̂BA = B̂DA > B̂DC.

(ii) A and D lie in opposite half-planes with respect to
←→
BC (cf. Fig. 2.17, right):

since ABD is isosceles of basis BD, we have ÂBD < 90◦. Hence, letting E

be the intersection point of
−→
AB and CD, we get
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Fig. 2.17 Triangles with two pairs of equal sides and unequal angles

Fig. 2.18 The triangle
inequality

B C

A

D

D̂BC = D̂BE + ÊBC > D̂BE = 180◦ − D̂BA > 90◦.

However, since a triangle has at most one obtuse angle, it comes that D̂BC >

B̂CD. ��
As anticipated at the beginning of this section, the following is our main result,

and is known as the triangle inequality.

Theorem 2.26 In every triangle, the length of each side is less than the sum of the
lengths of the other two sides.

Proof Let ABC be such that AB = c, AC = b and BC = a. We shall show that
a < b+c, the proof of the other two inequalities being completely analogous. Mark

(cf. Fig. 2.18) point D on
−→
CA such that A ∈ CD and AD = AB.

Since

CD = AC + AD = AC + AB = b + c,

Proposition 2.23 guarantees that it suffices for us to show that B̂DC < D̂BC.
However, since B̂DA = D̂BA, we just have to note that

B̂DC = B̂DA = D̂BA < D̂BA + ÂBC = D̂BC.

��
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Letting a, b and c be the lengths of the sides of a given triangle, it follows from
triangle inequality that

a < b + c, b < a + c, c < a + b.

Conversely, if three positive real numbers a, b and c do satisfy the above inequal-
ities, then it can be shown that one can always construct a triangle having these
numbers as lengths of its sides.

We end this section by presenting two interesting consequences of the triangle
inequality.

Example 2.27 If P is a point in the interior of a triangle ABC, then:

(a) PB + PC < AB + AC.
(b) PA + PB + PC < AB + AC + BC.

Proof

(a) We extend half-line
−→
BP until it intersects side AC at the point Q, say (cf.

Fig. 2.19). By successively applying the triangle inequality to triangles CPQ

and ABQ, we obtain

PB + PC < PB + ( PQ + CQ) = BQ + CQ

< ( AB + AQ) + CQ = AB + AC.

(b) Arguing analogously to the proof of item (a), we have PA+ PB < AC+ BC

and PA + PC < AB + BC. Termwise adding these two inequalities to that
of item (a), we arrive at

2( PA + PB + PC) < 2( AB + AC + BC),

as desired. ��
Example 2.28 In Fig. 2.20, use straightedge and compass to construct the point
P ∈ r for which PA + PB is as small as possible.

Fig. 2.19 Consequences of
the triangle inequality

B C

A

Q
P
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A

B

r

Fig. 2.20 Least path touching a line

Solution Letting A′ be the symmetric to A with respect to r (cf. Problem 2, page
30), we claim that there is just one possible location for P , and that is the intersection
point of A′B and r . In order to prove this fact, let Q be another point on r (sketch a
figure to follow the reasoning). The fact that A′ is the symmetric of A with respect
to r guarantees that AQ = A′Q and, analogously, AP = A′P (prove that!) Such
equalities, together with the triangle inequality, successively give

AP + BP = A′P + BP = A′B

< A′Q + BQ = AQ + BQ.

��

Problems: Sect. 2.4

1. The lengths of two sides of an isosceles triangle are 38cm and 14cm. Compute
its perimeter.

2. Find the range of x ∈ R, knowing that the lengths of the sides of a certain
triangle are x + 10, 2x + 4 and 20 − 2x.

3. The length (in centimeters) of side AB of triangle ABC is an integer. Compute
the largest possible value for such a length, knowing that AC = 27cm, BC =
16cm and ̂C < ̂A < ̂B.

4. In a triangle ABC, we choose at random points P ∈ BC, Q ∈ AC and R ∈
AB, all distinct from the vertices of ABC. Prove that the perimeter of triangle
PQR is less than that of ABC.

5. If a, b and c are the lengths of the sides of a triangle, prove that |b − c| < a.
6. (TT) Let a, b and c be the lengths of the sides of a triangle. Prove that a3 +

b3 + 3abc > c3.
7. Given a convex quadrilateral ABCD, prove that the point P in the plane for

which the sum PA+ PB+ PC+ PD is minimum is the point of intersection
of the diagonals of ABCD.

8. Let n ≥ 3 be a given integer. Prove that, in every convex n-gon, the length of
each side is less than the sum of the lengths of the n − 1 remaining ones.
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9. Let m,n ≥ 3 and P and Q be respectively a convex n-gon and a convex m-gon.
If P is contained in the interior of Q, show that the perimeter of P is less than
that of Q.

10. In the figure below, half-lines r and s are perpendicular. Use straightedge and
compass to construct points B ∈ r and C ∈ s for which the sum AB + BC +
CD is as small as possible.

r

s

A

D

11. * Let ABC be an equilateral triangle of side length l. If P and Q are points
on the sides AB and AC, respectively, both distinct from the vertices of ABC,
prove that BQ + PQ + CP > 2l.

12. Let ABC be a triangle with AB ≥ AC ≥ BC. Given a point P in the interior
of ABC, prove that PA + PB + PC < AB + AC.

13. (Soviet Union) In a certain country, the distances between the cities are pairwise
distinct. If a plane departs from each city to the nearest one, prove that no more
than five planes landed in any city.

14. A1A2 . . . An is a convex polygon a P is a point inside it. Prove that there exists

1 ≤ i ≤ n such that the foot of the perpendicular from P to
←→

AiAi+1 (with
An+1 = A1) lies inside the line segment AiAi+1.

2.5 Special Quadrilaterals

In this section we begin the systematic study of the geometry of convex quadri-
laterals. Among the various particular types of them, the main ones are surely
parallelograms, which are qualified in the coming

Definition 2.29 A convex quadrilateral is said to be a parallelogram if its opposite
sides are pairwise parallel.

In the sequel, we shall discuss some equivalent ways of defining parallelograms.
The reader must keep those results as notable properties of this class of quadrilater-
als, for we shall use them over and over.
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Fig. 2.21 ABCD

parallelogram ⇔ ←→
AB ‖

←→
CD and

←→
AD ‖ ←→

BC

A
B

D
C

Fig. 2.22
̂A = ̂C and ̂B = ̂D ⇒
ABCD parallelogram

A
B

D
C

Fig. 2.23 ABCD

parallelogram ⇒ AB =
CD and AD = BC

A
B

D
C

Proposition 2.30 A convex quadrilateral is a parallelogram if and only if its
opposite angles are equal.

Proof Suppose first that the convex quadrilateral ABCD is a parallelogram (cf.

Fig. 2.21). Then,
←→
AD ‖ ←→

BC and, since angles 
 A and 
 B of the parallelogram are

consecutive with respect to
←→
AB , we have ̂A + ̂B = 180◦. Analogously, ̂B + ̂C =

180◦, so that ̂A = 180◦ − ̂B = ̂C. Likewise, ̂B = ̂D.
Conversely, let ABCD be a convex quadrilateral in which ̂A = ̂C and ̂B = ̂D (cf.

Fig. 2.22). Then, ̂A+̂B = ̂C+̂D and, since ̂A+̂B+̂C+̂D = 360◦ (cf. Problem 11,
page 38), we have ̂A+̂B = ̂C + ̂D = 180◦. Analogously, ̂A+ ̂D = ̂B +̂C = 180◦.
Now, since ̂A+̂B = 180◦, Corollary 2.18 guarantees that

←→
AD ‖ ←→

BC . Accordingly,

̂B + ̂C = 180◦ gives us
←→
AB ‖ ←→

CD, so that ABCD has parallel opposite sides, i.e.,
is a parallelogram. ��

Proposition 2.31 A convex quadrilateral is a parallelogram if and only if its pairs
of opposite sides have equal lengths.

Proof Suppose first that the convex quadrilateral ABCD is a parallelogram (cf.

Fig. 2.23). Then, we already know that ̂A = ̂C. On the other hand, since
←→
AD ‖ ←→

BC ,
we have ÂDB = ĈBD. Hence, triangles ABD and CDB are congruent by AAS,
and it follows that AB = CD and AD = BC.

Conversely, let ABCD be a convex quadrilateral such that AB = CD and
AD = BC (cf. Fig. 2.24). Then, triangles ABD and CDB are congruent by SSS,
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Fig. 2.24 AB =
CD and AD = BC ⇒
ABCD parallelogram

A
B

D
C

from which ÂDB = ĈBD and ÂBD = ĈDB. In turn, such equalities, together

with Corollary 2.18, imply
←→
AD ‖ ←→

BC and
←→
AB ‖ ←→

CD. ��
The previous proposition allows us to present a simple construction for the

parallel to a given line, passing through a point not belonging to it, as shown by
the coming

Example 2.32 We are given in the plane a line r and a point A /∈ r . Use straightedge
and compass to construct the line parallel to r and passing through A.

Solution

A

r

CONSTRUCTION STEPS

1. Draw a circle α, centered at A and intersecting r in two distinct points, B and C.
2. Draw the circle β of center A and radius equal to BC.
3. Draw the circle γ , centered at C and with radius equal to that of α.
4. Mark the intersection point D of β and γ , such that A and D are in a single

half-plane with respect to r .

5. By the previous proposition, ABCD is a parallelogram; in particular
←→
AD is

parallel to r .
��

The next two examples bring useful applications of the construction delineated
above.

Example 2.33 Use straightedge and compass to construct a parallelogram, knowing
the lengths a and b of its sides, as well as the acute angle α formed by them.
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Solution

a
b

α

CONSTRUCTION STEPS

1. Draw a line r and mark on it a line segment AB of length b (or a; the choice is
immaterial).

2. Construct an angle 
 BAX of measure α.

3. Plot, on half-line
−→
AX, the point D such that AD = a.

4. Trace through D the parallel to
←→
AB and through B the parallel to

←→
AD; then,

mark the intersection point C of these two lines.
5. ABCD is a parallelogram satisfying the stated conditions.

��
Example 2.34 Use straightedge and compass to construct triangle ABC, given the
length a of side BC and the measures α and β of the internal angles at A and B,
respectively.

Solution

a
α β

CONSTRUCTION STEPS

1. Draw a line r and mark on it a line segment BC of length a.
2. Construct an angle 
 CBX of measure β.
3. Construct an angle 
 BXY , of measure α, with Y lying in the same half-plane as

C with respect to
←→
BX.

4. Draw, through C, the parallel to
←→
XY ; then, plot A as the intersection point of this

parallel with line
←→
BX.

��
Back to the general discussion of parallelograms, the next result brings yet

another useful characterization of them.

Proposition 2.35 A convex quadrilateral is a parallelogram if and only if its
diagonals intersect each other in the respective midpoints.
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Fig. 2.25 ABCD

parallelogram ⇒ AM =
CM and BM = DM

A
B

D
C

M

Fig. 2.26 The midsegments
of a triangle

B C

A

M N

P

Proof Firstly, let ABCD be a parallelogram and M the point of intersection of

its diagonals (cf. Fig. 2.25). From
←→
AB ‖ ←→

CD, it comes that B̂AM = D̂CM and
ÂBM = ĈDM . Since we already know that AB = CD, we conclude that triangles
ABM and CDM are congruent, by ASA. Therefore, AM = CM and BM =
DM .

Conversely (see also Fig. 2.25), let ABCD be a quadrilateral whose diagonals
AC and BD intersect at M , midpoint of both of them. Then, MA = MC, MB =
MD and ÂMB = C ̂MD (OPP angles), so that triangles ABM and CDM are
congruent by SAS. Analogously, BCM and DAM are also congruent by SAS. In
turn, such congruences give us AB = CD and BC = AD, respectively, and we
already know that these last two equalities are equivalent to the fact that ABCD is
a parallelogram. ��

For what comes next, we define a midsegment of a triangle to be one of the line
segments joining the midpoints of two sides of the triangle. Thus, each triangle has
exactly three midsegments. In the notations of Fig. 2.26, the midsegments of triangle
ABC are MN , NP and MP . We also say that MN is the midsegment relative to
vertex A (or to side BC); analogously, NP and MP are the midsegments of ABC

relative to the vertices B and C (or to the sides AB and AC), respectively. Finally,
triangle MNP (i.e., the triangle having the midsegments of ABC as its sides) is the
medial triangle of ABC.

The properties of parallelograms obtained up to this point allows us to prove, in
the coming proposition, an important result on the midsegments of a triangle, which
is known as the midsegment theorem.

Proposition 2.36 Let ABC be any triangle. If MN is the midsegment relative to

BC, then
←→
MN ‖ ←→

BC . Conversely, if through the midpoint M of side AB we draw

the line parallel to
←→
BC , then it intersects side AC in its midpoint N . Moreover, if

this is so, then
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Fig. 2.27 Length of a
midsegment of a triangle

B C

A

M
N M

MN = 1

2
BC.

Proof For the first part, in the notations of Fig. 2.27, take M ′ on
−→
MN such that

MN = NM ′. Since N is the midpoint of AC and ÂNM = ĈNM ′ (OPP angles),
triangles AMN and CM ′N are congruent by SAS. Hence, M ′C = MA and

M ′
̂CN = M̂AN , whence (by Corollary 2.18)

←→
M ′C ‖ ←→

AM. Thus,

BM = AM = M ′C and
←→
BM = ←→

AM ‖
←→
M ′C.

Having a pair of opposite sides equal and parallel, Problem 1, page 58 guarantees
that the convex quadrilateral MBCM ′ is a parallelogram. However, since in all
parallelograms both pairs of opposite sides are equal and parallel, we conclude that

←→
BC ‖

←→
MM ′ = ←→

MN and BC = MM ′ = 2 MN.

Conversely, let r be the line passing through the midpoint M of side AB and

parallel to
←→
BC . Since

←→
MN also passes through M and is parallel to

←→
BC , the fifth

postulate 2.17 of Euclid assures that r coincides with
←→
MN ; in particular, N ∈ r . ��

The coming example brings a first application of the midsegment theorem.

Example 2.37 Construct triangle ABC, knowing the positions of the midpoints M ,
N and P of the sides BC, CA and AB, respectively.

Solution

M

N
P
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CONSTRUCTION STEPS

1. Draw line r , passing through M and parallel to
←→
NP .

2. Draw line s, passing through N and parallel to
←→
MP .

3. Draw line t , passing through P and parallel to
←→
MN .

4. According to the previous proposition, we have s ∩ t = {A}, r ∩ t = {B} and
r ∩ s = {C}.

��
For what follows, recall that a median of a triangle is the line segment joining

a vertex of the triangle to the midpoint of the opposite side. Obviously, every
triangle has exactly three medians. On the other hand, and as an application of the
midsegment theorem together with the properties of parallelograms, we shall show
in the coming proposition that the medians of each triangle intersect at a single
point, which is called its barycenter.

Proposition 2.38 In every triangle, the three medians pass through a single point,
the barycenter of the triangle. Moreover, the barycenter divides each median, from
the corresponding vertex, in the ratio 2 : 1.

Proof Let N and P be the midpoints of the sides AC and AB, respectively, and let
BN ∩ CP = {G1} (cf. Fig. 2.28). Let also S and T be the midpoints of the line
segments BG1 and CG1, respectively. Note that NP is the midsegment of ABC

relative to BC, whereas ST is the midsegment of BCG1 relative to BC; therefore,
the midsegment theorem assures that both NP and ST are parallel to BC and have

length equal to half of that of BC. Hence, NP = ST and
←→
NP ‖←→

ST , so that
Problem 1, page 58, guarantees that NPST is a parallelogram. It then follows from
Proposition 2.35 that PG1 = G1T and NG1 = G1S. However, since BS = SG1
and CT = T G1, we conclude that BS = SG1 = G1N and CT = T G1 = G1P .
In turn, such equalities readily furnish BG1 = 2 G1N and CG1 = 2 G1P .

Now,if M is the midpoint of BC and G2 is the point of intersection of the medians
AM and BN , we conclude in an analogous way that G2 divides AM and BN in the
ratio 2 : 1 from each vertex. But then, G1 and G2 are such that BG1 = 2 G1N and
BG2 = 2 G2N , and this clearly implies G1 ≡ G2.

Fig. 2.28 The medians and
the barycenter of a triangle

A

B C

P N

S T

G1
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Fig. 2.29 A trapezoid

ABCD, with
←→
AB ‖ ←→

CD

A B

CD

Fig. 2.30 Parallelograms
associated to the trapezoid
ABCD

A B

CD

E F

Finally, letting G denote the point G1 ≡ G2, we have proved that AM , BN

and CP concur at G, which divides each median in the ratio 2 : 1, from the
corresponding vertex to the opposite side. ��

Hereafter, unless explicitly stated otherwise, we shall denote the barycenter of
a triangle ABC by G. O The barycenter of a triangle is one of its notable points;
others (the circumcenter, the incenter and the orthocenter, to name just the more
popular ones) will be studied in Sect. 3.2.

As we have previously pointed out, Problem 1, page 58, guarantees that a
quadrilateral having a pair of equal and parallel opposite sides is a parallelogram.
Nevertheless, it may happen that two opposite sides of a quadrilateral are parallel,
being equal or not. In such a case, we say that the quadrilateral is a trapezoid or
trapezium (cf. Fig. 2.29). Thus, every parallelogram is in particular a trapezoid,
albeit the converse is obviously not true.

In every trapezoid, the two sides which are known to be parallel are its bases; and
one uses to refer to them as the larger and smaller bases of the trapezoid. The other
two sides (about which we at first know nothing, but which can also be parallel—
provided the trapezoid is in particular a parallelogram) are the legs of the trapezoid.
In the notations of Fig. 2.29, AB and CD are the bases, and BC and AD are the
legs of trapezoid ABCD.

Whenever we deal with problems involving geometric constructions in a trape-
zoid ABCD as that of Fig. 2.29, it is frequently useful to observe (cf. Fig. 2.30)

that if E and F are points on the line
←→
AB for which ADCE and BDCF are

parallelograms, then:

i. Triangle BCE is such that BE = AB− CD, CE = AD and B̂CE = measure

of the angle formed by lines
←→
AD and

←→
BC .

ii. Triangle ACF is such that AF = AB+ CD, CF = BD and ÂCF = measure
of the angle formed by the diagonals AC and BD.

We shall use the above discussion in the coming example.
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Example 2.39 Use straightedge and compass to construct a trapezoid ABCD of
bases AB and CD, knowing that its diagonals AC and BD form an angle of 45◦
with each other, as well as that AB = a, AC = d1 and BD = d2.

Solution

a
d1

d2

CONSTRUCTION STEPS

1. Inspired by Fig. 2.30, construct a triangle ACF such that AC = d1, CF = d2
and ÂCF = 45◦ or 180◦ − 45◦ = 135◦ (there will be two distinct solutions).

2. Mark point B on
−→
AE such that AB = a.

3. Draw the line r , parallel to
←→
CF and passing through B, and line s, parallel to

←→
AF and passing through C.

4. Mark D as the intersection point of r and s.
��

Before we proceed, we need to set a few more conventions on trapezoids,
namely: the line segment joining the midpoints of the legs is the midsegment of
the trapezoid, whereas the line segment joining the midpoints of its diagonals is the
Euler median.6 The coming proposition teaches us how to compute the lengths of
such segments in terms of the lengths of the basis of the trapezoid.

Proposition 2.40 Let ABCD be a trapezoid of basis AB and CD, and legs AD

and BC. Let also M and N be the midpoints of the legs AD and BC, respectively,
and P and Q be the midpoints of the diagonals AC and BD, also respectively (cf.
Fig. 2.31). Then:

(a) M , N , P and Q are collinear and
←→
MN ‖ ←→

AB,
←→
CD.

(b) MN = 1
2 ( AB + CD) and PQ = 1

2 |AB − CD|.

6After Leonhard Euler, Swiss mathematician of the eighteenth century. For more on Euler, see the
footnote of page 124.
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Fig. 2.31 Midsegment and
Euler median of a trapezoid

A B

CD

M N
QP

a

b

A B

CD

A B

CD

Fig. 2.32 A right (left) and isosceles (right) trapezoid ABCD

Proof In the notations of Fig. 2.31, since MP is a midsegment of triangle DAC,

Proposition 2.36 assures that
←→
MP ‖ ←→

CD and MP = b
2 . On the other hand, since

MQ is a midsegment of triangle ADB, Proposition 2.36 also gives
←→
MQ ‖ ←→

AB and

MQ = a
2 . However, since

←→
AB ‖ ←→

CD, the fifth postulate of Euclid guarantees that
←→
MP = ←→

MQ, and hence M , P and Q are collinear. Moreover,

PQ = MQ − MP = a

2
− b

2
= a − b

2
.

Now, arguing analogously with the midsegments NQ and NP of triangles CBD

and ABC, respectively, we conclude that P , Q and N are collinear and NQ = b
2 .

Hence, it follows from what we did above that

MN = MQ+ NQ = a

2
+ b

2
= a + b

2
.

��
We finish this initial study of trapezoids by fixing some terminology, for future

reference: given a trapezoid ABCD of bases AB and CD and legs AD and BC, we
say that ABCD is right at A if D̂AB = 90◦; also ABCD is isosceles if AD = BC

(see Fig. 2.32).
In order to complete our study of the more elementary particular types of

quadrilaterals, let us now look at rectangles and rhombuses. A convex quadrilateral
is a rectangle if all of its interior angles have equal measures. Since Problem 11,
page 38, showed that the sum of the measures of the interior angles of a convex
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A B

CD

E

F

G

H

Fig. 2.33 Rectangle ABCD and rhombus EFGH

Fig. 2.34 Distance between
two parallel lines

r

s

P

Q

P

Q

quadrilateral is always equal to 360◦, we conclude that a convex quadrilateral is a
rectangle if and only if the measures of its four interior angles are equal to 90◦.
A convex quadrilateral is a rhombus if the lengths of its four sides are all equal.
Figure 2.33 shows examples of a rectangle and a rhombus.

Since the opposite sides of a rectangle are always parallel (for they are both
perpendicular to the other two sides), we conclude that every rectangle is a
parallelogram. On the other hand, Proposition 2.31 guarantees that every rhombus
is a parallelogram too.

The discussion above allows us to define the distance between two parallel lines.
To this end, note first that if r and s are parallel lines, then (cf. Corollary 2.18) a line
t is perpendicular to r if and only if it is also perpendicular to s.

Definition 2.41 If r and s are parallel lines, the distance between them is the length

of any line segment PQ such that P ∈ r , Q ∈ s and
←→
PQ⊥r, s.

In order to see that the previous definition makes sense, take P,P ′ ∈ r and let

Q,Q′ ∈ s be such that
←→
PQ,

←→
P ′Q′⊥r (cf. Fig. 2.34). Then, PQQ′P ′ has its four

interior angles equal to 90◦, hence is a rectangle. In particular, PQ = P ′Q′.
Also with respect to the previous definition, the coming example shows how to

construct the parallels to a given line, situated at a given distance of it.

Example 2.42 Use straightedge and compass to construct the parallels to line r ,
situated at a distance d of r .



2.5 Special Quadrilaterals 55

Solution

d r

CONSTRUCTION STEPS

1. Mark a point A on r and draw line t , perpendicular to r and passing through A.
2. Mark on t points B and B ′, such that AB = AB ′ = d .
3. Draw, through B and B ′, respectively, lines s and s′ parallel to r .

��
Back to the general discussion of rectangles and rhombuses, propositions 2.43

and 2.46 collect useful characterizations of these quadrilaterals.

Proposition 2.43 A parallelogram is a rectangle if and only if its diagonals have
equal lengths.

Proof If ABCD is a rectangle of diagonals AC and BD (cf. Fig. 2.33), then
D̂AB = ÂDC = 90◦ and (since ABCD is also a parallelogram) AB = DC.
However, since triangles DAB and ADC share the common side AD, they are
congruent by SAS; in particular, AC = BD.

Conversely, assume that ABCD is a parallelogram in which AC = BD (cf.
Fig. 2.35). Since we also have AB = DC, triangles DAB and ADC (which share
side AD) are again congruent, this time by SSS LLL. Therefore, D̂AB = ÂDC.
However, since ABCD is a parallelogram, we have D̂AB + ÂDC = 180◦, so
that D̂AB = ÂDC = 90◦. Analogously, ÂBC = D̂CB = 90◦, and ABCD is a
rectangle. ��

The coming corollary brings an extremely useful consequence of the former
proposition.

Corollary 2.44 The length of the median of a right triangle relative to its
hypotenuse is half the length of the hypotenuse itself.

Proof Let ABC be a right triangle, with ̂A = 90◦ (cf. Fig. 2.36). Draw through
B the parallel to AC, through C the parallel to AB and let D be their point of
intersection. Since B̂AC + ÂBD = 180◦ and B̂AC = 90◦, it comes that ÂBD =
90◦. Analogously, ÂCD = 90◦ and, since the sum of the angles of ABDC is 360◦,

Fig. 2.35 ABCD is a
parallelogram such that
AC = BD

A
B

D
C
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Fig. 2.36 The median
relative to the hypotenuse of a
right triangle

A B

C D

M

we conclude that B̂DC = 90◦. Hence, quadrilateral ABDC is a rectangle, whence
AD = BC and the point M of intersection of AD and BC is the midpoint of both
such segments. Therefore, BC = AD = 2 AM. ��

Example 2.45 Construct a right triangle ABC, knowing the lengths m and h of the
median and the height relative to hypotenuse BC, respectively.

Solution

m
h

CONSTRUCTION STEPS

1. According with the previous corollary, we have BC = 2m. Construct such a
segment BC, together with its midpoint M .

2. Draw (cf. Example 2.42) a line r parallel to
←→
BC and at a distance h of r .

3. Obtain the possible positions of vertex A as one of the intersections of line r and
the circle centered at M and with radius m.

��
We now turn to the promised characterization of rhombuses.

Proposition 2.46 A parallelogram is a rhombus if and only if it has perpendicular
diagonals.

Proof Suppose first that EFGH is a rhombus of diagonals EG and FH (cf.
Fig. 2.33). Since EF = EH and GF = GH , triangles EFG and EHG are
congruent by SSS. Hence, letting M be the point of intersection of EG and FH , we
have

F ̂EM = F ̂EG = H ̂EG = H ̂EM.
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Fig. 2.37
EG⊥FH ⇒ EFGH

rhombus

E

F

G

H

M

Fig. 2.38 Square ABCD

A B

CD

Thus, EM is the interior bisector of angle 
 FEH of triangle EFH , which is
isosceles of basis FH ; Problem 6, page 30, assures that EM is also the height

of EFH relative to FH . Therefore,
←→
FH⊥ ←→

EM = ←→
EG.

Conversely, let EFGH be a parallelogram with perpendicular diagonals EG and
FH (cf. Fig. 2.37). Since EG and FH intersect at the midpoint M of both of them
(for EFGH is a parallelogram), it comes that in triangle EHG segment HM is at
the same time median and height relative to EG. Hence, Problem 7, page 30 gives
EH = GH . However, since EH = FG and EF = GH , there is nothing left
to do. ��

The last type of convex quadrilateral we wish to study at this point is the square,
namely, a quadrilateral which is simultaneously a rectangle and a rhombus (cf.
Fig. 2.38). Thus, a square has equal sides and interior angles; moreover, its diagonals
are also equal and perpendicular, intersect at their midpoints and form angles of 45◦
with the sides of the square. (Prove this last claim!)

Remark 2.47 Letting T denote the set of trapezoids, P the set of parallelograms, R
the set of rectangles, L the set of rhombuses and Q that of the squares, it follows
from the material of this section that

{

R ∪ L ⊂ P ⊂ T
R ∩ L = Q ,

with all inclusions being strict ones.
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Problems: Sect. 2.5

1. * If two line segments are equal and parallel, prove that its endpoints are the
vertices of a parallelogram.

2. Show that the midsegments of a triangle divide it into four congruent triangles.
3. Let ABCD be any quadrilateral (not necessarily convex). Show that the

midpoints of its sides are the vertices of a parallelogram.
4. A line r passes through the barycenter G of a triangle ABC and leaves vertex

A on one side and vertices B and C on the other. Prove that the sum of the
distances from B and C to the line r is equal to the distance from A to r .

5. Use straightedge and compass to construct triangle ABC, knowing the length
a of BC, as well as the lengths ma and mb of the medians relative to the sides
BC and AC, respectively.

6. Prove that, in every triangle, the sum of the lengths of the medians is less that
3
2 of the perimeter and greater than 3

4 of the perimeter of the triangle.
7. (England) Consider a circle of center O and diameter AB. Extend a chord AP

up to the point Q such that P is the midpoint of AQ. If OQ ∩ BP = {R},
compute the ratio of the lengths of the segments RQ and RO .

8. Let ABCD be a trapezoid of bases AB = 7cm and CD = 3cm and legs AD

and BC. If ̂A = 43◦ and ̂B = 47◦, compute the distance between the midpoints
of the bases of the trapezoid.

9. We are given in the plane a parallelogram ABCD of diagonals AC and BD,
and a line r which does not intersect ABCD. Knowing that the distances of the
points A, B and C to the line r are respectively equal to 2, 3 and 6 centimeters,
compute the distance from D to r .

10. The bases AB and CD of a trapezoid have lengths a and b, respectively, with
a > b. If the legs of the trapezoid are AD and BC, and 
 BCD = 2 
 DAB,
prove that BC = a − b.

11. Let ABCD be a trapezoid in which the length of the larger basis AB is equal
to the sum of the length of the smaller basis CD with that of the leg BC. If
̂A = 70◦, compute ̂C.

12. Use straightedge and compass to construct a trapezoid, knowing the lengths a

and b of its bases, and c and d of its legs.
13. * (OCM) A triangle ABC is rectangle at A and such that BC = 2 AB.

Compute the measures, in degrees, of its interior angles.
14. In a triangle ABC, let M be the midpoint of side BC and Hb and Hc be the feet

of the heights relative to AC and AB, respectively. Prove that triangle MHbHc

is isosceles.
15. Let ABCD be a square of diagonals AC and BD, and E be a point on side

CD, such that AE = AB+ CE. Letting F be the midpoint of side CD, prove
that ÊAB = 2 · F ̂AD.
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16. (TT) Let ABCD be a rectangle of diagonals AC and BD, and M , N , P and Q

be points situated on the sides AB, BC, CD and AD, respectively, all distinct
from the vertices of the rectangle. Show that the perimeter of the quadrilateral
MNPQ is greater than or equal to twice that of the rectangle ABCD. When
does equality take place?

17. * (Hungary) In a triangle ABC, let M be the midpoint of side BC and P be
the foot of the perpendicular dropped from B to the internal bisector relative to
vertex A. Prove that

PM = 1

2
|AB − AC|.



Chapter 3
Loci in the Plane

The concept of locus, developed in this chapter, turns out to be essential for a
deeper understanding of the synthetic method in Euclidean Geometry. After we
have mastered that notion, we will be able to discuss various additional interesting
properties of triangles and quadrilaterals, among which we highlight the problem of
inscribing such polygons in a circle.

3.1 Basic Loci

We start this section by presenting the general concept of locus.

Definition 3.1 Given a property P relative to points in the plane, the locus of the
point which possess property P is the subset L of the plane satisfying the two
following conditions:

(a) Every point of L has the property P .
(b) Every point of the plane having the property P belongs to L.

Rewording, L is the locus of the propertyP if L if formed precisely by the points
of the plane satisfying property P , no more, no less. In what comes next, we shall
study a few elementary loci, as well as some applications of them (Fig. 3.1).

Example 3.2 Given positive real number r and a point O in the plane, the locus of
the points of the plane situated at a distance r from O is the circle of center O and
radius r:

AO = r ⇐⇒ A ∈ �(O; r).
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Fig. 3.1 Circle as locus

O

A

r

Example 3.3 As we saw in Example 2.42, the locus of the points in the plane
situated at a distance d from a given line r is the union of lines s and s′, parallel
to r and each of which situated at a distance d from r .

For the coming example, given distinct points A and B in the plane, we define the
perpendicular bisector of AB as the line perpendicular to AB and passing through
its midpoint.

Example 3.4 Use straightedge and compasso to construct the perpendicular bisector
of the line segment AB given below.

Solution

A

B

CONSTRUCTION STEPS

1. With a single opening r > 1
2 AB, draw the circles of radius r and centered at A

and B; if X and Y are their points of intersection, then
←→
XY is the perpendicular

bisector of AB.

Indeed, letting M be the point of intersection of segments XY and AB, we saw in
Example 2.10 that M is the midpoint of AB. On the other hand, since triangle XAB

is isosceles of basis AB and XM is its median relative to the basis, the result of

Problem 6, page 30, guarantees that XM is also a height of XAB. Therefore,
←→
XY

passes through the midpoint of AB and is perpendicular to AB, thus coincides with
the perpendicular bisector of this line segment. ��

The coming result characterizes the perpendicular bisector of a segment as a
locus.

Proposition 3.5 Given distinct points A and B in the plane, the perpendicular
bisector of AB is the locus of the points in the plane which are at the same distance
from A and B.
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Fig. 3.2 P ∈
(perpendicular bisector of AB) ⇒
PA = PB

m

A

B

P

M

Fig. 3.3 PA = PB ⇒ P ∈
(perpendicular bisector of
AB)

A

B

P

M

Proof Let M be the midpoint and m the perpendicular bisector of AB (cf. Fig. 3.2).
If P ∈ m, then, in triangle PAB, PM is median and height, so that the result of
Problem 7, page 30, gives PAB isosceles of basis AB. Therefore, PA = PB .

Conversely, let P be a point in the plane for which PA = PB (see Fig. 3.3).
Then, triangle PAB is isosceles of basis AB, whence the median and height of PAB
with respect to AB coincide. However, since the median of PAB relative to AB is
the line segment PM , we conclude that PM⊥AB, which is the same as saying that
←→
PM is the perpendicular bisector of AB. ��

The role of the bisector of an angle as a locus is essentially contained in the
coming result.

Proposition 3.6 Let 
 AOB be a given angle. If P is a point of it, then

d(P,
−→
AO) = d(P,

−→
BO) ⇐⇒ P ∈ (bisector of 
 AOB).

Proof Suppose first that P belongs to the bisector of 
 AOB (cf. Fig. 3.4), and

let M and N be the feet of the perpendiculars dropped from P to the lines
←→
AO

and
←→
BO , respectively. Triangles OMP and ONP are congruent by AAS, since

M ̂OP = N ̂OP , O ̂MP = ÔNP = 90◦ and OP is a common side of both these

triangles. Hence, PM = PN , which is the same as d(P,
←→
AO) = d(P,

←→
BO).

Conversely, let P be a point in the interior of angle 
 AOB, such that PM =
PN , with M and N being the feet of the perpendiculars dropped from P to the lines
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Fig. 3.4
P ∈ (bisector of 
 AOB) ⇒
d(P ,

−→
AO) = d(P ,

−→
BO)

A

B

O P

N

M

Fig. 3.5 The bisectors of two
concurrent lines as locus

r

s

←→
AO and

←→
BO, respectively. Then, triangles MOP and NOP are again congruent,

this time by the HL congruence case (for OP is the common hypotenuse and PM =
PN—see Problem 1, page 36). But then, M ̂OP = N ̂OP , so that P belongs to the
bisector of 
 AOB. ��
Example 3.7 Given in the plane lines r and s, concurrent at O , we saw in the
previous proposition that a point P of the plane is at the same distance from r and s

if and only if P lies on one of the lines bisecting the angles formed by r and s (the
bold lines in Fig. 3.5). Thus, the locus of points in the plane equidistant from two
concurrent lines is the union of the bisectors of the angles formed by them.

Having studied some basic loci, it is worth talking a bit on the general problem of
construction, with straightedge and compass, of a figure satisfying given geometric
conditions. Yet in another way, the standard approach to such a problem basically
consists of performing the two following steps:

1. Assume that the problem has been solved: we sketch the desired figure, identi-
fying the problem data as well as the geometric elements that can lead us to the
actual construction.

2. Construct the key points for the solution: a key point is any point that, once
constructed, lets the necessary subsequent constructions immediate or almost
immediate, thus allowing us to solve the problem. In order to construct the key
point(s) corresponding to a certain problem, we should carefully examine the
geometric properties involved in the situation under scrutiny in order to identify,
in each case, two different loci to which the desired point belongs to. This way,
the key point(s) is (are) determined as the intersection points of those loci.



3.1 Basic Loci 65

Let us examine, at a simple example, how the actual como funciona a execução
do programa acima.

Example 3.8 Construct, with straightedge and compass, a circle passing through
two given points A and B and having its center on the line r .

Proof

r

A

B

CONSTRUCTION STEPS

1. Assuming that the problem has been solved, we want to construct a circle as the
one in the figure below:

r

A

B

O

2. The key point will be the center O of the circle, for once we find O , it will suffice
to put the nail end of the compass on it and, with opening OA, to construct the
desired circle. In order to construct the point O , we need to have two distinct loci
in which O must lie. One of them is the line r itself, for the problem asks O to
lie on it. On the other hand, since OA and OB are radii, we have OA = OB,
so that O must also lie on the perpendicular bisector of the line segment AB;
therefore, this is our second locus.

Having executed the analysis above, we are left to constructing the perpendicular
bisector of the line segment AB, thus obtaining its intersection O with the line r

and, then, drawing the desired circle (i.e., that of center O and radius OA = OB).
��
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Problems: Sect. 3.1

1. Construct a circle of given radius r and passing through two given points A and
B. Under what conditions is there a solution?

2. Identify and construct, with straightedge and compass, the locus of the endpoint
A of a line segment AB, knowing the position of B and the length c of AB.

3. Use straightedge and compass to construct a triangle ABC, knowing the lengths
c of side AB, a of side BC and the measure α of angle 
 BAC.

4. Identify the locus of vertex A of triangle ABC, knowing the positions of the
vertices B and C, as well as the length ma of the median relative to BC.

5. Identify and construct, with straightedge and compass, the locus of the points
equidistant from two parallel given lines r and s.

6. Construct triangle ABC, knowing the lengths AB = c, BC = a and ha of the
height relative to A.

7. Construct triangle ABC, given the concurrent lines r and s that contain sides
AB and AC, respectively, as well as the lengths hb and hc of the heights relative
to B and C, also respectively.

8. We are given in the plane a line r , a point A /∈ r and two line segments of
lengths a and b. Find all points B such that AB = a and d(B; r) = b. Under
what conditions on a and b is there a solution?

9. Use straightedge and compass to construct a triangle ABC, knowing the lengths
a of side BC, ha of the height relative to A and hb of the height relative to B.

10. We are given in the plane a line r and a point A, with A /∈ r . As a point B varies
on r , find the locus of the midpoints of the line segment AB.

11. A circle is drawn in a sheet of paper, but we do not know the position of its
center. Show how to use straightedge and compass to find it.

12. We are given a circle � of center O and a line r which does not intersect �.
Identify and construct the locus of the midpoints of the chords of � which are
parallel to r .

13. Construct triangle ABC, knowing its semiperimeter p and the measures β and
γ of its interior angles at vertices B and C, respectively.

14. (Netherlands) We are given a line segment AB and a point P on it. At the

same side of
←→
AB we construct the isosceles right triangles APQ and BPR, of

hypotenuses AP and BP , respectively; then, we mark the midpoint M of QR.
Find the locus described by M as P varies on AB.

3.2 Notable Points of a Triangle

In this section we apply the concept of locus to study a few more notable points
of a triangle, namely, the circumcenter, the orthocenter and the incenter. Recall
that we have already defined and studied the main property of the barycenter in
Proposition 2.38.
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Fig. 3.6 The circumcenter of
a triangle
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Proposition 3.9 In every triangle, the perpendicular bisectors of its sides all pass
through a single point, called the circumcenter of the triangle.

Proof Let ABC be a triangle and r , s and t be the perpendicular bisectors of sides
BC, CA and AB, respectively. Let also O be the point of intersection of r and s

(see Fig. 3.6).
The characterization of the perpendicular bisector of a line segment as a locus

gives OB = OC (since O ∈ r) and OC = OA (since O ∈ s). Hence, OB =
OA and, once more from the characterization of the perpendicular bisector as locus,
we conclude that O ∈ t . ��

Example 3.10 Construct the circumcenter of the triangle ABC given below.

Solution

A

B

C

CONSTRUCTION STEPS

1. Draw the perpendicular bisectors of sides AB and AC.
2. The circumcenter of ABC is their intersection point.

��
As a corollary to the above discussion, we can study the problem of concurrence

of the altitudes of a triangle. Note first that, if the triangle is obtuse (Fig. 3.7), then
the altitudes departing from the acute angled vertices are exterior to the triangle.
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Fig. 3.7 Altitudes of an
obtuse triangle
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Fig. 3.8 Orthocenter of a
right triangle
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Fig. 3.9 Orthocenter of an
acute triangle MN
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Proposition 3.11 In every triangle, the three altitudes pass through a single point,
called the orthocenter of the triangle.

Proof Let ABC be any triangle. There are three distinct cases to consider:

(a) ABC is right, say at A (cf. Fig. 3.8): then A is the foot of the heights relative
to sides AB and AC. Since the altitude relative to BC passes (by definition)
through A, we conclude that the altitudes of ABC concur at A.

(b) ABC is acute (cf. Fig. 3.9): draw, through A, B and C lines r , s and t ,
respectively, parallel to BC, CA and AB (also respectively), and let r∩s = {P },
s ∩ t = {M} and t ∩ r = {N}. Quadrilaterals ABCN and ABMC are
parallelograms, so that CN = AB = CM , and hence C is the midpoint of
MN . Analogously, B is the midpoint of MP and A is that of NP .

On the other hand, the altitude of ABC relative to BC is also perpendicular

to NP , for
←→
BC and

←→
NP are parallel. Likewise, the altitudes relative to AC and

AB are perpendicular to MP and MN , respectively. It follows that the altitudes
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of triangle ABC are the perpendicular bisectors of the sides of triangle MNP .
However, we have already proved that the perpendicular bisectors of the sides
of any triangle are concurrent, so that the altitudes of ABC must pass through
a single point.

(c) ABC is obtuse: the proof is entirely analogous to that of (b).
��

In the coming corollary we collect an interesting consequence of the above proof.
For the statement of it, we recall (cf. discussion at page 48) that the medial triangle
of a triangle ABC is the one whose vertices are the midpoints of the sides of ABC.

Corollary 3.12 The circumcenter of a triangle is the orthocenter of its medial
triangle.

Proof In the notations of item (b) of the proof of the last proposition, ABC is the
medial triangle of MNP and the perpendicular bisectors of the sides of MNP

are the heights of ABC; hence,the circumcenter of MNP coincides with the
orthocenter of ABC. The remaining cases are entirely analogous. ��
Example 3.13 Use straightedge and compass to construct the orthocenter of triangle
ABC given below.

Solution

C

B

A

CONSTRUCTION STEPS

1. Draw line r , perpendicular to
←→
BC and passing through A.

2. Draw line s, perpendicular to
←→
AC and passing through B.

3. The orthocenter of ABC is the intersection point of r and s.
��

Let us finally examine the point of intersection of the internal bisectors of a
triangle.

Proposition 3.14 The internal bisectors of every triangle concur at a point, called
the incenter of the triangle.

Proof Let r , s and t denote the internal bisectors of the angles 
 A, 
 B and 
 C

of triangle ABC (cf. Fig. 3.10), and I be the intersection point of lines r and s.
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Fig. 3.10 Incenter of a
triangle
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Since I ∈ r , it follows from the characterization of bisectors as locus, given in
Proposition 3.6, that I is at the same distance from the sides AB and AC of ABC.
Analogously, I ∈ s guarantees that I is at the same distance from the sides AB and
BC. Hence, I is also at the same distance from AC and BC, so that, by invoking
again the characterization of bisectors as locus, we conclude that I belongs to the
internal bisector of angle 
 C, i.e., to the line t . But this is the same as saying that r ,
s and t concur at I . ��

Example 3.15 Construct the incenter of the triangle ABC given below.

Solution

C

B

A

CONSTRUCTION STEPS

1. Draw half-line
−→
AX, internal bisector of ABC relative to A.

2. Draw half-line
−→
BY , internal bisector of ABC relative to B.

3. The incenter of ABC is the intersection point of the half-lines
−→
AX and

−→
BY .

��
We finish this section with an important notational remark: most of the times,

whenever we are dealing with the geometry of some given triangle ABC, unless
stated otherwise we shall denote its barycenter by G, its orthocenter by H , its
incenter by I and its circumcenter by O .
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Problems: Sect. 3.2

1. From a triangle ABC we know the positions of vertices B and C and of the
circumcenter O . Explain why these data do not suffice to determine the position
of vertex A.

2. From a triangle ABC we know the positions of vertices B and C and of the
incenter I . Construct vertex A.

3. From a triangle ABC we know the positions of vertices B and C and of the
orthocenter H . Construct vertex A.

4. Two concurrent lines r and s are drawn in a piece of paper. It happens that, due
to the size of the paper, the intersection point A of r and s does not lie in it. Let
P be a point in the paper such that the feet of the perpendiculars dropped from
P to r and s lie in the paper. Show how to construct a line t , passing through P

and passing through A.
5. Let ABC be a triangle of orthocenter H , incenter I and circumcenter O . Show

that ABC is equilateral if and only if any two of H , I and O coincide.
6. (OIM) Use compass and straightedge to construct triangle ABC, given the

positions of the midpoints of sides AB and AC, as well as that of its orthocenter.

3.3 Tangency and Angles in the Circle

We start this section by studying one of the most important notions of elementary
Euclidean Geometry, namely, that of a line and a circle tangent to each other.

We say that a circle � and a line r are tangent, or also that the line r is tangent
to the circle �, if r and � have exactly one common point P . In this case, P is said
to be the tangency point of r and �.

The coming result teaches us how to construct a line tangent to a circle and
passing through a point of it.

Proposition 3.16 Let � be a circle of center O and P be a point of �. If t is the

line passing through P and perpendicular to
←→
OP , then t is tangent to �.

Proof Let R be the radius of �. If Q 
= P is another point on t (cf. Fig. 3.11), we
have QO > PO = R, for Q̂PO = 90◦ is the largest angle of triangle OPQ.
Hence, Q /∈ �, so that P is the only common point of t and �. ��

The next example exercises the construction delineated at the proof of the
previous proposition.

Example 3.17 In the notations of the figure below, construct a line r , tangent to �

at P .
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Fig. 3.11 Tangent to a circle
through a point of it

t

O

P

Q

Solution

O

P

CONSTRUCTION STEPS

1. Draw line
←→
OP .

2. Construct, through P , the line r perpendicular to
←→
OP .

��
It is not difficult to show (cf. Problem 1, page 81) that the line tangent to a circle

� through a point P of it is unique. On the other hand, if P lies in the interior of the
circle, we shall see in Proposition 3.26 that there are exactly two lines tangent to �

and passing through P .
We now turn to the study of certain angles in a circle. Given in the plane a circle

� of center O , a central angle in � is an angle of vertex O , having two radii
OA and OB of � as sides. In general, such a central angle will be denoted by

 AOB, and the context will make it clear to which of the two angles 
 AOB we are
referring. By definition, the measure of the central angle 
 AOB is the measure of

the corresponding arc
�

AB. The coming example will show that equal central angles
correspond to equal chords.

Example 3.18 If A, B, C and D are points on a circle �, such that the central angles

 AOB and 
 COD are equal, then AB = CD.

Proof Suppose (cf. Fig. 3.12) that ÂOB = ĈOD < 180◦ (the case ÂOB =
ĈOD > 180◦ can be dealt with in an analogous way). Since AO = CO , BO =
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Fig. 3.12 Chords of equal
central angles are equal
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Fig. 3.13 Measure of the
inscribed angle when the
center is inside it
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DO and ÂOB = ĈOD, triangles AOB and COD are congruent by SAS, so that
AB = CD. ��

Another important class of angles in a circle is that formed by inscribed angles.
By definition, an inscribed angle in a circle is an angle whose vertex is a point
of the circle and whose sides are two chords of it. The next result, known as the
inscribed angle theorem, teaches us how to compute the measure of such an angle.

Proposition 3.19 If AB and AC are chords of a circle of center O , then the
measure of the inscribed angle 
 BAC is equal to half of the measure of the
corresponding central angle 
 BOC.

Proof We look at three separate cases:

(a) Angle 
 BAC contains the center O in its interior (see Fig. 3.13): since triangles
OAC and OAB are isosceles of bases AC and AB, respectively, we have
ÔAC = ÔCA = α and ÔAB = ÔBA = β, say. It then follows that
B̂AC = α + β and, by the exterior angle theorem (cf. Corollary 2.21), we
obtain ĈOA′ = 2α and B ̂OA′ = 2β. Hence,

B ̂OC = B ̂OA′ + C ̂OA′ = 2(α + β) = 2B̂AC.

(b) Angle 
 BAC does not contain the center O (see Fig. 3.14): once again, we have
OAC and OAB isosceles of bases AC and AB. Moreover, letting ÔAC =
ÔCA = α and ÔAB = ÔBA = β, we have B̂AC = β − α and, once more
from the exterior angle theorem, ĈOA′ = 2α and B ̂OA′ = 2β. Therefore,
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Fig. 3.14 Measure of the
inscribed angle when the
center is outside it
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Fig. 3.15 Angle inscribed in
a semicircle
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B ̂OC = B ̂OA′ − C ̂OA′ = 2(β − α) = 2B̂AC.

(c) The center O lies on one of the sides of 
 BAC: the analysis of this case is
analogous to the previous ones and will be left as an exercise for the reader.

��
Given a circle � of center O and a chord AB of �, an important particular case of

the former proposition is that in which AB is a diameter of � (cf. Fig. 3.15). Letting
P be a point of � distinct from A and B, the referred proposition gives

ÂPB = 1

2
· 180◦ = 90◦.

The limit case of an inscribed angle is that of a tangent-chord angle (cf.
Fig. 3.16): its vertex is a point of the circle and its sides are a chord of and a tangent
to the circle. The coming proposition shows that we can compute the measure of
tangent-chord angles in pretty much the same way as we compute the measure of
inscribed ones.
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Fig. 3.16 Measure of a
tangent-chord angle B
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Fig. 3.17 Measure of an
interior angle in a circle
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Proposition 3.20 In the notations of Fig. 3.16, the measure of the tangent-chord
angle 
 BAC is equal to half the measure of the corresponding central angle

 AOB.

Proof Let B̂AC = α. Since
←→
AC⊥←→

AO, we have ÂBO = B̂AO = 90◦ − α and
hence

B ̂OA = 180◦ − 2(90◦ − α) = 2α = 2B̂AC.

��
Yet another useful way of generalizing inscribed angles is to consider interior

and exterior angles in a circle. An interior angle in a circle (cf. Fig. 3.17) is an
angle whose sides are two chords of the circle which intersect inside it; an exterior
angle in a circle is an angle whose sides are two chords of the circle which intersect
outside it (make a drawing!).

We now learn how to compute the measures of such angles in terms of the
measures of the arcs into which the involved chords partition the circle. In this
respect, see also Problem 16, page 83.

Proposition 3.21 Let AB and CD be two chord of a circle, such that the corre-
sponding lines intersect at a point E.

(a) If E lies inside the circle, then the measure of the interior angle 
 AEC is equal

to the arithmetic mean of the measures of the corresponding arcs
�

AC and
�

BD.
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(b) If E lies outside the circle, then the measure of the exterior angle 
 AEC is
equal to half the modulus of the difference of the measures of the corresponding

arcs
�

BD and
�

AC.

Proof

(a) In the notations of Fig. 3.17, it suffices to successively apply the exterior angle
theorem (cf. Corollary 2.21) and the result of Proposition 3.19:

ÂEC = ÂDC + B̂AD = 1

2

�

AC + 1

2

�

BD.

(b) Exercise.
��

Example 3.22 Let A, B, C and D be points on a circle �, such that chords AC

and BD intersect in the interior of �. If M , N , P and Q , respectively denote the

midpoints of the arcs
�

AB (not containing C),
�

BC (not containing D),
�

CD (not

containing A) and
�

AD (not containing B), prove that
←→
MP⊥ ←→

NQ.

Proof In accordance with the statement above and Fig. 3.18, let
�

AB = 2α,
�

BC =
2β,

�

CD = 2γ and
�

AD = 2δ. Then, α + β + γ + δ = 180◦,
�

MN = α + β and
�

PQ = γ + δ. Therefore, letting E denote the intersection point of MP and NQ,
we have

M̂EN = 1

2
(

�

MN + �

PQ) = 1

2
((α + β) + (γ + δ)) = 90◦.

��
We now turn to the analysis of another important locus, the arc capable of a given

angle on a given segment.

Fig. 3.18 An interior angle
of 90◦
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B

C

D

M

N

P

Q

E
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Fig. 3.19 ÂPB = ÂP ′B
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P
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Fig. 3.20 One of the arcs
capable of α on AB
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P
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Proposition 3.23 Given a line segment AB and an angle α, with 0◦ < α < 180◦,
the locus of the points P in the plane for which ÂPB = α is the union of two arcs

of circle, symmetric with respect to line
←→
AB and having points A and B as their

endpoints. Such arcs are said to be capable of α on AB.

Proof Let us first look at the case 0◦ < α < 90◦. To this end (see Fig. 3.19),
start by choosing a point P such that ÂPB = α. If P ′ is the symmetric of P with

respect to
←→
AB (cf. Problem 2, page 30), then

←→
AB is the perpendicular bisector of

PP ′, so that AP = AP ′ and BP = BP ′. Hence, triangles ABP and ABP ′ are
congruent by SSS, which gives ÂP ′B = ÂPB = α. Analogously, ÂP ′B = α

implies ÂPB = α, so that it suffices to restrict ourselves to the points P located

at one of the half-planes determined by
←→
AB . From now one, we shall assume that

such a half-plane is the one lying above
←→
AB (cf. Fig. 3.20), which we shall refer to

as the upper half-plane.
In the upper half-plane, let O be such that AOB is isosceles of basis AB, with

ÂOB = 2α (note that 0◦ < 2α < 180◦ in the present case), and denote OA =
OB = R. Let � denote the arc of the circle of center O and radius R contained in
the upper half-plane. If P is any point on �, the inscribed angle theorem gives

ÂPB = 1

2
ÂOB = α,

so that P belongs to the desired locus. Conversely, let P ′ be a point of the upper
half-plane, with P ′ /∈ �; we shall show that P ′ does not belong to the locus. To
the end, letting R denote the region of the upper half-plane with boundary � ∪AB,
there are two possibilities: P ′ ∈ R or P /∈ R ∪ �. Let us look at the case in which
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Fig. 3.21 One of the arcs
capable of 90◦ on AB

A B

P

O

P ′ ∈ R, the analysis of the other case being entirely analogous. In the notations
of Fig. 3.20, it follows from the exterior angle theorem and the discussion of the
previous paragraph that

ÂP ′B = ÂPB + P ̂AP ′ > ÂPB = α.

Hence P ′ does not belong to the desired locus.
We now turn to the case in which α = 90◦, noticing first that, as in the previous

case, a symmetry argument reduces the problem to the points of the upper half-
plane. The discussion at the paragraph following the proof of Proposition 3.19
guarantees that every point of the semicircle of diameter AB lying in the upper half-
plane belongs to the locus (see Fig. 3.21). Conversely, if P is a point of the upper
half-plane for which ÂPB = 90◦ and O is the midpoint of AB, then Corollary 2.44
guarantees that PO = 1

2 AB = AO. Thus, P belongs to the semicircle of center
O and diameter AB.

Finally, the case 90◦ < α < 180◦ is left as an exercise, for which we refer the
reader to Problem 17, page 83. ��

The proof of the previous proposition also teaches us how to construct the arcs
capable of an angle α on a segment AB, when 0◦ < α ≤ 90◦. Indeed, if α = 90◦ we
only have to construct the circle of diameter AB. Suppose, then, that 0◦ < α < 90◦.
In the notations of the proof of just presented, since ÔAB = ÔBA, we have

ÔAB = ÔBA = 1

2
(180◦ − ÂOB) = 1

2
(180◦ − 2α) = 90◦ − α;

thus, we obtain the center O of the upper arc capable of α on AB as the intersection
point of the half-lines departing from A and B, lying in the upper half-plane and
forming angles of 90◦ − α with AB. The case 90◦ < α < 180◦ can be treated
analogously (cf. Problem 17, page 83).

Example 3.24 Use straightedge and compass to construct the upper arc capable of
α on AB.
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Proof

α

A B

CONSTRUCTION STEPS

1. In accordance with the discussion above, construct half-lines
−→
AX and

−→
BY in the

upper half-plane such that B̂AX = ÂBY = 90◦ − α.

2. The center O of the desired arc is the intersection point of
−→
AX and

−→
BY .

��
The next example will show that there is a simple (and, as we shall see in the

problems of this section, quite useful) relation between the arcs capable of angles α

and 1
2α.

Example 3.25 The figure below shows the upper arc capable of an angle α on the
line segment AB. Construct the upper arc capable of 1

2α on AB.

Solution

A B

O

CONSTRUCTION STEPS

1. Draw the perpendicular bisector of AB and mark its intersection point O ′ with
the given arc.

2. Use the inscribed angle theorem to show that the arc we are looking for is the arc
of the circle of center O ′ and radius OA = OB, situated in the upper half-plane.

��
Among other interesting problems, one can use the notion of arc capable to

address the problem of constructing the tangents to a given circle passing through
an exterior point. We do this now.
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Fig. 3.22 Tangents to a
circle drawn through an
exterior point

O

Γ

P

A

B

Proposition 3.26 Given a circle � and a point P exterior to it, there are exactly
two tangents to � passing through P .

Proof Let O be the center of the given circle and A and B be its intersection points
with that of diameter OP (cf. Fig. 3.22). What we have done so far allows us to look
at the upper and lower semicircles of the circle of diameter OP as the arcs capable

of 90◦ on OP . Hence, ÔAP = ÔBP = 90◦, which is the same as OA,OB⊥←→
AP .

Therefore, Proposition 3.16 assures that
←→
AP and

←→
BP are tangent to �.

Conversely, let r be a line passing through P and tangent to �, say at X. Then,

OX⊥←→
XP , which is the same as ÔXP = 90◦. Therefore, X lies in one of the arcs

capable of 90◦ on OP , i.e., X belongs to the circle of diameter OP . This way, X is
one of the intersection points of � and the circle of diameter OP , so that X = A or
X = B. ��

As the next example teaches us, the proof of the previous proposition readily
furnishes a way of constructing the tangents to a given circle passing through a
given point lying in the exterior of it.

Example 3.27 In the notations of the figure below, construct the lines tangent to the
circle � and passing through the point P .

Proof

Γ

O
P

CONSTRUCTION STEPS

1. Mark the midpoint M of the line segment OP .
2. Draw the circle γ of center M and radius OM = MP .
3. Mark A and B as the intersection points of γ and �; the searched tangents are

lines
←→
AP and

←→
BP .

��
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Fig. 3.23 Properties of the
tangents through an exterior
point

O P

A

B

We now establish two quite useful properties of the tangents to a circle passing
through an exterior point.

Proposition 3.28 Let � be a circle of center O and P be an exterior point. If

A,B ∈ � are such that
←→
PA and

←→
PB are tangent to � (cf. Fig. 3.23), then:

(a) PA = PB .

(b)
←→
PO is the perpendicular bisector of AB.

(c)
←→
PO is the bisector of both 
 AOB and 
 APB.

(d)
←→
PO⊥←→

AB .

Proof Since OA = OB and P ̂AO = P ̂BO = 90◦, triangles POA and POB are
congruent by the special case HL of congruence of right triangles (cf. Problem 1,
page 36); in particular, PA = PB , ÂPO = B̂PO and ÂOP = B ̂OP .

Now, since P and O are at equal distances from A and B, Proposition 3.5 assures

that
←→
PO is the perpendicular bisector of AB. Thus,

←→
PO⊥←→

AB . ��

Problems: Sect. 3.3

1. * Given in the plane a circle � and a point P on it, show that the tangent to �

at P is unique.
2. We are given in the plane a line r and a point A ∈ r . Identify and construct,

with straightedge and compass, the locus of the points in the plane which are
centers of the circles tangents to r at A.

3. In the plane, to concurrent lines r and s and a point P ∈ r are given. Construct
the circles tangent to r and s, if P is the tangency point with r .

4. We have a line segment of length R and a line r . Identify and construct the locus
of the points in the plane which are centers of circles of radius R and tangent
to r .

5. Two concurrent lines r and s, as well as a line segment of length R, are given
in the plane. Construct all circles of radius R and tangent r and s.
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6. Let r , s and t be three given lines, with r ‖ s and t concurrent with r and s.
Construct the circles tangent to r , s and t .

For Problems 7 to 9 below, we say that two circles are :

• exterior if they have no common points and have disjoint interiors;
• interior if they have no common points but the interior of one of them

contains the other;
• secant if they have two distinct points in common;
• tangent if they have exactly one common point; if this is the case, they are

said to be exteriorly tangent if they have disjoint interiors and internally
tangent otherwise.

7. * Given circles �1(O1;R1) and �2(O2;R2), prove that �1 and �2 are :

(a) exterior if and only if O1O2 > R1 + R2.
(b) externally tangent if and only if O1O2 = R1 + R2.
(c) secant if and only if |R1 − R2| < O1O2 < R1 + R2.
(d) internally tangent if and only if O1O2 = |R1 − R2|.
(e) interior if and only if O1O2 < |R1 − R2|.

8. Let a circle � of center O and a point A ∈ � be given. Identify and construct
the locus of the centers of circles tangent to � at A.

9. We have a circle � of center O and radius R, and a line segment of length r .
Identify and construct, with straightedge and compass, the locus of the centers
of the circles of radius r , tangent to �. To what extent does the locus depend on
the values of R and r?

10. Let � be a given circle. Points A, P and Q are such that AP and AQ are tangent
to � at P and Q, respectively. Points B ∈ AP and C ∈ AQ are chosen in such

a way that BC is also tangent to �. If
−→
AP = 5cm, compute the possible values

of the perimeter of triangle ABC.
11. (TT) Let ABCD be a square of side length a and � be the circle of center A and

radius a. Points M and N are marked on the sides BC and CD, , respectively,
such that MN is tangent to �. What are the possible values of the measure of
angle 
 MAN?

12. Lines r and s pass through A and are tangent to a circle � of center O . Points

P ∈ r and Q ∈ s are such that
←→
PQ is tangent to � and leaves A and O in

opposite half-planes. If P ̂AQ = 30◦, compute P ̂OQ.
13. Two circles � and � intersect each other at points A and B. We choose X ∈ �

and Y ∈ � such that A ∈ XY . Prove that the measure of 
 XBY does not

depend on the direction of line
←→
XY .

14. Chords AB and CD of a circle � are perpendicular at a point E of the interior
of �. The perpendicular to AC passing through E intersects segment BD at F .
Show that F is the midpoint of BD.
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15. Let A, B and C be points on a circle, such that the smaller arcs
�

AB,
�

AC and
�

BC are all equal to 120◦. If P is a point on the smaller arc
�

BC, prove that
PA = PB + PC.

16. Prove item (b) of Proposition 3.21. Also, check that the formulas for the
measures of interior and exterior angles in the circle remain valid when one
side of the angle contains a chord and the other is tangent to the circle.

17. * Analyse the construction of the arcs capable of an angle α on a segment AB

when 90◦ < α < 180◦.
18. Construct triangle ABC, knowing the lengths a of BC and ha of the altitude

relative to BC, as well as the measure α of 
 A.
19. * Let ABC be a given triangle, and P and M be the feet of the internal bisector

and the median relative to BC, respectively. If P and M coincide, prove that
ABC is isosceles of basis BC.

20. * From a square ABCD we know the length l of its sides and the positions of
points M , N and P , lying respectively on the sides AB, AD and on the diagonal
AC. Show how to find the positions of its vertices.

21. From a triangle ABC we know the positions of vertices B and C and the
measure α of 
 BAC. As A varies on the arcs capable of α on BC, find the
locus described by the incenter I of ABC.

22. * We are given in the plane two exterior circles � and �′. Show how to construct
the common internal and external tangents to � and �′, i.e., the straight lines
simultaneously tangent to both of these circles.

23. * The secant circles �1(O1;R1) and �2(O2;R2) intersect at points A and B.
Given a line segment of length l, explain how to construct a straight line passing
through A (said to be a secant to �1 and �2), intersecting �1 and �2 at points
X and Y , respectively (with X,Y 
= A), and such that XY = l. Under which
conditions is there a solution?

24. Two secant circles �1(O1;R1), �2(O2;R2) intersect at points A and B. Explain
how to construct a secant to �1 and �2, passing through A and having the
greatest possible length.

25. We are given a triangle ABC and a line segment of length a. Show how to use
straightedge and compass to construct an equilateral triangle MNP , of side
length a and such that A ∈ NP , B ∈ MP and C ∈ MN .

26. We are given a triangle ABC in the plane. Show how to use straightedge and
compass to construct an equilateral triangle MNP , of the greatest possible side
length and such that A ∈ NP , B ∈ MP and C ∈ MN .

27. From a triangle ABC we know the positions of vertices B and C and the
measure α of 
 A. Knowing the sum l of the lengths of sides AB and AC,
show how to find the position of vertex A.

The result of the coming problem is known as the broken chord theorem,
and is due to Archimedes.1

1Archimedes of Syracuse, one of the greatest scientists of all time. Apart from other genial
discoveries, like Archimedes’ law in Hydrostatics and the lever principle in Statics, Archimedes
anticipated the central ideas of the Integral Calculus in some 2, 000 years!
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28. We are given a circle � and points A, B and C on it, such that AB > AC.

We mark the midpoint M of the arc
�

BC that contains A, as well as the foot
N of the perpendicular dropped from M to the line segment AB. Prove that
BN = AN + AC.

3.4 Circles Associated to a Triangle

With the concepts of arc capable of an angle and of tangency of lines and circles, we
now go through the study of some notable circles associated to a triangle. We start
by with the following proposition, which shows that every triangle admits a unique
circle passing through its vertices.

Proposition 3.29 The circumcenter of a triangle is the center of the only circle
passing through the vertices of the triangle.

Proof Let ABC be a triangle of circumcenter O (cf. Fig. 3.24). Since O is the
intersection point of the perpendicular bisectors of the sides of the triangle, we have
OA = OB = OC. Letting R denote this common distance, we conclude that the
circle of center O and radius R passes through A, B and C. Thus, there exists a
circle passing through the vertices of ABC.

Conversely, the center of a circle that passes through the vertices of ABC must be
at the same distance from them. Hence, it must belong to the perpendicular bisectors
of the sides of ABC, so that it coincides with the point de intersection of them, i.e.,
with the circumcenter O of ABC.

Finally, the radius of the circle, being the distance from O to the vertices of ABC,
is equal to R. ��

In the notations of the above proposition, the circle just constructed is called the
circumcircle of the triangle. It is also said to be circumscribed to the triangle, and
its radius to be the circumradius of the triangle. Whenever there is no danger of
confusion, we shall write R to denote the circumradius of a triangle.

Fig. 3.24 Circumcenter and
the circle through the vertices
of a triangle
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O

s

t

r
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Fig. 3.25 O is in the interior
of ABC

A B

C
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Γ

Fig. 3.26 O lies in one side
of ABC
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We now relate the location of the circumcenter to the shape of the corresponding
triangle.

Proposition 3.30 If ABC is a triangle of circumcenter O , then O lies in the
interior (resp. on one side, in the exterior) of ABC if and only if ABC is an
acute(resp. right, obtuse) triangle.

Proof Let � be the circle circumscribed to ABC. There are three cases to look at:

(i) O lies in the interior of ABC (cf. Fig. 3.25): in triangle AOB, we have
ÂOB = 2ÂCB. On the other hand, 0◦ < ÂOB < 180◦, so that 2ÂCB <

180◦ or, which is the same, ÂCB < 90◦. Analogously, ÂBC < 90◦ and
B̂AC < 90◦, so that ABC is an acute triangle.

(ii) O lies in one side of ABC (cf. Fig. 3.26): suppose, without loss of generality,
that O ∈ BC. In this case, BC is a diameter of � and O is the midpoint of
BC.

B̂AC = 1

2

�

BXC = 1

2
180◦ = 90◦.

(iii) O is in the exterior of ABC (cf. Fig. 3.27): assume, without loss of generality,

that O and A are in opposite half-planes with respect to
←→
BC . Since the measure
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Fig. 3.27 O is in the exterior
of ABC
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Fig. 3.28 Comparing the
central and internal angles
relative to a vertex
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of arc
�

BXC is clearly greater than 180◦, we have

B̂AC = 1

2

�

BXC >
1

2
180◦ = 90◦,

and ABC is obtuse at A.
��

We now collect a useful elaboration of the discussion of item (a) of the previous
proposition.

Corollary 3.31 Let ABC be an acute triangle of circumcenter O . If M is the
midpoint of AB, then ÂOM = B ̂OM = ÂCB.

Proof In the notations of Fig. 3.28, OM is the median relative to the basis AB of
the isosceles triangle AOB. Hence, Problem 6, page 30, guarantees that OM is also
the internal bisector of 
 AOB. Thus,

ÂOM = B ̂OM = 1

2
ÂOB = ÂCB,

where we have applied the inscribed angle theorem in the last equality above. ��
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Fig. 3.29 Circle inscribed in
a triangle
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Another fact worth noticing is that every triangle admits four circles tangent to
its sides. The next result presents the most important of such circles.

Proposition 3.32 The incenter of a triangle is the center of the unique circle
tangent to the sides and contained in the triangle.

Proof Let I be the incenter of a triangle ABC (see Fig. 3.29). Since I is the
intersection point of the internal bisectors of ABC, we know that I is at the same
distance from the sides of ABC. Letting r denote such common distance, we
conclude that the circle of center I and radius r is contained in ABC and is also
tangent to its sides.

For the uniqueness, any circle lying inside the triangle and tangent to its sides
must be such that its center is at the same distance from the three sides. Therefore,
the characterization of angle bisectors as locus assures that the center must be the
intersection point of the internal bisectors of ABC, thus coinciding with the incenter
of it. ��

In the notations of the previous proposition, we shall call the circle just
constructed the incircle of the triangle. We shall also say that it is inscribed in
the triangle, and that its radius is the inradius of the triangle. Whenever there is no
danger of confusion, we shall write r to denote the inradius of a triangle.

Example 3.33 Use straightedge and compass to construct the circumcircle and
incircle of the given triangle ABC.

Solution

A

B

C
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Fig. 3.30 Excenter and
excircle of ABC relative to
BC

A C

B
Ia

r
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CONSTRUCTION STEPS

1. For the incircle, start by finding the incenter I of ABC.
2. Then, draw the line r , perpendicular to BC and passing through I .
3. If M is the intersection point of r and BC, then the incircle has radius IM .
4. For the circumcircle, first construct the circumcenter O of ABC. Its radius will

be OA.
��

As we have anticipated a few moments ago, there are three other notable
circles associated to a triangle, its excircles. The next proposition establishes their
existence.

Proposition 3.34 In every triangle, there exists a unique circle tangent to one side
and to the extensions of the other two sides.

Proof Let (see Fig. 3.30) r and s be the external bisectors of a triangle ABC relative
to the vertices B and C and Ia be its intersection point (the reader can easily check
that the half-lines of r and s situated within 
 BAC form acute angles with the side
BC, so that r and s intersect inside such an angle). Since Ia ∈ r and r is the bisector
of the external angle of ABC at B, we get

d(Ia,
←→
BC) = d(Ia,

←→
AB).

Likewise, since Ia ∈ s, we obtain d(Ia,
←→
BC) = d(Ia,

←→
AC). Letting ra denote the

common distance from Ia to the lines containing the sides of ABC, we conclude
that the circle of center Ia and radius ra is tangent to BC and to the extensions of
AB and AC.

We leave to the reader the task of establishing the uniqueness of the circle with
the stated properties. ��

In the notations of the proof above, the circle just constructed is the excircle of
ABC relative to BC (or to A); its center is the excenter and its radius is the exradius
of ABC relative to BC (or to A). Every triangle has exactly three excenters and three
excircles. For a triangle ABC, we shall usually write Ia , Ib and Ic to denote the
excenters and ra , rb and rc to denote the exradii relative to A, B and C, respectively.

A useful way of looking at the proof of the previous result is as set in the coming.
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Corollary 3.35 In every triangle, the bisector of an internal angle and the external
bisectors of the external angles at the other two vertices are concurrent at an
excenter of the triangle.

Proof In the notations of the proof of the proposition, we showed that

d(Ia,
←→
AB) = d(Ia,

←→
BC) and d(Ia,

←→
AC) = d(Ia,

←→
BC).

Hence, d(Ia,
←→
AB) = d(Ia,

←→
AC) and Proposition 3.6 assures that Ia belongs to the

bisector of 
 BAC. ��
We now compute, among others, the lengths of the line segments determined on

the sides of a triangle by the tangency points of its incircle and excircles.

Proposition 3.36 Let ABC be a triangle of sides AB = c, BC = a, CA = b and
semiperimeter p (see Fig. 3.31). Let D, E and F be the points in which the incircle
touches the sides BC, CA and AB, respectively, and M , N and P be the points in
which the excircle relative to A touches the side BC and the extensions of sides AC

and AB, also respectively. Then:

(a) BD = BF = p − b, CD = CE = p − c, AF = AE = p − a.
(b) AN = AP = p.
(c) BM = BP = p − c, CM = CN = p − b.
(d) EN = FP = a.
(e) The midpoint of BC is also the midpoint of DM .

Proof

(a) With the aid of item (a) of Proposition 3.28, denote AE = AF = x, BD =
BF = y and CD = CE = z. This way, we obtain the linear system of
equations

⎧

⎨

⎩

x + y = c

y + z = a

z + x = b

.

By termwise addition of its equations, we obtain x + y + z = 2p, and hence

x = (x + y + z) − (y + z) = p − a.

Analogously, y = p − b and z = p − c.
(b) Letting AN = AP = u and invoking again item (a) of Proposition 3.28, we get
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Fig. 3.31 Computing some
notable segments of triangle
ABC

A C NE
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B
F

P

D

M

2u = AN + AP = ( AC + CN) + ( AB + BP)

= ( AC + AB) + ( CN + BP)

= (b + c) + ( CM + BM)

= b + c + BC = a + b + c = 2p,

so that u = p.
(c) As in (b), we have BM = BP and CM = CN . On the other hand,

BP = AP − AB = p − c and CN = AN − AC = p − b.

(d) Let us prove that EN = a, the proof of FP = a being totally analogous:

EN = AN − AE = p − (p − a) = a.

(e) It suffices to show that CM = BD, and we have already done this.
��

As the reader will notice, the computations in the above proposition will be quite
useful for the solution of many problems, so much that it is worth trying to memorize
the results of items (a), (b), (d) and (e) as soon as possible. Note also that items (c),
(d) and (e) are almost immediate consequences of items (a) and (b).

We finish this section by presenting a result that furnishes an important relation
between the incenter and excenters of a triangle.

Proposition 3.37 Let ABC be a triangle of incenter I and excenter Ia relative to
BC. If M is the point in which the circle circumscribed to ABC intersects segment

IIa (cf. Fig. 3.32), then M is the midpoint of the arc
�

BC not containing A, and

MB = MC = MI = MIa.
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Fig. 3.32 Incenter, excenter

and midpoint of the arc
�

BC

A

C

B

I

M

Ia

Proof Since M̂AB = M̂AC = 1
2
̂A, it follows from the inscribed angle theorem

that the arcs
�

MB and
�

MC not containing A are equal; hence, M is the midpoint of

the arc
�

BC not containing A.
Since equal arcs correspond to equal chords, we have MB = MC. Now, again

from the inscribed angle theorem, we have B ̂MI = B ̂MA = B̂CA = ̂C and

ÎBM = ÎBC + ĈBM = 1

2
̂B + ĈAM

= 1

2
̂B + 1

2
̂A.

Hence,

B̂IM = 180◦ − ÎBM − B ̂MI

= 180◦ − 1

2
̂B − 1

2
̂A − ̂C

= ̂A + ̂B + ̂C − 1

2
̂B − 1

2
̂A − ̂C

= 1

2
̂B + 1

2
̂A = ÎBM,

so that triangle IBM is isosceles of basis IB. Thus, IM = BM = CM .
We leave to the reader the task of proving the equality BM = MIa; the argument

is quite similar to the one executed above. ��

Problems: Sect. 3.4

1. Construct a triangle ABC, knowing the lengths of the circumradius and of the
sides BC and AC.



92 3 Loci in the Plane

2. Let ABC be a triangle, and M and N be the points in which the internal and
external bisectors relative to A intersect the circumcircle of ABC. Show that
MN is a diameter of such a circle.

3. Let ABC be a triangle and M , N and P be the points in which the internal
bisectors of ABC relative to the vertices A, B and C, respectively, intersect
the circumcircle of ABC (with M 
= A, N 
= B and P 
= C). Prove that the
incenter of ABC is the orthocenter of MNP .

4. Let a, b and c be three lines in the plane, pairwise concurrent but not passing
through a single point. Use straightedge and compass to construct the points in
the plane lying at the same distance from a, b and c.

5. * Let ABC be a triangle of orthocenter H and circumcenter O . Prove that the
internal bisector relative to BC also bisects the angle 
 HAO .

6. * Prove that, in every triangle, the symmetrics of the orthocenter with respect
to the straightlines containing the sides of the triangle lie on the circumscribed
circle.

7. From a triangle ABC we know the positions of vertices B and C, the measure

α of 
 BAC and the half-plane β, of those determined by
←→
BC , to which vertex

A belongs. As A varies on the arc capable of α on BC situated in β, find the
locus described by the orthocenter H of ABC.

8. From a triangle ABC we know the positions of vertices B and C, the measure

α of 
 BAC and the half-plane β, of those determined by
←→
BC , to which vertex

A belongs. As A varies on the arc capable of α on BC situated in β, find the
locus described by the excenter Ia relative to BC?

9. Let ABC be a right triangle and H be the foot of the altitude relative to the
hypotenuse BC. Let also I1 and I2 be the incenters of triangles ABH and
ACH . Prove that A is the excenter of triangle I1HI2 relative to I1I2.

10. Construct the square ABCD, knowing the positions of four points M , N , P

and Q, respectively situated on the sides AB, BC, CD and DA.
11. (OIM) In a triangle ABC, let Q and R be the in which the incircle and the

excircle relative to A touch side BC. If P is the foot of the perpendicular
dropped from B to the internal bisector of ABC relative to A, show that
Q̂PR = 90◦.

12. Use compass and straightedge to construct triangle ABC, knowing the lengths
p of the semiperimeter, a of the side BC and ra of the excircle relative to BC.

13. (China) In a triangle ABC, the smallest angle is ̂C = 30◦ and we choose points
D ∈ BC and E ∈ AC such that AB = AE = BD. If I and O stand for the
incenter and the circumcenter of ABC, respectively, prove that DE = OI and
←→
DE⊥←→

OI .
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3.5 Cyclic and Tangential Quadrilaterals

Although every triangle admits a circumcircle, this is not always the case with
convex quadrilaterals. To see this, it suffices to take a triangle ABD and a point
C not belonging to its circumcircle (cf. Fig. 3.33). On the other hand, we say that a
convex quadrilateral is cyclic or inscribed if there exists a circle passing through its
vertices. In this case, we also say that the vertices of the quadrilateral form a set of
concyclic points.

The uniqueness of the circumcircle of a triangle obviously assures that the circle
passing through the vertices of a cyclic quadrilateral is unique; from now on, such a
circle will be called the circle circumscribed to the quadrilateral.

One can show (cf. Problem 7, page 99) that a quadrilateral is cyclic if and only if
the perpendicular bisectors to its sides intersect at a single point, the circumcenter.
Nevertheless, for the applications we have in mind, the following characterization
of cyclic quadrilaterals is much more useful.

Proposition 3.38 A convex quadrilateral ABCD, of sides AB, BC, CD and DA,
is cyclic if and only if any of the following conditions is satisfied:

(a) D̂AB + B̂CD = 180◦.
(b) B̂AC = B̂DC.

Proof Assume first that ABCD is cyclic (cf. Fig. 3.34). Then, the inscribed angle
theorem gives B̂AC = B̂DC and

D̂AB + B̂CD = 1

2

�

BCD + 1

2

�

BAD = 180◦.

Fig. 3.33 A non-cyclic
quadrilateral

A

D

C

B

Fig. 3.34 ABCD cyclic
⇒ D̂AB + B̂CD = 180◦
and B̂AC = B̂DC

A

B

C

D
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Fig. 3.35
B̂AC = B̂DC ⇒ ABCD

inscribed

A

B

C

D

Fig. 3.36 B̂AC + B̂DC =
180◦ ⇒ ABCD cyclic

A

B

E

D

C

Γ

Conversely (cf. Fig. 3.35), suppose first that B̂AC = B̂DC. Since ABCD is
convex and its vertices are labelled consecutively, it follows that A and D are in a

single half-plane, of those determined by
←→
BC . Letting θ be the common value of

the measures of 
 BAC and 
 BDC, we conclude that A and D lie in the arc capable
of θ on BC and situated in such half-plane. Therefore, the circle containing such an
arc circumscribes ABCD.

We now suppose that D̂AB + B̂CD = 180◦ (cf. Fig. 3.36), and consider the

circumcircle � of triangle BAD. If C /∈ �, let
←→
BC ∩ � = {E}, with E 
= B,C (in

Fig. 3.36, we sketch the case in which C belongs to the interior of �). By item (a),
we have

D̂AB + B̂ED = 180◦ = D̂AB + B̂CD,

and hence B̂ED = B̂CD. However, the exterior angle theorem applied to triangle
CDE furnishes a contradiction. ��

In what comes next, we present two important applications of the proposition
above. For the first of them, we shall need the following convention: given a non-
right triangle ABC, we say that the triangle formed by the feet of its altitudes is the
orthic triangle of ABC (cf. Fig. 3.37).

Theorem 3.39 In every acute triangle, the orthocenter coincides with the incenter
of the orthic triangle.

Proof We shall refer to Fig. 3.37. Since H ̂HaB + H ̂HcB = 90◦ + 90◦ = 180◦,
Proposition 3.38 guarantees that HHaBHc is a cyclic quadrilateral. Hence, once
more from that result, we obtain

H ̂HaHc = ĤBHc = Hb
̂BA = 90◦ − ̂A.
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Fig. 3.37 The orthic triangle
HaHbHc of ABC

A

BC

Hc

Hb

Ha

H

Reasoning in a similar way we get H ̂HaC + H ̂HbC = 180◦, so that HHaCHb is
also cyclic. Thus, we conclude that

H ̂HaHb = ĤCHb = Hc
̂CA = 90◦ − ̂A.

The argument above has proved that H ̂HaHc = H ̂HaHb, i.e., that the line
segment HHa is the internal bisector of 
 HcHaHb. Analogously, HHb and HHc

are the internal bisectors of the other two angles of the orthic triangle, so that H (the
orthocenter of ABC) is also the incenter of HaHbHc. ��

For our second application, we say that four points are in general position if any
three of them are non collinear. We shall be concerned with the following situation:
given in the plane a triangle ABC and a point P such that A, B, C, P are in general
position, we mark points D, E and F , feet of the perpendiculars dropped from P to
←→
BC ,

←→
CA and

←→
AB , respectively. Triangle DEF thus obtained is said to be the pedal

triangle of P with respect to ABC. For instance, the orthic triangle of a non-right
triangle ABC (cf. Fig. 3.37) is the pedal triangle of the orthocenter of ABC with
respect to itself.

The result of the proposition below, known as the Simson-Wallace theorem,2

explains when the pedal triangle of a point with respect to a given triangle
degenerates (i.e., in the notations of the previous paragraph, when D, E and F

are collinear). Such a result will be of fundamental importance for the material of
Sect. 7.5 (cf. Theorem 7.37).

Theorem 3.40 (Simson-Wallace) We are given a triangle ABC and a point P

such that A, B, C and P are in general position. The pedal triangle of P with
respect to ABC is degenerated if and only if P lies in the circumcircle of ABC.

Proof For P to lie in the circumcircle of ABC, the only possibility is that P

lies outside AC and in one of the angular regions 
 BAC, 
 ABC or 
 BCA.
Analogously, a simple checking shows that, for the pedal triangle of P with respect

2After the scottish mathematicians of eighteenth and nineteenth centuries, Robert Simson and
William Wallace.
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Fig. 3.38 The Simson line

A

B C

P
F

E

D

to ABC to be degenerated, P must lie outside ABC and in one of those angular
regions. We can thus assume, without any loss of generality, that P is exterior to
ABC and in the angular region 
 ABC (cf. Fig. 3.38).

Let D, E and F be the feet of the perpendiculars dropped from P to the lines
←→
BC ,

←→
AC and

←→
AB , respectively. We can also suppose, with no loss of generality,

that D and E lie on the sides BC and AC, respectively, whereas F lies on the
extension of side AB. Since P ̂FA = P ̂EA = 90◦, quadrilateral PFAE is cyclic.
Analogously, quadrilateral PEDC is also cyclic. Therefore,

ÂPC − D̂PF = D̂PC − F ̂PA = D̂EC − F ̂EA,

so that

ÂPC = D̂PF ⇔ D̂EC = F ̂EA ⇔ D,E and F are collinear.

Finally, computing the sum of the measures of the internal angles of quadrilateral
BCPF , we obtain D̂PF = 180◦ − ÂBC, and hence

ÂPC = D̂PF ⇔ ÂPC + ÂBC = 180◦ ⇔ ABCP is cyclic.

��
In the notations of the discussion above, whenever P lies in the circumcircle of

ABC we shall say that the line passing through D, E and F is the Simson line3 of
P relative to ABC.

3Although Theorem 3.40 is usually attributed to Simson and Wallace, we shall follow tradition,
referring to the line through D, E and F as the Simson line, instead of the Simson-Wallace line.
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Fig. 3.39 ABCD tangential
⇒ equal sums of lengths of
opposite sides

A

B C

D
M

N

P

Q

Back to the discussion of the first paragraph of this section, we now observe that
for not every convex quadrilateral one can find a circle tangent to all of its sides
(the reader can easily construct a counterexample). When such a circle does exist,
we shall say that the quadrilateral is tangential, and that the corresponding circle
is inscribed in the quadrilateral. The coming result, known as Pitot’s theorem,4

provides a useful characterization of tangential quadrilaterals.

Theorem 3.41 (Pitot) A convex quadrilateral ABCD, of sides AB, BC, CD and
DA, is tangential if and only if

AB + CD = AD + BC.

Proof Suppose first that ABCD is tangential, and let M , N , P and Q be the
tangency points of the sides AB, BC, CD and DA with the inscribed circle,
respectively (cf. Fig. 3.39).

By applying item (a) of Proposition 3.28 several times, we obtain

AB + CD = ( AM + MB) + ( CP + PD)

= AQ+ BN + CN + DQ

= ( AQ+ DQ) + ( BN + CN)

= AD + BC.

Conversely, arguing by contradiction, assume that AB + CD = AD + BC

but ABCD is not tangential. If O is the intersection point of the bisectors of the
internal angles 
 DAB and 
 ABC of ABCD, then Proposition 3.6 assures that O

is the center of a circle tangent to sides AD, AB and BC of ABCD (cf. Fig. 3.40).
Since we are assuming that ABCD is not tangential, we conclude that such a circle
is not tangent to the side CD of ABCD.

Let E be the point on the half-line
−→
AD such that CE is tangent to the circle of

Fig. 3.40 (there, we are looking at the case of E lying on AD; the other cases are
entirely analogous). By the first part above, it follows that

4Henri Pitot, French engineer of the seventeenth century.
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Fig. 3.40 Equal sums of
lengths of opposite sides
⇒ ABCD tangential

O

A

B C

E
D

AB + CE = AE + BC.

However, since AB + CD = AD + BC by hypothesis, we thus get

CD − CE = AD − AE = DE,

so that CD = CE + ED. Finally, such an equality contradicts the triangle
inequality on triangle CDE. ��

Problems: Sect. 3.5

1. On each side of an acute triangle ABC we construct a circle having that side
as a diameter. Prove that the three circles thus obtained pairwise intersect in six
points, three of which are the feet of the altitudes of ABC.

2. * Let ABC be an acute triangle of circumcenter O , and Ha , Hb and Hc be the
feet of the altitudes relative to BC, CA and AB, respectively. Prove that:

(a) ÂHbHc = ÂBC and ÂHcHb = ÂCB.

(b)
←→
OA⊥ ←→

HbHc.

3. We are given in the plane four straightlines, no two of which parallel and no
three of which passing through a single point. Prove that the circumcircles of
the four triangles they determine all pass through a single point.

4. Quadrilateral ABCD is inscribed in a circle � of diameter BD. Let M ∈ �

be such that M 
= A and AM⊥BD, and N be the foot of the perpendicular

dropped from A to BD. If the parallel to
←→
AC drawn by N intersects

←→
CD at P

and
←→
BC at Q, prove that CPMQ is a rectangle.

5. Given a triangle ABC with circumcircle �, let P be a point situated on the

arco
�

AC of � not containing vertex B, and D be the foot of the perpendicular

dropped from P to the line
←→
BC . If Q 
= P is the other point of intersection
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of
←→
DP with � and r denotes the Simson line of P with respect to ABC, prove

that r ‖ ←→
AQ.

6. Let ABC be a triangle of circumcircle �, and P and P ′ points lying on the arc
�

AC of � not passing through B. If r and r ′ denote the Simson lines of P and
P ′ with respect to ABC, respectively, prove that the angle between r and r ′ is

equal to half of the measure of the arc
�

PP ′ of � not passing through A.
7. * A convex polygon is cyclic if there exists a circle passing through all of its

vertices, which is then said to be circumscribed to the polygon.5 Prove that a
convex polygon is cyclic if and only if the perpendicular bisectors of their sides
pass through a single point.

8. Let ABCD be a tangential quadrilateral. Show that the incircles of triangles
ABC and ACD touch diagonal AC at the same point.

9. * A convex polygon is tangential if there exists a circle tangent to all of its
sides, which is then said to be inscribed in the polygon. Prove that a convex
polygon is tangential if and only if the bisectors of the internal angles of the
polygon all pass through a single point. Moreover, if this is so, show that the
inscribed circle is unique.

10. Let ABCD be a cyclic quadrilateral and E be the point of intersection of its
diagonals. Also, let M , N , P and Q be the feet of the perpendiculars dropped
from E to the sides AB, BC, CD and DA, respectively. Prove that quadrilateral
MNPQ is tangential.

11. If a convex hexagon A1A2A3 . . . A6 is tangential (cf. Problem 9), prove that

A1A2 + A3A4 + A5A6 = A2A3 + A4A5 + A6A1.

12. (IMO) On a circle � we are given three distinct points A, B and C. Show how
to use straightedge and compass to construct a fourth point D on �, such that
ABCD is a tangential (convex) quadrilateral.

5If it does exist, such a circle is clearly unique, for it also circumscribes every triangle formed by
three of the vertices of the polygon.



Chapter 4
Proportionality and Similarity

This chapter develops a set of tools which will allow us to start a systematic study
of the metric aspects of Plane Euclidean Geometry; generally speaking, the central
problem with which we shall be concerned here is that of comparing ratios of
lengths of line segments. Among several interesting and important applications,
the most prominent ones are the theorems of Thales and Pythagoras, which will
reveal themselves to be almost indispensable hereafter. We also present a series of
classical results, among which we highlight the study of the Apollonius circle and
the solution of the Apollonius tangency problem, the collinearity and concurrence
theorems of Ceva and Menelao, and some of the many theorems of Euler on the
geometry of the triangle.

4.1 Thales’ Theorem

We consider the following situation: we have in the plane parallel lines r , s and t (cf.
Fig. 4.1). Then, we draw two transversals lines u and u′, wit u (resp. u′) intersecting
r , s and t at points A, B and C (resp. A′, B ′ and C′), respectively.

Trace line u′′, parallel to u′ and passing through C, and let A′′ and B ′′ be its
intersections with r and s, respectively. If we had AB = BC (which does not
seem to be the case in Fig. 4.1), then the midsegment theorem (cf. Proposition 2.40)
applied to trapezoid AA′C′C would give us

A′B ′ = B ′C′.

To put it in another way,

AB

BC
= 1 ⇒ A′B ′

B ′C′ = 1.

© Springer International Publishing AG, part of Springer Nature 2018
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Fig. 4.1 Transversals u and
u′ to the parallels r , s and t

r

s

t

u u

A

B

C

X

Y

Z

A

B

C

X

Y

Z

Now, assume that AB

BC
is equal to some rational number, say 2

3 . Divide segments
AB and BC in two and three equal parts, respectively, thus getting points X, Y and
Z in u, such that

AX = XB = BY = YZ = ZC

(look again at Fig. 4.1). Draw through X, Y and Z the parallels to r , s and t , which
intersect u′ respectively at X′, Y ′ and Z′; three more applications of the midsegment
theorem for trapezoids give

A′X′ = X′B ′ = B ′Y ′ = Y ′Z′ = Z′C′

so that

AB

BC
= 2

3
⇒ A′B ′

B ′C′ =
2

3
.

By continuing with such a reasoning, suppose that we had AB

BC
= m

n
, with m,n ∈

N. A slight modification of the above argument (this time by first dividing AB and

BC into m and n equal parts, respectively) would give A′B ′
B ′C ′ = m

n
, so that

AB

BC
= m

n
⇒ A′B ′

B ′C′ =
m

n
.

What we have done up to this point assures that the equality

AB

BC
= A′B ′

B ′C′
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holds whenever the left (or right) hand side is equal to a rational number. The natural
question at this moment is the following: does the equality above remains true if one
of its sides is equal to an irrational number? The answer is yes, and to understand
why we shall use the following standard fact on real numbers1:

Lemma 4.1 Every positive irrational number is the limit of a sequence of positive
rational numbers.

Now, suppose that

AB

BC
= x,

with x being an irrational number. Choose (by the above lemma) a sequence (an)n≥1
of positive rationals such that

x < an < x + 1

n

for every n ∈ N. Then, mark (cf. Fig. 4.2) point Cn ∈ u with

AB

BCn

= an.

Let tn be the line parallel to r , s and t through Cn, and C′
n be the point in which tn

intersects u′. Since an ∈ Q, an argument analogous to what we did before show that

A′B ′

B ′C′
n

= an.

Fig. 4.2 The case of an

irrational ratio AB

BC

r

s

t

tn

u u

A

B

Cn

C

A

B

Cn

C

1For the necessary background, see sections 7.1 and 7.2 of [5], for instance.
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Yet in another way, we have proved that

x <
AB

BCn

< x + 1

n
⇒ x <

A′B ′

B ′C′
n

< x + 1

n

or, which is the same, that

AB

BC
<

AB

BCn

<
AB

BC
+ 1

n
⇒ AB

BC
<

A′B ′

B ′C′
n

<
AB

BC
+ 1

n
. (4.1)

Now, note that the inequalities of the left hand side above guarantee that, as n

increases without bound, points Cn come closer and closer to C. However, since

tn ‖ t , it follows that points C′
n come closer and closer to C′, so that the ratio A′B ′

B ′C ′
n

converges to A′B ′
B ′C ′ . We abbreviate this by writing

A′B ′

B ′C′
n

−→ A′B ′

B ′C′ as n → +∞.

On the other hand, we can clearly infer from the inequalities at the right hand side
of (4.1) that

A′B ′

B ′C′
n

−→ AB

BC
as n → +∞.

Since the limit of a convergent sequence of real numbers is unique, we are then
forced to conclude that

AB

BC
= A′B ′

B ′C′ .

The discussion above has proved one of the most fundamental results of Plane
Euclidean Geometry, which is known as Thales’ theorem, or also as the intercept
theorem.2 We state it formally below.

Theorem 4.2 (Thales) Let r , s and t be parallel lines, and choose points A,A′ ∈ r ,
B,B ′ ∈ s and C,C′ ∈ t such that A, B, C and A′, B ′, C′ are two triples of collinear
points. Then,

AB

BC
= A′B ′

B ′C′ .

The coming examples collect two interesting applications of Thales’ theorem.

2After Thales of Miletus, Greek mathematician and philosopher of seventh century BC, the first of
Classical Antiquity.
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Example 4.3 Use straightedge and compass to divide the line segment AB below
into five equal parts.

Solution

A B

CONSTRUCTION STEPS.

1. Draw through A an arbitrary line r , different from
←→
AB .

2. Mark on r points C0 = A, C1, C2, C3, C4 and C5 such that, for 0 ≤ i ≤ 4, the
lengths CiCi+1 are all equal.

3. For 1 ≤ i ≤ 4, trace the parallel to
←→
C5B passing through Ci .

4. If Di is the intersection of such a parallel with the line segment AB, then Thales’s
theorem assures that points D1, D2, D3 and D4 divide AB into five equal parts.

For the next example, given positive real numbers a, b and c, we say that the
positive real x is the fourth proportional of a, b and c (in this order) if

a

b
= c

x
.

If a, b and c are the lengths of three line segments, we shall also say that a line
segment of length x, given as above, is the fourth proportional of the line segments
of lengths a, b and c (in this order).

Example 4.4 Use straightedge and compass to construct the fourth proportional of
the line segments given below.

Solution

a
b

c

CONSTRUCTION STEPS

1. Draw two lines r and s, concurrent at A.
2. Mark on r line segments AB and BC, with AB = a and BC = c; mark on s the

line segment AD, such that AD = b.

3. Trace through C the parallel to
←→
BD, which intersect s at E. By Thales’ theorem,

we have DE = bc
a

, as wished.

As important as Thales’ theorem is its partial converse below, also due to Thales.
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Fig. 4.3 Partial converse of
Thales’ theorem

r

s

u u

A

B

C

A

B

Corollary 4.5 We are given in the plane lines r and s and points A,A′ ∈ r and

B,B ′ ∈ s, with
←→
AB ∩

←→
A′B ′= {C}. If AB

BC
= A′B ′

B ′C , then r ‖ s.

Proof Suppose that B ∈ AC (cf. Fig. 4.3—the other possible cases can be dealt with
analogously). Draw through B line s′ ‖ r and mark point B ′′ in which it intersects

segment A′C. Thales’ theorem gives AB

BC
= A′B ′′

B ′′C , so that our hypotheses furnish

A′B ′

B ′C
= A′B ′′

B ′′C
.

Now, it follows from Problem 2, page 108, that B ′ = B ′′ or, which is the same,
s = s′. Thus, s ‖ r . ��

The coming result is an important application of Thales’ theorem, which is
known in mathematical literature as the angle bisector theorem (Fig. 4.4).

Theorem 4.6 Let ABC be a triangle in which AB 
= AC.

(a) If P is the foot of the internal bisector and Q is the foot of the external bisector
relative to BC, then

BP

PC
= BQ

QC
= BA

AC
.

(b) If AB = c, AC = b and BC = a, we have

{

BP = ac
b+c

PC = ab
b+c

.
and

{

BQ = ac
|b−c|

QC = ab
|b−c| .
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Fig. 4.4 The angle bisector theorem

Proof Item (b) follows immediately from (a): letting BP = x and PC = y, we
have x + y = a and, by the result of (a), x

y
= c

b
. Solving the system of equations

{

x + y = a
x
y
= c

b

,

we obtain x = ac
b+c

and y = ab
b+c

. The remaining formulas of item (b) are proved
likewise.

In what concerns (a), let us show that BQ

QC
= BA

AC
, leaving the (analogous) proof

of equality BP

PC
= BA

AC
to the reader (cf. Problem 4, page 108).

Suppose (cf. Fig. 4.5) that AB < AC (the case AB > AC can be dealt with in

the same way). Trace through B the parallel to
←→
AQ and mark its intersection point

B ′ with side AC of ABC. Since
←→
QA‖

←→
BB ′ and

−→
AQ is the angle bisector of 
 BAX,

we obtain

ÂBB ′ = B̂AQ = Q̂AX = B̂B ′A.

Therefore, triangle ABB ′ is isosceles of basis BB ′, so that B ′A = BA. If we now

apply Thales’ theorem to the parallels
←→
QA and

←→
BB ′ with respect to the transversals

←→
QC and

←→
AC , we get

BQ

QC
= AB ′

AC
= BA

AC
.

��
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A

B C

X

Q

B

Fig. 4.5 Proof of the angle bisector theorem

Problems: Sect. 4.1

1. Lines r , s and t are parallel, with s lying between r and t . Transversals u and v

determine, on r , s and t , points A, B, C and A′, B ′, C′, respectively, such that
AB = x + 2, BC = 2y, A′B ′ = y and B ′C′ = (x − 10)/2. Knowing that
x + y = 18, compute the length of the line segment AB.

2. * Let P1 and P2 be points of the line segment AB, such that

AP1

P1B
= AP2

P2B
.

Prove that P1 and P2 coincide.
3. Given line segments of lengths a and b, we say that a line segmento of length x

is the third proportional of a and b (in this order) if

a

b
= b

x
.

Show how to use straightedge and compass to construct it.
4. * Complete the proof of the angle bisector theorem.
5. * Let ABC be a triangle and P and M be the feet of the internal angle bisector

and of the median relative to BC, respectively. If P and M coincide, prove that
ABC is isosceles of basis BC.

6. In a triangle ABC, let P be the foot of the internal angle bisector relative to BC.
Construct ABC, knowing the lengths PB , PC and AB.

7. In a triangle ABC, let P be the foot of the internal angle bisector relative to A.
We mark respectively on AB and AC points M and N for which BM = BP and
CN = CP . Prove that MN ‖ BC.

8. Construct triangle ABC with straightedge and compass, knowing the lengths ma ,
mb and mc of the medians relative to BC, AC and AB, respectively.
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Fig. 4.6 Two similar
triangles
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4.2 Similar Triangles

In this section we study the concept of similarity of triangles, which generalizes the
notion of congruence of triangles and will be of paramount importance for all that
follows.

Two triangles are said to be similar if there exists a one-to-one onto correspon-
dence between the vertices of one and the other triangles such that the internal angles
at corresponding vertices are equal and the ratios between the lengths of pairs of
corresponding sides are always the same (cf. Fig. 4.6). Physically, two triangles are
similar if we can dilate and/or rotate and/or reflect and/or translate one of them,
obtaining the other one after performing such a set of operations.3

In Fig. 4.6, triangles ABC and A′B ′C′ are similar, with correspondence of
vertices A ↔ A′, B ↔ B ′, C ↔ C′. Thus, ̂A = ̂A′, ̂B = ̂B ′, ̂C = ̂C′ and
there exists a real number k > 0 with

AB

A′B ′ =
BC

B ′C′ =
AC

A′C′ = k.

Such a positive real k is called the ratio of similitude between ABC and A′B ′C′, in
this order (note that the ratio of similitude between A′B ′C′ and ABC, in this order,
is 1

k
).

We write ABC ∼ A′B ′C′ to indicate that triangles ABC and A′B ′C′ are similar
under the correspondence of vertices A ↔ A′, B ↔ B ′, C ↔ C′.

If ABC ∼ A′B ′C′ with ratio of similitude k, it is possible to prove that k is equal
to the ratio of the lengths of any two corresponding segments in triangles ABC and
A′B ′C′ (in this order); for instance, in the notations of Fig. 4.6, letting M be the
midpoint of BC and M ′ that of B ′C′, we have

MA

M ′A′ =
a/2

a′/2
= a

a′
= k

(in this respect, see also Problem 3, page 115).

3Although such a point of view can be made precise by means of the study of geometric
transformations, we shall not pursue it here. Nevertheless, we refer the interested reader to the
marvelous books [24–26] of professor Yaglom, and [27] of professors Yaglom and Shenitzer.
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Fig. 4.7 The SSS similarity
case

ka

kc kb

A

B C

a

b

c

A

B

C

Fig. 4.8 Proof of the SSS
similarity case
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The three coming results establish the usual sets of necessary and sufficient
conditions for two given triangles to be similar. For this reason, they are commonly
referred to as the cases of similarity of triangles. Since their proofs are relatively
simple consequences of the partial converse of Thales’ theorem, we shall do the first
of them, leaving the other two as exercises for the reader (cf. Problem 1, page 115).

The coming proposition is known as the SSS similarity case for triangles
(Fig. 4.7).

Proposition 4.7 Let ABC and A′B ′C′ be two given triangles, with

AB

A′B ′ =
BC

B ′C′ =
AC

A′C′ .

Then, ABC ∼ A′B ′C′ under the correspondence of vertices A ↔ A′, B ↔ B ′,
C ↔ C′. In particular, ̂A = ̂A′, ̂B = ̂B ′ and ̂C = ̂C′.

Proof Letting k denote the common value of the ratios in the statement of the
proposition, we have AB = k · A′B ′, BC = k · B ′C′ and AC = k · A′C′. Assume,
without loss of generality, that k > 1 and mark (cf. Fig. 4.8) point B ′′ ∈ AB such
that AB ′′ = A′B ′.

Let C′′ denote the intersection, with side AC, of the parallel to BC passing
through B ′′. Thales’ theorem gives

AC′′

AC
= AB ′′

AB
= 1

k
,

so that AC′′ = 1
k
· AC = A′C′.

Now, draw the parallel to AB passing through C′′, which intersects BC at D.
Then, since the quadrilateral B ′′C′′DB is a parallelogram, again from Thales’
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Fig. 4.9 The SAS similarity
case
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theorem we obtain

B ′′C′′

BC
= BD

BC
= AC′′

AC
= 1

k
.

Therefore, B ′′C′′ = 1
k
· BC = B ′C′.

The above discussion has shown that

AB ′′ = A′B ′, AC′′ = A′C′ and B ′′C′′ = B ′C′,

i.e., that triangles AB ′′C′′ and A′B ′C′ are congruent, by the SSS congruence case.
Hence, we get

̂B = ÂBC = ÂB ′′C′′ = A′
̂B ′C′ = ̂B ′,

and likewise ̂A = ̂A′ and ̂C = ̂C′. ��
We now turn to the statement of the SAS similarity case (Fig. 4.9).

Proposition 4.8 Let ABC and A′B ′C′ be given triangles, with

AB

A′B ′ =
BC

B ′C′ = k and ̂B = ̂B ′.

Then, ABC ∼ A′B ′C′, with the correspondence of vertices A ↔ A′, B ↔ B ′,
C ↔ C′. In particular, ̂A = ̂A′, ̂C = ̂C′ and AC

A′C ′ = k.

Finally, the proposition below presents the AA similarity case for triangles
(Fig. 4.10).

Proposition 4.9 Let ABC and A′B ′C′ be given triangles, with

̂A = ̂A′ and ̂B = ̂B ′.

Then, ABC ∼ A′B ′C′, with the correspondence of vertices A ↔ A′, B ↔ B ′,
C ↔ C′. In particular,

AB

A′B ′ =
BC

B ′C′ =
AC

A′C′ .



112 4 Proportionality and Similarity

Fig. 4.10 The AA similarity
case
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As an important consequence of the similarity cases studied above, we now
derive the usual metric relations in right triangles. The content of item (c) is
the famous and ubiquitous Pythagoras’ theorem4; for another proof of it, see
Example 5.8.

Theorem 4.10 Let ABC be a right triangle at A, with legs AB = c, AC = b

and hypotenuse BC = a. If H is the foot of the altitude relative to the hypotenuse,
CH = x, BH = y and AH = h, then:

(a) ah = bc.
(b) ax = b2 and ay = c2.
(c) a2 = b2 + c2.
(d) xy = h2.

Proof (a) and (b): since ÂHB = ĈAB and ÂBH = ĈBA (cf. Fig. 4.11), triangles
BAH and BCA are similar by AA, with correspondence of vertices A ↔ C, H ↔
A, B ↔ B. Thus,

BH

AB
= AB

BC
and

AH

AC
= AB

BC

or, which is the same,

y

c
= c

a
and

h

b
= c

a
.

Relation ax = b2 is proved in pretty much the same way.
(c) Termwise addition of the relations of item (b) furnish the equality a(x+y) =

b2 + c2. Now, since x + y = a, there is nothing left to do.
(d) Termwise multiplication of the relations of item (b) give a2 · xy = (bc)2. By

invoking the result of (a), we can write

xy =
(

bc

a

)2

= h2,

as wished. ��

4Pythagoras of Samos was one of the greatest mathematicians of Classical Antiquity. The theorem
that bears his name was already known to babylonians, at least two thousand years before he was
born; nevertheless, Pythagoras was the first one to prove it. It is also attributed to him the first proof
of the irrationality of

√
2.
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Fig. 4.11 Metric relations on
a right triangle
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The three corollaries below collect some important applications of Pythagoras’
theorem.

Corollary 4.11 The diagonals of a square of side length a are equal to a
√

2.

Proof If ABCD is a square of side length a and diagonals AC and BD (cf.
Fig. 4.12), then ABC is a right isosceles triangle. Hence, Pythagoras’ theorem gives

AC =
√

AB
2 + BC

2 =
√

a2 + a2 = a
√

2.

��

Corollary 4.12 The altitudes of an equilateral triangle of side length a are equal

to a
√

3
2 .

Proof Let ABC be an equilateral triangle of side length a, and M be the midpoint
of BC (cf. Fig. 4.13). Problem 6, page 30, guarantees that AM⊥BC. Hence, by
applying Pythagoras’ theorem to triangle ACM , we obtain

AM
2 = AC

2 − CM
2 = a2 −

(a

2

)2 = 3a2

4
,

and the result follows. ��
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Our final example uses item (d) of Theorem 4.10 to solve geometrically a second
degree equation with positive roots.

Example 4.13 We are given line segments of lengths s and p, with s > 2p. Use
compass and straightedge to construct line segments whose lengths are the roots of
the second degree equation x2 − sx + p2 = 0.

Solution

p

s

CONSTRUCTION STEPS.

1. Draw a line r and mark on it points B and C such that BC = s. Then, construct
a semicircle � of diameter BC.

2. Draw line r ′, parallel to r and at distance p from r , which intersects � at (distinct)
points A and A′ (since p < s

2 ).
3. The discussion following the proof of Proposition 3.19 assures that triangle ABC

is right at A.
4. If H is the foot of the perpendicular dropped from A to BC, then BH +CH = s

and item (d) of Theorem 4.10 assures that BH · CH = p2. Therefore, basic
algebra (cf. Section 2.3 of [5], for instance) assures that BH and CH are the
roots of the second degree equation given in the statement of the example. ��
We finish this section by establishing the converse of Pythagoras’ theorem (in

this respect, see also Theorem 7.25).

Proposition 4.14 Let ABC be a triangle with AB = c, BC = a and AC = b. If
a2 = b2 + c2, then ABC is right at A.

Proof Firstly, note that a2 = b2 + c2 implies a > b, c. Hence, Proposition 2.23
guarantees that 
 A > 
 B, 
 C, so that 
 B and 
 C are acute. Thus, if H stands for
the foot of the altitude relative to BC, we conclude that H ∈ BC (cf. Fig. 4.14). Let
AH = h, M be the midpoint of BC and BH = x. We can assume, without loss of
generality, that H ∈ BM . By applying Pythagoras’ theorem to triangles AHC and
AHB, we obtain

a2 = b2 + c2 = (AH
2 + CH

2
) + (AH

2 + BH
2
) = 2h2 + (a − x)2 + x2,
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Fig. 4.14 Converse of
Pythagoras’ theorem
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whence h2 = ax − x2. But then, applying Pythagoras’ theorem to triangle AHM ,
we arrive at

AM
2 = AH

2 + HM
2 = h2 + (BM − BH)2

= (ax − x2) +
(a

2
− x

)2 = a2

4
,

so that AM = a
2 = 1

2BC. Therefore, M lies at equal distances from the vertices of
ABC, and Proposition 3.30 assures that ABC is right at A. ��

Problems: Sect. 4.2

1. * Prove that the sets of conditions listed in each of the Proposition 4.8 and 4.9
indeed suffice to assure the similarity of triangles ABC and A′B ′C′.

2. In the figure below, the three quadrilaterals are squares and points X, Y and Z

are collinear. Compute, in, em centimeters, the length of the sides of the largest
square, knowing that the lengths of the other two are equal to 4cm and 6cm.

X

Y

Z

3. * ABC and A′B ′C′ are similar triangles, with similitude ratio k. We let ma

and m′
a , ha and h′a , βa and β ′

a denote the lengths of the medians, altitudes and
internal angle bisectors relative to A and A′, respectively. Prove that

ma

m′
a

= ha

h′a
= βa

β ′
a

= k.
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4. * Triangle ABC is right at A, and point P ∈ BC is the foot of the angle
bisector relative to 
 BAC. Compute the distance from P to the side AC in
terms of AB = c and AC = b.

5. Let ABC be right at A and such that AB = 1. The internal bisector of 
 BAC

intersects side BC at D. Knowing that the line r that passes through D and is
perpendicular to AD intersects side AC at its midpoint, compute the length of
AC.

6. Let ABCD be a parallelogram with diagonals AC and BD, and sides AB =
10, AD = 24. Let also E and F stand for the feet of the perpendiculars dropped
from A to the sides BC and CD, respectively. If AF = 20, compute the length
of AE.

7. Two circles, of radii r < R, are externally tangent at P . Knowing that such
circles are also tangent to the sides of an acute angle of vertex A, compute AP

in terms of r and R.
8. Let ABC be a triangle such that BC = a, AC = b and AB = c, and let M , N

and P be points respectively situated on AB, BC and AC, such that AMNP

is a rhombus.

(a) Compute the length of the sides of such a rhombus in terms of a, b and c.
(b) Show how to use compass and straightedge to find the position of point M .

9. ABC is an equilateral triangle of side length a, and M is the midpoint of AB.

We choose a point D along
←→
BC , with C between B and D, in such a way that

CD = a
2 . If AC ∩ DM = {E}, compute AE as a function of a.

10. ABCD is a trapezoid of bases AB = a, CD = b, in which the legs are AD

and BC. Through the intersection point P of the diagonals of ABCD we draw
the line segment MN , parallel to the bases of ABCD and such that M ∈ AD

and N ∈ BC. Prove that P is the midpoint of MN and that MN is equal to the
harmonic mean of a and b, i.e., prove that MN = 2ab

a+b
.

11. * On the side BC of a triangle ABC we choose an arbitrary point Z. Then,
we draw lines r and s through points B and C, respectively, with both of them

parallel to
←→
AZ . If

←→
AC ∩ r = {X} and

←→
AB ∩ s = {Y }, prove that

1

BX
+ 1

CY
= 1

AZ
.

