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Preface

This third edition of the well-known calculus review book by Frank Ayres,
Jr., has been thoroughly revised and includes many new features. Here are some
of the more significant changes:

1. Analytic geometry, knowledge of which was presupposed in the first two
editions, is now treated in detail from the beginning. Chapters 1 through
5 are completely new and introduce the reader to the basic ideas and
results.

2. Exponential and logarithmic functions are now treated in two places.
They are first discussed briefly in Chapter 14, in the classical manner of
earlier editions. Then, in Chapter 40, they are introduced and studied
rigorously as is now customary in calculus courses. A thorough treatment
of exponential growth and decay also is included in that chapter.

3. Terminology, notation, and standards of rigor have been brought up to
date. This is especially true in connection with limits, continuity, the
chain rule, and the derivative tests for extreme values.

4. Definitions of the trigonometric functions and information about the
important trigonometric identities have been provided.

S. The chapter on curve tracing has been thoroughly revised, with the
emphasis shifted from singular points to examples that occur more
frequently in current calculus courses.

The purpose and method of the original text have nonetheless been pre-
served. In particular, the direct and concise exposition typical of the Schaum
Outline Series has been retained. The basic aim is to offer to students a collection
of carefully solved problems that are representative of those they will encounter
in elementary calculus courses (generally, the first two or three semesters of a
calculus sequence). Moreover, since all fundamental concepts are defined and the
most important theorems are proved, this book may be used as a text for a
regular calculus course, in both colleges and secondary schools.

Each chapter begins with statements of definitions, principles, and theorems.
These are followed by the solved problems that form the core of the book. They
give step-by-step practice in applying the principles and provide derivations of
some of the theorems. In choosing these problems, we have attempted to
anticipate the difficulties that normally beset the beginner. Every chapter ends
with a carefully selected group of supplementary problems (with answers) whose
solution is essential to the effective use of this book.

ELLIOTT MENDELSON
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Chapter 1

Absolute Value; Linear Coordinate Systems;
Inequalities

THE SET OF REAL NUMBERS consists of the rational numbers (the fractions a/b, where a and b
are integers) and the irrational numbers (such as V2=1.4142. .. and = = 3.14159 . . .), which
are not ratios of integers. Imaginary numbers, of the form x + yV/ —1, will not be considered.
Since no confusion can result, the word number will always mean real number here.

THE ABSOLUTE VALUE |x| of a number x is defined as follows:

| = x if x is zero or a positive number
* —x if x is a negative number

For example, |3| =|-3] =3 and 0| =0.
In general, if x and y are any two numbers, then

—|x|=x=|x| (1.1)
|-x|=|x| and |x-y|l=|y-x| (1.2)
|x| =|y| implies x = xy (1.3)

x| x|,
xy|=[x|- —-|==ify#0 1.4
byl =Ixl-yl {3 iy (1.4)
|x +y|<|x| +|y| (Triangle inequality) (1.5)

A LINEAR COORDINATE SYSTEM is a graphical representation of the real numbers as the points
of a straight line. To each number corresponds one and only one point, and conversely.
To set up a linear coordinate system on a given line: (1) select any point of the line as the
origin (corresponding to 0); (2) choose a positive direction (indicated by an arrow); and (3)
choose a fixed distance as a unit of measure. If x is a positive number, find the point
corresponding to x by moving a distance of x units from the origin in the positive direction. If x
is negative, find the point corresponding to x by moving a distance of | x| units from the origin in
the negative direction. (See Fig. 1-1.)

4 L L 1 L i - i 4 d i 1l - R —
L] T 1 T T F 1 L] L )) ¥ LI 1 Ll
—4 -3 -6/2 -2 —3/2 -1 0 172 1 2 2 T 4

Fig. 1-1

The number assigned to a point on such a line is called the coordinate of that point. We
often will make no distinction between a point and its coordinate. Thus, we might refer to *‘the
point 3" rather than to “‘the point with coordinate 3.”

If points P, and P, on the line have coordinates x, and x, (as in Fig. 1-2), then

|x, — x,| = P, P, = distance between P, and P, (1.6)
As a special case, if x is the coordinate of a point P, then

|x| = distance between P and the origin (1.7)

1



2 ABSOLUTE VALUE; LINEAR COORDINATE SYSTEMS; INEQUALITIES [CHAP. 1
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Fig. 1-2

FINITE INTERVALS. Let a and b be two points such that a < b. By the open interval (a, b) we mean
the set of all points between a and b, that is, the set of all x such that a < x < b. By the closed
interval [a, b] we mean the set of all points between a and b or equal to a or b, that is, the set of
all x such that a=<x=b). (See Fig. 1-3.) The points a and b are called the endpoints of the
intervals (a, b) and [a, b].

O O —& g
a b a b
Open interval (a, b): a<x<b Closed interval [a,b]: a<x<b
Fig. 1-3

By a half-open interval we mean an open interval (a, b) together with one of its endpoints.
There are two such intervals: [a, b) is the set of all x such that @ < x < b, and (a, b] is the set of
all x such that a<x =<b.

For any positive number c,

|x}=cif and only if —c=x=¢ (1.8)
|x| <c if and only if —c<x<c¢ (1.9)
See Fig. 1-4.

,xl<c

P

|
()
o
[

Fig. 14

INFINITE INTERVALS. Let a be any number. The set of all points x such that a < x is denoted by
(a, =); the set of all points x such that a = x is denoted by [a, =). Similarly, (-, b) denotes the
set of all points x such that x < b, and (—=, b] denotes the set of all x such that x < b.

INEQUALITIES such as 2x —3 >0 and 5 <3x + 10 =< 16 define intervals on a line, with respect to a
given coordinate system.
EXAMPLE 1: Solve 2x —3>0.

2x-3>0
2x>3 (Adding 3)
x>13 (Dividing by 2)

Thus, the corresponding interval is (3, %).
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EXAMPLE 2: Solve 5<3x+10=16.

5<3x+10=16
-5< 3x =6 (Subtracting 10)
-3< x =2 (Dividing by 3)

Thus, the corresponding interval is (—5/3,2].

EXAMPLE 3: Solve —2x+3<7.

—2x+3<7
-2x<4 (Subtracting 3)
x> -2 (Dividing by -2)

Note, in the last step, that division by a negative number reverses an inequality (as does multiplication by
a negative number).

Solved Problems

1. Describe and diagram the following intervals, and write their interval notation: (a) —3 <
x<5,(b)2=x=6;(c) 4<x=0;(d)x>5;, () x=2;,(f)3x—4=8; (g 1 <5-3x<11.

(a) All numbers greater than ~3 and less than 5; the interval notation is (—3,5):

O O-
-0 2y
-3 5

(b) All numbers equal to or greater than 2 and less than or equal to 6, [2, 6]:

—— - —
2 6

(c) All numbers greater than —4 and less than or equal to 0; (—4,0]:

ale

. &
-4 0

(d) All numbers greater than 5; (5, ®):

v
5

(e) All numbers less than or equal to 2; (—=,2]:

-
2

(f) 3x — 4=8 is equivalent to 3x =12 and, therefore, to x =4. Thus, we get (—x,4]:

—-
4

(g) 1<5-3x<11
—4< —3x <6 (Subtracting 5)
-2< x <% (Dividing by —3; note the reversal of inequalities)

Thus, we obtain (-2, 1):
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Describe and diagram the intervals determined by the following inequalities: (a) |x| <2; (b)
|x| >3; (¢) |x —3|<1; (d) |x — 2| < 8, where § >0; () |[x +2|=3; (f) 0<|x — 4] <8, where
8 <.

(a) This is equivalent to —2 < x <2, defining the open interval (—2,2):

et —
e e

-2 2

(b) This is equivalent to x >3 or x < -3, defining the union of the infinite intervals (3,=) and
(—oc‘ _3)
3

-3

(c) This is equivalent to saying that the distance between x and 3 is less than 1, or that 2 < x <4, which
defines the open interval (2, 4):

O
L s —
4

We can also note that |x — 3| <1 is equivalent to —1 < x —3<1. Adding 3, we obtain 2 < x <4.
(d) This is equivalent to saying that the distance between x and 2 is less than 8, or that 2 - § <x <2+ §,
which defines the open interval (2 — 8,2 + 8). This interval is called the 8-neighborhood of 2:

— e -

ad T
2-46 2 2+8

(e) |x +2| <3 is equivalent to —3 < x + 2< 3. Subtracting 2, we obtain —5 < x <1, which defines the
open interval (=5, 1):

O el
O
-5 i

(f) The inequality |x —4} <8 determines the interval 4—8 <x <4+ 8. The additional condition
0 < |x — 4| tells us that x # 4. Thus, we get the union of the two intervals (4 — §,4) and (4,4 + §).
The result is called the deleted 5-neighborhood of 4:

- el O
O L L
4-

5 4 4+8

Describe and diagram the intervals determined by the following inequalities: (a) |5 — x| =3;
(b) 2x —3]<5; () |1 —4x| < }.

(a) Since |S — x| =|x — 5|, we have |x — 5| =3, which is equivalent to —3 = x — 5=3. Adding 5, we get
2 < x = 8, which defines the open interval (2, 8):

g 9
2 8
(b) |2x — 3| <5 is equivalent to —5<2x —3<5. Adding 3, we have —2 < 2x <8; then dividing by 2
yields — 1< x <4, which defines the open interval (—1, 4):

O >
L 2 —
4

(¢) Since |1 — 4x| = |4x — 1|, we have |4x — 1] < }, which is equivalent to — 3 <4x — 1< }. Adding 1, we

get § <dx < 3. Dividing by 4, we obtain 3 < x < }, which defines the interval (4. 3):

Fat
e

O
"
1/8 3/8
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4, Solve the inequalities (a) 18x — 3x* >0, (b) (x + 3)(x — 2)(x —4) <0, and
(¢) (x +1)’(x — 3)>0, and diagram the solutions.

(a) Set 18x — 3x* = 3x(6 — x) =0, obtaining x = 0 and x = 6. We need to determine the sign of 18x — 3x°
on each of the intervals x <0, 0< x <6, and x > 6, to determine where 18x — 3x > 0. We note that
it is negative when x <0, and that it changes sign when we pass through 0 and 6. Hence. it is positive
when and only when 0 <x <6:

> . &
— L -

0 6

(k) The crucial points are x= -3, x=2, and x =4. Note that (x + 3)(x —2)(x — 4) is negative for
x < —3 (since each of the factors is negative) and that it changes sign when we pass through each of
the crucial points. Hence, it is negative for x < -3 and for 2 <x <4:

e

-~ O O—
20y O
-3 2 4

(c) Note that (x + 1) is always positive (except at x = —1. where it is 0). Hence (x + 1)’(x —=3)>0
when and only when x — 3 >0, that is, for x >3:

3
5. Solve |3x —7|=8.
In general, when ¢ =0, |4| = ¢ if and only if u = ¢ or u = —¢. Thus, we need to solve 3x - 7 =8 and
3x — 7= -8, from which we get x =5 or x =~ 1.
2x +1
6. Solve >3.
x+3

Case 1: x + 3>0. Multiply by x + 3 to obtain 2x + 1> 3x + 9, which reduces to —8 > x. However,
since x + 3> 0, it must be that x > — 3. Thus, this case yields no solutions.

Case 2: x + 3<0. Multiply by x + 3 to obtain 2x + 1 <3x + 9. (Note that the inequality is reversed,
since we multiplied by a negative number.) This yields —8 <x. Since x + 3 <0, we have x < —3.

Thus, the only solutions are —8<x < —3.

7. Solve

2
——3l<5.
X

The given inequality is equivalent to —5 < 2_ 3<5. Add 3 to obtain —2 < 2/x <8, and divide by 2
to get ~1<1/x<4. *

Case 1: x > 0. Multiply by x to get —x <1<4x. Then x > } and x > — 1; these two inequalities are
equivalent to the single inequality x > §.

Case 2: x < 0. Multiply by x to obtain —x > 1> 4x. (Note that the inequalities have been reversed,
since we multiplied by the negative number x.) Then x <} and x < —1. These two inequalities are
equivalent to x < —1.

Thus, the solutions are x > § or x < —1, the union of the two infinite intervals ( j. =) and (-=, — 1),

8. Solve |2x — 5| = 3.

Let us first solve the negation |2x — 5| < 3. The latter is equivalent to —3<2x —5<3. Add 5 to
obtain 2 < 2x <8, and divide by 2 to obtain 1<x <4. Since this is the solution of the negation. the
original inequality has the solution x <1 or x 4.

9. Prove the triangle inequality, |x + y|=|x| +|y|.



10.

11.

12.

13.

14.

ABSOLUTE VALUE; LINEAR COORDINATE SYSTEMS; INEQUALITIES (CHAP. 1

Add the inequalities — x| < x<|x] and —|y| =y =<|y| to obtain
—(xl+{yD=x+y=|xl+]yl
Then, by (1.8), |x + y| = |x| +[yl.

Supplementary Problems

Describe and diagram the set determined by each of the following conditions:

(@) -5<x<0 (b) x=0 (c) —2=x<3 (d)yx=1
(e) |x]<3 (f) x| =5 (8) |x—2|<: (h) |x +3[>1
(H 0<lx-2]<1 (HOo<|x+3<} (k) [x—2{=1.

Ans. (e) -3<x<3;(fyx=Sorx=-5;(g)i<x<i;(Wx>-2orx<-4,({)x#2and 1 <x<3;
(j)) ¥ <x<-%;(k)x=3orx=<]1

Describe and diagram the set determined by each of the following conditions:
(a) 3Bx—7| <2 (b) l4x - 1] =1 (c) ‘%—2‘54

(d)‘%—2l54 (e) ‘2+£’>1 (f)’§1<3

Ans. (@) i<x<3; (b)x=lorx=0;(c) -6=x=18; (d)x=-3orx=
(e)x>0orx<-—-lor —}3<x<0;(flx>%orx<—4%

>

[N

Describe and diagram the set determined by each of the following conditions:

(a) x(x—-5)<0 b)) (x=-2)(x—-6)>0 (c) (x+1)(x-2)<0

(d) x(x = 2)(x +3)>0 (&) (x+2)(x+3)(x+4)<0 (Hx-Dx+1D)(x-2)(x+3)>0
(g) (x-1D(x+4)>0 M) (x=3(x+5)x-4)°<0 (i) x=-2)'>0

(Yx+1) <0 k) (x -2 (x+1)<0 ) (x-1P(x+1)<0

(MGx-D2x+3)>0  (n) (x—4)(2x -3)<0

Ans. (@) 0<x<35;(b)x>60rx<2;(c) ~1<x<2;(dyx>2o0r -3<x<0;
() “3<x<—-2o0rx<-4;, (fl)x>20r ~1<x<lorx<-3;(g)x>-4and x#1,
(h) -5<x<3:; (D)x>2,(j)x<—-1; (k) —1<x<2; () <1l and x# —1;
(m)x>jorx<—3;(n)3<x<4

Describe and diagram the set determined by each of the following conditions:

(@) x*<4 (b) x*=9 () (x-2)*=16 (d) 2x+ 1)’ >1
(e) x’ +3x—4>0 (f)x*+6x+8=<0 (g) x><5x+14 (h) 2x*>x+6
(i) 6x° +13x <5 (j) x* +3x* > 10x

Ans. (a) 2<x<2;(b)xz=3orx=-3;(c) 2=x=6;(d)x>0o0rx<-1;
(e)x>lorx<—4;(f) ~4=x=-2;(g) ~2<x<T; (h) x>2o0rx<-3;
(1) —3<x<3;(j) -5<x<Oorx>2

2x — 1 X
<3 @ 37 <!

Zx‘I‘

Solve: (a) ~4<2-x<7 (b)

3 —
(d) 3 >3 (@)




CHAP. 1]

15.

16.

Solve:

Prove:

(Hint:

ABSOLUTE VALUE; LINEAR COORDINATE SYSTEMS,; INEQUALITIES

(@) -5<x<6; (b)x>0o0rx<—1;(c)x>-2;(d) ¥ <x<-1;
(&) x<0or0<x<i;(flx=—4orx=-1

(a) [4x-5]=3 b) |x+6|=2 (c) I3x—4|=2x+ 1]
d)|x+1=|x+2| (e) [x+1=3x-1 (f)le+1]<]3x - 1]
(8) [3x—4|=2x +1]

(@) x=2o0rx=3;(b)x=—dorx=—8 ()x=5orx=3;(d)x=-3(e) x=1;
(flx>lorx<0;(gx>50rx<?

@li=kbl @[ =Hiyro @ wisLe
@l -yI=ll+ (@) le=yl= ol Iy

In (e), prove that [x ~ y| =[x| - |y| and |x — y|=]y| ~ |x|.)



Chapter 2

The Rectangular Coordinate System

COORDINATE AXES. In any plane 2, choose a pair of perpendicular lines. Let one of the lines be
horizontal. Then the other line must be vertical. The horizontal line is called the x axis, and the
vertical line the y axis. (See Fig. 2-1.)

Fig. 2-1

Now choose linear coordinate systems on the x axis and the y axis satisfying the following
conditions: The origin for each coordinate system is the point O at which the axes intersect.
The x axis is directed from left to right, and the y axis from bottom to top. The part of the x
axis with positive coordinates is called the positive x axis, and the part of the y axis with positive
coordinates is called the positive y axis.

We shall establish a correspondence between the points of the plane ? and pairs of real
numbers.

COORDINATES. Consider any point P of the plane (Fig. 2-1). The vertical line through P
intersects the x axis at a unique point; let a be the coordinate of this point on the x axis. The
number a is called the x coordinate of P (or the abscissa of P). The horizontal line through P
intersects the y axis at a unique point; let b be the coordinate of this point on the y axis. The
number b is called the y coordinate of P (or the ordinate of P). In this way, every point P has a
unique pair (a, b) of real numbers associated with it. Conversely, every pair (a, b) of real
numbers is associated with a unique point in the plane.

The coordinates of several points are shown in Fig. 2-2. For the sake of simplicity. we have
limited them to integers.

EXAMPLE 1: In the coordinate system of Fig. 2-3, to find the point having coordinates (2, 3), start at
the origin. move two units to the right, and then three units upward.

To find the point with coordinates (—4, 2), start at the origin, move four units to the lefr. and then
two units upward.

To find the point with coordinates (—3, — 1), start at the origin, move three units to the left, and then
one unit downward.

The order of these moves is not important. Hence. for example, the point (2, 3) can also be reached
by starting at the origin, moving three units upward, and then two units to the right.

8
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y
8
(-3.7e T
6 -
5P
o b ®(5.4)
ik ®(3.1
(-4.2)® 2 -
1} (6,0
1 1 1.1 [N S S S TP ¢ x
-4 -3 -2 -1 0 i 2 3 4 S 6
_l b
_2 -
-39 (0.-3)
(-3.-4e -4 b
_5 -
Fig. 2-2
y
4P
k) ®(2.3)
|
{
®(-4.2) 2 |
) ‘
I
| 1+ |
| |
] | 1 1 1 1 x
-4 -3 -2 -1 ¢ 1 2 3
(-3,-ne -1
_2-—
_3}-
Fig. 2-3

QUADRANTS. Assume that a coordinate system has been established in the plane ?. Then the
whole plane 2, with the exception of the coordinate axes, can be divided into four equal parts,
called quadrants. All points with both coordinates positive form the first quadrant, called
quadrant I, in the upper right-hand corner. (See Fig. 2-4.) Quadrant II consists of all points

with negative x coordinate and positive y coordinate. Quadrants III and IV are also shown in
Fig. 2-4.
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y
nn 1
(-.+) (+.4)
(-1.2)e 2|
- e(3.1)
1 1 1 1 1 1 x
-3 =2 -1 0 1 2 3
(-2.-ne -
-2} ®(2,-2)
1 v
-.-) (+.-)
Fig. 2-4

The points on the x axis have coordinates of the form (a,0). The y axis consists of the
points with coordinates of the form (0, b).

Given a coordinate system, it is customary to refer to the point with coordinates (a, b) as
“the point (a, b).”” For example, one might say, “The point (0, 1) lies on the y axis.”

DISTANCE FORMULA. The distance P, P, between points P, and P, with coordinates (x,, y,) and
(x3, ¥,) i

PIPZ:\/(XI_XZ)2+(yl_y2)2 (2.1)
EXAMPLE 2: (a) The distance between (2,5) and (7, 17) is
VE-77+G-17)7 =V(-5) +(-12)’ = V5 + 144 = V169 = 13
(b) The distance between (1,4) and (5,2)
V(I =5  +(4-2)=V(-4) + (2’ =VI6+4=V20=V3-5=V3d-V5=2V3

MIDPOINT FORMULAS. The point M(x, y) that is the midpoint of the segment connecting the
points P (x,, y,) and P,(x,, y,) has coordinates
_xtx Ity
xX=— y==>" (2.2)

The coordinates of the midpoint are the averages of the coordinates of the endpoints.

EXAMPLE 3: (a) The midpoint of the segment connecting (2,9) and (4, 3) is (2~¥ ()TH) =(3,6).

-5+1 1+4 5
(b) The point halfway between (—5,1) and (1, 4) is ( 7 T) = (—2, i)

PROOFS OF GEOMETRIC THEOREMS can often be given more easily by use of coordinates than
by deduction from axioms and previously derived theorems. Proofs by means of coordinates are
called analytic, in contrast to the so-called synthetic proofs from axioms.
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EXAMPLE 4: Let us prove analytically that the segment joining the midpoints of two sides of a triangle
is one-half the length of the third side. Construct a coordinate system so that the third side AB lies on the
positive x axis, A is the origin, and the third vertex C lies above the x axis, as in Fig. 2-5.

y
C(u, v)
M, M
(0,0) (b,0)
X
A B
Fig. 2-5

Let b be the x coordinate of B. (In other words, let 5 = AB.) Let C have coordinates (u, v). Let M,
and M, be the midpoints of sides AC and BC, respectively. By the midpoint formulas (2.2), the

+
coordinates of M, are (2 2) and the coordinates of M, are (1‘2—[) %) By the distance formula (2.1).

= (5250 4 (58 () -3

which is half the length of side AB.

Solved Problems

1. Derive the distance formula (2.1).

Given points P, and P, in Fig. 2-6, let Q be the point at which the vertical line through P, intersects
the horizontal line through P,. The x coordinate of Q is x,, the same as that of P,. The y coordinate of
Q is y,, the same as that of P,.

y
V¢ — — — - — — — — Py(x;, ¥,)
?
t
|
[
Yyer ———® —— - — —— 0 O(xy, ¥1)
Py(x,, )’|)| |

I |
: I
|
a, L4
14 42 x
X, LP)

Fig. 2-6
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By the Pythagorean theorem,
(P,P,) = (P,Q) +(P,Q)’ (1)

If A, and A, are the projections of P, and P, on the x axis, then the segments P,Q and A A, are
opposite sides of a rectangle. Hence, P,Q = A|A,. But A A, = |x, — x,| by (1.6). Therefore, P,Q =
|x, = x,|. By similar reasoning, P,Q = |y, — y,|. Hence, by (1),

P,P22=|I| _x2|2+|)’1_)'2|2=(x1 _12)2+()’| _yz)z

Taking square roots yields the distance formula (2.1).

Show that the distance between a point P(x, y) and the origin is Vx* + y*.

Since the origin has coordinates (0, 0), the distance formula yields \/(x —0)P+(y-0y=Vx+ v

Prove the midpoint formulas (2.2).

We wish to find the coordinates (x, y) of the midpoint M of the segment P P, in Fig. 2-7. Let A, B,
and C be the perpendicular projections of P,, M, and P, on the x axis.

Py(x;. ¥2)

Fig. 2-7

The x coordinates of A, B, and C are x|, x, and x,, respectively. Since the lines P, A, MB, and P,C
are parallel, the ratios P, M/MP, and AB/BC are equal. (In general, if two lines are intersected by three
parallel lines, the ratios of corresponding segments are equal.) But, P,M = MP,. Hence, AB = BC.
Since AB = x — x, and BC = x, — x, we obtain x — x, = x, — x, and therefore 2x = x, + x,. Dividing by
2, we get x=(x +x,)/2. (We obtain the same result when P, is to the left of P,. In that case,
AB=x, - xand BC=x — x,.) A similar argument shows that y = (y, +y,)/2.

Is the triangle with vertices A(1,5), B(4,2), and C(5, 6) isosceles?

AB=\(1-4F+(5-2) = V(-3 +(3)’=V9+9=VT8
AC=V(A-5) + (5 -6\ =V(4y + (-1’ =VIB+1=VTT
BC=V(@-57+(2-6=V(=1) + (-4 =VI+16= V17

Since AC = BC, the triangle is isosceles.

Is the triangle with vertices A(—5, 6), B(2,3), and C(5, 10) a right triangle?
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AB=V(-5-2F+(6-3Y=V(-7)+ (3’ = VA + 9= V38
AC=V(=5-5V +(6-10)° = V/(-10)* + (-4)* = V00 + 16 = V116

BC=V(2-5) +(3-10)° = V(=3)"+ (-7)" = V9 +49 = V38

Since AC*="AB’ + BC”, the converse of the Pythagorean theorem tells us that AABC is a right
triangle, with right angle at B; in fact, since AB = BC, AABC is an isosceles right triangle.

Prove analytically that, if the medians to two sides of a triangle are equal, then those sides are
equal. (Recall that a median of a triangle is a line segment joining a vertex to the midpoint of
the opposite side.)

In AABC, let M, and M, be the midpoints of sides AC and BC, respectively. Construct a
coordinate system so that A is the origin, B lies on the positive x axis, and C lies above the x axis (see
Fig. 2-8). Assume that AM, = BM,. We must prove that AC = BC. Let b be the x coordinate of B, and

let C have coordinates (u, v). Then, by the midpoint formulas, M, has coordinates g %) and M, has
+
coordinates (u E). Hence,
2 "2
_{u+tb v =  Hu ) v
(5w meyE ) (0
y
C(u, v)
Ml MZ
A B
X
Fig. 2-8

Since AM, = BM,

(527 (3 5o 0 =52 )
2 2 2 2 2 2

2 2 2 2
(Chals + % = (u=2b) + % and, therefore, (u + b)> =(u — 2b)*. So, u+ b= *(u—2b). If
u+b=u—-2b, then b =—2b, and therefore, b =0, which is impossible, since A # B. Hence, u + b =
—(u—2b)=-u+2b, whence 2u=b. Now BC=V(u—-byY + v’ =V(u-2u) +v =V(~u) + v’ =
Vu' + v, and AC = Vu® + v°. Thus, AC = BC.

Hence,

Find the coordinates (x, y) of the point Q on the line segment joining P (1, 2) and P,(6,7),
such that Q divides the segment in the ratio 2:3, that is, such that P,Q/QP,=2/3.

Let the projections of P,, @, and P, on the x axis be A, @, and A ,, with x coordinates 1, x, and 6,
respectively (see Fig. 2-9). Now A Q/Q'A,=P,Q/QP,=2/3. (When two lines are cut by three
parallel lines, corresponding segments are in proportion.) But A,Q"'=x—-1, and Q'A,=6—-x. So
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y
| P,(6,7)
I
B |
sk |
e |
N | '
P, | I
- l i [
-, | lor 4
All L4t 1 42 X
1 X 6
Fig. 2-9
x—1 2 s . .
6-x 3" and2 cross-multiplying yields 3x —3 =12 —2x. Hence 5x =15, whence x =3. By similar
reasoning, f;—_—y =3 from which it follows that y = 4.

Supplementary Problems

In Fig. 2-10, find the coordinates of points A, B, C, D, E, and F.

y
4L Ee
it Ce
bl o o F
Ae 1k
1 1 1 1 i 1 I I | N 1 X
-5 -4 -3 -2 -1 1 2 3 4 s 6 7
-1}
De -2 F
Fig. 2-10

Ans. A=(-2,1); B=(0,-1); C=(1,3); D=(—-4,-2); E=(4,4); F=(7.2).

Draw a coordinate system and show the points having the following coordinates: (2, —3), (3, 3). (-1, 1),
(2,-2), (0,3), (3,0), (=2,3).

Find the distances between the following pairs of points:
(a) (3,4) and (3,6) (b) (2,5) and (2, -2) (¢) (3,1)and (2, 1)
(d) (2,3) and (5,7) () (-2,4) and (3,0) (f)(=2,%)and (4,-1)

Ans.  (a) 2; (b) 7; (c) 1; (d) 5; (e) V4TI, (f) W17
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11,

12.

13.

14.

15,

16.

17.

18.

19.

20.

21.

22.

Draw the triangle with vertices A(2,5), B(2, —35), and C(-3,5), and find its area.

Ans. area=25

If (2,2), (2, —4), and (5, 2) are three vertices of a rectangle, find the fourth vertex.

Ans. (5, -4)

If the points (2,4) and (—1,3) are opposite vertices of a rectangle whose sides are parallel to the
coordinate axes (that is, the x and y axes), find the other two vertices.

Ans. (—1,4) and (2,3)

Determine whether the following triples of points are the vertices of an isosceles triangle: (a) (4, 3),
(1,4), (3,10); (b) (—1,1), (3,3), (1, —1); (c) (2,4), (5,2), (6,53).

Ans. (a) no; (b) yes; (¢) no

Determine whether the following triples of points are the vertices of a right triangle. For those that are,

find the area of the right triangle: (a) (10, 6), (3, 3), (6, —4); (&) (3, 1), (1, =2), (=3, - 1); (c) (5, —2),
(0,3), (2,4).

Ans. (a) yes, area=129; (b) no; (c) yes, area= ¥

Find the perimeter of the triangle with vertices A(4,9), B(-3,2), and C(8, -5).
Ans. V2 + V170 +2V53

Find the value or values of y for which (6, y) is equidistant from (4, 2) and (9, 7).
Ans. S

Find the midpoints of the line segments with the following endpoints: (a) (2, - 3) and (7, 4); (b) (3,2)
and (4,1); (¢) (V3.0) and (1, 4).

5 Doy (2,2); 0 (113.2)
ans. @ (3.5): 0 (£.3): 0 (F52.2
Find the point (x, y) such that (2, 4) is the midpoint of the line segment connecting (x, y) and (1, 5).

Ans. (3,3)

Determine the point that is equidistant from the points A(—1,7), B(6,6), and C(5, —1).

Ans. (2,3

Prove analytically that the midpoint of the hypotenuse of a right triangle is equidistant from the three
vertices.

Show analytically that the sum of the squares of the distances of any point P from two opposite vertices
of a rectangle is equal to the sum of the squares of its distances from the other two vertices.

Prove analytically that the sum of the squares of the four sides of a parallelogram is equal to the sum of
the squares of the diagonals.

Prove analytically that the sum of the squares of the medians of a triangle is equal to three-fourths the
sum of the squares of the sides.

Prove analytically that the line segments joining the midpoints of opposite sides of a quadrilateral bisect
each other.
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Prove that the coordinates (x, y) of the point Q that divides the line segment from P (x,.y,) to
. . . rx, rx, Ny, tr.y, .
P,(x,, y,) in the ratio r :r, are determined by the formulas x = ————and y = ————=' (Hinr:

r,tr, rotr,

Use the reasoning of Problem 7.)

Find the coordinates of the point Q on the segment P, P, such that P,Q/QP, =2/7, if (a) P, = (0, 0).
P,=(7,9)% (b) P,=(=1,0), P,=(0,7); (¢c) P, =(=7,-2), P,=(2,7); (d) P,=(1,3), P, =(4.2).

Ans. (a) (3.2):(b) (=3, %); (0) (=5, %) (@) (¥. %)



Chapter 3

Lines

THE STEEPNESS OF A LINE is measured by a number called the slope of the line. Let £ be any
line, and let P,(x,, y,) and P,(x,, y,) be two points of £. The slope of £ is defined to be the
number m = H The slope is the ratio of a change in the y coordinate to the correspond-

2
ing change in the x coordinate. (See Fig. 3-1.)

