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Preface

There are two broad modes by which constructions transfer loads to the 
underlying ground layers: through shallow foundations and through deep 
foundations. In this document, the word “foundation” is understood as being 
the element of the construction (most commonly made of reinforced concrete 
or of steel), but it may, in some conditions, also mean the ground layers them-
selves (on which, or through which, it is intended to build the construction).

By definition, shallow foundations are the ones that lay on the ground or 
that are only slightly embedded in it, such as footings, rafts, etc. The loads 
they transfer impact only shallow layers, or the ones at low depth. Shallow 
foundations essentially operate using ground resistance under the base.

When the surface ground does not possess sufficient mechanical proper-
ties to bear loads through shallow foundations, either because its strength 
is too poor or because the planned settlement may harm the construc-
tion, then deep or semi-deep foundations are required. Deep foundations 
(essentially foundations on piles) are the ones that allow transferring loads 
generated by the construction to layers from the surface down to a depth 
ranging from a few metres to tens of metres. When designing the bearing 
capacity of piles, it is appropriate to consider, in addition to the ground 
resistance under the base, the ground resistance on lateral walls, i.e., skin 
friction along the shaft of piles.

Barrettes are load bearing elements for diaphragm walls. Even though 
they differ in shape and require a specific technique, both their execution 
mode and behaviour are similar to those of bored piles.

Between both these extremes, i.e., shallow foundations and deep founda-
tions, a distinction can be made for semi-deep foundations, when the base 
is relatively close to the surface, but when skin friction cannot be neglected: 
they include piers and short piles of large diameter or low-depth barrettes 
and most caissons. This category of foundations does not have its own 
calculation method, since all cases are specific. One has to adapt the meth-
ods established for shallow foundations or for deep ones, depending on 
the case. Engineers will be guided notably by the mode of execution or of 
installation, depending on if it is closer to that of a shallow foundation or 
to that of a deep foundation.
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xiv  Preface

This document outlines the common geotechnical methods used for 
designing shallow and deep foundations. It is a full update of the meth-
ods commonly used in French practice of foundation design. This update 
is mainly justified by the limit state approach introduced by Eurocode 7. 
In particular, the French Standardisation Committee (AFNOR) issued two 
national standards – one for deep foundations, and the other one for shal-
low ones – for the application of Eurocode 7 (EN 1997-1, BSI, 2004a). Both 
these standards have notably changed the calculation rules of the bearing 
capacity of foundations compared to the previous French normative docu-
ments (Fascicule 62 –Titre V of the CCTG (*French civil engineering code) 
and of the DTU (*French building code) 13.12 and 13.2). The present docu-
ment takes these various changes into account. Furthermore, there is a great 
focus on the use of numerical methods, which was developed during the last 
twenty years, as well as to some aspects of ground-structure interactions 
that are pertinent for a refined design of both shallow and deep foundations.

The document is divided into four chapters: the first introduces the 
concept of limit state calculations, applied to the design of foundations. 
Chapters two and three deal with shallow and deep foundations, respec-
tively. Chapter four assembles various features of the ground-structure 
interaction that are common to all types of foundations: the allowable 
displacement of structures as well as ground-structure couplings.

Finally, we drafted this document in the hope that it will be useful to both 
students and practising engineers in design offices, contracting companies 
and administrations.

Paris, 29 August 2018 (for the French version)
Roger Frank
Fahd Cuira

Sébastien Burlon
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xv

Additional Preface for 
the English Version

This document is a guide describing the common geotechnical methods 
used in France for designing shallow and deep foundations. They are fully 
compatible with Eurocode 7 on “Geotechnical design”. 

This guide should be useful to practising engineers and experts in design 
offices, contracting companies and administrations, as well as to students 
and researchers in civil engineering. Though the focus of the two central 
chapters is on French practice, it is believed that its content, with appropri-
ate references to Euronorms published by BSI (BS ENs), is more widely 
applicable to design based on, or generally in line with, Eurocode7 (BS EN 
1997-1, 2004), and it will prove to be interesting to a large international 
audience involved in the design of foundations.

This book was originally published by Presses des Ponts, as a second 
edition (December 2018) of Calcul des Fondations Superficielles et 
Profondes, and is being translated and developed from French with the 
support of Terrasol (Setec Group) France.)

Paris, 14 January 2021

Roger Frank
Fahd Cuira

Sébastien Burlon
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1

Chapter 1

Actions for Limit State Design

1.1 � DEFINITION OF ACTIONS

Serviceability limit states (SLSs) and ultimate limit states (ULSs) need to 
be distinguished. Generally speaking, we will remember that for each of 
these limit states, we must firstly form combinations of actions in order to 
determine the load on the foundation Fd and secondly determine the ground 
resistance Rd, which itself depends on the limit state under consideration 
(see §2.5 for shallow foundations and §3.6 for deep foundations). We must 
also, if it is required by the supported structure, determine displacement (or 
their order of magnitude) under various combinations of actions (§2.5.2.2 
and §3.6.4). 

According to Eurocode: “Basis of structural design” (EN 1990, BSI, 
2002), SLSs are “states that correspond to conditions beyond which the 
specified performance requirements for a structure or a structural element 
are no longer satisfied”. These states include the following:

•	 “Deformations that affect the appearance, the comfort of users, the 
functioning of the structure (including the functioning of machines or 
services), or that cause damage to finishes or non-structural members;

•	 Vibrations that cause discomfort to people or that limit the functional 
effectiveness of the structure;

•	 Damage that is likely to adversely affect the appearance, the durabil-
ity or the functioning of the structure”.

ULSs are the ones “associated with a collapse or other forms of structural 
failure” as well as, by convention, with some states that precede them. 
They  “concern the safety of people and/or the safety of the structure”. 
These states include the following:

•	 “Loss of equilibrium of the structure or any part of it, considered as 
a rigid body;
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2  Design of Shallow and Deep Foundations

•	 Failure by excessive deformation, transformation of the structure or 
any part of it into a mechanism, rupture, and loss of stability of the 
structure or any part of it, including supports and foundations;

•	 Failure caused by fatigue or other time-dependent effects”.

Regarding the design of bearing capacity (calculation in terms of forces), 
the “limit state” approach consists in guaranteeing that

	 ≤F Rd d	

with
Fd being the design load applied to the foundation, taking into account 

possible load factors (usually greater than 1), which are partial factors on 
actions (see below);

Rd being the corresponding design bearing capacity (or design resistance), 
taking into account the partial safety factors on the ground resistance (§2.5 
et §3.6).

We shall provide here merely a few general principles, without going into 
the details of the limit state design. The situations, the various types of 
actions and their values to be taken into account within the design are 
defined in normative or regulatory documents. In particular, they vary 
depending on the type of structure being considered.

For foundations of bridges and buildings, the following actions are 
commonly distinguished according to the French standards for the 
application of Eurocode 7 (AFNOR, 2012 and 2013).

1.1.1 � Permanent actions G

These are permanent actions of any nature. Their characteristic values are 
noted G. As examples, we may mention the following:

•	 The self-weight of the foundation;
•	 The self-weight of the support (pier, abutment, pile cap, etc.);
•	 The fraction of the self-weight of the building or of the considered 

structure and of its equipment carried by the foundation;
•	 Forces due to shrinkage, creep, etc.;
•	 Forces due to ground weight and ground pressure;
•	 Groundwater pressure applied on a retaining wall.

Note that for ULSs, and under certain combinations, it is appropriate 
to separate (see §1.2.1):

•	 the actions G that are unfavourable, of characteristic values Gmax from
•	 the actions G that are favourable, of characteristic values Gmin.

In both cases of shallow and deep foundations, actions due to groundwater 
are essentially hydrostatic pressures and pore pressures, whether there is a 
water flow or not.
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1.1.2 � Actions due to groundwater

The actions due to groundwater are considered as being permanent ones. 
The variable nature of these actions is taken into account by defining 
several levels (see Figure 1) that are associated with specific combinations 
of actions (see §1.2):

•	 EH (or Eh) level is the characteristic level for ULSs in persistent and 
transient situations (fundamental combinations) and for SLSs in 
characteristic combinations;

•	 EF (or Ef) level is the level for SLSs in frequent combinations;
•	 EB level is the quasi-permanent level, for ULSs in seismic situations 

and for SLSs in quasi-permanent combinations; and
•	 EE (or Ee) level for accidental situations.

According to the geotechnical structure, and to the failure mechanism under 
consideration, high levels (EH, EF and EE) or low ones (Eh, Ef and Ee) will 
be selected depending on if their effects are favourable or unfavourable.

Tref = Design service life

Eh

Ef

EB=Eb

EF

EH

EE

t

A B

A + B = 50 % Tref
C= 1 % Tref

EH or Eh = 1 time / Tref

Ee

C

h

Figure 1 � Schematic representation of the levels EE, EH, EF, EB, Ee, Eh and Ef.
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4  Design of Shallow and Deep Foundations

1.1.3 � Lateral thrusts Gsp

These actions are to be considered in cases of deep foundations subjected 
to lateral ground displacement. These cases cover relatively diverse situa-
tions, such as a structure being founded on piles in a slide, the backfilled 
abutment of a bridge founded on piles, a building founded on piles next to 
backfilled ground, etc.

Figure 2 illustrates this phenomenon in the case of a backfilled abutment 
founded on piles. The piles pass through a soft and compressible ground 
layer, which is dissymmetrically loaded (here, by the backfill). The soft layer 
tends to displace downstream all the more so that the safety factor relative 
to the overall stability (following, for example, the curve (C)) is low. These 
displacements generate forces on the piles, which may prove significant.

The design method outlined in §3.3.2 takes into account the relative 
ground-pile stiffness, as well as the displacement g(z) that the soft ground 
undergoes under the dissymmetrical load in absence of the pile. In the case 
of an abutment for a bridge founded on piles within a slide, the displace-
ment g(z) represents the slide movement in the absence of the piles.

When applying the theory of serviceability and SLSs and ULSs, one 
should note that g(z) is considered as an action. However, the partial fac-
tors are not applied to the displacement itself but to the effects of the actions 
it induces on the pile.

1.1.4 � Negative friction Gsn

This action is to be considered in cases of deep foundations subjected to 
an axial ground displacement (vertical settlement in most cases). We may 
mention the example of a bridge or a building founded on piles alongside 

 
R backfill S1 soft layer       S2 stiff layer    (C) failure circle 

Figure 2 � Lateral thrusts on the piles of a backfilled abutment.
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which the ground is loaded by a backfill, by the lowering of the groundwa-
ter table or by another construction with shallow foundations. Overall, the 
phenomenon of negative friction (also called “downdrag”) occurs when the 
ground settlement is greater than the pile settlement. The result of the nega-
tive friction is a function of both the ground settlement and the load carried 
by the pile at its head.

Figure 3 provides an example of a backfilled abutment founded on 
piles, for which the progressive settlement, due to consolidation of the soft 
compressible layer, leads to a friction applied downwards, with a relative 
ground-pile displacement occurring in the same direction. This negative 
friction acts not only on the piles but also on the pile cap, and since the 
backfill settles more than the abutment, the negative friction also occurs on 
the front wall. In this case, the pressure on the wall is inclined downwards, 
and its tangential component constitutes the negative friction.

Also note that in cases similar to the one in Figure 3 (negative friction 
generated by the presence of a soft compressible layer), the negative friction 
increases with settlement and therefore with time. Furthermore, along the 
height of the compressible layer, since the limit value increases with the 
horizontal effective pressure that acts normally to the surface of the pile, 
negative friction increases with the progression of the consolidation. It is 
therefore maximal at long term.

The total resulting load due to negative friction, in ULS and SLS combina-
tions (§1.2), is in principle not added to the short-duration variable actions. 
Indeed, when a short-duration action occurs, the pile settlement leads to a 
decrease of the relative soil-pile displacement (and consequently a decrease 
of the mobilised negative friction), at least over the higher part, and might 
even reverse it. Furthermore, the maximum result of the negative friction 
occurs at depth, even though the actions of the structure occur at the head.

In practice, by disregarding the soil-structure interaction (see §3.2.9.3 
for the displacement approach), the short-duration variable actions are 

 
R backfill S soft layer N level of natural ground 

Figure 3 � Negative friction on the piles of a backfilled abutment.
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6  Design of Shallow and Deep Foundations

taken into account only if they are greater than the negative friction load. 
Otherwise, the latter is selected (§1.2).

This leads to the following relation (valid in the case where the normal 
force is unfavourable), illustrated in Figure 4:

	 ( )= + +− ′F F F max G ;Fv G Qq p sn Q 	

with
Fv total axial force on the pile (prior to applying any factor);
FG axial force due to permanent loads;
FQq−p axial force due to quasi-permanent variable loads;
Gsn axial force due to negative friction;

′FQ  axial force due to other variable loads (non-quasi-permanent).

The design value Fd of the axial force to be used for the ULS and SLS veri-
fications takes into account the partial factors γG and γQ1 on the permanent 
loads G and on the variable loads Q, respectively, as well as the factors ψ, 
ψ and ψ2 on the variable loads. The values of these factors depend on the 
combination of actions to be verified (see §1.2.1 for ULSs, §1.2.2 for SLSs).

Methods to assess the negative friction are provided in §3.2.9. In §3.2.9.3, 
in particular, a method is detailed, called “displacement method”, which 
takes into account the settlement of the ground and of the pile. 

Figure 4 � Combination of negative friction and variable actions (AFNOR, 2012).
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1.1.5 � Variable actions Q

They essentially consist of the following:

•	 Imposed loads: traffic loads, braking, temporary storage, etc.;
•	 Loads due to climate conditions: wind, snow, etc.; and
•	 The effects of hydrodynamic actions, generated by swell, for example.

Variable actions shall be taken into account in all combinations of actions 
(§1.2), either as the leading variable action Q1 or as an accompanying vari-
able action Qi (i > 1). Each action plays in turn the role of the leading action, 
and the other variable actions are taken as the accompanying actions. The 
most unfavourable combination determines the final design combination.

When Q is considered as being the leading action, the following represen-
tative values are distinguished:

•	 Q1, taken into account in fundamental combinations (ULSs) and in 
characteristic combinations (irreversible SLSs);

•	 ψ1Q1, taken into account in accidental situations (ULSs) and in frequent 
combinations (reversible SLSs). One should note that, in practice, fre-
quent combinations are not verified for the design of foundations; and

•	 ψ2Q1, taken into account in accidental situations (ULSs).

When Q is considered as being an accompanying action, the following rep-
resentative values are distinguished:

•	 ψ0Qi, taken into account in fundamental combinations (ULSs) and in 
characteristic combinations (irreversible SLSs); and

•	 ψ2Qi, taken into account in accidental and seismic situations (ULSs) 
and in frequent and quasi-permanent combinations (reversible SLSs).

The combinations of actions (§1.2) outline the pertinent representative val-
ues for each case. When a variable action is favourable for a given limit 
state, it is selected at its minimum value, which usually is equal to zero.

The values of ψ0, ψ1 and ψ2 are lower than or equal to 1. They are pro-
vided in Eurocode: “Basis of structural design” (BS EN 1990, BSI, 2002). 
They take into account the simultaneity of occurrence of these actions.

1.1.6 � Accidental actions A

For bridges, an accidental action could be a vessel collision, the impact of a 
vehicle, a hydrodynamic action, etc. For buildings, it could be an extreme 
wind, an explosion, a collision, a fire, etc.

Accidental actions are considered with a single representative value, 
which is a nominal value usually given in regulatory documents.
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8  Design of Shallow and Deep Foundations

1.1.7 � Seismic actions AE

For foundations, and in particular for deep and semi-deep foundations, two 
types of seismic actions are distinguished:

•	 Inertial actions, induced by the inertial effects in the superstructure 
when the supporting ground is subjected to a seismic motion; and

•	 Kinematic actions, which are forces that result from the deformation 
of the surrounding ground due to the seismic waves. In the case of 
deep foundations, the interaction mechanisms are comparable to the 
ones described in the case of lateral ground thrusts (§1.1.3).

Inertial actions depend on the parameters that govern the structure 
dynamic response (mass, fundamental period, damping ratio, etc.) and on 
the site conditions (lithological profile, relative stiffness, etc.). Standard 
BS EN 1998-1 (BSI, 2004b) proposes a definition for the seismic action, 
through a normalised spectral representation, under the following general 
expression:

	 ( )= γ ξA a R T, , SEd I gR 	

where:
AEd is the design value of the seismic action;
γI the importance factor of the structure (function of the return 

period);
agR the peak ground acceleration at rock level (function of the seismicity 

zone);
R (T, ξ, S) the normalised spectrum shape (or normalised response 

spectrum);
T and ξ the period and the damping ratio of the structure; and
S the ground classification, function of the lithological profile at the 

location of the structure.

1.2 � Combinations of actions

The foundations of buildings and bridges must be justified for vari-
ous design combinations and actions, in compliance with Eurocode: 
“Basis of structural design” (EN 1990, BSI, 2002) and with Eurocode 7 
“Geotechnical design” (EN 1997-1, BSI, 2004a). Thus, for foundations, 
the French standards of application of Eurocode 7 outline the follow-
ing combinations (standard NF P 94-261, AFNOR, 2013, for shal-
low foundations, and standard NF P 94-262, AFNOR, 2012, for deep 
foundations).

The symbol “+” means “combined with”.
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Actions for Limit State Design  9

1.2.1 � ULSs

For shallow foundations, the following ULSs have to be considered:

•	 Bearing capacity (ground compressive resistance);
•	 Decompression;
•	 Sliding at the base;
•	 Overall stability;
•	 Resistance of the foundation constitutive materials; and
•	 If necessary, the displacement that may be harmful to the proper 

behaviour of the supported structure (settlement, for example).

For deep foundations, the following ULSs have to be considered:

•	 Compressive resistance (“bearing capacity”) or tensile resistance;
•	 Overall stability;
•	 Resistance of the foundation constitutive materials; and
•	 If necessary, the displacement that may be harmful to the proper 

behaviour of the supported structure.

1.2.1.1 � Fundamental combinations

The fundamental combinations correspond to the persistent or transient 
design situations, with a very low probability of occurrence, of the order of 
magnitude of 10−4 or less over a year.

One shall consider the following design values of the effects of actions Ed:

•	 For shallow foundations:

	 ∑ ∑∑= + + γ + γ ψ










≥ ≥≥

E E 1.35G 1.0G Q Qd j,max j,min

j 1

Q,1 1 Q,i 0,i i

i 2j 1

	

•	 For deep foundations:

∑ ∑

∑[ ]

= + + γ



+ γ + γ + γ ψ 



≥ ≥

≥

E E 1.35G 1.0G G

G Q Q

d
j,max

j 1

j,min

j 1

sp sp

sn sn Q,1 1 Q,i 0,i i

i 2

where

•	 Gmax, Gmin, Gsp and Gsn are the characteristic values of permanent actions;
•	 Q1 and Qi are the characteristic values of variable actions;
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10  Design of Shallow and Deep Foundations

•	 γsp = 1.35 when lateral thrusts are unfavourable;
•	 γsp = 0.675 when lateral thrusts are favourable;
•	 γsn = 1.35 when negative friction is unfavourable;
•	 γsn = 1.125 when negative friction is favourable;
•	 γQ,1 and γQ, i = 1.5 most usually for unfavourable variable actions 

(lowered to 1.35 for traffic loads on bridges);
•	 γQ,1 and γQ, i = 0 for favourable variable actions (in other words, they 

are disregarded); and
•	 ψ0i = 0.7 for most of the imposed loads for buildings.

In the combinations of actions above and below, the symbol [Gsn] indicates 
that the addition of negative friction Gsn to the variable actions Q follows 
the rules stated in §1.1.4.

1.2.1.2 � Combinations for accidental situations

The combinations for accidental situations correspond to highly excep-
tional events, having an extremely low probability of occurrence over the 
life of the structure.

The design effects of actions Ed are as follows:

•	 For shallow foundations:

∑ ∑∑ ( )= + + + ψ ψ + ψ










≥ ≥≥

E E 1.0G 1.0G A ou Q Qd j,max j,min

j 1

d 1,1 2,1 1 2,i i

i 2j 1

•	 And for deep foundations:

	

∑∑

∑( )

[ ]= + + + +






+ ψ ψ + ψ






≥≥

≥

E E 1.0G 1.0G A G G

ou Q Q

d j,max j,min

j 1

d sp sn

j 1

1,1 2,1 1 2,i i

i 2

	

where, in the case of bridges, for traffic loads and forces due to wind, most 
often ψ2iQi = 0.

1.2.1.3 � Combinations for seismic situations

The effects of actions for seismic situations to be considered for the design 
of foundations are as follows:
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•	 For shallow foundations:

	 ∑ ∑∑= + + + ψ










≥ ≥≥

E E 1.0G 1.0G A Qd j,max j,min

j 1

Ed 2,i i

i 1j 1

	

•	 And for deep foundations:

	 ∑ ∑∑ [ ]= + + + + + ψ










≥ ≥≥

E E 1.0G 1.0G A G G Qd j,max j,min

j 1

Ed sp sn 2,i i

i 1j 1

	

where, in the case of bridges, for traffic loads and forces due to wind, 
most often ψ2iQi = 0.

AEd represents actions having an inertial origin (for shallow or deep foun-
dations) and a kinematic origin (for deep foundations).

For inertial forces, depending on the ductility class of the supported 
structure, it is appropriate to apply an overstrength factor noted γRd·Ω to 
the effect value AEd (see standard BS 1998-1, BSI, 2004b).

It should be noted in regard to kinematic actions that it is the deforma-
tion curve of the ground due to the seismic waves that is considered as being 
an action. However, partial factors are not applied to the displacement itself 
but to the effects of actions that it induces on the foundation.

1.2.2 � SLSs

The following SLSs have to be considered:

•	 Ground mobilisation (limitation of the displacement by “capacity” 
design);

•	 Decompression (only for shallow foundations);
•	 The constitutive material of the foundation (durability of the founda-

tion); and
•	 When it is required by the supported structure, the limit state of 

displacement (settlement, relative settlement, deflection, or relative 
rotation, see Section 4).

These SLSs must be verified for various combinations of actions:

•	 Quasi-permanent combinations;
•	 Frequent combinations (which, in practice, are not verified for the 

design of foundations); and
•	 Characteristic combinations.
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12  Design of Shallow and Deep Foundations

According to Eurocode: “Basis of structural design” (EN 1990; BSI, 
2002), these combinations of actions correspond to different limit states 
for the structure supported by the foundation. Table 1 outlines this 
correspondence.

In practice, the calculation of settlement of a shallow or deep founda-
tion is considered for quasi-permanent combinations. Loads are assumed as 
being constant over time, and the assessment of the settlement of the foun-
dation consists in estimating instantaneous settlement, consolidation settle-
ment and creep settlement (some calculation methods directly provide a 
value that accounts for all these forms of settlement). For the characteristic 
combinations, the calculation of settlement is significantly more difficult, 
as the loads vary over time, which requires appropriate methods in order to 
manage loading and unloading effects (SOLCYP, 2017).

1.2.2.1 � Quasi-permanent combinations

The quasi-permanent combinations correspond to the actions really sup-
ported by the structure over most of its lifetime. They are pertinent for the 
study of the long-duration displacement of the foundation. The following 
design values of the effects of actions Ed are to be considered:

•	 For shallow foundations:

	 ∑ ∑∑= + + ψ










≥ ≥≥

E E 1.0G 1.0G Qd j,max j,min

j 1

2,i i

i 1j 1

	

•	 And for deep foundations:

	 ∑ ∑∑= + + + + ψ










≥ ≥≥

E E 1.0G 1.0G G G Qd j,max j,min

j 1

sp sn 2,i i

i 1j 1

	

where, in the case of bridges, for traffic loads and forces due to wind, most 
often ψ2iQi = 0.

Table 1  �Correspondence between the combinations of actions 
and the various SLSs

Combination of actions Use according to EN 1990

Characteristic (rare) Irreversible limit states
Frequent Reversible limit states
Quasi-permanent Long-term effect and appearance
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1.2.2.2 � Characteristic combinations

The characteristic combinations (also called “rare”) correspond to actions 
that structures will support only a few times over their entire lifetime.

The design value of the effects of actions Ed to be considered are given by:

•	 For shallow foundations:

	 ∑ ∑∑= + + + ψ










≥ ≥≥

E E 1.0G 1.0G Q Qd j,max j,min

j 1

k,1 0,i i

i 2j 1

	

•	 And for deep foundations:

	 ∑ ∑∑ [ ]= + + + + + ψ










≥ ≥≥

E E 1.0G 1.0G G G Q Qd j,max j,min

j 1

sp sn k,1 0,i i

i 2j 1

	

where ψ0i = 0.7 for most of the imposed loads of buildings.
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Chapter 2

Shallow Foundations

2.1 � DEFINITIONS

The following shallow foundations are distinguished (see Figure 5):

•	 Strip footings, usually of a small width B (a few meters at most) and 
of a large length L (L/B > 10 typically);

Figure 5 � Types of shallow foundations.
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16  Design of Shallow and Deep Foundations

•	 Isolated footings, having both dimensions B and L of a few meters 
at most; this category includes square footing (B = L) and circular 
footings (diameter B); and

•	 Rafts or slabs, with large dimensions B and L; this category includes 
general rafts.

As a first step, the geotechnical engineer attempts to design shallow 
foundations taking into account cost constraints (according to the specific 
conditions of the project and of the site). S/he must first check the bear-
ing capacity of the foundation, i.e., verify that the shallow ground layers 
can effectively support the applied load. If the results from calculations 
are conclusive, particularly if they do not lead to a prohibitively large area 
of foundation, s/he must ensure that the settlement under the planned 
imposed loads (common or exceptional) remains within acceptable limits. 
Thus, bearing capacity and settlement are the two fundamental issues that 
must be taken into consideration when designing a shallow foundation.

The notions of bearing capacity and settlement are clearly illustrated in 
Figure 6, which represents a typical curve obtained during the loading of a 
shallow foundation. The foundation width is noted B, and the depth where its 
base is located is noted D. An increasing monotonic load is applied in a quasi-
static manner, and the settlement s is plotted as a function of the applied load F.

When loading starts, the behaviour is essentially linear, i.e., settlement 
increases proportionally to the applied load. After that, the settlement is no 
longer proportional to the applied load (one can say that the ground is being 
plastified, and this propagates under the foundation). From a certain load 
Fl onwards, there is ground punching, or at least the settlement is no longer 
under control. The ground cannot support a greater load (and we can say 
that free plastic flow has been reached).

This limit load Fl is the bearing capacity R (compressive soil 
resistance). The terms limit load, failure load and ultimate load are 
also commonly used.

The proper design of the foundation of a structure will notably con-
sist of making sure it remains below this limit load, with a certain 

Figure 6 � Notations: loading curve (vertical and centred) of a shallow foundation.
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Shallow Foundations  17

margin defined by a safety factor, and that the corresponding settlement 
is acceptable (Fd, Sd  in Figure 6). In the “limit states” approach, several 
resistances Rd will be defined according to the combination of actions Fd 
being examined (see §1.2). Fd ≤ Rd has to be verified.

2.2 � BEARING CAPACITY

A certain number of rules necessarily apply when a shallow foundation is 
being built (see §2.6). But unlike other foundations (piles, caissons, etc.), 
the precise method of construction or of installation does not influence the 
bearing capacity or the settlement. The sole parameter that impacts 
the  interaction stresses with the ground is its stiffness. In particular, for 
the calculation of settlement, a distinction must be made between flexible 
and rigid foundations (see §2.3).

Two methods used to calculate the bearing capacity (bearing resistance) 
are developed below: methods from the results of laboratory tests, i.e., shear 
strength parameters, cohesion and friction angle (which are conventional 
methods, called “c-φ”) and the methods from in situ-tests, i.e., from the 
limit pressure pl of a Ménard pressuremeter test or from the cone resistance 
qc of the cone (static) penetrometer test (CPT).

Of course, there are other calculation methods from in-situ test results. 
We may mention the one from the results of the standard penetration test 
(SPT; see, for example, TRB, 1991).

Methods from the Ménard pressuremeter test, from CPT or from SPT 
are methods which directly link, by correlation, the bearing capacity of 
the foundation to the results of the in-situ test. Indirect methods also exist, 
which propose to first determine the ground shear strength parameters 
from test results and then to apply the “c-φ” methods (§2.2.1).

In some cases, one may consider assessing the bearing capacity of a 
shallow foundation by performing a static load test (AFNOR, 1994). 
For shallow foundations, this test is uncommon, notably because the 
execution method has only marginal effects, unlike in the case of deep 
foundations.

2.2.1 � From shear strength parameters 
(“c-φ” method)

The calculation of the bearing capacity of shallow foundations from 
c and φ is probably the most well-known problem of contemporary soil 
mechanics, and all textbooks in the field mention it. For the definitions 
of the short-term (total stress) and of the long-term (effective stress) shear 
strength parameters c and φ, as well as the methods used to determine these 
parameters in the laboratory, see, for example, Magnan (1991).
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18  Design of Shallow and Deep Foundations

2.2.1.1 � Strip footing – vertical and centred load

In the case of a strip footing with a width B, the bearing capacity R under 
a vertical and centred load is obtained by the following general relation 
(Terzaghi’s superposition principle, illustrated in Figures 7 and 8):

	 ( )( ) ( ) ( )= γ ϕ + ϕ + + γ ϕ



γR B

1
2

BN cN q D N1 c 2 q 	

where
•	 R is the bearing capacity (per unit length);
•	 γ1 is the unit weight of the soil under the foundation;
•	 γ2 is the unit weight of the soil on the foundation sides;
•	 q is the vertical surcharge lateral to the foundation;
•	 c is the soil cohesion under the foundation base; and
•	 Nγ (φ), Nc (φ) and Nq (φ) are the bearing capacity factors depending only 

on the internal friction angle φ of the soil under the foundation base.

The various terms are the following:

•	 The first term (1/2γ1BNγ(φ)) is the surface term (or gravity term), 
because it is a function of the width of the foundation B and of the 
unit weight of the soil γ1 under the foundation. It is the limit (rigid-
plastic theory) for a purely frictional soil mass with no weight;

Figure 7 � �Failure mechanism under a shallow foundation.

Figure 8 � Terzaghi’s superposition principle for the bearing capacity (“c-φ” method).
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•	 The second term (cNc(φ)) is the cohesion term. It is the limit load for a 
frictional and cohesive soil but with no weight; and

•	 The third term (q + γ2D)Nq(φ) is the surcharge term or depth term. 
It is the limit load for a laterally loaded purely frictional soil (γ2 being 
the unit weight of the soil above the base level).

Terzaghi’s superposition principle consists therefore in simply adding all 
three terms. One may indeed demonstrate that it provides a default value of 
the limit load and that the approximation is on the safe side.

According to conventional soil mechanics, the distinction between short-
term design usually in undrained conditions (in total stress) and long-term 
design always in drained conditions (in effective stress) must be made when 
this method is applied in practice.

2.2.1.1.1 � Design in undrained conditions

When the bearing soil is a saturated cohesive fine soil, a short-term design 
in total stress must be carried out. The soil is characterised by its undrained 
cohesion cu. The following is applicable:

	 = ϕ =c c and 0u 	

What results from this is Nγ = 0 and Nq = 1. For a strip footing, the bearing 
capacity per unit length is thus

	 ( )( )= + + γR B c N 0 q Du c 2 	

where
Nc (0) = π + 2 for a smooth foundation;

	 = 5.71 for a rough foundation;
γ2 is the total unit weight of the lateral soil.

There is no need to take into account the force from the groundwater pres-
sure under the foundation (see §1.1.2). In other words, effective stresses are 
not taken into account (design in total stresses).

2.2.1.1.2 � Design in undrained conditions

The long-term design for cohesive soils and the design in cohesionless soils 
are made in drained conditions in effective stresses. The drained strength 
parameters are

	 = ′ ϕ = ′ϕc c and 	
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In this case, and for a strip footing, the bearing capacity per unit length is

	 ( )( ) ( ) ( )= ′γ ′ϕ + ′ ′ϕ + + ′γ ′ϕ



γR B

1
2

BN c N q D N1 c 2 q 	

′γ1 and ′γ 2  being the effective unit weights.
Unit weights must be effective weights if the corresponding soils are 

submerged:

	 ′γ = γ − γ w	

where
γ is the total unit weight of the soil; and
γw is the unit weight of water.

Furthermore, groundwater pressures on and under the foundation must be 
accounted for.

For a groundwater table rising to the surface (submerged soil)

	 ( )( ) ( )( ) ( ) ( )= γ − γ ′ϕ + ′ ′ϕ + + γ − γ ′ϕ



γR B

1
2

BN c N q D N1 w c 2 w q 	

and for a groundwater table at great depth

	 ( )( ) ( ) ( )= γ ′ϕ + ′ ′ϕ + + γ ′ϕ



γR B

1
2

BN c N q D N1 c 2 q 	

For the values of the dimensionless bearing capacity factors Nc(φ′) and 
Nq(φ′), Prandtl’s solution is used (exact solution):

	 = + ′ϕ





=
−

′ϕ
′ϕN e .tan

π
4 2

 and N
N 1
tan

q
πtan 2

c
q 	

There are various recommendations regarding the values of the bearing 
capacity factor Nγ(φ′), for which no exact solution is available. Eurocode 7 
(BSI, 2004a) recommends the following expression:

	 ( )= − ′ϕγN 2 N 1 tanq 	

when the base is rough (foundation-ground friction angle greater than φ′/2).
All these values are given in Table 2 and Figure 9.
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2.2.1.2 � Influence of the shape of the foundation: 
vertical and centred load

The expression of the bearing capacity introduced in §2.2.1.1 is modified 
by the factors sγ, sc and sq to take into account the shape of the foundation:

	 ( )( ) ( ) ( )= γ ϕ + ϕ + + γ ϕ



γ γR A

1
2

BN s cN s q D N s1 c c 2 q q 	

where:

•	 A = BL for a rectangular foundation (L > B) or a square one (L = B); 
and

•	 A = πB²/4 for a circular foundation with a diameter B.

The values of the factors sγ, sc and sq are provided in Table 3 according to 
Eurocode 7 (BSI, 2004a). When we switch from a square foundation (or a 

Table 2  Values of Nγ(φ′), Nc(φ′) and Nq(φ′) (BSI, 2004a)

φ′ (°) Nγ Nc Nq

0 0.00 5.14 1.00
5 0.10 6.49 1.57
10 0.52 8.34 2.47
15 1.58 11.0 3.94
20 3.93 14.8 6.40
25 9.01 20.7 10.7
30 20.1 30.1 18.4
35 45.2 46.1 33.3
40 106.1 75.3 64.2
45 267.7 133.9 134.9
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Figure 9 � Values of Nγ(φ′), Nc(φ′) and Nq(φ′) (BSI, 2004a).
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circular one) (B/L = 1) to a rectangular foundation (B/L < 1), we observe 
that these values correspond to

•	 Increasing the surface term (or gravity term), for drained conditions;
•	 Decreasing, or leaving equal, the surcharge term (or depth term); and
•	 Decreasing the cohesion term.

2.2.1.3 � Influence of load eccentricity and inclination

The failure mechanisms are modified. They are illustrated in Figures 10a 
(eccentricity) and 10b (inclination) in which e is the eccentricity of the load 
and δ its inclination.

In practice, the correction factors are cumulative (see Figure 11). In some 
cases, unfavourable effects may compensate each other.

2.2.1.3.1 � Inf luence of load eccentricity

The case under consideration is a rectangular foundation subjected to a 
vertical load V, with an eccentricity eB parallel to B and an eccentricity eL 
parallel to L.

Meyerhof’s model is applied, which assumes the ground reaction to be 
uniform under a rectangular part of the foundation, with a width B′ and a 
length L′, where B′ and L′ are the effective width and length, respectively. 
They are obtained by considering the static equilibrium of the foundation 
(see Figure 12):

	 ′ = − ′ = −B B 2e and L L 2eB L	

The notions of effective area A′ and of reduction factor due to the eccentric-
ity ie are introduced and defined as follows:

	 ′ = ′ ′ = = ′A B L i A where i A Ae e 	

Table 3  �Shape factors (BSI, 2004a)

Undrained conditions Drained conditions

sγ – −1 0.3
B
L

sc +1 0.2
B
L

+ ′ϕ
−

1 sin
B
L

N
N 1

q

q

sq 1 + ′ϕ1
B
L

sin
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The bearing capacity of a foundation subjected to an eccentric load is then 
processed by replacing B with B′, L with L′ and A with A′ (or ieA) in the 
expressions of the bearing capacity (§2.2.1.1 and §2.2.1.2).