12. ABCD is a trapezoid of bases AB and CD and legs AD and BC. M is the
midpoint of CD, and the line segment AM intersects the diagonal BD at F .
We draw through F line r , parallel to the basis. If r intersects AD, AC and BC

respectively at E, G and H , prove that EF = FG = GH .
13. * (OCM) Let ABC be triangle with AB = c, AC = b and BC = a. If ÂBC =

2ÂCB, show that b2 = c(a + c).
14. (OCM) Triangle ABC is such that ÂCB = 2B̂AC and AC = 2BC. Show that

it is right at B.
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15. * (OCS - adapted) Let �(O;R) be the circumcircle of triangle ABC and Ha

be the foot of its altitude relative to A. If A′ stands for the symmetric of A

with respect to O , prove that AA′C ∼ ABHa . Subsequently, conclude that if
AB = c, AC = b and AHa = ha , then

ha = bc

2R
.

16. Lines r and s are tangent to the circumcircle of an acute triangle ABC

respectively at B and C. Letting D, E and F be the feet of the perpendiculars
dropped from A respectively to BC, r and s, prove that

AD
2 = AE · AF.

17. In a rectangle ABCD of sides AB = 4 and BC = 3, we mark on diagonal AC

the point M such that DM⊥AC. Compute the length of segment AM

18. Let ABC be a right triangle of legs b and c and height h relative to the
hypotenuse. Prove that

1

h2 = 1

b2 + 1

c2 .

19. * Given positive reals a and b, let AB be a line segment of length a + b, and
H be a point on it with AH = a and BH = b. Draw a semicircle of diameter
AB and mark point C as its intersection with the perpendicular to AB through
H .

(a) Show that CH = √
ab.

(b) Conclude that the arithmetic-geometric means inequality for two positive
real numbers (cf. Chapter 5 of [5], for instance), is essentially equivalent
to the triangle inequality in the (possibly degenerate) triangle CHO , where
O is the midpoint of AB.

20. * Given in the plane line segments of lengths a and b, use compass and
straightedge to construct a line segment of length

√
ab.

21. Let M , N and P be points respectively on the sides BC, AC and AB of an
equilateral triangle ABC of side length a, such that BM = CN = AP = a

3 .
Show that triangle MNP is also equilateral and that its sides are perpendicular
to those of ABC.

22. Given line segments of lengths a, b and c, use compass and straightedge to
construct a segment of length comprimento

√
a2 + b2 − c2, admitting that the

expression under the square root sign is positive.
23. Hypotenuse BC of right triangle ABC is divided into four equal segments by

points D, E and F . If BC = 20, compute the value of AD
2 + AE

2 + AF
2
.

24. Identify and construct, with compass and straightedge, the locus of the mid-
points of the chords of length l of a given circle �(O;R).
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25. Let � be a circle of center O and radius R. Prove that the locus of the points
of the plano from which we can draw tangents of length l to � is the circle of
center O and radius

√
R2 + l2.

26. (OCM) A pedestrian, standing 25m from the entrance of a building, visualizes
it, from top to bottom, under a certain angle. He/she then walks away from the
building more 50m and notes that, upon doing so, the new angle of visualization
is exactly half of the former. Compute the height of the building.

27. (OCM) Lines r , s and t are parallel, with s lying between r and t , such that
the distance from r to s is of 3m, whereas that from s to t is of 1m. Triangle
ABC is equilateral and has a vertex on each of the lines r , s and t . Compute
the lengths of its sides.

28. (OCM) Two towers, one of which 30m high and the other 40m high, lie at 50m
from one another. Somewhere along the line segment connecting their ground
floors lies a small fountain. At some moment, two birds started flying, from the
top of each tower and with equal velocities, directly towards the fountain. If the
birds arrived in the fountain at the same time, compute the distances from it to
the bases of the towers.

29. The lengths of two sides of a triangle are 7 and 5
√

2, and the enclosed angle is
of 135◦. Compute the length of the third side.

30. We are given a point P inside a rectangle ABCD of diagonals AC and BD.

Prove that AP
2 + CP

2 = BP
2 + DP

2
.

31. ABCD is a square of side length 10 and P is a point on its circumcircle.

Compute the possible values of the sum PA
2 + PB

2 + PC
2 + PD

2
.

32. If the diagonals of a convex quadrilateral are perpendicular to each other,
prove that the sum of the squares of the lengths of the opposite sides of the
quadrilateral are equal.

33. Let ABCD be a trapezoid of bases AB and CD and legs AD and BC, right
em A. If AB = 12, CD = 4 and ABCD is tangential, compute the distances
of B and C from the center of the inscribed circle.

34. Consider a line s and two circles of radii R and r , tangent to s at distinct points
and externally to each other. A third circle, also tangent to s, is externally
tangent to the two other circles. If x stands for the radius of this third circle,
prove that

1√
x
= 1√

R
+ 1√

r
.

35. Let s stand for the real line and α for one of the half-planes it determines. For
each n ∈ Z, draw the circle of radius 1

2 , contained in α and tangent to s at n.
Then, if �1 and �2 are two of these adjacent ones among these circles (so that
they are externally tangent), draw the circle tangent to s and externally tangent
to �1 and �2. Upon repeating this process recursively, prove that the set of
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points of tangency with s of the circles thus obtained is contained in the set Q
of rational numbers.5

36. We are given n points in the plane, not all of which being collinear. Prove the
Sylvester-Gallai theorem6: there exists at least one line that passes through
exactly two of these n points.

4.3 Some Applications

This section collects some more elaborate applications of similarity of triangles,
paying a tribute to Apollonius of Perga, Claudius Ptolemy and Leonhard Euler.

Our first result establishes a converse of the angle bisector theorem. For the
statement of it, recall that in every triangle the internal and external angle bisectors
relative to a vertex are always perpendicular to each other.

Proposition 4.15 Let ABC be a given triangle, and P and Q be points on
←→
BC ,

with P ∈ BC and Q /∈ BC. If

P ̂AQ = 90◦ and
BP

PC
= BQ

QC
,

then AP is the internal angle bisector and AQ is the external angle bisector of

 BAC.

Proof Draw, through point P , the parallel to
←→
AQ, and let U and V be its points of

intersection with
←→
AB and

←→
AC , respectively (cf. Fig. 4.15).

A

B

CPQ

U

V

Fig. 4.15 Establishing the converse of the angle bisector theorem

5It can be shown that the set of points of tangency is actually equal to Q. For a proof, we refer the
reader to [21].
6James Sylvester, English mathematician, and Tibor Gallai, Hungarian mathematician, both of the
twentieth century.
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Corollary 2.18 guarantees that B̂UP = B̂AQ and P ̂V C = Q̂AC; on the other
hand, ÛBP = ÂBQ (for the corresponding angles are opposite) and P̂CV =
Q̂CA. Hence, BUP ∼ BAQ and PCV ∼ QCA by AA, so that

BP

BQ
= PU

QA
and

PC

CQ
= PV

AQ
.

However, since BP

BQ
= PC

QC
by hypothesis, the similarity relations above give

PU

QA
= PV

AQ
,

whence PU = PV . Now, from
←→
AP ⊥ ←→

AQ and
←→
UV ‖←→

AQ we obtain
←→
UV ⊥ ←→

AP , so
that AP is median and altitude of AUV . Therefore, the result of Problem 6, page
30, assures that AP is also the bisector of 
 UAV , and thus of 
 BAC.

Finally, since the external bisector of 
 BAC is perpendicular to the internal one,
we conclude that AQ is the external bisector of 
 BAC. ��

We are now in position to state and prove the following theorem of Apollonius.7

Theorem 4.16 (Apollonius) Given a positive real number k 
= 1 and distinct
points B and C in the plane, the locus of points A in the plane for which AB = k·AC

is the circle of diameter PQ, with P ∈ BC and Q ∈←→
BC \BC being such that

BP

PC
= BQ

QC
= k.

Proof Let P and Q be as in the statement of the theorem. If A 
= P,Q is such that
AB = k · AC, then a straightforward variant of problem 2, page 108, guarantees

that A /∈←→
BC . Now, let P ′,Q′ ∈←→

BC be the feet of the internal and external angle
bisectors of ABC, relative to A. It follows from the angle bisector theorem that

BP ′

P ′C
= BQ′

Q′C
= BA

AC
= k,

and invoking again Problem 2, page 108, we conclude that P ′ = P and Q′ = Q.
However, since P ′

̂AQ′ = 90◦, it comes that A lies in the circle of diameter PQ.

7Apollonius of Perga, Greek mathematician of the third century BC Apollonius gave great
contributions to Euclidean Geometry, notably to the study of conics. We shall have more to say
on these curves in Sects. 6.3 and 10.3.
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B CP Q

A

Fig. 4.16 Apollonius’ circle on (B,C) in the ratio k 
= 1

Conversely, let A 
= P,Q be a point on the circle of diameter PQ. Then A /∈←→
BC

and P ̂AQ = 90◦. Since BP

PC
= BQ

QC
= k, the previous proposition assures that,

in triangle ABC, segment AP is the internal angle bisector relative to A, whereas
segment AQ is the corresponding external angle bisector. Hence, the angle bisector
theorem gives

BA

AC
= BP

PC
= k,

so that A belongs to the desired locus. ��
As already quoted in Fig. 4.16, the locus described in the previous result in

known as Apollonius’ circle relative to (B,C), in the ratio k 
= 1. In particular,
note that the Apollonius’ circles relative to (B,C) and (C,B), both in the ratio
k 
= 1, are distinct. For another proof of Apollonius’ theorem, we refer the reader to
Problem 15, page 202.

The coming example presents a straightforward way of constructing Apollonius’
circle relative to a given ordered pair of points, in a given ratio k 
= 1.

Example 4.17 In the notations of the figure below, construct Apollonius circle
relative to (B,C), in the ratio 2

3 .

Solution

B C

CONSTRUCTION STEPS

1. Draw parallel lines r and s, distinct from
←→
BC and such that B ∈ r , C ∈ s.

2. Fix an arbitrary segment of length u, and mark on r a point X such that BX = 2u

and on s distinct points Y and Z such that CY = CZ = 3u, with X and Y lying

in the same half-plane with respect to
←→
BC .
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3. Mark points P and Q as the intersections of
←→
BC with lines

←→
XZ and

←→
XY ,

respectively.
4. Similarity case AA assures that XBP ∼ ZCP and XQB ∼ YQC. On the other

hand, from such similarities we obtain

BP

PC
= BX

CZ
= 2

3
and

BQ

QC
= BX

CY
= 2

3
,

so that the desired locus is the circle of diameter PQ. ��
The next application of the notion of similarity of triangles ia a famous theorem

on cyclic quadrilaterals, due to Claudius Ptolemy.8

Theorem 4.18 (Ptolemy) If ABCD is a cyclic quadrilateral with diagonals AC

and BD, then

AB · CD + AD · BC = AC · BD.

Proof Mark point P on diagonal BD, such that P̂CD = ÂCB (cf. Fig. 4.17). Since

B̂AC = B̂DC = 1
2

�

BC, triangles ABC and DPC are similar by AA, so that

AB

AC
= DP

CD
.

Fig. 4.17 Proof of Ptolemy’s
theorem

O

A

B

C

D
P

8Claudius Ptolemy, Greek astronomer and mathematician of the second century AD, gave great
contributions to Euclidean Geometry. Ptolemy is mostly known for his work as an astronomer,
especially for having proposed the (wrong) Geocentric Theory, according to which the Earth
occupied the center of the Universe. Such a theory was accepted as a dogma by the Catholic
Church for some 1400 years, and was the ultimate responsible for the judgement of Galileo Galilei
by the Saint Inquisition.
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Analogously, triangles ADC and BPC are also similar, so that

BP

BC
= AD

AC
.

Now, the two relations obtained above give

BD = BP + PD = AD · BC

AC
+ AB · CD

AC
,

as wished. ��
The coming corollary isolates an interesting and important consequence of

Ptolemy’s theorem. In this respect, see also Problem 15, page 82.

Corollary 4.19 If ABC is an equilateral triangle and P is a point on the smaller

arc
�

BC of the circumcircle of ABC, then PB + PC = PA.

Proof By applying Ptolemy’s theorem to the quadrilateral PBAC of Fig. 4.18, we
obtain

AB · PC + AC · PB = AP · BC.

Therefore, by canceling out the equal lengths AB = AC = BC, we obtain the
desired result. ��

We shall present another interesting (and deeper) application of Ptolemy’s
theorem in Sect. 5.2 (cf. Theorem 5.14). On the other hand, a version of it for general
convex quadrilaterals will be discussed in Sect. 7.5 (cf. Theorem 7.37).

Fig. 4.18 A useful
consequence of Ptolemy’s
theorem

A

B C

P
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Continuing, we now pay a small tribute to the geniality of Leonhard Euler,9

gathering two beautiful theorems of his (for a third one, see Theorem 4.32, in the
coming section; others appear in [6]).

Theorem 4.20 (Euler) If O , G and H respectively stand for the circumcenter,
barycenter and orthocenter of a triangle ABC, then:

(a) AH = 2OM, where M is the midpoint of BC.
(b) H , G and O are collinear, with G ∈ HO and HG = 2GO.

Proof

(a) Letting N be the midpoint of AC (cf. Fig. 4.19), the midsegment theorem (for
triangles) gives MN ‖ AB and MN = 1

2AB. Hence, O ̂MN = H ̂AB and
ÔNM = ĤBA, so that triangles OMN and HAB are similar, and then

OM

AH
= MN

AB
= 1

2
.

(b) If G′ denotes the intersection point of line segments AM and HO (it is not
difficult to see that these two segments always intersect), then ÔG′M = ĤG′A.

Also, since
←→
OM‖ ←→

AH , it follows that O ̂MG′ = H ̂AG′. Therefore, MOG′ ∼
AHG′ by AA, and this, together with the result of item (a), furnishes

OG′

HG′ =
MG′

AG′ = OM

AH
= 1

2
.

It comes from the above and Proposition 2.38 that G and G′ are points on the
line segment AM for which

AG′

MG′ =
AG

MG
;

thus, Problem 2, page 108, shows that G = G′. ��
In the notations of the previous result, and as anticipated in Fig. 4.19, we say that

←→
HO is the Euler line and HO is the Euler median of triangle ABC.

We now turn our attention to another one of Euler’s amazing discoveries on the
geometry of triangles, the nine-point circle or Euler’s circle of a triangle.

9The Swiss mathematician Leonhard Euler, who lived in the eighteenth century, is generally
accepted to be one of the mathematicians who most published relevant works. His contributions
vary, impressively, from Geometry to Combinatorics (in which he created Graph Theory), passing
through Number Theory and Physics. In each one of these areas of Mathematics there is at least
one celebrated Euler’s theorem.
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Fig. 4.19 The Euler line
←→
HO

of ABC

A

B C
M

N
H

O
G

Fig. 4.20 The nine-point
circle of triangle ABC

A

B C
Ha M

H
O

A

O

Theorem 4.21 (Euler) In every triangle, the circumcenter of the orthic triangle
coincides with the midpoint of the Euler median. The circumcircle of the orthic
triangle is also the circumcircle of the medial triangle and passes through the
midpoints of the line segments that join the vertices of the triangle to the orthocenter.
Moreover, its radius is equal to half of the circumradius of the given triangle.

Proof Let ABC be a triangle of circumcenter O and orthocenter H , let M be the
midpoint of BC, A′ that of AH and R the circumradius of ABC (cf. Fig. 4.20).
Since AA′ ‖ OM and (by the previous theorem) AA′ = OM, Problem 1, page 58,
guarantees that AA′MO is a parallelogram. Hence, A′M = AO = R.

On the other hand, since A′H ‖ OM and (also from the previous result) A′H =
OM, it follows again from Problem 1, page 58, that A′HMO is a parallelogram.
Therefore, its, diagonals cut in half, so that, letting O ′ be the midpoint of HO , we
conclude that O ′ is also the midpoint of A′M . Thus,

O ′A′ = O ′M = 1

2
A′M = R

2
.

Now, let Ha be the foot of the altitude relative to BC. Since in every right triangle
the median relative to the hypotenuse is equal to half of it, in triangle A′HaM

we have

O ′Ha = 1

2
A′M = R

2
.

In particular, the circle of center O ′ and radius R
2 passes through A′, M and Ha .
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Finally, a similar reasoning holds for the six remaining points of the statement,
and there is nothing left to do. ��

For a partial generalization of the previous result, we refer the reader to
Problem 20, page 150. For an asthonishing property of the nine-point circle, see
Problem 16, page 302.

Problems: Sect. 4.3

1. Use compass and straightedge to construct triangle ABC, knowing the posi-
tions of vertices B and C, the foot of the internal angle bisector relative to A

and the length b of side AC.
2. From a triangle ABC we know the positions of vertices B and C and the

foot of the external angle bisector relative to A, as well as the length l of
the corresponding internal angle bisector. Explain how to use compass and
straightedge to construct the position of A.

3. Construct triangle ABC, knowing the lengths a of side BC and ma of the
median relative to BC, if AB = 3

4AC.
4. * Let k 
= 1 be a positive real. Prove that the Apollonius’ circle relative to

(B,C) in the ratio k has radius equal to k
|k2−1| · BC.

5. (IMO shortlist) ABCD is a convex quadrilateral of diagonals AC and BD,
which is inscribed in a circle �. Show that there exists P ∈ � such that PA +
PC = PB + PD.

6. * Let ABC be a triangle whose internal angles are less than 120◦. Externally to
ABC, construct equilateral triangles BCD, ACE and ABF (which are known
as Napoleonic Triangles10 of ABC). Prove that:

(a) The circumcircles of triangles BCD, ACE and ABF all pass through a
single point P , which is called the Fermat point11 of ABC.

(b) ÂPF = F ̂PB = B̂PD = D̂PC = ĈPE = ÊPA = 60◦.
(c) AD = BE = CF = PA + PB + PC .

7. We are given a natural number n and a circle � of radius 1. If AB is a diameter
of �, prove that there exist points C1, . . . , Cn ∈ � such that ACi , BCi ∈ Q for
1 ≤ i ≤ n.

8. (IMO - adapted) Given n ∈ N, show that there exists a circle � and points
A1, . . . , An ∈ � such that AiAj ∈ N for 1 ≤ i < j ≤ n.

10Some sources attribute the discovery of the facts listed in items (a) and (b) to the French emperor
Napoleon Bonaparte, whereas others suggest that this is apocryphal.
11Pierre Simon de Fermat, French mathematician of the seventeenth century.
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9. (Brazil) In a parallelogram ABCD of diagonals AC and BD, we let H denote
the orthocenter of ABD and O the circumcenter of BCD. Prove that points H ,
O and C are collinear.

10. Use compass and straightedge to construct triangle ABC, given the positions
of its circumcenter O , its orthocenter H and of the midpoint M of side BC.

11. In a non equilateral triangle ABC of orthocenter H and circumcenter O , prove
that the perpendicular bisector of line segment HO and the internal angle
bisector relative to vertex A intersect each other on the circumcircle of triangle
AHO .

12. In a cyclic quadrilateral ABCD of diagonals AC and BD, let H1 and H2 be the
orthocenters of triangles ACD and BCD, respectively. Prove that H1H2BA is
a parallelogram.

13. (IMO shortlist) In a triangle ABC of orthocenter H and circumcenter O , we
have AO = AH . Find all possible values for the measure of 
 BAC.

14. Use compass and straightedge to construct an acute triangle ABC, given the
length a of side BC, the circumradius R of ABC and the inradius r of the
orthic triangle of ABC.

4.4 Collinearity and Concurrence

In this section we present two classical results on collinearity and concurrence, as
well as some important applications of them. Later, in Chap. 9, we shall see that
they are natural departing points for the beginnings of Projective Geometry.

Henceforth, we shall adopt the following conventions:

i. Given distinct points X and Y in the plane, XY denotes the ordinary line segment
joining X and Y , oriented from X to Y . In particular, we shall write XY =
−YX as a reminder of the fact that the oriented line segments XY and YX have
distinct, or opposite, orientations.

ii. Given collinear points X, Y and Z, we shall denote

XY

YZ
=
{

XY

YZ
, if XY and YZ have equal orientations

−XY

YZ
, if XY and YZ have distinct orientations

.

With the notations above at our disposal, we can state and prove the first of
the aforementioned results, due to the Greek astronomer and mathematician of the
first and second centuries AD Menelaus of Alexandria. It is known in mathematical
literature as Menelaus’ theorem of collinearity.

Theorem 4.22 (Menelaus) Let ABC be a triangle and A′, B ′ and C′ be points

on the lines
←→
BC ,

←→
AC and

←→
AB , respectively, all distinct from the vertices of ABC.

Then:
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B C

A

A

C
B

P

Fig. 4.21 Menelaus’ theorem

BA′

A′C
· CB ′

B ′A
· AC′

C′B
= −1 (4.2)

if and only if A′, B ′ and C′ are collinear.

Proof Initially assume (cf. Fig. 4.21) that A′ ∈−→
CB \BC, B ′ ∈ AC, C′ ∈ AB and

that A′, B ′ and C′ are collinear (the remaining cases are entirely analogous). Mark

point P ∈
←→
A′B ′ such that

←→
BP ‖←→

AC . Then, A′BP ∼ A′CB ′ and PBC′ ∼ B ′AC′, so
that

BA′

A′C
= − BP

CB ′ and
AC′

C′B
= AB ′

BP
.

Therefore,

BA′

A′C
· CB ′

B ′A
· AC′

C′B
= − BP

CB ′ ·
CB ′

B ′A
· AB ′

BP
= −1.

Conversely, let A′, B ′ and C′ be points situated along lines
←→
BC ,

←→
CA and

←→
AB ,

respectively, all distinct from the vertices of ABC and such that relation (4.2) holds.

Mark the intersection point B ′′ of lines
←→
A′C′ and

←→
AC . Since A′, B ′′ and C′ are

collinear, the first part of the proof guarantees that

BA′

A′C
· CB ′′

B ′′A
· AC′

C′B
= −1.

By comparing such a relation with (4.2), we conclude that CB ′
B ′A = CB ′′

B ′′A ; from this,
and with the aid of the result of Problem 2, page 108, it is easy to conclude that
B ′ = B ′′. Thus, A′, B ′ and C′ are collinear. ��

The coming example brings a typical application of Menelaus’ theorem. For a
wide generalization, see items (c) and (d) of Problem 5.
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B C

A

D

F
E

Fig. 4.22 Collinearity of the feet of certain angle bisectors

Example 4.23 Let ABC be a triangle in which AB 
= AC. If D is the foot of the
external angle bisector relative to A, and E and F are the feet of the internal angle
bisectors relative to B and C, prove that points D, E and F are collinear.

Proof Suppose, without loss of generality, that AB < AC, and hence that vertex B

lies inside segment CD (cf. Fig. 4.22).
By Menelaus’ theorem, it suffices to show that

AF

FB
· BD

DC
· CE

EA
= −1.

To this end, the bisector theorem gives

AF

FB
= AC

CB
,

BD

DC
= −AB

AC
, and

CE

EA
= BC

AB
.

Therefore, termwise multiplication of the three expressions above gives the desired
equality. ��

As an additional application of Menelaus’ theorem we prove, next, a famous
result of Girard Desargues, French mathematician of the seventeenth century, known
as the founder of modern Projective Geometry.

Theorem 4.24 (Desargues) If ABC and A′B ′C′ are triangles such that
←→
AB

∩
←→
A′B ′= {Z}, ←→

BC ∩
←→
B ′C′= {X} and

←→
AC ∩

←→
A′C′= {Y }, then points X, Y and Z

are collinear if and only if lines
←→
AA′,

←→
BB ′ are

←→
CC′ either concurrent or parallel.

Proof Suppose first that X, Y and Z are collinear (cf. Fig. 4.23). In order to show

that lines
←→
AA′,

←→
BB ′ and

←→
CC′ are either concurrent or parallel, it suffices to assume

that
←→
AA′ and

←→
BB ′ concur at a point O , then showing that O ∈

←→
CC′, i.e., that O , C

and C′ are collinear. This will follow from Menelaus’ theorem applied to triangle
AA′Y , once we show that

YC′

C′A′ ·
A′O
OA

· AC

CY
= −1. (4.3)
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Fig. 4.23 Desargues’
theorem

O

A

A

B

B

C

C

XY Z

For what is left to do, apply Menelaus’ theorem to triangles ZAA′, YZA and
YZA′, thus obtaining

ZB ′

B ′A′ ·
A′O
OA

· AB

BZ
= −1,

YZ

XZ
· ZB

BA
· AC

CY
= −1

and

YC′

C′A′ ·
A′B ′

B ′Z
· ZX

XY
= −1.

By termwise multiplying the three relations above and taking into account that

YX

XZ
· ZX

XY
= AB

BZ
· ZB

BA
= ZB ′

B ′A′ ·
A′B ′

B ′Z
= 1,

we obtain (4.3).
The proof of the converse is analogous and will be left as an exercise to the reader

(cf. Problem 1). ��
In the language of visual arts, if X, Y and Z are collinear one says that triangles

ABC and A′B ′C′ are in perspective from a line (the line of X, Y and Z), which
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is then called the horizon; on the other hand, if lines
←→
AA′,

←→
BB ′ and

←→
CC′ are either

concurrent or parallel, one says that ABC and A′B ′C′ are in perspective from

a point, namely, the intersection point of lines
←→
AA′,

←→
BB ′ and

←→
CC′ (which is then

called the vanishing point), in case they concur, or the point at infinity in the

direction of
←→
AA′,

←→
BB ′ and

←→
CC′, in case they are parallel. This being said, we can

state Desargues’ theorem in words by saying that, in the plane two triangles are in
perspective from a line if and only if they are in perspective from a point. Such a
point of view will be taken up again and deepened in Sect. 9.4.

Continuing, we now present a theorem analogous to that of Menelaus’ but this
time dealing with the concurrence of lines joining each vertex of a given triangle
to a point lying on the line containing the opposite side. Such result is due to the
Italian mathematician of seventeenth and eighteenth centuries Giovanni Ceva, and
is known as Ceva’s theorem.

Theorem 4.25 (Ceva) Given a triangle ABC and points A′, B ′, C′, respectively

situated on lines
←→
BC ,

←→
CA and

←→
AB , we have

BA′

A′C
· CB ′

B ′A
· AC′

C′B
= 1 (4.4)

if and only if
←→
AA′,

←→
BB ′,

←→
CC′ are either concurrent or parallel.

Proof Suppose first (cf. Fig. 4.24), that points A′ ∈ −→
BC \BC, B ′ ∈ AC and C′ ∈

−→
BA \AB are so situated that

←→
AA′,

←→
BB ′ and

←→
CC′ concur at a point P (the remaining

cases are entirely analogous). Mark points Q ∈
←→
AA′ and R ∈

←→
CC′ such that

←→
CQ,

←→
AR‖←→

BP . Then, BPA′ ∼ CQA′, ARC′ ∼ BPC′ and CB ′P ∼ CAR, so that

BA′

A′C
= −BP

CQ
,

AC′

C′B
= −AR

BP

Fig. 4.24 Ceva’s theorem

B C

A

A

C

B P

Q

R
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and

CB ′

B ′A = CB ′

B ′A
= CA − B ′A

B ′A
= CA

B ′A
− 1 = CQ

B ′P
− 1.

Hence,

BA′

A′C
· CB ′

B ′A
· AC′

C′B
= BP

CQ

(

CQ

B ′P
− 1

)

AR

BP
= AR

(

1

B ′P
− 1

CQ

)

,

and it suffices to show that the last expression above is equal to 1, i.e., that

1

B ′P
= 1

AR
+ 1

CQ
.

But this is exactly what says Problem 11, page 116.
Finally, we leave as an exercise for the reader (cf. Problem 2) the task of showing

that if
←→
AA′,

←→
BB ′ and

←→
CC′ are parallel, then (4.4) also holds.

Conversely, suppose that (4.4) holds true and mark point B ′′ ∈←→
AC such that

←→
AA′,

←→
BB ′′ and

←→
CC′ are either concurrent or parallel. The first part above gives

BA′

A′C
· CB ′

B ′A
· AC′

C′B
= 1,

and comparing such a relation with 4.4 we obtain CB ′
B ′A = CB ′′

B ′′A . From here, and
invoking once more the result of Problem 2, page 108, we immediately conclude

that B ′ = B ′′. Therefore,
←→
AA′,

←→
BB ′ and

←→
CC′ are either concurrent or parallel. ��

For another proof of Ceva’s theorem in the case in which
←→
AA′,

←→
BB ′ and

←→
CC′

concur, see Problem 16, page 157. For the time being, we shall show how it allows
us to give alternative proofs for the concurrence of the medians, internal bisectors
and altitudes of a triangle.

Example 4.26 Let ABC be any triangle. Use Ceva’s theorem to prove that the
medians, the internal bisectors and the altitudes of ABC concur.

Proof If Ma , Mb and Mc are the midpoints of BC, AC and AB, respectively, it is
immediate to see that BMa

MaC
= CMb

MbA
= AMc

McB
= 1, whence

BMa

MaC
· CMb

MbA
· AMc

McB
= 1.

Therefore, it follows from Ceva’s theorem that AMa , BMb and CMc concur at a
single point.

For the rest of the proof, let AB = c, AC = b and BC = a.



4.4 Collinearity and Concurrence 133

Let Pa , Pb and Pc denote the feet of the internal angle bisectors relative to A,
B and C, respectively. The bisector theorem (cf. Theorem 4.6) gives APc

PcB
= b

a
,

BPa

PaC
= c

b
and CPb

PbA
= a

c
, so that

APc

PcB
· BPa

PaC
· CPb

PbA
= b

a
· c

b
· a

c
= 1.

Therefore, Ceva’s theorem assures that APa , BPb and CPc all pass through a single
point.

For the concurrence of the altitudes of ABC, we shall only consider the case in
which ABC is acute, leaving the others as exercises to the reader (cf. Problem 3).
This being said, let Ha , Hb and Hc stand for the feet of the altitudes relative to A,

B and C, respectively. Problem 2, page 98, gives AHbHc ∼ ABC, so that AHc

HbA
=

AC

AB
= b

c
; analogously, BHa

HcB
= c

a
and CHb

HaC
= a

b
. Thus,

AHc

HcB
· BHa

HaC
· CHb

HbA
= AHc

HbA
· BHa

HcB
· CHb

HaC
= b

c
· c

a
· a

b
= 1,

and it suffices to invoke Ceva’s theorem once more. ��
Theorem 4.28 will present a beautiful application of Ceva’s theorem. In order

to properly state it, we define a cevian of a triangle as any line segment (or the
corresponding line or half-line) joining a vertex of the triangle to a point on the
line containing the opposite side; for instance, medians, angle bisectors (internal or
external) and altitudes of a triangle are all examples of cevians of it.

Cevians AP and AP ′ of triangle ABC are said to be isogonal (with respect to

A) if lines
←→
AP and

←→
AP ′ are symmetric with respect to the internal angle bisector

relative to A. In the notations of Fig. 4.25, AP and AP ′ are isogonal if and only if
P ̂AQ = P ′

̂AQ.
It is immediate to see that for every cevian AP of a triangle ABC there exists

a single cevian AP ′ of ABC such that AP and AP ′ are isogonal. In this case, we
shall also say that AP ′ (resp. AP ) is the cevian isogonal to AP (resp. to AP ′).
The coming lemma establishes a useful characterization of the isogonality of two
cevians (departing from the same vertex, of course).

Fig. 4.25 Isogonal cevians

B C

A

P PQ
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Fig. 4.26 A useful criterion
for isogonality

B C
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D
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Lemma 4.27 In the notations of Fig. 4.26, if D and E (resp. F and G) are the feet

of the perpendiculars dropped from P (resp. Q) to the lines
←→
AB and

←→
AC , then

−→
AP and

−→
AQ are isogonal ⇔ PD

PE
= QG

QF
.

Proof In the notations of Fig. 4.26, start by noticing that quadrilaterals ADPE and
AFQG are cyclic (for each one of them has two opposite angles equal to 90◦).
Therefore, D̂PE = ĜQF = 180◦ − B̂AC, so that successively applying the SAS
and AA similarity cases we conclude that

PD

PE
= QG

QF
⇔ DPE ∼ GQF ⇔ D̂EP = ĜFQ.

However, by using again the fact that the quadrilaterals ADPE and AFQG are
cyclic, we conclude that the last equality above holds if and only if D̂AP = ĜAQ;

in turn, this last equality is equivalent to the fact that
−→
AP and

−→
AQ are isogonal with

respect to A. ��
We can finally state and prove the desired consequence of Ceva’s theorem,

which establishes the concurrence of the cevians isogonal to three concurrent given
cevians.

Theorem 4.28 Let AA′, BB ′ and CC′ be cevians of a triangle ABC, with

isogonals AA′′, BB ′′ and CC′′, respectively. Lines
←→
AA′,

←→
BB ′,

←→
CC′ are concurrent

or parallel if and only if so are lines
←→
AA′′,

←→
BB ′′,

←→
CC′′.

Proof We shall show that if
←→
AA′,

←→
BB ′ and

←→
CC′ concur, then

←→
AA′′,

←→
BB ′′ and

←→
CC′′

are either concurrent or parallel (for the remaining case, see Problem 8, page 137.

To this end, let P be the point of concurrence of
←→
AA′,

←→
BB ′ and

←→
CC′, and x, y and z

be the distances from P to the lines
←→
BC ,

←→
AC and

←→
AB , respectively (cf. Fig. 4.27).
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Fig. 4.27 Concurrence of isogonal cevians

It suffices to show that if
←→
BB ′′ and

←→
CC′′ intersect at a point Q, then

←→
AA′′ also

passes through Q. To this end, let u, v and w be the distances from Q to the

lines
←→
BC ,

←→
AC and

←→
AB , respectively. Since

←→
BB ′,

←→
BB ′′ and

←→
CC′,

←→
CC′′ are pairs

of isogonal cevians, the previous lemma gives

x

y
= v

u
and

z

x
= u

w
.

Hence,

z

y
= z

x
· x

y
= u

w
· v

u
= v

w
,

so that, again from the previous lemma, points P and Q lie on cevians isogonal with

respect to A. However, since P ∈
←→
AA′, we conclude that Q ∈

←→
AA′′. ��

In the notations of the statement of the theorem above, if P (resp. Q) is the point
of concurrence of cevians AA′, BB ′ and CC′ (resp. AA′′, BB ′′ and CC′′), we say
that P and Q are isogonal conjugates, or that P (resp. Q) is the isogonal conjugate
of Q (resp. P ) with respect to ABC. For a relevant example, see Problem 9; another
interesting example will be discussed by the end of Sect. 5.2. For another proof of
Theorem 4.28, see Problem 21, page 263.

Problems: Sect. 4.4

1. * Complete the proof of Desargues’ theorem. More precisely, show that if ABC

and A′B ′C′ are two triangles such that
←→
AB ∩

←→
A′B ′= {Z}, ←→

BC ∩
←→
B ′C′= {X}

and
←→
AC ∩

←→
A′C′= {Y }, and if

←→
AA′,

←→
BB ′ and

←→
CC′ are either concurrent or

parallel, then X, Y and Z are collinear.
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2. * Complete the proof of Ceva’s theorem, showing that if A′, B ′ and C′ lie on
←→
BC ,

←→
AC and

←→
AB , respectively, with

←→
AA′,

←→
BB ′ and

←→
CC′ being parallel, then

BA′

A′C
· CB ′

B ′A
· AC′

C′B
= 1.

3. * Complete the analysis of the last part of Example 4.26, showing that the
altitudes of an obtuse triangle pass through a single point.

4. * Let ABC be a scalene triangle. Use Ceva’s theorem to show that the external
angle bisectors relative to the vertices A and B concur with the internal angle
bisector relative to C.

5. * We are given points P and Q of line
←→
BC , such that {P,Q} ∩ {B,C} = ∅. We

say that P and Q (in this order) are harmonic conjugates12 with respect to B

and C (also in this order) if

BP

PC
= −BQ

QC
.

Concerning this notion, do the following items:

(a) If P and Q are harmonic conjugates with respect to B and C, then exactly
one of the points P and Q lies in the segment BC, and both P and Q are
distinct from the midpoint M of BC.

(b) For every point P ∈←→
BC , with P 
= B,C,M there exists a single point

Q ∈←→
BC such that Q 
= B,C and P and Q are harmonic conjugates with

respect to B and C (thanks to this item, we say that Q (resp. P ) is the
harmonic conjugate of P (resp. of Q) with respect to B and C).

(c) In a triangle ABC with AB 
= AC, let P be the foot of the internal angle
bisector and Q that of the external angle bisector relative to A. Show that
P and Q are harmonic conjugates with respect to B and C.

(d) In a triangle ABC, let P , Q and R be points on
←→
BC ,

←→
CA and

←→
AB ,

respectively, all distinct from the vertices of ABC. If P ′ is the harmonic

conjugate of P with respect to B and C, prove that
←→
AP ,

←→
BQ and

←→
CR

concur if and only if P ′, Q and R are collinear.

6. Prove that, in every triangle, the cevians joining each vertex to the point of
tangency of the incircle with the opposite side are concurrent. Their common
point is called the Gergonne point13 of triangle ABC.

12Such a concept will be taken up again, in a thorough way, in Sect. 9.2.
13Joseph Gergonne, French mathematician of the nineteenth century.
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7. Prove that, in every triangle, the cevians joining each vertex to the point of
tangency of the excircle relative to that vertex with the opposite side are
concurrent. Their common point is called the Nagel point14 of triangle ABC.

8. * Complete the proof of Theorem 4.28. More precisely, show that if AA′, BB ′
and CC′ are parallel cevians of a triangle ABC, with isogonals AA′′, BB ′′ and

CC′′, respectively, then
←→
AA′′,

←→
BB ′′ and

←→
CC′′ are either concurrent or parallel.

9. * Prove that, in every triangle, the orthocenter and the circumcenter are isogonal
conjugates.

10. * Generalize the previous problem, showing the following result: given a
triangle ABC and a point P inside it, let Q and R be the feet of the
perpendiculars dropped from P to the sides AB and AC; show that the isogonal

conjugate to
−→
AP is the half-line departing from A and perpendicular to

←→
QR.

11. Let ABC be a triangle and A′, A′′ ∈←→
BC , B ′, B ′′ ∈←→

AC , C′, C′′ ∈←→
AB be such

that the midpoints of A′A′′, B ′B ′′, C′C′′ coincide with the midpoints of BC,
AC, AB, respectively. If AA′, BB ′ and CC′ are concurrent (resp. A′, B ′ and
C′ are collinear), prove that AA′′, BB ′′ and CC′′ are also concurrent (resp. A′′,
B ′′ and C′′ are collinear).

12. Prove Pappus’ theorem15: we are given the triples of collinear points A, B, C

and A′, B ′, C′. If
←→
AB ′ ∩

←→
A′B= {F },

←→
AC′ ∩

←→
A′C= {E} and

←→
BC′ ∩

←→
B ′C=

{D}, then the points D, E and F are collinear.
13. (USA) Let ABC be a scalene triangle and r , s and t be the tangents to its

circumcircle at vertices A, B and C, respectively. If P , Q and R denote the

intersection points of r , s and t with
←→
BC ,

←→
AC and

←→
AB , respectively, prove that

P , Q and R are collinear.
14. In a scalene triangle ABC we draw altitude AHa and, then, drop perpendiculars

HaD and HaE to
←→
AB and

←→
AC , respectively (with D ∈←→

AB and E ∈←→
AC); we

then mark point P as the intersection point of
←→
DE and

←→
BC . From the altitudes

relative to the vertices B and C we construct, in a similar way, points Q ∈←→
AC

and R ∈←→
AB . Show that points P , Q and R are collinear.

15. Prove the following theorem of Monge16: we are given pairwise exterior
circles �1, �2, �3, of pairwise distinct radii and noncollinear centers. If Xi

is the intersection point of the common external tangents to �j and �k , for
{i, j, k} = {1, 2, 3}, then X1, X2, X3 are collinear points.

14Christian Heinrich von Nagel, German mathematician of the nineteenth century.
15Pappus of Alexandria, Greek mathematician of the fourth century. For another proof of Pappus’
theorem, see Problem 8, page 329.
16Gaspard Monge, French mathematician of the eighteenth and nineteenth century, gave several
important contributions to Geometry, particularly to Differential Geometry.
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4.5 The Theorem of Intersecting Chords

In this section, we continue to explore the elementary consequences of the notion of
similarity of triangles. We begin by presenting the theorem of intersecting chords,
which, in turn, will allow us to get a number of interesting and important results.

Proposition 4.29 Given pairwise distinct points A, B, C, D and P , with
←→
AB

∩ ←→
CD= {P }, one has

PA · PB = PC · PD ⇔ the convex quadrilateral of vertices

A,B,C,D is cyclic.

Proof Firstly, suppose that the convex quadrilateral of vertices A, B, C and D is
cyclic, with circumscribed circle �. In principle, we have to separately consider the
cases in which P lies inside or outside the disk bounded by �; nevertheless, the
analysis of the second case is entirely analogous to that of the first, so we shall
consider only this one (cf. Fig. 4.28).

Draw line segments AD and BC. The inscribed angle theorem gives ÂBC =
ÂDC, or also P ̂BC = ÂDP . Since B̂PC = ÂPD (for they are OPP angles), the

AA similarity case gives PBC ∼ PDA. Therefore, we have PB

PC
= PD

PA
, and hence

PA · PB = PC · PD.
Conversely, if PA · PB = PC · PD, then PB

PC
= PD

PA
. However, since B̂PC =

ÂPD, the SAS similarity case assures that PBC ∼ PDA, whence P ̂BC = ÂDP .
But this is the same as ÂBC = ÂDC, and Proposition 3.38 guarantees that ABCD

is cyclic. ��
The coming result can be seen as a limit situation of the previous one, when the

point P lies outside the disk bounded by �. Therefore, its proof will be left as an
exercise for the reader (cf. Problem 1).

Fig. 4.28 The theorem of
intersecting chords
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Fig. 4.29 Limit case of the
intersecting chords theorem

O
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Fig. 4.30 Computing
PA · PB in terms of PO

and R
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P
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Proposition 4.30 Let A, B, C and P be pairwise distinct points in the plane, with

B ∈ AP and C /∈ ←→
AB . Then, PA · PB = PC

2
if and only if the circumcircle of

triangle ABC is tangent to
←→
PC at C (cf. Fig. 4.29).

For future use, we now collect an important consequence of the intersecting
chords theorem.

Corollary 4.31 We are given in the plane a circle �(O;R) and a point P /∈ �. If
a line passing through P intersects � at points A and B (possibly with A = B, if P

lies outside the disk bounded by � and the line is tangent to � at A), then

PA · PB = |R2 − OP
2|. (4.5)

Proof We only consider the case in which P lies inside the disk bounded by � (cf.
Fig. 4.30); the case of P lying outside such a disk is completely analogous. Draw
through P the diameter CD of �, with P ∈ OC. Then, PC = R − OP and
PD = R + OP , so that the intersecting chords theorem gives

PA · PB = PC · PD = (R − OP)(R + OP) = R2 − OP
2
.

��
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Fig. 4.31 Euler’s theorem on
the distance OI
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With the above result at our disposal, we can now present yet another beautiful
result of Euler, which is the content of the coming

Theorem 4.32 (Euler) A circle γ , of radius r and center I , lies inside the disk
bounded by another circle �, of radius R and center O . We choose an arbitrary
point A ∈ � and let AB and AC be chords of � tangent to γ . Then, γ is the incircle
of triangle ABC if and only if

OI
2 = R(R − 2r).

Proof Let P be the other point of intersection (i.e., distinct from A) of the angle

bisector
−→
AI of 
 BAC with � (cf. Fig. 4.31). The previous corollary gives

AI · IP = R2 − OI
2
. (4.6)

Now, letting X and Y be the feet of the perpendiculars dropped from O and I to
BP and AC, respectively, the fact that BOP is isosceles, together with the inscribed
angle theorem, gives

B ̂OX = 1

2
B ̂OP = B̂AP = P ̂AC = I ̂AY.

Since both triangles BOX and IAY have a 90◦ angle, the AA similarity case

assures that BOX ∼ IAY . Hence, BX

IY
= BO

AI
, or

BX · AI = BO · IY . (4.7)

However, since BO = R, IY = r and BX = 1
2BP , relations (4.6) and (4.7) give

R2 − OI
2 = AI · IP = 2Rr · IP

BP
,
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so that

OI
2 = R2 − 2Rr ⇔ BP = IP .

Finally, Proposition 3.37 guarantees that the last equality above holds if and only if
I is the incenter of ABC. ��

We list two important corollaries of the above result, the first of which is
immediate.

Corollary 4.33 If r and R denote the inradius and the circumradius of a triangle
ABC, then R ≥ 2r , with equality if and only if ABC is equilateral.

The second consequence is a particular case, also due to Euler, of a famous result
of Poncelet on conics.17

Corollary 4.34 (Euler) Let γ and � be respectively the incircle and the circum-
circle of a triangle ABC. If A′ 
= A,B,C is another point of �, and A′B ′ and
A′C′ are chords of � tangent to γ , then γ is also the incircle of triangle A′B ′C′ (cf.
Fig. 4.32).

Proof If γ (I ; r) and �(O;R), the fact that γ is the incircle of ABC guarantees, via

Euler’s theorem 4.32, that OI
2 = R2 − 2Rr . In view of this equality, the referred

theorem applied this time to triangle A′B ′C′ assures that B ′C′ is tangent to γ , as
we wished to show. ��

Back to the general development of the theory and motivated by Corollary 4.31,
we define the power of point P with respect to circle �(O;R) as the real number

Pwr�(P ) = OP
2 − R2. (4.8)

Fig. 4.32 Yet another one of
Euler’s theorem
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17Jean Victor Poncelet, French mathematician of the nineteenth century. For a proof of this general
version of Poncelet, see Chapter 4 of the beautiful book [23].
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O1

Γ1

O2

Γ2

e

P

Fig. 4.33 The radical axis of two non concentric circles

Thus, Pwr�(P ) = 0 if and only if P ∈ �, Pwr�(P ) > 0 if and only if P lies outside
the disk bounded by � and Pwr�(P ) < 0 if and only if P lies inside such a disk.
Note also that Pwr�(P ) ≥ −R2, with equality holding if and only if P = O .

The importance of the concept of power of a point with respect to a circle
lies in the coming theorem, whose proof will be completed in Sect. 6.2 (cf.
Proposition 6.8).

Theorem 4.35 If �1 and �2 are two non concentric circles, then the locus of the
points P in the plane for which Pwr�1(P ) = Pwr�2(P ) is a line perpendicular to
the line joining the centers of �1 and �2 (line e, in Fig. 4.33).

Proof If �1(O1;R1) and �2(O2;R2), then

Pwr�1(P ) = Pwr�2(P ) ⇔ PO1
2 − R2

1 = PO2
2 − R2

2

⇔ PO1
2 − PO2

2 = R2
1 − R2

2,

(4.9)

i.e., if and only if the difference of the squares of the distances of P to the points
O1 and O2, respectively, is constant and equal to R2

1 − R2
2. To conclude the proof,

it suffices to apply the result of Proposition 6.8. ��
In the notations of the statement of the previous result, the described locus is

usually referred to as the radical axis18 of �1 and �2.
The coming example teaches how to use compass and straightedge to construct

the radical axis of two tangent or secant circles. It is based on the following simple
fact: if P is a point outside the disk bounded by a circle �(O;R), and T is the point
of contact of one of the tangents drawn to � through P , then Corollary 4.31 gives

Pwr�(P ) = PO
2 − R2 = PT

2
. (4.10)

18Such a name is due to the fact that, in the notations of the proof of Theorem 4.35, P ∈ e if and

only if
√

PO1
2 + R2

2 =
√

PO2
2 + R2

1 , so that we have equal radicals.
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Fig. 4.34 Radical axis e of
two externally tangent circles
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Fig. 4.35 Radical axis e of
two externally tangent circles
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Example 4.36 Use compass and straightedge to construct the radical axis of two
circles which are either tangent or secant.

Solution There are three different cases to consider:

(i) �1 and �2 are externally tangent: their radical axis is the inner common tangent
e, shown in Fig. 4.34. Indeed, for every point P ∈ e\{T }, it follows from (4.10)
that

Pwr�1(P ) = PT
2 = Pwr�2(P ).

(ii) �1 and �2 are internally tangent: their radical axis is their common tangent e,
shown in Fig. 4.35. As in case (i), for every point P ∈ e \ {T }, (4.10) gives

Pwr�1(P ) = PT
2 = Pwr�2(P ).

(iii) �1 and �2 are secant circles, intersecting at points A and B: their radical axis

is the line e =←→
AB of Fig. 4.36, since for every point P ∈ e \ AB we have

Pwr�1(P ) = PA · PB = Pwr�2(P ).

In order to show how to use compass and straightedge to construct the radical
axis of two non concentric circles which are either interior or exterior, we shall first
need to establish the following consequence of Theorem 4.35.
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Fig. 4.36 Radical axis e of
two secant circles
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Fig. 4.37 The radical center of three circles with non collinear centers

Corollary 4.37 If �1, �2 and �3 are three pairwise non concentric circles with non
collinear centers, then there exists a unique point P in the plane such that

Pwr�1(P ) = Pwr�2(P ) = Pwr�3(P ).

Proof For 1 ≤ i < j ≤ 3, let eij denote the radical axis of �i and �j (cf. Fig. 4.37,
where we show the case of three pairwise exterior circles). Since the centers of the
circles are non collinear, points, lines e12 and e23 are non parallel. Letting P stand
for its intersection point,it follows from P ∈ e12 that Pwr�1(P ) = Pwr�2(P ); also,
from P ∈ e23 we obtain Pwr�2(P ) = Pwr�3(P ). Therefore, by comparing these
two relations, we get Pwr�1(P ) = Pwr�3(P ), and hence P ∈ e13.

The (easy) argument for uniqueness is left to the reader. ��
In the notations of the above corollary, and as anticipated in Fig. 4.37, the point

P whose existence and uniqueness we have just proved is called the radical center
of �1, �2 and �3. For future use, it is worth keeping the fact that it lies in all of the
radical axes e12, e13 and e23.
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Fig. 4.38 Constructing the radical axis of two exterior circles

As we have said before, the notion of radical center allows us to present a
construction, with compass and straightedge, of the radical axis of two interior or
exterior circles. This is done in the coming

Example 4.38 Use straightedge and compass to construct the radical axis of the
circles �1 and �2 shown in Fig. 4.38.

Solution Draw an auxiliary circle �3 of center O3, secant to both �1 and �2 and

such that O3 /∈ ←→
O1O2 (to see that such a choice is always possible, just choose O3 in

the perpendicular bisector of segment O1O2). For i = 1, 2, draw the radical axis ei3
of �i and �3, thus getting the radical center P of �1, �2 and �3 as the intersection
point of e13 and e23. Finally, since P must also lie in the radical axis of �1 and �2,

such an axis is the line passing through P and perpendicular to
←→

O1O2.

We leave to the reader the task of verifying that the construction described in the
above example works equally well for two interior and non concentric circles. For
another way of constructing the radical axis of two exterior circles, see Problem 9,
page 149.

As a second application of the notion of radical center, we present, in the next
two examples, two particular cases of Apollonius’ problem on tangency of circles.

It is worth observing that the solution of the first example below reduces to
a slight modification of the argument presented in the solution of the previous
example.

Example 4.39 We are give in the plane a circle � and distinct points A and B, both
of which lying outside the disk bounded by �. Use straightedge and compass to
construct all circles α, tangent to � and passing through A and B.

Solution In the notations of Fig. 4.39, draw an auxiliary circle β, passing through
A and B and secant to �. Then, draw the radical axis e of � and β, and mark the

intersection point P of e and
←→
AB .
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Fig. 4.39 Constructing a
circle tangent to � and
passing through A and B

O

Γ α

A

B

β

e

P

t

T

It is pretty clear that P is the radical center of α, β and �, so that P belongs to
the radical axis t of � and α. However, since � and α must be tangent, we know
from Example 4.36 that t is a common tangent of both such circles; therefore, by
invoking the construction delineated in Proposition 3.26, we can actually construct
t as being one of the tangent to � passing through P (in general, there are two
possible positions for line t , one of which is shown in Fig. 4.39). Finally, letting T

be the point of contact between t and �, we are left to constructing α as the circle
passing through points A, B and T . ��

For another approach to the previous example, see Problem 3, page 301.
We now examine Apollonius’ problem for constructing a circle tangent to two

other given circles and passing through a given point.

Example 4.40 We are given exterior circles �1 and �2 and a point A, lying outside
the disks bounded by both �1 and �2. Use compass and straightedge to construct all
circles �, passing through A and simultaneously tangent to �1 and �2.

Solution Assuming that the problem has been solved, let P and Q be the points
of tangency of � with �1 and �2, respectively (cf. Fig. 4.40). Let also C be the

intersection point of lines
←→

O1O2 and
←→
PQ, and B be the intersection of � and

←→
AC .

Letting O denote the center of �, we have

O2̂RQ = O2 ̂QR = ÔQP = ÔPQ,
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Fig. 4.40 Constructing a circle tangent to �1 and �2 and passing through A

so that
←→
OP‖ ←→

O2R. In particular, it is immediate to verify from this fact that C

coincides with the intersection of the external tangents to �1 and �2 with line
←→

O1O2

and, hence, that
←→
RU‖←→

PS .

We claim that PST Q is a cyclic quadrilateral. Indeed, the parallelism of
←→
RU and

←→
PS , together with the fact that T QRU is cyclic, furnish

ŜPQ = ÛRC = 180◦ − P ̂RU = 180◦ − Q̂RU = Q̂T U = 180◦ − Q̂T S,

so that ŜPQ + Q̂T S = 180◦.
Now, by applying the intersecting chords theorem to the cyclic quadrilaterals

PST Q and PQBA, we successively obtain

CS · CT = CP · CQ and CP · CQ = CA · CB;

therefore,

CS · CT = CA · CB.

With such a relation at our disposal, one further application of the intersecting
chords theorem assures that ST BA is also cyclic.
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In view of the analysis above, and since the positions of points A, S and T are
known and point C can be easily constructed (cf. Problem 22, page 83), we can

find B as being the intersection point of
←→
AC with the circumcircle of ST A. On the

other hand, once point B has been constructed, the problem at hand reduces to that
discussed in Example 4.39.

At this point, the attentive reader must have noticed that his/her intuition suggests
(generally) the existence of four distinct circles passing through A and tangent to
�1 and �2, albeit the above solution has found just two of them (after we have
constructed point B, the solution of Example 4.39 provides two possible circles
�, such that both �1 and �2 are interior to one of them and exterior to the other).
The other two guessed circles � emerge upon considering the possibility that one
of �1 and �2 is interior to �, whereas the other is exterior; in this case, a slight
modification of the argument presented above solves the problem in essentially
the same way, i.e., reducing it to that of constructing a circle that passes through
two given points and is tangent to a given circle. Further details can be found in
Problem 17; see, also, Problem 19.

Interesting variations of Apollonius’ problem will be dealt with in Problems 4
and 5, page 301.

Problems: Sect. 4.5

1. * Prove Proposition 4.30.
2. AB is a chord of a circle � of center O , of length 8cm. We mark on AB a point

C, situated at 3cm from B. The radius of � passing through O and C intersects
� at D, with CD = 1cm. Find the length of the radius of �.

3. In a triangle ABC, AB = 8cm. If M is the midpoint of AB, compute all
possible lengths of side BC, so that the circumcircle of AMC is tangent to it.

4. Chords AB and CD of a circle are perpendicular and intersect at point E,
situated inside the disk bounded by � and such that AE = 2, EB = 6 and
DE = 3. Compute the radius of the circle.

5. ABC is an isosceles triangle of basis BC = a, and ha is the length of its altitude
relative to the basis. If R is the circumradius of ABC, show that

R = a2 + 4h2

8h
.

6. Use the intersecting chords theorem to give another proof of Pythagoras’
theorem.

7. We are given a line r and points A,B,P ∈ r , with P /∈ AB. If a varying circle
� passes through A and B, use compass and straightedge to construct the locus
of the points of contact, with �, of the tangents drawn through P .
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8. We are given a line r and points A and B is a single half-plane of those
determined by r . Use compass and straightedge to construct all circles passing
through A and B and tangent to r .

9. Let �1 and �2 be two exterior circles, and r and s be two common tangents to
them. Let A1 and A2 (resp. B1 and B2) be the points of tangency of r (resp.
s) with �1 and �2, respectively. If P and Q are the midpoints of line segments

A1A2 and B1B2, also respectively, show that
←→
PQ is the radical axis of �1 and

�2.
10. In a circle � we are given chords AB and CD, such that CD passes through the

midpoint M of AB. Let � be the circle of diameter CD, and E ∈ � be such

that
←→
ME ⊥ ←→

CD. Prove that ÂEB = 90◦.
11. (USA) In an acute triangle ABC, the altitude relative to AC intersects the circle

of diameter AC at M and N , and the altitude relative to AB intersects the circle
of diameter AB at P and Q. Prove that points M , N , P and Q are concyclic.

12. Let a real number k > 1 and distinct points B and C be given. Let also � be the
Apollonius’ circle relative to (B,C) in the ratio k. If O is the center of � and
X,Y ∈ � are such that B, X and Y are collinear, prove that points C, O , X and
Y are concyclic.

13. Let �1 and �2 be two non concentric circles in the plane. Prove that the locus of
points which are centers of circles that intersect �1 and �2 along diameters is
the line symmetric to the radical axis of �1 and �2 with respect to the midpoint
of the segment formed by their centers.

14. (USA) In a triangle ABC, let D, E and F be the feet of the internal angle
bisectors relative to A, B and C, respectively. If ÊDF = 90◦, find all possible
values of B̂AC.

15. (BMO) A line passing through the incenter I of triangle ABC intersects its
circumcircle at F and G, and its incircle at D and E, with D ∈ EF . If r stands
for the inradius of ABC, prove that DF · EG ≥ r2 and find out when the
equality holds.

16. (Poland) In a triangle ABC, the internal angle bisectors relative to vertices
A, B and C, respectively, intersect the opposite sides at points D, E and F ,
respectively, and the circumcircle of ABC again at points K , L and M , also
respectively. Prove that

AD

DK
+ BE

EL
+ CF

FM
≥ 9,

with equality holding if and only if ABC is equilateral.
17. * Complete the discussion of Example 4.40, constructing all circles α tangent

to �1 and �2 and passing through point A, such that exactly one of �1 and �2
is interior to α.

18. Imitate the discussion of Example 4.40 and of the previous problem to construct
all circles passing through a given point A and tangent to two given circles �1
and �2, in the case in which A and �2 are both interior to �1.
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19. We are given three circles of noncollinear centers. Use straightedge and
compass to construct all circles simultaneously tangent to all of these three
circles.

For the next problem, recall (according to the discussion preceding Theo-
rem 3.40) that, given a triangle ABC and a point P 
= A,B,C, the pedal
triangle of P with respect to ABC is the (possibly degenerate) triangle formed

by the feet of the perpendiculars dropped from P to the lines
←→
AB ,

←→
AC ,

←→
BC .

20. We are given a triangle ABC and two points P and Q lying in its interior. If
P and Q are isogonal conjugates, prove that the vertices of the corresponding
pedal triangles form a cyclic hexagon, such that the center of the circumscribed
circle is the midpoint of segment PQ. Such a circle is called the pedal circle
of {P,Q} with respect to ABC.19

21. (China) ABCD is a parallelogram and E and F are points on the diagonal
BD for which there exists a circle α passing through E and F and tangent to

lines
←→
BC and

←→
CD. Prove that there exists a circle passing through E and F and

tangent to lines
←→
AB and

←→
AD.

22. Let α be the circumcircle of triangle ABC and M be the midpoint of arc
�

BC of
α not containing vertex A. A circle β, passing through A and M , intersects AC

at E and the extension of AB at F . If AM ∩ BC = {D}, prove that D, E and
F are collinear if and only if the incenters of ABC and AEF coincide.

19The attentive reader has certainly noticed that, according to Problem 9, page 137, if H and O

are the orthocenter and the circumcenter of a triangle ABC, respectively, then the pedal circle of
{H,O} with respect to ABC is precisely the nine-point circle of ABC.



Chapter 5
Area of Plane Figures

Intuitively, the area of a plane region should be a positive number that we associate
to the region and that serves to quantify the space it occupies. We refer the
interested reader to the excellent book of E. Moise [19] for a proof that it is indeed
possible to associate to each convex polygon in the plane a notion of area satisfying
postulates 1. to 5. below. Our purpose in this chapter is mainly to operationalize the
computation of areas, extracting from it some interesting applications.

5.1 Areas of Convex Polygons

For any concept of area for convex polygons to be useful, we postulate it ought to
have the following (intuitively desirable) properties:

1. The area of a convex polygon is a positive real number.
2. Congruent convex polygons1 have equal areas.
3. If a convex polygon is partitioned into a finite number of other convex polygons

(i.e., if the polygon is the union of a finite number of other convex polygons,
any two of which without common interior points), then the area of the larger
polygon is equal to the sum of the areas of the smaller ones.

4. If a (larger) convex polygon contains another (smaller) convex polygon in its
interior, then the area of the larger polygon is greater that that of the smaller
one.2

1Although we have not formally defined a notion of congruence for general convex polygons, the
idea is pretty much the same as that for triangles: that one polygon can be moved in space, without
being deformed, until it coincides with the other. In particular, note that two squares of equal sides
are congruent.
2A little geometric intuition shows that this item is not independent from the others. In fact, one
can prove that, under such a situation, the larger polygon can be partitioned into a finite number
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5. The area of a square of side length 1cm is equal to 1cm2 (one reads 1 square
centimeter).

From now on, we assume that postulates 1. to 5. do hold. This being so, partition
a square of side length n ∈ N into n2 squares of side length 1. Denoting the area of
the larger square by An, we must have An equal to the sum of the areas of the n2

squares of side length 1, so that

An = n2.

We now consider a square of side length m
n

, with m,n ∈ N, and area Am
n

. Arrange

n2 copies of it by piling n squares per row, in n rows, thus forming a square of side
length m

n
· n = m. As we already know, such a larger square has area m2; on the

other hand, since it is partitioned into n2 (congruent) squares of area Am
n

, its area is

equal to the sum of the areas of these n2 squares, so that

m2 = n2 · Am
n
.

Hence,

Am
n
= m2

n2 =
(m

n

)2
.

The above discussion suggests that the area of a square of side length l must be
equal to l2. In order to confirm such a supposition, we argue in a way similar to
that of the proof of Thales’ theorem: for k ∈ N, we take rational numbers xk and yk

such that

xk < l < yk and yk − xk <
1

k
.

Then, we construct squares of side lengths xk and yk , the first contained in the square
of side length l and the second containing it. Since we already know how to compute
the areas of square os rational side lengths, Postulate 4. above guarantees that the
area Al of the square of side length l must satisfy the inequalities

x2
k < Al < y2

k .

However, since we also have x2
k < l2 < y2

k , we conclude that both numbers Al and
l2 must belong to the interval (x2

k , y2
k ), so that

of other convex polygons, one of which is the smaller one. Once this has been done, a simple
application of items 1. and 3. let us derive 4. as a theorem.
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Fig. 5.1 A square of side
length l has area l2

A B

CD

l

|Al − l2| < y2
k − x2

k = (yk − xk)(yk + xk)

<
1

k
(yk − xk + 2xk)

<
1

k

(

1

k
+ 2l

)

.

Satisfying the inequality above for every k ∈ N, we conclude that |Al − l2| = 0,
so that

Al = l2. (5.1)

The coming proposition summarizes the above discussion (Fig. 5.1).

Proposition 5.1 A square of side length l has area equal to l2.

An argument analogous to the one that led to (5.1) allows us to prove that a
rectangle of sides with lengths a and b has area equal to ab (cf. Fig. 5.2). Indeed,
we start with a rectangle of sides with lengths m,n ∈ N, and decompose it into
mn squares of side lengths equal to 1 to conclude that the area of the rectangle is
equal to mn. Then, we take a rectangle whose sides have lengths m1

n1
and m2

n2
, with

m1,m2, n1, n2 ∈ N, and assemble n1n2 copies of it to form a rectangle of sides m1
and m2. Adding the equal areas of the small rectangles, we conclude that the area of
the initial rectangle is equal to

m1m2

n1n2
= m1

n1
· m2

n2
.

Finally, we consider a rectangle of sides equal to two arbitrary positive real numbers
a and b; given k ∈ N, we take rational numbers xk, yk, uk, vk such that xk < a < yk ,
uk < b < vk and yk − xk, vk − uk < 1

k
. Letting A denote the area of the rectangle

of sides a and b, an argument analogous to the one given in the case of a square
assures that both A and ab lie in the open interval (ukxk, ykvk). Therefore, for every
k ∈ N, we have

|A − ab| < vkyk − ukxk = (vk − uk)yk + uk(yk − xk)

<
1

k
(yk + uk) <

1

k
((yk − xk) + 2xk + (vk − uk) + 2uk)

<
1

k

(

2

k
+ 2a + 2b

)

.
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Fig. 5.2 A rectangle of sides
a and b has area ab

A B

CD

a

b

Fig. 5.3 Area of a
parallelogram

h

a

A
B

CD

E F

Also as before, the fact that the inequality above must hold for every k ∈ N

guarantees that A = ab. We have thus proved the coming

Proposition 5.2 A rectangle of sides a and b has area equal to ab.

We compute the area of a parallelogram as a corollary of the former proposition.
To this end, we fix an edge of the parallelogram, which we shall call its basis, and
shall refer to the distance from it to the opposite side as the height or altitude of the
parallelogram (relative to the chose basis). The desired result is as follows.

Proposition 5.3 The area of a parallelogram of basis a and height h is equal to ah.

Proof Let ABCD be a parallelogram of diagonals AC and BD (cf. Fig. 5.3), and
E and F be the feet of the perpendiculars dropped from D and C, respectively, to
←→
AB . Moreover, suppose, without loss of generality, that E ∈ AB. It is immediate to
verify that triangles ADE and BCF are congruent by HL, so that AE = BF and
(by Postulate 2.) A(ADE) = A(BCF). Therefore, we have

A(ABCD) = A(ADE) + A(BEDC)

= A(BCF) + A(BEDC)

= A(CDEF).

On the other hand, CDEF is a rectangle of height h and basis

EF = EB + BF = EB + AE = AB = a.

Hence, Proposition 5.3 gives A(ABCD) = A(EFCD) = ah. ��
From the formula for the computation of the area of a parallelogram we can

easily deduce the usual formula for the area of triangles. We do this next.
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Fig. 5.4 Area of a triangle

ha

a

B
C

DA

Proposition 5.4 Let ABC be a triangle with sides AB = c, AC = b and BC = a,
and heights ha , hb and hc, relative to the sides BC, AC and AB, respectively. Then,

A(ABC) = aha

2
= bhb

2
= chc

2
. (5.2)

In particular, aha = bhb = chc.

Proof Let S = A(ABC) and D be the intersection of the parallel to
←→
BC passing

through A with the parallel to
←→
AB passing through C (cf. Fig. 5.4). Then, ASA

implies ABC ≡ CDA (for B̂AC = D̂CA, AC is a common side of both
triangles and B̂CA = D̂AC), so that Postulate 1. gives A(ABC) = A(CDA).
However, since ABCD is a parallelogram with basis a and altitude ha , the previous
proposition furnishes

2S = A(ABC) + A(CDA) = A(ABCD) = aha.

Hence, A(ABC) = S = 1
2aha , and the other two equalities can be likewise

deduced. ��
In view of the material discussed so far, to compute the area of a convex polygon

is, in principle, an easy task: since the diagonals of the polygon drawn from one
of its vertices partition it into triangles, it suffices to compute the area of each one
of these triangles with the aid of the last result, and then to add the results thus
obtained.

We finish this section by establishing, for future use, the following convention: if
two convex polygons have equal areas, we shall say that they are (area-)equivalent.
For instance, according to Proposition 5.3, a parallelogram of basis a and height h

is equivalent to a rectangle of sides a and h.

Remark 5.5 With respect to the concept above, a theorem of Bolyai and Gerwien3

(cf. Chapter 1 of [4], for instance) shows that if the convex polygons P1 and P2
are area-equivalent, then one can split P1 into a finite number of polygonal pieces,
rearrange them in a different way and assemble P2.

3Farkas Bolyai, Hungarian mathematician, and Paul Gerwien, amateur German mathematician,
both of the nineteenth century.
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Problems: Sect. 5.1

1. ABCD is a rectangle of sides AB = 32 and BC = 20. Points E and F are the
midpoints of sides AB and AD, respectively. Compute the area of quadrilateral
AECF .

2. In parallelogram ABCD of diagonals AC and BD, we mark point E on side

AD such that
←→
BE ⊥ ←→

AD. If BE = 5, BC = 12 and AE = 4, compute the
area of triangle CDE.

3. Let ABCD be a square of side length 1, let E be the midpoint of BC and F

that of CD. If G is the intersection point of DE and AF , compute the area of
triangle DFG.

4. * If ABC is an equilateral triangle of side length a, prove that:

(a) The altitudes of ABC are equal to a
√

3
2 .

(b) A(ABC) = a2
√

3
4 .

5. Let ABCD be a square of side 1 and E an interior point of ABCD, such that
triangle ABE is equilateral. Compute the area of triangle BCE.

6. ABCD is a square of side length 1cm and AEF is an equilateral triangle, with
E ∈ BC and F ∈ CD. Compute the area of triangle AEF .

7. Let ABC be an equilateral triangle. Prove that the sum of the distances of a
point lying in the interior of ABC to its sides does not depend on the position
of the point and is equal to the length of the altitudes of ABC.

8. Triangle ABC has sides a, b and c. The altitudes corresponding to the sides are
respectively equal to ha , hb and hc. If a + ha = b + hb = c + hc, prove that
ABC is equilateral.

9. (Brazil) Let ABC be a right triangle of area 1m2. Compute the area of

triangle A′B ′C′, with A′ being the symmetric of A with respect to
←→
BC , B ′

the symmetric of B with respect to
←→
AC and C′ the symmetric of C with respect

to
←→
AB .

10. Given a triangle ABC, prove that the triangle formed by the midpoints of its
sides has area equal to 1

4 of that of ABC.
11. Let ABCD be a convex quadrilateral and M , N , P and Q be the midpoints of

AB, BC, CD and DA, respectively. Prove that

A(MNPQ) = 1

2
A(ABCD).

12. We are given in the plane two squares of side 1cm each, such that the center of
one of them coincides with a vertex of the other. Compute all possible values
for the area of the portion of the plane common to both squares.
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13. Prove the following theorem of Clairaut4: let ABC be a given triangle, and
ABDE and ACFG be parallelograms constructed outside ABC and having

disjoint interiors. Let also H be the point of intersection of lines
←→
DE and

←→
FG,

and BCIJ be a parallelogram for which CI = AH and
←→
CI ‖ ←→

AH . Then

A(ABDE) + A(ACFG) = A(BCIJ ).

14. Each diagonal of a convex quadrilateral divides it into two triangles of equal
areas. Prove that the quadrilateral is a parallelogram.

15. (OIM—adapted.)

(a) If two triangles have equal heights, show that the ratio of their areas is equal
to the ratio of the lengths of the corresponding bases.

(b) Let ABC be a given triangle and D, E and F be points on the sides BC,
CA and AB, respectively, such that cevians AD, BE and CF concur at P .
If A(BDP) = 40, A(CDP) = 30, A(CEP) = 35 and A(AFP) = 84,
compute the area of ABC.

16. In this problem we give a partial proof of Ceva’s theorem 4.25 by means of an
argument involving areas of triangles. To this end, let be given a triangle ABC

and points A′, B ′ and C′, respectively on sides BC, AC and AB and distinct

from the vertices of ABC. Also, suppose that
←→
AA′,

←→
BB ′ and

←→
CC′ concur at a

point P . Show that:

(a) A′B
A′C = A(ABP)

A(ACP)
.

(b) BA′
A′C · CB ′

B ′A · AC ′
C ′B = 1.

For the next problem we recall (cf. problem 9, page 99) that, as with convex
quadrilaterals, a convex polygon is tangential provided there exists a circle
lying in its interior and tangent to its sides. In this case, this circle is said to be
inscribed in the polygon.

17. (OIM) Let P be a tangential polygon. Line r divides P in two convex polygons
of equal areas and perimeters. Show that r passes through the center of the
circle inscribed at P .

18. (IMO) In a convex quadrilateral of area 32cm2, the sum of the lengths of two
opposite sides and one diagonal is equal to 16cm. Compute all possible lengths
of the other diagonal.

19. Let P be an interior point of triangle ABC and x = d(P,
←→
BC), y = d(P,

←→
AC),

z = d(P,
←→
AB). The purpose of this problem is to prove the famous Erdös-

Mordell inequality5:

AP + BP + CP ≥ 2(x + y + z),

4Alexis Claude Clairaut, French astronomer and mathematician of the eighteenth century.
5Paul Erdös, Hungarian mathematician, and Louis Mordell, British mathematician, both of the
twentieth century.
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with equality if and only if ABC is equilateral and P is its center. To this end,
letting AB = c, AC = b, BC = a, show that:

(a) AP · a ≥ by + cz.
(b) AP · a ≥ bz + cy, BP · b ≥ cx + az, CP · c ≥ ay + bx.

(c) AP + BP + CP ≥
(

b
c
+ c

b

)

x +
(

a
c
+ c

a

)

y +
(

a
b
+ b

a

)

z ≥ 2(x + y + z).

(d) Equality holds in (c) if and only if ABC is equilateral and P is its center.

5.2 Some Applications

An immediate consequence of Proposition 5.4 is the following criterion for the
equivalence of area-equivalence of triangles.

Corollary 5.6 If ABC and A′BC are two triangles for which
←→
AA′‖←→

BC . Then,
A(ABC) = A(A′BC).

Proof Letting d be the distance between lines
←→
BC and

←→
AA′ (cf. Fig. 5.5), it is clear

that d is the length of the altitudes of triangles ABC and A′BC relative to BC.
Hence,

A(ABC) = 1

2
BC · d = A(A′BC).

��
The previous corollary can be used to transform a convex polygon into an area-

equivalent one, with a smaller number of sides. The coming example illustrates this
point.

Example 5.7 With respect to the figure below, use compass and straightedge to

construct point E ∈←→
BC such that A(ABE) = A(ABCD).

Fig. 5.5 A criterion for the
area-equivalence of two
triangles

d

B C

AA
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Solution

B
C

D
A

CONSTRUCTION STEPS

1. Draw, through point D, line r , parallel to line
←→
AC .

2. Mark point E as the intersection of r with
←→
BC .

3. By the former corollary, we have A(ACD) = A(ACE); therefore,

A(ABE) = A(ABC) + A(ACE)

= A(ABC) + A(ACD)

= A(ABCD)

Another interesting consequence of Corollary 5.6 is a proof of Pythagoras’
theorem, as well as other metric relations in right triangles, through the computation
of certain areas. This is the content of the next

Example 5.8 Let ABC be a triangle right at A, with legs AB = c, AC = b and
hypothenuse BC = a. If H is the foot of the altitude relative to the hypothenuse,
CH = m, BH = n and AH = h, use area computations to establish the metric
relations below:

(a) ah = bc.
(b) c2 = an and b2 = am.
(c) a2 = b2 + c2.

Proof

(a) It suffices to see that both ah and bc are equal to twice the area of ABC. Indeed,

A(ABC) = 1

2
BC · AH = ah

2
and A(ABC) = 1

2
AC · AB = bc

2
.

(b) Construct, externally to ABC, squares ABDE, BCFG and ACJK (cf.

Fig. 5.6) and let I be the point of intersection of the half-line
−→
AH with FG.

Since
←→
AI ‖←→

BG, it follows from Corollary 5.6 that

A(BGA) = A(BGH) = 1

2
BG · BH = an

2
.
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Fig. 5.6 Pythagoras’
theorem through the
computation of areas
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On the other hand, since BD = AB, BC = BG and D̂BC = 90◦ + ̂B =
ÂBG, triangles BCD and BGA are congruent by SAS. Hence, A(BCD) =
A(BGA) = an

2 (I). However, since
←→
AC‖ ←→

BD, by applying again Corollary 5.6

we obtain A(BCD) = A(ABD) = c2

2 (II). It thus follows from (I) and (II) that
c2 = an. The proof of b2 = am is analogous and will be left to the reader.

(c) We can certainly do as we did in the proof of item (c) of Theorem 4.10, termwise
adding both relations derived in (b). Alternatively, the argument in the proof of
(b) guarantees that

c2 = A(ABDE) = 2A(ABD) = 2A(BGH) = A(BGIH);

on the other hand, by reasoning likewise, we obtain

b2 = A(ACJK) = 2A(ACJ) = 2A(BCJ )

= 2A(FCA) = 2A(FCH) = A(FCHI),

so that

b2 + c2 = A(BGIH) + A(FCHI) = A(BCFG) = a2.

��
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From the formula for the area of a triangle we can derive a useful expression for
the area of a trapezoid. To this end, we let the altitude or height of a trapezoid be
the distance between (the lines containing) its bases.

Proposition 5.9 If ABCD is a trapezoid of bases AB = a, CD = b and altitude
h, then

A(ABCD) = (a + b)h

2
.

Proof Assume, without loss of generality, that a > b (cf. Fig. 5.7). If E ∈ AB is
such that AE = b, then the quadrilateral AECD has two parallel and equal sides,
so that it is a parallelogram. Since BE = a − b, we get

A(ABCD) = A(AECD) + A(EBC)

= bh + (a − b)h

2
= (a + b)h

2
.

��
The next result is another important consequence of Proposition 5.4.

Proposition 5.10 If ABCD is a rhombus of diagonals AC and BD, then

A(ABCD) = 1

2
AC · BD.

Proof In the notations of Fig. 5.8, we have

Fig. 5.7 Area of a trapezoid

h

A B

CD

E

b

b a − b

Fig. 5.8 Area of a rhombus
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M
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Fig. 5.9 Areas of similar
triangles
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h

a

A

B C

h

a

A(ABCD) = A(ABC) + A(ACD)

= 1

2
AC · BM + 1

2
AC · DM

= 1

2
AC · BD.

��
We now show that the ratio between the areas of two similar triangles is equal to

the square of the corresponding similitude ratio.

Proposition 5.11 Let ABC and A′B ′C′ be two similar triangles. If k stands for the
similitude ratio from ABC to A′B ′C′, then

A(ABC)

A(A′B ′C′)
= k2.

Proof Let BC = a, B ′C′ = a′ and h and h′ be the altitudes of ABC and
A′B ′C′ relative to BC and B ′C′, respectively (cf. Fig. 5.9). Since a = ka′ and
(by Problem 3, page 115) h = kh′, we conclude that

A(ABC)

A(A′B ′C′)
= ah

a′h′
= ka′ · kh′

a′h′
= k2.

��
The coming example brings a classical application of the previous result.

Example 5.12 With respect to the figure below, use compass and straightedge to

construct points D ∈ AB and E ∈ AC such that
←→
DE‖←→

BC and A(ADE) =
A(DBCE).
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Solution

A

B C

Assuming that the problem has been solved, we have A(ADE) = 1
2A(ABC).

On the other hand, since ADE ∼ ABC, the previous proposition guarantees that

AE

AC
=
√

A(ADE)

A(ABC)
= 1√

2
.

It now suffices to perform the construction below:

CONSTRUCTION STEPS

1. Draw, externally to ABC, the semicircle � of diameter AC.
2. Letting M be the midpoint of AC, mark point P ∈ � such that PM⊥AC.

Pythagoras’ theorem, applied to triangle APC, assures that AP = 1√
2
AC.

3. Finally, obtain point E as the intersection of AC with the circle of center A and
radius AP .

We finish this section by presenting some interesting applications of the formula
for the area of triangles, used in conjunction with other previously studied results.

Proposition 5.13 Let ABC be a triangle of sides BC = a, AC = b, AB = c and
semiperimeter p. If r and ra respectively denote the inradius and the exradius of
ABC relative to BC, then

A(ABC) = pr = (p − a)ra. (5.3)

Proof Let I be the incenter and Ia the excenter of ABC relative to BC (cf.
Fig. 5.10). Since the altitudes of triangles AIB, AIC and BIC, respectively relative
to AB, AC and BC, are all equal to r , we have

A(ABC) = A(AIB) + A(AIC) + A(BIC)

= cr

2
+ br

2
+ ar

2
= pr.

On the other hand, since the altitudes of A(AIaB), A(AIaC) and A(BIaC),
respectively relative to AB, AC and BC, are all equal to ra , we obtain
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Fig. 5.10 Formulas for the
area of a triangle
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Fig. 5.11 Distances from the
circumcenter to the sides

O

C

A

B M

NP

x

y
z

A(ABC) = A(AIaB) + A(AIaC) − A(BIaC)

= cra

2
+ bra

2
− ara

2
= (p − a)ra.

��
We are now in position to state and prove yet another important consequence

of Ptolemy’s theorem, which is known in mathematical literature as Carnot’s
theorem.6

Theorem 5.14 (Carnot) Let ABC is an acute triangle of circumcenter O . If x, y

and z denote the distances from O to the sides BC, AC and AB, respectively, then

x + y + z = R + r,

where r and R respectively denote the inradius and the circumradius of ABC.

Proof Let M , N and P denote the midpoints of sides BC, AC and AB, respectively,
so that OM⊥BC, ON⊥CA and OP⊥AB (cf. Fig. 5.11). Since quadrilaterals
BMOP , CNOM and APON have a pair of opposite right angles, they are cyclic.

6Lazare Carnot, French mathematician of the eighteenth and nineteenth centuries, the first to
systematically use oriented line segments in Geometry.
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Letting BC = a, AC = b and AB = c, and noticing that OM = x, ON = y and
OP = z, we obtain from Ptolemy’s theorem the equalities

x · c

2
+ z · a

2
= R · b

2
,

x · b

2
+ y · a

2
= R · c

2
,

y · c

2
+ z · b

2
= R · a

2
.

(5.4)

On the other hand, since triangles OBC, OCA and OAB partition ABC, we
also have

A(ABC) = xa

2
+ yb

2
+ zc

2
.

Now, letting p stand for the semiperimeter of ABC, we know from the previous
proposition that A(ABC) = pr; in turn, substituting such a relation in the last
equality above, we obtain

xa

2
+ yb

2
+ zc

2
= pr.

Finally, by termwise adding the last equality above with those in (5.4), we get

(x + y + z)p = (R + r)p,

whence Carnot’s theorem follows. ��
A direct inspection of the above proof shows that Carnot’s theorem continues to

hold for right triangles. For a generalization of it to obtuse triangles, see Problem 16,
page 169.

For our last application we shall need a preliminary definition. At this point, the
reader may find it useful to recall the content of Theorem 4.28.

Definition 5.15 The symmedians of a triangle are the cevians isogonal to the
medians of the triangle. Their point of concurrence is the symmedian point or the
Lemoine point7 of the triangle.

Out of several interesting properties of the Lemoine point, the most striking one
is perhaps that collected in Theorem 5.17. However, before we can prove it, we
need to establish an auxiliary result which is also important to the analysis of other
properties of the Lemoine point.

7Émile Lemoine, French mathematician of the nineteenth century.
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Fig. 5.12 A fundamental
property of symmedians
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Proposition 5.16 Let P be a point lying in the interior of a triangle ABC. If x and
y denote the distances from P to the sides AB and AC, respectively, then

−→
AP is a symmedian ⇔ x

y
= AB

AC
.

Proof Let Ma be the midpoint of BC. In the notations of Fig. 5.12, Lemma 4.27
guarantees that

−→
AP is a symmedian ⇔ x

y
= v

u
. (5.5)

On the other hand, letting h denote the length of the altitude of ABC relative to BC,
we have

A(ABMa) = 1

2
BMa · h = 1

2
CMa · h = A(ACMa).

Hence,

1

2
AB · u = A(ABMa) = A(ACMa) = 1

2
AC · v,

so that

v

u
= AB

AC
. (5.6)

It now suffices to combine (5.5) and (5.6) to get the desired result. ��
The final result of this section characterizes the symmedian point as the only

solution of a minimization problem.
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Fig. 5.13 The symmedian
point as a point of minimum
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Theorem 5.17 Let ABC be any triangle and P be a point lying inside it. The sum

of the squares of the distances from P to the lines
←→
AB ,

←→
AC and

←→
BC is minimal if

and only if P is the Lemoine point of ABC.

Proof Let x, y and z be the distances from P to the lines
←→
BC ,

←→
AC and

←→
AB ,

respectively (cf. Fig. 5.13). We want to show that the sum x2 + y2 + z2 is minimal
if and only if P is the symmedian point of ABC.

To this end, let BC = a, AC = b and AB = c. Also, writing S = A(ABC) for
the area of ABC, we have

S = A(ABP) + A(BCP) + A(CAP) = ax + by + cz

2
,

so that 2S = ax + by + cz. Now, by applying Cauchy’s inequality (cf. Section 5.2
of [5], for instance), we obtain

(x2 + y2 + z2)(a2 + b2 + c2) ≥ (ax + by + cz)2 = 4S2,

and hence

x2 + y2 + z2 ≥ 4S2

a2 + b2 + c2
.

The condition for equality in Cauchy’s inequality assures that it holds if and only
if we have

x

a
= y

b
= z

c
.

In turn, in accordance with the previous proposition, the above relations take place
if and only if P is the Lemoine point of ABC. ��
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Problems: Sect. 5.2

1. Use compass and straightedge to construct an equilateral triangle (area) equiv-
alent to a given square.

2. (Argentina) Three ants are situated on three of the vertices of a rectangle. Then,
they start moving according with the following rules: (i) when one ant moves,
the other two stand still; (ii) at any time, the moving ant moves along the
direction parallel to the line passing through the positions of the other two ants.
Is it possible that, at some future instant, the ants are situated at the midpoints
of three of the sides of the original rectangle?

3. (Hungary) Let ABCD be a parallelogram and EFG a triangle whose vertices
lie on the sides of ABCD. Prove that

A(ABCD) ≥ 2A(EFG).

4. Let ABC be any triangle.

(a) Prove that one can use the medians of ABC to form a triangle DEF .
(b) Compute the ratio between the areas of triangles ABC and DEF .

5. (TT) In a convex hexagon ABCDEF , we have AB ‖ CF , CD ‖ BE and
EF ‖ AD. Prove that triangles ACE and BDF have equal areas.

6. Trapezoid ABCD, with bases AB and CD and legs AD and BC, is rectangle
at A. If BC = CD = 13cm and AB = 18cm, compute the height and the area

of ABCD, as well as the distance from A to
←→
BC .

7. (TT) Find all positive integers n for which it is possible to partition an
equilateral triangle of side length n into trapezoids of side lengths 1, 1, 1 and 2.

8. ABCD is a trapezoid of bases BC and AD and legs AB and CD. Let E be the
midpoint of the side CD, and assume that the area of triangle AEB is equal to
360cm2. Compute the area of the trapezoid.

9. ABCD is a trapezoid with bases AB and CD and legs AD and BC. If the
diagonals of ABCD intersect at E, prove that

√

A(ABCD) = √

A(ABE) +√

A(CDE).

10. Through a point P in the interior of a triangle ABC we draw the parallels
to the sides of ABC. Such lines divide ABC into three triangles and three
parallelograms. If the areas of the triangles are equal to 1cm2, 4cm2 and 9cm2,
compute the area of ABC.

11. ABC is a triangle of semiperimeter p, inradius r and exradii ra , rb and rc.
Prove that

1

r
= 1

ra
+ 1

rb
+ 1

rc
.
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12. Prove that the symmedians of an acute triangle pass through the midpoints of
the sides of its orthic triangle.

13. Prove that the symmedian point of a right triangle is the midpoint of the altitude
relative to the hypothenuse.

14. If P is a point on the side BC of triangle ABC, show that AP is the symmedian
relative to BC if and only if

BP

CP
= AB

2

AC
2 .

15. (OIM) Let ABC be a triangle of incenter I and barycenter G, such that 2BC =
AC + AB. Prove that

←→
IG‖←→

BC .
16. * Generalize Carnot’s theorem for obtuse triangles. More precisely, show that

if a triangle ABC is obtuse at A, and x, y and z are the distances of the

circumcenter O of ABC to
←→
BC ,

←→
AC and

←→
AB , respectively, then

−x + y + z = R + r,

where r and R respectively denote the inradius and the circumradius of ABC.
17. ABCDE is a convex pentagon inscribed in a circle. We partition ABCDE into

three triangles, by drawing two diagonals of it, which intersect only at vertices
of ABCDE. Prove that, no matter which diagonals are chosen, the sum of the
inradii of the three triangles in which ABCDE gets divided is always the same.

18. (Bulgaria) Trapezoid ABCD has bases AB > CD and legs BC and AD. The
diagonals AC and BD intersect at O , and K , L, M and N are the points of
intersection of the angle bisectors of 
 AOB, 
 BOC, 
 COD and 
 DOA with
sides AB, BC, CD and DA, respectively. Point P is the intersection of lines
←→
KL and

←→
MN , and Q is the intersection of lines

←→
KN and

←→
ML. Find all values of

k = AB

CD
for which quadrilateral ABCD and triangle POQ have equal areas.

5.3 Area and Circumference of a Circle

We finish this chapter by presenting ways of defining the area of a disk and the
length of a circle that are more elementary than those considered in [5]. To this end,
we first need to discuss a few more facts about convex polygons.

We say that a convex polygon is regular if all of its sides and all of its internal
angles have equal measures. In particular, it follows from Problem 11, page 38,
that, in a regular polygon of n sides, each internal angle measures 180(n−2)

n
degrees.

Note further that regular polygons of three and four sides are precisely equilateral
triangles and squares.
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Fig. 5.14 Establishing the
existence of regular polygons
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In order to assure the existence of regular polygons of n sides, divide a circle
of center O into n equal arcs, thus obtaining points A1, A2, . . . , An (cf. Fig. 5.14,
for the case n = 7). Since equal arcs correspond to equal chords, we conclude
that polygon A1A2 . . . An has equal sides. On the other hand, the inscribed angle
theorem gives

A1̂A2A3 = 1

2

�

A1AnA3= 1

2
(360◦− �

A1A2A3)

= 1

2
(360◦ − A1 ̂OA2 − A2 ̂OA3)

= 1

2

(

360◦ − 2 · 360◦

n

)

= 180◦(n − 2)

n

and, analogously,

Ai
̂Ai+1Ai+2 = 180◦(n − 2)

n
,

for 2 ≤ i ≤ n (here, we make the convention that An+1 = A1 and An+2 =
A2). Therefore, all of the internal angles of A1A2 . . . An are also equal, so that
A1A2 . . . An is a regular polygon of n sides.

We now consider any regular polygon A1A2 . . . An, with n ≥ 4, and draw the
bisectors of the internal angles 
 A2A1An, 
 A1A2A3 and 
 A2A3A4. Let O1 denote
the intersection point of the first two bisectors and O2 that of the last two. Since
A1A2 = A2A3 and

A2̂A1O1 = A1̂A2O1 = A3̂A2O2 = A2̂A3O2 = 90◦(n − 2)

n
,
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we have O1A1A2 ≡ O2A2A3 by ASA; in particular, A2O1 = A2O2, and hence
O1 = O2. By arguing analogously for each triple of consecutive internal angles
of the polygon, we conclude that all of the bisectors of the internal angles of the
polygon concur at a single point O , and the result of Problem 9, page 99, guarantees
that A1A2 . . . An is tangential (in this respect, look at the comments made right after
the statement of Problem 16, page 157. Also, notice that the above argument is also
valid for n = 3; it suffices to change angles 
 A2A1An and 
 A2A3A4 by 
 A2A1A3
and 
 A2A3A1, respectively).

If O is the center of the circle inscribed in A1A2 . . . An, the discussion of the
previous paragraph has shown that, for 1 ≤ i ≤ n, we have A1O = A2O = . . . =
AnO . Therefore, the circle of center O and radius equal to such a common distance
passes through all of the vertices of the polygon.

We summarize these remarks in the coming

Proposition 5.18 Every regular polygon is cyclic and tangential, and the corre-
sponding circumscribed and inscribed circles are concentric.

Let �(O; 1) be a given circle, of radius 1. For natural numbers m,n ≥ 3, we
consider regular polygons Pn and Qm, with n and m sides, respectively, with Pn

being inscribed and Qm being circumscribed to �. Then, Pn lies in the interior
of Qm, and writing A(Pn) and A(Qm) to denote their areas, postulate 4 at the
beginning of this chapter assures that

A(Pn) < A(Qm).

Therefore, elementary facts on the supremum (resp. infimum) of sets of real
numbers bounded above (resp. below) give (cf. Proposition 7.7 of [5], for instance)

sup{A(Pn); Pn is inscribed in �} ≤ inf{A(Qm); Qm circumscribes �}.
We would like to show that both numbers above are equal and, then, to define the

area of � by

A(�) = sup{A(Pn); Pn is inscribed in �} (5.7)

(or, which would then be the same, A(�) = inf{A(Qm); Qm circumscribes �}). To
this end, suppose we have shown that

A(Q2k ) − A(P2k ) <

(

3

4

)k−3

c (5.8)

for k ≥ 3, where c = A(Q8)−A(P8) is the difference between the areas of regular
octagons respectively circumscribed and inscribed in �. Then, a standard fact on the
convergence of sequences (cf. Example 7.12 of [5], for instance) assures that

A(Q2k ) − A(P2k )
k−→ 0.

The desired equality (5.7) is now straightforward.
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Fig. 5.15 Computing �n
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We thus need to estimate the difference between the areas of regular 2k-gons
circumscribed and inscribed in �. We start by establishing a slightly more general
estimate.

Consider regular polygons Pn = A1A2 . . . An, inscribed in �, and Qn =
B1B2 . . . Bn, circumscribed to �, such that, for 1 ≤ i ≤ n, vertex Ai is the point
of tangency of side BiBi+1 with � (cf. Fig. 5.15; here again, we convention that
Bn+1 = B1).

Let ln = AiAi+1 be the side length of Pn, let Ci be the intersection point of the
line segments AiAi+1 and OBi+1, and bn = CiBi+1 (such a length does not depend
on the chosen natural number 1 ≤ i ≤ n, thanks to the congruence of the isosceles
triangles OAiAi+1). The difference �n = A(Qn) − A(Pn) can be computed as
follows:

�n =
n
∑

i=1

A(AiAi+1Bi+1) =
n
∑

i=1

1

2
AiAi+1 · CiBi+1 = n

2
lnbn. (5.9)

Now, let Di be the intersection point of the line segment OBi+1 with �, and Ei be
the intersection of AiBi+1 with the perpendicular bisector of AiDi . It is immediate
to check that AiDi is an edge of P2n and Ei is a vertex of Q2n (the line segment
EiHi of Fig. 5.15 is an edge of Q2n). Therefore,

�2n =
n
∑

i=1

(A(AiDiEi) + A(DiAi+1Hi)) = 2
n
∑

i=1

A(AiDiEi)

=
n
∑

i=1

AiDi · EiFi = nl2nb2n,

(5.10)

where Fi is the midpoint of AiDi .
In order to continue, we need the coming auxiliary result.
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Lemma 5.19 Let ABC be a right triangle at B. If P is the foot of the internal
bisector relative to BC, then BP < 1

2BC.

Proof Letting Q be the foot of the perpendicular dropped from P to the
hypothenuse AC, the characterization of angle bisectors as locus gives

PB = PQ < PC.

Hence, PB < 1
2BC. ��

Now, the inscribed angle theorem gives (cf. Fig. 5.15)

Bi+1̂AiDi = Di
̂AiAi+1 = Di

̂AiCi = 180◦

n

(check the last equality above). Thus, AiDi is the internal bisector of the right
triangle AiCiBi+1 with respect to the leg CiBi+1. Hence, the characterization of
angle bissectors as a locus and the previous lemma give us

b2n = EiFi = FiGi < CiDi <
1

2
CiBi+1 = bn

2
. (5.11)

On the other hand, for n ≥ 8 we have

Bi+1̂Ai+1Ci = 360◦

n
≤ 45◦,

so that

CiBi+1 ≤ Ai+1Ci = AiCi = ln

2
.

Hence, by successively applying the triangle inequality, Lemma 5.19 and the last
inequality above to triangle AiCiDi , we obtain (again for n ≥ 8)

l2n = AiDi < AiCi + CiDi <
ln

2
+ 1

2
CiBi+1 ≤ ln

2
+ 1

2
· ln

2
= 3ln

4
.

It thus follows from (5.9), (5.10) and (5.11) that

�2n = nl2nb2n < n · 3ln

4
· bn

2
= 3

4
�n

for n ≥ 8.
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Fig. 5.16 Approximating π
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Finally, we prove (5.8): the last inequality above, together with the formula for
telescoping products (cf. Section 3.3 of [5], for instance) gives

�2k

�8
=

k−1
∏

j=3

�2j+1

�2j

<

k−1
∏

j=3

3

4
=
(

3

4

)k−3

,

as wished.
The previous discussion allows us to give the following important

Definition 5.20 The real number π is the area of a circle of radius 1.

Departing from the above definition, a simple argument (see Problem 4) shows
that the area of a circle of radius R is given by πR2.

In order to obtain numerical approximations for the value of π , we rely on the
reasoning presented so far, which established the well definiteness of the area of
a circle of radius 1: we take such a circle, say �, and consider squares ABCD

and EFGH , the first one inscribed and the second one circumscribed to � (cf.
Fig. 5.16). It is immediate that EF = 2 and, by Pythagoras’ theorem, AB = √

2,
so that

2 = A(ABCD) < π < A(EFGH) = 4.

We can easily refine the above reasoning with the aid of Problems 5 and 6, as well
as with their analogues for regular polygons circumscribed to �, thus getting better
and better numerical approximations for π . For future references, the value of π ,
with five correct decimal places, is

π ∼= 3.14159.

We also observe that π is an irrational number,8 and we refer the reader to
Section 10.5 of [5] for a proof of this fact.

8Actually, π is transcendental, i.e., cannot be obtained as a root of a nonzero polynomial of rational
coefficients. A proof of this fact, which is far beyond the scope of these notes, can be found in [8]
or [17]. We shall have more to say on transcendental numbers on Chapter 20 of [6].
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Given a circle � of center O and radius R, and an arc
�

AB of �, we let the circular

sector
�

AOB be defined as the portion of � formed by the union of all of the arcs

OC, as C varies along
�

AB. If ÂOB = α, we say that
�

AOB is a sector of angle

(or opening) α. In what follows we shall define the area of a circular sector
�

AOB,
showing that

A(
�

AOB) = α

360◦
· πR2,

provided α is the angle (in degrees) of it.
If α = 360◦ · m

n
, with m,n ∈ N and m < n, our previous discussion on the area

of a circle naturally leads us to define the area of the circular sector
�

AOB as being
equal to the supremum of the areas of the polygons A1A2 . . . AkmAkm+1O , where
k ∈ N and A1A2 . . . Akn is a regular polygon of kn sides, inscribed in � and such
that A1 = A, Akm+1 = B. Then,

A(A1A2 . . . AkmAkm+1O)

A(A1A2 . . . Akn−1Akn)
=

∑km
i=1 A(AiOAi+1)

∑kn−1
i=1 A(AiOAi+1)

= km · A(A1OA2)

kn · A(A1OA2)
= m

n
.

Since the above computations are valid for every k ∈ N, we conclude that

A(
�

AOB) = m

n
· πR2.

Now, assume that α = 360◦ · x, with x ∈ (0, 1) being irrational. It is a standard
fact (cf. problem 3 of Section 7.1 of [5], for instance) that we can take rational

numbers 0 < r1 < r2 < · · · < x with sup{r1, r2, . . .} = x. Let Bn ∈ �

AB be

such that ÂOBn = αn, with αn = 360◦ · rn. Then, the circular sector
�

AOBn is

contained in the circular sector
�

AOB, albeit the discrepancy between the angles
of such sectors gets smaller and smaller, as n increases without bound. Hence, by
naturally extending Postulate 4 at the beginning of this chapter, we define the area of

�

AOB as being equal to the supremum of the areas of the sectors
�

AOBn. However,
what we have already done above gives

A(
�

AOBn) = rnπR2,

so that

sup{A(
�

AOBn)} = sup{rn} · πR2 = xπR2 = α

360◦
· πR2.
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We finish this chapter by taking again a circle � of radius R and defining and
computing its length, or circumference. This will be defined as the only positive
real number �(�) satisfying the following condition: for all regular polygons P and
Q, with P inscribed in � and Q circumscribed to �, we have

�(P) ≤ �(�) ≤ �(Q), (5.12)

where �(·) stands for the perimeter of the polygon within parentheses.
In what follows, we shall show that �(�) is well defined, with

�(�) = 2πR.

In order to develop some intuition on this value, let us take another circle, concentric
with � but with radius R + 1

n
, where n ∈ N. For a sufficiently large n, it is

geometrically plausible that a good approximation for the area of the region of
the plane in between the two circles (the gray region of Fig. 5.17) is the area of
a rectangle of basis �(�) and height 1

n
. This being so, we get

�(�) · 1

n
∼= π

(

R + 1

n

)2

− πR2

or, which is the same,

�(�) ∼= 2πR + 1

n
.

Assuming (also plausibly) that the approximation above gets better and better as n

increases without bound, we conclude that �(�) = 2πR.

Γ

R + 1
n

O

R

(Γ)

1
n

Fig. 5.17 The length of a circle of radius R
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From a more formal viewpoint, in order to show that definition (5.12) makes
sense and to rigorously compute �(�), let us consider again a regular polygon Pn =
A1A2 . . . An inscribed in �(O;R) (cf. Fig. 5.15). Let ln be the length of the edges of
Pn and (by invoking once more the congruence of the isosceles triangles OAiAi+1)
an be the distance from O the sides of Pn.

Letting �′(O; an), the inclusions �′ ⊂ Pn ⊂ � furnish the inequalities

πa2
n < A(Pn) < πR2.

On the other hand, in the notations of Fig. 5.15, we have

A(Pn) =
n
∑

i=1

A(OAiAi+1) = n

2
lnan,

so that

πa2
n <

n

2
lnan < πR2

or, which is the same,

2πan < nln = �(Pn) <
2πR2

an

.

Applying Pythagoras’ theorem to the right triangle OAiCi , we obtain

an =
√

R2 −
(

ln

2

)2

,

and hence

2π

√

R2 − l2
n

4
< �(Pn) <

2πR2
√

R2 − l2
n

4

< 2πR.

Therefore,

2πR

√

1 − l2
n

4R2
< �(Pn) < 2πR. (5.13)
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Now, it follows from Problem 5 that

l2
2n = l2

n

4
+
⎛

⎝R −
√

R2 − l2
n

4

⎞

⎠

2

= l2
n

4
+

⎛

⎜

⎜

⎝

l2
n

4

(

R +
√

R2 − l2
n

4

)

⎞

⎟

⎟

⎠

2

= l2
n

4
+ l2

n

16

⎛

⎝

ln

R +
√

R2 − l2
n

4

⎞

⎠

2

.

If n = 6, then all of the triangles OAiAi+1 are equilateral, so that l6 = R. If n ≥ 6,
Corollary 2.25 assures that ln ≤ l6 = R, and hence

l2
2n = l2

n

4
+ l2

n

16

⎛

⎝

ln

R +
√

R2 − l2
n

4

⎞

⎠

2

<
l2
n

4
+ l2

n

16
= 5l2

n

16
<

9l2
n

16
.

The above computations furnish, for every integer k ≥ 4 and with the aid of the
formula for telescoping products,

l2k = l8 · l2k

l8
= l8 ·

k
∏

j=4

l2j

l2j−1
< l8 ·

k
∏

j=4

3

4
=
(

3

4

)k−3

l8 <
3l8

k
.

In view of such an inequality and letting n = 2k into (5.13), we conclude that

2πR

√

1 − 9l2
8

4R2k2 < 2πR

√

1 − l2
2k

4R2 < �(P2k ) < 2πR.

Therefore,

sup �(Pn) = 2πR.

Finally, by arguing in a similar way (cf. Problem 7), we obtain

inf �(Qn) = 2πR, (5.14)

as wished.
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Problems: Sect. 5.3

1. * Generalize the result of Problem 1, page 179, showing that if a point P lies
in the interior of a regular polygon A1A2 . . . An, then the sum of the distances
of P to the lines containing the sides of A1A2 . . . An does not depend on the
position of P .

2. * Let P and Q be two regular n-gons, with side lengths respectively equal to l1
and l2. Prove that

A(P)

A(Q)
=
(

l1

l2

)2

.

3. Two regular 20-gons have side lengths equal to 5cm and 12cm. Compute the
side length of a third regular 20-gon, knowing that its area is equal to the sum
of the areas of the two given ones.

4. * Prove that the area of a circle of radius R is equal to πR2.
5. * Let ln be the side length of a regular n-gon inscribed in a circle of radius R.

Prove that

2R2 − l2
2n = R

√

4R2 − l2
n.

Then, apply the above relation to compute l8 and l16.
6. * Let ln be the side length of a regular n-gon Pn, inscribed in a circle of radius

R. Prove that

A(Pn) = nln

4

√

4R2 − l2
n.

7. * Complete the argument for the well definiteness of the definition of the
circumference of a circle, by proving (5.14).

8. Points A, B and C are collinear, with B ∈ AC, and �, �1 and �2 are semicircles
of diameters respectively equal to AC, AB and BC, all lying in a single half-

plane, of those determined by
←→
AC . Line r , perpendicular to AC and passing

through B, intersects � at D. Letting S denote the area of the portion of �

which is exterior to �1 and �2, compute the ratio BD
2

S
.

9. Triangle ABC is right at A. Semicircles �1 and �2 have AB and AC as
diameters, respectively, and lie outside ABC. If � denotes the circumcircle
of ABC, prove that the sum of the areas of the portions of �1 and �2 which are
exterior to � is equal to the area of ABC itself.9

9Such portions of �1 and �2 are usually referred to as the lunes of Hippocrates, in honor of the
Greek astronomer and mathematician of the fourth century BC Hippocrates of Chios.
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10. If � is the circumcircle of a triangle ABC, prove that the area of ABC is less
that half of the area of �.

11. * Let be given a circle �, of center O and radius R, and an arc
�

AB of �, such
that ÂOB = α. Adapt the steps of the discussion that led to the definition and
computation of the area of circular sectors to define and compute the length of

the arc
�

AB. Arguing this way, show that

�(
�

AB) = α

360◦
· 2πR.

12. Is is a curious fact that π ∼= √
2 + √

3; indeed, with five correct decimal
places, we have

√
2+√

3 ∼= 3.14626. Use this information to rectify a circle of
radius 1, with an absolute error less than 0.01. In other words, use compass and
straightedge to construct a line segment of length approximately equal to 2π ,
with absolute error less than 0.01.

13. We are given a circle � and convex polygonsP and Q, with P lying in the open
disk bounded by � and � lying in the interior of Q. Prove that �(P) < �(�) <

�(Q), where �(·) stands for the perimeter of the curve within parentheses.
14. (IMO shortlist) We are given n > 1 line segments in the plane, such that the

sum of its lengths is 1. Prove that one can choose a line r such that the sum of
the lengths of the orthogonal projections of the n segments into r is less than 1

π
.



Chapter 6
The Cartesian Method

This chapter is devoted to the study of Plane Euclidean Geometry through the use
of the analytic or cartesian method,1 in contraposition to the synthetic method—
around which the exposition has been built in the previous chapters—, and to the
trigonometric method, which will be presented in the next chapter. As a result of
such an approach, we will be able to develop certain aspects of the theory which
have been postponed until here, the most notable of them being a first acquaintance
with conics.

6.1 The Cartesian Plane

Draw in the plane two perpendicular lines x and y, intersecting at point O . Then,
look at x and y as copies of R, by choosing the same unit of measure and letting
O correspond to 0 in both of them. This way, each of x and y is divided into two
half-lines, one being positive (i.e., the one containing the positive reals) and the
other being negative, with the convention that, in each line, the positive half-line is
indicated by a small arrow (in Fig. 6.1, for the sake of simplicity we assumed x to
be horizontal and y to be vertical with respect to the usual reading position).

Lines x and y divide the plane into four angular regions, each of which being
determined by the half-lines of x and y which form their boundaries. We shall refer
to such four regions as the quadrants, and shall number them from 1 to 4, under
the convention shown in Fig. 6.1.

Given any point in the plane, say A, draw through it the perpendiculars to x and
to y, which intersect such lines at the points Ax and Ay , respectively. Conversely,

1It is quite common that authors refer to the analytic method by using the expression Analytic
Geometry. We shall systematically avoid this expression along these notes, to emphasize that it is
just a set of methods, and not a new kind of geometry.

© Springer International Publishing AG, part of Springer Nature 2018
A. Caminha Muniz Neto, An Excursion through Elementary Mathematics, Volume II,
Problem Books in Mathematics, https://doi.org/10.1007/978-3-319-77974-4_6
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O x

y

A

Ax

Ay

1st Quad.2st Quad.

3st Quad. 4st Quad.

Fig. 6.1 Constructing the cartesian plane

O x

y

B(2, 1)

A(−3, 2)

C(−4, −3/4)

D(1, −
√

2)

Fig. 6.2 Plotting some points in the cartesian plane

once points Ax and Ay are arbitrarily chosen on lines x and y, respectively, the
perpendicular to x through Ax and to y through Ay intersect at a point A. Therefore,
to give a point A in the plane is the same as to give its orthogonal projections Ax

and Ay on lines x and y, respectively.
On the other hand, since lines x and y are being looked at as copies of R, the

orthogonal projections Ax and Ay of point A on x and y correspond to real numbers
xA and yA, respectively, which completely determine the point A (for xA and yA

completely determine points Ax and Ay). This being so, we write A = (xA, yA), or
A(xA, yA). We illustrate this correspondence by plotting points A(−3, 2), B(2, 1),
C(−4,−3/4) and D(1,−√

2) in Fig. 6.2.
In general, whenever we fix in the plane two lines x and y perpendicular at a

point O and choose in each of them a positive half-line of origin O , we shall say
that the plane is furnished with a cartesian coordinate system2 xOy, or also that

2René Descartes, French mathematician, philosopher and scientist of the seventeenth century.
Descartes’ legacy to Mathematics and science is a huge one, and came mainly from his
landmarking book Discours de la Méthode (Discourse on the Method) and its three corresponding
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it has turned into a cartesian plane. This way, given a point A(xA, yA) in it, we
shall say that xA and yA are the cartesian coordinates of A. In this context, the real
number xA is the x-coordinate or the abscissa of A, whereas the real number yA is
the y-coordinate or the ordinate3 of A. Lines x are y respectively called the x-axis
or axis of abscissas and y-axis or axis of ordinates of the cartesian system upon
consideration. In particular, the points situated on the x and y axes have cartesian
coordinates respectively of the form (x0, 0) and (0, y0); point O , which represents
0 in both axes, has both of its coordinates equal to zero.

Hereafter, whenever we refer to the coordinates of one or more points in the
plane, we shall tacitly assume, unless stated otherwise, that a cartesian coordinate
system xOy has been chosen in the plane.

Now that we have defined cartesian coordinate systems, our first task is to
translate, into the language of coordinates, some of the geometric concepts and
results we have developed so far. In this respect, our first result gives formulas for
the computation of the coordinates of a point P of a line segment AB, such that P

divides AB in two other segments whose lengths form a certain ratio.

Proposition 6.1 We are given a real number t ∈ (0, 1) and points A(xA, yA)

and B(xB, yB). If P(xP , yP ) is the point along segment AB for which AP =
t · AB, then

xP = (1 − t)xA + txB and yP = (1 − t)yA + tyB. (6.1)

Proof We shall prove that xP = (1−t)xA+txB , the proof of the other given relation
being totally analogous. If xA = xB , then segment AB is vertical and, hence,

xP = xA = (1 − t)xA + txA = (1 − t)xA + txB .

If xA 
= xB , assume, without loss of generality, that xA < xB (the case xA > xB is
analogous). Letting A′, P ′ and B ′ be the orthogonal projections of points A, P and
B on the x-axis (cf. Fig. 6.3), it follows from Thales’ theorem 4.2 that

A′P ′

A′B ′ =
AP

AB
= t .

However, since A′(xA, 0), P ′(xP , 0) and B ′(xB, 0), with P ′ ∈ A′B ′ (for P ∈ AB)
we have A′P ′ = xP − xA and P ′B ′ = xB − xP . Substituting such equalities in the
above relation, we obtain

xP − xA

xB − xA

= t

appendices. This book marks a turning point on the way of doing science, for, along it, Descartes
strongly rejected the scholastic tradition of using speculation, instead of deduction, as the central
strategy for the investigation of natural phenomena. On the other hand, its appendix La Géométrie
layed down the foundations of the analytic method.
3We call the reader’s attention so as not to confuse ordinate with coordinate; the ordinate of a point
of the cartesian plane is one of its coordinates.
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O x

y

A(xA, yA)

A

B(xB , yB)

B

P (xB, yB)

P

Fig. 6.3 Dividing a line segment in a given ratio

or, which is the same, xP − xA = t (xB − xA). Therefore,

xP = xA + t (xB − xA) = (1 − t)xA + txB,

as we wished to show. ��
For an important generalization of the previous result, see Problem 8, page 201.

For the time being, let us isolate a relevant particular case.

Corollary 6.2 Given points A and B in the cartesian plane, the coordinates of
the midpoint M of segment AB are the arithmetic means of the corresponding
coordinates of A and B. More precisely, if A(xA, yA) and B(xB, yB), then
M

(

xA+xB

2 ,
yA+yB

2

)

.

Proof Since AM = 1
2 AB, it suffices to let t = 1

2 in (6.1) to obtain the coordinates
of M . ��
Remark 6.3 In the notations of Proposition 6.1, it is suggestive to write

P = (1 − t)A + tB (6.2)

as a shorthand for both relations in (6.1). In particular, we abbreviate the coordinates
of the midpoint M of line segment AB by writing M = A+B

2 . Hereafter, we shall
stick to this usage whenever convenient.

As the coming example illustrates, one of the highlights of the cartesian method
is its use to obtain euclidean geometry theorems that, yet accessible by other means,
become trivial when analytically approached.

Example 6.4 Let us apply the analytic method to show that, in every triangle, the
medians concur at a single point, the barycenter of the triangle, and that such a point
divides each median, from the corresponding vertex, in the ratio 2 : 1.
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To this end, let ABC be any triangle, M be the midpoint of side BC and G be
the point along median AM such that AG = 2 GM. Then, AG = 2

3 AM , and (6.2)
(with t = 2

3 ), together with Corollary 6.2, give

G =
(

1 − 2

3

)

A + 2

3
M = 1

3
A + 2

3

(

A + B

2

)

= A + B + C

3
. (6.3)

Analogous computations performed with the other two medians show that they pass
through this point too.

We continue the exposition of the theory by deriving an extremely useful formula
for the computation of the distance between two points of the cartesian plane in
terms of their coordinates.