/

Fig. 3-1

For the definition of the slope to make sense, it is necessary to check that the number m is
independent of the choice of the points P, and P,. If we choose another pair P,(x,, y;) and
P,(x,, y,), the same value of m must result. In Fig. 3-2, triangle P,P,T is similar to triangle
P,P,Q. Hence,

P, TP, Yo 7N _YaT s

PO PT Xy, =X, X, X,

Therefore, P, and P, determine the same slope as P, and P,.

P(x. y4)

= —_————

_—— e —|=d T
Py(x5, y3)

Fig. 3-2

17
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4
EXAMPLE 1: The slope of the line joining the points (1, 2) and (4, 6) in Fig. 3-3 i is o 6 =3 Hence, as
a point on the line moves 3 units to the right, it moves 4 units upward. Moreover, the slope is not affected

2—6 -4 _ 4 YZ Y1 YI Y2
by the order in which the points are given: -2~ 3" 3 In general, P Xz.

y

(4.6)

T

(,2)

T

Fig. 3-3

THE SIGN OF THE SLOPE has significance. Consider, for example, a line £ that moves upward as
it moves to the right, as in Fig. 3-4(a). Since y, > y, and x, > x,, we have m = 227N >0. The

Xy T X
slope of £ is positive.

Now consider a line & that moves downward as it moves to the right, as in Fig. 3-4(b).
Here y, <y, while x, > x,; hence, m = i — — N < 0. The slope of £ is negative.
2
Now let the line £ be horizontal, as in Flg 3-4(c). Here y, =y,, so that y, —y, =0. In
addition, x, — x, # 0. Hence, m =

= 0. The slope of X is zero.

2 1
Line £ is vertical in Fig. 3-4(d), where we see that y, — y, >0 while x, — x, = 0. Thus, the
expression Y2 ! is undefined. The slope is not defined for a vertical line ¥. (Sometimes we

13
describe this situation by saying that the slope of £ is “infinite.”")

y
y ¥

Py(x,. P.(X.N

Pl(xl’y M(sz)’z)
P ’ \ '

L4
(2) (b)
y
y
Py(x;. y;)
- ¥
Pi(x, y)) Py, y,) PP, (x0 ¥))
X X

d
) (@)
Fig. 3-4



CHAP. 3] LINES 19

SLOPE AND STEEPNESS. Consider any line £ with positive slope, passing through a point
P,(x,, y,); such a line is shown in Fig. 3-5. Choose the point P,(x,, ¥,) on Z such that
x, —x, = 1. Then the slope m of £ is equal to the distance AP,. As the steepness of the line
increases, AP, increases without limit, as shown in Fig. 3-6(a). Thus, the slope of £ increases
without bound from 0 (when £ is horizontal) to + (when the line is vertical). By a similar
argument, using Fig. 3-6(b), we can show that as a negatively sloped line becomes steeper, the
slope steadily decreases from 0 (when the line is horizontal) to —o (when the line is vertical).

Pi(xy, y1)

7) AR ~

(b)
Fig. 3-6

EQUATIONS OF LINES. Let Zbe a line that passes through a point P,(x,, y,) and has slope m, as

in Fig. 3-7(a). For any other point P(x, y) on the line, the slope m is, by definition, the ratio of
y—y, to x—x,. Thus, for any point (x, y) on %,

_Y™h
m —x—x, (3.1)

Y= X4 o8 the line PP, is
X - x,

different from the slope m of £; hence (3.1) does not hold for points that are not on ¥. Thus,
the line & consists of only those points (x, y) that satisfy (3.1). In such a case, we say that & is
the graph of (3.1).

Conversely, if P(x, y) is not on line %, as in Fig. 3-7(b), then the slope
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y &

P(x, y) P(x, y)

Z Pi(xy, y,) /1' Pi(xy,y))
/ /

(@) (®)

Fig. 3-7

A POINT-SLOPE EQUATION of the line £ is any equation of the form (3.1). If the slope m of Zis
known, then each point (x,, y,) of £ yields a point-slope equation of ¥. Hence, there are

infinitely many point-slope equations for £.

EXAMPLE 2: (a) The line passing through the point (2,5) with slope 3 has a point-slope equation

yo3._ 3. (b) Let &£ be the line through the points (3, —1) and (2, 3). Its slope is m = 3—;_3—1) = *41 =

x—2
. . +1 -3
—4. Two point-slope equations of ¥ are i 3= -4 and %—_—2 = -4

SLOPE-INTERCEPT EQUATION. If we multiply (3.1) by x — x,, we obtain the equationy ~ y, =

m(x — x,), which can be reduced first to y — y, = mx — mx, and then to y = mx + (y, — mx,).

Let b stand for the number y;, — mx,. Then the equation for line £ becomes

y=mx+b (3.2)

Equation (3.2) yields the value y = b when x = 0, so the point (0, b) lies on £. Thus, b is the y

coordinate of the intersection of £ and the y axis, as shown in Fig. 3-8. The number b is called
the y intercept of ¥, and (3.2) is called the slope-intercept equation for £.

(0, b)

e x

e

EXAMPLE 3: The line through the points (2, 3) and (4, 9) has slope
9-3 6
mT 2T
Its slope-intercept equation has the form y =3x + b. Since the point (2, 3) lies on the line, (2, 3) must
satisfy this equation. Substitution yields 3 =3(2) + b, from which we find b= —3. Thus, the slope-

intercept equation is y =3x — 3.

Fig. 3-8
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. . -3
Another method for finding this equation is to write a point-slope equation of the line, say 4 =3.

x—2
Then multiplying by x — 2 and adding 3 yield y = 3x — 3.

PARALLEL LINES. Let ¥, and %, be parallel nonvertical lines, and let A, and A, be the points at
which %, and %, intersect the y axis, as in Fig. 3-9(a). Further, let B, be one unit to the right of
A,, and B, one unit to the right of A,. Let C, and C, be the intersections of the verticals
through B, and B, with &, and ¥,. Now, triangle A,B,C, is congruent to triangle A,B,C, (by

the angle-side-angle congruence theorem). Hence, B,C, = B,C, and
Bl Cl BZ C2

Slope of %, = I T 1

= slope of %,

Thus, parallel lines have equal slopes.

(a) &)
Fig. 3-9

Conversely, assume that two different lines £, and %, are not parallel, and let them meet at
point P, as in Fig. 3-9(b). If Z, and %, had the same slope, then they would have to be the same
line. Hence, ¥, and %, have different slopes.

Theorem 3.1: Two distinct nonvertical lines are parallel if and only if their slopes are equal.
EXAMPLE 4: Find the slope-intercept equation of the line £ through (4, 1) and parallel to the line #
having the equation 4x — 2y = 5.

By solving the latter equation for y, we see that 4 has the slope-intercept equation y =2x — §.
Hence, # has slope 2. The slope of the parallel line £ also must be 2. So the slope-intercept equation of £

has the form y =2x + b. Since (4, 1) lies on &, we can write 1=2(4)+ b. Hence, b= -7, and the
slope-intercept equation of £ is y =2x —7.

PERPENDICULAR LINES. In Problem 5 we shall prove the following:

Theorem 3.2: Two nonvertical lines are perpendicular if and only if the product of their slopes is —1.

If m, and m, are the slopes of perpendicular lines, then m,m, = —1. This is equivalent to

1 . . ) )
my=—--; hence, the slopes of perpendicular lines are negative reciprocals of each other.
1
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Solved Problems

Find the slope of the line having the equation 3x — 4y = 8. Draw the line. Do the points (6. 2)
and (12, 7) lie on the line?

Solving the equation for y yields y = 3x — 2. This is the slope-intercept equation; the slope is ? and
the y intercept is —2.

Substituting 0 for x shows that the line passes through the point (0, —2). To draw the line, we need
another point. If we substitute 4 for x in the siope-intercept equation, we gety = 3(4) —2=1. So, (4.1)
also lies on the line, which is drawn in Fig. 3-10. (We could have found other points on the line by
substituting numbers other than 4 for x.)

4.1

Fig. 3-10

To test whether (6,2) is on the line, we substitute 6 for x and 2 for y in the original equation,
3x — 4y = 8. The two sides turn out to be unequal; hence, (6, 2) is not on the line. The same procedure
shows that (12, 7) lies on the line.

Line £ is the perpendicular bisector of the line segment joining the points A(—1,2) and
B(3, 4), as shown in Fig. 3-11. Find an equation for £.

Fig. 3-11
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& passes through the midpoint M of segment AB. By the midpoint formulas (2.2), the coordinates

4-2 1
of M are (1, 3). The slope of the line through A4 and B is = -~ = = Let m be the slope of £. By

3-(-1) 4 2
Theorem 3.2, im = —1, whence m = —2.
The slope-intercept equation for £ has the form y = —2x + b. Since M (1, 3) lies on Z, we have
3=-2(1)+ b. Hence, b =5, and the slope-intercept equation of £is y = —2x + 5.

Determine whether the points A(1, —1), B(3, 2), and C(7, 8) are collinear, that is, lie on the
same line.

A, B, and C are collinear if and only if the line AB is identical with the line AC, which is equivalent

2—-(-1 3
to the slope of AB being equal to the slope of AC. (Why?) The slopes of AB and AC are —3(_—1—) =3
and 8;—5_1—1—) = 2 =3 Hence, A, B, and C are collinear.

Prove analytically that the figure obtained by joining the midpoints of consecutive sides of a
quadrilateral is a parallelogram.

Locate a quadrilateral with consecutive vertices A, B, C, and D on a coordinate system so that A is
the origin, B lies on the positive x axis, and C and D lie above the x axis. (See Fig. 3-12.) Let b be the x
coordinate of B, (u, v) the coordinates of C, and (x, y) the coordinates of D. Then, by the midpoint
formula (2.2), the midpoints M,, M,, M,, and M, of sides AB, BC, CD, and DA have coordinates

b u+b v x+tu y+tvu xy . .

(5,0), (—2— i)’ ( ] ) and (5, 5) respectively. We must show that M M,M M, is a
parallelogram. To do this, it suffices to prove that lines M, M, and M, M, are parallel and that lines
M,M, and M M, are parallel. Let us calculate the slopes of these lines:

v_ o v y_ytv v
2 2 v 2 2 2
Slope(M M,) = P =;=; slope(M,M4)=x v e u-u

2 2 2 2 2
yrv_ vy Y o

2 2 2 y 2 y

SIOPC(MZM"‘)=x+u u+b x-b x-b SIOPC(M'M“)=X b x-b
2 2 2 2 2

Since slope(M,M,) =slope(M,M,), MM, and M, M, are parallel. Since slope(M,M,) = slope(M, M),
M,M, and M, M, are parallel. Thus, M,M,M .M, is a parallelogram.
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Prove Theorem 3.2.

First we assume ¥, and ¥, are perpendicular nonvertical lines with slopes m, and m,. We must
show that m m, = —1. Let M, and 4, be the lines through the origin O that are parallel to ¥, and .,,
as shown in Fig. 3-13(a). Then the slope of #, is m,, and the slope of #, is m, (by Theorem I).
Moreover, #, and 4, are perpendicular, since £, and ¥, are perpendicular.

y 4

(a) (6)
Fig. 3-13

Now let A be the point on #, with x coordinate 1, and let B be the point on A, with x coordinate 1,
as in Fig. 3-13(b). The slope-intercept equation of #  is y = m x; therefore, the y coordinate of A ism
since its x coordinate is 1. Similarly, the y coordinate of B is m,. By the distance formula (2.1).

OB=V(1 -0 +(m, -0y =V1+m’
OA=V(1~0)+(m,~0) =V1+m
BA = \/TI — 1Y +(m,—m,) = \/(m2 -m,)
Then by the Pythaporean theorem for right triangle BOA,
BA’= 0B’ + 04’

or (m,—m,)=(1+m)+(l+m)
2

=2m,m, + mi=2+m;+m;
mm, = —1

Now, conversely, we assume that m m, = — 1, where m, and m, are the slopes of nonvertical lines
£, and ¥,. Then ¥, is not parallel to #,. (Otherwise, by Theorem 3.1, m, = m, and, therefore,

Fig. 3-14
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m? = —1, which contradicts the fact that the square of a real number is never negative.) We must show
that #, and %, are perpendicular. Let P be the intersection of ¥, and <, (see Fig. 3-14). Let ¥, be the
line through P that is perpendicular to .Z,. If m, is the slope of £;, then, by the first part of the proof,
m,m, = —1 and, therefore, m,m, = m m,. Since m;m, = —1, m, #0; therefore, m, = m,. Since £, and
%, pass through the same point P and have the same slope, they must coincide. Since %, and %, are
perpendicular, £, and %, are also perpendicular.

6. Show that, if @ and b are not both zero, then the equation ax + by = c is the equation of a line
and, conversely, every line has an equation of that form.

Assume b #0. Then, if the equation ax + by = ¢ is solved for y, we obtain a slope-intercept
equation y = (—a/b)x + c¢/b of a line. If b =0, then a # 0, and the equation ax + by = ¢ reduces to
ax = c; this is equivalent to x = c/a, the equation of a vertical line.

Conversely, every nonvertical line has a slope-intercept equation y = mx + b, which is equivalent to
—mx + y = b, an equation of the desired form. A vertical line has an equation of the form x = ¢, which
is also an equation of the required form with a=1 and b =0.

7. Show that the line y = x makes an angle of 45° with the positive x axis (that is, that angle
BOA in Fig. 3-15 contains 45°).

A(1L 1)

4 X

B

Fig. 3-15

Let A be the point on the line y = x with coordinates (1, 1). Drop a perpendicular AB to the
positive x axis. Then AB =1 and OB =1. Hence, angle OAB = angle BOA, since they are the base
angles of isosceles triangle BOA. Since angle OBA is a right angle,

Angle OAB + angle BOA = 180° — angle OBA = 180° — 90° = 90°
Since angle BOA = angle OAB, they each contain 45°,

8. Show that the distance d from a point P(x, y,) to a line £ with equation ax + by = ¢ is given
lax + by — c|

Va* + b*

Let A be the line through P that is perpendicular to . Then 4 intersects £ at some point Q with
coordinates (u, v}, as in Fig. 3-16. Clearly, d is the length PQ, so if we can find u and v, we can compute
d with the distance formula. The slope of & is —a/b. Hence, by Theorem 3.2, the slope of 4 is b/a.
yY—-n
b xX—Xx;
=7 Tedious algebraic calculations yield the solution

by the formula d =

Then a point-slope equation of # is
vy

= Thus, u and v are the solutions of the pair of equations

au + bv = ¢ and
1

2
_ac+b’x, +aby,

u _bc—abx, +a’y,
a2+b2

and v=
a’ + b?
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10.

11.

12.
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B
®

P(x,, y,)

yd
7 N

Fig. 3-16

X

The distance formula. together with further calculations, yields

|ax,+by,-c|

d=PQ=V(x -u+(y, o) = —=—x

Supplementary Problems

Find a point-slope equation for the line through each of the following pairs of points: (a) (3,6) and
(2. —4); (b) (8,5) and (4,0); () (1.3) and the origin; (d) (2,4) and (-2, 4).

y-6 y—5~§. y-3 y—4
=10:0) T2 =51 0 L5 =3 @) 25

x—3 x—8 X - =0

Ans.  (a)

Find the slope-intercept equation of each line:

(a) Through the points (4, —2) and (1,7)

(b) Having slope 3 and y intercept 4

(¢) Through the points (—1,0) and (0, 3)

(d) Through (2, —3) and parallel to the x axis

(e) Through (2, 3) and rising 4 units for every unit increase in x

(f) Through (~2,2) and falling 2 units for every unit increase in x

(g) Through (3, —4) and parallel to the line with equation 5x — 2y =4

(h) Through the origin and parallel to the line with equation y =2

(i) Through (—-2.5) and perpendicular to the line with equation 4x + 8y =3
(/) Through the origin and perpendicular to the line with equation 3x — 2y =1
(k) Through (2. 1) and perpendicular to the line with equation x =2

(/) Through the origin and bisecting the angle between the positive x axis and the positive y axis

Ans. (@) y=-3x+10; () y=3x+3, () y=3x+3, (d) y=-3(e) y=4x—-5 (f) y=-2x -2,
(y=3x-FWy=06@y=2x+%(Hy=-ix(k)y=Ly=x

(a) Describe the lines having equations of the form x = a.
(&) Describe the lines having equations of the form y = b.
(c¢) Describe the line having the equation y = —x.

(a) Find the slopes and y intercepts of the lines that have the following equations: (i) y = 3x — 2; (ii)
. y x
2x -5y =3; (iit) y=4x - 3; (iv) y = -3, (v) 5 + §=l.
(b) Find the coordinates of a point other than (0, b) on each of the lines of part (a).
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13.

14,

15.

16.

17.

18.

19.

20.

21.

22,

Ans. (@) ()Ym=3,b==-2;(iiym=%,b=-12; (i) m=4,b=-3;(ivym=0, b=-3;
(v)ym=-3,b=2(b) (i) (1,1); (ii) (-6, =3); (iii) (1, 1); (iv) (1. =3); (v) (3.0)

If the point (3, k) lies on the line with slope m = —2 passing through the point (2, 5), find k.

Ans. k=3

Does the point (3, —2) lie on the line through the points (8, 0) and (—7, —6)?

Ans. yes

Use slopes to determine whether the points (7, —1), (10, 1), and (6,7) are the vertices of a right
triangle.

Ans. They are.

Use slopes to determine whether (8,0), (-1, —2), (—2,3), and (7,5) are the vertices of a paral-
lelogram.

Ans. They are.

Under what conditions are the points (4, v + w), (v, u + w), and (w, u + v) collinear?

Ans. always

Determine k& so that the points A(7.3), B(—1,0), and C(k, —2) are the vertices of a right triangle with
right angle at B.

Ans. k=1

Determine whether the following pairs of lines are parallel, perpendicular, or neither:

(@) y=3x+2and y=3x-2 (b) y=2x—-4and y=3x+5
(¢) 3x-2y=5and 2x +3y =4 (d)y6x+3y=1and 4x+2y=3
(¢) x=3and y=—-4 (f)S5x+4y=1and 4x + 5y =2

(g)x=-2and x=7.

Ans.  (a) parallel; (b) neither; (c) perpendicular; (d) parallel; (e) perpendicular; ( f) neither;
(g) parallel

Draw the lines determined by the equation 2x + 5y = 10. Determine if the points (10,2) and (12, 3) lie
on this line.

For what values of k will the line kx — 3y = 4k have the following properties: (a) have slope 1; (b) have y
intercept 2; (c) pass through the point (2, 4); (d) be parallel to the line 2x — 4y = 1; (e) be perpendicular
to the line x — 6y =27

Ans. (@) k=3, (B)k=—3; () k=-6;(d) k=3;(e) k=—18

Describe geometrically the families of lines (@) y = mx — 3 and (b) y = 4x + b, where m and b are any
real numbers.

Ans.  (a) lines with y intercept —3; (b) lines with slope 4

In the triangle with vertices A(0, 0), B(2,0), and C(3, 3), find equations for (a) the median from B to
the midpoint of the opposite side; (b) the perpendicular bisector of side BC; and (c) the altitude from B
to the opposite side.

Ans. (@) y=-3x+6; (b)x+3y=7;(c) y=-x+2
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27.

29.

31

32.

33.

3s.
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In the triangle with vertices A(2,0), B(1, 6), and C(3,9), find the slope-intercept equation of (a) the
median from B to the opposite side; (b) the perpendicular bisector of side AB; (¢) the altitude from 4 to
the opposite side.

Ans. (@)y=-x+7;B)y=ix+%, (@) y=-

win

x +

wis

Temperature is usually measured in either Fahrenheit or Celsius degrees. Fahrenheit (F) and Celsius (C)
temperatures are related by a linear equation of the form F = aC + b. The freezing point of water is 0°C
and 32°F, and the boiling point of water is 100°C and 212°F. (a) Find the equation relating F and C. (b)
What temperature is the same in both scales?

Ans. (a) F=12C+32; (b) —40°

The x intercept of a line £ is defined to be the x coordinate of the unique point where £ intersects the x

axis. It is the number a for which (a, 0) lies on £.

(a) Which lines do not have x intercepts?

(b) Find the x intercepts of (i) 3x —4y =2; (ii)) x +y=1; (iii) 12x — 13y =2; (iv) x =2; (v) y = 0.

(c) If a and b are the x intercept and y intercept of a line, show that x/a + y/b =1 is an equation of the
line.

(d) If x/a + y/b =1 is an equation of a line, show that a and b are the x intercept and y intercept of the
line.

Ans.  (a) horizontal lines. (b) (i) 3; (ii) 1; (iii) §; (iv) 2; (v) none

Prove analytically that the diagonals of a rhombus (a parallelogram of which all sides are equal) are
perpendicular to each other.

(a) Prove analytically that the altitudes of a triangle meet at a point. [Hint: Let the vertices of the
triangle be (2a,0), (2b,0) and (0, 2¢).]

(b) Prove analytically that the medians of a triangle meet at a point (called the centroid).

(c) Prove analytically that the perpendicular bisectors of the sides of a triangle meet at a point.

(d) Prove that the three points in parts (a) to (c) are collinear.

Prove analytically that a parallelogram with perpendicular diagonals is a thombus.
Prove analytically that a quadrilateral with diagonals that bisect each other is a parallelogram.
Prove analytically that the line joining the midpoints of two sides of a triangle is parallel to the third side.

(a) If a line ¥ has the equation 5x + 3y =4, prove that a point P(x, y) is above . if and only if
S5x +3y>4.

(b) If a line ¥ has the equation ax + by = ¢ and b >0, prove that a point P(x, y) is above £ if and only
if ax + by > c.

(c) If a line ¥ has the equation ax + by = ¢ and b <0, prove that a point P(x, y) is above £ if and only
if ax + by <c.

Use two inequalities to describe the set of all points above the line 3x + 2y =7 and below the line
4x — 2y = 1. Draw a diagram showing the set.

Ans. 3x+2y>7;4x-2y<1

Find the distance from the point (4,7) to the line 3x +4y =1.

Ans. %

Find the distance from the point (-1, 2) to the line 8x — 15y =3.

-

1

Ans.

<l
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37.

39.

41.

42,

43.

45,

47.

Find the area of the triangle with vertices A(0, 1), B(5,3), and C(2, —2).
Ans.

~S

Show that two equations a,x + b,y =c, and a,x + b,y = ¢, determine parallel lines if and only if
a,b, = a,b,. (When neither a, nor b, is 0, this is equivalent to a,/a, = b,/b,.)

Show that two equations a,x + b,y = ¢, and a,x + b,y = ¢, determine the same line if and only if the
coefficients of one equation are proportional to those of the other, that is, there is a number r such that
a,=ra,, b,=rb,, and ¢, = rc,.

If ax + by = c is an equation of a line &£ and ¢ =0, then the normal equation of ¥ is defined to be
a 4 b _ c
Vit Vaibl Vaib
(@) Show that |c| /V a® + b7 is the distance from the origin to £.

(b) Find the normal equation of the line 5x — 12y = 26 and compute the distance from the origin to the
line.

Ans. (b) #x - 3y =2; distance =2

Find equations of the lines parallel to the line 3x + 4y =7 and at a perpendicular distance of 4 from it.
Ans. 3x+4y=-13; 3x +4y =27
Show that a point-slope equation of the line passing through the points (x,.y,) and (x,.y,) is

Y= _"Nh”Y.

X—x, X, X,
Find the values of k such that the distance from (-2, 3) to the line 7x - 24y = k is 3.

Ans. k=-11; k=-161

Find equations for the families of lines (a) passing through (2,5); (b) having slope 3; (c) having v

intercept 1, (d) having x intercept —2; (e) having y intercept three times the x intercept; ( f) whose x
intercept and y intercept add up to 6.

Ans. (@) y-5=m(x—-2); (b)) y=3x+b;(c)y=mx+1;(d)y=m(x+2); (¢) 3x + y = 3a;
X y
Na*e=!

Find the value of k such that the line 3x — 4y = k determines, with the coordinate axes. a triangle of area
6.

Ans. k==12

Find the point on the line 3x + y = —4 that is equidistant from (-5, 6) and (3, 2).

Ans. (-2,2)

Find the equation of the line that passes through the point of intersection of the lines 3x — 2y = 6 and
x + 3y =13 and whose distance from the origin is 5.

Ans. 4x+3y =25

Find the equations of the two lines that are the bisectors of the angles formed by the intersection of the

lines 3x +4y =2 and 5x — 12y =7. (Hint: Points on an angle bisector are equidistant from the two
sides.)

Ans. 14x+ 112y +9=0; 64x — 8y — 61 =0
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49,

50.

51

52.

53.

54.

55.
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(a) Find the distance between the parallel lines 3x + 4y = 2 and 6x + 8y = 1. (b) Find the equation of the
line midway between the lines of part (a).

Ans. (a) &: (b)) 12x + 16y =5

What are the conditions on a, b, and ¢ so that the line ax + by = ¢ forms an isosceles triangle with the
coordinate axes?

Ans.  |a| =b|

Show that, if a, b, and ¢ are nonzero, the area bounded by the line ax + by = ¢ and the coordinate axes
is ¢/ |ab|.

Show that the lines ax + by = ¢, and bx — ay = ¢, are perpendicular.

Show that the area of the triangle with vertices A(x,,y,), B(x,,y;), and C(x,, y,) is
Mx, = 2y, — ¥2) = (¥, = ¥, 0%, — x3)]. (Hine: The altitude from A to side BC is the distance from A
to the line through B and C.)

e, — ¢
Show that the distance between parallel lines ax + by = ¢, and ax + by = ¢, is \[—,——“
a” +b”

Prove that, if the lines @, x + b,y = ¢, and a,x + b,y = ¢, are nonparallel lines that intersect at point P,
then, for any number k. the equation (@, x + b,y ~ ¢,) + k{a,x + b,y — ¢,) = 0 determines a line through
P. Conversely. any linc through P other than a,x + b,y = c, is represented by such an equation for a
suitable value of k.

Of all the lines that pass through the intersection point of the two lines 2x —3y =5 and 4x + y =2 find
an equation of the line that also passes through (1,0).

Ans. 16x -3y =16



Chapter 4

Circles

EQUATIONS OF CIRCLES. For a point P(x, y) to lie on the circle with center C(a, b) and radius
r, the distance PC must be equal to r (see Fig. 4-1). By the distance formula (2.1),

PC=V(x—ay +(y-b)

y //,’-\\\ P(X, y)
/ N\
4 N\
/ r \
f \
| |
' |
\ C(a, b) /
\\ /
\ l/ x
\\\ ///
Fig. 4-1

Thus, P lies on the circle if and only if
(x—a)’+(y-b)=r (4.1)
Equation (4.1) is called the standard equation of the circle with center at (a, b) and radius r.
EXAMPLE 1: (a) The circle with center (3, 1) and radius 2 has the equation (x —3)* + (y — 1)* = 4.
(b) The circle with center (2, —1) and radius 3 has the equation (x —2)" + (y + 1)> =9,
(c) What is the set of points satisfying the equation (x — 4)* + (y — 5)* =25?
By (4.1), this is the equation of the circle with center at (4, 5) and radius 5. That circle is said to be

the graph of the given equation, that is, the set of points satisfying the equation.
(d) The graph of the equation (x + 3)* + y* =2 is the circle with center at (—3, 0) and radius V2.

THE STANDARD EQUATION OF A CIRCLE with center at the origin (0, 0) and radius r is
X +yi=r (4.2)

For example, x’ + y* = 1 is the equation of the circle with center at the origin and radius 1. The
graph of x’ + y* =5 is the circle with center at the origin and radius V5.
The equation of a circle sometimes appears in a disguised form. For example, the equation

X +y +8x—~6y+21=0 (4.3)
turns out to be equivalent to
(x+4)Y2+(y—-3)Y =4 (4.4)

Equation (4.4) is the standard equation of a circle with center at (—4, 3) and radius 2.

3
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Equation (4.4) is obtained from (4.3) by a process called completing the square. In general
terms, the process involves finding the number that must be added to the sum x* + Ax to obtain

AN A
a square. Here, we note that (x + 5) =x'+ Ax + (5) . Thus, in general, we must add

A - ki d

(~2— to x~ + Ax to obtain the square (x + 7/ For example, to get a square from x° + 8x, we
add (%)°, that is, 16. The result is x* + 8x + 16, which is (x +4)°. This is the process of
completing the square. |

Consider the original (4.3): x° + y~ + 8x — 6y + 21 =0. To complete the square in x° + 8x,
we add 16. To complete the square in y~ — 6y, we add (- )2, which is 9. Of course, since we
added 16 and 9 to the left side of the equation, we must also add them to the right side,
obtaining

(x*+8x+16)+(y —6y+9)+21=16+9
This is equivalent to
(x+4)Y +(y-3)+21=25

and subtraction of 21 from both sides yields (4.4).

EXAMPLE 2: Consider the equation x* + y* — 4x — 10y + 20 = 0. Completing the square yields

(3 —4x+4)+(y" - 10y +25)+20=4+25
(x =2 +(y-51=9

Thus, the original equation is the equation of a circle with center at (2.5) and radius 3.

The process of completing the square can be applied to any equation of the form

X +y + Ax+ By + C=0 (4.5)
to obtain
( +é>2+( +§)2+C—A—Z+Ei
*T 32 Y73 a4 T s
A>2 ( B)z_A2+Bz—4C
or (x+ 5 + y+2 = n (4.6)

There are three different cases, depending on whether A+ B> —4C is positive, zero, or
negative.

Case 1: A+ B> —4C>0. In this case, (4.6) is the standard equation of a circle with

A B . VA’+B'-4C
center at (— 20 5) and radius -

Case 2: A*+ B> —4C=0. A sum of the squares of two quantities is zero when and only
when each of the quantities is zero. Hence, (4.6) is equivalent to the conjunction of the
equations x + A/2=0 and y + B/2 =0 in this case, and the only solution of (4.6) is the point
(—A/2, - B/2). Hence, the graph of (4.5) is a single point, which may be considered a
degenerate circle of radius 0.

Case 3: A’ + B> —4C <0. A sum of two squares cannot be negative. So, in this case,
(4.5) has no solution at all.

We can show that any circle has an equation of the form (4.5). Suppose its center is (a. b)

and its radius is r; then its standard equation is

(x-a)+(y-b)y=r’
Expanding yields x* —2ax + a’ + y* = 2by + b’ = r’, or
X +y —2ax-2by+ (@ +b°—r’)=0
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Solved Problems

1. Identify the graphs of (a) 2x” + 2P —4x+y+1=0; (b)) X" +y' -4y +7=0;
(c) x> +y* —6x—2y+10=0.

(a) First divide by 2, obtaining x* + y* —2x + }y + } =0. Then complete the squares:

=
3

1

(F=-2x+ D+ (Y +iy+ L)+ 1i=1+;
-1+ (y+i)V=8-

[NTERI"N
3 3

(£
!
(V]

[
[

o
3
@

Thus, the graph is the circle with center (1, —}) and radius 3.
(b) Complete the square:

X (y—2Y+7=4
X+ (y-2)=-3

Because the right side is negative, there are no points in the graph.
(c) Complete the square:

(x=3 +(y-17+10=9+1
(x=3Y+(y-1)’=0

The only solution is the point (3, 1).

2. Find the standard equation of the circle with center at C(2, 3) and passing through the point
P(—1,5).

The radius of the circle is the distance
CP=V(5-37 +(-1-27=V2 +(-3)'=V4+9=VT3

so the standard equation is (x —2)* + (y — 3)* = 13.

3. Find the standard equation of the circle passing through the points P(3, 8), Q(9,6), and
R(13, -2).

First method: The circle has an equation of the form x* + y*> + Ax + By + C =0. Substitute the
values of x and y at point P, to obtain 9+64+3A4A+8B+ C=0or

3A+8B+C=-73 eD

A similar procedure for points O and R yields the equations
9A+6B+ C=—-117 (2)
13A-2B+C=-173 (3)

Eliminate C from (1) and (2) by subtracting (2) from (I):
—-6A+2B=44 or -3A+B=22 4)

Eliminate C from (1) and (3) by subtracting (3) from (1):
-10A+108=100 or -A+B=10 (5

Eliminate B from (4) and (5) by subtracting (5) from (4), obtaining A = —6. Substitute this value in
(5) to find that B =4. Then solve for C in (1): C= —87.