The case of a circular foundation with a diameter B subjected to a verti-
cal load V exhibiting an eccentricity e in regard to the axis is processed in 
a similar manner, by adopting a hypothetical rectangular foundation of 
width B′ and of length L′, centred on V and under which the ground reac-
tion is assumed to be uniform (see Figure 13).

Figure 10 � Failure mechanisms for eccentric (a) or inclined (b) loads, according to 
Meyerhof (1953).

Figure 11 � Failure mechanisms for eccentric and inclined loads, according to Meyerhof (1953).
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Figure 14 outlines how the ratios B′/B, L′/B and ie = A′/A evolve as a 
function of the relative eccentricity e/B.

Figure 12 � Effective width and length B′ and L′ for a rectangular footing.

Figure 13 � Representation of effective width and length B′ and L′ for a circular footing.
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Figure 14 � Relative variation of the effective widths and lengths B′ and L′ and effective 
area A′ for a circular footing.
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2.2.1.3.2 � Inf luence of load inclination

When the load applied to the foundation is inclined relative to the vertical 
plane, the following relation has to be applied:

	 ( )( ) ( ) ( )= γ ϕ + ϕ + + γ ϕ



γ γ γR A

1
2

BN s i cN s i q D N s i1 c c c 2 q q q 	

where
iγ, ic and iq are reduction factors (lower than 1).

In the case of an inclination generated by a horizontal load parallel to B, 
with an angle δ relative to the vertical plane (see Figure 10a), Meyerhof 
(1956) proposes the following relations for the factors iγ, ic and iq:

	 ( ) ( )= − δ ϕ = = − δγi 1  i i 1 2 π
2

q c
2
	

Eurocode 7-1 (BSI, 2004a) proposes more complex relations, which are 
a function of the effective area A′ of the base surface of the foundation. 
The effective area A′ accounts for load eccentricities in both directions:

•	 In undrained conditions, for a horizontal load H:

	 ( )= + − ′i 0.5 1 1 H / A cc u 	

•	 And in drained conditions:

= −
+ ′ ′ ′ϕ







= −
+ ′ ′ ′ϕ







= −
−

′ϕγ

+

i 1
H

V A c / tan
 i 1

H
V A c / tan

  i i
1 i

N tan
q

m m 1

c q
q

c

where

•	 = = + ′ ′
+ ′ ′

m m
2 B L
1 B L

B  when H acts in the direction of B; and

•	 = = + ′ ′
+ ′ ′

m m
2 L / B
1 L / B

L  when H acts in the direction of L′.

In cases where the horizontal load component acts following a direction 
making an angle θ with the direction of L′, m is calculated using the formula:

	 = θ + θm m cos m sinL
2

B
2 	

2.2.1.4 � Foundations on heterogeneous soils

The values of the factors Nγ(φ′), Nc(φ′) and Nq(φ′) mentioned in Table 2 are 
rigorously applicable only if the foundation layer is homogeneous (it may be 
characterised by a single value of cohesion and/or of internal friction angle) 
and thick enough to allow the failure mechanism to fully develop within 
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it (between B/2 and B under the foundation base, depending on the soil 
behaviour, frictional or cohesive, and the inclination of the applied load).

In the case of heterogeneous layers or layers having limited thicknesses, 
some solutions are available, at least in some cases. Some of these solutions 
are provided by Giroud et al. (1973) in the form of tables that are easy to 
use. The following cases may be mentioned (for strip foundations):

•	 Soil with a cohesion increasing with depth (solutions of Matar and 
Salençon, 1977);

•	 A homogeneous layer with a finite thickness (solutions of Mandel and 
Salençon, 1969 and 1972) (see Figure 15); and

•	 Two homogeneous layers with a uniform or increasing cohesion with 
depth (for example, the solutions of Button, 1953).

The bearing capacity of a soft underlying layer (located below the bearing 
layer) may be verified by applying a method called “fictitious footing” 
(see Figure 16). This method consists of verifying the bearing capacity of a 

Figure 15 � Bearing capacity factor Nc for a strip foundation of width B lying on a cohesive 
layer with a finite thickness H (Mandel and Salençon, 1969 and 1972).

Figure 16 � Method of the “fictitious footing”.
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foundation located on the top of the soft layer and having as width the one 
obtained by assuming a diffusion of stress with depth between 1 for 2 and 1 
for 1. If the bearing layer has a thickness H, then the width of the fictitious 
footing is between B + H and B + 2H.

2.2.1.5 � Foundations on a slope or close 
to the crest of a slope

In these cases, the framework of the “c-φ” method also provides several 
solutions. For example, the works of Meyerhof (1957) and of Giroud et al. 
(1973) can be used.

Regarding foundations close to the crest of a slope, paragraphs §2.2.4.4 
and §2.2.4.5 provide the solution recommended by standard NF P 94-261 
(AFNOR, 2013) for the pressuremeter and penetrometer methods. It may 
also be used for the “c-φ” method, provided a few adaptations are made.

2.2.2 � Pressuremeter (M)PMT and penetrometer 
(CPT) methods: definitions

The following methods of pressuremeter and penetrometer design are the 
ones included in standard NF P 94-261 (AFNOR, 2013), which are the 
rules currently applicable in France. They stem from numerous load tests 
carried out by the Ponts et Chaussées laboratories, as well as from experi-
mental data from the international literature (see, for instance, Amar et al., 
1998 for pressuremeter rules, Amar and Morbois, 1986, for penetrometer 
rules, as well as the synthesis of Canépa and Garnier, 2003).

The methods used to carry out and interpret these tests are provided 
by European standards, referenced as BS EN ISO 22476-4 (BSI, 2012b) 
for Ménard pressuremeter test, BS EN ISO 22476-12 (BSI, 2009) for the 
penetrometer test with a mechanical cone and BS EN ISO 22476-1 (BSI, 
2012a) for the penetrometer test with an electric cone.

2.2.2.1 � Equivalent embedment height De

The equivalent embedment height is defined from the results of in-situ tests: 
pressuremeter or penetrometer. We consider the curve to represent, as a 
function of depth z (see Figure 17) either:

•	 In the case of the pressuremeter, the net limit pressure: p1* = p1 − p0, 
with pl* being the measured limit pressure and p0 the total horizontal 
stress at the same level prior to the test; or

•	 In the case of the cone penetrometer, the cone resistance qc.

The equivalent embedment height De < D is defined by:
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•	 Pressuremeter case:

∫ ( )=D
1

p
p z dze

le
* l

*

0

D

	

•	 Cone penetrometer case:

	 ∫ ( )=D
1

q
q z dze

ce
cc

0

D

	

where ple
*  and qce are the equivalent net limit pressure and the equivalent 

cone resistance defined in §2.2.2.2 and §2.2.2.3, respectively.
The rules defined in the standard NF P 94-261 are applied stricto sensu 

to shallow foundations having a De/B ratio lower than 1.5.

2.2.2.2 � Equivalent net limit pressure ple
*  with the 

Ménard pressuremeter M(PMT)

In the case of a shallow foundation, on a homogeneous bearing layer, 
having a depth at least equal to Hr = 1.5 B below the foundation base 
(i.e.,  the ground having a single nature and limit pressures pl

* remaining 
within a ratio from 1 to 2 at most within the layer), a linear profile of net 
limit pressure is established pl

* = pl – p0, and the selected equivalent net limit 
pressure ple

*  is the value at depth D + 2/3 B, as shown in Figure 18:

Figure 17 � Definition of the equivalent embedment height for a shallow foundation.

Figure 18 � Definition of the equivalent net limit pressure ple
*  in the case of a homogeneous 

bearing layer (AFNOR, 2013).
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	 ( )= +p p D 2B / 3le
*

l
* 	

In the case of a shallow foundation on non-homogeneous ground layers, 
having nevertheless limit pressure values in the same order of magnitude, 
up to at least Hr = 1.5 B below the foundation base, the value selected for ple

*  
is the geometric mean:

	 = ……p p p ple
*

l1
*

l2
*

ln
*n 	

p ,p ,pl1
*

l2
*

l3
* , etc. being the values of the net limit pressures in the layers located 

from D to D + Hr, after, if needed, the removal of singular values.
It should be noted that, according to standard NF P94-261, the depth  

Hr =1.5 B is valid for the verification of serviceability limit states (SLS). For 
the ULS, this depth is reduced as a function of the load eccentricity.

2.2.2.3 � Equivalent cone resistance qce with 
the cone penetrometer (CPT)

The equivalent cone resistance is an average cone resistance under the 
foundation base, defined from the smoothed curve qc(z), by (see Figure19):

	 ∫ ( )=
+

q
1

H
q z dzce

r
cc

D

D Hr

	

qcc being the cone resistance values qc limited to 1.3 qcm maximum, where

	 ∫ ( )=
+

q
1

H
q z dzcm

r
c

D

D Hr

	

As for the pressuremeter, Hr = 1.5 B.

Figure 19 � Definition of the equivalent cone resistance for shallow and deep foundations 
(AFNOR, 2012 et 2013).
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2.2.3 � Conventional categories of soils

For the design of foundations from the Ménard pressuremeter or from the 
cone penetrometer, standard NF P 94-261 (AFNOR, 2013) defines the con-
ventional categories of soils provided in Table 4 as a function of the limit 
pressure pl

* measured by the Ménard pressuremeter or from cone resistance 
qc measured by the cone penetrometer and as a function of the consistency 
index Ic and of the undrained cohesion cu for fine soils and as a function of 
the blow count with SPT N1.60 for sands and gravels.

The following soil categories are distinguished (see Table 4):

•	 Clays;
•	 Silts;
•	 Sands;
•	 Gravels;
•	 Chalks;
•	 Marls and marly limestones; and
•	 Weathered or fragmented rocks.

Table 4  �Definition of the conventional ground categories for the pressuremeter 
(M)PMT and penetrometer CPT methods (AFNOR, 2012 and 2013)

Ground categories Ic pl
* (MPa) qc (MPa) (N1.60) cu (kPa)

Clays and silts Soft to very soft 0.0–0.50 <0.4 <1.0 <75

Firm 0.50–0.75 0.4–1.2 1.0–2.5 75–150

Stiff 0.75–1.00 1.2–2 2.5–4.0 150–
300

Very stiff >1.00 ≥2 ≥4.0 ≥300

Intermediate soils 
(silty sand, clayey 
sand, sandy clay)

To be set in the 
closest category

Sands and gravels Very loose <0.2 <1.5 <3

Loose 0.2–0.5 1.5–4 3–8

Moderately dense 0.5–1 4–10 8–25

Dense 1–2 10–20 25–42

Very dense >2 >20 42–58

Chalks Soft <0.7 <5

Weathered 0.7–3 5–15

Intact ≥3 ≥15

Marls and marly 
limestones

Soft <1 <5

Stiff 1–4 5–15

Very stiff >4 >15

Rocks Weathered 2.5–4

Fragmented >4
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Regarding clays, silts, sands and gravels, classification criteria have been 
established (see LCPC, 1965 and Magnan, 1997).

Chalk is a sedimentary formation of a white-yellowish colour, light and 
porous, composed for 90% of calcium carbonate (CaCO3) (see Table 5). It 
exhibits various aspects, from paste to rock, and may include a more or less 
significant fraction of flint.

Marls contain 30%–70% CaCO3, marly limestones 70%–90%.
Clays and silts contain less than 30% CaCO3.
For the many intermediate formations (silty sands, clayey sands and sandy 

clays) as well as for soils with a complex structure that do not enter in the 
categories above, identification tests should be applied to place them between 
two of the previous categories and interpolate the design parameters.

The denomination “weathered or fragmented rocks” may cover highly 
diverse materials, predominantly carbonated, shaley, granitic ones, etc. 
with a more or less soft consistency, depending on the degree of weather-
ing. Practically, one may limit this denomination predominantly to rocky 
materials where there is a refusal from the cone penetrometer or where the 
pressuremeter moduli are greater than 50 MPa. For softer weathered rocks, 
they can be linked to other categories: clays, sands, marls, etc.

Regarding weathered or fragmented rocks, in addition to the indica-
tions given below about their bearing capacity obtained from the Ménard 
pressuremeter, it is appropriate to apply fully the rules specific to rock 
mechanics to verify the foundations.

2.2.4 � Bearing capacity design from the Ménard 
pressuremeter test ((M)PMT)

The method recommended by standard NF P 94 261 (AFNOR, 2013) is 
detailed below.

2.2.4.1 � Centred vertical load

The bearing capacity under a centred vertical load is given by the formula

	 =R Ak pp le
* 	

Table 5  �CaCO3 content for various soils (AFNOR, 2012, 2013)

CaCO3 content Soil classification

0%–10% Clay or silt
10%–30% Marly clay or marly silt
30%–70% Marl
70%–90% Marly limestone
90%–100% Limestone (or chalk)
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where
ple

*  is the equivalent net limit pressure (§2.2.2.2); and
kp the pressuremeter bearing capacity factor defined according to the 

following relations:

•	 Strip foundations (B/L = 0), circular or square (B/L = 1):

	 ( )= + +



 − −k k a b

D
B

1 ep p0
e cD /Be 	

•	 Rectangular foundations (0 < B/L <1): kp is obtained by interpolation 
between kp for the strip foundation and the one of the square foundation:

	 = −



 += =k k 1

B
L

k
B
L

p;B/L p;B/L 0 p;B/L 1 	

where the values of a, b, c and kp0 are given in Table 6. The values of the 
bearing capacity factor kp are shown in Figures 20 and 21.

The following observations apply to this bearing capacity factor:

•	 It depends on the soil type (see Table 4 for the definition of conven-
tional categories);

•	 It depends on the foundation shape or more precisely on the ratio of 
its dimensions (for a square or circular foundation: B/L = 1 and for 
a strip foundation: B/L = 0). It should be mentioned that the bearing 
capacity factor of a square or circular foundation is always greater 
than, or equal to, the one of a strip foundation; and

•	 It increases with the relative embedment of the foundation De/B, 
where De is the equivalent embedment height (§2.2.2.1) and B is the 
diameter, or the width, of the foundation. For semi-deep foundations, 
it is appropriate to limit its value to kpmax, which is the value obtained 
for De/B = 2.0 and given in the right column of Table 6.

Table 6  Pressuremeter bearing capacity factor kp

Soil category – variation curve of the bearing capacity factor

kp

kpmaxa b c kp0

Clays and silts Strip footing 0.20 0.02 1.3 0.8 1.02
Square footing 0.30 0.02 1.5 0.8 1.12

Sands and gravels Strip footing 0.30 0.05 2.0 1.0 1.39
Square footing 0.22 0.18 5.0 1.0 1.58

Chalks Strip footing 0.28 0.22 2.8 0.8 1.52
Square footing 0.35 0.31 3.0 0.8 1.77

Marls and marly limestones Weathered 
rocks

Strip footing 0.20 0.20 3.0 0.8 1.40
Square footing 0.20 0.30 3.0 0.8 1.60
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The pressuremeter method is a total stress approach. If the foundation 
base is immersed, it is not pertinent to take Archimedes’ principle into 
account. In other words, the weight of the foundation is the total weight.

One should note that, similar to other methods using in-situ test results, 
the pressuremeter method does not distinguish the short-term and long-
term principles for cohesive soils, as it is the case for the “c-φ” method 
(see §2.2.1). The pressuremeter method is an empirical method or a direct 
one in the sense that it directly links bearing capacity to the measured data 
(limit pressure). It is based on the results of load tests or on observations 
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Figure 20 � Values of the bearing capacity factor kp for a strip foundation (B/L = 0).
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Figure 21 � Values of bearing capacity factor kp for a circular or square foundation (B/L = 1).
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made on full-scale foundations. Therefore, it implicitly takes into account 
the conditions of saturation and ground drainage. This naturally implies 
that the pressuremeter test must be carried out in the field, in the actual 
conditions that will be under the structure.

The values of the bearing capacity factor kp are given for the shallow 
foundations and the semi-deep ones, whose methods of execution are 
similar to the ones of shallow foundations.

2.2.4.2 � Influence of eccentricity ie

The following relation is used:

	 = ′ =R A k p i Ak pp le
*

e p le
*  	

The term ie is identical to the one defined in §2.2.1.3.1.

2.2.4.3 � Influence of load inclination iδ

The following relation is used:

	 = δR i Ak pp le
* 	

The term iδ is defined by the following relations (see Figure 22):

•	 For cohesive soils:

	 ( )= − δ





= Φ δδi 1
2
π

, c

2

1 	
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Figure 22 � Functions Φ1 and Φ2.
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•	 And for frictional soils:

	 ( )= − δ





− δ − δ





= Φ δ δ ≤δ
−i 1

2
π

2
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For soils exhibiting both cohesive and frictional behaviour, experiments 
carried out in a centrifuge gave the following relation:

	 i i i i 1 exp
c

Btan
, cf , f , c , f( )= + − − − α ′

′γ ′ϕ














δ δ δ δ 	

where α is generally equal to 0.6.

2.2.4.4 � Influence of the proximity of a slope iβ

When a shallow foundation is located close to a slope, its bearing capacity 
is reduced, and the following relation must be used (see Figure 23):

	 = βR i Ak pp le
* 	

The term iβ is defined by the following relations:

•	 For cohesive soils (see Figure 24a):

	 i 1
π

1
d

8B
 for d 8B, c

2

= − β −





<β 	

•	 And for frictional soils (see Figures 24b–d):

	 ( )= − β − β − + β





+ β <βi 1 0.9tan 2 tan 1
d D /tan

8B
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e
2

e 	

Figure 23 � Shallow foundation located at a distance d of a slope with an inclination β
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For soils exhibiting both cohesive and frictional behaviour, experiments 
carried out in a centrifuge give the following relation:

	 i i i i 1 exp
c

Btan
, cf ;f ;c ;f( )= + − − − α

γ ϕ














β β β β 	

where α is usually equal to 0.6.

2.2.4.5 � Combination of iδ, iβ and ie

In cases where the load would be applied on a shallow foundation in 
proximity of a slope, and would be inclined, the following relation is used:

	 = δβR i Ak pp le
* 	

where = 



δβ

β

δ
δi min

i
i

; i  if the load is inclined inwards and =δβ δ βi i i  if the 

load is inclined outwards (see Figure 25).
More generally, to combine the effects of eccentricity, inclination and 

proximity of a slope, the corresponding terms (ie, iδ, iβ) can be combined 
by a simple multiplication. For a foundation close to a slope and subjected 
to an eccentric and inclined load, the relation to be used is the following:

	 = δβR i i Ak pe p le
* 	

Figure 24 � Factors iβ. (a) Cohesive soils (b)-(d) Frictional soils.
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2.2.5 � Design of the bearing capacity from 
the cone penetrometer (CPT)

Standard NF P 94-261 (AFNOR, 2013) proposes, for the calculation of 
the bearing capacity of a shallow foundation under a centred vertical load 
using the results from the CPT, a relation that is similar to the one for the 
Ménard pressuremeter:

	 =R Ak qc ce	

where
qce is the equivalent cone resistance (§2.2.2.3); and
kc the penetrometer bearing capacity factor, defined according to the 

following relations:

•	 Strip (B/L = 0), circular or square (B/L = 1) foundations:

	 ( )= + +



 − −k k a b

D
B

1 ec c0
e cD /Be 	

•	 Rectangular foundations (0 < B/L < 1): kc is obtained through an 
interpolation between kc for the strip foundation and the one for the 
square foundation:

	 = −



 += =k k 1

B
L

k
B
L

c;B/L c;B/L 0 c;B/L 1 	

where a, b, c and kc0 are given in Table 7. The values of the bearing capacity 
factor kc are shown in Figures 26 and 27.

Figure 25 � Load inclined inwards or outwards relative to the slope.
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The same remarks regarding this bearing capacity factor can be made 
as for the pressuremeter bearing capacity factor (§2.2.4.1). The maximum 
value kcmax, obtained for De/B = 2.0, is given in the right column of Table 7.

The penetrometer method is an approach in total stress. If the founda-
tion base is immersed, it is not pertinent to take Archimedes’ principle into 
account. In other words, the weight of the foundation is the total weight.

One should note that, similar to other methods using in-situ test results, 
the penetrometer method does not distinguish the short-term and long-term 
principles for cohesive soils, as in the case of the “c-φ” method (see §2.2.1). 
The penetrometer method is an empirical method or a direct one, in the 
sense that it directly links the bearing capacity to the measured data (cone 
resistance). It is based on the results of load tests or on observations made 

Table 7  �Penetrometer bearing capacity factor kc 

Ground categories – variation curve of the bearing capacity

kc

kcmaxa b c kc0

Clays and silts Strip footing 0.07 0.007 1.3 0.27 0.35
Square footing 0.10 0.007 1.5 0.27 0.38

Sands and gravels Strip footing 0.04 0.006 2.0 0.09 0.14
Square footing 0.03 0.020 5.0 0.09 0.16

Chalks Strip footing 0.04 0.030 3.0 0.11 0.21
Square footing 0.05 0.040 3.0 0.11 0.24

Marls and marly limestones 
Weathered rocks

Strip footing 0.04 0.030 3.0 0.11 0.21
Square footing 0.05 0.040 3.0 0.11 0.24
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Figure 26 � Values of bearing capacity factor kc for a strip foundation (B/L = 0).
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on full-scale foundations. Therefore, it implicitly takes into account the 
conditions of saturation and ground drainage. This naturally implies 
that the penetrometer test must be carried out in the field, in the actual 
conditions that will be under the structure.

The values of the bearing capacity factor kc are given for shallow 
foundations and semi-deep ones, whose execution methods are similar to 
the ones of shallow foundations.

The combined influence of eccentricity, load inclination and proximity of 
slope is taken into account exactly as in the case of the Ménard pressureme-
ter method (§2.2.4.2–§2.2.4.5).

2.2.6 � Other methods

There are several other methods used to determine the bearing capacity. 
The purpose here is not to provide an exhaustive list of such methods, but 
to present the ones that can directly provide the forces (V, H and M) that 
the foundation is capable of supporting. These methods give the expression 
of the failure criterion of the shallow foundation within the space V, H and 
M. Generally speaking, the stability domain is delimited by a criterion of 
the following form:

	 ( ) =G R,V,H,M 0	

where R is the ground static bearing capacity under a centred vertical load 
(see §2.2.1, §2.2.4 and §2.2.5).
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Figure 27 � Value of bearing capacity factor kc for a circular or square foundation (B/L = 1).
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A well-known example of this type of approach is the relation provided 
by Eurocode 8 – Part 5 (BSI, 2004c) to verify shallow foundations under 
seismic forces.

The failure criterion for shallow foundations undergoing earthquakes is 
the following (Salençon and Pecker, 1995; Pecker, 1997):

	 G  
1 eF H

V 1 mF V
 

1 fF M

V 1 mF V
1 0

c c

a k k' b

c' c

c k k' d

T T M M

( ) ( )
( ) ( ) ( ) ( )

=
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− −





+
− γ

− −





− = 	

where the parameters a, b, c, d, e, f, k, k′, m, cT, cM, c′M, β and γ depend on 
whether the foundation ground is frictional or cohesive. F is the dimension-
less inertia force, while V, H and M are the normalised forces, defined by

	 = = =V
V
R

 H
H
R

 M
M
BR

	

where B is the width of the footing. The criterion G above has been 
established for non-embedded strip footings on a homogeneous ground.

In the absence of an inertial force generated by seismic action (F = 0), the 
criterion G is simplified under the form

	 G  
H

V 1 V
 

M

V 1 V
1 0

c

a b

c

c d

T M( ) ( )
=

β

− 
+

γ

− 
− = 	

This relation allows verifying if the forces applied to the foundation are 
acceptable with regard to the ground resistance. The effects due to the load 
inclination and eccentricity are directly accounted for in the mathematical 
formulation of normalised forces.

A criterion relative to the sliding of the foundation must also be verified. 
It links the values of vertical and horizontal forces:

	 H tan Vi≤ ϕ 	

where φi is the value of the friction angle at the ground-foundation interface.

2.3 � DETERMINING SETTLEMENT

2.3.1 � Calculation methods of settlement

There are two broad categories of methods used for the practical determi-
nation of the settlement of shallow foundations:

•	 Methods from laboratory tests. They essentially concern the oedom-
eter test, mainly used for cohesive fine soils. We may also mention the 
triaxial test when certain conditions are met; and
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•	 Methods from in-situ tests (standard penetration – SPT, cone penetra-
tion test – CPT, Marchetti flat dilatometer test – DMT, and Ménard 
pressuremeter test – (M)PMT), notably used extensively for cohesionless 
(frictional) soils, because of sampling and laboratory testing difficulties.

Two different approaches are used to exploit the results from the various 
soil tests:

•	 The indirect approach (§2.3.3) consists, in the case of foundation 
settlement, in first determining a ground elasticity modulus from a 
correlation with the test result and then applying the elasticity theory 
(whether it is unidimensional or not); or

•	 The direct approach (§2.3.4) that directly links the settlement to the 
result of the soil test.

Furthermore, tests that allow measuring a ground deformation modulus – 
oedometer test, triaxial test, pressuremeter test and dilatometer test – must be 
distinguished from the tests that cannot measure a modulus: SPT and CPT.

Finally, one should note that most methods have been established for con-
ventional loads, i.e., for failure loads divided by a safety factor between 2.5 
and 3. Using methods with reduced safety factors, notably for some calcula-
tions in a limit state approach, requires a greater degree of caution.

After reviewing solutions based on the elasticity theory (§2.3.2) and the 
most used correlations (§2.3.3), the direct methods to determine settlement 
are given for the Ménard pressuremeter (§2.3.4.1), the CPT (§2.3.4.2), the 
SPT (§2.3.4.3) and the oedometer test (§2.3.4.4). Settlement calculations 
using numerical models are also discussed (§2.3.5). These models are now 
quite often used for assessing deformations and displacement in complex 
ground-structure interaction problems.

2.3.2 � Solutions in elasticity

The elasticity theory is used extensively for the determination of settlement 
in the field of soil mechanics.

Many elastic solutions are available for the design of shallow foundations: the 
tables of Giroud (1972) and of Poulos and Davis (1974) have become essential 
tools. They originate from Boussinesq’s solution for a point force at the surface 
of an isotropic linear elastic semi-infinite medium. The simplified approach of 
Steinbrenner (Terzaghi, 1943) may also be mentioned. It constitutes a generali-
sation of Boussinesq’s solutions to the cases of multi-layered grounds.

This theory is used in several ways:

•	 Either to directly obtain the settlement (§2.3.2.1 and §2.3.2.2);
•	 Or to obtain the distribution of settlement at the surface and at depth, 

in addition to direct methods from soil tests (§2.3.2.3 and §2.3.2.4);
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•	 Or to obtain the distribution of the increase of vertical stress Δσz with 
depth (§2.3.2.5), for example, for the consolidation settlement with 
an oedometer test (§2.3.4.4).

2.3.2.1 � Settlement of an isolated foundation on 
an elastic semi-infinite medium

The settlement s of a foundation having a circular, square or rectangular 
shape, infinitely rigid (uniform settlement) or infinitely flexible (uniform 
stress), on an isotropic linear elastic semi-infinite medium is expressed in 
the following manner:

	 s
qB 1

E
c

2

f
( )

=
− ν

	

where
s is the settlement;
q the load applied on the foundation (uniform or mean);
E and ν are Young’s modulus and Poisson’s ratio of the medium, 

respectively;
B the width or diameter of the foundation; and
cf the factor that depends on the shape of the foundation, on its stiffness 

and on the location of the point under consideration.

This approach can be used to estimate the following:

•	 The immediate settlement on saturated fine soils. E and ν are then the 
elastic properties in undrained conditions Eu and νu, with νu = 0.5; and/or

•	 The long-term final settlement. E and ν are then the elastic properties 
in drained conditions E′ and ν′.

Table 8 provides a few values of cf for cases of rigid and flexible foundations, 
extracted from Giroud’s tables (1972).

In the case of a rigid foundation subjected to a stress q, the settlement is uni-
form, and the ground reaction is not (see Figure 28a): it is equal to q/2 in the 
central part and tends to infinity at the edge of the foundation (edge effect). In 
reality, the edge ground reaction is limited due to plastic yield of the ground.

In the case of a flexible foundation subjected to a stress q, the ground 
reaction is uniform and equal to q (see Figure 28b), and the settlement is 
not uniform. As indicated in Table 8, it is shaped as a trough, maximum at 
its centre and minimum at its edge.

For a foundation having an intermediate stiffness, Figure 29 (ISE, 1989) 
illustrates how the relative stiffness K of the foundation in regard to the 
ground influences the differential settlement δs and the bending moment 
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M, for a smooth contact between the foundation and the ground, and for 
a rough contact, respectively. The case shown corresponds to a foundation 
with a thickness t, a radius R and a modulus Ec, supporting a uniform load 
q. Es and νs are the elastic properties of the soil.

Table 8  Values of factor cf (Giroud, 1972)

L/B Circular 1 2 3 4 5 6 7 8 9 10 15 20

Rigid  
foundation

0.79 0.88 1.20 1.43 1.59 1.72 1.83 1.92 2.00 2.07 2.13 2.37 2.54

Flexible 
foundation

Centre 1.00 1.12 1.53 1.78 1.96 2.10 2.22 2.32 2.40 2.48 2.54 2.80 2.99

Edge 0.64 0.56 0.76 0.89 0.98 1.05 1.11 1.16 1.20 1.24 1.27 1.40 1.49

Figure 28 � Stress distribution under a rigid or flexible foundation.

Figure 29 � Maximum differential settlement δs and bending moment M for a circular 
foundation, with a uniform load and a thickness t, on a semi-infinite elastic medium 
(ISE, 1989).

@Seismicisolation@Seismicisolation

https://telegram.me/seismicisolation


44  Design of Shallow and Deep Foundations

2.3.2.2 � Case of a bilayer

The settlement s of a rigid circular foundation with a diameter B, laid on a 
bilayer ground, composed of a top layer with a thickness H and a modulus 
E1 above a lower semi-infinite layer with a modulus E2, can be obtained 
with the following relation (see Figure 30):

	 s
qπB 1

4E
c

2

1
s

( )
=

− ν
	

where
q is the average load applied on the foundation;
ν  Poisson’s ratio of the ground, assumed to be identical for both 

layers; and
cs the factor linked to the bilayer ground, depending on the ratios H/B 

and E2/E1 given in Figure 31.

Figure 30 � Bilayer ground.
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Figure 31 � Value of factor cs.
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2.3.2.3 � Distribution of settlement at surface

The issue of the interaction between adjacent foundations can be solved by 
using interaction factors for settlement at the surface. Figure 32 gives the 
interaction factor Ix, for an elastic semi-infinite medium as a function of 
the non-dimensional distance x/B for rigid rectangular foundations with 
various shape values L/B. The settlement at distance x from the centre of 
the foundation is obtained by

	 ( ) =s x I sx 0	

where s0 is the settlement of the rigid rectangular foundation.
Figure 32 highlights how significant the shape of the foundation can 

be on the distribution of settlement, as well as the pessimistic effect of 
bi-dimensional models (L/B tending to infinite). However, it should be 
stressed that this observation is directly linked to the idealised and unre-
alistic nature of the linear elasticity model that is being used here, since it 
assumes a constant deformation modulus down to an infinite depth. In real-
ity, the deformation modulus increases with depth, because of two effects:

•	 The “natural” increase of stiffness with confinement (and therefore, 
with depth); and

•	 The decrease with depth of the stress increment brought by the struc-
ture and consequently of the strain level.

The next example (see Figure 33) compares the interaction factors for a 
strip foundation having a width B laid on a semi-infinite medium of con-
stant modulus, with the same foundation laid on a semi-infinite medium 
with a modulus increasing linearly with depth. In the latter case, the influ-
ence becomes negligible (<10%) beyond a distance x that is greater or equal 
to 3B. In the case of a constant modulus, the foundation influence spreads 
significantly (Ix ~ 0.5), even beyond five times the width of the foundation.

Figure 32 � Interaction factor Ix for various rigid rectangular foundations lying on a homo-
geneous elastic ground with ν = 0.35 (x is the distance from the centre).
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The result of Figure 33 has been established for a ground with a modulus 
that increases linearly with depth, following a slope E0/B, where E0 is the 
modulus being considered for the case of a homogeneous ground.

2.3.2.4 � Distribution of settlement at depth

The variation of settlement with depth z under the corner of a uniform rect-
angular load (infinitely flexible), laid on a semi-infinite homogeneous elastic 
medium, can be obtained using the following relation (Terzaghi, 1943):

	 s z
qB
E

z
B

,  
L
B

,  ( ) = ρ ν




	

where
s is the settlement;
q the applied stress;
E and ν Young’s modulus and Poisson’s ratio for the medium, respectively;
B and L the foundation width and length, respectively; and
ρ a factor that depends on the ratios z/B and L/B, as well as on Poisson’s 

ratio ν.

Figure 34 provides the values of ρ for ν = 0.35 and L/B ranging between 1 
and 8.

The case of multilayered ground can be solved by using Steinbrenner’s 
simplified method. The contribution to the total settlement si of the layer 

Figure 33 � Interaction factors for different variations with depth of the elasticity modulus 
(with L/B = ∞, ν = 0.35 and thickness H = 50B).
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located between depths zi and zi+1 having an elastic modulus Ei and a 
Poisson’s ratio iν  is assessed by

	 ( ) ( )≈ − = ρ ν



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The settlement of multilayered ground composed of n layers is then 
calculated by adding the contributions si of each layer

	 ∑=
=

s s
i 1

n

i	

This approach, also called “slice method”, implicitly assumes that the stress 
distribution is the same in a multi-layered ground as in a homogeneous 
one. This simplification has been debated by Burland et al. (1977), who 
concluded that it is indeed acceptable in most cases encountered in prac-
tice. A notable exception is the case of a stiff layer above more deformable 
layers, where the application of this model may lead to an overestimate of 
the absolute and differential settlement.

The outlined method allows obtaining the settlement of a multi-layered 
ground under the corner of a uniform rectangular load. The settlement at 
any point of the medium can be determined by algebraically adding all solu-
tions (4 at most) for which this point plays the role of a corner point.

Figure 34 � Distribution of settlement under a uniform rectangular load.
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2.3.2.5 � Distribution of vertical stress with depth

The aim is to assess the distribution with depth of the increase of the vertical 
stress Δσz, brought by a stress q at the surface, relative to the initial stress 
state existing in the ground. All commonly used solutions were obtained 
by integrating Boussinesq’s conventional solutions (for a point force at the 
surface of an isotropic linear elastic semi-infinite medium). The most com-
monly used solutions for shallow foundations are as follows:

•	 Stress under the axis of a uniformly loaded circular foundation 
(see Figure 35);

•	 Stress under the axis of a uniformly loaded strip or square foundation 
(see Figure 36); and

•	 Stress under the axis of a uniformly loaded rectangular foundation 
(see Figure 37).

•	 The vertical stress can be determined under any point of the founda-
tion by adding all solutions (4 at most) for which this point plays the 
role of a corner point.

These distributions are valid for a low stiffness contrast between the different 
layers of the ground within the zone of influence of the foundation. In par-
ticular, “slab effects”, which may develop when a stiff layer is above a more 
deformable soil, cannot be processed that way. This effect is illustrated in 
Figure 38, which presents the stress variations under the axis of a uniform 
circular load q with a diameter B, on a bilayer composed of a top layer 
with a thickness H = B/2 and with a modulus E1, above a semi-infinite layer 
with a modulus E2 smaller or equal to E1. The case E2 = E1 corresponds to 

Figure 35 � Increase of vertical stress Δσz under the axis of a uniformly loaded flexible 
circular foundation (due to stress q).
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homogeneous ground, as addressed by Boussinesq (see Figure 35) for which 
the stress at the top of the layer 2 is equal to 0.65q. When the ratio E1/E2 
increases, this stress decreases to 0.4q for E1/E2 = 5 and to 0.2q for E1/E2 = 20.

In some cases, it may be sufficient to use a simplified method that con-
sists in assuming a diffusion of the stress q equal to 1 for 2 with depth 
for homogeneous soils, and up to 1 for 1 (see the “fictitious footing” in 
§2.2.1.4) if the diffusion operates within a stiff soil above a more deform-
able one (see Figure 39).

Figure 36 � Curves of equal stresses Δσz under a flexible foundation lying on a semi-infinite 
isotropic homogeneous medium (from Sowers and Sowers, 1961).