Proposition 6.5 For points A(xA, yA) and B(xB, yB) in the cartesian plane, we
have

AB =
√

(xA − xB)2 + (yA − yB)2. (6.4)

Proof We need to consider four distinct cases: xA ≤ xB and yA ≤ yB ; xA ≤ xB and
yA > yB ; xA > xB and yA ≤ yB ; xA > xB and yA > yB . Nevertheless, since the
analysis of each of these four cases is essentially equivalent to the remaining ones,
we shall concentrate ourselves in the case xA ≤ xB and yA ≤ yB (cf. Fig. 6.4).

For the sake of simplicity of notation, let A(a, b) and B(c, d), so that a ≤ c and
b ≤ d . If a = c (the possibility at left, in Fig. 6.4), we clearly have

AB = d − b = |b − d| =
√

02 + (b − d)2 =
√

(a − c)2 + (b − d)2.

Since the case b = d can be dealt with in pretty much the same way, from now on
we shall assume that a < b and c < d (possibility at right in Fig. 6.4). Draw through

O x

y

B(c, d)

A(a, b)
A(a, b)

B(c, d)

C(c, b)

Fig. 6.4 Distance between two points of the cartesian plane
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r
P

A(a, b)

B(c, d)

B (c,−d)

Fig. 6.5 Example 2.28 via the analytic method

A the parallel to the x-axis and through B the parallel to the y-axis, and mark their
intersection point C. Since C has the same ordinate as A and the same abscissa as
B, we conclude that C(c, b). Moreover, since the cartesian axes are perpendicular,
triangle ABC is right at C. Therefore, it follows from Pythagoras’ theorem, together
with the two particular cases above, that

AB
2 = AC

2 + BC
2 = (c − a)2 + (d − b)2 = (a − c)2 + (b − d)2,

as we wished to show. ��
We shall now use formula (6.4) and a suitable corollary of Cauchy-Schwarz

inequality to analyse Example 2.28 with the aid of the analytic method.

Example 6.6 In the notations of Fig. 6.5, show that there exists a single point P ∈ r

for which the sum AP + BP is minimum. Moreover, show also that such a point is

obtained as the intersection of the straightlines
←→
AB ′ and r , where B ′ stands for the

symmetric of B with respect to r .

Proof We consider a cartesian system in which r corresponds to the x-axis, and let
A(a, b) and B(c, d). If P(x, 0), we will first show that there exists a unique real
value of x for which

AP + BP =
√

(a − x)2 + b2 +
√

(x − c)2 + d2

is minimum. To this end, we apply in our setting Corollary 5.16 of [5] (with n = 2),
which assures that

√

u2 + v2 +
√

s2 + t2 ≥
√

(u + s)2 + (v + t)2

for all u, v, s, t ∈ R. More precisely, with u = a − x, v = b, s = x − c and t = d ,
we obtain
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AP + BP =
√

(a − x)2 + b2 +
√

(x − c)2 + d2

≥
√

((a − x) + (x − c))2 + (b + d)2

=
√

(a − c)2 + (b + d)2

= AB ′,

where B ′(c,−d) is the symmetric of B with respect to r . However, since BP =
B ′P , equality holds if and only if AP + B ′P = AB ′, i.e., if and only if points A,
P and B ′ are collinear. ��

The next example uses the formula for the distance between two points to
establish the nonexistence, in the cartesian plane, of equilateral triangles whose
vertices have integer coordinates. Yet with respect to this problem, a beautiful
theorem of Minkowski4 (cf. Problem 11, page 287) states that squares are the only
regular polygons, in the cartesian plane, all of whose vertices can have integer
coordinates.

Example 6.7 Does there exist, in the cartesian plane, points A, B, C of integer
coordinates and such that ABC is an equilateral triangle? Justify your answer!

Solution No! For the sake of contradiction, assume that A(xA, yA), B(xB, yB),
C(xC, yC), with xA, yA, xB , yB , xC , yC ∈ Z, was such a triple of points. Then,
on the one hand, according to Problem 11, we would have A(ABC) = m

2 , for some
m ∈ N.

On the other hand, by applying the result of Problem 4, page 156, together with
formula (6.4), we conclude that

A(ABC) = AB
2 ·

√
3

4
= [(xB − xA)2 + (yB − yA)2]

√
3

4
.

The two expressions obtained above for the area of ABC would then give

√
3 = 2m

(xB − xA)2 + (yB − yA)2
∈ Q,

which is a contradiction. ��
We finish this section by using formula (6.4) to analyse a certain locus which

generalizes the notion of perpendicular bisector of a line segment (in the notations
of the coming proposition, the perpendicular bisector amounts to the case k = 0).
By doing so, we complete the proof of Theorem 4.35.

4Hermann Minkowski, German mathematician of the nineteenth century.
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Proposition 6.8 Given a real number k and distinct points A and B in the plane,

the locus of the points P in the plane for which AP
2 − BP

2 = k2 is a line

perpendicular to
←→
AB . More precisely, if M is the midpoint of AB, then such a

line intersects
−→
MB at a distance k2

2AB
of M .

Proof Choose a cartesian system in which A(0, 0) and B(a, 0). If P(x, y), then a
straightforward application of the formula for the distance between two points of
the cartesian plane gives

AP
2 − BP

2 = k2 ⇔ (x2 + y2) − ((x − a)2 + y2) = k2

⇔ x = a2 + k2

2a
.

In turn, this last equality is the same as saying that P belongs to the vertical line

(thus, perpendicular to
←→
AB) formed by those points whose abscissas are equal to

a2+k2

2a
. ��

Problems: Sect. 6.1

1. * Given real numbers a and b, prove that points (a, b) and (−a,−b) of a
cartesian plane are symmetric with respect to the origin.

2. * We are given cartesian systems xOy and x ′O ′y ′, such that the x ′-axis is the
horizontal line y = y0 of the first cartesian system, whereas the y ′-axis is the
vertical line x = x0 of the first system. If a point A has coordinates (x, y) in the
first system and (x ′, y ′) in the second, show that x ′ = x − x0 and y ′ = y − y0.

3. In the cartesian plane, let P =
(

1
3 ,
√

2
)

. If A and B are distinct points of

integer coordinates, prove that AP 
= BP . Then, given n ∈ N, use this fact to
show that there exists a disk in the plane containing exactly n points of integer
coordinates.

4. Show that, in the cartesian plane, there are infinitely many regular polygons, of
pairwise distinct numbers of edges, and such that each of then contains exactly
2018 points of integer coordinates in its interior.

5. Let ABC be a triangle with sides AB = c, AC = b, BC = a. If ma is the
length of the median relative to BC, prove that

a2 + 4m2
a = 2(b2 + c2).

6. * If ABCD is a convex quadrilateral of diagonals AC and BD, and M and
N respectively denote the midpoints of them, we say that line segment MN

is Euler’s median of ABCD. Prove Euler’s median theorem: in the above
notations, we have

AB
2 + BC

2 + CD
2 + DA

2 = AC
2 + BD

2 + 4 MN
2
.
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7. If R stands for the circumradius of a triangle ABC of circumcenter O and
barycenter G, prove that

OG
2 = R2 − 1

9
( AB

2 + BC
2 + CA

2
).

8. (OIM) ABC is an equilateral triangle of side length 2 and incircle �. Given a
point P in �, show that:

(a) AP
2 + BP

2 + CP
2 = 5.

(b) AP , BP , CP are the sides of a triangle of area equal to
√

3
4 .

9. (Romania) Let m,n > 1 be given integers and A1, A2, . . . , An, B1, B2, . . . , Bm

be given points in the plane, with AiBj = √
i + j for 1 ≤ i ≤ n, 1 ≤ j ≤ m.

Prove that all of the Ai’s are collinear, all of the Bj ’s are collinear, and that the
two straightlines containing these sets of points are perpendicular.

10. * Given circles � and � in the plane, we say that � intersects � along a
diameter if � ∩ � = {A,B}, with AB being a diameter of �. Let two
nonconcentric circles �1 and �2 be given. Prove that the locus of the points
of the plane which are centers of circles that intersect both �1 and �2 along
diameters is the line symmetric to the radical axis of �1 and �2 with respect to
the midpoint of the line segment joining the centers of the circles.

11. * In the cartesian plane, let A1A2A3 be a triangle with vertices Ai(xi, yi), for
1 ≤ i ≤ 3. Show that

A(A1A2A3) = 1

2

∣

∣

∣

∣

∣

3
∑

i=1

(xiyi+1 − xi+1yi)

∣

∣

∣

∣

∣

.

Then, conclude that, in the cartesian plane, every triangle whose vertices have
integer coordinates has area at least 1

2 .
12. (IMO) Prove that, for every integer n > 2, there exists in the plane a set of n

points satisfying the two following conditions:

(a) The distance between any two of them is an irrational number.
(b) Each three of them are noncollinear and form a triangle of rational area.

Problems 13 to 18 are devoted to the proof of the famous Theorem of Pick5

on simple polygons in the cartesian plane having lattice points (i.e., points of
integer coordinates) as vertices. We follow Essay 5 of the beautiful [15], to
which we refer for more details.

13. * Let A, B and C be noncollinear lattice points in the cartesian plane. If
A(ABC) = 1

2 , show that ABC does not contain other lattice points, either
along its sides or in its interior.

5Georg A. Pick, Austrian mathematician of the nineteenth and twentieth centuries.
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We now need to generalize the concept of convex polygon, in the following
way: we say that P = A1A2 . . . An, with n ≥ 3, is a simple polygon of n

edges, or simply an n-gon, if the following conditions are satisfied (under the
convention that A0 = An and An+1 = A1):

(a) points A1, A2, . . . , An are pairwise distinct.
(b) line segments AiAi+1 and AjAj+1 intersect if and only if |i − j | ≤ 1.
(c) for 1 ≤ i ≤ n, points Ai−1, Ai and Ai+1 are not collinear.

We shall assume without proof that P divides the plane in two regions, exactly
one of which is bounded6; in turn, such a bounded region is called the interior
of P . For 1 ≤ i ≤ n, the interior angle of P at vertex Ai is the angle


 Ai−1AiAi+1, of vertex Ai , sides
−→

AiAi−1 and
−→

AiAi+1 and which intersects
the interior of P .

14. * The purpose of this problem is to show that any simple n-gon P can be
partitioned into n − 2 triangles by drawing diagonals which intersect only at
vertices of P . To this end, do the following items:

(a) Choose a cartesian system in which no edge of P is parallel to the ordinate
axis. Show that exactly one point in the boundary of P has maximum
abscissa, and that it is one of the vertices of the n-gon.

(b) From now on, let A denote the vertex of P whose existence was established
in (a), and B and C be the vertices of P adjacent to A. If BC ⊂ P , write
P = ABC ∪ P ′; then, apply an adequate inductive hypothesis to P ′ to
obtain the desired result.

(c) If BC 
⊂ P , show that there exists a vertex D of P lying in the interior of
ABC with maximum abscissa. Conclude that AD ⊂ ABC.

(d) By cuttingP along AD, show that we get a partitionP = P ′∪P ′′, with both
P ′ and P ′′ having fewer edges that P . Then, apply an adequate inductive
hypothesis to P ′ and P ′′ to obtain the desired result also in this case.

15. If P is a simple n-gon, show that:

(a) The sum of the measures of its internal angles is equal to 180◦(n − 2).
(b) If P is partitioned into n − 2 triangles as in the previous problem, then the

sum of the areas of these triangles do not depend on the way the partition
was carried out.

Note that item (b) of the previous problem allows us to define the area of a
simple n-gon P as the sum of the areas of the n − 2 triangles obtained from a
partition of P as in Problem 14.

16. If A, B and C are noncollinear lattice points, such that ABC does not contain
other lattice points neither in its interior nor along its edges, we shall say that

6A proof of this result is beyond the scope of these notes. It is known as the Jordan curve theorem,
in honor of its discoverer, the French mathematician of the nineteenth century Camille Jordan.
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ABC is a fundamental triangle in the cartesian plane. This being said, do the
following items:

(a) Show that every triangle whose vertices are lattice points can be partitioned
into fundamental triangles.

(b) For the remaining items, let P be a simple n-gon in the cartesian plane,
with lattice points as vertices.

i. Show that P can be partitioned into fundamental triangles.
ii. Assume that P has been partitioned into k fundamental triangles, and

let I and B stand for the numbers of points of integer coordinates lying
respectively in the interior and along the edges of P . Show that the sum
of the interior angles of these k fundamental triangles is equal to

180◦(n − 2) + 180◦(B − n) + 360◦I,

iii. Conclude that k = B + 2I − 2, so that k does not depend on the way
the partition was carried out.

17. Let ABC be a fundamental triangle in the cartesian plane, and R be the smallest
rectangle with sides parallel to the cartesian axes and containing ABC.

(a) Show that A, B, C lie along the edges of R, so that its vertices are lattice
points.

(b) If R has area S, show that it can be partitioned into 2S fundamental
triangles, one of which is ABC.

(c) Show that A(ABC) = 1
2 .

18. Prove Pick’s theorem: if P is a simple polygon in the cartesian plane, with
lattice points as vertices, then

A(P) = I + B

2
− 1,

where A(P) stands for the area of P and I and B denote the numbers of lattice
points respectively in the interior and along the edges of P .

19. Given a positive integer n, a square of side length n covers (n + 1)2 lattice
points if its vertices are also lattice points and its sides are parallel to the axes.
Prove that, no matter how the square is situated in the cartesian plane, it covers
at most (n + 1)2 points of integer coordinates.

6.2 Lines and Circles

As we have previously stressed, in all that follows we assume a cartesian system
of coordinates given in the plane. In this section, we study the problem of how to
algebraically represent straightlines and circles in such a system. In what concerns
lines, we have the following fundamental result.
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O x

y

r

A(a, b)

B(x, y)

Fig. 6.6 A line in the cartesian plane not passing through the origin

Theorem 6.9 Every straightline in the cartesian plane can be sees as the set of
points (x, y) satisfying an equation of the form

ax + by + c = 0, (6.5)

with a, b and c being real numbers such that a 
= 0 or b 
= 0.

Proof Let O be the origin and r be a line in the plane. We first assume that O /∈ r .
If A(a, b) is the foot of the perpendicular dropped from O to r (cf. Fig. 6.6), it is
clear that a point B(x, y) lies in r if and only if ÔAB = 90◦. In turn, Pythagoras’
theorem and its converse assure that

(x, y) ∈ r ⇔ OA
2 + AB

2 = OB
2

⇔ (a2 + b2) + [(x − a)2 + (y − b)2] = x2 + y2

⇔ ax + by − (a2 + b2) = 0,

with (thanks to O /∈ r) a 
= 0 or b 
= 0. It thus follows that r is the set of solutions
(x, y) of equation ax + by + c = 0, with c = −(a2 + b2).

Let us now suppose that O ∈ r (cf. Fig. 6.7) and, on the perpendicular to r drawn
through O , mark any point A(a, b), distinct from O itself. As in the first case, a point
B(x, y) lies in r if and only if ÂOB = 90◦. Hence, again from Pythagoras’ theorem
and its converse, we have

(x, y) ∈ r ⇔ OA
2 + OB

2 = AB
2

⇔ (a2 + b2) + (x2 + y2) = [(x − a)2 + (y − b)2]
⇔ ax + by = 0.
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O x

y

r

A(a, b)B(x, y)

Fig. 6.7 A line in the cartesian plane passing through the origin

Finally, since A /∈ r , we have a 
= 0 or b 
= 0, so that r is the set of solutions (x, y)

of equation ax + by + c = 0, with c = 0. ��
In the notations of the previous result, we say that (6.5) is the linear equation of

the straightline r , which we indicate by writing

r : {ax + by + c = 0}.

The term linear here refers to the fact that ax+by+c is a first degree real polynomial
in x and y.

Remark 6.10 For every real k 
= 0, it is of course also licit to say that

(ka)x + (kb)y + (kc) = 0

is the linear equation of the straightline r . Actually, it is not difficult to algebraically
verify that every linear equation of r is of this form. More precisely, let a′, b′ and c′
be real numbers, with at least one of a′ and b′ being nonzero; if the solution set of
a′x+ b′y+ c′ = 0 is r , then there exists a nonzero real number k such that a′ = ka,
b′ = kb and c′ = kc. Indeed, this follows from the fact that the linear system of
equations

{

ax + by = −c

a′x + b′y = −c′ .

has infinitely many solutions if and only if a′ = ka, b′ = kb and c′ = kc, for some
nonzero k (see Section 2.4 of [5], for instance).

Henceforth, we shall use the above remark without further comments.
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O
x

y

r

(ka, kb)

s
(x0, y0)

Fig. 6.8 Every linear equation in x and y does represent a line

We now collect a few consequences of Theorem 6.9, which will shed light on the
relations between the linear equation of a straightline and its position in the cartesian
plane.

Corollary 6.11 Let r be a line in the cartesian plane, with linear equation ax +
by + c = 0. If s is the perpendicular to r passing through the origin, then s has
linear equation −bx + ay = 0.

Proof According to the previous theorem, line s has a linear equation of the form
cx+dy = 0, for some c, d ∈ R, not both zero. However, since r has linear equation
ax+by+c = 0, the proof of Theorem 6.9 assures that (a, b) ∈ s. Hence, ca+db =
0 and, by the remark above, we can take c = −b and d = a. ��

Let us establish the converse of Theorem 6.9.

Corollary 6.12 If a, b and c are given real numbers, with a 
= 0 or b 
= 0, then the
solution set of equation ax + by + c = 0 is a line in the cartesian plane.

Proof Suppose that c 
= 0, the analysis of the case c = 0 being totally analogous.
Choose an arbitrary solution x = x0, y = y0 of equation ax + by + c = 0, so that
ax0+by0+c = 0. If s is the line passing through (0, 0) and (a, b), then it has linear
equation−bx+ay = 0. Let r be the line passing through (x0, y0) and perpendicular
to s, say at point (ka, kb) (cf. Fig. 6.8. It is pretty straightforward to show that all
points on s are of this form). By the previous corollary, r has a linear equation of the
form (ka)x+(kb)y+c′ = 0, for some c′ ∈ R, or also ax+by+c′′ = 0, with c′′ = c′

k
(since c 
= 0, we have (0, 0) /∈ r , so that k 
= 0). However, since (x0, y0) ∈ r , we
have ax0 + by0 + c′′ = 0, and it follows from what we did above that

c′′ = −ax0 − by0 = c.

Thus, ax + by + c = 0 is a linear equation of r . ��
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Thanks to the previous corollary, whenever convenient, hereafter we shall refer
to a linear equation ax + by + c = 0, with a 
= 0 or b 
= 0, simply as a line. We
then notice that a line ax + by + c = 0 is vertical in the chosen cartesian plane if
and only if b = 0. Hence, if a line r of equation ax + by + c = 0 is not vertical,
then we can write it as y = − a

b
x − c

b
or, more succinctly (writing a in place of − a

b

and b in place of − c
b

), as

y = ax + b. (6.6)

Setting x = 0 in the equation above, we see that r intersects the ordinate axis
at the point (0, b); also, we shall prove in Proposition 7.12 that the coefficient a

is intimately related with the angle formed by r and the horizontal axis. For this
reason, one usually refers to (6.6) as the slope-intercept equation of r .

We now apply the comments above to present the usual necessary and sufficient
condition for the parallelism of two straightlines in terms of their slope-intercept
equations.

Proposition 6.13 In the cartesian plane, two non vertical lines r and s are parallel
if and only if have slope-intercept equations of the form y = ax+b and y = ax+b′,
for some real numbers a, b and b′, with b 
= b′.

Proof First assume that r ‖ s, with r of equation y = ax + b or, which is the same,
ax − y + b = 0. Corollary 6.11 assures that line t , of equation x + ay = 0 is
perpendicular to r . Now, since r ‖ s, we also have s⊥t , so that a further application
of Corollary 6.11 guarantees that s has linear equation of the form ax − y + b′ = 0,
for some b′ ∈ R.

Conversely, if r and s have slope-intercept equations of the forms y = ax+b and
y = ax + b′, with b 
= b′, it is immediate to see that the linear system of equations

{

y = ax + b

y = ax + b′

does not have solutions, so that r ‖ s (in this respect, see also Problem 5). ��
We finish the study of lines in the cartesian plane by establishing the usual

necessary and sufficient condition for the perpendicularity of two straightlines. We
shall only look at the nontrivial case in which none of the two lines is either vertical
or horizontal.

Proposition 6.14 Two non vertical lines r and s, of slope-intercept equations y =
ax + b and y = a′x + b′, are perpendicular if and only if aa′ = −1.

Proof We know from Corollary 6.11 that line t of equation x + ay = 0 (or,
equivalently, y = − 1

a
x) is perpendicular to r . On the other hand, since r⊥s ⇔ t ‖ s,

the previous proposition assures that r⊥s if and only if t has slope-intercept equation
of the form y = a′x + c, for some c ∈ R. Since c = 0 (for t passes through the
origin) and t has slope-intercept equation y = − 1

a
x, we conclude that t has equation

y = a′x if and only if a′ = − 1
a

, i.e., if and only if aa′ = −1. ��
The coming example exercises the results of Propositions 6.13 and 6.14.
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x

y

A(0, a)

B(b,0) C(c,0)

Fig. 6.9 The orthocenter of a triangle through the analytic method

Example 6.15 We are given in the cartesian plane line r , of equation 2x−3y+√
2 =

0, and point A(2,−1). Find the equations of lines s and t , which pass through A and
are such that s ‖ r and t⊥r .

Solution Since r has slope-intercept equation y = 2
3x +

√
2

3 , Propositions 6.13
and 6.14 assure that the corresponding equations for s and t are y = 2

3x + c and
y = − 3

2x + d , respectively, with c, d ∈ R being chosen in such a way that A ∈ s, t .
Substituting the coordinates of A in the equations for s and t , we obtain c = − 7

3
and d = 2. ��

We now present yet another instance on how one can profitably use the analytic
method in Euclidean Geometry, in the spirit of Example 6.4.

Example 6.16 Prove that, in every triangle, the three altitudes pass through a single
point.

Proof Let ABC be a given (without loss of generality) non right triangle. Choose
a cartesian system in which A(0, a), B(b, 0) and C(c, 0), with b, c 
= 0 and b 
= c

(cf. Fig. 6.9). One of the altitudes of ABC is the ordinate axis. In order to obtain the

equations of the other two altitudes, we shall first get the equations of lines
←→
AB and

←→
AC ; for the sake of simplicity, we shall resort to the result of Problem 6, according
to which:

←→
AB :

{x

b
+ y

a
= 1

}

and
←→
AC :

{x

c
+ y

a
= 1

}

or, which is the same,
←→
AB : {y = − a

b
x + a} and

←→
AC : {y = − a

c
x + a}.

Letting r and s denote the lines containing the altitudes of ABC through B and
C, respectively, Proposition 6.14 gives

r :
{

y = c

a
x + β

}

and s :
{

y = b

a
x + γ

}

,
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with β, γ ∈ R such that B ∈ r and C ∈ s. Substituting the coordinates of B and C

in the equations above, we obtain β = γ = − bc
a

, so that

r : {ay = cx − bc} and s : {ay = bx − bc} .

Finally, the solution of the linear system

{

ay = cx − bc

ay = bx − bc

gives the coordinates of the point H of intersection of r and s. Since b 
= c, it is
clear from the system that x = 0, i.e., point H also belongs to the altitude of ABC

passing through A. ��
A direct application of formula (6.4) allows us to look at circles in the cartesian

plane. To this end, recall that the circle �(C;R) is defined as the set of points A

whose distance from the center C is equal to R.
Given in the plane a cartesian system of coordinates as in Fig. 6.10, let C(x0, y0)

and A(x, y) be any point. It follows from (6.4) that

A ∈ � ⇔ AC = R ⇔ AC
2 = R2

⇔ (x − x0)
2 + (y − y0)

2 = R2

⇔ x2 + y2 − 2x0x − 2y0y + (x2
0 + y2

0 − R2) = 0.

Therefore, we say that

x2 + y2 − 2x0x − 2y0y + (x2
0 + y2

0 − R2) = 0 (6.7)

is the equation of the circle of center C and radius R.

O x

y
Γ

C(x0, y0)

A(x, y)

Fig. 6.10 The equation of a circle in the cartesian plane
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Conversely, it is natural to ask whether every equation of the form

x2 + y2 + ax + by + c = 0, (6.8)

has, as solution set in the cartesian plane, the set of points of a circle. We shall now
see that, apart from the case in which there is at most one solution (x, y) for such an
equation, the answer is yes! To this end, we start by completing squares in x2 + ax

and y2 + by to obtain

x2 + y2 + ax + by + c =

=
(

x2 + 2 · a

2
x + a2

4

)

+
(

y2 + 2 · b

2
x + b2

4

)

+
(

c − a2

4
− b2

4

)

=
(

x + a

2

)2 +
(

y + b

2

)2

+
(

c − a2

4
− b2

4

)

.

Hence, (6.8) is equivalent to the equation

(

x −
(

−a

2

))2 +
(

y −
(

−b

2

))2

= a2 + b2

4
− C.

Letting C
(− a

2 ,− b
2

)

, it follows from the relation above, together with formula (6.4)
for the distance between two points in the cartesian plane, that the set of points
A(x, y) satisfying (6.8) coincides with the set

{

A; AC
2 = a2 + b2

4
− c

}

.

Then, there are three possibilities:

• a2+b2

4 − c < 0: since the square of a real number is always nonnegative, in this

case there is no point A such that AC
2 = a2+b2

4 − c, and the set of points is
empty.

• a2+b2

4 − c = 0: any solution A(x, y) of the given equation must be such that

(

x −
(

−a

2

))2 +
(

y −
(

−b

2

))2

= 0,

whence x = − a
2 and y = − b

2 , i.e. A = C. Therefore, in this case the set of
points consists of a single element.

• a2+b2

4 − c > 0: the desired points A are those for which

AC =
√

a2 + b2

4
− c,
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i.e., the solution set of (6.8) is the circle of center C
(− a

2 ,− b
2

)

and radius R =
√

a2+b2

4 − c.

The above discussion has proved the following

Theorem 6.17 In the cartesian plane, equation

x2 + y2 + ax + by + c = 0

represents the empty set, a single point or a circle, according to whether a2+b2

4 − c

is negative, zero or positive, respectively. Moreover, in the last case the center of the

circle is the point
(− a

2 ,− b
2

)

and its radius is equal to
√

a2+b2

4 − c.

If we are given an equation of the form (6.8), the easiest way to find out whether
it represents an empty set, a single point or a circle is to reconstruct the steps of the
proof of the above result. Note also that, upon doing this, in the case of a circle we
will eventually find its center and radius. In any event, for a specific equation this
procedure is quite simple: it suffices to complete squares! Let us take a look at an
example.

Example 6.18 Identify the set of points (x, y) of the cartesian plane that satisfy
equation x2 + y2 − 2x + 6y + 5 = 0.

Proof It suffices to successively write

x2 + y2 − 2x + 6y + 5 = (x2 − 2x + 1)+ (y2 + 6y + 32) − 5

= (x − 1)2 + (y + 3)2 − 5

to conclude that the desired set of points is

{(x, y); (x − 1)2 + (y − (−3))2 = √
5

2},

i.e., the circle of center (1,−3) and radius
√

5. ��
The next example illustrates once more how one can use the analytical method

in establishing results in Plane Euclidean Geometry.

Example 6.19 ABC is an isosceles triangle of equal sides AC and AB. If M is the
midpoint of basis BC, prove analytically that AM⊥BC.

Proof Let AB = AC = a and BC = b. Choose a cartesian system in which
B(0, 0), C(b, 0) and A lies in the first quadrant (cf. Fig. 6.11). Corollary 6.2 gives
M

(

b
2 , 0

)

. On the other hand, since AB = a, vertex A lies in the circle of center B

and radius a; analogously, A is in the circle of center C and radius a, and is the only
point that satisfies both these conditions.

Hence, the coordinates of A form the single solution (x, y), with y > 0 (for A

is located in the first quadrant), of the system formed by the equations of the above
circles, namely,



200 6 The Cartesian Method

x

y

B C(b,0)M

aa

A

Fig. 6.11 Median relative to the basis of an isosceles triangle

{

x2 + y2 = a2

(x − b)2 + y2 = a2 .

In order to solve such a system, we expand the left hand side of the second
equation and, then, subtract the first equation from the result. By proceeding this
way, we arrive at the equality −2bx + b2 = 0, so that x = b

2 . This already
suffices to establish the desired result: since A and M both have abscissas equal

to b
2 , we conclude that

←→
AM is a vertical line. Therefore,

←→
AM is perpendicular to the

horizontal axis and, hence, to the side BC. ��

Problems: Sect. 6.2

1. * Given real numbers a and b, prove that points A(a, b) and B(b, a) of the
cartesian plane are symmetric with respect to the bisector of odd quadrants.

2. * We are given points A(a, b), B(c, d) and the vertical line r , formed by the
points of the cartesian plane whose abscissas are equal to x0. Prove that A and
B are symmetric with respect to r if and only if b = d and x0 = a+c

2 .
3. * We are given points A(a, b), B(c, d) and the horizontal line r , formed by the

points of the cartesian plane whose ordinates are equal to y = y0. Prove that A

and B are symmetric with respect to r if and only if a = c and y0 = b+d
2 .

4. * In a cartesian system with origin O , we have points A(a, b) and B, with A

lying in the first quadrant and B in the second. If ÂOB = 90◦ and OA = OB,
prove that B(−b, a).

5. * Let a, b, c, d be given real numbers, with a2 + b2, c2 + d2 > 0. Give a
geometric interpretation of the application of gaussian elimination (cf. Section
2.4 of [5], for instance) to the linear system
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{

ax + by = e

cx + dy = f
.

More precisely, show that the system of equations above is possible determined,
possible undetermined or impossible, according to whether the straightlines of
equations ax + by = e and cx + dy = f are respectively concurrent, parallel
or coincident (i.e., equal).

6. * Let x0 and y0 be nonzero real numbers. Show that the equation of the line
passing through (x0, 0) and (0, y0) is x

x0
+ y

y0
= 1.

7. We are give real numbers a, b and c, with c > 0. Compute the area of the
bounded region of the cartesian plane whose boundary is formed by the ordered
pairs (x, y) for which |x − a| + |y − b| = c.

8. * Give distinct points A and B in the cartesian plane, let Pt = (1 − t)A + tB,
with t ∈ R.

(a) Prove that Pt ∈
←→
AB and, for every P ∈ ←→

AB , there exists a unique t ∈ R

such that P = Pt .

(b) Discuss the position of Pt along
←→
AB in terms of the value of t .

The above description of the points of line
←→
AB is usually referred to as the

parametric equation of
←→
AB , with parameter t .

9. * In the cartesian plane, we are given a triangle ABC and points P , Q and R,

lying in the lines
←→
BC ,

←→
CA and

←→
AB , respectively, and all of them distinct from

A, B and C. According to the result of the previous problem, we can write

P = (1 − s)B + sC, Q = (1 − t)C + tA, R = (1 − u)A + uB, (6.9)

for some s, t, u ∈ R. Prove the following analytic versions of the theorems of
Ceva and Menelaus (cf. Theorems 4.22 and 4.25):

(a) Lines
←→
AP ,

←→
BQ and

←→
CR are concurrent if and only if

stu = (1 − s)(1 − t)(1 − u).

(b) Points P , Q and R are collinear if and only if

stu = −(1 − s)(1 − t)(1 − u).

10. Given distinct points B and C, let P and Q be points on line
←→
BC , distinct from

B and C and such that P = (1 − s)B + sC and Q = (1 − t)B + tC. Prove
that P and Q are harmonic conjugates with respect to B and C (cf. Problem 5,
page 136) if and only if 1

s
+ 1

t
= 2.
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11. In the cartesian plane, let ABC be the triangle with vertices A(0, 0), B(2, 1) and
C(1, 5). Find the coordinates of the point P such that the sum of the squares
of the distances from P to the vertices of ABC is as small as possible, and
compute the corresponding minimum sum.

12. * In the cartesian plane, let � be the circle of equation x2 + y2 = 1 and r be
the straightline of equation ax+ by = c, with a and b being given nonzero real
numbers and c being a real variable. Among all lines r that intersect �, find the
one with the largest possible value of c. Then, use the obtained result to give
another proof of Cauchy’s inequality (cf. Theorem 5.13 of [5], for instance) for
n = 2.

13. We are given in the plane a circle � and a point A, exterior to the disk bounded
by �. Show how to draw through A a line r intersecting � at points B and
P , such that P is the midpoint of AB. Under what circumstances is there a
solution?

14. Given a positive real number k and distinct points A and B in the plane, find

the locus of points P for which AP
2 + BP

2 = k2.
15. Give another proof of Theorem 4.16, this time using the cartesian method.

6.3 A First Look on Conics

In this section we will study the most elementary properties of conics, namely,
ellipses, hyperbolas and parabolas. As we shall see in Sect. 10.4, the name conic
comes from the fact that those curves can be obtained as the intersections of a
circular right cone with planes in specific positions.

Four our purposes, the following definition of conic will suffice.

Definition 6.20 Let a point F and a straightline d be given in the plane, with F /∈ d;
let a real number ε > 0 be also given.7 The conic of focus F , directrix d and
eccentricity ε is the plane curve formed by all points P such that

PF = ε · dist(P ; d), (6.10)

where dist(P ; d) stands for the distance from P to d . The parameter of the conic
is the distance p from F to d .

We can identify the points of a conic by invoking the cartesian method. In the
notations above, we choose a cartesian system in which F(c, 0) and d has equation
x = x0, with x0 > c, so that p = x0 − c (see Fig. 6.12, where, for the sake of
convenience, we have taken c > 0 and have sketched a portion of a conic, in order
to ease the reader’s understanding).

7This is the lowercase Greek letter epsilon.
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O x

y

F(c,0)

P(x, y)

d

P0(x0, y)

A

p

Fig. 6.12 The conic of focus F , directrix d and eccentricity ε

Let C denote the conic of focus F , directrix d and eccentricity ε. For A(a, 0),
with c < a < x0, to lie in C, we must have a − c = ε(x0 − a), whence a = εx0+c

1+ε
.

Therefore, one of the points of C is

A

(

εx0 + c

1 + ε
, 0

)

. (6.11)

More generally, by taking any point P(x, y) of the cartesian plane (plotted at the
left of d in Fig. 6.12, for the sake of convenience), we have

P ∈ C ⇔ PF = ε · dist(P ; d)

⇔
√

(x − c)2 + y2 = ε|x − x0|
⇔ (x − c)2 + y2 = ε2(x − x0)

2

⇔ x2 − 2cx + c2 + y2 = ε2(x2 − 2x0x + x2
0)

⇔ (1 − ε2)x2 + 2(ε2x0 − c)x + y2 = (εx0)
2 − c2.

(6.12)

We first deal with the case of a conic of eccentricity ε = 1, which is called a
parabola. In such a case, equation (6.12) reduces to 2(x0 − c)x + y2 = x2

0 − c2 or,
which is the same, to

x = − 1

2(x0 − c)
y2 + x0 + c

2
.
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O x

y

F (c, 0)

P

k

d : {x=x0}

P0
k

A

p

Fig. 6.13 Parabola of focus F(c, 0), directrix d and parameter p

Recalling that p = x0 − c is the parameter of the parabola and writing x0 + c =
p + 2c, the equation above turns into

x = − 1

2p
y2 + x0 + p

2
+ c. (6.13)

Figure 6.13 sketches the parabola of focus F(c, 0), with c > 0, directrix d and
parameter p by looking at it through its definition, namely, as the set of points P in
the cartesian plane that are at the same distance from F and d .

Changing the roles of x and y in (6.13) (which amounts to a reflection of the
coordinate axes along line x = y) we obtain, for our parabola, equation

y = − 1

2p
x2 + p

2
+ c,

with focus F(0, c) and directrix d : {y = x0}. Inverting the positive orientation of
the y-axis (which is equivalent to changing y by −y in the equation above, we arrive
at the equation

y = 1

2p
x2 −

(p

2
+ c

)

; (6.14)

now, the focus is F(0,−c) and the directrix is the line d : {y = −x0}.
If we translate the x-axis to the position of the line y = α, we get a cartesian

system in which the new ordinate y ′ relates to the old one by means of y ′ = y − α.
The focus now is F(0,−c − α), while the directrix is the straightline d : {y =
−x0 − α}. In this new system, the equation of the parabola is obtained from (6.14)
changing y by y ′ + α. Since the name we give to the variable is irrelevant, we shall
simply write y + α in place of y in (6.14), thus arriving at the equation
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x

y

F

d : {y = − p
2}

A
p

Fig. 6.14 The canonical form of a parabola

y + α = 1

2p
x2 −

(p

2
+ c

)

.

Finally, choosing α = − (p
2 + c

)

, we obtain the canonical form

y = 1

2p
x2 (6.15)

of the equation of the parabola, with respect to which the focus is F
(

0,
p
2

)

and the
directrix is the horizontal line of ordinate

−x0 − α = −(p + c) +
(p

2
+ c

)

= −p

2
,

as should be the case. At this point, the situation is that of Fig. 6.14.
It is obvious from (6.15) that the parabola is symmetric with respect to the line

x = 0, which is called its axis. For future reference, the point A(0, 0) is the vertex.
Before we move on to eccentricities 0 < ε 
= 1, we point out that (6.15) is the

graph of the second degree function x �→ 1
2p

x2. Actually, as Problem 7 shows,
every such graph is a parabola.

We now turn to the case 0 < ε 
= 1. Our strategy will be to try to change
the cartesian system in order to simplify (6.12), and hence to better understand the
properties of C.

By translating the ordinate axis to the position of line x = α, we obtain a new
cartesian system x ′O ′y ′, in which the new coordinates (x ′, y ′) of a point relate to
the old ones, say (x, y), by x ′ = x−α and y ′ = y (see Problem 2, page 188). Hence,
the equation of C in this new system is obtained from (6.12), by writing x ′ + α in
place of x:
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(1 − ε2)(x ′ + α)2 + 2(ε2x0 − c)(x ′ + α) + y2 = (εx0)
2 − c2. (6.16)

For the sake of simplicity (and since we are just trying to get a better glimpse on
C), writing x in place of x ′ (after all, the name given to the variable is irrelevant!)
and expanding (6.16)), we conclude that the coefficient of x in the equation of C in
the new cartesian system is 2(1 − ε2)α + 2(ε2x0 − c); therefore, we can make it
equal to 0 by choosing

α = −ε2x0 − c

1 − ε2 .

Upon doing so, (6.16) becomes

(1 − ε2)x2 + (1 − ε2)α2 + 2(ε2x0 − c)α + y2 = (εx0)
2 − c2,

or, substituting the value of α,

(1 − ε2)x2 + (ε2x0 − c)2

1 − ε2
− 2

(ε2x0 − c)2

1 − ε2
+ y2 = (εx0)

2 − c2.

After simplifying the last expression above and replacing x0 − c by p, we finally
arrive at the equation

(1 − ε2)x2 + y2 = ε2p2

1 − ε2 . (6.17)

Now, note that, in the new cartesian system, we have F(c − α, 0) and d : {x =
x0 − α}, with

c − α = c + ε2x0 − c

1 − ε2 = ε2p

1 − ε2

and

x0 − α = x0 + ε2x0 − c

1 − ε2 = p

1 − ε2 .

As we did before, for the sake of simplicity we shall henceforth write simply F(c, 0)

and d : {x = x0}, with

c = ε2p

|1 − ε2| and x0 = p

|1 − ε2| . (6.18)
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Notice that (6.17) remains unchanged if we replace c and x0 respectively by −c

and −x0. Hence, had we begun our computations in (6.12) taking F ′(−c, 0) and
d ′ : {x = −x0}, we would have arrived at the same equation (6.17), and it would
be equally fair to call F ′ and d ′ respectively the focus and the directrix of the conic
C. Therefore, in the new cartesian system C has foci F1(−c, 0) and F2(c, 0), and
directrices d1 : {x = −x0} and d2 : {x = x0}, with c and x0 given as in (6.18).

Dividing both sides of (6.17) by ε2p2

1−ε2 , that equation turns into

x2

(

εp

|1−ε2|
)2 ± y2

(

εp√
|1−ε2|

)2 = 1,

with the chosen sign being + or −, according to whether 0 < ε < 1 or ε > 1,
respectively. (Check this claim!) Letting

a = εp

|1 − ε2| and b = εp
√|1 − ε2| (6.19)

and looking separately at the cases 0 < ε < 1 and ε > 1, we obtain

a2 ∓ b2 = ε2p2

(1 − ε2)2 ∓ ε2p2

|1 − ε2|

= ε2p2

(1 − ε2)2 (1 ∓ |1 − ε2|)

= ε4p2

(1 − ε2)2 = c2.

(6.20)

Hence, the equation of C takes the form

x2

a2 ± y2

b2 = 1, (6.21)

with the chosen sign being + or −, according to whether 0 < ε < 1 or
ε > 1, respectively. Equation (6.21) is said to be the canonical form of a conic
of eccentricity ε 
= 1.

We summarize part of the above discussion in the following

Theorem 6.21 Every conic of eccentricity ε 
= 1 has two foci F1 and F2, two
directrices d1 and d2 and satisfies the following properties:

(a) d1 and d2 are parallel lines, perpendicular to
←→
F1F2 and symmetric with respect

to the midpoint of F1F2.

(b) The conic is symmetric with respect to
←→
F1F2, to the perpendicular bisector of

F1F2 and to the midpoint of F1F2.
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Proof The first part follows from what we did before. For what is left, choose
the cartesian system in such a way that the foci are F1(−c, 0) and F2(c, 0), the
directrices are d1 : {x = −x0} and d1 : {x = −x0} and the equation of the conic has
the form (6.21), with a, b, c and x0 given in terms of p and ε as before.

(a) Immediate from the above.
(b) Since (6.21) remains unchanged if we replace x by −x or y by −y, Problem 2,

page 200, assures that the conic is symmetric with respect to the line y = 0,
which is the perpendicular bisector of F1F2, and problem 3, page 200, assures
that the conic is symmetric with respect to the line x = 0, which coincides with
←→
F1F2. Finally, being symmetric relatively to two perpendicular lines, it is also
symmetric with respect to their intersection point, which is exactly the midpoint
of F1F2.

��
In the notations of the statement of the previous theorem, we say that the

midpoint O of F1F2 is the center of the conic, and that a conic of eccentricity
ε 
= 1 is central.

From now on, we specialize our discussion, looking separately at the cases 0 <

ε < 1 and ε > 1.
A conic of eccentricity 0 < ε < 1 is called an ellipse. In the notations of the

previous discussion (and in the chosen cartesian system), our ellipse has equation

x2

a2 + y2

b2 = 1, (6.22)

with

a = εp

1 − ε2 , b = εp√
1 − ε2

(6.23)

and p being the parameter of the ellipse. In particular, it immediately follows that
a > b and that the ellipse passes through the points A1(−a, 0), A2(a, 0), B1(0,−b)

and B2(0, b). The line segments A1A2 and B1B2 are called the major axis and the
minor axis of the ellipse (6.22).

Since
∣

∣
x
a

∣

∣ ≤ 1 and
∣

∣
y
b

∣

∣ ≤ 1 for any point (x, y) in the ellipse, we conclude that it
is entirely contained in the rectangle with edges parallel to the coordinate axes and
passing through A1, A2, B1 and B2. Figure 6.15 presents the approximate geometric
shape of the ellipse of equation (6.22). This will be justified by Theorem 6.22 below.

From (6.18), the ellipse of equation (6.22) has foci F1(−c, 0) and F2(c, 0) and
directrices d1 : {x = x0} and d2 : {x = −x0}, with

c = ε2p

1 − ε2
and x0 = p

1 − ε2
;
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O x

y

A1 A2

B1

B2

F1 F2

a
b

c

d1 : {x=−x0} d2 : {x=x0}

P0
k

p

Fig. 6.15 Axes, foci and directrices of the ellipse x2

a2 + y2

b2 = 1

hence,

c

a
= a

x0
= ε.

Thus, c < a < x0, so that F1, F2 ∈ A1A2 but d1 and d2 do not intersect A1A2.
The length F1F2 = 2c is called the focal distance of the ellipse. Finally, it follows
from (6.20) that

a2 = b2 + c2. (6.24)

As promised above, we now prove a result which will provide us with an accurate
idea of the geometric shape of an ellipse. It also presents an ellipse as the solution
of another locus problem.

Theorem 6.22 Given real numbers a > c > 0, let b = √
a2 − c2. The ellipse of

major axis A1A2 = 2a, minor axis B1B2 = 2b and focal distance F1F2 = 2c

coincides with the locus of points P in the plane for which

PF1 + PF2 = 2a. (6.25)

Proof Choose a cartesian system in which F1(−c, 0) and F2(c, 0), and let P(x, y)

(cf. Fig. 6.16). Then, formula (6.4) for the distance between two points guaran-
tees that
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Fig. 6.16 An ellipse as the
locus of points whose sum of
distances to the foci is
constant

O x

y

F1 F2c

P(x,y)

PF1 + PF2 = 2a ⇔
√

(x + c)2 + y2 +
√

(x − c)2 + y2 = 2a

⇔
√

(x + c)2 + y2 = 2a −
√

(x − c)2 + y2

⇒ (x + c)2 + y2 = [2a −
√

(x − c)2 + y2]2

⇔ (x + c)2 + y2 = 4a2 − 4a

√

(x − c)2 + y2 + (x − c)2 + y2

⇔ a

√

(x − c)2 + y2 = a2 − cx

⇒ a2[(x − c)2 + y2] = (a2 − cx)2

⇔ (a2 − c2)x2 + a2y2 = a2(a2 − c2)

⇔ b2x2 + a2y2 = a2b2

⇔ x2

a2 + y2

b2 = 1.

We thus conclude that every point P that satisfies relation PF1+PF2 = 2a belongs

to the ellipse x2

a2 + y2

b2 = 1.
Conversely, if we take a point P(x, y) in such an ellipse, we shall conclude that

PF1 + PF2 = 2a if we are able to show that, in the sequence of implications and
equivalencies above, the implications are actually equivalencies. To this end, note

that x2

a2 + y2

b2 = 1 implies (as we already know!) |x| ≤ a, so that a2−cx ≥ a2−ca =
a(a − c) > 0. Hence,

a2[(x − c)2 + y2] = (a2 − cx)2 ⇔ a

√

(x − c)2 + y2 = |a2 − cx|

⇒ a

√

(x − c)2 + y2 = a2 − cx,
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and we have succeeded in transforming the second implication above into an
equivalence. In order to assure that the first implication is also an equivalence, note
firstly that the equality (x + c)2 + y2 = [2a −√

(x − c)2 + y2]2 is equivalent to

√

(x + c)2 + y2 = |2a −
√

(x − c)2 + y2|.

Hence, if we show that 2a − √

(x − c)2 + y2 ≥ 0 whenever P(x, y) lies in the

ellipse x2

a2 + y2

b2 = 1, the last equality above will give

√

(x + c)2 + y2 = 2a −
√

(x − c)2 + y2,

as wished. For what is left to do, just compute

√

(x − c)2 + y2 =
√

(x − c)2 + b2
(

1 − x2

a2

)

=
√

x2
(

1 − b2

a2

)

− 2cx + (b2 + c2)

= 1

a

√

(cx)2 − 2cxa2 + a4 = 1

a
|cx − a2|

≤ 1

a
(c|x| + a2) ≤ c + a < 2a.

��
We now turn to the case of an eccentricity ε > 1, in which the conic is

called a hyperbola. In the notations of the discussion that led to (6.21) (and in
the corresponding cartesian system), our hyperbola has equation

x2

a2 − y2

b2 = 1, (6.26)

with

a = εp

ε2 − 1
, b = εp√

ε2 − 1
(6.27)

and p being the parameter of the hyperbola. Thus, the hyperbola passes through
the points A1(−a, 0), A2(a, 0), B1(0,−b) and B2(0, b). As with ellipses, the line
segments A1A2 and B1B2 are called the major axis and the minor axis of the
hyperbola (6.26).

Since
∣

∣
x
a

∣

∣ ≥ 1 for any point (x, y) in the hyperbola, we conclude that it is
contained in the union of the half-planes {x ≥ a} and {x ≤ −a}. The portions
of the hyperbola contained in each such half-plane (which, by Theorem 6.21, are
symmetric with respect to the vertical axis) are its branches.
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Fig. 6.17 Axes, foci,
directrices and asymptotes of

the hyperbola x2

a2 − y2

b2 = 1

x

y

O F2F1

d1 d2

C

y = b
ax

y = − b
ax

B1

B2

A2A1

The discussion that led to (6.18) assures that the hyperbola of equation (6.26) has
foci F1(−c, 0) and F2(c, 0) and directrices d1 : {x = x0} and d2 : {x = −x0}, with

c = ε2p

ε2 − 1
and x0 = p

ε2 − 1
;

hence, as with ellipses we have

c

a
= a

x0
= ε.

In this case, however, the equalities above give c > a > x0, so that A1, A2 ∈ F1F2
and d1 and d2 intersect A1A2. The length F1F2 = 2c is called the focal distance of
the hyperbola. Finally, it follows from (6.20) that

a2 + b2 = c2. (6.28)

Figure 6.17 presents the approximate geometric shape of the hyperbola of
equation (6.26). In this respect, see also the coming result.

An important geometric interpretation of the length of the minor axis of a
hyperbola comes from its asymptotes.8 For the hyperbola of equation (6.26), these
are the lines y = ± b

a
x. A simple computation shows that none of these lines

intersect the hyperbola. On the other hand, the lines and the hyperbola come closer
and closer as |x| → ∞. In order to prove this, write the portion of the hyperbola
situated in the first and third quadrants as

y = y(x) = b

a

√

x2 − a2,

8This concept was already dealt with, in a more general context, in Section 9.2 of [5].



6.3 A First Look on Conics 213

with |x| ≥ a; then, note that

lim|x|→+∞

∣

∣

∣

b

a
x − b

a

√

x2 − a2
∣

∣

∣ = lim|x|→+∞
b

∣

∣x +√
x2 − a2

∣

∣

= 0.

For a simple geometric construction of the asymptotes of a hyperbola, see Prob-
lem 4.

The theorem below presents a hyperbola as the solution of another locus problem.
Since its proof is pretty much similar to that of Theorem 6.22, we leave it as an
exercise for the reader (see Problem 2).

Theorem 6.23 Given real numbers c > a > 0, let b = √
c2 − a2. The hyperbola

of major axis A1A2 = 2a, minor axis B1B2 = 2b and focal distance F1F2 = 2c

coincides with the locus of the points P in the plane for which

∣

∣PF1 − PF2
∣

∣ = 2a. (6.29)

Problems: Sect. 6.3

1. Prove that the eccentricity of the ellipse x2

a2 + y2

b2 = 1 measures its flattening
in the vertical direction or, which is the same, its stretching in the horizontal
direction. More precisely, prove that, for a fixed major axis A1A2, as ε → 1−
the ellipse will come closer and closer to the line segment A1A2, whereas as
ε → 0+ it will come closer and closer to the circle of diameter A1A2.

2. * Prove Theorem 6.23.
3. In the notations of Fig. 6.15, mark point C such that OF2CB2 is a rectangle.

Prove that the straightline perpendicular to OC through C passes through the

intersection point of
←→

A1A2 and d2.

4. Show that the asymptotes of the hyperbola x2

a2 − y2

b2 = 1 are the diagonals of the
rectangle defined by the lines x = ±a and y = ±b. Then, use this fact to:

(a) Show that the asymptotes are perpendicular if and only if a = b.
(b) Construct the asymptotes and the minor axis of the hyperbola, given its

major axis and foci.

5. Given a nonzero real number c, let H be the set of points (x, y) of the cartesian
plane for which xy = c. Prove that H is a hyperbola.

6. In the hyperbola H of equation xy = 1 (see the previous problem) we choose
three distinct points A, B and C. Prove that the orthocenter of ABC is also
in H.
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7. We are given real numbers a, b and c, with a 
= 0. Show that the graph of the
second degree function x �→ ax2 + bx + c is a parabola.

8. (Spain) Let p and q be real numbers such that p2 > q 
= 0. Suppose that the
parabola y = x2 + 2px + q intersects the horizontal axis at the points A(x1, 0)

and B(x2, 0), and let C(0, q). Show that, independently of the values of p and
q , the circumcircle of ABC always passes through a fixed point.

9. Through a point P of the hyperbola x2

a2 − y2

b2 = 1 we draw parallels to the major
and minor axes, which meet the asymptotes respectively at the points Q1 and
Q2, R1 and R2. Show that PQ1 · PQ2 = a2 and PR1 · PR2 = b2.

10. We are given an ellipse E and a line r . For each line s, parallel to r and meeting
E at distinct points P and Q, we mark the midpoint M of the line segment PQ.
Show that, as s varies, the locus of the point M is a line segment.

11. (Germany) A sequence (�n)n≥1 of distinct circles in the cartesian plane is
defined in the following way:

(a) �1 is the circle of equation x2 + y2 = 1.
(b) For every k ≥ 1, �k+1 is externally tangent to �n and also tangent to both

branches of the hyperbola x2 − y2 = 1.

Compute the radius of �n as a function of n.

6.4 A Second Look on Conics

In this last section we use the apparatus developed so far to study a number of
interesting properties of conics, related in a way or another to the problem of
tangency of lines and conics. We therefore begin with the following

Definition 6.24 A parabola P and a straightline r are tangent if P ∩ r consists
of a single point and r is not parallel to the axis of P . An ellipse E (resp. a
hyperbola H) and a straightline r are tangent if E ∩ r (resp. H ∩ r) consists of
a single point. In any such case, the single common point of the conic and r is their
tangency point.

In face of this definition, a natural problem that poses itself is that of finding (if
any) the tangent(s) to a conic C through a point P of it. The following result gives a
first answer.

Theorem 6.25 If C is a conic and P is one of its points, then there exists a unique
line r , tangent to C and passing through P .

Solution We shall consider the case of a parabola, leaving those of an ellipse or a
hyperbola to the reader (cf. Problem 1).

We can assume, without loss of generality, that the parabola is in its canonical
form y = ax2, and let P(x0, y0). A non vertical line r passing through P has
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equation y = mx + n, with y0 = mx0 + n. Hence, we can write such an equation as

y = mx + y0 − mx0 = m(x − x0) + y0.

Our task is to show that there exists a unique value of m for which the system of
equations

{

y = ax2

y = m(x − x0) + y0
.

has (x0, y0) as its single solution.
Since we are assuming that P lies in the parabola, (x0, y0) is indeed a solution

of the system. On the other hand, if (x, y) is any solution, then

ax2 = m(x − x0) + y0 = m(x − x0) + ax2
0 ,

so that a(x2 − x2
0) = m(x − x0). Hence, either x = x0 or a(x + x0) = m, and

this last equality gives x = m
a
− x0. We therefore must have m

a
− x0 = x0, whence

m = 2ax0. (Note that this value of m coincides with the one obtained from the
derivative of y = y(x) = ax2 at x0, as should be the case.) ��

Now that we know that tangents do exist, we shall present an important synthetic
characterization of tangents in the coming theorem. As the subsequent discussion
and the proposed problems will show, such a result is the source of a number of
important properties of conics.

Theorem 6.26

(a) Let P be a parabola of focus F and directrix d . If P ∈ P and T is the foot of
the perpendicular dropped from P to d , then the tangent to P passing through
P is the bisector of the angle 
 FPT .

(b) Let C be an ellipse (resp. a hyperbola) of foci F1 and F2. If P ∈ C, then the
tangent to C passing through P is the external (resp. internal) bisector of angle

 F1PF2.

Proof For the case of a parabola, we refer the reader to Problem 2.
For the remaining cases, we first point out that the proofs of both of them are

quite similar, so that we shall stick to the case of a hyperbola. Since we already
know that the tangent to C through P is unique, it suffices to show that the internal
bisector r of 
 F1PF2 is tangent to C. We shall do this by showing that r ∩ C = {P }
(see the figure below).
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F2F1

P

r

Q

F2

C

Since r is the internal bisector of 
 F1PF2, the symmetric F ′
2 of F2 with respect to

r lies in F2P . Therefore, if Q ∈ r \{P }, then the congruence of triangles QPF2 and
QPF ′

2 gives QF2 = QF ′
2. Thus, letting 2a denote the major axis of the hyperbola

and applying the triangle inequality to QF1F
′
2, we get

∣

∣QF1 − QF2
∣

∣ = ∣

∣QF1 − QF ′
2

∣

∣ > F1F
′
2 = ∣

∣PF1 − PF ′
2

∣

∣

= ∣

∣PF1 − PF2
∣

∣ = 2a.

This shows that Q /∈ C, as wished. ��
The previous result can be used, together with compass and straightedge, to

provide a systematic way of constructing an arbitrary finite number of points of
a given conic.9 To this end, it is worth starting with the following

Definition 6.27 If C is an ellipse (resp. a hyperbola) of foci F1, F2 and major axis
2a, its director circles are those centered at F1, F2 and with radii 2a.

In the notations of the previous definition, since F1F2 < 2a for an ellipse,
we conclude that each of its director circles contains both foci. Accordingly, since
F1F2 > 2a for a hyperbola, each of its director circles contains exactly one of its
foci.

We can now state and prove the following important consequence of Theo-
rem 6.26.

Proposition 6.28

(a) Let P be a parabola of focus F and directrix d . A line r is tangent to P if and
only if the symmetric of F with respect to r lies in d .

9For another such procedure for ellipses, see Problem 5, page 239.
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(b) Let C be an ellipse (resp. a hyperbola) of foci F1 and F2. A line r is tangent to C
if and only if the symmetric of F1 (resp. F2) with respect to r lies in the director
circle of C centered at F2 (resp. F1).

Proof As in the proof of the previous result, the case of a parabola is dealt with in
Problem 2. Also as in the previous result, the proof of the other two cases are quite
similar, so we only consider the case of an ellipse.

Firstly, let P ∈ C and r be tangent to C at P (in the figure below, r = ←→
PX). We

shall show that the symmetric Q of F2 with respect to r lies in the director circle
with respect to F1 (to show that the symmetric of F1 with respect to r lies in the
director circle with respect to F2 is entirely analogous).

F1 F2

Q

X
P

2a

Theorem 6.26 assures that r is the external bisector of angle 
 F1PF2. If Q is the
symmetric of F2 with respect to r , then

F2 ̂PX = Q̂PX = 1

2
(180◦ − F1 ̂PF2),

so that

F1 ̂PF2 + F2 ̂PQ = F1 ̂PF2 + 2 · 1

2

(

180◦ − F1̂PF2
) = 180◦.

Thus, F1, P and Q are collinear.
Now, if 2a stands for the major axis of C, Theorem 6.22 assures that F1P +

F2P = 2a. Thus, we compute

F1Q = F1P + PQ = F1P + F2P = 2a,

which shows that Q lies in the director circle of C centered at F1.
Conversely, suppose that the symmetric Q of F2 with respect to r lies in the

director circle centered at F1. If P is the intersection of F1Q and r , then F2P =
PQ, so that

F1P + F2P = F1P + PQ = F1Q = 2a.
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Hence, P ∈ C∩r and r is the external bisector of 
 F1PF2, and the previous theorem
assures that r is tangent to C at P . ��

As promised before, we now use the above result to devise a systematic procedure
for constructing points on a conic. Again, we do this for an ellipse, leaving the cases
of a hyperbola and of a parabola to Problems 4 and 5.

Example 6.29 From an ellipse E we know the positions of its foci F1, F2 and the

length 2a of its major axis. If a half-line
−→
F1X intersects E at P , show how to

construct P with compass and straightedge.

Solution Draw the director circle � of E with center F1, and mark the intersection

point Q of
−→
F1X and � (see the figure below). According to the previous proposition,

P is the intersection of F1Q and the perpendicular bisector of F2Q.

F1

Γ
2a

F2

Q

X

r
P

��
Proposition 6.28 also allows us to solve the problem of drawing the tangent to

a given conic passing through a given point, and we do this next. To this end, it is
convenient to introduce the following

Definition 6.30 If P is a parabola of vertex A and directrix d , its auxiliary line
is the line passing through A and parallel to d . If C is an ellipse (resp. hyperbola)
of center O and major axis 2a, its auxiliary circle is the circle of center O and
radius a.

Note that the major axis A1A2 of an ellipse (resp. hyperbola) is a diameter of
its auxiliary circle. Also, in the case of an ellipse, the auxiliary circle contains both
foci, whereas in the case of a hyperbola it contains none of them.

Corollary 6.31

(a) Let P be a parabola of focus F . If a line r is tangent to P , then the foot of the
perpendicular dropped from F to r lies in the auxiliary line.
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(b) Let C be an ellipse (resp. a hyperbola) of foci F1, F2 and center O . If a line r

is tangent to C, then the feet of the perpendiculars dropped from F1 and F2 to r

lie in the auxiliary circle.

Proof For item (a), if S denotes the foot of the perpendicular dropped from F to r ,

then item (a) of Proposition 6.28 assures that
−→
FS intersects d at the point T , which

is the symmetric of F with respect to r (see the figure below).

F

d
T

SA

r

P

Since
←→
AF⊥d and A is at equal distances from F and d , the result of Problem 10,

page 66, assures that
←→
AS ‖ d , hence is the auxiliary line of P .

In item (b) we look at the case of a hyperbola, that of an ellipse being entirely
analogous. To this end, in the figure below line r is tangent to the hyperbola C, and
Q is the symmetric of F2 with respect to r .

F2F1

r

Q
C

O

P2a

According to item (b) of Proposition 6.28, Q lies in the director circle of C
centered at F1, whence F1Q = 2a. Now, if F2Q intersects r at P , then P is the
midpoint of F2Q. Since O is the midpoint of F1F2, the midsegment theorem applied
to triangle F1F2Q assures that OP = 1

2 F1Q = a, and P lies in the auxiliary circle
of C. ��
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We are finally in position to solve the tangency problem alluded above. We do
this in the coming example for a parabola, referring to Problem 7 for the case of a
hyperbola.

Example 6.32 In the figure below, P is the parabola of focus F and directrix d .
Use compass and straightedge to draw all tangents to P passing through the given
point Q.

F

d

P

Q

Solution If r is one of the tangents we are looking for and S be the foot of the
perpendicular dropped from F to r , then item (a) of the previous corollary assures
that S lies in the auxiliary line of P . Since F̂SQ = 90◦, the point S can be
constructed as the intersection of the auxiliary line with the circle of diameter FQ.
In general, there are two distinct solutions. ��

We finish this section by establishing two beautiful results on conics, the first of
which is due to Poncelet. For a better understanding of the statement below, Fig. 6.18
illustrates Poncelet’s theorem for a hyperbola, and we urge the reader to sketch the
cases of an ellipse and a parabola.

Theorem 6.33 (Poncelet)

(a) Let P be a parabola of focus F and vertex A. If the tangents to P drawn from a

point P touch it at points T1, T2, then F ̂PT1 = 
 (
−→
PT2,

−→
AF) and

←→
FP bisects

angle 
 T1FT2.
(b) Let C be an ellipse (resp. a hyperbola) of foci F1, F2. If the tangents to C drawn

from a point P touch it at points T1, T2, then F1̂PT1 = F2 ̂PT2 and
−→
FiP is an

internal (resp. internal or external) angle bisector of 
 T1FiT2, for i = 1, 2.

Proof We leave the case of a parabola as an exercise for the reader (cf. Problem 13),
and prove the theorem only for an ellipse, since the case of a hyperbola is quite
similar.

In the figure below, t1 = ←→
PT1 and t2 = ←→

PT2 are the tangents to the ellipse and
R1, R2 are the symmetrics of F2 with respect to t1, t2, respectively. Hence, they lie
in the director circle � centered at F1, and PF2 = PR1 = PR2, so that the circle
� of center P and radius PF2 passes through R1 and R2.
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Fig. 6.18 Poncelet’s theorem
for a hyperbola

F2F1

H

P

T1

T2

Γ

F1 F2

P

Σ

R1

R2

t1

t2

T1

T2

For the first part, note that
←→
PF1⊥

←→
R1R2 and

←→
PT1⊥

←→
F2R1 imply F1 ̂PT1 =

F2̂R1R2, as displayed in the figure above. Also, since t2 is the perpendicular
bisector of F2R2, we have F2 ̂PT2 = R2 ̂PT2. Hence, it suffices to show that
F2̂R1R2 = 1

2F2 ̂PR2, which follows from the inscribed angle theorem.
For the second part, we first establish that T1̂F1P = T2̂F1P . To this end, it

suffices to notice that T1̂F1P = R1̂F1P = R2̂F1P = T2̂F1P , where the second

equality comes from the fact that
←→
F1P is the perpendicular bisector of R1R2.

We are finally left to showing that T1̂F2P = T2̂F2P . This can be accomplished
through an argument similar to the one above, starting by taking the symmetrics of
F1 with respect to t1, t2, observing that they lie in the director circle centered at
F2, etc. ��
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Fig. 6.19 Tangents to an
ellipse from a point in a
directrix

O

F

d

P

For our last result, it is convenient to say that a chord of a conic is any line
segment joining two of its points; also, a focal chord is a chord passing through
a focus of the conic. It is also worth noticing that if C is a conic with eccentricity
ε 
= 1, focal distance 2c and major axis 2a, then the distance from the center of C to

the directrices is given by a2

c
.

Theorem 6.34 If F is a focus of the conic C, then the corresponding directrix is
the locus of points from which the tangents drawn to C touch it in the endpoints of a
focal chord through F .

Figure 6.19 illustrates the property stated in the theorem above for an ellipse.

Proof We first establish the property when C is a parabola. To this end, start by
taking a point P such that the tangents r , s drawn from P to the parabola touch it at
the endpoints R, S of a focal chord (see the figure below).

P

F

R

S

r

s

R

S

Let R′ and S′ are the symmetrics of F with respect to r and s, respectively. Since

r is tangent to the parabola and
←→
RR′ is symmetric of

←→
FR with respect to r , we know
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from Proposition 6.28 that R′ ∈ d and
←→
RR′⊥d . Analogously, S′ ∈ d and

←→
SS′⊥d;

in particular,
←→
R′S′ = d and

←→
RR′ ‖

←→
SS′ .

Now, let P ̂RR′ = P ̂RF = α and P̂SS′ = P̂SF = β. On the one hand,
the alluded parallelism gives α + β = 90◦. On the other, since triangles RR′F
and SS′F are isosceles of bases R′F and S′F , we obtain R′

̂RF = 90◦ − α and
S′
̂SF = 90◦ − β, so that

R′
̂FS′ = 180◦ − R′

̂RF − S′
̂SF = α + β = 90◦.

Hence,

R′
̂PF + S′

̂PF = (180◦ − 2P ̂FR′) + (180◦ − 2P ̂FS′)

= 360◦ − 2R′
̂FS′ = 180◦,

and P , R′, S′ are collinear. Since this is the same as saying that P ∈
←→
R′S′ we have

P ∈ d .
Conversely, if P ∈ d , one can easily rework the argument above backwards to

show that the tangents drawn from P to the parabola touch it at the endpoints of a
focal chord.

We now turn to the case of an ellipse, leaving the (quite similar) case of a
hyperbola to the reader. Let F1 and F2 be its foci, and P be a point from which
the tangents r and s drawn to C touch it at R and S, respectively, with F2 ∈ RS (see
the figure below).

Γ

F2F1 O

R

S

r

R s

S

P

Q

If R′ and S′ denote the symmetrics of F1 with respect to r and s, respectively,
Proposition 6.28 assures that R′ and S′ lie in the director circle � centered at F2.
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In turn, since PR′ = PF1 = PS′, triangle PR′S′ is isosceles of basis R′S′; since
PF2 is the median relative to the basis, it is also the altitude. Therefore, we compute

PF1
2 − PF2

2 = PR′2 − PF2
2 = F2R′2 = 4a2.

Thus, if Q stands for the foot of the perpendicular dropped from P to
←→
F1F2,

Proposition 6.8 assures that OQ = 4a2

2F1F2
= a2

c
. Therefore,

←→
PQ is nothing but

the directrix of the ellipse relative to F2.
Conversely, if P lies in the directrix relative to F2, then the argument above,

worked backwards, assures that the tangents drawn from P to the ellipse touch it at
the endpoints of a focal chord. ��

In the case of a parabola, the previous result has the following

Corollary 6.35 If d is the directrix of the parabolaP , then the tangents to P drawn
from a point of d are perpendicular.

Proof In the notations of the proof of the theorem, note that
←→
PR⊥

←→
FR′ and

←→
PS⊥

←→
FS′, together with R′

̂FS′ = 90◦, give R̂PS = 90◦. ��

Problems: Sect. 6.4

1. * Complete the proof of Theorem 6.25 by considering the cases of an ellipse
and a hyperbola.

2. * Prove items (a) of Theorem 6.26 and Proposition 6.28.
3. An ellipse E and a hyperbola H are confocal, i.e., have the same foci. If P is a

common point of E and H, and r and s are the tangents to E and H at P show
that r⊥s.

4. * From a parabola P we know the position of its focus F and its directrix d . If

a half-line
−→
FX intersects P at P , show how to construct P with compass and

straightedge.
5. * From a hyperbola H we know the positions of its foci F1, F2 and the length

2a of its major axis. If a half-line
−→
F1X intersects H at the point P , show how

to construct P with compass and straightedge.
6. From an ellipse we know the position of one focus as well as of three tangents.

Show how to use compass and straightedge to find the position of the other
focus, as well as the length of the major axis.

7. In the figure below, H is the hyperbola of center O and foci F1, F2. Use
compass and straightedge to draw all tangents to H passing through the given
point Q.
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F2F1

Q

H

O

8. Let C be an ellipse (resp. hyperbola) of foci F1, F2 and minor axis 2b. Let r be
a straightline tangent to C, and P1, P2 be the feet of the perpendiculars dropped
from F1, F2 to r , respectively. Show that F1P1 · F2P2 = b2.

9. (Brazil) Three tangents to a parabola pairwise intersect at points A, B and C.
Prove that the circumcircle of ABC always passes through the focus of the
parabola.

10. We are given in the plane lines r , s, t , u, all of which are tangent to a parabola
P . Show how to use compass and straightedge to find the focus of P .

11. Let E be an ellipse of center O and major and minor axes 2a and 2b,
respectively. The circle of Monge of E is the circle � of center O and radius√

a2 + b2. Show that � is the locus of the points P in the plane from which one
can draw perpendicular tangents to E .

12. Let H be a hyperbola of center O and major and minor axes 2a and 2b,
respectively, with a > b. The circle of Monge of H is the circle � of center
O and radius

√
a2 − b2. Show that � is the locus of the points P in the plane

from which one can draw perpendicular tangents to H.
13. Finish the proof of Theorem 6.33 by establishing Poncelet’s theorem for a

parabola.



Chapter 7
Trigonometry and Geometry

In this chapter we present the rudiments of Trigonometry, along with several
applications to Plane Euclidean Geometry.1 As in the previous chapter, we aim at
developing a set of computational tools that allow us to successfully approach metric
problems for which the methods developed so far are useless. We shall refer to the
systematic use of such tools in geometric problems as the trigonometric method.

7.1 Trigonometric Arcs

In the cartesian plane, the unit circle is the circle � of Fig. 7.1, centered at the origin
O(0, 0) and with radius 1 (hence, length 2π).

Given a real number c, we mark on �, starting from A, an arc of length |c|
(possibly with |c| > 2π), in the counterclockwise sense if c > 0 and in the
clockwise sense if c < 0. Letting P be the final endpoint of such an arc, we say

that
�

AP is an arc of c radians.

Remark 7.1 It is worth stressing that radian is not a unit of measure; it is simply a
name we use when we wish to refer to lengths of arcs drawn along the unit circle.
Nevertheless, by the sake of tradition we shall frequently refer, without further
notice, to “an arc whose measure is c radians”

Along �, we use to refer to the counterclockwise direction as the trigonometric
sense. This way, the arc of 2π radians in � gives a complete turn around � in
the trigonometric sense, starting and ending at A. On the other hand, the arc of
−2π radians in � gives a complete turn around � in the clockwise sense, also

1For a purely analytical presentation of Trigonometry, thus avoiding any geometric considerations,
we refer the reader to Section 11.5 of [5], for instance.
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Fig. 7.1 The unit circle
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starting and ending at A. Yet in another way, we have the following fundamental
correspondences:

• 2π radians correspond to an arc of 360◦, measured in the trigonometric sense and
starting from A.

• −2π radians correspond to an arc of 360◦, measured in the clockwise sense and
starting from A.

More generally, letting θ denote the measure in degrees and c denote the measure
in radians of some arc, with c > 0, Problem 11, page 180, gives

θ

360
= c

2π
. (7.1)

Let us take a look at a couple of simple applications of the formula above.

Example 7.2 Mark on the unit circle the endpoints of the arcs of 2π/3, −2π/3, π/4
and π radians.

Solution The arc of 2π/3 radians is arc
�

AP such that �(
�

AP) = 2π/3, measured
from A in the trigonometric sense. Letting θ denote the measure in degrees
corresponding to such an arc, we have

θ

360
= 2π/3

2π
,

whence θ = 120◦. We have plot point P in Fig. 7.2.

The arc of −2π/3 radians is arc
�

AP ′ for which �(
�

AP ′) = 2π/3, measured from
A in the clockwise sense. Thus, it is immediate to see that P ′ is the symmetric of P

with respect to the x-axis.
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Fig. 7.2 The arcs of ±2π/3
radians
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Fig. 7.3 The arc of π/4
radians
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Since π is half of 2π , the arc of π radians is, in Fig. 7.2, arc
�

AA′, measured in
the counterclockwise sense.

Finally, β stands for the measure (in degrees) of the arc of π/4 radians, then

β

360
= π/4

2π
,

so that β = 45◦. Since the arc is positive, its endpoin is point P of Fig. 7.3.
��

Example 7.3 Compute in radians the following arcs, given in degrees: 30◦, 60◦,
90◦, 135◦, 150◦, 240◦, 270◦, 300◦.
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Solution We apply (7.1) to the arcs given in degrees, thus getting the corresponding
values in radians. We collect the results in the table below:

θ 30◦ 60◦ 90◦ 135◦ 150◦ 240◦ 270◦ 300◦

c π/6 π/3 π/2 3π/4 5π/6 4π/3 3π/2 5π/3

��
Example 7.4 Compute, in degrees, arcs of π/9, 7π/2, 18π and 11π/5 radians.

Solution Writing (7.1) as θ = c
2π

·360, and applying it to the given arcs (in radians),
we obtain their measures in degrees:

c π/9 7π/2 18π 11π/5

θ 20◦ 630◦ 3240◦ 396◦

��
Hereafter, we will generally deal with arcs given in radians, converting them to

degrees whenever needed.
We are finally in position to define the sine, cosine and tangent of an arc c given

in radians. Such numbers are collectively referred to as the trigonometric arcs of

c. To this end, take the point P on the unit circle � such that
�

AP= c (recall that,
in order to plot P , we take an arc of length |c| on � and departing from A, in the
counterclockwise sense if c > 0 and in the clockwise sense if c < 0).

Definition 7.5 Given c ∈ R, we let the sine and the cosine of c (radians), denoted
by sin c and cos c, respectively, be given (cf. Fig. 7.4) by:

cos c = abscissa of P ; sin c = ordinate of P.

The greatest ordinate of a point of � is that of B(0, 1), which is equal to 1,
whereas the smallest such ordinate is that of B ′(0,−1), which is equal to −1.
Analogously, the greatest abscissa of a point on � is 1, attained solely at A(1, 0);
the smallest abscissa is −1, attained only at A′(−1, 0). Therefore,

{ −1 ≤ sin c ≤ 1
−1 ≤ cos c ≤ 1

. (7.2)

Conversely, given a real number α ∈ [−1, 1], the horizontal line passing through
point (0, α) intersect � in at least one point P ; letting P(sin c, cos c), it is immediate
that sin c = α. In other words, every real number of the interval [−1, 1] is the sine
of some arc. Arguing with the vertical line passing through (α, 0), we conclude that
an analogous statement is also true for cosines.
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Fig. 7.4 Sine and cosine of
an arc
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Given k ∈ Z arbitrarily, it is immediate that an arc of 2kπ radians departing from
A(1, 0) ends also at A. More generally, given c ∈ R, the arcs of c and c + 2kπ

radians departing from A have equal endpoints; therefore,

{

sin(c + 2kπ) = sin c

cos(c + 2kπ) = cos c
(7.3)

for every k ∈ Z.
Relation (7.4) below is known in mathematical literature as the fundamental

relation of Trigonometry.

Proposition 7.6 For every c ∈ R, we have

sin2 c + cos2 c = 1. (7.4)

Proof Let
�

AP= c (cf. Fig. 7.5). Since P(cos c, sin c) and O(0, 0), formula (6.4),
together with AP = 1, give

√

(cos c − 0)2 + (sin c − 0)2 = 1.

This is exactly the desired relation. ��
Example 7.7 The sine and cosine of an arc allow us to describe a circle paramet-
rically. More precisely, the equation of the circle � of center (x0, y0) and radius R

is (x − x0)
2 + (y − y0)

2 = R2 (cf. Fig. 7.6). A generic point P(x, y) on � can be
thought of as a particle that traverses the circle in the counterclockwise sense, say,
starting from A(x0 + R, y0).
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Fig. 7.5 The fundamental
relation of Trigonometry
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Fig. 7.6 Parametric equations of a circle

Since P(x, y) ∈ � if and only if

(

x − x0

R

)2

+
(

y − y0

R

)2

= 1,

we can write, for such a P on �,

x − x0

R
= cos t and

y − y0

R
= sin t,

with 0 ≤ t ≤ 2π (here, the variable t—the parameter—is thought of as time),
whence

x = x0 + R cos t and y = y0 + R sin t .
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Fig. 7.7 Sine, cosine and
tangent of π
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Whenever convenient, we can ask the movement to start from some point Q(x0+
R cos t0, y0 + R sin t0) on �, thus writing x = x0 + R cos(t − t0) and y = y0 +
R sin(t − t0); we can further ask for a whole turn around the circle to be completed
when t varies in the closed interval [0, 1]; it suffices to write x = x0 +R cos 2π(t −
t0) and y = y0 + R sin 2π(t − t0).

Definition 7.8 If c ∈ R is such that cos c 
= 0, then the tangent of c, abbreviated
tan c, is defined by

tan c = sin c

cos c
.

In the notations of Fig. 7.4, note that cos c = 0 exactly when the endpoint P of

arc
�

AP= c coincides with B or B ′. On the other hand, it is pretty clear that this
happens precisely when c = π

2 + 2kπ or c = 3π
2 + 2kπ , for some k ∈ Z. This is

the same as having c = π
2 + kπ , for some k ∈ Z. Thus:

tan c is defined if and only if c 
= π

2
+ kπ for every k ∈ Z.

In the two coming examples we compute the trigonometric arcs of π
3 and π

4
radians (Fig. 7.7).

Example 7.9 Let us calculate the sine, cosine and tangent of π
3 radians (an arc of

60◦). To this end, we let � be the unit circle and mark on it arc
�

AP= π
3 . Triangle

OAP is isosceles of basis AP , with ÂOP = 60◦, hence equilateral. Letting M be
the midpoint of BC, we have cos π

3 = OM = 1
2 and, by Corollary 4.12, sin π

3 =
PM =

√
3

2 . Hence, tan π
3 =

√
3/2

1/2 = √
3.

Example 7.10 Likewise the previous chapter, in order to compute the sine, cosine
and tangent of π

4 (which is equivalent in degrees to 45◦), mark point P on the first

quadrant of the unit circle �, such that
�

AP= 45◦ (cf. Fig. 7.8), and let Q be the
foot of the perpendicular dropped from P to OA.
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Fig. 7.8 Sine, cosine and
tangent of π

4

O Q

P

1√
2

1√
2

Since OPQ is a right and isosceles triangle of hyphotenuse OP = 1,
Pythagoras’ theorem furnishes

sin
π

4
= PQ = 1√

2
and cos

π

4
= OQ = 1√

2
.

Therefore, tan π
4 = 1/

√
2

1/
√

2
= 1.

Back to the general discussion, if
�

AP= c, with π
2 < c < π (cf. Fig. 7.4), then P

lies in the portion of the unit circle � situated in the second quadrant of the cartesian
plane, so that the abscissa of P is negative and its ordinate is positive. Hence,

cos c < 0, sin c > 0 and tan c = sin c

cos c
< 0.

In this respect, see also Problem 2, page 239.
The tangent of an arc of c radians has a quite useful geometric interpretation,

which we present in the coming proposition. Henceforth, whenever the endpoint P

of an arc
�

AP of the unit circle belongs to the k-th quadrant of the cartesian plane,

we shall simply say that
�

AP is an arc of the k-quadrant.

Proposition 7.11 In the notations of Figure 7.9, if
�

AP= c is an arc of the first or

third quadrants of the cartesian plane, then tan c = AP ′; if
�

AP= c is an arc of the
second or fourth quadrants, then tan c = −AP ′.

Proof We shall look at the case in which c is an arc of the second quadrant (the
proof in the remaining cases is completely analogous). Let P ′′ be the foot of the
perpendicular dropped from P to the horizontal axis. The (obvious) similarity of
triangles PP ′′O and P ′AO allows us to write

PP ′′

P ′′O
= P ′A

AO
.
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Fig. 7.9 Geometric
interpretation of the tangent
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y

B

B

AA

O

P

P

P

Substituting PP ′′ = sin c, P ′′O = − cos c and AO = 1 in the equality above, we
obtain

P ′A = PP ′′ · AO

P ′A
= − tan c,

which is precisely what we wished to prove.
��

An immediate consequence of the proposition above is the fact that if two arcs
differ from and integer multiple of π , then their tangents are equal. In symbols,
tan(π + c) is defined if and only if so is tan c; moreover, if this is so, then we have

tan(π + c) = tan c. (7.5)

For what comes next, we adopt the following convention: given an angle θ , with
0◦ ≤ θ ≤ 360◦, we define the sine, cosine and tangent of θ as being respectively
equal to the sine, cosine and tangent of the arc corresponding to θ in radians, i.e.,
of the arc c = 2π · θ

360 . For instance, for θ = 20◦, the corresponding arc is c = π
9

radians; thus, by definition we have

sin 20◦ = sin
π

9
, cos 20◦ = cos

π

9
and tan 20◦ = tan

π

9
.

The coming proposition brings and important consequence of the previous result.

Proposition 7.12 Given in the cartesian plane a non vertical line of equation y =
ax + b, the real number a 
= 0 is equal to the tangent of the trigonometric angle
the horizontal axis forms with the line in question. More precisely, in the notations
of Fig. 7.10, we have a = tan α.
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x

y

O

x = 1

y = ax + b

α

y = ax

α

Fig. 7.10 The slope of a straightline

Proof In Fig. 7.10, the depicted circle represents the unit circle. According to
Proposition 6.13, the parallel to line y = ax + b passing through the origin has
equation y = ax. Since the trigonometric angle the horizontal axis forms with
such a line is also equal to α, the previous proposition (together with the above
conventions) assure that tan α is equal to the ordinate of the common point of lines
y = ax and x = 1.

For such a point, we have x = 1 and y = a · 1 = a, so that tan α = a, as
wished. ��

Thanks to the previous result, if a non vertical line r has equation y = ax+b, we
say that a is its angular coefficient. Thus, a measures the slope of r , which explains
the terminology slope-intercept equation attached to (6.6).

The coming example collects an important application of the notion of angular
coefficient.

Example 7.13 In a cartesian system, we are given point (x0, y0). If an angle α is
such that 0◦ < α < 180◦, find the equation of the straightline passing through
the given point and forming, with the horizontal axis, a trigonometric angle of
measure α.

Solution If α = 90◦, then the desired line is vertical, hence has equation x = x0.
If α 
= 90◦ (cf. Fig. 7.11), we can assume that its equation is y = ax + b, for some
a, b ∈ R. Proposition 7.12 furnishes a = tan α. On the other hand, since (x0, y0)

lies in the straightline, we must have

y0 = ax0 + b = (tan α)x0 + b,
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Fig. 7.11 A line with
prescribed slope and passing
through a given point

x

y

y = ax + b

α

(x0, y0)

so that b = y0 − (tan α)x0. Thus, the desired equation is

y = (tan α)x + y0 − (tan α)x0.

��
In the notations of the above example, it is worth pointing out that one uses to

write the equation obtained above as

y − y0

x − x0
= tan α. (7.6)

(Even though, strictly speaking, we cannot substitute x by x0 in this last expression.)
We shall finish this initial discussion on trigonometric arcs by relating the sines,

cosines and tangents of arcs that hold some simple relations with each other.

Proposition 7.14 For every c ∈ R we have

sin(−c) = − sin c and cos(−c) = cos c. (7.7)

Proof In the unit circle, let P and Q be the endpoints of arcs
�

AP= c and
�

AQ = −c (Fig. 7.12 illustrates the case π
2 < c < π ; the other cases are entirely

analogous). Since the arcs of c and −c radians have equal lengths but run in opposite
directions (one in the counterclockwise sense and the other in the clockwise sense),
it is immediate to see that P and Q are symmetric with respect to the horizontal
axis. Hence, P and Q have equal abscissas but opposite ordinates. However, since
P(cos c, sin c) and Q(cos(−c), sin(−c)), it thus follows that cos c = cos(−c)

(equal abscissas) and sin c = − sin(−c) (opposite ordinates). ��

Proposition 7.15 For every c ∈ R we have

sin
(π

2
− c

)

= cos c and cos
(π

2
− c

)

= sin c. (7.8)
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Fig. 7.12 Sine and cosine of
opposite arcs
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Fig. 7.13 Sine and cosine of
complementary arcs
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Proof By the previous result, it suffices to show that sin
(

c − π
2

) = − cos c and
cos

(

c − π
2

) = sin c. To this end, we argue also as in the previous proof: we consider,

in the unit circle, the endpoints P and Q of the arcs
�

AP= c and
�

AQ = c − π
2 (in

this case too, we illustrate the case π
2 < c < π in Fig. 7.13, leaving the—totally

analogous—verification of the remaining cases to the reader).
Since OP = OQ and Q̂OP = 90◦, Problem 4, page 200, guarantees that, if

Q(x0, y0), then P(−y0, x0). However, since

P(cos c, sin c) and Q
(

cos(c − π

2
), sin(c − π

2
)
)

,

we must have

− cos c = sin
(

c − π

2

)

and sin c = cos
(

c − π

2

)

,

as wished. ��
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Corollary 7.16 For every c ∈ R, we have

sin(π − c) = sin c and cos(π − c) = − cos c. (7.9)

Proof Let us prove the sine formula, the deduction of the cosine formula being
quite similar. Writing π − c = π

2 − (

c − π
2

)

and successively applying (7.8), (7.7)
and (7.8), we obtain

sin(π − c) = cos
(

c − π

2

)

= cos
(π

2
− c

)

= sin c.

��
Example 7.17 In view of the proposition above, we can compute the trigonometric
arcs of π

6 quite easily. Indeed, since π
2 − π

6 = π
3 , we get

sin
π

6
= cos

π

3
= 1

2
, cos

π

6
= sin

π

3
=

√
3

2
and tan

π

3
= 1/2√

3/2
= 1√

3
.

Problems: Sect. 7.1

1. Mark, in the unit circle, the endpoints of the arcs of π/3, 3π/4, 3π/2, −π ,
−2π/3, −3π/2, −4π/3 and −5π/2 radians.

2. * Mark, in the unit circle, the signs of the trigonometric arcs of
�

AP= c,
according to the quadrant of the cartesian plane to which the point P belongs.

3. Compute the sine, cosine and (if it exists) tangent of the arcs of π , −π/2, 4π ,
7π/2 and −3π/2 radians.

4. Compute the sine, cosine and tangent of 2π/3, 3π/4, 5π/6, 7π/6, 4π/3, 5π/4,
5π/3, 3π/2 and 7π/4 radians.

5. We are given, in the cartesian plane, the ellipse E of equation x2

a2 + y2

b2 = 1, do
the following items:

(a) If (x, y) is a point of E , prove that there exists a unique θ ∈ [0, 2π) for which
x = a cos θ and y = a sin θ , and conversely. Equations x = a cos θ and
y = a sin θ , with θ ∈ [0, 2π), are the parametric equations of the ellipse,
and we can look at them as a description of the trajectory of a particle that,
departing from the point A(a, 0) at instant θ = 0, makes a complete turn
arount E in the counterclockwise sense, returning to the point A at instant
θ = 2π .

(b) Define the auxiliary circles of E as the circles of equations x2 + y2 = a2

and x2 + y2 = b2. Let a half-line of origin O form a trigonometric angle
β with the horizontal axis, and suppose that it intersects the auxiliary circles
above at points S and Q, respectively. If P(x, y) is the intersection point of
the parallel through Q to the horizontal axis with the parallel through S to
the vertical axis, prove that P lies in the ellipse (note that the construction
just described allows us to plot as many points of the ellipse as we wish).
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6. (OCM) We are given in the cartesian plane the ellipse E of equation
x2

a2 + y2

b2 = 1.

(a) Let ABC be a triangle inscribed in E , and � be the auxiliary circle of E ,

of radius a. If A′, B ′, C′ ∈ � are such that
←→
AA′,

←→
BB ′,

←→
CC′ are vertical,

compute the area of A′B ′C′ in terms of the area of ABC.
(b) Given a line r in the plane, find all triangles ABC inscribed in E , of largest

possible area and having one side parallel to r .

7. We are given in the plane an ellipse E of major axis 2a and minor axis 2b. Show
that the supremum of the areas of the convex polygons inscribed in E is equal to
πab. This way, it is pretty reasonable to define2 the area of E by setting A(E) =
πab.

7.2 Some Useful Identities

In this section, we continue our introduction to Trigonometry by deducing some
quite useful formulas, starting with those for the trigonometric arcs of the sum and
difference of two given arcs.

Proposition 7.18 For a, b ∈ R, we have:

(a) cos(a ± b) = cos a cos b ∓ sin a sin b.
(b) sin(a ± b) = sin a cos b ± cos a sin b.
(c) tan(a ± b) = tan a±tan b

1∓tan a tan b
, whenever tan a, tan b and tan(a ± b) are defined.

Proof We first derive the formula for cos(a+b). Assume, without loss of generality
(why?), that a, b > 0 and mark, in the unit circle �, the endpoints P , Q and R of

the arcs
�

AP= a,
�

AQ = −b and
�

AR = a+b (cf. Fig. 7.14). Then, P(cos a, sin a),
Q(cos(−b), sin(−b)) = (cos b,− sin b) and R(cos(a + b), sin(a + b)).

Since the arcs
�

AR and
�

QP (drawn in the counterclockwise sense) are both equal
to a + b radians, the corresponding chords AR and PQ have equal lengths. Hence,
the equalities

AR
2 = (1 − cos(a + b))2 + sin2(a + b)

and

PQ
2 = (cos a − cos b)2 + (sin a + sin b)2

2Note that this definition agrees with the one usually seen in Calculus courses—cf. Chapter 10 of
[5], for instance.
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Fig. 7.14 Trigonometric arcs
of the sum and difference of
two arcs B

A

B

A

O

(cosx, sinx)P

x

give us

(1 − cos(a + b))2 + sin2(a + b) = (cos a − cos b)2 + (sin a + sin b)2.

By expanding both sides of the above relation and substituting the equalities cos2 a+
sin2 a = 1, cos2 b + sin2 b = 1 and cos2(a + b) + sin2(a + b) = 1, we obtain

−2 cos(a + b) = −2 cos a cos b + 2 sin a sin b,

as wished.
In what concerns the remaining formulas, note that

cos(a − b) = cos(a + (−b)) = cos a cos(−b)− sin a sin(−b)

= cos a cos b + sin a sin b

and

sin(a + b) = cos
(π

2
− a − b

)

= cos
(π

2
− a

)

cos b + sin
(π

2
− a

)

sin b

= sin a cos b + cos a sin b;

moreover (see Problem 1), an analogous reasoning gives us the formula for sin(a −
b). Finally,
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tan(a + b) = sin(a + b)

cos(a + b)
= sin a cos b + sin b cos a

cos a cos b − sin a sin b

=
1

cos a cos b
(sin a cos b + sin b cos a)

1
cos a cos b

(cos a cos b − sin a sin b)

=
sin a
cos a

+ sin b
cos b

1 − sin a
cos a

sin b
cos b

= tan a + tan b

1 − tan a tan b
,

and a quite similar deduction holds for tan(a − b) (cf. Problem 1). ��
The formulas of the coming corollary are usually referred to as the formulas for

double arcs.

Corollary 7.19 For every real number a, we have:

(a) cos 2a = cos2 a − sin2 a.
(b) sin 2a = 2 sin a cos a.
(c) tan 2a = 2 tan a

1−tan2 a
, whenever tan a and tan 2a are defined.

Proof It suffices to led b = a in the formulas with the + sign in Proposition 7.18.
��

It is worth observing that we can apply the formulas of the proposition and
corollary above, as well as those of Proposition 7.22, if the involved arcs are
measured in degrees, instead of radians. This is due to the (easily established) fact
that if arcs of α and β degrees correspond to a and b radians, then an arc of α ± β

degrees corresponds to a±b radians. From now on, we shall use this remark without
further comments.

Example 7.20 A classical application of the formulas above is the computation of
the trigonometric arcs of 75◦. To this end, note that 75◦ = 30◦ + 45◦, whence item
(a) of Proposition 7.18 gives

cos 75◦ = cos(30◦ + 45◦) = cos 30◦ cos 45◦ − sin 30◦ sin 45◦

=
√

3

2
·
√

2

2
− 1

2
·
√

2

2
=

√
6 −√

2

4
.

A quite useful application of the formulas for addition of arcs is collected in the
proposition below.

Proposition 7.21 If a and b are given positive reals and θ is a real variable, then

|a cos θ + b sin θ | ≤
√

a2 + b2.

Proof We write

a cos θ + b sin θ =
√

a2 + b2

(

a√
a2 + b2

cos θ + b√
a2 + b2

sin θ

)

.
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Now, letting x0 = a√
a2+b2

and y0 = b√
a2+b2

, we have x2
0 + y2

0 = 1, so that (x0, y0)

belongs to the first quadrant of the unit circle. Hence, there exists α ∈ (0, π/2) for
which

cos α = x0 = a√
a2 + b2

and sin α = y0 = b√
a2 + b2

.

It thus follows from item (a) of Proposition 7.18 that

a cos θ + b sin θ =
√

a2 + b2(cos α cos θ + sin α sin θ)

=
√

a2 + b2 cos(θ − α).

(7.10)

However, since | cos(θ − α)| ≤ 1, we obtain

|a cos θ + b sin θ | =
√

a2 + b2| cos(θ − α)| ≤
√

a2 + b2.

��
We finish this quick look at Trigonometry by deducing the usual formulas for

transformation in product, according to the next

Proposition 7.22 For all a, b ∈ R, we have:

(a) sin a ± sin b = 2 sin
(

a±b
2

)

cos
(

a∓b
2

)

.
(b) cos a + cos b = 2 cos

(

a+b
2

)

cos
(

a−b
2

)

.
(c) cos a − cos b = −2 sin

(

a+b
2

)

sin
(

a−b
2

)

.

(d) tan a ± tan b = sin(a±b)
cos a cos b

.

Proof Let us transform sin a + sin b and tan a + tan b into products, the remaining
cases being entirely analogous (cf. Problem 10).

Setting x = a+b
2 and y = a−b

2 , we have a = x + y and b = x − y, so that

sin a + sin b = sin(x + y) + sin(x − y)

= (sin x cos y + sin y cos x) + (sin x cos y − sin y cos x)

= 2 sin x cos y,

as wished.
For what is left to do, it suffices to see that

tan a + tan b = sin a

cos a
+ sin b

cos b
= sin a cos b + sin b cos a

cos a cos b

= sin(a + b)

cos a cos b
.

��
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Fig. 7.15 Sine, cosine and
tangent in right triangles
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We finish the section by presenting a first link between Trigonometry and the
geometry of triangles. In order to do this, let 0◦ < θ < 90◦ be given. The
corresponding arc c (in radians) satisfies 0 < c < π

2 , so that sin θ > 0, cos θ > 0
and tan θ > 0. We consider a triangle ABC, right at A and such that ÂBC = θ

(cf. Fig. 7.15). Then, we take a cartesian system of origin B, such that the half-

line
−→
AB coincides with the positive part of the x-axis and the leg AC is situated in

the first quadrant. By drawing the circle of center B and radius 1, we can mark its
intersection P with the hypotenuse BC of ABC (or with its extension, if BC < 1).
If Q denotes the foot of the perpendicular dropped from P to the horizontal axis, it
is pretty clear that BPQ ∼ BCA. Therefore,

AC

BC
= QP

BQ
,

AB

BC
= QB

BP
,

AC

AB
= QP

QB
.

Now, since

PQ = sin θ, and QB = cos θ,

the relations above give us

AC

BC
= sin θ,

AB

BC
= cos θ,

AC

AB
= tan θ.

In short, for a triangle ABC, right at A and such that ÂBC = θ , we have:

sin θ = leg opposite to θ

hypotenuse
, cos θ = leg adjacent to θ

hypotenuse
,

tan θ = leg opposite to θ

leg adjacent to θ
.

(7.11)
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The equalities just deduced, together with the formulas derived in the first part of
this section, allow us to examine some interesting problems.

Example 7.23 (IMO—Shortlist) Let triangle ABC be right at A, and M be the
midpoint of AC. Prove that

tan M̂BC ≤ 1

2
√

2
.

Proof Let AB = c, AC = 2b, M̂BA = α and M̂BC = β.

A

B

CM

c

b b

From

tan(α + β) = tan α + tan β

1 − tan α · tan β

we get

2b

c
=

b
c
+ tan β

1 − b
c
· tan β

,

and hence tan β = bc

2b2+c2 . However, since 2b2 + c2 ≥ 2
√

2bc, it comes that

tan β = bc

2b2 + c2 ≤ bc

2
√

2bc
= 1

2
√

2
.

��
Example 7.24 We are given an angle 
 XOY and a point P inside it. Points A ∈
−→
OX and B ∈ −→

OY are chosen in such a way that P ∈ AB and ÔAB,ÔBA < 90◦.
Find the least possible value of AP · BP .

Solution Let X̂OY = θ , and R and S be the feet of the perpendiculars dropped

from P to
−→
OX and

−→
OY , respectively. Let also PR = a and PS = b, R̂PA = α,

ŜPB = β.
Since R̂PS + R̂OS = π and α + β + R̂PS = π , we get α + β = θ . On the

other hand,

cos α = PR

AP
= a

AP
and cos β = PS

BP
= b

BP
,
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O

X

Y

A

B

P
b

S

R

a

θ

so that

AP · BP = ab

cos α cos β
= 2ab

cos(α + β) + cos(α − β)

= 2ab

cos θ + cos(α − β)
.

Since a, b and θ are constant, the least possible value of AP · BP is 2ab
cos θ+1 , and

is attained exactly when cos(α − β) = 1, i.e., when α = β. ��

Problems: Sect. 7.2

1. * Prove the formulas of Proposition 7.18 for the expansions of sin(a − b) and
tan(a − b).

2. * Compute the sine, cosine and tangent of 15◦.

3. * For a ∈ R, prove that cos 2a =
{

2 cos2 a − 1
1 − 2 sin2 a

.

4. Use the formulas of Corollary 7.19 and those of the previous problem to
compute the sine, cosine and tangent of 22◦30′.

5. * In each case below, solve the given equations for x ∈ R:

(a) sin x = 0.
(b) cos x = 0.
(c) tan x = 0.

6. * Given α ∈ R, solve the equations below for x ∈ R:

(a) sin x = sin α.
(b) cos x = cos α.
(c) tan x = tan α.

7. * In each of the following items, solve the given equation for x ∈ R, when

A = − 1
2 , A =

√
3

2 and A = −1:

(a) sin x = A.
(b) cos x = A.
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8. Solve the equation tan x = A for A = √
3 and A = 1.

9. Compute sin(x − y) in terms of a = sin x + sin y and b = cos x + cos y,
knowing that ab 
= 0.

10. Deduce the other formulas of Proposition 7.22.
11. * Given a, b ∈ R, with b 
= 2kπ for every k ∈ Z, prove that

n
∑

k=0

sin(a + kb) = sin
(

a + nb
2

)

sin (n+1)b
2

sin b
2

and

n
∑

k=0

cos(a + kb) = cos
(

a + nb
2

)

sin (n+1)b
2

sin b
2

.

12. * For k ∈ N, show that

n
∑

k=1

sin
2kπ

n
=

n
∑

k=1

cos
2kπ

n
= 0.

13. ABCD is a square of side length 1, and E is a point on the edge CD, such
that AE = AB + CE. Letting F be the midpoint of lado CD, show that
ÊAB = 2 · F ̂AD.

14. Lines r and s are parallel and are at a distance of 5cm from each other. A point
P is located in the strip bounded by them, at a distance of 1cm from r . If points
A ∈ r and B ∈ s are such that 
 APB = 90◦, compute the length of AP for
the area of APB to be as small as possible.

15. (OCM) Triangle ABC is right at A and such that AB = 1 and AC = 3. If
D and E are points in AC for which AD = DE = EC, prove that ÂDB +
ÂEB = 45◦.

16. * For a regular n-gon inscribed in a circle of radius R, let ln and an denote the
lengths of the sides and the distances from the center of the circle to them (one
usually says that an is the apothem of the polygon). Compute ln and an for
n = 3, 4, 6 and 8.

17. We have n circles of radii r , all placed in the interior of a regular n-gon whose
sides have length l. Each circle is tangent to two consecutive sides of the
polygon, as well as to two other circles. Compute r in terms of l and n.

18. (Austria) We are give a cyclic pentagon ABCDE. If a, b and c denote the

distances from A to the lines
←→
BC ,

←→
CD and

←→
DE, respectively, find the distance

from A to
←→
BE.

19. (Estonia) ABC is an acute triangle of orthocenter H and barycenter G. Show

that
←→
HG ‖ ←→

BC ⇔ tan ̂B · tan ̂C = 3.
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20. (Bulgaria) Triangle ABC is right at C and isosceles, and M is the midpoint
of the hypotenuse AB. We choose a point P on BC and let N be the foot of
the perpendicular dropped from C to AP ; then, we mark L ∈ AP such that
AL = CN . If A(ABC) = 4A(LMN), find all possible values of ĈAP .

21. (Belarus) Let ABC be a right triangle of hypothenuse BC, and P a point in
the interior of ABC, with BP = AP . Let H stand for the foot of the altitude
and M for the midpoint of BC. Prove that PM bisects 
 HPC if and only if
̂B = 60◦.

For our last problem the reader may find it convenient to recal Girard-Viète’s
formula for the sum of the roots of a polynomial equation (cf. Proposition 16.6
of [6], for instance). Specifically, you shall need the following result: if a0, a1,
a2, a3, a4 are given real numbers, with a4 
= 0, and x1, x2, x3, x4 are distinct
real roots of the polynomial equation a4x

4 + a3x3 + a2x
2 + a1x+ a0 = 0, then

x1 + x2 + x3 + x4 = − a3
a4

.
22. (Putnam) Two parabolas of perpendicular axes intersect at four distinct points

A, B, C and D. Prove that ABCD is a cyclic quadrilateral.

7.3 The Cosine Law

In this section we deepen the relation between Trigonometry and the geometry
of triangles, by deducing the cosine law and presenting a number of interesting
and useful applications of it. Such a formula can be seen as a generalization of
Pythagoras’ theorem for right triangles, and will be an almost indispensable tool
from now on.

Theorem 7.25 (Cosine Law) If triangle ABC has side lengths AB = c, AC = b

and BC = a, then

a2 = b2 + c2 − 2bc cos ̂A. (7.12)

Proof Let H denote the foot of the altitude relative to side AC, and let h stand for
its length. We look separately at the cases ̂A < 90◦, ̂A = 90◦ and ̂A > 90◦:

(i) ̂A < 90◦: in this case (cf. Fig. 7.16), points H and C are in a single half line,

of those determined on
←→
AC by point A, and (7.11) gives us

AH = c cos ̂A and h = c sin ̂A.

On the other hand, by applying Pythagoras’ theorem to triangle BCH , we
obtain
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Fig. 7.16 The cosine law for
̂A < 90◦

a

A

B C

h

H

c

Fig. 7.17 The cosine law for
̂A = 90◦

A

B Ca

bc

Fig. 7.18 The cosine law for
̂A > 90◦

H

B C

A

a

c

a2 = h2 + CH
2 = h2 + (b − AH)2

= (c sin ̂A)2 + (b − c cos ̂A)2

= b2 + c2(sin2
̂A + cos2

̂A) − 2bc cos ̂A

= b2 + c2 − 2bc cos ̂A,

where, in the last equality, we use the fundamental relation of Trigonome-
try (7.4).

(ii) ̂A = 90◦: in this case cos ̂A = 0, and Pythagoras’ theorem (cf. Fig. 7.17) gives

a2 = b2 + c2 = b2 + c2 − 2bc cos ̂A.

(iii) ̂A > 90◦: here (cf. Fig. 7.18), vertex A lies in the line segment CH . Since
B̂AH = 180◦ − ̂A, applying (7.11) to triangle BHA and invoking (7.9), we
get

AH = c cos(180◦ − ̂A) = −c cos ̂A and h = c sin(180◦ − ̂A) = c sin ̂A.

Now, by Pythagoras’ theorem applied to triangle BCH , and reasoning as in
(i), we get
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a2 = h2 + CH
2 = h2 + (b + AH)2

= (c sin ̂A)2 + (b − c cos ̂A)2

= b2 + c2 − 2bc cos ̂A.

��
In what follows, we collect three important consequences of the cosine law.

Corollary 7.26 If triangle ABC has side lengths AB = c, AC = b and BC = a,
with a > b > c, then:

(a) ABC is right (at A) ⇔ a2 = b2 + c2.
(b) ABC is acute ⇔ a2 < b2 + c2.
(c) ABC is obtuse (at A) ⇔ a2 > b2 + c2.

Proof We have already proved item (a) in Sect. 4.2. In order to establish (b), the
cosine law gives

a2 < b2 + c2 ⇔ b2 + c2 − 2bc cos A < b2 + c2

⇔ −2bc cos A < 0 ⇔ cos A > 0

⇔ ̂A < 90◦.

On the other hand, the assumption a > b > c implies ̂A > ̂B > ̂C, so that ABC is
acute.

Finally, for item (c), we reason as above:

a2 > b2 + c2 ⇔ b2 + c2 − 2bc cos A > b2 + c2

⇔ −2bc cos A > 0 ⇔ cos A < 0

⇔ ̂A > 90◦.

��
Formula (7.13) below is known as Stewart’s relation.3

Theorem 7.27 (Stewart) Let ABC be a triangle of side lengths AB = c, AC = b

and BC = a. If P is a point on the side BC, for which BP = x, CP = y and
AP = z, then

b2x + c2y = a(xy + z2). (7.13)

Proof If ÂPC = θ , then ÂPB = 180◦ − θ (cf. Fig. 7.19). By applying the cosine
law to triangle APC to compute AC = b, we obtain

b2 = z2 + y2 − 2yz cos θ.

3The formula is named after Matthew Stewart, Scottish mathematician of the XVIII century.
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Fig. 7.19 Stewart’s relation A

B CP

a

bc

x y

z

On the other hand, since cos(180◦ − θ) = − cos θ , cosine law, applied to triangle
APB to compute AB = c, give us

c2 = z2 + x2 − 2xz cos(180◦ − θ)

= z2 + x2 + 2xz cos θ.

Solving both relations above for cos θ and equating the results, we arrive at

z2 + y2 − b2

2yz
= c2 − z2 − x2

2xz

or, which is the same, at

x(z2 + y2 − b2) = y(c2 − z2 − x2).

We can rewrite the last equality above as

xz2 + yz2 + xy2 + x2y = b2x + c2y,

after which grouping summands at the left hand side gives

(x + y)z2 + xy(x + y) = b2x + c2y.

Finally, substituting x + y = a furnishes us the desired result. ��
Formula (7.14) below has already appeared in Problem 5, page 188.

Corollary 7.28 Let ABC be a triangle of side lengths AB = c, AC = b and
BC = a. If ma stands for the length of the median of ABC relative to BC, then

a2 + 4m2
a = 2(b2 + c2). (7.14)
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Proof Setting z = ma and x = y = a
2 in Stewart’s relation (cf. Fig. 7.19), we obtain

b2 · a

2
+ c2 · a

2
= a

(

(a

2

)2 + m2
a

)

,

and then

b2 + c2

2
= a2

4
+ m2

a,

as wished. ��
It is sometimes useful to apply the cosine law in the following disguised form:

given a triangle ABC with ̂A < 90◦, let H denote the foot of the perpendicular

dropped from B to
←→
AC and AH = m (cf. Fig. 7.16). Then, regardless of whether

̂C is acute, right or obtuse, we have

a2 = h2 + CH
2 = h2 + (b − AH)2

= (c2 − m2) + (b − m)2

= b2 + c2 − 2bm.

(7.15)

Accordingly, if ̂C > 90◦ and H and m are as above, a computation quite similar to
the one above gives

a2 = b2 + c2 + 2bm.

The following example uses the first of the two formulas above, together with
the following simple fact on rational numbers (cf. Example 6.24 of [6]): if r ∈ Q is
positive and r2 ∈ N, then r ∈ N.

Example 7.29 (Brazil) Given a natural number h, show that there exists at most a
finite number of acute triangles of integer sides, such that h is one of its heights.

Proof We stick to the notations of the figure below.

A

B C

h

H

c b

a

m
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The triangle inequality gives a + b − c > 0, so that a + b − c ∈ N. However,
since c = m + n = √

a2 − h2 +√
b2 − h2, we have

a + b − c = a + b −
√

a2 − h2 +
√

b2 − h2

= h2

a +√
a2 − h2

+ h2

b +√
b2 − h2

.

Now, a simple computation shows that

h2

a +√
a2 − h2

<
1

2
⇔ a > h2 + 1

4
,

and analogously for h2

b+
√

b2−h2
. Therefore, we cannot have a, b > h2 + 1

4 , so that

either a ≤ h2 + 1
4 or b ≤ h2 + 1

4 .
Suppose a ≤ h2 + 1

4 (the other case being entirely analogous). Then, we have at
most a finite number of possibilities for a. The triangle inequality applied to ABH

and ACH gives a + b < c + h, so that 0 < a + b − c < h. We then conclude that
a + b − c ∈ N and assumes at most a finite number of values, and since we already
have at most a finite number of possibilities for a, the same holds for b − c.

On the other hand, (7.15) gives b2 = a2 + c2 − 2cm, so that

m = a2 + c2 − b2

2c
∈ Q.

However, since m2 = a2 − h2 ∈ N, we conclude that m ∈ N. Since m < a, this
shows that m assumes at most a finite number of values, too.

Finally, letting b − c = n, it follows that

m = a2 + c2 − b2

2c
= a2 − n(b + c)

2c
,

whence nb + (n + 2m)c = a2. It is now immediate to note from the system of
equations

{

b − c = n

nb + (n + 2m)c = a2 ,

together with the fact that we have at most a finite number of values for m and n,
that we also have at most a finite number of values for b and c. ��



254 7 Trigonometry and Geometry

Problems: Sect. 7.3

1. (OCM) From triangle ABC we know the lengths b and c of AC and AB,
respectively. If BC = √

b2 + c2 + bc, compute, in degrees, the measure of

 ACB.

2. * Do the following items:

(a) In the notations of Problem 16, prove that l10 = R
(√

5−1
2

)

.

(b) Show that l5 = R

√

5−√5
2 .

(c) Prove that there exists a triangle with sides l5, l6 and l10, and that such a
triangle is necessarily a right one.

3. * Use the result of the previous problem to show that cos 36◦ = 1+√5
4 .

4. (Slovenia) The three musketeers, Athos, Porthos and Aramis, had a terrible
argument in a pub. After the fight, each one of them followed his own path,
along directions that formed 120◦ with each other. If their speeds speeds were
10km/h, 20km/h and 40km/h, respectively. prove that at each instant after the
fight their positions formed the vertices of a right triangle.

5. (Baltic Way) The internal bisectors of the angles 
 A and 
 B of a triangle ABC

meet sides BC and AC respectively at points D and E. If BD + AE = AB,
compute all possible values of ÂCB.

6. (OIM) ABC is an equilateral triangle of side length �. Point P inside ABC is
such that AP , BP and CP are the lengths of the sides of a right triangle of
acute angles 30◦ and 60◦. If AP is the length of the hypothenuse, compute it
in terms of �.

7. A convex hexagon has three consecutive sides of length a and the other three
of length b. If it is inscribed in a circle of radius r , do the following items:

(a) Compute r as a function of a and b.
(b) Compute its area as a function of a and b.

8. Use the material of this section to prove the formula for the Euler median of a
convex quadrilateral (cf. Problem 6, page 188).

9. Prove that, in every parallelogram, the sum of the squares of the lengths of
the sides equals the sum of the squares of the diagonals. Then, use this fact to
deduce formula (7.14) for the length of a median of a triangle.

10. (EKMC) If the angles at the vertices of the larger basis of a trapezoid are
unequal, show that the diagonal departing from the vertex of the largest angle
is smaller than the other one.

11. ABC is a right triangle of legs AB = 3 and AC = 4, and circumcircle �. Find
the radius of the circle �, tangent to the legs AB and AC and internally tangent
to �.
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12. In triangle ABC, we have AB = c, AC = b and BC = a. If P stands for the
foot of the internal bisector of 
 BAC, show that

AP = 2
√

bcp(p − a)

b + c
,

where p is the semiperimeter of ABC.
13. In triangle ABC, we have AB = c, AC = b and BC = a. If I denotes the

incenter, show that AI <
√

bc.
14. We are given a regular polygon A1A2 . . . A2n and a point P in the plane. Show

that

n
∑

k=1

A2kP
2 =

n
∑

k=1

A2k−1P
2
.

15. (Russia) ABC is a triangle with sides AB = c, AC = b and BC = a, and
medians relative to AB, AC and BC of lengths respectively equal to mc, mb

and ma . If R stands for the circumradius of ABC, prove that

a2 + b2

2mc

+ a2 + c2

2mb

+ b2 + c2

2ma

≤ 6R,

with equality if and only if ABC is equilateral.
16. (EKMC) We are given two exterior circles and draw an inner and an outer

common tangent. The resulting points of tangency define a chord in each circle.
Prove that the intersection point of these two chords is collinear with the centers
of the circles.

17. (EKMC) Consider six points in the plane, no three of which are collinear.
Prove that the ratio between the lenghts of the greatest and smallest segments
determined by two of these points is at least

√
3.