Hence, the original equation for the circle is x* + y* ~ 6x + 4y — 87 = 0. Completing the squares
then yields

(x-3+(y+2)’=87+9+4=100

Thus, the circle has center (3, —2) and radius 10.
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Second method: The perpendicular bisector of any chord of a circle passes through the center of the
circle. Hence, the perpendicular bisector £ of chord PQ will intersect the perpendicular bisector 4 of
chord QR at the center of the circle (see Fig. 4-2).

Y P@3,8) ¥

Q(9.6)

\

R(13.-2)

A

Fig. 4-2

The slope of line PQ is — 3. So, by Theorem 3.2, the slope of £ is 3. Also, ¥ passes through the

midpoint (6,7) of segment PQ. Hence a point-slope equation of £ is i_

=3, and therefore its

slope-intercept equation is y = 3x — 11. Similarly, the slope of line OR is —2, and therefore the slope of
M is }. Since M passes through the midpoint (11,2) of segment QR, it has a point-slope equation
y-—2
x—11 .
of the circle satisfy the two equations y = 3x — 11 and y = x — , and we may write

1 . . . . .
=3 which yields the slope-intercept equation y = ix — . Hence, the coordinates of the center

3x-11=}x-1}
from which we find that x = 3. Therefore,
y=3x-11=33)~-11=-2
So the center is at (3, —2). The radius is the distance between the center and the point (3, 8):
V(-2-8)7+(3-3)°=V(-10) = V100 = 10
Thus, the standard equation of the circle is (x — 3)* + (y + 2)* = 100.

Find the center and radius of the circle that passes through P(1, 1) and is tangent to the line
y =2x — 3 at the point Q(3,3). (See Fig. 4-3.)

The line ¥ perpendicular to y =2x ~ 3 at (3,3) must pass through the center of the circle. By
Theorem 3.2, the slope of £ is —}. Therefore, the slope-intercept equation of ¥ has the form
y=—3ix+b. Since (3,3) is on ¥, we have 3=—~1(3)+ b; hence, b =%, and ¥ has the equation
y=-lx+3.

The perpendicular bisector # of chord PQ in Fig. 4-3 also passes through the center of the circle, so
the intersection of £ and # will be the center of the circle. The slope of PQ is 1. Hence, by Theorem
3.2, the slope of # is —1. So A has the slope-intercept equation y = —x + b’. Since the midpoint (2, 2)
of chord PQ is a point on #, we have 2= —(2) + b’; hence, b’ =4, and the equation of M isy = —x + 4.
We must find the common solution of y = —x +4 and y = — 1x + 5. Setting

—x+4=—1x+}

yields x = ~ 1. Therefore, y=—-x+4=—(—-1)+4 =35, and the center C of the circle is (—1,5). The
radius is the distance PC = \/(=1 - 3)* + (5 - 3)> = V16 + 4 = V20. The standard equation of the circle
is then (x + 1)* + (y — 5)* =20.
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Fig. 4-3

S. Find the standard equation of every circle that passes through the points P(1, —1) and Q(3, 1)
and is tangent to the line y = —3x.

Let C(c, d) be the center of one of the circles, and let A be the point of tangency (see Fig. 4-4).
Then, because CP = CQ, we have

CP'=CQ° or (c~1P+d+1)Y=(c-3)+d-1)
Expanding and simplifying, we obtain
ctd=2 (1)
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T —_— +d —=1 2
In addition, CP = CA, and by the formula of Problem 8 in Chapter 3, CA = 3:/—ﬁ_ Setting CP” = CA”
+d)
thus yields (¢ — 1)’ +(d + 1)* = (361—0) Substituting (1) in the right-hand side and multiplying by 10
then yields

10[(c— 1)’ +(d +1))]=(2c+2)*  from which 3c*+5d>—14c+10d +8=0
By (1), we can replace d by 2 — ¢, obtaining
27 ~11c+12=0 or (2c-3)c-4)=0

Hence, ¢ = 3 or ¢ =4. Then (1) gives us the two solutions c=2, d= ! and c =4, d = —2. Since the

c+d 10/2 V10 10
i =t luti d iiof === = —and —=—= =V10. T
radius CA \/TG 5 hese solutions produce radii of 10 2 and \/—1—0 10 hUS, there are two

such circles, and their standard equations are

(x—3P+(y-4)’=3 and (x-4)Y+(y+2)°=10

Supplementary Problems

Find the standard equations of the circles satisfying the following conditions:

(a) center at (3,5) and radius 2 (b) center at (4, —1) and radius 1

{(¢) center at (5,0) and radius V3 (d) center at (=2, —2) and radius 5V2
(e) center at (-2, 3) and passing through (3, —2)

(f) center at (6, 1) and passing through the origin

Ans. (@) (x =3+ (y=5)7=4;(b) (x =4 +(y+1)Y°=1;(c) (x =57 +y"=3;
(d) (x +2) +(y+2)"=50; (&) (x+2° +(y —3)>=50; (f) (x—6)" +(y ~ 1) =37

Identify the graphs of the following equations:
(@) X*+y " +16x— 12y +10=0 (b)) x*+ )y —dx+S5y+10=0 (¢) X’ +y’+x—-y=0
(d)4x> +4y" +8y - 3=0 () x¥*+y'—x~2y+3=0 (HX+y +VIix—-2=0

Ans. (a) circle, center at (—8, 6), radius 3V10; (b) circle, center at (2, — 3), radius } ; (c) circle, center
at (— 34, 1), radius V2/2; (d) circle, center at (0, —1), radius 3; (e) empty graph; (f) circle,
center at (—V2/2,0), radius V572

Find the standard equations of the circles through (a) (=2, 1), (1, 4), and (-3, 2); (b) (0, 1), (2. 3), and
(L 1+V3); () (6.1), (2, -5), and (1, —4); (d) (2,3), (-6, ~3), and (1, 4).
Ans. (a) (x+1)"+(y =3 =5 (b) (x =2+ (y ~ 1)’ =4; () (x —4) + (y +2)’ = 13;
(d) (x+2) +y*=25
For what values of k does the circle (x + 2k)* + (y — 3k)’ = 10 pass through the point (1.0)?

Ans. =Jork=-1

Find the standard equations of the circles of radius 2 that are tangent to both the lines x = 1 and y = 3.

Ans. (x+ 1)+ (y=1Y =4 (x+ 1)’ +(y-57=4; (x -3V +(y— 1)’ =4; (x—=3)* +(y - 5)' =4

Find the value of k so that x* + y* + 4x — 6y + k =0 is the equation of a circle of radius 5.
Ans. k=-12
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12.

13.

14.

15.

16.

17.

18.

19,

20.

21.

Find the standard equation of the circle having as a diameter the segment joining (2, —3) and (6. 5).
Ans. (x-4Y+(y-1)’'=20

Find the standard equation of every circle that passes through the origin, has radius S, and is such that
the y coordinate of its center is —4.

Ans. (x=3V+(y+4Y=250r (x+3)Y +(y+4)°=25

Find the standard equation of the circle that passes through the points (8. —5) and (-1, 4) and has its
center on the line 2x + 3y =3.

Ans. (x=3V+(y+1)Y =41

Find the standard equation of the circle with center (3, 5) that is tangent to the line 12x — 5y +2=0.
Ans. (x=3V+(y-57=1

Find the standard equation of the circle that passes through the point (1,3 + V2) and is tangent to the
line x + y =2 at (2,0).

Ans. (x=57+(y—-3) =18

Prove analytically that an angle inscribed in a semicircle is a right angle. (See Fig. 4-5.)

X

| \

(6,-2)

Fig. 4-5 Fig. 4-6

Find the length of a tangent from (6, —2) to the circle (x — 1)’ + (y — 3)> = 1. (See Fig. 4-6.)

Ans. 7

Find the standard equations of the circles that pass through (2,3) and are tangent to both the lines
3x —4y=-1and 4x +3y ="7.

Ans. (x=2)°+(y-8)Y=25and (x-§)’ +(y - 8y =1

Find the standard equations of the circles that have their centers on the line 4x + 3y = 8 and are tangent
to both the lines x+y=—-2 and 7x —y = —6.

Ans. (x~2)"+y’=2and (x+4)’+(y-8)°=18

Find the standard equation of the circle that is concentric with the circle x* + y* - 2x — 8y + 1 =0 and is
tangent to the line 2x — y = 3.

Ans. (x—-1)+(y-4)°=5
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Find the standard equations of the circles that have radius 10 and are tangent to the circle x> + y* = 25 at
the point (3, 4).

Ans. (x=9)"+(y—-12)>=100 and (x +3)* + (y +4)* = 100

Find the longest and shortest distances from the point (7, 12) to the circle x* + y* + 2x + 6y — 15 =0.
Ans. 22 and 12
Let €, and €, be two intersecting circles determined by the equations x> + y° + A,x + B,y + C, =0 and
x*+y>+ A,x + B,y + C,=0. For any number k # —1, show that
X4y’ + Ax+By+C +k(x*+y + A, x+ B,y +C,)=0

is the equation of a circle through the intersection points of €, and €,. Show, conversely, that every such
circle may be represented by such an equation for a suitable k.
Find the standard equation of the circle passing through the point (-3, 1) and containing the points of
intersection of the circles x> +y* +Sx=1and x> +y +y=17.
Ans. (x+3) +(y+ &)=
Find the standard equations of the circles that have centers on the line Sx — 2y = —21 and are tangent to
both coordinate axes.
Ans. (x+7P +(y+7)’=49and (x +3) +(y -3’ =9
(a) If two circles x*+y*+ A x+ By+C, =0 and x> +y*+ A,x + B,y + C, =0 intersect at two

points, find an equation of the line through their points of intersection.

(b) Prove that if two circles intersect at two points, then the line through their points of intersection is
perpendicular to the line through their centers.

Ans. (@) (A, —A,)x+(B, - B,)y+(C,-C,)=0

Find the points of intersection of the circles x* + y* + 8y — 64 =0 and x* + y* ~ 6x - 16 = 0.

Ans. (8.0) and (£, %)

Find the equations of the lines through (4, 10) and tangent to the circle x* + y> — 4y — 36 = 0.
Ans. y=-3x+22and x -3y +26=0



Chapter 5

Equations and Their Graphs

THE GRAPH OF AN EQUATION involving x and y as its only vanables consists of all points (x, y)
satisfying the equation.

EXAMPLE 1: (a) What is the graph of the equation 2x — y = 3?
The equation is equivalent to y = 2x — 3, which we know is the slope-intercept equation of the line
with slope 2 and y intercept —3.
(b) What is the graph of the equation x° + y° —2x + 4y — 4 =0?
Completing the square shows that the given equation is equivalent to the equation
(x —1)°+ (y +2)>=9. Hence, its graph is the circle with center (1, —2) and radius 3.

PARABOLAS. Consider the equation y = x°. If we substitute a few values for x and calculate the
associated values of y, we obtain the results tabulated in Fig. 5-1. We can plot the correspond-
ing points, as shown in the figure. These points suggest the heavy curve, which belongs to a
family of curves called parabolas. In particular, the graphs of cquations of the form y = cx’,
where ¢ is a nonzero constant, are parabolas, as are any other curves obtained from them by
translations and rotations.

— 10
x y | .
3 9 (—x.y) - (x, v)
2 4 6
1 1 —
0 0 - 4
-1 1 -
-2 4 -2
_3 9 -
| I N T j W W T W | X
-3 -2 -1 Jor 2 03
Fig. 5-1

In Fig. 5-1, we note that the graph of y = x” contains the origin (0, 0) but all its other points
lie above the x axis, since x’ is positive except when x = 0. When x is positive and increasing, y
increases without bound. Hence, in the first quadrant, the graph moves up without bound as it
moves right. Since (—x)’ = x°, it follows that, if any point (x, y) lies on the graph in the first
quadrant, then the point (—x, y) also lies on the graph in the second quadrant. Thus, the graph
is symmetric with respect to the y axis. The y axis is called the axis of symmetry of this
parabola.

2 2
ELLIPSES. To construct the graph of the equation % + % =1, we again compute a few values and

plot the corresponding points, as shown in Fig. 5-2. The graph suggested by these points is also

39
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>
e
-

—_ W
I+ I+

-2

2
-1 + V32

Fig. 5-2

drawn in the figure; itis a memzber 02f a family of curves called ellipses. In particular, the graph

. X . . . . .
of an equation of the form — + i—z =1 is an ellipse, as is any curve obtained from it by
a

translation or rotation.
Note that, in contrast to parabolas, ellipses are bounded. In fact, if (x, y) is on the graph of
2 2 2

5

% + yz =1, then %— =< % + % =1, and, therefore, x’<9. Hence, —3 < x < 3. So, the graph
lies between the vertical lines x = —3 and x = 3. Its rightmost point is (3, 0), and its leftmost

point is (—3,0). A similar argument shows that the graph lies between the horizontal lines
y=—2and y =2, and that its lowest point is (0, —2) and its highest point is (0, 2). In the first
quadrant, as x increases from 0 to 3, y decreases from 2 to 0. If (x, y) is any point on the graph,
then (—x, y) also is on the graph. Hence, the graph is symmetric with respect to the y axis.
Similarly, if (x, ¥) is on the graph, so is (x, —y), and therefore the graph is symmetric with

respect to the x axis.
2 2

When a = b, the ellipse Lz + i—z =1 is the circle with the equation x* + y* = a°, that is, a
a

circle with center at the origin and radius a. Thus, circles are special cases of ellipses.

2 2

y

HYPERBOLAS. Consider the graph of the equation % e 1. Some of the points on this graph

are tabulated and plotted in Fig. 5-3. These points suggest the curve shown in the figure, which
is, a member of a family of curves called hyperbolas. The graphs of equations of the form
x_: - z— = | are hyperbolas, as are any curves obtained from them by tganslatioqs and rotations.
Let us look at the hyperbola L L oqin more detail. Since % —1+L = 1, it follows
that x* = 9, and therefore, |x| = 3. Hence, there are no points on the graph between the vertical
lines x = —3 and x = 3. If (x, y) is on the graph, so is (—x, y); thus, the graph is symmetric with
respect to the y axis. Similarly, the graph is symmetric with respect to the x axis. In the first
quadrant, as x increases, y increases without bound.
Note the dashed lines in Fig. 5-3; they are the lines y = $x and y = — $x, and they called
the asymptotes of the hyperbola: Points on the hyperbola get closer and closer to these

asymptotes as they recede from the origin. In general, the asymptotes of the hyperbola

b
x—’—y—.:larethelinesy:—xandy=——x.
a b- a a

CONIC SECTIONS. Parabolas, ellipses, and hyperbolas together make up a class of curves called

conic sections. They can be defined geometrically as the intersections of planes with the surface
of a right circular cone, as shown in Fig. 5-4.
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Solved Problems

1. Sketch the graph of the cubic curve y = x°

The graph passes through the origin (0, 0). Also, for any point (x, y) on the graph, x and y have the
same sign; hence, the graph lies in the first and third quadrants. In the first quadrant, as x increases, y
increases without bound. Moreover, if (x, y) lies on the graph, then (—x, —y) also lies on the graph.
Since the origin is the midpoint of the segment connecting the points (x, y) and (—x, —y), the graph is
symmetric with respect to the origin. Some points on the graph are tabulated and shown in Fig. 5-5;
these points suggest the heavy curve in the figure.

X Yy

0 0

172 1/8

1 1
3/2 27/8

2 8
-1/2 -1/8
-1 -1
-3/2 -27/8
-2 -8

Fig. 5-5

2. Sketch the graph of the equation y = —x’.

If (x, y) is on the graph of the parabola y = x* (Fig. 5-1), then (x, —y) is on the graph of y = —x7,
and vice versa. Hence, the graph of y = —~x” is the reflection in the x axis of the graph of y = x” The
result is the parabola in Fig. 5-6.

y
3 -2 -1 for o2 03
T 1 T 7T *

.

-2

4-3

-4

- -5

4-¢

-7

-8

4 -
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3. Sketch the graph of x = y*.

This graph is obtained from the parabola y = x* by exchanging the roles of x and y. The resulting
curve is a parabola with the x axis as its axis of symmetry and its “‘nose" at the origin (see Fig. 5-7). A
point (x, y) is on the graph of x = y® if and only if (y, x) is on the graph of y = x*. Since the segment
connecting the points (x, y) and (y, x) is perpendicular to the diagonal line y = x (why?), and the

L + + . )
midpoint (u x > y) of that segment is on the line y = x (see Fig. 5-8), the parabola x =y~ is
obtained from the parabola y = x* by reflection in the line y = x.

Y
y (x. y)
ir N
2+ S
1+ N\
PR WS N S D S S N x ®(y,x)
1 2 3 4 5 6 1 8 9
Ok
X
-2 F
_3 —
Fig. 5-7 Fig. 5-8

4. Let £ be a line, and let F be a point not on Z. Show that the set of all points equidistant from
F and £ is a parabola.

Construct a coordinate system such that F lies on the positive y axis, and the x axis is parallel to ¥
and halfway between F and . (See Fig. 5-9.) Let 2p be the distance between F and £. Then ¥ has the
equation y = —p, and the coordinates of F are (0, p).

Consider _an arbitrary point P(x, y). Its distance from £ is |y + p|, and its distance from F is
Vx*+ (y — p)’. Thus, for the point to be equidistant from F and % we must have |y +p|=
Vx* + (y — p)°. Squaring yields (y + p)’ = x> + (y — p), from which we find that 4py = x°. This is the
equation of a parabola with the y axis as its axis of symmetry. The point F is called the focus of the
parabola, and the line £ is called its directrix. The chord AB through the focus and parallel to £ is called
the latus rectum. The ‘“‘nose” of the parabola at (0,0) is called its vertex.

y

P(x, y)

Fig. 5-9
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Find the length of the latus rectum of a parabola 4py = x°.

The y coordinate of the endpoints A and B of the latus rectum (see Fig. 5-9) is p. Hence, at these
points, 4p° = x* and, therefore, x = +2p. Thus, the length AB of the latus rectum is 4p.

Find the focus, directrix, and the length of the latus rectum of the parabola y = }x°. and draw
its graph.

The equation of the parabola can be written as 2y = x>. Hence, 4p =2 and p = |. Therefore, the
focus is at (0, §), the equation of the directix is y = — 1, and the length of the latus rectum is 2. The
graph is shown in Fig. 5-10.

A F B
1 ) 1 1 1 x
- -2 -1 1 2 3
Fig. 5-10

Let F and F’ be two distinct points at a distance 2¢ from each other. Show that the set of all
points P(x. y) such that PF + PF' =2a, a> c, is an ellipse.

Construct a coordinate system such that the x axis passes through F and F’, the origin is the
midpoint of the segment FF', and F lies on the positive x axis. Then the coordinates of F and F' are
(c.0) and (-, 0). (See Fig. 5-11.) Thus, the condition PF + PF’ = 2a is equivalent to \/(x — ¢)* + y* +

(x + ¢}’ + y® = 2a. After rearranging and squaring twice (to eliminate the square roots) and perform-
ing indicated operations, we obtain

(az_cz)xz+azy:=az(az_cz) (1)

Since a > ¢, a’—¢*>0. Let b=Va’ — ¢ Then (1) becomes b’x” + a’y* = a’b”. which we may rewrite

as x_’ + i—z =1, the equation of an ellipse.
a

h

P(x. y) B(0, b)

.

F(c,0) ] A(a.0)

B'(0, - b)

Fig. 5-11
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10.

When y =0, x* = a°; hence, the ellipse intersects the x axis at the points A'(—a,0), and A(a,0),
called the vertices of the ellipse (Fig. 5-11). The segment A'A is called the major axis; the segment OA is
called the semimajor axis and has length a. The origin is the center of the ellipse. F and F’ are called the
foci (each is a focus). When x = 0, y* = b, Hence, the ellipse intersects the y axis at the points B'(0, — b)
and B(0, b). The segment B'B is called the minor axis; the segment OB is called the semiminor axis and
has length b. Note that b=Va’ - c®<Va’=a. Hence, the semiminor axis is smaller than the
semimajor axis. The basic relation among a, b, and c is a’ = b* + >

The eccentricity of an ellipse is defined to be e=c/a. Note that 0<e<1. Moreover, e =
Va® - b¥a =\/1 - (b/a)’ Hence, when e is very small, b/a is very close to 1, the minor axis is close in
size to the major axis, and the ellipse is close to being a circle. On the other hand, when e is close to 1,
b/a is close to zero, the minor axis is very small in comparison with the major axis, and the ellipse is very
“flat.”

Identify the graph of the equation 9x* + 16y’ = 144,

The given equation is equivalent to x”/16 + y*/9 = 1. Hence, the graph is an ellipse with semimajor
axis of length a =4 and semiminor axis of length b = 3. (See Fig. 5-12.) The vertices are (—4,0) and
(4,0). Since c=Va' - b* =V16 -9 = V7, the eccentricity e is c/a = V7 /4 =0.6614.

Fig. 5-12

Identify the graph of the equation 25x* + 4y* = 100.

The given equation is equivalent to x”/4 + y%/25 =1, an ellipse. Since the denominator under y° is
larger than the denominator under x° the graph is an ellipse with the major axis on the y axis and the
minor axis on the x axis (see Fig. 5-13). The vertices are at (0, —5) and (0, 5). Since ¢ = Va*> - b° =
V21, the eccentricity is V21/5 = 0.9165.

Let F and F’ be distinct points at a distance of 2¢ from each other. Find the set of all points
P(x, y) such that |PF — PF'| = 2a, for a<c.

Choose a coordinate system such that the x axis passes through F and F’, with the origin as the
midpoeint of the segment FF’ and with F on the positive x axis (see Fig. 5-14). The coordinates of F and

F’ are (c,0) and (—c, 0). Hence, the given condition is equivalent to V/(x — ¢}’ + y° = V(x + ¢)  + y° =
*+2a. After manipulations required to eliminate the square roots, this yields

(CZ_aZ)xz_a2y2=aZ(c2_a2) (I)
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Fig. 5-13 Fig. 5-14

Since ¢ >a, ¢’ —a*>0. Let b =2V ¢’ — a’. (Notice that @* + b” = ¢") Then (I) becomes b’x” — @'y’ =
a’b®, which we rewrite as — - i—z =1, the equation of a hyperbola.

When y =0, x = +a. ﬁencc, the hyperbola intersects the x axis at the points A’(—a,0) and A(a.0),
which are called the vertices of the hyperbola. The asymptotes are y = * P The segment A’A is called

the transverse axis. The segment connecting the points (0, — &) and (0, b) is called the conjugate axis.
The center of the hyperbola is the origin. The points F and F' are called the foci. The eccentricity is

Va + b / I
defined to be e = g = GT =yt (;) . Since ¢ > a, e >1. When e is close to 1. b is very small
relative to a, and the hyperbola has a very pointed ‘'nose’’; when e is very large. b is very large relative
to a, and the hyperbola is very “flat.”

Identify the graph of the equation 25x — 16y” = 400.

The given equation is equivalent to x*/ 16 — y*/25 = 1. This is the equation of a hyperbola with the x
axis as its transverse axis, vertices (—4,0) and (4, 0), and asymptotes y = = 3x. (See Fig. 5-15.)

Fig. 5-15
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12.  Identify the graph of the equation y° — 4x° = 4.
2 2

The given equation is equivalent to L _% 1 Thisis the equation of a hyperbola, with the roles

of x and y interchanged. Thus, the transverse axis is the y axis, the conjugate axis is the x axis, and the
vertices are (0, —2) and (0, 2). The asymptotes are x = + } y or, equivalently, y = +2x. (See Fig. 5-16.)

Fig. 5-16

13.  Identify the graph of the equation y = (x — 1)>.

A point (u, v) is on the graph of y = (x — 1)* if and only if the point (u — 1, v) is on the graph of
y = x*. Hence, the desired graph is obtained from the parabola y = x* by moving each point of the latter
one unit to the right. (See Fig. 5-17.)

Fig. 5-17
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-1 (=27 _
4 9
A point (u, v) is on the graph if and only if the point (u ~ 1, v — 2) is on the graph of the equation
x*/4 4 y%9 = 1. Hence, the desired graph is obtained by moving the ellipse x4 + y*/9 =1 one unit to
the right and two units upward. (See Fig. 5-18.) The center of the ellipse is at (1, 2), the major axis is
along the line x = 1, and the minor axis is along the line y = 2.

1.

14.  Identify the graph of the equation

Y

e

(1.5)

(-1.2) (1,2) (3.2)

o

N

(L. -1

Fig. 5-18

15. How is the graph of an equation F(x —a, y — b) =0 related to the graph of the equation
F(x, y)=0?

A point (u, v) is on the graph of F(x — a, y — ) =0 if and only if the point (1 — a, v ~ b) is on the
graph of F(x, y) =0. Hence, the graph of F(x —a, y — ) =0 is obtained by moving each point of the
graph of F(x, y) =0 by a units to the right and b units upward. (If a is negative, we move the point |a|
units to the left. If b is negative, we move the point |5 units downward.) Such a motion is calied a
translation.

16. Identify the graph of the equation y = x* ~ 2x.

Completing the square in x, we obtain y + 1 = (x — 1)>. Based on the results of Problem 15, the
graph is obtained by a translation of the parabola y = x’ so that the new vertex is (1, — 1). [Notice that
y+1lisy—(—1).] It is shown in Fig. 5-19.

y

Fig. 5-19
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Identify the graph of 4x* —9y® ~ 16x + 18y — 29 = 0.

Factoring yields 4(x* —4x)—9(y*>—2y)—29=0, and then completing the square in x and y
Y 132
produces 4(x — 2)% — 9(y — 1)? = 36. Dividing by 36 then yields * -2 - L =2)

9 T, 1. By the results of
2
Problem 15, the graph of this equation is obtained by translating the hyperbola — — % =1 two units to

the right and one unit upward, so that the new center of symmetry of the hyperbola is (2, 1). (See Fig.
5-20.)

Fig. 5-20

Draw the graph of the equation xy = 1.

Some points of the graph are tabulated and plotted in Fig. 5-21. The curve suggested by these points
is shown dashed as well. It can be demonstrated that this curve is a hyperbola with the line y = x as
transverse axis, the line y = —x as converse axis, vertices (-1, —1) and (1, 1), and the x axis and y axis
as asymptotes. Similarly, the graph of any equation xy = d, where d is a positive constant, is a hyperbola
with y = x as transverse axis and y = —x as converse axis, and with the coordinate axes as asymptotes.

Such hyperbolas are called equilateral hyperbolas. They can be shown to be rotations of hyperbolas of
the form x%a® — y¥a’ = 1.

y
|
a
|
c | Al
3 1/3 \‘
2 1/2 2| §
\
1 1 \
1/2 2 TS
1/3 3 <
-4 -3 -2 -1 e
1/4 4 1 1 1 1 1 1 T --= x
-4 | -4 TTTTS el i
-1/3 -3 \\ - -1
-1/2 -2
\
-1 -1 \ |-
-2 -1/2 |‘
-3 -1/3 VEos
\
1
-4
)

Fig. 5-21
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Supplementary Problems

On the same sheet of paper, draw the graphs of the following parabolas: (a) y = 2x°; (b) y = 3x7; (¢)
y=4x* (d) y = 1x’; () y = 2%

On the same sheet of paper, draw the graphs of the following parabolas, and indicate points of
intersection: (@) y =x>; (b) y=—~x%, (¢) x=y"; (d) x = —y>

Draw the graphs of the following equations:

(@) y=x" -1 by y=(x-2) () y=(x+1)°-2

(d) y=-x (&) y=-(x-1) (f)y=-(x-1)+2

Identify and draw the graphs of the following equations:

(@) y'-x"=1 (b) 25x° + 36y° =900 (c) 2x* —y*=4 (d) xy=4

(e) 4x" +4y’ =1 (f)8x=y* (g) 10y =x* (h) 4x> +9y* =16
() xy=-1 (j) 3y’ -x*=9

Ans.  (a) hyperbola, y axis as transverse axis, vertices (0, 1), asymptotes y = +x; (b) ellipse, vertices
(£6,0) foci (= V11, 0); (c) hyperbola, x axis as transverse axis, vertices (+ V2, 0), asymptotes
y = #V2x; (d) hyperbola, y = x as transverse axis, vertices (2, 2) and (=2, —2), x and y axes as
asymptotes; (e) circle, center (0, 0), radius }; (f) parabola, vertex (0, 0), focus (2, 0), directrix
x = —2; (g) parabola, vertex (0, 0), focus (0, ), directrix y = — 3; (h) ellipse, vertices (+2,0),
foci (= 3V'5,0); (i) hyperbola, y = —x as transverse axis, vertlces ( 1,1) and (1, -1), x and y
axes as asymptotes; (j) hyperbola, y axis as transverse axis, vertices (0, +V3). asymptotes

y=*V3x/3
Identify and draw the graphs of the following equations:
(@) 4x" =3y  +8x+ 12y —4=0 (b) 5x2 +y>~20x + 6y +25=10
(¢) x*—6x—4y+5=0 (d)2x*+y' ~4x+4y +6=0
(6) 3 +2y° +12x 4y +15=0 (Nx-D(y+2)=1
(g) xy — 3x — 2y + 5=0 [Hint: Compare (f).] (h) 4’ + y* +8x +4y +4=0
(H 2 -8x—-y+11=0 (j) 25x% + 16y” — 100x — 32y — 284 =0

Ans. (a) empty graph; (b) ellipse, center at (2, —3); (c) parabola, vertex at (3, —1); (d) single point
(1, —2); (e) empty graph; ( f) hyperbola, center at (1, —2); (g) hyperbola, center at (2, 3);
(h) ellipse, center at (—1,2); (/) parabola, vertex at (2, 3); (j) ellipse, center at (2,1)

Find the focus, directrix, and length of the latus rectum of the following parabolas: (a) 10x° = 3y;
(b) 2y* =3x; (c) 4y =x"+4x+8; (d) 8y =—-x°

Ans. (a) focus at (0, ), directrix y = — &, latum rectum g ; (b) focus at (3,0), directrix x = — 3,

latus rectum 3, (c) focus at (—2.2), directrix y = 0, latus rectum 4; (d) focus at (0, —2), directrix
y =2, latus rectum 8

Find an equation for each parabola satisfying the following conditions:

(a) Focus at (0, —3), directrix y =3 (b) Focus at (6,0), directrix x =2

(¢) Focus at (1, 4), directrix y =0 (d) Vertex at (1,2) focus at (1, 4)

(e) Vertex at (3, 0), directrix x = 1

( f) Vertex at the origin, y axis as axis of symmetry, contains the point (3, 18)

(g) Vertex at (3,5), axis of symmetry parallel to the y axis, contains the point (5, 7)

(h) Axis of symmetry parallel to the x axis, contains the points (0, 1), (3,2), (1, 3)

(i) Latus rectum is the segment joining (2, 4) and (6, 4), contains the point (8, 1)

() Contains the points (1, 10) and (2, 4), axis of symmetry is vertical, vertex is on the line 4x -3y =6

Ans.  (a) 12y=—xz;(b)8(x—4)—y (c) 8(y—2)= (X'l) (d) 8(y —2) = (x - 1)

(e) 8(x —3) =" Ny= 2275 (8) 2y - 5)—(1—3) (h)Z(x—’“)‘—5(y—— ;
(NAy-9=-(x-4(j)y-2=2(x-3) or y - & =26(x -
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26. Find an equation for each ellipse satisfying the following conditions:
(a) Center at the origin, one focus at (0, 5), length of semimajor axis is 13
(b) Center at the origin, major axis on the y axis, contains the points (1,2V3) and (}. VI5)
(c) Center at (2,4), focus at (7,4), contains the point (5, 8)
(d) Center at (0, 1), one vertex at (6, 1), eccentricity }
(e) Foci at (0, = %), contains (2,1)
(f) Foci (0, =9), semiminor axis of length 12

2y 2y (x-2°  (y-4r X (y-1y
Ans. (a)m+12—6§—1,(b)?+—1—62—1,(c) G + 20 —1,(d)%+ 70 =1
9y y

IS SN Y N I

N

27. Find an equation for each hyperbola satisfying the following conditions:
(a) Center at the origin, transverse axis the x axis, contains the points (6,4) and (-3, 1)
(b) Center at the origin, one vertex at (3, 0), one asymptote is y = 3x
(c) Has asymptotes y = = V2x, contains the point (1, 2)
(d) Center at the origin, one focus at (4, 0), one vertex at (3,0)

2
X

yz
977!

xZ 2 2
ans. @3 -L=tGT -0 -F=1@

28.  Find an equation of the hyperbola consisting of all points P(x, y) such that |PF — PF'| = 2V2, where
F=(2,V2) and F' =(-V2Z, —V2).