@Seismicisolation@Seismicisolation

https://telegram.me/seismicisolation


50  Design of Shallow and Deep Foundations

At depth z, the stress increase Δσz under a rectangular footing L × B is then

	 z
qBL

B z L z
  1 to 2z ( ) ( )( )∆σ =

+ β + β
β = 	

2.3.3 � Indirect methods: estimating 
the elasticity moduli

The estimate of elasticity moduli is a crucial issue that has several possible 
approaches. The two main approaches are the following:

•	 The first consists in assessing a single deformation modulus, which 
usually is a secant modulus, for a given level of deformation (§2.3.3.1). 
This modulus allows estimating the settlement of a foundation for a 
given load. This approach is based on the use of the results of in-situ 
tests such as pressuremeter, cone penetrometer, etc.; and

Figure 37 � Increase of vertical stress Δσz under the corner of a uniformly loaded flexible 
rectangular foundation (due to stress q).
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•	 The second consists in establishing a curve of deformation moduli as a 
function of the level of deformation or stress (§2.3.3.2). These moduli 
can be used to estimate the settlement of a foundation for a given load 
but are usually implemented in numerical calculations (§2.3.5).

2.3.3.1 � Correlations between the results from 
in-situ tests and the elasticity modulus

There are a certain number of correlations between the results from in-situ 
tests and the elasticity modulus (Young’s modulus) meant to be introduced 
within the previously given elasticity solutions. From the standpoint of 
in-situ tests, it is an indirect method since they are not used to directly 
calculate settlement with dedicated methods (as shown in §2.3.4).

Figure 38 � Distribution of vertical stress increase Δσz under a flexible foundation lying 
on a bilayer ground.

Figure 39 � Simplified method for the calculation of stress increase.
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The elasticity moduli (Young’s moduli) obtained this way can also be 
used when having recourse to numerical methods.

Using the isotropic linear elasticity also requires specifying the value 
of Poisson’s ratio ν. Regarding the settlement calculation of shallow 
foundations, the value ν = 0.3 is commonly selected in drained conditions. 
In undrained conditions, the value ν = 0.49 is commonly used.

2.3.3.1.1 � Ménard pressuremeter test (M)PMT

The Ménard pressuremeter test (M)PMT is sometimes used to deter-
mine the elasticity modulus. The correlation given in Table 9 between the 
pressuremeter modulus EM and the elasticity modulus is proposed by stan-
dard NF P 94-261 (AFNOR, 2013), within the context of quasi-permanent 
SLS settlement calculation of shallow foundations.

The values of the elasticity modulus presented in this table may still 
appear as being underestimated. It is possible to use elasticity moduli 4–10 
times greater than the pressuremeter modulus (M)PMT, for sands and clays, 
respectively, under certain conditions. These values are notably justified 
by the ratio of the initial shear modulus Gpo measured with a self-boring 
pressuremeter to the pressuremeter modulus EM measured with the Ménard 
pressuremeter (see Baguelin et al., 1986).

2.3.3.1.2 � Cone penetration test CPT

The cone penetration test (CPT) has the drawback of producing only a 
ground failure parameter, i.e., the tip or cone resistance qc.

There are many correlations between deformation moduli and the cone 
resistance qc. Sanglerat’s settlement prediction method (1972) provides 
the value of the oedometer elasticity modulus as a function of the cone 
resistance and of a factor α that depends on the type of soils and on the 

Table 9  �Indicative values for soil elastic moduli E obtained 
by correlation with the Ménard pressuremeter 
modulus EM (AFNOR, 2013)

E/EM

Clays Normally consolidated 4.5
Overconsolidated 3.0

Silts Normally consolidated 4.5
Overconsolidated 3.0

Sands Loose 4.5
Dense 3.0

Gravels Loose 6.0
Tight 4.5
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water content for peats and highly organic clays. This method is based on 
the following relation:

	 E qoed c= α ⋅ 	

The oedometer elasticity modulus is stricto sensu a unidimensional 
modulus (with no lateral deformations). This modulus is valid for 
large-scale loaded areas.

Table 10 gives the values α as recommended by Sanglerat (1972). It allows 
for a first estimate of settlement.

2.3.3.1.3 � Standard penetration test SPT

The SPT also has the drawback of producing only a ground failure parameter, 
i.e., the blow count N (the number of blows to drive the sampler 30 cm down).

The most commonly used correlation between N and the elasticity 
modulus is the following (Bowles, 1995):

	 = +E B N B  with E in MPa1 2 	

where
B1 = 1.0 and B2 = 15 for sandy soils; and
B1 = 2.5 and B2 = 15 for gravelly soils.

Table 10  �Values of α for various types of soils (from Sanglerat, 1972)

Type of soil qc (MPa) α
Lowly plastic clay <0.7

0.7–2
> 2

3–8
2–5

1–2.5
Lowly plastic silt <2

>2
3–6
1–2

Highly plastic clay <2 2–6
Highly plastic silt >2 1–2
Highly organic silt <1.2 2–8
Peat and highly organic clay
(w being the water content)

< 0.7 50% < w < 100%
100% < w < 200%

w > 300%

1.5 < α < 4
1 < α < 1.5

α < 0.4

Chalk 2–3
>3

2–4
1.5–3

Sand <5
>10

2.0
1.5
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2.3.3.2 � Elasticity modulus variations as a function 
of deformation and stress levels

The assumption of a uniform elasticity modulus in soils leads to an exten-
sion of deformations which is much too large. The increase of these moduli 
with depth partially corrects this effect but remains insufficient. Moduli 
vary with the level of deformation and stress. The variations may be esti-
mated from the stress deformation curves obtained from laboratory tests or 
from in-situ tests, such as the pressuremeter.

The framework of elasticity can then be used by carrying out non-linear 
elastic calculations. By using appropriate tests or methods (such as, for 
example, the method based on the (M)PMT, see §2.3.4.1), moduli varia-
tion as a function of deformations can be obtained by calibration using 
experimental observations on footings and rafts. During the calculation 
process performed with such approaches, moduli can be updated according 
to equations of the following form (Hoang et al., 2018):

	 E E E E
1

1 /
i f i

0

( ) ( ) ( )
ε = + −

+ ε ε α 	

where Ei and Ef are the initial and final values of the deformation modulus 
over the appropriate deformation range, and 0ε  and α are the calibration 
parameters of the proposed model.

2.3.4 � Direct design methods from soil tests

These design methods are based on in-situ or laboratory measurements 
of ground deformation or failure properties in order to directly assess 
the settlement of shallow foundations. They are experimentally validated 
and are founded on more or less simplified considerations of the elas-
ticity theory, notably regarding the variation of vertical stress under the 
foundation.

2.3.4.1 � Calculation of settlement from the 
results of the (M)PMT test

The method of settlement calculation from the Ménard pressuremeter, 
as proposed by standard NF P 94-261, is the method that was originally 
proposed by Ménard and Rousseau (1962).

The pressuremeter modulus EM is a deviatoric modulus that is well 
adapted to assess the settlement of foundations for which the deviatoric 
stress field is prominent, i.e., “narrow” foundations such as footings of 
buildings and bridges (unlike foundations having large dimensions relative 
to the compressible layer, such as embankments or rafts).
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The settlement over 10 years of a foundation having at least an embedment 
equal to one width B is given by the relation

	 ( ) = +s 10years s sc d	

Where
sc = (q − σv) λcBα/9Ec is the volumetric settlement;
sd = 2(q − σv) B0 (λd B/B0)α/9Ed is the deviatoric settlement;
and where
q is the vertical stress applied by the foundation;
σv the total vertical stress before works at the base level of the foundation;
λc and λd the shape factors, as given in Table 11;
α the rheological factor, which depends on the nature of the soils (or of 

the rock), as given in Table 12;
B the width (or diameter) of the foundation;
B0 the reference dimension, equal to 0.60 m; and
Ec and Ed the pressuremeter moduli, in the volumetric zone and in the 

deviatoric zone, respectively.
The calculation of the equivalent moduli Ec and Ed is carried out first by 
using the distribution of vertical stress under a flexible foundation (uniform 
stress) and second by assuming that volumetric strains are dominating under 
the foundation down to a depth of B/2 for the calculation of Ec, and that 
deviatoric strains remain influential down to a depth of 8B (see Figure 40).

Table 11  Shape factors λc and λd

L/B Circle Square 2 3 5 20

λc 1.00 1.10 1.20 1.30 1.40 1.50

λd 1.00 1.12 1.53 1.78 2.14 2.65

Table 12  �Rheological factor α (LCPC-SETRA, 1972)

Type

Peat Clay Silt Sand Gravel

Type

Rock

α EM/pl α EM/pl α EM/pl α EM/pl
α α

Overconsolidated 
or very tight

>16 1 >14 2/3 >12 1/2 >10 1/3 Very lowly 
fractured

2/3

Normally 
consolidated or 
normally tight

1 9–16 2/3 8–14 1/2 7–12 1/3 6–10 1/4 Normal 1/2

Under-consolidated 
weathered and 
remoulded or 
loose

7–9 1/2 5–8 1/2 5–7 1/3 Highly 
fractured

1/3

Highly 
weathered

2/3
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The calculation of the moduli Ec and Ed is made with the following:

•	 Ec is selected as being equal to E1, as measured in the layer of thickness 
B/2 located under the foundation: Ec = E1; and

•	 Ed is obtained with the expression:

	 = + + + +1
E

0.25
E

0.30
E

0.25
E

0.10
E

0.10
Ed 1 2 3,5 6,8 9,16

	

where Ei.j is the harmonic mean of the moduli measured in the layers located 
from depth i.B/2 to depth j.B/2. As an example, we have the following:

	 = + +3
E

1
E

1
E

1
E3,5 3 4 5

	

If the values from 9B/2 to 16B/2 remain unknown but are assumed to be 
higher than the values in the upper layers, then Ed is calculated from

	 = + + +1
E

0.25
E

0.30
E

0.25
E

0.20
Ed 1 2 3,5 6,8

	

This is also true if the values from 3B to 8B are unknown:

	 = + +1
E

0.25
E

0.30
E

0.45
Ed 1 2 3,5

	

Figure 40 � Pressuremeter moduli to be taken into account for the calculation of the 
settlement of a foundation.
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In the case of a soft interlayer (see Figure 41), the calculation of the 
total settlement st is carried out by adding to the overall settlement s, as 
previously calculated, the settlement sm that corresponds to the soft layer 
(LCPC-SETRA. 1972):

	 = +s s st m	

where

	 s
1

E
1
E

q H and s s E s Em m
m d

m c c d d( ) ( )= α −
′







∆ = + ′ 	

and where
′Ed is the pressuremeter modulus in the deviatoric domain, calculated with-
out taking into account the values corresponding to the soft interlayer;

Em the average pressuremeter modulus of the soft interlayer;
αm the rheological factor of the soft interlayer (Table 12); and
∆qm the value of the vertical surcharge at the soft interlayer level 

(surcharge due to the foundation). See §2.3.2.5 for the assessment of 
the stress applied on the soft interlayer.

Baguelin et al. (1978) proposed a detailed theoretical justification of this 
pressuremeter method, together with a synthesis of observations, often 
conducted over several years on full-scale structures (bridges, water towers 
and highway embankments), mainly by the Ponts et Chaussées laboratories. 
Predictions mostly lay within ±50% of the observed long-duration settle-
ment and often within ±30%. Even though the results from load tests made 
on in-situ experimental footings later carried out by the Ponts et Chaussées 
laboratories indicate that the pressuremeter calculation method often 
underestimates measured settlement, it remains a satisfying method to 
assess long-duration delayed settlement, the only settlement possibly harm-
ful to the proper functioning of most structures (Frank, 1991).

Figure 41 � Calculation of settlement with the pressuremeter method in the case of a soft 
interlayer (LCPC-SETRA, 1972).
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2.3.4.2 � Calculation of settlement from 
the results of the CPT test

For sands, one of the most commonly used penetrometer methods for the 
settlement calculation of shallow foundations is Schmertmann’s (1970) 
and Schmertmann et al’s. (1978). This method, even though it is presented 
under the form of a correlation between the equivalent Young’s modulus 
of the ground E and the cone resistance qc, assumes a well-defined distri-
bution of the vertical ground deformation and is in fact a direct method, 
which means it must be used as an inseparable whole. In this approach, the 
settlement is expressed by

	 s C C q
I
E

dz1 2 v

0

z

z
I

∫( )= − ′σ 	

where

	 C 1 0.5
q

1
v

v
= − ′σ

− ′σ
	

is the correction factor for the embedment of the foundation and where v′σ  
is the initial effective vertical stress at base level, and

	 ( )= +C 1.2 0.2log t2 	

the correction factor for creep, t being the time in years.
Figure 42 (Schmertmann et al., 1978) provides, for circular and square 

foundations, as well as for strip foundations, the distribution of the vertical 
strain influence factor Iz (the integrated surface representing the quantity 
that is homogeneous to a settlement sE/C1C2(q – v′σ ) for a homogeneous 
soil with a modulus Eʹ). It can be noted that the influence depth of strains 
is relatively small: it is assumed that strains are zero from depth zI = 2B and 
depth zI = 4B, for circular/square and strip foundations, respectively.

The correlation to be used is

•	 E = 2.5 qc for circular and square foundations; and
•	 E = 3.5 qc for strip foundations.

This method is based on theoretical results, on numerical simulations, on 
tests on models as well as on the analysis of tests on helical plates.

The method was checked for cases corresponding to 16 sites of 
different sands. For 10 cases taken from the literature and for 21 bridge 
abutments, it gives, for the ratio of calculated settlement to measured 
settlement, an average value of 1.5 with a standard deviation around 1 
(see Frank, 1991).
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2.3.4.3 � Calculation of settlement from 
the results of the SPT test

The SPT remains, despite its rather rudimentary nature, the most widespread 
test in the world for the reconnaissance and determination of geotechnical 
parameters of cohesionless soils.

For direct methods, the main practical method to calculate settlement on 
sands and gravels from SPT is the one proposed by Burland and Burbidge 
(1985). It is based on the statistical examination of over 200 cases of settle-
ment of foundations, of reservoirs and embankments on sands and gravels. 
Its authors propose to determine the settlement s with the following rela-
tion (s in mm):

	 s f f f q
2
3

B Is l t
v 0.7

c= − ′σ





	

where
Ic = 1.7/Nm

1.4 which is the compressibility index;
q (in kPa) the effective average pressure applied by the foundation;

v′σ  (in kPa) the maximum effective pressure prevailing beforehand in the 
soil (the relation comes to dividing by 3 the compressibility index for 
the possible overconsolidated part of the settlement);

Nm the arithmetic mean of N over a depth of influence zI. The values of N 
are only corrected in the case of very fine silty sands under the water 
table (N′ = 15 + 0.5 (N − 15) if N > 15) and of gravels and sandy grav-
els (N′ = 1.25 N);

Figure 42 � Values of vertical strain influence factor Iz (Schmertmann et al., 1978).
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B (m) the foundation width; and
fs, fl and ft the correction factors, accounting for foundation shape, layer 

thickness and creep settlement, respectively. They are expressed as follows:

	 =







+





f
1.25

L
B

L
B

0.25
s

2

2 	

where L is the foundation length;

	 =
−

f
H

2z H
l

s

I s
	

where Hs is the thickness of the gravel or sand layer (for cases where Hs < zI);

	 = + +f 1 R R.log
t
3

t 3 	

and where
t > 3 is the time (in years) for which the settlement is being assessed;
R3 = 0.3 for static loads and 0.7 for repeated loads; and
R = 0.2 for static loads and 0.8 for repeated loads.

Figure 43 is the log-log diagram of Ic as a function of Nm, which includes around 
200 cases from the statistical study of Burland and Burbidge (1985). The con-
tinuous line is the regression line for Ic, and the dotted lines are the lines located 
at two standard deviations on either side. This figure shows the scatter of the 
method, which is rather significant: the ratio of the settlement corresponding to 
the two dotted lines is about 8 for Nm = 6 and about 4 for Nm = 40.

We may observe the same two interesting aspects as for Schmertmann’s 
CPT method, i.e., the introduction of an influence depth zI and the inclu-
sion of creep settlement (introduced by ft).

The influence depth zI is defined here as being the depth at which the settle-
ment reaches 25% of the settlement at the surface. This depth is a function 
of the width B. In the case where the soil properties (N) increase, or remain 
constant with depth, the authors propose the following approximation:

	 =z BI
0.75	

It is much smaller than what is given by the theory of linear elasticity, 
with a modulus remaining constant with depth (zI = 2B, for a rough, rigid 
and circular foundation). The proposed value is based in particular on 
calculations with a Young’s modulus increasing with depth.
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Regarding creep settlement, its part is far from being negligible since the 
correction factor ft varies from 1.4 (static loads) to 2.1 (repeated loads) over 
10 years, and from 1.54 to 2.70 over 50 years. The significance of creep set-
tlement in sands has also been observed in other studies (see Frank, 1994).

Furthermore, for sandy soils, the chart of Figure 44 also allows for a 
quick first estimate of the settlement when the results from CPT tests or 
from SPT tests are available. If it turns out that a settlement issue appears, 
then a more accurate method is required.

2.3.4.4 � Calculation of settlement from the 
results of the oedometer test

The laboratory test that is the most used to determine settlement of cohesive 
fine soils is the oedometer test. It is a uniaxial consolidation test (no lat-
eral deformations). Using the results of this test, originally developed for 
embankment settlement, is only applicable to situations where compression 
deformations are prominent.

Figure 43 � Relation between the compressibility index Ic and Nm (Burland and Burbidge, 
1985).
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From the compressibility curve, determined by the test, one can define either:

•	 The compression index Cc and the swelling index Cs, in the normally 
consolidated and overconsolidated domain respectively; or

•	 The “oedometer” moduli Eœd, which are the ratios of effective stress 
variations to volume variations (or compressibility coefficients mv, 
which are the ratios of volume variations to effective stress variations, 
i.e., mv = 1/Eœd).

From the distribution according to depth of one of these parameters, as well 
as the distribution of vertical stress under the foundation (usually estimated 
on the basis of the isotropic linear elasticity, §2.3.2.5), the well-known 
unidimensional consolidation settlement soed is obtained (see, for example, 
Magnan and Soyez, 1988).

In the normally consolidated domain (if v0′σ  =  p′σ ), soed is calculated from 
the compression index Cc for each homogeneous layer as follows:

	 s H
C

1 e
logoed

c

0

v0 z

p
=

+
′σ + ∆σ

′σ
	

Figure 44 � Quick estimate of the settlement of shallow foundations on sands, as a 
function of density (Robertson and Campanella, 1988, adapted from Burland 
et Burbidge, 1985).
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where
H is the thickness of the compressible soil layer;
e0 its initial void ratio (before consolidation);

v0′σ  the initial effective vertical stress at the centre of the layer;
z∆σ  the stress increase brought by the foundation at the centre of the 
layer; and

p′σ  the pre-consolidation pressure.
In the overconsolidated domain (if v0′σ  <  p′σ ), the calculation is as follows:

	 s H
C

1 e
logoed

s

0

v0 z

v0
=

+
′σ + ∆σ

′σ
	

when v0′σ  +  z∆ ′σ  <  p′σ .
Note that Cs, the swelling index, is significantly smaller than Cc. Thus, 

the settlement in the overconsolidated domain can be neglected relative to 
the settlement in the normally consolidated domain.

Theoretically, to apply this to the settlement calculation of a shallow 
foundation, three corrections should be made. The first is required to take 
into account the settlement that occurs before the consolidation (immedi-
ate settlement at constant volume or undrained settlement for saturated 
fine soils). The second is required to take into account lateral deforma-
tions (bi-dimensional or tri-dimensional field prevailing under the founda-
tion, as opposed to the unidimensional field prevailing under the axis of an 
embankment of large width, for example). Finally, the third is required to 
take into account the delayed settlement, also called creep settlement sα.

This leads to the following general formula for the total settlement st:

	 = + + αs s s st i c 	

where si, sc and sα are the immediate settlement, the consolidation settlement 
and the creep settlement, respectively.

The immediate settlement si is conventionally calculated with the linear 
elastic theory (see §2.3.2), using the undrained soil Young’s modulus with 
a Poisson’s ratio equal to 0.5.

The correction used to take into account lateral deformations was 
introduced by Skempton and Bjerrum (1957) in the form of a factor μ, 
which is a function of the coefficient of pore pressure A and of the geometry 
of the problem:

	 s sc oed= µ ⋅ 	

The coefficient A is measured during triaxial tests. This correction is given 
in Figure 45. Note that its use is not easy, since parameter A is not constant 
and varies during the triaxial test loading.
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In common practice, the creep settlement sα is often neglected for shallow 
foundations. It must however be addressed in some cases (large-scale foun-
dations, supported structures that are highly sensitive to settlement, etc.).

The conclusions of Burland et al. (1977) regarding both total settlement 
and immediate settlement of elastic soils and “plastic” soft soils lead to the 
following practical rules, which are sufficient for most of the common cases 
(also see Padfield et Sharrock, 1983):

•	 Overconsolidated stiff clays:

	 =s 0.5to0.6si oed	

	 =s 0.5to0.4sc oed	

	 =s st oed	

•	 And normally consolidated soft clays:

	 =s 0.1si oed	

	 =s sc oed	

	 =s 1.1st oed	

The immediate settlement si can also be determined with the undrained 
elastic calculation, as stated above.

Figure 45 � Correction factor μ accounting for lateral deformations.
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2.3.5 � Using numerical models

2.3.5.1 � Finite element (or finite difference) method

When leaving cases of simple and conventional foundations, for which the 
above methods have been established, the finite element method can be used 
to study more complex geometrical configurations.

The finite element method has been widely used since the end of the 1960s, 
notably for complex or costly projects. Since then, significant research 
efforts have been made and the application of this numerical method to 
the field of geotechnical engineering is continuously progressing (see, for 
example, Magnan and Mestat, 1992, 1997).

To solve practical issues linked to ground-foundation-structure interaction, 
and notably the displacement calculations of shallow foundations, the finite 
element method has numerous advantages (see, for example, Frank, 1991).

An interesting aspect should be noted, since it helps the use of this method 
in the case of shallow foundations: the issue of initial stress existing in the 
soil, as well as whether its state is intact or remoulded once the foundation 
is cast (prior to applying loading from the structure). We may assume, at 
least for foundations with a small embedment, that the initial stress is equal 
to the stress at rest and that the soil still possesses intact properties (pro-
viding obviously that the construction process was followed with care and 
complied with state-of-the-art practice).

The most delicate point when applying this method to the study of 
ground-structure interaction is naturally the definition of the behaviour of 
the ground: either with simple properties (such as Young’s modulus and 
Poisson’s ratio, in the case of isotropic linear elasticity) or under the form of 
more or less sophisticated constitutive models. Though, in practice, design 
rules of foundations lead to moderate applied loads, the assumption of lin-
ear elasticity remains arguable. Indeed, in the domain of small strains, from 
10−5 to 10−3, the elasticity modulus of the ground may decrease by a ratio 
varying from 1 to 5. It is essential to take this effect properly into account 
when carrying out numerical models. The approaches that consider moduli 
variations with strain or stress level should be preferred (§2.3.3.2). Other 
factors influence the strain moduli:

•	 Type of loading (volumetric or deviatoric);
•	 Direction of the loading (loading or unloading); and
•	 Loading rate; etc.

When settlement becomes greater, description of the ground behaviour is 
increasingly complex. Though finite element  calculations remain beneficial, 
they do not necessarily improve the prediction, since all the parameters 
required for the calculation are not available, or calibrations with the 
behaviour of real structures are missing.
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The finite element method models the ground by a continuous medium 
accounting for the 2D or 3D deformations of the problem. Ground modelling 
by a continuous medium is to be opposed to “unidimensional” modelling by 
independent springs (Winkler’s model) – linear or not – that ignores any inter-
action between the ground “columns”, and only ensures continuity through the 
supported structure. Consequently, in the case of shallow foundations, these 
interactions make it difficult to define directly a subgrade reaction coefficient 
(unidimensional spring stiffness) that has a meaning intrinsic to the ground.

Moreover, regarding the assessment of the total and differential settle-
ment of a structure, Eurocode 7-1 (BSI, 2004a) states that “… subgrade 
reaction models are often not appropriate. More precise methods, such as 
finite element computations, should be used when ground-structure interac-
tion has a dominant effect”.

The finite element method may easily take into account ground heteroge-
neities (layers with different properties or plane heterogeneity). This is also 
valid for heterogeneity caused by loading levels that would differ in various 
locations of the medium, in the case of a ground with a non-linear behav-
iour (variable stiffness).

The contact surface between the ground and the supported structure 
may be represented with the most diverse physical characteristics (perfect, 
smooth or frictional, uplifted, etc.).

The structure may be taken into account with its real stiffness, which a 
priori has the same influence on the load and displacement distribution as 
the ground stiffness. Numerical modelling thus leads to more rational cal-
culations of differential settlement than the conventional approaches for an 
infinitely rigid foundation (uniform settlement if the soil is homogeneous) or 
for an infinitely flexible foundation (uniformly distributed surcharge, which 
itself leads to an overestimation of differential settlement) (see §2.3.2.1).

The finite element method allows taking into account any type of loading 
geometry, as well as the construction stages and the progressive application 
of the loads. It is also well-adapted to situations where interactions with the 
nearby structures must be considered.

Figure 46 shows a particularly interesting example of a shallow foun-
dation studied using the finite element method (Humbert, 1991). It is the 
foundation of a nuclear plant. The ground, the reactor building raft and the 
auxiliary buildings are modelled by volumetric elements. The enclosures 
of the reactor building are modelled by shell and beam elements. The aim 
of the calculation is to determine realistic subgrade reaction coefficients 
(by taking into account both structure and ground stiffnesses), which are 
required for the detailed study of the structure.

2.3.5.2 � Hybrid methods

In addition to finite elements (or finite differences), methods have been 
developed, which are called “hybrid” because they couple pre-established 
solutions for the ground behaviour and numerical solutions for the 
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supported structure. Hybrid methods allow the modelling of the interaction 
between structural elements (footings, rafts, buildings represented by shells 
and beams, etc.) and the ground represented by a continuous medium. The 
computation times required for these methods are reduced, which allows 
for parametric studies that are often needed.

Pre-established solutions may be carried out by using flexibility matrices, 
macro-elements, boundary equations, etc.

The example in Figure 47 illustrates the case of two large and deform-
able foundations, interacting with a multi-layered ground. The foundations 
are discretised in plate elements (Cuira and Simon, 2008a). The interac-
tion with the ground, assuming an elastic linear behaviour, is processed 
through a flexibility matrix for which the components (“interaction terms”) 
are determined by Steinbrenner’s approach, as described in §2.3.2.4.

The example of Figure 48 shows the case of rigid foundations, repre-
sented by macro-elements that model, in the dynamic analysis, the ground 
as well as the non-linearities induced by the ground-foundation interaction.

This method allows, especially for the seismic design, reducing computa-
tion times while maintaining a highly satisfying accuracy. Note that in this 
case, the pre-established solutions included in the macro-element take into 
account the dynamic effects due to the propagation of seismic waves.

Figure 46 � Example including the ground foundation and the supported structure.

Figure 47 � Example of two large and deformable foundations, set on a multilayer ground 
(Cuira and Simon, 2008a).
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2.4 � STRUCTURAL DESIGN OF 
SHALLOW FOUNDATIONS

The verification of structural resistance requires assessment of the ground 
reactions under shallow foundations.

In the case of an infinitely rigid foundation, the assumption of a simpli-
fied linear ground reaction is often used, which implicitly ignores the edge 
effects mentioned in §2.3.2.1 (see Figure 28).

In the case of a deformable foundation (raft or slab), the numerical mod-
els (finite element or hybrid methods) described in §2.3.5 are the appropri-
ate tools to determine the reactions under the foundations and the resulting 
structural forces. However, in daily practice, the structural design of the 
foundation is often based on Winkler’s model, in which the ground is repre-
sented by independent springs (most often homogeneous). The stiffness per 
unit area of these springs is usually called “subgrade reaction coefficient” 
and is not an intrinsic property of the ground. Its value depends on the stiff-
ness of the ground relative to the foundation (see §2.3.2.1, Figure 29) and 
varies between the edge and the centre of the foundation.

The following example illustrates the case of a circular concrete tank, 
founded on a general raft (see Figure 49). The raft is subjected, on the one 
hand, to a surface load corresponding to the weight of the filling liquid 
and, on the other hand, to a line load due to the outer wall. Two model-
lings are compared: one where the ground is considered to be an elastic 
continuous medium and the other where the ground is represented by inde-
pendent springs. The bending moments derived from the two modellings 

Figure 48 � Example of use of macro-elements in dynamic design (Abboud, 2017).
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have opposite signs, whatever the value of the subgrade reaction coeffi-
cient (see Figure 50). The conclusion drawn from the latter would lead to 
reinforcing the upper part of the raft, even if it is the lower part that is in 
tension in the present case. This result may be explained by the fact that 
applying a uniformly distributed load does not lead to any curvature of the 
raft when it is laid on a layer of uniform springs. On the contrary, in the 
case of a calculation on an elastic medium, the effect of a distributed load 
is a settlement trough. It therefore induces an additional curvature which 
is governing, compared to the one due to peripheral loads, which is of the 
opposite sign.

Note that the spring calculation could be improved by considering greater 
values for the subgrade reaction coefficient on the peripheral part than on 
the central part. This makes it possible to obtain a bending moment induc-
ing tension in the lower part of the raft. In the particular case of a flexible 
circular raft (very low stiffness relative to the ground) laid on an elastic 
medium, the “theoretical” subgrade reaction coefficient ks at the distance x 
to the raft axis is expressed by:

Figure 49 � Example of a circular tank – comparison of two types of modellings (Cuira and 
Brûlé, 2017).

Figure 50 � Example of a circular tank – comparison of settlement and bending moments 
obtained by two modellings (Cuira and Brûlé, 2017).
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where
q(x) is the pressure under the raft (soil reaction);
s(x) is the settlement;
B is the diameter of the raft;
E is the Young’s modulus of the ground;
ν is the Poisson’s ratio; and
μ(x) is a non-dimensional factor given in Figure 51.
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2.5 � VERIFICATION OF A SHALLOW FOUNDATION

In France, the verification calculations for a shallow foundation are carried 
out according to the national standard for the application of Eurocode 7 
(NF P 94-261, AFNOR, 2013).

2.5.1 � Limit states to be considered

For shallow foundations, the limit states to be considered usually concern 
the following:

•	 The ground (ULS and SLS bearing capacity; SLS displacement, ULS 
sliding, ULS and SLS decompression, and ULS overall stability); and

•	 The constitutive materials of the shallow foundation.

Figure 51 � Variation of factor μ for a flexible circular raft (Cuira and Brûlé, 2017).
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For the verification of ultimate limit states (ULS), the loads to be considered 
are given by the combinations of actions given in §1.2.1, and for the 
verification of serviceability limit states (SLS), they are given by the combi-
nations given in §1.2.2.

Some issues may also require specific attention:

•	 Excessive vertical or horizontal displacement of the foundation inducing 
an ultimate limit state in the supported structure;

•	 Excessive uplift (due to swelling of the ground, frost or to other 
causes); and

•	 Excessive vibrations and settlement due to vibrating loads.

Note that the design rules of semi-deep foundations are also given by the 
standard NF P 94-261 (AFNOR, 2013).

2.5.2 � Ground-related limit states

2.5.2.1 � Bearing capacity (ULS and SLS)

The following condition must be verified:

	 ≤ +V R Rd d 0	

when using the Ménard pressuremeter test (M)PMT (§2.2.4) and when 
using the cone penetration test CPT (§2.2.5),

or the following condition:

	 ≤V Rd d	

when using laboratory tests (“c-φ” method, §2.2.1),
where
Vd is the design value of the vertical component of loads applied to the 

shallow foundation;
Rd is the design value of the resistance (bearing capacity); and
R0 = Aq0 where q0 is the vertical total stress, at the end of the construc-

tion, at the level of the base of the shallow foundation.

The combinations of actions to be considered to determine the design value 
Vd are the ones given in §1.2.1.1 (fundamental combinations), in §1.2.1.2 
(accidental situations) and in §1.2.1.3 (seismic situations) for ULS and in 
§1.2.2.1 (quasi-permanent combinations) and in §1.2.2.2 (characteristic 
combinations) for SLS.

The design value of the resistance Rd is obtained by applying the safety 
factors γR and γRd to the resistance value R, as determined by one of the 
above methods (pressuremeter, penetrometer or “c-φ” method):

	 R
R

d
Rd R

=
γ γ
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where
γR is the partial factor on the resistance; and
γRd is the model factor on the resistance.

Standard NF P 94-261 adopts the conventional French practice that consists 
in verifying the bearing capacity under characteristic and quasi-permanent 
SLS combinations, by limiting the load applied to the ground as for the 
ULS combinations. Table 13 provides the different values of partial factors 
γR and γRd for both ULS and SLS (AFNOR, 2013). The values of the model 
factor γRd are the same for SLS and for ULS.

The following observations hold:

•	 The global safety obtained by the previous sets of factors on the 
resistance R and on the action Vd (§1.2) is close to the conventional 
verification in terms of “allowable stress”, with a global safety factor 
between 2 and 3. Both the ULS and SLS bearing capacity verifications 
proposed by standard NF P 94-261 are, from a global safety stand-
point, similar to the conventional workload;

•	 Eurocode 7 advocates the verification of the ULS bearing capacity and 
for SLS proposes only the assessment of displacement (settlement).

For seismic design situations (see seismic situations, §1.2.1.3), Eurocode 8 (BS 
EN 1998-5, BSI, 2004c) applies. When the value Nmax is determined with the 
pressuremeter method (§2.2.4) or with the penetrometer method (§2.2.5), 
the values γR = 1.4 and γRd = 1.2 are also recommended by standard NF 
P 94-261 (therefore, γRγRd = 1.68 as for the ULS fundamental combinations).

The present version of Eurocode 8-5 (BSI, 2004c) gives the details for assess-
ing the bearing capacity of shallow foundations with “c-φ” method. Instead of 
the factor γR, the application of material factors γM at source is recommended:

	 1.4; 1.25and 1.25 on tancu c ( )γ = γ = γ = ′ϕ′ ′ϕ 	

A model factor γRd is also introduced. It depends on the type of soil 
(see Table F.2 of standard BS EN 1998-5, BSI, 2004c).

Table 13  �Partial factors for the bearing capacity for ULS and for SLS (AFNOR, 2013)

Persistent and transient 
situations ULS 
(fundamental 
combinations)

Accidental situations 
ULS 

Quasi-permanent 
and characteristic 
combinations SLS

γR γRd γRγRd γR γRd γRγRd γR γRd γRγRd

Pressuremeter and 
penetrometer models

“c-φ” models in 
undrained conditions

1.40 1.20 1.68 1.20 1.20 1.44 2.30 1.20 2.76

“c-φ” models in drained 
conditions 1.40 2.00 2.80 1.20 2.00 2.40 2.30 2.00 4.60
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2.5.2.2 � Settlement and horizontal displacement (SLS)

The displacement of the foundation should not adversely affect the proper 
behaviour of the supported structure.

In practice, calculated displacement also helps to determine the subgrade 
reaction coefficients required for the structural design.

For shallow foundations, it is appropriate to assess settlement and 
differential settlement, both for ULS and SLS combinations for check-
ing the behaviour of the supported structure. It is commonly acknowl-
edged, however, that settlement calculations remain inaccurate and only 
give an approximate value (Eurocode 7-1, BSI, 2004a). The movements 
that can be supported by structures are also only approximately known. 
Moreover, settlement calculations for checking the ULS are still rarely 
carried out.

The various available methods to assess settlement are described above 
(§2.3). Values of allowable settlement and displacement for structures are 
presented in §4.1.

Standard NF P 94-261 requires carrying out a SLS settlement calcula-
tion of shallow foundations, in addition to the bearing capacity verification 
described above in §2.5.2.1.

The following relation should be verified:

	 ≤E Cd d	

where

•	 Ed is the value of settlement, of differential settlement or of rela-
tive rotation (see Figure 111 in §4.1.2) assessed by a commonly 
accepted method under quasi-permanent SLS combinations (§2.3); 
and

•	 Cd is the corresponding limit value required for the supported structure 
(value specific to the project, or value taken from general guidelines, 
such as the ones provided in §4.1).