18. Let P be a point in the interior of the inscribed circle � of triangle ABC. The

lines
←→
AP ,

←→
BP ,

←→
CP meet � respectively at points X, Y , Z. If � touches the

sides BC, AC, AB respectively at D, E and F , show that lines
←→
DX,

←→
EY and

←→
FZ are concurrent.

7.4 The Sine Law

We begin this section by deriving another fundamental relation involving Trigon-
ometry and the geometry of triangles, namely, the sine law. This is formula (7.16)
below.
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Fig. 7.20 The sine law

Γ
O

A

B C

A

Theorem 7.30 (Sine Law) If R denotes the circumradius of a triangle of side
lengths a, b and c, then

a

sin A
= b

sin B
= c

sin C
= 2R. (7.16)

Proof Let ABC be such a triangle, with AB = c, AC = b and BC = a (cf.
Fig. 7.20). By assuming that ABC is acute (the analysis of the remaining cases is
entirely analogous), we shall prove that sin ̂A = a

2R
(the equalities sin ̂B = b

2R
and

sin ̂C = c
2R

can also be dealt with in exactly the same way).
Let O and � be the circumcenter and the circumcircle of ABC, respectively, and

A′ be the symmetric of B with respect to O . Then A′ ∈ �, so that the inscribed angle
theorem gives B̂A′C = B̂AC = ̂A. On the other hand, since A′B is a diameter of
�, we have A′

̂CB = 90◦. Therefore, in the right triangle A′BC, we have

sin ̂A = sin B̂A′C = BC

BA′ =
a

2R
.

��
The coming corollary is, almost surely, the most important consequence of sine

law. The formula given by the first equality in (7.17) is usually referred to as the
sine formula for the area of a triangle.

Corollary 7.31 If triangle ABC has side lengths AB = c, AC = b, BC = a,
internal angles ̂A, ̂B, ̂C and circumradius R, then

A(ABC) = 1

2
bc sin A = abc

4R
. (7.17)

Proof Suppose that ABC is acute (the proof in the cases of a right or obtuse ABC

are pretty much the same), and let Hb and hb stand for the foot and the length of the
altitude relative to AC, respectively (cf. Fig. 7.21). Then, in the right triangle ABHb
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Fig. 7.21 Useful formulas
for the area of a triangle

A

B C

Hb

hb

c

we have

sin ̂A = BHb

AB
= hb

c
,

so that hb = c sin ̂A. It thus follows that

A(ABC) = 1

2
bhb = 1

2
bc sin ̂A.

In order to obtain the other formula in (7.17), it suffices to apply the sine law to
the first formula:

A(ABC) = 1

2
bc sin ̂A = 1

2
bc · a

2R
= abc

4R
.

��
The sine formulas for the area, together with the cosine law, allows us to solve

the following

Example 7.32 (Brazil) Given a triangle ABC, find points D ∈ −→
AB and E

−→
AC such

that A(ADE) = 1
2A(ABC) and DE is as small as possible.

Solution In the notations of the figure below, let AB = c, AC = b, B̂AC = α,
AD = x, AE = y (note that the fact that D and E lie along the sides AB and
AC—instead of their extensions—does not interfere in the solution).

A

B C

E

D
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The relation between the areas of ADE and ABC give, through the sine formula
for the area,

1

2
xy sin α = 1

4
bc sin α,

so that xy = bc
2 . On the other hand, it follows from the cosine law that

DE
2 = x2 + y2 − 2xy cos α = x2 + y2 − bc cos α.

However, since b, c and α are constant, DE will be minimal if and only if the
x2 + y2 is minimal. But the arithmetic-geometric means inequality gives x2 + y2 ≥
2xy = bc, with equality if and only if x = y =

√

bc
2 .

��
Yet another useful expression for the area of a triangle is Heron’s formula, due

to the Greek mathematician of the 1st century a.D. Heron of Alexandria.

Proposition 7.33 If triangle ABC has side lengths a, b, c and semiperimeter
p, then

A(ABC) = √

p(p − a)(p − b)(p − c). (7.18)

Proof By successively applying the sine formula for the area of ABC, the funda-
mental relation of Trigonometry and the cosine law, we obtain

16A(ABC)2 = 4b2c2 sin2
̂A = 4b2c2(1 − cos2

̂A)

= 4b2c2
(

1 −
(

b2 + c2 − a2

2bc

)2 )

.

Therefore, several applications of the formula for factorizing the difference of two
squares give

16A(ABC)2 = 4b2c2
(

1 − b2 + c2 − a2

2bc

)(

1 + b2 + c2 − a2

2bc

)

=
(

2bc − (b2 + c2) + a2
) (

2bc + (b2 + c2) − a2
)

=
(

a2 − (b − c)2
) (

(b + c)2 − a2
)

= (a − (b − c)) (a + (b − c)) ((b + c) − a) ((b + c) + a)

= 2(p − b) · 2(p − c) · 2(p − a) · 2p

= 16p(p − a)(p − b)(p − c).

��
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We finish this section by discussing two interesting examples, the first of which
is a neat application of Heron’s formula which solves the isoperimetric problem
for triangles.

Example 7.34 Show that, among all triangles with the same perimeter, the equilat-
erals are those of largest area.

Proof Let p stand for the (known) semiperimeter, A for the area and a, b, c for the
lengths of the sides of the triangle. Heron’s formula, applied in conjunction with the
inequality between the arithmetic and geometric means of three positive reals (cf.
Section 5.1 of [5], for instance), give us

A2

p
= (p − a)(p − b)(p − c) ≤

(

(p − a)+ (p − b)+ (p − c)

3

)3

= p3

27
,

with equality holding if and only if p − a = p − b = p − c, i.e., if and only if the
triangle is equilateral. ��
Example 7.35 (IMO) Let ̂A be the smallest angle of triangle ABC, and U be a point

in the smallest arc
�

BC of the circumcircle of ABC. The perpendicular bisectors of

AB and AC intersect AU at T and W , respectively. If
←→
BT and

←→
CW meet at V ,

prove that AU = BV + CV

Proof In the notations of the figure below, ACW and ABT are isosceles, so that
ÂCW = β and ÂBT = γ . Moreover, the inscribed angle theorem gives ĈBU =
ĈAU = β and B̂CU = B̂AU = γ . Thus, the exterior angle theorem gives

C ̂WU = ĈAW + ÂCW = 2β, B̂T U = B̂AT + ÂBT = 2γ

and

B̂V C = T ̂WV + V ̂T W = 2β + 2γ = 2(β + γ ) = 2̂A.

B C

A

MbMc

ax y

βγ

U

T

W
V
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Now, let AC = b and AB = c. Ptolemy’s theorem applied to the quadrilateral
ABUC, together with the sine law, give

AU = b · x

a
+ c · y

a
= b · sin γ

sin ̂A
+ c · sin β

sin ̂A
. (7.19)

Also,

BV + CV = BT − T V + CW + V W

= c

2 cos γ
− T V + b

2 cos β
+ V W,

where in the second equality we have computed cos β and cos γ in the right triangles
CWMb and BT Mc.

In order to compute T V , apply the sine law to triangle T V W to obtain

T V = T W · sin 2β

sin 2̂A
= (

AW − AT
) · sin 2β

sin 2̂A

= (

CW − BT
) · sin 2β

sin 2̂A
=
( b

2 cos β
− c

2 cos γ

)

· sin 2β

sin 2̂A
.

Likewise, V W =
(

b
2 cos β

− c
2 cos γ

)

· sin 2γ

sin 2̂A
, and substituting these expressions for

T V and V W into that for BV + CV , we get

BV + CV = c

2 cos γ
−
( b

2 cos β
− c

2 cos γ

)

· sin 2β

sin 2̂A

+ b

2 cos β
+
( b

2 cosβ
− c

2 cosγ

)

· sin 2γ

sin 2̂A

= b

2 cos β

(

1 + sin 2γ − sin 2β

sin 2̂A

)

+ c

2 cos γ

(

1 + sin 2β − sin 2γ

sin 2̂A

)

.

We now use some Trigonometry, together with ̂A = β + γ , to compute

1 + sin 2γ − sin 2β

sin 2̂A
= 1 + 2 sin(γ − β) cos(γ + β)

2 sin ̂A cos ̂A
= 1 + sin(γ − β)

sin ̂A

sin(γ + β) + sin(γ − β)

sin ̂A
= 2 sin γ cos β

sin ̂A
.

Analogously,

1 + sin 2β − sin 2γ

sin 2̂A
= 2 sin β cos γ

sin ̂A
.
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Finally, it follows from the formulas above and (7.19) that

BV + CV = b

2 cos β
· 2 sin γ cos β

sin ̂A
+ c

2 cos γ
· 2 sin β cos γ

sin ̂A

= b · sin γ

sin ̂A
+ c · sin β

sin ̂A
= AU.

��

Problems: Sect. 7.4

1. The lengths of the sides of triangle ABC are a, b and c. Letting p denote the
semiperimeter and R the circumradius of ABC, prove that

sin ̂A + sin ̂B + sin ̂C = p

R
.

2. (OCM) ABC is a triangle in which ÂBC = 2ÂCB. Show that b2 = c(a + c).
3. The lengths of the sides of a triangle form an arithmetic progression with

midterm �. If the measure of the larger angle exceeds that of the smaller one in
90◦, compute the ratio between the lengths of the larger and smaller sides.

4. Use compass and straightedge to construct a triangle ABC, given the lengths b

of side AC, c of side AB and knowing that the median relative to BC divides
angle 
 BAC in two angles such that one is twice the other.

5. Triangle ABC is such that AB = 13, AC = 14 and BC = 15. A semicircle
of radius R has its center along side BC and is tangent to sides AB and AC.
Compute the value of R.

6. Let ABC be a triangle of sides 4, 5 and 6. We choose a point D along one of
the sides of ABC, and then drop the perpendiculars DP and DQ to the other
two sides. Compute the least possible length of line segment PQ.

7. * (IMO—adapted) Given a triangle ABC of sides a, b and c, prove Weitzen-
böck’s inequality4:

A(ABC) ≤
√

3

12
(a2 + b2 + c2),

with equality if and only if ABC is equilateral.
8. (Poland) Let ABC be a triangle with circumcircle �, and D be the midpoint

of the arc
�

BC of � not containing vertex A. If K and L denote the feet of the

perpendiculars dropped from B and C to
←→
AD, respectively, prove that BK +

CL ≤ AD.

4Roland Weitzenböck, austrian mathematician of the XX century.
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9. (OIM) Starting from a triangle ABC, we construct a convex hexagon
A1A2B1B2C1C2 in the following way:

(a) A ∈ BB2, CC1, B ∈ AA1, CC2 and C ∈ AA2, BB1.
(b) AB2 = AC1 = BC, BA1 = BC2 = AC and CA2 = CB1 = AB.

Prove that

A(A1A2B1B2C1C2) ≥ 13 · A(ABC).

10. Prove Archimedes’ theorem (cf. Problem 28, page 84) with the aid of the
theorey developed in this chapter: let ABC be a triangle in which AB > AC. In

the circumcircle of ABC we mark the midpoint M of the arc
�

BC that contains
A. If N is the foot of the perpendicular dropped from M to the line segment
AB, then BN = AN + AC.

11. Let ABC be a triangle in which AB = c, AC = b and B̂AC = 2α. If P is the
foot of the internal bisector relative to A, prove that

AP = 2bc cos α

b + c
.

12. (Canada) ABC is a triangle of sides BC = a and AC = b. Knowing that its
area equals 1

4 (a2 + b2), find all possible values for the measure of 
 ACB.
13. * Prove the sine formula for the area of a convex quadrilateral: if ABCD is a

convex quadrilateral with diagonals AC and BD, forming an angle α with each
other, then

A(ABCD) = 1

2
AC · BD sin α.

14. (Belarus) A trapezoid has area 18cm2 and sum of diagonals 12cm. Show that
the diagonals are perpendicular and have equal lengths.

15. (Austria) In a convex quadrilateral ABCD, let E be the intersection point of the
diagonals AC and BD. If A(ABE) = S1, A(CDE) = S2 and A(ABCD) = S,
prove that

√
S ≥ √

S1 +
√

S2.

When does the equality occur?
16. ABCD is a cyclic quadrilateral for which there exists a point M along side CD

such that the perimeter and the area of triangle ADM respectively coincide
with those of quadrilateral ABCM . Prove that ABCD has two sides of equal
lengths.
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17. (Brazil) ABCD is a cyclic quadrilateral of sides a, b, c and d . Prove
Brahmagupta’s formula5 for the area of ABCD:

A(ABCD) = √

(p − a)(p − b)(p − c)(p − d).

18. Prove Hypparchus’ theorem6: if ABCD is a cyclic quadrilateral of sides
AB = a, BC = b, CD = c, DA = d and diagonals AC = x, BD = y, then

x

y
= ad + bc

ab + cd
.

19. (IMO) Use compass and straightedge to construct a cyclic quadrilateral ABCD,
knowing the lengths a, b, c and d of sides AB, BC, CD and DA, respectively.

20. (Soviet Union) Given a convex polygon in the plane, we can draw a line cutting
it into two other convex polygons, choose one of them, turn it upside down and
glue it back to the other one, along the original cut. Does there exist a finite
sequence of such operations that transform a square into a triangle?

21. * We are given a triangle ABC and cevians AP , BQ and CR, with P ∈ BC,
Q ∈ AC and R ∈ AB. If B̂AP = α, ĈAP = α′, ĈBQ = β, ÂBQ = β ′,
ÂCR = γ and B̂CR = γ ′, prove that

BP

PC
= sin α · sin ̂C

sin α′ · sin ̂B
,

with likewise equalities for the ratios in which Q divides AC and R divides
AB. Then, use such relations to establish the following trigonometric version
of Ceva’s theorem:

AP, BQ and CR concur ⇔ sin α

sin α′ ·
sin β

sin β ′ ·
sin γ

sin γ ′ = 1.

Finally, use such a formulation of Ceva’s theorem to give an alternative proof
of Theorem 4.28.

22. Let ABC be an acute triangle of incenter I . Mark point A1 ∈ −→
AI such that

A1 
= A and the midpoint M of AA1 lies in the circumcircle of ABC; then,

define N ∈ −→
BI and P ∈ −→

CI in analogous ways.

(a) Prove that A(A1B1C1) = (4R+r)p, where r and R respectively denote the
inradius and the circumradius of ABC, and p stands for its semiperimeter.

(b) Conclude that A(A1B1C1) ≥ 9·A(ABC), with equality if and only if ABC

is equilateral.

5Brahmagupta, Indian astronomer and mathematician of the VII century.
6Hypparchus of Nicaea, Greek astronomer and mathematician of the II century.
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7.5 Ptolemy’s Inequality

For what comes next, it is worth recalling the discussion in the paragraph preceding
the Simson-Wallace theorem (cf. Theorem 3.40): given a triangle ABC and a point
P , with A, B, C and P in general position (i.e., such that P is noncollinear with
any two of A, B, C), the pedal triangle of P with respect to ABC is the (possibly
degenerated) triangle whose vertices are the feet of the perpendiculars dropped from

P to the lines
←→
AB ,

←→
AC ,

←→
BC .

The above mentioned result assures that triangle DEF is degenerated if and only
if P lies in the circumcircle of ABC. In any case, the following proposition teaches
us to compute the lengths of the sides of DEF (Fig. 7.22).

Proposition 7.36 We are given in the plane a triangle ABC and a point P , with
A, B, C and P in general position. Let DEF be the (possibly degenerated) pedal

triangle of P with respect to ABC, with D ∈ ←→
BC , E ∈ ←→

AC and F ∈ ←→
AB . Then,

DE = PC · sin ̂C, EF = PA · sin ̂A and FD = PB · sin ̂B.

Proof There are three essentially distinct cases to consider: P lies in the interior of
ABC; P lies in the angular region 
 ABC but outside the triangle ABC; P lies in
the angular region OPP to 
 ABC. Let us analyse the first case (cf. Fig. 3.38), the
analysis of the two remaining ones being quite similar.

It suffices to show that DE = PC · sin ̂C (the remaining equalities can be
deduces through analogous reasonings). Since P ̂EC = P ̂DC = 90◦, quadrilateral

Fig. 7.22 Computing the
sides of a pedal triangle

A

B C

P

E

D
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Fig. 7.23 Generalizing
Ptolemy’s theorem
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D

Y

X

Z

PEDC is cyclic and its circumscribed circle has diameter PC. Hence, by applying
the sine law to triangle DEC, we obtain

DE

sin ÊCD
= PC.

Finally, taking into account that 
 ECD = 
 ACB = 
 C, we get the desired result.
��

The proposition above, together with the Simson-Wallace theorem allows us to
generalize Ptolemy’s theorem 4.18 as described below.

Theorem 7.37 If ABCD is a convex quadrilateral of diagonals AC and BD, then

AB · CD + AD · BC ≥ AC · BD, (7.20)

with equality holding if and only if ABCD is cyclic.

Proof Let X, Y and Z denote the feet of the perpendiculars dropped from D

respectively to
←→
BC ,

←→
AC and

←→
AB (cf. Fig. 7.23). As in the proof of the Simson-

Wallace theorem, we can assume with no loss of generality that X and Y lie in the
line segments BC and AC, respectively, while Z lies in the extension of AB.

Proposition 7.36 gives

XY

sin ̂C
= CD;

on the other hand, the sine law applied to triangle ABC furnishes

AB

sin ̂C
= 2R,
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where R is the circumradius of ABC. Hence, from the two relations above we get

XY = CD · sin ̂C = CD · AB

2R
.

Analogously, we obtain

YZ = AD · BC

2R
and XZ = BD · AC

2R
.

Finally, it follows from Theorem 3.40 that

ABCD cyclic ⇔ X,Y and Z collinear

⇔ XY + YZ = XZ.

Since in any event triangle inequality gives XY+ YZ ≥ XZ, the expressions above
for XY , XZ and YZ furnish

AB · CD

2R
+ AD · BC

2R
≥ AC · BD

2R
,

with equality if and only if ABCD is cyclic. ��
Given a triangle ABC in the plane, Steiner’s problem7 for ABC asks one to

find the point(s) P inside it for which the sum

PA + PB + PC

is as small as possible. In what comes next, we shall use the general version of
Ptolemy’s theorem to solve this problem for a certain class of triangles.

In order to properly state the result below recall (cf. Problem 6, page 126) that
if ABC is a triangle whose internal angles are all less than 120◦, then its point of
Fermat is the only point P inside ABC such that

ÂPB = ÂPC = B̂PC = 120◦.

Theorem 7.38 (Steiner) If ABC is a triangle with internal angles all less than
120◦, then its point of Fermat is the only solution for Steiner’s problem for ABC.

Proof We first note that the construction delineated in Problem 6, page 126 (cf.
Fig. 7.24), guarantees that if P is the intersection point of the circumcircles of the
equilateral triangles ACE, BCD and ABF , then

AD = BE = CF = AP + BP + CP . (7.21)

7Jakob Steiner, Swiss mathematician of the XIX century.
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Fig. 7.24 Steiner’s problem
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A

C
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P Q

On the other hand, if Q 
= P is another point in the interior of ABC, then Q

cannot lie in all of these three circles (for otherwise Q would coincide with P ).
Assume, without loss of generality, that Q is not in the circumcircle of BCD. Then,
Ptolemy’s inequality (7.20) applied to quadrilateral QBDC (which is not cyclic)
gives us

BQ · CD + CQ · BD > DQ · BC.

However, since BC = BD = CD, it follows that

BQ + CQ > DQ.

Finally, it suffices to use triangle inequality and (7.21):

AQ + BQ + CQ > AQ + DQ ≥ AD = AP + BP + CP ,

so that the only solution of Steiner’s problem is, indeed, the point of Fermat P of
triangle ABC. ��
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Problems: Sect. 7.5

1. Given a point P in the interior of an equilateral triangle ABC, show that there
always exist a triangle with sides AP , BP and CP .

2. (Vietnam) Find the smallest possible value of the expression

√

(x + 1)2 + (y − 1)2 +
√

(x − 1)2 + (y + 1)2+

+
√

(x + 2)2 + (y + 2)2,

as x and y vary in the set of real numbers.
3. (IMO shortlist) ABCDEF is a convex hexagon with AB = BC, CD = DE,

EF = AF . Show that

BC

BE
+ DE

DA
+ FA

FC
≥ 3

2
.



Chapter 8
Vectors in the Plane

This chapter is devoted to a systematic study of vectors in the plane, as well as to
the presentation of some applications of them to Euclidean Geometry. In this sense,
we shall try to emphasize the use of vectors as being, at the same time, alternative
and complementary to the synthetic and cartesian methods. It is within this spirit
that we shall use vectors to revisit several previously obtained results; in particular,
we call the reader’s attention to the variety of uses of the concept of scalar product
of two vectors, in Sect. 8.3.

8.1 Geometric Vectors

A geometric vector, or simply a vector, in the plane is an oriented segment, i.e., a
line segment in which one of its endpoints is the initial point and the other is the
terminal point (cf. Fig. 8.1).

Generally, we shall represent vectors by using boldface lower case Latin letters.
If a vector v (cf. Fig. 8.1) has initial point A and terminal point B, we shall also

write v = −→
AB. Note that vectors

−→
AB and

−→
BA are distintcs; indeed, although they

have the same endpoints, the direction of
−→
BA is opposite to that of

−→
AB.

The notion of equality for vectors is, in a certain sense, weaker than that of

equality of line segments: we say that vectors v = −→
AB and w = −→

CD are equal
provided the quadrilateral ACDB (i.e., the quadrilateral of sides AC, CD, DB and

BA) is a parallelogram (cf. Fig. 8.1). In this case, we also say that
−→
AB and

−→
CD

represent the same vector and write v = w or
−→
AB= −→

CD. A single vector has

infinitely many representatives: given a vector v = −→
AB and an arbitrary point X, if

Y is such that AXYB is a parallelogram, then
−→
XY is another representative for v.
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Fig. 8.1 Vectors in the plane
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Fig. 8.2 Vectors with
opposite directions
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The modulus of vector v, denoted ||v||, is the length of any of its representative.

For instance, if v = −→
AB, then ||v|| = AB (cf. Fig. 8.2).

For what comes, it is useful to extend the definitions above to consider any point
in the plane as a vector in its own, called the zero, or null, vector and denoted 0
(note that such a convention is equivalent to considering a point as a line segment of
zero length). Thus, ||0|| = 0. A nonzero or non null vector is a vector v such that
v 
= 0.

We say that two nonzero vectors v and w have the same direction provided the

following condition is satisfied: if v = −→
AB and w = −→

CD, then
←→
AB‖←→

CD and
AD ∩ CB 
= ∅. It is not difficult to check that this condition does not depend

on the representatives of v and w. Also in the above notations, if
←→
AB‖←→

CD but
AD ∩CB = ∅, then we say that v and w have opposite directions. This is the case
of vectors v and w of Fig. 8.2. Moreover, if one of these cases happens, we shall
sometimes say that v and w are parallel.

One of the great advantages of working with vectors is the possibility of
performing with them operations quite similar to the addition and subtraction of
real numbers. Specifically, given nonzero vectors v and w (cf. Fig. 8.3), choose

representatives v = −→
AB and w = −→

BC (i.e., such that the terminal point of v coincides
with the initial point of w) and define the sum of v and w as being the vector

v + w = −→
AC. Define also v + 0 = v, for every vector v.

If vectors v and w do not lie in parallel lines (as is the case in Fig. 8.3), we can also
compute its sum by means of the parallelogram rule: we choose a representative
−→
AD for w (with the same initial point as that of v) and observe that v + w is the

diagonal vector
−→
AC of parallelogram ABCD.
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Fig. 8.3 Addition of vectors

v
w

v

A

B

D

w
C

v + w

It is immediate to verify (cf. Problem 1) that the addition of vectors is well
defined, i.e., that the sum vector v + w of v and w does not depend on the chosen
representatives for v and w. Moreover, it clearly follows from the parallelogram rule
that the addition of vectors is commutative, i.e., that

v + w = w + v,

for all vectors v and w.
Another important property of the addition of vectors is its associativity, which

is the object of the coming result.

Proposition 8.1 Given vectors a, b and c, we have

a + (b + c) = (a + b) + c.

Proof Suppose, for the sake of convenience, that we have already chosen repre-

sentatives for a, b and c in such a way that a = −→
OA, b = −→

OB and c = −→
OC (cf.

Fig. 8.4). Successively mark points D and E such that OADB and ODEC are

parallelograms. Then,
−→
OD= a + b, so that

(a + b) + c = −→
OD + −→

OC= −→
OE .

Now, mark point F such that OBFC is also a parallelogram. Then, on the one hand,
−→
OF= b + c; on the other, the fact that ODEC and OBFC are parallelograms
assures that the line segments BF and DE are both parallel and equal to the line
segmen OC. Hence, quadrilateral DEFB is a parallelogram too (since is opposite
sides DE and BF are equal and parallels). In particular, as vectors we have

−→
FE= −→

BD= −→
OA,
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Fig. 8.4 Associativity of the
addition of vectors
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where in the last equality we used the fact that OADB is also a parallelogram. Thus,
−→
OA= −→

FE, so that OAEF is a parallelogram too. But this gives us

a + (b + c) = −→
OA + −→

OF= −→
OE .

��
A second useful operation with vectors is the multiplication of vectors by

scalars (in the context of operations with vectors, we will generally refer to a real
number as a scalar). Thus, given a vector v and a scalar k, we define the product
of v by the scalar k, or simply the product by scalar kv, in the following way: if
k = 0 or v = 0, then kv = 0; if k 
= 0 and v 
= 0, then (look at Fig. 8.5 for an
example) kv is the only vector satisfying the following conditions:

(i) kv is parallel to v.
(ii) ||kv|| = |k| · ||v||.

(iii) kv and v have the same (resp. opposite) directions if k > 0 (resp. k < 0).

We shall also say that kv is a scalar multiple of v.
In the particular case of k = −1, we shall usually write −v to denote (−1)v, and

say that −v is opposite to v.
The operation of multiplication by scalars has the properties listed in the propo-

sition below, whose proof we leave as an exercise for the reader (cf. Problem 3).

Proposition 8.2 Given scalars k, k1 and k2, and vectors v, v1 and v2, we have:

(a) (k1k2)v = k1(k2v).
(b) (k1 + k2)v = (k1v) + (k2v).
(c) k(v + w) = (kv1) + (kv2).
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With the operation of multiplication of vectors by scalars at our disposal, we are
in position to define the difference v − w of the vectors v and w (in this order) as
the sum of v with the opposite of w:

v − w = v + (−w). (8.1)

In particular, it is immediate that v − v = 0.
Since the difference between two vectors is defined as a particular case of

addition, it should be no surprise that we can obtain it geometrically with the aid
of the parallelogram rule. Indeed, Fig. 8.6 shows how this can be done: if the

parallelogram ABCD is such that
−→
AB= v and

−→
BC= w, then the diagonal vector

−→
AC represents v + w, whereas the diagonal vector

−→
DB represents v − w.

Problems: Sect. 8.1

1. * Given non null vectors v and w, choose representants
−→
AB,

−→
A′B ′ for v

and
−→
AC,

−→
A′C′ for w. If D and D′ are the points chosen so that ACDB and

A′C′D′B ′ are parallelograms, prove that
−→
AD=

−→
A′D′.

2. * Prove that two nonzero parallel vectors can be seen as scalar multiples from
one another. More precisely, given parallel vectors v, w 
= 0, prove that

{

v = ||v||
||w||w, if v and w have the same direction

v = − ||v||
||w||w, if v and w have opposite directions

.

3. * Prove Proposition 8.2.

4. * We are given in the plane distinct points O , A, B and C, such that
−→
AC=

k· −→
AB for some k ∈ R. Prove that

−→
OC= (1 − k)

−→
OA +k

−→
OB .

Fig. 8.6 The difference of
two vectors

v
w

v

A

B

−w

D

C
v − w



274 8 Vectors in the Plane

5. Let M , N , P , Q be the midpoints of sides AB, BC, CD, AD of quadrilateral
ABCD. Prove that MNPQ is a parallelogram.

6. * Let ABC be a triangle of incenter I and AB = c, AC = b, BC = a. If O is
any point in the plane, prove that

−→
OI= a

−→
OA +b

−→
OB +c

−→
OC

a + b + c
.

7. (TT) Given a triangle ABC, let Ha , Hb and Hc stand for the feet of the altitudes
corresponding to A, B and C, respectively. Prove that the triangle formed by
the orthocenters of triangles AHbHc, BHaHc, CHaHb is congruent to triangle
HaHbHc.

8. * If ABC is a triangle of circumcenter O and orthocenter H , prove that

−→
OH= −→

OA + −→
OB + −→

OC .

9. (France) Let A1A2 . . . An be a regular n-gon.

(a) If n is even, show that for every point P in the plane there exists a choice
of signs + and − that turns true the equality

± −→
PA1 ± −→

PA2 ± · · ·± −→
PAn= 0.

(b) If n is odd, show that there is at most a finite set of points P in the plane
for which the equality above is true for some choice of signs + and −.

10. A1A2 . . . A2n is a simple polygon in the plane (cf. discussion preceding
Problem 14, page 190) and, for 1 ≤ i ≤ 2n, Mi is the midpoint of AiAi+1
(with A2n+1 = A1). For a fixed point B1 in the plane and for 2 ≤ i ≤ 2n + 1,
let Bi be the symmetric of Bi−1 with respect to Mi−1. Prove that B2n+1 = B1.

11. (Soviet Union) When each side of a convex quadrilateral ABCD is extended
by its own length, we obtain a new quadrilateral A′B ′C′D′, in which B is the
midpoint of AA′, C is the midpoint of BB ′, D is the midpoint of CC′ and A

that of DD′. Show how to construct ABCD from A′B ′C′D′.
12. P1P2P3P4P5 is a convex pentagon and, for 1 ≤ i ≤ 5, Qi is the intersection

point of the line segments joining the midpoints of the opposite sides of
quadrilateral Pi+1Pi+2Pi+3Pi+4 (with Pi+5 = Pi for 1 ≤ i ≤ 5). Prove that
there exists a point O in the plane such that O ∈ PiQi and OPi = 4OQi , for
1 ≤ i ≤ 5.
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Fig. 8.7 Equality of vectors
in coordinates
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8.2 Vectors in the Cartesian Plane

If we furnish the plane with a cartesian system, it is useful to examine the
relationship between the corresponding cartesian coordinates and the operations on
vectors defined in the previous section. The following lemma is the key result.

Lemma 8.3 Given points A(xA, yA), B(xB, yB), C(xC, yC), D(xD, yD) in the
cartesian plane, we have

−→
AB= −→

CD⇔
{

xB − xA = xD − xC

yB − yA = yD − yC
. (8.2)

Proof We already know that
−→
AB= −→

CD if and only if quadrilateral ABDC of sides
AB, BC, CD, DA is a parallelogram. Moreover, we also know that this is the case
if and only if its diagonals AD and BC have the same midpoint M (cf. Fig. 8.7). On
the other hand, it follows from Corollary 6.2 that this happens if and only if

A + D

2
= B + C

2
,

i.e., if and only if

xA + xD = xB + xC and yA + yD = yB + yC.

��
The previous result assures, in particular, that in a fixed cartesian system xOy

each vector v has a single representative of the form
−→
OV (cf. Fig. 8.8). Indeed, if

v = −→
AB, with A(xA, yA) and B(xB, yB), then the lemma guarantees that

−→
AB= −→

OV ,

with V (xB − xA, yB − yA); yet in another way, v = −→
OV . On the other hand, if

−→
OV1=

−→
OV2 for certain V1(x1, y1) and V2(x2, y2), then again from the lemma we get

(x1 − 0, y1 − 0) = (x2 − 0, y2 − 0),

so that V1 = V2.
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Fig. 8.8 Representing vectors in a cartesian plane

Hence, whenever we deal with vectors, there is a huge advantage in taking
a cartesian system in the plane: once such a system is chosen, every vector
automatically admits a canonical representative, whose initial point coincides with

the origin of the cartesian system. In this sense, if v = −→
OV , with V (x, y), we

hereafter adopt the convention of writing

v = (x, y).

The usefulness of this notation will become clear as we proceed with our study of
vectors.

Proposition 8.4 If, in a cartesian system, v = (x1, y1) and w = (x2, y2), then:

(a) v + w = (x1 + x2, y1 + y2).
(b) v − w = (x1 − x2, y1 − y2).
(c) kv = (kx1, ky1).

Proof Let O denote the origin of the cartesian system, and V (x1, y1), W(x2, y2).

(a) Setting v + w = −→
OA, with A(a, b), we have

−→
V A= −→

OA − −→
OV= (v + w) − v = w = −→

OW,

and Lemma 8.3 gives a−x1 = x2−0 and b−y1 = y2−0. Hence, a = x1+x2,

b = y1 + y2 and A(x1 + x2, y1 + y2), so that v+w = −→
OA= (x1 + x2, y1 + y2).

(b) The proof of this item is quite similar to that of the previous one and will be left
as an exercise for the reader.

(c) Let us look at the case k > 0 (the case k ≤ 0 can be dealt with analogously).
Also, assume that x1, y1 
= 0 (the cases x1 = 0 or y1 = 0 can be treated quite

similarly, too), and let v = −→
OV , kv = −→

OA, with A(a, b). Since k > 0, it is
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clear that a and x1 (and likewise b and y1) have equal signs. Letting Vx(x1, 0),
Vy(0, y1), Ax(a, 0) and Ay(0, b), it is pretty clear that AAxO ∼ V VxO and
AAyO ∼ V VyO . The first similarity gives

|a|
|x1| =

OAx

OVx

= OA

OV
= k,

whence |a| = k|x1|; however, since a and x1 have equal signs, we obtain a =
kx1. Analogously, b = ky1, and thus

kv = −→
OA= (a, b) = (kx1, ky1).

��
The previous proposition has an interesting and useful consequence, which we

now explore. Fixed a cartesian system in the plane, we denote

i = (1, 0) and j = (0, 1), (8.3)

and say that the vectors i and j form, in this order, the canonical basis of the plane
with respect to the chosen cartesian system. This terminology comes from the fact
that, for an arbitrary vector v = (x, y), the proposition allows us to write

v = (x, 0) + (0, y) = x(1, 0) + y(0, 1) = xi + yj.

In words, the equality above says that every vector can be uniquely written as a sum
of multiples of the canonical vectors (i.e., the vectors of the canonical basis), with
coefficients equal to the coordinates of the endpoint of the canonical representative
of the vector. For v = (x, y), equality

v = xi + yj (8.4)

is usually referred to as the orthonormal expansion formula of v with respect to
the canonical basis.

From a vectorial point of view, there are two ways of representing lines, the first
one being the object of the coming example (for the second, see Example 8.12).

Example 8.5 The previous proposition allows us to describe a straightline para-
metrically, i.e., as the trajectory of a material particle moving uniformly along it. In
order to be precise, fix in the plane a cartesian system of origin O , a point P(x0, y0)

in the line r a vector v = (a, b) parallel to it and let p = −→
OP . As the parameter t

varies in the set of reals, the endpoint of the canonical representative of the vector
p + tv runs through all points of. Hence, r is composed by the points (x, y) of
the form

x = x0 + ta and y = y0 + tb,

for some t ∈ R. The equalities above are called the parametric equations of the
straightline r .
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x
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v
P (x0, y0)
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Fig. 8.9 Parametric representation of a straightline

We finish this section by computing a sum of vectors that will be useful several
times hereafter (Fig. 8.9).

Proposition 8.6 If A1A2 . . . An is a regular polygon of center O , then

n
∑

k=1

−→
OAk= 0.

Proof Assume, without loss of generality, that the radius of the circle circumscribed
to the polygon is equal to 1, and choose a cartesian system of coordinates in which
A1(1, 0) and A2 lies in the first quadrant. For 2 ≤ k ≤ n, the trigonometric arc

�

A1Ak is such that A1 ̂OAk = 2(k−1)π
n

; therefore,

−→
OAk=

(

cos
2(k − 1)π

n
, sin

2(k − 1)π

n

)

.

Now, by applying item (a) of Proposition 8.4 several times, we obtain

n
∑

k=1

−→
OAk=

(
n
∑

k=1

cos
2(k − 1)π

n
,

n
∑

k=1

sin
2(k − 1)π

n

)

,

so that it suffices to establish the equalities

n
∑

k=1

cos
2(k − 1)π

n
=

n
∑

k=1

sin
2(k − 1)π

n
= 0.

These, in turn, follow immediately from Problem 12, page 247. ��
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Fig. 8.10 The unit vector eθ

x

y

O

eθ

θ

Problems: Sect. 8.2

1. * In a cartesian system of coordinates of origin O , let A and B be points such

that OA = OB and
−→
OB can be obtained from

−→
OA by means of a trigonometric

rotation of +90◦, centered at O . If
−→
OA= ai + bj, show that

−→
OB= −bi + aj.

2. Triangle ADE is right at D and such that AE = 2AD. Externally to it,
we construct squares ABCD, DEFG and AEIJ . Then, we construct square
BJKL, such that it has no interior points in common with the other three squares.
Prove that points C, G and L are collinear and compute the ratio between the
lengths of segments CG and GL.
In what comes we shall need the following notation: given θ ∈ R, we let

eθ = (cos θ)i + (sin θ)j

be the unit vector departing from the origin of a cartesian system and forming a
trigonometric angle of θ radians with the positive part of the horizontal axis (cf.
Fig. 8.10).

3. * Generalize Problem 1, doing the items below:

(a) If u = ai + bj, with a, b ∈ R, and α ∈ [0, 2π) is such that cos α = a√
a2+b2

and sin α = b√
a2+b2

, prove that α is the unique real number in the interval

[0, 2π) for which u = ||u||eα.
(b) If v = ci + dj is the vector obtained from u by means of a trigonometric

rotation of angle θ , then ||u|| = ||v|| and v = ||v||eα+θ . From this, conclude
that

c = a cos θ − b sin θ and d = a sin θ + b cos θ.

4. * Let xOy and x ′Oy ′ be cartesian systems of coordinates with the same origin
O , such that x ′Oy ′ is obtained from xOy by means of a trigonometric rotation
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of θ radians. If a point P has coordinates (x0, y0) in system xOy and (x ′0, y ′0) in
system x ′Oy ′, prove that

x ′0 = x0 cos θ + y0 sin θ and y ′0 = −x0 sin θ + y0 cos θ.

5. The purpose of this problem is to obtain a partial classification for the solution
curves C of the general second degree equation

ax2 + 2bxy + cy2 + dx + ey + f = 0, (8.5)

where a, b, c, d , e and f are given real constants, with at least one of a, b and c

being nonzero. To this end, do the following items:

(a) Let x ′O ′y ′ be the cartesian system obtained from xOy by axes translation,
such that the new origin O ′ has coordinates (x0, y0) in the system xOy. If
ac − b2 
= 0, use the result of Problem 2, page 188, to show that there exist
unique such x0 and y0 for which the equation of C in system x ′Oy ′ has the
form

a′(x ′)2 + 2b′x ′y ′ + c′(y ′)2 + f ′ = 0.

(b) From now one, suppose that C is the solution curve of a second degree
equation of the form

ax2 + 2bxy + cy2 + f = 0.

Show that C is symmetric with respect to O , so that we call it a central
curve.

(c) Now, let x ′Oy ′ be the cartesian system obtained from xOy by means of a
trigonometric rotation of θ radians. If a 
= c, use the result of the previous
problem to show that θ can be chosen in such a way that, in the cartesian
system x ′Oy ′, the equation defining C has the form

a′(x ′)2 + c′(y ′)2 + f ′ = 0.

(d) Use the previous items to show that, if the solution curve of (8.5) is central,
then it is the empty set, the union of two (distinct) lines, a single line, an
ellipse or a hyperbola.

6. (Romania) We partition the plane into regular hexagons of pairwise disjoint
interiors and side lengths equal to 1. Prove that there does not exist a square
whose vertices coincide with vertices of these hexagons.

7. In this problem, we present an alternative proof for Problem 6, page 126, this
time using vectors. To this end, and with notations as in the statement of that
problem, do the following items:
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Fig. 8.11 The angle between two vectors

(a) Let P be the point of Fermat of triangle ABC, fix a cartesian system of origin

P and let
−→
PA= xeα,

−→
PB= yeβ and

−→
PC= zeγ , with 0 ≤ α < β < γ < 2π

and eα, eβ , eγ as in Problem 3. Conclude that

−→
PD= zeγ + yeβ+ π

3
− zeγ+ π

3
,

and derive analogous expressions for
−→
PE and

−→
PF .

(b) Show that A, P and D are collinear and AD = x + y + z.

8.3 The Scalar Product of Two Vectors

Given nonzero vectors v and w in the plane, with canonical representatives v = −→
OV

and w = −→
OW , we define the angle between v and w as the angle (in radians)

0 ≤ θ ≤ π such that θ = V ̂OW (cf. Fig. 8.11). A simple geometric argument
assures that the angle between v and w does not depend on the chosen cartesian
system (in this respect, see Problem 1). This being the case, we say that the nonzero
vectors v and w are orthogonal if θ(v, w) = π

2 . In this case, we denote v⊥w.
With the definition of angle between nonzero vectors at our disposal, we are

in position to study the most important operation with two vectors, their scalar
product.

Definition 8.7 The scalar product of the nonzero vectors v and w is the scalar
〈v, w〉 given by

〈v, w〉 = ||v|| · ||w|| cos θ(v, w). (8.6)

We extend the above definition by letting 〈v, w〉 = 0 whenever v = 0 or w = 0.
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Remark 8.8 In Physics, it is more common to write v·w to denote the scalar product
of vectors v and w. Nevertheless, along these notes we shall stick to the notation
〈v, w〉, which is far more used in Mathematics.

The coming result gathers together some straightforward consequences of the
definition of scalar product.

Proposition 8.9 For all vectors v, w and every scalar k, we have:

(a) 〈v, v〉 = ||v||2.
(b) 〈v, w〉 = 〈w, v〉.
(c) 〈kv, w〉 = k〈v, w〉.
(d) If v and w are nonzero, then v⊥w ⇔ 〈v, w〉 = 0.

Proof Firstly, note that (a), (b) and (c) follow immediately if v = 0, w = 0 or k = 0.
Therefore, assume that v, w 
= 0 and k = 0.

(a) Let w = v in the definition of scalar product, noticing that θ(v, w) = 0.
(b) It suffices to observe that θ(v, w) = θ(w, v) and invoke the definition again.
(c) We look separately at the cases k > 0 and k < 0:

• If k > 0, then kv has the same direction as v, so that θ(kv, w) = θ(v, w).
Hence, by the definition of scalar product, we have

〈kv, w〉 = ||kv|| · ||w|| cos(kv, w)

= |k| · ||v|| · ||w|| cos(v, w)

= k〈v, w〉.

• If k < 0, then kv and v have opposite directions, whence θ(kv, w) =
π − θ(v, w) (cf. Problem 2). Thus, cos θ(kv, w) = − cos θ(v, w), and the
definition of scalar product gives

〈kv, w〉 = ||kv|| · ||w|| cos(kv, w)

= |k| · ||v|| · ||w||(− cos(v, w))

= k〈v, w〉.

(d) Since v, w 
= 0, we have 〈v, w〉 = 0 if and only if cos θ(v, w) = 0. However,
since 0 ≤ θ(v, w) ≤ π , we conclude that cos θ(v, w) = 0 if and only if
θ(v, w) = π

2 , which is the same as v⊥w. ��
Another immediate consequence of the definition of scalar product is the coming

inequality, which is known as Cauchy’s inequality.1 After Corollary 8.13, we shall
show that it is a particular case of the classical algebraic inequality of Cauchy (cf.
Section 5.2 of [5]).

1Augustin Louis Cauchy, French mathematician of the XIX century.
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Proposition 8.10 Given nonzero vectors v and w, we have

|〈v, w〉| ≤ ||v|| · |w||, (8.7)

with equality if and only if v = kw for some scalar k > 0.

Proof Since | cos θ(v, w)| ≤ 1, with equality if and only if θ(v, w) = 0, we have

|〈v, w〉| = ||v|| · ||w|| · | cos θ(v, w)|
≤ ||v|| · ||w||,

with equality if and only if θ(v, w) = 0. We are thus left to showing that θ(v, w) = 0
if and only if the stated condition for equality holds.

If there exists a scalar k > 0 for which v = kw, then it is pretty clear that
θ(v, w) = 0. Conversely, if θ(v, w) = 0, the it follows from Problem 2, page 273,
that v = ||v||

||w||w, and it suffices to take k = ||v||
||w|| > 0. ��

In order to further extend the theory, we now need to write the scalar product in
coordinates.

Proposition 8.11 If vectors v and w have canonical representatives v = (x1, y1)

and w = (x2, y2) in a certain cartesian system, then

〈v, w〉 = x1x2 + y1y2. (8.8)

Proof Let O stand for the origin of the cartesian system under consideration, and

v = −→
OV , w = −→

OW (cf. Fig. 8.12). Cosine law (7.12) applied to triangle OV W

gives us

V W
2 = OV

2 + OW
2 − 2OVOW cos θ,

whence

2〈v, w〉 = 2||v|| · ||w|| cos θ = 2OVOW cos θ

= OV
2 + OW

2 − V W
2

= (x2
1 + y2

1) + (x2
2 + y2

2) − [(x1 − x2)
2 + (y1 − y2)

2]
= 2(x1x2 + y1y2).

��
The coming example gives a first application of scalar products.

Example 8.12 The notion of scalar product trivializes the deduction of the equation
of a straightline, provided we know one of its points and a vector perpendicular to
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Fig. 8.12 The scalar product in coordinates

O x

y

r

v = (a, b)P (x0, y0)

Q

Fig. 8.13 The equation of a line via scalar product

it. Indeed, suppose that v = (a, b) is perpendicular to line r , and that P(x0, y0) is
one of its points (cf. Fig. 8.13). If Q(x, y) stands for any point of the plane, then

Q ∈ r ⇔ v⊥ −→
PQ⇔ (a, b)⊥(x − x0, y − y0)

⇔ a(x − x0) + b(y − y0) = 0

⇔ ax + by − (ax0 + by0) = 0.

Also with respect to the previous example, we observe that one can use vectors
to obtain the other results derived in Sect. 6.2 (see Problem 3).

Back to the development of the theory, the following consequence of the previous
proposition is frequently useful.

Corollary 8.13 For all vectors v1, v2 and w, we have:

〈v1 + v2, w〉 = 〈v1, w〉 + 〈v2, w〉. (8.9)
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Proof Choose a cartesian system xOy in the plane and assume that, in such a
system, the canonical representatives of v1, v2 and w are v1 = (x1, y1), v2 =
(x2, y2) and w = (a, b). Propositions 8.4 and 8.11 give

〈v1 + v2, w〉 = 〈(x1 + x2, y1 + y2), (a, b)〉
= (x1 + x2)a + (y1 + y2)b

= (x1a + y1b) + (x2a + y2b)

= 〈v1, w〉 + 〈v2, w〉.
��

As promised before, we now relate (8.7) with the usual version of Cauchy
inequality: letting v = (x1, y1) and w = (x2, y2) be the canonical representatives
of v and w in a fixed cartesian system, Proposition 8.11 assures that Cauchy’s
inequality (8.7) is precisely

|x1x2 + y1y2| ≤
√

x2
1 + y2

1

√

x2
2 + y2

2 .

But this is exactly what Theorem 5.13 of [5] says for n = 2.
We finish this section by exhibiting an interesting application of formula (8.8),

which establishes a partial converse of Proposition 8.6.

Example 8.14 If the sum of three nonzero vectors of equal moduli is equal to zero,
prove that they form angles of 120◦ with each other.

Proof Let a, b and c denote the vectors under consideration, so that ||a|| = ||b|| =
||c|| = k > 0 and

a + b + c = 0. (8.10)

Write α, β, γ to denote the angles between the pairs of vectors a and b, b and c,
c and a, respectively, as shown in Fig. 8.14. By computing the scalar product of a
with both sides of (8.10), we successively get

0 = a · (a + b + c)

= ||a||2 + a · b + a · c

= k2 + ||a|| · ||b|| cosβ + ||a|| · ||c|| cosγ

= k2 + k2 cos α + k2 cos γ,

so that cos α + cos γ = −1. Analogously, the scalar product of b with both
sides of (8.10) results in the equality k2 cos α + k2 + k2 cos β = 0, whence
cos α + cos β = −1. Arguing likewise, we also obtain cos β + cos γ = −1, and
then the system of equations
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Fig. 8.14 Vectors with the
same modulus and zero sum

a

α
b

β

c γ

⎧

⎨

⎩

cos α + cos γ = −1
cos α + cos β = −1
cos β + cos γ = −1

.

Looking at it as a linear system in cos α, cos β and cos γ , it is pretty clear that the
only possible solution is cos α = cos β = cos γ = − 1

2 . Therefore, Problem 7,
page 246, assures that each of α, β and γ equals 120◦ or 240◦; however, since
α + β + γ = 360◦, the only actual possibility is α = β = γ = 120◦. ��

Problems: Sect. 8.3

1. * Prove that the definition of angle between two nonzero vectors does not
depend on the chosen cartesian system.

2. * Given nonzero vectors v and w, relate the angles θ(v, w) and θ(−v, w).
3. Use vectors to give another proof of Corollary 6.11, as well as of Proposi-

tions 6.13 and 6.14.
4. Given a straightline r : {ax + by + c = 0} and a point P(x0, y0) not belonging

to it, prove that the distance from P to r can be computed by the following
formula:

d(P ; r) = |ax0 + by0 + c|√
a2 + b2

.

5. Consider in the plane a regular n-gon A1A2 . . . An of center O , and a circle

�, also centered at O . For P ∈ �, show that the value of
∑n

i=1 PAi
2

is
independent from the position of P .

6. Use vectors to give another proof for Problem 14, page 255.
7. Let ABC be a triangle of sides AB = c, AC = b and BC = a. Also, let H

be the orthocenter, O the circumcenter and R the circumradius of ABC. Show
that

OH
2 = 9R2 − (a2 + b2 + c2).

8. Let ABC be a triangle of sides AB = c, AC = b and BC = a. Let
also I denote the incenter, O the circumcenter and r and R the inradius and
circumradius of ABC, respectively. Use vectors to show that
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OI
2 = R2 − 2Rr.

9. (OCM) ABC is a triangle of incenter I and sides AB = c, AC = b and

BC = a. If P is a point in the plane, show that the sum aAP
2+bBP

2+cCP
2

is minimum if and only if P coincides with the incenter.
10. (BMO) In a triangle ABC, O is the circumcenter, D is the midpoint of AB and

E the barycenter of ACD. Prove that lines
←→
OE and

←→
CD are perpendicular if

and only if AB = AC.
11. * The purpose of this problem is to prove the following result of H.

Minkowski2: for an integer 2 < n 
= 4, there does not exist, in the cartesian
plane, a regular n-gon with vertices of integer coordinates. To this end, do the
following items:

(a) Use Example 6.7, to show the result for n = 6.
(b) Adapt the argument presented in the solution of Example 6.7, in conjunc-

tion with the result of Problem 3, page 254, to show the result for n = 5.
(c) Let n > 6 be and integer and, by the sake of contradiction, let P0 =

A1A2 . . . An be a regular n-gon with vertices of integer coordinates and side

length l. Let O stand for the origin of the cartesian system and ai =
−→

AiAi+1

for 1 ≤ i ≤ n (with An+1 = A1). If A′
i is such that

−→
OA′

i= ai , show that
P1 = A′

1A
′
2 . . . A′

n also has vertices of integer coordinates too inteiras, and
has side length l′ = 2l sin π

n
.

(d) Iterate the construction of the previous item, thus getting a sequence
(Pk)k≥0 of regular n-gons with vertices of integer coordinates. If lk stands
for the side length of Pk, show that lk = (2 sin π

n
)kl0 for k ≥ 0.

(e) Use the previous item to reach a contradiction.

2Hermann Mikowski, German mathematician of the XIX and XX centuries.



Chapter 9
A First Glimpse on Projective Techniques

This chapter presents the fundamentals of inversion and some techniques emanated
from Projective Geometry, along with a number of applications. Instead of trying
to convey a comprehensive (and axiomatic) account of Projective Geometry, we
center attention on the concepts of cross ratio and polarity, for this leads us more
quickly to applications. In doing so, we take the somewhat unusual route of first
discussing harmonic conjugation and harmonic pencils, which is all we need for
studying polarity, thus postponing the introduction of the more general notions of
cross ratio, projective pencils and perspectivity. Although such an approach contains
some repetition, we believe it is pedagogically more adequate for the novices. In
particular, points at infinity are avoided throughout.

9.1 Inversion

Inversion is a kind of geometric transformation1 of the (punctured) plane which has
the remarkable property of angle invariance. As we shall see here, this and other
notable properties of inversions will allows us to solve problems which would be
either inaccessible or extremely difficult by other means. The concepts developed
here will also play a role in the next section, in the context of polarity. We shall have
more to say about inversion (this time in space) in the problems of Sect. 10.3.

Definition 9.1 Given a point O in the plane α and a real number k > 0, the
inversion of center (or pole) O and ratio or modulus k is the mapping I :
α \ {O} → α \ {O} that sends A ∈ α \ {O} to A′ ∈ α \ {O} such that A′ ∈−→

OA and
OA · OA′ = k2. In this case, A′ is said to be the inverse of A (with respect to I ).

1For much more on geometric transformations, we refer the reader to the collection [24, 25] and
[26] of professor I. M. Yaglom, as well as to [27].
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Fig. 9.1 Points A,
A′ = I (A), and the inversion
circle

Γ(O ; k)

O

k

A A

Along all of this section, whenever there is no danger of confusion we shall let
I , O and k be as above, and shall systematically write A′ for the inverse of a point
A 
= O .

Figure 9.1 shows a point A 
= O , together with its inverse A′ and the circle
�(O; k). We will show below that such a circle, which is called the inversion circle,
plays an important role with respect to I .

In the notations of the definition above, if I (A) = A′ and I (A′) = A′′, then

OA′ · OA′′ = k2 = OA · OA′,

so that OA = OA′′. Since A′′ ∈
−→
OA′=−→

OA, it follows that A′′ = A. Therefore, A is
the inverse of A′ and

(I ◦ I)(A) = I (I (A)) = I (A′) = A′′ = A,

whence I ◦ I : α \ {O} → α \ {O} is the identity. From this, it easily follows that I

is bijective.2

Another straightforward consequence of the definition above is that

I (A) = A ⇔ OA′ = OA ⇔ k2

OA
=,OA ⇔ OA = k.

Thus, the set of fixed points of I is the inversion circle.
Now, let D1 = {A ∈ α \ {O};OA < k} and D2 = {A ∈ α;OA > k}. Since

OA < k ⇔ OA′ = k2

OA
> k,

we conclude that I (D1) ⊂ D2 and I (D2) ⊂ D1. However, since α \ {O} = D1 ∪
D2 ∪ �(O; k) and I : α \ {O} → α \ {O} is a bijection, we conclude that

I (D1) = D2 and I (D2) = D1.

2If you need a proof of this fact, see for instance Example 6.37 of [5].
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The following simple lemma uses the circle of inversion to give a simple
construction (with straightedge and compass) of the inverse of point A 
= O .

Lemma 9.2 Let I be the inversion of center O and ratio k, and � be its inversion
circle.

(a) If 0 < OA < k and the perpendicular to
←→
OA at A intersects � at T1 and T2,

then the tangents to � at T1 and T2 meet
←→
OA at A′.

(b) If OB > k and the tangents from B to � touch it at T1 and T2, then T1T2

intersects
←→
OB at B ′.

Proof For item (a), if t1 (resp. t2) stands for the tangent drawn to � through T1 (resp.

T2—see Fig. 9.2), we already know that t1, t2 and
−→
OA are concurrent. Letting B

denote their point of concurrence, we also know that OB⊥T1T2.

Then, metric relations in the right triangle OT1B gives OA ·OB = OT1
2 = k2,

so that B = A′.
For item (b), it suffices to observe that, in Fig. 9.2, A is the inverse of B. Thus,

we can construct A from B exactly as described in the statement. ��
It is pretty clear that if r is a straightline passing through O , then I (r) (i.e., the

set of points A′, with A ∈ r\{O}) is r\{O} itself. In order to investigate the inverses
of other kinds of figures, item (a) of the coming result will be of fundamental
importance (Fig. 9.3).

Proposition 9.3 Let be given in the plane pairwise distinct and noncollinear points
O , A and B. If A′ and B ′ denote the inverses of A and B with respect to the inversion
of center O and ratio k, then:

(a) AOB ∼ B ′OA′.
(b) ABB ′A′ is a cyclic quadrilateral.

(c) A′B ′ = k2AB

OA·OB
.

Fig. 9.2 Constructing the
inverse of A, if 0 < OA < k Γ

O

t1

t2

T1

T2

k

A
B
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Fig. 9.3 Similarity of AOB

and B ′OA′ and distance from
A′ to B ′

O
A A

B

B

Proof From OA ·OA′ = k2 = OB ·OB ′, we get OA

OB
= OB ′

OA′ . Now, since A′ ∈ −→
OA

and B ′ ∈ −→
OB, we obtain ÂOB = B ′

̂OA′. Hence, AOB ∼ B ′OA′ by the SAS case
of similarity of triangles, which gives item (a).

Now, it follows from (a) that ÔAB = ÔB ′A′. Therefore,

B̂AA′ + B̂B ′A′ = 180◦ − ÔAB + B̂B ′A′ = 180◦,

whence ABB ′A′ is cyclic.

Finally, as another consequence of (a), A′B ′
AB

= OA′
OB

, and then

A′B ′ = OA′ · AB

OB
= k2 · AB

OA · OB
.

��
For what is to come, it is worth pointing out that the formula of item (c) above

remains valid even in the case of collinear points O , A and B. Indeed, in this case

A′, B ′ ∈←→
AB ; therefore, assuming OA < OB, one computes

A′B ′ = OA′ − OB ′ = k2

OA
− k2

OB
= k2(OB − OA)

OA · OB
= k2 · AB

OA · OB
.

Our next result, which is actually a corollary of item (b) of the previous one,
finds the images of circles and straightlines (not passing through the pole) under an
inversion. In order to ease the proof, note that given figures F1 and F2, if we know
that F ′

1 ⊂ F2 and F ′
2 ⊂ F1, then we actually have F ′

1 = F2 and F ′
2 = F1. Indeed,

since I ◦ I is the identity,

F ′
1 ⊂ F2 ⇒ F1 = I

(

I (F1)
) = I

(

F ′
1

) ⊂ I (F2) = F ′
2 ⊂ F1,

whence F1 = F ′
2; likewise, F2 = F ′

1.

Proposition 9.4 Let I be an inversion of center O .
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(a) If r is a straightline not passing through O and A is the foot of the perpendicular
dropped from O to r , then I (r) = � \ {O}, where � is the circle of diameter
OA′.

(b) If � is a circle passing through O and OA is diameter of �, then I (�\{O}) = r ,

where r is the straightline passing through A′ and perpendicular to
←→
OA.

(c) If � is a circle not passing through O and AB is the diameter of � which is
collinear with O , then I (�) = �′, where �′ is the circle with diameter A′B ′.

Proof (a) and (b) Inthe notations of Fig. 9.4, let A be defined as in the statement
and A′ be the inverse of A (we only consider the case in which A′ ∈ OA; the
other case is entirely analogous and will be left to the reader). If B is any other
point of r , then item(b) of the previous result assures that ABB ′A′ is cyclic.
Since ÔAB = 90◦, this gives

ÔB ′A′ = 180◦ − A′
̂B ′B = B̂AA′ = 90◦,

so that B ′ lies in the circle � of diameter OA′, as desired. Hence, I (r) ⊂
� \ {O}.

Now, by exchanging the roles of A, A′ and B, B ′ and arguing in pretty much
the same way, we conclude that I (� \ {O}) ⊂ r . Thus, the comments we made
immediately prior to the statement of the proposition guarantee that I (r) =
� \ {O} and I (� \ {O}) = r .

(c) As in the previous items, this item follows at once, provided we show that
I (�) ⊂ �′ and I (�′) ⊂ �. We shall establish the first inclusion, the second
one being quite similar (Fig. 9.5). We start by recalling, from item (b) of the
previous result, that ACC′A′ and BCC′B ′ are cyclic quadrilaterals. Therefore,
A′
̂C′X = A′

̂AC and B ′
̂C′C = ÂBC, and hence

Fig. 9.4 Inverse of a line not
passing through the pole

Γ

O A
A

B

B

r
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O

Γ

A B

Γ

AB

C
C

X

Fig. 9.5 Inverse of a circle not passing through the pole

A′
̂C′B ′ = 180◦ − A′

̂C′X − B ′
̂C′C

= 180◦ − A′
̂AC − ÂBC

= ÂCB = 90◦.

Thus, C′ lies in the circle of diameter A′B ′, namely, �′. ��
At this point, a few remarks are in order. First of all, in the notations of items

(a) and (b) of the proposition, even though the inverse of line r is (strictly speaking)
� \ {O}, whenever there is no danger of confusion we shall simply say that � is
the image of r through I. Likewise, we shall also say that r is the image of � with
respect to I. With respect to item (c), note that if A is closer to O than B, then B ′ is

closer to O than A′; also, if � has radius r and �′ radius r ′, then we do not have k2

r
,

for the comments we made right after Proposition 9.3 give

2r ′ = A′B ′ = k2AB

OA · OB
= 2k2r

OA · OB
.

We now apply the results above to provide a conceptually simpler proof of
Ptolemy’s inequality (7.20).

Example 9.5 If ABCD is a convex quadrilateral of diagonals AC and BD, then

AB · CD + AD · BC ≥ AC · BD,

with equality holding if and only if ABCD is cyclic.
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Fig. 9.6 Ptolemy’s
inequality through inversion

Γ

B

A

C

D

r

A

C

D

Proof Let � be the circumcircle of ABC. Assume (according with the previous
proposition) that the inversion of center B and ratio 1 maps � into the line r shown
in Fig. 9.6, so that A is mapped into A′ and C into C′.

Suppose first that D /∈ � (in Fig. 9.6 we consider the case in which D lies in the
disk bounded by �; the case of D lying outside that disk can be dealt with in pretty
much the same way). If D′ is its inverse, then D′ /∈ �, so that triangle inequality
gives A′D′ + C′D′ > A′C′. By applying the formula of item (b) of Proposition 9.3
to compute these lengths (with B in place of O), we get

AD

BA · BD
+ CD

BC · BD
>

AC

BA · BC

or, which is the same,

AB · CD + AD · BC > AC · BD.

Now, if D ∈ �, then D′ ∈ r as well, whence A′D′ + C′D′ = A′C′. Therefore,
arguing exactly as above, we obtain

AB · CD + AD · BC = AC · BD.

��
The previous result allows us to establish, for circles and lines, a quite useful

corollary on preservation of tangency upon inversion.

Corollary 9.6 Let I be an inversion of center O .

(a) If �1 and �2 are distinct circles tangent at A, then:

i. If O /∈ �1 ∪ �2, then �′
1 and �′

2 are circles tangent at A′.



296 9 A First Glimpse on Projective Techniques

ii. If O ∈ �1 \ �2, then the line �′
1 is tangent to the circle �′

2 at A′.
iii. If A = O , then �′

1 and �′
2 are parallel lines.

(b) If the line r is tangent to the circle � at A, then:

i. If O /∈ r ∪ �, then r ′ and �′ are circles tangent at A′.
ii. If O ∈ r \ �, then r is tangent to the circle �′ at A′.

iii. If O ∈ � \ r , then �′ is a line tangent to the circle r ′ at A′.
iv. If A = O , then r and �′ are parallel lines.

Proof Let us prove parts i. and iii. of item (a), the proofs of the other claims being
entirely analogous.

For item (a), part i., note that item (c) of the previous proposition assures that
both �′

1 and �′
2 are circles passing through A′. However, since A is the only common

point of �1 and �2 and I is a bijection, we conclude that A′ is the only common point
of �′

1 and �′
2. Finally, it suffices to note that two circles with only one common point

must necessarily be tangent.
For part iii. of (a), item (b) of the previous proposition assures that (�1 \ {O})′

and (�2 \ {O})′ are two straightlines. However, since �1 \ {O} and �2 \ {O} have
no common points, the same holds for their inverses (due to the bijectiveness of I

once more). Hence, (�1 \ {O})′ and (�2 \ {O})′ must be parallel. ��
This corollary, together with its refinement in Theorem 9.8, are the main reasons

for the usefulness of inversion. Examples 9.7 and 9.9 will illustrate their uses.

Example 9.7 A triangle ABC is inscribed in a circle �. Point P is the foot of the
internal bisector of angle 
 BAC, and circles �1 and �2 are tangent to � and to the
line segments AP and BC. Prove that the points of tangency of �1 and �2 with AP

coincide.

Proof If M is the other point of intersection of
−→
AP with � (i.e., M 
= A), then (cf.

Fig. 9.7) MB = MC := k. Therefore, the inversion I (M; k2) leaves B and C fixed,

hence transforms
←→
BC into � and vice-versa.

Fig. 9.7 The effect of
I (M; k2)

Γ

A

C

B

M

P
Q

Γ1
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Fig. 9.8 Angle between two
circles �1 and �2 Γ1

O1

Γ2

O2

θ

θ

Now, let Q be the point of tangency of �1 and AP . Since I (
←→
AM) = ←→

AM and

I (�1) is a circle tangent to I (�), I (
←→
BC) and I (

←→
AM), we conclude that I (�1) = �1.

In particular,

{I (Q)} = I (�1) ∩ I (
←→
AM) = �1∩

←→
AM= {Q},

so that I (Q) = Q. Then, MQ
2 = k2 = MC

2
, whence, MQ = MC; therefore,

Proposition 3.37 assures that Q is the incenter of ABC. Accordingly, �1 touches
AP at Q. ��

The next result establishes, in the particular case of lines and/or circles, the most
important property of inversions, called angle invariance.3 For its statement, it is
worth defining the angle between two concurrent circles (resp. between concurrent
circle and line) as the angle formed by their tangents (resp. by the line and the
tangent to the circle) through their concurrence point (cf. Fig. 9.8; note that this
does not depend on the chosen point of concurrence).

Theorem 9.8 Let I be an inversion of center O . If two circles (resp. a circle and a
line, two lines) pass through A 
= O and form an angle θ at A, then their inverses
form an angle θ at A′.

Proof We shall do the proof4 in the case of two circles not passing through O . The
analysis of the other cases is quite similar and will be left to the reader.

Let �1 and �2 be two circles not passing through O and meeting at A. Figure 9.9
shows portions of �1 and of its inverse �′

1 near A, as well as the tangents r1 and s1
to �1 and �′

1 at A and A′, respectively.

For B ∈ �1\
←→
OA, the fact that ABB ′A′ is cyclic gives B̂AA′ = X̂B ′A′.

Therefore, the External Angle Theorem allows us to compute

3This is actually true for any two regular curves with a common point. Nevertheless, since we shall
not need this extra generality, we decided to stick to the cases below.
4Although the argument below relies upon continuity considerations (and therefore is not entirely
self-contained), it will suffice for our purposes.
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Fig. 9.9 Angle invariance
upon inversion I

O

Γ1

B

Γ1

B

A
A

X

r1

s1

Fig. 9.10 Angle invariance
upon inversion II

O

A A

r1 s1

r2
s2

α2

α1

β2

β1

B̂AA′ − B ′
̂A′A = B̂AA′ − (X̂B ′A′ − A′

̂OB ′) = A′
̂OB ′. (9.1)

Let the half-line
−→
OB rotate around O towards

−→
OA. Then, the secants

←→
AB to �1 and←→

A′B ′ to �′
1 correspondingly rotate towards r and s, respectively, whereas A′

̂OB ′
goes to 0◦. Thus, at the limit position, (9.1) turns into α1 = β1, where α1 (resp. β1)

is the indicated angle between r1 (resp. s1) and
←→
OA.

Now, repeat the reasoning above with �2, �′
2 and

←→
OA, thus proving (cf. Fig. 9.10)

that if r2 and s2 denote the tangents to �2 and �′
2 at A, and α2 (resp. β2) stands for

the angle between r2 (resp. s2) and
←→
OA, then α2 = β2. Then, α1 + α2 = β1 + β2,

as wished.
��

Since the case of two tangent circles (resp. of a line tangent to a circle)
corresponds to an angle of 0◦, it is now immediate to see that Corollary 9.6 is a
particular case of the previous result. Another important particular case is that of
two orthogonal circles (resp. of a line orthogonal to a circle), i.e., such that they
concur and form an angle of 90◦, in the sense of the previous paragraph. In this case
(cf. Fig. 9.11 for the case of two circles), since a tangent to a circle is perpendicular
to the radius through the tangency point, one readily shows that the tangent to one
circle through a common point passes through the center of the other, and vice-versa
(resp. the tangent to the circle is perpendicular to the given line).

As we stressed before, our final example makes use of the property of angle
invariance (more precisely, of orthogonality invariance) of inversions.
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Fig. 9.11 Two orthogonal
circles �1 and �2

Γ1

O1

Γ2

O2

Example 9.9 (IMO—Adapted) Let ABC be an acute triangle and D be an interior
point, with ÂDB = ÂCB+90◦ and AC ·BD = AD ·BC. Prove that the tangents to
the circumcircles of triangles ACD and BCD at a common point are perpendicular
to each other.

Proof We let the figure below represent the described situation, and let � be the
circumcircle of ACD and � be that of BCD.

B C

A

DE

B

A

To say that the tangents to � and � at D are perpendicular is the same as to say
that � and � are orthogonal. In turn, Theorem 9.8 and the subsequent discussion
assure that this is so if and only if an inversion of center C transforms these circles
into two perpendicular straightlines. As we shall now see, this gives a clue to the
solution.

Indeed, upon the inversion of center C and ratio CD, let A′ be the inverse of A

and B ′ be that of B. Since D is its own inverse, Proposition 9.4 guarantees that
←→
A′D

is the inverse of � and
←→
B ′D is that of �. Thus,

←→
A′D ⊥

←→
B ′D⇔ A′B ′D is right at D ⇔ A′B ′2 = A′D2 + B ′D2

.

Now, Proposition 9.3 gives
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A′D = CD
2 · AD

AC · CD
, B ′D = CD

2 · BD

BC · CD
, A′B ′ = CD

2 · AB

AC · BC
,

so that

A′B ′2 = A′D2 + B ′D2 ⇔ CD
4 · AB

2

AC
2 · BC

2
= CD

4 · AD
2

AC
2 · CD

2
+ CD

4 · BD
2

BC
2 · CD

2

⇔ AB
2

AC
2 · BC

2 = AD
2

AC
2 · CD

2 + BD
2

BC
2 · CD

2

⇔ AB
2 · CD

2 = AD
2 · BC

2 + BD
2 · AC

2
.

However, since it is given that AC · BD = AD · BC, we conclude that

A′B ′2 = A′D2 + B ′D2 ⇔ AB
2 · CD

2 = 2AD
2 · BC

2

⇔ AB · CD

AD · BC
= √

2.

(9.2)

In order to establish this, let E be the point in the half-plane opposite to C with

respect to
←→
AD such that ÂDE = 90◦ and AD = DE. Then, ÊDB = ÂDB −

90◦ = ÂCB and AE = AD
√

2. On the other hand, since

AC · BD = AD · BC ⇔ AC

BC
= AD

BD
⇔ AC

BC
= ED

BD
,

we conclude that ACB ∼ EDB by SAS. Hence,

AB

BC
= EB

BD
and ÂBC = ÊBD.

The first equality above can be written as AB

EB
= BC

BD
, whereas the second one implies

ÊBA = ÊBD − ÂBD = ÂBC − ̂ÂBD = D̂BC.

Hence,

AB

EB
= BC

BD
and ÊBA = D̂BC,

so that ABE ∼ CBD, again by SAS. But this finally gives
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AB

BC
= AE

CD
= AD

√
2

CD
,

which is equivalent to (9.2). ��

Problems: Sect. 9.1

1. (England) We are given a circle � of radius 1 and a chord AB of �. For each
point C in AB, draw the circles αC and βC , tangent to AB at C, internally
tangent to � and lying in opposite sides with respect to AB. If rC and RC stand
for the radii of αC and βC , respectively, with rC ≤ RC for every C ∈ AB,
prove that rC

RC
does not depend on the position of C along B.

2. In a convex quadrilateral ABCD of diagonals AC and BD, the circumcircles
of triangles ABC and ACD are orthogonal. Prove that

AB
2 · CD

2 + AD
2 · BC

2 = AC
2 · BD

2
.

3. We are give in the plane a circle � and distinct points A and B, both of which
lying outside the disk bounded by �. Use compass and straightedge compass to
construct all circles α, tangent to � and passing through A and B.

4. We are given a line r , a point A and a circle �, with A and � lying in a single
half-plane, of those determined by r . Use compass and straightedge to construct
all circles �, passing through A and tangent to r and �.

5. We are given a line r and nonconcentric circles �1 and �2 lying in a single half-
plane, of those determined by r . Use compass and straightedge to construct all
circles �, simultaneously tangent to r , �1 and �2.

6. Let α and β be two exterior circles, and r and s be their common external
tangents. Assume that r (resp. s) touch α and β respectively at A and B (resp.
At C and D). Let M and N be the midpoints of AB and CD, respectively,
and P and Q be the other intersections of AN and BN with α and β, also

respectively (s that P 
= A and Q 
= B). Prove that
←→
CP ,

←→
DQ and

←→
MN concur

at a point of the circumcircle of triangle NPQ, which is externally tangent to
both α and β.

7. The orthogonal circles α and β intersect at A and B. We choose points C ∈ α \
{A,B} and D ∈ β \ {A,B}, such that A,B /∈←→

CD. Prove that the circumcircles
of triangles ACD and BCD are also orthogonal.

8. We are given n ≥ 4 points in the plane, satisfying the following condition: any
circle passing through three of the given points contains a fourth one of them.
Show that all of the points lie in a single circle.

9. Let I be the inversion of center O and inversion circle �. Show that a circle �

is orthogonal to � if and only if I (�) = �.
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10. In an acute triangle ABC, the circle � of diameter BC has orthocenter H . If P

and Q are the feet of the tangents drawn from A to �, show that P , Q and H

are collinear.5

11. Let A, B, C be given collinear points, with B ∈ AC. Draw semicircles α, β and
�0, on the same side of AC and with diameters AC, AC and BC, respectively.
For each k ∈ N, let �k be the circle tangent to α, β and �k−1. Show that, for
every n ∈ N, the distance from the center of �n to AC is n times its diameter.

12. (Serbia) ABC is an acute triangle of orthocenter H , and D, E, F are the feet
of the altitudes relative to A, B, C, respectively; M and S be the midpoints of
BC and AH , also respectively, and G the intersection of EF and AH . If AM

intersects the circumcircle of BCH at N , prove that H ̂MA = ĜNS.
For the coming problem, given a point O and k > 0, we can extend the notion
of inversion by including all maps I : α \ {O} → α \ {O} such that

OA · OA = −k2,

where OA and OA stand for oriented segments (as in Sect. 4.4). In this sense,
we shall say that the inversions studied in this section are direct, whereas those
as above are opposite; in both cases, k is the ratio of the inversion. Whenever
we refer to an inversion without further qualifying it, we shall always assume
that it is a direct one.

13. Let I be an opposite inversion with pole O and ratio k. State and prove
analogues of the properties studied in this section for I .

14. We are given in the plane a circle � and points A and B not in �. We draw a
secant r to � through B, which cuts � at points C and D. Then we draw lines
←→
AC and

←→
AD, which intersect � again at points E and F , respectively. Show

that, as the direction of r varies, the circumcenter of triangle AEF varies along
a fixed line.

15. Let P be a fixed point in the interior of a given circle �. We draw through P

two perpendicular chords AA and BB. If M is the foot of the perpendicular
dropped from P to AB and N is the midpoint of AB, prove that the product
PM · PN remains constant as the direction of the chords vary.

16. The purpose of this problem is to prove Feuerbach’s theorem6: in every
triangle, the nine-point circle is tangent to the incircle and to the excircles. To
this end, let the notations be as in Fig. 9.12, with AB = c, AC = b, BC = a,
and do the following items:

(a) If M is the midpoint of BC, show that the inversion of center M and ratio
1
2 |b − c| fixes D, J , � and �.

(b) If P is the foot of the internal bisector relative to A and Ha is the foot of
the altitude of ABC dropped from A, compute

5For another approach to this problem, see Problem 5, page 317.
6Karl Wilhelm von Feuerbach, German mathematician of the nineteenth century.
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Fig. 9.12 Feuerbach’s
theorem

Γ

Σ

A C KE

I

Ia

B
F

L

D

J

MP = a|b − c|
2(b + c)

and MHa = b2 − c2

2a
.

Then, show that P and Ha are inverses of each other.

(c) Let R, S be the symmetrics of C, B with respect to
←→
AI , let N be the

midpoint of AC and Q be the intersection of
←→
MN and

←→
RS . Compute

MQ = (b−c)2

2c
, then show that N and Q are inverses of each other.

(d) Conclude the proof of Feuerbach’s theorem.

9.2 Harmonic Pencils

In all that follows, whenever convenient we shall make free use of the concept of
oriented segments, as defined in Sect. 4.4. We shall also make free use of Ceva’s and
Menelaus’ theorems.

We begin by elaborating the discussion initiated at Problem 5, page 136.

Definition 9.10 Given distinct points C,D ∈←→
AB \{A,B}, we say that C and

D (in this order) are harmonic conjugates with respect to A and B (also in this
order) if

AC

CB
= −AD

DB
.

In this case, we also say that (A,B,C,D) is a harmonic quadruple.

It follows immediately from the definition above that, if (A,B,C,D) is a
harmonic quadruple, then so is (A,B,D,C). Moreover, it is easy to show that
exactly one of C and D lies in segment AB, and none of them coincides with the
midpoint of AB. Finally, since
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Fig. 9.13 A harmonic
quadruple (A,B,C,D)

A BC D

r s

X

Y

Z

AC

CB
= −AD

DB
⇔ CA

AD
= −CB

BD
,

we conclude that (C,D,A,B) is also a harmonic quadruple.
Let (A,B,C,D) be a harmonic quadruple as in Fig. 9.13, and r and s be parallel

lines drawn from A and B, respectively. Draw a line t through C, intersecting r at
X and s at Y . If Z is the symmetric of Y with respect to B, then and application of
Thales’ theorem gives

AX

BZ
= AX

BY
= AC

BC
= AD

BD
,

so that XAD ∼ ZBD by SAS (X̂AD = ẐBD). Hence, X̂DA = ẐDB, and X, Z

and D are collinear points.
Conversely, let M be the midpoint of AB and C ∈ AB \ {A,B,M}. Choose

points X ∈ r and Y ∈ s such that X, Y and C are collinear. If Z is the

symmetric of Y with respect to B and D is the intersection of
←→
XY and

←→
AB , then

a slight modification of the above reasoning shows that (A,B,C,D) is a harmonic
quadruple. This proves the following

Lemma 9.11 Let M be the midpoint of AB, and C ∈ AB \ {A,B,M}. Then, there

exists a single point D ∈←→
AB \{A,B,M} such that (A,B,C,D) is a harmonic

quadruple.

Thanks to the previous lemma, we shall sometimes say that D (resp. C) is the
harmonic conjugate of C (resp. of D) with respect to A and B.

Example 9.12 In a triangle ABC with AB 
= AC, let P be the foot of the
internal angle bisector and Q that of the external angle bisector relative to A. Then,
(B,C, P,Q) is a harmonic quadruple. Indeed, with respect to Fig. 9.14, the internal
and external bisector theorems give

BP

PC
= AB

AC
= −BQ

QC
.
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A

B CPQ

Fig. 9.14 Feet of angle bisectors as harmonic conjugates

Our next result, though very simple, is the key step to link harmonic conjugation
to inversion.

Lemma 9.13 If (A,B,C,D) is a harmonic quadruple and O is the midpoint of
AB, then C and D are inverses of each other with respect to the inversion of center

O and modulus AB
2 .

Proof Assume, with no loss of generality, that C ∈ AB and D ∈ −→
AB \AB (cf.

Fig. 9.15). Then,

AC

CB
= −AD

DB
⇔ AC

BC
= AD

BD
.

Now, since AD > BD, we conclude that AC > BC, and hence C ∈ BO . Letting
AO = BO = k, we thus have

AC

BC
= AD

BD
⇔ AO + OC

BO − OC
= AO + OD

OD − OB

⇔ k + OC

k − OC
= k + OD

OD − k

⇔ (

k + OC
)(

OD − k
) = (

k + OD
)(

k − OC
)

⇔ −k2 + OC · OD = k2 − OC · OD

⇔ OC · OD = k2.

��
In the notations of Fig. 9.15, and according to Lemma 9.2, given A, B and

C ∈ OB \ {O,B}, we have the following alternative construction for the harmonic
conjugate of C: draw the perpendicular to AB through C and let T1 and T2 be its
intersections with the circle �(O; k); then D is the intersection point of the tangents

to � drawn through T1 and T2. By the same token, given D ∈ −→
AB \AB, we can get
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Fig. 9.15 Harmonic
conjugation and inversion

A BC DO

k

Γ
T1

T2

O

r
A BC D

a bc
d

Fig. 9.16 A harmonic pencil

its harmonic conjugate C by first drawing the tangents to � through D, then finding
C as the intersection of AB with the line joining the tangency points T1 and T2.

In order to continue our presentation, we now need a definition of harmonicity
for concurrent lines, instead of for collinear points. This is done as below.

Definition 9.14 Given distinct lines a, b, c, d concurrent at O , we say that
(a, b, c, d) is a harmonic pencil if there exists a line r , intersecting a, b, c, d at
the pairwise distinct points A, B, C, D, respectively, such that (A,B,C,D) is a
harmonic quadruple (see Fig. 9.16). We also say that O is the center of the harmonic
pencil.

In view of the previous definition, a simple way of constructing a harmonic pencil
(actually, the only one) is to start with a harmonic quadruple (A,B,C,D) and a

point O outside
←→
AB , and to consider

( ←→
OA,

←→
OB,

←→
OC,

←→
OD

)

.
On the other hand, it is an asthonishing fact that if a straightline intersects the

four lines of a harmonic pencil at distinct points, then the four points of intersection
form a harmonic quadruple. In order to show this we need a preliminary result,
which (thanks to Example 9.12 and the concurrence of the internal bisectors of a
triangle) can be viewed as a generalization of Example 4.23 (Fig. 9.17).
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O

A BC D

A1
B1

Fig. 9.17 Collinearity and concurrence in harmonic pencils

Fig. 9.18 Complete
quadrangles generate
harmonic pencils

O

A B

C
D

P

Q

R

Lemma 9.15 Let (A,B,C,D) be a harmonic quadruple and O /∈←→
AB . If A1 ∈

←→
OA \{O,A} and B1 ∈←→

OC \{O,C}, then A1, B1, D are collinear if and only if
←→
AB1,

←→
A1B,

←→
OC are concurrent.

Proof In the notations of Fig. 9.18, we apply Menelaus’ theorem 4.22 to triangle

OAB and points A1 ∈←→
OA, B1 ∈←→

OB, D ∈←→
AB to conclude that

A1, B1,D are collinear ⇔ OA1

A1A
· AD

DB
· BB1

B1O
= −1.

Now, we apply Ceva’s theorem 4.25 to OAB and A1 ∈←→
OA, B1 ∈←→

OB, C ∈←→
AB ,

we obtain that

←→
A1B,

←→
AB1,

←→
OC are concurrent ⇔ OA1

A1A
· AC

CB
· BB1

B1O
= 1.

Finally, since AC
CB

= −AD
DB

, it is now immediate that one of the claims above is true
if and only if so is the other. ��
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Theorem 9.16 Let (a, b, c, d) be a harmonic pencil. If a line s intersects a, b, c, d

at the pairwise distinct points A1, B1, C1, D1, respectively, then (A1, B1, C1,D1)

is a harmonic quadruple.

Proof Let O be the center of the pencil and r be a straightline not passing through
O and meeting a, b, c, d at A, B, C, D, respectively, with (A,B,C,D) being a
harmonic quadruple. We consider two separate cases:

(i) s ‖ r (see figure below): since OA1B1 ∼ OAB and OB1C1 ∼ OBC, we have

A1B1

AB
= OB1

OB
= B1C1

BC
,

and hence A1B1
B1C1

= AB
BC

.

O

r
A BC D

s
A1 B1C1 D1

a bc
d

Likewise, A1D1
D1C1

= AD
DC

. However, since AB
BC

= −AD
DC

, it follows that A1B1
B1C1

=
−A1D1

D1C1
, and (A1, B1, C1,D1) is a harmonic quadruple.

(ii) s 
 ‖ r: draw through D the parallel t to s, with t ∩ a = {A2}, t ∩ b = {B2},
t ∩ c = {C2} and D2 = D. By the previous case, (A1, B1, C1,D1) is a
harmonic quadruple if and only if (A2, B2, C2,D2) is a harmonic quadruple.
It thus suffices to establish this last claim.

O

r
A BC D = D2

A2
B2

C2

t
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For what is left to do, since (A,B,C,D) is a harmonic quadruple and

A2, B2, D are collinear, we conclude that
←→
A2B ,

←→
B2A,

←→
OC are concurrent.

Therefore, Ceva’s theorem (applied to triangle OA2B2) gives

OA

AA2
· A2C2

C2B2
· B2B

BO
= 1. (9.3)

Also with respect to triangle OA2B2, since A, B, D are collinear, Menelaus’
theorem gives

OA

AA2
· A2D

DB2
· B2B

BO
= −1. (9.4)

By comparing (9.3) and (9.4) and recalling that D = D2, we therefore obtain

A2C2

C2B2
= −A2D

DB2
= −A2D2

D2B2
,

as we wished to show.
��

Corollary 9.17 If (a, b, c, d1) and (a, b, c, d2) are harmonic pencils, then d1 = d2.

Proof Let O be the common center of the harmonic pencils and r be a line meeting
a, b, c, d1 and d2 respectively at distinct points A, B, C, D1 and D2. The previous
result assures that both (A,B,C,D1) and (A,B,C,D2). Hence, Lemma 9.11 gives

D1 = D2, whence d1 = ←→
OD1=

←→
OD2= d2. ��

Example 9.18 Let (a, b, c, d) be a harmonic pencil. A line r intersects lines a, b,
c at the distinct points A, B, C, respectively, with C ∈ AB. Show that C is the
midpoint of AB if and only if r ‖ d .

Proof By contraposition, it suffices to show that C is not the midpoint of AB if and
only if r is not parallel to d .

If C is not the midpoint of AB, we can choose D ∈←→
AB such that (A,B,C,D)

is a harmonic quadruple. Letting d ′ = ←→
OD, we conclude that (a, b, c, d ′) is a

harmonic pencil. Therefore, the previous corollary assures that d = d ′, whence D ∈
←→
AB ∩ d ′ = r ∩ d , and r is not parallel to d . Conversely, if r is not parallel to d ,
let r ∩ d = {D}. Since (a, b, c, d) is a harmonic pencil, (A,B,C,D) is a harmonic
quadruple. This being the case, we already know that C cannot be the midpoint of
AB. ��

Our last result on harmonic pencils can be seen as a simple way of producing
them. It can also be seen as a sort of converse of Lemma 9.15, in the sense that

(in the notations of Fig. 9.18) if A1, B1, D are collinear and
←→
OA,

←→
A1B ,

←→
AB1 are

concurrent, then (a, b, c, d) is a harmonic pencil (Fig. 9.19).
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Fig. 9.19 A property of the
parallel to one of the lines of
a harmonic pencil

O

a bc

d

A

B
C

r

Theorem 9.19 Let ABCD be a given quadrilateral. If
←→
AD ∩ ←→

BC= {O}, ←→
AB

∩ ←→
CD= {P } and

←→
AC ∩ ←→

BD= {Q}, then (
←→
OA,

←→
OB,

←→
OP,

←→
OQ) is a harmonic

pencil.

Proof Let (cf. Fig. 9.18)
←→
OQ ∩ ←→

AB= {R}. Applying Ceva’s and Menelaus’

theorems to triangle OAB with respect to the transversal
←→
CD and the cevians

←→
OR,

←→
AC ,

←→
BD, respectively, we obtain

OD

DA
· AR

RB
· BC

CO
= 1 and

OD

DA
· AP

PB
· BC

CO
= −1.

Hence, AR
RB

= −AP
PB

, so that (A,B, P,R) is a harmonic quadruple. Therefore,

(
←→
OA,

←→
OB,

←→
OP,

←→
OR) is a harmonic pencil, with

←→
OR= ←→

OQ. ��
In the context of Projective Geometry one usually says that four straightlines,

pairwise concurrent at (six) distinct points define a complete quadrangle (in the

notations of Fig. 9.18, this is the case of
←→
AA1,

←→
AB ,

←→
A1B1 and

←→
B1B). Thus, the

theorem above can be stated more simply by saying that complete quadrangles
define harmonic pencils. Lemma 9.15, together with Theorem 9.16, show that the
converse also holds.

Problems: Sect. 9.2

1. Let a, b, c, d be distinct lines concurrent at O , and � be a circle passing through
O and not tangent to any of a, b, c, d . If � meets a, b, c, d again at A, B, C, D,
prove that the following assertions are equivalent:
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(a) (a, b, c, d) is a harmonic pencil.

(b) AB ∩ CD 
= ∅ and AC

CB
= AD

DB
.

2. Let (a, b, c, d) be a harmonic pencil of center O , and let O1 be a point outside of

a, b, c, d and such that
←→
O1O is not perpendicular to any of these lines. If a1, b1,

c1, d1 are the perpendiculars dropped from O1 to a, b, c, d , respectively, show
that (a1, b1, c1, d1) is also a harmonic pencil.

3. We are given three collinear points A, B and C, such that C is not the midpoint
of AB. Using only a straightedge, construct the harmonic conjugate D of C with
respect to AB.

9.3 Polarity

In this section we develop the important concept of polar of a point with respect to a
circle, along with some of its most important properties. As we shall see, polarity is
intimately related to inversion and harmonic conjugation, and will give rise to some
interesting applications.

Definition 9.20 Given a circle � of center O and a point P 
= O , the polar of P

with respect to � is the straightline perpendicular to
←→
OP and passing through the

inverse of P with respect to the inversion I of center O and inversion circle �.

In the notations of the previous definition, we shall systematically denote the
polar of a point by the corresponding lowercase Latin letter. Figure 9.20 shows a
point P lying outside the disk bounded by �, together with its polar p.

Also with respect to the previous definition, since all points of � are fixed by I ,
if Q ∈ � then its polar q is the tangent to � passing through Q.

Fig. 9.20 A point P and its
polar p

P PO

Γ

p
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Note also that, since I (P ′) = P , the polar of P ′ is the line p′ passing through

P and perpendicular to
←→
OP ′= ←→

OP ; in particular, p ‖ p′. The following result
sharpens this remark.

Proposition 9.21 Let � be a circle of center O , and P , Q be points distinct from
O . Then, Q ∈ p ⇔ P ∈ q .

Proof For the sake of simplicity, we take P outside the disk bounded by � (the other
cases can be dealt with analogously).

Take a point Q ∈ p. If Q = P ′ or Q is one of the points of contact of the tangents
drawn from P to �, there is nothing to do (check this!). Then, we can assume that
Q is distinct from these three points. In the figure below, let r be the perpendicular

dropped from P to
←→
OQ, and R be the intersection point of r and

←→
OQ.

P PO

Γ

p

Q

R r

Since Q̂OP ′ = P ̂OR and Q̂P ′O = P ̂RO , we have QP ′O ∼ PRO . Hence,

OP ′

OQ
= OR

OP
,

and this gives

OQ · OR = OP · OP ′ = k2,

where k stands for the radius of �. Therefore, R is the inverse of Q, and since

r⊥ ←→
OQ we conclude that r = q , the polar of Q. Thus, P ∈ r ⇒ P ∈ q . ��

The previous proposition allows us to look at the polar of a point with respect to
a circle as a locus. We isolate this point of view in the following

Corollary 9.22 Let � be a circle of center O and P be a point distinct from O ,
with polar p with respect to �. The locus of the points Q in the plane such that the
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tangents drawn from Q to � have tangency points collinear with P is the portion of
p lying outside the disk bounded by �.

Proof As in the proof of the proposition, we only look at the case in which P lies
outside the disk bounded by �, the other case being entirely analogous.

If Q ∈ p lies outside the disk bounded by � (see figure below), then the previous
proposition assures that P ∈ q , the polar of Q. However, by construction of the
inverse of Q with respect to the inversion of center O and inversion circle �, if

q ∩ � = {T1, T2} then q = ←→
T1T2. Therefore, P , T1 and T2 are collinear.

P PO

Γ

p

Q

q

T1

T2

Conversely, let Q be a point outside the disk bounded by �, and T1, T2 ∈ � be

such that
←→
QT1 and

←→
QT2 are tangent to �. If T1, T2 and P are collinear, then P ∈

←→
T1T2= q , the polar of Q with respect to �. Therefore, by the previous proposition,
Q ∈ p. ��

We already know that a complete quadrangle gives rise to a harmonic pencil. In
turn, the coming result relates complete quadrangles to polarity.

Theorem 9.23 Let ABCD be a cyclic quadrilateral with circumcircle �, whose
diagonals AC and BD meet at R. If the support lines of the pairs of opposite sides

of ABCD meet at the points P and Q, then
←→
QR is the polar of P and

←→
PR is the

polar of Q with respect to �.

Proof First of all (and in the notations of Fig. 9.21), even if
←→
QR is not the polar

of P with respect to �, Theorem 9.19 assures that
( ←→

QC,
←→
QD,

←→
QR,

←→
QP

)

is a
harmonic pencil. Therefore, from Theorem 9.16 we conclude that (A,B, S, P ) and
(C,D, T , P ) are harmonic quadruples, so that S and T are the harmonic conjugates

of P with respect to A, B and C, D, respectively. It thus suffices to show that
←→
ST

is the polar of P with respect to �.
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Fig. 9.21 Polarity and
complete quadrangles
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Γ
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For what is left to do, let EF be the diameter of � passing through P , let
←→
BE ∩ ←→

AF= {X} and
←→
AE ∩ ←→

BF= {Y } (see the figure below). Since ÊAF =
ÊBF = 90◦, the line segments EA and FB are altitudes of XEF , whence Y is the

orthocenter of XEF . Therefore,
←→
XY ⊥ ←→

EF=←→
OP .

On the other hand, Theorem 9.19 guarantees that
( ←→

XE,
←→
XF,

←→
XY ,

←→
XP

)

is a
harmonic pencil. Thus, Theorem 9.16 guarantees that the point of intersection of
←→
XY and

←→
AB is the harmonic conjugate of P with respect to A, B, whence it is S.

By the same token, the intersection of
←→
XY and

←→
EF is the harmonic conjugate of P

with respect to E, F . Lemma 9.13 thus shows that it is exactly the inverse P ′ of P

with respect to �.

O

Γ

A

B

E F
P

X

S

Y

P
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So far, our reasoning has shown that
←→
XY is the polar p of P with respect to �,

and that it passes through the harmonic conjugate S of P with respect to A, B. If we
now argue exactly as above with CDFE, we conclude that p also passes through
the harmonic conjugate T of P with respect to C, D. However, S, T ∈ p implies

p =←→
ST , as wished. ��

The theorem also holds, with suitable modifications, if
←→
AD‖←→

BC , for example.
See Problem 2. We now list two important corollaries of it.

Corollary 9.24 Let � be a given circle and P be a point distinct from the center of
� and with polar P with respect to �. If a line r passing through P intersects � and
p at points A, B, S, then S is the harmonic conjugate of P with respect to AB.

Proof In the notations of the proof of the theorem, this follows immediately from

the fact that
( ←→

QA,
←→
QB,

←→
QS,

←→
QP

)

is a harmonic pencil. ��
The following consequence of the theorem above is due to Pierre Brocard, French

mathematician of the nineteenth century, and is usually referred to as Brocard’s
theorem.

Corollary 9.25 (Brocard) ABCD is a cyclic quadrilateral with circumcenter O ,
whose diagonals AC and BD meet at the point R. If the support lines of the pairs
of opposite sides of ABCD meet at the points P and Q, then R is the orthocenter

of OPQ. In particular,
←→
OR ⊥ ←→

PQ.

Proof If � is the circumcircle of ABCD (cf. Fig. 9.22), then Theorem 9.23 assures

that
←→
QR is the polar of P with respect to �, so that

←→
QR ⊥ ←→

OP . Likewise,

Fig. 9.22 R is the
orthocenter of OPQ

O

Γ

A

B

C
D

P

Q

R
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←→
PR ⊥ ←→

OQ, so that R lies in two altitudes of triangle OPQ, hence is its orthocenter.
Finally, since the three altitudes of a triangle are always concurrent, we obtain the
last claim. ��

We finish this section by presenting a beautiful application of Theorem 9.23,
known in mathematical literature as the butterfly theorem.

Example 9.26 PQ is a chord of a circle �, with midpoint M . We draw two other
chords AC and BD of �, both passing through M and such that A and B lie in the

same side of
←→
PQ. If AD ∩ MP = {R} and BC ∩ MQ = {S}, show that M is also

the midpoint of RS.

Proof We can assume, without loss of generality, that M is not the center of � and

that
←→
AB is not parallel to

←→
PQ. (Check these claims!) This way, and letting

←→
AD

∩ ←→
BC= {U} and

←→
AB ∩ ←→

CD= {V } (cf. figure below), Theorem 9.23 guarantees

that
←→
UV is the polar of M with respect to �. Therefore, if O is the center of �, then

←→
OM ⊥ ←→

UV .

Γ
O

M
P Q

U

D

R

C

S

V

A
B

Now, since M is the midpoint of PQ, we have
←→
OM ⊥ ←→

PQ, whence
←→
RS=←→

PQ‖
←→
UV . Hence,

( ←→
UD,

←→
UM

←→
UC,

←→
UV

)

is a harmonic pencil and R ∈ ←→
UD, S ∈←→

UC

are such that
←→
RS ‖ ←→

UV , so that Example 9.18 gives
←→
RM=←→

SM . ��

Problems: Sect. 9.3

1. (OBMU) Let �1 and �2 be circles centered at O1 and O2, respectively, and let

P be a point outside the disks bounded by �1 and �2, and such that P /∈ ←→
O1O2.

Show how to construct all points Q in the plane with the following property:
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for i = 1, 2, if Ci,Di ∈ �i are such that
←→
QCi and

←→
QDi are tangent to �i , with

Ci 
= Di , then both
←→

C1D1 and
←→

C2D2 pass through P .

2. State and prove a version of Theorem 9.23 in case
←→
AD‖←→

BC .
3. We are given a circle � and a point P , outside the disk bounded by �. Show

how to draw the tangents to � passing through P , using only a straightedge.
4. ABC is an acute triangle with AB 
= AC. The circle �, of diameter BC, meets

the support line of the altitude dropped from A at points X and Y . Show that
the tangents to � drawn from X and Y meet at an excenter of the orthic triangle
of ABC.

5. In an acute triangle ABC, the circle � of diameter BC has orthocenter H . If P

and Q are the feet of the tangents drawn from A to �, show that P , Q and H

are collinear.
6. The incircle of a scalene triangle ABC touches sides AB, AC, BC respectively

at points F , E, D. The straightlines
←→
AD and

←→
BE meet at P , whereas the

straightlines
←→
AC and

←→
DF meet at M and the straightlines

←→
BC and

←→
EF meet

at N . If I stands for the incenter of ABC, show that
←→
IP ⊥ ←→

MN .
7. In a cyclic quadrilateral ABCD which is not a rectangle, 
 A = 90◦. Show how

to use compass and straightedge to construct it, knowing the positions of the
following three points: the circumcenter O , the point R of intersection of its

diagonals AC, BD and the point Q of intersection of
←→
AB and

←→
CD.

8. We are given a quadrilateral MNPQ, inscribed in the circle � and having no

right angles. If
←→
MQ ∩ ←→

NP= {U}, ←→
MN ∩ ←→

PQ= {V } and the tangents to �

drawn through M and P (resp. N and Q) meet at W (resp. at X), show that U ,
V , W , X are collinear.

9. Let ABCD be a tangential quadrilateral and M , N , P , Q be the points where

sides AB, BC, CD, AD meet the inscribed circle. Prove that
←→
AC ,

←→
BD,

←→
MP ,←→

NQ are concurrent.
10. (IMO) We are given a triangle ABC and a circle γ of center O , passing through

A and C and meeting AB and BC again at points K and N , respectively, with
K 
= A and N 
= C. The circumcircles of triangles ABC and BKN meet again
at M , with M 
= B. Show that O ̂MB = 90◦.

9.4 Cross Ratio and Perspectivities

This section concludes our first walk through projective techniques in Plane
Euclidean Geometry by generalizing harmonic quadruples and pencils, as well as
introducing a change in our point of view by discussing perspectivities. Later, in
Sect. 10.4, the results of this section and the previous one will be extended to conics.
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We begin by recalling that if (A,B,C,D) is a harmonic quadruple, then AC
CB

=
−AD

DB
, a relation which can also be written as AC

CB
· DB

AD
= −1. Also, if (a, b, c, d)

is a harmonic pencil and A ∈ a, B ∈ b, C ∈ c, D ∈ d are pairwise distinct and
collinear, then (A,B,C,D) is a harmonic quadruple, so that AC

CB
· DB

AD
= −1.

The discussion above shows that the quantity at the left hand side of this last
equality is preserved in harmonic pencils, and we shall now show that it is preserved
in a more general setting. To this end, it is convenient to first state the following

Definition 9.27 Given pairwise distinct collinear points A, B, C, D, the cross ratio
of the oriented segment AB with respect to CD (in this order) is the real number
(A,B;C,D) given by

(A,B;C,D) = AC

CB
· DB

AD
.

In view of this definition, our previous discussion can be summarized by saying
that, for distinct collinear points A, B, C, D,

(A,B,C,D) is a harmonic quadruple ⇔ (A,B;C,D) = −1.

The coming result can be seen as the analogue of Theorem 9.16 for general cross
ratios.

Theorem 9.28 Let a, b, c, d be pairwise distinct lines, concurrent at a point O . If
lines r1 and r2 do not pass through O and intersect a, b, c, d respectively at the
quadruples of points A1, B1, C1, D1 and A2, B2, C2, D2, then

(A1, B1;C1,D1) = (A2, B2;C2,D2).

Proof Let a line r , not passing through O , meet a, b, c, d at A, B, C, D, respectively.
Moreover, assume that the configuration is as displayed in the figure below (the other
cases can be dealt with analogously).

O

r
A BC D

a bc
d
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We apply the sine law to the triangles OAC, OCB, OAD, ODB to get

AC

OC
= sin ÂOC

sin ÔAC
,

CB

OC
= sin ĈOB

sin ÔBC
,

AD

OD
= sin ÂOD

sin ÔAD
,

DB

OD
= sin D̂OB

sin ÔBD
.

Therefore,

AC

CB
= sin ÂOC · sin ÔBC

sin ÔAC · sin C ̂OB
,

DB

AD
= sin D̂OB · sin ÔAD

sin ÔBD · sin ÂOD
,

and taking into account that sin ÔBC = sin ÔBD and sin ÔAC = sin ÔAD, we
obtain

AC

CB
· DB

AD
= sin ÂOC

sin C ̂OB
· sin D̂OB

sin ÂOD
. (9.5)

Now, by the choice of Ai , Bi , Ci , Di we clearly have A1 ̂OC1 = A2 ̂OC2,
C1 ̂OB1 = C2 ̂OB2, D1 ̂OB1 = D2 ̂OB2 and A1 ̂OD1 = A2 ̂OD2. Therefore, (9.5)
applied to A1, B1, C1, D1 and A2, B2, C2, D2 gives

A1C1

C1B1
· D1B1

A1D1
= A2C2

C2B2
· D2B2

A2D2
.

We are then left to showing that A1C1
C1B1

· D1B1
A1D1

and A2C2
C2B2

· D2B2
A2D2

have equal signs, which
follows immediately from the fact that Ai , Bi , Ci , Di are collinear, with Ai ∈ a,
Bi ∈ b, Ci ∈ c, Di ∈ d . ��

For what follows, it will be convenient to say that four pairwise distinct lines a,
b, c, d , concurrent at a point O , define a projective pencil (a, b, c, d) of center O .
Moreover, if A ∈ a, B ∈ b, C ∈ c, D ∈ d are pairwise distinct and collinear, we
say that the quadruple (A,B,C,D) of points is incident with the projective pencil
(a, b, c, d), or vice-versa.

If two quadruples of points (A1, B1, C1,D1) and (A2, B2, C2,D2) are incident
with the projective pencil (a, b, c, d) of center O , we say that (A1, B1, C1,D1) and
(A2, B2, C2,D2) are in perspective from O, and denote

A1B1C1D1

O

� A2B2C2D2.

Thus, the result of the previous theorem can be stated in symbols by writing (see
also Fig. 9.23)

A1B1C1D1

O

� A2B2C2D2 ⇒ (A1, B1;C1,D1) = (A2, B2;C2,D2). (9.6)

We now extend the notion of cross ratio to projective pencils.
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O

A2 B2C2 D2

A1

B1C1
D1

a bc
d

Fig. 9.23 A1B1C1D1

O

� A2B2C2D2

Definition 9.29 Given a projective pencil (a, b, c, d), the cross ratio of (a, b)

with respect to (c, d) is the cross ratio (A,B;C,D), where (A,B,C,D) is any
quadruple of points incident with (a, b, c, d).

The consistency of the above definition follows at once from the discussion that
led to (9.6). Thus, if (a, b; c, d) stands for the cross ratio of (a, b) with respect to
(c, d), then

(a, b; c, d) = (A,B;C,D) if (A,B,C,D) is incident with (a, b, c, d). (9.7)

This being said, we can now state and prove two important consequences
of Theorem 9.28. For the first of them, let be given two projective pencils
(a1, b1, c1, d1), (a2, b2, c2, d2) and a line r not passing through any of their centers.
We say that the two pencils are in perspective from the line r if they are incident
to the same quadruple of points of r , i.e., if a1 ∩ a2, b1 ∩ b2, c1 ∩ c2, d1 ∩ d2 ∈ r (cf.
Fig. 9.24). Also, we denote this in symbols by writing

a1b1c1d1

r

� a2b2c2d2.

Corollary 9.30 a1b1c1d1

r

� a2b2c2d2 ⇒ (a1, b1; c1, d1) = (a2, b2; c2, d2).

Proof This is immediate from (9.7). Indeed, in the notations of Fig. 9.24, the fact
that (A,B,C,D) is incident to both (a1, b1, c1, d1) and (a2, b2, c2, d2) implies

(a1, b1; c1, d1) = (A,B;C,D) = (a2, b2; c2, d2).

��
The second consequence of Theorem 9.28 is the analogue of Corollary 9.17 for

general cross ratios.
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O1

r
A BC D

a1 b1c1

d1

O2

a2
b2

c2
d2

Fig. 9.24 a1b1c1d1

r

� a2b2c2d2

Corollary 9.31 If (a, b, c, d1) and (a, b, c, d2) are projective pencils for which
(a, b; c, d1) = (a, b; c, d2), then d1 = d2.

Proof Firstly, note that the two projective pencils have the same center O . Now,
draw a line r , not passing through O and intersecting a, b, c, d1, d2 respectively
at A, B, C, D1, D2. Since (A,B,C,D1) is incident with (a, b; c, d1), we have
(a, b; c, d1) = (A,B;C,D1); analogously, (a, b; c, d2) = (A,B;C,D2). There-
fore, (a, b; c, d1) = (a, b; c, d2) implies (A,B;C,D1) = (A,B;C,D2), and

hence (cf. Problem 1) D1 = D2. Thus, d1 = ←→
OD1=

←→
OD2= d2. ��

It is time for us to present an example justifying the developments above.

Example 9.32 Given a triangle ABC, let D,E ∈ BC be distinct from B, C and
such that BD = DE = EC. If a line r intersects the line segments AB, AD, AE,
AC respectively at points K , L, M , N , show that KN ≥ 3LM, with equality if and

only if
←→
KN‖←→

BC .

Proof Letting x = KL, y = LM , z = MN (see the figure below), we want to show
that x + y + z ≥ 3y or, which is the same, x + z ≥ 2y.

A

B C
D E

r
K L M N

s
L M
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We obviously have BDEC
A

� KLMN , so that (B,D;E,C) = (K,L;M,N).
This gives

BE

ED
· CD

BC
= KM

ML
· NL

KN
,

and hence

(−2) ·
(

− 2

3

)

=
(

− x + y

y

)(

− y + z

x + y + z

)

.

Some algebra shows that this is equivalent to y2 + (x + z)y − 3xz = 0.
Letting f (y) = y2 + (x + z)y − 3xz, in order to get y ≤ x+z

2 the elementary
theory of quadratic functions (cf. [5], for instance) assures that it suffices to show
that f

(

x+z
2

) ≥ 0. To this end, a simple computation gives

f
(x + z

2

)

= 3

4
(x − z)2 ≥ 0,

so that y = x+z
2 if and only if y = x+z

2 and x = z, i.e., if and only if x = y = z.

Now, assume we have equality but r is not parallel to
←→
BC , and let s be the parallel

to
←→
BC through K , and L′, M ′ be its intersections with

←→
AD and

←→
AE (see the figure

above). Since KL = LM and (from Thales’ theorem) KL′ = L′M ′, we have

KLL′ ∼ KMM ′ by SAS. Hence, L̂L′K = M ̂M ′K , and this forces
←→
LL′‖

←→
MM ′,

which is an absurd. ��
Back to the development of the theory, we now extend the notion of per-

spectivity of projective pencils to circles. To be precise, given projective pencils
(a1, b1, c1, d1), (a2, b2, c2, d2) of centers O1, O2, we say that they are in perspec-
tive from a circle � if the six points O1, O2, a1 ∩ a2, b1 ∩ b2, c1 ∩ c2, d1 ∩ d2 are
pairwise distinct and lie in �. Also, in this case we write

a1b1c1d1

�

� a2b2c2d2.

In what comes next, we shall show that projective pencils in perspective from a
circle also have equal cross ratios. To this end, start by noticing that (9.5) and (9.7)
readily give

∣

∣(a, b; c, d)
∣

∣ = sin âc

sin ̂cb
· sin̂db

sin̂ad
, (9.8)
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Fig. 9.25

a1b1c1d1

�

� a2b2c2d2

Γ

O1
O2

A

C
B

D
a1 c1

b1

d1

a2

c2 b2

d2

where âc denotes the angle formed by lines a and c, and likewise for ̂cb, ̂db, ̂ad

(note that, since sin θ = sin(π − θ), it does not matter whether we choose âc = θ

or π − θ , and accordingly for the other angles).

Theorem 9.33 a1b1c1d1

�

� a2b2c2d2 ⇒ (a1, b1; c1, d1) = (a2, b2; c2, d2).

Proof Relation (9.8) gives

∣

∣(a1, b1; c1, d1)
∣

∣ = sin â1c1

sin ̂c1b1
· sin ̂d1b1

sin ̂a1d1
,
∣

∣(a2, b2; c2, d2)
∣

∣ = sin â2c2

sin ̂c2b2
· sin ̂d2b2

sin ̂a2d2
.

Now, let a1 ∩ a2 = {A}, b1 ∩ b2 = {B}, c1 ∩ c2 = {C}, d1 ∩ d2 = {D} (see
Fig. 9.25). The inscribed angle theorem assures that if A and C lie at the same side

of
←→

O1O2 (as in Fig. 9.25), then â1c1 = â2c2. Analogously, if A and C lie at opposite

sides of
←→

O1O2, then â1c1 = π − â2c2 (draw a picture to convince yourself). In any
case, sin â1c1 = sin â2c2. Since a similar reasoning holds for the remaining angles
involved, we conclude from the above that

∣

∣(a1, b1; c1, d1)
∣

∣ = ∣

∣(a2, b2; c2, d2)
∣

∣.

We are left to showing that (a1, b1; c1, d1) and (a2, b2; c2, d2) have equal signs,
for which we distinguish the following cases:

(i) A, B, C, D lie in a single side of
←→

O1O2: this is the situation depicted in
Fig. 9.25. It suffices to draw a line r , incident to both (a1, b1, c1, d1) and
(a2, b2, c2, d2) at the quadruples (A1, B1, C1,D1) and (A2, B2, C2,D2),
respectively, and to check that the cross ratios (A1, B1;C1,D1) and
(A2, B2;C2,D2) have equal signs.
In the figure above, the eight points A1, B1, C1, D1, A2, B2, C2, D2 are
highlighted, but for the sake of clarity of the figure the corresponding labels
are omitted.
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(ii) Two of A, B, C, D lie at a single side of
←→

O1O2, and the other two points lie at
the opposite side: exactly the same method of item (i) works. We leave it as an
exercise for the reader to draw a picture and finish the proof (see Problem 6).

(iii) Three of A, B, C, D lie at a single side of
←→

O1O2, and the fourth point lies at
the opposite side: in this case, we can also reason as in the previous cases (see
Problem 6).

��

O1
O2

A

C
B

D

r

The apparatus above allows us to prove two famous results on Euclidean
Geometry, due to Pascal7 and Brianchon,8 and we end this section by presenting
the usual projective proofs of them.

For what comes, we make the following conventions: given pairwise distinct
points A, B, C, D, E, F , the hexagram ABCDEF is the polygonal line formed by
the concatenation of the line segments AB, BC, CD, DE, EF , FA. In particular,
two or more of these segments may cross each other, and some three of the points
A, B, C, D, E, F may be collinear. The hexagram ABCDEF is cyclic if A, B,

C, D, E, F are concyclic points, and tangential if
←→
AB ,

←→
BC ,

←→
CD,

←→
DE,

←→
EF ,

←→
FA are tangent to a single circle. Finally, in the first case we say that the circle is
circumscribed to the hexagram, whereas in the second case we say it is inscribed
in the hexagram (Fig. 9.26).

Theorem 9.34 (Pascal) Let ABCDEF be a cyclic hexagram. If
←→
AE ∩ ←→

BD=
{Z}, ←→

AF ∩ ←→
CD= {Y }, ←→

BF ∩ ←→
CE= {X}, then points X, Y , Z are collinear.