Ans. xy=1



Chapter 6

Functions

FUNCTION OF A VARIABLE. A function is a rule that associates, with each value of a variable x
in a certain set, exactly one value of another variable y. The variable y is then called the
dependent variable, and x is called the independent variable. The set from which the values of x
can be chosen is called the domain of the function. The set of all the corresponding values of y
is called the range of the function.

EXAMPLE 1: The equation x’ — y = 10, with x the independent variable, associates one value of y with
each value of x. The function can be calculated with the formula y = x* — 10. The domain is the set of all
real numbers. The same equation, x*> — y = 10, with y taken as the independent variable, sometimes
associates two values of x with each value of y. Thus, we must distinguish two functions of y: x =10+ y
and x = —\/10 + y. The domain of both these functions is the set of all y such that y = - 10, since V10 + y
is not a real number when 10 + y <0.

If a function is denoted by a symbol f, then the expression f(b) denotes the value obtained
when f is applied to a number b in the domain of f. Often, a function is defined by giving the
formula for an arbitrary value f(x). For example, the formula f(x) = x* — 10 determines the first
functizon mentioned in Example 1. The same function also can be defined by an equation like
y=x"-10.

EXAMPLE 2: (a) If f(x) = x’ — 4x +2, then
f(1)y=(1P —4(1)+2=1-4+2=—1  f(-2)=(=2) —4(-2)+2=-8+8+2=2
flay=a’—4a+2

(b) The function f(x) = 18x — 3x? is defined for every number x; that is, without exception, 18x —3x" is a
real number whenever x is a real number. Thus, the domain of the function is the set of all real numbers.
(c) The area A of a certain rectangle, one of whose sides has length x, is given by A = 18x — 3x°. Here,
both x and A must be positive. By completing the square, we obtain A = —3(x —3)* +27. In order to
have A >0, we must have 3(x — 3)> <27, which limits x to values below 6; hence, 0 < x < 6. Thus, the
function determining A has the open interval (0, 6) as domain. From Fig. 6-1, we see that the range of the
function is the interval (0, 27].

Notice that the function of part (c) here is given by the same formula as the function of part (b). but
the domain of the former is a proper subset of the domain of the latter.

A
uk
-
0] 3 6 o
Fig. 6-1

52
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THE GRAPH of a function f is the graph of the equation y = f(x).

EXAMPLE 3: (a) Consider the function f(x) = |x|. Its graph is the graph of the equation y = |x|, shown
in Fig. 6-2. Notice that f(x) = x when x = 0, whereas f(x) = —x when x 0. The domain of f consists of all
real numbers, but the range is the set of all nonnegative real numbers.

(b) The formula g(x) = 2x + 3 defines a function g. The graph of this function is the graph of the equation
y = 2x + 3, which is the straight line with slope 2 and y intercept 3. The set of all real numbers is both the
domain and range of g.

A function is said to be defined on a set B if it is defined for every point of that set.

V4

Fig. 6-2

Solved Problems

. -1
1. Given f(x) = T, + h).
0~ 1 -1~ 2
@ f0)= 575 =3 b) f-1)= 5t =3 @ floa)- 5
1 x-x x+h-1 x+h-1
@ f(”)_l/2+2 1420 @ SOt B = T h 2 ok i 42
2. If f(x) =2, show that (a) f(x +3) — f(x — 1) = % f(x) and () ;Ex 0 = f(4).
_ Axt3 x-1 _ Axsa3 1y _ 15 f(x+3) 2”‘
(@ fx+3)-flx-1)=2""-2""=2%(2"-3)= 7 fln) (b) e =f(4)
3. Determine the domains of the functions
(a) y=Vd-x% (b) y=Vx’-16; (c)y=~——x12;
—_ 1 . — x
@ y= =g @ y==.

(a) Since y must be real, 4 — x> =0, or x> =4. The domain is the interval —2 = x < 2.
(b) Here, x* —16=0, or x* = 16. The domain consists of the intervals x < —4 and x = 4.
(c) The function is defined for every value of x except 2.

(d) The function is defined for x # *3.

(e) Since x> + 40 for all x, the domain is the set of all real numbers.
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Sketch the graph of the function defined as follows:

f(x)=5when0<x=1 f(x)=10 when 1<x=2
fix)=15when2<x=3 f(x)=20when3<x=4  etc.

Determine the domain and range of the function.

The graph is shown in Fig. 6-3. The domain is the set of all positive real numbers, and the range is
the set of integers, 5, 10, 15, 20, . ...

y
25+ O— = —
2 [0 e —
15 [ e —
10 |- O
s———

1 1 1 x

o 1 2 3 4 5

Fig. 6-3

A rectangular plot requires 2000 ft of fencing to enclose it. If one of its dimensions is x (in

feet), express its area y (in square feet) as a function of x, and determine the domain of the
function.

Since one dimension is x, the other is § (2000 — 2x) = 1000 — x. The area is then y = x(1000 — x), and
the domain of this function is 0 < x < 1000.

Express the length [ of a chord of a circle of radius 8 in as a function of its distance x (in
inches) from the center of the circle. Determine the domain of the function.

From Fig. 6-4 we see that 4/ = V64 — x°, so that / = 2V 64 — x° The domain is the interval 0 < x <8,

/I
/

From each corner of a square of tin, 12 in on a side, small squares of side x (in inches) are
removed, and the edges are turned up to form an open box (Fig. 6-5). Express the volume V
of the box (in cubic inches) as a function of x, and determine the domain of the function.

Fig. 6-4

The box has a square base of side 12 —2x and a height of x. The volume of the box is then
V= x(12 — 2x)* = 4x(6 — x)°. The domain is the interval 0 < x <6.

As x increases over its domain, V increases for a time and then decreases thereafter. Thus, among
such boxes that may be constructed, there is one of greatest volume, say M. To determine M, it is
necessary to locate the precise value of x at which V ceases to increase. This problem will be studied in a
later chapter.
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8.

10.

and interpret the result.

at+h)—fla
If f(x) = x>+ 2x, find f(——%—f(—)
fla+h)y—fla) [(a+h)’ +2(a+ h)]—(a’ +2a)
h - h
On the graph of the function (Fig. 6-6), locate points P and Q whose respective abscissas are a and
a + h. The ordinate of P is f(a), and that of Q is f(a + h). Then

f(a + h) — f(a) _ difference of ordinates
h " difference of abscissas

=2a+2+h

= slope of PQ

Q(a+h,f(a+h))4

A f(a+h) - f(a)
z
Pla, !(G))(/

h

Fig. 6-6

Let f(x) = x> = 2x + 3. Evaluate (a) f(3); (b) f(=3); (¢) f(=x); (d) fix +2); (e) flx —2);
(f) flx + h); (8) flx + h) = flx); “"W-

(a) f(3)=3"-2(3)+3=9-6+3=6 by (-3)=(-3~-2(-3)+3=9+6+3=18

(©) fl=x)=(-x)-2(-x)+3=x’+2x +3

(d) fx+2)=(x+2) -2(x+2)+3=x"+dx+4-2x-4+3=x"+2x+3

(6) fx=)=(x -2V -2x-2)+3=x"-4x+4-2x+4+3=x"-6x+ 11
(f)fx+h)=(x+h)Y —2x+h)+3=x"+2hx + K> —2x - 2h+3 =2+ (2h - 2)x + (W’ —2h + 3)
(&) flx+h)—f) =[x+ (2h—-Dx+ (B’ -2k +3)] - (x> —2x+3)=2hx + K = 2h=h(2x + h - 2)

) f(x+hh)—f(x) _ h(2x+hh~2) ot h—2

Draw the graph of the function f(x) = V4 — x? and find the domain and range of the function.

:I'he graph of f is the graph of the equation y = V4 — x”. For points on this graph, y’ =4 — x?; that
is, x* + y* = 4. The graph of the last equation is the circle with center at the origin and radius 2. Since
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Fig. 6-7

y=V4—x*=0, the desired graph is the upper half of that circle. Figure 6-7 shows that the domain is
the interval —2 < x <2, and the range is the interval 0=y <2.

Supplementary Problems

If fix)=x>—4x+6, find (a) £(0); (b) f(3); () f(~2). Show that f(!)=f(1) and f(2- h)=
f(2+h).  Ans. (a) —6; (b) 3; (c) 18

If flx )— ——, find (a) f(0); (b) f(1); (c) f(—2). Show that f( )=—f(x) and f(—%):~]7é—).

Ans. (a) - l, b)0;(c)3

If f(x) = x" — x, show that f(x + 1) = f(—x).

If f(x) = 1/x, show that f(a) — f(b) = f( ab )
If y = f(x) = +3 . show that x = f( y).

Determine the domain of each of the following functions:

(@) y=x"+4 (b) y=Vx’ +4 () y=Vx -4 @) y=
x ! X1 e
@y=Gern Ve BrTEn Wy y=N3-%
Ans.  (a), (b), (g) all values of x; (¢) |x|=2; (d) x=-3; () x# -1, 2, (f) -3<x <3,
(h) 0= x<2

Compute u,:—@ in the following cases: (a) f(x) = % when a#2 and a+ h+#2; (b) f(x) =

Vi~4d when a=4 and a+ h=4; (¢) f(x) = —x—whena#-ldnda+h#—1

-1 1 1
@ e Ovearr—arva e Q@rnarrs

Ans.

Draw the graphs of the following functions, and find their domains and ranges:

(@ f(x)= -2 +1 b) fy={3 7" HYsrs!

(¢) f(x)=[x] = the greatest integer less than or equal to x
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19.

21.

x4

d) fx)= T3 (&) fx)=5-x* (f) f(x)=—-4vx
(8) flx)=|x-3| (h) fx)=4/x =0 (i) flx)y=|x|/x
) _ _[x ifx=
() f)=x = Ix] ) fm =3 Hx=0
Ans. (a) domain, all numbers; range, y <1 (b) domain, x >0; range, —1<y<0 or y=2
(¢) domain, all numbers; range, all integers (d) domain, x # 2; range, y # 4
(e) domain, all numbers; range, y <5 (f) domain, x = 0; range, y <0
(g) domain, all numbers; range, y=0 (h) domain, x #0; range, y #0
(/) domain, x #0; range, {—1,1} (j) domain, all numbers; range, y =0

(k) domain, all numbers; range, y =0
+ —
Evaluate the expression W’Q for the following functions f: (a) f(x) = 3x — x°; (b) f(x) = V2x;
(¢) f(x)=3x-5; (d) f(x)=x>-2.
2
Ans. 3-2x—h; (b)) —=————;(c) 3; (d) 3x> +3xh + h*
ns. (a) x —h; (b) 2(H,I)Jr\/ﬂ,(c),()3x xh + h

Find a formula for the function f whose graph consists of all points (x, y) satisfying each of the following

equations (in plain language, solve each equation for y): (a) x’y +4x —2=0; (b) x = > i;
(c) 4x* —4xy + y* =0,

2-4x 2(x -1
ans. (@) f) =255 ) f = 20D () fo =2

X

(a) Prove the vertical-line test: A set of points in the xy plane is the graph of a function if and only if the
set intersects every vertical line in at most one point. () Determine whether each set of points in Fig.
6-8 is the graph of a function.

Ans. only (b) is a function

1]
g

)

(a)

(5)

(c) (d)

Fig. 6-8
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Limits

AN INFINITE SEQUENCE is a function whose domain is the set of positive integers. For example,

L . . 1
when n is given in turn the values 1, 2, 3, 4, ..., the function defined by the formula 1
n
yields the sequence §, i, %, §,.... The sequence is called an infinite sequence to indicate that
there is no last term.
By the general or nth term of an infinite sequence we mean a formula s, for the value of the
function determining the sequence. The infinite sequence itself is often denoted by enclosing

the general term in braces, as in {s_}, or by displaying the first few terms of the sequence. For

example, the general term s, of the sequence in the preceding paragraph is Pt and that

+1

I 1
}Orby§,§,4,§,....

sequence can be denoted by {n 1

LIMIT OF A SEQUENCE. If the terms of a sequence {s,} approach a fixed number ¢ as n gets
larger and larger, we say that ¢ is the flimir of the sequence, and we write either s — c or

lim s, =c.
""" As an example, consider the sequence
3579 1
15345 2—;,... (7.1)

some of whose terms are plotted on the coordinate system in Fig. 7-1. As n increases,
consecutive points cluster toward the point 2 in such a way that the distance of the points from

2 eventually becomes less than any positive number that might have been preassigned as a
measure of closeness, however small For example, the point 2 — @5 = 23 and all subsequent

points are at a distance less than g from 2, the point 01 and all subsequent points are at a

1 1
distance less than ;mome from 2, and so on. Hence, {2 - ;}—92 or lim (2 - ;) =2.

n—s+x

44 4 e

+

t -
0 1 372 5/3 2

Fig. 7-1

The sequence (7.1) does not contain its limit 2 as a term. On the other hand, the sequence
Iy, 1,3. 1,4, 1,... has 1 as limit, and every odd-numbered term is 1. Thus, a sequence
having a limit may or may not contain that limit as a term.

Many sequences do not have a limit. For example, the sequence {(—1)"}, that is, —1, 1,
-1. 1. =1, 1,..., keeps alternating between —1 and 1 and does not get closer and closer to
any fixed number.

LIMIT OF A FUNCTION. If fis a function, then we say that llm flx)=Aif the value off(x) gets
arbitrarily close to A as x gets closer and closer to a. For 1 example hm x* =9, since x” gets
arbitrarily close to 9 as x approaches as close as one wishes to 3. =

The definition can be stated more precisely as follows: lim f(x) = A if and only if, for any

chosen positive number €, however small, there exists a positive number & such that, whenever
0<|x —al <8, then | f(x) — A|<e.

58
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The gist of the definition is illustrated in Fig. 7-2: After £ has been chosen [that is, after
interval (ii) has been chosen], then & can be found [that is, interval (i) can be determined] so
that, whenever x # a is on interval (i), say at x,, then f(x) is on interval (ii), at f(x,). Notice the
important fact that whether or not llm f(x) = A is true does not depend upon the value of f(x)
when x = a. In fact, f(x) need not ‘even be defined when x = a.

Xg flx,)
—0- O4———-O0————» x —O— ——t —O0—f(x)
a—6 a ats A-€ A A+e
(i) Fig. 7-2 (i)
x*-4 x*-4 x’—4

EXAMPLE 1: lim = 2 =4, although — is not defined when x=2. Since =7 =
(x=2)x+2) "7 Xt -
——3 - x +2, we see that T2 approaches 4 as x approaches 2.

EXAMPLE 2: Let us use the precise definition to show that hm2 (x* + 3x) = 10. Let € >0 be chosen. We
must produce a & >0 such that, whenever 0< |x —2| < & then |(x + 3x) — 10| < €. First we note that

[(x® +3x) - 10| = |(x — 2)* + T(x — 2|

Also, if 0< & =<1, then 8 <5. Hence, if we take & to be the minimum of 1 and e/8, then. whenever
0<|x—2|<8,
(x> +3x)— 10| < 8°+76<8+76=88<¢

The definition of lim f(x) = A given above is equivalent to the following definition in terms of
infinite sequences hm f(x)= A if and only if, for any sequence {s,} such that hm s, =a,

n—+

hm fis.)=A.In ‘other words, no matter what sequence {s,} we may consider such that s,
approaches a, the corresponding sequence { f(s_ )} must approach A.

RIGHT AND LEFT LIMITS. By lim f(x) = A we mean that f(x) approaches A as x approaches a
through values less than a4, that is, as x approaches a from the left. Similarly, lim f(x) =

means that f(x) approaches A as x approaches a through values greater than a, that is, as x
approaches a from the right. The statement lim f(x) = A is equivalent to the conjunction of the

two statements llm f(x)= A and lim f(x) A The existence of the limit from the left does

not imply the exrstence of the limit from the right, and conversely.
When a function f is defined on only one side of a point a, then h_rg f(x) is identical with

the one-sided limit, if it exists. For example, if f(x) = VX, then fis defined only to the right of
zero. Hence, hm vx = lim vx =0. Of course, hm Vv x does not exist, since Vx is not defined

x—0"

when x <0. On the other hand, consider the functlon g(x) = V1/x, which is defined only for
x>0. In this case, lim V1/x does not exist and, therefore, hm V1/x does not exist.

x—0*

EXAMPLE 3: The function f(x) = V9 — x* has the interval —=3 < X =3 as its domain of deﬁnilion. Ifais
any number on the open interval —3 <x <3, then llm V9 - x? exlsts and is equal to V9~ a". Now
consider a = 3. First, let x approach 3 from the left; then l|m V9 — x* =0. Next, let x approach 3 from
the right; then lim V9 — x° does not exist, since for x>3 V9 —x is not a real number. Thus,

—3*
lrm\/ —x—hm\/ 9-x’=0.
Slmrlarly, hm V9 — x? exists and is equal to 0, but Ilim V9- x° does not exist. Thus,

lim \/9—-_—1‘_’ ’ o

x—-3
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THEOREMS ON LIMITS. The following theorems on limits are listed for future reference.
Theorem 7.1: If f(x) = ¢, a constant, then ‘!151 fx)=c.
If lim flx)= A and lim g(x) = B, then:
Theorem 7.2: lim kf(x) = kA, k being any constant.
Theorem 7.3: lim [f(x) * g(x)] = lim f(x) * lim g(x) = A *+ B.
Theorem 7.4: lim [f(x)g(x)] = lim f(x) lim g(x) = AB.

f _ Jm )

= —, provided B #0.

Theorem 7.5: lim "~ = limg(x) B

Theorem 7.6: lim{/f(x) =V/lim f(x) =V'A, provided V'4 is a real number.

INFINITY. We say that a sequence {s,} approaches +=, and we write 5, —> +x>or lim s, = +x,

n—+=

if the values s eventually become and thereafter remain greater than any preassigned positive
number, however large. For example, lim vi=+x and lim n’= +=.

n— -+ n—»-f—m
We say that a sequence {s,} approaches —«, and we write s, — —x< or lim s, = —x, if
n—+x
the values s, eventually become and thereafter remain less than any prea551gned negative
number, however small. For example, llm —n=—% and Ilm (10— n*)= -

The corresponding notions for functions are the followmg

We say that f(x) approaches +o as x approaches a, and we write lim f(x) = +=, if, as x
approaches its limit a (without assuming the value a), f(x) eventually becomes and thereafter
remains greater than any preassigned positive number, however large. This can be given the
following more precise definition: l1m f(x) =+ if and only if, for any positive number M,
there exists a positive number 8 such that whenever 0 < |x — a| < §, then f(x)> M.

We say that f(x) approaches —x as x approaches a, and we write 11m fx)=—=if, as x
approaches its limit @ (without assuming the value a), f(x) eventually becomes and thereafter
remains less than any preassigned negatlve number. By hm f(x) =~ we mean that, as x
approaches its limit a (without assuming the value a), | f(x)| eventually becomes and thereafter
remains larger than any preassigned number. Thus, lim f(x) = = if and only if lim [ f(x)] = +ce.

1 B 1
EXAMPLE 4: (a) Jl(lil:l) 2o + o0 (b) EILT} G 1) 0 (©) !lﬂ Pl

These ideas can be extended to one-sided (left and right) limits in the obvious way.

1
EXAMPLE 5: (a) lim - =+, since, as x approaches 0 from the right (that is, through positive
x—0*

numbers) - is positive and eventually becomes larger than any preassinged number.

. 1. .
() lim 1 = —=, since, as x approaches 0 from the left (that is, through negative numbers), L negative
x—0
and eventually becomes smaller than any preassigned number.

The limit concepts already introduced also can be extended in an obvious way to the case in
which the variable approaches +x or —x. For example, ,l_i.r{lw f(x)= A means that f(x)
approaches A as x — +; or, in more precise terms, given any positive €, there exists a number
N such that, whenever x> N, |f(x) — A| <e.

Similar definitions can be given for the statements lim_f(x) = A, l_i.l')l;lz flx) = +oo,
Jim_f(x)= =%, lim fx)=- and lim_f(x)=+=. )
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EXAMPLE 6: lim L 0 and lim (2+ —13) =2.

x—+x X x—4+x X

Caution: When lim f(x) =+ and llm g(x) =z, Theorems 3.3 to 3.5 do not make

1 1 1/x°
sense and cannot be used. For example, hm =+ and lim — = +=; however, ]111(1] e =
x—0 x x— X
lim x* = 0.
x—0
Solved Problems
1. Write the first five terms of each of the following sequences.
1 } _. 1 _ 1 1 _ 1 3 _ 1 5
(a) {1 1n : 7Set s, =1 3’ then s, =1 71° 3 s;=1 72 3 STl 3356 8=
1-5 =g ands,= . The required terms are §, 3. 2, §, &.

I 1 1 , 11
() {(—1) '3n_1}: Heresl=(—1)23.1_1=§'52=(_1)‘3.2_l_qg.

1 1
= 1 =1 : 1 _ 11 L
s;=(—1) 3.3_1=g,s4——ﬁ,s5—~ﬁ."['hcrequuedtermsarez, S+ 8. T ITs 14

Gl

(c) {linnz}: The terms are 1, %, 2, &,

_ n+1 n } __L - - - _-
(d){( D W D(nr2y ) The tems are 5 3. 3 4 £5° 5667

(&) {3[(—1)" +1]}: The terms are 0, 1, 0, 1, 0.

2 Write the general term of each of the following sequences.

(@) 1,4, 4,3, 4,...: The terms are the reciprocals of the odd positive integers. The general term is
2n — 1

(b) 1, —4.3, =%, 4,...: Apart from sign, these are the reciprocals of the positive integers. The general

1
: _ n+1 _ _ n—1 _

term is (—1) nor( 1) e

(¢) 1,4,3%, %, %,...: The terms are the reciprocals of the squares of the positive integers. The general
term is 1/n°

1-3 1-3-5 1-3-5-7 ) . 135 (2n—-1)

(d) 2'7 47462468 - The general term is 24.6---(2n)

(e) 1, -3, %, —%,...: Apart from sign, the numerators are the squares of positive integers andzthe
denominators are the cubes of these integers increased by 1. The general term is (— ! ﬁ

3. Determine the limit of each of the following sequences.

(@) 1,3,5.4,%,...: The general term is 1/n. As n takes on the values 1, 2, 3, 4,... in tumn, 1l/n
decreases but remains positive. The limit is 0.

(b) 1, } i 5, 1. %,...: The general term is (l/n)z; the limit is 0.

(c) 2,3,%, 4, '_?4, ...: The general term is 3 — 1/n; the limit is 3.

(d) 5 4 u-z '{ : The general term is 3 + 2/n; the limit is 3.

11

(¢) 3.34.%, 15, 32,...: The general term is 1/2"; the limit is 0.
(£)0.9, 0.99, 0.999, 0 9999, 0.99999, . . .: The general term is 1 — 1/10"; the limit is 1.
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Evaluate the limit in each of the following.
(a) Iim5x=5|in;x=5°2=10 (b) limz(2x+3)=2limx+ Iin;3=2-2+3=7
x—2 x— x—
-7 lim(x-2)

= x—3

-3 x+2 lm;(x+2) =5

©) lin}(x2—4x+1)=4—8+1=—3 (d) lim

x*-4 4-4
1 x’+4 4+4
Note: Do not assume from these problems that ’l‘l_r‘r’)‘ f(x) is invariably f(a).

() lim 0 (f)anI\/és—x2=\/liﬂ(zs—xz)=\/§=3

x?=-25
(8) :l—lor?s x+5 =xl—l-n—‘s(x—5)=_10

Examine the behavior of f(x) =(—1)" as x ranges over the sequences (a) }, £, %, 5,... and

(b)%,%,3,%,.... (c) What can be said concerning lim (- 1)* and £(0)?

(a) (—1)"— —1 over the sequence },%,4%,5,....
(b) (—1)"— +1 over the sequence §, ,3,3,....
(c) Since (—1)* approaches different limits over the two sequences, ling (—=1)" does not exist;

f0)=(-1)°=+1.

i~
D Ol

Evaluate the limit in each of the following.

) i x=4 . x—4 R
@ lim o =M e e My

The division by x — 4 before passing to the limit is valid since x # 4 as x—4; hence, x — 4 is

never zero.

ox =27 (x=3)(x"+3x+9) x2+3x+9_2
() lim =g =M G+ 3y M T3 T3

xRy - A2 R - 2hxt R N
(c) fim h = him h =lm = Nim (2x + h) = 2x

Here, and again in Problems 8 and 9, 4 is a variable so that it could be argued that we are in reality
dealing with functions of two variables. However, the fact that x is a variable plays no role in these
problems; we may then for the moment consider x to be a constant, that is, some one of the values of its
range. The gist of the problem, as we shall see in Chapter 9, is that if x is any value, say x = x,, in the

(x +h)2 -x°

is always twice the selected value of x.
. (4-xH)3+Vxi+5) (4 B+ V+5)
(d) h = lim =
=23 v 75 "2 (3-Vr+5B+Vr+s) g 4-x°
=lirr%(3+ Vx*+5)=6

2

x+x-2  (x-Dx+2)
=1 = lim

-1 S -1y it x—l

domain of y = x°, then lim

=o; no limit exists.

(e) liml

In the following, interpret 11m as an abbreviation for hm or llm Evaluate the limit by
first dividing numerator and denominator by the hlghest power of x present and then using

lim - =
x—x X

i 357 3-2/x _3-0_1
(@ lim o =My 5 =950~ 3



CHAP. 7] LIMITS 63

10.

11.

b tim 6x2+2x+1_I,m6+2/x+1/x2_6+0+0=1
( A 6T —3x+4 e 6—3/x+4/x’ 6-0+0
x*+x-2 Ux+1/x*=2/x" 0
1 = i =—=0
@M s T e 2

3
(d) lim —22—1—-:lim ——2—=—00; no limit exists

== x> 41 == 1/x+1/x°

lim —————— = +%; no limit exists
== 1/x+1/x°

Given f(x) = x* — 3x, find ll_r.r(l) f(_xj_hz_—_f(_xl

Since f(x) = x> — 3x, we have f(x + A)=(x+ h)* —3(x + k) and
_ 2 2 _ _ _ 2 _ 2 _
lim fix+h)-fx) _ lim (" +2hx + A" —3x —3h) - (x" - 3x) _ lim 2hx + h* - 3h

A0 h—0 h A0 h

=lim (2x+h—3)=2x -3
h—0

fix + k) - f(x)
h

Given f(x) = V5x + 1, find 'l'irr(l)

when x> — =

f(x+h) f(x) - lim Vix +5h+1-V5x +1

h—-o h—0 h
- lim V5x+5h+1-V5x+1 Vix +5h+ 1+ V5x + 1
A0 h V5x+5h+1+V5x+1

i XA ShED) = (Sx+1)
h~0h(\/5x+5h+1+\/5x+1)

b 5 5
P V3xi5htl+Vox+1l 2Vox 1

In each of the following, determme the points x = a for which each denominator is zero. Then
examine y as x—~>a_ and x—a”.

(a) y=f(x)=2/x: The denominator is zero when x =0. As x—>07, y— ~x; as x> 0", y— + o,

®) ¥ =10~ 33563

x> =37yt Asx—=27, y> —m as x—>2", yo +,

the denominator is zero for x= -3 and x=2. Asx—-3", y—> —; as

x—3
(¢ y=f(x)= (_X+—2)(X_—) The denominator is zero forx=—-2andx=1. Asx— —27, y— —»; as

x> -2 yo+w Asx—>1, yo>+x asx—>1", y > o,

+2
(d) y=flx)= % The denominator is zero for x=3. As x—37, y— +o; as x—3",
y— +o,
(x+2)(1 x) - , - ’
(€) y=f(x)= "——">—": The denominator is zero for x=3. As x—37, y— +x; as x—3",
y— =
1 142~
Exami im — 7z im -
xamine (a) 1@3 31207 and (b) 1‘_’.’}) 342U

(@) Let x—07; then 1/x— —, 2°* (), and xI_l‘m 3+12,,x = %

Let x—0"; then 1/x— +%, 2'"* > 4+, and lim —— =
x—0* 3+2

1
Thus lim ——— ;7 does not exist.

x—0 3+ 1/x
(b) Let x—0 Hien 2 2" 0 and lim 1+2 - 1

342 3
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13.

14.

15.
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1+21/x 2-1/x+1 . . i . 2A11x+1
Let x—0". For x #0, 3577 - 3.7 1 and since ,l_l’lon 271 =0, Xlir(t’l R 1.
Thus, lim ——= s does not exist.

For each of the functions of Problem 10, examine y as x — —= and as x — +x,
(a) When |x| is large, |y| is small.

For x = —1000, y<0; as x— —=, y—0". For x = +1000, y>0; as x —» +x, y—0",
(b), (c) Same as (a).
(d) When |x| is large, | y| is approximately 1.

For x = —1000, y<1l;as x— —%, y— 1. For x=+1000, y>1; as x = +x, y— 1",
(¢) When |x| is large, |y| is large.

For x = - 1000, y >0; as x— —«, y— +x. For x = +1000, y <0; as x — +x, y— —x.

Examine the function of Problem 4 in Chapter 6 as x—a~ and as x—a' when a is any
positive integer.

Consider, as a typical case, a =2. As x—27, f(x)— 10. As x—2", f(x)— 15. Thus, hm f(x) does
not exist. In general, the limit fails to exist for all positive integers. (Note, however, that hm flx)=
lim f(x) =5, since f(x) is not defined for x =0.)

r—0 "
Use the precxse definition to show that (a) hm (4x* +3x* —24x +22) =5 and
(b) hm (-2x’ +9x +4)=

{a) Let € be chosen. For 0<|x — 1| <A <1,
[(4x* + 3x% = 24x +22) — 5| = [4(x — 1)° + 15x" — 36x + 21| = [4(x — 1)* + 15(x — 1)* = 6(x — 1)|
=d4lx— 1"+ 15lx - 1> + 6[x — 1]
<4A+15A+6A=25A
Now [(4x" + 3x° — 24x +22) — 5| < € for A < €/25; hence, any positive number smaller than both 1
and €/25 is an effective 8, and the limit is established.
(b) Let € be chosen. For 0<|x + 1]< A <1,
[(=2x° +9x + 4) + 3] =|—2(x + 1)* + 6(x + 1)* + 3(x + 1)
=2lx+ 1 +6lx+ 17 +3x + 1< 11A

Any positive number smaller than both 1 and €/11 is an effective §, and the limit is established.