Under an inclined or eccentric load, the displacement of a shallow founda-
tion includes, in addition to settlement, a horizontal displacement and a 
rotation. These values may be assessed through elasticity solutions. For a 
rigid circular foundation of diameter B, lying on a homogeneous and isotro-
pic linear medium and subjected to a horizontal force H and an overturning 
moment M, we have the following (Gazetas, 1991):

	
( )

= + ν − ν θ =
− ν

u
2

2EB
H and

6 1

EB
Mh

2 2

3 	
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where
uh is the (elastic) horizontal displacement of the foundation;
θ is the (elastic) rotation of the foundation (around the horizontal axis);
E is the Young’s modulus of the ground; and
ν is the Poisson’s ratio of the ground.

These expressions are valid provided there is no sliding (see §2.5.2.3) and 
no ground decompression under the foundation (see §2.5.2.4).

2.5.2.3 � Sliding (ULS)

This verification ensures that the horizontal forces applied to the founda-
tion do not lead to sliding at the base. This condition, according to standard 
NF P 94-261 (AFNOR, 2013), is expressed as

	 ≤ +H R Rd h, d p, d	

where
Hd is the design value of the horizontal component of the loads on the 

foundation, which depend on the ULS combination under consideration 
(fundamental combination, accidental or seismic situation, §1.2.1);

Rh, d is the design value of resistance to sliding at the base; and
Rp, d is the design value of total lateral resistance (frontal and tangential) 

on the edges of the foundation.

The term Rh, d is calculated from the following relation:

	 R
V tan

 or R min
A c

;0,4Vh, d
d

h
h, d

u

h
d= δ

γ
= ′

γ





	

where
Vd is the design value of the vertical component of the loads applied 

to the shallow foundation, which depends on the ULS combination 
under consideration (fundamental combination, accidental or seismic 
situation, §1.2.1). When relevant, groundwater pressures applied to 
the foundation should be taken into account;

δ is the design value of the soil-foundation interface angle for calcula-
tions in drained conditions;

A′ is the effective area of the base of the shallow foundation (§2.2.1.3.1);
cu is the undrained cohesion of the ground for calculations in undrained 

conditions;
γh = 1.21 for fundamental combinations (persistent and transient design 

situations); and
γh = 1.10 for accidental situations (for seismic situations, see standard BS 

EN 1998-5).
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The term Rp, d is calculated from the following relation:

	 R
R R

p, d
p, fr

fr

p, tan

tan
=

γ
+

γ
	

where
Rp, fr is the frontal resistance;
Rp, tan the tangential resistance;
γfr = 1.4 and γtan = 1.1 for fundamental combinations (persistent and 

transient project situations); and
γfr = 1.1 and γtan = 1.0 for accidental situations (for seismic situations, see 

standard BS EN 1998-5).

Standard NF P 94-261 states that the resistance Rp, d cannot usually be 
taken into account, since the presence of the ground around the foundation 
cannot be permanently guaranteed. Furthermore, the horizontal displace-
ment needed to mobilise Rp, d (in particular its frontal component) must be 
compatible with the supported structure.

2.5.2.4 � Ground decompression (ULS and SLS)

The ULS and SLS verifications of ground decompression are based on the 
limitation of eccentricity e or eB and eL (§2.2.1.3.1) of the load applied to the 
foundation, assumed to be rigid. Table 14 gives the limitations proposed by 
standard NF P 94-261 (AFNOR, 2013) for strip, circular and rectangular 
shallow foundations.

These limitations of eccentricity are based on the calculations of the 
compressed area Ac or of the effective area A′ (§2.2.1.3.1). It is crucial to 
point out that the calculation of a compressed area Ac assumes a trapezoi-
dal distribution (before decompression), and then a triangular one (after 
decompression), of the pressures under the foundation. In other words, the 
stress is proportional to the displacement, and only the compression stress 
is considered and there is no tension (see Figure 52).

Figure 52 � Trapezoidal (left) and triangular (right) distribution of stress under a rigid strip 
foundation.
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For a strip foundation, the compressed width being considered by the 
standard (see Table 14) is as follows:

	 ( )= ≤ = − >B B if e
B
6

 and B
3
2

B 2e  if e
B
6

c c 	

The value Bc must be equal to 100% at SLS for quasi-permanent combina-
tions, greater than 75% at SLS for characteristic combinations and greater 
than 10% at ULS for fundamental combinations (persistent and transient 
situations).

For a circular foundation, the calculation of Ac does not lead to a simple 
closed-form solution. The following modified solution is used to establish 
the limitations given in Table 14:

( )≈ −A
πB
3

B 2ec 	

This relation is valid for an eccentricity greater than B/8 (with B being the 
diameter of the circular foundation). The value Ac must be equal to 100% 
at SLS for quasi-permanent combinations, greater than 75% at SLS for 
characteristic combinations and greater than 10% at ULS for fundamental 
combinations (persistent and transient situations).

A comparison between the modified expression selected by the standard 
and the exact analytical expression is provided in Figure 53. For high values 
of eccentricity, discrepancies are not negligible. Thus, when the modified 
expression indicates a ratio Ac/A equal to 10%, the exact expression pro-
vides a value equal to 5%.

For rectangular foundations, the calculation of Ac similarly does not lead 
to a simple closed-form solution. ULS and SLS verifications (see Table 14) 
are thus based on minimum values for the effective area A′:

Table 14  �ULS and SLS verifications for ground decompression (AFNOR, 2013)

Strip foundation Circular foundation Rectangular foundation

ULS:
fundamental 
combinations

	

− ≥1
2e
B

1
15

	

− ≥1
2e
B

3
40

	

−



 −



 ≥1

2e
B

1
2e
L

1
15

B L

SLS:
characteristic 
combinations

	

− ≥1
2e
B

1
2

	

− ≥1
2e
B

9
16

	

−



 −



 ≥1

2e
B

1
2e
L

1
2

B L

SLS:
quasi-permanent 
combinations

	

− ≥1
2e
B

2
3

	

− ≥1
2e
B

3
4

	

−



 −



 ≥1

2e
B

1
2e
L

2
3

B L
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•	 For ULS fundamental combinations (persistent and transient situa-
tions): A′/A ≥ 6.7% (1/15). This value guarantees a compressed area 
Ac at least equal to 10% of the total area A;

•	 For SLS characteristic combinations: A′/A ≥ 50% (1/2). This value guar-
antees a compressed area Ac at least equal to 75% of the total area A;

•	 For SLS quasi-permanent combinations: A′/A ≥ 66.7% (2/3). This 
value guarantees a compressed area Ac at least equal to 97% of the 
total area A.

More precisely, Figure 54 provides the possible variation range of Ac/A as a 
function of A′/A (the relationship is not bijective).

2.5.2.5 � Overall stability (ULS)

The overall stability limit state corresponds to the formation of a failure 
area (C) within the ground, leading to a loss of equilibrium of the ground 
and of the structure located above (see Figure 2).

The following must be examined with specific caution:

•	 Foundations at the top of an embankment;
•	 Foundations on a slope; and
•	 Foundations laid on weak grounds (the case in Figure 2).
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Figure 53 � Comparison between the exact and modified expressions for the calculation 
of the ratio Ac/A in the case of a circular rigid foundation.
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The overall stability of the ground mass in backfill or in excavation, 
or of  the natural slope, must be guaranteed in the initial state (prior to 
building the foundation), during the building stage and in the final state  
(by taking into account the loads carried by the foundation). It is commonly 
accepted that the initial stability cannot always be calculated.

The conventional methods used to study slope stability in circular failure 
are applied.

The ULS verification takes the following form:

	 T
R

dst, d
st, d

Rd

≤
γ

	

where
γRd is the partial model factor;
Tdst, d is the design value of the destabilising effect of actions along the 

sliding area; and
Rst, d is the design value of the stabilising resistance along the sliding area.

Two calculation approaches are possible:

•	 The traditional approach with a global safety factor. For the ULS 
persistent and transient situations, the global safety factor F is between 
1.3 and 1.5;

Figure 54 � Correspondence between the ratios A′/A and Ac/A for a rigid rectangular 
foundation.
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•	 The approach using material factors on the ground shear strength 
parameters (called “at source”). In that case, the following partial 
factors are introduced to obtain the value Rst, d:
•	 γφ = 1.25 on tan φ′ and γc = 1.25, with φ′ and c′ being the internal 

friction angle and the cohesion in drained conditions and
•	 γcu = 1.40 on the undrained cohesion cu in undrained conditions.
•	 In this approach, the design value Tdst, d is obtained without apply-

ing any partial factor.

For the ULS verifications in persistent and transient situations, depending 
on whether the structure is sensitive or not to displacement, the partial γRd 
equal to 1.2 or 1.1 is applied to the total stabilising resistance obtained in 
drained conditions or in undrained conditions. For the ULS verifications in 
seismic situations, the partial factor γRd is equal to 1.0.

2.5.3 � Limit states related to the materials 
constituting the foundation

The rules of Eurocode 2 are applied for the structural design of a reinforced 
concrete shallow foundation and the ones of Eurocode 6 for a masonry 
structural design.

These rules provide the partial factors to be used for checking the struc-
tural behaviour and are applied with the combinations of actions defined in 
§1.2. Note that structural Eurocodes give provisions for the frequent SLS 
combination, which is not the case for geotechnical design.

2.6 � CONSTRUCTION PROVISIONS

The general conditions of a foundation project, notably the ones linked 
to the site, are obviously major issues to be addressed at the very start of 
the project, since they will significantly impact the decision regarding the 
choice of the foundation type.

For shallow foundations, there are no execution issues as there are for 
deep foundations. A proper interaction with the ground may be achieved 
by taking care of the excavation bottom, and the properties of the materi-
als (reinforced concrete) being installed can easily be mastered. However, 
the drawback is that surface soils are usually poorer than the ones at depth 
and are furthermore subjected to temperature variations, to hygrometric 
variations, etc.

When surface grounds are too poor to support shallow foundations, a 
solution may be to reinforce them or to improve their properties, before 
deciding to use semi-deep or deep foundations. Ground reinforcement and 
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improvement is a large field of contemporary geotechnical engineering, 
and an extended literature exists on the subject since the 1980s–1990s 
(see Magnan and Pilot, 1988, and Schlosser and Unterreiner, 1996). One 
may also consider adjoining to the foundations relatively short piles, called 
“settlement reducers”, or reinforcing the ground with rigid inclusions 
(ASIRI, 2012) and therefore introducing an effect of composite footing-pile 
foundation.

Water content variations not only modify the mechanical properties of 
surface formations, but they also play a fundamental role in some types of 
soils, such as swelling or collapsible soils. It is appropriate to study them 
thoroughly for a shallow foundation project.

Note that, generally speaking, non-saturated soils have specific properties 
that are regrettably not taken into account in common practice. Indeed, 
conventional soil mechanics assumes that soils below the groundwater table 
are fully saturated and that soils above it are either fully dry (sands) or 
saturated (clays). It ignores the specific behaviour of non-saturated soils 
linked to capillary fringes.

Surface soils are also highly sensitive to various phenomena, such as 
freezing-thawing, scour (in water sites), erosion, burrowing by animals, 
etc., which should not be ignored before taking a decision about the level 
of the base of the foundation. It is also appropriate to collect data regard-
ing the possible presence of cavities at depth, excavations, adjacent slopes, 
neighbouring buildings, etc.

The construction provisions relative to the proper execution of shallow 
foundations are provided in normative documents, such as, in France, 
Fascicule 68 (MEF and MTES, 2018) for bridges and standard NF DTU 
13.11 (AFNOR, 1988) for buildings. These provisions concern, for exam-
ple, protection of the excavation bottom, dewatering or drainage, the com-
position and pouring of concrete, frost protection, the case of aggressive 
environments, etc.

The level of the base of the foundation must be sufficiently deep to remain 
unaffected by the above-mentioned phenomena. It is thus appropriate to 
place it at least at 50 cm from the surface (taking into account possible 
scour). In mountainous regions, it is advised to set the foundation level at 
more than 1m of depth.
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Chapter 3

Deep Foundations

3.1 � CLASSIFICATION OF DEEP FOUNDATIONS

Deep foundations encompass piles, barrettes, piers and micropiles. Their 
slenderness ratio D/B (ratio of their length D to their width or diameter B) 
is greater than 5.

Conventionally, deep foundations are classified either:

•	 According to the nature of the constitutive material: wood, steel, con-
crete; or

•	 According to the installation mode in the ground:
•	 Bored piles and other cast-in-situ foundations, with concreting in 

a borehole, protected or not with a steel casing in the case of some 
piles; or

•	 Driven piles, prefabricated and most often set in place through 
driving.

To assess the bearing capacity, it is most important to consider the action 
imposed on the ground when the foundation is installed. Therefore, the fol-
lowing are distinguished:

•	 Piles and other deep foundations that are executed after ground 
extraction and therefore that replace the ground;

•	 Piles with an installation resulting in ground displacement; or
•	 Some specific piles having an intermediate behaviour.

3.1.1 � Replacement piles

This category of piles includes bored piles and barrettes, continuous flight 
auger piles (see standard BS EN 1536, BSI, 2010) as well as bored micro-
piles (see standard BS EN 14199, BSI, 2015b).
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3.1.1.1 � Simple bored pile (and barrette 
executed in the same conditions)

This process consists in boring the ground with mechanical means such as 
an auger, a grab, etc. It does not use a support system for the borehole walls 
and can only be applied in sufficiently cohesive soils, located above ground-
water tables. Grooving can be performed on the walls before concreting.

3.1.1.2 � Pile bored with mud and barrette

This method consists in boring the ground with mechanical means such as 
an auger, a grab, etc. and uses stabilizing fluids or drilling muds as protec-
tion. The borehole is filled with a high-workability concrete under the mud, 
using a tremie pipe (see Figure 55). As for simple bored piles, grooving can 
be performed on the walls before pouring the concrete. The shapes of the 
cross section of the various types of barrettes executed in such conditions 
are shown in Figure 56. 

Figure 55 � Bored pile with mud (after Soletanche Bachy).

Generally 0.5m < e < 1.5 m
1.8 m < L < 2.8 m

Figure 56 � Various types of barrettes.
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3.1.1.3 � Cased bored pile

This method consists in boring the ground with mechanical means such as 
an auger, a grab, etc. It is achieved with the protection of a casing or lining, 
which is always located below the borehole bottom (see Figure 57).

The casing may be installed down to the final depth by oscillating or 
rotating equipment or by piling hammers or vibrators during the boring 
process. The borehole is partially, or fully, filled with concrete. The casing 
may either be extracted, without the casing being left at less than 1 m under 
the level of concrete, except at the cut-off level (temporary casing), or left in 
place (permanent casing).

3.1.1.4 � Piers

Piers are dry-dug foundations of large diameter. The walls of the borehole 
are supported with a shielding.

3.1.1.5 � Continuous flight auger with simple 
rotation or double rotation

With simple rotation, the execution is achieved using a continuous-flight 
auger, with a hollow axis and a total length at least equal to the depth 
of piles to be executed, screwed in the ground without any notable soil 
extraction. The auger is extracted from the ground without unscrewing, 
while concrete is poured into the hollow axis of the auger, replacing the 
extracted soil. With double rotation, an inner pipe is added, with a rota-
tion opposite to the one of the hollow auger. Depending on the nature of 

Figure 57 � Cased bored pile (after Études et Travaux de Fondation).
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the ground, the pipe bores ahead of the auger, or inversely, the auger may 
bore before the pipe.

Some augers are equipped with a telescopic tremie pipe, which is retracted 
during boring and sinks into the concrete during the concreting operations 
(see Figure 58).

Moreover, a distinction must made between such a process without any 
specific recording of the boring and concreting parameters and with an 
execution with a specific recording of the boring and concreting parameters 
(depth, concrete pressure and concrete amount).

3.1.1.6 � Micropiles

The micropile method is used for highly diverse problems. Four types of 
micropiles can be distinguished:

•	 Type I is a cased bored pile with a diameter smaller than 300 mm. The 
borehole is equipped or not with a steel reinforcement and filled with 
a cement mortar using a tremie pipe. The casing is retrieved by sealing 
it at its head and by putting it under pressure above the mortar. Such 
micropiles are not used for bridges;

•	 Type II is a bored pile with a diameter smaller than 300 mm. The 
borehole is equipped with a steel reinforcement and filled with a seal-
ing grout or mortar, through gravity or under very low pressure using 
a tremie pipe. When the soil nature allows it, boring may be replaced 
with jetting, driving or jacking;

Figure 58 � “Starsol” pile from Soletanche-Bachy.
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•	 Type III is a bored pile with a diameter smaller than 300 mm. The 
borehole is equipped with steel reinforcement and an injection 
device, i.e., a sleeved pipe (“tube à manchettes”) set in a sheath 
grout. If the reinforcement is a steel pipe, this pipe may be equipped 
with sleeves and be used as the injection device. The injection is car-
ried out at the head, at a pressure greater than, or equal to, 1 MPa, 
without exceeding the limit pressure of the ground. It is global and 
unitary (IGU, unitary and global injection). When the nature of 
the soil allows it, boring may be replaced with jetting, driving or 
jacking;

•	 Type IV is a bored pile with a diameter smaller than 300 mm. The 
borehole is equipped with steel reinforcement and an injection device, 
i.e., a sleeved pipe (“tube à manchettes”) set in a sheath grout. If the 
reinforcement is a steel pipe, this pipe may be equipped with sleeves 
and used as the injection device. The injection of a sealing grout or 
mortar is carried out through a simple or double obturator, with 
an injection pressure greater than, or equal to, the limit pressure of 
the soil, without exceeding 4 MPa. The injection is repetitive and 
selective (IRS, repetitive and selective injection). When the nature 
of the soil allows it, boring may be replaced with jetting, driving or 
jacking.

3.1.1.7 � Injected large-diameter piles, under high pressure

This type of piles, in contrast with micropiles of types III and IV, encom-
passes injected piles of large diameters, i.e., greater than 300 mm. The 
borehole is equipped with a reinforcement system and with an injection 
device that consists of one or several sleeved pipes (“tubes à manchettes”). 
When the reinforcement is a steel pipe, this pipe may be used as a sleeved 
pipe. In some cases, the steel pipe can be equipped with a series of indepen-
dent special valves, or of special manifolds, which enable the injection. The 
reinforcement can also be constituted of profiles (H profiles or sheet pile 
caissons). Ground sealing is carried out with a high-pressure injection of a 
grout or mortar, either global and unitary, or repetitive and selective with a 
simple or double obturator.

3.1.2 � Displacement piles

The main types of piles that belong to this group are driven piles or screw 
piles (see standard BS EN 12699, BSI, 2015a).

3.1.2.1 � Precast piles

These piles, precast with reinforced or pre-stressed concrete, are set into the 
ground by driving, vibrodriving or jacking.
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3.1.2.2 � Open-ended or closed-ended steel piles

These piles are made of steel profiles and set in the ground by driving, 
vibrodriving or jacking. They may be coated with concrete, mortar or grout 
by using an enlarged shoe at the tip (the pile steel shaft must be coated with 
4 cm at least). Their cross-sections are (see Figure 59) as follows:

•	 H shape (possibly equipped with sleeved pipes for the injection);
•	 Ring shape (pipe); or
•	 Of any shape, like box piles obtained by welding sheet piles, for example.

They are classified as displacement piles only if their base is closed-ended. 
Otherwise, they belong to the special piles category (see §3.1.3). 

3.1.2.3 � Cast-in-situ driven piles

A temporary casing, equipped with a steel or reinforced concrete tip at its 
base, or with a stiffened steel plate or with a concrete plug, is pushed by 
driving on a helmet set at the head of the pipe or by driving on the concrete 
plug (Figure 60). The casing is then fully filled with a concrete of medium 
workability, prior to its extraction. If needed, these piles can be reinforced. 

3.1.2.4 � Cast-in-situ screw piles

A hollow helicoidal tool fixed at the base of a pipe penetrates the ground 
by rotation and driving. The pipe is used to pour concrete (see Figure 61). 
Some methods leave the tool at the end of the boring, but most are based 
on the retrieval of the tool, where shutting during the screwing phase is 
achieved with a lost tip or with a removable obturator.

Steel H profile Steel pipe

Welded box piles

Figure 59 � Steel profiles.
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Thanks to the diversity of the types of screws that can be used, several 
methods of screw cast-in-situ piles have been developed. The benefit of the 
method is to displace nearly all the soil.

Figure 60 � Cast-in-situ driven piles (after Études et Travaux de Fondation).

Figure 61 � “Atlas” pile from Franki Fondation.
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3.1.2.5 � Cased screw pile

This is a screw pile constituted of a pipe, a tool and a lost tip. 

3.1.3 � Special piles

These are the open-ended steel piles (H piles, pipes and box piles) described 
in §3.1.2.2 (see Figure  59) that are driven, vibrodriven or jacked. Their 
tip section is small relatively to their overall perimeter. The assessment of 
their bearing capacity is subject to specific recommendations (see §3.2.4 
and §3.2.5)

3.1.4 � Identifying piles by class and category

In France, an identification by classes and categories of piles methods 
is proposed, notably when using Ménard pressuremeter test ((M)PMT) 
and cone penetration test (CPT) methods for the prediction of the bear-
ing capacity (AFNOR, 2012). These classes and categories are defined in 
Table 15.

Table 15  �Pile classes and categories (AFNOR, 2012)

Class Category Installation method

1 1 Simple bored (piles and barrettes)
2 Mud bored (piles and barrettes)
3 Cased bored (permanent casing)
4 Cased bored (temporary casing)
5 Simple or mud bored with grooving or pier

2 6 Bored with continuous flight auger, simple or double rotation
3 7 Cast-in-situ screw

8 Cased screw
4 9 Precast or pre-stressed concrete driven

10 Coated driven (concrete – mortar – grout)
11 Cast-in-situ driven
12 Closed-ended steel

5 13 Open-ended steel 
6 14 H profile

15 Injected H profile
7 16 Sheet pile
1 bis 17 Type I micropile

18 Type II micropile
8 19 Injected pile or micropile with IGU injection (type III)

20 Injected pile or micropile with IRS injection (type IV)
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3.2 � AXIALLY LOADED ISOLATED PILE

In this section, we elaborate the methods used to determine the bearing 
capacity of piles, based on the results of static load tests, or on the results 
of (M)PMT and CPT tests. Such methods originate from the results of 
numerous load tests on full-scale piles carried out by the laboratories of 
Ponts et Chaussées since the 60s (Baguelin et al., 2012; Burlon et al., 
2014). They form the basis of the French rules stated in NF P 94-262 
(AFNOR, 2012). Indications about the use of dynamic methods are also 
provided.

Furthermore, displacement approaches are presented for assessing load-
settlement behaviour, with or without negative friction.

Everything stated within this section concerns axial loads and is relevant 
to both vertical and inclined piles.

3.2.1 � Definitions

3.2.1.1 � Compressive and tensile resistances

Let us consider a pile with a base located at depth D (see Figure 62). The 
axial load F is applied on this pile (of which the weight is ignored).

If F is gradually increased, starting from 0, the pile settles at its head with 
the value st, and the curve representing st as a function of F takes the shape 
shown in Figure 62. F reaches the limit load (bearing capacity) Rc, which 
corresponds to ground failure or resistance. From this load onward, the 
settlement is no longer stabilising, and its rate is relatively high.

Conventionally, the compressive resistance Rc is defined as the load cor-
responding to st = B/10 (with B being the diameter of the pile) or to a settle-
ment rate from 1 to 5 mm/min.

Figure 62 � Axial load curve of a pile.
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The compressive resistance Rc is balanced by the following ground limit 
reactions:

•	 The unit ground resistance under the tip qb, which leads to the total 
tip resistance:

=R q Ab b b	

where Ab is the tip area;

•	 The resistance due to ground friction on the pile shaft (axial skin 
friction). If qs, i is the limit unit shaft friction in the layer i, the total 
shaft friction resistance is

∑=R q As

i

s, i s, i 	

where As, i is the pile shaft area in the layer i.
The compressive resistance (bearing capacity) Rc is

	 = +R R Rc b s	

The tensile resistance Rt is

	 =R Rt s	

if it is assumed that the tensile shaft friction is equal to the compressive 
shaft friction, as it is the case in French practice.

3.2.1.2 � Creep limit load

The curve representing the load applied to the pile as a function of settle-
ment shows a significant linear part, which is limited by the “creep” limit 
load Rc, cr (see Figure 62). For loads greater than Rc, cr, the pile settlement no 
longer stabilises over time under a constant load.

The numerous load tests on full-scale piles allowed establishing correla-
tions between the creep limit load, the tip resistance Rb and the shaft fric-
tion resistance Rs. These correlations depend on the mode used to install the 
pile into the ground. We may use in practice the following:

•	 For displacement piles in compression:

= + =R 0.7R 0.7R 0.7Rc, cr b s c	
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•	 For replacement piles in compression:

= +R 0.5R 0.7Rc, cr b s	

•	 And for piles in tension:

= =R 0.7R 0.7Rt, cr s t	

The design methods given in §3.2.3–§3.2.7 aim at determining the bearing 
capacity Rc and the tensile resistance Rt. The creep limit load Rc,cr or Rt,cr is 
deduced from these empirical correlations, with the exception of static load 
tests, for which this limit is assessed from the test results.

3.2.1.3 � Equivalent embedment. Equivalent limit 
pressure and cone resistance

The definitions of the equivalent embedment height De are analogous to 
the ones relative to shallow foundations (§2.2.2.1). Only the definitions 
of the equivalent limit pressure and of the equivalent cone resistance are 
changed.

The following definition of the equivalent limit pressure using a pres-
suremeter ple

*  is specific to deep foundations. It is a mean pressure around 
the tip of the deep foundation, in the case of a sensibly homogeneous bearing 
formation. It is determined with the following expression (see Figure 63):

	 ∫ ( )=
+ −

+

p
1

3a b
p z dzle

*
l
*

D b

D 3a

	

Figure 63 � Definition of the equivalent limit pressure for the pressuremeter method – 
(M)PMT.
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where
pl

* = p1 – p0 for the net limit pressure (see §2.2.2.1);
a = B/2 if B > 1 m; a = 0.5 m if B < 1 m; and
b = min {a, h} where h is the embedment of the foundation element into 

the bearing layer.

The following definition of the equivalent cone resistance qce is specific to 
deep foundations. It is a mean resistance around the tip of the deep founda-
tion, in the case of a sensibly homogeneous bearing formation. It is deter-
mined with the following expression (see Figure 64):

	 ∫ ( )=
+ −

+

q
1

3a b
q z dzce cc

D b

D 3a

	

where
qcc is determined according to the indications given in §2.2.2.3;
a = B/2 if B > 1 m; a = 0.5 m if B < 1 m; and
b = min {a, h} where h is the embedment of the foundation element into 

the bearing layer. 

3.2.2 � Conventional rigid-plastic theories

The conventional theories of bearing capacity design are based on the 
hypothesis of a rigid-plastic behaviour of the ground, assumed to be in a 
full state of failure around the pile. Such theories are barely used in France, 
notably because of the development of direct methods based on the results 
of in-situ tests (mainly (M)PMT and CPT) and on the results of tests made 
on full scale piles, which are deemed operational and more reliable.

Figure 64 � Definition of the equivalent cone resistance for the penetrometer 
method – CPT.
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In rigid-plastic theories, the unit resistances (unit point resistance qb, 
limit shaft friction qs) depend only on the shear strength parameters of the 
ground, which are measured in the laboratory:

•	 Effective cohesion cʹ and internal friction angle φʹ for the drained 
behaviour (β-method); or

•	 Undrained cohesion cu for the undrained behaviour (α-method).

Thus, in frictional soils (c = c′ and φ = φ′), for a homogeneous medium with 
a submerged unit weight γ′:

	 = ′ + ′q c N q Nb c 0 q	

where
q′0 = γ′D where D is the pile embedment; and
Nc and Nq are the bearing capacity factors for cohesion and for depth, 

both function of φ′ only;

and

	 = β + ′q q cs z 	

where
qz = γ′z
β = Ktanδ
K is the ratio of the normal stress at pile to the stress parallel to the axis, 

at depth z (assimilated to vertical stress qz); and
δ is the friction angle between the ground and the pile (often selected as 

2/3 of the internal friction angle of the ground).

Depending on the authors and the selected failure modes (see Figure 65), 
the factors Nc and Nq may vary by a ratio of 1–10 or even more.

Figure 65 � Examples of failure modes according to conventional theories.
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For purely cohesive soils (φu = 0 et c = cu):

	 = +q c N qb u c 0	

with Nc often selected equal to 9, and

	 = αq cs u	

with α < 1 depending on the nature of the soil, of the pile and of its execu-
tion method.

Such conventional theories are not developed any further in the present 
document. All basic textbooks about soil mechanics and piles provide more 
detailed information on the conventional theories of the bearing capacity 
of piles.

3.2.3 � Predicting the bearing capacity and the 
creep limit load from a static load test

3.2.3.1 � Principle equipment

The static load test aims at determining directly the load-settlement curve 
of a pile, at deducing the bearing capacity Rc and the creep limit load Rc,cr 
from it, and on that basis, the loads that can be allowed on the pile. Such an 
important test is carried out only when the methods described in §3.2.4 and 
§3.2.5 do not produce sufficiently reliable results, and when the results can 
be extrapolated to a sufficient number of piles of the same project.

The principle of the method, the description of the equipment to be used, 
the preparation and execution of the test are described in detail in the stan-
dards for axial compression and for axial tension (respectively BSI, 2018 
and BSI, 2021).

The equipment required to carry out such a test usually includes (see 
Figure 66) the following:

•	 A reaction device: dead load (kentledge) made of tanks filled with 
gravels or most often of anchored reaction beams (adjacent piles used 
in tension or pre-stressed anchors);

•	 A loading device: a hydraulic jack that transmits forces to the pile 
through a hinge and a load distributing plate; and

•	 Measuring systems:
•	 Measurements of loads: pressure cells plugged on the power circuit 

of the jack or preferably an electrical load cell inserted between 
the jack and the pile;

•	 Measurements of displacement at the head: displacement trans-
ducers or dial gauges;
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•	 Measurements of forces at different levels of the shaft: the pile 
is instrumented at various depths with removable strain gauges, 
with telltales, with glued gauges, with vibrating wires or with 
optic fibers (see, for example, Bustamante and Gianeselli, 1981).

The time elapsed after the pile is executed has a significant influence on the 
measured bearing capacity, which increases with time, particularly in the 
case of driven piles. For bored piles, the execution effects seem to be less 
significant. In any case, it is required to wait for the concrete to set, which 
imposes a delay of at least three weeks after the pile is executed. Note that 
for the pile tests used to derive the prediction methods stated in §3.2.4 and 
§3.2.5, a setting delay of several weeks was always observed. 

3.2.3.2 � Loading programme

Tests are carried out by applying at least eight load steps, which are main-
tained over a certain time. The loading programme requires an approximate 
estimate of the bearing capacity of the pile to be tested (the pressuremeter 
method in §3.2.4, or the penetrometer in §3.2.5 can be used). A 50% mar-
gin is usually added to be sure that the test load is sufficient.

Different types of tests exist, depending on the goal: determination of the 
bearing capacity of the tested pile or verifying if it is able to carry a given 
load.

A Reaction mass D Test pile G timber stacking
B Displacement transducer E Hydraulic jack
C Reference beam F Reaction beam

Figure 66 � Sketch of loading and measuring systems for a pile test.
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The loading programme may be composed of the following:

•	 A monotonic step loading, up to the limit load before the final unload-
ing; and

•	 An intermediate cycle of step loading and unloading and then a stage 
loading up to the limit load before the final unloading.

The duration of the load levels is usually equal to 1 hour but can be reduced 
at the start of the test, when displacement at pile head is quickly stabilised 
under the applied load.

3.2.3.3 � Exploiting results

In the case where the test is carried out until ground failure or until its con-
ventional bearing capacity (compressive resistance), several types of results 
can be obtained and analysed:

•	 The curve that links the displacement at the head st (accumulated, 
obtained at the end of each load step) to the load at the head F (see 
Figure 67a). This curve provides the bearing capacity of the pile for a 
settlement at the head of around B/10. The end of the pseudo-linear 
part corresponds to the creep limit load;

•	 The curve that links the settlement at the head to time, for each load 
step (see Figure 67b): these curves allow determining an average settle-
ment rate over time intervals (between the 30th and the 60th minute, 
between the 5th and the 60th minute, etc.);

•	 The curve that links the average settlement rate to the applied load (see 
Figure 67c). This curve is linear at its start and then undergoes a high 
inflection for an applied load defining the creep limit load. Therefore, 
this curve allows determining the load after which the settlement is 
no more stabilizing.

It is important to note that the creep limit load is the load below which 
the pile behaviour is sensibly reversible and does not change over time. It 
is interesting to point out the following link: the reversibility of displace-
ment usually indicates a very slow evolution under a constant load over 
time. This is why most of the design standards limit the applied load on a 
pile to 90% of its creep limit load. This limitation can be done directly by 
considering the creep limit load or indirectly by applying sufficiently large 
partial factors.

For some exceptional structures, it is interesting to carry out cyclic load-
ings in compression or in tension. If the load applied to the pile is either 
in compression or in tension, then it is described as one-way loading in 
compression or in tension. If the applied load is successively in compression 
and in tension, then it is described as two-way loading. These tests allow 
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assessing pile displacement as a function of loading cycles, and the possible 
decrease of the pile bearing capacity with cycles (SOLCYP, 2017).

In the case of an instrumented pile, the measurements down the shaft 
provide the distribution of axial forces along the pile (see Figure 67d). The 
mobilisation curves of shaft friction (load transfer t-z curves) corresponding 
to the various ground layers can be plotted from the forces and deforma-
tions at a given level (see Figure 67e).

3.2.4 � Design of bearing capacity from the (M)PMT

The design method recommended for the Ménard pressuremeter (M)PMT 
test by standard NF P 94-262 (AFNOR, 2012) is detailed below. For hard 
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Figure 67 � Example of standard curves obtained from a pile static load test.
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soils, the method assumes that the limit pressures pl have been effectively 
measured during the tests.

3.2.4.1 � Calculation of tip resistance Rb

The tip resistance Rb is determined by the relation

	 =R k A pb p b le
* 	

where
ple

*  is the equivalent net limit pressure, as defined in §3.2.1.3;
Ab the area of the pile tip; and
kp the tip bearing factor, determined using the following relation:

	 ∫ ( )= + − 




 =

−
k min 1 k 1

D
5B

;k with D
1

p
p z dzp pmax

ef
pmax ef

le
* l

*

D 10B

D

	

The maximum values of the tip factor kpmax are given in Table 16. They 
depend on the pile classes (see Table 15 of §3.1.4), as well as on the con-
ventional categories of soils, which are identical to the ones proposed for 
shallow foundations (see Tables 4 and 5 of §2.2.3).

For steel profiles (piles from classes 5–7), the area of the pile tip Ab is 
determined using the indications of Figure 68. If these piles are executed 
with vibrodriving instead of driving, the factor kp must be reduced by 50%. 

Table 16  �Value of the pressuremeter tip bearing factor kpmax for a relative 
embedment Def/B ≥ 5

Ground
Clays %  

CaCO3 < 30% silts 
intermediate soils

Intermediate  
soils sands  

gravels Chalks

Marls and  
marly  

limestones

Weathered or  
fragmented  

rocksa
Class of  
pile

1 1.15 1.10 1.45 1.45 1.45
2 1.30 1.65 1.60 1.60 2.00
3 1.55 3.20 2.35 2.10 2.10
4 1.35 3.10 2.30 2.30 2.30
5 1.00 1.90 1.40 1.40 1.20
6 1.20 3.10 1.70 2.20 1.50
7 1.00 1.00 1.00 1.00 1.20
8 1.15 1.10 1.45 1.45 1.45

For piles of classes 5–7 executed with vibrodriving instead of driving, it is appropriate to reduce the 
factor kp by 50%.
a	 Rock mechanics approaches have also to be applied, if relevant.
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3.2.4.2 � Calculation of friction resistance Rs

The friction resistance Rs is determined by the relation:

	 ∫ ( )=R P q z dzs s
0

h

	

In this expression, P is the pile perimeter, and qs(z) is the limit unit shaft 
friction at level z.

The height h is that where shaft friction actually occurs. It is the pile 
length into the ground, reduced by the following:

•	 The part of the pile which has a double casing; and
•	 The part of the pile where potential negative friction may occur 

(§3.2.9).