7Blaise Pascal, French inventor, mathematician and physicist of the seventeenth century. Apart
from his contributions to Mathematics, his work in Physics is recognized through the SI unit for
pressure, the Pascal. We also owe to Pascal the construction of the first mechanical calculator.
8Charles Brianchon, French mathematician of the nineteenth century.
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Fig. 9.26 Pascal’s theorem

A
B

C

D

E
F

X

YZ

Proof Let � denote the circle circumscribed to ABCDEF and (cf. figure below)

U , V , Y ′ be defined by
←→
AE ∩ ←→

CD= {U}, ←→
BD ∩ ←→

CE= {F }, ←→
XZ ∩ ←→

CD= {Y ′}.
It suffices to show that Y ′ = Y . To this end, start by observing that

( ←→
AC,

←→
AY ,

←→
AU,

←→
AD

) = ( ←→
AC,

←→
AF ,

←→
AE,

←→
AD

)

�

�
( ←→

BC,
←→
BF ,

←→
BE,

←→
BD

)

= ( ←→
BC,

←→
BX; ←→

BE,
←→
BV

)

.

Γ
A

B

C

F
E

D
U X

YZ

V

Hence, the definition of cross ratio for projective pencils, together with the
previous theorem, give

(C, Y ;U,D) = ( ←→
AC,

←→
AY ; ←→

AU,
←→
AD

) = ( ←→
BC,

←→
BX; ←→

BE,
←→
BV

) = (C,X;E,V ).

However, since CXEV
Z

� CY ′UD, we conclude from (9.6) that
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(C,X;E,V ) = (C, Y ′;U,D). (9.9)

Therefore, these two equalities of cross ratios combine to give

(C, Y ;U,D) = (C, Y ′;U,D),

and an obvious variation of Problem 1 shows that Y = Y ′. ��
Theorem 9.35 (Brianchon) If ABCDEF is a tangential hexagram and two of

the lines
←→
AD,

←→
BE,

←→
CF are not parallel, then they all concur at a single point.

Proof In the notations of Fig. 9.27 assume, without loss of generality, that
←→
AD and

←→
BE are not parallel, and let P be their intersection point. We shall show that

←→
CF

also passes through P .
Let � be the circle inscribed in ABCDEF and R, S, T , U , V , W be the points

where
←→
AB ,

←→
BC ,

←→
CD,

←→
DE,

←→
EF ,

←→
AF touch �, respectively. It is immediate to see

that
←→
RW and

←→
T U are the polars of A and D with respect to �. Therefore, if

←→
RW

∩ ←→
T U= {X}, Proposition 9.21 assures that the polar of X with respect to � passes

through A and D, hence is precisely
←→
AD. Analogously, letting

←→
RS ∩ ←→

UV= {Y }
and noting that

←→
RS and

←→
UV are the polars of B and E, respectively, we conclude

Γ

A B

C

D

E
F

R

S

T

U

V

W

X

Y

Fig. 9.27 Brianchon’s theorem
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that
←→
BE is the polar of Y . Therefore, since P is the intersection point of the polars

of X and Y with respect to �, we conclude that
←→
XY is the polar of P .

We now look at the hexagram RV T USW and distinguish two possibilities:

(i) If
←→
ST ‖ ←→

V W , then
←→
CF ⊥ ←→

ST , so that it passes through the center O of �.

In turn, Problem 9 assures that
←→
XY ‖←→

ST . Since
←→
OP ⊥ ←→

XY , we obtain
←→
OP

⊥ ←→
ST , hence

←→
OP=←→

CF . In particular, P ∈←→
CF .

(ii) If
←→
ST �‖ ←→

V W , let Z be their point of intersection. Pascal’s theorem guarantees

that Z ∈←→
XY , which is the polar of P . Thus, invoking Proposition 9.21 again,

we obtain that P lies at the polar of Z. However, arguing as above, we conclude

that such a polar is precisely
←→
CF .

��
We finish this section with a few remarks on the duality principle (which,

nevertheless, we shall not state formally).
In the language of Projective Geometry, the theorems of Pascal and Brianchon

are prototypes of dual theorems. As the reader may suspect, this expression must
have something to do with the fact that Pascal’s theorem refers to a cyclic hexagram
and to the collinearity of the intersection points of three pairs of diagonals, whereas
Brianchon’s theorem refers to a tangential hexagram and to the concurrence of the
diagonals determined by three pairs of points.

In order to come a little closer to a precise definition of such a principle, let us
rephrase both theorems as below (assuming, for the moment, that all points defined
by the intersection of two lines actually exist, i.e., ignoring the fact that the lines
could be parallel):

(1) (Pascal’s theorem). Let A1, A2, A3, B1, B2, B3 be points lying in a circle. Then,

the three intersection points of the pairs of lines
←→

A1B2 and
←→

A2B1,
←→

A1B3 and
←→

A3B1,
←→

A2B3 and
←→

A3B2 are collinear.
(2) (Brianchon’s theorem). Let r1, r2, r3, s1, s2, s3 be lines tangent to a circle. Then,

the three lines joining the pairs of points r1 ∩ s2 and r2 ∩ s1, r1 ∩ s3 and r3 ∩ s1,
r2 ∩ s3 and r3 ∩ s2 are concurrent.

Although the statements above are somewhat cumbersome, they reveal more
clearly the nature of duality: given a projective theorem (roughly speaking, a
geometric result involving solely incidence properties of points, lines and circles—
i.e., passing through, intersecting at, being concurrent, being collinear, being
tangent), it can be shown that one can always manufacture another theorem, called
its dual, simply by performing the following replacements of expressions: points by
lines; points lying a circle by lines tangent to a circle; intersection points of pairs of
lines by lines joining pairs of points; collinearity by concurrence.

Now, what if two lines defining a point were parallel? (As it happens in
Problem 9.) In the realm of Euclidean Geometry one has always to deal with such
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a situation with a separate argument, and the corresponding conclusion will be
somewhat different from the one would get if the lines were not parallel. Projective
Geometry deals with such a situation by avoiding parallel lines. In other words,
the projective plane extends the euclidean plane by adjoining a point at infinity
corresponding to each direction in the euclidean plane. Therefore, in the projective
setting, the theorems of Pascal and Brianchon are genuine dual results, and can be
stated exactly as above.

For a thorough development of Projective Geometry which goes far beyond what
we have presented here, and in particular for the proof of the duality principle, we
refer the reader to [20].

The theorems of Pascal and Brianchon, as well as some other concepts studied
in this chapter, will be extended to conics in Sect. 10.4.

Problems: Sect. 9.4

1. * If A, B, C, D1, D2 are pairwise distinct points for which (A,B;C,D1) =
(A,B;C,D2), show that D1 = D2.

For the next two problems, given distinct and collinear points A, B, C, D,
we say that AB separates CD if C ∈ AB and D /∈ AB or vice-versa.

2. Establish the following properties of the cross ratio of four pairwise distinct
collinear points A, B, C, D:

(a) (A,B;C,D) < 0 if and only if AB separates CD.
(b) (A,B;C,D) = (B,A;D,C) = (C,D;A,B).
(c) (A,B;C,D) = 1 − (A,C;B,D).
(d) (A,B;C,D)(A,B;D,C) = 1.

3. Let A, B, C, D be pairwise distinct collinear points, with AB separating
CD. If (A,B;C,D) = (B,A;C,D), show that (A,B,C,D) is a harmonic
quadruple.

For the next two problems, we say that a projectivity between two quadru-
ples of collinear points is a finite number of perspectivities applied in succes-
sion.

4. Given a quadruple of collinear points (A,B,C,D), show that there exists a
projectivity that applies it to (B,A,D,C) and explain how this relates to the
first equality in item (b) of Problem 2.

5. The purpose of this problem is to give another proof of Theorem 9.19. To this

end, let ABCD be a quadrilateral in which
←→
AC ∩ ←→

BD = {Q}, ←→
AB ∩ ←→

CD =
{P } and

←→
AD ∩ ←→

BC= {O}.
(a) If

←→
AB ∩ ←→

OQ= {R}, show that there exists a projectivity applying
(A,B, P,R) to (B,A,P,R).

(b) Show that
( ←→

OA,
←→
OB,

←→
OP,

←→
OQ

)

is a harmonic pencil.
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For item (a), if
←→
OQ ∩ ←→

CD= {S}, show that
6. * Complete the proof of Theorem 9.33 by examining cases (i) and (ii).

The next problem revisits Problem 9, page 317, with the material of this section.
7. Let ABCD be a tangential quadrilateral and M , N , P , Q be the points where

sides AB, BC, CD, AD meet its inscribed circle. Prove that lines
←→
AC ,

←→
BD,←→

MP ,
←→
NQ are concurrent.

8. Prove Pappus’ theorem (cf. Problem 12, page 137) with the methods developed
in this section.
The next problem establishes a degenerated version of Pascal’s theorem.

9. Let ABCDEF be a cyclic hexagram. If
←→
AF ∩ ←→

CD= {Y }, ←→
BF ∩ ←→

CE= {X}
and

←→
AE‖←→

BD, prove that
←→
XY ‖←→

BD.
10. We are given a triangle ABC and a point D lying in the angle 
 BAC but outside

the triangular region ABC. Points P and Q are the feet of the perpendiculars

dropped from D to
←→
AB and

←→
AC , respectively, whereas points R and S are the

feet of the perpendiculars dropped from A to
←→
CD and

←→
BD, also respectively.

Show that
←→
BC ,

←→
PR and

←→
QS concur.



Chapter 10
Basic Concepts in Solid Geometry

From an informal viewpoint, the main difference between the material of the
previous chapters (i.e., Plane Euclidean Geometry), and that of this and the
subsequent ones (i.e., Solid Euclidean Geometry) lies in the fact that we now have
one more dimension to play with. In other words, instead of working in a single
(two-dimensional) plane, we shall now have the entire (three-dimensional) space at
our disposal.

As we have done so far, we shall generally guide our presentation through the
use of the axiomatic method, thus deducing further results from previously stated
axioms. Nevertheless, for the sake of simplicity and whenever there is no danger
of confusion, in doing so we shall sometimes rely on the reader’s intuition, thus
not listing an exhaustive set of postulates from which one can build the theory
in a strictly axiomatic way. In particular, whenever we state some claim without
presenting a proof, the reader is warned to take it as an axiom. As a relevant instance,
we postulate that the entire Euclidean Geometry developed in the previous chapters
remains valid when we restrict the context to objects situated in some specific plane.

For a rigorous axiomatic presentation of the fundamentals of Solid Euclidean
Geometry, we refer the interested reader to elegant book [19].

10.1 Introduction

As it happened in our study of Plane Euclidean Geometry (cf. Sect. 1.1), Solid
Euclidean Geometry assumes the concepts of point, line and plane as primitive
ones. It also takes as primitive the concept of (euclidean) three-dimensional space
(hereafter simply referred to as space), which properly contains all planes with
which we shall work (and contains at least one plane).

Also as before, points (resp. lines) will be denoted by uppercase (resp. lowercase)
Latin letters. Moreover: given in space a point P and a line r , there are only two
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αA

B Cr

Fig. 10.1 Three non-collinear points determine a single plane

possibilities: P ∈ r or P /∈ r; two distinct points A and B in space determine a
single line r passing through both of them, which will also be denoted by writing

r =←→
AB (cf. Fig. 1.3). We shall also assume the concepts of half-line and line

segment to be known, exactly as discussed in Sect. 1.1.
A nonempty subset C of space is convex if, for all A,B ∈ C, we have AB ⊂ C.

We assume that the complement of a plane α consists of two disjoint convex sets,
which are called the half-spaces determined by α. Moreover, if points A and B

belong to distinct half-spaces with respect to α, then we assume that AB always
intersects α, and that the intersection is a single point.

As in Plane Geometry, three points lying in a single line will be called collinear.
Three non-collinear points A, B and C determine a single plane, which will be
denoted (ABC) (cf. Fig. 10.1). It is also common usage to denote planes by
lowercase Greek letters; in this sense, we can write α = (ABC) to denote plane
(ABC) of Fig. 10.1.

If a line r has two points in common with a plane α, then r will be contained in
α, and we shall denote this by writing r ⊂ α; in particular, all points of r will be
points of α. In Fig. 10.1, we have r ⊂ α, since B,C ∈ r ∩ α.

The discussion above guarantees that a line r and a point A 
∈ r determine a
single plane α, which contains r . Indeed, letting B and C be distinct points of r ,
we conclude that plane (ABC) contains both A and r; on the other hand, any plane
containing both A and r will also contain A, B and C, hence will coincide with
(ABC). Letting α be the plane determined by A and r , we denote α = (A, r).

Also as in Plane Geometry, two distinct lines r and s are said to be concurrent
if they have a common point. Lines r and s are coplanar if they are contained in a
single plane.

In the notations of the previous paragraph, suppose that r and s concur at A and
let B ∈ r \ {A}, C ∈ s \ {A}. It is immediate to check that (ABC) is the only
plane containing both r and s; in particular, we conclude that two concurrent lines
are always coplanar.

Two lines r and s are parallel if they are coplanar and do not have common
points. Nevertheless, a striking difference between Plane and Solid Geometry lies
in the fact that parallelism is not the only situation in which two lines in space have
no common points. The coming definition clears this point.

Definition 10.1 Lines r and s are said to be reverse if they are not coplanar.
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Fig. 10.2 Reverse lines

α
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Fig. 10.3 Parallel planes (left) and concurrent planes (right)

In order to see that reverse lines do exist, suppose given a line r and a point A

not belonging to r; let α = (A, r) and take a point B 
∈ α (cf. Fig. 10.2). Setting

s =←→
AB , we assert that lines r and s are reverse. Indeed, if there existed a plane β

containing r and s, we should have β = (A, r) = α. However, since B ∈ β, we
would then have B ∈ α, which is a contradiction.

Proceeding with the exposition, let us see what can be said on the relative position
of two distinct planes, as well as on a line and a plane. To this end, we start by
saying that two distinct planes α and β are parallel if α ∩ β = ∅, and concurrent
if α ∩ β 
= ∅. Moreover, in this last case we postulate that α and β have at least two
points in common.

Figure 10.3 shows two parallel planes α and β at left and two concurrent planes
γ and δ at right. Note that γ and δ intersect along a line; as we shall now see, this is
the case with every pair of concurrent planes.

Proposition 10.2 The intersection of two distinct concurrent planes is a straight-
line.

Proof Let γ and δ be two distinct concurrent planes, and A,B ∈ γ ∩ δ. According

to our previous discussions, we have
←→
AB⊂ γ, δ. On the other hand, if there existed
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Fig. 10.4 Parallel line and plane

a point C ∈ γ ∩ δ with C /∈←→
AB , then we would have γ = (C,

←→
AB) = δ, which is

a contradiction. Thus, γ ∩ δ =←→
AB . ��

In what concerns a line r and a plane α, we have seen that if r has two points in
common with α, then r ⊂ α. Hence, if r is not contained in α, then it has at most
one point in common with α, and we have two distinct cases to look at: (i) if r has
exactly one point in common with α, we shall say that r and α are concurrent; (ii)
if r has no point in common with α, we shall say that r and α are parallel, or also
that r is parallel to α.

The coming result provides a useful criterion for the parallelism of a line and a
plane.

Proposition 10.3 A line r and a plane α are parallel if and only if r 
⊂ α and there
exists s ⊂ α such that r ‖ s.

Proof Firstly, suppose that r and α are parallel (cf. Fig. 10.4). Then r ∩ α = ∅ and,
in particular, r 
⊂ α. Now, let A ∈ α and β = (A, r). Since A ∈ α ∩ β, it follows
from Proposition 10.2 that α ∩ β = s, for some line s passing through A. Hence, r

and s are coplanar and such that r ∩ s ⊂ r ∩ α = ∅, whence r and s are actually
parallel.

Conversely, suppose that r 
⊂ α and there exists s ⊂ α for which r ‖ s. Then, by
definition r and s are coplanar. Letting β be the plane containing them, the condition
r 
⊂ α guarantees that α 
= β. Hence, Proposition 10.2 gives α ∩ β = s, so that
r ∩ α ⊂ β ∩ α = s. However, since r ∩ s = ∅, we conclude that r ∩ α = ∅, and this
proves that r and α are parallel. ��

Let us now establish the usual set of sufficient conditions for the parallelism of
two distinct planes.

Proposition 10.4 Distinct planes α and β are parallel if and only if there exist
concurrent lines r, s ⊂ α, both parallel to β.

Proof Suppose first that α and β are parallel planes (cf. Fig. 10.5, left). If r, s ⊂ α

are concurrent, then r ∩ β ⊂ α ∩ β = ∅, so that r and β are parallel; analogously, s
and β are also parallel.
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For the converse we argue by contraposition, thus assuming that α and β are non
parallel distinct planes, with α ∩ β = t (cf. Fig. 10.5, right). If r ⊂ α is a line
parallel to β, then r ∩ t = ∅; however, since r, t ⊂ α, we conclude that r and t are
parallel lines. Hence, any line s of α, concurrent with r , will also concur with t , and
then with β; in particular, s 
‖ β. ��

Corollary 10.5 Given a point A outside a plane α, there exists a single plane β,
passing through A and parallel to α.

Proof Let us first prove that such a plane β, parallel to α and passing through A,
does exist. To this end (cf. Fig. 10.6), take concurrent lines r, s ⊂ α and, in the
planes (A, r) and (A, s), draw lines r ′ and s′ parallel to r and s, respectively. It
follows from Proposition 10.3 that r ′ and s′ are parallel to α. Hence, if β = (r ′, s′),
then A ∈ β and, by the previous result, β ‖ α.

Now, suppose that β and γ are distinct planes, both parallel to α and passing
through A, with β ∩ γ = r (cf. Fig. 10.7).

Take, in α, a line s not parallel to r , and let δ = (A, s). If β∩δ = u and γ ∩δ = v,
we claim that u and v are both parallel to s and pass through A. Indeed, u is parallel
to s for u and s are coplanar, u ⊂ β, s ⊂ α and β ‖ α; analogously, v ‖ s. Hence, the
fifth postulate of Euclid (cf. Postulate 2.17) gives u = v. However, since u, v 
= r

α

β

rs

α

β

r

s

t

Fig. 10.5 Usual criterion for the parallelism of two distinct planes
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A
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r
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s

Fig. 10.6 Construction of the parallel plane
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Fig. 10.7 Uniqueness of the parallel plane

(for otherwise we would have s ‖ r), we obtain β = (u, r) = (v, r) = γ , which is
an absurd. ��

We finish this section by examining the relative positions of three planes in space.

Proposition 10.6 Given distinct planes α, β and γ , one of the following situations
takes place:

(a) α, β and γ are pairwise parallel.
(b) Two of α, β and γ are parallels, and the remaining plane is concurrent with

both of these.
(c) α, β and γ pairwise intersect along the same line.
(d) α, β and γ are pairwise concurrent and the three lines of intersection are

pairwise parallel.
(e) α, β and γ are pairwise concurrent and the three lines of intersection have one

point in common.

Proof One clearly has two possibilities for α, β and γ : either at least two of them
are parallel or any two of them intersect.

If at least two of α, β and γ are parallel, say α ‖ β, we have two possibilities left
for γ :

(i) γ is parallel to β: in this case, γ is also parallel to α and we find ourselves in
the situation of item (a) (cf. Fig. 10.8, left).

(ii) γ is not parallel to β: then β ∩ γ 
= ∅ and, in order to conclude that item (b)
must take place (cf. Fig. 10.8, right), it suffices to show that α ∩ γ 
= ∅. To this
end, take A ∈ β ∩ γ ; if α ∩ γ = ∅, then β and γ would be distinct planes, both
parallel to α and passing through A, which contradicts Corollary 10.5.

Now, suppose that any two of the planes α, β and γ do intersect, with α∩β = r ,
β ∩ γ = s and α ∩ γ = t . There are three possibilities:
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Fig. 10.8 Cases (a) and (b) of the intersection of three planes

Fig. 10.9 Case (c) of the
intersection of three planes

α

β

γ

(i) If r = s, then r is common to α, β and γ , so that r = t by the uniqueness
of the line of intersection of two concurrent planes. Analogously, by assuming
r = t or s = t , we conclude that r = s = t , and the three planes intersect
along the same line. This is the situation of item (c) (cf. Fig. 10.9).

(ii) Suppose that r , s and t are pairwise distinct. If r ∩ s 
= ∅, say r ∩ s = {A}, then
A ∈ r implies A ∈ α ∩ β and A ∈ s implies A ∈ β ∩ γ . Hence, A ∈ α ∩ γ ,
so that A ∈ t and r , s and t pass through a single point. Likewise, by assuming
that r ∩ t 
= ∅ or s ∩ t 
= ∅ we obtain r ∩ s ∩ t 
= ∅, and item (e) occurs (cf.
Fig. 10.10, left).

(iii) Finally, suppose that r , s and t are pairwise distinct, with r ‖ s. Then r ‖ t

too, for otherwise (namely, if r ∩ t 
= ∅) the previous item would give us
r ∩ s ∩ t 
= ∅, which would contradict r ‖ s. Analogously, s ‖ t and we are in
the situation of item (d) (cf. Fig. 10.10, right).

��
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Fig. 10.10 Cases (d) and (e) of the intersection of three planes

Problems: Sect. 10.1

1. Prove that, in space, there exist four noncoplanar points. How many distinct
planes do these points determine?

2. Find the largest possible number of regions into which three planes divide the
space.

3. We are given in space a point A and a line r , with A 
∈ r . Prove that there exists
a unique line s, parallel to r and passing through A.

4. * Let r , s and t be lines in space, such that r ‖ s and s ‖ t . Prove that r ‖ t .
5. Let α and α′ be two distinct planes, and ABC and A′B ′C′ be triangles in α

and α′, respectively. If lines
←→
AB and

←→
A′B ′,

←→
BC and

←→
B ′C′,

←→
AC and

←→
A′C′ are

pairwise concurrent, prove that the three points of intersection are collinear.
6. Prove the following version of Thales’ theorem in space: let α and α′ be parallel

planes, let A be a point outside of α and α′, and X and Y points in α. If lines
←→
AX and

←→
AY intersect α′ respectively at points X′ and Y ′, then AX

AX′ = AY

AY ′ .

7. * Planes α and α′ are parallel, A is a point outside of α and α′, and XYZ is a

triangle in α. If the straightlines
←→
AX,

←→
AY and

←→
AZ intersect α′ respectively in

X′, Y ′ and Z′, prove that X′Y ′Z′ ∼ XYZ.1

1In consonance with the comments we made right after the proof of Desargues’ theorem 4.24, we
say that triangles XYZ and X′Y ′Z′ are in perspective from the vanishing point A.
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10.2 Orthogonality of Lines and Planes

Proceeding with the construction of the elementary concepts and results of Solid
Geometry, we now define the angle between two lines r and s, not necessarily
coplanar, in the following way: we choose an arbitrary point A in space and, through
A, draw the lines u and v, respectively parallel to r and s (cf. Fig. 10.11). Then, we
define the angle between r and s as the non obtuse angle θ formed by lines u and v.

For such a definition to be meaningful, we must show that θ does not depend on
the chosen point A. To this end, choose another point A′ in space and draw, through
A′, the lines u′ and v′ respectively parallel to r and s. We now consider two cases:

(i) The planes (u, v) and (u′, v′) coincide: since u, u′ ‖ r , Problem 4, page
338 assures that u ‖ u′, and likewise v ‖ v′. Therefore the result follows
immediately from Corollary 2.18.

(ii) The planes (u, v) and (u′, v′) are distinct: as in the previous case, we have u ‖ u′
and v ‖ v′. Now, letting α = (u, v) and α′ = (u′, v′) (cf. Fig. 10.12), it follows

from Proposition 10.4 that α ‖ α′. Choose a point O ∈
←→
AA′, with O /∈ α ∪ α′.

Then, take points X ∈ u\{A}, Y ∈ v\{A} and mark the intersections X′ and Y ′

of
−→
OX and

−→
OY , respectively, with α′, so that X′ ∈ u′ and Y ′ ∈ v′. Problem 7,

page 338 guarantees that AXY ∼ A′X′Y ′; in particular, X̂AY = X′
̂A′Y ′, as

we wished to show.

Fig. 10.11 Defining the
angle between two lines

r

s
A
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v
θ

Fig. 10.12 Well defineteness
of the angle formed by two
reverse lines
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u

v
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X
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A
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It is pretty clear from the definition above that if θ is the angle formed by lines r

and s, then θ is also the angle formed by r ′ and s, for every line r ′ ‖ r .
Suppose that two lines r and s in space form an angle of 90◦. If they are coplanar,

then, as in the planar case, we shall say that r and s are perpendiculares, or that r

is perpendicular to s (or vice-versa); on the other hand, if r and s are reverse, then
we shall say that they are orthogonal. In either case, we shall write r⊥s to refer
to such a situation, relying in the context to discern whether r and s are actually
perpendicular or orthogonal.

In what concerns lines and planes, we say that a line r and a plane α are
perpendicular if r is orthogonal to every line of α; in this case, we denote r⊥α. In
Proposition 10.8 we shall show that a line and a plane are perpendicular if and only
if the line is orthogonal to two concurrent lines of the plane. However, before we
can do that we need a preliminary result.

Lemma 10.7 Let be given a line r and a plane α.

(a) If r is orthogonal to two concurrent lines of α, then r and α are concurrent.
(b) If r intersects α in A, then r⊥α if and only if r is perpendicular to every line of

α that passes through A.

Proof

(a) Let s and t be two concurrent lines in α, such that r⊥s, t . For the sake
of contradiction, suppose that we had r ‖ α. Then, it would follow from
Proposition 10.3 the existence of a line r ′ ⊂ α such that r ‖ r ′. Therefore,
from the definition of the angle formed by two lines in space, we would have
r ′⊥s, t , which is an absurd (in a single plane, one cannot have a single line
perpendicular to two concurrent ones).

(b) It suffices to assume that r is perpendicular to every line of α passing through
A, then proving that r⊥α. To this end, let (cf. Fig. 10.13) s be a line of α not
passing through A, and s′ be the line of α passing through A and parallel to s.
By hypothesis, lines r and s′ are perpendicular; however, since s′ ‖ s, we know

α

A

r

s s

Fig. 10.13 Partial orthogonality criterion for lines and planes
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that r and s also form an angle of 90◦, so that they are orthogonal. Therefore, r
is orthogonal to every line of α, which is the same as saying that r⊥α. ��

We are finally able to prove the desired criterion.

Proposition 10.8 Given a line r and a plane α, we have r⊥α if and only if r is
orthogonal to two concurrent lines of α.

Proof If r⊥α, there is nothing to do (for in this case r is orthogonal to every line
in α, by definition). Conversely, assume that r is orthogonal to two concurrent lines
s and t of α. Item (a) of the previous lemma assures that r and α concur, say at
point A.

Drawing through A lines s′ and t ′, respectively parallel to s and t , we have r

perpendicular to s′ and t ′. Now, from item (b) of Lemma 10.7 (and referring to
Fig. 10.14), it suffices to show that r is perpendicular to every line u′ of α that
passes through A. Let us do this.

Choose points B and B ′ in r , symmetric with respect to A. Then choose,
respectively in s′ and t ′, points C and D such that AC = AD, and let E be the

intersection point of lines
←→
CD and u′. Since ĈAB = ĈAB ′ = D̂AB = D̂AB ′ =

90◦, we have

CAB ≡ CAB ′ and DAB ≡ DAB ′

by SAS. Hence, CB = CB ′ and DB = DB ′, so that CDB ≡ CDB ′ by SSS.
Therefore, B̂CD = B ′

̂CD, and thus

CEB ≡ CEB ′

α

A

r

B

B

s

C
t

D

u
E

Fig. 10.14 Orthogonality criterion for lines and planes
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Fig. 10.15 Constructing a line perpendicular to a plano through a point

by SAS again.2 Hence, EB = EB ′, so that EA is the median relative to the basis
of the isosceles triangle BB ′E. As we already know, EA will also be the altitude of
BB ′E relative to BB ′, so that u′⊥r . ��

In spite of the above, nothing we have done so far guarantees that orthogonal
lines and planes actually exist. We remedy this with the coming corollary (in this
respect, see also Problem 3, page 348).

Corollary 10.9 Given a point A and a plane α, with A /∈ α, there exists a single
line r , passing through A and perpendicular to α.

Proof Pick a line s ⊂ α and, in the plane (A, s), draw line t , passing through A and
perpendicular to s (cf. Fig. 10.15). Let B be the point of intersection of s and t , and
u be the line in α, passing through B and perpendicular to s. Finally, in the plane
(t, u), draw line r , passing through A and perpendicular to u.

We claim that r⊥α. Indeed, since s and u are concurrent and lie in α,
Proposition 10.8 assures that is suffices to prove that r⊥s, u. On the one hand,
r⊥u by construction; on the other, since s⊥t, u, we have (from Proposition 10.8)
s⊥(t, u), and hence s is orthogonal or perpendicular to every line of the plane (t, u);
in particular, s⊥r .

Concerning uniqueness, suppose that r and r ′ were distinct lines, both passing
through A and perpendicular to α. Let β = (r, r ′) and s = α ∩ β. Since s ⊂ α

and r, r ′⊥α, we would have r, r ′⊥s. However, this is a contradiction, for r and r ′
would be distinct lines in the plane β, passing through A and perpendicular to s (see
Problem 17, page 39). ��

In the notations of the previous corollary, let r be the line perpendicular to α and
passing through point A (cf. Fig. 10.16). If P is the point of intersection of r and

2Here and whenever needed in all that follows, for the sake of simplicity we will tacitly assume
the validity of the usual cases of congruence and similarity of triangles, as discussed in Sects. 2.1
and 4.2. We shall assume this even if the involved triangles do not lie in the same plane.
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Fig. 10.16 Distance from a
point to a plane
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Fig. 10.17 Distance between
two parallel planes
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α, we say that P is the foot of the perpendicular dropped from A to α, and we
define the distance from A to α as being equal to the length of the line segment
AP . Whenever convenient, we denote this by writing

AP = d(P ; α).

Also with respect to such a situation, if Q is other point of α, then the triangle
inequality applied to triangle APQ gives

d(P ; α) = AP < AQ,

so that P is the only point of α that is closest to A.
We can also define the distance between two parallel planes α and β, and we

do this in the following way: letting r and r ′ two distinct lines perpendicular to
α, Problem 2, page 348, assures that r and r ′ are also perpendicular to β (cf.
Fig. 10.17). On the other hand Problem 4, page 348, shows that r and r ′ are (coplanar
and) parallel. Hence, if A and B (resp. A′ and B ′) stand for the intersections of r

(resp. r ′) with α and β, respectively, then
←→
AB‖

←→
A′B ′ and

←→
AA′‖

←→
BB ′ (for α ‖ β).

Therefore, AA′B ′B is a rectangle, so that AB = A′B ′. Thus, we define the
distance between α and β as the common length AB = A′B ′.

A small variation of the reasoning employed in the proof of the existence part
of Corollary 10.9 will allow us to prove the coming proposition, which will be a
central tool in several points for what is to come. Such a result is usually referred to
as the theorem of three perpendiculars.
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Fig. 10.18 The theorem of three perpendiculars

Proposition 10.10 In space, we are given a plane α and lines r and s, with r⊥α at
O and s ⊂ α (cf. Fig. 10.18). If A ∈ r and B ∈ s, then

←→
AB ⊥s ⇔←→

OB ⊥s.

Proof Note first that r⊥α ⇒ r⊥s. Now, suppose that
←→
AB ⊥s. Then, since r and

←→
AB are concurrent lines, Proposition 10.8 assures that s⊥(r,

←→
AB); in particular,

s⊥OB.

Conversely, assume that
←→
OB ⊥s. Since r and

←→
OB concur, it follows once more

from Proposition 10.8 that s⊥(r,
←→
OB); in particular, s⊥ ←→

AB . ��
Continuing with our discussion, let planes α and β be given. We say that α

is perpendicular to β, and denote α⊥β, if α contains a line perpendicular to
β. Assuming that this is the case (see Fig. 10.19), let r ⊂ α be a straightline
perpendicular to β. Then, letting s be the line of intersection of α and β, we have
r⊥s. Now, write A for the point of intersection of r and s, and let t ⊂ β be the
line passing through A and perpendicular to s. Since r⊥β, we have r⊥t , and thus
t⊥(r, s) = α. However, since t ⊂ β, we are led to the conclusion that β⊥α. Thanks
to the above discussion, the notion of perpendicularity of a plane to another one is
symmetric. Therefore, if planes α and β are such that α⊥β, from now on we shall
simply say that α and β are perpendicular planes.

Given a line r and a plane α, with r 
 ⊥α, fix an arbitrary point A ∈ r and
take line s, passing through A and perpendicular to α (cf. Fig. 10.20). Since plane
β = (r, s) contains s and s⊥α, we conclude that r ⊂ β⊥α. With a little more
work (cf. Problem 7), it is possible to show that β is the only plane containing r

and perpendicular to α. Hereafter, we shall assume such a uniqueness result without
further comments.
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Fig. 10.19 Perpendicularity of planes is a symmetric relation
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Fig. 10.20 Constructing plane β, perpendicular to α and containing r
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Fig. 10.21 Orthogonal projection of a line onto a plane

In view of Corollary 10.9 and of the constructions above, we can define the angle
between a line r concurrent with a plane α. To this end, let us first assume that r 
⊥α,
and define (cf. Fig. 10.21) the orthogonal projection, or simply the projection of
r onto α as the line s = α ∩ β, where β is the single plane perpendicular to α and
containing r .
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Fig. 10.22 Minimality of the angle between a line and its orthogonal projection

We now have the following result, for whose statement we refer the reader to
Fig. 10.22.

Proposition 10.11 Let be given a line r and a plane α, concurrent at a point A and
such that r 
⊥α. If s ⊂ α is the orthogonal projection of r onto α, and t ⊂ α is any
other line passing through A, then the angle between r and s is strictly smaller that
the angle between r and t .

Proof Choosing a point B ∈ r \ {A}, and letting P stand for the foot of the

perpendicular dropped from B to α, we have s =←→
AP . Mark point Q ∈ t such

that AQ = AP .

Since
←→
BP ⊥α, we have B̂PQ = 90◦, and hence (looking at the right triangle

BPQ) BP < BQ. Now, consider triangles ABP and ABQ. Since AQ = AP

and BP < BQ, the cosine law gives

cos B̂AP = AB
2 + AP

2 − BP
2

2 AB · AP
>

AB
2 + AQ

2 − BQ
2

2 AB · AQ
= cos B̂AQ.

However, since 0◦ < B̂AP < 90◦ and 0◦ < B̂AQ < 180◦, it comes that B̂AP <

B̂AQ. ��
In view of the previous result, given a line r concurrent with a plane α, we define

the angle θ between r and α in the following way:

i. θ = 90◦, if r⊥α;
ii. θ = angle between r and its orthogonal projection onto α, if r 
⊥α.

We finish this section by studying, in the coming result, the important concept of
common perpendicular to two reverse lines.

Theorem 10.12 Given two reverse lines r and s, there exist single points A ∈ r ,

B ∈ s such that
←→
AB ⊥r, s. Moreover, if A′ ∈ r and B ′ ∈ s are any points, then

AB ≤ A′B ′, with equality holding if and only if A′ = A and B ′ = B.
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Proof Choose a point on r and draw the line s′, parallel to s and passing through
this point, thus obtaining plane α = (r, s′). Analogously, choose a point on s and
draw the line r ′, parallel to r and passing through the point, thus getting the plane
β = (r ′, s) (see Fig. 10.23). It follows from Proposition 10.4 that α ‖ β.

Let γ be the plane containing r and perpendicular to α. Then, γ contains a
line perpendicular to α; since α ‖ β, it is also the case that such a line is also
perpendicular to β, so that γ⊥β as well. Letting β ∩ γ = r ′′, the parallelism of α

and β also gives r ′′ ‖ r . However, since r and s are reverse, we conclude that r ′′
and s concur, say at a point B. Since B ∈ γ and γ⊥α, line t , passing through B

and perpendicular to α, is contained in γ . If A is the point of intersection of r and t ,

then
←→
AB= t , so that

←→
AB ⊥α, β. In particular,

←→
AB ⊥r, s.

We leave the uniqueness of the common perpendicular as an exercise for the
reader (cf. Problem 8).

Concerning the stated inequality, let A′ ∈ r and B ′ ∈ s be arbitrary points.

If B ′′ ∈ β is such that
←→
AB ′′‖

←→
A′B ′, Problem 9 guarantees that A′B ′ = AB ′′.

However, since
←→
AB ⊥

←→
BB ′′, we obtain

A′B ′ = AB ′′ ≥ AB,

with equality if and only if B ′′ = B, i.e., if and only if
←→
A′B ′‖←→

AB . In particular, if

equality holds then
←→
A′B ′ is another common perpendicular of r and s. Therefore,

α

β

t

A

B

r

r

r

γ

s

s

A

B
B

Fig. 10.23 The common perpendicular between two reverse lines
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Fig. 10.24 An important
example of common
perpendicular
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by invoking the uniqueness of the common perpendicular, we conclude that A = A′
and B = B ′. ��

As was anticipated in the proof of the theorem, we say that line
←→
AB is the

common perpendicular to the reverse lines r and s. Let us take a look at a simple
yet important

Example 10.13 Points A, B, C and D are noncoplanar and such that AB = CD,

AC = BD and AD = BC. Prove that the common perpendicular to
←→
AB and the

line segments AB and CD.

Proof Let M and N be the midpoints of AB and CD, respectively (cf. Fig. 10.24).
Since AD = BC, BD = AC, we conclude that ABD ≡ BAC by SSS (AB

is a common side). Now, DM and CM are medians of these triangles relative to
the common side AB, so that Problem 3, page gives CM = DM . Hence, triangle
CMD is isosceles of basis CD. However, since N is the midpoint of CD, it follows

from Problem 6, page 30, that
←→
MN ⊥ ←→

CD.
Arguing in a similar way with triangle ANB (which is also isosceles, due to the

congruence of triangles ACD and BDC), we likewise conclude that
←→
MN ⊥ ←→

AB .
��

Problems: Sect. 10.2

1. Find the greatest possible integer n for which there exist in space lines r1, r2,
. . . , rn, pairwise orthogonal or perpendicular.

2. * Let α and β be given planes and r be a line also given, such that r⊥α. Prove
that r⊥β if and only if α ‖ β.

3. Let be given a point A and a plane α, with A ∈ α. Prove that there exists a
unique line passing through A and perpendicular to α.

4. * If lines r and s are both perpendicular to a plane α, prove that r and s are
parallel.
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5. Let α and β be perpendicular planes and r ⊂ α be a straightline. If r⊥(α ∩ β),
prove that r⊥β.

6. Prove that, through a given point, there passes only one plane perpendicular to
a given line.

7. * Given a line r and a plane α, with r 
⊥α, prove that the plane through r and
perpendicular to α is unique.

8. * Show that the common perpendicular to two reverse lines is unique.
9. * Planes α and β are parallel, and points A,A′ ∈ α and B,B ′ ∈ β are such that

←→
AB‖

←→
A′B ′. Prove that AB = A′B ′.

10. * In space, let be given a plane α and points A and B, not belonging to α and
situated in distinct half-spaces with respect to α. Prove that A and B are at equal
distances from α if and only if the midpoint of AB lies in α.

11. Four noncoplanar points are given in space. Show that there are exactly seven
planes α such that the four points lie at equal distances from α.

12. (Romania) Let ABC be a triangle with AB = c, BC = a and AC = b. Show
that there exists at least one point D in space, such that

AD = √
bc, BD = √

ac, CD = √
ab.

13. Given reverse lines r and s, show that there are infinitely many points in space
which lie at equal distances from r and s.

10.3 Loci in Space

Now that we have at our disposal the basic notions and results concerning lines
and planes, we can extend to Space Geometry the important concept of locus.
As we shall see in what comes next, formally it is pretty much identical to
the corresponding concept in the plane, which was presented in Definition 3.1.
Nevertheless, by exploring it conveniently, we shall develop a set of quite important
and useful tools, which, in conjunction with the material of the first two sections,
will allow us to build the more difficult parts of the theory. This being said, we have
the following central

Definition 10.14 Given a property P relative to points in space, its locus is the set
L of points in space satisfying the following conditions:

(a) Every point of L has the property P .
(b) Every point in space that has the property P belongs to L.

In other words, L is the locus of property P if L is composed by exactly those
points of space that have property P , no more, no less. As we have done in Sect. 3.1,
in what follows we shall study some elementary loci in space, as well as present a
few applications of them.
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Fig. 10.25 The bisecting plane of line segment AB

The first locus we shall study is the analogous, in space, of the perpendicular
bisector of a line segment in a plane.

Proposition 10.15 Given distinct points A and B, the locus of points in space that

are at equal distances from A and B is the plane α, perpendicular to line
←→
AB and

passing through the midpoint of the line segment AB. We say that α is the bisecting
plane of segment AB.

Proof Let M be the midpoint of AB and α be defined as in the statement of the

proposition. If P 
= M is a point of α (cf. Fig. 10.25), then
←→
PM ⊥ ←→

AB , so that
PMA ≡ PMB by SAS (PM is a common side of both triangles, AM = BM and
P ̂MA = P ̂MB = 90◦). Hence, PA = PB .

Conversely, let α be as above and P 
= M be a point in space for which PA =
PB . Then, PM is the median of the isosceles triangle PAB relative to the basis

AB, so that
←→
PM ⊥ ←→

AB . If β = (
←→
AB,

←→
PM) and α ∩ β = s, then s,

←→
PM⊂ β and

s,
←→
PM ⊥r . Hence, s = ←→

PM and P ∈ α. ��
We now examine the set of points equidistant from three noncollinear given

points.

Proposition 10.16 Given noncollinear points A, B and C, the locus of points in
space that are at equal distances from A, B and C is line r , perpendicular to the
plane (ABC) and passing through the circumcenter of triangle ABC. We say that
r is the medial line of triangle ABC.

Proof Let O be the circumcenter of ABC and r be the line passing through O and
perpendicular to the plane (ABC) (cf. Fig. 10.26). If P ∈ r \ {O}, then triangles
AOP , BOP and COP are congruent by SAS, for OP is a common side of them,
AO = BO = CO and ÂOP = B ̂OP = ĈOP = 90◦. Hence, AP = BP =
CP .



10.3 Loci in Space 351

α

O

A

B

C

P

r

Fig. 10.26 The medial line of triangle ABC

Fig. 10.27 A dihedral angle
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Now, suppose that AP = BP = CP . Then, P belongs to the bisecting planes
of line segments AB, AC and BC; since the same holds for O , it follows that

line
←→
OP lies in these three planes. However, since the bisecting plane of AB is

perpendicular to
←→
AB , we conclude that

←→
OP ⊥ ←→

AB ; analogously,
←→
OP ⊥ ←→

AC

and (which is unnecessary at this point)
←→
OP ⊥ ←→

BC . Thus,
←→
OP ⊥(

←→
AB,

←→
AC) =

(ABC). ��
Notice that, as a corollary of the proof just presented, we have shown that the

medial line of a triangle ABC is the intersection of the bisecting planes of its sides.
In order to continue the discussion of the main loci of Solid Geometry, we need

the coming definition.

Definition 10.17 In space, a dihedral angle is the intersection of two half-spaces,
each of which determined by one of two concurrent planes (cf. Fig. 10.27).

If planes α and β meet at line r , it is immediate to see that they divide the space
into four dihedral angles. Letting the half-spaces determined by α (resp. by β) be
denoted by α+ and α− (resp. β+ and β−), these dihedral angles are given by the
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four intersections α± ∩ β±. For each one of them, we also say that r is the edge and
the portions of α and β contained in it are its faces.

With notations as above, choose a point A in r and draw half-lines
−→
AX⊂ α and

−→
AY⊂ β, such that the planar angle 
 XAY of plane (XAY) lies within α+ ∩ β+ (cf.
Fig. 10.27). If θ++ ∈ (0, π) is the measure of 
 XAY , we say that θ++ is the plane
angle, or opening, of the dihedral angle α+ ∩ β+. As the reader can easily check,
such a definition does not depend on the choice of the point A.

In an entirely analogous way, we define the plane angles θ+−, θ−+ and θ−− of
the dihedral angles α+ ∩ β−, α− ∩ β+ and α− ∩ β−, respectively. Also, note that
θ++ = θ−−, θ+− = θ−+ and θ++ + θ+− = θ−− + θ−+ = π .

Proposition 10.18 Given planes α and β concurrent along line r , the locus of
points in space equidistant from α and β is the union of two perpendicular planes,
containing r and bisecting the plane angles of the dihedral angles formed by α and
β (planes γ and γ ′, in Fig. 10.28). These planes are known as the bisector planes
of α and β, or of the corresponding dihedral angles.

Proof Choose a point P in r , and let s and t be straightlines contained in α and β,
respectively, both passing through P and perpendicular to r (cf. Fig. 10.28). In the
plane (s, t), if u and u′ are the bisectors of the angles formed by s and t , we know
that u and u′ are perpendicular, so that planes γ = (r, u) and γ ′ = (r, u′) are also
perpendicular. Moreover, if u intersects α+ ∩β+, then it is immediate that γ bisects
the plane angles of the dihedral angles α+ ∩ β+ and α− ∩ β−; from this, it follows
that γ ′ bisects the plane angles of the dihedral angles α+ ∩ β− and α− ∩ β+.

Now, let C ∈ γ \r , let P be the foot of the perpendicular dropped from C to r , and
let s and t be the lines passing through P and perpendicular to α and β, respectively.
If A and B stand for the feet of the perpendiculars dropped from C to the planes α

and β, respectively, we have A ∈ s and B ∈ t . However, since ĈPA = ĈPB and
ĈAP = ĈBP = 90◦, it is pretty clear that CPA ≡ CPB by AAS. Therefore,

Fig. 10.28 The bisector
planes γ and γ ′, of α and β
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Fig. 10.29 The sphere of
center O and radius R
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CA = CB , and C is at equal distances from α and β. Analogously, every point of
γ ′ equidists from α and β.

Conversely, if C is equidistant from α and β, it is not difficult to prove (cf.
Problem 2) that C lies in one of the planes γ or γ ′ defined as above. ��

We now present one of the most important definitions of all Solid Geometry.

Definition 10.19 We are given a point O in space and a positive real number R.
The sphere � of center O and radius R, denoted �(O;R), is the locus of points
in space which are at distance R from O (cf. Fig. 10.29).

In the notations of the previous definition, given points A,B ∈ �, we say that
AB is a chord of �. Also as in Plane Geometry, a chord AB is a diameter of �

if O ∈ AB; in this case, we also say that A and B are antipodal points of �.
In Fig. 10.29, points N and S are antipodal. In general, for every chord AB of �,
we have AB ≤ 2R, with equality holding if and only if A and B are antipodal.
Indeed, if O /∈ AB, then the triangle inequality applied to triangle AOB, furnishes
AB < AO + BO = 2R.

The coming example provides another characterization of a sphere as a locus.

Example 10.20 Given in space distinct points A and B, show that the locus of points
P such that ÂPB = 90◦ is the sphere of diameter AB, except for the points A and
B themselves.

Proof Let AB = 2R and P be a point in space with P /∈←→
AB . Letting O be the

midpoint of AB, the line segment PO is the median relative to the side AB of
triangle PAB. Hence, Corollary 2.44 and its converse give

ÂPB = 90◦ ⇔ PO = 1

2
AB = R ⇔ P ∈ �(O;R).

Thus, the desired locus is �(O;R) \ {A,B}. ��
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The previous example explains the shape of �, as depicted in Fig. 10.29,
according with the following argument: in the notations of the example, and fixed a

plane α containing
←→
AB , the locus of the points of α that look at AB under an angle

of 90◦ is, as we already know, the union of the two arcs capable of 90◦ on AB. In
turn, since the angle is 90◦, such a union coincides with the circle of diameter AB

in α, except for the points A and B. Hence, by turning α around
←→
AB , we obtain

�(O;R) as the union of all the circles in space with diameter AB, except for the
points A and B. Due to this construction, we also say that the sphere of diameter
AB is the surface of revolution generated by the revolution (i.e., rotation) of the

semicircle of diameter AB around the straightline
←→
AB . We shall have more to say

on more general surfaces of revolution later in these notes.
Our next result clears the nature of the plane sections of a sphere, i.e., of the

possible intersections of a sphere with a generic plane, not necessarily passing
through the center of the sphere.

Proposition 10.21 Let be given, in space, a plane α and a sphere �, of center O

and radius R. Let also d be the distance from O to α.

(a) If d > R, then α does not intersect �.
(b) If d = R, then α intersects � at a single point.
(c) If d < R, then α intersects � along a circle � of radius

√
R2 − d2, centered at

the foot of the perpendicular dropped from O to α.

Proof Let O ′ be the foot of the perpendicular dropped from O to α, so that
OO ′ = d .

(a) and (b) Suppose that d ≥ R. If P ∈ α \ {O ′}, then P ̂O ′O = 90◦ and hence
PO > OO ′ = d ≥ R; therefore, P /∈ �. However, since OO ′ = d ≥ R,
we have O ′ ∈ � if and only if d = R. Hence, α intersects � at O ′ if d = R,
whereas α does not intersect � if d > R.

(c) If P ∈ � ∩ α, then P 
= O ′ and hence P ̂O ′O = 90◦. Therefore, by applying
Pythagoras’ theorem to triangle POO ′, we obtain

O ′P 2 = OP
2 − O ′O2 = R2 − d2,

so that O ′P = √
R2 − d2. Thus, P lies in the circle � of the statement.

Conversely, if P is a point of �, then O ′P = √
R2 − d2 and we can retrace the

steps of the reasoning just presented to conclude that OP = R, i.e., that P ∈ �.
��

In the notations of the previous proposition, suppose that d = R and let T be
the common point of α and �. Then, we shall say that α is tangent to � at T , or
also that α and � are tangent at T ; also in this case, T is the point of tangency
of α and �. Through a point T of a sphere � of center O there passes a unique

plane α tangent to �. Indeed, α must be perpendicular to
←→
OT and pass through T

(Fig. 10.30).
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Fig. 10.30 A plane section
of a sphere
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Yet in the notations of Proposition 10.21, assume that α intersects � along a
circle � of center O ′. Then, we have just seen that � has radius r = √

R2 − d2,
with d being equal to the distance from the center O of � to α. It follows that
r ≤ R, with equality holding if and only if d = 0, i.e., if and only if O = O ′. If
this is the case, we shall say that � is a great circle or an equator of �, and that
the endpoints of the diameter of � perpendicular to the plane of � are (in some
arbitrarily chosen order) the North and South poles of � with respect to �.

If � is a sphere of center O and A and B are non antipodal points of �, then
there is exactly one equator � of � passing through A and B. Indeed, letting α be the
plane of such an equator, the very definition of equator assures that O ∈ α. However,
since A and B are non antipodal, it follows that A, O and B are noncollinear. Hence,
α = (AOB) and � = (AOB) ∩�.

We can define the notion of tangency between a line r and a sphere �(O;R) by
imposing that r intersects � at a single point T , which will then be called the point
of tangency of r and �. This being the case, if α = (O, r) and �(O;R) is the
equator of � contained in α, we have r ⊂ α and r intersects � only at T , so that, in

plane α, line r is tangent to the circle � at T . Hence,
←→
OT ⊥r , which implies that

r is contained in the plane tangent to � at T . Conversely, it is immediate to check
that such a tangent plane is the union of the lines tangent to � at T .

Given in space a sphere �(O;R) and a point P such that PO > R, we shall
show in the coming example that it is possible to draw, through P , infinitely many
lines tangent to �. To this end, given a circle � of center O , we define its medial
line as the straightline passing through O and perpendicular to the plane of � (for a
geometric interpretation of the medial line of a circle, see Problem 6).

Example 10.22 We are given a sphere �(O;R) and a point P with PO = d > R

(cf. Fig. 10.31).

(a) For T ∈ �, we have
←→
PT tangent to � if and only if PT = √

d2 − R2.

(b) The set of points T ∈ � for which
←→
PT is tangent to � is a circle � of radius

R
√

d2−R2

d
, contained in � and such that

←→
PO is its medial line.
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Fig. 10.31 Tangents to �
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Proof

(a) Since
←→
PT ⊥ ←→

OT , triangle POT is right at T . It thus suffices to apply
Pythagoras’ theorem to triangle POT .

(b) From item (a), the set of points T possessing the stated property coincides
with the intersection of the spheres � and �′(P ;√d2 − R2). Hence, Problem 5

assures that it is a circle � having
←→
PO as its medial. Finally, if O ′ is the point

of intersection of
←→
PO with the plane of � (cf. Fig. 10.31), then O ′ is the center

of � and O ′T⊥OP ; since triangle OT P is right at T , the metric relations in
right triangles give

O ′T = OT · PT

OP
= R

√
d2 − R2

d
.

��
In the notations of the previous example, letting T ∈ � be such that

←→
PT is

tangent to �, we shall say that PT is the length of the tangent drawn to � through P.
Item (a) of the example shows that such a length does not depend on the particularly
chosen point of tangency T .

Another very important locus is the cylinder of revolution of a certain radius and
with a given axis. In order to define it, given in space a line r and a point A /∈ r , we
define the distance from A to r as the distance from A to r in the plane (A, r).

Definition 10.23 Given a positive real number R and a line e, the cylinder (of
revolution) of axis e and radius R, denoted C(e;R), is the set of points P in space
lying at distance R from e (cf. Fig. 10.32).

From now on, whenever there is no danger of confusion, we shall refer to a
cylinder of revolution C simply as a cylinder.

Given a point A in the cylinder C(e;R), let α be the plane passing through A

and perpendicular to e. If O is the intersection point of α with the axis e, we have
←→
AO ⊥e and

←→
AO⊂ (A, e), so that AO = R; hence, A lies in the circle of center

O and radius R of the plane α. Conversely, one immediately sees that every point
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Fig. 10.32 The cylinder of revolution of axis e and radius R

of such a circle lies in C, and thanks to this fact we shall sometimes refer to C as a
right circular cylinder.

If β = (A, e) and g is the line contained in β, parallel to e and passing through
A, every point of g is at distance R from e, so that g ⊂ C(e;R). Line g is said to be
a generatrix of the cylinder C.

In view of the previous paragraph, we can easily justify the shape of C(e;R),
as shown in Fig. 10.32: fixed a plane α containing e, the locus of the points of α

which lie at distance R from e is the union of two lines g and g′ of α, both parallel
to e. Hence, if we now turn α around e, we get C(e;R) as the union of such lines
g (line g′ is obtained from g, upon rotating α of 180◦ from its original position).
Thus, C(e;R) is another example of a surface of revolution,3 this time generated by
revolving a line g around an axis e, provided g ‖ e.

The discussion above has also shown that the plane sections of a cylinder by a
plane perpendicular to (resp. containing its) axis is a circle (resp. the union of two
parallel lines). More generally, if the plane is parallel to the axis of the cylinder, it
is not difficult to prove that the corresponding plane section in the cylinder is the
empty set, a generatrix or the union of two parallel generatrices (cf. Problem 14). In
the next section, we shall look at the sections by planes which are neither parallel
nor perpendicular to the axis of the cylinder.

We now define the last locus we shall study in this section.

3For a general definition, see the beginning of Sect. 12.1.
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Fig. 10.33 The cone of
revolution of axis e, vertex V

and opening 2θ
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Definition 10.24 Given an acute angle θ , a straightline e and a point V ∈ e, the
cone of revolution C(e;V ; θ), of axis e, vertex V and opening 2θ is the set of

points A in space for which line
←→
AV forms an angle θ with e (cf. Fig. 10.33).

Hereafter, whenever there is no danger of confusion we shall refer to a cone of
revolution C simply as a cone.

Let A be a point in a cone C(e;V ; θ), and α be the plane passing through A and

perpendicular to e. If α intersects e at O , then
←→
AO ⊥e and

←→
AO⊂ (A, e). Since

V ∈ e, we have AO = V O · tan θ ; hence, A lies in the circle of center O and
radius V O · tan θ of the plane α. Conversely, it is immediate to check that every
point of such a circle lies in C, and for this reason we shall also sometimes refer to
a cone as a right circular cone.

In the notations above, letting β = (A, e) and g =←→
AV , line g forms an angle θ

with e, such that g ⊂ C; it is called a generatrix of cone C.
A plane passing through V and perpendicular to e divides C \ {V } in two pieces,

which are usually referred to as the leaves of the cone. It is pretty clear that each
such leaf is the union of half-lines of the generatrices of the cone, all of origin V .

With the discussion above at our disposal, we can now easily justify Fig. 10.33:

fixed a plane α containing e, the locus of the points P of α for which
←→
PV forms

an angle θ with e is the union of two lines g and g′ of α, both passing through
V . Therefore, by turning α around e we obtain the cone C(e;V ; θ) as the union of
such lines g (g′ is got from g, when α turns 180◦ around e). Thus, C(e;V ; θ) is
yet another example of a surface of revolution, this time the one generated by the
revolution of a line g around an axis e, with g not parallel to e and g ∩ e = {V }.

We saw above that the plane section of a cone of revolution by a plane
perpendicular to its axis and not passing through its vertex (resp. containing its
vertex and not perpendicular to its axis) is a circle (resp. the union of two lines
concurrent at the vertex). The coming section will deal with the other plane sections
of a right circular cone, showing that they can be either ellipses, hyperbolas or
parabolas.
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Problems: Sect. 10.3

1. We are given a plane α and a positive real number d . Prove that the locus of
points in space which are at a distance d from α is the union of two planes
parallel to α.

2. * Complete the proof of Proposition 10.18, showing that if a point C lies at
equal distances from planes α and β, then (in the notations used there) C

belongs to one of the planes γ or γ ′.
3. * We consider in space a point V and three half-lines

−→
V X,

−→
V Y and

−→
V Z, not

contained in a single plane. We also let α = (V XY) and α+ the half-space

determined by α and containing
−→
V Z, β = (V XZ) and β+ the half-space

determined by β and containing
−→
V Y , γ = (V YZ) and γ+ the half-space

determined by γ and containing
−→
V Z. The trihedral angle of vertex V and

faces 
 XV Y , 
 XV Z and 
 YV Z is the region in space given by α+ ∩ β+ ∩ γ+
(cf. Fig. 10.34). Prove that the set of points in space which lie at equal distances
from the faces of a trihedral angle is a half-line of origin V .

4. We are given two concurrent planes α and β, forming an angle θ with each
other, where 0 < θ < π

2 . Given a convex n-gon P in α, let Q be its orthogonal
projection onto β. Show that:

(a) Q is also a convex n-gon.
(b) A(Q) = A(P) cos θ .

5. * Let �1(O1;R1) and �2(O2;R2) be two given spheres. If |R1 − R2| <

O1O2 < R1 + R2, prove that �1 ∩ �2 is a circle having
←→

O1O2 as its medial
line.

6. * Given a circle � of center O , prove that the locus of points in space equidistant
from all the points of � is its medial line.

7. * In space, we are given a circle � and a point A outside the plane of �. Prove
that there exists a single sphere containing � and passing through A.

Fig. 10.34 The trihedral
angle of faces 
 XV Y , 
 XV Z

and 
 YV Z

V

X

Y

Z



360 10 Basic Concepts in Solid Geometry

8. (Brazil) A1A2 . . . An is an n-gon inscribed in a circle �, and A is a point outside
the plane of �. For each 1 ≤ i ≤ n draw the plane αi , passing through Ai and

perpendicular to
←→
AAi . Prove that α1, . . . , αn all pass through a single point.

9. * Two circles in space pass through two given points but are not contained in a
single plane. Prove that there exists a sphere containing both of them.

10. Two circles have a single point A in common and do not lie in a single plane.
If the lines tangents to the circles through A coincide,4 prove that there exists a
sphere containing both of them.

11. Lines
←→
AB ,

←→
CD,

←→
EF are noncoplanar and pass through a point P , with P ∈

AB,CD,EF and P 
= A,B,C,D,E,F . If AP · BP = CP · DP = EP ·
FP , prove that there exists a sphere passing through A, B, C, D, E, F .

12. Let A and B be points lying in a single half-space of those determined by a
plane α. Find the locus of the points of tangency, with α, of the spheres tangent
to α and passing through A and B.

13. (Putnam) We are given three pairwise perpendicular lines r , s and t , all passing
through a point O , and another point C ∈ t \ {O}. Find the locus of points P in

space, for which there exist points A ∈ r and B ∈ s such that
←→
AP ,

←→
BP ,

←→
CP

are pairwise perpendicular.
14. * We are given a cylinder C of axis e, and a plane α parallel to e. If the

intersection of α with C is not empty, prove that it is either a generatrix or
the union of two parallel generatrices of the cylinder.

15. * Let C be a cone of revolution with axis e and vertex V , and α be a plane that
intersects C. Prove the following assertions:

(a) If α is parallel to two distinct generatrices of C, then α intersects both leaves
of C.

(b) If α intersect a single leaf of C and is parallel to a generatrix g of C, then
α⊥(g, e).

The last three problems elaborate the concept of inversion in euclidean three-
dimensional space E .

16. Let O be a point of E and k be a positive real number. The inversion of center
O and ratio k is the mapping I : E \ {O} → E \ {O} that sends A 
= O to

A′ ∈ −→
OA \{O} such that OA · OA′ = k2. In this case, A′ is said to be the

inverse of A (with respect to I ). Do the following items:

(a) I ◦ I : E \ {O} → E \ {O} is the identity. In particular I is a bijection from
E \ {O} to itself, and if F1,F2 ⊂ E \ {O} are such that I (F1) ⊂ F2 and
I (F2) ⊂ F1, then I (F1) = F2 and I (F2) = F1.

(b) The sphere of center O and radius k remains fixed upon I ; for this reason,
it is called the inversion sphere (with respect to I ).

4In such a situation, we say that the two circles are tangent to each other.
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(c) The inverse of a plane α passing through O is α itself, and the restriction
of I to α \ {O} is the inversion (in the sense of Sect. 9.1) of center O and
ratio k.

(d) The inverse of a sphere � of center X and passing through O is the plane

σ , perpendicular to
←→
OX and passing through X′.

(e) The inverse of a plane σ not passing through O is a sphere � of center X′

and passing through O , such that
←→
OX′ ⊥σ and

−→
OX′ meets σ at the point

X.
(f) The inverse of a sphere � of center X and not passing through O is a sphere

�′ of center Y , such that O , X and Y are collinear.
(g) If two spheres, two planes or a sphere and a plane are tangent at a point

T 
= O , prove that their inverses are tangent at T ′. If T = O , prove that
their inverses are parallel planes.

17. Let � be a sphere of center O and radius 1, let � be an equator of � and α be
the plane of �. Let also N and S respectively denote the North and South poles
of � with respect to �. If I stands for the inversion of center S and ratio

√
2 in

space, prove that:

(a) I applies � \ {S} into α, and vice-versa.

(b) Given A ∈ α \ {O} with inverse A′, if A′′ is the intersection of
−→
NA′ with

α, then A′′ is the inverse of A′ with respect to the inversion of center O and
ratio 1 in α.

(c) If �1 is a circle in α, show that I (�1) is a circle in �.

18. �1 and �2 are spheres of radii 1 and 2, respectively, and are internally tangent
at T . Three pairwise tangent identical spheres are also externally tangent to �1
and internally tangent to �2. Compute their radius.

10.4 A Third Look on Conics

This section combines the concepts and results of Solid Geometry we studied so far
with the material of Chap. 9 to study yet other properties of conics. In particular, we
extend the results of Sects. 9.3 and 9.4 to conics. For more on conics than we will
see here, we refer the reader to [1].

As a prelude to the more general result of Theorem 10.26, we start this section
by showing that ellipses appear as the plane sections of a cylinder of revolution by
planes which are neither parallel nor perpendicular to its axis.

Theorem 10.25 Let C(e;R) be the cylinder of revolution of axis e and radius R.
If plane α is neither parallel nor perpendicular to e, then the corresponding plane
section of C (cf. Fig. 10.35) is an ellipse.
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Fig. 10.35 Ellipses as plane sections of a cylinder of revolution

Proof We shall assume without proof the heuristically plausible fact that α ∩ C is
a simple closed plane curve, i.e., a curve contained in a plane, which can be drawn
continuously (i.e., without taking the pencil out of the paper), is closed (i.e., the
drawing ends precisely at the point it has begun) and has no self-intersections.

For j = 1, 2, let �j(Oj ;R) denote a sphere centered at e and tangent to α at
Fj (cf. Fig. 10.35). Since α is not perpendicular to e, we have F1 
= F2. We claim
that F1 and F2 are the foci and O1O2 is the length of the major axis of the ellipse
of intersection. To this end, let P be a common point of α and C, and g be the
generatrix of C passing through P . For j = 1, 2, it is immediate to see that �j

intersects C along an equator �j with medial line e, and that g intersects �j at a
single point Qj . Hence, g is tangent to �j at Qj , and item (a) of Example 10.22
assures that PFj = PQj . Hence,

PF1 + PF2 = PQ1 + PQ2 = Q1Q2 = O1O2,

and Theorem 6.22 shows that the plane section is an ellipse. ��
The construction executed in the proof of the theorem above is due to the Belgian

mathematician of the nineteenth century Germinal Pierre Dandelin. For this reason,
�1 and �2 are usually referred to as the spheres of Dandelin of C, relative to the
plane α.

Now, we shall see that ellipses, hyperbolas and parabolas appear as plane sections
of a cone of revolution. Actually, it is due to this fact that we refer to them as conics,
or as conic sections.
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Theorem 10.26 If C is a cone of revolution and α is a plane not passing through
its vertex, then the corresponding plane section of C by α is:

(a) An ellipse, provided α intersects a single leaf of C and is not parallel to a
generatrix.

(b) A hyperbola, in case α intersects both leaves of C.
(c) A parabola, if α intersects only one leaf of C but is parallel to a generatrix.

Proof Let us do the proof of items (b) and (c), leaving the proof of item (a) as an
exercise for the reader (cf. Problem 1). For both items, we let V be the vertex and e

be the axis of C.
For item (b), as in the proof of Theorem 10.25, we assume without proof the

heuristically plausible fact that H = C ∩ α consists of two simple, open plane
curve,5 each one contained in a leaf of C (see Fig. 10.36).

Fig. 10.36 Hyperbolas as
plane sections of a cone of
revolution

V
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Σ1

O2

Σ2

F1

F2

Γ1

Γ2

α

A1

A2

P

Q2

Q1

5Here, open stands as the antonym of closed, in the sense of the proof of Theorem 10.25.
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Let �1(O1;R1), �2(O2, R2) denote the spheres centered at points O1,O2 ∈ e,
tangent to α at F1, F2, respectively, and to the leaves of C (this means that �1, �2
are tangent to the generatrices of the cone—cf. Fig. 10.36). Denote by A1, A2 the

points at which
←→
F1F2 intersect C, with Ai lying in the leaf of C to which �i is

tangent. We claim that H is the hyperbola of foci F1, F2 and major axis A1A2.
For what is left to do, let �i = �i ∩ C, so that �1, �2 are circles with medial

line e. Take P ∈ H and let Q1, Q2 be the points of contact of
←→
PV with �1, �2,

respectively. Then, Q1 ∈ �1, Q2 ∈ �2 and, since both PFi , PQi are tangent to �i ,
item (a) of Example 10.22 gives PFi = PQi for i = 1, 2. Thus,

PF2 − PF1 = PQ2 − PQ1 = Q1Q2. (10.1)

However, it is pretty clear that Q1Q2 depends only on �1 and �2 (and hence on
C and α), thus not on the particular position of P along H. Therefore, H is indeed a
hyperbola.

In what concerns (c), also as in the proof of Theorem 10.25, we assume without
proof that P = α ∩ C is a simple, open plane curve (see Fig. 10.37).

Let g denote the generatrix of C with respect to which α is parallel, and �(O;R)

the sphere centered at a point of e, tangent to α at F and to the leaf of the cone that α

intersects. If � touches C along the circle �2, β2 is the plane of �2 and d = α ∩ β2,
we claim that P is the parabola of focus F and directrix d .

In order to prove this, take a point P1 in α ∩ C and mark the point P2 in which
←→
V P1 intersects �, so that P2 ∈ �2. Draw the plane β1, parallel to β2 and passing
through P1, and let �1 denote the circle of intersection of β1 and C; mark the
intersection points Q1 and Q2 of β1 and β2 with g, respectively.

Since P1P2 and P1F are tangents to � drawn through P1, we have P1F = P1P2.
On the other hand, it is quite clear that

P1P2 = P1V − P2V = Q1V − Q2V = Q1Q2.

Now, since α intersects a single leaf of C and is parallel to g, item (b) of Problem 15,
page 360, shows that α⊥(g, e). However, since we also have β2⊥(g, e), it follows
that d⊥(g, e). Finally, draw through P1 the parallel to g contained in α (such is
possible, for α ‖ g), and let R denote its point of intersection with d . Since d⊥g, we

have
←→
P1R ⊥d . Moreover, since

←→
Q1Q2= g ‖ ←→

P1R and P1,Q1 ∈ β1, R,Q2 ∈ β2, it
follows from Problem 9, page 349 that Q1Q2 = P1R. Thus, we get at last

P1F = P1P2 = Q1Q2 = P1R = d(P1; d),

as wished. ��



10.4 A Third Look on Conics 365

V

Σ
O

Γ2

Γ1

Q1

Q2

g g

d

F

P1

T

P2
R

α

β1

β2

Fig. 10.37 Parabolas as plane sections of a cone of revolution

As in the case of Theorem 10.25, the construction performed in the proof of the
previous result is due to Dandelin. For this reason, �1, �2 in item (b) and � in item
(c) are known as the spheres of Dandelin of C relative to α.

At this point, a natural question poses itself: is it true that all ellipses, hyperbolas
and parabolas, as defined in Sect. 6.3, appear as plane sections of a cone of
revolution? The answer is yes, as assured by the next result.

Theorem 10.27 Every conic can be obtained as the plane section of a cone of
revolution by a suitable plane.

Proof We will prove the theorem again for hyperbolas and parabolas, leaving the
case of ellipses to the reader (see Problem 2).

Let H be a hyperbola of focal distance 2c and major axis 2a. In the notations of
the proof of item (b) of Theorem 10.26 and Fig. 10.36, note that C falls completely
determined by the choices of R1, R2 and O1O2. Moreover, once we have chosen
these data, we still have infinitely many possibilities for α, but all of them give equal
hyperbolas C ∩ α. Thus, we only need to show that we are able to choose the radii
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R1, R2 of �1, �2 and the distance � = ←→
O1O2 between their centers so that, if α is a

plane tangent to �1, �2, then the hyperbola C ∩ α has focal distance 2c and major
axis 2a.

In (10.1), we have shown that A1A2 = Q1Q2. Since O1 ̂Q1Q2 = O2 ̂Q2Q1 =
90◦, we get from Pythagoras’ theorem (applied to triangle O1O2T of the figure
below, left) that

A1A2 = Q1Q2 =
√

O1O2
2 − (R1 + R2)2.

V

O1

O2

Q1

Q2

R1

R2

T

O1

O2

F1

F2

R1

R2

S

Likewise (see the figure above, right), since
←→

O1F1,
←→

O2F2 ⊥α, the quadrilateral
O1F1F2O2 is a right trapezoid. Then, Pythagoras’ theorem (applied to triangle
O1O2S of the figure above, right) gives

F1F2 =
√

O1O2
2 − (R2 − R1)2.

Therefore, we only need to show that we can choose R1, R2, O1O2 such that
O1O2 > R1 + R2 and

√

O1O2
2 − (R1 + R2)2 = 2a,

√

O1O2
2 − (R2 − R1)2 = 2c.

This is immediate: choose any � > 2a, 2c, set O1O2 = � and note that the equalities
above are equivalent to

R1 + R2 =
√

�2 − 4a2, R2 − R1 =
√

�2 − 4c2;

since c > a, the solutions of this linear system of equations are positive.
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Now, let P be a parabola of parameter p. In the notations of the proof of item
(c) of Theorem 10.26 and Fig. 10.37, note that C falls completely determined by
the choices of R and V O . Moreover, once we have chosen these data, we still have
infinitely many possibilities for α, but all of them give equal parabolas C ∩ α. Thus,
we only need to show that we are able to choose the radius R of � and the distance

� =←→
V O such that � > R and, if α is a plane tangent to � and parallel to a generatrix

of C, then the parabola C ∩ α has parameter p.

To what is left to do, note that
←→
V O ⊥ ←→

Q2T and
←→
V Q2 ⊥ ←→

Q2F implies Q2̂V O =
F ̂Q2T . Since V ̂Q2O = Q2̂FT = 90◦, the right triangles V Q2O and Q2FT are
similar by the AA case of similarity.

V

Σ
O

TQ2

F

p

R
R

Hence, V2Q

Q2O
= Q2F

FT
or, which is the same,

√
�2−R2

R
= 2R

p
. Solving for �, we find

� =
√

4R4

p2 + R2.

Thus, it suffices to choose any R > 0, then let � be given by the last expression
above. ��

Apart from the results above, in order to be able to extend the results of Sects. 9.3
and 9.4 to conics we need to digress a bit on the properties of a central projection
from a plane onto another. We now turn to this concept.

Given in space distinct planes α and β and a point O outside of α ∪ β, there are
two possibilities: α ‖ β or α�‖ β.
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In the first case (see the Fig. 10.38), for each point A ∈ α the line
←→
OA meets β

at a point B, and the map π : α → β that sends A to B is a bijection. Such a map is
called the central projection of center O , from α onto β.

In the second case, Fig. 10.39 shows planes α and β, as well as planes α′, β ′,
respectively parallel to α, β and passing through O . Since α�‖ β, we also have
α′
�‖ β, α�‖ β ′, and we let rα = α ∩ β ′, rβ = β ∩ α′.
If A ∈ rα , then

←→
OA⊂ β ′, hence

←→
OA ∩β = ∅. If A ∈ α \ rα then

←→
OA
⊂ β ′,

so that
←→
OA intersects β at a single point B. Thus, we let π : α \ rα → β be the

map that sends A to B. Note, however, that the image of π is not all of β. Indeed, if

B ∈ rβ then
←→
OB‖ α, thus there exists no A ∈ α for which π(A) = B. Nevertheless,

Fig. 10.38 Central
projection π : α → β, for
α ‖ β

β

α

O

A

B

β

β

α α

rα

rβ

O

A

B

Fig. 10.39 Central projection π : α → β, for α�‖ β
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if B ∈ β \ rβ , then
←→
OB intersects α at a single point A, and π(A) = B. Therefore,

π : α \ rα → β \ rβ is a bijective map. In this case too, this map is the central
projection of center O , from α \ rα onto β \ rβ .

In the above notations, let π : α \ rα → β \ rβ be the central projection of center
O . If F ⊂ α intersects rα at a finite number of points, then π maps F \rα bijectively
onto π(F \ rα).

We are finally in position to state and prove the following consequence of
Theorem 10.27.

Corollary 10.28 Given an ellipse (resp. hyperbola, parabola) in a plane α, there
exists another plane β and a point O /∈ α ∪ β such that the central projection
π : α → β maps the ellipse (resp. hyperbola, parabola) onto a circle (resp. a circle
minus two points, a circle minus one point).

Proof We stick to the notations of the proof of Theorem 10.27, as well as of the
discussion that precedes the statement of the corollary. Once more, we only work
the proof for hyperbolas and parabolas; the proof for ellipses parallels these and is
much easier.

For the case of a hyperbola H, the proof of Theorem 10.27 shows that there
exists a cone of revolution C and a plane α such that H = C ∩ α. In the notations
of Fig. 10.36, let V be the vertex of C, let � = �1, β be the plane of � and π :
α \ rα → β \ rβ be the central projection of center V , from α \ rα onto β \ rβ .

Since β ′ is the plane parallel to β through V and rα = α ∩ β ′, it is clear that rα
does not intersect H. On the other hand, since α′ is the plane parallel to α through
V and rβ = α′ ∩ β, it is clear that rβ intersects � at two points X, Y .

Now, for each P ∈ H, let
←→
V P ∩β = {Q}. Since

←→
V P is also a generatrix of

the cone, we have Q ∈ β ∩ C = �, and hence Q ∈ � \ {X,Y }. Conversely, if
Q ∈ � \ {X,Y }, then working the previous argument backwards we prove that there

exists a point P ∈ H such that
←→
V P ∩β = {Q}. Therefore, π(H) = � \ {X,Y }.

The proof in the case of a parabola P is pretty much the same: the proof of
Theorem 10.27 shows that there exists a cone of revolution C and a plane α such
that P = C ∩ α. In the notations of Fig. 10.37, let V be the vertex of C, β = β2,
� = �2 and π : α \ rα → β \ rβ be the central projection of center V , from α \ rα
onto β \ rβ .

Since β ′ is the plane parallel to β through V and rα = α ∩ β ′, it is clear that rα
does not intersect P . On the other hand, since α′ is the plane parallel to α through
V and rβ = α′ ∩ β, it is clear that rβ intersects � at Q2.

Now, for each P ∈ P , let
←→
V P ∩β = {Q}. Since

←→
V P is also a generatrix of

the cone, we have Q ∈ β ∩ C = �, and hence Q ∈ � \ {Q2}. Conversely, if
Q ∈ � \ {Q2}, then working the previous argument backwards we prove that there

exists a point P ∈ P such that
←→
V P ∩β = {Q}. Therefore, π(P) = � \ {Q2}. ��

We now address the other properties of central projections that, together with the
previous corollary, make these maps so important for us.
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In the sequel, we only consider central projections between two nonparallel
planes, for the case of parallel planes is much easier, generally reducing to similarity
arguments. In the statement and proof of the coming result, as well as in the
subsequent comments we make, we shall systematically denote the image of a point
A (resp. a figure F ) with respect to a given central projection by writing A′ (resp.
F ′).

Proposition 10.29 Let π : α \rα → β \rβ be the central projection of center O .

(a) If s is a line of α distinct from rα , then s′ is a line of β.
(b) If lines s, t ⊂ α are distinct from rα and from one another, and concur at a point

A, then lines s′, t ′ are either parallel or concur at A′, according to whether
A ∈ rα or not.

(c) If A,B,C,D ∈ α \ rα , then (A′, B ′;C′,D′) = (A,B;C,D).

Proof For item (a), let γ denote the plane γ = (O, s). If γ ‖ β then, since γ passes
through O , we would have rα ⊂ γ . However, since α�‖ β, we would also have
α�‖ γ , so that s ⊂ α ∩ γ = rα . This contradicts our choice of s. Now, since γ�‖ β,
we have s′ = π(s) = γ ∩ β, which is a line of β.

For item (b), if A /∈ rα we obviously have A′ = π(A) ∈ π(s) = s′, and likewise
A′ ∈ t ′. Since s 
= t , we also have s′ 
= t ′, so that s′ ∩ t ′ = {A′}. On the other hand,
if A ∈ rα , then s′, t ′ continue to be distinct lines of β; however, in this case they
cannot have a common point, for otherwise such a point would be the image of A

under π (and rα , whence A, has no image under π). Thus, s′, t ′ are coplanar lines
without a common point, whence parallel.

Item (c) follows from Theorem 9.28, together with the fact that quadruples
(A,B,C,D) and (A′, B ′, C′,D′) are in perspective from O . ��

It is worth referring to the results of items (a) and (b) of the proposition above
by saying that central projections preserve incidence, i.e., collinearity of points and
concurrence of lines (that concur at a point not lying in rα). On the other hand, item
(c) can be stated in words by saying that central projections preserve cross ratios.

We now collect some important consequences of items (a) and (b) of the
proposition. We urge the reader to draw (at least mentally) the corresponding
pictures, in order to make sure he/she properly understands what is being said.

Corollary 10.30 Let π : α \ rα → β \ rβ be the central projection of center O .

(a) If the quadruples (A1, B1, C1,D1), (A2, B2, C2,D2) of points of α \ rα are in

perspective from a point P /∈ rα , then A′
1B

′
1C

′
1D

′
1

P ′
� A′

2B
′
2C

′
2D

′
2.

(b) If lines a, b, c, d of α are distinct from rα and form a projective pencil
(a, b, c, d) with center P /∈ rα , then (a′, b′, c′, d ′) is a projective pencil of
β with center P ′ and (a′, b′; c′, d ′) = (a, b; c, d).

(c) Let the lines ai, bi, ci, di of α (i = 1, 2) be distinct from rα and form
projective pencils (a1, b1, c1, d1), (a2, b2, c2, d2) in α, with centers P,Q /∈ rα ,
respectively. If (a1, b1, c1, d1), (a2, b2, c2, d2) are in perspective from a line
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s 
= rα and a1 ∩ a2, b1 ∩ b2, c1 ∩ c2, d1 ∩ d2 /∈ rα , then a′1b′1c′1d ′
1

s ′
� a′2b′2c′2d ′

2.
In particular, (a′1, b′1; c′1, d ′

1) = (a′2, b′2; c′2, d ′
2).

(d) Let the lines a, b, c, d1, d2 of α be distinct from rα and form projective pencils
(a, b, c, d1), (a, b, c, d2) in α, with center P /∈ rα . If (a′, b′; c′, d ′

1) =
(a′, b′; c′, d ′

2), then d1 = d2.

Proof Item (a) and the first part of item (b) follow from the fact that central
projections preserve incidence. For the second part of (b), let s be a line of α with
a ∩ s = {A}, b ∩ s = {B}, c ∩ s = {C}, d ∩ s = {D}, such that A,B,C,D /∈ rα .
Then, item (c) of the proposition gives

(a′, b′; c′, d ′) = (A′, B ′;C′,D′) = (A,B;C,D) = (a, b; c, d).

The first part of (c) follows again from the incidence-preserving property of
central projections. The last part follows from Corollary 9.30. Finally, for (d),
Corollary 9.31 gives d ′

1 = d ′
2, so that d1 = d2. ��

In spite of the above the reader is warned that, hereafter, whenever there is no
danger of confusion we shall adopt the following conventions: we shall generally
write π : α → β, instead of π : α \ rα → β \ rβ , to denote the central projection of
center O , mapping α \ rα bijectively onto β \ rβ . Also, given a figure F ⊂ α, with
F ∩ rα consisting of at most a finite number of points, we shall write F ′ = π(F),
even though we are thinking of π(F \rα). In particular, if each of F ⊂ α and G ⊂ β

meet rα and rβ , respectively, at most a finite number of times and satisfy π(F \rα) =
G \ rα , we shall simply write (somewhat imprecisely but rather efficiently) F ′ = G.

The discussion above allows us to give an almost complete proof6 to the
following result.

Theorem 10.31 Let C be a conic and P be a point not in C. Let r and s be secants

to C passing through P , with C ∩ r = {A,B}, C ∩ s = {C,D}. If
←→
AC ∩ ←→

BD= {R}
and

←→
AD ∩ ←→

BC= {Q}, then the straightline
←→
QR does not depend on the choices of

r and s. Moreover, if
←→
QR ∩C = {T1, T2}, then

←→
PT1 and

←→
PT2 are tangent to C.

Figure 10.40 illustrates the theorem above for an ellipse, and for the sake of
simplicity we have chosen to take P outside the bounded region delimited by the
ellipse; however, this is completely immaterial. We urge the reader to sketch the
cases of a hyperbola and a parabola.

Proof Take a central projection that maps C onto a circle C ′. We assume that, under
such a projection, points A, B, C, D, P , Q, R, T1, T2 map to A′, B ′, C′, D′, P ′, Q′,
R′, T ′

1, T ′
2, respectively (this is always the case if C is an ellipse).

6The difference from almost complete to complete lies in the fact that we are not considering points
at infinity. If we were, then we would get a complete proof.
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Fig. 10.40 Complete quadrangles inscribed in an ellipse

Theorem 9.23 shows that
←→
Q′R′ is always the polar p of P ′ with respect to C ′.

Therefore,
←→
QR is the inverse image of p with respect to the central projection, and

as such does not depend on the choices of r and s. It also shows that
←→
P ′T ′

1 and
←→
P ′T ′

2
are tangent to C ′, and hence (arguing again with the inverse of the central projection)
←→
PT1 and

←→
PT2 are tangent to C. ��

In the notations of the statement of the previous result, if P /∈ C we say that
←→
QR

is the polar of P with respect to C. If P ∈ C, we define the polar of P with respect
to C as the tangent to C passing through P .

If P /∈ C and we can draw tangents to C passing through P , the previous result

shows that the polar of P with respect to C is line
←→
T1T2, where T1, T2 are the points

of contact of such tangents with C. Actually, that result also shows how one can find
T1, T2 with the aid of a straightedge, only. In this respect, see Problem 4.

We now extend Proposition 9.21 to conics. In this case too, we get an almost
complete proof.

Proposition 10.32 We are given in the plane a conic C and points P and Q. If p is
the polar of P and q is that of Q, then P ∈ q ⇔ Q ∈ p.

Figure 10.41 illustrates the result, again for an ellipse.

Proof Take a central projection that maps C onto a circle C ′. We assume that, under
such a projection, points P , Q map to points P ′, Q′ and lines p, q map to lines
p′, q ′ (once more, this is always so if C is an ellipse). The previous discussion
assures that p′ is the polar of P ′ and q ′ is that of Q′. Hence, Proposition 9.21 gives
P ′ ∈ q ′ ⇔ Q′ ∈ p′, and applying the inverse of the central projection we obtain
P ∈ q ⇔ Q ∈ p. ��

A useful way of rephrasing the previous result is as in the following
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Fig. 10.41 P ∈ q ⇔ Q ∈ p

P

Q

p

q

Corollary 10.33 Let C be a conic, P be a point not in C and RS be a chord of C
passing through P . If the tangents to C through R and S are not parallel, then they
meet at the polar of P .

Proof Let r and s be the tangents to C drawn through R and S, respectively, and

assume that r∩s = {Q}. Since
←→
QR= r and

←→
QS= s are tangent to C, the discussion

following Theorem 10.31 assures that
←→
RS is the polar of Q with respect to C.

However, since P ∈←→
RS , the previous result shows that Q lies in the polar of P . ��

An important particular case of this corollary is isolated in the next one.

Corollary 10.34 If C is a conic with focus F , then the polar of F is the correspond-
ing directrix.

Proof This is immediate from the previous corollary, together with Theorem 6.34.
��

We now extend the theorems of Pascal and Brianchon to conics. To this end,
we need to extend yet another notion presented in Sect. 9.4, and we do this in the
following

Definition 10.35 Given projective pencils (a1, b1, c1, d1), (a2, b2, c2, d2) in a
plane α, of centers O1, O2, respectively, we say that they are in perspective from
a conic C if the six points O1, O2, a1 ∩ a2, b1 ∩ b2, c1 ∩ c2, d1 ∩ d2 are pairwise
distinct and lie in C. Also, in this case we write

a1b1c1d1

C
� a2b2c2d2.

Figure 10.42 illustrates the definition above in the case of an ellipse.
We now extend Theorem 9.33 for projective pencils in perspective from a conic.

Here again we present an almost complete proof, which is complete for ellipses.
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Fig. 10.42
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Theorem 10.36 If the projective pencils (a1, b1, c1, d1), (a2, b2, c2, d2) of a plane
α are in perspective from a conic C, then (a1, b1; c1, d1) = (a2, b2; c2, d2). In
symbols,

a1b1c1d1

C
� a2b2c2d2 ⇒ (a1, b1; c1, d1) = (a2, b2; c2, d2).

Proof Choose a plane β and a point O /∈ α ∪ β such that the central projection
π : α → β maps C onto a circle �. Then, (a1, b1, c1, d1), (a2, b2, c2, d2) map
under π to projective pencils (a′1, b′1, c′1, d ′

1), (a′2, b′2, c′2, d ′
2) of β, which are in

perspective from �. Theorem 9.33 thus gives (a′1, b′1; c′1, d ′
1) = (a′2, b′2; c′2, d ′

2),
whence Corollary 10.30 shows that (a1, b1; c1, d1) = (a2, b2; c2, d2). ��

As anticipated above, we now extend Pascal’s theorem from circles to conics.
The extension of Brianchon’s theorem will be the object of Problem 8. We also leave
to the reader the (straightforward) task of defining what it means for an hexagram
ABCDEF to be inscribed in or tangential to a conic C.

Theorem 10.37 (Pascal) Let ABCDEF be an hexagram inscribed in a conic. If
←→
AE ∩ ←→

BD= {Z}, ←→
AF ∩ ←→

CD= {Y }, ←→
BF ∩ ←→

CE= {X}, then points X, Y , Z are
collinear.

Figure 10.43 illustrates Pascal’s theorem in an ellipse, and we suggest the reader
to depict the cases of a hyperbola and a parabola.

Proof Choose a plane β and a point O /∈ α ∪ β such that the central projection
π : α → β maps C onto a circle �. If ABCDEF is mapped onto A′B ′C′D′E′F ′

and X, Y , Z onto X′, Y ′, Z′, then
←→
A′E′ ∩

←→
B ′D′= {Z′},

←→
A′F ′ ∩

←→
C′D′= {Y ′},

←→
B ′F ′ ∩

←→
C′E′= {X′}. Pascal’s theorem for circles now assures that X′, Y ′, Z′ are

collinear, and hence X, Y , Z are also collinear. ��
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Fig. 10.43 Pascal’s theorem
for an ellipse
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Problems: Sect. 10.4

1. * Complete the proof of Theorem 10.26 by establishing item (a).
2. * Show that every ellipse can be realized as the plane section of a suitable

cylinder of revolution and a suitable cone of revolution.
3. Let C be a cone of revolution of vertex V , let α be a plane intersecting both

leaves of C and H = C ∩ α. Let � be one of the Dandelin’s spheres of the
hyperbola H, let � = C ∩ � and β be the plane of �. If π : α → β is the
central projection that maps H to �, identify the straightlines of the plane β

that are the images of the asymptotes of H under π .
4. * We are given a conic C and a point P /∈ C, such that we can draw tangents to

C passing through P . Show how such tangents can be drawn with the aid of a
straightedge only.

5. Let π : α\rα → β\rβ be a central projection. For X ∈ α\rα , write X′ to denote
π(X). If (A,B, P,Q) is a harmonic quadruple in α, with A,B,P,Q /∈ rα ,
show that (A′, B ′, P ′,Q′) is a harmonic quadruple in β. If Q ∈ rα , show that
P ′ is the midpoint of A′B ′.

6. Let C be a conic and P be a point not in C. Let r be a secant to C passing through
P , with C ∩ r = {A,B}. If the polar of P intersects r at U , then (A,B, P,U)

is a harmonic quadruple.
7. We are given conics C1 and C2, and points Q1 and Q2. Show how to find, if

they exist, all points P with the following property: for i = 1, 2, the tangents
drawn from P to Ci touch it at the endpoints of a chord passing through Qi .

8. Extend Brianchon’s theorem 9.35 to conics.
9. Let ABCD be a quadrilateral circumscribed to an ellipse (i.e., such that the

sides AB, BC, CD, AD are tangent to the ellipse at the points M , N , P , Q.

Prove that lines
←→
AC ,

←→
BD,

←→
MP ,

←→
NQ are concurrent.



Chapter 11
Some Simple Solids

In this chapter we apply the concepts and results of the previous one to the study
of prisms and pyramids. In particular, we discuss in some detail the geometry of
tetrahedra, which, in Solid Geometry, play a role analogous to that of triangles in
Plane Geometry.

Along this chapter (and in the coming ones, too) we shall need the following
concepts: given in space a point P and a positive real number R, we define the
open ball of center P and radius R as the set B(P ;R) of points in space whose
distance from P is less than R:

B(P ;R) = {Q; PQ < R}.

A set A of points in space is bounded if A lies inside an open ball (Fig. 11.1).

11.1 Pyramids and Tetrahedra

Given a convex n-gon A1A2 . . . An and a point V not in the plane of A1A2 . . . An,
we define the pyramid V A1A2 . . . An, of basis A1A2 . . . An and vertex (or apex)
V , as the bounded portion of space, delimited by A1A2 . . . An and by the triangles
V AiAi+1, for 1 ≤ i ≤ n, with the convention that An+1 = A1 (cf. Fig. 11.2).
We say that the line segments V Ai and AiAi+1 are the edges and that triangles
V AiAi+1 are the lateral faces of the pyramid. Finally, whenever convenient and
there is no danger of confusion, we shall collectively refer to the basis and lateral
faces of a pyramid as its faces. The interior of a pyramid is the set of points of a
pyramid which does not belong to any of its faces.

Since the basis of the pyramid defined above is an n-gon, we shall say that it is an
n-sided pyramid. In the cases n = 3 and n = 4, we shall more frequently call them
a triangular pyramid and quadrangular pyramid, respectively; moreover, we
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shall denote their bases as ABC and ABCD, also respectively (with the convention,
in the quadrangular case, that AC and BD are the diagonals of ABCD).

A triangular pyramid V ABC (of basis ABC) can also be seen as a triangular
pyramid of basis V AB, V AC or V BC (and vertices C, B or A, according to the
case). This point of view is mostly important in the cases in which the choice of a
particular basis is irrelevant and, if this is so, then we shall refer to V ABC simply
as the tetrahedron of vertices V , A, B and C, and faces V AB, V AC, V BC and
ABC (cf. Fig. 10.24, where we show a tetrahedron ABCD).

If P is the foot of the perpendicular dropped from the vertex V to the plane of
the basis A1A2 . . . An of an n-sided pyramid V A1A2 . . . An, then we shall say that
the line segment V P (or sometimes its length) is the altitude or height of the
pyramid (cf. Fig. 11.2). Such a pyramid is called regular (cf. Fig. 11.3) if its basis
A1A2 . . . An is a regular polygon of center P . In this case, since AiP = Ai+1P ,
V ̂PAi = V ̂PAi+1 = 90◦ and V P is a common side, we conclude that V PAi ≡
V PAi+1 by SAS, and hence that V Ai = V Ai+1 for 1 ≤ i ≤ n.

In the notations of the discussion above, and applying Pythagoras’ theorem to
triangle V PA1, we shall promptly get the following result.

Fig. 11.1 The open ball of
center P and radius R

P

B(P ; R)

R

Q

Fig. 11.2 Pyramid of basis
A1A2 . . . An and apex V

An

A1

A2 A3

A4

V
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Fig. 11.3 A regular pyramid
of basis A1A2 . . . An and
vertex V

An

A1

A2 A3

A4O

V

Fig. 11.4 An n-sided regular
pyramid inscribed in a cone
of revolution

O

V

An

A1

Ai

Ai+1

Mi

h

Proposition 11.1 Let V A1A2 . . . An be a regular pyramid of vertex V and basis
A1A2 . . . An. If R is the circumradius of the basis and h is the (measure of the)
altitude of the pyramid, then the measure l of the lateral edges of it is given by
l = √

R2 + h2.

As an application of the concepts above, let C(e;V ; θ) be a cone of revolution
of axis e, vertex V and opening 2θ , and let α be a plane perpendicular to the axis
e of the cone at the point O , with V O = h > 0. Then, α intersects the cone in a
circle �(O;R) and, hereafter, whenever there is no danger of confusion, we shall
also refer to the portion of C(e;V ; θ) situated between V and α as the cone of
revolution of radius R, height h and generatrix g = √

R2 + h2; the circle � is the
basis of the cone.

The concept of regular pyramid allows us to define, through the following
heuristic argument, the lateral area of the cone of revolution described in the
previous paragraph. To this end, let n ≥ 3 be a natural number and A1A2 . . . An

be a regular n-gon inscribed in � (cf. Fig. 11.4). The n-sided pyramid of basis
A1A2 . . . An and vertex V is regular and has height h; letting Mi denote the midpoint
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Fig. 11.5 A regular
tetrahedron ABCD

A

B C

D
P

of AiAi+1 (with the convention that An+1 = A1), the lateral area of the pyramid
(i.e., the sum of the areas of its lateral faces) is equal to

n
∑

i=1

A(V AiAi+1) =
n
∑

i=1

1

2
AiAi+1 · V Mi = 1

2
pnan,

where pn stands for the perimeter of A1A2 . . . An and an for the common length
of the line segments V M1, . . . , V Mn. Now, as n → +∞, the union of the lateral
faces of the pyramid better and better approximates the lateral portion of the cone of
revolution. Hence, the lateral area of the pyramid also forms an increasingly better
approximation for what we would like to define as the lateral area A of the cone.
Therefore, since pn → 2πR and an → g as n → +∞, we define such a lateral
area by setting

A = 1

2
· 2πRg = πRg. (11.1)

Back to tetrahedra, since any face of a tetrahedron can be seen as its basis, the line
segment joining a vertex of a tetrahedron to the foot of the perpendicular dropped
to the opposite face will be called an altitude of the tetrahedron. In particular, every
tetrahedron has exactly four altitudes.

Even though every tetrahedron is a triangular pyramid and vice-versa, we shall
follow the standard practice of letting the expression regular tetrahedron refer to a
more restrictive notion than regular triangular pyramid. More precisely, we say that
ABCD is a regular tetrahedron if its six edges have the same length (cf. Fig. 11.5).
The coming example clears the relation between these two notions of regularity.

Example 11.2 Every regular tetrahedron is a regular triangular pyramid (with
respect to any one of its faces taken as basis).

Proof In the notations of Fig. 11.5, let ABCD be a regular tetrahedron and P be
the foot of the altitude dropped from A to the face BCD. Then, triangles ABP ,
ACP and ADP are right at P and such that AB = AC = AD. Hence, by the
special case of congruence of right triangles, we get BP = CP = DP , so that P



11.1 Pyramids and Tetrahedra 381

is the circumcenter of BCD. However, since BCD is equilateral, we conclude that
ABCD is a regular triangular pyramid of basis BCD. ��

Proposition 11.1 can be used to justify the existence of regular tetrahedra
(nothing that we have done so far assures this) and explain under what conditions
the converse of the previous example holds. We do this next.

Example 11.3 Let ABCD be a regular triangular pyramid of vertex A and basis
BCD. If a is the length of the edges of the base and h is the altitude of ABCD (also

with respect to BCD), then ABCD is a regular tetrahedron if and only if h = a
√

6
3 .

Proof Yet in the notations of Fig. 11.5, let P denote the center of face BCD.
The definition of regular triangular pyramid (and the previous example) assures

that
←→
AP⊥(BCD), whence AP = h. On the other hand, letting R denote the

circumradius of BCD (which is equilateral), we have R = a√
3
. Hence, it follows

from Proposition 11.1 that

AB = AC = AD =
√

a2

3
+ h2,

from where we conclude that ABCD is a regular tetrahedron if and only if
√

a2

3 + h2 = a, i.e., if and only if h = a
√

6
3 . ��

As we shall see in Sect. 12.3, regular tetrahedra form one of the five types of
regular convex polyhedra.

Continuing with the presentation of the basics facts on pyramids, let be given a
pyramid of apex V and basis A1A2 . . . An. We would like to address the problem of
deciding whether there does exist a sphere �:

(1) passing through V , A1, A2, . . . , An;
(2) contained in the pyramid and tangent to its basis and lateral faces.

In case (1) holds, we say that � is circumscribed to the pyramid, or also that the
pyramid is inscribed in �; if (2) holds, then � is said to be inscribed in the pyramid,
and the pyramid is said to be circumscribed to � (see Fig. 11.6).

It follows from Problems 2 and 3, that if a pyramid possess a circumscribed (resp.
inscribed) sphere, then such a sphere is unique. Nevertheless, it is easy to see that a
general pyramid need not have a circumscribed or inscribed sphere. In the positive
direction, the next result shows that every tetrahedron does have a circumscribed
and an inscribed sphere. For its statement, the reader may find it convenient to recall
(cf. Problem 3, page 359) that the locus of the points in space equidistant from the
faces of a trihedral angle is a half-line departing from its vertex.

Proposition 11.4 In every tetrahedron:

(a) There is a single point O , called the circumcenter of the tetrahedron, which
lies at equal distances from the vertices of it. In particular, the sphere of center
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Fig. 11.6 A pyramid admitting a circumscribed (left) and inscribed (right) sphere

Fig. 11.7 The sphere
circumscribed to a
tetrahedron
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O and radius equal to the common distance from O to the vertices of the
tetrahedron is its only circumscribed sphere.

(b) There is a single point I , called the incenter of the tetrahedron, which lies at
equal distances from the faces of it. In particular, the sphere of center I and
radius equal to the common distance from I to the faces of the tetrahedron is
its only inscribed sphere.

Proof Let ABCD be a given tetrahedron.
(a) If r and s respectively denote the medial lines of faces BCD and ACD (cf.
Fig. 11.7), then r and s are contained in the medial plane of CD and are not parallel
(for (BCD) 
= (ACD)). Hence, r and s intersect each other at a point O , so that O

is equidistant from the vertices B, C, D, as well as from the vertices A, C, D. Thus,
O lies at equal distances from all of the vertices of ABCD. Letting R denote the
common distance from O to the vertices of ABCD, we conclude that the sphere of
center O and radius R is circumscribed to the tetrahedron.

Conversely, if O ′ is the center of a sphere circumscribed to ABCD, it follows
from O ′B = O ′C = O ′D that O ′ lies in the medial line r of BCD. Likewise, O ′
also belongs to the medial line s of ACD, whence O ′ coincides with O .
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Fig. 11.8 The sphere
inscribed in a tetrahedron
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(b) In the trihedral angle of vertex A and faces 
 BAC, 
 BAD, 
 CAD, let (cf.
Problem 3, page 359) s be the (half-line) locus of points in space equidistant from
its faces; accordingly, we let t be the (half-line) locus of points in space equidistant
from the faces of the trihedral angle of vertex B and faces 
 ABC, 
 ABD, 
 CBD

(cf. Fig. 11.8).
The proof of Problem 3, page 359, shows that s and t both lie in the bisector plane

α of one of the dihedral angles formed by planes (ABC) and (ABD) (the one that
contains the tetrahedron). In order to see that s and t are not parallel, let P denote
the intersection of α with edge CD, so that triangle ABP is the planar section of
ABCD along α; since s lies within angle 
 BAP and t within angle 
 ABP , we
conclude that s and t intersect each other at a point I inside triangle ABP . Now,
it follows from I ∈ s that I is at equal distances from the faces (ABC), (ABD)

and (ACD) of ABCD; analogously, I ∈ t guarantees that I is equidistant from the
faces (BAC), (BAD) and (BCD) of ABCD. Hence, I is at equal distances from
all of the faces of the tetrahedron, and letting r denote such a common distance
we conclude that the sphere of center I and radius r is inscribed in the tetrahedron
ABCD.

Conversely, if I ′ is the center of a sphere inscribed in ABCD, then the fact that
I ′ lies at equal distances from the faces (ABC), (ABD) and (ACD) assures that
belongs to the half-line s above. By the same token, I ′ belongs to t , whence I ′
coincides with I . ��

We now examine the previous proposition in the special case of a regular
tetrahedron. A more general case will be dealt with in Sect. 11.3.

Example 11.5 If ABCD is a regular tetrahedron, show that its inscribed and
circumscribed spheres are concentric. Moreover, letting a stand for the common
length of the edges of ABCD, show that the respective radii r and R of such spheres
are given by

r = a
√

6

12
and R = a

√
6

4
.
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Fig. 11.9 Spheres inscribed
and circumscribed to a
regular tetrahedron
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Proof Letting O and P respectively denote the circumcenters of the tetrahedron and
of its face BCD (cf. Fig. 11.9), we know from the proof of the previous proposition

that
←→
OP is the medial line of triangle BCD. However, since AB = AC = AD,

it also follows that A ∈ ←→
OP . Accordingly, letting Q denote the circumcenter of

ACD, we have B ∈ ←→
OQ.

Now, let M stand for the midpoint of CD. Since triangles BCD and ACD are

both equilaterals, of centers respectively equal to P and Q, we have
−→
BP ∩ −→

AQ =
{M}. On the other hand, since MP = 1

3 MB and MQ = 1
3 MA, triangles MPQ

and MBA are similar by SAS. Therefore,
←→
PQ ‖ ←→

AB and PQ = 1
3 AB. In turn,

the parallelism of
←→
PQ and

←→
AB assures that PQO ∼ ABO by AA, so that OP =

1
3 AO. Hence, it follows from Example 11.3 that

OP = 1

4
AP = 1

4
· a

√
6

3
= a

√
6

12

and

AO = 3

4
AP = 3

4
· a

√
6

3
= a

√
6

4
.

Finally, note that AO = a
√

6
4 is the radius of the sphere circumscribed to ABCD.

On the other hand, since the reasoning above can be replicated to the medial lines of
any two faces of ABCD, we conclude that is at equal distances from all of the faces
of ABCD, thus coinciding with I . Therefore, the radius of the sphere inscribed in

ABCD is equal to OP = a
√

6
12 . ��
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We finish this section by presenting the following beautiful example on a sphere
hanging on the vertex of a regular pyramid.

Example 11.6 (Poland) The regular 2n-gon A1A2 . . . A2n is the basis of a regular
pyramid of vertex V . A sphere �, passing through V , intersects the lateral edge
V Ai at Bi , for 1 ≤ i ≤ 2n. Prove that

n
∑

i=1

V B2i−1 =
n
∑

i=1

V B2i .

Proof The situation described in the statement is depicted in the figure below.

A1

A2 A3

A4

V

B1

B2 B3

B4

O

R

P

Let O be the center and R be the radius of �, and l be the length of the lateral

edges of the pyramid. By applying the Intersecting Chords Theorem to
−→
AiV and

−→
AiO we obtain l(l − BiV ) = AiO

2 − R2, so that

n
∑

k=1

l(l − B2kV ) =
n
∑

k=1

(A2kO
2 − R2).

Hence,

n
∑

k=1

B2kV = 1

l

(

n(l2 + R2) −
n
∑

k=1

A2kO
2

)

,

and likewise
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n
∑

k=1

B2k−1V = 1

l

(

n(l2 + R2) −
n
∑

k=1

A2k−1O
2

)

.

It thus suffices to prove that
∑n

k=1 A2kO
2 = ∑n

k=1 A2k−1O
2
. To this end, let

P be the foot of the perpendicular dropped from O to the plane of the basis of the

pyramid. Pythagoras’ theorem applied to triangle OPAi gives AiO
2 = AiP

2 +
OP

2
, so that

n
∑

k=1

A2kO
2 =

n
∑

k=1

A2k−1O
2 ⇔

n
∑

k=1

A2kP
2 =

n
∑

k=1

A2k−1P
2
.

It now suffices to invoke the result of Problem 14, page 255. ��

Problems: Sect. 11.1

1. Let ABCD be a given tetrahedron. We draw through A a line r , which intersects
face BCD and forms equal angles with edges AB, AC and AD. Letting P

denote the point in which r intersect the sphere circumscribed to ABCD, prove
that

AB = AC = AD ⇒ PB = PC = PD.

2. If a pyramid admits an inscribed sphere, prove that such a sphere is unique.
3. * Prove that a pyramid of vertex V and basis A1A2 . . . An admits a circum-

scribed sphere if and only if the n-gon A1A2 . . . An is cyclic. Moreover, in this
case show that the sphere circumscribed to the pyramid is unique.

4. * Let C be a cone of revolution with vertex V , radius R and altitude h. Draw,
at a distance d < h from the plane of the basis of the cone, a parallel plane
that intersects it along a circle �′, of radius R′. The portion of the cone lying
between these two planes is called the frustum of cone of bases � and �′ (or
radii R and R′) and altitude d . Prove that the lateral area A of such a solid is
given by

A = π(R + R′)d

√

1 +
(

R − R′
d

)2

.

5. ABCD is a regular tetrahedron and M and N are distinct points, respectively
situated in the faces ABD and ACD. Show that MN , BN and CM are the
lengths of the sides of a triangle.
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6. In a tetrahedron ABCD, suppose that the foot of the altitude dropped from
A coincides with the orthocenter of the face BCD. Prove that this altitude
intersects the other three altitudes of the tetrahedron. Moreover, if the foot of
the altitude of the tetrahedron dropped from C coincides with the orthocenter of
the face ABD too, show that the four altitudes of the tetrahedron are concurrent
and that each one of them touches the opposite face in its orthocenter.

7. Let ABCD be a regular tetrahedron of edge length a. Do the following items:

(a) Prove that the edges AB and CD are orthogonal.
(b) Among all planar sections of ABCD through a plane parallel to the edges

AB and CD, find the one with largest area.

8. (United States) ABCD is a tetrahedron and E, F , G, H , I and J are points
lying in the edges AB, BC, CA, AD, BD and CD, respectively. If

AE · BE = BF · CF = AG · CG = AH · DH = BI · DI = CJ · DJ,

show that E, F , G, H , I and J are all situated on a single sphere.
9. * ABCD is any tetrahedron and M , N , P and Q are the barycenters of faces

BCD, ACD, ABD and ABC, respectively. Prove that:

(a) The line segments AM , BN , CP and DQ intersect at a single point G,
called the barycenter of the tetrahedron.

(b) AG

GM
= BG

GN
= CG

GP
= DG

GQ
= 3.

10. In a regular quadrangular pyramid, the altitude length is h, whereas the basis is
a square of side length a. If α is the plane passing through two adjacent vertices
of the basis and through the midpoint of the altitude, compute, in terms of a

and h, the area of the planar section of the pyramid determined by α.
11. V A1A2 . . . An is a regular n-gonal pyramid of basis vertex V , lateral edges of

length x and basis edges of length y. If θ is the plane dihedral angle between
the planes of two consecutive lateral faces, show that

1 − cos θ = 2 cos2 π
n

1 − ( y
2x

)2 .

12. ABDF is a regular tetrahedron of edge length y and ABDC, ABFG are equal
regular triangular pyramids with lateral edges of length x. If the plane dihedral
angles formed by the pairs of planes (ABC), (ABG) and (ABC), (ACD) are
equal, compute all possible values of x

y
.

13. (Netherlands) Let V A1A2 . . . An be a regular n-gonal pyramid of apex V and
basis A1A2 . . . An. Through a point P lying in the interior of A1A2 . . . An we
draw a line r , perpendicular to the plane of the basis. For 1 ≤ i ≤ n, let Bi

denote the point of intersection of line r with the plane (V AiAi+1) (with the
convention that An+1 = A1). Prove that the value of PB1 + PB2 +· · ·+ PBn

does not depend on the position of P .
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14. (Czechoslovakia) If S stands for the sum of the areas of the faces of a
tetrahedron ABCD, prove that

S ≤ 1

2
√

3
(AB

2 + AC
2 + AD

2 + BC
2 + BD

2 + CD
2
).

15. Extend Euler’s median formula (cf. Problem 6, page 188) to tetrahedra, in the
following form: if ABCD is a tetrahedron and M and N are the midpoints of
AB and CD, respectively, then

MN
2 = 1

4
(AC

2 + AD
2 + BC

2 + BD
2 − AB

2 − CD
2
).

16. (Czechoslovakia) Prove that every tetrahedron ABCD can be placed in the
region of space delimited by two parallel planes, situated at a distance from
each other of at most

1

2
√

3

√

AB
2 + AC

2 + AD
2 + BC

2 + BD
2 + CD

2
.

17. (Brazil) What is the smallest length a rope loop can have, so that we can pass a
regular tetrahedron of edge length l through it?

18. Prove that, in every tetrahedron ABCD, one has AB · CD + AD · BC >

AC · BD.
For the coming problem, let �i(Oi;Ri), for i = 1, 2, be two given spheres.

We say that �1 and �2 are externally (resp. internally) tangent if O1O2 =
R1 + R2 (resp. O1O2 = |R1 − R2|). In any one of these cases, it is immediate
to show that �1 and �2 have a single point in common, which is said to be the
point of tangency of �1 and �2.

19. A1A2A3A4 is a tetrahedron for which there exist spheres S1, S2, S3, S4,
centered respectively at A1, A2, A3, A4 and pairwise externally tangent.
Suppose that there exist spheres � and �′, centered at a point O in the interior
of A1A2A3A4 and such that � is tangent to the edges of the tetrahedron,
whereas �′ is tangent to S1, S2, S3, S4. Prove that A1A2A3A4 is regular.

11.2 Prisms and Parallelepipeds

We are given convex polygons A1A2 . . . An and A′
1A

′
2 . . . A′

n, lying in parallel

planes and such that lines
←→

A1A
′
1,

←→
A2A

′
2, . . . ,

←→
AnA

′
n are parallel to each other. It

is immediate to see (cf. Fig. 11.10) that, for 1 ≤ i ≤ n (with the convention that
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Fig. 11.10 A prism of bases
A1A2 . . . An and A′

1A
′
2 . . . A′

n

An

A1

A2 A3

A4

An

A1

A2 A3

A 4

An+1 = A1), the quadrilateral AiAi+1A
′
i+1A

′
i is a parallelogram and the polygons

A1A2 . . . An and A′
1A

′
2 . . . A′

n are congruent.1

The prism of bases A1A2 . . . An and A′
1A

′
2 . . . A′

n is the bounded portion
of space delimited by the polygons A1A2 . . . An and A′

1A
′
2 . . . A′

n and by the
parallelograms AiAi+1A

′
i+1A

′
i , for 1 ≤ i ≤ n.

We say that points A1, A2, . . . , An, A′
1, A′

2, . . . , A′
n are the vertices of the

prism. Also, the line segments AiAi+1, A′
iA

′
i+1 and AiA

′
i are its edges and the line

segments AiA
′
i , for 1 ≤ i ≤ n, are its lateral edges. Parallelograms AiAi+1A

′
i+1A

′
i

are the lateral faces of the prism. Whenever will be convenient and there will be no
danger of confusion, we shall collectively refer to the bases and lateral faces of a
prism as its faces. Finally, the interior of a prism is the set of the points of a prism
which do not belong to any of its faces (Fig. 11.10).

Since the bases of the prism above defined are n-gons, we shall say that it is an
n-gonal prism. In the cases n = 3 and n = 4, we shall more frequently use the
alternative expressions triangular and quadrangular prisms, respectively. Also in
these case, we shall denote the corresponding bases by ABC and A′B ′C′, ABCD

and A′B ′C′D′, also respectively (with the convention, in the quadrangular case, that
AC and BD are the diagonals of ABCD).

The height of a prism is the distance between the planes of its bases. A right
prism is a prism whose lateral edges are perpendicular to the planes of its bases;
in particular, if A1A2 . . . An and A′

1A
′
2 . . . A′

n are the bases of a right prism, then
AiAi+1A

′
i+1A

′
i is a rectangle for 1 ≤ i ≤ n (with the convention that An+1 =

A1 and A′
n+1 = A′

1) and the common length of its lateral edges is the height of
the prism. Finally, a right prism is regular (cf. Fig. 11.11) if its bases are regular
polygons.

1Even though we have not explicitly defined what one means by the congruence of polygons, the
idea here is that, for 2 ≤ i ≤ n − 1, triangles A1AiAi+1 and A′

1A
′
iA

′
i+1 are congruent.
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Fig. 11.11 A regular prism
of bases A1A2 . . . An and
A′

1A
′
2 . . . A′

n

An

A1

A2 A3

A4

An

A1

A2 A3

A4

As an application of the concepts above, let C(e;R) be a cylinder of revolution
of axis e and radius R, and α and α′ be planes perpendicular to e at points O and
O ′, respectively, and situated at a distance h of each other. Then, α and α′ intersect
the cylinder along circles �(O;R) and �′(O ′;R), respectively, such that OO ′ =
h. Hereafter, whenever there is no danger of confusion, we shall also refer to the
portion of C(e;R) contained between α and α′ as the cylinder of revolution of
radius R and height h. The concept of regular prism allows us to define, by means
of the heuristic argument of the next paragraph, the lateral area of such a cylinder
of revolution.