Given 11_1’1‘1‘ flx)= A and ll_l;!{]l g(x) = B, prove:

@ lim [f) + )= A*B  (5) lim fg()=AB (o) lim LD -

e g(x) B
Since lim f(x) = A and lim g(x) = B, it follows by the precise definition that for numbers €, >0 and
€, >0, however small, there exist numbers §, >0 and 8, > 0 such that:
Whenever 0 <|x —a| < §8,, then |f(x) — A|<e¢, 1)
Whenever 0 < |x — a| < §,, then |g(x) — Bl <, (2)

B#0

Let A denote the smaller of 8§, and 8,; now
Whenever 0 < |x — a| <A, then | f(x) — A| <e¢, and |g(x} — B| <, (3)
(a) Let € be chosen. We are required to produce a & > ( such that
Whenever 0< |x — a| < 8, then |[f(x) + g(x)] - (A + B)| <€

Now |[f(x) + g(x)] — (A + B)| =|[f(x) — A] + [g(x) - B]| =|f(x) — A| +|g(x) - B|. By (3),
| fix) — A| < €, whenever 0 < |x — a] < A and | g(x) — A] < ¢, whenever 0 < |x — a| < A, where A is the
smaller of 8, and §,. Thus,
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[[f(x)+ g(x)] — (A + B)| <e¢ + ¢, whenever 0<|x —a|< A
Take €, = €, = 1€ and 8 = A for this choice of €, and ¢,; then, as required,

|[f(x)+g(x)]—(A+B)|<%e+%e=ewhenever0<|x—a|<6

(b) Let € be chosen. We are required to produce a 8 >0 such that

(o)

Whenever 0< |x — a| < § then |f(x)g(x) - AB|<e

Now | f(x)g(x) — AB| = |[f(x) — Allg(x) — B] + B[ f(x) — A] + A[g(x) - B]|
=|f(x) - Al g(x) — B| + |B|| f(x) - A| + | Al|g(x) - B|

so that, by (3), | fx)g(x) - AB|<e €+ |B|el +|Ale, whenever 0<|x — a| < A. Take ¢, and &,

1 1
such that €€, < 36 €< 3 |B| and ¢, < are simultaneously satisfied and let § = A for this
choice of ¢, and ¢,. Then, as required,

3 IAI

| fix)g(x) — AB| < § + § + § =€ whenever 0<|x —a|<$§
fx) _ . 11
Since —=% ( ) = f(x) —— ( )’ the theorem follows from () provided we can show that ll_l"n @ =35 for
B#
Let € be chosen. We are required to produce a § >0 such that
1
Whenever 0< [x —a|<é then | — - —
Now 11 =‘B—g(x) =|g(x)——B|=|g(x)—B| 1
glx) B Bg(x) |Bl| g(x)l Bl |g(x)l
By (2),

| g(x) — B| < €, whenever 0<|x — a| < §,

However, we are also dealing with 1/g(x), so we must be sure 8, is sufficiently small that the
interval a — 8, < x < a + 8, does not contain a root of g(x) =0. Let §, < §, meet this requirement so
that [g(x) — B| <e, and |g(x)] >0 whenever 0 < |x — a| = 5,. Now |g(x)| >0 on the interval implies

lg(x)|>b>0 and —— on the interval for some b. Thus, we have

I()I

1 1 & 1
—_— - = whenever 0 <|x — a| <38,
@ T8l b b = al

Take €, < eb|B|, so that —— < € and 8 = §, for this choice of ¢,. Then, as required,

IBIb
‘E(x—)—%'<ewhcnever0<|x—a|<8
16 Prove (a) hm LN o; (b) lim —x—-—l (¢) lim x = +o
) x—2 (Jr—2)3 = X + x—~+e x — 1 )

(a)

(b)

()

Let M be any negative number. Choose 8 positive and equal to the minimum of 1 and |17| Assume
x<2 and 0<|x—-2|<8. Then |x- 2|3<8 <8$M Hence, ﬁ>|M|=—M. But

1 x=
(x — 2)’ < 0. Therefore, = <M.

-2 x —2|3
Let € be any positive number, and let M = 1/e. Assume x > M. Then
x \ |1 l 1 1 <1
x+1 T+l x+1 Txom €

2
Let M >1 be any positive number. Assume x > M. Then xx_

2£=X>M.
1 x
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Supplementary Problems

Write the first five terms of each sequence:

@ {1+1] O i) @ ere-nd @
o=} o] @ {2} ) {2}

Ans. (@)2,3,4,3.5, ()54, 5.h.%:(c)a,a+d,a+2d,a+3d,a+4d;(d)a, —ar, ar’,
(e)1/\/7,2/\/3,3/m,4/\/ﬁ,5/\/2_6;(f) V2, V3, 4,5, 1 Ve, (g) 1, -}, 8, -5, &
A 2 2 20 727 728
()3 3.5"3.5"37.52"3.52

Determine the general term of each sequence:

(a) 1/2,2/3, 3/4, 4/5, 5/6, ... (b) 1/2, —1/6, 1/12, —1/20, 1/30, . ..
(c) 1/2, 1/12, 1/30, 1/56, 1/90, . .. (d) 1/5° 3/5°, 5/57, 7/5°, 9/5", . ..
(e) 172!, —1/4! 1/6t, —1/8!, 1/101, . ..

T 1 ) 2n - o1
Ans. (a) n+ l > (b) ( 1) n2 +n ’ (C) (2’1 —- 1)2” ’ (d) 2n4l ; (e) ( 1) (2 )|
Evaluate: R
. 2 _ . 3 2 _ ( -1y
(a) ,lang (x* - 4x) (b) ,llr[ll (x" +2x"-3x—4) (0) )l‘l_’] w1y
3x _ x _1 2_4
(d) lim == 1 (f)[l_.zx——*_sjc+6
x*+3x+2 .o x=2 o e x—2
(g) lim T rar 3 (k) lim -4 (@) lim o
V -2  x+R) -2 x—1
(j) tim —— (k) lim S —% ) lim
Ans. (a) —4; (b) 0; () §: (d) 0; (&) 5: (f) —4; (g) §; (h) &5 (§) 0; (j) =, no limit; (k) 3x*; (/) 2
Evaluate:
. 2x+3 2 +1 . X +5x+6
(@) fim 4x -5 ) Jim 6+ x-3x* © 1—9}‘ X+ 5 (d) fim x+1
. x+3 -3 3 -3
© T sre N fim 33= () lim, 3753

Ans. (a) 1; (b) =3 (c) 0; (d) =, no limit; (e) 0; (f) 1; (g) —1

Find ,I'm(ll f(_a+_h’3_—M for the functions f in Problems 11, 12, 13, 15, 16(a), (b), (d), and (g), and
18(b). (c), (g), and (i) of Chapter 6.

2 27 a
Ans. 11. 2a-4; 12 (—rl?, 13. 2a-1;15. —-(47_5—)2, 16. (a) 2a, (b) ﬁ,
(d) (033) (8 1)2, 18. (a) —2a, (b) 1, () no limit, (g) —1, (i) no limit

ax" +tax" '+ +a,

What is ,h_'.Tl box™ + b,x"_' +oo+ b,
(@m>n, (b)) m=n; (c) m<n?  Ans. (a) no limit; (b) a,/b,; (c) 0

, where a,b,#0 and m and n are positive integers, when
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27.

29.

31

32.

Investigate the behavior of f(x) = |x| as x— 0. Draw a graph. (Hinr: Examine lirg_ f(x) and lim f(x).)
x—* x—0"
Ans.  lim [x|=0

Investigate the behavior of {}K; - i +1 iSO as x— 0. Draw a graph.

Ans. Iirr()) f(x) does not exist.

(a) Use Theorem 7.4 and mathematical induction to prove lim x" = a”, for n a positive integer.
(b) Use Theorem 7.3 and mathematical induction to prove

lim [£,(5) + £,00) + -+ + £,0] = lim £,(x) + im £,(x) + -+~ + lim £,(x)

Use Theorem 7.2 and the results of Problem 25 to prove ll_rﬂ P(x) = P(a), where P(x) is any polynomial
in x.

For f(x) =5x — 6, find a & >0 such that whenever 0 < |x — 4| <§, then | f(x) — 14| <€, when (a) € =}
and (b) € = 0.001. Ans. (a) 15; (b) 0.0002

Use the precise definition to prove () lim 5x = 15; (b) lim ¥ =4; (c) lim (X’ -3x+5)=3.

Use the precise definition to prove

=

2w (c) lim =~ =1 (d) lim

.1 .
(@) ll—?});_x (b)ll-rgx—l P = x + 1

Prove: If f(x) is defined for all x near x = a and has a limit as x — a, that limit is unique. (Hint; Assume
lim f(x)= A, lim f(x) = B, and B # A. Choose ¢,, €, < | A — B|. Determine 8, and &, for the two limits
and take & the smaller of 8, and §,. Show that then |A — B|=|[A — f(x)] +[f(x) - B]|<|A- B|. a
contradiction.)

Let f(x), g(x), and A(x) be such that (1) f(x)= g(x) = h(x) for all values of x near x = a and (2)
ll_rpn flx)= 11_1_11 h(x) = A. Show that ll_l:l’; g(x)= A. (Hint: For a given € >0, however small, there exists a

8 >0 such that whenever 0 <|x — a| < & then | f(x) — A|<eand |A(x) -~ A|<eor A —e<f(x)=<g(x) =
h(x)< A+e)

Prove: If f(x)<M for all x and if 11‘1_131 f(x)= A, then A=<M. (Hint: Suppose A> M. Choose
€ = 3(A — M) and obtain a contradiction.)



Chapter 8

Continuity

A FUNCTION f(x) IS CONTINUOUS at x = x,, if
f(x;) is defined lim f(x) exists lim f(x) = f(x,)
X"’Xo I—’IO

For example, f(x) = x* + 1 is continuous at x =2 since Iin; f(x) =5=f(2). The first condition
above implies that a function can be continuous only “at points of its domain. Thus, f(x) =
4 — x* is not continuous at x =3 because f(3) is imaginary, i.e., is not defined.

A function f(x) is called continuous if it is continuous at every point of its domain. Thus,
f(x)=x"+1 and all other polynomials in x are continuous functions; other examples are ¢,
sin x, and cos x.

A function fis said to be continuous on a closed interval |a, b] if the function that restricts f
to [a, b] is continuous at each point of [a, b]; in other words, we ignore what happens to the
left of @ and to the right of b. Consider, for example, the function f such that f(x) = x for
0=x=1, f(x)=—1 for x <0, and f(x) = 2 for x > 1. This function is continuous at every point
except x =0 and x = 1. However, the function is continuous on the interval [0, 1] because, for
that interval, we are considering the function g whose domain is [0, 1] such that g(x) = x for x in
[0, 1]. Because

lin(l) g(x)= lim g(x)=0 and lirr} g(x)= lin]1 glx)=1
x— x—0* x— x—

g is continuous at 0 and 1 (and, clearly, at all points between 0 and 1).

A FUNCTION f(x) IS DISCONTINUOUS at x = x, if one or more of the conditions for continuity
fails there.

EXAMPLE 1: (a) f(x)= xi

denominator) and because lim f(x) does not exist (equals =<). The function is, however. continuous
x—2

is discontinuous at x =2 because f(2) is not defined (has zero as

everywhere except at x =2, where it is said to have an infinite discontinuity. See Fig. 8-1.

b) fix) =25

x*—4
are zero) and because lirrzl flx) = 42. The discontinuity here is called removable since it may be removed by

2 is discontinuous at x =2 because f(2) is not defined (both numerator and denominator
x°—4

x—=2
removed because the limit also does not exist.) The graphs of f(x) =

redefining the function as f(x) = for x # 2; f(2) = 4. (Note that tt;e discontinuity in (a) cannot be so

x" -4
. x n 2 . - . . .

except at x = 2, where the former has a ‘hole’ (see Fig. 8-2). Removing the discontinuity consists simply of

filling the ‘hole.’

and g(x) = x + 2 are identical

Fig. 8-1 Fig. 8-2

68
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3 pa—
(©) fix)= xx §7 for x # 3; f(3) = 9 is discontinuous at x = 3 because f(3) = 9 while lirrl f(x) =27, so that
— L i

=27
lin; f(x) # f(3). The discontinuity may be removed by redefining the function as f(x) = xx _— for x # 3,
f(3)=27.
(d) The function of Problem 4 of Chapter 6 is defined for all x >0 but has discontinuities at x = 1, 2,
3,... (see Problem 13 of Chapter 7) arising from the fact that

lim f(x)# lim f(x) for s any positive integer

These are called jump discontinuities. (See Problems 1 and 2.)

PROPERTIES OF CONTINUOUS FUNCTIONS. The theorems on limits in Chapter 7 lead readily
to theorems on continuous functions. In particular, if f(x) and g(x) are continuous at x = a, so
also are f(x)* g(x), f(x)g(x), and f(x)/g(x), provided in the latter that g(a)# 0. Hence,
polynomials in x are everywhere continuous whereas rational functions of x are continuous
everywhere except at values of x for which the denominator is zero.

You have probably used certain properties of continuous functions in your study of algebra:

1. In sketching the graph of a polynomial y = f(x), any two points (a, f(a)) and (b, f(b))
are joined by an unbroken arc.

2. If f(a) and f(b) have opposite signs, the graph of y = f(x) crosses the x axis at least
once, and the equation f(x) =0 has at least one root between x = a and x = b.

The property of continuous functions used here is

Property 8.1: If f(x) is continuous on the interval a < x < b and if f(a) # f(b), then for any number ¢
between f(a) and f(b) there is at least one value of x, say x = x,,, for which f(x,)=c and a < x, =< b.

Figure 8-3 illustrates the two applications of this property, and Fig. 8-4 shows that
continuity throughout the interval is essential.

[
R

(a) {b) f(x) =0 has three roots
Fig. 8-3 between x = a and x = b.

Other properties of continuous functions are important here:

Property 8.2: If f(x) is continuous on the interval a < x < b, then f(x) takes on a least value m and a
greatest value M on the interval.

Although a proof of Property 8.2 is beyond the scope of this book, the property will be
used freely in later chapters. Consider Figure 8-5(a)—(c). In Fig. 8-5(a) the function is
continuous on a < x < p; the least value m and the greatest value M occur at x =c and x = d
respectively, both points being within the interval. In Fig. 8-5(b) the function is continuous on
a = x = b; the least value occurs at the endpoint x = a, while the greatest value occurs at x = ¢
within the interval. In Fig. 8-5(c) there is a discontinuity at x = ¢, where a < ¢ < b; the function
has a least value at x = a but no greatest value.
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(b) f(x) =0 has no root

fb)|— —— —————

el- - ————

=b.

between x = a and x

(a)

Fig. 8-4

(b)

(@)

|

|

I
L
a

()

Fig. 8-5

c+A

Fig. 8-6
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Property 8.3: If f(x) is continuous on the interval a < x < b, and if ¢ is any number between a and b and
f(c) >0, then there exists a number A >0 such that whenever ¢ — A <x <c¢ + A, then f(x) >0.

This property is illustrated in Fig. 8-6. For a proof, see Problem 4.

Solved Problems

Use Problem 10 of Chapter 7 to find the discontinuities of:

(a) f(x) =2/x: Has an infinite discontinuity at x = 0.

) fx)= #)_(:_23: Has infinite discontinuities at x = —3 and x =2.
() f(x)= %2: Has an infinite discontinuity at x = 3.

Use Problem 6 of Chapter 7 to find the discontinuities of:

x3-27
2

(a) fix)= 29 : Has a removable discontinuity at x = 3. There is also an infinite discontinuity at
x=-3 5

) f(x)= ;ﬁ: Has a removable discontinuity at x = 2. There is also a removable discontinuity
at x = —22.

© fix)= x—(:_x—l;zz—: Has an infinite discontinuity at x = 1.

implies f(x) is continuous at x = a.

fa + k) - f(a)
h

The existence of the limit implies that f(a + h) — f(a)— 0 as h— 0. Thus, lim f(a + k) = f(a) and
h—0
f(x) is continuous at x = a.

Show that the existence of ’l'il'l(l)

Prove: If f(x) is continuous on the interval a < x < b, and if ¢ is any number between a and b
and f(c) >0, then there exists a number A >0 such that whenever c — A<x<c+ A, then

f(x)>0.
Since f(x) is continuous at x = ¢, lim f(x) = f(c) and for any € >0 there exists a 8 >0 such that

Whenever 0< |x — ¢| < 6 then | f(x) — f(c)| < e (1)

Now f(x) >0 at all points on the interval ¢ — § <x < c + 8 for which f(x) = f(c). At all other points of
the interval f(x) < f(c) so that | f(x) - f(c)| = f(c) — f(x) < € and f(x) > f(c) — €. Thus, at these points,
f(x) >0 unless € = f(c). Hence, to determine an interval meeting the requirements of the theorem, select
€ < f(c), determine § satisfying (1), and take A < 8. (See Problem 10 for the companion theorem.)

Supplementary Problems

Examine the functions of Problem 19(a) to (k) of Chapter 7 for points of discontinuity.
Ans. (a), (b),(d) none; (c)x=-1;(e)x==1, () x=2,3; (gl x=—-1, -3; (h) x==*2
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11.

12.
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Show that f(x) = |x| is everywhere continuous.

1ix

1 . . -
Show that f(x) = T+ has a jump discontinuity at x = 0.

+2

Show that at x =0, (a) f(x) =
discontinuity.

1
Y] has a jump discontinuity and (b) f(x) = 3,:r—+1 has a removable

. . x’—4x-21
If Fig. 8-4(a) is the graph of f(x) = —_7

7 show that there is a removable discontinuity at x =7
and that ¢ = 10 there.

Prove: If f(x) is continuous on the interval a =<x < b, and if ¢ is any number between @ and b and
f(c) <0, then there exists a number A >0 such that whenever ¢ — A <x < ¢+ A then f(x) <O0.

Sketch the graph of each of the following functions, find any discontinuities, and state why the function
fails to be continuous at those points. Indicate which discontinuities are removable.

_ : 310 x+3 ifx=2
(@ fixr =21 ) f="—=5— (0 f=y
x+1 fx<2
4—-x ifx=3 -1
(d) f(x)= |x| - x (e) f(x)={x—2 if0<x<3 () f =5
x—1 ifx=0 -1

'+ xT—17x+ 15
x24+2x-15

(8) flx)=

Ans. (a) x=0; (b) x = =2 (removable); (c¢), (d) no discontinuities; (¢) x =0; (f) x=1. —1 (both
removable); (g) x =3, —5 (both removable)

Sketch the graphs of the following functions, and determine whether they are continuous on the closed
interval [0, 1].

-1 forx<0

1
(@) fix)={ 0 for0=x=<1 (b) f(x)zl; for x>0 () f(x)={_21 for x <0
X for x =0
0 forx>1 1 forx=0
x forx=90
(d) f(x)=1for0<x=1 (e) flx)=70 for0<x<1
x forx=1



Chapter 9

The Derivative

INCREMENTS. The increment Ax of a variable x is the change in x as it increases or decreases
from one value x = x, to another value x = x, in its domain. Here, Ax = x;, — x, and we may
write x; = xo + Ax.

If the variable x is given an increment Ax from x = x, (that is, if x changes from x = x, to
x = x, + Ax) and a function y = f(x) is thereby given an increment Ay = f(x, + Ax) — f(x,) from
y = f(x,), then the quotient

Ay _ changein y
Ax ~ change in x

is called the average rate of change of the function on the interval between x = x, and
x=ux,+ Ax.

EXAMPLE 1: When x is given the increment Ax = 0.5 from x, = 1, the function y = f(x) = x* + 2x is
given the increment Ay = f(1+0.5) — f(1) =5.25 — 3 =2.25. Thus, the average rate of change of y on the

interval between x =1 and x=1.5is ﬂ = g-é =4.5.
Ax 05

(See Problems 1 and 2.)

THE DERIVATIVE of a function y = f(x) with respect to x at the point x = x, is defined as
. Ay o f(x0+Ax)"f(xu)
lim — = lim

Ax—0 Ax  Ax—0 Ax

provided the limit exists. This limit is also called the instantaneous rate of change (or simply, the
rate of change) of y with respect to x at x = x,,.

EXAMPLE 2: Find the derivative of y = f(x) = x> + 3x with respect to x at x = x,. Use this to find the
value of the derivative at (a) x, =2 and (b) x, = —4.

Yo=flxg) = x(Z) +3x,
Yo t Ay = flxy +Ax) = (x, + Ax)’ + 3(x, + Ax)
=xl+2x,Ax + (Ax)’ + 3x, + 3 Ax
Ay = f(x, + Ax) — f(x,) = 2x, Ax + 3 Ax + (Ax)’
Ay _ flxo + A%) ~ fx,)

= +3+
Ax Ax 2x, 3+ Ax
The derivative at x = x,, is
. Ay . _
Jfim, 3 = Jim, 2+ 3+ 80 =25 +3

(a) At x, =2, the value of the derivative is 2(2) +3=17.
(b) At x, = —4, the value of the derivative is 2(—4) + 3= -5.

IN FINDING DERIVATIVES it is customary to drop the subscript 0 and obtain the derivative of
y = f(x) with respect to x as

lim 22 = jig [EF 40 2 /()
ar—0 Ax Ax—0 Ax

73
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The derivative of y = f(x) with respect to x may be indicated by any one of the symbols
d dy , , d
=Y & Dby o 2 fx)

(See Problems 3 to 8.)

DIFFERENTIABILITY. A function is said to be differentiable at a point x = x, if the derivative of
the function exists at that point. Problem 3 of Chapter 8 shows that differentiability implies
continuity. The converse is false (see Problem 11).

Solved Problems

1. Given y = f(x) = x’+5x—8, find Ay and Ay/Ax as x changes (a) from x, = 1 to
X, =x,+Ax =12 and (b) from x,=1 to x, =0.8.

(a) Ax=x, ~x,=12-1=0.2 and A .
Ay = flx, + 8x) = f(x,) = f(1.2) = f(1) = —0.56 — (~2) = 1.44. So Kf =97 12
() Ax=08-1=-0.2 and '

Ay = f(0.8) — f(1) = —=3.36 — (-2) = ~1.36. So % - 136

-0.2

Geometrically, Ay/Ax in (a) is the slope of the secant line joining the points (1. -2) and
(1.2, —0.56) of the parabola y = x>+ 5x — 8, and in (b) is the slope of the secant line joining the points
(0.8, —3.36) and (1. —2) of the same parabola.

=6.8

2. When a body freely falls a distance s feet from rest in ¢ seconds, s = 167> Find As/A¢ as ¢
changes from ¢, to ¢, + At. Use this to find As/At as ¢ changes (a) from 3 to 3.5, (b) from 3 to
3.2, and (c¢) from 3 to 3.1.

As _ 16(1, + A1)’ = 161) 321, At + 16(A1)°
At At - At
(a) Here 1, =3, Atr=0.5, and As/Ar =32(3) + 16(0.5) = 104 ft/s.
(b) Here ¢, =3, At=0.2, and As/At =32(3) + 16(0.2) = 99.2 ft/s.
(¢) Here t, =3, Ar=0.1, and As/At =97.6ft/s.
Since As is the displacement of the body from time r=1¢,to t =1, + At,

=321, + 16 At

As _ displacement

- - = average velocity of the body over the time interval
At time

3. Find dy/dx, given y = x> — x* — 4. Find also the value of dy/dx when (a) x=4, (b) x=0,
{(c)x=~1.
y+Ay=(x+Ax) - (x+Ax)’ -4
= x* + 3x%(Ax) + 3x(Ax)’ + (Ax)’ — x* — 2x(Ax) — (Ax)* - 4
Ay = (3x* — 2x) Ax + (3x - 1)(Ax)* + (Ax)’

Ay 2 2
—_— = — + — +
3X 2X (3X 1) AX (AI)

ZX_L lim [3x% - 2x + (3x — 1) Ax + (Ax)*] = 3x? — 2x

Axr—0

4 2 d 2
@ D) =say-a=a0 0) L =307 -200=0; @ L[ =3-nP-2-1=s
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4. Find the derivative

THE DERIVATIVE

0fy=x2+3x+5.

y+Ay=(x+AxP +3(x+Ax)+5=x>+2xAx+Ax’ +3x+3Ax+5
Ay =(2x +3) Ax + Ax?

Ay _(2x+3)Ax+8x7

Ax Ax

=2x+3+ Ax

d
—y=Alim0(2x+3+Ax)=2x+3

dx

s. Find the derivative of y =

y+Ay=

Ay =

Ay _
Ax

dx

d

-1
Atx=1, —

6. Find the derivative of f(x) =

1 at x=1and x=3.
x—2
1
x+Ax-2

1 1 =(x—2)—(x+Ax—2)_ —Ax

x+Ax-2 x-2 (x-2(x+Aax-2) (x-2)(x+Ax-2)
-1
(x—2)(x+Ax-2)

. -1 o
I TG+ =2) =2

dy -1

y——=_' = = —_—— = —
dx_(l—z)z 1; at x 3,dx (3__2)2

2x -3

3x+4°

2(x + Ax) -3
3(x+Ax)+4
2x+2Ax—-3 2x-3

flx + Ax) =

f(x+Ax)—f(x)=3x+3Ax+4 T 3x+4

_ (Bx+4)[(2x —3) + 2 Ax] — (2x = 3)[(3x +4) + 3 Ax]

(3x+4)(3x +3Ax +4)
_ (6x+8—-6x+9Ax 17 Ax
T (Bx+4)(Bx+3Ax+4) (3x+4)(3x +3Ax+4)
flx+Ax) — f(x) 17
Ax T (Bx+4)(3x+3Ax +4)
f)= tim 17 17

as%0 Bx+4)(3x+3Ax+4)  (3x+4)

7. Find the derivative of y = V2x + 1.

y+Aay=
Ay =

Ay _

-
dy

dx=

2x+24ax+1)'"?
(2x+2Ax+1)""* = (2x +1)'"?
Qx+2Ax+1)"?+(2x + 1)

12 _ 172
(Gxr28x V7= @r+ D e 2as v )P v @ v )

(2x+24ax+1)—(2x+1) _ 2Ax
Qr+2Ax+ D)+ 2x+ D' (2x+2Ax+ 1)+ (2 + 1)
2
Qx+2Ax+ 1D+ (2x+ 1)

2 1

Jim, Cx+28x+ 1) 2+ 2x+ 1) (2x+1)'"7
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For the function f(x) = V2x + 1, lim  f(x)=0= f(-

1) while limz) f(x) does not exist: the
x—( 1:2) x—(- 1/
function has right-hand continuity at x = — §. At x = — 1, the derivative is infinite.

8.  Find the derivative of f(x)=x'"". Examine f'(0).

flx+Ax)=(x+Ax)""
fx + Ax) = flx) = (x + Ax)'"F = x'"?

(G A - e+ AT A x e+ AR T
(x+Ax)"? +x'"x +Ax)' T+ 177

o xrbx-x
(x+Ax)2.J+xl/3(X+AX)1/3+x2/3
fla + Ax0) ~ fx) _ !
Ax (X+Ax)213+xl:‘3(x+Ax)l/3+x2/3
) 1 1
f'x)= 1l ; =

m - ; ; 3
ax=0 (x + AX) P+ X N x + A P+ T 3

The derivative does not exist at x = 0 because the denominator is zero there. However, the function
is continuous at x =0. This, together with the remark at the end of Problem 7, illustrates: If the
derivative of a function exists at x = a then the function is continuous there, but not conversely.

9. Interpret dy/dx geometrically.

From Fig. 9-1 we see that Ay/Ax is the slope of the secant line joining an arbitrary but fixed point
P(x. v) and a nearby point Q(x + Ax, y + Ay) of the curve. As Ax— 0, P remains fixed while Q moves
along the curve toward P, and the line PQ revolves about P toward its limiting position, the tangent line
PT to the curve at P. Thus, dy/dx gives the slope of the tangent at P to the curve y = f(x).

¥ = f(z)

Q(x + Az, y + Ay)

Fig. 9-1

For example, from Problem 3, the slope of the cubic y = x* — x* — 4 is m = 40 at the point x = 4; it is
m = () at the point x =0; and it is m =5 at the point x = —1.

10.  Find ds/dr for the function of Problem 2 and interpret it physically.
Here
as _

ds .
A =32+ 16A0  and = lim (326, + 16 Ar) =321,
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11.

12.

13.

14.

15.

16.

17.

As At—0, As/At gives the average velocity of the body for shorter and shorter time intervals Az. Then
we can define ds/dt to be the instantaneous velocity v of the body at time ¢t = ¢,. For example, at 7 =3,
v =32(3) =96 ft/s.

Find f’(x), given f(x) = |x|.

The function is continuous for all values of x. For x<0, f(x)=-x and f'(x)=
. —(x +Ax) — (—x) ,
lim ————————* =—1;for x>0, f(x)=x and f'(x) = 1.

- Ax
: 0At)r=0 f(x)=0and lim w= lim |A_x As Ax—0~ |A_):|
Ax ’ Ax—0 Ax ax—0 Ax ' Ax

Ax — 1. Hence, the derivative does not exist at x =0.

— —1; but as Ax— 0",

Compute € = % - % for the function of (a) Problem 3 and (b) Problem 5. Verify that e =0

as Ax—0.
(a) € =[3x% = 2x + B3x — 1) Ax + (Ax)*] - (3x* — 2x) = (3x — 1 + Ax) Ax
_ -1 1 =—(x-2)+(x+Ax—2)= 1
O €= DG +8r-2) G-2F  -2G+di-2)  G-2arar-2)

Both obviously go to zero as Ax— 0.

dy
dx

d
In Fig. 9-1, Ay = RQ and zy Ax = PRtan £ TPR = RS, thus, € Ax = §Q. For a change Ax in x from
P(x, y), Ay is the corresponding change in y along the curve while % Axis the corresponding change in

Interpret Ay = —— Ax + € Ax of Problem 12 geometrically.

y along the tangent line PT. Since their difference € Ax is a multiple of (Ax)? it goes to zero faster than

Ax, and I Ax can be used as an approximation of Ay when |Ax| is small.

Supplementary Problems

Find Ay and Ay/Ax, given

(a) y=2x—3 and x changes from 3.3 to 3.5.
(b) y =x*+4x and x changes from 0.7 to 0.85.
(c) y=2/x and x changes from 0.75 to 0.5.

Ans.  (a) 0.4 and 2; (b) 0.8325 and 5.55; (¢) $ and — ¥

Find Ay, given y = x> —3x+35, x=5, and Ax = —0.01. What then is the value of y when x = 4.99?
Ans. Ay =-0.0699; y = 14.9301
Find the average velocity, given

(@) s =(3t*+5) ft and ¢ changes from 2 to 3s.
(b) s =(26*+ 5t —3) ft and ¢ changes from 2 to 5s.

Ans. (a) 15 ft/s; (b) 19 ft/s

Find the increase in the volume of a spherical balloon when its radius is increased () from r to r + Ar in;
(b) from 2 to 3in.  Ans. (a) 2w(3r +3rAr+Ar) Arin®; (b) ¥ 7 in’
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18.

19,

21.

22.
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Find the derivative of each of the following:

(@) y=4x-3 (b) y=4-3x (c) y=x*+2x-3
(d) y=1/2* (&) y=Q2x-1)/(2x +1) (f) y=(Q+2x)/(1 - 2x)
(g y=vx () y=1/vx () y=vV1+2x

() y=1V2+x
Ans. (@) 4; (b) =3; () 2(x + 1); (d) —-2/x°; (e)
) 1 . 1
(‘)m»(.’) 2(2+x)3/2
Find the slope of the following curves at the point x = 1:

Lo <2 _ 4 2
(a)y_s Sx (b)y_x+1 +3

Ans.  (a) —10; (b) —1; (¢) — }

1
(1 2)2’(3) 2\/—’(”) '—m;

G O

Find the coordinates of the vertex v of the parabola y = x* — 4x + 1 by making use of the fact that at the
vertex the slope of the tangent is zero. Ans. V(2,-3)

Find the slope of the tangents to the parabola y = —x” + 5x - 6 at its points of intersection with the x
axis. Ans. atx=2, m=1;atx=3, m=-1

When s is measured in feet and ¢ in seconds, find the velocity at time ¢ =2 of the following motions:

(@) s=1"+3t (b) s=r -3 (c) s=Vi+2
Ans. (a) 7ft/s; (b) 0 ft/s; (c) § ft/s

Show that the instantancous rate of change of the volume of a cube with respect to its edge x in inches is
12in*/in when x =2 in.



Chapter 10

Rules for Differentiating Functions

DIFFERENTIATION. Recall that a function f is said to be differentiable at x = x, if the derivative
f'(x,) exists. A function is said to be differentiable on an interval if it is differentiable at every
point of the interval. The functions of elementary calculus are differentiable, except possibly at
isolated points, on their intervals of definition. The process of finding the derivative of a
function is called differentiation.

DIFFERENTIATION FORMULAS. In the following formulas u, v, and w are differentiable
functions of x, and ¢ and m are constants.