The shaft friction qs is determined with the following relation:

( )( )= α = + −−
−q min( ;q ) with f a.p b 1 es pile soil smax soil 1

* c.p1
*

	

The parameters a, b, c and α −pile soil are given in Tables 17 and 18. The param-
eter α −pile soil depends on both the soil types and the pile categories, whereas 
the function fsoil, defined by parameters a, b and c, depends only on the soil 
types. The function fsoil is also shown in Figure 69.

Table 19 gives the maximum values of unit shaft friction qsmax. These 
values are common to the pressuremeter and to the penetrometer methods 
(see next section).

Figure 68 � Area and perimeter to be considered for steel profiles (piles of classes 5–7).
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For steel profiles (piles of classes 5–7), the pile perimeter P is determined 
by using the indications of Figure 68.

3.2.5 � Bearing capacity design from the CPT

The design method recommended for the CPT by standard NF P 94-262 
(AFNOR, 2012) is detailed below. For categories of soils for which penetra-
tion refusal occurs, the method obviously produces a cautious estimate of 
the bearing capacity.

Figure 69 � Curves fsoil for the pressuremeter method.

Table 17  �Value of the parameters a, b and c for the pressuremeter method (pl* 
and fsoil in MPa)

Type of  
soil

Clays %  
CaCO3 < 30%  

silts

Intermediate  
soils sands  

gravels Chalks

Marls and  
marly  

limestones

Weathered or  
fragmented  

rocks

A 0.003 0.010 0.007 0.008 0.010
B 0.04 0.06 0.07 0.08 0.08
C 3.5 1.2 1.3 3.0 3.0
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3.2.5.1 � Calculation of tip resistance Rb

The tip resistance Rb is given by the formula

	 =R k A qb c b ce	

where
qce is the equivalent cone resistance, as defined in §3.2.1.3;
Ab the area of the pile tip and
kc the tip bearing factor, determined using the following relation:

∫[ ] ( )= + −



 =

−
k min k k k

D
5B

;k  with D
1

q
q z dzc cmin cmax cmin

ef
cmax ef

ce
cc

D 10B

D

Table 18  �Values of the parameter αpile-soil for the pressuremeter method

Category  
of piles

Clays %  
CaCO3 < 30%  

silts

Intermediate  
soils sands  

gravels Chalks

Marls and  
marly  

limestones

Weathered or  
fragmented  

rocks

1 1.1 1 1.8 1.5 1.6
2 1.25 1.4 1.8 1.5 1.6
3 0.7 0.6 0.5 0.9 –
4 1.25 1.4 1.7 1.4 –
5 1.3 – – – –
6 1.5 1.8 2.1 1.6 1.6
7 1.9 2.1 1.7 1.7 –
8 0.6 0.6 1 0.7 –
9 1.1 1.4 1 0.9 –
10 2 2.1 1.9 1.6 –
11 1.2 1.4 2.1 1 –
12 0.8 1.2 0.4 0.9 –
13 1.2 0.7 0.5 1 1.0
14 1.1 1 0.4 1 0.9
15 2.7 2.9 2.4 2.4 2.4
16 0.9 0.8 0.4 1.2 1.2
17 – – – – –
18 – – – – –
19 2.7 2.9 2.4 2.4 2.4
20 3.4 3.8 3.1 3.1 3.1

For piles of categories 13, 14, 15 and 16 executed with vibrodriving instead of driving, it is appropriate 
to reduce the values of qs by 30%.
For piles with lengths greater than 25 m, the unit shaft friction qs is divided by two for the sections of 
the piles located at more than 25 m above the tip.
For micropiles and piles from categories 17 and 18, it is appropriate to consider the values of unit shaft 
friction from piles executed in a similar manner.
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The minimum values of tip factor kcmin are as follows:

•	 For clays and silts: kcmin = 0.30;
•	 For intermediate soils: kcmin = 0.20;
•	 For sands and gravels: kcmin = 0.10;
•	 For chalk, marls and weathered and fragmented rocks: kcmin = 0.15.

The maximum values of tip factor kcmax are given in Table 20. They depend 
on the pile classes (see Table 15 of §3.1.4), as well as on the conventional 
soil categories, which are identical to the ones proposed for shallow founda-
tions (see Tables 4 and 5 of §2.2.3).

For steel profiles (piles from classes 5–7), the area of the pile tip Ab is 
determined by using the indications of Figure 68. If these piles are exe-
cuted with vibrodriving instead of driving, the factor kc must be reduced 
by 50%.

Table 19  �Maximum values of the limit unit shaft friction qsmax for the pressuremeter 
and penetrometer methods

Category  
of piles

qsmax in kPa

Clays %  
CaCO3 < 30%  

silts
Intermediate  

soils

Sands  
and  

gravels Chalks

Marls and  
marly  

limestones

Weathered or  
fragmented  

rocks

1 90 90 90 200 170 200
2 90 90 90 200 170 200
3 50 50 50 50 90 –
4 90 90 90 170 170 –
5 90 90 – – – –
6 90 90 170 200 200 200
7 130 130 200 170 170 –
8 50 50 90 90 90 –
9 130 130 130 90 90 –
10 170 170 260 200 200 –
11 90 90 130 260 200 –
12 90 90 90 50 90 –
13 90 90 50 50 90 90
14 90 90 130 50 90 90
15 200 200 380 320 320 320
16 90 90 50 50 90 90
17 – – – – – –
18 – – – – – –
19 200 200 380 320 320 320
20 200 200 440 440 440 500
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3.2.5.2 � Design of friction resistance Rs

The friction resistance Rs is determined by the relation

	 ∫ ( )=R P q z dzs s
0

h

	

In this expression, P is the pile perimeter, and qs(z) is the limit unit friction 
at level z.

The height h is that where shaft friction actually occurs. It is the pile 
length into the ground, reduced by the following:

•	 The part of the pile which has a double casing; and
•	 The part of the pile where potential negative friction may occur 

(§3.2.9).

Shaft friction qs is determined by the following relation:

	 ( )( )= α = + −−
−q min( f ;q ) with f a.q b 1 es pile soil soil smax soil c

c.qc 	

The parameters a, b, c and αpile-soil are given in Tables 21 and 22. The 
parameter αpile-soil depends on both the soil types and on the pile categories, 
whereas the function fsoil defined by parameters a, b and c depends only on 
the soil types. The function fsoil is also shown in Figure 70.

Table 19 gives the maximum values of the unit shaft friction qsmax. These 
values are shared by both the pressuremeter and penetrometer methods.

Table 20  �Value of the penetrometer bearing capacity factor kcmax for a relative 
embedment Def/B ≥ 5

Ground
Clays %  

CaCO3 < 30%  
silts

Intermediate  
soils

Sands  
and  

gravels Chalks

Marls and  
marly  

limestones

Weathered or  
fragmented  

rocksa
Class of  
pile

1 0.40 0.30 0.20 0.30 0.30 0.30
2 0.45 0.30 0.25 0.30 0.30 0.30
3 0.50 0.50 0.50 0.40 0.35 0.35
4 0.45 0.40 0.40 0.40 0.40 0.40
5 0.35 0.30 0.25 0.15 0.15 0.15
6 0.40 0.40 0.40 0.35 0.20 0.20
7 0.35 0.25 0.15 0.15 0.15 0.15
8 0.45 0.30 0.20 0.30 0.30 0.25

For piles of classes 5, 6 and 7 executed with vibrodriving instead of driving, it is appropriate to reduce 
the factor kp by 50%.
a	 Rock mechanics approaches have also to be applied, if relevant.
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Figure 70 � fsoil curves for the penetrometer method.

Table 21  �Values of parameters a, b and c for the penetrometer method  
(qc and fsoil in MPa)

Type  
of soil

Clays %  
CaCO3 < 30%  

silts
Intermediate  

soil

Sands  
and  

gravels Chalks

Marls and  
marly  

limestones

Weathered or  
fragmented  

rocks

a 0.0018 0.0015 0.0012 0.0015 0.0015 0.0015
b 0.10 0.10 0.10 0.10 0.10 0.10
c 0.40 0.25 0.15 0.25 0.25 0.25

Table 22  �Values of parameter αpile-soil for the penetrometer method

Category  
of piles

Types of soils

Clays %  
CaCO3 < 30%  

silts
Intermediate  

soil

Sands  
and  

gravels Chalks

Marls and  
marly  

limestones

Weathered or  
fragmented  

rocks

1 0.55 0.65 0.70 0.80 1.40 1.50
2 0.65 0.80 1.00 0.80 1.40 1.50
3 0.35 0.40 0.40 0.25 0.85 –
4 0.65 0.80 1.00 0.75 1.30 –
5 0.70 0.85 – – – –
6 0.75 0.90 1.25 0.95 1.50 1.50

(Continued)

@Seismicisolation@Seismicisolation

https://telegram.me/seismicisolation


Deep Foundations  105

For steel profiles (piles of classes 5–7), the pile perimeter P is determined 
according to the indications of Figure 68.

3.2.6 � Using the results of dynamic soil tests

3.2.6.1 � Using results from dynamic penetration

The dynamic penetrometer test is easy and inexpensive and, consequently, 
may constitute an attractive solution. However, using it for the prediction 
of the bearing capacity of piles not only raises issues about pile driving (see 
following paragraph), but also problems of size effects.

Applying a driving formula to a dynamic penetration test allows obtain-
ing the dynamic resistance qd (see Amar and Jézéquel, 1998). The Dutch 
formula can be applied for qd values below 10–15 MPa (beyond this, it 
appears as being optimistic). This leads to

	 =
+ ′





q

MgH
A e

M
M M

d
d

	

where Ad is the area of the penetrometer tip. The remaining variables are 
defined in §3.2.7

Table 22 (Continued)  �Values of parameter αpile-soil for the penetrometer method

Category  
of piles

Types of soils

Clays %  
CaCO3 < 30%  

silts
Intermediate  

soil

Sands  
and  

gravels Chalks

Marls and  
marly  

limestones

Weathered or  
fragmented  

rocks

7 0.95 1.15 1.45 0.75 1.60 –
8 0.30 0.35 0.40 0.45 0.65 –
9 0.55 0.65 1.00 0.45 0.85 –
10 1.00 1.20 1.45 0.85 1.50 –
11 0.60 0.70 1.00 0.95 0.95 –
12 0.40 0.50 0.85 0.20 0.85 –
13 0.60 0.70 0.50 0.25 0.95 0.95
14 0.55 0.65 0.70 0.20 0.95 0.85
15 1.35 1.60 2.00 1.10 2.25 2.25
16 0.45 0.55 0.55 0.20 1.25 1.15
17 – – – – – –
18 – – – – – –
19 1.35 1.60 2.00 1.10 2.25 2.25
20 1.70 2.05 2.65 1.40 2.90 2.90

For piles of categories 13, 14, 15 and 16 executed with vibrodriving instead of driving, it is appropriate 
to reduce the values of qs by 30%.
For piles with lengths greater than 25 m, the unit shaft friction qs is divided by two for the sections of 
the piles located more than 25 m above the tip.
For micropiles and piles from categories 17 and 18, it is appropriate to consider the values of unit shaft 
friction from pile methods that are executed in a similar manner.
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The bearing capacity of a pile is deduced from qd:

	 =R A qc b d	

where Ab is the area of the pile tip.
This method can, at best, produce an order of magnitude of the pile bear-

ing capacity Rc and in the sole case of a driven pile.
The attractiveness of using qd lies mainly in extrapolating the results pre-

viously obtained from a test pile under a static loading to other piles of the 
same site.

The dynamic penetrometer test made with an enlarged tip and an injec-
tion of bentonite (to reduce friction between the ground and the rods) leads 
to relatively reliable qd values, which are correlated to the tip resistance 
(or cone resistance) qc of the cone penetrometer and to the limit pressure 
pl obtained with the pressuremeter (Amar et al., 1983). These results then 
allow assessing estimations of the bearing capacity from qd. The method 
would consist, using such correlations, in deducing, from the profiles 
obtained with the dynamic penetrometer, profiles of limit pressure pl or of 
tip resistance qc and then to apply the pressuremeter or penetrometer rules 
(§3.2.4 and §3.2.5, respectively). This method is acceptable notably when 
results from a static load test carried out on the site are available, which 
allows calibrating the calculation.

3.2.6.2 � Using penetration tests made with a SPT sampler

The standard penetration test, or SPT, originating from the USA, is probably 
the most widespread in-situ test currently in worldwide use. It notably gives 
the number of blows N required to obtain a 30 cm penetration of a split spoon 
sampler. Interpreting N in terms of reliable geotechnical parameters proves to 
be nearly impossible, however, and the use of this device remains controversial.

At best, and for sands, correlations may be used for a preliminary assess-
ment. Meyerhof (1976) proposes the following ones:

•	 For piles driven in sands:
•	 Limit tip resistance:

= ≤q
40N D

B
400N   (in kPa)b

1
1 	

N1 being the corrected number of blows for a vertical effective 
pressure of 100 kPa;
D the penetration length of the pile; and
B the pile diameter;

•	 Shaft friction:

( )=q 2N   in kPas 1 	
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•	 For piles bored in sands:
•	 The values of qb to be divided by about 3; and
•	 The values of qs to be divided by about 2.

3.2.7 � Predicting the bearing capacity 
from pile driving

3.2.7.1 � Driving tests

Interpreting driving tests by using simple relations, called “driving formulas”, 
was once widespread. Such driving formulas are no longer frequently used. 
Their purpose is only to carry out a verification for the following cases:

•	 Interpreting measurements when installing driven piles; and
•	 Interpreting dynamic penetration tests §3.2.6.1.

It is not advised to use only driving formulas to design a foundation on 
piles. The test is described in Figure 71.

Under the hammer blow (mass M falling from height H), the pile pen-
etration (having a mass M′ with the driving accessories: helmet, etc.) is the 
refusal “e” (the average value over 10 hammer blows is selected).

Assuming that the energy transmitted by the fall of the hammer is equal to 
the energy required to drive the pile by the amount “e”, the following relation 
is obtained:

	 =R .e MgHc 	

where
g is the acceleration due to gravity; and
Rc is the compression resistance (bearing capacity of the pile).

e  Set H  Drop height M’  Mass of the equipements
C  Helmet M  Mass of the hammer P    Pile

Figure 71 � Driving of a pile – principle.
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This formula has been modified to take into account the various energy 
losses, and numerous expressions are proposed. The two most well-known 
are the following:

the Dutch formula:

	 =
+ ′





R

MgH
e

M
M M

c 	

and Crandall’s formula:

	 =
+ + ′





R

2MgH
2e e

M
M M

c
1

	

For the Dutch formula, a safety factor equal to 6 is applied. In the case of 
Crandall’s formula, which additionally takes into account the elastic pile 
shortening e1, this factor is equal to 4. These lead to an allowable load 
which corresponds to the allowable load under characteristic combinations 
(SLS) in the current theory of limit states.

Other methods are more widely used today, such as the “Case method” 
(Goble et al., 1975), as well as methods based on the wave propagation 
equation. The “Case method” allows calculating the bearing capacity of the 
pile by deducing from the resistance measured during the driving test the 
resistance dissipated in the ground, which is proportional to the penetration 
velocity of the pile tip. It is described in greater detail in the following sec-
tion as a simplification of the wave propagation analysis.

3.2.7.2 � Wave propagation analysis

One of the biggest drawbacks of driving formulas is that they consider the 
pile as being a rigid body. In fact, the blow sends waves that propagate with 
a finite velocity within the pile. These waves cause a vertical displacement s, 
function of time t and of depth z, following the wave equation:

	
( )∂

∂
− ∂

∂
=1

c
s

t
s

z
R s,t

EA2

2

2

2

2 	

where
c = √E/ρ is the wave velocity in the pile, E its Young’s modulus and ρ its 

unit mass;
A is the area of the pile cross-section; and
R(s, t) the axial reaction (friction) of the ground, per unit length of pile.

In the case where the waves propagate in the same direction, and where the 
ground friction R(s, t) is equal to zero (free standing pile), the normal force 
N and the particle velocity v are proportional:
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	 = ± = − ∂
∂

= ∂
∂

N Zv N EA
s
z

 v
s
t
	

where Z = EA/c for the mechanical impedance.
The reaction forces from shaft friction generate compression waves rising 

to the pile head and tension waves that superpose on the compression waves 
propagating to the tip. Normal forces and particle velocities are then no 
longer proportional. Furthermore, a wave is reflected from the tip, function 
of the reaction mobilised under the tip.

The differences at pile head between the force signals F(t) = N(0,t) and the 
particle velocity v(0,t) form the basis of the methods currently used to assess 
the resisting forces opposed by the ground to pile driving.

The force signal F(t) is measured with strain gauges. The particle velocity 
signal v(0,t) can be determined either:

•	 With an optical sensor, by measuring the motion signal s(0,t), which 
is then derived as a function of time; or

•	 With an accelerometer, by measuring the acceleration signal a(0,t), 
which is then integrated as a function of time.

In fact, it is preferable to integrate the signal a(0,t) rather than to derive 
the signal s(0,t), since the accuracy will be higher. The best outcome is 
obtained by using both measurements [s(0,t) and a(0,t)], because comparing 
the results will allow calibrating the method.

From these general measuring principles, several theoretical interpreta-
tions are then possible, depending on the complexity of the ground-pile 
interactions taken into account (shaft friction and tip stress). The major dif-
ficulty when applying the wave propagation equation to predict the bearing 
capacity of foundations is the derivation of the long duration static forces 
from the dynamic forces. This step is a difficult one for various reasons 
(Corté, 1986). Caution should be used, and any attempt to predict the bear-
ing capacity from the pile driving analysis should be based at least on cali-
bration with a static load test.

The results of the analysis are highly useful to:

•	 Calibrate driving energy;
•	 Check the refusal criterion (under the driving); and
•	 Check the pile integrity.

In the case of the simple rigid-plastic law for ground-pile interaction (shaft 
friction and reaction under the tip being fully mobilised when the wave 
arrives, and remaining constant), it can be demonstrated that

	 = 



 − 



R F 0,

2D
c

Zv 0,
2D
c

s, d 	
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  ( ) ( )= + = + +



 + − +



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





R R R

1
2

F 0,t F 0,t
2D
c

Zv 0,t Zv 0,t
2D
c

d s, d b, d
* * * * 	

where
Rd is the total dynamic resistance;
Rs, d is the dynamic friction resistance;
Rp, d is the tip dynamic resistance;
t* is the time reference; and
2D/c is the time required by the waves to reach the tip and return.

This rigid-plastic approach is notably used in the “Case method” (Goble 
et al., 1975). The total dynamic resistance Rd is broken down into two terms:

	 ( )= + ⋅ ⋅R R J Z v D, td
* 	

The term R corresponds to the pile bearing capacity Rc, while the term 
J · Z · v(D, t*) represents a damping force. J is a damping parameter with a 
value that usually varies between 0.05 and 1.10, and v(D, t*) is the settle-
ment velocity of the pile tip:

	 ( ) ( )= −v D, t 2v 0, t
R
Z

* * d 	

Resisting forces are a function of pile displacement. Taking this into account 
requires using interaction models of the t-z type (see §3.2.8). The software 
for analysing wave equations uses the discrete “spring-mass” model, with 
viscous elasto-plastic springs (the first analysis was proposed by Smith, 
1960). The CAPWAP method (Case pile wave analysis, Goble et al., 1975) 
is a well-known example using the wave equation to assess static resisting 
forces (shaft frictions and tip forces) from the comparison between the force 
signal recorded at the head and the results produced by the model.

3.2.8 � Settlement of an isolated pile (t-z method)

The settlement of an isolated pile under traditional working loads (quasi-
permanent combinations, or characteristic ones) is generally low but is 
necessary for the assessment of the stiffnesses when soil-structure interac-
tion problems have to be (see §4.2). In some cases of pile groups, assess-
ing the settlement as such may also be necessary and requires the correct 
estimate of the settlement of an isolated pile. In the case of composite 
footing-pile  foundations or in the case of soil masses reinforced by rigid 
inclusions, the displacement design methods also require predicting the 
settlement of the piles of the foundation.

The interpretation of the results of the full-scale load tests carried out 
by the laboratories of Ponts et Chaussées shows that the head settlement of 
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piles only rarely exceeds a centimetre under working loads for a range of 
piles with lengths varying from 6 to 45 m and with diameters B from 0.30 
to 1.50 m (LCPC-SETRA, 1985). From these results, the following simple 
rules are proposed to assess, for common cases, the settlement under a ref-
erence load equal to 0.7 Rc, cr (or 0.7 Rt, cr) where Rc, cr (or Rt, cr) is the creep 
limit load defined in §3.2.1.2.

•	 For bored piles sref = 0.006 B (where extreme values are 0.003B and 
0.010 B); and

•	 For driven piles sref = 0.009 B (where extreme values are 0.008 and 
0.012 B).

When piles have a significant free part (column piles and double casing), it 
is appropriate to correct these values by adding the corresponding elastic 
shortening.

The head settlement of an isolated pile can be more accurately calculated 
if the friction mobilisation laws τ(s) as a function of the vertical displacement 
s are known down the whole pile as well as its tip stress mobilisation law 
q(sb) as a function of the vertical displacement sb (“t-z” load transfer curve 
method). These laws can be derived from the pressuremeter modulus EM, the 
limit shaft friction qs and the tip unit resistance qb (as calculated in §3.2.3–
§3.2.5). The French practice for the assessment of pile settlement is based on 
the use of the non-linear Frank and Zhao laws presented in Figure 72.

For circular piles of diameter B, the following values for the parameters 
kt and kq are derived from the results of the pile load tests:

•	 For bored and driven piles in fine soils and soft rocks:

= =k 2.0E B andk 11E Bt M q M 	

•	 And for bored and driven piles in granular soils:

= =k 0.8E B andk 4.8E Bt M q M 	

Figure 72 � Non-linear t-z laws, from Frank and Zhao (1982).

@Seismicisolation@Seismicisolation

https://telegram.me/seismicisolation


112  Design of Shallow and Deep Foundations

More recent research attempting to better take non-linearities into account 
confirms these values (Abchir et al., 2016).

This method provides satisfying results for applied loads that do not 
exceed the creep limit load Rc, cr or Rt, cr (§3.2.1.2).

Load transfer functions are easily used together with the equilibrium 
equation describing the axial behaviour of a pile. In this equation, the pile is 
a beam in tension/compression, interacting with the ground represented by 
non-linear axial springs corresponding to the t-z functions (see Figure 73).

The local (axial) equilibrium of the pile is governed by the following dif-
ferential equation:

	 ( )− ⋅ τ =E A
d s
dz

P s 0p p

2

2 	

with Ep, Ap and P being, respectively, the Young’s modulus of the pile, the 
area of its cross-section and its perimeter.

The previous equation requires the following head and tip boundary 
conditions:

	 ( ) ( ) ( )= = = =ds
dz

z 0
F

E A
 

ds
dz

z D
A q s
E Ap p

b b

p p
	

In practice, this equation is solved by the finite difference method or finite 
element method (see, for example, the Foxta software, by Cuira and Simon, 
2008b). The method of transfer matrices can also be used with the closed-
form solution in each homogeneous layer of the soil-pile system (Frank and 
Zhao, 1982).

Figure 73 � Principle of the t-z method.
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Theoretical studies in isotropic linear elasticity have been carried out by 
Poulos and Davis (1980) in order to provide charts for the estimate of pile 
settlement.

Moreover, other theoretical studies have established relations expressing 
kt and kq as a function of the shear modulus G and Poisson’s ratio ν of the 
ground (Frank, 1984):

	 ( )=
+





=
− ν

k
2G

B 1 ln
D
B

 k
8G

πB 1 I
t q 	

where B and D are, respectively, the pile diameter and the pile length 
and I an embedment factor taken equal to 0.75 (for a surface founda-
tion, I = 1).

The difficulty of these elastic methods lies in choosing the shear modu-
lus G to be taken into account. The latter can be determined from cor-
relations with soil parameters (undrained cohesion cu in the case of clays 
and density index ID in the case of sands) or, which is even better, from a 
full-scale pile load test. The correlations given in §2.3.3 can also be used 
with caution.

3.2.9 � Assessing negative friction (downdrag)

This phenomenon is described in §1.1.4. It must be taken into account in 
the case of an isolated pile, or a group of piles, subjected to vertical ground 
settlement (under the effect of a backfill, the lowering of the groundwater 
table or other construction with shallow foundations).

3.2.9.1 � Limit unit negative friction qsn

In negative friction zones (where the ground settlement is higher than the 
pile settlement), the unit limit value of the negative friction qsn may differ 
from the positive limit shaft friction qs defined in §3.2.4.2 and §3.2.5.2 for 
the design of bearing capacity. 

Standard NF P 94-262 (AFNOR, 2012) recalls the usual empirical rela-
tion linking qsn to the effective vertical stress (in the ground) in contact with 
the pile ′σv:

	 ( ) ( ) ( )= δ ⋅ ′σq z Ktan zsn v

where Ktanδ is an empirical factor that depends on the type of soil and on 
the type of pile. Its values are given in Table 23.

In order to reduce negative friction, coating piles with bitumen, at 
least in fine soils, can be used. In this case, Ktanδ is taken equal to 0.05. 
Alternatively, double casings can also be installed.
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The vertical stress at the contact of the pile v′σ  results from complex soil/
pile interaction mechanisms and is, strictly speaking, lower than, or equal 
to, the vertical stress 1′σ  prevailing in the ground in the absence of the pile, 
taking into account the effect of possible surcharges. 1′σ  is expressed as

	 z z z1 v0( ) ( ) ( )′σ = ′σ + ∆ ′σ 	

where zv0 ( )′σ  is the initial vertical effective stress, and Δσ′(z) is the surcharge 
pressure causing the ground settlement.

As a first approach, it is acceptable to take σ′v ~ σ′1.
In fact, v′σ  ≤  1′σ  because of the influence of the negative shaft friction at 

the pile-soil interface. Annex 1 gives a traditional procedure used in French 
practice to take into account this influence (Combarieu, 1985).

3.2.9.2 � Simplified approach to assess 
maximum negative friction

In the absence of a more sophisticated approach that takes the soil/pile 
interaction effects into account (see §3.2.9.3), an upper bound of the total 
negative friction can be assessed. It is obtained by considering the limit unit 
negative friction qsn over the whole soft layer and the layers above it (see 
Figure 74):

	 ∫ ( )=
−

G   Pq z dzsn
max

sn
H

D

	

where P is the pile perimeter, D is the thickness of the soft soil and H 
the thickness of overlying backfill. In the example of Figure  74, where 
the groundwater table is at the top of the soft layer, assuming v′σ  =  1′σ , the 
following is obtained for an infinite surcharge γrH:

	 G P Ktan
H
2

Ktan HD '
D
2

sn
max

r r

2

S r

2

1
( ) ( )= δ γ + δ γ + γ


















	

Table 23  �Values of the coefficient Ktanδ (MELT, 1993)

Cased bored piles Bored piles Driven piles

Peats Organic soils 0.10 0.15 0.20
Clays and  
silts

Soft 0.10 0.15 0.20
Firm and stiff 0.15 0.20 0.30

Sands and  
gravels

Very loose 0.35 (all piles)
Loose 0.45 (all piles)
Compact 1.00 (all piles)
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3.2.9.3 � Displacement approach (generalised t-z method)

The negative friction acting on an isolated pile, or a group of piles, can be 
more precisely assessed by examining the difference between pile and soil 
settlement. The soil settlement is noted w(z) and called the “free” soil settle-
ment. It corresponds to a settlement that would be obtained:

•	 At the location of the pile;
•	 In the absence of the pile; or
•	 After the pile execution (it is a delayed settlement).

This settlement can be assessed using direct or indirect methods of settle-
ment calculation, such as the ones described in §2.3.2–§2.3.4.

The pile settlement s(z) must therefore be established in such a way that:

•	 The “negative” friction (where w > s),
•	 The “positive” friction (where w < s),
•	 The axial force at the head F, and
•	 The tip force Abq

are in equilibrium.
By extending the principle of the t-z method presented in §3.2.8, it is 

assumed that the shaft friction along a pile subjected to the soil settlement 
w(z) is, at a given depth z, a function of the difference Δs = s(z) – w(z), 
between the equilibrium pile settlement s(z) and the free soil settlement w(z) 
(Frank et al., 1991). On the curves of Figure 72, s is replaced by Δs, and the 

Figure 74 � Simplified diagram for the assessment of maximum negative friction.
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friction limits are qs and qsn, respectively, for the positive and negative shaft 
friction (see Figure 75).

The equilibrium equation of the pile then becomes

	 E A
d s
dz

P s w 0p p

2

2 ( )− ⋅ τ − = 	

When the soil settlement w(z) is not equal to zero at the level of the pile tip, 
the tip stress is a function of the difference sb – wb between the pile tip and 
soil displacement with wb = w(z = D) (see Figure 76).

τ

qs/2

qs

Kt

Kt/5

Δs = s – w

Kt

Kt /5
qsn/2

qsn

0

Figure 75 � Extension of the Frank and Zhao’s t-z law in the case of a pile subjected to a 
soil settlement w(z) – shaft friction component.

Figure 76 � Extension of the Frank and Zhao’s t-z law in the case of a pile subjected to a 
soil settlement w(z) – tip component.
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Note that in this model (see Figure 77)

•	 It is the mobilised negative friction that is calculated (and not only the 
limit one);

•	 The depth of the neutral plane hc is a result and not an input; and
•	 The axial force N(z) is maximum at depth z = hc.

The total negative friction Gsn is written as follows:

	 ( ) ( )− = −G =N h N 0 N Fsn c max 	

3.3 � LATERALLY LOADED ISOLATED PILE

The developments below concern the case of a vertical pile. They remain 
valid for an inclined pile with a load having a component normal to its axis 
not equal to zero. The specific case of barrettes is discussed in §3.3.3.5.

3.3.1 � Conventional rigid-plastic theory

The conventional design of laterally loaded piles assumes that the whole 
ground around the pile is in a state of failure (in this model, the ground 
reaction pressure is equal to the ultimate ground pressure). The ultimate 
load Hu is calculated from ground pressure diagrams such as the one shown 
in Figure 78 for a mooring pile. A safety factor (2 or 3) is then applied to 
obtain the allowable load.

Figure 77 � Settlements and axial force distributions for a pile subjected to negative fric-
tion (generalised t-z method).
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The ultimate pressure pu is calculated from the ground shearing resis-
tance parameters c and φ.

These methods do not correspond to the actual behaviour of laterally 
loaded piles and do not provide displacement. Nevertheless, they can be 
useful to define a more or less conventional limit load.

It should be noted that, unlike for axially loaded piles, the ground cannot 
be in an ultimate state over the whole pile length (see Figure 78).

The method proposed in the following paragraphs is a displacement 
calculation based on Winkler’s theory of the subgrade reaction modulus.

3.3.2 � Subgrade reaction modulus 
method (p-y method)

3.3.2.1 � Principle. Definitions

When a vertical pile is subjected to a horizontal force T0 and/or a moment 
M0, the stability is ensured through the mobilisation of the ground lateral 
reaction pressures on the pile shaft (see Figure 79).

Figure 78 � Ultimate horizontal force at pile head (case of a mooring pile).

Figure 79 � Pile mobilising the lateral ground reaction.
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At a given point, the soil reaction P is a function of displacement y, 
P being the force distributed along the pile or reaction per unit length 
(in kN/m or MN/m) (to be distinguished from the reaction pressure p (in 
kPa or MPa), which is conventionally defined as p = P/B, B being the front 
width of the pile, or its diameter).

The curve P(y) is called the ground reaction curve (see Figure 80), and the 
subgrade reaction modulus Es (in kPa or MPa) is defined by the slope

	 =E
P
y

s 	

The conventional subgrade reaction coefficient ks is given by ks = p/y 
(in kPa/m or MPa/m),

and thus,

	 =E k Bs s 	

The subgrade reaction modulus Es (or subgrade reaction coefficient ks) is 
constant only for a linear behaviour of the ground. For large displacement, 
a limit reaction is reached and it is called the ultimate ground reaction Pu.

3.3.2.2 � Taking into account lateral thrusts

This general case is illustrated in Figure 81. The isolated pile is subjected 
on the one hand to lateral thrusts along its shaft and on the other hand to 
loads (T0, M0) at the head (at z = 0). The lateral thrusts originate from the 
horizontal displacement of the soft soil under the backfill (§1.1.3). In the 
absence of the pile, the soil displacement, function of the level z, is g(z). The 
function g(z) is called “free” soil displacement. Pile displacement y(z) must 
be established in such a way that

•	 The soil reaction pressures (where y > g),
•	 The soil active pressures (where y < g),

Figure 80 � Reaction curve P(y).
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•	 The head forces M0, T0, and
•	 The tip forces Mp, Tp

are in equilibrium.
By extending the subgrade reaction modulus theory applied to laterally 

loaded piles embedded in a soil layer for which free displacement is equal 
to zero (§3.3.2.1), it is assumed that the forces on the pile subjected to 
lateral ground thrusts are, at a given level z, a function of the difference: 
Δy = y(z) − g(z) between the equilibrium pile displacement y and the “free” 
soil displacement g(z) (Bourges et al., 1980).

Thus, the soil reaction becomes

	 ( ) ( )= − P E y z g zs 	

On the curve of Figure 80, y is thus replaced by Δy.
This approach is also used to account for the kinematic effects under 

seismic loads. The function g(z) then represents the free field kinematic dis-
placement (see §1.1.7)

3.3.2.3 � Equilibrium equation

If M is the bending moment of a pile at level z, T the shear force, P the 
ground reaction, Ep the Young’s modulus of the pile and Ip the inertia 
moment, the equations of thin beams (Euler-Bernoulli’s theory) lead to the 
following relations (with the sign convention given in Figure 82):

	 = = = −M E I
d y
dz

  T
dM
dz

  P
dT
dz

p p

2

2 	

Figure 81 � Free soil displacement g(z) and pile displacement y(z).
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Combining these three relations leads to the following equilibrium equation:

	 ( )+ =E I
d y
dz

P z 0p p

4

4 	

In the case of the subgrade reaction moduli method:

	 ( ) ( ) ( ) ( ) ( )= ⋅ = ⋅ − P z E y z  or P z E y z g zs s 	

In general cases, the reaction curve varies with depth z. The subgrade reac-
tion modulus Es is therefore a function of depth z and of displacement y or 
of the difference in displacement Δy: Es (z, y or Δy).

Solving the differential equation that governs the lateral equilibrium of 
the pile requires knowing the following:

•	 The function Es (z, y or Δy), i.e., the subgrade reaction curve (P, y 
or Δy) at depth z;

•	 When relevant, the function g(z) representing the “free” soil displace-
ment at depth z (when g(z) = 0, the usual case of a head lateral loads is 
obtained, without lateral thrusts); and

•	 Boundary conditions at pile head and tip.

Each of these points is further examined in §3.3.3–§3.3.5.

Figure 82 � Pile mobilising the ground lateral reaction: sign convention.
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3.3.2.4 � Practical solution

3.3.2.4.1 � Case of a linear and homogeneous ground, without lateral thrusts

The reaction curve is a straight line with a constant slope Es. It is indepen-
dent of z. The lateral equilibrium equation becomes

	 + =E I
d y
dz

E y 0p p

4

4 s 	

This is a homogeneous 4th order differential equation, having the following 
general solution yg:

	 ( ) = +





+ +





−y z e a cos
z
l

a sin
z
l

e a cos
z
l

a sin
z
l

g
z/l

1
0

2
0

z/l
3

0
4

0

0 0 	

with
ai (i = 1 to 4) integration constants determined from the boundary condi-

tions (two conditions at the head and two at the tip);
l0 transfer length (or “elastic length” given by

	 =l
4E I

E
0

p p

s

4 	

For a circular pile of diameter B:

	 = = ⋅I
πB
64

 and  l
B
2

πE
E

p

4

0
p

s

4 	

For a barrette of frontal width B and length L (direction y):

	 = = ⋅I
BL
12

 and  l L 
BE
3LE

p

3

0
p

s

4 	

The transfer length accounts for the relative pile-soil stiffness. A pile is said 
to be infinitely rigid (or “short” relative to the ground when D ≤ l0. A pile is 
considered as being flexible (or “long”) relative to the ground when, in prac-
tice, D ≥ 3l0, or even D ≥ 2l0. For a circular concrete pile, l0 varies between 
2B and 3B.

From the solution yg(z), we can obtain at any depth, in addition to the 
deflection (lateral displacement), the rotation, the bending moment, the 
shear force and the ground pressure. Closed-form solutions for the case of 
a linear and homogeneous ground, and for a flexible or rigid pile, are pro-
vided in Annex 2 of the present chapter.