Let n ≥ 3 be a natural number, and A1A2 . . . An and A′
1A

′
2 . . . A′

n be regular

polygons respectively inscribed in � and �′ and such that
←→
AiA

′
i ‖ e for 1 ≤ i ≤

n (cf. Fig. 11.12). The prism of bases A1A2 . . . An and A′
1A

′
2 . . . A′

n is regular of
height h; its lateral area (i.e., the sum of the areas of its lateral faces) is equal to

n
∑

i=1

A(AiAi+1A
′
i+1A

′
i ) =

n
∑

i=1

AiAi+1 · h = pnh,

where pn stands for the perimeter of A1A2 . . . An. Now, as n → +∞, the union
of the lateral faces of the prism forms a better and better approximation for the
cylinder of revolution. Accordingly, the lateral area of the prism forms a better and
better uma approximation for what we would like to define as the lateral area A of
the cylinder. However, since pn → 2πR as n → +∞, we define such a lateral area
by setting

A = 2πRh.

An important subclass of prisms is the one formed by parallelepipeds, i.e.,
quadrangular prisms whose bases are parallelograms (cf. Fig. 11.13). A right
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Fig. 11.12 A regular n-gonal
prism inscribed in a cylinder
of revolution

A = 2πRh.

An

A1 A2

Ai

Ai+1

An

A1 A2

Ai

Ai+1

h

R

A B

CD

A B

CD

A B

CD

A B

CD

Fig. 11.13 A parallelepiped (left) and right parallelepiped (right)

parallelepiped is a parallelepiped which is a right prism, and rectangular par-
allelepiped is a right parallelepiped whose bases are rectangles. Notice that the
twelve edges of a parallelepiped can be grouped into three sets of four parallel equal
edges each; in the notations of Fig. 11.13, these sets are {AB,A′B ′, CD,C′D′},
{AA′, BB ′, CC′,DD′} and {AD,A′D′, BC,B ′C′}. Letting a, b and c denote the
lengths of the four edges in each of such sets, we shall sometimes say that the
parallelepiped has edge (lengths) a, b and c.

As with pyramids, a sphere is circumscribed to a prism provided it passes through
all of its vertices. In general, no such a sphere will exist. Nevertheless, if it does,
then it is unique (cf. Problem 1). In the positive direction, we have the following
important result.

Proposition 11.7 A parallelepiped admits a circumscribed sphere if and only if it
is rectangular. In this case, if a, b and c are the lengths of its edges and R is the
radius of the circumscribed sphere, then

R = 1

2

√

a2 + b2 + c2.
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Fig. 11.14 Rectangular
parallelepipeds possess
circumscribed speres

O

X

Y

A B

C
D

A B

C
D

a

b
c

Proof Let ABCD and A′B ′C′D′ be the bases of the parallelepiped, named as
usual. Firstly, suppose that the parallelepiped is inscribed in a sphere � of center
O . Since � is also circumscribed to the pyramid of apex A′ and basis ABCD, it
follows from Problem 3, page 386, that � is unique. Now, since the parallelograms
ABCD and A′B ′C′D′ are inscribed in the circles defined by the intersections of
� with the planes (ABC) and (A′B ′C′), we conclude that such parallelograms
are actually rectangles. By the same reasoning, ABB ′A′ is also a rectangle (it is
a parallelogram inscribed in the circle defined by the intersection of � with the plan

(ABB ′)). Analogously, ADD′A′ is a rectangle, so that
←→
AA′⊥←→

AB,
←→
AD and, hence,

←→
AA′⊥(ABC). Therefore, the parallelepiped is a right one.

Conversely, suppose that the parallelepiped is rectangular (cf. Fig. 11.14). Since
BDD′B ′ is a rectangle, its diagonals meet at their common midpoint O; since
BD′ = B ′D, we conclude that O equidists of B, B ′, D and D′. Letting R denote
the common distance from O to such points and applying Pythagoras’ theorem to
triangles BDD′ and ABD, we obtain

4R2 = BD′2 = BD
2 + DD′2 = (AB

2 + AD
2
) + AA′2 = a2 + b2 + c2.

Now, observe that O is also the midpoint of XY , where X and Y are the
midpoints of BD′ and BD, respectively. However, since X and Y lie in A′C′ and
AC (respectively), an argument analogous to the one above allows us to conclude
that O is the point of intersection of the diagonals of rectangle AA′C′C, and hence
is at equal distances from A, A′, C and C′. Finally, a computation quite similar
to the one we did above shows that the distance from O to such vertices of the
parallelepiped is equal to R too. Thus, O is the center and R is the radius of the
sphere circumscribed to the parallelepiped. ��

Continuing with the development of the theory, we say that a rectangular
parallelepiped is a cube (cf. Fig. 11.15) if all of its edges have the same length. In
this case, letting ABCD and A′B ′C′D′ be the bases of the cube, named as usual, and
a be the common length of its edges, the proof of the previous proposition assures
that all of the line segments AC′, A′C, BD′ and B ′D have lengths equal to a

√
3

and concur at the center of the sphere circumscribed to the cube. Such segments (or



11.2 Prisms and Parallelepipeds 393

Fig. 11.15 A cube of edge
length a and its diagonals

A B

CD

A B

CD

a

a
a

sometimes their common length) are called the diagonals of the cube, whereas O

is its center.
In Sect. 12.3 we shall see that cubes form another one of the five classes of convex

regular polyhedras.

Example 11.8 A cube of edge length a has bases ABCD and A′B ′C′D′, named in

the usual way. Show that a 120◦ rotation of space around
←→
BD′ maps the cube into

itself.

Proof We shall first compute the opening of the angle formed by the planes
(BC′D′) and (BA′D′) (see figure below).

A B

CD

A B

CD
P

a

In order to do this, start by noticing that triangles BA′D′ and BC′D′ are
congruent by SSS. Therefore, the feet of the perpendiculars dropped from A′ and
C′ to BD′ coincide, say at P . Since D′

̂A′B = 90◦, the usual metric relations in
right triangles applied to BA′D′ give A′P · BD′ = A′D′ · A′B. By substituting

A′D′ = a, A′B = a
√

2 and BD′ = a
√

3, we obtain A′P = a
√

2√
3

= C′P . Now,

applying the cosine law to A′PC′ with A′
̂PC′ = θ , we obtain

A′P 2 + C′P 2 − 2 A′P · C′P cos θ = A′C′2

or, which is the same,



394 11 Some Simple Solids

(a
√

2√
3

)2 +
(a

√
2√

3

)2 − 2
(a

√
2√

3

)2
cos θ = (

a
√

2
)2

.

Therefore, cos θ = − 1
2 , whence θ = 120◦.

The argument above shows that a 120◦ rotation of the space around
←→
BD′ maps A′

into C′. By reasoning with the pairs of triangles B ′BD′, CBD′ and DBD′, ABD′
we show likewise that such a rotations maps B ′ into C and D into A. Thus, this
rotation maps the whole cube into itself. ��

Problems: Sect. 11.2

1. Prove that a prism of bases A1A2 . . . An and A′
1A

′
2 . . . A′

n admits a circumscribed
sphere if and only if it is right and its bases are cyclic polygons. Moreover, in this
case, prove that the circumscribed sphere is unique.

2. Let ABCDEFGH be a rectangular parallelepiped of bases ABCD and

EFGH , with
←→
AE,

←→
BF ,

←→
CG and

←→
DH parallel. If D ̂HC = 45◦ and

F ̂HB = 30◦, compute ĜBH .
3. C is a cube of edge length 2. For each vertex of C, we draw a plane perpendicular

to the diagonal of C incident to that vertex. As the result of these operation, we
obtain a solid of 14 faces, 8 of which are congruent triangles and the remaining 6
ones are congruent octagons. If all of these 14 faces have the same area, compute
its value.

4. (TT) Consider a cube of bases ABCD and EFGH and lateral edges AE, BF ,
CG and DH . Take, in the face ABCD, a point X such that 
 AXF = 
 AXH =
90◦. Compute ÂXE.

5. In a cube of edge length a and bases ABCD, A′B ′C′D′ (with vertices labelled
in the usual way), X, Y and Z denote the midpoints of edges A′D′, AB and CC′,
respectively. Do the following items:

(a) Show that the plane (XYZ) passes through the center of the cube.
(b) Compute, as a function of a, the area of the planar section of the cube through

the plane (XYZ).

6. If a plane intersects a rectangular parallelepiped along a regular hexagon, prove
that the parallelepiped is actually a cube.

7. We are given a right n-gonal prism with bases of area S. Planes α and β are
perpendicular to each other and intersect the prism along the convex n-gons P
and Q, respectively. Find all values of the angle between α and the lateral edges
of the prism for which A(P)+ A(Q) is as small as possible.

8. Planes α and β concur at r and form an angle σ , with 0 < σ < π
2 . A cube C

of edge length 1 has parallel faces ABCD, EFGH and lateral edges AE, BF ,
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CG, DH ; also, ABCD is contained in α, with A ∈ r , and
−→
AB forms an angle θ

with r , where 0 < θ < π
2 .

(a) For X ∈ α, let X′ be its orthogonal projection onto β (hence, A = A′).
Show that the orthogonal projection of C onto β is the convex hexagon
C′B ′F ′E′H ′D′ such that:

i. A′D′C′B ′ and E′H ′G′F ′ are congruent parallelograms contained in
C′B ′F ′E′H ′D′.

ii. H ′D′B ′F ′ is a rectangle, with
←→

D′H ′,
←→
B ′F ′⊥r .

(b) A(C′B ′F ′E′H ′D′) = cos σ + (sin θ + cos θ) sin σ .
(c) A(C′B ′F ′E′H ′D′) is maximum if and only if the diagonal AG is perpen-

dicular to β.

11.3 More on Tetrahedra

Along this section, we use the material developed so far to discuss in detail two
interesting classes of tetrahedra, namely, the trirectangular and isosceles ones.

A tetrahedron ABCD is trirectangular in D if ÂDB = ÂDC = B̂DC = 90◦
(cf. Fig. 11.16). The coming proposition brings some properties of such tetrahedra.

Proposition 11.9 If tetrahedron ABCD is trirectangular at D, with AD = a,
BD = b and CD = c, then:

(a) Face ABC is an acute triangle.
(b) The foot of the altitude of ABCD dropped from D is the orthocenter of face

ABC.
(c) The radius of the sphere circumscribed to ABCD equals 1

2

√
a2 + b2 + c2.

Proof

(a) Pythagoras’ theorem gives AB = √
a2 + b2, BC = √

b2 + c2 and AC =√
a2 + c2. Hence, in order to show that ABC is acute, Corollary 7.26 assures

that it suffices to note that

Fig. 11.16 A tetrahedron
ABCD, trirectangular at D

A

B

C
D
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AB
2 + BC

2 = a2 + 2b2 + c2 > a2 + 2c2 = AC
2
,

and analogously AB
2 + AC

2
> BC

2
and AC

2 + BC
2

> AB
2
.

(b) If P is the foot of the altitude of ABCD dropped from D (cf. Fig. 11.17),

then
←→
DP⊥←→

BC . However, since
←→
AD⊥←→

BC , it follows that
←→
BC⊥(ADP).

Hence,
←→
BC⊥←→

AP , so that
←→
AP is an altitude of triangle ABC. Analogously,

one shows that
←→
BP and

←→
CP are the other two altitudes of ABC, whence P is

the orthocenter of this face.
(c) Construct points X, Y , Z and W , such that all of the quadrilaterals ADBZ,

ADCY and BDCX are rectangles. Then, since ABCD is trirectangle, one
immediately concludes that ADBZYCXW is a rectangular parallelepiped (cf.
Fig. 11.18). If � is the sphere circumscribed to such a parallelepiped (cf.
Proposition 11.7), then � also circumscribes ABCD. Letting R denote its
radius, it follows from the proposition just referred that 1

2

√
a2 + b2 + c2. ��

A tetrahedron is isosceles if each two opposite edges of it have equal lengths.
In the notations of Fig. 11.18, it is straightforward to check that the tetrahedron of
vertices A, B, C and W is isosceles, with

Fig. 11.17 The foot of the
altitude of a trirectangular
tetrahedron, dropped from the
vertex of the right angles

A

B

C
D

P

Fig. 11.18 Computing the
radius of the sphere
circumscribed to a
trirectangular tetrahedron

B X

C
D

Z W

Y
A

O
c

a

b
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AB = CW =
√

a2 + b2, AC = BW =
√

a2 + c2, AW = BC =
√

b2 + c2.

Conversely, the following discussion shows, among other interesting properties of
isosceles tetrahedra, that each one of these can be constructed as ABCW , i.e.,
departing from an appropriate rectangular parallelepiped. Our discussion follows,
essentially, Chapter 9 of [13].

For what comes next, given a tetrahedron ABCD, we shall refer to the trihedral
angle of faces 
 BAC, 
 BAD and 
 CAD (cf. Problem 3, page 359) as the trihedral
angle of vertex A determined by ABCD.

Proposition 11.10 A tetrahedron is isosceles if and only if the following condition
is satisfied: for each vertex X of the tetrahedron, the trihedral angle of vertex X it
determines has the sum of the angles of its faces at X equal to 180◦.

Proof If ABCD is an isosceles tetrahedron, then ACD ≡ CAB and ABD ≡ BAC

by SSS, so that ĈAD = ÂCB and B̂AD = ÂBC. Hence,

B̂AC + B̂AD + ĈAD = B̂AC + ÂBC + ÂCB = 180◦.

Conversely, let ABCD be a tetrahedron satisfying the stated condition. In
the plane of ABC, construct triangles ABD2, BCD3 and ACD1, respectively
congruent to the faces ABD, BCD and ACD of ABCD (cf. Fig. 11.19). Since

D2̂BA + ÂBC + ĈBD3 = D̂BA + ÂBC + ĈBD = 180◦,

we have B ∈ D2D3; analogously, C ∈ D1D3 and A ∈ D1D2. Now, since AD1 =
AD2 = AD, we conclude that A is the midpoint of D1D2; analogously, B and C

are the midpoints of D2D3 and D1D3, respectively. Hence, the midsegment theorem
assures that

AB = 1

2
D1D3 = CD1 = CD,

and likewise AC = BD and AD = BC. Thus, ABCD is isosceles. ��
Item (a) of Proposition 11.9 assures that all of the faces of the isosceles

tetrahedron ABCW of Fig. 11.18 are acute triangles. As a consequence of the
previous result, we shall extend this property, in Corollary 11.12, to all conceivable
isosceles tetrahedra. Nevertheless, prior to that we need an auxiliary result which is
interesting in itself.

Lemma 11.11 Given a trihedral angle of faces 
 XV Y , 
 XV Z and 
 YV Z, we
have

X̂V Y < X̂V Z + ŶV Z.
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Fig. 11.19 Unfolding
tetrahedron ABCD
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Fig. 11.20 A useful
inequality between the angles
of the faces of a trihedral
angle
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Proof Suppose that X̂V Y > ŶV Z (for otherwise there is nothing to do). In the face


 XV Y of the trihedral angle, draw the half-line
−→
V W such that ŶV W = ŶV Z (cf.

Fig. 11.20). Then, plot points C ∈ −→
V Z and D ∈ −→

V W with V C = V D, and cut

the trihedral with a plane containing
←→
CD, which intersects

−→
V X and

−→
V Y at points

A and B, respectively.
The congruence of triangles BV C and BV D (by SAS) assures that BC = BD.

On the other hand, by applying the triangle inequality in ABC, we obtain

AD + BD = AB < AC + BC = AC + BD,

so that AD < AC. Now, triangles AV C and AV D are such that AV is a common
side, V C = V D and AC > AD; hence, the cosine law guarantees that ÂV D <

ÂV C. Therefore,

ÂV B = ÂV D + D̂V B < ÂV C + ĈV B = ÂV C + B̂V C.

��
We are finally in position to prove the coming
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Fig. 11.21 Realization of
isosceles tetrahedra
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Corollary 11.12 The faces of an isosceles tetrahedron are acute triangles.

Proof If ABCD is an isosceles tetrahedron, it follows from the previous lemma and
from Proposition 11.10 that

2B̂AC < B̂AC + B̂AD + ĈAD = 180◦,

i.e., B̂AC < 90◦. Analogously, ÂBC < 90◦ and ÂCB < 90◦, so that ABC is an
acute triangle. However, since all the faces of an isosceles tetrahedron are congruent,
there is nothing left to do. ��

In view of the above result, we state and prove the following realization theorem
for isosceles tetrahedra.

Theorem 11.13 If ABCD is an isosceles tetrahedron, then there exists a rectan-
gular parallelepiped of bases WXYZ and W ′X′Y ′Z′ (cf. Fig. 11.21) such that the
faces of the isosceles tetrahedron WZ′X′Y are congruent to those of ABCD.

Proof Let AB = CD = c, AC = BD = b and AD = BC = a. Since ABC is
an acute triangle, we have a2 +b2 > c2, a2 + c2 > b2 and b2 + c2 > a2. Therefore,
it is easily seen that the system of equations

⎧

⎨

⎩

x2 + y2 = c2

x2 + z2 = b2

y2 + z2 = a2

admits the unique positive solutions

x =
√

b2 + c2 − a2

2
, y =

√

a2 + c2 − b2

2
and z =

√

a2 + b2 − c2

2
.

In turn, if WXYZW ′X′Y ′Z′ is a rectangular parallelepiped with WW ′ = x, WZ =
y and WX = z, then WZ′ = √

x2 + y2 = c, WX′ = √
x2 + z2 = b and WY =

√

y2 + z2 = a. ��
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In the notations of the previous result, we shall say that the rectangular paral-
lelepiped of bases WXYZ and W ′X′Y ′Z′ is associated to the isosceles tetrahedron
ABCD.

We finish this section by solving the analogue of Steiner’s problem (cf. Sect. 7.5)
for regular tetrahedra. The solution we present, up to slight modifications, is one of
three different ones that appear in the wonderful book of the late professor Samuel
L Greitzer [10].

Example 11.14 (IMO—Adapted) Given a regular tetrahedron ABCD, find all
points P in space for which the sum AP + BP + CP + DP is minimum.

Proof In order to help visualization, we use the rectangular parallelepiped associ-
ated to ABC, which in this case is a cube. We claim that the circumcenter O of
ABCD (which coincides with the center of the cube) is the only point in space
which minimizes the sum of the distances from A, B, C, D.

B D

DB

A C

C
A

OP
Q

In order to prove this, let P be any other point in space. Since P 
= O and O is
the intersection point of planes (AA′D′D), (BB ′C′C), (ABD′C′), we can assume,
without any loss of generality, that P /∈ (AA′D′D) (for the sake of simplicity, we
plot P inside the cube, but this is completely immaterial). We shall prove that P does
not minimize the sum of the distances to the vertices of ABCD; more precisely, if
Q stands for the foot of the perpendicular dropped from P to (AA′D′D), we shall
show that

AP + BP + CP + DP > AQ + BQ + CQ + DQ.

For what is left to do, start by looking at the right triangles APQ and DPQ to
obtain

AP + DP > AQ+ DQ. (11.2)
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Now, note that
←→
PQ ‖ ←→

BC and BQ = CQ. Therefore, letting E be the symmetric

of C with respect to
←→
PQ (cf. figure below) we obtain

B C

QP

E

BP + CP = BP + PE > BE

= BQ + QE = BQ + QC.
(11.3)

Finally, by adding (11.2) and (11.3) we arrive at the desired inequality. ��

Problems: Sect. 11.3

1. (TT) ABCD is a regular tetrahedron with circumscribed sphere �. If CC′
and DD′ are diameters of �, compute the angle between planes (ABC′) and
(ACD′).

2. * (France) Let S be a fixed point of a sphere �, centered at O . Consider all
tetrahedra SABC, inscribed in � and such that SA, SB and SB are pairwise
perpendicular. Prove that all of the planes (ABC) pass through a common point.

3. * Prove that a tetrahedron is isosceles if and only if the common perpendiculars
to its pairs of reverse edges join the midpoints of these edges.

4. Prove that, in every isosceles tetrahedron, the common perpendiculars to the pairs
of reverse edges intersect at their respective midpoints.

5. Show that a given tetrahedron is isosceles if and only if its incenter and
circumcenter coincide.

6. Prove that, in every isosceles tetrahedron, the barycenter (cf. Problem 9, page
387), incenter and circumcenter coincide.

7. (Brazil—adapted) Consider an isosceles tetrahedron with edge lengths equal to
a, b and c. Show that:
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(a) The distances between the midpoints of the pairs of reverse edges of the

tetrahedron are equal to
√

b2+c2−a2

2 ,
√

a2+c2−b2

2 and
√

a2+b2−c2

2 .
(b) The radius of the sphere circumscribed to the tetrahedron is equal to

√

a2+b2+c2

8 .



Chapter 12
Convex Polyhedra

We begin this chapter by defining and computing the area of a sphere and
establishing a famous result of Girard on the area of a spherical triangle. Then,
we present the important concept of convex polyhedron, which encompasses prisms
and pyramids, and apply Girard’s theorem to prove the celebrated theorem of Euler,
which asserts that the Euler characteristic of every convex polyhedron is equal to
2. The chapter finishes with using Euler’s theorem to obtain the classification of all
regular polyhedra, and showing that all found possibilities do exist.

12.1 The Area of a Sphere

This section starts with the definition of a surface of revolution, as well as with the
presentation of a heuristic argument which allows us to define a notion of area for
such a surface. To this end, we shall need to use some simple concepts and facts on
Calculus, for which we refer the reader to [2] or [5].

Let a < b be given real numbers, and f : (a, b) → R be a positive and
differentiable function, with continuous derivative f ′ : (a, b) → R. In a fixed plane
in space, take a cartesian system with axis of abscissas e, and let G be the graph of
f . The surface of revolution of axis e and generatrix curve G is the set S(e;G) of
points in space obtained by the rotation of G around e, in such a way that, for every
x ∈ (a, b), the point (x, f (x)) ∈ G describes the circle of radius f (x), centered at
x ≈ (x, 0) ∈ e and contained in the plane passing through x and perpendicular to e

(cf. Fig. 12.1).
For real numbers c, d ∈ (a, b), with c < d , let S[c,d] be the portion of S(e;G)

lying in the strip of the space formed by the planes perpendicular to e at c and d .
In order to define the area of S[c,d], consider real numbers c = x0 < x1 < · · · <

xn = d , with �xi := xi − xi−1 equal to d−c
n

for 1 ≤ i ≤ n. For a sufficiently
large n, it is pretty reasonable to suppose that the frustum of cone with axis e, radii
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Fig. 12.1 The surface of
revolution S(e;G)

e

G

(x,f (x))

a x b

Fig. 12.2 Approximating the
area of a surface of revolution

e

G

c = x0 xi−1

(xi−1,f (xi−1))

xi

(xi,f (xi))

d = xn

f (xi−1) and f (xi) and height �xi forms a good approximation of the portion of
S[c,d] situated between the planes perpendicular to e at xi−1 and xi (cf. Fig. 12.2).
Therefore, it is also reasonable to assume that the lateral area Ai of such a frustum of
cone constitutes a good approximation for the area of the portion of S[c,d] situated
between these planes.

It now follows from Problem 4, page 386, that

Ai = π(f (xi−1) + f (xi))�xi

√

1 +
(

f (xi) − f (xi−1)

xi − xi−1

)2

.

However, by the Mean Value Theorem of Lagrange, there exists ξi ∈ (xi−1, xi)

such that f (xi)−f (xi−1
xi−xi−1

= f ′(ξi). Moreover, taking into account that f does not
vary too much along [xi−1, xi] when n is sufficiently large, we can assume that
f (xi−1), f (xi) ∼= f (ξi), and hence
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Ai
∼= 2πf (ξi)

√

1 + f ′(ξi)2�xi.

By adding the approximations above for the lateral areas of the n frustums of
cone thus obtained, we are led to conclude that

n
∑

i=1

2πf (ξi)

√

1 + f ′(ξi)2�xi

is a good approximation for what we would like to consider as being the area of
S[c,d]. Also, it is geometrically plausible that such an approximation becomes better
and better as n → +∞.

On the other hand, as n → +∞ we have that

n
∑

i=1

2πf (ξi)

√

1 + f ′(ξi)2�xi → 2π

∫ d

c

f (x)

√

1 + f ′(x)2dx,

so that we define the area A of S[c,d] as

A = 2π

∫ d

c

f (x)

√

1 + f ′(x)2dx. (12.1)

Notice that the integral at the right hand side above does make sense, for the
hypotheses we made on f guarantee the continuity of the integrand.

Example 12.1 In the previous discussion, let f : (−R,R) → R be given by
f (x) = √

R2 − x2, so that f ′(x) = −x√
R2−x2

for x ∈ (−R,R). Then, S(e;G)

is a sphere � of radius R, with two antipodal points N and S removed.
However, since

� \ {N, S} =
⋃

0<ε<R

S[−R+ε,R−ε]

and S[−R+ε′,R−ε′] ⊂ S[−R+ε,R−ε] for 0 < ε < ε′, it is reasonable to define the area
A(�) of � as

A(�) = lim
ε→0+A(S[−R+ε,R−ε]).

Thus, with the aid of the Fundamental Theorem of Calculus, we compute
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Fig. 12.3 A spherical lune
with opening θ

Σ

N

S

O

BA

A(�) = lim
ε→0+A(S[−R+ε,R−ε])

= lim
ε→0+ 2π

∫ R−ε

−R+ε

√

R2 − x2

√

1 +
( −x√

R2 − x2

)2

dx

= lim
ε→0+ 2πR

∫ R−ε

−R+ε

dx = 4πR2.

In short, we define the area A of a sphere of radius R as

A = 4πR2. (12.2)

Continuing with our discussion, let a sphere �(O;R), of center O and radius
R, be given. For θ ∈ (0, π), we define a spherical lune of opening θ in � as the
intersection of � with a dihedral of opening θ , whose edge contains a diameter of
� (cf. Fig. 12.3, where we show a spherical lune of opening ÂOB = θ , bounded

by the arcs of great circles
�

NAS and
�

NBS).
For future use, we now need to establish a formula for the area of a spherical

lune. Since we have not actually defined such an area, the bothered reader can look
at the coming lemma as a heuristic argument for deducing only reasonable way of
defining it.

Lemma 12.2 Let be given a sphere �(O;R) and θ ∈ (0, π). If F stands for a
spherical lune of opening θ in �, then

A(F) = 2θR2.

Proof If θ = 2π
n

for some natural number n > 2, then � can be partitioned into n

spherical lunes of openings equal to θ , so that
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A(F) = 1

n
A(�) = 1

n
· 4πR2 = 2θR2.

Now, let θ = 2πm
n

, for some natural numbers m < n. Then, F can be partitioned
into m spherical lunes with openings all equal to θ

m
= 2π

n
, and by the previous

paragraph each one of them has area 1
m
· 2θR2. Hence,

A(F) = m · 2
θ

m
R2 = 2θR2.

Finally, if α = θ
2π

∈ (

0, 1
2

)

is irrational, choose sequences (rj )j≥1 and (sj )j≥1
of positive rationals such that

0 < r1 < r2 < · · · < α < · · · < s2 < s1 <
1

2

and rj , sj → α as j → +∞. For each integer j ≥ 1, pick spherical lunes Fj and
F ′

j , with openings respectively equal to 2πrj and 2πsj , such that

Fj ⊂ F ⊂ F ′
j

(this is clearly possible from the choices of rj and sj ). Then

A(Fj ) ≤ A(F) ≤ A(F ′
j ),

and it follows from what we did above that

4πrjR
2 ≤ A(F) ≤ 4πsjR

2.

Finally, letting j → +∞, the squeezing theorem for limits of sequences gives

A(F) = 4παR2 = 2θR2.

��
We consider again a sphere �(O;R). A spherical triangle in � is a union

�

AB∪
�

AC ∪ �

BC, with
�

AB,
�

AC,
�

BC being arcs of great circles in �, of lengths less than

πR (see Fig. 12.4). In this case, we say that A, B, C are the vertices and
�

AB,
�

AC,
�

BC are the sides of the spherical triangle. Whenever there is no danger of confusion,
we shall always refer to the spherical triangle above simply by ABC.

A spherical triangle ABC in � always divides it into two parts, exactly one of
which is contained in a hemisphere (be sure to identify such a part of � in Fig. 12.4).
We shall also refer to this portion of � as the spherical triangle ABC.
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Fig. 12.4 The spherical
triangle ABC

Σ

O

B

B

A

A

C

C

Fig. 12.5 Internal angle at B

of the spherical triangle ABC
Σ

O

B

B
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C

C

Given a spherical triangle ABC in �, we define its internal angle at B as the
dihedral angle θ formed by the planes (ABO) and(BCO); in particular, θ ∈ (0, π).
In the notations of Fig. 12.5, planes (ABO) and (BCO) are the same as those of the
gray disks bounded by the great circles passing through A, B and B, C, respectively.

These planes meet at line
←→
BB ′, and their dihedral angle is the same as that formed

by the tangents to the corresponding great circles at B.
We have finally arrived at the second central result of this section, which

computes the area of a spherical triangle (the first result was the computation of the
area of a sphere of radius R). It is due to the French mathematician of the sixteenth
century Albert Girard.

Theorem 12.3 (Girard) Let � be a sphere of radius R, and ABC be a spherical
triangle in �, with internal angles α, β and γ . Then,

A(ABC) = (α + β + γ − π)R2. (12.3)
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Fig. 12.6 Girard’s theorem Σ

O

B

B

A

A

C

C

Proof Let O be the center of � and A′, B ′, C′ be the antipodals of A, B, C,
respectively (cf. Fig. 12.6). Let FA stand for the spherical lune containing the
spherical triangle ABC and defined by the planes (ABB ′) and (ACC′); let also

F ′
A be the spherical lune symmetric to FA with respect to

←→
AA′. Define FB , F ′

B , FC

and F ′
C in analogous ways.

Since α, β and γ are the openings of FA, FB , FC , respectively (and also those
of F ′

A, F ′
B , F ′

C , also respectively), Lemma 12.2 gives

A(FA) = A(F ′
A) = 2αR2, A(FB) = A(F ′

B) = 2βR2

and

A(FC) = A(F ′
C) = 2γR2.

Now, a quick inspection in Fig. 12.6 shows that

� = (FA \ ABC) ∪ (F ′
A \ A′B ′C′) ∪ (FB \ ABC) ∪ (F ′

B \ A′B ′C′)

∪ (FC \ ABC) ∪ (F ′
C \ A′B ′C′) ∪ ABC ∪ A′B ′C′.

Since the factors at the right hand side have no interior points in common and the
spherical triangles ABC and A′B ′C′ are congruent, the decomposition above gives

A(�) = A(FA \ ABC) + A(F ′
A \ A′B ′C′) + A(FB \ ABC) + A(F ′

B \ A′B ′C′)

+ A(FC \ ABC) + A(F ′
C \ A′B ′C′) + A(ABC) + A(A′B ′C′)

= A(FA) + A(F ′
A) + A(FB) + A(F ′

B) + A(FC) + A(F ′
C)

− 6A(ABC) + 2A(ABC)

= 4αR2 + 4βR2 + 4γR2 − 4A(ABC).



410 12 Convex Polyhedra

Finally, it suffices to substitute (12.2) at the left hand side to obtain the desired
result. ��

We now extend Girard’s theorem to the class of convex spherical polygons, for
which we need a few preliminaries.

Given a sphere � of center O , a simple closed spherical polygonal of k sides in

� is a union
�

A1A2 ∪
�

A2A3 ∪ . . . ∪ �

Ak−1Ak ∪
�

AkA1, where, for 1 ≤ j ≤ k (with

Ak+1 = A1),
�

AjAj+1 is an arc of great circle in �, of measure less than π , and
�

AiAi+1 ∩
�

AjAj+1 
= ∅ if and only if i = j − 1, j or j + 1. In this case, we say

that points A1, A2, . . . , Ak are the vertices and arcs
�

AiAi+1 (for 1 ≤ i ≤ k) are the
sides (or edges) of the polygonal. Whenever there is no danger of confusion, we
shall refer to the simple closed spherical polygonal above simply as A1A2 . . . Ak .

A simple closed spherical polygonal A1A2 . . . Ak in � divides it into two parts,
exactly one of which is contained in a hemisphere of �. Such a part is the spherical
polygon bounded by the polygonal A1A2 . . . Ak. As above, from now on we shall
refer to it simply as A1A2 . . . Ak. Also in this case, we define the internal angle of
the spherical polygon A1A2 . . . Ak at Ai as the opening of the dihedral angle formed
by the planes (Ai−1AiO) and (AiAi+1O).

With the concepts above at our disposal, we can finally state the coming

Corollary 12.4 Let � be a sphere of radius R. If A1A2 . . . Ak is a spherical
polygon in �, then

A(A1A2 . . . Ak) =
(

k
∑

i=1

θi − (k − 2)π

)

R2,

with θi standing for the internal angle of A1A2 . . . Ak at Ai .

Proof Exercise; see Problem 1. ��

Problems: Sect. 12.1

1. * Prove Corollary 12.4.
2. We are given a sphere �(O;R) and a positive real d , with d < R. Cut � with

a plane α situated at distance d from O . The spherical cap of height R − d in
� is the portion of � lying in the half-space opposite to O with respect to α.
Compute, in terms of R and d , the area of such a spherical cap.

3. An airplane is at distance h from the Earth’s surface, which is assumed to be a
sphere of radius R. If S stands for the area of the portion of the Earth’s surfaces
that can be seen by the pilot, compute S in terms of R and h.
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4. Let ABCD be a regular tetrahedron inscribed in a sphere of center O and radius
R. Compute the measures of the angles of the spherical triangle of vertices A, B

and C.
5. (TT—adapted) Let P , P1, P2, . . . , Pn be points in space, such that each Pi is

closer to P than to any other Pj .

(a) Show that n ≤ 14.
(b) Exhibit an allowed configuration with n = 13.

12.2 Euler’s Theorem

For what comes next we need a few preliminaries.
We start by recalling that, given a point P and a positive real R, the open ball of

center P and radius R is the set

B(P ;R) = {Q; PQ < R}.

Now, if A denotes a set of points in space, then we say that a point P is an
interior point of A if B(P ;R) ⊂ A for some R > 0; in particular, P ∈ A. The
interior of A is the subset Int(A) of A, formed by its interior points.

The interior of a set can be equal to the set itself, and in this case we shall say
that the set is open. For instance, the empty set1 and the whole space are open sets.
The open ball B(P ;R) is also an open set (and by the way this justifies the name
open ball), for if Q ∈ B(P ;R), then one readily sees that B(Q; r) ⊂ B(P ;R) for
r = R − PQ > 0.

A set A of points in space is closed provided its complement Ac is open. Thus,
the whole space and the empty set are also closed. It is also closed

B(P ;R)c = {Q; PQ ≥ R}

for its complement is the open ball B(P ;R), which we have just seen to be an open
set. Another example of closed set is furnished by the closed ball B(P ;R), where

B(P ;R) = {Q; PQ ≤ R}.

Indeed, B(P ;R)
c = {Q; PQ > R}; therefore, if Q ∈ B(P ;R)

c
and r = PQ −

R > 0, then B(Q; r) ⊂ B(P ;R)
c
, so that B(P ;R)

c
is open.

Once more we consider a set A of points in space. A point P is said to be a
boundary point of A if, for every R > 0, the open ball B(P ;R) intersects both A
and Ac. The boundary of A is the set ∂A, formed by its boundary points.

1By the definitions just presented, we are forced to conclude that the interior of the empty set is
itself.
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The boundary of a set can be disjoint from the set itself. Every open ball is an
example of such a situation, provided we show that ∂B(P ;R) = �(P ;R). Indeed,
our previous discussions guarantee that no point of B(P ;R) ∪ B(P ;R)

c
lies in the

boundary of B(P ;R); on the other hand, for every point Q ∈ �(P ;R), we have
Q ∈ B(P ;R)c, whereas it is immediate to check that B(Q; r) intersects B(P ;R)

for every r > 0.
The coming result brings an important relation between the concepts of closed

set and boundary.

Lemma 12.5 A set A of points in space is closed if and only if ∂A ⊂ A. Moreover,
if this the case we have

A = Int(A) ∪ ∂A.

Proof Firstly, we assume that A is closed and prove that ∂A ∩ Ac = ∅. Indeed,
since Ac is open, if P ∈ Ac, then there exists R > 0 such that B(P ;R) ⊂ Ac; in
particular, P /∈ ∂A.

Conversely, we suppose that ∂A ⊂ A and show that Ac is open; to this end, if
P is a point in Ac, we shall prove that P lies in the interior of Ac. Note first that if
the open ball B(P ;R) intersects both A and Ac for every R > 0, then we will have
P ∈ ∂A, so that P ∈ A; but this contradicts the fact that P ∈ Ac. Thus, there exists
R > 0 for which B(P ;R) intersects at most one of the sets A and Ac. However,
since P ∈ B(P ;R) ∩ Ac, we have that B(P ;R) intersects solely Ac; on the other
hand, since A ∪Ac is the whole space, it follows that B(P ;R) ⊂ Ac.

For what is left to do, if A is a closed set, then the first part gives Int(A)∪ ∂A ⊂
A. Now, we take P ∈ A and show that P ∈ Int(A) ∪ ∂A, for which we consider
two distinct cases:

• There exists R > 0 such that B(P ;R) ⊂ A: in this case, P ∈ Int(A).
• For every R > 0, we have B(P ;R) 
⊂ A: in this case, since P ∈ A, it is

immediate that P ∈ ∂A.
��

We are finally in position to define the central object of study of this section.

Definition 12.6 A polyhedron is a closed and bounded set in space, with nonempty
interior and whose boundary consists of the union of a finite number of polygons
satisfying the following conditions:

(a) Any two polygons do not lie in a single plane.
(b) If two polygons intersect, then they have exactly a vertex or an edge in common.
(c) If two such polygons P and Q do not intersect, then there exist polygons P1 =

P , P2, . . . , Pk = Q, such that Pi and Pi+1 do intersect, for 1 ≤ i < k.

A convex polyhedron is a polyhedron which is also a convex subset of space.

Pyramids and prisms are examples of convex polyhedra. For a general polyhe-
dron P , Lemma 12.5 gives ∂P ⊂ P . It can also be proved (though we shall assume
it without proof) that if two polygons of the boundary intersect along a common
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edge, then no other polygon of the boundary contains this edge. Henceforth, we
shall sometimes refer to ∂P as the surface of P , and to the polygons that compose
it as the faces of P . The edges (resp. the vertices) of P are the edges (resp. the
vertices) of its faces.

We now need the following preliminary result, in whose proof we shall use the
concept of least upper bound of a set of real numbers bounded from above (cf.
Section 7.1 of [5], for instance).

Proposition 12.7 Let P be a convex polyhedron, O a point in its interior and � a

sphere centered at O . For every point P ∈ �, the half-line
−→
OP intersect ∂P in a

single point Q. Moreover, the function

P ∈ � �→ Q ∈ ∂P

thus defined is a bijection.2

Proof For P ∈ �, let us firstly show that
−→
OP intersects ∂P at a single point. To

this end, start by noticing that the set

{X ∈ −→
OP ; X 
= O and OX ⊂ P}

is nonempty (for O belongs to the interior of P) but does not coincide with
−→
OP

(for P is bounded). Writing OX = x, the discussion above guarantees that

d := sup{x; X ∈ −→
OP and OX ⊂ P}

is well defined. If Q ∈ −→
OP is the only point for which OQ = d , we claim that

Q ∈ ∂P . In order to establish this fact, Lemma 12.5 assures that it suffices to
exclude the possibilities Q ∈ Int(P) and Q ∈ Pc.

• If Q ∈ Int(P), take R > 0 such that B(Q;R) ⊂ P , and then a point T ∈
−→
OQ ∩ B(Q;R) for which Q ∈ OT . We thus have T ∈ −→

OP , OT ⊂ P and
OT > OQ = d , which contradicts the definition of d .

• If Q ∈ Pc (which is open), take R > 0 such that B(Q;R) ⊂ Pc, and then a

point T ∈ −→
OQ ∩ B(Q;R) for which T ∈ OQ. This way, T Q ⊂ Pc, so that

d ≤ OT < OQ = d . Once more, this is a contradiction.

2At this point, if we had at our disposal the concept of continuity for functions f : � → ∂P ,
we could easily prove that this function f is a homeomorphism, i.e., a continuous bijection with
continuous inverse. Thanks to this result, the boundary of a convex polyhedron is homeomorphic
to (i.e., has essentially the same shape as) a sphere. Intuitively, such a statement means that one
can continuously deform a sphere until transform it into the boundary of P .
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We are left to showing that, for P ∈ �, the half-line
−→
OP intersects ∂P at a

single point. Arguing by contradiction, assume that
−→
OP intersects ∂P at Q and Q′,

with Q 
= Q′. Suppose Q′ ∈ OQ (the other case can be handled analogously).
Since P ∈ Int(P) and Q ∈ P , Problem 1 shows that Q′ ∈ Int(P), which is a
contradiction.

Finally, for Q ∈ ∂P , it is clear that
−→
OQ intersects � at a single point; hence, the

stated function is also surjective.

Given a (note necessarily convex) polyhedronP , we shall denote by V , E and F

its numbers of vertices, edges and faces, respectively. Also,

X (P) = V − A + F

is the Euler characteristic of P .
Theorem 12.9 below, due to Euler, is the main result of this section. Nevertheless,

before we can prove it we shall need one more auxiliary result, which is also
important in itself.

Lemma 12.8 If a polyhedron has E edges and Fk faces with k edges each, then

2A = 3F3 + 4F4 + 5F5 + · · · .

Proof Since each edge of the polyhedron lies in exactly two faces, it suffices to
note that both sides of the equality stated above count each edge of the polyhedron
exactly twice. ��

We are finally in position to state and prove Euler’s theorem.

Theorem 12.9 (Euler) Every convex polyhedron has Euler characteristic equal to
2.

Proof Let P be a convex polyhedron, O be an interior point of P , � a sphere
centered at O and

f : ∂P → �

Q �→ Q′

the inverse of the bijection defined in the previous proposition (so that f is
also a bijection). If A1A2 . . . Ak is a face of P , we claim that A′

1A
′
2 . . . A′

k =
f (A1A2 . . . Ak) is a spherical polygon in �. Indeed (cf. Fig. 12.7), it is immediate
to note that f (AiAi+1) is an arc of great circle in �, joining A′

i and A′
i+1. On the

other hand, if α is the plane passing through O and parallel to the plane of the face
A1A2 . . . Ak , then A′

1A
′
2 . . . A′

k lies in the hemisphere of � contained in the same
half-space of A1A2 . . . Ak with respect to α.
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Σ O

α

A1

A2

A3

Ak

Fig. 12.7 The effect of function f

Letting θi stand for the internal angle of A′
1A

′
2 . . . A′

k at A′
i , Corollary 12.4 gives

A(A′
1A

′
2 . . . A′

k) =
(

k
∑

i=1

θi − (k − 2)π

)

R2, (12.4)

with R denoting the radius of �.
We now add both sides of the equality above over all convex spherical polygons

obtained from the faces of P :

• for the sum of the left hand sides note that, since f is a bijection and the spherical
polygons A′

1A
′
2 . . . A′

k partition �, the sum of their areas equals the area S of �.
• concerning the sum of the right hand sides, start by observing that if a vertex A

of P belongs to the faces F1, . . . , Fj and F ′
i = f (Fi ) for 1 ≤ i ≤ j , then the

sum of the internal angles of the convex spherical polygons F ′
i at A′ is equal to

2π . On the other hand, if Fk denotes (for k ≥ 3) the number of faces of P with
exactly k vertices, then F = F3 + F4 + F5 + · · · and the sum of the right hand
sides of (12.4) is successively equal to

⎛

⎝2πV −
∑

k≥3

(k − 2)πFk

⎞

⎠R2 =
⎛

⎝2V −
∑

k≥3

kFk + 2F

⎞

⎠πR2

= (2V − 2E + 2F)πR2,

where we have used the result of Lemma 12.8 in the last equality.

However, since the sums of equal summands give equal totals, we conclude from
the above that
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Fig. 12.8 Building a polyhedron with vanishing Euler characteristic

4πR2 = S = (V − E + F) · 2πR2,

whence V − E + F = 2.

Remarks 12.10

i. Euler’s theorem is no longer valid for nonconvex polyhedra. In order to see this,
we start by cutting a cylinder of revolution with two planes, each one forming an
angle of 45◦ with the axis of the cylinder, thus getting the ellipses of Fig. 12.8,
left. Then, we inscribe in each of these ellipses the triangle having as vertices
the endpoints of the major axis and one of the endpoints of the minor axis, as
shown in Fig. 12.8, right. By joining the vertices of such triangles in pairs, we
obtain a convex polyhedron. Finally, by gluing four copies of the polyhedron
of Fig. 12.8, we obtain the nonconvex polyhedron P of Fig. 12.9. For P , one
immediately verifies that V = 12, A = 24 and F = 12, whence

X (P) = V − A + F = 12 − 24 + 12 = 0.

ii. It is possible to prove (albeit such a proof involves concepts much deeper than
those discussed here) that for every polyhedron P one has the formula

X (P) = 2 − 2g, (12.5)

where g stands for the genus of P , which can be “defined” as the “ number of
holes” of P . For the polyhedron of item i. we have g = 1, so that X (P) =
2 − 2 = 0. In this respect, see also Problem 9.

Convex polyhedra form our primordial interest along these notes. Hence, when-
ever there is no danger of confusion, from now on we shall refer to a convex
polyhedron simply as a polyhedron.
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Fig. 12.9 A (nonconvex) polyhedron with vanishing Euler characteristic

As the coming example shows, sometimes Euler’s relation is quite a useful tool
in the analysis of problems involving convex polyhedra.

Example 12.11 (OCM) We associate the integer −1 to each edge of a convex
polyhedron. Then, we associate to each vertex the product of the numbers associated
to the edges incident to it. Finally, we associate to each face the product of the
numbers associated to its edges. What are the possible values of the sum of all of
these numbers?

Proof Let P be a convex polyhedron with V vertices, E edges and F faces; let also
Vi (resp. Fi ) stand for the number of vertices (resp. faces) of P incident with (resp.
having) exactly i edges. Setting

VP = V4 + V6 + V8 + · · · , VI = V3 + V5 + V7 + · · · ,

FP = F4 + F6 + F8 + · · · and FI = F3 + F5 + F7 + · · · ,

it is immediate to see that the sum S of the numbers in the statement is given by

S = −A − VI + VP − FI + FP .
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However, since V = VP + VI and F = FP + FI , Euler’s relation furnishes

S = −E − VI + (V − VI ) − FI + (F − FI )

= (V − E + F) − 2(VI + FI )

= 2 − 2(VI + FI ).

Now, from Lemma 12.8 and Problem 5 we obtain

3VI + 4VP ≤ 3V3 + 4V4 + 5V5 + 6V6 + · · · = 2E,

and analogously

3FI + 4FP ≤ 2E.

Hence,

3(VI + FI ) + 4[(V − VI ) + (F − FI )] ≤ 4E

from where we get

VI + FI ≥ 4(V − E + F) = 8.

Also from Lemma 12.8 and Problem 5 we get

VI + (2V3 + 4V4 + 4V5 + 6V6 + · · · ) = 2E

and

FI + (2F3 + 4F4 + 4F5 + 6F6 + · · · ) = 2E,

so that VI and FI are even numbers.
Writing VI + FI = 2k, with k ≥ 4, we conclude that S = 2 − 4k, with k ≥ 4.

We claim that all of these values are attained, for which we consider two distinct
cases:

(i) k ≥ 4 is even: we take regular polygons A1A2 . . . Ak and A′
1A

′
2 . . . A′

k, centered
at points O and O ′, respectively, and positioned in space in such a way

that
←→
OO ′ is perpendicular to their planes. We now rotate A′

1A
′
2 . . . A′

k , with

center O ′ and around
←→
OO ′, of π

k
radians, thus getting a new regular polygon

A′′
1A

′′
2 . . . A′′

k . Finally, for 1 ≤ i ≤ k, we draw the line segments AiA
′′
i−1 (with

A′′
0 = A′′

k), thus obtaining a convex polyhedron with 2k vertices, 2 faces which
are k-gons and 2k triangular faces; also, each vertex of such a polyhedron is
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adjacent to exactly four others (i.e., V = V4). Therefore, for such a polyhedron
we have

S = 2 − 2(VI + FI ) = 2 − 2(0 + 2k) = 2 − 4k.

(ii) k ≥ 4 is odd: take regular polygons A1A2 . . . Ak and A′
1A

′
2 . . . A′

k−1, centered
at points O and O ′, respectively, and positioned in space in such a way that
←→
OO ′ is perpendicular to their planes. Then, impose that

←→
A1A2 ‖

←→
A′

1A
′
2 and

the remaining vertices in both polygons lie in the same half-space, of those
determined by the trapezoid A1A2A

′
2A

′
1. Drawing all line segments joining two

consecutive points in the list A2, A′
2, A3, A′

3, A4, A′
4, A5, . . . Ak , A′

1, A1, we
obtain a convex polyhedron with 2k − 2 faces with odd numbers of edges (on
face being a k-gon and 2k − 3 faces being triangular), in which V3 = 2 and
V4 = 2k − 3. Therefore, for such a polyhedron one has

S = 2 − 2(VI + FI ) = 2 − 2(2 + (2k − 2)) = 2 − 4k.

��

Problems: Sect. 12.2

1. * Let C be a convex set and A and B be points of C, with A being an interior
point. Prove that all points in the line segment AB, with the possible exception
of B, are also interior points of C.

2. Given a set A of points in space, prove that ∂A is a closed set.
3. (IMO—Shortlist) Prove that there exists no convex polyhedra with exactly 7

edges.
4. (Brazil) Prove that every convex polyhedron has an even number of faces with

an odd number of edges.
5. * In a convex polyhedron, let E denote the number of edges and Vk the number

of vertices incident to exactly k edges. Prove that 2E = 3V3+4V4+5V5+· · · .
6. If each pair of vertices of a convex polyhedron is joined by an edge, prove that

the polyhedron is a tetrahedron.
7. (IMO—shortlist) Prove that there does not exist a convex polyhedron all of

whose plane sections are triangles.
8. (IMO—shortlist) All faces of a convex polyhedron are equilateral triangles.

Prove that it has no more than 30 edges.3

9. * Show that, for every n ∈ N, there exists a polyhedron whose Euler
characteristic is equal to 2 − 2n.

3The maximum value of 30 edges is attained in regular icosahedra (see next section).
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10. (Brazil) We are given a convex polyhedron and a point P lying in its interior.
Prove that, for at least one of the faces of the polyhedron, the orthogonal
projection of P onto that face lies inside it.

11. (IMO—shortlist) A convex polyhedron has 12 faces and satisfies the following
conditions:

(a) All of its faces are isosceles triangles of side lengths x and y, with x 
= y.
(b) Each vertex is incident to either 3 or 6 edges.
(c) All dihedral angles of the polyhedron are equal.

Compute x
y

.

12.3 Regular Polyhedra

In this section we classify the regular convex polyhedra, also called Plato’s
polyhedra,4 in the sense of the following

Definition 12.12 A convex polyhedron is called regular if the two following
conditions are satisfied:

(a) All of its faces are regular polygons with the same number of edges.
(b) Each vertex is incident with the same number of edges.

We had already been presented to two distinct kinds of regular polyhedra in
Sects. 11.1 and 11.2: regular tetrahedra and cubes. These last ones are also known
as regular hexahedra, thanks to the fact they possess exactly six square faces. On
the other hand, if we join the center of each face of a cube to the centers of the four
adjacent faces, we obtain a new kind of regular polyhedron, the regular octahedron,
which has exactly eight triangular faces (cf. Fig. 12.10).

Continuing, we shall now exhibit two other types of regular polyhedra, beginning
with the icosahedron.

Fig. 12.10 The regular
octahedron ABCDEF

A

F

B

C

D

E

4In honor of Plato, one of the great philosophers of Classical Greek Antiquity, who lived in the
fifth century BC.
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Fig. 12.11 Constructing a
regular icosahedron
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Example 12.13 There exists a regular polyhedron inscribed in (i.e., with all of its
vertices lying on the surface of) a sphere �(O;R), having exactly twelve vertices,
twenty triangular faces and thirty edges. Such a polyhedron is called a regular
icosahedron.

Proof Fixa an equator � of � and let N and S be the corresponding north and south
poles (cf. Fig. 12.11). The planes parallel to the plane of �, at a distance d < R of
O , intersect � along two circles of radii r , with r = √

R2 − d2. In one such circle,
let AA′′BB ′′CC′′DD′′EE′′ be an inscribed regular decagon (note that A′′, B ′′, C′′,
D′′ and E′′ are not shown in Fig. 12.11); in the other circle, let A′B ′C′D′E′ be the

inscribed regular pentagon, with
←→
A′A′′,

←→
B ′B ′′,

←→
C′C′′,

←→
D′D′′ and

←→
E′E′′ parallel to

←→
NS .

Now, by joining S and N to the vertices of ABCDE and A′B ′C′D′E′, and
drawing line segments AA′, A′B, BB ′, B ′C, B ′D, C′D, DD′, D′E, EE′ and AE′,
we obtain a convex polyhedron with twelve vertices and twenty triangular faces, in
which each vertex is adjacent to five other vertices. Moreover,

SA = SB = SC = SD = SE =
√

(R − d)2 + r2 =
√

2R2 − 2Rd

and

NA′ = NB ′ = NC′ = ND′ = NE′ =
√

2R2 − 2Rd.

On the other hand, letting l5 and l10 respectively denote the lengths of the sides
of the regular pentagon and decagon inscribed in a circle of radius r , we have (cf.
Problem 2, page 254)
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AB = BC = CD = DE = EA = l5,

and analogously for A′B ′C′D′E′. Finally, it follows from Pythagoras’ theorem that

AA′ =
√

A′A′′2 + A′′A2 =
√

4d2 + l2
10,

and likewise all of the segments A′B, BB ′, B ′C, B ′D, C′D, DD′, D′E, EE′ and

AE′ have measure equal to
√

4d2 + l2
10.

Thus, in order to show that the convex polyhedron we have constructed is regular,
it suffices to guarantee that we can choose 0 < d < R such that

√

2R2 − 2Rd = l5 =
√

4d2 + l2
10.

In order to do this, start by noticing that Problem 2, page 254 gives l2
5 = l2

10 + r2,
so that it suffices to show that it is possible to find 0 < d < R for which

2R2 − 2Rd = l2
10 + r2 = 4d2 + l2

10.

Since d2 = R2 − r2, the second equality is equivalent to

l2
10 + r2 = 4(R2 − r2) + l2

10,

which in turn gives r = 2R√
5
. Finally, substituting this value of r in the equality

2R2 − 2Rd = l2
10 + r2, we ought to have

l2
10 = 2R2 − 2R

√

R2 − r2 − r2

= 2

(

r
√

5

2

)2

− 2 · r
√

5

2
·
√

5r2

4
− r2 − r2

= r2

(

3 −√
5

2

)

= r2

(√
5 − 1

2

)2

,

which is true (again thanks to Problem 2, page 254). ��
After the proof of Theorem 12.15, the reader will find the (seemingly arbitrary)

choices involved in the construction delineated in the previous example to be
completely natural. For the time being, let us use such example to present the last
type of regular polyhedron.

Example 12.14 There exists a regular polyhedron inscribed (i.e., with all of its
vertices) in a sphere �(O;R), having exactly twenty vertices, twelve pentagonal
faces and thirty edges. Such a polyhedron is called a regular dodecahedron.
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Proof With the previous example at our disposal, let A be a vertex and ABC, ACD,
ADE, AEF and AFB be the faces of a regular icosahedron incident at A. If V , W ,
X, Y and Z stand for the centers of those faces, respectively, it is immediate to
verify that V WXYZ is a regular pentagon whose side lengths depend only on the
lengths of the edges of the icosahedron. However, since the icosahedron has twelve
vertices, if we construct (as above) the regular pentagons corresponding to each one
of them we shall obtain a regular dodecahedron. ��

The coming result guarantees that the examples discussed so far exhaust all
possible types of regular polyhedra.

Theorem 12.15 Every regular polyhedron is a tetrahedron, a hexahedron, an
octahedron, a dodecahedron or an icosahedron.

Proof Let P be a regular polyhedron with V vertices, E edges and F faces, and
assume that each face has n > 2 edges and each vertex is incident with m > 2
edges.

Lemma 12.8 degenerates in the equality 2E = nF . On the other hand, it follows
from Problem 5, page 419, that mV = 2E. Now, Euler’s formula furnishes

2 = V − E + F = 2E

m
− E + 2E

n

or, which is the same,

2

m
+ 2

n
= 2

E
+ 1. (12.6)

In order to solve the equation above, note that if m,n ≥ 4 then

2

E
+ 1 = 2

m
+ 2

n
≤ 2

4
+ 2

4
= 1,

which is impossible. Therefore, m = 3 or n = 3. We shall consider these two cases
separately:

(i) m = 3: then 2
n
= 2

E
+ 1

3 = E+6
3E

, whence

n = 6E

E + 6
= 6 − 36

E + 6
.

However, since E > 3, we conclude that E+6 is a divisor of 36 which is larger
than 9, so that E + 6 = 12, 18 or 36. We then have the possibilities

(V ,E, F,m, n) = (4, 6, 4, 3, 3), (8, 12, 6, 3, 4), or (20, 30, 12, 3, 5).

(ii) n = 3: since (12.6) is symmetric with respect to m and n, we obtain from (i)
that
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(V ,E, F,m, n) = (4, 6, 4, 3, 3), (6, 12, 8, 4, 3), or (12, 30, 20, 5, 3).

The above discussion assures that there is at most five distinct possibilities for
(V ,E, F,m, n). Nevertheless, it could well happen that at least one of them would
correspond to more than one type of regular polihedron, so that the list of regular
polyhedra we have so far did not exhaust all possibilities. We shall show that this
does not happen, and in order to do this we look separately to each one of the
possibilities above:

• (V ,E, F,m, n) = (4, 6, 4, 3, 3): in this case, since we have four vertices and
six edges, each vertex must be joined to the three remaining ones. However,
since all faces are triangular, it is immediate that this case corresponds to regular
tetrahedra.

• (V ,E, F,m, n) = (6, 12, 8, 4, 3): we have six vertices, each of which is joined
to four others, and eight triangular faces. Pick a vertex A and let B, C, D, E

denote the vertices adjacent to it, corresponding to the faces ABC, ACD, ADE,
AEB. Letting F denote the sixth and last vertex, it is immediate to check that
F must also be adjacent to B, C, D, E, so that the polyhedron is a regular
octahedron.

• (V ,E, F,m, n) = (8, 12, 6, 3, 4): an analysis quite similar to that of the previous
item assures that this case corresponds to regular hexahedra.

• (V ,E, F,m, n) = (12, 30, 20, 5, 3): fix a vertex S of the polyhedron, so that
exactly five faces are incident to S, all of which triangular. Let SAB, SBC,
SCD, SDE, SEA be such faces (cf. Fig. 12.12). Let AA′B stand for the other
face having AB as an edge. If A′BC was a face, we would have only four
edges incident to B, which is impossible; hence, the other face having A′B as
an edge is A′BB ′, with B ′ 
= C. Analogously, there exist vertices C′, D′, E′

Fig. 12.12 The case of an
icosahedron
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as in Fig. 12.12, i.e., such that BB ′C, B ′CD, B ′C′D, C′DD′, DD′E, D′EE′,
AEE′, AA′E′ are faces of the polyhedron. At this point we have already used
eleven vertices, so that, letting N stand for the twelveth one, it must be adjacent to
A′, B ′, C′, D′, E′. Therefore, this case corresponds to that of regular icosahedra.

• (V ,E, F,m, n) = (20, 30, 12, 3, 5): this case corresponds to regular dodecahe-
dral and will be left as an exercise for the reader (see Problem 3).

��

Problems: Sect. 12.3

1. Show that it is possible to tile the space with regular tetrahedra and octahedra.
2. * Compute, as a function of R, the length of the edges of a regular icosahedron

inscribed in a sphere of radius R.
3. * Complete the proof of Theorem 12.15, showing that the case of the dodecahe-

dron corresponds to (V ,E, F,m, n) = (12, 30, 20, 5, 3).
4. * The purpose of this problem is to compute the length of the edges of a

regular dodecahedron inscribed in a sphere �(X;R) (the argument delineated
in Example 12.14 makes it clear that such a dodecahedron does exist). To this
end, cut a hemisphere of � with parallel planes α and α′, such that d(X; α) = d

and d(X; α′) = d ′, with d > d ′. Let �(O; r) (resp. �′(O ′; r ′)) denote the
intersection of α (resp. α′) with �, and ABCD (resp. A′B ′C′D′E′) be a regular

pentagon inscribed in � (resp. �′), so that
←→
AB ‖

←→
A′B ′. Finally, adjust d and

d ′ in such a way that, for some points A′′, B ′′, C′′, D′′ and E′′ on �, all of
ABB ′A′′A′, BCC′B ′′B ′, CDD′C′′C′, DEE′D′′D′ and EAA′E′′E′ are regular
pentagons. Now, do the following items:

(a) Use the pentagons ABCDE, ABB ′A′′A′, BCC′B ′′B ′, CDD′C′′C′,
DEE′D′′D′ and EAA′E′′E′ to form a shell. Then, gluing such a shell
with a copy of it along the polygonal line A′A′′B ′B ′′C′C′′D′D′′E′E′′, show
that one obtains a regular dodecahedron inscribed in �.

(b) If l and l′ are the lengths of the edges of the pentagons ABCDE and
A′B ′C′D′E′, show that

l′ =
(

√
5 + 1

2

)

l and r ′ =
(

√
5 + 1

2

)

r.

(c) Use Pythagoras’ theorem to conclude that

l2 = AA′2 = (d − d ′)2 + (r ′ − r)2.

Then, use the fact that l =
√

5−√5
2 r and r ′ =

(√
5+1
2

)

r to get d − d ′ = r .
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(d) Note that d = √
R2 − r2 and d ′ = √

R2 − r2, and solve the system of
equations

√

R2 − r2 −
√

R2 − r ′2 = r and r ′ =
(

√
5 + 1

2

)

r

to get r = 2
√

2R√
15+3

√
5

, and hence l = 2R

√

3−√5
6 .



Chapter 13
Volume of Solids

In this chapter we present the concept of volume of a solid and compute the volumes
of various of the solids studied so far. Cavalieri’s principle will turn to be a central
tool for our exposition; in particular, we shall use it to compute the volume of a
sphere of a given radius.

13.1 The Concept of Volume

The volume of a solid must be some kind of measure of the portion of space it
occupies. Then, we hope that two disjoint solids have a combined volume which is
equal to the sum of the volumes occupied by each one of them separately. Also, if
one of the solids is contained into another, it is reasonable to ask that the volume of
the first is less than or equal to that of the second. Finally, in order to numerically
express this portion of occupied space we need a unit of measure to serve as
reference.

It is our purpose in this section to develop the ideas above as rigorously as
possible, taking into account our intended scope and audience. To this end, we first
need to formulate a general concept of solid, in a way that it captures our everyday
experience and suffices for our purposes.

Definition 13.1 A solid is a set S of points in space satisfying the following
conditions:

(a) S is closed, bounded and has nonempty interior.
(b) For all points A,B ∈ S there exists a polygonal line A1A2 . . . Ak joining A =

A1 to B = Ak and contained in Int(S) ∪ {A,B}.
Intuitively, item (b) of the above definition guarantees that every solid has a

single piece (cf. Fig. 13.1).
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Fig. 13.1 A solid S

A = A1 B = A3

A2

S

α α

e

G

c = x0 d = xn

Fig. 13.2 A solid of revolution

Obviously, every convex polyhedron and every closed ball are examples of solids.
Other relevant examples are solid cylinders (resp. cones) of revolution, i.e., the
closed and bounded portion of space whose boundary is a cylinder (resp. cone) of
revolution.

More generally (cf. Fig. 13.2), a solid of revolution of axis e is the closed and
bounded region of space whose boundary is the union of the portion of a surface of
revolution of axis e delimited by two planes α, α′⊥e, with the closed disks delimited
by the intersection circles of α and α′ with the surface of revolution. Obviously,
every solid of revolution is a solid in the sense of Definition 13.1.

We now need a sufficient condition for the measurability of a solid, so that it is
possible to measure its volume. We isolate such a condition in the definition below,
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which is a first formulation of Cavalieri’s principle,1 alluded to in the introduction
to this chapter.

Definition 13.2 (Cavalieri’ Principle I) A solid S is measurable2 if S ∩α is a set
of measurable area, for every plane α intersecting Int(S).

The definition above is such that all of the solids presented so far are measurable.
For instance, since every planar section (that intersects the interior) of a closed ball is
a closed disk and every planar section of a convex polyhedron is a convex polygon,
we conclude that closed balls and convex polyhedra are measurable solids. On the
other hand, Theorems 10.25 and 10.26 guarantee that solid cylinders and cones of
revolution are also measurable.

Finally, it is possible to show that general solids of revolution are also measur-
able, as long as they are generated by the rotation, around the axis of abscissas, of
graphs of functions f : (a, b) → R of class C2 (i.e., twice differentiable and with
continuous second derivative.3

To each measurable solid S it is possible to associate a positive real numberV(S),
called the volume of S, in such a way that the following conditions are satisfied:

1. If S is a cube of edge length 1, then V(S) = 1.
2. If S1 and S2 are measurable solids with Int(S1) ∩ Int(S2) = ∅ and S1 ∪ S2 also

measurable, then V(S1 ∪ S2) = V(S1) + V(S2).
3. If S1 and S2 are measurable solids with S1 ⊂ S2, then V(S1) ≤ V(S2).
4. (Cavalieri’s principle II). If S1 and S2 are measurable solids and α is a plane

such that A(S1 ∩ α′) = A(S2 ∩ α′) for every plane α′ ‖ α, then V(S1) = V(S2).
5. If S1 is a measurable solid and S2 can be obtained from S1 by means of a

translation along a vector ao longo de um vetor, a rotation along an axis or a
reflection along a plane, then S2 is also measurable and V(S1) = V(S2).

As we commented before, a rigorous proof of the existence of volume function
S �→ V(S) with the above properties is a consequence of the modern (and much
deeper) theory of measure and integration (cf. Chapter 2 of [9]), and is far beyond
the scope of these notes. Hence, we shall consider items 1. to 5. above as our
postulates of volume measurement.

1Bonaventura Cavalieri, Italian mathematician of the sixteenth century.
2The cornerstone of the usual notion of measurability of solids is the concept of Jordan content
(cf. [19] or [22]); in this context, one proves that a solid is measurable if and only if its boundary
has null Jordan content. In the modern theory of measure and integration, it is possible to show
(cf. Chapter 2 of [9], for instance) that our definition of measurability is implied by the usual one,
and that the two versions of Cavalieri’s principle we present here, as well as our Postulates 2., 3.

and 5. for the measurement of volumes (see below), are theorems.
3What must be proved is that the intersection of the solid with any plane that intersects its interior
is a region of measurable area. If the plane is transversal to the surface of revolution that defines the
solid (in the sense that the plane is not tangent to the surface at any point), then the measurability of
the corresponding planar section is a fairly simple consequence of the Implicit Function Theorem
(see [22]). The general case follows from this one, through a slightly more complicated argument.
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On the other hand, as we shall see in the rest of this section, the above set of
postulates will allow us to easily compute the volumes of all of the solids we have
met so far. In this sense, the result below is central for all that follows.

Proposition 13.3 If P is a parallelepiped of basis B and height h, then

V(P) = A(B)h.

Proof Let us do the proof in several steps.

(i) P is a rectangular parallelepiped whose edges have lengths a, b, c ∈ N: by
partitioning P into abc cubes, each of which of edge length 1, it follows from
postulates 1. and 2. of volume measurement that

V(P) = abc = A(B)h.

(ii) P is a rectangular parallelepiped whose edges have lengths a, b, c ∈ Q: let
a = m

q
, b = n

q
and c = p

q
, with m,n, p, q ∈ N. Let us pile q3 copies of P in a

way to obtain a rectangular parallelepiped Q of edge lengths m, n and p. Item
(i), together with postulates 1. and 2. of volume measurement, furnish

q3V(P) = V(Q) = mnp,

and hence

V(P) = mnp

q3 = A(B)h.

(iii) P is a rectangular parallelepiped with edge lengths a, b, c ∈ R: let (an)n≥1,
(bn)n≥1 and (cn)n≥1 be sequences of rational numbers such that an < a, bn <

b, cn < c for every n ∈ N, and an → a, bn → b, cn → c as n → +∞. Also,
let Pn be a rectangular parallelepiped contained in P and with edges of lengths
an, bn, cn. Item (ii), together with postulate 3. of volume measurement, gives

V(P) ≥ V(Pn) = anbncn

for every n ∈ N. Letting n → +∞ in such an inequality and taking into
account the arithmetic properties of convergent sequences, we get V(P) ≥
abc.

Now, take sequences (an)n≥1, (bn)n≥1, (cn)n≥1 of rational numbers, with
an > a, bn > b, cn < c for every n ∈ N and an → a, bn → b, cn → c as n →
+∞. By a reasoning similar to the one above, we conclude that V(P) ≤ abc.
Therefore, V(P) = abc = A(B)h.

(iv) P is any parallelepiped: let P ′ be a rectangular parallelepiped with the same
altitude h as P , whose basis B′ is a rectangle of area equal to that of the basis
B of P and such that B and B′ lie in the same plane α, with P and P ′ situated
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in the same half-space with respect to α. If α′ is a plane parallel to α, the
equality of the heights of both parallelepipeds assures that P ∩ α′ 
= ∅ if and
only if P ′ ∩ α′ 
= ∅. Moreover, when this does happen, the corresponding
intersections P ∩ α and P ∩ α′ are quadrilaterals respectively congruent to B
and B′, thus of equal areas. Hence, item (iii), together with Cavalieri’s principle
II, guarantees that

V(P) = V(P ′) = A(B′)h = A(B)h.

��
Now that we already know how to compute the volume of parallelepipeds, let us

see that the calculation of volumes of solid prisms and cylinders is a trivial task.

Corollary 13.4 If P is a prism of basis B and height h, then

V(P) = A(B)h.

Proof Let P ′ denote a parallelepiped with the same height h as P , whose basis
B′ is a parallelogram of area equal to that of B, and such that B and B′ lie in
the same plane α; suppose, further, that P and P ′ are in the same half-space with
respect to α.

If α′ is a plane parallel to α, the equality of heights for the prism and the
parallelepiped guarantees that P ∩ α′ 
= ∅ if and only if P ′ ∩ α′ 
= ∅. Moreover,
when this does happen, such intersections are respectively congruent to B and B′,
hence have equal areas. Therefore, the second form of Cavalieri’s principle, together
with the previous proposition, gives

V(P) = V(P ′) = A(B′)h = A(B)h.

��
For the coming corollary, we say that the basis and height of a solid cylinder of

revolution C are respectively the basis and height of the cylinder that constitutes its
boundary.

Corollary 13.5 If C is a solid cylinder of revolution of radius R and height h, then

V(C) = πR2h.

Proof Exercise (cf. Problem 2). ��
In what comes next, we show how to compute the volume of pyramids. To this

end we shall need an auxiliary result, which is interesting in itself.

Lemma 13.6

(a) Let T be a tetrahedron of basis B and height h, and α be a plane parallel to B,
situated at a distance h′ from the vertex of T , with h′ < h. Then, α intersects T
in a triangle B′, similar to B, such that
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Fig. 13.3 Cutting a
tetrahedron with a plane
parallel to the basis

A

B C

D

O

B C

D

O

A(B′)
A(B)

=
(

h′

h

)2

.

(b) Let T1 and T2 be two tetrahedra of equal heights, and bases B1 and B2,
respectively. If A(B1) = A(B2), then V(T1) = V(T2).

Proof For item (a), let T = ABCD, B = BCD and B = B ′C′D′, with A, B, B ′
and A, C, C′ being collinear points (cf. Fig. 13.3).

Assume that the feet O and O ′ of the perpendiculars dropped from A to α and α′,
respectively, lie in BCD and B ′C′D′ (the proof in the other case is quite similar to

the one we shall present). Since α′ ‖ α, we have
←→
BC‖

←→
B ′C′,

←→
BD‖

←→
B ′D′ and

←→
BO‖

←→
B ′O ′, so that ABC ∼ AB ′C′, ABD ∼ AB ′D′ and ABO ∼ AB ′O ′. Therefore,

B ′C′

BC
= AB ′

AB
= AO ′

AO
= h′

h
,

and Proposition 5.11 gives

A(B′)
A(B)

= A(B ′C′D′)
A(BCD)

=
(

B ′C′

BC

)2

=
(

h′

h

)2

.

For (b), Postulate 5. of volume measurement allows us to suppose that B1 and B2
lie in the same plane α and that T1 and T2 are situated in the same half-space with
respect to α. Since the tetrahedra have equal heights, for every plane α′ ‖ α we have
T1 ∩ α′ 
= ∅ if and only if T2 ∩ α′ 
= ∅.
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Now, let α′ be a plane parallel to α, which intersects T1 and T2 along triangles
B′

1 and B′
2, respectively. If h denotes the common height of T1 and T2, and h′ the

distance from the vertex of T1 (or of T2) to α′, then the result of item (a) gives

A(B′
1)

A(B1)
=
(

d

h

)2

= A(B′
2)

A(B2)
.

Mas, como A(B1) = A(B2), segue daí que A(B′
1) = A(B′

2). Therefore, the second
form of Cavalieri’s principle assures that T1 and T2 have equal volumes. ��

The previous lemma, together with some ingenuity, suffices for us to compute
the volume of a tetrahedron.

Proposition 13.7 If T is a tetrahedron of basis B and height h, then

V(T ) = 1

3
A(B)h.

Proof Let UV WX be the vertices of T and UV W be its basis B (cf. Fig. 13.4).
Construct points Y and Z such that UV XY and V WZX are parallelograms. Then,
UY and WZ are equal and parallel to V X, so that are also equal and parallel to
each other, and UWZY is a parallelogram too. Then, UV WYXZ is a triangular
prism of bases UV W and XYZ, and height h; letting V denote its volume, we have
V = A(UV W)h = A(B)h.

Now, split the prism into the three tetrahedra UV WX, UWXY and WXYZ. If
we show that these three tetrahedra have equal volumes, it will follow from what we
did above, together with postulate 2. of volume measurement, that

3V(T ) = V(UV WX) + V(UWXY) + V(WXYZ) = V = A(B)h,

and this will finish the proof.
For what is left to do, we have the following:

Fig. 13.4 Partitioning a
triangular prism into three
tetrahedra of equal volumes

U W

ZY

X

V
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• Since UV XY is a parallelogram, we have A(UV X) = A(UXY). However, since
the altitudes of UV WX and UWXY dropped from W are equal, item (b) of the
previous lemma assures that V(UV WX) = V(UWXY).

• Since UWZY is a parallelogram, we have A(UWY) = A(WYZ). Also, UWXY

and WXYZ have equal altitudes with respect to X, so that a further application
of item (b) of the previous lemma gives V(UWXY) = V(WXYZ).

��
We are finally in position of computing the volume of a pyramid.

Corollary 13.8 If P is a pyramid of basis B and height h, then

V(P) = 1

3
A(B)h.

Proof Let V be the vertex of the pyramid and B = A1A2 . . . Ak be its basis. For
2 ≤ k ≤ n − 1, let Tk denote the tetrahedron V A1AkAk+1 and Bk = A1AkAk+1
(cf. Fig. 13.5).

If h stands for the height of T , then h is also the height of Tk , for 2 ≤ i ≤ n− 1.
Hence, postulate 2. of volume measurement, together with the result of the previous
proposition, give us

V(P) = V(T2) + · · · + V(Tn−1)

= 1

3
A(B2)h + · · · + 1

3
A(Bn−1)h

= 1

3
(A(B2) + · · · + A(Bn−1))h

= 1

3
A(B)h.

��

Fig. 13.5 Partitioning a
pyramid into tetrahedra of
equal volumes

An

A1

A2 A3

A4

V
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The last result of this section teaches us how to compute the volume of a solid
cone of revolution. As the attentive reader can easily notice, its proof is quite similar
to that of item (b) of Lemma 13.6.

Corollary 13.9 If C is a solid cone of revolution of radius R and height h, then

V(C) = 1

3
πR2h.

Proof Let T denote a tetrahedron with the same height h as C, and whose basis B
is a triangle of area equal to that of the disk D that forms the basis of the cone.
Assume, without loss of generality, that B and D lie in the same plane α, and that C
and T are contained in the same half-space, of those determined by α (cf. Fig. 13.6).

If α′ is a plane parallel to α, the equality of the heights of the cone and the
tetrahedron assures that T ∩ α′ 
= ∅ if and only if C ∩ α′ 
= ∅. For such an α′, let
h′ denote the distance from the vertex of the cone (or of the tetrahedron) to α′, let
C ∩ α′ = D′ and T ∩ α′ = B′. If R′ stands for the radius of D′, then Lemma 13.6
gives

A(B′)
A(B)

=
(

h′

h

)2

=
(

R′

R

)2

= πR′2

πR2 = A(D′)
A(D)

.

However, since A(B) = A(D), it comes that A(B′) = A(D′).
Finally, in view of the last equality above, the second form of Cavalieri’s principle

furnishes

V(C) = V(T ) = 1

3
A(B)h = 1

3
A(D)h = 1

3
πR2h.

��

C

D

D

T

B

B
h

h

α

α

Fig. 13.6 Computing the volume of a cone of revolution
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We finish this section by using the material presented here to compute the volume
of a diamond.

Example 13.10 A convex polyhedron P has two parallel faces F1 and F2. Each
other face is a triangle whose vertices are also vertices of F1 or F2. Prove that

V (P) = d

6

(

A(F1) + A(F2) + 4A(S)
)

,

where d stands for the distance between the planes of F1 and F2, and S for the
planar section of P through a plane parallel to and equidistant from F1 and F2.

Solution For the sake of clarity, we shall stick to the case in which both F1 and
F2 are quadrilaterals, the general case being entirely analogous. Also, in the figure
below the quadrilaterals F1 = ABCD and F2 = EFGH resemble parallelograms,
but this is totally immaterial and will not play a role in the proof.

A B

C
D

E
F

G

H

W
X

YO

d = 2h

By selecting a point O in the interior of the planar section S, we partition our
solid into the eight triangular pyramids of apex O and having each of ABE, BEF ,
BCF , CFG, CDG, DGH , ADH and AHE as bases (in the figure above we depict
only the lateral edges of OBCF , together with OX and OY ), together with the two
quadrangular pyramids of apex O and having each of F1 and F2 as bases.

Since the distance between the planes of F1 and S (and also between those of F2
and S) is h = d

2 , we get

V(OABCD) = 1

3
A(ABCD)h = 1

6
A(F1)d;

likewise,

V(OEFGH) = 1

6
A(F2)d.

In what concerns OBCF , observing that A(BCF) = 4A(XYF) we get
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V(OBCF) = 4V(OXYF) = 4 · 1

3
A(OXY)h = 2

3
A(OXY)d.

If we perform analogous computations for the remaining triangular pyramids, we
will always get 2

3A(T )d as result, with T denoting a triangle whose vertices are O

and two consecutive vertices of S. Therefore, by adding these eight expressions, we
will obtain

2

3

∑

T
A(T )d = 2

3
A(S)d.

It now suffices to add the three contributions above to arrive at the desired
formula. ��

Problems: Sect. 13.1

1. We are given a rectangular parallelepiped of edge lengths a, b and c. Compute
the volume of the octahedron whose vertices are the centers of the faces of it.

2. * Prove Corollary 13.5.
3. Let ABCD denote a tetrahedron trirectangular at A, with AD = a, BD = b

and CD = c. Show that:

(a) V(ABCD) = abc
6 .

(b) The height of ABCD with respect to ABC is equal to abc
2A(ABC)

.

4. ABCD is an isosceles tetrahedron with edge lengths a, b and c. Show that

V(ABCD) = 1

6
√

2

√

(a2 + b2 − c2)(a2 + c2 − b2)(b2 + c2 − a2).

5. ABCD is a tetrahedron of total area S, and r denotes the radius of its inscribed
sphere. Prove that

V(ABCD) = Sr

3
.

Then, use the above formula to show that:

(a) If ABCD is trirectangular at A, with AD = a, BD = b and CD = c,
then

r = abc

ab + bc + ca + 2A(ABC)
.

(b) If ABCD is isosceles with edge lengths a, b and c, then
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r = 1

2
√

2A(ABC)

√

(a2 + b2 − c2)(a2 + c2 − b2)(b2 + c2 − a2).

6. Point P lies in the interior of an isosceles tetrahedron, and d1, d2, d3, d4 stand
for the distances of P to its faces. Prove that:

(a) The value of d1 + d2 + d3 + d4 does not depend on the position of P in the
interior of the tetrahedron.

(b) If the tetrahedron is regular with height h, then d1 + d2 + d3 + d4 = h.

7. Let r stand for the radius of the sphere inscribed in a given tetrahedron ABCD.
Prove that there exists a height h of the tetrahedron for which h ≥ 4r .

8. Let ABCD be a tetrahedron with barycenter G (cf. Problem 9, page 387).
Prove that the four tetrahedra ABCG, ABDG, ACDG and BCDG have equal
volumes.

9. A plane passes through the vertex of a cone of revolution and forms, with the
plane of the basis of the cone, an angle of 45◦. It is also known that the plane
intersects the basis of the cone along a chord of length 2

√
3, and which is seen

from the center of the basis through a central angle of 60◦. Compute the volume
of the cone.

10. (OCM) A right triangle is rotated around each one of its edges, thus giving us
three solids of revolution. Which one of these solids has the greatest volume?

11. In the notations of Example 13.10, do the following items:

(a) Show that the volume of P remains unchanged if we translate the faces Fi

along the planes containing them.
(b) Let F1 be a regular n-gon with edge length a and F2 be a regular n-gon

with edge length b. If the angle between one edge of F1 and one edge of
F2 is equal to π

n
, compute the volume of P in terms of a, b, n and d .

12. Compute, in terms of R, the volumes of a regular dodecahedron and icosahe-
dron inscribed in a sphere of radius R.

13. Cut a right n-gonal prism P , of basis B1 and B2, by using a plane α, which
intersects all of its lateral edges. We say that α divides P into two frustums
of right prism say P1 and P2, of bases respectively B1 and B2; moreover, the
portions of the lateral edges of P contained in Pi are also called the lateral
edges of the frustum of right prism Pi (in Fig. 13.7, we show a frustum of right
triangular prism, with basis ABC and lateral edges of lengths a, b and c). Prove
that the volume of a frustum of right prism is equal to the product of the area of
its basis by the arithmetic mean of the lengths of its lateral edges do tronco.

14. Consider, in the cartesian plane, the parabolas y = x2 + 4x + 7 and y =
x2 − 2x + 3. Compute the volume of the solid obtained by the rotation, around
the axis of abscissas, of the portion of the plane bounded by such parabolas and
by the lines x = 0 and x = 3.

15. (IMO—adapted)
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Fig. 13.7 A frustum of right
triangular prism

a

b − a

c − a

AB

C

b

c

(a) Let LMN be a triangle such that LN, MN ≤ 1 and LM = x, with
0 < x < 2. If H denotes the foot of the altitude relative to LM , prove that

NH ≤
√

1 − x2

4 .
(b) ABCD is a tetrahedron with only one edge of length greater that 1. Prove

that V(ABCD) ≤ 1
8 .

16. Let ABCD be a tetrahedron for which A(ABC) = A(ABD). If α denotes the
bisector plane of the dihedral angle formed by the planes (ABC) and (ABD)

and which contains ABCD, prove that α divides ABCD into two solids of
equal volumes.

17. (IMO—shortlist, adapted) ABCD is an isosceles tetrahedron, and M and N

are the midpoints of edges AB and CD, respectively. Prove that any plane

containing the straightline
←→
MN divides the tetrahedron into two solids of equal

volumes.
18. (IMO shortlist—adapted) Let P be a point in the interior of a regular tetrahe-

dron A1A2A3A4, of volume 1. The four planes passing through P and parallel
to the faces of the tetrahedron divide it into 14 convex polyhedra. Let f (P )

be the sum of the volumes of those polyhedra which are neither tetrahedra nor
parallelepipeds. If h denotes the height of the tetrahedron, show that:

(a) f (P ) = 1 − 1
h3

(

∑

i d3
i + 6

∑

i<j<k didjdk

)

.

(b) 0 < f (P) < 3
4 .
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13.2 The Volume of Solids of Revolution

From a heuristic point of view, the volume of a closed ball B = B(O;R) can be
computed as follows: consider a convex polyhedron P , with faces F1, F2, . . . , Fn,
inscribed into the sphere �(O;R) that forms the boundary of B. Also, for 1 ≤ i ≤ n

let Pi be the pyramid of vertex O and basis Fi , and let hi be the height of Pi with
respect to Fi . Then,

V(P) = V(P1) + V(P2) + · · · + V(Pn)

= 1

3
A(F1)h1 + 1

3
A(F2)h2 + · · · + 1

3
A(Fn)hn.

Now, define the diameter δi of Fi as the largest possible distance between any
two of its points, and set δ = max{δ1, δ2, . . . , δn}. For a sufficiently small δ, we
hope that

hi
∼= R, V(P) ∼= V(B)

and

A(�) ∼= A(F1) + A(F2) + · · · + A(Fn).

If this is so, then the computations we did in Example 12.1 give

V(B) ∼= V(P) = 1

3
A(F1)R + 1

3
A(F2)R + · · · + 1

3
A(Fn)R

= R

3
(A(F1) + A(F2) + · · · + A(Fn))

∼= R

3
A(�) = R

3
· 4πR2 = 4

3
πR3.

In the coming result, we use Cavalieri’s principle to show that the argument above
does give the correct value for the volume of a closed ball of radius R. The reasoning
presented is a variation of that of the Italian mathematician of the sixteenth century
Luca Valerio.

Theorem 13.11 The volume of a closed ball of radius R is equal to 4
3πR3.

Proof Let C be a solid right cylinder of height 2R, whose bases are two circles of
radius R (cf. Fig. 13.8, left).

Inscribe two cones of revolution in C, both with height R and bases equal to those
of the cylinder; this way, the vertex of both cones coincides with the midpoint of the
axis of the cylinder.
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Fig. 13.8 Computing the volume of a closed ball

Let α be the plane containing one of the bases of the cylinder and B = B(O;R)

be a closed ball of center O and radius R, tangent to α and lying (with respect to α)
in the same half-space as C (cf. Fig. 13.8, right).

If S stands for the solid formed by the portion of the cylinder which lies outside
both cones, then we shall show that V(B) = V(S). Once we have done that, we can
compute the volume of B as the difference between the volumes of the cylinder and
of the union of the two cones:

V(B) = V(C) − 2V(cone) = πR2 · 2R − 2 · 1

3
πR2 · R = 4

3
πR3.

For what is left to do, let α′ be a plane parallel to α, contained in the same half-
space as S and B with respect to α, and situated at distance d from O , with d < R.
Since the height of C equals the diameter of B, it follows that α′ intersects S if and
only if it intersects B. This being so, we have that α′ cuts S along an annulus of radii
UW = d and UZ = R (look at Fig. 13.8), whereas it cuts B along a disk of center
A and radius AB = √

R2 − d2. Therefore, the areas of such sections are always
equal, and Cavalieri’s principle assures that S and B have equal volumes. ��

The coming example applies the formula of the previous theorem. We shall also
need to recall that if a rectangular parallelepiped has edge lengths a, b and c, then
the radius of its circumscribed sphere is 1

2

√
a2 + b2 + c2.

Example 13.12 (Romania) A cube is decomposed in a finite number of rectangular
parallelepipeds by means of planes parallel to its faces. If the volume of the sphere
circumscribed to the cube is equal to the sum of the volumes of the spheres
circumscribed to the parallelepipeds, prove that all of the parallelepipeds are also
cubes.

Proof Let AB, AC and AD be three edges of the cube, and suppose that the planes
used to partition the cube divide AB into line segments of lengths a1, a2, . . . , ar ,
divide AC into line segments of lengths b1, b2, . . . , bs , and AD into line segments
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of lengths c1, c2, . . . , ct . Then, the cube is partitioned into n = rst rectangular
parallelepipeds and, if � stands for the edge length of the cube, then

� =
r
∑

i=1

ai =
s
∑

j=1

bj =
t

∑

k=1

ck.

Let R denote the radius of the sphere circumscribed to the cube and Rijk the
radius of the sphere circumscribed to the rectangular parallelepiped of edge lengths
ai , bj , ck . As we have noticed above,

R = �
√

3, Rijk =
√

a2
i + b2

j + c2
k

and the stated condition translates into the equality

R3 =
∑

i,j,k

R3
ijk .

Now, by successively applying Jensen’s inequality to the function x �→ x3/2, the
inequality between the arithmetic and quadratic means and the arithmetic-geometric
means inequality (cf. [5], for instance) we get

(2R)3 =
∑

i,j,k

(2Rijk)
3 ≥ n

(1

n

∑

i,j,k

(a2
i + b2

j + c2
k)
)3/2

= 1√
n

(

st

r
∑

i=1

a2
i + rt

s
∑

j=1

b2
j + rs

t
∑

k=1

c2
k

)3/2

≥ 1√
n

(

st · r
(�

r

)2 + rt · s
(�

s

)2 + rs · t
(�

t

)2)3/2

= �3

√
n

( st

r
+ rt

s
+ rs

t

)3/2 ≥ �3

√
n
· (3 3

√
rst

)3/2

= �3
√

n
· (3 3

√
n
)3/2 = (�

√
3)3 = (2R)3.

Thus, all of the above inequalities are actually equalities, which gives a1 = a2 =
. . . = ar , b1 = b2 = . . . = bs , c1 = c2 = . . . = ct and r = s = t . ��

Back to the development of the theory, and conversely to the circle of ideas
delineated at the beginning of this section, we shall now present another heuristic
reasoning, this time showing how the formula for the volume of a closed ball allows
one to envisage the formula for the area of a sphere. To this end, consider two
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concentric spheres � and �′, of radii R and R + ε, respectively (with ε > 0), and
let S be the solid bounded by � ∪ �′.

On the one hand, the volume of S is also equal to the difference between the
volumes of the closed balls with boundaries �′ and �:

V(S) = 4

3
π(R + ε)3 − 4

3
πR3 = 4π

(

R2ε + Rε2 + ε3

3

)

.

To link the computation above with the area A of �, we partition it into a finite
number of spherical triangles. If such triangles are sufficiently small and ε > 0 is
also small with respect to R, it is reasonable to assume that one can approximate S
by the union of a finite number of “prisms” of height ε, each having the spherical
triangles as one of its bases. This being so, we can approximate the volume of S by
the sum of the volumes of these “prisms”; however, since the sum of the areas of
their bases is equal to A, this reasoning gives

εA ∼= 4π

(

R2ε + Rε2 + ε3

3

)

,

so that

A ∼= 4π

(

R2 + Rε + ε2

3

)

.

Finally, it is also plausible to assume that the approximation above becomes better
and better as we let ε → 0, so that the actual value of A is A = 4πR2.

We shall finish this section by deducing a quite useful formula for the computa-
tion of the volume of a general solid of revolution. As in Sect. 12.1, we shall need
the rudiments of the Integral Calculus, for which we refer the reader to [3] or [5],
for instance.

Theorem 13.13 Let f : (a, b) → R be a positive and differentiable function, with
continuous derivative. If [c, d] ⊂ (a, b) and S stands for the solid of revolution
generated by the rotation of the graph of f|[c,d] around the axis of abscissas, then

V(S) = π

∫ d

c

f (x)2dx.

Proof For u, v ∈ [c, d] and r > 0, let C(u, v; r) denote the solid right circular
cylinder of radius r , with bases centered at (u, 0) and (v, 0) and perpendicular to
the axis of abscissas.

Consider real numbers c = x0 < x1 < · · · < xn = d , for which �xi := xi−xi−1
equals d−c

n
, for 1 ≤ i ≤ n. If

mi = min{f (x); x ∈ [xi−1, xi]} and Mi = max{f (x); x ∈ [xi−1, xi]},
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c = x0 xi−1

(xi−1, f(xi−1))

xi

(xi, f(xi))

d = xn

Fig. 13.9 Computing the volume of a solid of revolution

we have (cf. Fig. 13.9)

n
⋃

i=1

C(xi−1, xi;mi) ⊂ S ⊂
n
⋃

i=1

C(xi−1, xi;Mi).

Hence, postulates 2. and 3. of volume measurement give

n
∑

i=1

V(C(xi−1, xi;mi)) ≤ V(S) ≤
n
∑

i=1

V(C(xi−1, xi;Mi)),

so that

n
∑

i=1

πm2
i �xi ≤ V(S) ≤

n
∑

i=1

πM2
i �xi.

Now, note that the first and last expressions in the above inequalities are respectively
equal to the lower and upper sums of the restriction of πf 2 to the interval [c, d] and
with respect to the partition {x0, x1, . . . , xn}. Letting n → +∞, we obtain

π

∫ d

c

f (x)2dx ≤ V(S) ≤ π

∫ d

c

f (x)2dx,

as wished. ��
The coming example shows how to apply the formula deduced in the previous

result to compute the volume of a closed ball in another way.
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Example 13.14 In the notations of Example 12.1, let f : (−R,R) → R be the
function given by f (x) = √

R2 − x2, so that the solid of revolution generated by
the rotation of the graph of f around the axis of abscissas is a closed ball B, of
radius R, except for the two antipodal points N and S.

Now, given 0 < ε < R, let B[−R+ε,R−ε] be the intersection of B with the region
of the space bounded by the planes perpendicular to the axis of abscissas at the
points (−R + ε, 0) and (R − ε, 0). Since

B \ {N, S} =
⋃

0<ε<R

B[−R+ε,R−ε]

and B[−R+ε,R−ε] ⊂ B[−R+ε′,R−ε′] for 0 < ε < ε′, it follows from the previous
theorem, together with the Fundamental Theorem of Calculus (cf. [5], for instance)
that

V(B) = lim
ε→0+V(B[−R+ε,R−ε])

= lim
ε→0+π

∫ R−ε

−R+ε

(R2 − x2)dx

= lim
ε→0+π

(

R2x − x3

3

)

∣

∣

∣

R−ε

−R+ε
dx

= 4

3
πR3.

Problems: Sect. 13.2

1. A spherical segment is a solid obtained as the intersection a closed ball with
the region in space delimited by two parallel planes. The radii of the planar
sections of the ball through such planes are said to be the radii of the spherical
segment, whereas the distance between the planes is its height. Show that the
volume V of a spherical segment of radii r1 and r2 and height h is given by

V = πh

6

(

3(r2
1 + r2

2 ) + h2
)

.

2. Let ABC be a triangle of area S, and let r be a straightline in the plane of
ABC but not intersecting it. If d is the distance from the barycenter of ABC to
r , prove that the volume of the solid of revolution obtained by the rotation of
ABC around r is 2πSd .

3. Generalize the definition of a solid of revolution to encompass the region of
space generated by the rotation, around the axis of abscissas, of the region
situated between the graphs of two functions f, g : [a, b] → R satisfying the
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following conditions: f and g are continuous in [a, b] and such that 0 ≤ g < f

in (a, b). More precisely, show that the only reasonable definition for the
volume of such a solid is

π

∫ b

a

(f (x)2 − g(x)2)dx.

4. We are given in a plane a line r and a circle �(O;R), with O situated at distance
d > R from r . If T is the solid of revolution generated by the rotation of �

around r , compute the volume of T in terms of R and d (the solid T is called
the torus of revolution of radii R and d).

For Problems 5 to 10, we shall need a small physical digression. Given a
simple region R in the plane, we want to define what one understands by the
barycenter of R. To this end, let us imagine that R is a thin plate of metal,
of homogeneous density and total mass m; then, the barycenter or center of
gravity G of R is the point of application of the weight vector mg for purposes
of torque of R. This way, if we partition R in a finite, albeit very large number
of tiny plates Ri , of masses mi and barycenters Gi , we ought to have

∑

j

mj

−→
GGj= 0, (13.1)

the null vector.
5. Let f : [a, b] → R be a function which is continuous in [a, b] and positive

in (a, b), and let R be the region lying under its graph (and above the x-axis).
Show that the point G(xG, yG) such that

xG =
∫ b

a
xf (x)dx

∫ b

a
f (x)dx

and yG =
1
2

∫ b

a
f (x)2dx

∫ b

a
f (x)dx

is the only reasonable definition for the barycenter of R.
6. We are given in the plane a triangle ABC, with ̂B, ̂C < 90◦. Consider a

cartesian system of coordinates of origin B, in which C(a, 0), with a > 0, and
A(b, h), with 0 ≤ b < a and h > 0. In such a system, show that the triangular
region bounded by ABC coincides with the region R under the graph of the
function f : [0, a] → R, given by

f (x) =
{

hx
b

, if 0 ≤ x ≤ b
h(x−a)
b−a

, if b ≤ x ≤ a.
.

Then, show that the barycenter of ABC, computed in coordinates with the aid
of its original definition (cf. Example 6.4), coincides with the barycenter of R,
computed with the aid of the formulas of the previous problem.
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7. Generalize Problem 5 to the case of the region R situated between the graphs
of the functions f, g : [a, b] → R, continuous in [a, b] and such that g < f in
(a, b).

8. Prove Pappus’ theorem: in the notations of the previous problem, if g ≥ 0, e

denotes the x-axis and d stands for the distance from the barycenter of R to e,
then the volume of the solid of revolution obtained by the rotation of R around
e is V = 2πAd , where A is the area of R.

9. Use Pappus’ theorem, together with the formula for the volume of a sphere, to
compute the position of the barycenter of a semi-disk of radius R.

10. Use Pappus’ theorem to compute again the volume of the torus of revolution
with radii R and d (cf. Problem 4).



Chapter 14
Hints and Solutions

Section 1.1

5. Start by drawing a line r and marking a point A on it. Then, mark B ∈ r so that
AB = 5cm. Finally, point C can be found as one of the intersection points of the
circles of center A and radius 6cm, and of center B and radius 4cm.

Section 1.2

6. Review the proof of Proposition 1.9.
7. Apply Proposition 1.9.
9. Use the construction of Example 1.7 to transport angle 
 A′O ′B ′ to an angle

with vertex O , and such that one of its sides coincides with
−→
OB.

10. Our assumptions assure that ÂOB = B ̂OC = ÂOC. Now, note that the sum
of these three angles is equal to 360◦.

11. If α, β and γ are the measures of the angles involved, then α + β + γ = 360◦.
Assuming that α ≤ β ≤ γ , conclude that α ≤ 120◦ ≤ γ .

Section 1.3

1. For the induction step, let A1A2 . . . AkAk+1 be a convex polygon of k + 1 sides.
Diagonal A1Ak divides it into two convex polygons: the triangle A1AkAk+1 and
the convex k-gon A1A2 . . . Ak . Observe that the diagonals of A1A2 . . . AkAk+1
fall into one of three disjoint sets: (a) A1Ak; (b) the diagonals of A1A2 . . . Ak;
(c) the diagonals AiAk+1, for 2 ≤ i ≤ k− 1. Now, add the numbers of diagonals
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of each of these types and apply the induction hypothesis to conclude that there
are exactly k(k−3)

2 of the type (b).
2. A convex hexagon has 9 diagonals, and from one vertex of a convex n-gon one

can trace n − 3 diagonals.
3. Let n, n+1 and n+2 denote the numbers of sides of the polygons. Use the result

of Proposition 1.12 to get a second degree equation with n as unknown.

Section 2.1

1. Consider scalene triangles ABC and A′BC in the plane, such that AB = A′B
and AC = A′C of distinct orientations. This intuitive concept can be perceived
by noting that, if one walks along the perimeter of triangle ABC, from A to B

and then to C, and then walks along the perimeter of triangle A′BC, from A′ to
B ′ and then to C′, then one of these two walks goes clockwise, whereas the other
one goes counterclockwise.

Section 2.2

1. Follow the construction steps described in Examples 2.9, 2.10 and 2.11.
2. Start by constructing the perpendicular to r passing through A.
3. Start by constructing triangle ABM , where M is the midpoint of the side BC.

4. Let M be the midpoint of side BC and A′ ∈ −→
AM such that A′M = AM. Show

that A′MC ≡ AMB, and then use this fact to construct triangle AA′C. After you
have done that, construct the midpoint M of AA′ and get vertex B as the point

on
−→
CM for which BM = CM .

5. Split α in half (constructing its bissector), and then construct triangle ABP ,
where P is the foot of the internal bissector of ABC relative to A. Then, obtain

vertex C as the intersection of
−→
BP and

−→
AX, where X is chosen in such a way

that
−→
AP is contained in 
 BAC and B̂AX = α.

6. If M is the midpoint of BC, we have shown in Proposition 2.13 that ABM and
ACM are congruent. Conclude that AM is the internal bissector of 
 BAC and
that B ̂MA = C ̂MA. Finally, use the fact that B ̂MA+C ̂MA = 180◦ to conclude
that AM is the altitude of ABC relative to A.

7. If P and H coincide, show that case ASA implies ABP ≡ ACP ; if M and H

coincide, use SAS instead of ASA.
8. Since OA = OB, it suffices to apply the results of the two previous problems.
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Section 2.3

1. Glue two copies of the first right triangle along the other leg; do the same with
two copies of the other right triangle. This way, we get two isosceles triangles,
and it suffices to apply the SSS congruence case to them, together with the
result of Problem 6, page 30.

2. Start by showing that ADE is isosceles of basis DE, so that BD = CE. Then,
apply the SAS congruence case to conclude that triangles DBC and ECB are
congruent, and hence that D̂CB = ÊBC.

3. We consider the case of the medians relative to the sides AB and AC (the
analysis of the other two cases is totally analogous). Letting Mb and Mc be the
midpoints of the sides AC and AB, respectively, use the SAS congruence case
to show that triangles BCMb and CBMc are congruent.

4. If E is the foot of the perpendicular dropped from P to the side BC, use de
AAS congruence case to show that triangles BAP and BEP are congruent.

5. Apply Corollary 2.18.
6. Mark the angle opposite to β and apply Corollary 2.18.
7. Trace, through the vertex of the angle of measure γ , the line t parallel to r and

s. Then, apply Corollary 2.18 twice.
8. Adapt, to the present case, the hint given to the previous problem.

9. Trace half-line
−→
BD and apply the exterior angle theorem to triangles ABD and

BCD.
10. Let X be the intersection point of AB and CD, and let Y be the intersection

point of AE and CD. Apply the exterior angle theorem to triangles BCX and
DEY to conclude that the desired sum is equal to 180◦.

11. Use (a) and Theorem 2.19 to prove (b). Now, let α1, . . . , αn be the interior
angles of the polygon and β1, . . . , βn be the corresponding exterior angles, so
that αi + βi = 180◦ for 1 ≤ i ≤ n. Termwise addition of these equalities,
together with (b), give (c).

12. Use the fact that both triangles ABM and ACM are isosceles to conclude that
ÂBM = B̂AM = α and ÂCM = ĈAM = β. Then, use this to show that the
sum of the measures of the interior angles of triangle ABC is twice the measure
of 
 BAC.

13. Make ̂B = 2β and ̂C = 2γ . Then, use Theorem 2.19 to compute B̂IC and
B̂AC in terms of β and γ .

14. Apply the result of the previous problem.
15. Adapt, to the present case, the hint given to Problem 13.
16. Make ̂B = ̂C = α and ĈDE = θ . Then, apply the exterior angle theorem to

compute ÂDE = ÂED in terms of α and θ . Finally, use the fact that.
17. Separately consider the cases A /∈ r and A ∈ r . For the case A /∈ r , suppose that

there are two distinct lines s and t , both perpendicular to r and passing through
A. Letting B and C be the intersection points of s and t with r , respectively,
compute the sum of the measures of the interior angles of triangle ABC to
reach a contradiction.
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18. Make B̂AD = ĈAD = α. Then, use the exterior angle theorem to compute
ÂDC and ÂDB in terms of α, ̂B and ̂C.

19. Let ̂A = α. Use Proposition 2.13 and the exterior angle theorem several times
to compute the angles of triangles AEF , DEF , CDE and BCD in terms of α.
Then, apply Theorem 2.19 to triangle ABC.

20. Start by showing that the pairs of triangles AMB and DME, AMF and DMC,
BCM and EMF are congruent. Then, use these congruences to show that ̂A =
̂D, ̂B = ̂E and ̂C = ̂F . Finally, apply the result of Problem 11.

21. For item (a), trace line r , passing through B and parallel to AC. If R and

S are the feet of the perpendiculars dropped from P to the lines r and
←→
AC ,

respectively, start by showing that the desired sum is equal to RS. Do the same
for item (b), showing first that what we want to compute is exactly |QU−QV |,
with U and V being the feet of the perpendicular dropped from Q to r and

←→
AC ,

respectively.
22. Trace DG ‖ BC, with G ∈ AB, and then mark point F as the intersection

of CG and BD. Compute B̂EC and conclude, with the aid of Problem 2, that
BE = BC = BF . Then, conclude that ÊFG = 40◦ = ÊGF . Finally, use
these facts to show that triangles EGD and EFD are congruent.

Section 2.4

1. Use triangle inequality to show that the length of the third side cannot be 14cm.
2. Apply the triangle inequality. It is also worth observing that a < b + c, b <

a + c, c < a + b automatically imply a, b, c > 0; for instance, 2a = (a + b −
c) + (a + c − b) > 0.

3. Apply the triangle inequality, together with the result of Proposition 2.23.
4. Apply the triangle inequality to sides QR of AQR, PR of BPR and PQ of

CPQ. Then, add the inequalities thus obtained.
6. Factorise a3 + b3 and use twice the fact that a + b > c.
7. Apply the triangle inequality to triangles PAC and PBD.
8. Argue by induction on n ≥ 3. The initial case is given by the triangle inequality.

For the induction step, let a convex polygon A1A2 . . . AkAk+1 be given, with
k ≥ 3; apply the induction hypothesis to A1A2 . . . Ak and the triangle inequality
to A1AkAk+1 to show that A1Ak+1 <

∑k
j=1 AjAj+1.

9. We illustrate the proof with the situation depicted in the figure below, the
general case being pretty much the same.

In order to show that the perimeter of ABCDEF is less than that of
UV WXY , apply the generalization of the triangle inequality, as given by the
previous problem, to each one of the polygons AUG, BGV H , CHI , DWJ ,
EJXY , FKL and add the results. For instance, in AUG write AB + BG <

AU + UG; in BGV H write BC + CH < BG + GV + V H , and so on.
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A B

C

D
E

F

U = L

V

W = I

X

K = Y

G

H

J

10. If A′ and D′ denote the symmetrics of A and D with respect to r and s,
respectively, let B and C be the intersections of segment A′D′ with r and s,
also respectively. Choose B ′ ∈ r and C′ ∈ s are such that B ′ 
= B or C′ 
= C.
Arguing in a way analogous to that of the solution of Example 2.28 to obtain
AB + BC + CD < AB ′ + B ′C′ + C′D. To this end, apply the result of the
previous problem.

11. Let B ′ be the symmetric of B with respect to AC and C′ the symmetric of C

with respect to AB ′. If P ′ is the symmetric of P with respect to AC, we have
PQ = P ′Q and CP = CP ′ = C′P ′, so that

BQ + PQ + CP = BQ + P ′Q + C′P ′ > BC′ = 2l.

12. Suppose, without loss of generality, that PA < AR. Through P , draw the

parallel
←→
QR to

←→
BC , with Q ∈ AB and R ∈ AC. Then, use Proposition 2.23

and the triangle inequality to show that AP < AR and

BP + PC < BQ + QR + CR < BQ + AQ + CR.

13. If airplanes coming from cities B and C landed in city A, use Proposition 2.23
to conclude that B̂AC > 60◦. Then, use this fact to show, by contradiction, that
we cannot have six airplanes landing at a single city.

14. Arguing by contradiction if the foot of the perpendicular from P to
←→

A1A2
does not lie inside this segment, then P ̂A1A2 ≥ 90◦ or P ̂A2A1 ≥ 90◦.
Assume, without loss of generality, that P ̂A2A1 ≥ 90◦. Then, since the feet
of the perpendiculars dropped from P to the remaining sides of the n-gon do
not lie inside them too, we successively conclude that P ̂A3A2 ≥ 90◦, . . . ,
P ̂AnAn−1 ≥ 90◦, P ̂A1An ≥ 90◦. Therefore, PA1 > PA2 > . . . > PAn >

PA1, which is an absurd.
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Section 2.5

1. Let AB and CD be the line segments, so named that ABCD is a convex
quadrilateral. If AC ∩ BD = {M}, show that triangles ABM and CDM are
congruent. Then, apply the result of Proposition 2.35.

2. Apply the midsegment theorem three times.
3. Apply the midsegment theorem four times to conclude that the quadrilateral

having as its vertices the midpoints of ABCD has pairs of opposite sides of
equal lengths.

4. Let M be the midpoint of BC and P and Q be the feet of the perpendiculars
dropped from A and M to r , respectively. By Proposition 2.40, it suffices to
show that AP = 2 MQ. To this end, mark points R and S such that R is
the midpoint of AG and S is the foot of the perpendicular dropped from R

to r; then, apply Proposition 2.38 to show that triangles RSG and MQG are
congruent.

5. Let M be the midpoint of the side BC and G the barycenter of ABC.
Proposition 2.38 and Example 2.6 guarantee that we can construct triangle
BGM . From this, it is immediate to obtain vertex C. Finally, mark on the half-

line
−→
MG the point A such that G ∈ AM and AG = 2 GM.

6. Let G be the barycenter and Ma and Mb be the midpoints of the sides BC

and AC, respectively. Let also AB = c, AC = b and BC = a. For the
first part, apply item (b) of Example 2.27, together with Proposition 2.38. For
the second, start by applying the triangle inequality to MaGMb, together with
Proposition 2.38, to conclude that 2

3 (ma+mb) > c
2 ; then, argue in an analogous

way to obtain 2
3 (mb + mc) > a

2 and 2
3 (ma + mc) > b

2 . By termwise adding
these three inequalities, we obtain the desired one.

7. Note that R is the barycenter of triangle AQB and apply the result of
Proposition 2.38.

8. Let M and N be the midpoints of CD and AB, respectively. Draw through M

the parallels to the legs and mark points P and Q, in which such parallel lines

intersect AB. Assuming, without loss of generality, that
←→
MP ‖←→

AD, conclude
that APMD and BCMQ are parallelograms. Then, use this fact to show that
M ̂MQ = 90◦, to compute PQ and show that MN is the median relative
to the hypotenuse of the right triangle PMQ. Finally, apply the result of
Corollary 2.44.

9. Letting M be the point of intersection of the diagonals of ABCD, use the
formula for the midsegment of a trapezoid twice to show that the sum of the
distances of A and C to r is equal to the sum of the distances of B and D to r .

10. Trace CE ‖ AD, with E ∈ AB. Then, conclude that AECD is a parallelogram,
and use this fact to show that triangle BCE is isosceles of basis CE.

11. Mark point E on AB, such that BE = BC. Then, show that AECD is a
parallelogram.



14 Hints and Solutions 455

12. Let ABCD be a trapezoid of bases AB and CD and legs BC and AD, such
that AB = a, BC = b, BC = c and AD = d . Draw, through C, the parallel
to AD and suppose that such a line intersects basis AB at E. Then, construct
triangle EBC with the aid of Example 2.6.

13. If M is the midpoint of BC, use Corollary 2.44 to conclude that triangle ABM

is equilateral.
14. Apply Corollary 2.44 to triangles BCHc and BCHb.
15. Mark points G and H , with G being the midpoint of BC and H the intersection

point of half-lines
−→
EG and

−→
AB. Establish the congruence of triangles BGH

and CGE, and then use the stated condition to conclude that triangle AEH is
isosceles of basis EH . Finally, apply the result of Problem 6, page 6, together
with the congruence of triangles ABG and ADF .

16. Successively construct rectangles BCD′A′ and CD′A′′B ′, with A′B = AB

and B ′C = BC. Then, let Q′ and Q′′ be the symmetrics of Q with respect to

the straightlines
←→
AB and

←→
BC , respectively, so that Q′ ∈←→

AD and Q′′ ∈ A′D′;
let also P ′ be the symmetric of P with respect to

←→
BC and R the symmetric

of Q′′ with respect to
←→
CD′, so that P ′ ∈ CD′ and R ∈ A′′D′. Show that

the perimeter of MNPQ is equal to Q′M + MN + NP ′ + P ′R and that
AQ′ = A′′R. Finally, apply the result of Problem 8, page 8.

17. Suppose AB < AC (the case AB = AC is trivial and the case AB > AC

is entirely analogous to the one we are looking at). Let Q be the point of

intersection of side AC with half-line
−→
BP ; show that P is the midpoint of

BQ and, then, apply the midsegment theorem to triangle BQC.

Section 3.1

1. The center of the desires circle must be at a distance r from the point A and
belong to the perpendicular bisector of the line segment AB. Show that there is
a solution if AB = 2r and two solutions if AB < 2r .

3. After we have drawn a segment AB of length c, vertex C must belong to the

circle centered at B and with radius a, as well as to the line
←→
AX such that

B̂AX = α.
4. A lies on the circle centered at the midpoint of BC and of radius ma , but cannot

be on
←→
AB .

6. Once we have constructed the side BC, the vertex A is found as the intersection

of the parallel to
←→
BC at distance ha with the circle of center B and radius c.

7. Obviously, vertex A is the point of intersection of r and s. Then, B belongs to
r and to the parallel to s at distance hb. Vertex C is constructed analogously.

8. B lies in two loci: the circle of center A and radius a, and the locus of the points
of the plane which are at a distance b from r (cf. Example 3.3).
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9. Start by drawing a line r (which will contain side AC) and marking a point C

on it. Then, get B as the intersection of these two loci: the circle of center C

and radius a, and the parallels to r at a distance hb r .
10. Letting B1 and B2 be two distinct points on r , and M1 and M2 be the midpoints

of segments AB1 and AB2, respectively, M1M2 is a midsegment of triangle
AM1M2. Now, apply the result of Problem 2, page 58, to conclude that the
height of AM1M2 relative to A is half the length of the height of AB1B2 relative
to the same vertex.