1. d%(c)=0 2 %(x)=l

d d d
3 Lot )= @t @) 4. %(Cu)=6%(u)
5. %(u)=ui(v)+vi(u)

(uvw) = uv 4 (w) + uw i (u) + uvw 4 (u)

6. E dx
7. %( )—%z(u) c#0
o A () d (D)5 Lo
4,4
9. %(S)=vd"(u)v2udx(v),u¢o 10. —(x )= mx
11. ;i(u) mu _'%(u)

(See Problems 1 to 13.)

INVERSE FUNCTIONS. Two functions f and g such that g( f(x)) = x and f( g( y)) = y are said to be
inverse functions. Inverse functions reverse the effect of each other.

EXAMPLE 1: (a) The inverse of f(x) = x + 1 is the function g(y)=y — 1.
(b) The inverse of f(x) = —x is the same function.
(c) The inverse of f(x) = VX is the function g(y) = y* (defined for y = 0).
+

(d) The inverse of f(x) =2x — 1 is the function g(y) = Y_2_1

Not every function has an inverse function. For example, the function f(x) = x> does not
possess an inverse. Since f(1) = f(—1) = 1, an inverse function g would have to satisfy g(1) =1
and g(1) = — 1, which is impossible. However, if we restrict the function f(x) = x” to the domain
x =0, then the function g( y) = vy would be an inverse of f. The condition that a function f
must satisfy to have an inverse is that f is one-to-one; that is, for any x, and x, in the domain of

[, if x; # x,, then f(x,) # f(x,).

79
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Notation: The inverse of f is denoted f ' If y = f(x), we often write x = f "'(y). If fis
differentiable, we write, as usual, dy/dx for the derivative f'(x), and dx/dy for the derivative
f ().

If a function f has an inverse and we are given a formula for f(x), then to find a formula for
the inverse f ', we solve the equation y = f(x) for x in terms of y. For example, given

and a formula for the inverse function is

fix)=5x+2, set y=5x+2. Then, x=y; ,
-1 _y—2
foyy=—

DIFFERENTIATION FORMULA for finding dy/dx given dx/dy:

dy 1
dx  dx/dy

12.

EXAMPLE 2: Find dy/dx, given x =\/y + 5.
First method: Solve for y = (x — 5)% Then dy/dx = 2(x - 5).

. . Di : A _ 1 o ] dy v m iy -
Second method: Differentiate to find dy 32 y N Then, by rule 12, - 2Vy =2(x = 5).

(See Problems 14, 15, and 57 to 62.)

COMPOSITE FUNCTIONS; THE CHAIN RULE. For two functions f and g, the function given by
the formula f( g(x)) is called a composite function. If f and g are differentiable, then so is the
composite function, and its derivative may be obtained by either of two procedures. The first is

to compute an explicit formula for f( g(x)) and differentiate.

EXAMPLE 3: If f(x) = x’ + 3 and g(x) = 2x + 1, then
y=flgx)=(2x+ 1Y’ +3=4x’+4x+4  and % =8x+4
The derivative of a composite function may also be obtained with the following rule:
13.  The chain rule: D _( f(g(x))) = f'(g(x))g’'(x)

If f is called the outer function and g is called the inner function, then D ( f( g(x))) is the
product of the derivative of the outer function (evaluated at g(x)) and the derivative of the

inner function.

EXAMPLE 4: In Example 3, f'(x) = 2x and g'(x) = 2. Hence, by the chain rule,
D (f(g(x)) = f'(g(x))g'(x) =2g(x)-2=4g(x) =4(2x + 1) =8x + 4

ALTERNATIVE FORMULATION OF THE CHAIN RULE. Write y = f(u) and u = g(x). Then the
composite function is y = f(u) = f( g(x)), and we have:

, dy dy du
The chain rule: x ~ du dx
EXAMPLE 5: Lety =1’ and u = 4x* — 2x + 5. Then the composite function y = (4x — 2x + 3)" has the
derivative
dy _dydu_
o =3 (8x - 2) = 3(4x ~ 20 + 5)'(8x - 2)
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dy dy du
dx  du dx’
denotes the composite function of x, whereas the y on the right denotes the original function of
u (what we called the outer function before). (2) Differentiation rule 11 is a special case of the
chain rule. (See Problems 16 to 20.)

Notes: (1) In the second formulation of the chain rule, the y on the left

HIGHER DERIVATIVES. Let y = f(x) be a differentiable function of x, and let its derivative be
called the first derivative of the function. If the first derivative is differentiable, its derivative is

y", or f"(x). In turn, the derivative of the second gerivative is called the third derivative of the

d
function and is denoted by one of the symbols -dx—};, y”, or f"(x). And so on.

Note: The derivative of a given order at a point can exist only when the function and all
derivatives of lower order are differentiable at the point. (See Problems 21 to 23.)

Solved Problems

d d
1. Prove: (a) e (c) =0, where c is any constant; (b) Ic (x)=1; (c) dix (cx) = ¢, where ¢ is any

constant; and (d) — (x") = nx""', when n is a positive integer.
dx p g

Since - f(x)— lm w,

d .
@ G (@)= Jim, "5 = Jim, 0=0
_ ( +Ax)-x . Ax _
®) = (x) h Ax B Al:To x AllTo 1=1
i o clxtAx)—ex _
© dx (ex) = Al;erO Ax - Al:r—‘-]o €=c

nin—1)

- i 1:2
- A:TO Ax

[x" +nx" " Ax + " (Ax) + -~~+(Ax)"]—

(x+Ax)" —x"

@ £
n(n~-1)
1-2

= lim [nx"“'-f- Jc"'zAx+---+(Ax)"7']=nx"7l

Ax—0

2, Let u and v be differentiable functions of x. Prove: (a) % (u+v)= dix (u) + % (v);

(b)(%(uv)=u%(v)+v%(u); (c)%(g)e dx . 00

(a) Set f(x) = u+ v = u(x) + v(x); then

fx+Ax) = f(x) _ulx +Ax)+v(x + Ax) —u(x) —v(x) _u(x + Ax) —u(x)  v(x + Ax) - v(x)
Ax = Ax = Ax * Ax

Taking the limit as Ax — 0 yields — dx flx)= dx (u+v)= u(x) + — v(x) = % (u) + % (v).
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(b) Set f(x) = uv = u(x)v(x); then
flx + Ax) ~ f(x) _ u(x + Ax)v(x + Ax) — u(x)v(x)

Ax Ax
~u(x + Ax)u(x + Ax) — v(x)u(x + Ax)] + [v(x)u(x + Ax) — u(x)v(x)]
- Ax
= u(x + Ax) v(ix + AAxl - v{x) + v(x) u(x + A:; - u(x)

and for Ax— 0, % flx)= d.ix (uv) = u(x) dix v(x) + v(x) dix u(x)=u dix (v)+v % (u).

_ux)
(c) Set fix)= ; ok ; then
u(x + Ax)  u(x)
fix +Ax) = flx) _ v(x+Ax) wv(x)  ulx + Ax)u(x) — u(x)v(x + Ax)
Ax a Ax h Ax{v(x)v(x + Ax)}
_ [u(x + Axju(x) — u(x)v(x)] = [u(x)vlx + Ax) — u(x)v(x)]
- Ax[v(x)v(x + Ax)]
— ) A —
o(x) u(x + Asz u(x) u(x) v(x + .,;2 v(x)
v(x)v(x + Ax)

and for Ax—0 d _i(u>-v(x)%u(x)—u(x)%v(x)=vd%(u)—u%(u)'
mdfor &m0 g O™ g\ [v(0)]? i

3. Differentiate y =4 + 2x — 3x* - 5x* — 8x* + 9x°

d 2
Ey =0+2(1) = 3(2x) — 5(3x%) — 8(4x>) + 9(5x*) =2 - 6x — 15x% — 32x" + 45x*
1 3 2 - - -
4, Differentiate y = - + 5 + S5 =x ' +3x 2+ 2x”"
X x X
d 2 , , . .
ay=—x"+3(—2x ) +2(-3x )= —x 2—6Jc'3—6x"'=—l2—g—g4
X X X
5. Differentiate y =2x'"* + 6x'"* — 2x*'%
ﬂ_ (l —1/2) (l —2/3)_ (§ 1/2)~ -2 -2/3 2 _ |l 2 12
dx—?_zx +63x 22x =x + 2x 3x _x"'2+x:"" 3x
. . 2 6 2 4 _ _ _ _3
6. Differentiate y= —5 + 5 — =5 — —573 =2x V2 +6x VT —2x7 M2 -4
x X x X
dy _ (__ 12) (_1 4/3)_ (_3 4/2)_ (_§ 74)
dx—z 3 X +6 X 2 X 4 i
X X X X

7. Differentiate y =V3x’ — 1 =(3x%)'" = (5x)7'2

V5x
dy -2/3 l —3:2 _ 2x 5 _ 2 1
3 G260~ (= 3)60 0 = R s = e
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8. Differentiate s = (> — 3)*.

ds 3moy o
Z° 40 -3y (20) =81(1* - 3)

3 -
9. Differentiate z = ————— =3(a’ ~ y*) 2
(@ -y%)
fi_z___ 2_2—3_1 22N _ A 2 2v-3, __12—Y_
dy—3( 2)(a" ~y") dy (@ -y)=3-2)@ -y) ZY)_(az_yz)J

10. Differentiate f(x)= Vx> +6x+3=(x*+6x+3)"?

o d Y +3
f(x)= 107+ 6x +3)7"2 - (4 6x+3) = 1(x* +6x +3) (20 +6) = “—”Tfm
11.  Differentiate y = (x* + 4)’(2x* - 1)°.
y =@ +4) % 2 -1+ @2 -1) % (x* + 4y
= +47°03)N2x° - 1) % 2 -1+ - 1)’Q2)x*+4) % x>+ 4)

= (x* + 4)%(3)(2x> — 1)’(6x%) + (2x° — 1)’ (2)(x* + 4)(2x)
=2x(x" + 4)(2x° — 1)’(13x° + 36x — 2)

. . _3-2
12.  Differentiate y = TP
3+2)i 3-2x)—-(3-2 4 3+2
,_ B g 0--0-295, 0420 5ig¢-2-3-0Q) _ -2
r = (3 + 2x)° (3 + 2x)° (3 + 2x)°
2 2

X X
13.  Differentiate y = = .
ifferentiate y Vi @-O"

(4_x2)1/2%(xz)_xzzdx_(4_xz)xzz

dy _ (-0 - ()G - x7) (= 2x)
dx 4—x? 4-x°

~ (4_xz)|/2(2x)+x3(4_x2)—1/2 (4_x2)1/2 _ 2x(4—x2)+x3 _ 8x—x’

= 4- 1 (4_x2)1/2 (4-1’2)3/2 (4_x2)3/2

14.  Find dy/dx, given x = y\/1 -y

1-2y? dy 1 1-y

dx —
___=1_2“2+l 1_2‘1/2_ = - =
dy (1-y9 (1 =y7)" (-2y) o, O & /dy — 1-2y°

15.  Find the slope of the curve x = y*> — 4y at the points where it crosses the y axis.

. . dr _ dy 1 _ 1
The points of crossing are (0, 0) and (0, 4). We have dy -~ 2y — 4 and so dx " dxldy “ 2y -4 At

{0, 0) the slope is — 4, and at (0, 4) the slope is 3.
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THE CHAIN RULE

. . . d dy du
16. Derive the alternative chain rule, @ _ 8 —.
dx du dx
Let Au and Ay be, respectively, the increments given to y and « when x is given an increment Ax.
N ided Au 0,37 =AY B4 provided Au 0 as ax—0, & = 9 4 d.
ow, provided Au Ar - Au Ax p as Ax = require

The restriction on Au can usually be met by taking |Ax| sufficiently small. When this is not possible,
the chain rule may be established as follows:

Set Ay = % Au+ € Au, where e >0 as Ax— 0. (See Problem 13 of Chapter 9.) Then

Ay dy Au+ Au
Ar  du Ax € Ax

dy _dy d“+ g‘i:‘l_yﬂaSbefore

and. taking the limits as Ax— 0 yields - du dr i dn ax

2
-1
17.  Find dy/dx, given y = u,_ and u =V’ +2.
u

+1
dy 4w w22
du W1y ° 3+ 3
dy _dy du 4u 2x 8x

Then dr T dude (W1 38 u( + 1)

18. A point moves along the curve y = x* — 3x + 5 so that x = $V/7 + 3, where ¢ is time. At what
rate is y changing when ¢ = 4?

We are to find the value of dy/dt when 1 =4. We have

dy 3,7 dx _ 1 dy _dy dx _3(x"-1)
4D A G S Y AT A i
When t=4, x = V4 +3=4, and dy_3de-1) _ 4 umts per unit of time.

di T a2) 8

19. A point moves in the plane according to the equations x = £ +2tand y =2’ — 61. Find dy/dx
when 1 =0, 2, and §.

Since the first relation may be solved for ¢ and this result substituted for ¢ in the second relation, y is

. : dy ax . r_ 1
clearly a function of x. We have i 61" — 6 and - 2¢ + 2, from which il et Then
dy _dy dt 5 1 _
dr o dx O T D3y T3

The required values of dy/dx are —3 att=0,3 at =2, and 12 at r =5.

20. Ify=x"—4x and x=V2r +1, find dy/dt when t = V2.

dy _ oo x _ 2 dy _dy dx _ 4f(x-2)
dx x-2)  and = (2:2+ 1)"2 O W Tdx A 2rrne
dy 4VI(V5-2)

When 1=VZ, x=V3and = T_ 5 (5 2V3).

21.  Show that the function f(x) = x* + 3x” - 8x + 2 has derivatives of all orders at x = a.
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fl(x)=3x"+6x—8 and f'(a)=3a’+6a-8
f'(x)=6x+6 and f(a)=6a+6
f"(x)=6 and f"(a)=6

All derivatives of higher order exist and are identically zero.

/

22. Investigate the successive derivatives of f(x) =x*" at x=0.

f’(x)=§x“3 and  f'(0)=0

f'x)= —é% and f"(0) does not exist

Thus the first derivative, but no derivative of higher order, exists at x =0.

23.  Given f(x) = % =2(1-x)"", find f™(x).
f=2-D1-)"7-=20-x""=20)1-x""
f)=20(-2)A -0 (-1 =221 - %)’
) =22H(=-3)1 -0 (-n=23N1-x)*
which suggest f“'(x) =2(n!)(1 — x)"“""). This result may be established by mathematical induction by
showing that if £f*(x) =2(k)(1-x)"“"", then

£ = =20k + 1)1 =07 * ) =21k + DA -0 4D

Supplementary Problems

. N . 1
4. Establish formula 10 for m = —1/n, n a positive integer, by using formula 9 to compute de‘ (7) (For
the case m = p/q, p and q integers, see Problem 4 of Chapter 11.)

In Problems 25 to 43, find the derivative.

25. y=x"+5x"-10x*+6 Ans.  dyldx=5x(x"+4x* - 4)
3
— 172 _ 32 -1/2 - _ 3 _ 32
26 y=3x x4 2x Ans. dyldx N VX —1/x
D SN S S e y__1_ 2
27. y—212+\/i—2x + 4x Ans. E—‘xg 2
28,  y=V2x+2vx Ans. y'=(1+V2)V2x
2 6 , 12 42723
29. fly= Vi +\37_t Ans. f'(t)=-— 1—2
3. y=(1-5x° Ans.  y'=-30(1-5x)
3. f)y=Cx-x+1)* Ans. f'(0)=121-x)CBx-x*+1)
32 y=3+4x—x})"? Ans. y'=(Q2-x)/y
_3r+2 de 5
B =53 Ans. G~ (2r +3)°
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3 -( ul )S ans. yr= X
e S Y Ty
BN . x(8—5x)
3s. y=2xV2-x Ans. y RV
_ 2
36. flx)=xV3-2° Ans.  f'(x)= i—“—z
3-2x
dy 2x°—4x+3
37. =(x-)Vx' -2x+2 Ans. == Tt
y=emb dx " Vi 2x 12
w dz 1
I R (e A G T T aw)”
S
3. y=VIzvx Ans. Y S AT VR
0. fo =yt Ans. fi(x)= —— e
) x+1 ' (x+ V-1
41. y=(x"+3)'(2«> - 5) Ans.  y' =2x(x* +3)’(2x* - 5)’(17x> + 27x - 20)
£ +2 ds 10¢
42. 5= P Ans. dar G-y
=1 ) 36x%(x - 1)°
. = Ans. y'= " —=
| (2x‘ 1 YT Ta Ry

M. For c¢ach of the following, compute dy/dx by two different methods and check that the results are the
same: (a) x =(1+2y)", (b) x =1/(2+ y).

In Problems 45 to 48, use the chain rule to find dy/dx.

u-1 dy 1
45, y—u+l.u—\/I Ans. dx_\/}(1+\/i)2
46. =t d, u=x"+2x Ans.  dyldx =6x*(x +2)’(x + 1)
47. v=VI+u u=vx Ans. See Problem 39.
. dy dy du dv )
= = _ = 2 P = L — —
48. y=vu, u=v(3-2v),v=x (Hml. dx -~ de do dx Ans. See Problem 36.

In Problems 49 to 52, find the indicated derivative.

49, y=3x"- 227+ x-5; y" Ans.  y"=T2x
105
50. = 1vE Yy Ans.  y™ =
y Xy ns y 16x°2
51, fx)=V2-3x% f(x) Ans.  f(x)=-6/(2~3x")"
52 y=xVr-1.y" Ans. yr= 27X
. ¥ =x/V .y .y Ax -1

In Problems 53 and 54, find the nth derivative.
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n -1)"[(n + 1)!
§3. y=1/x* Ans. y()=——-————-—( ))E'('” i

3"(n!)

5. f0)=1/(3x+2) Ans. f70) =(=1) Gy

S5. If y = f(u) and u = g(x), show that

)Ly by Bu Ay () By b Su Ly Sy de Ly ey
(a dx? ~ du drx? du? \dx dx’ ~ du dc’ dil ai dx da’ \dx
56 From E _ l derive d_zx _ yn and d—lx _ 3(yu)2 _ylym

. dy y- ’ dyZ (yy)3 dy3 (y,)s .

In Problems 57 to 62, determine whether the given function f has an inverse; if it does, find a formula
for the inverse f ' and calculate its derivative.

§7. f(x)=1/x Ans. x=f"'(y)=1/y; dxldy = —x*=—1/y*
58. flx)=1ix+4 Ans. x=f"'(y)=3y-12; dx/dy=3
5. f(x)=Vx-5 Ans. x=f"'(y)=y*+5; dx/dy=2y=2Vx~5
60. fixy=x*+2 Ans. no inverse function

=5 P PRRNE N S SR S VE
6. fix)=x Ams. x=fTN=VViF=3a=37
62. f(x)=2x_1 Ans. x=f“(y)=—-—2y+l'dx— 5

42 y-2'dy (y-2)°



Chapter 11

Implicit Differentiation

IMPLICIT FUNCTIONS. An equation f(x, y) =0, on perhaps certain restricted ranges of the
variables, is said to define y implicitly as a function of x.

1-x

EXAMPLE 1: (a) The equation xy + x — 2y — 1 =0, with x # 2, defines the function y = —

(b) The equation 4x> +9y* — 36 =0 defines the function y = 2V 9 — x* when |x[ =3 and y =0, and the
function y = — 3V 9 — x” when |x| =3 and y =< 0. The ellipse determined by the given equation should be
thought of as consisting of two arcs joined at the points (—3,0) and (3,0).

The derivative y' may be obtained by one of the following procedures:

1. Solve, when possible, for y and differentiate with respect to x. Except for very simple
equations, this procedure is to be avoided.

2. Thinking of y as a function of x, differentiate both sides of the given equation with
respect to x and solve the resulting relation for y’. This differentiation process is known
as implicit differentiation.

EXAMPLE 2: (a) Find y', given xy + x —~2y — 1 = 0.
d d d d d d
We have x Z(Y)+)’a(1)+l‘§(x)*2d—;(y)~Ex—(l)—a(())
orxy' +y+1~2y" =0; then y' = 5—_—)’-
(b) Find y’ when x = V3, given 4x* + 9y’ =36 =0.
d . d o d o dy _ -
We have 4dx (x )+9dx (y )—8x+9dy (y )dx =8x + 18yy' =0
or y'=—4x/9y. When x=V35, y=+4/3. At the point (V5,4/3) on the upper arc of the ellipse,
y'=~V5/3, and at the point (V5, —4/3) on the lower arc, y' = V5/3.

DERIVATIVES OF HIGHER ORDER may be obtained in two ways. The first is to differentiate
implicitly the derivative of one lower order and replace y’ by the relation previously found.

EXAMPLE 3: From Example 2(a), y' = ;—f—i Then
1+y
4 e "=_d_(l+y)=(2—x)y’+l+y:(2 x)<2~x)+1+y 242y
dx YTV T \a 7« 2-x) (2-x) T 2-x)

The second method is to differentiate implicitly both sides of the given equation as many
times as is necessary to produce the required derivative and eliminate all derivatives of lower
order. This procedure is recommended only when a derivative of higher order at a given point
is required.

EXAMPLE 4: Find the value of y” at the point (-1, 1) of the curve x’y + 3y — 4 =0.
We differentiate implicitly with respect to x twice, obtaining
£y +2xy +3y' =0 and X’y 4+ 2xy" + 2xy' +2y +3y" =0

’

We substitute x = —1, y = 1 in the first relation to obtain y’ = 5. Then we substitute x = ~1, y =1, y" = }
in the second relation to get y” =0.

88
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Solved Problems

L Find y’, givenxzy—xy2+x2+y220.
4 (e d e donys 4=
E(XY)—d—x(XYde(x)+dx()’)“0
7d d 2 d d d d ,
Wty () mx ON)=y p 0F 2 () () =0

_ y = 2x = 2xy
x*+ 2y — 2xy

'

Hence Xy +2xy—=2xyy' -y +2x+2yy’=0 and y

2. Find y’ and y”, given x> — xy + y* = 3.

d , d d  , _ . , ,_2x-y
)T g O =xmny my s 2yyt=0. So y'= Ty

d
(x —2)’) B} (2x ‘Y)—(ZX‘Y) ZX- (X—z)’) (x —2)‘)(2—)")—(21 “)')(1 -2y

Th "= =
o (x-2y) (x-2y)
2x - y)
_3xy'—3y_3x(x—2y 3y_6(x2—xy+y2) _ 18
(x = 2y)° (x —2y) (x = 2y)° (x =2y)°

3. Find y' and y", given x’y + xy* =2 and x = 1.
We have
Oy +3x%y + 3%y +y =0
and x'y" 4+ 3x%y’ + 3x7y 4 6xy + 3xy’y" 4 6xy(y' ) +3y°y + 3y’y =0

When x =1, y =1; substituting these values in the first derived relation yields y' = —1. Then
substituting x =1, y =1, ¥’ = —1 in the second relation yields y” = 0.

Supplementary Problems

4. Establish formula 10 of Chapter 10 for m = p/q, p and ¢q integers, by writing y = x”'? as y¥ = x” and
differentiating with respect to x.

5. Find y”, given (@) x +xy + y=2; (b) x* =3xy +y = 1.
_ 2(1+y) 4xy
(1+x" (¥ -2’

6. Find y’, y*, and y™ at (a) the point (2,1) on x* — y* — x = 1; (b) the point (1, 1) on x*+3x%y - 6xy* +
2y'=0. Ans. (a) 3/2, —5/4,45/8,(b)1,0,0

Ans. (a) y" b) y"'=-

7. Find the slope at the point (x,, y,) of (a) b*x* +a’y* =a’b’; (b) b’x’ —a’y* =a’d?; (c) x" +y' -

6x’y = 0.
b*x b? dxgy, — x2
Ans. (@) =252 (b) 252 (€) SRRt
ay, ayq Yo~ 2x,
8. Prove that the lines tangent to the curves 5y —2x +y* — x’y =0 and 2y + 5x + x* —x’y* =0 at the

origin intersect at right angles.
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(a) The total surface area of a rectangular parallelepiped of square base y on a side and height x is given
by $ =2y’ +4xy. If § is constant, find dy/dx without solving for y.

(b) The total surface area of a right circular cylinder of radius r and height A is given by
S=2ar’+2mrh. If S is constant, find dr/dh.

r

2r+ h

Ans.  (a) -X—i—y—; (b) -

"

Y
[1 + (y,)2]3/2

1
For the circle x> + y* = r’, show that -

Given S = wx(x +2y) and V = mx’y, show that dS/dx =2m(x — y) when V is a constant and dV/dx =
~mx(x — y) when § is a constant.



Chapter 12

Tangents and Normals

IF THE FUNCTION f(x) has a finite derivative f'(x,) at x = x,, the curve y = f(x) has a tangent at
Py(x,, y,) whose slope is
m=tan 6 = f'(x,)

If m =0, the curve has a horizontal tangent of equation y = y, at P,, as at A, C, and E of Fig.
2-1. Otherwise the equation of the tangent is

Y= Yo =m(x — x,)
If f(x) is continuous at x = x, but xllgl f'(x) ==, the curve has a vertical tangent of

equation x = x,, as at B and D of Fig. 12-1.

v

Fig. 12-1

The normal to a curve at one of its points is the line that passes through the point and is
perpendicular to the tangent at the point. The equation of the normal at Py(x,, y,) is
x = x, if the tangent is horizontal
y =y, if the tangent is vertical

1
Y= Y=~ 11 (x — x,) otherwise
(See Problems 1 to 8.)

THE ANGLE OF INTERSECTION of two curves is defined as the angle between the tangents to the
curve at their point of intersection.
To determine the angles of intersection of two curves:

1. Solve the equations simultaneously to find the points of intersection.
2. Find the slopes m,; and m, of the tangents to the two curves at each point of

intersection.
3. If m,=m,, the angle of intersection is ¢ =0°, and if m, = —1/m,, the angle of
intersection is ¢ = 90°; otherwise it can be found from
_om,—m,
tan ¢ = 1+mm,

¢ is the acute angle of intersection when tan ¢ >0, and 180° — ¢ is the acute angle of
intersection when tan ¢ <0,

(See Problems 9 to 11.)
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Solved Problems

Find the points of tangency of horizontal and vertical tangents to the curve x* — xy + y° = 27.
y—2x
2y —x’

For horizontal tangents: Set the numerator of y’ equal to zero and obtain y = 2x. The points of
tangency are the points of intersection of the line y = 2x and the given curve. Simultaneously solve the
two equations to find that these points are (3, 6) and (-3, —6).

For vertical tangents: Set the denominator of y’' equal to zero and obtain x =2y. The points of
tangency are the points of intersection of the line x =2y and the given curve. Simultaneously solve the
two equations to find that these points are (6,3) and (-6, —3).

Differentiating yields y’ =

Find the equations of the tangent and normal to y = x> — 2x> + 4 at (2, 4).

f'(x) = 3x* — 4x; hence the slope of the tangent at (2,4) is m = f'(2) = 4.
The equation of the tangent is y —4=4(x —2) or y =4x — 4.
The equation of the normal is y —4=—1(x —2) or x + 4y = 18.

Find the equations of the tangent and normal to x* + 3xy + y° =5 at (1, 1).

dy  2x+3y
dc~  3x+2y
The equation of the tangentis y —~1=-1(x —1)orx+y=2.
The equation of the normalis y —1=1(x —1) or x —y =0,

; hence the slope of the tangent at (1,1) is m = —1.

Find the equations of the tangents with slope m = — % to the ellipse 4x° + 9y’ = 40.

Let P,(x,. y,) be the point of tangency of a required tangent. P, is on the ellipse, so
4x +9yZ =40 1)
dy 4x 4x, 2

Also, i 9y Hence, at (x,, y,), m= — 9 =-3 So y, =2x,. The points of tangency are the

o
simultaneous solutions (1,2) and (=1, —2) of (1) and the equation y, = 2x,.
The equation of the tangent at (1,2)is y —2= — i(x—-1) or 2x +9y =20.
The equation of the tangent at (-1, —2)is y +2=—§(x+ 1) or 2x + 9y = - 20.

Find the equation of the tangent, through the point (2, ~2), to the hyperbola x*—y*=16.

Let P,(x,. y,) be the point of tangency of the required tangent. P, is on the hyperbola, so

X~ yo=16 (1)
o By X Ko _Yt2 _ o o
Also, Ay Hence, at (x,, y,), m= Yo X =2 slope of the line joining P, and (2, —2); then
2x,+2y,=x-yi=16 or x,ty,=8 2)

The point of tangency is the simultaneous solution (5, 3) of (1) and (2). Thus the equation of the
tangentis y — 3= 3(x —5) or Sx — 3y =16.

Find the equations of the vertical lines that meet the curves (1) y = x* + 2x’ — 4x + 5 and (2)
3y =2x" +9x° — 3x — 3 in points at which the tangents to the respective curves are parallel.

Let x = x, be such a vertical line. The tangents to the curves at x, have the slopes

For (1): y =3x’+4x~-4;atx=x, m,=3x,+4x,~4
For (2): 3y ' =6x"+18x-3;at x=x,, m,=2x2+6x,—1
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9.

Since m, = m,, we have 3x] + 4x, — 4 = 2x] + 6x, — 1, from which x, = —1 and x, = 3. The lines are
x=—1and x=3.

(a) Show that the equation of the tangent of slope m#0 to the parabola y2=4px is
y=mx+p/m.

(b) Show that the equation of the tan%ent to the ellipse bx? + azy2 =a’b’ at the point
Py(x,. ¥,) on the ellipse is b’x,x + a’y,y = a’b’.

(@) y'=2ply. Let Py(x,,y,) be the point of tangency; then y3=4px, and m=2p/y,. Hence,
y, =2p/m and x, = }y2/p = p/m’ The equation of the tangent is then y — 2p/m = m(x — p/m°) ot
y=mx+p/m.

b’ b’x ) x
b) y'= —ﬁ. At P, m= - Zyo’ and the equation of the tangent is y — y, = — —— (x — x,,) or
0 0
bixyx + a’y,y = b'xl + a’yl = a’b’

Show that at a point Py(x,, ¥,) on the hyperbola b’x* — a’y’ = a’h’ the tangent bisects the
angle included by the focal radii of P,.

At P, the slope of the tangent to the hyperbola is b’x,/a’y, and the slopes of the focal radii P,F’
and P,F (see Fig. 12-2) are y,/(x, + ¢) and y,/(x, — ¢), respectively. Now

b’x, _ Yo
tana — a’y, X,*tc N (b°x; — a’yy) + biex, _ a’b’ + biex, B b(a* + ex,) b
- 2 - 2 2 2 -2 2 - 2 =
1+ bx, y, (@ + b )xoy, +a'cy, cxoy,+a‘cy, cy.la +ex,) oy
a’y, x,t¢

- 2.2 2
since b’x) — a’y) = a’b” and @’ + b* = ¢%, and

2
Yo _ b'x,
an g= 0S¥ _bon-(x-dlyy)  ber,matt b
= 2 =2 2 2 -2 2 .
1+ b’x, Yo (@ + b )xpy, —a’cy, Cxpy,—acy, ¥

a’y, x,-—c¢
Hence, a = B because tan a =tan 8.

Po(xe, yo)

(—e, O)F

/

Fig. 12-2

Find the acute angles of intersection of the curves (1) y’=4x and (2) 2x* = 12 - 5y.

The points of intersection of the curves are P,(1,2) and P,(4, —4).
For (1), y'=2/y; for (2), y' = —4x/5. Hence,
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12.

13.

14.

15.
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m ~m, 1+4/5
I+mm, 1-4/5

AtP:m,=land m,=~1%, 50 tan¢ = =9 and ¢ = 83°40' is the acute angle of

intersection.
. 6 -1/2+16/5 s -
AtP:m =—-1and m,=-3,sotan¢ = TI+R5 1.0385 and ¢ =46°5' is the acute angle of
intersection.

Find the acute angles of intersection of the curves (1) 2x*+ y* =20 and (2) 4y — x* = 8.

The points of intersection are (+2V?2,2) and (+2V2, —2).

For (1), y' = —=2x/y; for (2), y' = x/4y.

At the point (2V2,2), m, = —2V2 and m, = }V'2. Since m,m, = — 1, the angle of intersection is
& = 90° (i.e.. the curves are orthogonal). By symmetry, the curves are orthogonal at each of their points
of intersection.