@Seismicisolation@Seismicisolation

https://telegram.me/seismicisolation


Deep Foundations  123

3.3.2.4.2 � Case of a linear and homogeneous ground, with lateral thrusts

For a pile embedded in a homogeneous ground (Es being constant) and sub-
jected to lateral thrusts (g(z) ≠ 0), the lateral equilibrium equation becomes

	 ( )+ =E I
d y
dz

E y E g zp p

4

4 s s 	

This is a 4th order differential equation of second member, having a general 
solution:

	 ( ) ( ) ( )= +y z y z y zg p 	

where
yp(z) is a particular solution of the equation; and
yg(z) is the general solution of the equation without the second member 

(§3.3.2.4.1).

If the “free” soil displacement g(z) can be approximated by a third order 
polynomial, then yp(z) = g(z) is a particular solution of the equilibrium equa-
tion, and its solution can therefore be written as

	 ( ) ( ) ( )= +y z y z g zg 	

3.3.2.4.3 � Case of a non-homogeneous ground and non-linear reaction law

In the general case of a pile embedded into soil layers exhibiting non-linear 
behaviour, the lateral equilibrium equation of the pile can be solved with 
the finite element method (see, for example, the Foxta software by Cuira 
and Simon, 2008b) or with transfer matrices enabling the use of a closed-
form solution in each homogeneous layer of the pile/soil system (see, for 
example, the Pilate software by Frank, 1984).

Taking into account the non-linearity of the subgrade ground reaction 
requires an iterative process where, for each iteration i, the reaction curve is 
linearised under the following form (tangent stiffness method, see Figure 83):

	 ( )= ⋅ − +P E y g Pi
s
ti i

0
i	

where Es
ti is the tangent modulus at point yi (or Δyi).

Therefore, for each iteration, and in each layer (or element), the pile 
equilibrium is governed by the following equation:

	 + = −E I
d y
dz

E y E g Pp p

4 i

4 s
ti i

s
ti

0
i 	
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The values of Es
ti and P0

i are iteratively adjusted in each layer (or element) 
until convergence.

3.3.3 � Selection of the reaction curve

3.3.3.1 � Typical reaction curves

The subgrade reaction curve is given in the form of a piece-wise linear 
function defined by three parameters (MELT, 1993):

•	 A modulus Es;
•	 A creep level Pf; and
•	 An ultimate level Pu.

Depending on the type of load, four situations can be distinguished:

•	 The case where permanent loads prevail: it is recommended to use the 
curve in Figure 84a where:
•	 Slope Es = Kf; and
•	 P is limited to the creep level Pf

•	 The case where the loads due to the ground lateral thrusts prevail: 
the  ground reaction is active, and the ultimate level Pu is used in 
order to ensure a safe design (see Figure 84b). The slopes are then as 
follows:
•	 Es = Kf up to the creep level; and
•	 Kf/2 between the creep level Pf and the ultimate one Pu

•	 The case where short-duration loads prevail (vehicle braking forces 
for example): it is recommended to use the curve in Figure 84c where
•	 Slope Es = 2Kf; and
•	 P is limited to the creep level Pf

Figure 83 � General subgrade reaction curve. Iterative calculation method (Frank, 1984).
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•	 The case where very short accidental loads at the head prevail: it is rec-
ommended to use the curve in Figure 84d. The slopes are then as follows:
•	 Slope Es = 2Kf up to the creep level; and
•	 Slope Kf between the creep level Pf and the ultimate one Pu.

3.3.3.2 � Case of the (M)PMT

Creep and ultimate levels are directly linked to the net creep pressure pf
* 

and the net limit pressure pl
*, measured during the pressuremeter test:

	 = =P p B and P p Bf f
*

u l
* 	

The modulus Kf is calculated from the pressuremeter modulus EM and the 
rheological factor α (see Table 12) from the relations

	 K E
18

4 2.65 3
 with  max

B
B

;1f M
0( )

= ρ
ρ + αρ

ρ = 



α 	

where B0 is a reference diameter, taken equal to 0.60 m.
This relation originates from the pressuremeter settlement formula for 

strip foundations (§2.3.4).

Figure 84 � Reaction curves of an isolated pile under lateral loads.
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3.3.3.3 � Case of the CPT test

Standard NF P 94-262 (AFNOR, 2012) proposes the following correlations 
to define the reaction curve on the basis of the cone resistances qc measured 
during a CPT test:

	 K
q
2

 P
Bq

 P
Bq

f
c

f
c

1
u

c

2
= β =

β
=

β
	

The values of β, β1 and β2 are given in Table 24.

3.3.3.4 � Ground shear parameters

The theoretical studies of laterally loaded piles using the finite element 
method in a homogeneous isotropic linear elastic medium show that, for all 
practical purposes, the following relation between the modulus reaction Es 
and the shear modulus G can be adopted (Frank, 1984):

	 ≈E 4Gs 	

Note that identifying the expansion curve with a self-boring pressuremeter 
SBP expansion curve with the reaction curve is similar to writing

	 ≈E 4Gs p	

where Gp is the initial tangent shear modulus G0, or the secant one (Gp2, 
Gp5, etc.), determined on the expansion curve at the same strain level. The 
initial tangent modulus G0 is measured using a self-boring pressuremeter 
for a strain ΔV/V0 = 0.20%.

Establishing the reaction curves (see Figure 84) can then be achieved by 
applying the following:

•	 For long-duration loads Es = Kf = 2G0; and
•	 For short-duration loads Es = 2Kf = 4G0.

Table 24  �Values of factors β, β1 and β2 (AFNOR, 2012)

Soil type Clayey soils Intermediate soils Sandy soils Chalks and marls

β 12 7.5 4.5 4.5

β1 5 10 13 13

β2 3.5 6 8 8
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For short-term conditions and for cohesive soils, the ultimate level Pu is 
defined from the undrained cohesion cu (see Figure 84):

	 =P 6c Bu u 	

3.3.3.5 � Specific case of barrettes

We shall consider the case of a barrette with a rectangular monolithic 
section, a frontal width B and a length L > B. For a given level, the global 
reaction curve (P, Δy) is broken down into two curves (see Figure 85):

•	 A frontal reaction curve (front and rear): (Pfront, y or Δy); and
•	 A tangential reaction curve (sides of the barrette that are parallel to 

the displacement): (Ptang, y or Δy).

The barrette reaction curve is the following (Baguelin et al., 1979):

	 ( ) ( ) ( )∆ = ∆ + ∆P y or y P y or y P y or yfront tang 	

Once the reaction curve is established, the calculation of forces and dis-
placement on a laterally loaded barrette is achieved using the method 
already given for piles.

For the frontal reaction curve Pfront, the same rules as those for circular or 
square piles apply (§3.3.3.1). The frontal width B of the pile is replaced with 
the frontal width B of the full cross-section of the barrette (see Figure 86).

For the tangential reaction curve Ptang: the curve shown in Figure 85 is 
selected. The slope Es

tang is approximatively equal to the reaction modulus 

Figure 85 � Reaction curves for a barrette.

@Seismicisolation@Seismicisolation

https://telegram.me/seismicisolation


128  Design of Shallow and Deep Foundations

Es
front taken for the frontal reaction. The ultimate reaction Pmax

tang is calculated 
from the unit axial friction qs at the considered level on both sides of length 
L – B:

	 = ⋅P 2L qmax
tang

s s	

where Ls = L – B
The value qs at the considered level is taken as being equal to that of mud 

bored piles (§3.2.4.2 and §3.2.5.2).

3.3.3.6 � Modifications due to the proximity 
of a slope or near the surface

A critical depth zc is defined, below which the reaction curve remains con-
stant in a homogeneous soil, because the surface does not play a role any-
more. Such a critical depth may be taken to be equal to

•	 zc = 2B for cohesive soils; and
•	 zc = 4B for frictional soils (B being the pile diameter).

The reaction curves in Figure 84 are modified (MELT, 1993):

•	 To take into account the proximity of a slope: the limit values (frontal 
and tangential reactions) are reduced when the section of the consid-
ered foundation is at a distance from the slope lower than 5B (with the 
reaction moduli remaining unchanged); and

•	 To take into account the proximity of the ground surface: when the 
depth z of the section is smaller than the critical depth zc, the reac-
tion P(z) is decreased by a ratio equal to 0.5(1 + z/zc) (after taking into 
account the possible proximity of a slope).

Such modifications are ignored for a foundation subjected to lateral 
thrusts.

Figure 86 � Barrette length and width to be taken into account (MELT, 1993).
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3.3.4 � Assessing the free soil displacement g(z)

3.3.4.1 � Definitions

Within the framework of the model presented in §3.3.2.2, the free soil dis-
placement g(z) corresponds, by convention, to the lateral soil displacement 
that would be obtained at the location of the pile, in its absence.

This displacement can be assessed with elasticity solutions in the case 
where the soil behaviour is considered as being elastic (Mindlin, 1953; 
Vaziri et al., 1982). It may also be estimated by using 2D or 3D numerical 
modelings, without the piles, adopting appropriate constitutive equations. 
They take into account the undrained or drained behaviour and the pos-
sible plastic yield effects (especially for backfills on soft layers, for which 
safety is generally low compared to shallow foundations).

An empirical method is proposed to assess short and long duration dis-
placement g(z) for foundations located near the toe of an embankment on 
soft soils (MELT, 1993). This method results from many measurements of 
displacement carried out in France in the 1970s and 1980s on about fifteen 
different sites (Bourges et al., 1980).

Within the framework of this method, the free soil displacement is defined 
as being the product of two terms:

	 ( ) ( )= =g z g G Z with Z z/Dmax 	

where (see Figure 87)
D is the thickness of the soft soil layer;
gmax the maximum horizontal soil displacement, which depends on the 

relative location of the pile to the embankment and on construc-
tion stages (§3.3.4.3 and §3.3.4.4); and

G(Z) the dimensionless displacement curve, assumed to be independent 
of time and of pile location (see §3.3.4.2).

Figure 87 � Definition of the parameters for the empirical method (Bourges et al., 1980).
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The proposed method uses the following additional parameters:

•	 cu which is the average undrained cohesion over the height of the soft 
soil layer, measured with a field vane, or determined from correlations 
with other in-situ tests, or measured in the laboratory;

•	 m
1 sin

sin

2

= + β
′β

 the geometrical parameter characterising both the loca-

tion of the pile relative to the embankment crest and the angle of 
the slope β. Only the cases where 0 ≤ β′ ≤ π/2 are examined. For a pile 
located between the embankment axis and the slope crest (β′ ≥ π/2), 
a linear interpolation is carried out on the displacement between the 
pile located below the crest (β′ = π/2) and the pile in the axis of the 
embankment for which displacement is equal to zero; and

•	 f
π 2 c

H
u

r

( )=
+
γ

 the dimensionless parameter characterising the soil und-

rained strength relative to the load level induced by the embankment 
(which should not be confused with the safety factor for overall stabil-
ity F; see §2.5.2.5).

3.3.4.2 � Selection of the dimensionless 
displacement curve G(Z)

It has been found that for all practical purposes, the dimensionless curve 
G(Z) at embankment toe does not vary with time and that it corresponds to 
one of the two curves of Figure 88.

Figure 88 � Free soil displacement: typical dimensionless displacement curves G(Z).
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Therefore, without any preliminary measurement, it is required to choose 
G(Z) as one of the two curves whatever the location of the pile relative to 
the toe of the embankment (MELT, 1993).

However, if embankments are built in advance and if pile design can 
be achieved after their construction, the results from in-situ measurements 
should be used to determine G(Z).

Curve I is used in general cases, and curve II is used when the surface 
layer is less deformable (overconsolidated layer, for example), over a height 
of at least 0.3D.

The equations of these two dimensionless displacement curves are the 
following:

•	 Curve I: G = 1.83 Z3−4.69 Z2 + 2.13 Z + 0.73; and
•	 Curve II: G = −2.0 Z3 + 1.5 Z + 0.5.

3.3.4.3 � Determining gmax. Piles executed before 
embankment construction

Although it is advised to build the embankment prior to executing the piles 
and the structure, some requirements may lead to executing the piles first. 
In this case, the maximum horizontal soil displacement at a time t is com-
posed of two terms:

	 ( ) ( )= + ∆g t g g tmax max,0 max 	

where
gmax,0 is the maximum horizontal displacement at the end of the con-

struction; and
Δgmax(t) is the delayed maximum horizontal displacement between the 

end of embankment construction (t = 0) and time t.

The value of the maximum horizontal displacement at the end of the con-
struction gmax,0 can be assessed using the chart of Figure 89 (MELT, 1993). 
For given values of m and f, the following is determined:

	 g Dmax,0λ = 	

This chart was established on the basis of field observations. The curves 
defined for different values of m are envelopes of the maximum observed 
displacement. Therefore, the values of gmax,0 determined by this chart are 
generally upper values. The chart is only valid for f ranging from 1.4 to 4.0, 
and for overall stability safety factors F ≥ 1.2 to 1.3 and for a fast embank-
ment construction, compared to the soil consolidation rate.
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The delayed maximum horizontal displacement Δgmax(t) is linked to s(t), 
defined as the total settlement of the embankment at time t at its axis (or, 
alternatively, as the maximum settlement of the embankment):

	 ( ) ( ) ( ) ( ) ( )∆ = Γ∆ ∆ =g t s t with s t s t – s 0max 	

which is written in particular for t → ∞:

	 ( ) ( ) ( ) ( ) ( )∆ ∞ = Γ∆ ∞ ∆ ∞ = ∞g s with s s – s 0max 	

where
Δs(t) is the delayed embankment settlement at time t;
s(∞) is the total settlement for t → ∞, corresponding to settlement and 

horizontal deformation stabilisation;
s(0) is the total settlement at the end of embankment construction; and
Γ is an empirical factor, which is a function of the location of the pile 

relative to the embankment.

Figure 89 � Chart for the determination of λ = gmax,0/D as a function of m and f.
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The values of Γ were determined from field measurements. These measure-
ments show that it depends on the following:

•	 The slope angle β; and
•	 The pile location relative to the embankment toe tan β′ (or m).

For angles of slopes ranging from 26° to 34°, the following value can be 
taken:

Γ ~ 0.16 at slope toe
At slope crest, the value of Γ is higher, around 0.25 (and then decreases 

to 0 at the embankment axis).
At embankment toe, for slope angles lower than 26°, the value of Γ 

decreases. It also decreases when going away from the embankment toe. 
For example, for an embankment with a slope angle equal to 34°, measured 
Γ values were around 0.05, 0.035 and 0.02 for tan β′ equal to 0.36 (m = 3.8), 
0.24 (m = 5.6) and 0.20 (m = 6.7), respectively.

Regarding the calculation of the value Δs(t) corresponding to delayed 
settlement after embankment construction, assuming that the embankment 
construction is fast and the consolidation is not significant during its con-
struction, it is obtained by

	 ( ) ( ) ( )∆ = + αs t s t s tc 	

where
sc(t) is the consolidation settlement; and
sα(t) is the creep settlement.
The terms sc and sα are calculated with the usual methods for soft soils 

under embankments, such as the oedometer method (see §2.3.4.4).
The difference between the calculated Δs(t) (unidimensional) and the 

measured Δs(t) is all the greater that the embankment width L is small rela-
tive to the thickness of the compressible layer. Based on some experimental 
results, the value of calculated Δs(t) may be increased by

•	 20% for D/L > 0.60;
•	 10% for D/L = 0.40; and
•	 0% for D/L = 0.25

(where L is the embankment width at half-height).

3.3.4.4 � Determining gmax. Piles executed after 
embankment construction

If the piles are executed at a time t after embankment construction, the 
maximum delayed horizontal displacement to be taken into account 
between time t and infinite time is equal to
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	 ( ) ( )∆ ∞ ∆g – g tmax max 	

Determining these two terms can be achieved in two ways:

•	 By using calculations: the guidelines of §3.3.4.3 can be applied 
and allow assessing Δgmax(∞) and Δgmax(t) as a function of the total 
delayed settlement Δs(∞) and the delayed settlement at time t, Δs(t), 
respectively;

•	 Or by using in-situ measurements: besides the fact that they allow 
determining G(Z) (see §3.3.4.2), in-situ measurements also allow 
specifying the following:
•	 The value Γ = Δgmax(t)/Δs(t), which remains constant according to 

the experimental observations; and
•	 The value of the final settlement Δs(∞) and consequently the resid-

ual settlement at time t.

The analysis of the settlement measurements and of dissipation of excess 
pore pressures during a certain amount of time usually allows obtaining 
satisfying estimates of the final settlement. Asaoka’s assessment method of 
final settlement can be recommended for all cases of unidimensional or 
radial consolidation of homogeneous media. The principle of this method 
is shown in Figure 90.

Settlement sj is plotted on a graph as a function of the settlement sj–1 cor-
responding, respectively, to times tj and tj–1 with tj – tj–1 = Δt = constant. If the 
observed behaviour follows the consolidation theory, then these experimen-
tal points should follow a straight line. The slope of the line is a function 
of the vertical consolidation coefficient cv (or radial cr), and its intersection 
with the line sj = sj–1 produces the final settlement.

Figure 90 � Determining final settlement with Asaoka’s method.
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3.3.5 � Boundary conditions

3.3.5.1 � Head conditions

At pile head (z = 0), the imposed values or relations depend on the connection 
type between the piles and the supported structure.

•	 In the case of a pile connected to a pile cap, there are four possible 
combinations:

	 ( ) ( )= =T 0 T and M 0 M0 0	

	 ( ) ( )= ′ = ′T 0 T andy 0 y0 0	

	 ( ) ( )= =y 0 y and M 0 M0 0	

	 ( ) ( )= ′ = ′y 0 y and y 0 y0 0	

•	 In the case of a pinned head, there are two possible combinations:

	 ( ) ( )= =T 0 T and M 0 00 	

	 ( ) ( )= =y 0 y and M 0 00 	

•	 In the case of a fixed head in a cap in translation, also two:

	 ( ) ( )= ′ =T 0 T and y 0 00 	

	 ( ) ( )= ′ =y 0 y and y 0 00 	

•	 In the case of fixed head in a cap in rotation, also two:

	 ( ) ( )= =y 0 0 and M 0 M0	

	 ( ) ( )= ′ = ′y 0 0 and y 0 y0	

In the case of elastic connections between the pile head and the structure:

•	 Condition of type A: T(0) = a + b · y(0) or
•	 Condition of type B: M(0) = α + β · y′(0)

We may use in practice the following:

•	 Conditions of type A and B
•	 The condition of type A with y′(0) = y0′ or M(0) = M0

•	 The condition of type B with y(0) = y0 or T(0) = T0
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3.3.5.2 � Tip conditions

For flexible piles (or long ones), i.e., for piles having a length greater than 
2 or 3 times the transfer length l0 (§3.3.2.4.1), the tip conditions have little 
influence on the pile behaviour when there are loads only at the head. In the 
case where there are lateral ground thrusts (free displacement g(z)) down 
to the proximity of the tip, it is on the contrary essential to take the tip 
conditions into account. For rigid piles (pile length lower than l0), the tip 
conditions influence the whole length of the pile, for all loading conditions.

The tip conditions can be imposed in an “idealised” manner, according 
to one of the three following conditions:

•	 Free pile tip T(D) = Tb = 0 and M(D) = Mb = 0
•	 Fully embedded (fixed) pile tip y(D) = yb = 0 and y′(D) =  ′yb = 0
•	 Free rotation pile tip y(D) = yb = 0 and M(D) = Mb = 0

When appropriate, it is of interest to take into account the mobilisation 
laws of tip forces Tb and Mb, as a function of the differences in displacement 
and rotation (y − g) and (y′ − g′) at the tip, respectively. These laws involve 
the maximum shear force Tmax and the maximum bending moment Mmax 
that can be mobilised at the tip (see Figure 91, Bourges et al., 1980). The 
values of Tmax and Mmax can be assessed as follows:

Figure 91 � Mobilisation of tip forces as a function of displacement and rotation.
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•	 Tmax = cuAb for a cohesive soil with an undrained cohesion cu;
•	 Tmax = Fbtan φ′ for a frictional soil with an angle φ′; and
•	 ( )=M 2 q – F A I Bmax b b b b 	

where
B is the pile diameter;
Ab is the pile tip area;
Ib is the inertia moment of the tip cross-section;
Fb is the axial (vertical) load acting on the tip; and
qb is the unit tip resistance (§3.2.4.1 and §3.2.5.1)

For simplification purposes, a fictitious length may be added to the pile, 
equal to B in the case of lateral thrusts in the layer and equal to 0.3B 
in the case of head forces, with forces equal to zero on the fictitious tip 
(Tb = Mb = 0).

In any case, it is recommended to carry out the pile modelling over its 
whole length, including any part in a possible bedrock, if relevant.

3.3.6 � Lateral load test

In order to optimise laterally loaded piles of a project (notably the head 
horizontal displacement and the maximum moment in the pile), and if the 
project is of sufficient size, one or several lateral load tests can be carried 
out.

A lateral load test is however more complex than an axial load test 
(AFNOR, 1993). Several types of results may be obtained:

•	 The curve that links the applied load to the horizontal head 
displacement;

•	 The distribution of bending moments as a function of depth and load-
ing level; and

•	 The experimental p-y curves as a function of depth representing the 
mobilisation of ground reaction throughout the test.

A typical arrangement for lateral load tests is shown in Figure 92.
Strain gauges allow measuring compressive and tensile strains, on the 

compressed and stretched pile fibres, respectively, and then deducing from 
them the distribution of bending moments as a function of depth. The dou-
ble integration of moments (M = EIy″) produces horizontal displacement 
as a function of depth. The double derivation produces the corresponding 
mobilised subgrade reactions (P = –dT/dz = –d2M/dz2). It is then possible to 
build experimental p-y curves. The double derivation requires a significant 
number of measurements down the pile (at least twenty). The calculation of 
horizontal displacement is also made possible by integrating pile rotations 
measured with an inclinometer fixed to the pile.
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The loading programme must include a sufficient number of steps 
(usually 8), and it is advised not to exceed the elastic limit of the pile mate-
rial. For some projects, tests can be carried out with cyclic loadings.

3.4 � BEHAVIOUR OF PILE GROUPS

A pile that belongs to a group behaves differently to an isolated pile discussed 
in the previous paragraphs. The modifications concern the following:

•	 The bearing capacity under axial loads;
•	 The settlement;
•	 The negative friction; and
•	 The lateral behaviour and lateral ground thrusts.

Two different causes may explain these group effects:

•	 The execution of a group of piles creates a soil disturbance that differs 
from the one caused by the execution of an isolated pile. The ground 
reaction under and around the pile is modified. Thus, when driving 

Figure 92 � Typical equipment for a test pile subjected to lateral loading.
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piles into loose sands, the soil density increases, as well as its mechani-
cal properties, and it is not uncommon that the few remaining piles of 
a group cannot be inserted;

•	 The load applied on a pile has an influence, in terms of forces and dis-
placement, on the behaviour of adjacent piles. This influence comes 
from the interaction between the different piles: for each pile, there 
is a corresponding volume of ground, more or less significant, that 
balances the forces applied on the pile. In a group, these volumes 
interact. The apparent stiffness of each pile is then different, and the 
global stiffness of the group is lower than the sum of the stiffnesses 
of each isolated pile. Consequently, the assessment of the settlement 
of a group of piles is more important than the one of an isolated pile. 
Group effects are much more significant for the assessment of settle-
ment than for the assessment of bearing capacity. Each pile from a 
group, depending on its location, is not subjected to the same load. 
These interactions can be assessed using numerical methods, such as 
the finite element or hybrid methods (§3.4.5). However, the practi-
cal application of such methods raises various issues:
•	 The ground constitutive equations are often poorly known;
•	 The tridimensional aspect of the problem is difficult to handle; 

and
•	 The initial state of the ground after the execution of piles is 

difficult, or even impossible, to assess.

In §3.4.1 and §3.4.2, theoretical or semi-empirical methods are proposed, 
for axial and lateral loadings, respectively.

In §3.4.3 and §3.4.4, the distribution of lateral and axial forces on a group 
of piles is discussed (from simplified assumptions and from reaction laws).

3.4.1 � Axial behaviour

3.4.1.1 � Bearing capacity of a pile group

The bearing capacity (compressive resistance) of a pile group is usually dif-
ferent from the sum of the bearing capacities of each pile belonging to the 
group.

In France, to check the group effect on the bearing capacity is required 
only when the centre-to-centre distance between each pile is less than 
3 diameters (for settlement, the verifications must be carried out for centre-
to-centre distances up to 8 diameters). Two approaches are used to justify 
the bearing capacity of a group of piles.

The first approach is based on the individual behaviour of the piles in the 
group. Only the resistance by friction Rs is reduced. An efficiency coefficient 
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Ce quantifies this reduction for a centre-to-centre distance lower than 3 
diameters (AFNOR, 2012):

	 ( )= − − +











= − +C 1 C 2
1
m

1
n

  and  C 1
1
4

1 S / Be d d 	

where
B is the diameter of a pile;
S is the centre-to-centre distance; and
m and n are the number of rows and columns in the group.

The resistance in the pile group is then

	 ( )= +R N R C Rcg b e s 	

where N = n × m is the number of piles in the group.
The second approach consists in assimilating the behaviour of the group of 

piles to the one of a fictitious massive foundation that includes all the piles and 
the soil they enclose. The perimeter P of this fictitious foundation is equal to 
that of the group. Its length D is equal to the length of the piles (see Figure 93).

The tip resistance Rb is taken as the sum of the tip resistances of the iso-
lated piles. Regarding the resistance by friction Rs on this fictitious founda-
tion, the results from two calculations are compared:

•	 The results originating from a calculation using the pressuremeter or 
penetrometer methods (§3.2.4.2 and §3.2.5.2) with the perimeter P 
and the length D; and

•	 The results using the ground shear strength parameters, with the same 
dimensions P and D.

Figure 93 � Fictitious massive foundation, equivalent to a group of piles (S < 3B).
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3.4.1.2 � Tensile resistance of a group of piles

The tensile resistance of a pile group is necessary notably for the design 
of the raft of many buried structures subjected to groundwater pressures: 
underground car parks, stormwater basins, and underground metro sta-
tions, etc.

As for the bearing capacity (compressive resistance) of a pile group, two 
approaches are considered (individual failure and failure of the anchored 
mass), but they are combined within a single verification in standard NF 
P 94-262 (AFNOR, 2012). For each pile in the group, a composite mecha-
nism is studied (see Figures 94 and 95), which involves the following:

Figure 94 � Composite failure mechanism for a pile working in tension within a group – 
case where b = tan φ · (D – x) < a/2.

Figure 95 � Composite failure mechanism for a pile working in tension within a group – 
case where b = tan φ · (D – x) > a/2.
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•	 The axial resistance along the shaft over pile length x; and
•	 The resistance of the anchored mass over height D – x.

For a given value x, the kinematic method of limit analysis leads to the 
following formulation for the pile tensile resistance Rs within the group:

	 R x R x R x R xs qs c( ) ( ) ( ) ( )= + +γ 	

where

•	 Rqs is the resistance linked to the mobilisable shaft friction along the 
lower part of the pile (over a distance x measured from the base of the 
anchored mass);

•	 Rγ is the resistance linked to the weight of the anchored mass; and
•	 Rc is the resistance linked to the soil cohesion along the surface of the 

anchored mass.

The values of Rqs, Rγ and Rc minimising Rs are the following:

•	 For b = tan φ(D – x) < a/2 (see Figure 94):

	 R x πBq x R x
πb
3

D x R x π D x b cqs s

2

c( ) ( ) ( ) ( ) ( )= = − ⋅ γ = − ⋅γ

•	 And for b = tan φ(D – x) > a/2 (see Figure 95):

	 R x πBq x  R x a D x
2a

3 π tan
  R x

a
tan

cqs s
2

c

2

( ) ( ) ( )= = − −
ϕ







γ =
ϕγ 	

where
B is the pile diameter;
a is the centre-to-centre distance between piles (placed with a regular 

grid);
φ and c are the ground shear strength parameters;
γ is the ground unit weight; and
b is the maximum radius of the anchored mass (at the surface).

3.4.1.3 � Settlement of a pile group: elastic method

The ground is assumed to be elastic, and the pile cap is not in contact with 
the ground. For a group of two identical piles subjected to the same load 
and connected with a rigid cap, the group settlement sgroup is expressed by

	 s s 1group 0 ( )= + α 	
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where s0 is the settlement of the isolated pile (which can be calculated as 
described in §3.2.8)

α is an interaction factor depending on (Poulos and Davis, 1980):

•	 The position of the pile tips (making a distinction between floating 
piles within a homogeneous soil of thickness h, and end-bearing piles, 
i.e., embedded in a rigid substratum);

•	 The relative pile/soil stiffness: K = Ep/E, Ep and E being, respectively, 
the elastic modulus of the piles and of the ground);

•	 The ratio B/S of the diameter to the centre-to-centre distance between 
the piles;

•	 The pile length D (ratios D/B and h/D); and
•	 The Poisson’s ratio of the soil ν.

Charts have been established to determine α. Figure 96 provides an exam-
ple of αF for the case of piles floating within a semi-infinite homogeneous 
layer (h = ∞) and an example of αE for the case of end-bearing piles on a rigid 
substratum.

Figure 96 � Interaction factors αF and αE (Poulos and Davis, 1980).
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The following cases have also been addressed:

•	 Finite thickness h;
•	 Pile with an enlarged tip;
•	 Ground elastic modulus varying linearly with depth;
•	 Sliding at the soil/pile interface; and
•	 Compressible bearing layer (substratum).

If both piles, 1 and 2, are different, then the settlement of pile 1, for exam-
ple, is expressed by

	 s s s1 1,0 2,0 12= + α 	

where s1.0 and s2.0 are the settlement of piles 1 and 2 in the absence of any 
interaction (isolated pile calculation). α12 is the interaction factor of pile 2 
on pile 1 (to be calculated with the length and diameter of pile 2).

In the case of a group of N piles, the various interaction factors can be 
combined. Thus, the settlement of pile k is expressed by

	 ∑= α
=

s sk

j 1

N

j,0 kj	

where sj,0 is the settlement of pile j in the absence of group effects (isolated 
pile). The factor αkj is the interaction factor of pile j over pile k (to be calcu-
lated with the length and diameter of pile j) and αkk = 1.

Let us consider the particular case of N identical piles. The practical appli-
cation of the α factor method can be described by the two following cases:

•	 N piles subjected to the same head load F0. The settlement of the 
isolated pile is s0. The settlement of the piles is then different because 
of the group effect. The settlement of pile “k” depends on its location 
and is expressed by the relation:

	 s sk 0

j 1

N

kj∑= α
=

	

•	 N piles connected by a rigid pile cap and subjected to a total load Fg. 
The settlement of the group is uniform, sg. The load Fj supported by 
each pile “j” is different because of the group effect. It depends on 
its location and is obtained by solving a system of (N + 1) equations 
(in which the variables are Fj = 1,N and sg):

	 F K s  for k 1.. N and  F F
j 1

N

j kj 0 g

j 1

N

j g∑ ∑α = = =
= =

@Seismicisolation@Seismicisolation

https://telegram.me/seismicisolation


Deep Foundations  145

where K0 is the axial stiffness of the isolated pile (§4.2.2.3).
Solving this system leads to

	 F K s  and s
F
K

1
k 0 g

j 1

N

kj g
g

0
kj

j 1

N

k 1

N∑ ∑∑
= β =

β=
==

	

where βkj is the term of the matrix B, defined as follows:
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3.4.1.4 � Settlement of a pile group: 
Terzaghi’s empirical method

Terzaghi (1943) proposed the following method to predict the settlement 
of a group of floating piles in clay. He considers a fictitious footing located 
at two thirds of the pile length and supporting the load F applied to the 
pile cap. Where relevant, the negative friction Gsn must be added to F (see 
Figure 97).

The settlement of this footing is calculated by selecting the 1 for 2 stress 
distribution shown in Figure 97. The settlement is calculated by one of the 
methods presented in §2.3.

In the case of sands, the value of the settlement is usually small and fast 
and raises few issues. However, in the case of floating piles in loose sands, 
the Terzaghi approach can be applied.

Figure 97 � Settlement calculation of a group of floating piles using Terzaghi’s method.
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Moreover, if there are any concerns about the settlement under the tip of 
piles embedded into a more resistant ground, it can be studied by placing 
the fictitious footing at the tip level.

3.4.1.5 � Pile group subjected to negative friction (downdrag)

The case of a pile group subjected to negative friction can be addressed in 
a similar manner to the isolated pile, with the displacement approach (t-z 
method, §3.2.9.3). The ground settlement w(z) should be the settlement in 
the absence of the considered pile. In practice, for a given pile, w(z) is taken 
as the ground settlement in the absence of all the piles.

The effects of negative friction on a pile group are less important than for 
an isolated pile. They can be assessed by the method presented in Annex 1.

The sum of qsn, along all the piles and over the whole height of the com-
pressible layer and of the layers above it, is the maximum value of negative 
friction on the pile group.

3.4.2 � Lateral behaviour

Few accurate and systematic studies about the group effects on the lateral 
behaviour of piles are available.

Two methods are proposed below: Davisson’s empirical method (1970) 
and Poulos and Davis’ theoretical method (1980), based on the hypothesis 
of an elastic behaviour of the soil.

3.4.2.1 � Empirical methods

Davisson (1970) proposed a reduction of 75% on the subgrade reaction 
modulus Es (Es, g = 0.25 Es) for a centre-to-centre distance of 3 diameters in 
the direction of horizontal forces and a reduction equal to zero for a centre-
to-centre distance of 8 diameters, with a linear interpolation for intermedi-
ate centre-to-centre distances. These propositions would be valid when the 
centre-to-centre distance in the direction perpendicular to horizontal forces 
would be greater than 2.5 diameters. They appear as being pessimistic in 
the case of a limited number of piles.

Standard NF P 94-262 (AFNOR, 2012) proposes reduction rules to be 
applied to the subgrade reaction curves for the isolated foundation (§3.3.3). 
These rules are considered only for groups with a centre-to-centre S lower 
than 3 diameters (for circular piles).

In the case of a row of N identical circular piles of diameter B with a 
centre-to-centre distance S, these rules are the following (see Figure 98):

•	 Case 1: loading in the direction of the row:
•	 The reaction modulus Es remains unchanged; and
•	 The creep level Pf and the ultimate level Pu are reduced on the rear 

piles by the ratio:
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•	 Case 2: loading perpendicular to the row axis:
•	 The levels Pf and Pu remain unchanged; and
•	 The reaction modulus Es is reduced by the ratio:

	 10 ( )′β = β + ρ − β 	

where ρ0 is the ratio of the reaction modulus Es for a group of N piles to N 
times the one for an isolated pile. When Es is assessed with a (M)PMT, the 
value of ρ0 can be approached with the relation:

	

4
3

2.65

N
4
3

2.65N
0

( )

( )
ρ ≈

α +

α +

α

α
	

with α being the soil rheological factor of the considered layer (see Table 12).

3.4.2.2 � Theoretical method (elasticity)

The ground between the piles is assumed to be linear elastic (Poulos and 
Davis, 1980). For a group of two identical piles subjected to the same load 
(see Figure 99), the horizontal displacement yg and rotation yg′ of the pile 
are obtained from the displacement y0 and rotation y0′ of the isolated pile 
and are expressed as

	 y y 1  y y 1g 0 y g 0 y( ) ( )= + α ′ = ′ + α ′

where αy and αy are interaction factors.
Five interaction factors are distinguished:

•	 For the displacement y:
•	 αyH an interaction factor due to the horizontal load H,
•	 αyM an interaction factor due to the moment M, and
•	 αyE an interaction factor in the case of a fixed pile head (y′(0) = 0);

Figure 98 � Loading directions of a row of piles.
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•	 For the rotation y′ (pile subjected to head forces):
•	 αy′H an interaction factor due to the horizontal load H, and
•	 αy′M an interaction factor due to the moment M.

The effects of the horizontal load H and of the moment M are additive. We 
note that αyM = αy′H.

The interaction factors α depend on:

•	 The centre-to-centre distance between piles (ratio S/B);
•	 The pile length (ratio D/B);
•	 The angle β between the direction of the piles row and the direction 

of loads (see Figure 99); and
•	 The relative pile-soil stiffness expressed by:

	 =K
E I
ED

R
p p

4 	

where
Ep is the Young’s modulus of the pile;
Ip is the moment of inertia of the pile; and
E is the Young’s modulus of the ground.