11. Apply the result of Problem 8, page 31, together with Proposition 3.5.
12. Use the result of Problem 8, page 31 to show that the desired locus is the

diameter of � perpendicular to r , except for its endpoints.

13. Assuming that the problem has been solved, mark on the line
←→
BC and out of

the side BC points B ′ and C′ such that B ∈ B ′C, C ∈ BC′ and BB ′ = c,
CC′ = b. Then, note that B ′C′ = 2p and, by the exterior angle theorem,
ÂB ′C = β

2 and ÂC′B = γ
2 .

14. Start by showing that, at an isosceles right triangle, the height relative to the
hypotenuse has length equal to half that of the hypotenuse. Then, apply the
result of Proposition 2.40 twice to show that M is at a constant distance from
←→
AB .

Section 3.2

1. Draw the circle � of center O and radius OB = OC. Apart from the fact that
A ∈ �, we cannot say anything else about it. Indeed, whichever position along
� we choose for A (except those occupied by B and C), we will automatically
have OA = OB and OA = OC, so that O will indeed be the circumcenter of
ABC.

2. Find A as the intersection of two loci: half-line
−→
BX, such that X̂BI = ÎBC and−→

BI is contained in 
 XBC, and half-line
−→
CY , such that ŶCI = ÎCB and

−→
CI is

contained in 
 YCB.

3. A is the intersection of two loci: the perpendicular to
←→
BC passing through H and

the perpendicular to
←→
BH passing through C.

4. Look at P as the orthocenter of a triangle having A as one of its vertices.
5. For the converse, assume first that H and I coincide. If Ha stands for the foot

of the altitude relative to BC, note that Ha ∈ BC; the sum of the angles of
ABHa then gives 1

2
̂A + ̂B = 90◦; analogously, show that 1

2
̂A + ̂C = 90◦ and

1
2
̂B+̂C = 90◦, so that ̂A = ̂B = ̂C = 60◦. Now, suppose that H and O coincide.

Use the facts that
←→
AO ⊥ ←→

BC and BO = CO to conclude that que
←→
AO is the

perpendicular bisector of BC, and hence that AB = AC; accordingly, show
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that AB = BC. Finally, assume that I and O coincide. Then, AI = BI , so
that 1

2
̂A = 1

2
̂B; likewise, show that 1

2
̂A = 1

2
̂C.

6. Let M and N stand for the midpoints of AC and AB, respectively, and H for
the orthocenter. If H ′ denotes the symmetric of H with respect to N , show
that H ′

̂AM = 90◦, and then construct A as the intersection of a semicircle of

diameter H ′M with the perpendicular to
←→
MN through H .

Section 3.3

1. Let s be a line passing through P , distinct from the tangent t constructed as in
Proposition 3.16. Let O be the center of � and α be the measure of the acute
angle formed by s and t . Mark point Q ∈ s, lying in the same half-plane as O

with respect to t and such that P ̂OQ = 2α. Show that Q ∈ �.
2. Assuming that the problem has been solved, let O be the center of one such

circle. Then,
←→
AO ⊥r at A, so that O belongs to the line s, perpendicular to r

at A. Note that the point A itself does not belong to the locus.
3. Let O be the center of one of the desired circles (we shall show that there are

two of them). The previous problem assures that O lies in the perpendicular to
r through P . On the other hand, since O is at the same distance from r and s,
it also belongs to the bisector of one of the angles formed by them.

4. If O is the center of such a circle, then the distance from O to r is equal to R.
5. Assume the problem has been solved and let O be the center of one of the

desired circle. Then, O belongs to the bisector of one of the angles formed by
r and s, and is at distance R from r . There are four solution circles.

6. Letting O be the center of one such circle, we know that O is at equal distances
from r and s, as well as from r and t . Hence O is found as the intersection point
of the parallel to r and s situated at equal distances from them, and the internal
bisector of one of the angles formed by r and t . There are two solutions.

7. First note that P ∈ �1 ∩ �2 if and only if PO1 ≤ R1 and PO2 ≤ R2; in this
case, use the triangle inequality to conclude that |R1−R2| ≤ O1O2 ≤ R1+R2.
Now, look separately at each of the items above.

8. Let �′ be a circle of center O ′ and radius R′. If O ′ ∈ ←→
AO \{A} and R′ = AO ′,

show that �′ is tangent to � at A.
9. If �′ has center O ′, radius r and is tangent to �, then Problem 7 gives OO ′ =

R ± r .

10. Letting R be the point of tangency of
←→
BC and �, item (a) of Proposition 3.28

gives BR = BP and CR = CQ. Use these relations to conclude that the
perimeter of ABC is equal to AP + AQ.

11. Letting P be the tangency point, Proposition 3.28 gives M̂AP = 1
2B̂AP and

N̂AP = 1
2D̂AP .
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12. Let B, C and R denote the points of tangency of
←→
AP ,

←→
AQ and

←→
PQ with

�, respectively. By Proposition 3.28 we have P ̂OR = 1
2B ̂OR and Q̂OR =

1
2ĈOR. Now, use the fact that the sum of the angles of ABOC is equal to
360◦.

13. Note first that X̂BY = 180◦ − B̂XY − B̂YX. Then, use the inscribed angle
theorem to show that the measures of the angles 
 AXB and 
 AYB do not

depend on the direction of
←→
XY .

14. Apply the inscribed angle theorem to show that triangles DEF and BEF are
both isosceles.

15. If O is the point on AP such that PQ = BP , show that triangle BPQ is
equilateral, and hence that ÂQB = 120◦. Then, use the hypotheses, together
with the facts already deduced and the inscribed angle theorem to show that
triangles ABQ and CBP are congruent by AAS.

16. In both cases, adapt the argument in the proof of item (a) of Proposition 3.21.
17. Show that the center of these arcs are the symmetric, with respect to AB, of the

centers of the arcs capable of 180◦ − α on AB.
18. After having constructed a line segment BC of length a, obtain vertex A as the

point of intersection of two loci: the arcs capable of α on BC and the parallels

to
←→
BC at distance ha . You will find four solutions, symmetric in pairs with

respect to
←→
AB and to the perpendicular bisector of BC.

19. If ̂A = α, look at A as the intersection of two arcs capable of α
2 , respectively

on BM and CM . Then, use the fact that BM = CM to get AB = AC.
20. Use the fact that M̂AP = N̂AP = 45◦ to obtain A as the intersection of two

arcs capable of 45◦, one on MP and the other on NP . Then, mark B ∈ −→
AM

and D ∈ −→
AN such that AB = AD = l.

21. Use the result of Problem 13, page 39.
22. Firstly, note that there are four such common tangents: two external common

tangents, which leave both circles in a single half-plane, and two internal
common tangents, which leave the circles in opposite half-planes. Let us look
at the construction of an external common tangent r (for the construction of
the internal ones, just adapt what we are about to describe). Let O and O ′ be
the centers and R and R′ the radii of � and �′, respectively, and T and T ′ the
tangency points of r with � and �′, also respectively. Assuming, without loss
of generality, that R > R′, draw line s, parallel to r and passing through O ′,
and mark the point S of intersection of the radius OT with s. Triangle OO ′S
is right at S and such that OS = R − R′; construct it to obtain the point S

and, then, mark the intersection T of the half-line
−→
OS with �; finally, draw the

desired common tangent r as being the line parallel to s and passing through T .
23. Assuming that the problem has been solved, let M and N be the midpoints of

line segments AX and AY , respectively, so that MN = l
2 . Construct triangle
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O1O2P , right at P and such that
←→
O1P ‖ ←→

MN . Show that there will be a solution
if and only if O1O2 ≥ l

2 .
24. Look at the hint given to the previous problem.
25. First of all, consider the three arcs capable of 120◦, on the sides of ABC and

located outside the triangle. Then, apply the construction of Problem 23.
26. Carefully analyse the hints given to the two previous problems, trying to adapt

them to the condition of greatest possible side length for MNP .
27. Assuming that the problem has been solved, let A′ be the point on the half-line

−→
BA such that BA′ = l. With the aid of the exterior angle theorem, show that
B̂A′C = α

2 . Now, construct A′ as the intersection of the two following loci: the
circle of center B and radius l and the arcs capable of α

2 on BC. Finally, obtain
A as the intersection of A′B with the perpendicular bisector of segment A′C.

28. Mark point A′ ∈ −→
BA \AB, such that AA′ = AC. Then, apply the exterior

angle theorem to show that B̂A′C = 1
2B̂AC. Now, apply the result of

Example 3.25 to show that the circle of center M and radius MB = MC passes

through A′. Finally, use this fact, together with
←→
MN ⊥

←→
A′B , to conclude that

BN = A′N .

Section 3.4

1. Let R be the length of the circumradius, and a and b those of BC and AC.
Draw a circle of radius R, choose a point C on it and mark chords AC and BC

on it, such that AC = b and BC = a.
2. Use the inscribed angle theorem to show that M̂AN = 90◦.
3. In order to show that AM⊥NP , compute the interior angle formed by those

chords. Argue analogously to show that BN⊥MP and CP⊥MN .
4. If ABC is the triangle formed by the points of intersection of the given lines,

the desired points are the incenter and the excenters of ABC.
5. We look at the case in which ABC is an acute triangle (the other cases are

entirely analogous). We have

ÔAC = 1

2
(180◦ − ÂOC) = 1

2
(180◦ − 2̂B) = 90◦ − ̂B = B̂AH.

Now, letting I be the incenter of ABC, we have

H ̂AI = B̂AI − B̂AH = ĈAI − ÔAC = ÔAI.

6. Let ABC be an acute triangle (the proof in the remaining cases is quite similar),
H be its orthocenter, Ha the foot of the altitude relative to A and P the other

point of intersection of
−→
AH with the circumscribed circle. Since

←→
HHa ⊥ ←→

BC ,
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it suffices to show that HHa = HaP . To this end, use the inscribed angle
theorem to establish the congruence, by ASA, of triangles BHaP and BHaH .

7. Let � be the portion of the circumscribed circle lying below
←→
BC . Use the result

of the previous problem to show that the desired locus is the arc symmetric of

� with respect to
←→
BC .

8. Use the result of Problem 15, page 39, to show that Ia varies along one of the
arcs capable of 90◦ − α

2 on BC.
9. Start by showing that AH is the bisector of 
 I1HI2; then, show that I1̂AI2 =

90◦ − 1
2I1 ̂HI2 and apply the result of the previous problem.

10. Adapt the hint given to Problem 20, page 83, applying the result of Proposi-
tion 3.37 to obtain two points on the diagonal AC, for instance.

11. Letting M be the midpoint of BC, use the result of Problem 17, page 59, to
compute PM in terms of AB = c and AC = b; then, compute QR in terms
of a and b with the aid of Proposition 3.36 and use the result of Problem 12,
page 39.

12. In the notations of Fig. 3.31, note that triangle ANIa is right at N and such
that AN = p, NIa = ra ; hence, we can thus construct it. After that trace the
excircle relative to BC (of center Ia and radius ra), as well as the other tangent
to it passing through A. Now, note that we can mark on AN the tangency point
E of the incircle with side AC, since EN = a. After that, mark the incenter
I of ABC as the point of intersection of AIa with the perpendicular to AN

passing through E. Finally, trace the incircle and one of the common internal
tangents to the incircle and the excircle relative to A (cf. Problem 22, page 83)
to get points B and C.

13. Let M be the other intersection of
←→
AI with the circumcircle of ABC. Use the

inscribed angle theorem to show that both ABO and BEM are equilateral, and
hence that OM = DB and (by Proposition 3.37) IM = BM = BE. Finally,

note that
−→
BE ⊥ −→

MI and
−→
BD ⊥ −→

MO to conclude that D̂BE = O ̂MI and,
thus, that DBE ≡ OMI .

Section 3.5

1. Letting � be the circle of diameter AB and P its intersection point with
←→
BC ,

use the inscribed angle theorem to show that ÂPC = 90◦.
2. For item (a), start by showing that BCHbHc is a cyclic quadrilateral; then,

conclude that Hb
̂HcC = Hb

̂BC and hence that ÂHcHb = Hb
̂CB. For (b), use

(a), together with the fact that Hc
̂AO = B̂AO = 90◦− 1

2 ·ÂOB = 90◦−ÂCB.
3. Let A, B, C, D, E and F be the six points of intersection of the four lines, such

that A, B and C are collinear, with E ∈ BF , D ∈ AF and E ∈ CD. If P 
= A

is the other point of intersection of the circumcircles of triangles ACD and
ABF , it suffices to show that P belongs to the circumcircles of triangles BCE
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and DEF . To this end, use the fact that quadrilaterals ACPD and PBAF are
cyclic to obtain

P̂CE = P ̂AD = P ̂AF = P ̂BF = P ̂BE.

4. Firstly, note that B̂CD = 90◦. Then, successively show that M̂BQ = M̂NQ

and MNBQ is cyclic; from this, conclude that M̂NB = 90◦. Following,
successively show that M̂DP = M̂NP and MDNP is cyclic; then, show that
M̂PD = 90◦.

5. If E is the foot of the perpendicular dropped from P to
←→
AC , show that P ̂QA =

P̂CA = P̂CE = P ̂DE.
6. Use the result of the previous problem to reduce the present one to the

computation of 
 QAQ′, with Q and Q′ being the points of � obtained from P

and P ′, respectively, as there.
7. Assuming that the polygon is cyclic, argue as in the proof of Proposition 3.9 to

conclude that the perpendicular bisectors of its sides all pass through a single
point.

8. Use Pitot’s theorem, together with the computations of Proposition 3.36.
9. First assume that the polygon does possess an inscribed circle �, of center O . If

A is one of its vertices and B and C are the feet of the perpendiculars dropped
from O to the sides incident with A, show that triangles OAB and OAC are
congruent, so that B̂AO = ĈAO . For the converse, argue in an analogous way.

10. Use that EPCN , ABCD and PEQD are cyclic to show that N ̂PE = Q̂PE;
argue in a similar way for the remaining vertices of MNPQ and, then, apply
the result of the previous problem.

11. Argue in a way analogous to that of the first part of the proof of Pitot’s theorem.
12. Let AB = a and BC = b. Assuming the problem has been solved, mark point

D on the arc
�

AC of � not containing B, and let CD = x and AD = y.
Firstly, show that we can assume a 
= b, say a < b, so that we must have
x − y = b − a > 0. Now, if E ∈ CD satisfies CE = b − a, then E lies
in the circle of center C and radius b − a; use the fact that ADE is isosceles
and ABCD is cyclic to show that E also lies in one of the arcs capable of
180◦ − 1

2ÂBC on AC.

Section 4.1

1. Apply Thales’ theorem.
2. Set AB = a, AP1 = x and AP2 = y; then, use the given equality to show that

x = y.
3. Adapt the construction steps listed in Example 4.4.
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4. Let P be the foot of the internal angle bisector relative to BC. Draw through B

the parallel to
←→
AP and mark its intersection point B ′ with

←→
AC . From this point

on, proceed as in the case of the external angle bisector in the text.
5. Verify that the argument in the proof of the angle bisector theorem, delineated in

the hint given to the previous problem, remains valid in the present case to show
that AB = AC.

6. Apply the angle bisector theorem and the construction of the fourth proportional
to construct a line segment of length AC.

7. Apply the internal bisector theorem to show that BM

AB
= CN

AC
. Then, apply the

partial converse of Thales’ theorem.
8. Let G be the barycenter and Ma , Mb and Mc be the midpoints of the sides BC,

AC and AB, respectively. Mark point P ∈ −→
GMa such that GMa = MaP . Since

the diagonals of GCPB intersect at their midpoints, quadrilateral GCPB is a
parallelogram, and hence BP = GC. Now, Proposition 2.38 guarantees that
GP = 2

3ma , GB = 2
3mb and BP = 2

3mc. By reasoning as in Example 4.3, we
can construct line segments of lengths 2

3ma , 2
3mb and 2

3mc. Then, with the aid

of Example 2.6, we can construct triangle BGP . Finally, we mark A ∈ −→
PG such

that G is the midpoint of AP , and C ∈ −→
BMa such that Ma is the midpoint of BC.

Section 4.2

1. In each case, adapt the reasoning of the proof of Proposition 4.7.
2. Let A be the point in which the upper horizontal side of the middle square

encounters the right vertical side of the largest one; likewise, let B be the point
in which the upper horizontal side of the smaller square encounters the right
vertical side of the middle one. Use the similarity of triangles XAY and YBZ

to compute the desired length.
3. Let Ma and M ′

a stand for the midpoints of sides BC and B ′C′, respectively.
Use SAS to show that ABMa and A′B ′M ′

a are similar with similitude ratio k,
and then conclude that ma

m′
a
= k. Now, if Ha and H ′

a (resp. Pa and P ′
a) stand

for the feet of the altitudes (resp. internal angle bisectors) relative to A and A′,
respectively, argue in an analogous way for the pairs of triangles ABHa and
A′B ′H ′

a (resp. ABPa and A′B ′P ′
a).

4. If Q ∈ AB is such that PQ⊥AB, then AQ = PQ and PQB ∼ CAB.

5. Let X and Y denote the intersection points of r with
←→
AB and

←→
AC , respectively.

Use the result of the previous problem, together with the fact that XAY is a right
isosceles triangle.

6. Start by showing that FAD ∼ EAB.
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7. Let O and O ′ denote the centers of the given circles and P and P ′ the points
of tangency of them with one of the sides of the angle. Use the similarity of
triangles AOP and AO ′P ′ to compute the desired length.

8. For item (a), use the fact that CNP ∼ CBA. For item (b), recall that the
diagonals of a rhombus bisect its internal angles.

9. Draw, through C, the parallel to
←→
AB and mark its intersection point F with

DE. Then, use the fact that CFD ∼ BMD and CFE ∼ AME.
10. Write h and h′ to denote the lengths of the altitudes of the trapezoids MNCD

and ABCD. If MP = x, use the similarities MPD ∼ ABD and MPA ∼
DCA, together with the result of Problem 3, to get x

a
= h

h′ and x
b
= h′−h

h′ .
From these, conclude that x = ab

a+b
. Now, argue in a similar way to compute

NP .
11. Apply the result of the previous problem to the trapezoid BCYX.
12. In order to show that EF = FG, use the similarity AEG ∼ ADC, together

with the result of Problem 3. With this equality at hand, show that in order to
obtain FG = GH it suffices to prove that EG = FH . For what is left to do,
let h and h′ respectively denote the altitudes of trapezoids ABHE and ABCD;
use the pairs of similarities AEG ∼ ADC and BHF ∼ BCD, together with
the result of Problem 3, to get EG = FH = h

h′ · CD.
13. If D is the foot of the internal angle bisector relative to B, show that ABC ∼

ADB.
14. Use the result of the previous problem, together with the converse of Phytago-

ras’ theorem.
15. The inscribed angle theorem gives ÂA′C = ÂBHa . Therefore, triangles AA′C

and ABHa are similar by AA.
16. Proposition 3.20 gives ÂBD = ÂCF and ÂCD = ÂBE. Use this to conclude

that ABD ∼ ACF and ACD ∼ ABE. Finally, use these two similarities to
derive the desired relation.

17. Use the metric relations on right triangles.
18. Apply the metric relations in right triangles.
19. For item (a), use the metric relations in right triangles.
20. Use item (a) of the previous problem.
21. Check that the triangles BMP , CNM and APN are congruent by SAS, so

that MNP is equilateral. Now, letting Ma be the midpoint of BC, show that
BMP ∼ BMaA by SAS, and hence P ̂MB = ÂMaB = 90◦.

22. If x = √
a2 + b2 and y = √

a2 + b2 − c2, we have y = √
x2 − c2. Now,

Pythagoras’ theorem gives x as the length of the hypotenuse of a right triangle
of legs a and b, whereas y is found, again from Pythagoras, as the length of the
other leg of a right of hypotenuse x and leg c.

23. Assume, without loss of generality, that BD = DE = EF = FC = 5. Now,
letting AB = x and AC = y, Pythagoras’ theorem applied to ABC gives
x2 + y2 = 400. On the other hand, letting P be the foot of the perpendicular
dropped from D to the side AB, use similarity of triangles to conclude that

BP = x
4 and DP = y

4 , whence, again from Pythagoras’ theorem, AD
2 =
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( 3x
4 )2 + (

y
4 )2. Now, reason likewise to find expressions for AE

2
and AF

2
in

terms of x and y, and use them to compute AD
2 + AE

2 + AF
2

in terms of
x2 + y2.

24. The problem only makes sense for l ≤ 2R, and if l = 2R the locus reduces to
the center O of �. Assume, then, that l < 2R. Letting AB be a chord of length
l and M be its midpoint, the fact that AOB is isosceles of basis AB gives

OM⊥AB. Hence, Pythagoras’ theorem gives OM =
√

R2 − ( l
2 )2 and, letting

r denote such a length, we conclude that M lies in the circle of center O and
radius r . Conversely, it is not difficult to reverse the steps above to conclude that
every point of such a circle is the midpoint of a chord of length l of �(O;R).

25. Letting P be such a point and PT one of the tangents drawn from P to �,

Pythagoras’ theorem gives PO
2 = PT

2 + T O
2 = l2 + R2. Hence, P lies in

the circle of center O and radius
√

R2 + l2. Conversely, reverse the steps of this
reasoning to show that, for every point of such a circle, one can draw tangents
of length l to �(O;R).

26. Write A for the top and B for the basis of the building, as well as C and D for the
initial and final positions of the pedestrian. Let ÂCB = α and ÂDB = α

2 . The
exterior angle theorem gives D̂AC = ÂCB−ÂDB = α

2 , so that triangle ACD

is isosceles of basis AD. Hence, AC = CD = 50, and applying Pythagoras’
theorem to triangle ABC we obtain AB = √

502 − 252 = 25
√

3.
27. Assume, without loss of generality, that A ∈ r , B ∈ s and C ∈ t , and let

D and E denote the feet of the perpendiculars dropped from A and B to t ,
respectively. Now, letting AB = AC = BC = l, we have CE = √

l2 − 1,
CD = √

l2 − 16 and DE = √
l2 − 9. On the other hand, it is not difficult

to check that D ∈ CE, so that
√

l2 − 1 = √
l2 − 16 + √

l2 − 9. Solve this
equation to find the value of l.

28. Since the birds had equal velocities, departed at the same moment and arrived
together, we conclude that the fountain is at equal distances from the top of both
towers. Letting d denote such a common distance, use Pythagoras’ theorem to
show that the distances from the fountain to the bases of the towers are equal to√

d2 − 900 and
√

d2 − 1600. Solve the equation
√

d2 − 900+√
d2 − 1600 =

50 to find the value of d; then, compute
√

d2 − 900 and
√

d2 − 1600.
29. Let ABC be the triangle, with AB = 5

√
2, BC = 7 and ÂBC = 135◦. If

H stands for the foot of the altitude dropped from A, we have ÂBH = 45◦,
so that ABH is a right and isosceles triangle. Apply Pythagoras’ theorem to it
to get AH = BH = 5. Then, apply Pythagoras’ theorem to triangle AHC to
obtain AC = 13.

30. The parallels to the sides of ABCD through P divide ABCD into four
rectangles R1, R2, R3 and R4. Label them in such a way that R1 and R2
have only vertex P in common, and let a1, b1 be the lengths of the sides de R1
and a2, b2 be those of R2. Apply Pythagoras’ theorem four times to show that

AP
2 + CP

2 = BP
2 + DP

2 = a2
1 + b2

1 + a2
2 + b2

2.
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31. Assume, without loss of generality, that P lies in the smaller arc
�

AD. From the
external angle theorem, we obtain ÂPC = B̂PD = 90◦. Hence, Pythagoras’

theorem gives PA
2 + PC

2 = AC
2 = 200 and, analogously, PB

2 + PD
2 =

200.
32. The diagonals divide the quadrilateral into four right triangles. Apply Pythago-

ras’ theorem to each one of them.
33. If r stands for the radius of the circle inscribed in ABCD and l = BC, then

AD = 2r and, from Pitot’s theorem, 2r + l = 16. On the other hand, if E is
the foot of the perpendicular dropped from C to the basis AB, then the fact that
ABCD is right at A guarantees that ĈEB = 90◦, so that Pythagoras’ theorem
furnishes (2r)2 + 82 = l2. Solve the system of equations thus obtained to find
the values of r and l. Then, letting O denote the center of the inscribed circle,
observe that

ÔCB + ÔBC = 1

2
D̂CB + 1

2
ÂBC = 90◦,

whence OBC is right at O . Finally, apply the metric relations in rights triangles
to compute OB and OC.

34. Let O1, O2 and O3 respectively denote the centers of the circles of radii R, r and
x. For 1 ≤ i ≤ 3, let Ai be the foot of the perpendicular dropped from Ai to s.
Use Pythagoras’ theorem to conclude that A1A2 = √

(R + x)2 − (R − x)2 =
2
√

Rx and, analogously, A1A3 = 2
√

Rr and A2A3 = 2
√

rx. Then, use the
fact that A1A3 = A1A2 + A2A3 to obtain the desired relation.

35. Apply the result of the previous problem.
36. Let r be a line passing through two of the n given points, say A and B, and

which is at a minimum positive distance from one of the remaining points, say
C. By the sake of contradiction, assume that r contains at least another one of
the n points, say D. Let H denote the foot of the perpendicular dropped from
C to r and assume, without loss of generality, that A and D lie in a single half-

line, of those H determines on r . If E ∈ AH , show that d(E; ←→
AC) < d(C; r),

which is a contradiction.

Section 4.3

1. Let P ∈ BC be the foot of the internal angle bisector relative to A. Start by

constructing point Q ∈←→
BC \BC, such that BQ

QC
= BP

PC
—for an easy way of

constructing Q, review the construction steps listed in Example 4.17. Then,
obtain vertex A as the intersection of the circle of diameter PQ with that of
center C and radius b.

2. The solution of this problem is a slight variation of that of the previous one.
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3. Draw an arbitrary line r and mark on it points B and C such that BC = a. Then,
obtain vertex A as the intersection of the two following loci: the Apollonius’
circle relative to (B,C) in the ratio 3

4 , and the circle centered at the midpoint of
BC and with radius ma .

4. The desired radius is equal to 1
2 PQ, with P ∈ BC and Q ∈←→

BC \BC being

such that BP

PC
= BQ

QC
= k. Use such relations to compute BP and BQ in

terms of k and BC; then, notice that PQ = BQ ± BP , according to whether
0 < k < 1 or k > 1.

5. Let AB = a, BC = b, CD = c and AD = d; assume, without loss of
generality, that a + d ≥ b + c and c + d ≥ a + b. Use Ptolemy’s theorem

to show that a point P with the stated properties can be found in the arc
�

AD

not containing B, as the intersection of � with the Apollonius’ circle relative to
(A,C) in the ratio a+d−p

c+p−b
, with p = AC.

6. For items (a) and (b), use the inscribed angle theorem to conclude that, if P 
= B

is the intersection point of the circumcircles of triangles BCD and ABF , then
B̂PD = D̂PC = 60◦ and ÂPF = F ̂PB = 60◦. Then, successively conclude
that (i) ÂPC = 120◦; (ii) P lies in the circumcircle of ACE; (iii) A, P , D and
C, P , F are two triples of collinear points. For item (c), use the results of items
(a) and (b), together with Corollary 4.19.

7. Use the identity
(

1−t2

1+t2

)2 +
(

2t

1+t2

)2 = 1, together with the converse of

Pythagoras’ theorem.
8. Use the construction of the previous problem, together with Ptolemy’s theorem,

to show that one can find a circle �′ and points A′
1, A

′
2, . . . , A

′
n ∈ �′ such that

A′
1A

′
2 is a diameter of �′ and A′

iA
′
j ∈ Q for 1 ≤ i < j ≤ n. If O is the center

and R is the radius of �′, let � be the circle of center O and radius kR. For

1 ≤ i ≤ n, let Ai ∈
−→
OA′

i be such that OAi = k OA′
i , so that Ai ∈ �. Show

that we can choose k in such a way that AiAj ∈ N for 1 ≤ i < j ≤ n.
9. If O ′ is the circumcenter of ABD and M and M ′ are the midpoints of sides BC

and AD, respectively, use Theorem 4.20 to conclude that BH = 2 O ′M ′ =
2 OM. Then, notice that BC = 2 MC to conclude that triangles BHC and
MOC are similar.

10. Theorem 4.20 allows us to successively mark the positions of the barycenter G

and vertex A of ABC. Once this has been done, points B and C are obtained
as the intersection points of the circle of center O and radius AO with the

straightline passing through M and perpendicular to
←→
OM.

11. Let P be the point in which the internal angle bisector relative to BC intersects
the circumcircle of triangle AHO . The inscribed angle theorem guarantees
that H ̂AP = H ̂OP and ÔAP = O ̂HP . On the other hand, it follows
from Problem 5, page 92, that H ̂AP = ÔAP , and hence H ̂OP = O ̂HP .
Therefore, HP = OP , and thus P belongs to the perpendicular bisector of
HO .



14 Hints and Solutions 467

12. First note that
←→
AH1‖

←→
BH2. Now, Theorem 4.20 furnishes AH1 = BH2 =

2 OM, with O being the circumcenter of ABCD and M the midpoint of CD.
Hence, Problem 1, page 58, guarantees that AH1H2B is a parallelogram.

13. Let M be the midpoint of BC. Since AO = CO and (from Theorem 4.20)
AH = 2 OM, we have CO = 2 OM. Now, use the result of Problem 13,
page 58.

14. Let H denote the orthocenter of ABC, let Ha , Hb, Hc denote the feet of the
altitudes dropped from A, B, C, respectively, and Pa , Pb, Pc the other points of

intersection of
−→
AH ,

−→
BH ,

−→
CH with the circumcircle � of ABC. Use the result

of Problem 6, page 92, together with item (a) of Theorem 4.20, to show that
APb = APc = AH = √

4R2 − a2. Again from Problem 6, page 92, conclude

that d(H,
←→
PbPc) = 2r . The reasoning above gives the following construction:

draw a circle �(O;R) and pick a point A ∈ �. Draw the circle �(A; �), with
� = √

4R2 − a2, so that � ∩ � = {Pb, Pc}. Find H as the intersection of �

with the parallel u to
←→
PbPc at a distance 2r , with u and A lying in opposite

sides with respect to
←→
PbPc. Finally, construct Pa as the other intersection of

−→
AH with �, and then B and C as the intersections of the perpendicular bisector
of HPa with �.

Section 4.4

1. By Menelaus’ theorem, it suffices to show that AZ
ZB

· BX
XC

· CY
YA

= −1. To this end,

assume that
←→
AA′,

←→
BB ′ and

←→
CC′ concur at O (the case in which

←→
AA′,

←→
BB ′ and

←→
CC′ are parallel is much simpler) and apply Menelaus’ theorem to triangles
BB ′Z (with the triple of collinear points A, A′, O), AA′Y (with the triple of
collinear points C, C′, O) and CC′X (with the triple of collinear points B, B ′,
O).

2. Use the similarities BB ′C ∼ A′AC, BCC′ ∼ BA′A and BB ′A ∼ C′CA.
3. Adapt the discussion of the case in which the triangle is acute, noticing that

exactly two of the altitudes of the triangle are external to it.

4. Let P ∈←→
BC \BC and Q ∈←→

AC \AC be the feet of the external angle bisectors
relative to A and B, respectively, and R ∈ AB be the foot of the internal angle
bisector relative to C. Use the angle bisector theorem to show that AR

RB
· BP

PC
·

CQ
QA

= 1.
5. For item (c), apply the angle bisector theorem. For item (d), apply Ceva and

Menelaus theorems.
6. Use Ceva’s theorem in conjunction with item (a) of Proposition 3.36.
7. Use Ceva’s theorem in conjunction with item (c) of Proposition 3.36.
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8. It suffices to show that if
←→
AA′′ and

←→
CC′′ concur at a point P , then P ∈

←→
BB ′′.

To this end assume, without loss of generality, that A′ ∈ BC and B ′ ∈ −→
CA

\AC, so that C′ ∈ −→
BA \AB (the remaining cases are entirely analogous). If

B̂AA′′ = α, the isogonality of
−→
AA′ and

−→
AA′′ guarantees that ĈAA′ = α,

whereas the parallelism of
←→
AA′ and

←→
CC′, together with the isogonality of

−→
CC′

and
−→
CC′′, furnishes C′′

̂CB = ÂCC′ = ĈAA′ = α. Hence, we have B̂CP =
B̂CC′′ = α = B̂AA′′ = B̂AP , so that BACP is a cyclic quadrilateral; it
thus follows that P ̂BC = P ̂AC. Finally, this last equality, in conjunction with

the isogonality of
−→
AA′ and

−→
AA′′ and the parallelism of

←→
AA′ and

←→
BB ′, give us

P ̂BC = A′′
̂AC = A′

̂AB = ÂBB ′. It comes that
−→
BB ′ and

−→
BP are isogonal

with respect to B, and this shows that P ∈
←→
BB ′′.

9. Apply three times the result of Problem 5, page 92.

10. Let P ′ ∈ ←→
QR be such that

−→
AP ′ ⊥ ←→

QR. Use the fact that AQPR is a cyclic

quadrilateral to show that the half-lines
−→
AP and

−→
AP ′ form equal angles with

the internal bisector of ABC relative to A, and lie in opposite half-planes with
respect to that internal bisector.

11. Apply the theorems of Ceva and Menelaus.

12. Firstly, assume that
←→
AB ′ ∩

←→
BC′= {X},

←→
AB ′ ∩

←→
A′C= {Y } and

←→
A′C ∩

←→
BC′=

{Z}. Apply Menelaus’ theorem to triangle XYZ, with respect to each of the
following triples of collinear points: A, C, E; B ′, C, D; A′, B, F ; A, B, C; A′,
B ′, C′. Now, consider the case in which at least one of the pairs of lines

←→
AB ′

and
←→
BC′,

←→
AB ′ and

←→
A′C,

←→
A′C and

←→
BC′ are parallel.

13. Suppose, without loss of generality, that AB < BC < AC, so that P ∈ −→
CB

\BC, Q ∈ −→
CA \AC and R ∈ −→

AB \AB. By Menelaus’ theorem, it suffices to
prove that BP

PC
· CQ

QA
· AR

RB
= −1. To this end, observe that Proposition 3.20 gives

PAB ∼ PCA by AA. Therefore, BP

AP
= AP

CP
= AB

AC
, whence BP

PC
= −(AB

AC
)2.

Finally, argue in a similar way to obtain CQ
QA

= −(BC

AB
)2 and AR

RB
= −(AC

BC
)2.

14. Assume ABC acute (the remaining cases can be dealt with analogously).
Applying Menelaus’ theorem to triangle ABC, with respect to the triple of
collinear points D, E and P , we obtain BP

PC
· CE

EA
· AD

DB
= −1. Now, the triangle

similarities CEHa ∼ CHaA and AEHa ∼ AHaC furnish the equalities

CE = CHa
2

AC
and AE = AHa

2

AC
, so that CE

EA
= CHa

2

AHa
2 ; analogously, we have

AD
DB

= AHa
2

BHa
2 . Now, argue in a similar way with respect to the other two sides of

ABC. Finally, multiplying the relations thus obtained, we arrive at the equality
BP
PC

· CQ
QA

· AR
RB

= −1, whence Menelaus’ theorem guarantees the collinearity of
points P , Q and R.
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15. Let A1, A2, A3 be such that
←→

AiAj is a common external tangent to �i and �j ,
for 1 ≤ i < j ≤ 3, and �1, �2, �3 lie inside triangle A1A2A3. If Oi is the
center of �i , show that triangles A1A2A3 and O1O2O3 are in perspective with
respect to the incenter of A1A2A3, then apply Desargues’ theorem.

Section 4.5

1. Show that PBC ∼ PCA.
2. Letting E be the other endpoint of the diameter of � passing through D, apply

the intersecting chords theorem to AB and DE. Alternatively, apply (4.5), with
C in place of P .

3. Apply the intersecting chords theorem.
4. Start by using the intersecting chords theorem to compute CE. Now, let O be

the center of the circle and F and G be the feet of the perpendiculars dropped
from O to AB and CD, respectively; successively compute OF , OG and
OE, this last one with the aid of Pythagoras’ theorem. Finally, apply (4.5) to
compute the desired radius.

5. Let D be the other endpoint of the diameter of the circumcircle of ABC passing
through A. Apply the intersecting chords theorem to the chords AD and BC of
such a circle.

6. Let ABC be a triangle right at A. Draw the circle of center C and radius AC,

and let D and E be the intersection points of such a circle with line
←→
BC . Now,

apply the version of the intersecting chords theorem of Proposition 4.30.
7. Letting T be one of such points, start by using the intersecting chords theorem

to compute PT in terms of PA and PB . Then, apply the construction of
Problem 20, page 117.

8. If we construct the point T of contact of the desired circle with r , then the
circle itself will be the circumcircle of ABT . For what is left to do, there are

two distinct cases to consider: (i)
←→
AB‖ r: in this case, T is the intersection

point of the perpendicular bisector of AB with r; (ii)
←→
AB 
‖ r: letting P be

the intersection of
←→
AB and r , the intersecting chords theorem gives PT

2 =
PA · PB ; now, use Problem 20, page 117, to construct a line segment of length
PT , and then construct T .

9. Use the fact that PA1 = 1
2 A1A2 = PA2 to conclude that P lies in the radical

axis of �1 and �2; then, argue analogously for point Q.
10. Since CD is a diameter of �, triangle CDE is right at E; therefore, the

metric relations in right triangles furnish ME
2 = CM · DM . Now, apply

the intersecting chords theorem to the chords AB and CD of � to conclude
that AM = BM = EM .

11. Firstly, show that both circles pass through the foot Ha of the altitude of
ABC relative to BC. Then, show that the pair of chords MN and AHa of
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the circle of diameter AC, as well as the pair of chords PQ and AHa of
the circle of diameter AB, intersect at the orthocenter H of ABC. Apply the
intersecting chords theorem to each one of such pairs of chords to conclude that
MH · NH = PH · QH . Then, apply the intersecting chords theorem again
to conclude that M , N , P and Q are concyclic.

12. Assume, without loss of generality, that X ∈ BY . Proposition 4.29 assures that
it suffices to prove that BC · BO = BX · BY . To this end, let P ∈ BC and

Q ∈ −→
BC \BC be such that PQ is a diameter of �; use the fact that BP · BQ =

BX · BY , together with the result of Problem 4, page 126, to obtain the desired
equality.

13. For i = 1, 2, let �i(Oi;Ri). Let also P be the center of a circle intersecting
�i along a diameter AiBi of it, for i = 1, 2. Use the fact that PA1 = PA2 to

get PO1
2 − PO2

2 = R2
2 − R2

1. Then, compare such a relation with (4.9) to
conclude that P belongs to the line symmetric to the radical axis of �1 and �2
with respect to the midpoint of O1O2.

14. Letting N be the foot of the external angle bisector relative to C, Example 4.23
assures that the points N , E and D are collinear. Hence, both C and D lie in

the Apollonius’ circle relative to (A,B), in the ratio AF

FB
. Letting M denote the

center of such a circle, it follows from the previous problem that quadrilateral
AMCD is cyclic, so that C ̂MD = 1

2
̂A and D ̂MA = ̂C. Finally, apply the

external angle theorem to obtain M̂CF = M̂FC = 1
2
̂C + ̂B, and add the

angles of the isosceles triangle MCF to find ̂A = 120◦.
15. If PQ is the diameter of the circumcircle of ABC passing through I and

O , show that the intersecting chords theorem applied to chords FG and PQ,
together with Euler’s theorem 4.32, gives

DF · EG + r( DF + EG) + r2 = 2Rr,

where R is the circumradius of ABC. Then, use the fact that FG ≤ 2R to
obtain DF + EG ≤ 2(R− r). The desired inequality easily follows from this.
By reviewing the arguments above, it is pretty easy to conclude that the equality
holds if and only if FG is a diameter of the circumcircle of ABC.

16. Let AB = c, AC = b and BC = a. Apply the bisector theorem and the

intersecting chords theorem to get AD · DK = a2bc

(b+c)2 ; then, use the similarity

of triangles ABD ∼ AKC to obtain AD · AK = bc and, hence,

AD
2 = bc − AD · DK = bc − a2bc

(b + c)2

and

AD

DK
= AD

2

AD · DK
=
(

b + c

a

)2

− 1.
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Finally, from the above computations (and analogous ones for BE

EL
and CF

FM
),

conclude that it suffices to establish the inequality

(

b + c

a

)2

+
(

a + c

b

)2

+
(

a + b

c

)2

≥ 12,

with equality if and only if a = b = c. In turn, obtain such an inequality by
means of a suitable application of the inequality between the arithmetic and
geometric means (cf. [5]), for instance).

17. Assume, without loss of generality, that �1 is the circle interior to α, and let
P (resp. Q) be the point of tangency of α and �1 (resp. α and �2); let also
S and T be the intersection points of segment O1O2 respectively with �1 and
�2, C the intersection point of segments PQ and ST , B the other intersection

of line
←→
AC with α and R and U the other intersections of half-lines

−→
PQ and

−→
ST with �2. Adapt the arguments presented in the solution of Example 4.40 to

successively show that:
←→
PS ‖←→

RT ; quadrilateral PSQU is cyclic; AC · CB =
SC · CU ; quadrilateral ASBU is cyclic. Finally, construct point B as being the

other intersection of line
←→
AC with the circumcircle of triangle ASU , thus again

reducing the problem to that of Example 4.39.
19. Let �1(O1;R1), �2(O2;R2) and �3(O3;R3) be the three given circles, and

�(O;R) be one of the circles we wish to construct. For the sake of simplicity,
assume that �1, �2 and �3 are pairwise exterior, and that � is exteriorly tangent
to all of them; suppose (also without loss of generality) that R1 < R2, R3 (the
other cases can be dealt with in pretty much the same way). If �′

2(O2;R2 +
R1), �′

3(O3;R3 + R1) and �′(O1;R + R1), then �′ passes through O1 and is
tangent to �′

2 and �′
3. Therefore, we have reduced the present problem to the

one considered in Example 4.40 and in the two previous problems. Generically,
there are eight solutions.

20. Let K and L (resp. M and N) be the feet of the perpendiculars dropped from
P (resp. Q) to the sides AB and AC, respectively. According to Problem 10,

page 137, we have
←→
AP ⊥ ←→

MN . Letting R be the intersection point of
←→
AP and

←→
MN , conclude that the quadrilaterals LRPN and PRMK are cyclic. Then,
use this fact, together with the intersecting chords theorem, to show that AM ·
AK = AL·AN and, hence, that the quadrilateral LMKN is cyclic too. Finally,
note that the center of the circle circumscribed to such a quadrilateral is the
intersection point of the perpendicular bisectors of line segments LM and KN ,
thus coinciding with the midpoint of segment PQ. Argue in an analogous way
with the feet of the perpendiculars dropped from P and Q to the side BC.

21. If P and Q denote the points of contact of α with
←→
BC and

←→
CD, and R and

S denote the intersections of
←→
PQ with

←→
AB and

←→
AD, respectively, show that

AR = AS. Letting O stand for the intersection point of the perpendiculars
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through R and S to
←→
AB and

←→
AD, respectively, show that OR = OS. Finally,

if β is the circle of center O and radius OR = OS, show that points B and D

lie on the radical axis of α and β, so that E,F ∈ β.
22. Firstly, suppose that D, E and F are collinear. Applying the intersecting chords

theorem to the circumcircles of ABC and AEF , with respect to the pairs of
chords AM and BC, AM and EF , we conclude that BD · CD = ED · EF .
Hence, again from the intersecting chords theorem, BFCE is cyclic. However,
since M belongs to the perpendicular bisectors of segments BC and EF , it
follows that M is the center of the circle circumscribed to this quadrilateral;
in particular, we have BM = FM. The coincidence of the incenters of
triangles ABC and AEF now follows from Proposition 3.37. Finally, in order
to establish the converse, it suffices to reverse the steps of the argument above.

Section 5.1

1. Write A(AECF) = A(ABCD) − A(BCE) − A(CDF) and show that
A(BCE) = A(CDF) = 1

4A(ABCD).

2. Since
←→
AD‖←→

BC , triangle CDE has height 5 with respect to DE. Also, DE =
AD − AE.

3. Start by invoking the congruence of triangles ADF and DCE to conclude
that D̂GF = 90◦. Then, apply the metric relations in right triangles—cf.
Theorem 4.10—to compute DG and GF .

4. For item (a), apply Pythagoras’ theorem to triangle ABM , where M is the
midpoint of BC.

5. Item (a) of the previous problem assures that the altitude of CDE with respect

to CD is equal to 1 −
√

3
2 . Hence, A(CDE) = 1

2

(

1 −
√

3
2

)

. Item (b) of the

previous problema gives A(ABE) =
√

3
4 . Now, show that AED ≡ BEC.

6. Firstly, show that ABE ≡ ADF . Set BE = x to obtain CE = CF = 1 − x;
then, apply Pythagoras’ theorem to ABE and CEF to get

√
1 + x2 = AE =

EF = (1 − x)
√

2. Compute x and apply the result of item (b) of Problem 4.
7. Let P be a point in the interior of ABC and x, y and z be the distances of P

to the sides BC, AC and AB. Equality A(ABC) = A(BCP) + A(ACP) +
A(ABP) gives x + y + z = 2S

a
, where a is the length of the sides of ABC.

8. Letting S denote the area of ABC, we have ha = 2S
a

, hb = 2S
b

and hc = 2S
c

.
Hence, a+ha = b+hb = c+hc if and only if a+ 2S

a
= b+ 2S

b
= c+ 2S

c
. Now,

a + 2S
a
= b+ 2S

b
is equivalent to (a − b)(2S − ab) = 0, and hence to a = b or

ab = 2S. Analogously, a + 2S
a

= c + 2S
c

if and only if a = c or ac = 2S. If

c 
= a, b, then ac = 2S = bc, so that a = b. Thus, ac
2 = S = aha

2 , and hence
c = ha , which assures that ABC is right at B; therefore, b = AC > BC = a,
which is a contradiction.
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9. We can assume, without loss of generality, that ABC is right at A. Since BB ′
and CC′ intersect at their respective midpoints, BCB ′C′ is a parallelogram.

Since
←→
AA′ ⊥ ←→

BC and
←→
B ′C′‖←→

BC , we have
←→
AA′ ⊥

←→
B ′C′. Mark points H

and H ′, intersections of
←→
AA′ with BC and B ′C′, respectively. Since ABC ≡

A′BC ≡ AB ′C′, we have A′H ′ = A′H + AH + AH ′ = 3 AH . Hence,
A(A′B ′C′) = 1

2 B ′C′ · A′H ′ = 3
2 BC · AH = 3A(ABC) = 3m2.

10. If M , N and P stand for the midpoints of sides BC, AC and AB, respectively,
use the midsegment theorem to conclude that triangles ANP , BMP , CMN

and MNP are congruent.
11. By the hint given to the previous problem, we have A(DPQ) = 1

4A(ACD)

and A(BMN) = 1
4A(ABC); hence, A(DPQ) + A(BMN) = 1

4A(ACD) +
1
4A(ABC) = 1

4A(ABCD); analogously, A(AMQ) + A(CNP) =
1
4A(ABCD). Now, compute A(MNPQ) as the difference between the area of
ABCD and the sum of the areas of triangles AMQ, BMN , CNP and DPQ.

12. Let ABCD and OMNP be the given squares, and O be the center of ABCD.

Firstly, note that OC = 1
2 AB

√
2 =

√
2

2 < 1 = OM. Now, there are two
essentially distinct cases to consider: (i) OM intersects BC at a point Q 
=
B,C: then OP intersects CD at a point R 
= C,D, and the portion of the plane
common to the squares is the convex quadrilateral OQCR. It is immediate to
check that D̂OR = ĈOQ, and hence OQC ≡ ORD by ASA. Therefore,

A(OQCR) = A(OQC) + A(OCR) = A(ODR) + A(OCR)

= A(OCD) = 1

4
A(ABCD) = 1

4
.

(ii) OM passes through C: then OP passes through D, and the portion of the
plane common to both squares is triangle OCD.

13. Let K , L, M and N denote the intersection points of
←→
BJ and DE,

←→
CI and

FG,
←→
AH and BC,

←→
AH and IJ , respectively. It is immediate that BDK ≡

AEH and CFL ≡ AGH , so that A(ABDE) = A(ABKH) and A(ACFG) =
A(ACLH). Now, notice that parallelograms ABKH and MBJN have equal
bases AH and MN and altitudes relative to such bases also equal, whence
A(ABKH) = A(MBJN); analogously, A(ACLG) = A(MCIN). Therefore,
A(ABDE) + A(ACFG) = A(ABKH) + A(ACLH) = A(MBJN) +
A(MCIN) = A(BCIJ ).

14. Let ABCD be a convex quadrilateral of diagonals AC and BD concurrent at O .
Let also P and Q denote the feet of the perpendiculars dropped from vertices
B and D, respectively, to the diagonal AC. Condition A(ABC) = A(ACD)

furnishes the equality BP = DQ. However, since BOP ∼ DOQ by AA,

we have BO

DO
= BP

DQ
= 1, so that O is the midpoint of BD. Analogously,

condition A(ABD) = A(CBD) assures that O is the midpoint of AC. Hence,
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the diagonals of ABCD intersect at their midpoints, and it follows that ABCD

is a parallelogram.
15. For item (b), let A(BFP) = x and A(AEP) = y. It follows from (a) that

A(ABD)
A(ACD)

= BD

CD
= A(BPD)

A(CPD)
, and hence 84+x+40

y+35+30 = 40
30 . Conclude, in a likewise

manner, that 84+y+35
x+40+30 = 84

x
. Then, solve the linear system of equations thus

obtained.
16. For the first part, item (a) of the previous problem gives

BA′

A′C
= A(ABA′)

A(ACA′)
= A(BPA′)

A(CPA′)
.

Now, use the fact that a
b
= c

d
⇒ a

b
= c

d
= a−c

b−d
.

17. Let P = A1A2 . . . , An, �(O;R) be the inscribed circle and d the distance from
O to r . Moreover, suppose that r intersects A1A2 at X and AiAi+1 at Y , and
let

XA2 + A2A3+· · ·+ AiY = YAi+1 + Ai+1Ai+2 +· · ·+ AnA1 + A1X = a.

Finally, suppose that O ∈ YAi+1Ai+2 . . . AnA1X. Then,

A(XA2 . . . AiY ) = A(XA2 . . . AiYO) − A(XOY)

= A(XOA2) + A(A2OA3) + · · · + A(AiOY) − A(XOY)

= R

2
( XA2 + A2A3 + · · · + AiY ) − d

2
XY

= 1

2
(aR − d XY )

and, analogously,

A(YAi+1Ai+2 . . . AnA1X) = A(YAi+1Ai+2 . . . AnA1XO) + A(XOY)

= 1

2
(aR + d XY).

Hence, A(XA2 . . . AiY ) = A(YAi+1Ai+2 . . . AnA1X) if and only if aR −
d XY = aR + d XY , i.e., if and only if d = 0. But this is the same as saying

that O ∈←→
XY= r .

18. Let ABCD be the quadrilateral, of diagonals AC and BD, let AB = a, CD =
b, AC = d and a+b+d = 16. If h1 and h2 stand for the altitudes of ABC and
ACD relative to AC, then d(h1 + h2) = 64. On the other hand, the inequality
between the arithmetic and geometric means gives

d(h1 + h2) ≤ d(a + b) ≤ 1

4
(d + a + b)2.
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19. To prove the inequality of item (a) is the same as to show that ( AP + x)a ≥
ax + by + cz = 2A(ABC) = aha , where ha the height of ABC with respect
to BC. For the first inequality of item (b), apply the inequality of item (a) to
Q, the symmetric of P with respect to the internal bisector of 
 BAC; for the
other two inequalities, argue in the same way. For (c), add the inequalities of (b)
termwise and apply the inequality between the arithmetic and geometric means
to show that a

b
+ b

a
, a

c
+ c

a
, b

c
+ c

b
≥ 2. Finally, for (d), note that equality in (c)

implies that ABC is equilateral; then, equality in (b) implies that P coincides
with its symmetrics with respect to the internal bisectors of ABC.

Section 5.2

1. Let l and a be the lengths of the sides of the equilateral triangle and the square.

The result of Problem 4, page 156, assures that we must have l2
√

3
4 = a2 or,

which is the same, l2 = 4a2√
3
= 2a√

3
·2a. Hence, l is the geometric mean between

line segments of lengths 2a√
3

and 2a. You might find it useful to take a look at

Problem 19, page 117.
2. No! To see why, note first that the rules of movement maintain the area of the

triangle whose vertices are the positions of the ants. Then, observe that the area
of the triangle formed by the initial positions of the ants is twice as that of a
triangle having the midpoints of three sides of the original triangle as vertices.

3. Suppose, with no loss of generality, that AC and BD are the diagonals of
ABCD. There are three essentially distinct cases to consider: (i) E ∈ AB

and F,G ∈ BC: then A(EFG) ≤ A(ABC) = 1
2A(ABCD); (ii) E ∈ AD

and F,G ∈ BC: then A(EFG) ≤ A(EBC) = A(ABC) = 1
2A(ABCD); (iii)

E ∈ AB, F ∈ BC and G ∈ CD: letting H and L be the intersections of EG

and AD with the parallel to
←→
AB drawn through F , we get, by case (ii),

A(EFG) = A(EFH)+A(HFG) ≤ 1

2
A(ABFL)+ 1

2
A(LFCD) = 1

2
A(ABCD).

4. For item (a), let N and P be the midpoints of AC and AB, respectively.
Use the midsegment theorem to conclude that the altitude of ANM relative
to MN is equal to half the altitude of ABC relative to BC; then, show that
A(AMN) = 1

4A(ABC). For item (b), let G be the barycenter of ABC and

M be the midpoint of BC. Mark, on
−→
AM, the point D such that M is the

midpoint DG. Then, successively conclude that BDCG is a parallelogram and
that CDG is a triangle whose sides are equal to 2

3 of the lengths of the medians
of ABC. Finally, show that A(CDG) = A(BCG) = 1

3A(ABC) and invoke
the result of Proposition 5.11 to obtain A(CDG) = 4

9A(DEF).
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5. Note that A(ABC) = A(ABF), A(CDE) = A(BCD) and A(AEF) =
A(DEF).

6. Letting E denote the foot of the perpendicular dropped from C to
←→
AB , we

have CE = 5cm. Apply Pythagoras’ theorem to triangle BCE to obtain
CE = 12cm, and hence A(ABCD) = 186cm2. For what is left to do, denoting

by x the distance from vertex A to line
←→
BC , we have 186 = A(ABCD) =

A(ACD) + A(ABC) = 78 + 13x
2 , so that x = 12cm.

7. First note that if ABCD is such a trapezoid, with bases AB and CD and legs
AD and BC, we must have AB = 2 and CD = 1 (or vice-versa), and AD =
BC = 1. Now, letting E be the foot of the perpendicular dropped from D to
←→
AB , we have AE = 1

2 and, from Pythagoras’ theorem, DE =
√

3
2 . Hence,

A(ABCD) = 1
2 (2 + 1)

√
3

2 = 3
√

3
4 . Now, Problem 4, page 156 guarantees that

the area of an equilateral triangle of side length n is equal to n2
√

3
4 . Thus, for the

partition to be feasible, the quotient of the areas of the equilateral triangle and

the trapezoid, n2

3 , must be an integer; in turn, this implies that 3 must divide n.
In order to see that such a condition is also sufficient, let n = 3k, with k ∈ N.
Start by partitioning the equilateral triangle of side length n into equilateral
triangles of side length 3; then, take one of these small equilateral triangles, say
ABC, and mark its center O , together with points A′ ∈ BC, B ′ ∈ AC and
C′ ∈ AB for which A′C = B ′A = C′B = 2; trapezoids A′CB ′O , B ′AC′O
and C′BA′O have side lengths 1, 1, 1, 2 and partition ABC.

8. Letting F be the intersection point of
←→
AD and

←→
BE, we have BCE ≡ FDE

by ASA, so that E is the midpoint of BF . Hence, ABF has twice the area of
ABE, and it follows that

A(ABCD) = A(ABED) + A(BCE) = A(ABED) + A(DEF)

= A(ABF) = 2A(ABE) = 720cm2.

Alternatively, let AD = a, BC = b and h be the altitude of ABCD. Denoting
by G the midpoint of AB, triangles BEG and AEG have height h

2 with respect
to EG, so that

A(ABE) = A(AEG) + A(BEG) = 1

2
EG · h

2
+ 1

2
EG · h

2

= EG · h

2
= (a + b)h

4
= 1

2
A(ABCD).

9. Let a and b denote the lengths of the bases AB and CD, respectively, and let
h be the altitude of ABCD. Also, let h1 and h2 denote the altitudes of triangles
ABE and CDE with respect to the sides AB and CD, respectively. Then,
h1 + h2 = h and, since ABE ∼ CDE, we have h1

h2
= a

b
. Therefore, h1 = ah

a+b

and h2 = bh
a+b

, whence
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√

A(ABE) +√

A(CDE) =
√

a2h

2(a + b)
+
√

b2h

2(a + b)

=
√

(a + b)h

2
= √

A(ABCD).

10. Let
←→
DE,

←→
FG and

←→
HI be the drawn parallels, with D,F ∈ AB, G,H ∈ BC

and E, I ∈ AC. Since BHPD and CEPG are parallelograms, we have DP =
BH and EP = CG. Hence, Proposition 5.11 gives

1 = BH

BC
+ FG

BC
+ CG

BC

= DP

BC
+ FG

BC
+ EP

BC

=
√

A(DFP)

A(ABC)
+
√

A(GHP)

A(ABC)
+
√

A(EIP)

A(ABC)

= 1√
A(ABC)

+ 2√
A(ABC)

+ 3√
A(ABC)

,

so that A(ABC) = 36cm2.
11. Proposition 5.13 gives 1

ra
= p−a

pr
. Write the analogous relations involving rb

and rc and, then, add the three resulting equalities.
12. Let ABC be an acute triangle and Ha , Hb and Hc be the feet of the altitudes

dropped from A, B and C, respectively. Show that AHbHc ∼ ABC and, hence,
that the median of AHbHc relative to HbHc is the symmedian of ABC relative
to BC.

13. Partially adapt the hint given to the previous problem, noticing that, in every
right triangle, the altitude relative to the hypothenuse is the symmedian relative
to it.

14. Let AB = c, AC = b and x, y be the distances from P to
←→
AB and

←→
AC ,

respectively. Proposition 5.16 guarantees that AP is symmedian if and only if
x
y
= c

b
. Now, observe that

BP

CP
= A(ABP)

A(ACP)
= cx

by
,

and this relation, together with the previous one, furnishes the desired result.
15. Use the fact that the barycenter divides each median in the ratio 2 : 1 to show

that the distance from G to BC is equal to 1/3 of the altitude of ABC relative
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to A. Now, use the equality ah
2 = pr to conclude that such a distance coincides

with that from I to BC.
16. Adapt, to the present situation, the proof of Carnot’s theorem for acute triangles,

presented in the text.
17. Apply Carnot’s theorem and its generalization, established in the previous

problem, to each one of the three triangles that partition ABCDE.

18. Letting
←→
AD ∩ ←→

BC= {T }, apply Desargues’ theorem 4.24 to the pairs of

triangles DMN and KLB, CLM and AKN , to show that
←→
QT ‖←→

AB and
←→
PT ‖←→

AB , and hence that P , Q and T are collinear points. Then, use similarity
of triangles to show that, if h is the altitude of the trapezoid and h′ the distance

from O to
←→
PQ, we have h′ = 2hk

k2−1
. Also by means of a similarity argument,

conclude that

QT = AB(k · DO + AO)

(k − 1)( AO + BO)
and PT = AB(k · CO + BO)

(k − 1)( AO + BO)
,

so that PQ = 2·AB
k−1 .

Section 5.3

1. Concerning A1A2 . . . An, let O be its center, l be the length of its sides and
a be the common distance from O to its sides. Let also Ci be the foot of the

perpendicular dropped from P to
←→

AiAi+1 (with An+1 = A1). Equalities

n
∑

i=1

A(OAiAi+1) = A(A1A2 . . . An) =
n
∑

i=1

A(PAiAi+1)

give n · la
2 = ∑n

i=1
l·PCi

2 , so that PC1 + PC2 + · · · + PCn = na.
2. Let P = A1A2 . . . An, Q = A′

1A
′
2 . . . A′

n and O and O ′ be the centers of P and
Q, respectively. Apply the result of Proposition 5.11 to each one of the pairs
of triangles OAiAi+1 and O ′A′

iA
′
i+1, with the convention that An+1 = A1 e

A′
n+1 = A′

1.
3. Letting l be the side length of the desired 20-gon, apply the result of the

previous problem to conclude that 52

l2 + 122

l2 = 1.
4. Letting PR and QR be regular n-gons, the first of which inscribed and the

second circumscribed to a circle � of radius R, we have A(PR) ≤ A(�) ≤
A(QR) and A(P1) ≤ π ≤ A(Q1). Now, apply the result of Problem 2 to
conclude that A(PR) = A(P1)R

2 and A(QR) = A(Q1)R
2.

5. In the notations of Fig. 5.15, we have
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l2
2n = AiDi

2 = AiCi
2 + CiDi

2 =
(

ln

2

)2

+ (R − an)
2

= l2
n

4
+
⎛

⎝R −
√

R2 − l2
n

4

⎞

⎠

2

= 2R2 − R

√

4R2 − l2
n.

The rest follows from this, together with the fact that l4 = R
√

2.
7. Follow steps analogous to those that led to (5.13).
8. Denote by R, R1 and R2 the radii of �, �1 and �2, respectively. It follows from

AC = AB + BC that R = R1 + R2, and hence S = π
2 (R2 − R2

1 − R2
2) =

πR1R2. On the other hand, since ÂDC = 90◦, the usual metric relations in

right triangles furnish BD
2 = AB · BC = 4R1R2, so that BD

2

S
= 4

π
.

9. Let O be the midpoint of hypothenuse BC of ABC or, which is the same, the
center of �. Let also ÂOB = α, so that ÂOC = 180◦ − α, and AB = 2R1,
AC = 2R2, BC = 2R. The area of the portion of �1 exterior to � is equal
to 1

2πR2
1 − (

α
360◦ · πR2 − A(AOB)

)

, whereas the area of the portion of �2

exterior to � is equal to 1
2πR2

2 −
(

180◦−α
360◦ · πR2 − A(AOC)

)

. Hence, the sum

of the areas of these portions of �1 and �2 equals

1

2
· π(R2

1 + R2
2) − 1

2
· πR2 + A(AOB) + A(AOC) = A(ABC),

for Pythagoras’ theorem gives R2
1 + R2

2 = R2.
10. If ABC is right or obtuse, there is nothing to do, for in these cases ABC lies

within a semicircle of �. If ABC is acute, let H be its orthocenter and A′, B ′

and C′ be the other points of intersection of the half-lines semirretas
−→
AH ,

−→
BH

and
−→
CH with �; the result of Problem 6, page 92, guarantees that

A(�) > A(AC′BA′CB ′A)

= (A(ABH)+ A(ABC′)) + (A(ACH)+ A(ACB ′))

+ (A(BCH) + A(BCA′))

= 2A(ABH)+ 2A(ACH)+ 2A(BCH) = 2A(ABC).)

11. If α = 360◦ · m
n

, with m,n ∈ N and m < n, define the length of
�

AB as being
equal to the supremum of the lengths of the polygonals A1A2 . . . AkmAkm+1,
with k ∈ N and A1A2 . . . Akn being a regular kn-gon inscribed in � and such
that A1 = A, Akm+1 = B. Show that

�(A1A2 . . . AkmAkm+1)

�(A1A2 . . . Akn−1Akn)
= m

n
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and conclude from here that �(
�

AB) = m
n
· 2πR. If α = 360◦ · x, with x ∈

(0, 1) being irrational, take a sequence 0 < r1 < r2 < · · · < x of rationals

such that sup{r1, r2, . . .} = x. Then, define the length of
�

AB as the supremum

of the lengths of the arcs
�

ABn, with Bn ∈ �

AB and ÂOBn = αn such that

αn = 360◦ · rn. Finally, conclude that �(
�

AB) = x · 2πR.
12. First of all, note that the error will be equal to 2

√
2 + 2

√
3 − 2π ∼= 0.00933.

Then, construct line segments with lengths equal to the sides of an equilateral
triangle and of a square inscribed in the circle.

13. Let Pn and Qn be as in the text, so that �(�) = sup �(Pn) = inf �(Qn). Show
that it suffices to prove that �(Pn) < �(Q) and �(P) < �(Qn) for every n ∈ N.
Finally, in order to establish these inequalities, invoke the result of Problem 9,
page 44.

14. Firstly, note that one may suppose that not all of the given segments are parallel.
Now, let s1, s2, . . . , sn denote the n given segments, fix a point O in the plane
and construct a convex polygon Q = A1A2 . . . A2n−1A2n in the following way

(� stands for length):
←→

A1A2‖ s1 and A1A2 = �(s1),
←→

A2A3‖ s2 and A2A3 =
�(s2) , . . . ,

←→
An−1An‖ sn and An−1An = �(sn), Q is symmetric with respect to

O . Let R be the minimum distance from O to one of the sides of Q and � be
the circle of center O and radius R. Apply the result of the previous problem to
� and Q to get R < 1

π
, then choose r .

Section 6.1

1. Letting O(0, 0), A(a, b), A′(−a,−b), B(a, 0) and B ′(−a, 0), show that
triangles AOB and A′OB ′ are congruent.

3. If A(a, b) and B(c, d) are points for which AP = BP , use formula (6.4) to

show that (a − c)
(

a + c − 2
3

)

+ b2 − d2 = 2(b − d)
√

2. Now, assuming that

a, b, c, d ∈ Z, use the irrationality of
√

2 to conclude that b = d , and hence
a = c. For what is left to do, first observe that a disk of center P and sufficiently
small radius will not contain any point of integer coordinates; then, use the first
part of the problem to conclude that, as we continuously increase the radius of
such a disk, points of integer coordinates are “swallowed” one at a time.

4. According to the previous problem, there exists a circle �(O;R) passing
through exactly one point of integer coordinates and such that the correspond-
ing disk D contains exactly 2018 points of integer coordinates. Let P be the
point of integer coordinates in D for which r = OP is as large as possible.
Show that, for infinitely many values of n ∈ N, there exists a regular n-gon
centered at O and contained in the region of the plane bounded by the circles �

and �(O; r).
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5. Suppose, without loss of generality, that A(0, y), B(x1, 0) and C(x2, 0), so that

formula (6.4) gives AB =
√

x2
1 + y2, AC =

√

x2
2 + y2 and BC = |x1 − x2|.

Then, write the coordinates of the midpoint Ma of BC and apply (6.4) once
more to compute ma = AMa .

6. Apply the formula of the previous problem to suitable medians of each one of
the triangles BDM , ABC and ACD. Then, adequately combine the relations
thus obtained to get the stated formula.

7. Choose a cartesian system in which O(0, 0), A(x1, y1), B(x2, y2) and
C(x3, y3), so that x2

i + y2
i = R2 for 1 ≤ i ≤ 3. Then, use the result of

Example 6.4 to write the coordinates of G in terms of the xi’s and yi’s, and
compute both sides of the desired equality with the aid of the formula for the
distance between two points.

8. Choose a cartesian system of origin O , in which A
( 2√

3
, 0
)

, B
( − 1√

3
, 1
)

and

C
(−1√

3
,−1

)

. If P(x, y), show that x2+y2 = 1
3 and use (6.4) to compute AP

2+
BP

2+CP
2
. A proof that AP , BP , CP are the sides of a triangle was presented

in Problem 1, page 268. For the computation of its area S, write a = AP ,
b = BP , c = CP and use Heron’s formula to obtain

16S2 = 4a2b2 − (a2 + b2 − c2)2.

Then, substitute the expressions for a2, b2 and c2, obtained with the aid of (6.4).

9. For fixed 1 ≤ j < k ≤ m, we have AiBj
2 − AiBk

2 = j − k for 1 ≤ i ≤ n.
Hence, Proposition 6.8 assures that all of A1, A2, . . . , An belong to a line r ,

which is perpendicular to
←→

BjBk . However, since the indices j and k in the
above argument were arbitrarily chosen, it follows that B1, B2, . . . , Bm belong
to a line s, which is perpendicular to r .

10. Let �i(Oi;Ri) for i = 1, 2, and let O be the center of a circle of radius R,
intersecting both �1 and �2 along diameters. Show that OOi

2 = R2 −R2
i and,

hence, that OO1
2 − OO2

2 = R2
2 − R2

1. Subsequently, use Proposition 6.8 to

conclude that the desired locus is a line perpendicular to
←→

O1O2, and rework the
proof of Theorem 4.35 to conclude that such a line is symmetric to the radical
axis of �1 and �2 with respect to the midpoint of O1O2.

11. Draw a rectangle ABCD, of sides parallel to the coordinate axes and having
points A1, A2 and A3 on its sides. Then, compute the area of A1A2A3 as the
difference between the area of ABCD and the sum of the areas of at most three
right triangles, all of them with legs parallel to the axes.

12. Show that points Ak(k, k2), for 1 ≤ k ≤ n, satisfy the stated conditions.
13. Argue by contradiction, applying the result of Problem 11.
15. For item (a), once we have partitioned P into n − 2 triangles with diagonals

intersecting only at vertices, the same proof presented to the convex case goes
through also in this more general case. For item (b), by overlapping two distinct
partitions of P into triangles, we split P into a finite number of convex polygons
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with disjoint interiors. Show that adding the areas of these polygons in two
distinct ways give us the sums of the areas of the n− 2 triangles obtained in the
two original partitions of P .

16. For item (a), argue by induction in the number of lattice points contained in
the interior or along the sides of the triangle. For item i., use the result of
Problem 14 and (a). For ii., start by observing that the sum of the interior
angles of the fundamental triangles has three different types of summands:
those relative to the vertices of P ; those relative to the B − n points of integer
coordinates lying on the sides of P but which are not vertices of P ; those
relative to the I points of integer coordinates situated in the interior of P . Then,
compute the total contribution of each of these types of summands to obtain
180◦(n− 2), 180◦(B −n) and 360◦I , respectively. For iii., note that the sum of
the angles of the k fundamental triangles is 180◦k.

17. For (b), start by noticing that R can be partitioned into at most 4 simple
polygons, one of which is ABC. Then, apply item i. of the previous problem to
each such polygon but ABC. Now, note that since the vertices of R are lattice
points, S must be a natural number and R can be partitioned into S squares
1×1, hence in 2S fundamental (right isosceles) triangles. Finally, apply item iii.
of the previous problem. For (c), let R be partitioned into the 2S fundamental
triangles �1, �2, . . . , �2S , with �1 = ABC. Use the result of Problem 11 to
write

S = A(R) =
2S
∑

i=1

A(�i) ≥ 2S · 1

2
= S.

18. Item iii. of Problem 16 guarantees that P can be partitioned into 2I + B − 2
fundamental triangles. Then, apply item (c) of the previous problem.

19. Let Q denote the square and P denote the smallest convex polygon containing
all lattice points covered by Q. Use Pick’s theorem, together with the fact that
P ⊂ Q, to get B

2 + I ≤ n2 + 1, where B and I stand for the number of lattice
points lying along the perimeter and in the interior of P , respectively. Now, note
that (according to Problem 9, page 44) the perimeter of P is less than or equal
to 4n, and in turn that this gives B ≤ 4n. Finally, use the two inequalities above
to get B + I ≤ (n + 1)2.

Section 6.2

1. It is easy to see that the bisector of odd quadrants has equation y = x. On the
other hand, the line passing through A and B has equation x + y = a + b, and
hence is perpendicular to that bisector. Moreover, it intersects the bisector at
point C

(

a+b
2 , a+b

2

)

, and it is immediate to check that AC = BC.
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4. One possibility is to use the synthetic method to obtain the coordinates of B

from the congruence of triangles OAAx and OBBy , where Ax and By denote
the feet of the perpendiculars dropped from A and B to the horizontal and

vertical axes, respectively. Alternatively, first note that
←→
OA has equation y =

b
a
x, so that

←→
OB has equation y = − a

b
x; then, by imposing that OB = OA,

obtain x = ±b and, hence, y = ∓a. However, since B belongs to the second
quadrant, we must have x = −b and y = a.

5. Apply the results of Propositions 6.13 and 6.14, as well as Remark 6.10.
6. Since x0, y0 
= 0, such a line does not pass through the origin of the cartesian

system. Hence, Remark 6.10 (with k = − 1
c
) guarantees that we can write the

desired equation in the form ax + by − 1 = 0. Now, by imposing that (x0, 0)

and (0, y0) belong to it, obtain a = 1
x0

and b = 1
y0

.
7. Separately consider the cases x ≥ a and y ≥ b, x ≥ a and y < b, x < a and

y ≥ b, x < a and y < b to conclude that the region under analysis is a square
centered at (a, b), with diagonals parallel to the axes and side lengths equal to
c
√

2.
8. Adapt, to the present case, the proof of Proposition 6.1.
9. For item (b)—the proof of item (a) is pretty much analogous—assume first that

P , Q and R are collinear; then, by the previous problem, there exists u ∈ R

for which R = (1 − u)P + uQ. Substitute expressions (6.9) for P , Q and R

and analyse the equality thus obtained. Conversely, suppose that the equality of

item (b) is satisfied, and let R′ ∈←→
AB be the point for which P , Q and R′ are

collinear, with R′ = (1−u′)A+u′B. It follows from (b) and the first part above
that

u′

1 − u′
= − (1 − s)(1 − t)

st
= u

1 − u

whence, u = u′, and then R = R′.
10. Write the condition BP

PC
= −BQ

QC
in terms of the parametric descriptions of P

and Q.
11. If P(x, y), show that the problem is equivalent to minimizing f (x)+ g(y), for

certain second degree functions f and g. Then, apply the theory of maxima and
minima of second degree functions (cf. Section 6.2 of [5], for instance).

12. When c attains its largest possible value, line r will be tangent to the circle �,
so that the solution of the system of equations

{

ax + by = c

x2 + y2 = 1

will consist of a single ordered pair. On the other hand, by substituting
x = c−by

a
in the second equation, we obtain the second degree equation

(a2 + b2)y2 − 2bcy + (c2 − a2) = 0, and the give system of equations will
have a solution if and only if 4b2c2 − 4(a2 + b2)(c2 − a2) ≥ 0. In turn, such
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a condition is equivalent to |c| ≤ √
a2 + b2, so that the largest possible value

of c is c = √
a2 + b2. For what is left to do, notice that if (x0, y0) is a common

point of r and � (for some value of c) and u = kx0, v = ky0, we have

|au+ bv| = |k||ax0 + by0| = |k|c ≤ |k|
√

a2 + b2

=
√

u2 + v2
√

a2 + b2,

since x2
0 + y2

0 = 1.
13. Choose a cartesian coordinate system in which �(O;R) and A(a, 0), with

O(0, 0) and a > R. Then, show that the equation of line r is y = m(x− a), for
some m ∈ R, and impose that the solution of the system of equations formed
by � and r is B(x0, y0) and P(x1, y1), with x0 + a = 2x1 and y0 = 2y1.

14. Adapt the proof of Proposition 6.8 to the present case to conclude that the
desired locus is the empty set, if k

√
2 < AB, the midpoint of AB, if k

√
2 =

AB, or a circle centered at the midpoint of AB and radius 1
2

√

2k2 − AB
2
, if

k
√

2 > AB.
15. In the notations of the statement of Theorem 4.16, choose a cartesian system in

which B(0, 0) and C(a, 0). Let A(x, y) and write the condition AB = k · AC

in coordinates to obtain the equation

(k2 − 1)x2 + (k2 − 1)y2 − 2ak2x + a2k2 = 0.

Then, divide both sides by k2 − 1 and complete squares.

Section 6.3

2. Adapt, to the present case, the proof of Theorem 6.22.

3. If
←→

A1A2 ∩d2 = {P }, use metric relations in right triangles to compute OP in
terms of a and c.

4. For the first part, let A1A2 and B1B2 denote the major and minor axes of the
hyperbola, respectively, let F1 and F2 be its foci and O its center, with Ai ∈
OFi and F1F2 = 2c. Let C be the intersection point of lines x = a, y =
b. Since OA1 = a, OB1 = b, Pythagoras’ theorem gives OC = c. Also,

the equation of
←→
OC is readily seen to be y = b

a
x, so that

←→
OC is one of the

asymptotes of the hyperbola. For (a), it now suffices to recall that the diagonals
of a rectangle are perpendicular if and only if the rectangle is a square. For (b),
given O , A1 and F1 the following construction works: find C as the intersection

of the perpendicular to
←→
OF through A with the circle of center O and radius c.
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Then, find B1 as the intersection of the perpendicular to
←→
OF through O with

the parallel to
←→
OF through C.

5. Perform the change of coordinates (x, y) �→ (x ′ − y ′, x ′ + y ′). What is its
geometrical effect?

6. Letting A(a, 1
a
), B(b, 1

b
) and C(c, 1

c
), prove that the equations of the alti-

tudes of ABC passing through A and B are ay−1
x−a

= abc and by−1
x−b

=
abc, respectively. Then, solve the system of equations thus obtained to get
H(− 1

abc
,−abc), where H stands for the orthocenter of ABC.

7. We can assume, without loss of generality, that a > 0. We write (6.14) with γ

in place of c and translate the y-axis to the position of the line x = α. This way
we get a cartesian system in which the new coordinates (x ′, y ′) relate to the old
ones by means of the formulas x ′ = x − α, y ′ = y. In this new system, the
equation of the parabola is obtained from (6.14) changing x by x ′ + α. Since
the name we give to the variable is irrelevant, we shall simply write x + α in
place of x in (6.14), thus arriving at the equation

y = 1

2p
(x + α)2 −

(p

2
+ γ

)

= 1

2p
x2 + α

p
x +

(

α2

2p
− p

2
− γ

)

.

It now suffices to notice that we can adjust the values of α, γ and p so that

⎧

⎪

⎨

⎪

⎩

1
2p

= a
α
p
= b

α2

2p
− p

2 − γ = c

.

8. Letting O denote the origin of the cartesian plane, apply the theorem of
intersecting chords to find the point D(0, y) such that OA · OB = OC · OD.

9. If P(x, y), show that PQ1 and PQ2 have lengths x − ay
b

and x + ay
b

in some
order. Then, compute

PQ1 · PQ2 =
(

x − ay

b

)(

x + ay

b

)

= a2
(x2

a2 − y2

b2

)

= a2.

Argue in a likewise manner to show that PR1 · PR2 = b2.

10. Assume, without loss of generality, that E has equation x2

a2 + y2

b2 = 1 and
that r is not parallel to the axes of E . Then, Proposition 6.13 shows that there
exists a fixed real number α 
= 0 such that the equation of s has the form
y = αx + β, for some (varying) real number β. Set P(x1, y1) and Q(x2, y2),
so that M

(

x1+x2
2 ,

y1+y2
2

)

. Then, note that the ordered pairs (x1, y1) and (x2, y2)

solve the system of equations
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{

y = αx + β

b2x2 + a2y2 = a2b2

and eliminate y to obtain

(a2α2 + b2)x2 + 2a2αβx + a2(β2 − b2) = 0,

and hence x1+x2
2 = − a2αβ

a2α2+β2 . Now, compute

y1 + y2

2
= α

(x1 + x2

2

)

+ β = − b2β

a2α2 + β2
.

Finally, show that M lies in the straightline of equation b2x + a2αy = 0.
11. Letting Rn denote the radius and (0, yn) the center of �n, one has y2 = y1 +R2

and yn = R1 + 2R2 + · · · + 2Rn−1 + Rn for n > 2. Show that the condition
of tangency between �n and the hyperbola translates into the algebraic fact that
the system of equations

{

x2 + (y − yn)
2 = R2

n

x2 − y2 = 1

must have exactly two solutions, hence that R2
n = y2

n

2 + 1. Then, show that
R2

n+1 − R2
n = 1

2 (y2
n+1 − y2

n) and use the fact that yn+1 = Rn + Rn+1 + yn

to successively get 2(Rn+1 − Rn) = yn+1 + yn and 2yn+1 = 3Rn+1 − Rn.
Finally, deduce that Rn+1 − 6Rn + Rn−1 = 0, R1 = 1, R2 = 3 and, hence
(with the aid of the material of Section 3.2 of [5], for instance) that Rn =
1
2

(

(3 + 2
√

2)n−1 + (3 − 2
√

2)n−1
)

, for every n ≥ 1.

Section 6.4

1. We have to show that if C is an ellipse or a hyperbola in canonical form and P is
a point of C, then there exists a single line r , passing through P and tangent to
C. If C is an ellipse and P is one of the endpoints of its major axis, the problem
is trivial: the tangent to C through P is unique and coincides with the parallel to
the minor axis of C passing through P . Otherwise, letting P(x0, y0), we need
to show that there exists a single value of m ∈ R for which the straightline r of
equation y = m(x − x0) + y0 is tangent to C. As in the case of a parabola, we
do this by imposing that the system of equations

{

b2x2 ± a2y2 = a2b2

y = m(x − x0) + y0
.
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has (x0, y0) as its single solution (of course, the sign + or− is chosen according
to whether C is an ellipse or a hyperbola). To this end, adapt the reasoning
presented in the text for the case of a parabola. (As in that case, the argument
just delineated also shows that the value of m coincides with the one found by

computing y ′(x0), where y = y(x) is such that x2

a2 ± y(x)2

b2 = 1 and (x0, y0) lies
in the graph of x �→ y(x).)

2. For item (a) of Theorem 6.26, if Q ∈ P is distinct from P and U is the foot
of the perpendicular dropped from Q to d , check that FQ = T Q > UQ,
so that Q /∈ P . Then, use the result of Theorem 6.25. For item (a) of
Proposition 6.28, suppose first that r is tangent to P at P , and let T be the foot
of the perpendicular dropped from P to d . Item (a) of Theorem 6.26 assures
that r is the internal angle bisector of the isosceles triangle FPT . Therefore, r

is also perpendicular bisector and altitude relative to FT , and this is the same
as saying that T is the symmetric of F with respect to r . For the converse, argue
analogously.

3. This is immediate from Theorem 6.26, since the internal and external angle
bisectors of triangle PF1F2 at P are perpendicular.

4. As in the hint given to the previous problem, let T be the foot of the

perpendicular dropped from P to d . If
−→
FY is the half-line perpendicular to

but not intersecting d , then F ̂PT = X̂FY ; thus, the internal bisector of


 XFY is parallel to that of 
 FPT , hence perpendicular to
←→
FT . We now have

the following construction: draw
−→
FY , and then the internal bisector

−→
FZ of


 XFY . The perpendicular to
←→
FZ passing through F intersects d at T , and the

perpendicular to d passing through T intersects
−→
FX at P .

5. Adapt the analysis of that example to the present case, with the aid of item (b)
of Proposition 6.28.

6. Let F be the given focus and r , s and t be the given tangents. Proposition 6.28
assures that if P , Q and R are the symmetrics of F with respect to r , s and t ,
then the other focus is the circumcenter of triangle PQR, while the major axis
is the circumradius of PQR.

7. If r is one of the tangents we are looking for, and P is the foot of the
perpendicular dropped from F2 to r , then item (b) of Corollary 6.31 assures
that P lies in the auxiliary circle of H. Since F2 ̂PQ = 90◦, the point P can be
constructed as the intersection of the auxiliary circle with the circle of diameter
F2Q. In general, there are two distinct solutions.

8. Let A1A2 be the major axis of C, with A1A2 = 2a, and let F1F2 = 2c. If
� is the auxiliary circle of C, Corollary 6.31 assures that P1, P2 ∈ �. Also, if

Q is the other intersection of
←→
F1P1 with �, then F1Q = F2P2. Since for an

ellipse we have A1F1 · A2F1 = (a − c)(a + c) = b2, the intersecting chords
theorem applied to A1A2 and QP1 gives the result. In the case of a hyperbola,
A1F1 · A2F1 = (c − a)(c + a) = b2, and we are also done.
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9. Use item (a) of Corollary 6.31 to show that the feet of the perpendiculars
dropped from the focus of the parabola to the three tangents are collinear. Then,
apply the theorem of Simson-Wallace.

10. Note that no two of r , s, t , u can be parallel, and no three pass through the same
point (for there are at most two tangents to P passing through any given point).
If ABC is the triangle determined by r , s, t , CDE is the one determined by r ,
s, u and AEF is that determined by s, t , u, then the previous problem assures
that the focus of P lies in the circumcircles of ABC, CDE and AEF . Thus,
the position of F is entirely determined, and there is only one solution.

11. Let r and s be perpendicular tangents to E , intersecting each other at a point
P . If R and S are the symmetrics of F2 with respect to r and s, respectively,
then Proposition 6.28 shows that R and S lie in the director circle � centered at
F1. Show that P is the midpoint of RS and R̂F2S = 90◦. Then, conclude that

F1P⊥RS and PF2 = PR = PS, so that PF1
2 + PF2

2 = F1R
2 = 4a2.

Finally, use the result of Problem 5, page 188, to compute

PO
2 = 1

4

(

2( PF1
2 + PF2

2
) − F1F2

2) = 2a2 − c2 = a2 + b2,

thus concluding that P lies in the circle of Monge of E . For the converse, rework
the steps above in reverse order.

12. Adapt, to the present case, the hint given to the previous problem.
13. The figure below illustrates the situation, and we want to show that X̂PT1 =

F ̂PT2 and T1̂FP = T2̂FP .

d

P

R1

R2

X

F

t1

t2
T2

T1
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Arguing as in the case of the ellipse, we let R1 and R2 be the symmetrics of
F with respect to t1 and t2, respectively, so that R1, R2 ∈ d and PF = PR1 =
PR2. For the first part, since

←→
PT1 ⊥ ←→

FR1 and
←→
PX ⊥ ←→

R1R2, we get X̂PT1 =
R2̂R1F . Since t2 is the perpendicular bisector of FR2, we obtain F ̂PT2 =
R2PT2. Finally, the inscribed angle theorem gives us R2̂R1F = 1

2R2̂PF , and
this finished the proof. For the second part, note that P ̂FT2 = P ̂R2T2 and
P ̂FT1 = P ̂R1T1, and we are left to proving that P ̂R2T2 = P ̂R1T1. This is
clear, for R2̂R1T1 = R1̂R2T2 = 90◦ and P ̂R1R2 = P ̂R2R1.

Section 7.1

5. From x2

a2 + y2

b2 = 1 we get
∣

∣
x
a

∣

∣ ≤ 1. Then, there exists α ∈ [0, 2π) such that
x
a
= cos α, or x = a cos α. By substituting x = a cos α in the equation of E , we

obtain

y2

b2 = 1 − (a cos α)2

a2 = sin2 α,

so that y = ±b sin α. If y = b sin α, we can take θ = α; if y = b sin(−α),
it follows from cos(−α) = cos α and sin(−α) = − sin α that x = a cos(−α)

and y = b sin(−α), so that we can take θ = −α. In order to show uniqueness,
suppose θ ′ ∈ [0, 2π) is such that x = a cos θ ′ and y = a sin θ ′. Then cos θ =
cos θ ′, sin θ = sin θ ′ and, since θ, θ ′ ∈ [0, 2π), we have θ = θ ′. What is left to
do is immediate (Fig. 14.1).

6. For item (a), letting A(a cos α, b sin α), B(a cos β, b sin β), C(a cos γ, b sin γ ),
we have A′(a cos α, a sin α), B ′(a cos β, a sin β), C′(a cos γ, a sin γ ). Use the
result of Problem 11, page 189, to show that A(ABC) = b

a
A(A′B ′C′). For (b),

item (a) assures that it suffices to maximize the area of A′B ′C′, so that it must

be equilateral. Now, note that if
←→
BC‖ r , then the slope of r is m = b(sin β−sin γ )

a(cos β−cos γ )
,

whereas that of
←→
B ′C′ is m′ = sin β−sin γ

cos β−cos γ
. Hence, m′ = a

b
m, so that we can find

the direction corresponding to m′.
7. Choose a cartesian coordinate system in the plane with respect to which E has

equation x2

a2 + y2

b2 = 1, and let � be the auxiliary circle of E , of radius a. If
A1A2 . . . An is a convex polygon inscribed in E and A′

1, A′
2, . . . , A′

n in � are
defined as in item (a) of the previous problem, show that A(A′

1A
′
2 . . . A′

n) =
a
b
A(A1A2 . . . An), then A(A1A2 . . . An) ≤ πab. Now, given ε > 0, lift to �

to show that A1A2 . . . An can be chosen in such a way that A(A1A2 . . . An) ≥
πab − ε.
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x

y
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T
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B(0, b)

A(a,0)

β

Fig. 14.1 Parametric equations of the ellipse E

Section 7.2

1. Expand sin(a − b) = sin(a + (−b)) with the aid of the already proved part of
item (b) of Proposition 7.18. Argue analogously for tan(a − b).

2. Write 15◦ = 45◦ − 30◦ and apply the formulas of Proposition 7.18. Alterna-
tively, let a = 15◦ in Corollary 7.19.

3. Apply the fundamental relation of trigonometry to item (a) of Corollary 7.19.
4. Note that 45◦ = 2 · 22◦30′.
5. The answers are: (a) {x ∈ R; x = kπ, ∃ k ∈ Z}; (b) {x ∈ R; x = π

2 +
kπ, ∃ k ∈ Z}; (c) {x ∈ R; x = kπ, ∃ k ∈ Z}.

6. Use the results of the previous problem in conjunction with those of Proposi-
tion 7.22. For instance,

sin x = sin α ⇔ sin x − sin α = 0

⇔ 2 sin

(

x − α

2

)

cos

(

x + α

2

)

= 0.

Thus, x = α + 2kπ or x = π − α + 2kπ , for some k ∈ Z.
7. In each item, write A as a sine or cosine and apply the results of the previous

problem.
8. Adapt, to the present case, the hint given to the previous problem.
9. The fundamental relation of Trigonometry assures that it suffices to compute

cos(x − y). To this end, note that

b2 + a2 = 2 + 2 sin x sin y + 2 cosx cos y = 2 + 2 cos(x − y).
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10. For the other formula in item (a), write sin a− sin b = sin a+ sin(−b); argue in
a likewise manner to obtain the formula for tan a− tan b. In what concerns item
(b), write cos a ± cos b = sin

(

π
2 − a

)± sin
(

π
2 − b

)

and apply the formulas of
item (a).

11. For the first formula, multiply the left hand side by −2 sin b
2 , unfold the product

−2 sin b
2 sin(a+kb) (with the aid of Proposition 7.22) and apply the formula for

telescoping sums (cf. Section 3.3 of [5], for instance). For the second equality,
use the fact that cos x = sin

(

π
2 − x

)

.
12. Set a = 0 and b = 2π

n
in the formulas of the previous problem.

13. Letting G be the foot of the perpendicular dropped from E to AB, apply
Pythagoras’ theorem to triangle AEG to compute CE. Then, compute
tan ÊAG, tan D̂AF and use the formula for tan(2θ) in terms of tan θ to
conclude.

14. Let θ denote the acute angle between AP and r , and successively compute AP ,
BP and the area of ABP in terms of θ to find 1/ sin(2θ).

15. Show that tan(ÂDB + ÂEB) = 1 by using the formula for the tangent of a
sum; you will need to compute the lengths of BC and of the altitude relative to
it.

16. Let O be the center of the polygon (which coincides with the center of the
circle), let A and B be two consecutive vertices and M the midpoint of AB.
Since AOB is isosceles of basis AB, we have ÂOM = π

n
and OM⊥AB;

hence, ln = 2 AM = 2R sin π
n

and an = OM = R cos π
n

. It now suffices to let
n be successively equal to 3, 4, 6 and 8, substituting, in each case, the (already
computed) values for the sine and cosine of π

3 , π
4 , π

6 and π
8 , respectively.

17. Let O be the center of the polygon, let A and B be two consecutive vertices
of it and M be the midpoint of AB. Let also A′ ∈ OA and B ′ ∈ OB be the
centers of two of the n circles, and M ′ be the intersection of OM with A′B ′.
Then, OM ′⊥A′B ′, A′M ′ = r and OM ′ = an − r , with an standing for the
apothem of the polygon (cf. previous problem). Apply some Trigonometry to
the right triangle A′OM ′ to compute r as a function of an and A′

̂OM ′ = π
n

;
then do the same to the right triangle AOM to compute an as a function of l

and ÂOM = π
n

.
18. Let θ1, θ2, θ3, θ4 and θ5 denote the central angles corresponding to the edges

AB, BC, CD, DE and EA, respectively. If R is the circumradius of the
pentagon and d the desired distance, show that

a = 2R sin
θ1

2
sin

(θ1 + θ2

2

)

, b = 2R sin
(θ1 + θ2

2

)

sin
(θ4 + θ5

2

)

,

c = 2R sin
θ5

2
sin

(θ4 + θ5

2

)

and d = 2R sin
θ5

2
sin

θ1

2
.

Then, note that d = ac
b

.
19. Letting Ha stand for the foot of the altitude relative to A and HHa = ha , start

by showing that
←→
HG‖←→

BC⇔ HHa = d(G; ←→
BC) = ha

3 . Then, compute
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HHa = AB · cos ̂B · tan ĤBD = AB · cos ̂B · cot ̂C.

20. Show that MCN ≡ MAN , then use this to conclude that N ̂ML is right and
isosceles. Now, use the given area relation to obtain AB = 2 LN . Finally, if
AC = � and ĈAP = α, compute LN = AN − AL = � cos α − � sin α and
AB = �

√
2.

21. Firstly, note that PB

BH
= BA

BH
= BC

BA
= BC

BP
, so that BPH ∼ BPC. Now, if

̂B = 60◦, then PH

PC
= BP

BC
= 1

2 = HM

MC
, whence PM bisects 
 HPC by the

internal bisector theorem. Conversely, if PM bisects 
 HPC, then BPH ∼
BPC implies PH

PC
= PB

BC
= cos ̂B . However, the internal bisector theorem

gives

PH

PC
= HM

MC
= BM − BH

MC
= 1 − BH

MC

= 1 − BH

AB
2
/
(

2 BH
)
= 1 − 2

( BH

AB

)2

= 1 − 2 cos2
̂B.

Hence, cos ̂B = 1 − 2 cos2
̂B, so that cos ̂B = 1

2 and ̂B = 60◦.
22. Choosing a cartesian system in which the coordinate axes coincide with the

axes of the given parabolas, we can assume that they have equations y = ax2+
b and x = cy2 + d , with a, c > 0. Letting A(x1, y1), B(x2, y2), C(x3, y3),
D(x4, y4), start by noticing that x1, x2, x3, x4 (resp. y1, y2, y3, y4) are pairwise

distinct. If m1, m2, m3, m4 denote the angular coefficients of
←→
AB ,

←→
BC ,

←→
CD,

←→
AD, compute m1 = y2−y1

x2−x1
= a(x2 + x1) and, likewise, m2 = a(x3 + x2),

m3 = a(x3 + x4), m4 = a(x1 + x4). Letting α and β denote the trigonometric

angles from the horizontal axis to lines
←→
AB and

←→
BC , respectively, we have

m1 = tan α, m2 = tan β. Let δ = ÂBC and ε = ÂDA. If δ, ε 
= 90◦, show
that δ = α + π − β and use item (c) of Proposition 7.18 to compute

tan δ = a(x1 − x3)

1 + a2(x1 + x2)(x2 + x3)
, tan ε = a(x3 − x1)

1 + a2(x1 + x4)(x3 + x4)
.

Then, use Trigonometry again to show that

δ + ε = π ⇔ tan δ = − tan ε ⇔ (x1 + x2)(x2 + x3) = (x1 + x4)(x3 + x4).

Now, show that x1, x2, x3, x4 are the roots of the polynomial equation a2cx3 +
2abcx2−x+(b2+d) = 0 and use this fact to conclude that x1+x2+x3+x4 = 0;
finally, use this last relation to conclude the proof. If δ = 90◦ (resp. ε = 90◦),
use an argument similar to the above to show that ε = 90◦ (resp. δ = 90◦).
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Section 7.3

1. Apply the cosine law to compute a = BC in terms of b, c and B̂AC; then,
compare the expression thus obtained with the one given in the problem.

2. In the notations of Problem 16, apply the result of Problem 13, page 116,
together with the cosine law, to a triangle of sides R, l10 and l10—and,
obviously, interior angles of 36◦, 72◦ and 72◦.

3. Apply the cosine law to a triangle of sides l10, R and R.
4. At instant t after the fight, apply the cosine law to the three triangles formed by

the pub’s location and by the positions of two of the musketeers. This will give
the distances between each two of them in terms of t , so that it will suffice to
use the converse to Pythagoras’ theorem.

5. Apply the internal bisector theorem twice to compute BD and AE in terms of
the lengths of the sides of ABC. Then, show that the given equality amounts to
a2 + b2 − ab = c2 and apply the cosine law.

6. Take point D such that ABCD is a parallelogram, and let Q be the point inside
ACD for which APQ is equilateral. Prove that CQ = BP , and hence that
Q̂PC = 60◦ or 30◦. To conclude, apply the cosine law to triangle APC.

7. Start by considering the convex hexagon inscribed in the same circle but with
consecutive sides of lengths a, b, a, b, a, b. Show that this second hexagon
has area equal to that of the first one, and that its internal angles all measure
120◦. Then, apply the cosine law and the result of Problem 16, page 247, for
the computation of l3.

8. Apply, in triangles BDM , ABC and ACD, the formula for the length of a
median.

9. The first part follows from the previous problem. For the second part, start by
constructing, from a given triangle ABC, parallelogram ABDC; then, note that
AD is twice the length of the median of ABC relative to BC.

10. Let ABCD be the trapezoid, with basis AB and CD and diagonals AC and
BD, such that AB > CD. Assume also that B̂AD = α and ÂBC = β, with

α > β. Finally, let E be the intersection point of
−→
AD and

−→
CD, with AE = a,

BE = b, CE = x and DE = y. Apply the cosine law to triangles AEC and
BDE, noticing that a

y
= b

x
.

11. Let O and O ′ be the centers of � and �, respectively, let E 
= A be the

intersection point of
−→
AO ′ and �, and E that of AD and BC. Start by observing

that AE is the internal bisector of 
 BAC; then, use this fact to compute AE,
BE and CE. Now, use the intersecting chords theorem to compute DE and,
finally, apply Stewart’s relation to triangle AOD and the cevian OO ′.

12. The internal bisector theorem gives BP = ac
b+c

and CP = ab
b+c

. Apply
Stewart’s theorem, together with some elementary algebra.

13. Let P denote the foot of the internal bisector of 
 BAC. Apply the internal
bisector theorem to triangle ABP , together with the result of the previous
problem, to get
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AI = b + c

2p
· AP =

√
bcp(p − a)

p
.

Then, note that this last expression is always less than
√

bc.
14. Let O be the center and R the radius of the circle circumscribed to the polygon.

Assume, with no loss of generality, that P lies in the angular region 
 A1OA2.
If P ̂OA2 = α then, by walking from A1 to A2, then to A3 and henceforth, we
have P ̂OA2k = α + (k−1)π

n
. Therefore, the cosine law gives

A2kP
2 = A2kO

2 + OP
2 − 2 A2kO · OP cos

(

α + (k − 1)π

n

)

= R2 + OP
2 − 2R · OP cos

(

α + (k − 1)π

n

)

.

Analogously, A2k−1P
2 = R2 + OP

2 − 2R · OP cos
(

kπ
n
− α

)

, so that

n
∑

k=1

A2kP
2 =

n
∑

k=1

A2k−1P
2

if and only if

n
∑

k=1

cos

(

α + (k − 1)π

n

)

=
n
∑

k=1

cos

(

kπ

n
− α

)

.

Finally, in order to establish the equality above, apply the result of Problem 11,
page 247. For an alternative solution, see the problems of Section 13.2 of [6].

15. Let M be the midpoint of BC and A1 
= A be the point in which
−→
AM intersects

the circumcircle of ABC. If MA1 = x, use the intersecting chords theorem,

together with the fact that AA1 ≤ 2R, to conclude that m2
a+ a2

4ma
≤ 2R. Finally,

use the formula for the length of ma to obtain b2+c2

2ma
≤ 2R.

16. Assume that the circles have different radii (the other case can be dealt with
analogously), and let r and s denote the drawn inner and outer tangents,
respectively. Let N and M (resp. P and Q) denote the points of tangency
of r and s, respectively, with the larger and smaller circles, also respectively.
Finally, let C denote the intersection point of r and s, and B and A the points
of intersection of r and s with the other common outer tangent, respectively. It
suffices to prove that the point R of intersection of the two chords lies in the
bisector of 
 BAC. To this end, compute M̂RQ = 90◦ and set B̂AC = 2α,
B̂CA = 2θ , AB = c, AC = b, BC = a, MN = x, NR = y, with b > c.
Compute x = 2(p− b) cos θ , y = (b− c) cos θ , MR = x + y = a cos θ . Now,
let S denote the foot of the perpendicular dropped from R to AC, set RS = t ,



14 Hints and Solutions 495

AS = z and compute t = a cos θ sin θ = a sin(2θ)
2 and z = AM − a cos2 θ =

p − a cos2 θ , where p is the semiperimeter of ABC. We need to prove that
t = z tan α. To this end, note that

t = z tan α ⇔ a sin(2θ)

2
= (p − a cos2 θ) tan α

⇔ c sin(2α)

2
= (

a(1 − 2 cos2 θ) + b + c
) tan α

2

⇔ 2c sin α cos α = (

b + c − a cos(2θ)
)

tan α

⇔ 2c cos2 α = b + c − a
(a2 + b2 − c2

2ab

)

⇔ c
(

cos(2α) + 1
) = b2 + c2 + 2bc − a2

2b

⇔ cos(2α) = b2 + c2 − a2

2bc
,

which is true.
17. Let M and m denote the lenghts of the greatest and smallest of the

(6
2

) = 15
line segments connecting two of the given points, and let P denote the smallest
convex polygon containing the six points. There are two possibilities: (i) P is
not an hexagon: considering the possible numbers of sides of P , we conclude
that there are three of the vertices, say A, B, C, such that ABC contains a fourth
point D of the six given ones. Since

ÂDB + B̂DC + ĈDA = 360◦,

the measure of at least one of these angles is at least 120◦. Suppose, without
loss of generality, that ÂDB ≥ 120◦. By applying the cosine law to triangle
ADB, we obtain

m2 ≥ AB2 = AD2 + BD2 − 2AB · BD cos 
 ADB

≥ m2 + m2 − 2m2 cos 120◦ = 3m2.

(ii) P is a hexagon: the sum of the internal angles of P is 720◦, we conclude
that the measure of at least one of these six angles is at least 120◦. Let AD

and BD be the edges of such an angle. Then, 
 ADB ≥ 120◦ and it suffices to
reason as in the end of (i).

18. If M is the intersection point of EF and DX, show that EM

FM
= EX·ED

FX·DF
(*).

Let k be the power of P with respect to � and P ′ 
= X be the other intersection

of
←→
AP and �, so that PP ′ = k

PX
. Now, compute the power of A with respect
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to � to find AE
2 = AX

PX

(

AP · PX + k
)

(**). Apply Stewart’s relation to
triangle AEP ′, together with the similarity of triangles AXE and AEP ′ and

(**) to find AP

AX
· EX

2 = k + EP
2
. Use an analogous reasoning to obtain

AP

AX
· FX

2 = k + FP
2
. Then, use (*) to get

EM

FM
=
(k + EP

2

k + FP
2

)1/2 · DE

DF
.

Letting N and Q be the points of intersection of BP and CP with DF and
DE, respectively, we deduce as above that

FN

DN
=
( k + FP

2

k + DP
2

)1/2 · EF

DE
and

DQ

EQ
=
(k + DP

2

k + EP
2

)1/2 · DF

EF
.

Finally, note that EM
MF

· FN
ND

· DQ
QE

= 1 and apply Ceva’s theorem.

Section 7.4

1. Apply the sine law to each summand at the left hand side.
2. Apply the sine law to ABC, together with the formula for the sine of double

arcs (cf. Corollary 7.19) to compute cos ÂCB in terms of a, b and c; then,
substitute the result into the cosine law.

3. Let r be the common difference of the progression, and α, β and γ be the
measures of the angles opposite the sides of lengths l − r , l and l + r ,
respectively, so that α < β < γ . Then, γ = α + 90◦ and, since α + β + γ =
180◦, we obtain β = 90◦ − 2α. Now, it follows from the sine law that

l − r

sin α
= l

sin(90◦ − 2α)
= l + r

sin(90◦ + α)

or, which is the same,

l − r

sin α
= l

cos(2α)
= l + r

cos α
.

Finally, look at the equalities above as a system of equations in r and α to
conclude the analysis of the problem.

4. Take point D for which ABDC is a parallelogram and apply sine law to ADC,
together with the formula for the sine of the double arc.

5. Firstly, compute the area of ABC with the aid of Heron’s formula. Then,
let O be the center of the semicircle and adapt the idea of the proof of
Proposition 5.13 to triangles ABO and ACO to conclude that A(ABC) = 27R

2 .
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6. Look separately at the cases D ∈ AB, D ∈ AC and D ∈ BC. For example, if
D ∈ BC, then apply the sine law to triangle DPQ and note that AD ≥ AHa

(with Ha ∈ BC being the foot of the altitude relative to BC).
7. Set AB = c, AC = b and BC = a and use the sine formula for the area of a

triangle and the cosine law to show that the given inequality is equivalent to

a2 + b2 ≥ ab(
√

3 sin ̂C + cos ̂C).

Then, apply the inequality between the arithmetic and geometric means for two
positive reals (cf. Section 5.1 of [5], for instance), together with (7.10).

8. Set AC = b, AB = c, BC = a and BD = CD = t . Apply Ptolemy’s
theorem to the quadrilateral ABDC to get (c + b)t = a · AD. From this, use
the sine law to arrive at

BK + CL = t (sin ̂B + sin ̂C) = AD · sin ̂A ≤ AD.

9. Letting AB = c, AC = b and BC = a, use Corollary 7.31 and the sine law

to show that A(AB2C1) = a3

4R
and

A(BA1A2C) = (b + c)2 sin ̂A

2
− abc

4R
= a

4R
(b2 + bc + c2),

where R stands for the circumradius of ABC. Get analogous formulas for the
areas of A1BC2, B1CAB2, A2B1C and ABC2C1, and add all of them to obtain

A(A1A2B1B2C1C2) = 1

4R
((a2 + b2 + c2)(a + b + c) + 4abc).

Finally, apply the inequality between the arithmetic and geometric means
for three positive reals (cf. Section 5.1 of [5], for instance), once more in
conjunction with Corollary 7.31, to conclude.

10. Letting θ = ÂBM , first show that θ = ̂C − ̂B; then, compute AN , BN and
AC in terms of MN = x, AB = c and the involved angles, use the sine law
and Trigonometry in right triangles.

11. Apply formula (7.17) to all summands in the equality A(ABC) = A(ABP) +
A(ACP).

12. Apply the sine formula for the area of a triangle together with the inequality
between the arithmetic and geometric means for two positive reals (cf. Sec-
tion 5.1 of [5], for instance).

13. Letting M be the intersection point of AC and BD, one has A(ABCD) =
A(ABM)+A(BCM)+A(CDM)+A(DAM). Then, apply the sine formula
for the area of a triangle to compute the area of each one of the four triangles at
the right hand side.



498 14 Hints and Solutions

14. Apply the formula of Problem 13, together with the inequality between the
arithmetic and geometric means for two positive reals (cf. Section 5.1 of [5],
for instance).

15. Apply the sine formula for the area of a triangle to compute S, S1 and S2, thus
transforming the desired inequality into one involving the lengths of AE, BE,
CE and DE. Then, apply the inequality between the arithmetic and geometric
means for two positive reals (cf. Section 5.1 of [5], for instance).

16. If ÂDC = θ , then ÂBC = π − θ , so that

A(ADM) = A(ABCM) ⇒ A(ABCD) = 2A(ADM)

⇒ (x + c)y sin θ + ab sin(π − θ) = 2xy sin θ

⇒ xy = cy + ab.

(14.1)

A

C D

B

M

y
b

c x

a

On the other hand, the equality between the perimeters gives x + y = a +
b + c. Hence, it follows from (14.1) that

xy + y2 = (x + y)y = (a + b)y + cy = (a + b)y + xy − ab,

so that y2 − by = ay − ab, or (y − a)(y − b) = 0. Therefore, either y = a or
y = b.

17. Apply the cosine law to triangles ABC and CDA to find an expression for
cos ÂBC in terms of a, b, c and d . Then, use such a formula to compute
sin ÂBC, and thus the area of ABCD as A(ABC) + A(CDA).

18. Letting α = B̂AD and β = ÂBC, use the sine law to show that x
y
= sin α

sin β
.

Then, use the sine formula for the area of a triangle to compute the area of
ABCD in two distinct ways, thus showing that (ad + bc) sin α = (ab +
cd) sin β.

19. Apply Ptolemy’s and Hypparchus’ theorems (see the previous problem) to
compute the lengths of the diagonals of ABCD in terms of a, b, c and d . Then,
use compass and straightedge to construct the corresponding line segments.

20. If such a sequence did exist, the square and the triangle would have equal areas
and perimeters. Analyse the feasibility of this fact in light of Example 7.34.

21. For the first part, apply the sine law to triangles ABP , ACP and ABC, noticing
that sin ÂPB = sin ÂPC.
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22. For item (b), use the result of (a), together with the fact that R ≥ 2r (cf.
Theorem 4.32). For (a), start by showing that, if H and O denote the orthocenter
and the circumcenter of ABC and H1 the symmetric of H with respect to O ,

then
←→

A1H1 ⊥ ←→
AH ,

←→
B1H1 ⊥ ←→

BH and
←→

C1H1 ⊥ ←→
CH . Subsequently, if AA′ is

a diameter of the circumcircle of ABC, use the theorem on the Euler median
and the similarity AOM ∼ AA′A1 to obtain A1H1 = 2(R + x), where x

denotes the distance from O to BC. Make analogous computations for B1H1
and C1H1, then showing that

A(A1B1C1) = A(A1B1H1) + A(A1C1H1) + A(B1C1H1)

= 2R2(sin ̂A + sin ̂B + sin ̂C)

+ 2(xy sin ̂C + xz sin ̂B + yz sin ̂A)

+ 2R((x + y) sin ̂C + (x + z) sin ̂B + (y + z) sin ̂A).

Finally, apply the sine law and Carnot’s theorem to reach the desired result.

Section 7.5

1. If D 
= C is chosen in such a way that ABD is also equilateral, use Ptolemy’s
inequality to show that AP + BP ≥ DP . Then, notice that DP > CP .

2. In the cartesian plane, if A(−1, 1), B(1,−1), C(−2,−2) and P(x, y), then ABC

is isosceles and we want to minimize the sum AP + BP + CP . To this end,
apply the solution for Steiner’s problem to compute the coordinates of the desired
point P , and then the minimum of the given expression.

3. Set AC = a, CE = b, AE = c and apply Ptolemy’s inequality to quadrilateral

ABCE to find BC

BE
≥ a

b+c
. Analogously, show that DE

DA
≥ b

a+c
and FA

FC
≥ c

a+b
.

Thus, it suffices to show that ≥ a
b+c

+ b
a+c

+ c
a+b

≥ 3
2 , which follows from

Chebyshev’s inequality (cf. Example 5.21 of [5], for instance).

Section 8.1

1. Firstly, noting that AC and A′C′ are equal and parallel, conclude that AA′C′C
is a parallelogram, so that AA′ and CC′ are also equal and parallel. Then, use
the fact that the pairs of line segments AB, CD and A′B ′, C′D′ are equal and
parallel to conclude that CD and C′D′ satisfy these conditions too. This will
show that CC′D′D is a parallelogram, and hence that CC′ and DD′ are equal
and parallel. Finally, conclude that AA′ and DD′ are also equal and parallel, so
that the same holds for AD and A′D′.



500 14 Hints and Solutions

2. Write v = kw and take moduli in both sides of this equality to obtain |k| = ||v||
||w|| .

3. Item (a) is immediate if k1 = 0 or k2 = 0; if k1k2 
= 0, it follows at once from
the definition of kv, by looking at the possible signs of the product k1k2. For
item (b), separately consider the cases k1+k2 < 0, k1+k2 = 0 and k1+k2 > 0.
For item (c), apply the parallelogram rule to both sides, and use similarity of
triangles to compare the results.

4. Write the given condition as
−→
OC − −→

OA= k(
−→
OB − −→

OA) and expand.
5. Fix a point O in the plane and use the result of the previous problem to write

−→
NM= −→

OM − −→
ON= 1

2 (
−→
OA − −→

OC). Then, conclude that
−→
NM= −→

PQ.
6. If P stands for the foot of the internal bisector relative to BC, use the internal

bisector theorem to conclude that
−→
BP= c

b+c

−→
BC. Then, apply the result of

Problem 4 to find
−→
OP= b

−→
OB+c

−→
OC

b+c
. Finally, repeat the argument above to get

−→
AI= b+c

a+b+c

−→
AP and, then, the stated formula.

7. Let Ma , Mb, Mc denote the orthocenters of AHbHc, BHaHc, CHaHb,
respectively, note that PaHcHHb is a parallelogram. Then, letting H be the

origin of vectors and writing simply X instead of
−→
OX, show that Pa = Hb+Hc.

Then, setting X := 1
2 (Ha + Hb + Hc), show that Pa+Ha

2 = Pb+Hb

2 = Pc+Hc

2 ,
whence PaPbPc and HaHbHc are symmetric with respect to X, thus congruent.

8. Letting M be the midpoint of BC, use the fact that
←→
AH‖ ←→

OM and AH =
2 OM (cf. Theorem 4.20) to conclude that

−→
AH= 2

−→
OM . Then, write

−→
AH=−→

OH − −→
OA and apply the result of Problem 4 to find

−→
OM= 1

2 (
−→
OB + −→

OC).

9. Letting O be the center of the polygon, write
−→
PAi=

−→
OAi −

−→
OP and use the

fact that
−→

OA1 + · · ·+ −→
OAn= 0.

10. Given a point O , let ai =
−→
OAi , mi =

−→
OMi and bi =

−→
OBi . Show that

bi+1 + bi = 2mi = ai+1 + ai;

then, add the first and last expressions above for 1 ≤ i ≤ 2n in order to reach
the desired result.

11. Fix an arbitrary point O and let
−→
OA= a,

−→
OA′= a′ and likewise for

−→
OB,

−→
OB ′

etc. Use the result of Problem 4 to obtain 2b−a = a′, 2c−b = b′, 2d− c = c′
and 2a − d = d′. Then, look at these four equalities as a linear system of
equations in a, b, c and d that, once solved, gives a in terms of a′, b′, c′ and d′.