A cable of a certain suspension bridge is attached to supporting pillars 250 ft apart. If it hangs
in the form of a parabola with the lowest point 50 ft below the point of suspension, find the
angle between the cable and the pillar.

Take the origin at the vertex of the parabola, as in Fig. 12-3. The equation of the parabola is
y = &x° and y' = 4x/625.

At (125,50), m = 4(125)/625 = 0.8000 and 6 = 38°40". Hence, the required angle is ¢ =90°— 6 =
51°20°.

Ve
7

7
4

(125, 50)

Supplementary Problems

Examine x° + dxy + 16y” = 27 for horizontal and vertical tangents.

Ans. horizontal tangents at (3, —3/2) and (-3, 3/2); vertical tangents at (6, —3/4) and (-6, 3/4)

Find the equations of the tangent and normal to x* — y*> =7 at the point (4, —3).

Ans. 4x+3y=7;3x—-4y=2

At what points on the curve y=x’+5 is its tangent (a) parallel to the line 12x-y=17;
(b) perpendicular to the line x + 3y =27 Ans. (a) (2,13), (=2, =3); (b) (1,6), (—1,4)

Find the equations of the tangents to 9x° + 16y” = 52 that are paraliel to the line 9x — 8y = 1.

Ans. 9x -8y ==*26
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16.

17.

18.

19.

20.

21.

22.

27.

29.

Find the equations of the tangents to the hyperbola xy =1 through the point (-1, 1).
Ans. y=(V2Z-Nx+2V2-2y=-(2V2+3)x-2V2-2

For the parabola y* = 4px, show that the equation of the tangent at one of its points P(x,. y,) is
¥Yo =2p(x + X,).
For the ellipse b°x’+ a’y’ =a’h’ show that the equations of its tangents of slope m are

y=mx*Va'm®+ b

For the hyperbola b’x’ — a’y’ = a’b’, show that (a) the equation of the tangent at one of its
points P(x,, y,) is b’x,x —a’y,y = a’b’® and (b) the equations of its tangents of slope m are

y=mxxVa’m® - b’

Show that the normal to a parabola at any of its points P, bisects the angle included by the focal radius
of P, and the line through P, parallel to the axis of the parabola.

Prove: Any tangent to a parabola, except at the vertex, intersects the directrix and the latus rectum
(produced if necessary) in points equidistant from the focus.

Prove: The chord joining the points of contact of the tangents to a parabola through any point on its
directrix passes through the focus.

Prove: The normal to an ellipse at any of its points P, bisects the angle included by the focal radii of P,,.

Prove: The point of contact of a tangent of a hyperbola is the midpoint of the segment of the tangent
included between the asymptotes.

Prove: (a) The sum of the intercepts on the coordinate axes of any tangent to Vx+Vy=Vva is a

constant. (b) The sum of the squares of the intercepts on the coordinate axes of any tangent to

x*?* + y**=4a%" is a constant.

Find the acute angles of intersection of the circles x> —4x + y* =0 and x> + y*=8.  Ans. 45°

Show that the curves y = x* + 2 and y = 2x* + 2 have a common tangent at the point (0, 2) and intersect
at an angle ¢ = Arctan 35 at the point (2, 10).

Show that the ellipse 4x* + 9y® =45 and the hyperbola x> — 4y’ =5 are orthogonal.

Find the equations of the tangent and normal to the parabola y = 4x® at the point (-1, 4).
q P po

Ans. y+8x+4=0;8y—-x-33=0

At what points on the curve y =2x’ + 13x” + 5x + 9 does its tangent pass through the origin?

Ans. x=-3,-1,3/4



Chapter 13

Maximum and Minimum Values

INCREASING AND DECREASING FUNCTIONS. A function f(x) is said to be increasing on an
open interval if u < v implies f(u) < f(v) for all ¥ and v in the interval. A function f(x) is said to
be increasing at x = x; if f(x) is increasing on an open interval containing x,. Similarly, f(x) is
decreasing on an open interval if ¥ <v implies f(u) > f(v) for all u and v in the interval, and
f(x) is decreasing at x = x, if f(x) is decreasing on an open interval containing x,,.

If f'(x,) >0, then it can be shown that f(x) is an increasing function at x = x,; similarly, if
f'(x,) <0, then f(x) is a decreasing function at x = x,. (For a proof, see Problem 17.) If
f'(x,) =0, then f(x) is said to be stationary at x = x,.

) SR ——

Fig. 13-1

In Fig. 13-1, the curve y = f(x) is rising (the function is increasing) on the intervals
a<x<randt<x<u,; the curve is falling (the function is decreasing) on the interval r <x <.
The function is stationary at x =r, x =5, and x = ¢; the curve has a horizontal tangent at the
points R, §, and 7. The values of x (that is, r, s, and ¢), for which the function f(x) is stationary
(that is, for f'(x) = 0) are frequently called critical values (or critical numbers) for the function,
and the corresponding points (R, S, and T') of the graph are called critical points of the curve.

RELATIVE MAXIMUM AND MINIMUM VALUES OF A FUNCTION. A function f(x) is said to
have a relative maximum at x = x,, if f(x,) = f(x) for all x in some open interval containing x,,
that is, if the value of f(x,) is greater than or equal to the values of f(x) at all nearby points. A
function f(x) is said to have a relative minimum at x = x, if f(x,) =< f(x) for all x in some open
interval containing x,, that is, if the value of f(x,) is less than or equal to the values of f(x) at
all nearby points. (See Problem 1.)

In Fig. 13-1, R(r, f(r)) is a relative maximum point of the curve since f(r) > f(x) on any
sufficiently small neighborhood 0<|x — r| < 8. We say that y = f(x) has a relative maximum
value (=f(r)) when x = r. In the same figure, T(t, f(¢)) is a relative minimum point of the curve
since f(f) < f(x) on any sufficiently small neighborhood 0 < |x — f| < 8. We say that y = f(x) has
a relative minimum value (=f(t)) when x =t. Note that R joins an arc AR which is rising
(f'(x) >0) and an arc RB which is falling ( f'(x) <0), while T joins an arc CT which is falling
(f'(x) <0) and an arc TU which is rising ( f'(x) >0). At S two arcs BS and SC, both of which
are falling, are joined; § is neither a relative maximum point nor a relative minimum point of
the curve,

If f(x) is differentiable on @ < x < b and if f(x) has a relative maximum (minimum) value at
x = x,, where a <x,<b, then f'(x,) =0. For a proof, see Problem 18.
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FIRST-DERIVATIVE TEST. The following steps can be used to find the relative maximum (or
minimum) values (hereafter called simply maximum [or minimum] values) of a function f(x)
that, together with its first derivative, is continuous.

1. Solve f'(x) = 0 for the critical values.

2. Locate the critical values on the x axis, thereby establishing a number of intervals.
3. Determine the sign of f'(x) on each interval.

4. Let x increase through each critical value x = x,; then:

f(x) has a maximum value f(x,) if f'(x) changes from + to — (Fig. 13-2(a)).
f(x) has a minimum value f(x,) if f'(x) changes from — to + (Fig. 13-2(b)).

f(x) has neither a maximum nor a minimum value at x = x, if f'(x) does not
change sign (Fig. 13-2(c) and (d)).

(See Problems 2 to S.)

A function f(x), necessarily less simple than those of Problems 2 to 5, may have a
maximum or minimum value f(x,) although f’(x,) does not exist. The values x = x, for which
f(x) is defined but f'(x) does not exist will also be called critical values for the function. They,
together with the values for which f’'(x) =0, are to be used as the critical values in the
first-derivative test. (See Problems 6 to 8.)

CONCAVITY. An arc of a curve y = f(x) is called concave upward if, at each of its points, the arc
lies above the tangent at that point. As x increases, f'(x) either is of the same sign and
increasing (as on the interval b < x <s of Fig. 13-1) or changes sign from negative to positive
(as on the interval ¢ < x < u). In either case, the slope f’'(x) is increasing and f"(x) > 0.

An arc of a curve y = f(x) is called concave downward if, at each of its points, the arc lies
below the tangent at that point. As x increases, f'(x) either is of the same sign and decreasing
(as on the interval s <x < c) or changes sign from positive to negative {as on the interval
a<x<b). In either case, the slope f'(x) is decreasing and f"(x) <0.

A POINT OF INFLECTION is a point at which a curve changes from concave upward to concave
downward, or vice versa. In Fig. 13-1, the points of inflection are B, S, and C.
A curve y = f(x) has one of its points x = x, as an inflection point if f"(x;) =0 or is not
defined and f"(x) changes sign as x increases through x = x;,. The latter condition may be
replaced by f*(x,) # 0 when f"(x,) exists. (See Problems 9 to 13.)

SECOND-DERIVATIVE TEST. There is a second, and possibly more useful, test for maxima and
minima:

1. Solve f'(x,) =0 for the critical values.
2. For a critical value x = x:

f(x) has a maximum value f(x,) if f"(x,) <0 (Fig. 13-2(a)).
f(x) has a minimum value f(x,) if f"(x,) >0 (Fig. 13-2(b)).
The test fails if f"(x,) =0 or is not defined (Fig. 13-2(c) and (d)).

In this case, the first-derivative test must be used.

(See Problems 14 to 16.)
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| 1
(a) (b)

SN

(¢} (d)

Fig. 13-2

Solved Problems

Locate the maximum or minimum values of (a) y = —x%; (b) y = (x = 3)%; (¢) y = V25 — 4x%;
and (d) y=Vx —4.

(a) y=—x" has a relative maximum value (=0) when x =0, since y =0 when x =0 and y <0 when
x#0.

(b) y = (x — 3)? has a relative minimum value (=0) when x = 3, since y =0 when x = 3 and y >0 when
x#3.

{¢) y=V25-4x’ has a relative maximum value (=5) when x =0, since y =5 when x =0 and y <5
when —1<x <1.

(d) y=Vx ~ 4 has neither a relative maximum nor a relative minimum value. (Some authors define
relative maximum (minimum) values so that this function has a relative minimum at x = 4. See
Problem 30.)

Given y=ix’+ ix* —6x +8, find (a) the critical points; (b) the intervals on which y is
increasing and decreasing; and (c) the maximum and minimum values of y.

(@) y'=x*+x—6=(x+3)(x —2). Setting y' =0 gives the critical values x = —3 and 2. The critical
points are (-3, ¥) and (2, 3).
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(b) When y’ is positive, y increases; when y' is negative, y decreases.

When x < -3, say x = —4, y'=(=}-)=+, and y is increasing.
When -3 <x <2, say x =0, y' =(+)(—-)= —, and y is decreasing.
When x > 2, say x =3, y' =(+)(+)=+, and y is increasing.
These results are illustrated by the following diagram (see Fig. 13-3);
x<-3 x=-3 -3<x<2 x=2 x>2
y! =+ yr = — yl = 4+
y increases y decreases y increases
(-8,48/2) ¥
0 (2,2/3)
| z
Fig. 13-3

(c) We test the critical values x = —3 and 2 for maxima and minima:
As x increases through —3, y’ changes sign from + to —; hence at x = —3, y has a maximum

value 2.
As x increases through 2, y’ changes sign from — to +; hence at x =2, y has a minimum
value 3.
3. Given y = x* + 2x” — 3x* — 4x + 4, find (a) the intervals on which y is increasing and decreas-

ing, and (b) the maximum and minimum values of y.

We have y' =4x> +6x° — 6x — 4 =2(x +2)(2x + 1)(x — 1). Setting y’ =0 gives the critical values
x=—2, —3, and 1. (See Fig. 13-4.)

(—1/2, 81/16) v

(-2,0) 1,0

Fig. 13-4

(-)(-)(=) =-—, and y is decreasing.

(a) When x < -2, 2
2(+)(-)(~) =+, and y is increasing.
2 =

2

yl
When -2<x< -1, y'
When -} <x<1, y'
When x > 1, y'

[

(+)(+)X(-) = —, and y is decreasing.
(+)(+)(+) =+, and y is increasing.
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These results are illustrated by the following diagram (see Fig. 13-4):

x< -2 x=-2 —2<x< -} x=-1 -i<x<l1 x=1 x>1

' — [ r
y'=- y'=+ y'= =+
y decreases y increases y decreases y increases

(b) We test the critical values x = —2, — 4, and 1 for maxima and minima:
As x increases through —2, y’ changes from — to +; hence at x = —2, y has a minimum value 0.
As x increases through — 3, y’ changes from + to —; hence at x = — }, y has a maximum value
81/16.

As x increases through 1, y’ changes from ~ to +; hence at x =1, y has a minimum value 0.

Show that the curve y = x” — 8 has no maximum or minimum value.

Setting v’ =3x” =0 gives the critical value x =0. But y’ >0 when x <0 and when x >0. Hence y
has no maximum or minimum value.
The curve has a point of inflection at x = 0.

Examine y = f(x) = for maxima and minima, and locate the intervais on which the

1
T _x—2 :
function is increasing and decreasing.

f'(x)=- (-—1—2)—2 Since f(2) is not defined (that is, f(x) becomes infinite as x approaches 2), there
X —

is no critical value. However, x = 2 may be employed to locate intervals on which f(x) is increasing and
decreasing.
f'(x) <0 for all x #2. Hence f(x) is decreasing on the intervals x <2 and x >2. (See Fig. 13-5.)

¥V o
| v
I
]
|

0 21

—— H x

: 0,2)
| z
|
' (o)

Fig. 13-5 Fig. 13-6

Locate the maximum and minimum values of f(x) =2+ x*'> and the intervals on which the
function is increasing and decreasing.

2
f'(X)=§a~

When x <0, f'(x)= —, and f(x) is decreasing. When x >0, f'(x) = +, and f(x) is increasing.
Hence, at x =0 the function has the minimum value 2. (See Fig. 13-6.)

The critical value is x = 0, since f'(x) becomes infinite as x approaches 0.

Examine y = x**(1 ~ x)'"” for maximum and minimum values.
x'(4-5x)
3(1- x)z/s
When x <0, y'<0. When 0<x< %, y'>0. When { <x <1,y <0. When x> 1, y’ <0.

The function has a minimum value (=0) when x =0 and a maximum value (= %V20) when x = ¢.

Here y' = and the critical values are x =0, %, and 1.

Examine y = |x| for maximum and minimum values.
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The function is everywhere defined and has a derivative for all x except x = 0. (See Problem 11 of
Chapter 9.) Thus, x =0 is a critical value. For x <0, f'(x) = — 1; for x>0, f’(x) = + 1. The function has
a minimum (=0) when x = 0. This result is immediate from a figure.

9.  Examine y =3x* — 10x” — 12x* + 12x — 7 for concavity and points of inflection.
We have

y' =12x> - 30x* - 24x + 12
y" =36x" —60x — 24 =12(3x + 1)(x - 2)

Set y” =0 and solve to obtain the possible points of inflection x = — § and 2. Then:

When x < — 1, y" =+, and the arc is concave upward.
When - § <x <2, y" = —, and the arc is concave downward.
When x > 2, y" =+, and the arc is concave upward.
The points of inflection are (— 4, — %) and (2, —63), since y” changes sign at x = — j and x =2 (see Fig.
13-7).
v
z

A

(—1/8, —822/27)

(2,~63)

Fig. 13-7

10.  Examine y = x* — 6x + 2 for concavity and points of inflection. (See Fig. 13-8.)

We have y” = 12x> The possible point of inflection is at x = 0.
On the intervals x <0 and x >0, y”"= +, and the arcs on both sides of x = 0 are concave upward.
The point (0, 2) is not a point of inflection.

v v
z
©,2) 0
0 x
(-2,-8)
Fig. 13-8 Fig. 13-9

11.  Examine y = 3x + (x + 2)*’® for concavity and points of inflection. (See Fig. 13-9.)
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3 -6
H =34 —— " O
ere V=3t sary M YISy
The possible point of inflection is at x = —2.
When x> -2, y"=— and the arc is concave downward. When x < -2, y"=+ and the arc is

concave upward. Hence, (=2, —6) is a point of inflection.

Find the equations of the tangents at the points of inflection of y = f(x) = x* — 6x> + 12x* -
8x.

A point of inflection exists at x = x, when f"(x,) =0 and f"(x,) #0. Here,
flx)=4x>~18x> +24x - 8
F(x)=12x* —36x + 24 =12(x ~ 1)(x — 2)
f(x) =24x ~ 36 = 12(2x - 3)

The possible points of inflection are at x =1 and 2. Since f”(1) # 0 and f"(2) # 0, the points (1, — 1) and
(2,0) are points of inflection.
At (1, — 1), the slope of the tangent is m = f'(1) =2, and its equation is

y-y,=m(x—-x,) or y+1=2(x—-1) or y=2x-3
At (2,0), the slope is f'(2) =0, and the equation of the tangent is y =0.

. . . a—x .. . . . .
Show that the points of inflection of y = e lie on a straight line, and find its equation.
x'+a

' "o

H x'=2ax-a’ and x’=3ax’ - 3a’x+a’
ere = = -
(xz+a2)z y (IZ +az)3

Now x* — 3ax” — 3a°x + @’ = 0 when x = ~ g and a(2 * V3); hence the points of inflection are (—a, 1/a),
(a(2 + V3), (1 — V3)/4a), and (a(2 ~ V3), (1 + V3)/4a). The slope of the line joining any two of these
points is —1/4a° and the equation of the line of inflection points is x + 4a’y = 3a.

Examine f(x) = x(12 — 2J\r)2 for maxima and minima using the second-derivative method.

Here f'(x) = 12(x* — 8x + 12) = 12(x — 2)(x ~ 6). Hence, the critical values are x =2 and 6.
Also, f"(x) = 12(2x — 8) = 24(x — 4). Because f"(2) <0, f(x) has a maximum value (=128) at x = 2.
Because f"(6) >0, f(x) has a minimum value (=0) at x =6.

Examine y = x> + 250/x for maxima and minima using the second-derivative method.

250 2(x’ - 125)
=2 72
X

Here y' =2x - —- , so the critical value is x = 5.
x

500
Also, y' =2+ = Because y" >0 at x =5, y has a minimum value (=75) at x = 5.

Examine y = (x — 2)*"> for maximum and minimum values.
2
3(x - 2)1/3 -

" __ g - -4/3 _ 0«
y = 9 (x 2) - 9(X _ 2)4/3

tive test fails, and we employ the first-derivative method: When x <2, y' = —; when x>2, y' =+,
Hence y has a relative minimum (=0) at x =2.

y' = % (x~2)y"= Hence, the critical value is x = 2.

becomes infinite as x approaches 2. Hence the second-deriva-

A function f(x) is said to be increasing at x =x, if for #>0 and sufficiently small,
f(x, — h) < f(xy) < f(x, + h). Prove: If f'(x,) >0, then f(x) is increasing at x = x,,.
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18.

19.

20.

21.

flxo + Ax) — flxy) flxo + Ax) — flxo)

Since lim = f'(x,) >0, we have Ax > 0 for sufficiently small |Ax|

by Problen‘:x4 oof Chapter 8.

If Ax <0, then f(x, + Ax) — f(x,) <0, and setting Ax = —h vyields f(x, — h) < f(x,). If Ax >0, say
Ax = h, then f(x, + h) > f(x,). Hence, f(x, — h) < f(x,) < f(x, + h) as required in the definition. (See
Problem 33 for a companion theorem.)

Prove: If y = f(x) is differentiable on a < x =< b and f(x) has a relative maximum at x = x,,,
where a < x, < b, then f'(x,)=0.

Since f(x) has a relative maximum at x = x,, for every Ax with |Ax| sufficiently small we have
flxog + Ax) <flxg);  so  flxyg+Ax) = flx,) <0
When Ax <0,

flxg + Ax) — flx,) -0
Ax

flxo + A0~ fxe) _ o

nd 0= i T

When Ax >0,

fro *+ 8%) = fx) _ fxro + 80) ~ fxa) _
Ax Ax n

Thus, 0= f'(x,) =0 and f'(x,) =0, as was to be proved. (See Problem 34 for a companion theorem.)

and fl(xy)= Alirr(ly

Prove the second-derivative test for maximum and minimum: If f(x) and f'(x) are differenti-
able ona = x = b, if x = x, (Where a < x, < b) is a critical value for f(x), and if f"(x,) > 0, then
f(x) has a relative minimum value at x = x,,.

Since f"(x,) > 0, f'(x) is increasing at x = x,, and there exists an & > 0 such that f'(x, — A) <f'(x,) <
f'(x, + h). Thus, when x is near to but less than x,, f'(x) < f’(x,); when x is near to but greater than x,,
f'(x)>f'(x,). Now since f'(x,) =0, f'(x) <0 when x<x, and f'(x) >0 when x >x,. By the First-
Derivative Test, f(x) has a relative minimum at x =x,. (It is left for the reader to consider the
companion theorem for relative maximum.)

Consider the problem of locating the point (X, Y) on the hyperbola x* — y* =1 nearest a
given point P(a, 0), where a >0. We have D’ = (X — a)’ + Y’ for the square of the distance
between the two points and X° — Y? =1, since (X, Y) is on the hyperbola.

Expressing D? as a function of X alone, we obtain
fX)=(X-a+ X’ -1=2X"-2aX+a" -1

with critical value X = }a.

Take a= 3. No point is found, since Y is imaginary for the critical value X = }. From a figure,
however, it is clear that the point on the hyperbola nearest P(3,0) is V(1, 0). The trouble here is that we
have overlooked the fact that f(X)=(X - )+ X* -1 is to be minimized subject to the restriction
X = 1. (Note that this restriction does not arise from f(X') itself. The function f(X), with X unrestricted,
has indeed a relative minimum at X = ;.) On the interval X = 1, f(X) has an absolute minimum at the
endpoint X = 1, but no relative minimum. It is left as an exercise to examine the cases a = V2 anda =3,

Supplementary Problems

Examine each function of Problem 1 and determine the intervals on which it is increasing and
decreasing.
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27.

29,
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Ans. (a) increasing x <0, decreasing x >0; (b) increasing x >3, decreasing x <3; (c) increasing
-3 <x <0, decreasing 0 < x < §; (d) increasing x >4

(a) Show that y = x* + 20x — 6 is an increasing function for all values of x.
(b) Show that y =1—x" - x is a decreasing function for all values of x.

Examine each of the following for relative maximum and minimum values, using the first-derivative test.

(@) fx)=x+2x-3 Ans. x = —1 yields relative minimum -4

by fx)=3+2x-x° Ans. x =1 yields relative maximum 4

(¢) f(x)=x"+2x"-4x-8 Ans. x =1 yields relative minimum - 2% ; x = — 2 yields
relative maximum 0

d) fly=x"- 6x°+9x —8 Ans. x =1 yields relative maximum -4; x =3 yields relative
minimum —8

(e) flxy=(2- x)’ Ans. neither relative maximum nor relative minimum

(f) fxy=(x*~4) Ans. x =0 yields relative maximum 16; x = #2 yields relative
minimum 0

(8) fix)=(x—-4)(x+3) Ans. x =0 yields relative maximum 6912; x = 4 yields relative
minimum 0; x = —3 yields neither

(h) f(x)=x+48/x Ans.  x = —2 yields relative maximum —32; x = 2 yields
relative minimum 32

(i) f)y=(x-1)" x+2y" Ans. x = -2 yields relative maximum 0; x = 0 yields relative

minimum -V3; x = 1 yields neither

Examine the functions of Problem 23(a) to (f) for relative maximum and minimum values using the
second-derivative method. Also determine the points of inflection and the intervals on which the curve is
concave upward and concave downward.

Ans. (&) no inflection point, concave upward everywhere
(b) no inflection point, concave downward everywhere
(c) inflection point x = — §; concave up for x > — %, concave down for x < -}
(d) inflection point x = 2; concave up for x > 2, concave down for x <2
(e) inflection point x = 2; concave down for x > 2, concave up for x <2
(f) inflection point x = +2V3/3; concave up for x >2V3/3 and x < —2V3/3, concave down for
-2V3/3<x<2V3/3
+b

v has neither a relative maximum nor a relative minimum, if l‘gg # 0.

Show that y = z "

Examine y = x* — 3px + ¢ for relative maximum and minimum values.
Ans.  minimum = g — 2p>"°, maximum = g + 2p*'* if p > 0; otherwise neither.

Show that y = (a, — x)’ + (a, — x)* + - - - + (a, — x)’ has a relative minimum when
x=(a,+ta,+ -+a,)ln

Prove: If f"(x,) =0 and f"(x,) # 0. then there is a point of inflection at x = x,.

Prove: If y = ax’ + bx® + cx + d has two critical points, they are bisected by the point of inflection. If the
curve has just one critical point, it is the point of inflection.

A function f(x) is said to have an absolute maximum (minimum) value at x = x, provided f(x,) is greater
(less) than or equal to every other value of the function on its domain of definition. Use graphs to verify:
(@) y = —x’_has an absolute maximum at x = 0; (b) y = (x — 3) has an absolute minimum (=0) at x = 3;
(¢} y = V25 — 4x” has an absolute maximum (=5) at x = 0 and an absolute minimum (=0) at x = +5/2;
(d) y = Vx — 4 has an absolute minimum (=0) at x =4.

Examine the following for absolute maximum and minimum values on the given interval only:
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.

33.

35,

37.

(@) y=-x*on —2<x<2 Ans. maximum (=0) at x=0

) y=(x-3)’on0=x=<4 Ans.  maximum (=9) at x =0; minimum (=0) at x =3
(c) y=V25- 4xon —2=x=2 Ans.  maximum (=5) at x = 0; minimum (=3) atx = %2
(d) y=Vx—-4ond4=<x=<29 Ans. maximum (=5) at x = 29; minimum (=0) atx =4

Note: These are the greatest and least values of Property 8.2 for continuous functions.

Verify: A function f(x) is increasing (decreasing) at x = x,, if the angle of inclination of the tangent at
x = x, to the curve y = f(x) is acute (obtuse).

Prove the companion theorem of Problem 17 for a decreasing function: If f'(x,)<0, then f(x) is
decreasing at x,.

State and prove the companion theorem of Problem 18 for a relative minimum: If y= f(x) is
differentiable on a = x < b and f(x) has a relative minimum at x = x,, where a < x, < b, then f'(x,) = 0.

Examine 2x* — 4xy + 3y” — 8x + 8y — 1 = 0 for maximum and minimum points.

Ans. maximum at (5, 3); minimum at (-1, —-3)

kx
(IZ‘*'—VZ)SH on a small
magnet located a distance x above the center of the coil. Show that F is maximum when x = }r.

An electric current, when flowing in a circular coil of radius r, exerts a force F =

The work done by a voltaic cell of constant electromotive force E and constant internal resistance r in
passing a steady current through an external resistance R is proportional to ER/(r + R)>. Show that the
work done is maximum when R = r.



Chapter 14

Applied Problems Involving Maxima and Minima

PROBLEMS INVOLVING MAXIMA AND MINIMA. In simpler applications, it is rarely necessary
to rigorously prove that a certain critical value yields a relative maximum or minimum. The
correct determination can usually be made by virtue of an intuitive understanding of the
problem. However, it is generally easy to justify such a determination with the first-derivative
test or the second-derivative test.

A relative maximum or minimum may also be an absolute maximum or minimum (that is,
the greatest or smallest value) of a function. For a continuous function f{x) on a closed interval
[a, b], there must exist an absolute maximum and an absolute minimum, and a systematic
procedure for finding them is available. Find all the critical values c,, c,,...,c, for the
function in [a, b], and then calculate f(x) for each of the arguments ¢, c,, . . ., c,, and for the
endpoints a and b. The largest of these values is the absolute maximum, and the least of these
values is the absolute minimum, of the function on [a, b].

Solved Problems

1. Divide the number 120 into two parts such that the product P of one part and the square of
the other is a maximum.

Let x be one part, and 120 — x the other part. Then P = (120 — x)x? and 0= x = 120.
Since dP/dx = 3x(80 — x), the critical values are x =0 and x = 8§0. Now P(0) =0, P(80) = 256,000,
and P(120) = 0; hence the maximum value of P occurs when x = 80. The required parts are 80 and 40.

2, A sheet of paper for a poster is to be 18 ft” in area. The margins at the top and bottom are to
be 9 in wide, and at the sides 6 in. What should be the dimensions of the sheet to maximize
the printed area?

Let x be one dimension of the sheet, in feet. Then 18/x is the other dimension. (See Fig. 14-1.) The

. . . 18 3
only restriction on x is that x >0. The printed area (in square feet) is A =(x~ 1)(— - —). and

dA _ 18 _3 * 2
. x' 2 A 36
Solving dA/dx = 0 yields the critical value x = 2V/3. Since v is negative when x = 2V/3, the
x
second-derivative test tells us that A has a relative maximum at that value. Since 2V73 is the only critical
value, A must achieve an absolute maximum at x = 2V3. (Why?) Thus, one side is 2V3 ft, and the other

is 18/(2V3) =3V3 fi.

3/4 A‘ B B,
85 — 10t 10¢
18, 16
172 /2 t D
Ay
x
Fig. 14-1 Fig. 14-2

106



CHAP. 14] APPLIED PROBLEMS INVOLVING MAXIMA AND MINIMA 107

At 9 a.M. ship B is 65 mi due east of another ship A. Ship B is then sailing due west at
10 mi/h, and A is sailing due south at 15 mi/h. If they continue on their respective courses,
when will they be nearest one another, and how near? (See Fig. 14-2.)

Let A, and B, be the positions of the ships at 9 A.M., and A, and B, be their positions  hours later.

The distance covered in ¢ hours by A is 15¢ miles; by B, 10 miles.
. N 2 2 2 dD _ 3251 - 650

Thed;i)lstance D between the ships is given by D° = (151)" + (65— 10s)". Then - D -
Solving —— = 0 gives the critical value t = 2. Since D >0 and 325t — 650 is positive to the right of 1 =2
and negative to the left of t =2, the first-derivative test tells us that ¢ =2 yields a relative minimum for
D. Since ¢ =2 is the only critical value, that relative minimum is an absolute minimum.

Putting =2in, D? = (15¢)° + (65 — 10¢)* gives D = 15V13 mi. Hence, the ships are nearest at
11 a.M., at which time they are 15V13 mi apart.

A cylindrical container with circular base is to hold 64 in>. Find its dimensions so that the
amount (surface area) of metal required is a minimum when the container is (a) an open cup
and (b) a closed can.

Let r and h be, respectively, the radius of the base and the height in inches, A the amount of metal,

and V the volume of the container.
(a) Here V=nr’h =64, and A =27rh + mr’. To express A as a function of one variable, we solve for h

in the first relation (because it is easier) and substitute in the second, obtaining

3
A=21rr£43+7rr2=£+7r72 and éﬂ=_l¥+2”’=w
nr r dr r r
and the critical value is 7 = 4/v7. Then h = 64/7r> = 4/¥7. Thus, r=h = 4//7 in.
Now dA/dr >0 to the right of the critical value, and dA/dr <0 to the left of the critical value.
So, by the first-derivative test, we have a relative minimum. Since there is no other critical value,
that relative minimum is an absolute minimum.
(b) Here again V=nr’h =64, but A =2zrh + 2mr’ =27r(64/7r*) + 2mwr? = 128/r + 27rr*. Hence,

d(mr’ -
da _ 18, 4«r'-32)
dr

and the critical value is r = 2\/3 47m. Then h = 64/mr* = 4V 4/m. Thus, h=2r= 4\/} 4/ in. That we
have found an absolute minimum can be shown as in part (a).

The total cost of producing x radio sets per day is $( x* + 35x + 25), and the price per set at
which they may be sold is $(50 — 1x).
(a) What should be the daily output to obtain a maximum total profit?

(b) Show that the cost of producing a set is a relative minimum at that output.
(a) The profit on the sale of x sets per day is P=x(50 — 1x) — (1x® + 35x + 25). Then %X—P =15- %;
solving dP/dx = 0 gives the critical value x = 10.
Since d°P/dx’=-32 <0, the second-derivative test shows that we have found a relative
maximum. Since x =10 is the only critical value, the relative maximum is an absolute maximum.
Thus, the daily output that maximizes profit is 10 sets per day.