The influence of the soil Poisson’s ratio n is negligible.
In the case where the ground modulus increases linearly with depth:

	 =E N zh 	

KR is selected as follows:

	 =K
E I

N D
R

p p

h
5 	

Figure 99 � Group of two identical piles subjected to the same load.
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Some examples of charts used to determine the interaction factor α are 
shown in Figure 100.

In the case of a group of N piles, various interaction factors can be com-
bined. The following cases can be solved:

•	 Group with a uniform displacement;
•	 Group with a load H and/or moment M equal on each pile; and
•	 Group connected with a rigid cap with a uniform displacement.

Figure 100 � Interaction factors α for lateral behaviour (Poulos and Davis, 1980).
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For a laterally loaded group of N piles, the head lateral displacement pile k 
is expressed by

	 ∑= α
=

y yk

j 1

N

j,0 kj	

where yj,0 is the displacement of pile j in the absence of group effects (iso-
lated pile calculation, §3.3). The factor αkj is the interaction factor of pile j 
on pile k (to be calculated with the length and diameter of pile j) and αkk = 1.

3.4.2.3 � Ground lateral thrusts on a group of piles

In the method described in §3.3, the free ground displacement g(z) is the 
horizontal displacement in the absence of the considered pile. For a group of 
piles, g(z) is lower than g(z) for the isolated pile because of the influence of 
the other piles. For simplification, it is possible to calculate g(z) as if all the 
piles were absent, which is on the safe side. On the other hand, the ground 
reaction can be reduced following the rules stated in §3.4.2.1.

3.4.3 � Load distribution on a pile 
group: simplified cases

3.4.3.1 � Simplifying hypotheses

Let us consider a group of inclined and vertical piles, connected with a rigid 
(non-deformable) cap (see Figure 101).

The loads applied to the pile cap include the following, at a given point O:

•	 The vertical component Qv, which usually prevails, except for some 
particular structures (mooring piles, for example);

•	 The two horizontal components Qhx and Qhy;
•	 The two moments Mx and My; and
•	 Possibly, the torsion moment Mz.

Figure 101 � Group of piles.
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By ignoring the interactions between the piles and the ground, it is possible 
to assess in a simplified manner the forces applied to each pile head.

The lateral loads Qhx and Qhy are uniformly distributed on the piles. Each 
pile is studied as being an isolated pile following the indications given in 
§3.3.3 and §3.3.4 regarding the modification of the lateral reaction and 
taking into account lateral thrusts.

The vertical load Qv and the moments Mx and My applied to the pile cap 
are converted into axial loads calculated with the following assumptions:

•	 The pile cap is infinitely rigid;
•	 The pile heads are pinned;
•	 The piles are elastic; and
•	 The pile tips rest on a non-deformable ground and are rotation-free 

(with no moment).

3.4.3.2 � Case of a two-dimension isostatic foundation

When resulting forces are within the vertical plane crossing the main iner-
tia axis of the group of piles and where, in each row, the piles are identical 
and inclined in the same manner, it is a case of a two-dimension isostatic 
foundation. It becomes sufficient to determine the forces for each row 
globally.

Such an isostatic foundation includes either:

•	 Two rows of vertical piles, if the resulting force is vertical (see 
Figure 102a); or

•	 Three rows of piles, two vertical and one inclined, if the resulting 
force is inclined (see Figure 102b).

The forces within the different rows can be determined, since the axial 
direction of these forces is known.

Figure 102 � Two-dimension isostatic foundations.
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3.4.3.3 � Case of a hyperstatic foundation

In the general case, the load distribution is determined by considering the 
equivalent head stiffness (see §4.2) of each pile (resulting from the displace-
ment of the rigid cap) and the global equilibrium of the cap.

The solution is relatively simple in the case where all the piles are vertical 
and identical and Qhx = Qhy = 0. If xi and yi are the coordinates of a pile, and 
if there are N piles, the vertical load supported by this pile is given by

	

∑ ∑( ) ( )
= ± ±

= =

F
Q
N

M x

x

M y

y
i

v y i

j 1

N

j
2

x i
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3.4.4 � Load distribution on a pile group: 
use of reaction laws

3.4.4.1 � Principles

It is possible to use the reaction laws of the t-z and p-y type to determine 
the forces (six components: a normal force, two shear forces, two bending 
moments and a torsion moment) and displacement (six components: three 
translations and three rotations) of the piles of a group (see the calculation 
software such as GOUPIL-GOUPEG, Estephan et al., 2006 or GROUPIE+, 
Cuira et al., 2013).

The main assumptions of such approaches are the following:

•	 The piles are connected by a non-deformable pile cap where the six 
components of forces are applied;

•	 Each type of load is decoupled: bending, compression and torsion. The 
ground reaction laws for these various types of loads are given below;

•	 The group effects (pile-soil-pile interaction) are taken into account in 
a simplified manner: they are introduced by modifying these ground 
reaction laws; and

•	 A certain number of conditions for the pile-cap connection are pos-
sible. Similarly, different tip conditions can be imposed. They are 
explained below.

3.4.4.2 � Ground reaction laws

The lateral reaction is defined by the following relations:

	 ( ) ( )= − P f y z g z1 	

where
P is the subgrade lateral reaction (per unit length);
y(z) is the horizontal displacement of the pile;
g(z) is the free horizontal displacement of the ground; and
f1 is the reaction law of the type given in Figure 84.
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This law can be applied along Ox and Oy. This law allows taking into 
account the possible lateral thrusts.

The axial reaction is defined according to the following equation:

	 ( ) ( )= − Q f s z w z2 	

where
Q is the axial reaction (total friction per unit length);
s(z) is the vertical displacement of the pile (settlement); and
w(z) is the free vertical displacement of the ground (settlement).

The function f2 is the function given in Figure  75 (multiplied by the pile 
perimeter). This law allows taking into account the possible negative friction.

The reaction of the ground to pile torsion is usually neglected.

3.4.4.3 � Boundary conditions at pile tip and pile head

The choice can be made between the following conditions.

•	 Head conditions:
•	 Pile fixed into the pile cap: pile displacement and rotation are 

equal to the ones of the pile cap;
•	 Pile pinned into the pile cap: moment equal to zero, pile displace-

ment equal to pile cap displacement; or
•	 Elastic connection in rotation: the moment is proportional to the 

difference of rotations between the pile and the pile cap, the pile 
displacement is equal to the pile cap displacement;

•	 Tip conditions:
•	 Fixed pile: displacement and rotation both equal to zero;
•	 Free pile: moment and shear force equal to zero; or
•	 Free rotating pile: moment and displacement both equal to zero; and
•	 Reaction curves linking the force components to the correspond-

ing components of displacement. They link the following:
–	 The shear force to the tip lateral displacement and the moment 

to the tip rotation. Such curves are given in Figure 91;
–	 The tip axial reaction to the tip axial displacement (see 

Figure 76).

3.4.5 � Use of numerical models

3.4.5.1 � Finite element (or finite difference) method

The finite element method (or finite difference method) may be used to study 
more complex geometrical configurations and to address the soil-structure 
interaction effects in general and the pile-soil-pile interaction effects (group 
effects) in particular. Numerical models are also capable of simulating the 
coupling between axial and lateral behaviours, notably for short and rigid 
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foundations (semi-deep foundations, piers, etc.). The practical use of such 
methods raises several issues:

•	 The issue of the soil-pile interface and the initial stress state prevail-
ing around the pile: in the current state of knowledge, there is no 
practical means to account for the modification of the stress state 
caused by the execution of the pile (whether it is bored or driven). 
Under an axial load, this difficulty can be partially overcome by 
interface conditions limiting the shaft friction, or “soil-pile” shear, 
to the ultimate values established, for example, by full-scale load 
tests (Bourgeois et al., 2018) and used to verify the bearing capacity 
(§3.2.4.2 and §3.2.5.2); 

•	 Defining the behaviour of the ground: simple properties (such as 
Young’s modulus and Poisson’s ratio, in the case of isotropic lin-
ear elasticity) or more or less sophisticated constitutive equations 
or rheological models can be used. Even though, in practice, and 
notably under axial loading, the design rules of foundations lead 
to limiting the level of applied loads, the assumption of linear elas-
ticity remains debatable. Thus, it appears necessary to take into 
account at least the variations of the elastic moduli with deforma-
tion; and

•	 The need for calibration: in any case, when the use of a numerical 
model is justified by the complexity of the structure, it is appropriate 
to calibrate the ground parameters by verifying that the results of the 
numerical model match the usual empirical solutions, notably for the 
displacement of foundations (§3.2.8 and §3.3).

3.4.5.2 � Hybrid methods

In parallel to the finite element (or finite difference) method, and for the 
same reasons that were previously presented for shallow foundations, 
hybrid methods have been developed. These hybrid methods indeed allow 
modelling the interaction between structural elements (piles, barrettes, 
superstructure, etc.) and a volume of ground considered as a continuous 
medium. The example in Figure 103 illustrates the principle of a hybrid 
model based on a coupling of t-z or p-y models (§3.2.8 and §3.3) for 
the behaviour of an isolated pile and Mindlin’s analytical solutions to 
simulate the pile-soil-pile interactions in all directions. The non-linearity 
effects are fully “concentrated” at the pile-soil interface through the t-z or 
p-y models. The GOUPEG software (Estephan et al., 2006) is an example 
using the hybrid method. The REPUTE software is another example for 
assessing the behaviour of pile groups using Mindlin’s equations (Bond 
and Basile, 2018).
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3.5 � STRUCTURAL DESIGN OF DEEP FOUNDATIONS

3.5.1 � Design bases

Whereas for shallow foundations it is required in practice to assess the rep-
resentative stiffness (springs) of the response from the ground interacting 
with the foundations (§2.4), the structural design of deep foundations does 
not need this explicit phase and can be directly achieved using the results 
from the t-z or p-y models described in §3.2.8 and §3.3.

Such models allow the calculation of internal forces (N, T, M) and nota-
bly their maximum values required for the structural verification according 
to §3.6.3.

Before this calculation, a preliminary step consists in determining 
the distribution of forces on pile heads, taking into account the relative 
pile-structure stiffness (see §4.2).

3.5.2 � Influence of non-linearities

Attention is drawn to the significance of non-linearities in the structural 
design of piles, notably laterally loaded ones. Indeed, the response from 
such a pile is accompanied by the mobilisation of lateral ground reaction 
over a depth of a few diameters, where usually the soil resistance is weak 
or even poor. Limit values (Pf or Pu, depending on the type of load) are then 
fully reached in this region.

Figure 103 � Principle of a hybrid modelling for a group of piles.
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We examine here the particular case of a flexible, or long, pile embedded 
into a homogeneous soil (or the case where the ground is homogeneous over a 
height greater than three times the transfer length l0) and subjected to a hori-
zontal head load T0. The curve for the ground lateral reaction P is assumed to 
have a linear part Es limited by the ultimate value Ru (see Figure 104).

Figure 105 shows how the maximum bending moment in the pile increases 
with the horizontal head load T0 for two theoretical cases: the case of a free 
pile in rotation at the head (pinned pile, M0 = 0) and the case of a pile with 
no head rotation (fixed pile, ′y0 = 0). In both cases, there is a rapid increase 
of bending moment as soon as the limit of the “linear” domain is reached. 
This domain corresponds to the following head loads:

	 ( )≤ =T 0.5 R l for the pinned head M 00 u 0 0 	

	 ( )≤ ′ =T 1.0 R l for the fixed head y 00 u 0 0 	

where l0 is the pile transfer length, as defined in §3.3.2.4.1.

Figure 104 � Lateral reaction curve.

Figure 105 � Influence of the ground non-linearity on the amplitude of maximum bending 
moment for a horizontal head load T0.
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Moreover, the following relations are obtained in the linear domain (see 
Annex 2):

	 = ≤Pinned head : M 0.32 T l for T 0.5 R lmax 0 0 0 u 0	

	 = ≤Fixed head : M 0.50 T l for T 1.0 R lmax 0 0 0 u 0	

For high load levels (T0 ≥ 0.8Rul0), the maximum moment of a pinned pile is 
governed by the following relation:

	 × ≥M ~ 0.5 T R for T 0.8 R lmax 0
2

u 0 u 0	

Note that in the ground linear domain, the “critical” depth for which this 
moment is reached (for a pinned head) is expressed as

	 = ≤z π 4.l for T 0.5 R lcritical 0 0 u 0	

This depth increases with the load because of the non-linear behaviour of 
the soil. For loads T0 greater than Rul0, the maximum moment of a pile 
pinned at the head is obtained at a depth greater than l0, and defined by

	 ≥z ~ T R for T 1.0 R lcritical 0 u 0 u 0	

3.6 � Verification of a deep foundation

3.6.1 � Limit states to be considered

The verification calculations for a deep foundation are carried out, in 
France, according to the national standard for the application of Eurocode 
7 (NF P 94-262, AFNOR, 2012).

The limit states to be considered concern the following:

•	 The ground;
•	 The constitutive materials of the foundation; and
•	 If needed, the displacement that could affect the proper functioning of 

the supported structure.

For the verification of ultimate limit states (ULS), the applied loads to be 
considered are given by the combinations of actions given in §1.2.1. For 
the verification of the serviceability limit states (SLS), they are given by the 
combinations stated in §1.2.2.

Regarding the limit states of ground mobilisation, it should be noted that 
the imposed safety levels concern only the axial loads applied to the founda-
tion and the ULS overall stability.
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In the case of lateral loads, the safety with regard to the ground is guar-
anteed by the choice of reaction curves leading to displacement calculations 
and forces in the deep foundation (bending moments, etc.).

3.6.2 � Ground-related limit states

3.6.2.1 � Bearing capacity and tensile resistance of an 
isolated deep foundation (ULS and SLS)

For ultimate limit states (ULS), the following conditions must be verified:

	 ≤F Rd d	

where
Fd is the design value of the axial load in compression, respectively, in 

tension, on the deep foundation, corresponding to the considered ULS 
combination of actions (see §1.2.1); and

Rd is the design value of the compressive resistance (bearing capacity) or 
tensile resistance.

The French standard NF P 94-262 (AFNOR, 2012) proposes several meth-
ods to calculate the compressive resistance (bearing capacity) or tensile 
resistance Rd:

•	 From the results of static load tests, using correlation factors ξ depend-
ing on the number of load tests and their location;

•	 From the soil test results: a process called “model pile” that uses either 
correlation factors ξ, depending on the number of profiles of soil tests 
and on their location, or a probabilistic method proposed by EN 1990 
(BSI, 2002) which takes into account the number of profiles of soil 
tests; and

•	 From the soil test results: a process called “ground model” that uses 
representative values of the properties of soils (pl or qc, etc.).

Only the method called “ground model+ is detailed here, as it corresponds 
to the conventional method widely used in France:

	 =
γ

γ











R

R
 compression

R
 tension   

d

c

t
	

where Rc and Rt are calculated from the representative values of pl in the 
case of the (M)PMT method, or from representative values of qc, in the case 
of the cone penetrometer method CPT (see §3.2), with γ being the partial 
safety factor, on both the tip resistance and the resistance by shaft friction.
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The values of the partial factor γ are given in Table 25 for fundamental 
combinations and seismic situations (top value in each cell) and for acciden-
tal situations (bottom value in each cell).

The values of γ are obtained by the multiplication of three terms:

	 Rd1 Rd2 tγ = γ γ γ 	

•	 γRd1 is the model factor; γRd1 = 1.15 for the (M)PMT method and 
γRd1 = 1.18 for the CPT method in the case of piles loaded in compres-
sion, not embedded in chalk, of class 1–7 excluding piles of category 
10 and 15 (see Table 15). For other piles, this factor varies from 1.40 
to 2.00;

•	 γRd2 = 1.10; γRd2 compensates the absence of any correlation factor 
ξ and

•	 γt is the resistance factor. According to the recommendations of 
Eurocode 7 (BSI, 2004a): γt = 1.10 for compressive resistance (bearing 
capacity) and γt = 1.15 for tensile resistance.

For serviceability limit states (SLS), the following condition must be verified:

	 ≤F Rd cr, d	

where
Fd is the design value of axial load in compression, respectively, in 

tension, on the deep foundation, corresponding to the considered SLS 
combination of actions (see §1.2.2);

Table 25  �Values of partial safety factor γ for the ULS verification according to standard 
NF P 94-262 (AFNOR, 2012)

ULS: Fundamental combinations and seismic 
situations (top value)

SLS: Accidental situations (bottom value)

Compression Tension

(M)PMT CPT (M)PMT CPT

Piles of class 1–7, not anchored in chalk
Excluding piles of category 10 and 15

1.39
1.27

1.43
1.30

1.77
1.62

1.83
1.67

Piles of class 1–7, anchored in chalk
Excluding piles of category 10 and 15

1.69
1.54

1.75
1.60

2.15
1.96

2.21
2.02

Piles of category 10, 15, 17, 18, 19 and 20 
in sands, intermediate soils and rocks 

1.69
1.54

1.75
1.60

2.15
1.96

2.21
2.02

Piles of category 10, 15, 17, 18, 19 and 20 
in clays, chalks and marls 

2.42
2.20

2.42
2.20

2.53
2.31

2.53
2.31
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Rcr,d the design value of the creep limit load in compression, respectively 
in tension.

The values of the creep limit load, in compression or in tension, are obtained 
from the values Rb and Rs (see §3.2.1.2). The design values are then as 
follows:

•	 R
R

cr, d
c, cr=
γ

 for the creep limit load in compression; and

•	 R
R

cr, d
t, cr=
γ

 for the creep limit load in tension.

where γ is the partial safety factor to apply on the creep limit load for the 
verification of serviceability limit states (SLS). The values for the partial 
factor γ are given in Table 26 for quasi-permanent combinations (top value 
in each cell in Table 26) and for characteristic combinations (bottom value 
in each cell in Table 26).

These values of γ are obtained by the multiplication of three terms:

	 Rd1 Rd2 crγ = γ γ γ 	

•	 γRd1 and γRd2 are the same as for the verification of ultimate limit states 
(ULS) (see above); and

•	 γcr is the partial factor on the creep limit load.

Table 26  �Values of partial safety factor γ for the SLS verification according to standard 
NF P 94-262 (AFNOR, 2012)

SLS: Quasi-permanent combinations (top 
value)

SLS: Characteristic combinations (bottom 
value)

Compression Tension

PMT CPT PMT CPT

Piles of class 1–7, not anchored in chalk
Excluding piles of category 10 and 15

1.39
1.14

1.43
1.17

2.31*
1.69

2.39*
1.75

Piles of class 1–7, anchored in chalk
Excluding piles of category 10 and 15

1.69
1.39

1.75
1.44

2.81*
2.06

2.89*
2.12

Piles of category 10, 15, 17, 18, 19 and 20 
in sands, intermediate soils and rocks 

1.69
1.39

1.75
1.44

2.81*
2.06

2.89*
2.12

Piles of category 10, 15, 17, 18, 19 and 20 
in clays, chalks and marls 

2.42
1.98

2.42
1.98

3.30*
2.42

3.30*
2.42

*	 for piles in tension in quasi-permanent SLS combinations, and without any load test, γ = 4.7. 
Furthermore, for the foundations of bridges, it is not allowed to have piles in tension in quasi-
permanent combinations.
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When negative friction actions Gsn are to be considered (§1.1.4), they must 
be taken into account in all ULS (§1.2.1) and SLS combinations (§1.2.2). 

When the negative friction is assessed with the displacement approach 
(§3.2.9.3), it is then appropriate to carry out two calculations for the loads 
originating from the supported structure:

•	 One calculation with quasi-permanent loads; and
•	 Another calculation with characteristic loads.

The negative friction deduced from the calculation with quasi-permanent 
loads (Gsn, q-p) should then be used in quasi-permanent combinations (SLS), 
accidental situations (ULS) and seismic situations (ULS).

The negative friction deduced from the calculation with characteristic 
loads (Gsn, carac) should then be used in characteristic combinations (SLS) 
and fundamental combinations (ULS).

3.6.2.2 � Concept of stability diagram under axial loading

Stability diagrams give another view of the partial factor values presented 
in the previous paragraphs.

The example in Figure 106 shows, for a bored pile, the domains of allow-
able loads for various ULS and SLS combinations. The permanent loads 

Figure 106 � Stability diagram for a bored pile (Rs/Rc = 70%).
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G are on the x-axis, and variable loads Q on the y-axis. These loads are 
normalised by the compressive resistance (bearing capacity) of the pile Rc. 
It is possible to define the allowable loads by making a distinction between 
their permanent and variable parts. This Figure was established by assum-
ing that the part of frictional resistance Rs is 70% of the bearing capacity 
Rc, and that the variable loads Q are 30% of the permanent loads G.

The domain of allowable loads for the SLS quasi-permanent combination 
is very small and does not authorise any tensile load. It is the ULS funda-
mental combination that is the least conservative one in tension (G/R < 0) 
while it is the SLS characteristic combination that is the least conservative 
one in compression (G/R > 0).

This Figure also highlights that the allowable loads defined by the ULS 
fundamental combination and the SLS characteristic combination are rela-
tively similar, even though they refer to the compressive resistance (bearing 
capacity) or tensile resistance, and to the corresponding creep limit load, 
respectively. Using partial factors, and therefore limiting the applied load to 
a fraction of the creep limit load, not only covers the uncertainties on the 
actions and resistances but also controls the displacement.

3.6.2.3 � Bearing capacity of a pile group (ULS)

The bearing capacity of a pile group must be verified using the two follow-
ing approaches.

In the first approach, it should be verified for each ultimate limit state 
(ULS) combination of actions, for a group of N piles, where

	 F
N

R C Rcg, d b e s( )≤
γ

+ 	

and Fcg;d is the design value of the axial compression load on the pile group, 
obtained for ULS combinations;

Ce is the efficiency coefficient of the pile group (§3.4.1.1), which only affects 
the shaft friction according to standard NF P 94-262 (AFNOR, 2012); 
and

γ is given in Table 25.

In the second approach, the bearing capacity of the massive fictitious foun-
dation, equivalent to the pile group (see Figure 93), is verified by applying 
for each ULS combination of actions the rules stated in §3.6.2.1 for an 
isolated pile.

3.6.2.4 � Lateral behaviour (ULS and SLS)

The behaviour of a deep foundation under lateral forces should be verified 
for all ULS and SLS combinations.
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Displacement calculations are carried out using reaction curves (P, y) or 
(P, Δy). For an isolated pile, the indications of §3.3 should be followed. For 
a pile group, the models presented in §3.4.2–§3.4.5 are to be used.

The results calculated are as follows: 

•	 The displacement of the piles, notably the head displacement which 
is to be compared to the allowable displacement of the supported 
structure (§3.6.4 and §4.1); and

•	 Shear forces and bending moments along the pile. The verification is 
to guarantee that they are allowable for the pile material (reinforced 
concrete, steel, etc.) for the various ULS and SLS combinations (see 
§3.6.3, as well as Eurocode 2 for reinforced concrete and Eurocode 
3 for steel). 

When actions from lateral thrusts Gsp are to be considered (§1.1.3), they are 
to be taken into account in all ULS combinations (§1.2.1) and SLS combina-
tions (§1.2.2). It is then appropriate to carry out two calculations with the 
reaction curves (P, Δy = y − g) for the loads originating from the supported 
structure:

•	 One calculation with quasi-permanent loads; and
•	 A second calculation with characteristic loads.

In ULS and SLS combinations, the chosen value of Gsp will be the difference 
between the loads resulting from these two calculations and those obtained 
from the same calculations without g(z).

Additional loads resulting from the calculation with quasi-permanent 
loads (Gsp, q-p) can then be used in quasi-permanent combinations (SLS), 
accidental situations (ULS) and seismic situations (ULS). Additional loads 
resulting from the calculation with characteristic loads (Gsp, carac) can then 
be used in characteristic combinations (SLS) and fundamental combina-
tions (ULS).

3.6.2.5 � Overall stability (ULS)

The calculation approaches are the same as the ones described for shallow 
foundations (§2.5.2.5).

Attention is drawn to situations where a pile interacts with the failure (or 
deformation) mechanism associated with the overall stability. In this case, 
it is appropriate to verify the pile with the additional loads induced by the 
mechanism of overall instability (negative friction and lateral thrusts), in 
accordance with the indications of §3.6.2.1 and §3.6.2.4.

Note also that according to standard NF P 94-262 (AFNOR, 2012), the 
structures for which the deep foundation contributes to the overall stabil-
ity belong to a specific category. The foundation verification requires, in 
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addition to what is described in the previous paragraphs, the use of calcula-
tion models similar to the ones applied for rigid inclusions (ASIRI, 2012).

3.6.3 � Limit states related to the constitutive 
materials of the foundation (ULS and SLS)

The French standard NF P 94-262 (AFNOR, 2012) gives the rules for the 
constitutive materials by adapting Eurocode 2 and Eurocode 3 for rein-
forced concrete and steel, respectively. The adaptions are outlined below.

3.6.3.1 � Concrete, grout or mortar of cast-
in-situ deep foundations

Verification calculations are carried out from the conventional compressive 
strength of concrete fck

*  by applying the following formula (NF P 94-262, 
AFNOR, 2012):

	
( )( )

=f
Min f t ;C ;f

k k
ck
* ck max ck

1 2
	

where

•	 fck is the characteristic compressive strength at 28 days, according to 
Eurocode 2 (BS EN 1992-1-1, BSI, 2004d);

•	 fck(t) is the characteristic compressive strength at time t (t < 28 days). 
As a first approximation, one may select: fck(t) = 0,685 fck log(t + 1), 
with t in days;

•	 Cmax is the maximum value (see Table 27);
•	 k1 is the factor that takes into account the mode of installation into 

the ground, depending on the chosen execution process (see Table 27). 
This factor may be decreased by 0.1 under certain conditions; and

•	 k2 is the factor that takes into account concreting difficulties linked to 
the foundation geometry (diameter and slenderness). The value k2 is 
equal to 1.00 in all cases, except for the following cases:

Table 27  �Applicable factors for the determination of the conventional strength fck
*  of 

concrete, grout or mortar for cast-in-situ deep foundations according to 
standard NF P 94-262 (AFNOR, 2012)

Class Cmax (MPa) k1

1 Bored piles and barrettes 35a 1.30
2 Continuous flight auger with recording of parameters 30a 1.35
3 Cast-in-situ screw piles 35a 1.30
4 Cast-in-situ driven piles 35a 1.30
a	 For bridges, Cmax is limited to 25 MPa
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•	 k2 = 1.05 if the ratio of the smallest dimension B to the length D is 
lower than 1/20,

•	 k2 = 1.30 − B/2 if the smallest dimension is lower than 0.60 m (B in 
meters), or

•	 k2 = 1.35 − B/2 if B/D < 20 and B < 0.60 m (B in meters).

The characteristic tensile strength of concrete, mortar or grout to be con-
sidered for deep foundations is defined by standard Eurocode 2 (BS EN 
1992-1-1, BSI, 2004d).

The elasticity modulus Eb of concrete, mortar or grout to be considered 
for deep foundations is defined by standard Eurocode 2 (BS EN 1992-1-1, 
BSI, 2004d, Table 3.1).

The delayed modulus (long duration) Ediff is taken, for deep foundations, 
as Ediff = Eb/3.

For ultimate limit state calculations, the design value of the conventional 
compressive strength of concrete, grout or mortar of deep foundations cast-
in-situ fcd is obtained by applying the following formula:

	 f Min k
f

;
f t

;
C

cd cc 3
ck
*

c
cc

ck

c
cc

max

c

( )= α
γ

α
γ

α
γ







where
αcc = 1.0 over the reinforced height of the foundation and αcc = 0.8 over 

its non-reinforced height (note that deep foundations of bridges 
must be reinforced over their whole length);

k3 = 1.0 for common cases. k3 = 1, 2 may be selected when reinforced 
controls of the integrity and continuity of shafts are carried 
out (see standard NF P 94–262, Table 6.4.1.2 for buildings, or 
Table Q.1.1 for bridges);

γc = 1.5 for fundamental combinations (persistent and transient design 
situations);

γc = 1.2 for accidental design situations; or
γc = 1.3 for seismic design situations.

For SLS characteristic combinations, one should verify that the concrete 
compression stresses meet the following conditions:

•	 Average value: 0,3k f ;c moy 3 ck
*σ <  and

•	 Maximum value: Min 0.6k f ;0.6fcmax 3 ck
*

ck( )σ < .

3.6.3.2 � Concrete, grout or mortar of pre-
cast deep foundations

The provisions of standard Eurocode 2 (BS EN 1992-1-1, BSI, 2004d) are 
applied. The foundation integrity requires adequate execution conditions, 
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to be controlled with the methods described in the corresponding European 
standards.

3.6.3.3 � Steel for piles made of reinforced concrete

Eurocode 2 (BS EN 1992-1-1, BSI, 2004d) is applied to steel of reinforced 
or pre-stressed concretes, provided some provisions of standard NF EN 
94-262 (AFNOR, 2012) are also applied.

3.6.3.4 � Steel for other piles

The following distinctions are made:

•	 Steel for “load bearing elements” such as defined in standard BS EN 
14199 for micropiles (BSI, 2015b);

•	 Steel used for profiles (hollow or H) listed in standard BS EN 12699 
for piles with soil displacement (BSI, 2015a); or

•	 Construction steel as defined in standards BS EN 1993-1-1 (BSI, 
2005) and BS EN 1993-5 (BSI, 2007b) for piles and sheet piles.

Table 28 provides the recommended values for the assessment of the loss of 
thickness due to corrosion according to Eurocode 3–5 (BSI, 2007b).

Table 28  �Recommended values for loss of thickness (mm) due to corrosion in the case 
of piles and sheet piles in the ground, with or without groundwater table 
(BSI, 2007b)

Duration of operations of the project
5 

years
25 

years
50 

years
75 

years
100 
years

Intact natural soils (sand, silt, clay, shale, etc.) 0.00 0.30 0.60 0.90 1.20
Polluted natural soils and industrial sites 0.15 0.75 1.50 2.25 3.00
Aggressive natural soils (swamp, marsh, peat, 
etc.)

0.20 1.00 1.75 2.50 3.25

Non-aggressive and non-compacted fills 
(clay, shale, sand, silt, etc.)

0.18 0.70 1.20 1.70 2.20

Aggressive and non-compacted fills (ashes, 
cinders, etc.) 

0.50 2.00 3.25 4.50 5.75

Corrosion rates in compacted fills are lower than the ones observed in non-compacted 
fills. In compacted fills, it is appropriate to halve the values given in the table.

The values given for 5 years and 25 years are based on measurements, while the others 
are extrapolated.
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3.6.3.5 � Buckling and second order effects (ULS)

The verification of a pile with regard to buckling should be considered only 
in particular cases such as:

•	 Piles with a great free height. This situation can stem from the original 
design of the foundation or be the result of scour; or

•	 Piles with low inertia (micropiles for example) crossing great heights 
of soils with low mechanical properties.

The buckling risks of piles are usually limited.
When buckling and second order effects have to be considered, based 

on the equilibrium equation presented in §3.3.2.3 and taking into account 
second order effects (due to the axial force F), the following equation is 
obtained:

	 ( )+ + =E I
d y
dz

E y z F
d y
dz

0p p

4

4 s

2

2 	

F is a buckling force if, and only if, y(z) ≠ 0 in the absence of lateral loading.
Some closed-form solutions are available in Mandel (1936).
The finite element method approach makes it possible to obtain a matrix 

system of this equation for heterogeneous ground conditions and piles with 
non-uniform cross sections along their length. Eigenvalues and eigenmodes 
of this matrix system are the buckling forces and the buckling modes, 
respectively (Cuira, 2012).

In some cases, it is appropriate to examine second order effects, i.e., addi-
tional moments generated under axial loads when the initial curvature of 
the pile is not equal to zero (for example, under the effect of lateral loads).

3.6.4 � Displacement (ULS and SLS)

The displacement of the foundation must be compatible with the proper 
functioning of the supported structure. As for shallow foundations (see 
§2.5.2.2), it is appropriate to assess, in some cases, the displacement of 
foundations on piles under both ULS and SLS combinations of actions.

It should be noted that safety on the ground bearing capacity (§3.6.2.1) 
most often guarantees that the settlement remains allowable.

Regarding the behaviour of piles under lateral loads, section §3.3.2 
describes the p-y method that allows determining horizontal displacement. 
The calculations of settlement (vertical displacement) of axially loaded piles 
are carried out using the t-z method (§3.2.8). These methods are commonly 
used and rather reliable, at least for permanent combinations (SLS). However, 
note that the experience gained from the calculations of displacement of foun-
dations at higher load levels, or with predominant fractions of variable loads, 
is more limited.
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The determination of pile displacement is needed to assess the stiffness for 
the soil-structure-interaction analysis, which makes it possible to assess more 
accurately the forces in both the foundations and the supported structure (§4.2). 

A certain number of data are available about the allowable displacement 
of structures (whether on shallow or deep foundations). They are assembled 
in §4.1.

3.7 � CONSTRUCTION PROVISIONS 
AND COURSE OF ACTION

It is difficult to provide recommendations that allow, during a study of foun-
dations on piles, to make choices that are valid for all situations. Indeed, 
depending on the type of structure that the foundation will support, these 
recommendations differ:

•	 On-shore, waterways or maritime structures;
•	 Bridges, buildings or wharfs;
•	 Temporary or permanent structures; and
•	 Structures with predominant vertical loads or predominant horizon-

tal loads.

They also differ as a function of the size of the structure and of the load 
applied on the foundation.

What is stated here are therefore a few general rules that can be applied 
to most of the common structures on piles.

3.7.1 � Types of piles

The precise choice of a type of pile is usually not made during the pre-
liminary foundation study. Most often, it is made by the contractor, who 
proposes a specific technology on the basis of criteria such as the following:

•	 Orientations defined in the contractor’s tender file;
•	 Local practice, or issues linked to the considered type of structure 

(on-shore, waterways or maritime structures);
•	 The equipment used by the contractor; and
•	 Cost.

The broad orientations defined, explicitly or not, in the contractor’s tender 
file (piles, piers or barrettes; steel or concrete piles; driven or jacked con-
crete piles, cast-in-situ driven piles, bored piles, etc.) are linked to the site 
and structure conditions:

•	 Site configuration: on-shore, waterways or maritime structure site;
•	 Ground natures, layers and substratum geometry; and
•	 Groundwater flow and groundwater aggressiveness.
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These conditions are specified in the geotechnical study included in the con-
tractor’s tender file.

More precise considerations, which can, for example, concern the pile 
surface in contact with the soil or the type of tip, that influence shaft fric-
tion, negative friction or tip resistance, can sometimes, but more rarely, 
participate in the choice of the type of piles.

It is recommended to choose the same type of piles for the whole 
foundation.

3.7.2 � Dimensions. Inclination

3.7.2.1 � Diameter (or width)

Large bored piles (B > 1.00 m) are usually used for large structures.
Bored piles, not cased over their whole length, as well as barrettes, have a 

minimum lateral dimension of 0.60 m. For road bridges, it is recommended 
in French practice to have at least 0.80 m.

Small piles, whether driven or bored, are adapted only to structures 
transmitting moderate loads.

The choice of the diameter can also be linked to the size of horizontal 
forces on the foundation.

If horizontal forces are small, piles of small diameters (B < 0.60 m) can 
be appropriate, even if they finally need to be inclined, whereas piles of 
medium (B between 0.60 and 0.80 m) or large (B > 0.80 m) diameters pro-
vide the necessary lateral reaction and rarely need to be inclined.

If horizontal forces are large, then piles of small diameters are to be 
avoided, piles of medium diameters are to be inclined and vertical piles of 
large diameters or barrettes should preferably be used.

The choice of the pile diameter can also be governed by its length (to avoid 
buckling problems, for example).

3.7.2.2 � Length

The pile length depends on the following:

•	 The thickness of the resisting soil layers that will be penetrated by the 
pile to mobilise a sufficient shaft friction (notably in the case of float-
ing piles);

•	 The depth of the resisting substratum and of the planned embedment 
within the substratum, if it is required to reach it.

3.7.2.3 � Inclination

The only limit to the inclination, regardless of the diameter or type of pile 
(driven or cast- in-situ), is imposed by the execution equipment. In general, 
an inclination of 20° is rarely exceeded, but this is not a fixed limit.
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3.7.3 � Layout of the pile group

The layout of the piles in a group is such that

•	 The distribution of the axial loads between the piles is as homoge-
neous as possible under quasi-permanent and characteristic combina-
tions of actions; and

•	 The group of piles is centred under the loads of the structure.