12. Start by arguing in a way similar to the hints given to the two previous problems
to conclude that QiQi+1 = − 1

4PiPi+1 for 1 ≤ i ≤ 5.
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Section 8.2

1. Use the result of Problem 4, page 200.
2. We can assume, without loss of generality, that AD = 1. Choosing a cartesian

system of origin D in which
−→
OA= j, we have

−→
DC= −i and

−→
DG= −√

3j.

Apply the result of the previous problem several times to show that
−→
DL= −(1+√

3)i + 3j. Finally, write
−→
GC and

−→
GL in terms of the canonical basis i and j.

4. Use the previous problem, noticing that if
−→
OQ is obtained from

−→
OP through

a clockwise rotation of θ radians, then the coordinates of P in system x ′Oy ′
coincide with those of Q in system xOy.

5. For item (c), show that the suggested rotation of coordinates transforms the
equation ax2+2bxy+cy2+f = 0 for C into a′(x ′)2+2bx ′y ′+c′(y ′)2+f ′ = 0,
with 2b′ = 2b cos 2θ − (a − c) sin 2θ . Then, show that this last equation admits
a solution θ when a 
= c. For (d), look separately at the cases a′c′ = 0, a′c′ < 0
and a′c′ > 0, taking the sign of f ′ into account in each of them.

6. Choose a cartesian system having the center O of one of the hexagons as origin,
and such that one of its vertices, say A, is the point (1, 0). Show that the vertices

of the hexagons are the points P in the plane for which
−→
OP= ai + be π

3
, with

a, b ∈ Z. Now, suppose that there exists a square P1P2P3P4 with all of the

Pi ’s of the above form; conclude that
−→

P2P3 is obtained from
−→

P1P2 by means
of a trigonometric rotation of ±π

2 , and apply the result of Problem 1 to reach a
contradiction.

7. For item (a), start by writing
−→
PD= −→

PC + −→
CD, and noticing that

−→
CD is

obtained from
−→
CB by means of a trigonometric rotation of π

3 radians. For (b),
use the fact that β − α = γ − β = 2π

3 and γ − α = 4π
3 .

Section 8.3

1. Two representatives of a vector are opposite sides of a parallelogram. Hence,
the sides of the angles formed by the canonical representatives, in two distinct
cartesian systems, of given nonzero vectors v and w are parallel in pairs.

2. Show that θ(v, w) + θ(−v, w) = π .
3. For Corollary 6.11, recall that if ax + by + c = 0 is the equation of a given

line r , then v = (a, b) is orthogonal to r , so that the line we wish to find has
parametric equations (x, y) = t (a, b). Adapt such kinds of arguments to prove
the propositions referred to.

4. First of all, note that v = (

a√
a2+b2

, b√
a2+b2

)

is a unit vector orthogonal to r .

Now, choose an arbitrary point Q(x, y) on r and compute, on the one hand,
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−→
PQ ·v = (x − x0, y − y0) ·

( a√
a2 + b2

,
b√

a2 + b2

)

= a(x − x0) + b(y − y0)√
a2 + b2

= −(ax0 + by0 + c)√
a2 + b2

;

on the other, letting θ denote the angle between
−→
PQ and v, we have

| −→
PQ ·v| = || −→

PQ || · ||v|| · | cos θ | = || −→
PQ || · | cos θ | = d(P ; r).

5. Letting
−→
OP= p and

−→
OAi= ai for 1 ≤ i ≤ n, show that

n
∑

i=1

||ai − p||2 =
n
∑

i=1

||ai||2 − 2p ·
n
∑

i=1

ai + n||p||2.

Then, apply the result of Proposition 8.6.)
6. Apply the result of the previous problem, noticing that, in a regular 2n-gon

A1A2 . . . A2n, the n-gons A1A3 . . . A2n−1 and A2A4 . . . A2n are regular and
congruent.

7. The result of Problem 8, page 274, shows that

OH
2 = 〈 −→

OH,
−→
OH 〉 = 〈 −→

OA + −→
OB + −→

OC,
−→
OA + −→

OB + −→
OC〉

= OA
2 + OB

2 + OC
2 + 2〈 −→

OA,
−→
OB〉 + 2〈 −→

OA,
−→
OC〉 + 2〈 −→

OB,
−→
OC〉.

Now, setting ÂCB = ̂C, use the fact that ÂOB = 2̂C to compute

2〈 −→
OA,

−→
OB〉 = 2 OA · OB cos 2̂C = 2R2(1 − 2 sin2

̂C)

= 2R2 − (2R sin ̂C)2 = 2R2 − a2,

and likewise for 2〈 −→
OA,

−→
OC〉 and 2〈 −→

OB,
−→
OC〉.

8. Write a + b + c = 2p and use the result of Problem 6, page 274, together with
the sine law and formulas (5.3) and (7.17) to compute
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4p2 OI
2 = 4p2|| −→

OI ||2 = ||a −→
OA +b

−→
OB +c

−→
OC ||2

= R2(a2 + b2 + c2) + 2abR2(1 − 2 sin2
̂C)+

+ 2acR2(1 − 2 sin2
̂B) + 2bcR2(1 − 2 sin2

̂A)

= R2(a + b + c)2 − ab(2R sin ̂C)2 − ac(2R sin ̂B)2 − bc(2R sin ̂A)2

= 4p2R2 − abc(a + b + c) = 4p2R2 − 2pabc

= 4p2(R2 − 2Rr).

9. First note that

AP
2 = ∣

∣

−→
IP −−→

IA
∣

∣

2 = 〈−→IP −−→
IA,

−→
IP −−→

IA〉
= IP

2 + IA
2 − 2〈−→IP ,

−→
IA〉.

Now, write BP
2

and CP
2

similarly, and use the result of Problem 6, page 274,
to conclude that

a AP
2 + b BP

2 + c CP
2 = (a + b + c) IP

2 + a IA
2 + b IB

2 + c IC
2
.

10. Letting AC = b and AB = c, use the sine and cosine laws to show that

−→
CD · −→

OE =
(

− −→
BC +1

2

−→
BA

)

·
(

− −→
BO +1

2

−→
BA +1

3

−→
BC

)

= 1

6
(b2 − c2).

11. For item (e), set q = 2 sin π
n

, so that lk = l0q
k. Since n > 6 ⇒ 0 < q < 1,

basic Real Analysis (cf. Section 7.2 of [5], for instance) gives lk → 0 as
k → +∞. Now, observe that the distance between two points with integer
coordinates is at least 1, so that it is impossible for Pk to have vertices of integer
coordinates if k is sufficiently large.

Section 9.1

1. Apply the inversion of center A and ratio AC
2
, so that αC and βC remain

unchanged. If the inverse r of � forms and angle θ ∈ (

0, π
2

)

with AB, show
that rC = B ′C · tan θ

2 and RC = B ′C · cot θ
2 , where B ′ stands for the inverse

of B.
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2. Apply the inversion of center A and ratio AC to show that the desired equality

is equivalent to B ′D′2 = B ′C′2+C′D′2. Then, use the orthogonality condition
to show that this relation does hold.

3. Apply an inversion centered at a point of � to reduce the present problem to
Problem 8, 148.

4. Apply an inversion of center A to reduce the problem to that of constructing a
line tangent to two nonconcentric given circles.

5. Let �1(O1;R1) and �2(O2;R2), with R1 < R2 (the case R1 = R2 can be dealt
with analogously). If �(O;R), then the circle �̃(O;R1 + R) passes through
O1, is tangent to �̃2(O2;R2 + R) and to the line s, parallel to r at a distance
R1 and lying in the half-plane opposite to that of �1 and �2. This reduces the
present problem to the previous one.

6. The inversion of pole N and ratio NC = ND leaves α and β fixed, maps
←→
AB

into the circumcircle of NPQ,
←→
CP into the circumcircle of ACN and

←→
DQ

into the circumcircle of BDN .
7. The inversion of center B and ratio AB transforms α and β in two perpen-

dicular lines passing through A and the circumcircle of BCD in
←→
C′D′, which

passes through the center of the circumcircle of AC′D′.
8. Choose one of the given points, say O , and apply an inversion of center O .

Show that the set of the inverses of the n − 1 remaining points satisfies the
following condition: any line passing through two of them contains a third one.
Then, apply the result of Problem 36, page 119.

9. If � is orthogonal to � and � ∩ � = {P,Q}, then P ′ = P , Q′ = Q and (from

the orthogonality)
←→
OP and

←→
OQ are tangent to �. Hence, �′ passes trough P ,

Q and is orthogonal to �′ = �, whence �′ = �. The converse is analogous.
10. Let AP = AQ = r and α be the circumcircle of APQ. The inversion of center

A and ratio r maps α into
←→
PQ and (from the result of the previous problem)

leaves � fixed. If Ma is the midpoint of BC, then ÂPMa = ÂQMa = 90◦,
so that AMa is a diameter of α. Letting Ha be the foot of the perpendicular
dropped from A to BC, we also have ÂHaMa = 90◦, whence Ha ∈ α.

Therefore, H ′
a ∈←→

PQ. It now suffices to show that H ′
a = H . To this end, let Hc

be the foot of the perpendicular dropped from C to AB, and note that Hc = B ′.
Now, use the fact that BHcH

′
aHa = BB ′H ′

aHa and BHcHHa are cyclic to
conclude that H ′

a = H .
11. Let I be the inversion with center A, with respect to which �n remains fixed.

Then, I transforms α and β into the tangents to �n perpendicular to
←→
AC . In

turn, show that this forces �n−1, . . . , �0 to be transformed into circles congruent
to �n all lying in the strip of the plane bounded by α′ and β ′. The result now
follows at once.

12. Along this hint, given an inscribed polygon P we write (P) for its circumcircle.
Apply the inversion of pole A and modulus AF · AB, so that F ′ = B, E′ = C
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and (AFHE)′ =←→
BC . Then, H ′ = D′ and

←→
FE

′
= (ABC). This gives G′ as the

other point of intersection of
←→
AD and (ABC) (namely, G′ 
= A). On the other

hand, (DEF)′ = (BHC), which shows that N ′ = M . Thus, since S ∈ (DEF),

we have S′ is the other point of intersection of
←→
AD and (BHC) (i.e., S′ 
= H ).

By symmetry with respect to
←→
BC , we also have HMA ∼= G′MS′. Now, use

the fact that both SNMS′ and GNMG′ are cyclic.
13. Essentially all of the results we have studied remain true, with the same proofs;

it suffices for the reader to rework them. A notable exception is the inversion
circle �(O; k): although we have I (�) = �, for A ∈ � we now have I (A) =
B, with AB being a diameter of �.

14. Suppose first that A lies outside the disk bounded by �. The inversion of center

A and ratio k =
√

AE · AF (which is constant, by the intersecting chords
theorem) maps E to D and F to C, hence maps the circumcircle of AEF to the

line r =←→
EF . If B is the inverse of B, show that B depends only on A and B.

Then conclude that the circumcenter of AEF lies in the perpendicular bisector
of AB. Now, assume that A lies in the disk bounded by �. Argue as above, this
time considering the opposite inversion of ratio k.

14. Rework the proofs of the results of this section in this setting.
15. Firstly, show that P , M and N are collinear (an elementary argument works).

Then, note that the opposite inversion of center P and ratio k, with k2 =
PA · PA (which is constant, by the intersecting chords theorem) transforms
the circumcircle of BPM into the line passing through B and parallel to AA.
Then, use the collinearity of M , N and P to conclude that the inverse of M is
the point M such that PAMB a rectangle. Finally, note that

PM · PN = 1

2
PM · PM = 1

2
PA · PA.

16. For item (a), use Proposition 3.36 to show that the inversion circle has center
M and passes through D and J , hence is orthogonal to � and �. For item
(b), use the angle bisector theorem to calculate MP ; for MHa , use some
Trigonometry in the right triangle ABHa and the cosine law to compute

MHa = a
2 − c cos ̂B = b2−c2

2a
. For (c), start by observing that

←→
RS is also

tangent to � and �. Then, note that MN = c
2 , and that

←→
MN‖←→

AB implies
MPQ ∼ BPR; in turn, show that such a similarity allows us to compute MQ.

Finally, for (d), note that items (b) and (c) imply that
←→
RS is the inverse of the

nine-point circle, and that inversions preserve tangency.
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Section 9.2

1. For (a) ⇒ (b), let I be the inversion of center O and some modulus k > 0, and let
r be the inverse of �. Since a is not tangent to �, we conclude that a meets r , say
at A1. Analogously, b, c, d meet r , say at B1, C1, D1, and (A1, B1, C1,D1) is a
harmonic quadruple. Then, exactly one of C1, D1 lies in A1B1, and this implies
AB ∩ CD 
= ∅. Also,

A1C1

C1B1
= k2 · AC

OA · OC
· OC · OB

k2 · CB
= AC

CB
· OB

OA
,

and likewise A1D1
D1B1

= AD

DB
· OB

OA
. Hence, AC

CB
= AD

DB
follows from A1C1

C1B1
= A1D1

D1B1
.

The converse can be established quite similarly.
2. Apply the result of the previous problem twice, with � equal to the circle of

diameter OO1.

3. Start by choosing a points O /∈←→
AB , with OA 
= OB, and an arbitrary point

Q ∈←→
OC \{O,C}. Then, plot U and V as the intersections of

←→
AQ and

←→
BO ,

←→
AO

and
←→
BQ. Finally, plot D as the intersection of

←→
AB and

←→
UV .

Section 9.3

1. If pi is the polar of P with respect to �i , show that Q is the intersection of p1
and p2.

2. The result can read like this: “Let ABCD be an isosceles trapezoid with bases

AD, BC and circumcircle �. If AC ∩ BD = {R} and
←→
AB ∩ ←→

CD= {P }, then

the perpendicular to
←→
PR at R is the polar of P with respect to �”. For the

proof, adapt that of Theorem 9.23.

3. Use the straightedge to draw two secants
←→
AB and

←→
CD to �, both passing

through P . If the convex quadrilateral of vertices A, B, C, D has diagonals

AC and BD, show that
←→
AB and

←→
CD can be chosen so that

←→
AD and

←→
BC are

not parallel. Then, use the straightedge again to obtain the intersection points

Q of
←→
AD,

←→
BC and R of

←→
AC ,

←→
BD. Since

←→
QR is the polar of P with respect

to �, we can plot the intersection points T1, T2 of
←→
QR and �. Then,

←→
PT1 and

←→
PT2 are tangent to �.

4. If such tangents meet at P , use Theorem 9.23 to show that
←→
XY is the polar of

P with respect to �. Now, recall that if H is the orthocenter of ABC, then it is
the incenter of its orthic triangle. Finally, use the result of Example 4.23.
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5. Let Hb and Hc stand for the feet of the altitudes relative to B and C,

respectively. Since
←→
PQ is the polar of A with respect to � and A ∈ ←→

BHc,
←→
CHb,

we know that
←→
PQ,

←→
BHb and

←→
CHc are concurrent.

6. Use the fact that N belongs to the polars of A and D to conclude that
←→
AD is

the polar of N ; accordingly, show that
←→
BE is the polar of M . Finally, use these

two facts to show that
←→
MN is the polar of P .

7. Since ABCD is not a rectangle, we have ̂B 
= 90◦; thus, we let
←→
AD ∩ ←→

BC=
{P }. Now, let � denote the circumcircle of ABCD and

←→
QT be one of the

tangents to � drawn from Q (T ∈ �). Point T can be constructed as the

intersection of the perpendicular to
←→
OQ through R and the circle of diameter

OQ, and after that we can also draw �. Since R is the orthocenter of OPQ

(cf. Brocard’s theorem), P can be found as the intersection of
←→
RT with the

perpendicular to
←→
OR through Q. Finally, A is one of the intersection points of

� and the circle of diameter PQ.

8. If MP ∩ NQ = {R}, then
←→
UV is the polar of R and

←→
MP is the polar of W .

Since R ∈ ←→
MP , we conclude that W ∈←→

UV . Now, argue in a similar way to see

that X ∈←→
UV .

9. Let MP ∩ NQ = {R} and � be the circle inscribed in ABCD. First assume

that
←→
MN �‖ ←→

PQ,
←→
MQ �‖ ←→

NP , and set
←→
MN ∩ ←→

PQ= {U}, ←→
MQ ∩ ←→

NP= {U}.
Then,

←→
RU is the polar of V and

←→
RV is the polar of U . Moreover, since

←→
AM ,

←→
AQ are tangent to � and U ∈ ←→

MQ, we conclude that A belongs to the polar

of U , i.e., A ∈←→
RV . Accordingly, C ∈←→

RV , whence, A, C, R are collinear.

Likewise, B, D, R are collinear. Now, if
←→
MN‖ ←→

PQ but
←→
MQ �‖ ←→

NP , then
a similar reason shows that A, C, R are collinear, whereas an elementary

argument established the collinearity of B, D, R. Finally, if
←→
MN‖ ←→

PQ and
←→
MQ‖ ←→

NP , then MNPQ is a rectangle and ABCD is a rhombus, and there is
nothing left to do.

10. Let α be the circumcircle of BKN and β be that of ABC. Let I be the inversion
of center B that leaves γ fixed, so that K ′ = A, A′ = K , N ′ = C, C′ = N ,

α′ =←→
AC and β ′ = ←→

KN . Use the fact that M lies in both α and β to show that
←→
BM ,

←→
AC and

←→
KN concur at M ′. Now, let P and Q be the feet of the tangents

drawn from B to γ , so that
←→
PQ is the polar of B with respect to γ . Since

←→
AK ∩ ←→

CN= {B} and
←→
KN ∩ ←→

AC= {M ′}, we conclude that M ′, P and Q

are collinear. Use the fact that
←→
BO ∩ ←→

PQ= {O ′} and M = M ′′ to show that
M ′OO ′M is cyclic, whence M ′

̂MO = M ′
̂O ′O = 90◦.
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Section 9.4

1. The stated condition amounts to AC
CB

· D1B
AD1

= AC
CB

· D2B
AD2

. This in turn gives
D1B
AD1

= D2B
AD2

, so that D1 and D2 divide AB, as an oriented segment, in the same
ratio. But we already know that this implies D1 = D2.

2. Check that all items are straightforward consequences of the definition of cross
ratio.

3. Apply items (b) and (d) of the previous problem to get (B,A;C,D) =
1

(A,B;C,D)
. Then, conclude that (A,B;C,D) = ±1, and exclude the possibility

1 by applying item (a) of the previous problem.
4. For the first part, let r be the line passing through A, B, C, D and take a point

O /∈ r . Let s 
= r,
←→
AO be a line passing through A and intersecting

←→
OB,

←→
OC,

←→
OD respectively at points B1, C1, D1. Show that we can choose s in such a

way that
←→
OB and

←→
C1D meet at a point E, and then note that

ABCD
O

� AB1C1D1

D

� BB1EO
C1

� BADC.

For the second part, note that projectivities preserve cross ratios, so that
the geometric construction delineated above assures that (A,B;C,D) =
(B,A;D,C).

5.

ABPR
D

� OQSR
C

� BAPR.

For item (b), since projectivities clearly preserve cross ratios, we have from (a)
that (A,B;P,R) = (B,A;P,R). Now, use the result of Problem 3 to conclude
that (A,B;P,R) = −1, and note that this finishes the proof.

6. Argue as in the proof of case (i).
7. Apply Brianchon’s theorem to the hexagrams AMBCPD and ABNCDQ.
8. Check that the proof presented for Pascal’s theorem also works in this case,

verbatim.
9. As in the proof of the ordinary version of Pascal’s theorem, let � be the circle

circumscribed to ABCDEF , let
←→
CD ∩ ←→

AE= {U} and
←→
BD ∩ ←→

CE= {V }.
Also as there,

( ←→
AC,

←→
AY ,

←→
AU,

←→
AD

) = ( ←→
AC,

←→
AF,

←→
AE,

←→
AD

)

�

�
( ←→

BC,
←→
BF ,

←→
BE,

←→
BD

)

= ( ←→
BC,

←→
BX; ←→

BE,
←→
BV

)

,
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whence (C, Y ;U,D) = (C,X;E,V ). Now, use the definition of cross ratio to
get CD

DY
·UY
CU

= CV
V X

·EX
CE

. Use this and the given parallelism (via Thales’ theorem)
to arrive at DY

UY
= VX

EX
, and hence at DY

UY
= V X

EX
. Finally, obtain DY

DU
= V X

V E
and

use the parallelism of
←→
DV and

←→
V E to get

←→
XY ‖ ←→

DV=←→
BD.

10. First of all, note that points P , Q, R, S lie in the circle of diameter AD. Then,

let
←→
PR ∩ ←→

QS= {E} and apply Pascal’s theorem to the hexagram ARST QP

to conclude that B, C, E are collinear.

Section 10.1

1. Pick a plane α in space. Since α is properly contained in space, we can choose
a point A /∈ α. Now, by choosing three noncollinear points B,C,D ∈ α, we
obtain the noncoplanar points A, B, C and D. It is immediate to check that the
planes (ABC), (ABD), (ACD) and (BCD) are pairwise distinct, and are all of
the planes containing three of these four points.

2. In each of the cases listed in Proposition 10.6, compute the number of regions
into which the space gets divided by the planes α, β and γ .

3. Apply the fifth postulate of Euclid in the plane (A, r).
4. If r , s and t all lie in a single plane, there is nothing to do. Otherwise, let α =

(r, s), β = (s, t) and γ = (A, r), where A is a point of t . If β ∩ γ = t ′, then
Proposition 10.6 assures that r , s and t ′ are parallel. However, since A ∈ t, t ′ ⊂ β

and t, t ′ ‖ s, we have t = t ′; in particular, r ‖ t .
5. Show that the points of intersection all lie in the line of intersection of α and α′.
6. Apply the usual version of Thales’ theorem to the plane (AXY).

7. Since
←→
XY ‖

←→
X′Y ′, we have AXY ∼ AX′Y ′; analogously, AYZ ∼ AY ′Z′. It thus

follows that XY

X′Y ′ = AY

AY ′ = YZ

Y ′Z′ . Likewise, XY

X′Y ′ = XZ

X′Z′ , so that XYZ ∼ X′Y ′Z′
by the SSS case.

Section 10.2

1. Fix a point A in space and draw, through A, line si parallel to ri . Then, s1,
s2, . . . , sn all pass through A and are pairwise perpendicular. Now, show that
n = 3.

2. Suppose first that r⊥β. Draw distinct planes γ and δ containing r , and let s and
s′ (resp. t and t ′) be the intersections of γ (resp. of δ) with α and β, respectively.
Then r⊥α ⇒ r⊥s, t and r⊥β ⇒ r⊥s′, t ′. However, since s, s′ ⊂ γ and
t, t ′ ⊂ δ, it follows that s ‖ s′ and t ‖ t ′. Hence, Proposition 10.4 assures that α

and β are parallel planes. Conversely, if α ‖ β then we can choose concurrent
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lines s, t ⊂ α and s′, t ′ ⊂ β such that s ‖ s′ and t ‖ t ′. Since r⊥α, we have
r⊥s, t , and thus r⊥s′, t ′. Proposition 10.8 now assures that r⊥β.

3. Pick a plane β ‖ α and, with the aid of Corollary 10.9, draw the line r , passing
through A and perpendicular to β. Now, use the result of the previous problem.

4. We have to prove that r and s are coplanar and have no common points. To this
end, let A be the point of intersection of r with α, and r ′ be the parallel to s

passing through A, so that r ′⊥α. If r ′ 
= r , we would have two lines passing
through A and perpendicular to α, which is an absurd; thus r ′ = r . Use this fact
to finish the proof.

5. Let α ∩ β = s, so that r⊥s. Since β⊥α, plane β contains a line t perpendicular
to α, and hence orthogonal or perpendicular to every line of α; in particular,
t⊥r . Thus, s and t are concurrent lines of β with r⊥s, t , so that (from
Proposition 10.8) r⊥β.

6. For the existence part, first consider the case in which the given point A does
not lie in the given line r . Draw, in the plane (A, r), line s, passing through A

and perpendicular to r at B. Then, draw another plane β containing r and, in β,
draw line t , passing through B and perpendicular to r . Finally, since s and t are
concurrent and such that r⊥s, t , we have r⊥(s, t).

7. Let β be a plane containing r and perpendicular to α. By definition, β contains a
line s such that s⊥α. Since r 
⊥α, we have r 
‖ s (otherwise, since s is orthogonal
to two concurrent lines of α, the same would happen with r , and we would have
r⊥α). Now, let A be the intersection point of r and s, let β ′ be another plane
containing r and perpendicular to α, and pick a line s′ ⊂ β ′ with s′⊥α. Then,
s′ 
= s (for otherwise β ′ = (r, s′) = (r, s) = β) and we can assume, without
loss of generality, that A ∈ s′ (for, if this is not the case, exchange s′ by the
parallel to it passing through A). Letting B and B ′ be the intersections of s and

s′ with α, respectively, it follows from s, s′⊥α that s, s′⊥
←→
BB ′. Hence, in the

plane (s, s′), the sum of the angles of the triangle ABB ′ would be larger than
180◦, which is impossible.

8. Let r and s be given reverse lines. In the notations of the proof of Theo-

rem 10.12, if A′B ′ is a common perpendicular to r and s, then γ = (r,
←→
A′B ′)

is perpendicular to α and, hence, also to β. Now, apply the uniqueness of the
plane perpendicular to α and containing r , established in the previous problem,
to obtain the desired uniqueness.

9. Let C and C′ be the feet of the perpendicular dropped from A and A′ to β,
respectively. The argument that guaranteed the consistency of the definition of
distance between two parallel planes assures that AC = A′C′. Moreover, since
B̂AC = B ′

̂A′C′ and ÂCB = A′
̂C′B ′ = 90◦, triangles ABC and A′B ′C′ are

congruent by ASA.1 Hence, AB = A′B ′.

1Here, we are implicitly assuming that one can apply the usual cases of congruence of triangles,
even though the triangles under consideration do not lie in a single plane.
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10. Let C and C′ be the feet of the perpendicular dropped from A and A′ to β,
respectively. The argument that guaranteed the consistency of the definition of
distance between two parallel planes assures that AC = A′C′. Moreover, since
B̂AC = B ′

̂A′C′ and ÂCB = A′
̂C′B ′ = 90◦, triangles ABC and A′B ′C′ are

congruent by ASA.2 Hence, AB = A′B ′.
11. Let A, B, C and D be the given points and α be a plane such that A, B, C and

D are at equal distances from α. There are two distinct possibilities: (i) A and
B lie in one of the half-spaces determined by α, whereas C and D lie in the
other: if M and N (resp. P and Q) denote the midpoints of AC and BC (resp.
of AD and BD), respectively, then, M,N,P,Q ∈ α, by the previous problem.
On the other hand, by applying the midsegment theorem to ABC and ABD, we

conclude that
←→
MN,

←→
PQ‖←→

AB ; hence,
←→
MN‖ ←→

PQ, so that M , N , P and Q are
indeed coplanar and α = (MNP) = (MNQ). (ii) A, B and C all lie in one of
the half-spaces determined by α, while D lies in the other: it follows from the
previous problem that α passes through the midpoints P , Q and R of the line
segments AD, BD and CD, respectively. On the other hand, since A, B and C

are noncollinear, the same happens with P , Q and R, so that α = (PQR).
12. If I denotes the incenter of ABC and t is the straightline perpendicular to

(ABC) at I , we shall show that D can be taken in t . To this end, let M ∈ BC,
N ∈ AC and P ∈ AB be the points where the incircle of ABC touches its
sides. If r is the inradius and 2p is the perimeter of ABC, then Pythagoras’
theorem gives

DI
2 = AD

2 − AI
2 = AD

2 − AN
2 − r2

= AD
2 − (p − a)2 − r2.

By the same token, DI
2 = BD

2 − (p− b)2 − r2 = CD
2 − (p − c)2 − r2, so

that one must have

AD
2 − (p − a)2 = BD

2 − (p − b)2 = CD
2 − (p − c)2.

However, if AD = √
bc, BD = √

ac and CD = √
ab, the equalities above

are indeed satisfied. In order to finish the problem, one needs also to prove

that bc ≥ (p − a)2 + r2 (for DI
2 ≥ 0), and likewise ac ≥ (p − b)2 + r2,

ab ≥ (p − c)2 + r2. In turn, this is the same as proving that bc ≥ AI
2
,

ac ≥ BI
2
, ab ≥ CI

2
, and this was done in Problem 13, page 255.

13. Let
←→
AB be the common perpendicular of r and s, with A ∈ r and B ∈ s, and let

M be the midpoint of AB. If r ′ ‖ r and s′ ‖ s pass through M and α = (r ′, s′),

2Here, we are implicitly assuming that one can apply the usual cases of congruence of triangles,
even though the triangles under consideration do not lie in a single plane.
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then
←→
AB‖ r ′, s′. If t is the angle bisector of one of the angles formed by r ′ and

s′ and P ∈ t , show that P lies at equal distances from r and s.

Section 10.3

1. Fix a point A ∈ α and draw line r , perpendicular to α through A. Mark on r

points B and B ′ such that AB = AB ′ = d . If β and β ′ respectively denote the
planes passing through B and B ′ and parallel to α, show that the desired locus
is the union of β and β ′.

3. Look at the intersections of the bisector planes of the dihedral angles α+ ∩ β+,
α+ ∩ γ+ and β+ ∩ γ+.

4. For (a), let P = A1A2 . . . An and γi be the plane perpendicular to β and

containing
←→

AiAi+1, with An+1 = A1 (in each case there is only one such plane,

for
←→

AiAi+1 is not perpendicular to β). For 1 ≤ i ≤ n we cannot have γi = γi+1,

(with γn+1 = γ1), for otherwise
←→

AiAi+1= γi ∩ α = γi+1 ∩ α = ←→
Ai+1Ai+2

and Ai , Ai+1, Ai+2 (with An+2 = A2) would be collinear. Also, since P
is contained in a single half-space of those determined by γi , then so is Q.
Therefore, Q is the intersection of β (which is a convex set) with n of the half-
spaces determined by the γi’s (one half-space for each plane). Thus, Q is also
a convex set, hence a convex n-gon. For item (b) note firstly that (by tiling
P in triangles) it suffices to establish the formula for triangles. Secondly, let

α∩β = r and look at the case of a triangle ABC with
←→
BC‖ r . Thirdly, consider

a triangle ABC such that
←→
AB ∩r = {F }, ←→

AC ∩r = {E}, ←→
BC ∩r = {D}. If

ABC ∩ r = ∅, write A(ABC) = A(AEF)−A(CDE) +A(BDF) and apply
the previous case to each such triangle; if ABC ∩ r 
= ∅, adapt this argument
to establish the formula.

5. Let α be a plane containing
←→

O1O2, and �j = �j ∩ α for j = 1, 2. Then �j is
an equator of �j , and Problem 7, page 82, shows that �1 ∩ �2 consists of two

points A and A′, symmetric with respect to
←→

O1O2. By letting α rotate around
←→

O1O2, we conclude that �1 ∩ �2 is equal to the union of the points A thus

obtained, i.e., to a circle centered at a point of
←→

O1O2 and contained in a plane

perpendicular to
←→

O1O2. But this is precisely what we wished to show.
6. Adapt, to the present case, the proof of Proposition 10.16.
7. Let O be the center and r the medial line of �. If B is any point of �, the fact

that A does not lie in the plane of � assures that
←→
AB 
⊥r . Hence, the bisecting

plane of AB intersects r at a single point O ′, so that O ′A = O ′B = O ′C for
every C ∈ � (note that we have used the result of the previous problem in the
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last equality). Letting � be the sphere of center O ′ and radius equal to such a
common distance, we conclude that � contains A and �.

8. According to the previous problem, we can let � be the sphere containing A

and �. Let O be the center of � and A′ ∈ � be the antipodal of A. In plane

(AOAi), if A′
i ∈

−→
AO is such that A′

i
̂AiA = 90◦, then A′

i lies in αi and in the
circle of center O and radius OA, which is an equator of �. However, since

A′
i ∈

−→
AO and A′

i 
= A, we have A′
i = A′.

9. Let �1 and �2 denote the circles, and A and B their points of intersection. Prove
that the bisecting plane of AB contains the medial lines of �1 and �2. Then,
show that such medial lines are concurrent, say at O , and that O is the center
of the desired sphere.

10. Adapt, to the present case, the hint given to the previous problem.
11. Since (ACP) = (BDP), the Theorem of Intersecting Chords assures that A,

B, C and D all lie in a circle �1. Analogously, A, B, E and F are in a circle

�2. However, since
←→
AB ,

←→
CD and

←→
EF are noncoplanar, circles �1 and �2 do

not lie in a single plane. It thus suffices to apply the result of Problem 9.

12. Firstly, suppose that
←→
AB is parallel to α, and let � be a sphere passing through

A and B and tangent to α at T . Let β = (ABT ), let � be the circle of

intersection of � and β, and t the parallel to
←→
AB passing through T . Show

that t lies in β and is tangent to �; then, conclude that AT = BT , so that T

belongs to the intersection of the bisector plane of AB with α. Finally, letting
r be such a line of intersection and T be any point of it, show that there exists
a single sphere tangent to α at T and passing through A and B. Now, assume

that
←→
AB is not parallel to α and let P denote its point of intersection with α.

If � is a sphere passing through A and B and tangent to α at T , apply the

Theorem of Intersecting Chords in the plane (ABT ) to get PT
2 = PA · PB ,

so that T lies in the circle of center P and radius
√

PA · PB . Conversely, if

T ∈ α is such that PT
2 = PA · PB , then, letting � be the circle passing

through A, B and T , it follows again from the Theorem of Intersecting Chords

that
←→
PT is tangent to � at T . If r is the medial line of circle � and s is the

line perpendicular to α through T , then r and s are not parallel, yet both lie in

the plane that passes through T and is perpendicular to
←→
PT . Hence, r and s

are concurrent, and letting O denote its point of intersection, it follows that the
sphere of center O and radius OT passes through A and B and is tangent to α

at T .

13. Let P be such a point and D be the midpoint of AB. Since
←→
DP⊂ (ABP) and

(ABP)⊥ ←→
CP , we have ĈPD = 90◦; analogously, C ̂OD = 90◦. On the other

hand, since AOB and APB are right triangles of hypothenuse AB, we have
PD = 1

2 AB = OD. Hence, Pythagoras’ theorem gives
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CO
2 = CD

2 − OD
2 = CD

2 − PD
2 = CP

2
,

so that CO = CP . Thus, P belongs to the sphere �, of center C and radius
CO . Nevertheless, note that plane (APB) is tangent to � and intersects lines r

and s; hence, (APB) is not parallel to either r or s, which excludes from � the
six endpoints of its diameters parallel to r , s or t . Conversely, letting P ∈ � be
different from these six points, it is immediate to see that the plane tangent to
� at P intersects r in a point A and s in a point B. Moreover, triangle AOB

continues to be right at O , as do triangles CPD and COD. Hence, a reasoning
quite similar to that of the first part furnishes PD = OD = 1

2 AB, so that
ÂPB = 90◦.

15. For item (a), suppose that α is parallel to the generatrices g1 and g2. If g is a
generatrix of C distinct from g1 and g2, conclude that g intersects α. Draw a
plane β, perpendicular to e and not passing through V , and for j = 1, 2 let Qj

denote its point of intersection with gj . If � = β ∩ C, we have Q1,Q2 ∈ �.
Take points A1, A2 ∈ � \{Q1,Q2}, with A1A2∩Q1Q2 
= ∅, and show that the

generatrices
←→
V A1 and

←→
V A2 intersect α in distinct leaves of C. For item (b), let

β be the plane which contains e and is perpendicular to α, and γ be the plane
which contains g and is parallel to α. Then β⊥γ and, if β does not contain g,
show that line g′, symmetric (in γ ) to g with respect to β ∩ γ , is a generatrix of
the cone, distinct from g and also parallel to α. Finally, apply the result of item
(a) to reach a contradiction.

16. For the first part of (a), it suffices to note that if A′ is the inverse of A 
= O ,
then A′ 
= O and A is the inverse of A′. For the second, I (F2) ⊂ F1 implies
F2 = I (I (F1)) = (I◦I)(F1) = F1. For (b), argue exactly as in the planar case.

For (d), let α be any plane containing
←→
OX and � be the circle of intersection of

α and �, so that � is a great circle of �. In α, the inverse of � (with respect to

the restriction of I to α) is the line r , perpendicular to
←→
OX and passing through

X′. As α turns around
←→
OX, the circle � spans � and r spans σ , which is the

inverse of �. For (e) argue as in (d), or apply the result of d together with (a).

For (f), as in (d) let α be any plane containing
←→
OX, and AB be the diameter

of � contained in
←→
OX. If � is the circle of intersection of α and �, then �

is a great circle of �, of diameter AB. In α, the inverse of � (with respect to
the restriction of I to α) is a circle �′ of diameter A′B ′; also, as α turns around
←→
OX, the circles � and �′ span � and �′. Finally, for (g) argue as in the previous
items, i.e., reduce the problem to the plane. For instance, given spheres �1 and
�2 tangent at T 
= O and not passing through O , let O1 and O2 be their centers
and �1 and �2 their equators in the plane α = (OO1O2). Note that �1 and �2
are tangent at T , and so are �′

1 and �′
2 at T ′. Thus, show that this implies the

tangency of �′
1 and �′

2 at T ′.
17. For (a), note that the points of � remain fixed under I , and apply the result

of items (d) and (e) of the previous problem. For item (b), use the similarity
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of the right triangles ONA′′ and OAS. Finally, for (c) we can assume that
�1 
= �. Then, let �1 be the sphere of equator �1, so that S /∈ �1. Since �1
is the intersection of �1 and α, we conclude that I (�1) is the intersection of
I (�1) and I (α); however, I (�1) is a sphere and I (α) = �, so that I (�1) is
the intersection of two spheres, hence, a circle.

18. Applying the inversion of center T and ratio k = 4, show that �′
1 and �′

2 are
parallel planes, at a distance of 4 units from each other. If �1, �2, �3 are the
original spheres, show that �′

1, �′
2, �′

3 are pairwise tangent spheres of radius 2,
lying in the strip of the space bounded by �′

1 and �′
2 and tangent to them. Now,

let �1(U ; r) and XY be the diameter of �1 lying along
←→
T U . If V is the center

of �′
1, show that T V =

√

124
3 and hence that

2r = k2 · X′Y ′

T X′ · T Y ′ =
42 · 4

(√

124
3 − 2

)(√

124
3 + 2

) = 12

7
.

Section 10.4

1. Adapt the proof of Theorem 10.25 to this case, thus considering a pair of
Dandelin spheres. More precisely, draw spheres �1 and �2, both tangent to the
plane α and to the leaf of the cone that α intersects; for j = 1, 2, let Fj be the
point of tangency of �j with α, and let Qj be the point of intersection of �j with
a fixed generatrix g. Show that F1 and F2 are the foci, and Q1Q2 is the major
axis of the desired ellipse.

2. We shall sketch the proof in the case of a cone of revolution, the proof for a
cylinder of revolution being much easier. The proof parallels the one presented
in the text for hyperbolas. More precisely, given an ellipse E of focal distance 2c

and major axis 2a, show that one only needs to assure the existence of spheres
�1(O1;R1), �1(O2;R2) (the Dandelin spheres for E) such that O1O2 > R1 +
R2,

√

O1O2
2 + (R2 − R1)2 = 2a,

√

O1O2
2 − (R2 + R1)2 = 2c.

Take any real �l satisfying 2a > �l > 2c, set O1O2 = �l and solve the system
of equations above for R1, R2.

3. In the notations of Fig. 10.36 and of the proof of Corollary 10.28, let α′ be the
plane parallel to α and passing through O1. If α′ ∩� = {X1,X2}, let s1, s2 be the
tangents to � at X1, X2, respectively. We claim that π maps the asymptotes of
H to s1, s2. Indeed, since Xi ∈ si ∩ rβ , if ti = π−1(ti), then ti ∩H = ∅. On the
other hand, if Zi ∈ � \ {Xi} and Yi = π−1(Zi), then Yi ∈ H and Yi approaches
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ti as Zi approaches si . Therefore, there is no other option left for ti than being an
asymptote of H.

4. Adapt, to the present case, the hint given to Problem 3, page 317.
5. The first part follows from item (c) of Proposition 10.29. The second part follows

the second part of item (b) of the proposition, together with Example 9.18.

6. Take a second secant s to C passing through P , with C ∩ s = {C,D} and
←→
AC

∩ ←→
BD= {R}, ←→

AD ∩ ←→
BC= {Q}. Then,

( ←→
QA,

←→
QB,

←→
QP,

←→
QU

)

is a harmonic
pencil, and the result follows from Theorem 9.16.

7. The given condition is equivalent to Qi lying in the polar of P with respect to Ci ,
for i = 1, 2. Hence, Proposition 10.32 assures that P must lie in the polar of Qi

with respect to Ci , for i = 1, 2. There is at most one such point P .
8. As in other proofs of results of this section, take a central projection that maps

the conic to a circle, apply Brianchon’s theorem to that circle (and to the
corresponding hexagram) and then project backwards.

9. Apply Brianchon’s theorem to the hexagrams AMBCPD and ABNCDQ.

Section 11.1

1. If Q denotes the point in which AP intersects face BCD, then the triangles
ABQ, ACQ and ADQ are congruent by SAS, so that BQ = CQ = DQ.

Hence,
←→
AQ is the medial line of BCD and, since P ∈←→

AQ, we conclude that
PB = PC = PD.

2. Let α stand for the plane of the basis and β for the plane of one of the lateral
faces of the pyramid. Show that the center I of an inscribed sphere must
necessarily lie in the bisector plane of the dihedral angle formed by α and β

and containing the pyramid. Use this to conclude that I is the only point of
intersection of such bisector planes, so that it is uniquely determined.

3. If � denotes a sphere passing through V , A1, A2, . . . , An, then the plane of the
basis of the pyramid intersects � along a circle, which passes through A1, A2,
. . . , An. Conversely, if A1A2 . . . An is cyclic, invoke the result of Problem 7,
page 359.

4. The lateral area of the frustum is clearly equal to π(Rg−R′g′), where g and g′
denote the generatrices of the given cone and the cone of revolution of basis

�′ and vertex V . Show that g
R

= g′
R′ =

√
d2+(R−R′)2

R−R′ ; then, substitute the
expressions for g and g′ obtained from these equalities to arrive at the desired
result.

5. Firstly, note that the medial plane of BC is α = (ADP), where P stands for
the midpoint of BC. Hence, α leaves M and N in distinct half-spaces, so that
BM < CM . Then, we have MN < BM + BN < CM + BN . Now, if M ′
denotes the symmetric of M with respect to (ACD), we have MN = M ′N
and CM = CM ′. Hence,
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CM = CM ′ < BM ′ < BN + M ′N = BN + MN.

Analogously, BN < CM + MN .
6. Let P be the foot of the altitude of ABCD relative to A, and M be the

intersection of
←→
BP and

←→
CD. Then,

←→
AP ⊥(BCD) implies

←→
AP ⊥ ←→

CD and,

since
←→
BP ⊥ ←→

CD, we have (ABP)⊥ ←→
CD. If Q is the foot of the altitude

of triangle ABM dropped from B, then
←→
BQ⊂ (ABP) implies

←→
BQ ⊥ ←→

CD.

However, since
←→
BQ ⊥ ←→

AM, we have
←→
BQ ⊥(

←→
AM,

←→
CD) = (ACD). Hence,

BQ is an altitude of the tetrahedron and, clearly,
←→
AP and

←→
BQ do intersect.

Analogously, the other two altitudes of the tetrahedron are concurrent with AP .
Now, suppose that Q is the orthocenter of ACD, and let H denote the point of

intersection of
←→
AP and

←→
BQ, and R the foot of the altitude of the tetrahedron

dropped from C. From the first part,
←→
CR intersects

←→
AP and

←→
BQ. Also if

←→
CR

intersects
←→
AP at H ′, with H ′ 
= H , then H ′ is the only point of intersection of

←→
CR with the plane (ABP), so that

←→
CR ∩ ←→

BQ= ∅, which is an absurd. Hence,
←→
CR passes through H and, by the same token, we show that the altitude of
ABCD dropped from D also passes through H . It is now relatively easy to
show that the feet of the altitudes of the tetrahedron dropped from the vertices
C and D are the orthocenters of the corresponding faces.

7. Let α be such a plane, and M , N , P and Q, respectively, be the points at which

the edges BC, AC, AD and BD meet α. Then,
←→
MQ‖←→

CD, so that triangle
BMQ is equilateral, of side length x, say. Analogously, triangles CMN and
DPQ are equilateral of side length a − x, while ADN is equilateral of side

length x. Now, letting R denote the midpoint of CD, we have
←→
BR,

←→
AR ⊥ ←→

CD,

so that (ABR)⊥ ←→
CD; in particular,

←→
AB ⊥ ←→

CD. However, since
←→
MN‖←→

AB

and
←→
MQ‖←→

CD, we have Q̂MN = 90◦. It follows that MNPQ is a rectangle
of side lengths x and a − x, thus of area −x2 + ax. By applying the theory
of maxima and minima of quadratic functions, we conclude that the maximum
value for the area of MNPQ is found when points M , N , P and Q are the
midpoints of the edges they belong to.

8. Let �(O;R) be the sphere circumscribed to ABCD, and k be the common
value of the equal products in the statement of the problem. The section of
� through plane (AOB) is an equator � of �; by applying the theorem of

intersecting chords to �, we obtain k = AE · BE = R2 − OE
2
, so that

OE = √
R2 − k. Since the same reasoning is valid with respect to the other

five edges of the tetrahedron, we conclude that OE = OF = OG = OH =
OI = OJ = √

R2 − k. Hence, points E, F , G, H , I and J are all situated on
the sphere of center O and radius

√
R2 − k.
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9. If R is the midpoint of CD, we have M ∈ BR and N ∈ AR; thus, AM and BN

are cevians of triangle ABR, so that they intersect at a point G. Since RN

RA
=

1
3 = RM

RB
, we have RMN ∼ RBA by SAS, so that

←→
MN‖←→

AB and MN =
1
3 AB. In turn, the parallelism of

←→
MN and

←→
AB guarantees that GMN ∼ GAB,

and hence that MG

AG
= MN

AB
= 1

3 . We likewise conclude that AM and CP

intersect at a point G′, whence MG′
AG′ = 1

3 ; then, Problem 2, page 108 gives

G = G′. Analogously, we show that DQ also passes through G.
10. Let V be the apex of the pyramid, ABCD its basis, O the foot of its altitude, M

the midpoint of V O and α = (ADM). Then, O is the point of intersection of

AC and BD. Moreover, since A,M ∈ (AV C), the half-line
−→
AM intersects V C

at a point P ; analogously,
−→
DM intersects V B at a point Q. Hence, AQ, DP

and PQ are all contained in α, so that the desired section is the quadrilateral
ADPQ. We claim that it is an isosceles trapezoid of bases a and a

3 . In order to
prove this, let l be the length of the lateral edges of the pyramid. By applying
Menelaus’ theorem to triangle COV , with respect to the collinear points A, M

and P , we obtain V P = 1
2 CP , and hence V P = 1

3 V C = l
3 ; analogously,

V P = l
3 . Therefore: (i) BQ = CP , so that ABQ ≡ DCP by SAS and then

AQ = DP ; (ii) V PQ ∼ V CB by SAS, whence PQ = 1
3 CB = a

3 and
←→
PQ‖←→

BC . However, since
←→
BC‖←→

AD, we conclude that
←→
PQ‖←→

AD. Now, if d

stands for the length of the altitude of ADPQ, Pythagoras’ theorem furnishes

d2+
(

AD−PQ
2

)2 = AQ
2
. It follows from Stewart’s relation applied to triangle

ABV that AQ
2 = 4l2+3a2

9 , and the result of Proposition 11.1 gives

d2 = 4l2 + 3a2

9
− a2

9
= 4l2 + 2a2

9
= 4

9
(a2 + h2).

Finally, A(ADPQ) = d
2 ( AD + PQ) = 4

9a
√

a2 + h2.

11. The feet of the perpendiculars dropped from A1 and A3 to
←→
V A2 coincide, say

at P , so that θ = A1̂PA3. If A1P = A3P = h, then the cosine law applied to
triangle A1PA3 gives

2h2(1 − cos θ) = A1A3
2 =

(

2R sin
2π

n

)2
,

where R stands for the circumradius of A1A2 . . . An. However, if O denotes
the center of A1A2 . . . An, then triangle OA1A2 gives y = 2R sin π

n
, so that

4R2 sin2 2π

n
= y2 · sin2 2π

n

sin2 π
n

= 4y2 cos2 π

n
;
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hence, 1 − cos θ = 2y2 cos2 π
n

h2 . Finally, if M be the midpoint of A1A2, then

V M =
√

x2 − y2

4 and V M · A1A2 = A1P · V A2, so that h =
√

x2 − y2

4 · y
x

.
It now suffices to substitute this expression for h into the formula above for
1 − cos θ .

12. If θ is the plane dihedral angle formed by the pair of planes (ABC), (ACD),

then the result of the previous problem gives 1− cos θ = 2x2

4x2−y2 . Now, let δ be

the other plane dihedral angle, M the midpoint of AB and CM = GM = l.

The cosine law applied to triangle CMG gives 2l2(1− cos δ) = CE
2
. In order

to compute CE, let O be the center of ABDF and X and Y be the centers

of ABD and ABF . From CGO " XYO , XY = y
3 and OX = y

√
6

12 we get

CE
√

3 = 2 CO
√

2, so that

1 − cos δ = 4 CO
2

3l2
= 16 CO

2

3(4x2 − y2)
.

Then

θ = δ ⇔ 2x2

4x2 − y2
= 16 CO

2

3(4x2 − y2)
⇔ x

√
3 = 2 CO

√
2.

Finally, since CO = CX + XO =
√

x2 − y2

3 + y
√

6
12 , we conclude that θ = δ

is equivalent to the equation

x
√

3 = 2
(

√

x2 − y2

3
+ y

√
6

12

)√
2,

which is in turn equivalent to 3x − y = 2
√

6x2 − 2y2. By squaring both sides
and setting u = x

y
, we easily arrive at 5u2 + 2u − 3 = 0, whence u = 3

5 .

13. Let Ci be the foot of the perpendicular dropped from to the line
←→

AiAi+1. If
α stands for the plane angle of the dihedral angle formed by the planes of a
lateral face and of the basis of the pyramid, it is immediate to see that PBi =
PCi tan α. Hence,

PB1 + PB2 + · · · + PBn = ( PC1 + PC2 + · · · + PCn) tan α.

Now, Problem 7, page 156, shows that PC1 + PC2 + · · ·+ PCn = na, where
a denotes the apothem of A1A2 . . . An. Therefore, PB1+ PB2+· · ·+ PBn =
na tan α.

14. Apply Weitzenböck’s inequality (cf. Problem 7, page 261) to each of the faces
of the tetrahedron and, then, add the results.
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15. Apply the formula for the squared length of a median to each one of the
triangles ABN , BCD and ACD.

16. Draw, through B and C, lines r and s, respectively parallel to
←→
CD and

←→
AB . If

α = (
←→
AB, r) and β = (

←→
CD, s), then α ‖ β and ABCD lies in the region of

space situated between α and β. Since the distance d(α, β) between α and β is
less than or equal to the length of each line segment joining a point of α to a
point of β, we have d(α, β) ≤ MN , where M and N stand for the midpoints of
AB and CD, respectively. Analogously, if P , Q, R and S respectively denote
the midpoints of the edges AC, BD, AD and BC, we conclude that ABCD

can be placed between two parallel planes situated at a distance from each other
less than or equal to PQ and RS. Hence, letting d = min{MN, PQ, RS},
it suffices to show that d is less than or equal to the given expression. Finally,

note that 3d2 ≤ MN
2 + PQ

2 + RS
2

and apply the formula of the previous

problem to compute MN
2
, PQ

2
and RS

2
in terms of the lengths of the edges

of the tetrahedron.
17. Let ABCD be a regular tetrahedron of edge length l. Let also M , N , P and

Q be points respectively situated in the edges AD, BD, BC and AC, with
←→
MN‖←→

AB ,
←→
MQ‖←→

CD and MNPQ being a parallelogram. Since MN = MD

and MQ = AM , we have MN + MQ = MD + AM = l, so that the
perimeter of MNPQ is equal to 2l. Hence, we can pass ABCD through a rope
loop of length 2l in the following way: firstly, we start by passing the edge AB

through the loop; then, we slide the loop through the surface of the tetrahedron,
adjusting it in order to always form a parallelogram (as parallelogram MNPQ

above). The tetrahedron will finish traversing the loop through edge CD. In
order to see that 2l is the smallest possible length, note that there are two
essentially distinct ways of beginning the traversal: (i) two of the vertices of
ABCD pass simultaneously through the loop: in this case, the length of the
loop is, obviously, at least 2l. (ii) One of the vertices of ABCD, say A, is the
first to pass through the loop: suppose, without loss of generality, that B is the
second vertex to pass through the loop. At this moment, the loop of minimal
length will be tightly adhered to the surface of ABCD, thus forming a triangle
BPQ, with P ∈ AC and Q ∈ AD. Since BP = DP and BQ = CQ,
the length of the loop is at least DP + CQ + PQ. However, the result of
Problem 11, page 44, shows that such a sum is at least 2l.

18. Let α be a plane parallel to
←→
AC and

←→
BD, and A′, B ′, C′, D′ denote the

orthogonal projections of A, B, C, D into α. Apply Ptolemy’s inequality (cf.
Theorem 7.37) to the convex quadrilateral A′B ′C′D′, noticing that A′C′ =
AC, B ′D′ = BD, A′B ′ < AB etc.

19. For 1 ≤ i ≤ 4, let ri denote the radius of Si . For 1 ≤ i < j ≤ 4, since
←→

AiAj

joins the centers of Si and Sj , such spheres are tangent at a point Pij ∈ ←→
AiAj .

Thus, we have AiPij = ri , AjPij = rj and AiAj = ri + rj . It then follows
that, for {i1, i2, i3, i4} = {1, 2, 3, 4},
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ri1 = Ai1Ai2 + Ai1Ai3 + Ai1Ai4 − ( Ai2Ai3 + Ai2Ai4 + Ai3Ai4).

For 1 ≤ i < j ≤ 4, let Qij = Qji denote the point of tangency of AiAj with
�. Since the tangents drawn from Ai to � all have the same length, we have

A1Q12 = A1Q13 = A1Q14, A2Q12 = A2Q23 = A2Q24,

A3Q13 = A3Q23 = A3Q34, A4Q14 = A4Q24 = A4Q34,

A1Q12 + A2Q12 = A1A2, A1Q13 + A3Q13 = A1A3,

A1Q14 + A4Q14 = A1A4, A2Q23 + A3Q23 = A2A3,

A2Q24 + A4Q24 = A2A4, A3Q34 + A4Q34 = A3A4.

From this, it is easy to conclude that A1Q12 = A1P12, and hence that P12 and
Q12 coincide; analogously, Pij and Qij coincide, for 1 ≤ i < j ≤ 4. Suppose
that �′ is internally tangent to S1, S2, S3, S4 (the case in which �′ is externally
tangent to S1, S2, S3, S4 can be dealt with in pretty much the same way). Let
R and R′ denote the radii of � and �′, respectively. Since triangle OQijAj is
right at Qij and OAj = R′ + rj and AjQij = rj , Pythagoras’ theorem gives

(R′ + rj )
2 = R2 + r2

j .

Therefore, rj = R2−R′2
2R′ , so that r1 = r2 = r3 = r4. Letting r stand for this

common value, it follows that AiAj = ri + rj = 2r for 1 ≤ i < j ≤ 4, and
the tetrahedron is regular.

Section 11.2

1. Firstly, suppose that the give prism has a circumscribed sphere �, centered
at O . Since � circumscribes the pyramid of apex A′

1 and basis A1A2 . . . An,
it follows from Problem 3, page 386, that � is unique. Now, the bases of
the prism are inscribed in the circles defined by the intersections of � with
the planes containing them. On the other hand, A1A2A

′
2A

′
1 is a parallelogram

inscribed in a circle (the one defined by the intersection of � with the plane
containing it); thus, it is a rectangle. Analogously, A1AnA

′
nA

′
1 is a rectangle,

so that
←→

A1A
′
1 ⊥ ←→

A1A2,
←→

A1An, and hence
←→

A1A
′
1 ⊥(A1A2 . . . An). Therefore,

the prism is a right one. Conversely, if the prism is right and has cyclic bases,
inscribed in circles centered at P and P ′, respectively, show that the whole
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prism is inscribed in the sphere centered at the midpoint O of PP ′ and radius
equal to 1

2 PP ′.
2. D ̂HC = 45◦ implies that CDHG is a square. Now, setting DH = a, compute

FH = a
√

3 and BH = 2a. Finally, apply the cosine law to BHG to find

cos ĜBH =
√

3
2 .

3. Since the diagonals of the cube form equal angles with all of the edges at which
they are incident, each of the 8 triangles is an equilateral triangle, say of edge
length �. Then, show that the area of each octagon is equal to 4 − �2, so that

4 − �2 = �2
√

3
4 .

4. Firstly, show that X ∈ AC. Then, use Pythagoras’ theorem to conclude that X

coincides with the center of ABCD. Finally, apply the cosine law to compute
ÂXE.

5. Let O be the center of the cube and S and T be the midpoints of AA′ and XY ,
respectively. Note that S, O , Z and S, T , Z are triples of collinear points, so that
O , S, T and Z are all collinear. In particular, the plane (XYZ) passes through
the midpoint S of AA′. Analogously, (XYZ) passes through the midpoints U

of C′D′ and V of BC, so that the planar section is the hexagon SXUZV Y ,

of center O . Now, the midsegment theorem gives UX = 1
2 A′C′ = a

√
2

2 , and
likewise for the other edges of the hexagon. Also, OU = 1

2 UY = 1
2 BC′ =

a
√

2
2 an, by the same token, the distances from O to the vertices of the hexagon

are all equal to a
√

2
2 . Hence, SXUZV Y is regular of edge length a

√
2

2 , and its

area equals 3a2
√

3
4 .

6. Let the parallelepiped have parallel faces ABCD and A′B ′C′D′, with
←→
AA′‖

←→
BB ′‖

←→
CC′‖

←→
DD′ and AB = a, AD = b and AA′ = c. Also, let α be the

plane that intersects it. Let the regular hexagon be KLMNOP , such that (with
no loss of generality) K ∈ AB, L ∈ BC, M ∈ CC′, N ∈ C′D′, O ∈ A′D′,
P ∈ AA′. Since KL = NO , L̂KB = ÔND′, K̂LB = N ̂OD′, we have

BKL ≡ D′NO , and hence BK = D′N . However, since
←→
KN‖ ←→

OP , we have
AK = D′N too, and thus AK = BK = a

2 . Analogously, L, M , N , O , P are
the midpoints of the edges of the parallelepiped to which they belong. Now, if
� stands for the length of the edges of the hexagon, Pythagoras’ theorem gives
a2 + b2 = 4�2, a2 + c2 = 4�2, b2 + c2 = 4�2. By looking at these equalities as
a system of equations in a, b and c, we get a = b = c = �

√
2.

7. If B is a basis of the prism and γ is the plane of B, then B can be seen as
the orthogonal projections of P and Q onto γ . Apply item (b) of Problem 4,
page 359, to obtain

A(P)+ A(Q) = A(B)

cos θ
+ A(B)

sin θ
.

Then, apply elementary Calculus (cf. [5], for instance) to minimize f (θ) =
1

cos θ
+ 1

sin θ
when 0 < θ < π

2 .
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8. Item (i) essentially follows from σ, θ ∈ (

0, π
2

)

, together with the fact that
ADCB, EHGF are congruent and parallel squares. Item (ii) is similar; one

just has to notice that
←→
DH,

←→
BF ⊥r , so that

←→
D′H ′,

←→
B ′F ′ ⊥r too. For item (b),

start by showing that

A(C′B ′F ′E′H ′D′) = A(A′D′C′B ′) + A(H ′D′A′E′) + A(A′B ′F ′E′)

= A(A′D′C′B ′) + A(B ′F ′H ′D′)

= A(ADCB) cos σ + B ′F ′ · PQ,

where we have used item (b) of Problem 4, page 359, in the last equality
and P and Q are the feet of the perpendiculars dropped from B ′ and D′ to

r , respectively. Subsequently, show that B ′F ′ = sin σ and
←→
BP ,

←→
DQ ⊥r

too; then, look at the triangular pyramids ABB ′P and ADD′Q to compute
PQ = AP + AQ = cos θ + sin θ . Finally, for item (c), apply Proposition 7.21
twice to get

A(C′B ′F ′E′H ′D′) = cos σ + (sin θ + cos θ) sin σ

≤ cos σ +√
2 sin σ ≤ √

3,

with equality if and only if θ = π
4 , cos σ = 1√

3
and sin σ =

√
2√
3

(whence σ is
the angle between AB and the diagonal AG).

Section 11.3

1. Let a stand for the length of the edges of ABCD. Take a cube WXYZW ′X′Y ′Z′,
of bases WXYZ and W ′X′Y ′Z′ (labeled in the usual way) and edge length a√

2
.

Tetrahedron WYX′Z′ is regular of edge length a, and we may assume that A =
W , B = Y , C = X′ and D = Z′. This being the case, we have C′ = Z

and D′ = X, so that we wish to compute the angle between the planes (WYZ)

and (WX′X). However, since they are planes of adjacent faces of the cube, the
desired angle is 90◦.

2. For each of these tetrahedra SABC, the proof of Proposition 11.9 shows that O is
the center of the rectangular parallelepiped that has the trirectangular tetrahedron

SABC as one of its corners. If M is the midpoint of BC, then
←→
OM‖←→

AS and
OM = 1

2 AS. If P is the point in which OS intersects the face ABC, then

OMP ∼ ASP by AA. Hence, OP

PS
= OM

AS
= 1

2 , so that P ∈ OS is the point

such that OP = 1
3 OS. However, since O and S do not depend on the choices

of A, B and C, the same happens with P .
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3. If ABCD is isosceles, Example 10.13 shows that the common perpendicular to
←→
AD and

←→
BC joins the midpoints of AD and BC, and likewise for the other two

pairs of reverse edges. Conversely, let AD = a′, BC = a, AB = b′, CD = b,
AC = c′, BD = c, and suppose that the common perpendiculars to the pairs of
reverse edges of ABCD join the midpoints of such edges. Let M be the midpoint

of AC and N that of BD. Since
←→
MN ⊥ ←→

AC , the line segment MN is at the same
time median and altitude of ANC, so that AN = CN . However, since AN and
CN are medians of ABD and BCD, the formula for the length of a median
applied to both sides of AN = CN gives (a′)2 + (b′)2 = a2 + b2; analogously,
(a′)2 + (c′)2 = a2 + c2 and (b′)2 + (c′)2 = b2 + c2. In view of such equalities,
it is immediate to conclude that a = a′, b = b′ and c = c′.

4. If ABCD is isosceles, we saw in the previous problem that the common
perpendiculars to the pairs of reverse edges join the midpoints of such edges.
Then, let M , N , P and Q denote the midpoints of the edges AD, BC, AC

and BD. By applying the midsegment theorem to triangles ACD and BCD, we
obtain NQ = 1

2 CD = MP and NQ ‖ CD ‖ MP . Hence, M , N , P and Q are
coplanar and the quadrilateral they form has equal and parallel opposite sides, so
that it is a parallelogram. It follows that MN and PQ intersect at their respective
midpoints, and a similar argument holds for the third common perpendicular.
For an alternative proof, it suffices to identify the common perpendiculars
under consideration in Fig. 11.21, noticing that they concur at the center of the
rectangular parallelepiped associated to the isosceles tetrahedron.

5. If the tetrahedron ABCD is isosceles, the two previous problems assure that the
common perpendiculars to its pairs of reverse edges join the midpoints of such
edges and intersect at their respective midpoints. Now, a quick glance at the proof
of Theorem 11.13 allows us to conclude that such a common point O is the center
of the rectangular parallelepiped associated to the tetrahedron, which coincides
with the circumcenter of ABCD. Since OA = OB = OC = OD and the
faces of ABCD are congruent, it is immediate to show that, in the tetrahedra
OABC, OABD, OACD and OBCD, the altitudes dropped from the vertex O

have equal lengths. In this, this means that O lies at equal distances from the
faces of ABCD, so that it is the incenter of ABCD. Conversely, let ABCD be
a tetrahedron in which the incenter I and circumcenter O coincide. Let also r

and R denote the radii of the spheres inscribed and circumscribed to ABCD,
respectively. We know that the intersection of (ABC) with the circumscribed
sphere is a circle whose center (which is also the circumcenter of ABC) coincides
with the projection of O on (ABC). However, since O and I coincide and the
projection of I onto (ABC) lies in the interior of triangle ABC, we conclude that
the circumcenter of ABC lies in its interior, so that ABC is acute. Analogously,
the remaining faces of ABCD are also acute. Now, the coincidence of I and O

guarantees that the circumradii of the faces of ABCD are all equal to
√

R2 − r2.
By applying the sine law to the faces ABC and ACD, we obtain
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AC

sin ÂDC
= 2

√

R2 − r2 = AC

sin ÂBC
,

so that sin ÂDC = sin ÂBC. However, since ÂDC,ÂBC < 90◦, it follows that
ÂDC = ÂBC. Likewise, ÂDB = ÂCB and B̂DC = B̂AC, which in turn gives
us

ÂDC + ÂDB + B̂DC = ÂBC + ÂCB = B̂AC = 180◦.

Since the same reasoning holds true for the other vertices of ABCD, Proposi-
tion 11.10 assures that ABCD is isosceles.

6. By the previous problem, it suffices to show that the barycenter and circumcenter
coincide. To this end, and in the notations of Fig. 11.21, we can assume that the
tetrahedron is WX′YZ′. However, since WY ′, X′Z, YW ′ and Z′X intersect at
the center O of the rectangular parallelepiped WXYZW ′X′Y ′Z′, it suffices to
prove that WY ′, X′Z, YW ′ and Z′X intersect the faces X′YZ′, WYZ′, WX′Z′
and WX′Y at their respective barycenters. In order to show that WY ′ intersects
face X′YZ′ at its barycenter (the other cases are entirely analogous), apply, to
the trirectangular tetrahedron X′YY ′Z′, the hint given to Problem 2.

7. Review the proof of Theorem 11.13.

Section 12.1

1. In the notations of the statement of the corollary, split A1A2 . . . Ak into the
spherical triangles A1A2Ai , for 3 ≤ i ≤ k. Then, apply Girard’s theorem to
each one of these triangles.

2. Apply formula (12.1) to this situation; the computations in Example 12.1 may
help. You must find 2πR(R − d) as the answer.

3. Let O denote the center of the Earth, let P be the pilot’s position and T be a
point in the horizon, with respect to P (i.e., T is the point of contact of a tangent
drawn from P to the Earth). If d stands for the distance from O to the plane
of the horizon points, use metric relations in the right triangle OPT to obtain
(h + R)d = R2. Then, notice that the portion of the surface that can be seen by
the pilot is a spherical cap, and apply the result of the previous problem.

4. Note that A(ABC) = 1
4A(�) = πR2. Now, apply Girard’s theorem.

5. The given condition assures that, in every triangle PiPPj , with i 
= j , we have

Pi
̂PPj > 60◦. Therefore, if Ci is the (infinite) cone with vertex P , axis

−→
PPi and

opening 30◦, then each pair of C1, . . . , Cn do not have common interior points.
Hence, if � is the sphere of radius 1 centered at P , then
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A(�) >

n
∑

i=1

A(� ∩ Ci ).

Now, in the notations of Problem 2, � ∩ Ci is a spherical cap of height 1 −
√

3
2 ,

whence A(� ∩ Ci ) = 2π
(

1 −
√

3
2

)

. Thus, the area inequality above gives 4π >

2π
(

1 −
√

3
2

)

n, so that n < 4(2 +√
3) ∼= 14.9. This shows that n ≤ 14. For the

example, we start by trying to achieve n = 14, and we do this by placing P1,
P2, P3, P4 as the vertices of a square inscribed in an equator � of �, and P13
and P14 as the North and South poles of � with respect to �. Then, we put each
of P5 to P12 at the center of each of the eight spherical triangles having as their
vertices one of the points P13 or P14, together with two non antipodal points
chosen from P1, P2, P3, P4. Thus, if we place P5 at the center of P1P2P14,

then P5 ̂PP1 = P5 ̂PP2 = P5 ̂PP14 so that
−→
PP5 lies along the diagonal of the

cube with edges PP1, PP2, PP14. However, a simple computation shows that
the common value θ of those angles satisfies cos θ = 1√

3
, so that (with the aid

of a calculator) θ ∼= 54◦. Then, the described arrangement does not provide
enough room for 14 cones for 6◦. Nevertheless, we can achieve n = 13 by the
following procedure: we erase P14 and move P1, P2, P3, P4 downwards until
new positions P ′

1, P ′
2, P ′

3, P ′
4, such that P ′

1P
′
2P

′
3P

′
4 is a square parallel to � and

with P1 ̂PP2 = P2 ̂PP3 = P3 ̂PP4 = P4 ̂PP1 = 60◦. Since we needed to free
enough space for just 2 · 6 = 12◦ more and P1̂PP ′

1 = 45◦, such a rearrangement
of P1, P2, P3, P4 allows us to move P5 to P12 slightly downwards too, in order
to have 13 pairwise nonintersecting cones.

Section 12.2

1. Let B(A;R) be an open ball contained in C. If C ∈ AB \ {B} and r = BC

AB
· R,

show that B(C; r) ⊂ C.
2. Use the definition of boundary to show that if P /∈ ∂A, then there exists R >

0 such that B(P ;R) is contained either in A or in Ac. Then, conclude that
B(P ;R) ∩ ∂A = ∅, whence (∂A)c is open.

3. Firstly, note that if a face of a convex polyhedron has k edges, then the
polyhedron has at least 2k edges. From this, conclude that if there existed a
convex polyhedron with exactly 7 edges, then all of its faces would be triangles.
However, this being the case and letting F denote the number of faces of
the polyhedron, show that we should have do poliedro 3F = 2 · 7, which is
impossible.

4. Apply the result of Lemma 12.8.
5. Argue as in Lemma 12.8.
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6. Let V > 3 be the number of vertices and P be one of the vertices of the
polyhedron. Since P is adjacent to the other V − 1 vertices, which in turn are
pairwise adjacent, we conclude that the polyhedron has exactly (V −1)+ (V −
3) = 2V − 4 faces and (V − 1)+ (

V−1
2

) = 1
2 (V 2 − V ) edges. Then, it follows

from Euler’s relation that V 2−7V +12 = 0, whence V = 4. Therefore, F = 4
and E = 6. It is now straightforward to show that we have got a tetrahedron.

7. By the sake of contradiction, suppose that there existed a convex polyhedron
P for which all of its plane sections are triangles. If P has a vertex incident to
more than three edges, then cutting P with a plane sufficiently close to such
a vertex would give us a non triangular plane section; therefore, exactly three
edges are incident to each vertex of P . If a face of P has more than three
edges, then cutting P with a plane parallel and sufficiently close to such a face
would also give us a non triangular section; hence, all faces of P are triangular.
Now, let V , E and F denote the numbers of vertices, edges and faces of P ,
respectively. The remarks above furnish 3V = 2E = 3F , so that V = F and
E = 3F

2 . Euler’s relation thus gives V = F = 4 and E = 6. Now, arguing
as in the solution to the previous problem, we conclude that P is a tetrahedron.
However, it is immediate to show that every tetrahedron has a plane section
which is a quadrilateral, and we have arrived at a contradiction.

8. We know that V − E + F = 2, with F = F3. Hence, Lemma 12.8 gives
3F = 2E. Now, let A be any vertex of the polyhedron. Since each face is an
equilateral triangle and the sum of the angles at A of the faces incident to such
a vertex is less than 360◦, we conclude that A is incident to at most 5 faces.
However, since each face has three vertices, it follows that 3F ≤ 5V . Hence,
V ≥ 3F

5 = 2E
5 , whence

2 = V − E + F ≥ 2E

5
− E + 2E

3
= E

15
.

9. Use (12.5) and adapt the construction delineated in item i. of Remark 12.10.
10. Choose a face F of the polyhedron such that the distance from P to such a face

is as small as possible. Let Q be the foot of the perpendicular dropped from P

to the plane of F , and assume that Q /∈ F . Then, PQ intersects the surface of
the polyhedral at a point Q′, with PQ′ < PQ. If F ′ is a face of the polyhedron
to which Q′ belongs, then d(P ;F ′) ≤ PQ′ < PQ, which is an absurd.

11. Since each face is triangular, we have 2E = 3F = 36, hence E = 18. Now,
Euler’s theorem gives V = 2−F+E = 8; since V = V3+V6 and 3V3+6V6 =
2E = 36, we immediately get V3 = V6 = 4. Let A be a vertex incident to 6
edges (hence faces), say ABC, ACD, ADE, AEF , AFG, AGB. The eight
vertex H cannot be incident to 6 others, for otherwise there would be no vertex
of degree 3; hence, H is incident to 3 other vertices, which up to this point will
be incident to at least 4 other vertices. Since there are only 4 vertices incident
to 6 others, it is not difficult to see that H is either incident to B, D, F or C,
E, G. Suppose, without loss of generality, that H is incident to B, D, F . Then,
B, D, F are pairwise incident, and it is now pretty clear that the polyhedron
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can be seen as the result of gluing the triangular pyramids ABDC, ABFG,
ADFE, BDFH to the tetrahedron ABDF . Take one of these pyramids, say
ABDC. If not all of CA, CB , CD are equal, say CA = CB = x, CD = y

(the other cases are entirely analogous), then AB = BD = y, AD = x

and it is not difficult to show that the three dihedral angles between two of
the planes (ABC), (ACD), (BCD) cannot be all equal. Therefore, CA =
CB = CD, and hence AB = AD = BD. Since a similar reasoning holds
for all of the other pyramids, we conclude that the polyhedron is the result
of gluing the regular triangular pyramids ABDC, ABFG, ADFE, BDFH

to the regular tetrahedron ABDF . If x < y, then all of the lateral edges of
the four triangular pyramids have length x, whereas the edges of ABDF have
length y. The plane dihedral angle α between two adjacent faces of each of
the triangular pyramids is easy to compute and is such that cos α = cos θ

1+cos θ
,

where θ = ÂCD. In turn, by applying the cosine law to triangle ACD, we get

cos θ = 1 − y2

2x2 , so that cos α = 2x2−y2

4x2−y2 . Now, if M is the midpoint of AD

and CM = EM = l =
√

x2 − y2

4 , then the plane dihedral angle β between
faces ACD and ADE is such that (from the cosine law applied to triangle

CME) 2l2 − 2l2 cos β = CE
2
. Therefore, one just needs to compute CE

in terms of x and y to find cos β in terms of x and y, and then to find x
y

by
equating cos α = cos β. For what is left to do, let X and Y be the centers of
ABD and ADF , respectively, so that AX = AY = y√

3
and XY = y

3 . Since

CX = EY =
√

x2 − y2

3 , some Plane Euclidean Geometry in the trapezoid

CXYE gives the desired expression for CE. The reader is to find x
y
= 3

5 .

Section 12.3

1. Start by tiling the space with equal cubes in the usual way. Then, split each cube
into one regular tetrahedron and four trirectangular tetrahedra (as in Fig. 11.21
when the parallelepiped is a cube), in such a way that, in the common face of
any two neighboring cubes, the faces of the two trirectangular tetrahedra of one
cube match with those of the two trirectangular tetrahedra of the other. If V is
any vertex of the right angles of one such trirectangular tetrahedron, then the
eight trirectangular tetrahedra having V as a common vertex of right angles can
be assembled to form a regular octahedron.

2. In the notations of the proof of Example 12.13, the desired edge length is equal
to the edge length of the regular pentagon inscribed in a circle of radius r = 2R√

5
.

In order to compute it, apply the result of Problem 2, page 254. Alternatively, let
O be the center of the sphere and ABC be one of the faces of the icosahedron.
Use Girard’s theorem to show that the angles of the spherical triangle ABC are
all equal to 2π

5 radians; then, notice that such an angle is equal to the plane angle
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of the dihedral angle formed by planes (OAB) and (OAC) and which contains
ABC. Now, let P ∈ OB be the foot of the perpendicular dropped from A to OB,
which coincides with the foot of the perpendicular dropped from C to OB (for
OABC is a regular triangular pyramid). Then, 
 APC is the plane angle of the
dihedral angle formed by planes (OAB) and (OAC) and which contains ABC,
so that ÂPC = 2π

5 . Letting AB = AC = BC = l and AP = CP = h, it
follows from the cosine law applied to ACP that l = 2h sin π

5 . Compute the area

of OAB in two distinct ways to arrive at Rh = l

√

R2 − (

l
2

)2
. Finally, obtain

l = R

√

4 − 1
sin2 π

5
.

Section 13.1

1. Split the octahedron into two quadrangular pyramids satisfying the following
conditions: their common basis a parallelogram of area equal to half the area
of the face of the parallelepiped with edge lengths a and b; their heights with
respect to this common basis are both equal to c

2 .
2. Let P be a parallelepiped of the same height h as C, and whose basis B is a

parallelogram of area equal to that of the closed disk D that forms the basis
of the cylinder. Further, suppose that B and D both lie in the same plane α,
with C and P contained in the same half-spaces with respect to α. If plane α′ is
parallel to α, the equality of the heights of the cylinder and the parallelepiped
guarantee that C ∩ α′ 
= ∅ if and only if P ∩ α′ 
= ∅. Moreover, when this does
happen, such intersections are respectively congruent to D and B, hence have
equal areas. Therefore, it follows from Proposition 13.3 that

V(C) = V(P) = A(B)h = A(D)h = πR2h.

3. For the second part, compute the volume of ABCD as 1
3A(ABC)h, where h

stands for the height of ABCD with respect to ABC.
4. Use Theorem 11.13 to compute the volume of ABCD as the difference between

the volume of the rectangular parallelepiped associated to it and the sum of the
volumes of four trirectangular tetrahedra. Then, compute each of these volumes
in terms of the edges of the parallelepiped, and the edges of the parallelepiped
in terms of a, b and c.

5. Let T = ABCD and I denote its incenter. Decompose T into the four
tetrahedra ABCI , ABDI , ACDI and BCDI . Then, apply the formula of
Proposition 13.7 to each such tetrahedra and add the results thus obtained. For
items (a) and (b) use the first part, together with the results of the two previous
problems.
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6. Decompose ABCD into the four tetrahedra ABCP , ABDP , ACDP , BCDP .
Then, apply the formula of Proposition 13.7 to each one of them, and add the
results.

7. If S denotes the total area of the tetrahedron and ABC is its face of greatest
area, show that A(ABC) ≥ S

4 . Then, letting h denote the height of ABCD

relative to ABC, apply the formula for the volume of a tetrahedron, together
with the result of Problem 5.

8. Use the properties of the barycenter of a tetrahedron to show that the height of
BCDG with respect to BCD is 1

4 of the height of ABCD with respect to this
same basis.

9. Let V be the vertex of the cone, O the center of its basis, AB the chord
along which the plane intersects such basis and M the midpoint of AB. Then,
AB = 2

√
3, ÂOB = 60◦ and V ̂MO = 45◦. With these data at your disposal,

successively compute the radius of the basis, OM and V O .
10. Observe that two of the solids are solid cones of revolution, whereas the third

one is the union of two solid cones of revolution with a common basis and
disjoint interiors.

11. Item (a) follows from the fact (easily proved with the aid of the midsegment
theorem for triangles) that if we translate F1 and F2 along the planes containing
them, then the corresponding planar sections S are all congruent polygons. For
(b), start by observing that (a) allows us to assume that the straightline joining
the centers of F1 and F2 is perpendicular to the planes of them. Therefore,
the midsegment theorem for triangles shows that S is a 2n-gon whose edges
are alternately equal to a

2 and b
2 and whose angles are all equal to (n−1)π

n
. In

order to compute its area in terms of a, b and n, proceed as in the hint given to
Problem 7, 254.

12. Decompose the icosahedron into twenty congruent regular triangular pyramids.
Then, letting l be the length of the edges of the icosahedron, computed with the
aid of Problem 2, page 425), show that the height of each of the twenty pyramids

is equal to

√

R2 −
(

l√
3

)2
. Proceed in a likewise manner for the dodecahedron,

this time using the result of Problem 4, page 425.
13. For the sake of simplicity, we shall work the proof for a frustum of right

triangular prism, the proof for a general one being totally analogous. Let ABC

be the basis of the frustum, and a, b and c be the lengths of its lateral edges,
respectively incident at A, B and C, with a < b, c (cf. Fig. 13.7, page 439).
Through the endpoint of the edge of length a draw (as shown in the figure),
a plane parallel to the basis of the frustum. It falls decomposed into a right
triangular prism of lateral edge length a, and a quadrangular pyramid whose
basis is a right trapezoid of bases b − a and c − a and height BC. If h denotes
the height of such a quadrangular pyramid, then h is equal to the altitude of
ABC relative to the side BC. Thus,
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V(frustum) = A(ABC) · a + V(piramide)

= A(ABC) · a + 1

3
· [(b − a)+ (c − a)]BC

2
· h

= (b + c − 2a)

3
· BCh

2

= A(ABC)a + (b + c − 2a)

3
A(ABC)

= A(ABC) · (a + b + c)

3
.

14. Use Cavalieri’s principle to show that the desired volume is equal to that of the
solid obtained by the rotation, around the axis of abscissas, of the trapezoid of
vertices (0, 0), (3, 0), (3, 22) and (0, 4).

15. For item (a), assume without loss of generality that the midpoint of LM lies in
the line segment MH . Then, by applying Pythagoras’ theorem in NHM , we

get NH
2 = MN

2 − MH
2 ≤ 1− (

x
2

)2
. For (b), suppose (also without loss of

generality) that AD is the only edge of ABCD whose length is not necessarily
less than or equal to 1. If BC = a and h is the altitude of triangle ABC with

respect to BC, then (a) gives h ≤
√

1 − a2

4 . If d is the altitude of ABCD with
respect to (ABC), then d ≤ k, where k is the altitude of BCD with respect

to BC; since k ≤
√

1 − a2

4 (again from (a)), we conclude that d ≤
√

1 − a2

4 .
Thus,

V(ABCD) = 1

3
A(ABC)d = 1

3
· ah

2
· k ≤ a

6

(

1 − a2

4

)

,

whence V(ABCD) ≤ 1
8 ⇔ a(4 − a2) ≤ 3. Now, since a ≤ 1, we have

a(4 − a2) = a(2 − a)(2 + a) ≤ 3a(2 − a) ≤ 3.
16. Letting P denote the point where α intersects the edge CD, the planar section of

ABCD through α is triangle ABP . Hence, α divides ABCD into the tetrahedra
ABDP and ABCP . Since A(ABC) = A(ABD), in order to conclude they
have equal volumes it suffices to show that their altitudes dropped from P have
equal lengths. However, since P ∈ α, we know that P is at equal distances
from the planes (ABC) and (ABD).

17. Construct the rectangular parallelepiped associated to ABCD, with bases

AC′BD′ and A′CB ′D such that
←→
AA′,

←→
BB ′,

←→
CC′ and

←→
DD′ are parallel. Then,

draw a plane α containing
←→
MN , and let P and P ′ (resp. Q and Q′) denote its

intersections with lines
←→
BC′ and

←→
B ′C (resp.

←→
AD′ and

←→
A′D), respectively. If

R is the point of intersection of
←→
QQ′ and

←→
AD, and S that of

←→
PP ′ and

←→
BC ,

then α cuts ABCD along the quadrilateral NRMS. In order to show that α
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divides ABCD into two solids of equal volumes, prove that the portions of
the rectangular parallelepiped lying in each of the half-spaces determined by α

and exterior to ABCD have equal volumes; for example, start by showing that
V(AMQR) = V(BMPS).

18. For item (a), let � denote the length of the edges of the tetrahedron. If the
parallels to A1A2, A1A3 and A1A4 through P intersect A2A3A4 in A′

2, A′
3, A′

4,
respectively, then one of the 14 pieces is the (regular) tetrahedron PA′

2A
′
3A

′
4.

Show

V(PA′
2A

′
3A

′
4) =

(d1

h

)3
V(A1A2A3A4) = d3

1

h3 .

Now, note that 4 of the 14 pieces are parallelepipeds, with each one of them
having each of A1, A2, A3, A4 as one of its vertices; we shall compute the
volume of the parallelepiped having A2 as a vertex. To this end, let B2B3 (with
B2 ∈ A1A2 and B3 ∈ A1A3) be the intersection of the plane through P and
parallel to A2A3A4 with A1A2A3. If B2B3 = �1, show that �1

h−d1
= �

h
then,

note that A1B2B3 is equilateral, whence A2B2 = A1A2 − A1B2 = � − �1 =
�d1
h

. Analogously, if C1C2 (C1 ∈ A1A3 and C2 ∈ A2A3) is the intersection of
the plane through P and parallel to A1A2A4 with A1A2A3, compute A2C2 =
�d3
h

. If B2B3 ∩ C1C2 = {D}, then the volume of the parallelepiped with vertex
A2 is

A(A2C2DB2)d4 = �d1

h
· �d3

h
·
√

3

2
· d4 = 1

3
· �2

√
3

4
· h · 6d1d3d4

h3

= V(A1A2A3A4)
6d1d3d4

h3
= 6d1d3d4

h3
.

For item (b), we only need to show that f (P ) < 3
4 . To this end, let xi = di

h
and note that (from the result of Problem 6) x1 + x2 + x3 + x4 = 1. Hence,
f (P ) = 1 −∑

i x3
i − 6

∑

i<j<k xixjxk. Now, some easy algebra gives

1 = (x1 + x2 + x3 + x4)
3 =

∑

i

x3
i + 6

∑

i<j<k

xixjxk + 3
∑

i 
=j

x2
i xj

= 1 − f (P ) + 3
∑

i<j

xixj (xi + xj ),

so that f (P ) = 3
∑

i<j xixj (xi + xj ). Hence,

f (P ) <
3

4
⇔

∑

i<j

xixj (xi + xj ) <
1

4
.
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This last inequality can be established in the following way: firstly, assume
(without loss of generality) that x1 ≥ x2 ≥ x3 ≥ x4 and show that
∑

i<j xixj (xi + xj ) <
∑

i<j uiuj (ui + uj ), where u1 = x1, u2 = x2,
u3 = x3 + x4, u4 = 0; then, assume (also without loss of generality) that
u1 ≥ u2 ≥ u3 and show that

∑

i<j uiuj (ui + uj ) <
∑

i<j vivj (vi + vj ),
where v1 = u1 and v2 = u2 +u3. Further details can be found in Example 5.25
of [5].

Section 13.2

1. Adapt, to the present case, the proof of Theorem 13.11.
2. Firstly, note that the desired volume is equal to |V1 + V2 − V3|, where V1, V2

and V3 stand (in some order) for the volumes of the frustums of right cones
generated by the rotations of sides AB, AC and BC around r; then, compute
each of V1, V2 and V3 with the aid of Theorem 13.13. Finally, use some Plane
Geometry to show that d is equal to the arithmetic mean of the distances of
vertices A, B and C to r .

3. Adapt, to the present case, the proof of Theorem 13.13.
4. Apply the result of the previous problem to the functions f, g : [−R,R] → R,

given by f (x) = d +√
R2 − x2 and g(x) = d −√

R2 − x2.
5. Given a partition P = {a = x0 < x1 < · · · < xk = b} of [a, b], let Rj

denote the rectangle of basis [xj−1, xj ] and height f (ξj ), with ξj ∈ (xj−1, xj );
approximate the barycenter ofRj by Gj(ξj ,

1
2f (ξj )). Let ρ be the mass density

of R (which we are assuming to be constant) and mj and m be the masses of Rj

and R, respectively, so that mj = ρ f (ξj )(xj − xj−1) and m = ρ
∫ b

a
f (x)dx.

It follows from (13.1) that
∑k

j=1 mj(ξj − xG, 1
2f (ξj ) − yG) = (0, 0), or also

∑k
j=1 mjξj − ∑k

j=1 mjxG = 0 and 1
2

∑k
j=1 mjf (ξj ) − ∑k

j=1 mjyG = 0.
In these equalities, substitute the expressions for mj and m, and use that m =
∑k

j=1 mj ; then, let |P | → 0 to conclude the problem with the aid of Riemann’s
theorem (cf. Section 10.3 of [5], for instance).

6. Firstly, recall that the point of intersection of the medians of ABC is
( a+b

3 , h
3 ). Then, show that

∫ a

0 f (x)dx = ah
2 ,

∫ a

0 xf (x)dx = ah
2

(

a+h
3

)

and
1
2

∫ a

0 f (x)2dx = ah
2 · h

3 .
7. Adapt, to the present case, the hint given to that problem. You must arrive at the

formulas

xG =
∫ b

a
x(f (x) − g(x))dx

∫ b

a
(f (x) − g(x))dx

and yG =
1
2

∫ b

a
(f (x)2 − g(x)2)dx

∫ b

a
(f (x) − g(x))dx

.
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8. Use that A = ∫ b

a (f (x) − g(x))dx, d = yG = 1
2

∫ b
a (f (x)2−g(x)2)dx
∫ b
a (f (x)−g(x))dx

and

(according to Problem 3) V = π
∫ b

a
(f (x)2 − g(x)2)dx.

9. Pappus’ theorem gives 4
3πR3 = 2πAd , with A = 1

2πR2.
10. According to Pappus, the volume of such a torus equals 2π ·πR2 ·d = 2π2Rd .



Glossary

Problems tagged with a country’s name refer to any round of the corresponding
national mathematical olympiad. For example, a problem tagged “Brazil” means
that it appeared in some round of some edition of the Brazilian Mathemati-
cal Olympiad. Problems proposed in other mathematical competitions, or which
appeared in mathematical journals, are tagged with a specific set of initials, as listed
below:

1. APMO: Asian-Pacific Mathematical Olympiad.
2. Austrian-Polish: Austrian-Polish Mathematical Olympiad.
3. BMO: Balkan Mathematical Olympiad.
4. Baltic Way: Baltic Way Mathematical Contest.
5. Crux: Crux Mathematicorum, a mathematical journal of the Canadian Mathe-

matical Society.
6. EKMC: Eötvös-Kürschák Mathematics Competition (Hungary).
7. IMO: International Mathematical Olympiad.
8. IMO shortlist: Problem proposed to the IMO, though not used.
9. Israel-Hungary: Binational Mathematical Competition Israel-Hungary.

10. Miklós-Schweitzer: The Miklós-Schweitzer Mathematics Competition (Hun-
gary).

11. NMC: Nordic Mathematical Contest.
12. OCM: State of Ceará Mathematical Olympiad.
13. OCS: South Cone Mathematical Olympiad.
14. OBMU: Brazilian Mathematical Olympiad for University Students.
15. OIM: Iberoamerican Mathematical Olympiad.
16. OIMU: Iberoamerican Mathematical Olympiad for University Students.
17. ORM: Rioplatense Mathematical Olympiad.
18. Putnam: The William Lowell Mathematics Competition.
19. TT: The Tournament of the Towns.
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A
Abscissa, 183
Acute triangle, 35
Altitude

foot of the, 29
of a parallelogram, 154
of a pyramid, 378
of a tetrahedron, 380
of a trapezoid, 161
of a triangle, 28
of an equilateral triangle, 113

Angle, 7
acute, 11
between a circle and a line, 297
between concurrent line and plane, 346
between two circles, 297
between two lines, 339
bisector of an, 25
central, 72
complement of an acute, 11
in a circle, exterior, 75
in a circle, interior, 75
inequality, exterior, 31
inscribed, 73
interior angle of a convex polygon, 16
invariance, 297
measure of a central, 72
measure of an, 7
obtuse, 11
of a convex polygon, exterior, 16
of a simple polygon, interior, 190
of a triangle, interior, 14
plane, 352
right, 11
tangent-chord, 74

theorem of the inscribed, 73
theorem, exterior, 34
vertex of an, 7

Angles
alternate interior, 33
complementary, 11
consecutive interior, 33
corresponding, 37
equal, 9
opposite, 12

Apex of a pyramid, 377
Apollonius

circle of, 121
of Perga, 120
problem of, 145

Apothem of a regular polygon, 247
Approximations for π , 174
Arc

capable, 77
major, 6
minor, 6
of a circle, 6

Archimedes
of Syracuse, 83
theorem of, 83, 262

Arcs, trigonometric, 230
Area

of a circle, 174
of a cone, lateral, 380
of a cylinder, lateral, 390
of a parallelogram, 154
of a rectangle, 154
of a rhombus, 161
of a simple polygon, 190
of a sphere, 406
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Area (cont.)
of a square, 153
of a surface of revolution, 405
of a trapezoid, 161
of a triangle, 155
of similar triangles, 162
postulates for, 151
sine formula for the, 256

Area-equivalence
of polygons, 158
of triangles, 158

ASAo congruence case, 35
Asymptotes of a hyperbola, 212
Axiom, 1
Axiomatic method, 1
Axis

of a cone, 358
of a cylinder, 356
of a hyperbola, major, 211
of a hyperbola, minor, 211
of a parabola, 205
of a surface of revolution, 403
of abscissas, 183
of an ellipse, major, 208
of an ellipse, minor, 208
of ordinates, 183
radical, 142

B
Ball

closed, 411
open, 377

Barycenter, 446
of a tetrahedron, 387
of a triangle, 50, 184

Bases
of a prism, 389
of a trapezoid, 51

Basis
canonical, 277
of a cone, 379
of a parallelogram, 154
of a pyramid, 377
of a trapezoid, larger, 51
of a trapezoid, smaller, 51
of an isosceles triangle, 14

Bisector
as locus, perpendicular, 62
foot of the internal, 26
of a segment, perpendicular, 62
of a triangle, internal, 26
of an angle, 25

of an angle as locus, 63
theorem, angle, 106

Bisector planes, 352
Bolyai, János, 33
Boundary

of a set, 411
point, 411

Brahmagupta, 263
formula of, 263

Branch of a hyperbola, 211
Brianchon

Charles, 324
theorem of, 326, 375

Brocard
Pierre, 315
theorem of, 315

Butterfly theorem, 316

C
Canonical

basis, 277
form of a parabola, 205

Carnot
Lazare, 164
theorem of, 164

Cartesian
coordinates, 183
method, 181
plane, 183
system, 182

Cauchy
Augustin L., 282
inequality of, 202, 282

Cavalieri
Bonaventura, 429
principle of, 429

Center
of a circle, 4
of a conic, 208
of a harmonic pencil, 306
of a projective pencil, 319
of a sphere, 353
of gravity, 446
of inversion, 289, 360
radical, 144

Central projection, 368, 369
Ceva

Giovanni, 131
theorem of, 131, 201, 263
trigonometric, 263

Cevian, 133
Cevians, isogonal, 133
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Chord
angle, tangent-, 74
focal, 222
of a circle, 5
of a conic, 222
of a sphere, 353
theorem, broken, 83

Chords, theorem of intersecting, 138
Circle, 4

arc of a, 6
area of a, 174
as locus, 61
center of a, 4
chord of a, 5
circumference of a, 176
circumscribed to a polygon, 99
circumscribed to a quadrilateral, 93
circumscribed to the triangle, 84
diameter of a, 5
director, 216
equation of the, 197
exterior of a, 4
inscribed, 157
inscribed in a polygon, 99
inscribed in a triangle, 87
interior of a, 4
inversion, 290
length of a, 176
nine-point, 124, 302
of a conic, auxiliary, 218
of a sphere, great, 355
of Apollonius, 121
of Euler, 124, 150
of inversion, 290
of Monge, 225
parametric equations of a, 231
pedal, 150
radius of a, 4, 5
unit, 227

Circles
angle between two, 297
common tangent to two, 83
exterior, 82
externally tangent, 82
interior, 82
internally tangent, 82
orthogonal, 298
secant, 82
tangent, 82

Circular sector, 175
Circumcenter

of a cyclic quadrilateral, 93
of a tetrahedron, 381
of a triangle, 67

Circumcircle, 84
Circumference of a circle, 176
Circumradius, 84
Clairaut

Alexis C., 157
Coefficient, angular, 236
Collinear points, 13, 332
Common perpendicular, 348
Complement of an acute angle, 11
Complete quadrangle, 310
Concurrent

line and plane, 334
lines, 31, 332
planes, 333

Concyclic points, 93
Cone

axis of a, 358
basis of a, 379
frustum of, 386
generatrix of a, 358
lateral area of a, 380
leaves of a, 358
of revolution, 358, 379
of revolution, solid, 428
opening of a, 358
right circular, 358
vertex of a, 358

Confocal ellipse and hyperbola, 224
Congruence

case ASA, 23
case HL, 36
case SAAo, 35
case SAS, 22
case SSS, 24
of triangles, 20
of triangles, cases of, 21
symmetry of, 20
transitivity of, 21

Conic, 202
canonical form of a, 207
center of a, 208
central, 208
chord of a, 222
directrix of a, 202, 207
eccentricity of a, 202
focal chord of a, 222
focus of a, 202, 207
parameter of a, 202
polar of a point with respect to a, 372
section, 362

Conics, 120
Conjugate

harmonic, 136, 304
isogonal, 135
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Conjugates
harmonic, 136, 303
isogonal, 135

Convex polygon
diagonal of a, 15
exterior angle of a, 16
interior angle of a, 16
perimeter of a, 15

Convex polyhedron, 412
Coordinates, cartesian, 183
Coplanar lines, 332
Cosine

law, 248
of an arc, 230
of complementary arcs, 237
of suplementary arcs, 239
of symmetric arcs, 237

Cross ratio
of a projective pencil, 320
of a quadruple of points, 318

Cube, 392
center of a, 393
diagonals of a, 393

Cyclic
hexagram, 324
polygon, 99
quadrilateral, 93

Cylinder
axis of a, 356
generatrix of a, 357
lateral area of a, 390
of revolution, 356, 390
of revolution, solid, 428
radius of a, 356
right circular, 357

D
Dandelin

Germinal, 362
sphere of, 362, 365

Decagon, 16
Degree, 7
Desargues

Girard, 129
theorem of, 129

Descartes, René, 182
Diagonal

of a convex polygon, 15
of a cube, 393
of a square, 113

Diameter
of a circle, 5
of a sphere, 353

Dihedral angle, 351
edge of a, 352
faces of a, 352
opening of a, 352
plane angle of a, 352

Directrix, 207
Disk, closed, 4
Distance

between parallel lines, 54
between parallel planes, 343
between two points, 4
from a point to a plane, 343
from point to line, 28, 356

Dodecahedron, 422
Dual theorem, 327
Duality principle, 327

E
Edge

of a convex polygon, 15
of a dihedral angle, 352
of a polyhedron, 413
of a prism, 389
of a prism, lateral, 389
of a pyramid, 377
of a triangle, 13

Ellipse, 208
auxiliary circle of a, 218
auxiliary circles of an, 239
focal distance in an, 209
major axis of an, 208
minor axis of an, 208
parameter of an, 208
parametric equations of an, 239

Equation
linear, 193
of a line, parametric, 201
of the circle, 197
slope-intercept, 195

Equations of a line, parametric, 277
Equilateral triangle, 14
Erdös

-Mordell inequality, 157
Paul, 157

Euclid, 32
Elements of, 1
of Alexandria, 1

Euclidean
Geometry, Plane, 2

Euler
characteristic, 414
circle, 150
circle of, 124
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Leonhard, 124
line of, 124
median of, 52, 124, 188
median, theorem of, 124
theorem of, 140, 141, 414
theorem of the median of, 188

Excenter, 88
Excircle, 88
Exradius, 88
Exterior

angle in a circle, 75
circles, 82

F
Face

of a polyhedron, 413
of a prism, 389
of a prism, lateral, 389

Faces
of a dihedral angle, 352
of a pyramid, 377
of a pyramid, lateral, 377
of a tetrahedron, 378
of a trihedral angle, 359

Fermat
Pierre Simon de, 126
point of, 126, 266

Feuerbach
Karl Wilhem von, 302
theorem of, 302

Focus of a conic, 207
Foot

of the altitude, 29
of the internal bisector, 26
of the perpendicular, 28

Formula
Brahmagupta’s, 263
for double arcs, 242
for the area, sine, 256, 262
for the distance between two points, 185
for transformation in product, 243
Heron’s, 258

Fourth proportional, 105
Frustum of right prism, 438

G
Gallai, Tibor, 119
Generatrix

curve of a surface of revolution, 403
of a cone, 358
of a cylinder, 357

Genus of a polyhedron, 416

Geometry
Euclidean, 1
Hyperbolic, 33
Projective, 129

Gergonne
Joseph, 136
point, 136

Gerwien, Paul, 155
Girard

Albert, 408
theorem of, 408

H
Half-line, 2
Half-plane, 7
Half-space, 332
Harmonic

conjugate, 136, 304
conjugates, 136, 201, 303
mean of two segments, 116
pencil, 306
pencil, center of a, 306
quadruple, 303

Height
of a parallelogram, 154
of a prism, 389
of a pyramid, 378
of a trapezoid, 161
of a triangle, 28

Heptagon, 16
Heron

formula of, 258
of Alexandria, 258

Hexagon, 16
Hexagram, 324

cyclic, 324
tangential, 324

Hexahedron, 420
Hippocrates

lunes of, 179
of Chios, 179

Homeomorphism, 413
Horizon, 131
Hyperbola, 211

asymptotes of a, 212
auxiliary circle of a, 218
branches of a, 211
focal distance in an, 212
major axis of a, 211
minor axis of a, 211
parameter of an, 211

Hyperbolic Geometry, 33
Hypotenuse, 35
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Hypparchus
of Nicaea, 263
theorem of, 263

I
Icosahedron, 421
Incenter

of a tetrahedron, 382
of a triangle, 69

Incidence, 319, 370
Incident quadruples and pencils, 319
Incircle, 87
Inequality

exterior angle, 31
of Cauchy, 202, 282
of Erdös-Mordell, 157
of Weitzenböck, 261
triangle, 41

Inradius, 87
Inscribed circle, 87, 157
Interior

circles, 82
of a prism, 389
of a pyramid, 377
of a set, 411
of a simple polygon, 190
point, 411

Interior angle
in a circle, 75
of a triangle, 14

Inverse
of a circle, 292
of a line, 292
of a plane, 361
of a point, 289, 360
of a sphere, 361

Inversion, 289, 302, 360
angle invariance under an, 297
center of, 289, 360
modulus of, 289
pole of, 289
ratio of, 289
sphere, 360

Isoperimetric problem, 259
Isosceles

tetrahedron, 396
trapezoid, 53
triangle, 14
triangle, basis of an, 14

J
Jordan

Camille, 190
curve theorem, 190

K
Key point, 64

L
Lattice points, 189
Law

cosine, 248
sine, 255

Leaves of a cone, 358
Legs of a right triangle, 35
Lemoine

Émile, 165
point of, 165

Length of a circle, 176
Line, 1

determination, axiom of, 2
medial, 350
of a circle, medial, 355
of a parabola, auxiliary, 218
of Euler, 124
orthogonal projection of a, 345
parametric equation of a, 201
segment, 2
Simson, 96
tangent to a circle, 71

Lines
angle between two, 339
concurrent, 31, 332
coplanar, 332
orthogonal, 340
parallel, 31, 332
perpendicular, 27, 340
reverse, 332

Lobatchevsky, Nikolai, 33
Locus, 61, 349

bisector of an angle as a, 63
circle as, 61
perpendicular bisector as, 62

Luca Valerio, 440

M
Mean of two segments, harmonic, 116
Measure of an angle, 7
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Median
of a triangle, 27
of Euler, 124, 188

Menelaus
of Alexandria, 127
theorem of, 127, 201

Method
analytic, 181
cartesian, 181
synthetic, 61
trigonometric, 227

Midpoint, 26
Midsegment

of a trapezoid, 52
of a triangle, 48
theorem, 48

Minkowski
Hermann, 187, 287
theorem of, 287

Modulus of inversion, 289
Monge

circle of, 225
Gaspard, 137, 225
theorem of, 137

Mordell, Louis, 157

N
Nagel

Christian H. von, 137
point, 137

Nine-point circle, 150, 302
Number, transcendental, 174

O
Obtuse triangle, 35
Octagon, 16
Octahedron, 420
Ordinate, 183
Orthocenter of the triangle, 68
Orthogonal

circle and line, 298
circles, 298
projection of a line, 345

P
Pappus

of Alexandria, 137
theorem of, 137, 329, 447

Parabola, 203
auxiliary line of a, 218
axis of a, 205
canonical form of a, 205

parameter of a, 204
vertex of a, 205

Parallel
line and plane, 334
lines, 31, 332
planes, 333

Parallelepiped, 390
rectangular, 391
right, 391

Parallelogram, 44
altitude of a, 154
area of a, 154
basis of a, 154
height of a, 154
rule, 270

Parameter, 201, 232
Parametric equations

of a circle, 231
of a line, 277

Pascal
Blaise, 324
theorem of, 324, 374

Pedal
circle, 150
triangle, 150

Pencil
center of a harmonic, 306
center of a projective, 319
cross ratio of a projective, 320
harmonic, 306
projective, 319

Pentagon, 16
Perimeter

of a convex polygon, 15
of a triangle, 14

Perpendicular
foot of the, 28
lines, 27

Perspective
of projective pencils, 320, 322, 373
of quadruples, 319

Pi, 174
Pick

Georg A., 189
theorem of, 191

Pitot
Henri, 97
theorem of, 97

Plane, 1
bisecting, 350
bisector, 352
cartesian, 183
section of a sphere, 354
tangent to a sphere, 354
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Planes
concurrent, 333
parallel, 333
perpendicular, 344

Plato, 420
Point, 1

at infinity, 131, 328
boundary, 411
interior, 411
inverse of a, 289, 360
lattice, 189
of Fermat, 126, 266
of Gergonne, 136
of Lemoine, 165
of Nagel, 137
of tangency, 71, 354, 388
symmedian, 165
symmetric, 30
vanishing, 131, 338

Points
antipodal, 353
collinear, 13, 332
concyclic, 93
in general position, 95
non collinear, 13

Polar
line, 311
of a point with respect to a, 372

Pole
North, 355
of inversion, 289
South, 355

Polygon
apothem of a regular, 247
area of a simple, 190
convex, 15
cyclic, 99
edges of a convex, 15
interior angle of a simple, 190
interior of a simple, 190
regular, 169
sides of a convex, 15
simple, 190
spherical, 410
tangential, 99, 157
vertex of a convex, 15

Polygonal region, 15
Polygons, area-equivalent, 155
Polyhedron, 412

Plato, 420
convex, 412
edge of a, 413
face of a, 413

genus of a, 416
regular, 420
surface of a, 413
vertex of a, 413

Poncelet
Jean Victor, 141, 220
theorem of, 220

Postulate, 1
fifth, 32
parallels’, 32

Power of a point, 141
Primitive concepts, 1, 331
Prism, 389

n-gonal, 389
bases of a, 389
edges of a, 389
faces of a, 389
frustum of right, 438
height of a, 389
interior of a, 389
lateral edges of a, 389
lateral faces of a, 389
quadrangular, 389
regular, 389
right, 389
triangular, 389
vertices of a, 389

Problem
isoperimetric, 259
of Apollonius, 145
of Steiner, 266

Projective pencil, 319
center of a, 319
cross ratio of a, 320

Projective pencils
in perspective, 322, 373

Projective pencils in perspective, 320
Projectivity, 328
Ptolemy

Claudius, 122
generalized theorem of, 265
theorem of, 122

Pyramid, 377
n-sided, 377
altitude of a, 378
apex of a, 377
basis of a, 377
edges of a, 377
faces of a, 377
height of a, 378
interior of a, 377
lateral faces of a, 377
quadrangular, 377
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regular, 378
triangular, 377
vertex of a, 377

Pythagoras
of Samos, 112
theorem of, 112

Q
Quadrants, 181
Quadrilateral, 16

circle circumscribed to a, 93
circumcenter of a cyclic, 93
cyclic, 93
inscribed, 93
tangential, 97

Quadruples in perspective, 319

R
Radian, 227
Radiano

conversion to, 228
Radical

axis, 142
center, 144

Radius
of a circle, 4, 5
of a cylinder, 356
of a sphere, 353

Ratio
of inversion, 289
of similitude, 109

Rectangle, 53
area of a, 154

Region
angular, 7
convex, 7
non-convex, 7
polygonal, 15
triangular, 13

Regular
prism, 389
pyramid, 378
tetrahedron, 380

Relation
of Trigonometry, fundamental, 231
Stewart’s, 250

Relative positions of point and line, 2
Reverse lines, 332
Rhombus, 54

area of a, 161
Right trapezoid, 53

Right triangle, 35
hypotenuse of a, 35
legs of a, 35

S
Scalar, 272

product by, 272
Scalar product, 281

in coordinates, 283
Scalene triangle, 14
Secant circles, 82
Segment

line, 2
midpoint of a line, 26
oriented, 127
perpendicular bisector of a, 62

Segments
equal, 2
transport of, 2

Semicircles, 5
Semiperimeter

of a triangle, 14
Set

boundary of a, 411
bounded, 377
closed, 411
convex, 332
interior of a, 411
open, 411

Side
of a convex polygon, 15
of a triangle, 13

Similarity
case AA, 111
case SAS, 111
case SSS, 110
cases for triangles, 110

Simson line, 96
Simson-Wallace, theorem of, 95
Sine

formula for the area, 256, 262
law, 255
of an arc, 230
of complementary arcs, 237
of suplementary arcs, 239
of symmetric arcs, 237

Solid, 427
cone of revolution, 428
cylinder of revolution, 428
measurable, 429
of revolution, 428
volume of a, 429
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Space
-half, 332
three-dimensional, 331

Sphere, 353
area of a, 406
center of a, 353
chord of a, 353
circumscribed, 381
diameter of a, 353
equator of a, 355
great circle of a, 355
inscribed, 381
inversion, 360
of Dandelin, 362, 365
plane section of a, 354
radius of a, 353

Spheres
externally tangent, 388
internally tangent, 388

Spherical
cap, 410
lune, 406
polygon, 410
segment, 445

Square, 57
area of a, 153
diagonal of a, 113

Steiner
Jakob, 266
problem of, 266

Stewart
Matthew, 250
relation of, 250

Surface of revolution, 354, 403
area of a, 405
axis of a, 403
generatrix of a, 403

Sylvester, James, 119
Symmedian, 165

point, 165
Symmetric point, 30
System, cartesian, 182

T
Tangency

between line and circle, 71
point, 71

Tangent
-chord angle, 74
circles, 82
circles, externally, 82
circles, internally, 82
of an arc, 233

Tangential
hexagram, 324

Tangential quadrilateral, 97
Tetrahedron, 378

altitude of a, 380
barycenter of a, 387
circumcenter of a, 381
faces of a, 378
incenter of a, 382
isosceles, 396
regular, 380
trirectangular, 395
vertices of a, 378

Thales
of Miletus, 104
theorem of, 104, 338

Theorem
angle bisector, 106
butterfly, 316
dual, 327
Euler’s median, 188
exterior angle, 34
inscribed angle, 73
intercept, 104
midsegment, 48
of Archimedes, 83
of Brianchon, 326, 375
of Brocard, 315
of Carnot, 164
of Ceva, 131, 201, 263
of Desargues, 129
of Euler, 140, 141, 414
of Euler’s median, 124
of Feuerbach, 302
of Girard, 408
of Hypparchus, 263
of intersecting chords, 138
of Menelaus, 201
of Minkowski, 287
of Monge, 137
of Pappus, 137, 329, 447
of Pascal, 324, 374
of Pick, 191
of Poncelet, 220
of Ptolemy, 122
of Ptolemy, generalized, 265
of Pythagoras, 112
of Simson-Wallace, 95
of Sylvester-Gallai, 119
of Thales, 104, 338
of the broken chord, 83
of the Jordan curve, 190
of three perpendiculars, 343

Third proportional, 108
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Thorem
of Menelaus, 127

Torus of revolution, 446
Transcendental number, 174
Trapezium, 51
Trapezoid, 51

altitude of a, 161
area of a, 161
bases of a, 51
Euler median of a, 52
height of a, 161
isosceles, 53
larger basis of a, 51
legs of a, 51
midsegment of a, 52
right, 53
smaller basis of a, 51

Triangle, 13
acute, 35
altitude of a, 28
altitude of an equilateral, 113
area of a, 155
barycenter of a, 50, 184
basis of an isosceles, 14
circumcenter of a, 67
circumcircle of a, 84
circumscribed circle of a, 84
edges of a, 13
equilateral, 14
ex-circle of a, 88
excenter of a, 88
exradius of a, 88
height of a, 28
incenter of a, 69
incircle of a, 87
inradius of a, 87
inscribed circle of a, 87
interior angles of a, 14
internal bisector of a, 26
isosceles, 14
medial, 48
median of a, 27
midsegment of a, 48
notable points of a, 51, 66
obtuse, 35
orthic, 94
orthocenter of a, 68
pedal, 95, 150, 264
perimeter of a, 14
right, 35
scalene, 14
semiperimeter of a, 14

sides of a, 13
spherical, 407
vertices of a, 13

Triangles
area of similar, 162
cases of congruence of, 21
congruence of, 20
congruent, 20
in perspective from a line, 130
in perspective from a point, 131, 338
metric relations in right, 112
Napoleonic, 126
similar, 109
similarity cases for, 110

Trigonometry, fundamental relation of, 231
Trihedral

angle, 359
angle, faces of a, 359
vertex of a, 359

U
Unit circle, 227

V
Vector, 269

direction of a, 270
geometric, 269
initial point of a, 269
multiplication by scalars, 272
non null, 270
null, 270
opposite, 272
scalar multiple of a, 272
terminal point of a, 269

Vectors
angle between two, 281
associativity of the addition of, 271
commutativity of the addition of, 271
difference of, 273
equal, 269
orthogonal, 281
parallel, 270
scalar product of two, 281
sum of two, 270

Vertex
of a cone, 358
of a convex polygon, 15
of a parabola, 205
of a polyhedron, 413
of a pyramid, 377
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Vertex (cont.)
of a tetrahedron, 378
of a triangle, 13
of a trihedral, 359
of an angle, 7

Volume
of a closed ball, 440
of a cone of revolution, 435
of a cylinder of revolution, 431
of a frustum of right prism, 438
of a parallelepiped, 430

of a prism, 431
of a solid, 429
of a solid of revolution, 443
of pyramid, 434
of tetrahedron, 433

W
Weitzenböck

inequality of, 261
Roland, 261
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