The minimum distance between two piles must be 1.5 B (in other words, a 
minimum centre-to-centre distance of 2.5 B), because of execution issues. 
Even though no maximum distance between piles is recommended, a large 
distance between them should be avoided, in order to limit the thickness of 
the pile cap.

3.7.4 � Specific recommendations for cast-
in-situ piles and barrettes

Cast-in-situ piles and barrettes must be designed and reinforced with steel 
to resist compression (or tension), bending and shearing.

Concreting and reinforcement must follow state-of-the-art practice (see, 
for example, CEREMA, 2019).

3.7.5 � Inspection of cast-in-situ piles and barrettes

The inspection aims at guaranteeing the shaft concrete quality and the 
quality of the contact between the tip and the ground. Various methods 
may be used:

•	 Sounding methods:
•	 Pulse-echo,
•	 Sonic transparency,
•	 Gammametric transparency,
•	 Mechanical impedance;

•	 And sampling methods:
•	 Sampling of the pile tip,
•	 Sampling of the pile shaft,
•	 Borescope.

Some of these methods require prior installation of some inspection pipes 
linked to the reinforcing cages.

Depending on the size of the structure, either all the piles are inspected 
or only a sample of them.
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Recommendations regarding inspection methods are detailed in the 
document from CEREMA (2019).

Note that the wave propagation analysis (with blows at the pile head, 
§3.2.7.2) may also provide data about the state of the concrete or of the 
contact between the tip and the ground.

3.7.6 � Course of action for a deep foundation study

Designing a foundation on piles can be achieved only through a trial-and-
error process. It starts from a preliminary project established in a more or 
less empirical manner. This project undergoes the required verifications. If 
one, or more, conditions is not satisfied, the project is resumed. This pro-
cess is repeated until it produces a satisfactory foundation.

The stages of the study are the following:

	 1.	First an estimate of the number of piles is obtained by dividing the 
vertical load by the maximum load that can be supported by each pile 
for the most unfavourable combinations of actions;

	 2.	The piles are then arranged in an efficient manner under the pile cap;
	 3.	The average lateral loading is examined for a pile in the group, 

assumed as being isolated;
	 4.	The distribution of axial and lateral forces on the piles of the group 

are then determined through a general calculation;
	 5.	Various combinations of actions are then verified to ensure the 

following:
•	 The axial load on each pile remains lower than the allowable load, 

possibly modified to take into account the group effect;
•	 The displacement is allowable for the structure; and
•	 The design of the pile material (concrete, reinforcement, steel, etc.) 

is suitable to resist the internal forces it supports
	 6.	The composition or layout of the group of piles is modified in case one 

of the design conditions is not met, and the various verifications are 
resumed.

In any circumstance, the behaviour of piles under the various types of 
loads is a complex problem. It is nearly impossible to design a pile foun-
dation with a simple yet accurate method. It is also worth noting that a 
foundation project must also take on board the execution or installation 
issues in addition to the comparison between the loads brought by the 
superstructure and the mechanical properties of the ground. For large 
structures, or when complex load, arrangement or execution conditions 
appear, the acquired knowledge and experience of a foundation specialist 
is necessary.
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ANNEX 1. � TAKING INTO ACCOUNT THE EFFECT 
OF NEGATIVE SHAFT FRICTION

For simplification purposes, it is possible to estimate an upper boundary of 
negative friction as stated in §3.2.9.1:

	 z zv 1( ) ( )′σ = ′σ 	

The purpose of this annex is to detail a method that allows taking into 
account the negative shaft friction effect on the effective vertical stress 

zv ( )′σ  to be considered to assess the unit negative friction qsn(z) (see 
§3.2.9.1).

A1.1 � Isolated pile

The general expression of the effective vertical stress at the soil-pile interface 
has the following form in the intervals where d 1′σ (z)/dz remains constant 
(Combarieu, 1985):

	 z
1
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, where λ is a factor with the following values:

1
0.5 25K tan

λ =
+ δ

 if K tan 0.15δ ≤ ;

0.385 K tanλ = − δ if 0.15 K tan 0.385≤ δ ≤ ;
0 ifλ =  K tan 0.385δ ≥ ;

and R is the pile radius;
1′σ (z) is the effective vertical stress at the pile location in the absence of 

the pile;

When λ is equal to 0 (and m = 0), the effect of the negative shaft friction on 
v′σ (z) is neglected and its expression becomes

	 z 0 z
d z

dz
zv v

1
1( ) ( ) ( ) ( )′σ = ′σ +

′σ
= ′σ 	

In the simple case of a homogeneous soil with a submerged unit weight 
γ′ located under an embankment transmitting a surcharge Δσ′(z) (see 
Figure 107):

	 z z z1 ( ) ( )′σ = ′γ + ∆ ′σ 	
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The expression of v′σ  taking into the effects of the negative shaft friction 
becomes

	 z
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In the general case where λ ≠ 0 (or m ≠ 0), v′σ >(z) is lower than 1′σ (z) and 
reaches the value γ′z at a certain depth. When displacement calculations 
(see §3.2.9.3) are not carried out, this depth h1 can be considered as the 
neutral point (below which there is no negative friction).

A1.2 � Unlimited group of piles

In the presence of several piles, the negative friction effect is reduced due to 
the decrease of v′σ (z), the more so the piles are closer. The sum of the nega-
tive friction forces on a group of piles is, in other words, lower than the sum 
of the same forces calculated as if each pile was isolated (§A1.1).

In the case of an unlimited group of piles of radius R, regularly spaced 
with a centre-to-centre distance S in one direction and S′ in the other direc-
tion, the calculation of the negative friction on a pile is the same as for an 
isolated pile by replacing m(λ) with m(λ, b) (Combarieu, 1985):

	 m , b
1 1

b
R
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b R

R
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+ λ − + λ



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−λ −



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⋅ δ λ ≠  	

R Backfill        S1 soft soil         S2 stiff ground

Figure 107 � Calculation of negative friction for an isolated pile in a homogeneous soil 
loaded by an embankment (from Combarieu, 1985).
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and:

	 m 0,b
2

b
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K tan
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−
⋅ δ λ = 	

with: = ′b SS π .

For b → ∞, m(λ, ∞) = m(λ): this is the case of an isolated pile.

The values of m , b
R

K tan
( )λ

δ
 are given in Figure 108.

In the case where the effect on v′σ (z) of the negative friction is neglected:
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A1.3 � Limited group of piles

The previous paragraphs describe the calculation of the effective vertical 
stress v′σ (z) at the pile-soil interface, and consequently, the limit unit nega-
tive frictions, for an isolated pile qsn,1(z) and for an unlimited group of piles 
qsn, ∞(z).

In the case of a limited group of piles (see Figure  109), the following 
empirical expressions allow calculating the limit unit negative friction qsn(z) 

Figure 108 � Chart for the determination of m , b
R

Ktan
( )λ

δ
 (Combarieu, 1985).
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on a pile as a function of its location within the group. These expressions 
are taken from Combarieu (1985).

Case of a single pile row:

•	 Outer piles: ( ) = + ∞q e
2
3

q
1
3

qsn sn, 1 sn, 

•	 Inner piles: ( ) = + ∞q i
1
3

q
2
3

qsn sn, 1 sn, 

Case of several pile rows:

•	 Angle piles: ( ) = + ∞q a
5

12
q

7
12

qsn sn, 1 sn, 

•	 Outer piles: ( ) = + ∞q e
1
6

q
5
6

qsn sn, 1 sn, 

•	 Inner piles: ( ) = ∞q i qsn sn, 

ANNEX 2. � SOLUTIONS FOR THE DESIGN 
OF LATERALLY LOADED PILES – 
HOMOGENEOUS AND LINEAR GROUND

A2.1 � Sign convention – general solution

The sign convention is shown in Figure 82.
The ground, homogeneous and linear, is represented by a single subgrade 

reaction modulus Es. The transfer length l0 of a pile with Young’s modulus 
Ep and inertia moment Ip is

	 =l
4E I

E
0

p p

s

4 	

The head forces are T0 and M0.

Single row Several rows

Figure 109 � Limited groups of piles (Combarieu, 1985).
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The possible free soil displacement (for ground lateral thrusts) is given by 
the function:

	 g z z z z0 1 2
2

3
3( ) = α + α + α + α 	

The influence of the substratum is taken into account through the tip 
conditions.

The general solution y(z) of the lateral equilibrium equation is presented 
in §3.3.2.4.2. It is expressed as follows:

	

y z z z z e a cos
z
l

a sin
z
l

e a cos
z
l

a sin
z
l

0 1 2
2

3
3 z / l

1
0

2
0

z / l
3

0
4

0

0

0

( ) = α + α + α + α + +

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
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A2.2 � Flexible (or long) pile

A pile is considered as being flexible (or long) if its length is greater than, 
or equal to, 3l0.

When the pile is loaded only at its head, without any ground lateral 
thrusts, the tip conditions play no role, and the positive exponential terms 
are negligible, whatever these tip conditions. A system of two equations 
with two unknowns a3 and a4 is obtained: the head conditions allow deter-
mining them.

However, and still in the case of a long pile, when g(z) ≠ 0, two different 
studies must be carried out:

•	 Head behaviour: the tip conditions play no role, the positive exponen-
tial terms are negligible, and conditions at the head allow calculating 
a3 et a4 and therefore the forces and displacement at proximity of the 
head; and

•	 Tip behaviour: the head conditions play no role, the negative 
exponential terms are negligible and conditions at the tip allow 
calculating a1 et a2 and therefore the forces and displacement at 
proximity of the tip.

A2.2.1 � Solutions for a flexible pile without 
lateral thrusts (g(z) = 0)

Pile loaded at the head (T0, M0):

	 ( ) ( ) ( )= = = +





T 0 T  M 0 M  y 0
2

E l
T

M
l

0 0
s 0

0
0

0
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The moment is maximum at

	 z l arctan
T l

2M T l
0

0 0

0 0 0
=

+




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Pile fixed into a pile cap (y′(0) = 0) and subjected to a head load T0:

	 ( ) ( ) ( ) ( )′ = = = = −y 0 0 T 0 T  y 0
T

E l
 M 0

T l
2

0
0

s 0

0 0 	

M(0) is the maximum moment.

A2.2.2 � Solutions for a flexible pile with 
lateral thrusts (g(z) ≠ 0)

Pile loaded at the head (T0, M0):

	 T 0 T  M 0 M  y 0 l 3 l
2

E l
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0 0 0 0
2

2 3 0
s 0

0
0

0
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Pile perfectly fixed at the head:

	 y 0 0 y 0 0 M 0
2E I

l
l lp p

0
2 0 1 0 2 0

2( ) ( ) ( )= ′ = = α + α + α 	

M(0) is the maximum moment.
Pile fixed into a pile cap (y′(0) = 0) and subjected to a head load T0:

	 ( ) ( )′ = =y 0 0 T 0 T0	
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1
2

l
3
2

l
T

E l
 M 0

E I
l

2 l 3 l
T l
2

0 1 0 3 0
3 0

s 0

p p

0
1 2 0 3 0

2 0 0( ) ( )= α + α − α + = α + α + α  −

Pile perfectly fixed at the tip:

	 ( ) ( ) ( ) ( )= ′ = = α + α − α − α − α y D 0  y D 0 M D
2E I

l
l 3 D 2 D 3 Dp p
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A2.3 � Rigid (or short) pile

When l0 ≥ D, a good approximation of forces and displacement can be 
obtained by writing the reaction law under the form:

	 ( ) ( ) ( )= + ′ − P E y 0 y 0 z g zs 	
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which comes to ignoring the pile self-deformation (see Figure 110).
The force and moment equilibrium equations provide the solutions for y, 

y′, M and T as a function of z. These expressions depend on four constants. 
With two boundary conditions at the head, and two at the tip, the problem 
can be solved.

A2.3.1 � Solutions for a short pile without 
lateral thrusts (g(z) = 0)

Pile loaded at the head (T0, M0):

	 ( ) ( )= =T 0 T  M 0 M0 0

… and free at the tip T(D) = M(D) = 0

	 y 0
2

E D
2T D 3M

s
2 0 0( ) ( )= +

The maximum moment Mmax is

	 ( )= = = = 



 = =M M 0 M  if T 0 and M M

D
3

4
27

T D if M 0max 0 0 max 0 0 	

…. and free in rotation at the tip y(D) = M(D) = 0

	 y 0
3

E D
T D M

s
2 0 0( ) ( )= + 	

Pile fixed at the head (y′(0) = 0), subjected to a head load T0, and free at the 
tip T(D) = 0 and M(D) = 0:

Figure 110 � Reactions and displacement for a rigid pile.
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	 ( ) ( ) ( ) ( )′ = = = = −y 0 0  T 0 T   y 0
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0
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s
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A2.3.2 � Solutions for a short pile with lateral thrusts (g(z) ≠ 0)

Pile loaded at the head (T0, M0):

	 ( ) ( )= =T 0 T M 0 M0 0	

… and free at the tip T(D) = M(D) = 0
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… and free in rotation at the tip y(D) = M(D) = 0
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… and perfectly fixed at the tip y(D) = y′(D) = 0
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Pile perfectly fixed at the head:

	 ( ) ( )= ′ =y 0 y 0 0	

In all cases, y(z) is identically equal to zero.
…and free at the tip T(D) = M(D) = 0
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… and free in rotation at the tip y(D) = M(D) = 0
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… and perfectly fixed at the tip y(D) = y′(D) = 0
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Fixed pile at the head (y′(0) = 0) subjected to a head load T0:

	 ( ) ( )′ = =y 0 0 T 0 T0

…and free at the tip T(D) = M(D) = 0
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… and free in rotation at the tip y(D) = M(D) = 0
Then y(z) is identically equal to zero and
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… and perfectly fixed at the tip y(D) = y′(D) = 0
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Chapter 4

Interactions with the 
Supported Structure

4.1 � ALLOWABLE DISPLACEMENT

4.1.1 � Introduction

Once the settlement (or horizontal displacement) is determined in one or 
several locations of a foundation, or when an average settlement is deter-
mined, the obvious question is to know whether the displacement is allow-
able for the supported structure. Civil engineers know very well that this 
issue is highly complex, for multiple and varied reasons, dealing with the 
ground, the foundation and the structure, and for which no general solution 
exists, whether theoretical or empirical.

However, some simple recommendations exist that derive from experi-
mental observations, and it may prove useful to recall them in the present 
document for reference. They were established for common structures and 
for relatively uniform loads, and often for typical geotechnical structures. 
Therefore, using them demands great caution. They may serve to signal a 
problem or to the contrary serve to reassure about the soundness of the 
solution regarding the allowable displacement.

In complex or problematic cases, it will be necessary to carry out a more 
sophisticated calculation of the soil-structure interaction (§4.2) than the 
one that consists in determining the displacement of the structure and then 
to compare it with the following empirical allowable values.

4.1.2 � Allowable displacement of 
foundations of buildings

Most of the rules regarding allowable settlement were established between 
1955 and 1975.

These rules are summarised in Table 29, which provides the limit-
ing (allowable) deformations for, on the one hand, frame buildings and 
reinforced load-bearing walls and, on the other hand, unreinforced load-
bearing walls. These limits deal with the relative rotation and the deflection 
ratio Δ/L, respectively. The values are provided in Figure 111.
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Unfortunately, it is often difficult to know to which type of damage each 
limit corresponds. If disorders are sorted into three types: visual or aes-
thetic disorders, disorders jeopardising the use or operability and structural 
disorders jeopardising the stability, the distinction between the first two 
types is rarely made. Thus, the rules of Table 29 would correspond to “very 
light” to “light” disorders (Ricceri and Soranzo, 1985).

According to Eurocode 7-1 (BSI, 2004a), the allowable maximum rela-
tive rotation to avoid a serviceability limit state within the structure ranges 
between 1/2000 and 1/300 depending on the type of building, with a 1/500 
value being allowable in many cases. To avoid an ultimate limit state, the 
allowable value would be around 1/150.

The fundamental issue for the application of the criteria of allowable 
deformations for buildings and structures recalled above is to be able to 
assess the differential settlement or rotation of structures, which is a more 
complex issue than assessing total settlement.

With all due caution, some simple rules or correlations about allowable 
maximum settlement and maximum differential settlement can be used.

For sands, the following limits are often referred to:

•	 Isolated foundations: 20 mm for the differential settlement between 
adjacent supports, which corresponds at least to 25 mm of maximum 
settlement (Terzaghi and Peck, 1967), or even, according to Skempton 

Table 29  Summary of limiting deformations (Ricceri and Soranzo, 1985; ISE, 1989)

Framed buildings and reinforced loadbearing walls
Limiting values of relative rotation (angular distortion) β

Skempton and MacDonald (1956) Meyerhof 
(1956)

Polshin and 
Tokar 
(1957)

Bjerrum 
(1963)

Structural damage 1/150 1/250 1/200 1/150
Cracking in walls 
and partitions

1/300 (but 1/500 recommended) 1/500 1/500 
(0.7/1000 to 
1/1000 for 
end bays)

1/500

Unreinforced loadbearing walls
Limiting values of deflection ratio Δ/L for the onset of visible cracking 

Meyerhof 
(1956)

Polshin and Tokar 
(1957)

Burland and 
Wroth (1975)

Sagging 1/2500 L/H < 3; from 
1/3500 to 1/2500

L/H > 5; from 
1/2000 to 1/1500

1/2500 for 
L/H = 1

1/1250 for 
L/H = 5

Hogging --- --- 1/5000 for 
L/H = 1

1/2500 for 
L/H = 5
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and MacDonald (1956), 25 mm for differential settlement and 40 mm 
for maximum settlement (for a relative rotation of 1/500);

•	 Raft foundations: maximum settlement of 50 mm according to Terzaghi 
and Peck, and of 40–60 mm according to Skempton and MacDonald.

Such rules may prove conservative. Burland et al. (1977) report that, in 
fact, few issues should be met for common buildings founded on thick lay-
ers of sand.

For clays, Skempton and MacDonald propose 40 mm of maximum dif-
ferential settlement. Regarding total settlement, the limit is 65 mm for iso-
lated foundations and 65–100 mm for rafts.

Eurocode 7-1 (BSI, 2004a) indicates that “greater total and differential 
settlements may be acceptable provided the relative rotations remain within 
acceptable limits and provided the total settlements do not cause problems 
with the services entering the structure or cause tilting, etc.”.

For clayey soils, Figure 112 (Burland et al., 1977), which was established 
from data from Skempton and MacDonald and others, indicates the degree 
of damage undergone by buildings on isolated foundations and on rafts as a 

(a) Settlement s, differential settlement δs, rotation φ, angular strain α

(b) Relative deflection ∆, deflection ratio ∆/L

(c) Tilt ω, relative rotation (angular distortion) β

Figure 111 � Definition of building deformations (Burland and Wroth, 1975).
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Figure 112 Behaviour of buildings founded on clayey soils (Burland et al., 1977).

@Seismicisolation@Seismicisolation

https://telegram.me/seismicisolation


Interactions with the Supported Structure  185

function of maximum differential settlement and of maximum settlement, 
in principle for thick uniform clayey layers and loads of uniform intensities. 
Various limits were previously proposed and are also reported.

Figure 113 (Ricceri and Soranzo, 1985) assembles observations about 69 
structures in Italy (in steel, with load-bearing walls made of bricks and of 
reinforced concrete) of highly variable stiffness and on shallow and deep 
foundations. It gives the correlation between maximum settlement and 
maximum angular distortion and indicates which structures were damaged.

The following simple rules were then suggested: a maximum settlement 
of 8 cm should not cause any major damage; a maximum settlement greater 
than 20 cm cannot be supported by traditional structures and damage 
should be expected (depending on the relative soil-structure stiffness) and 
lastly, between 8 cm and 20 cm, a detailed study of the soil-structure inter-
action has to be carried out.

Correlations from Figures 114 and 115 may also prove useful (Justo, 
1987). They present the observations of various authors regarding maximum 
settlement, or maximum relative deflection, as a function of the maximum 
angular distortion, in the case of sands, clays and fills. Results are widely 
scattered and highlight the need for caution.

Ménard (1967) proposes a simple method to determine the differen-
tial settlement starting from the total settlement, from the “heterogeneity 
index” and from the stiffness of the structure. The allowable limits recom-
mended by Ménard for the angular distortion are then as follows:

•	 From 1/3300 to 1/1500 for residential buildings;
•	 From 1/1250 to 1/650 for industrial constructions.

These limits, when compared to the ones of Table 29, may appear conservative.

Figure 113 � Correlation between maximum settlement smax and angular distortion βmax 
(Ricceri and Soranzo, 1985).
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4.1.3 � Allowable displacement of bridge foundations

The observations of allowable settlement for bridges that are available are 
significantly fewer than for buildings.

It seems that the first thorough study of allowable displacement for 
bridges was launched in the USA and Canada, in the form of an inves-
tigation made by the Transportation Research Board (Bozozuk, 1978). 
The displacements labelled as “tolerable”, as “harmful but tolerable” and 
lastly as “not tolerable” are reported in Figure 116 for 120 cases of abut-
ments and piers founded on spread footings. The types or sizes of bridges 
are not specified but data include both horizontal displacement and 

(a) Clays                                                (b) Sands and fills

Figure 114 � Correlation between maximum settlement smax and maximum angular 
distortion βmax for isolated foundations (Justo, 1987).

(a) Clays                                                (b) Sands and fills

Figure 115 � Correlation between maximum relative deflection Δmax and maximum angular 
distortion βmax for buildings (Justo, 1987).
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vertical settlement. Displacement is labelled as “tolerable” when bridge 
maintenance works are moderate, regardless of the order of magnitude 
of displacement, and as “not tolerable” when substantial maintenance or 
repair works are required.

The results obtained for piers and abutments on floating piles (60 
analysed cases) and on end-bearing piles (90 analysed cases) are quite 
analogous.

On the basis of these observations, the following limits are proposed, 
regardless of the type of foundation, for vertical settlement sv and horizon-
tal displacement sh (Bozozuk, 1978):

Tolerable or acceptable:

•	 <s 50 mmv

•	 <s 25 mmh

Figure 116 � Behaviour of bridge abutments and piers on spread footings (Bozozuk, 1978).
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Harmful but tolerable:

•	 < <50mm s 100 mmv

•	 < <25mm s 50 mmv

Not tolerable:

•	 >s 100 mmv

•	 >s 50 mmh

Another thorough study about the allowable displacement of road bridges was 
carried out by the Federal Highway Administration (FHWA) (Moulton, 1986). 
Three hundred and fourteen bridges in the USA and Canada (including some 
that had been part of the previous study) were analysed.

Of 580 examined abutments, almost 75% had undergone a horizontal 
and/or vertical displacement. Regarding intermediate piers, only 25% of a 
total of 1068 had undergone a displacement. For both piers and abutments, it 
was observed that there were more cases of displacement for foundations on 
strip footings than for foundations on piles. However, for foundations 
that had been effectively displaced, the average displacement, both hori-
zontal and vertical, was greater for foundations on piles (9.9 and 6.9 cm 
for abutments and 9.1 and 8.1 cm for piers, respectively) than for shallow 
foundations (9.4 and 6.1 cm for abutments and 4.6 and 7.9 cm for piers, 
respectively). Another interesting observation was that for both strip foot-
ings and piles, displacement had occurred more frequently in the presence 
of fine clayey soils.

Most of the damage was associated with horizontal displacement or hori-
zontal displacement coupled with vertical displacement. Of the 155 bridges 
that had undergone a differential settlement of less than 10 cm, 79 had no 
damage, and most of them had only minor damage. In contrast, a sole hori-
zontal displacement of 2.5–5 cm had caused damage in the structure in two-
thirds of the cases, and supports had been impacted in one third of the cases.

Moreover, it would seem that structural damage was more frequent for 
isostatic bridges than for hyperstatic ones, for steel bridges than for con-
crete ones and for bridges with multiple spans than single span ones.

In this study, the tolerance criterion adopted for damages was as follows: 
“movement is not tolerable if damage requires a costly maintenance and/
or repairs, and a more expensive construction would have been preferable”. 
Under this definition, displacement was tolerable for 180 bridges and not 
tolerable for the 100 others (of a total of 280 bridges for which the data were 
sufficient). Thus, 98% of cases of settlement below 50 mm and 91% of cases 
of settlement below 100 mm were allowable. Even though greater differen-
tial settlement was sometimes allowable, the percentage decreased sharply 
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beyond 100 mm. Regarding horizontal displacement, 88% of displacement 
below 50 mm were allowable and only 60% if differential settlement had 
also occurred. In the presence of differential settlement, most cases of hori-
zontal displacement were allowable only if they remained below 25 mm.

The influence of the span length was taken into account by the longitudi-
nal angular distortion. A total of 204 bridges were analysed with respect to 
allowable distortion: 144 had no unallowable damage and 60 had unallow-
able damage. For all spans and bridges of any type (steel or concrete), 98% 
of distortions below 1/1 000, nearly 94% of distortions below 1/250, only 
43% of distortions between 1/250 and 1/100 and 7% of distortions greater 
than 1/100 were allowable. Isostatic and hyperstatic bridges have sensitivities 
to angular distortions that hardly differ: 97% of distortions below 1/200 
were allowable for isostatic bridges (i.e., a differential settlement of less than 
75 mm for a span length of 15 m or less than 150 mm for a span length of 
30 m), when 94% of distortions of less than 1/250 were allowable for hyper-
static bridges (60 mm for 15 m, and 120 mm for 30 m). Furthermore, concrete 
bridges withstood angular distortions slightly better than steel bridges.

In conclusion, the following allowable limits were proposed, which corre-
spond to serviceability criteria (maintaining users’ comfort and controlling 
functional damage) (Moulton, 1986):

•	 40 mm (or, more precisely, 1.5 inches) for horizontal displacement;
•	 1/200 for simply supported (isostatic) bridges, and 1/250 for continu-

ous (hyperstatic) bridges, for longitudinal angular distortion.

French practice has referred to limit states since the 1980s for road bridges 
(Millan, 1989). For serviceability limit states, for road bridges, regard-
less of the type of hyperstatic, a differential settlement equal to L/1000 is 
accepted, with L being the smallest span length. For slab bridges that are 
more flexible, L/500 can be accepted, provided the reinforcement or pre-
stressing is strengthened. For ultimate limit states, L/250 is admitted or 
even more for metallic decks. Even though comparing the various tolerance 
criteria is not easy, it seems that all these limits, used in common practice, 
are more restrictive than the recommendations produced by the FHWA 
study (Moulton, 1986) or the criteria used for buildings (see Table 29).

4.2 � SOIL-STRUCTURE INTERACTIONS

4.2.1 � Boundary between “geotechnical” 
and “structural” models

In principle, proper soil-structure interaction requires global models that 
explicitly integrate the structure and the ground supporting it, as illustrated 
in §2.3.5.1 (see Figure 46).
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In practice, except for important projects (sensitive industrial instal-
lations, exceptional buildings, etc.), the “geotechnical” and “structural” 
models are decoupled. The geotechnical model considers only the founda-
tion elements and the ground. The structure is then processed with a dedi-
cated model, in which interaction with the geotechnical model is usually 
handled through a set of springs, as shown in Figure 117.

The foundation response is thus represented by an equivalent spring, 
involving one or several degrees of freedom (possibly coupled). The main 
difficulty of this approach is the choice of the spring stiffness, which has to 
integrate the effects of the material non-linearities (reduction of deforma-
tion moduli, ground plastification) and of the geometrical non-linearities 
(interaction between adjacent foundations, coupling between degrees of 
freedom, stiffness of the structure, etc.) of the real foundation. The founda-
tion material non-linearities are addressed by determining an equivalent 
linear domain compatible with the loading induced by the structure. Under 
service loads for both shallow and deep foundations, this domain usually 
corresponds to average strains on the order of magnitude of 10−3. The foun-
dation geometrical non-linearities are processed by iterative methods when 
the springs are not coupled, or by a “flexibility matrix” taking implicitly 
into account the coupling effects, as presented in §4.2.3 and §4.2.4.

4.2.2 � Structures on isolated foundations

4.2.2.1 � Notion of stiffness matrix

For structures on isolated foundations, the models described in §2.3 (and 
§2.5.2.2) for shallow foundations and in §3.2.8 (and §3.3) for deep foun-
dations allow assessing the foundation stiffness for each loading mode 
(vertical, horizontal, rotational, etc.).

Figure 117 � Conventional boundary between “geotechnical” and “structural” models.
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Generally speaking, the head response of an isolated foundation, whether 
it is shallow or deep, can be fully described by a stiffness matrix linking 
the load torsor (V, H, M) to the displacement vector (uv, uh, θ). The terms 
of such a matrix can be obtained either by using models derived from the 
elasticity theory in the case of a shallow foundation (§2.3 and §2.5.2.2) 
or from the t-z or p-y models in the case of a deep foundation (§3.2.8 and 
§3.3). This notably highlights the existence of a coupling term “KHM” (neg-
ative under the sign convention in Figure 118), which expresses the fact 
that a horizontal force (or moment) generates both a translation (horizontal 
displacement) and a rotation at the head of the foundation.

Note the following in the models described in Chapters 2 and 3:

•	 The vertical displacement uv is written s (settlement of a shallow or 
deep foundation);

•	 The horizontal displacement uh is written y for piles (lateral deflection);
•	 The rotation θ is written y′ for piles.

Whatever the type of model used to assess the stiffness at the foundation 
head, obtaining the terms of the stiffness matrix can be achieved in practice 
with a preliminary calculation of the following “flexibility” terms (terms of 
the inverse matrix):

•	 SVV = uv/V, with uv vertical displacement obtained under V;
•	 SHH = uh/H, with uh horizontal displacement obtained under H with 

M = 0;
•	 SHM = uh /M, with uh horizontal displacement obtained under M with 

H = 0;
•	 SMM = θ/M, with θ rotation obtained under M with H = 0.

The following expressions are then obtained:
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Figure 118 � Notion of stiffness matrix for an isolated foundation.
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where S0 is the determinant of the flexibility matrix:

	 = −S S S S0 MM HH HM
2 	

4.2.2.2 � Stiffness matrix of a shallow footing

In the specific case of a shallow footing, or of a slightly embedded one, the 
non-diagonal term of the stiffness matrix KHM can be neglected (it expresses 
the coupling between the rotation and the translation). The stiffness matrix 
becomes diagonal, and the foundation response can be represented with 
three independent springs, as shown in Figure 119.

In the case of a rigid circular foundation of diameter B, laid on a homo-
geneous elastic medium and subjected to a torsor (V, H, M), the stiffnesses 
are (Gazetas, 1991) as follows:
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with
E Young’s modulus of the soil;
ν Poisson’s ratio of the soil.

In the case of a rigid rectangular foundation of width B and length L, laid 
on a homogeneous elastic medium and subjected to a torsor (V, HB, HL, MB, 
ML), the stiffnesses are (Gazetas, 1991) (see Figure 120) as follows:
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Figure 119 � Decoupled springs of an isolated shallow footing.
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These expressions are valid when no punching (bearing capacity failure, see 
§2.5.2.1), nor sliding (see §2.5.2.3) nor ground decompression under the 
foundation (see §2.5.2.4) occurs, and when the vertical applied load does 
not exceed the allowable load under quasi-permanent combinations (SLS).

4.2.2.3 � Stiffness matrix of a deep foundation

In the case of a deep foundation, the coupling term KHM is not negligible. 
Neglecting this term would lead to overestimating the stiffness at the head 
of the foundation, both horizontal and rotational, with a factor of up to 2.

The coupling with the “structural” model is based in practice on an ana-
logical model in which the pile is represented by a rigid beam of length 
Leq = |KHM/KHH| linked to a set of three decoupled springs (KH, KV, KM), as 
shown in Figure 121 (Cuira and Brûlé, 2017).

Note that for this model, the load applied at the pile head must be, by 
construction, applied at the head of the rigid beam.

Figure 120 � Decoupled springs of a rectangular isolated shallow footing.

Figure 121 � Analogical model to take into account the coupling terms.
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The specific case of a pinned pile (M = 0 at its head) allows simplifying 
the stiffness matrix (see Figure 118), as follows:
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The specific case of a pile fixed at its head (θ = 0) also allows simplifying the 
stiffness matrix (see Figure 118) as follows:
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Note that in the case of a flexible (or long) pile embedded in a linear soil 
having a lateral subgrade reaction modulus Es, the terms (KHH, KHM and 
KMM) are expressed as follows:

	 K E l K – E l K E lHH s 0 HM
1

2 s 0
2

MM
1

2 s 0
3= = = 	

where l0 is the transfer length defined in §3.3.2.4.1.
These expressions can be established from the closed-form solutions 

given in the Annex 2 of Chapter 3.

4.2.2.4 � Taking non-linearities into account

Taking non-linearities of the ground behaviour into account, and therefore 
in the soil-structure interaction modelling, requires appropriate iterative 
procedures. Such procedures are valid for both shallow and deep founda-
tions. As the relationship between the forces applied on the foundation and 
its displacement is explicitly known a priori, it is more efficient to use pro-
cedures that implement a tangential stiffness matrix around a given load. 
Therefore, this leads to establishing first a tangential stiffness matrix and 
then a reference torsor (V0, H0, M0) as shown in Figure 122. The reference 

Figure 122 Using the notion of tangential stiffness for non-linear problems.
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torsor and the tangential stiffness matrix are indissociable and vary with 
the load level. They express the non-linear effects on the supported struc-
ture (permanent settlement, permanent horizontal displacement and per-
manent rotation) linked to the non-linearity of the ground behaviour.

Note that existence of a reference torsor can also express the presence of 
a loading other than the one applied at pile head.

4.2.3 � Group effects

Taking group effects into account (both for shallow and deep foundations) 
causes an apparent non-linearity in the foundation response, even though 
the ground is assumed to be linear elastic. By using the interaction factors 
αv introduced in §3.4.1.3 and §3.4.2.2, Figure 123 shows how to express 
the stiffness of a foundation in a group as a function of the stiffness of an 
isolated foundation. What is observed is that the stiffness of each founda-
tion depends on its location (factors αv) and on the loads applied on it and 
the other foundations (ratios Fj/Fi).

Group effects can be achieved in practice by characterising the response 
of the group of foundations with a flexibility (or stiffness) matrix that allows 
linking all the loads supported by the foundations to all the displacements 
resulting from them (see Figure 124).

This matrix, independent from the applied loads, can be established as 
follows:

•	 The diagonal terms Sii are directly linked to the “self”-flexibilities or 
stiffness of the foundations (Sii = 1/Ki0 where Ki0 is the stiffness of the 
isolated foundation) and can be obtained following the indications of 
§2.3, §2.5.2.2, §3.2.8 and §3.3;

•	 The non-diagonal terms represent the interaction effects between foun-
dations and are obtained using either empirical models, or elasticity 

Figure 123 � Stiffness of a foundation in a group – using interaction factors αV.
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solutions (§2.3.2.3 for vertically loaded shallow foundations, §3.4.1.3 
and §3.4.2.2 for axially and laterally loaded deep foundations) or 
numerical models. The term Sij is simply the product of Sii by the inter-
action factor αv(dij) of Figure 123.

This flexibility matrix is then coupled to the “structural” model in a direct 
manner (if the structural modelling tool allows it) or indirect manner (itera-
tive process, as shown in Figure 124).

4.2.4 � Structures founded on general rafts

For general rafts, the boundary between the “geotechnical” and the 
“structural” models is usually located at the base of the raft. The “struc-
tural” model integrates both the structure and the raft. The raft lays on a 
series of juxtaposed springs that have to be defined cautiously, as already 
stated in §2.4.

In order to avoid the use of subgrade reaction moduli, a flexibility matrix 
can be used in order to represent the ground “intrinsic” response at the base 
of the raft, as schematised in Figure 125. The base of the raft is divided into 
several separate areas. The terms βij of the flexibility matrix are obtained by 
calculating the settlement induced at the centre of the area “i” with a unit 
load applied on the area “j”. They are flexibilities per unit area expressed in  
m/kPa or m/MPa. The calculation basis for the settlement calculation can 
be the models given in §2.3.2–§2.3.4 or the numerical models described 
in §2.3.5.

Coupling this flexibility matrix to the “structural” model can be achieved 
in a direct manner (if the structural modelling tool allows it) or in an indi-
rect manner (with an iterative process, as shown in Figure 125).

Figure 124 � Iterative use of the notion of flexibility matrix of a group of foundations.
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Figure 125 � Iterative use of the flexibility matrix for a structure founded on a general raft.
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