I +35x+25 1 25
(b) The cost of producing a set is C= df =2 +35+ < Then % = % - é solving
dCldx =0 gizves the critical value x = 10. X
. 50 . . . .
Since —— = — >0 when x =10, we have found a relative minimum. Since there is only one

critical value, this must be an absolute minimum.

The cost of fuel to run a locomotive is proportional to the square of the speed and is $25/h for
a speed of 25 mi/h. Other costs amount to $100/h, regardless of the speed. Find the speed
that minimizes the cost per mile.
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Let v = required speed, and C = total cost per mile. The fuel cost per hour is kv’, where the
constant k is to be determined. When v =25 mi/h, kv’ = 625k =25; hence k = =.
costin$/h__ v¥25+100 v 100

speed in mi/h - v 25 v

C (in $/mi) =

dc 1 100 (v —50)v+50) . . .
—_—_— = = — = —_— > =
and v 35 o 75,7 . Since v >0, the only relevant critical value is v = 50.

Because d’C/dv’ is positive to the right of v =50 and negative to the left of v =50, the
first-derivative test tells us that C assumes a relative minimum at v = 50. Since v = 50 is the only positive
critical number, the most economical speed is 50 mi/h.

A man in a rowboat at P in Fig. 14-3, 5 mi from the nearest point A on a straight shore,
wishes to reach a point B, 6 mi from A along the shore, in the shortest time. Where should he
land if he can row 2 mi/h and walk 4 mi/h?

P
5 V26 ¥zt
C B
A z 8-z
Fig. 14-3

Let C be the point between A and B at which the man lands, and let AC = x.

distance V25 +x*
speed 2

The distance walked is CB = 6 — x, and the walking time required is t, = (6 — x)/4. Hence, the total time

required is

The distance rowed is PC = V25 + x% and the rowing time required is f, =

5 dt X 1 2x-V25+«°
t=t,+1,=3V25+x"+4(6-x and - = s — - = >
v ! ) dx  2V25+x 4 4V2s+ X

The critical value, obtained from 2x — V25 + x> =0, is x = 3V 3~2.89. Thus, he should land at a point
2.89 mi from A toward B. (How do we know that this point yields the shortest time?)

A given rectangular area is to be fenced off in a field that lies along a straight river. If no
fencing is needed along the river, show that the least amount of fencing will be required when
the length of the field is twice its width.

Let x be the length of the field, and y its width. The area of the field is A = xy. The fencing required

< p o . aF _ a4y L)
lsF—x+%}Aanddx—1+2dx.When dx_o’dx_ 3.
Also, =— =0=y+x —=. Then y — 4x =0, and x = 2y as required.
dx dx d 2
To see that F has been minimized, note that d._i = - % and
d’F _ dzy_( ydy)_ y( 1)_ y dy 1
dx2—2dx2—2 2Adx_ 4A 2—2A>O when Friai

Now use the second-derivative test and the uniqueness of the critical value.

Find the dimensions of the right circular cone of minimum volume V that can be cir-
cumscribed about a sphere of radius § in.
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10.

11.

12.

Let x = radius of base of cone, and y + 8 = altitude of cone (Fig. 14-4). From similar right triangles
ABC and AED, we have

x__y+8 of x,_:64(y+8)2:64(y+8)

8 Vy —64 y* — 64 y-8
V:(sz)(y+8) _ 64m(y +8) ang Y _64m(y +8)(y —24)

3 3(y-8) dy 3(y-8y

The pertinent critical value is y = 24. Then the altitude of the cone is y + 8 = 32 in, and the radius of the
base is x = 8V2 in. (How do we know that the volume has been minimized?)

Also,

v
P B
v
z| a-z z
[4]
P’ B
Fig. 14-5

Find the dimensions of the rectangle of maximum area A that can be inscribed in the portion
of the parabola y* = 4px intercepted by the line x = a.

Let PBB'P' in Fig. 14-5 be the rectangle, and (x, y) the coordinates of P, Then

3 2
—2y(a—x) = _y_)= Y a4 _ -
A=2y(a—x) 2y<a ap 2ay o and dy 2a 2
Solving dA/dy = 0 yields the critical value y = \/4ap/3. The dimensions of the rectangle are 2y = 3V 3ap
and a -~ x =a- yi4p =2a/3.
3
Since o 5 y <0, the second-derivative test and the uniqueness of the critical value ensure
Y

that we have found the maximum area.

Find the height of the right circular cylinder of maximum volume V that can be inscribed in a
sphere of radius R. (See Fig. 14-6.)

Let r be the radius of the base, and 2k the height, of the cylinder. From the geometry, V=2mr’h
and r’ + h> = R%. Then
dv dh dh

—_— = 2 2 =
ar 2‘rr(r ar +2rh> and 2r+2h ar 0

av ?
From the last relation, 51— = - L, SO —— =21r(— L + 2rh). When V is a maximum, dV/dr =0, from
] R 5 dr h dr h
which r“ =2h".
Then R*=r®+ h® =2h* + K so that h = R/V'3 and the height of the cylinder is 24 = 2R/V3. The
second-derivative test can be used to verify that we have found a maximum value of V.

A wall of a building is to be braced by a beam which must pass over a parallel wall 10 ft high
and 8 ft from the building. Find the length L of the shortest beam that can be used.
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Fig. 14-6 Fig. 14-7

Let x be the distance from the foot of the beam to the foot of the parallel wall, and y the distance
from the ground to the top of the beam, in feet. (See Fig. 14-7.) Then L = \/(x + 8)* + y°. Also, from
+8 10(x + 8)

y=—F Then

similar triangles 4 al SO
i 2 e
& 10 X

| . 100(x +8)° x+8
L=y(c+8) = ();2 8) :xx8Vx‘+100

dL _ x[(x* +100)" "+ x(x + 8)(x + 100) "] - (x +8)(x” +100)'* _ x’ — 800
dx x’ ¥*Vx2 +100

The relevant critical value is x = 2V/100. The length of the shortest beam is

2V100 + 8 \/z—-* )
= V4v/10,000 + 100 = (V100 + 4)*"* ft
V100 ( )

The first-derivative test guarantees that we really have found the shortest length.

Supplementary Problems

The sum of two positive numbers is 20. Find the numbers (a) if their product is a maximum; (b) if the
sum of their squares is a minimum; (c) if the product of the square of one and the cube of the otheris a
maximum. Ans. (a) 10, 10; (b) 10, 10; (¢) 8, 12

The product of two positive number is 16. Find the numbers (a) if their sum is least; (b) if the sum of
one and the square of the other is least. Ans. (a) 4, 4; () 8,2

An open rectangular box with square ends is to be built to hold 6400 ft” at a cost of $0.75/ft” for the base
and $0.25/ft’ for the sides. Find the most economical dimensions. Ans. 20x20x 16 ft

A wall 8 ft high is 33 ft from a house. Find the shortest fadder that will reach from the ground to the
house when leaning over the wall. Ans. 153 ft

A company offers the following schedule of charges: $30 per thousand for orders of 50,000 or less, with
the charge per thousand decreased by 373¢ for each thousand above 50,000. Find the order size that
makes the company’s receipts a maximum. Ans. 65,000

Find the equation of the line through the point (3, 4) which cuts from the first quadrant a triangle of
minimum area. Ans. 4x+3y—-24=0

At what first-quadrant point on the parabola y =4 — x° does the tangent, together with the coordinate
axes, determine a triangle of minimum area. Ans. (2V3/3, 8/3)



CHAP. 14} APPLIED PROBLEMS INVOLVING MAXIMA AND MINIMA 111

21.

22,

27.

Find the minimum distance from the point (4,2) to the parabola y* =8x.  Ans. 2V2 units

A tangent is drawn to the ellipse x*/25 + y*/16 = 1 so that the part intercepted by the coordinate axes is a
minimum. Show that its length is 9 units.

A rectangle is inscribed in the ellipse x*/400 + y*/225 = 1 with its sides parallel to the axes of the ellipse.
Find the dimensions of the rectangle of (@) maximum area and (») maximum perimeter which can be so
inscribed.  Ans. (a) 20V2 x 15V2; (b) 32X 18

Find the radius R of the right circular cone of maximum volume that can be inscribed in a sphere of
radius r. Ans. R=1%rV2

A right circular cylinder is inscribed in a right circular cone of radius r. Find the radius R of the cylinder
(a) if its volume is a maximum; (b) if its lateral area is a maximum.
Ans. (@) R=3%r; () R=1%r

Show that a conical tent of given capacity will require the least amount of material when its height is V2
times the radius of the base.

Show that the equilateral triangle of altitude 3r is the isosceles triangle of least area circumscribing a
circle of radius 7.

Determine the dimensions of the right circular cylinder of maximum lateral surface that can be inscribed
in a sphere of radius 8in.  Ans. h=2r=8V2in

Investigate the possibility of inscribing a right circular cylinder of maximum total area in a right circular
cone of radius r and height 4. Ans. if h>2r, radius of cylinder = Jhr/(h —r)



Chapter 15

Rectilinear and Circular Motion

RECTILINEAR MOTION. The motion of a particle P along a straight line is completely described
by the equation s = f(¢), where t is time and s is the directed distance of P from a fixed point O
in its path.

The velocity of P at time ¢ is v =ds/dt. If v>0, then P is moving in the direction of
increasing s. If v <0, then P is moving in the direction of decreasing s.
The speed of P is the absolute value |v| of its velocity.
dv _d’s

The acceleration of P at time tisa = i i If a > 0, then v is increasing; if a <0, then v

is decreasing.
If v and a have the same sign, the speed of P is increasing. If v and a have opposite signs,
the speed of P is decreasing. (See Problems 1 to 5.)

CIRCULAR MOTION. The motion of a particle P along a circle is completely described by the
equation 8 = f(¢), where 8 is the central angle (in radians) swept over in time ¢ by a line joining
P to the center of the circle.
The angular velocity of P at time ¢ is w = d6/dt.
do d’
The angular acceleration of P at time ¢ is a = 7‘:’ =
If « = constant for all ¢, then P moves with constant angular acceleration. If a = 0 for all 1,
then P moves with constant angular velocity. (See Problem 6.)

Solved Problems

In the following problems on straight-line motion, distance s is in feet and time ¢ is in seconds.

1. A body moves along a straight line according to the law s = 1¢’ — 2t. Determine its velocity
and acceleration at the end of 2 seconds.
ds 3
v= :1; =5 t* = 2; hence, when r =2, v = 3(2)° ~ 2 =4 ft/sec.
dv 2
a=—= 3¢; hence, when 1 =2, a = 3(2) = 6 ft/sec”.

2. The path of a particle moving in a straight line is given by s = =60+ 9t + 4.
(a) Find s and a when v =0.
(b) Find s and v when a =0.
(c¢) When is s increasing?
(d) When is v increasing?
(¢) When does the direction of motion change?

We have v=5‘—j=312—12t+9=3(1—1)(l—3) a=7;t3=6(t—2)

112
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(@) Whenv=0,r=1and 3. Whent=1,s=8and a=—-6. Whenr=3,s=4 and a=6.

(b) Whena=0,:=2. Att=2,s=6and v=-3.

(c) s is increasing when v >0, that is, when <1 and 7> 3.

(d) v is increasing when a >0, that is, when 1> 2.

(e) The direction of motion changes when v =0 and a # 0. From (a) the direction changes when ¢t =1
and ¢ =3.

A body moves along a horizontal line according to s = f(t) = £ — 9¢* + 24¢.
(a) When is s increasing, and when is it decreasing?

(b) When is v increasing, and when is it decreasing?

(c) When is the speed of the body increasing, and when is it decreasing?
(d) Find the total distance traveled in the first 5 seconds of motion.

We have u=§=312—18t+24=3(t—2)(t—4) a=%=6(z—3)
(a) s is increasing when v >0, that is, when 1 <2 and t>4.
s is decreasing when v <0, that is, when 2 <t <4.
(b) v is increasing when a >0, that is, when ¢ > 3.
v is decreasing when a <0, that is, when <3,
(c) The speed is increasing when v and a have the same sign, and decreasing when v and a have opposite
signs. Since v may change sign when ¢ =2 and ¢t = 4 while a may change sign at ¢ = 3, their signs are
to be compared on the intervals 1 <2, 2<¢<3,3<r<4, and t > 4:
On the interval t <2, v>0 and a <0; the speed is decreasing.
On the interval 2<t <3, v <0 and a <0; the speed is increasing.
On the interval 3<r<4, v <0 and a > 0; the speed is decreasing.
On the interval ¢t >4, v >0 and a > 0; the speed is increasing.
(d) When t=0, s =0 and the body is at 0. The initial motion is to the right (v > 0) for the first 2
seconds; when 7 =2, the body is s = f(2) = 20 ft from O.
During the next 2 seconds, it moves to the left, after which it is s = f(4) = 16 ft from O.
It then moves to the right, and after 5 seconds of motion in all, it is s = f(5) = 20 ft from O. The
total distance traveled is 20 + 4 + 4 = 28 ft (see Fig. 15-1.)

(o] 20
1
o —t
R S, -

Fig. 15-1

A particle moves in a horizontal line according to s = f(t) = t* — 6> + 121 — 101 + 3.
(a) When is the speed increasing, and when decreasing?

(b) When does the direction of motion change?

(¢) Find the total distance traveled in the first 3 seconds of motion.

Here

v=%=4t3—18t2+24t—10=2(t—1)2(21—5) a=%:i=12(t—l)(t—2)

(a) v may change sign when =1 and t =2.5; a may change sign when t=1 and 1 =2.
On the interval t <1, v <0 and a > 0; the speed is decreasing.
On the interval 1 <t<2, v <0 and a <0; the speed is increasing.
On the interval 2<¢<2.5, v <0 and a > 0; the speed is decreasing.
On the interval t>2.5, v >0 and a > 0; the speed is increasing.

(b) The direction of motion changes at t = 2.5, since v =0 but a # 0 there; it does not change at 1 =1,
since v does not change sign as ¢ increases through ¢ = 1. Note that when r=1,v=0and a=0, so
that no information is available.
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(¢) When r=0, s =3 and the particle is 3 ft to the right of O. The motion is to the left for the first 2.5
seconds, after which the particle is & ft to the left of O.
When =3, s =0; the particle has moved % ft to the right. The total distance traveled is
3+ %+ 4 =3 ft (see Fig. 15-2).

27116

S. A stone, projected vertically upward with initial velocity 112 ft/sec, moves according to

=112¢ — 16¢°, where s is the distance from the starting point. Compute (a) the velocity and

acceleration when £ =3 and when r = 4, and (b) the greatest height reached. (c) When will its
height be 96 ft?

We have v =ds/dt =112 - 32t and a = dv/dt = - 32.

(a) At t=3, v =16 and a = —32. The stone is rising at 16 ft/sec.
Att=4,v=-16 and a = —32. The stone is falling at 16 ft/sec.

(b) At the highest point of the motion, v =0. Solving v =0= 112 — 32r yields t =3.5. At this time,
s =196 ft.

(c) Letting 96 = 112¢ — 16¢° yields 1> — 7t + 6 =0, from which =1 and 6. At the end of 1 second of
motion the stone is at a height of 96 ft and is rising, since v > 0. At the end of 6 seconds it is at the
same height but is falling since v <0.

6. A particle rotates counterclockwise from rest according to 8 = ¢*/50 ~ ¢, where 8 is in radians
and ¢ in seconds. Calculate the angular displacement 8, the angular velocity w, and the angular
acceleration a at the end of 10 seconds.

£ de 3¢ dw

(=2

t

_ - _de 60 _6 2
B-E—I—IOrad ©="1=30 1=S5rad/sec a= =3 5rad/sec
Supplementary Problems
7. A particle moves in a straight line according to s = 1> — 61 + 9¢, the units being feet and seconds. Locate

the particle with respect to its initial position (¢ = 0) at O, find its direction and velocity, and determine
whether its speed is increasing or decreasing when (a) t=3, (b) t=2, (c)t=3, (d) 1 =4.

Ans.  (a) % ft to the right of O; moving to the right with v = ¥ ft/sec; decreasing
(b) 4 ft to the right of O; moving to the left with v = — § ft/sec; increasing
(c) 3 ft to the right of O; moving to the left with v = — { ft/sec; decreasing
(d) 4 ft to the right of O; moving to the right with v =9 ft/sec; increasing

8. The distance of a locomotive from a fixed point on a straight track at time ¢ is given by s =
3¢ ~ 4477 + 1447% When is it in reverse?  Ans. 3<:t<8

9, Examine, as in Problem 2, each of the following straight-line motions: (a) s=1" —9:° + 241; (b)
s=0-30+3t+3; (c) s =20~ 127 + 181 - 5; (d) s = 31* — 281 + 90r* - 1081

Ans. (a) stops at t =2 and t =4 with change of direction
(b) stops at t =1 without change of direction
(c) stops at t =1 and ¢ =3 with change of direction
(d) stops at t =1 with, and ¢ = 3 without, change of direction
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10.

11.

12.

13.

A body moves vertically up from the earth according to s = 64t — 16¢> Show that it has lost one-half its
velocity in its first 48 ft of rise.

A ball is thrown vertically upward from the edge of a roof in such a manner that it eventually falls to the
street 112 ft below. If it moves so that its distance s from the roof at time ¢ is given by s = 961 — 16¢°, find
(a) the position of the ball, its velocity, and the direction of motion when ¢ = 2, and (b) its velocity when
it strikes the street. (s is in feet, and ¢ in seconds.)

Ans. (a) 240 ft above the street, 32 ft/sec upward; (b) — 128 ft/sec

A wheel turns through an angle 6 radians in time ¢ seconds so that 8 = 128¢ — 12¢°. Find the angular
velocity and acceleration at the end of 3 sec. Ans. o =S56rad/sec; a = —24 rad/sec’

Examine Problems 2 and 9 to conclude that stops with reversal of direction occur at values of ¢ for which
s = f(t) has a maximum or minimum value while stops without reversal of direction occur at inflection

points.



Chapter 16

Related Rates

RELATED RATES, If a quantity x is a function of time ¢, the time rate of change of x is given by
dx/dt.

When two or more quantities, all functions of ¢, are related by an equation, the relation

between their rates of change may be obtained by differentiating both sides of the equation.

Solved Problems

1. Gas is escaping from a spherical balloon at the rate of 2 ft*/min. How fast is the surface area
shrinking when the radius is 12 ft?

At time ¢ the sphere has radius r, volume V= 42r°, and surface S =4ar: Then

dv , dr ds dr ds _24v_ 2 . 1_, .
—d?—4-rrr Z and dt_87" - So @y dt_12( 2)= 3’ft/mm
2. Water is running out of a conical funnel at the rate of 1 in*/sec. If the radius of the base of the

funnel is 4 in and the altitude is 8 in, find the rate at which the water level is dropping when it
is 2 in from the top.

Let r be the radius and & the height of the surface of the water at time ¢, and V the volume of water
in the cone (see Fig. 16-1). By similar triangles, r/4 = h/8 or r = 1h. Also
1, 1 av._ 1 ,dh

1 _ 1 3 2 an
—311'rh 1271'}1. So a 477h r

When dV/dt=—1 and h =8 —2 =6, then dh/dt = —1/97 in/sec.

Fig. 16-1

3. Sand falling from a chute forms a conical pile whose altitude is always equal to 3 the radius of
the base. (a) How fast is the volume increasing when the radius of the base is 3 ft and is
increasing at the rate of 3 in/min? (b) How fast is the radius inicreasing when it is 6 ft and the
volume is increasing at the rate of 24 ft’/min?

Let r be the radius of the base, and & the height of the pile at time t. Then

4 S S VRN S av._4 _Ldr
and V=< mr'h=-7ar . So dt—31rr i

h=3r 3 9
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(@) When r=3 and dr/dt =}, dV/dt = 37 ft*/min.
(b) When r==6 and dV/dt =24, dr/dt = 1/27 ft/min.

Ship A is sailing due south at 16 mi/h, and ship B, 32 miles south of A, is sailing due east at
12 mi/h. (a) At what rate are they approaching or separating at the end of 1 h? (b) At the end
of 2 h? (¢) When do they cease to approach each other, and how far apart are they at that
time?

Let A, and B, be the initial positions of the ships, and A, and B, their positions ¢ hours later. Let D

be the distance between them ¢ hours later. Then (see Fig. 16-2)

dD _ 4001 - 512

dr D

(a) When t=1, D =20 and dD/dt = —5.6. They are approaching at 5.6 mi/h.

(b) When t=2, D =24 and dD/dt = 12. They are separating at 12 mi/h.

(¢) They cease to approach each other when dD/dt =0, that is, when ¢t =512/400 = 1.28 h, at which
time they are D =19.2 mi apart.

D*=(32-16:1)> + (121)*  and

A4,
g
A,
2 D
t
s
Be 12¢ B,
Fig. 16-2

Two parallel sides of a rectangle are being lengthened at the rate of 2 in/sec, while the other
two sides are shortened in such a way that the figure remains a rectangle with constant area
A =50 in’>. What is the rate of change of the perimeter P when the length of an increasing side
is (@) 5in? (b) 10in? (¢) What are the dimensions when the perimeter ceases to decrease?

Let x be the length of the sides that are being lengthened, and y the length of the other sides, at
time ¢. Then

dy dx

- ap _ (% ﬁ‘l) — oy = dA _ dy  dx
P=2xty) g =Ag*ta) A=»=0 G=xgtrg=0
(a) When x =5, y =10 and dx/dr =2. Then
dy _ dy dpP _ N A .
5 it +10(2)=0. So ar - 4 and - 2(2—4)=—4in/sec (decreasing)
(b) When x =10, y =5 and dx/dr =2. Then
dy _ dy dP . . .
10 it +5(2)=0. So P 1 and ar 2(2 — 1) = 2 in/sec (increasing)

(c) The perimeter will cease to decrease when dP/dt =0, that is, when dy/dt = ~dx/dt= —2. Then
x(—2) + y(2) =0, and the rectangle is a square of side x =y =5V2in.

The radius of a sphere is r in time ¢ sec. Find the radius when the rates of increase of the
surface area and the radius are numerically equal.
dr ds _ dr

The surface area of the sphere is $ =477 so as =8wr . When — = —, 8nrr =1 and the radius
: /87 i dr dt dr dr
isr= min.
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A weight W is attached to a rope 50 ft long that passes over a pulley at point P, 20 ft above the
ground. The other end of the rope is attached to a truck at a point A, 2 ft above the ground as
shown in Fig. 16-3. If the truck moves off at the rate of 9 ft/sec, how fast is the weight rising
when it is 6 ft above the ground?

P
v b,
g -+
Ew
x Y A
'
s /7 /7 /7 7 7 /S /S 7 77
Fig. 163

Let x denote the distance the weight has been raised, and y the horizontal distance from point A,
where the rope is attached to the truck, to the vertical line passing through the pulley. We must find
dx/dt when dy/dt =9 and x = 6.

Now
2 : 2 dy 30+ x dx
¥y =(30+ x)" - (18) and iy &
30+6 dx L. dx 9
When x =6, y = 18V3 and dy/dt =9. Then 9= T3 4 from which —- = 3 V3 ft/sec.

A light L hangs H ft above a street. An object A ft tall at O, directly under the light, is moved
in a straight line along the street at v ft/sec. Investigate the velocity V of the tip of the shadow
on the street after t sec. (See Fig. 16-4.)

L
H
h
oL ¥t | T
b ¥ -
Fig. 16-4

After t seconds the object has been moved a distance vt. Let y be the distance of the tip of the
shadow from O. Then
y-vt_h _ _Hu _dy  Hv _ 1
y “H ° Y EH-p s Ve cTg R TTTwEY
Thus the velocity of the tip of the shadow is proportional to the velocity of the object, the factor of

proportionality depending upon the ratio h/H. As h— 0, V— v, while as h— H, V increases ever more
rapidly.
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10.

11.

12.

13.

14,

15.

16.

17.

18.

19.

21,

Supplementary Problems

A rectangular trough is 8 ft long, 2 ft across the top, and 4 ft deep. If water flows in at a rate of
2 ft*/min, how fast is the surface rising when the water is 1 ft deep? Ans. } ft/min

A liquid is flowing into a vertical cylindrical tank of radius 6 ft at the rate of 8 ft*/min. How fast is the
surface rising? Ans. 2/9a ft/min

A man 5 ft tall walks at a rate of 4 ft/sec directly away from a street light that is 20 ft above the street.
(a) At what rate is the tip of his shadow moving? (b) At what rate is the length of his shadow
changing? Ans. (a) % ft/sec; (b) % ft/sec

A balloon is rising vertically over a point A on the ground at the rate of 15 ft/sec. A point B on the
ground is level with and 30 ft from A. When the balloon is 40 ft from A, at what rate is its distance from
B changing? Ans. 12 ft/sec

A ladder 20 ft long leans against a house. Find the rates at which (a) the top of the ladder is moving
downward if its foot is 12 ft from the house and moving away at a rate of 2 ft/sec and (b) the slope of the
ladder is decreasing. Ans. (a) 3 ft/sec; (b) 3 per sec

Water is being withdrawn from a conical reservoir 3 ft in radius and 10 ft deep at 4 ft*/min. How fast is
the surface falling when the depth of the water is 6 ft? How fast is the radius of this surface
diminishing? Ans. 100/814 ft/min; 10/27 7 ft/min

A barge, whose deck is 10 ft below the level of a dock, is being drawn in by means of a cable attached to
the deck and passing through a ring on the dock. When the barge is 24 ft away and approaching the dock
at  ft/sec, how fast is the cable being pulled in? (Neglect any sag in the cable.) Ans. 35 ft/sec

A boy is flying a kite at a height of 150 ft. If the kite moves horizontally away from the boy at 20 ft/sec.
how fast is the string being paid out when the kite is 250 ft from him? Ans. 16 ft/sec

One train, starting at 11 A.M., travels east at 45 mi/h while another, starting at noon from the same
point, travels south at 60 mi/h. How fast are they separating at 3p.m.? Ans. 105V2/2 mi/h

A light is at the top of a pole 80 ft high. A ball is dropped at the same height from a point 20 ft from the
light. Assuming that the ball falls according to s = 161>, how fast is the shadow of the ball moving along
the ground 1 sec later? Ans. 200 ft/sec

Ship A is 15 mi east of O and moving west at 20 mi/h; ship B is 60 mi south of O and moving north at
15 mi/h. (a) Are they approaching or separating after 1 h and at what rate? (b) After 3 h? (c) When are
they nearest one another?

Ans. (a) approaching, 115/V'82 mi/h; (b) separating, 9V10/2 mi/h; (¢) 1 h 55 min

Water, at a rate of 10 ft*/min, is pouring into a leaky cistern whose shape is a cone 16 ft deep and 8 ft in
diameter at the top. At the time the water is 12 ft deep, the water level is observed to be rising at
4 in/min. How fast is the water leaking away? Ans. (10 -37) ft*/min

A solution is passing through a conical filter 24 in deep and 16 in across the top, into a cylindrical vessel

of diameter 12 in. At what rate is the level of the solution in the cylinder rising if, when the depth of the

solution in the filter is 12 in, its level is falling at the rate 1 in/min? Ans.  § in/min



Chapter 17

Differentiation of Trigonometric Functions

RADIAN MEASURE. Let s denote the length of an arc AB intercepted by the central angle AOB
on a circle of radius 7, and let S denote the area of the sector AOB (see Fig. 17-1). (If s is 555 of
the circumference, then angle AOB has measure 1°; if s = r, angle AOB has measure 1 radian
(rad). Recall that 1 rad = 180/7 degrees and 1° = 7/180 rad. Thus, 0°= 0 rad; 30° = 7/6 rad;
45° = /4 rad; 180° = 7 rad; and 360° =2 rad.)

Suppose £ AOB is measured as « degrees; then

- =7 ar
| S=1z0 *" and S 360 &' (17.1)
Suppose next that £ AOB is measured as @ radians; then
s=6r and S=16r (17.2)

A comparison of (17.1) and (17.2) will make clear one of the advantages of radian measure.

P(z,¥)

: AN

o r A; 0

Fig. 17-1 Fig. 17-2

TRIGONOMETRIC FUNCTIONS. Let 6 be any real number. Construct the angle whose measure
is @ radians with vertex at the origin of a rectangular coordinate system, and initial side along
the positive x axis (Fig. 17-2). Take P(x, y) on the terminal side of the angle a unit distance
from Q; then sin § = y and cos 8 = x. The domain of definition of both sin § and cos 6 is the set
of real numbers; the range of sin@is —~1=y=1, and the range of cos 8 is ~1=x =1. From

sin 8

tan @ = o5 B and sec § = o5 0

2n—1
2

For both tan 8 and sec 6 the domain of definition (cos@#0) is 8 = =
3,..). It is left as an exercise for the reader to consider the functions

m, (n=1, 2,

cos @ 1
sin @ and csc 6= sin @

Recall that, if 6 is an acute angle of a right triangle ABC (Fig. 17-3), then

cos § = adjacent side _ AC
SO hypotenuse  AB

cotg =

opposite side _ BC

BC _ opposite side  BC
hypotenuse  AB -

sin = adjacent side AC

tan

The slope m of a nonvertical line is equal to tan «, where a is the counterclockwise angle
from the positive x axis to the line. (See Fig. 17-4.)
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Fig. 17-3

S

Fig. 17-4

Table 17-1 lists some standard trigonometric identities, and Table 17-2 contains some useful
values of the trigonometric functions.

Table 17-1

sin® 9 +cos’9=1

sin (—8) = —sin @, cos (—@) =cos @

sin (a + B)=sina cos B + cos a sin B

sin (@ - B3) = sin « cos B — cos a sin B

cos (a + B) = cos a cos B — sin a sin B

cos (@ — B) = cos a cos B + sin a sin B

sin 2a = 2sin a cos a
cos2a=cos’a—sin"a=1-2sina=2cos’a -1

sin (a + 27) =sin a, cos (a +27) =cos a

sin(a + 7)= —sina, cos (a + ) = ~cos a, tan (a + 7) = tan a
. (m o .

S'“(E —a)=cosa, cos(i —a)=sma

sin (7 — a) =sin a, cos (w — a) = —cos a

seca=1+tan’ a

tana +tan 8

tan (a + 8) = 1-tan a tan B
tana —tan 8
1+1tan a tan B8

tan (a — B) =
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Table 17-2
X sin x COS X tan x
0 0 1 0
w6 1/2 V372 V3/3
w4 V22 V2/2 1
w3 V32 1/2 V3
w2 1 0 x
T 0 -1 0
3n/2 -1 0 ®
In Problem 1, we prove that
. sin@
hm = =1

(Had the angle been measured in degrees, the limit would have been 7/180. This is another
reason why radian measure is always used in the calculus.)

DIFFERENTIATION FORMULAS

d | _ d L
14. o (sin x) = cos x 15. p (cos x) = —sin x
d _ 2 i s
16. p (tan x) =sec” x 17. Tx (cot x) = —csc” x
18, L (secx)=secxt 19. 2 (cscx) = —esc x cot
- 7, (secx) =secx tanx el G SC X cot x

(See Problems 2 to 23.)

Solved Problems

. sinf . cosf—1
1. Prove: (a) ‘lil_l;l?) o =1 and (b) Ll_r}(l) =0.
(-8 . in
sm(g ) - %@ we need consider only lim % In Fig. 17-5, let 8 = L AOB be a small
- 00"
positive central angle of a circle of radius OA =1. Denote by C the foot of the perpendicular
dropped from B onto OA, and by D the intersection of OB and an arc of radius OC. Now

Sector COD = ACOB = sector AOB

(a) Since

so that f@cos’0=<isinfcosf=<16
D B
[]
0 C]l |A

OC =cos9, CB =sine

Fig. 17-5
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Dividing by 30 cos 8 >0, we obtain

[y

COSOS%S

cos @
Let 8—0"; then cosO—»l,L—»l,and 1< lim msl;hence, lim sinf _ .
cos 6 a—0* 7] 8—0" o
cos @ —1 . cosf@—1 cosf+1
®) lim =4~ = lim 0 cos @ +1
- cos’ 8 — 1 — lim — sin’ 0
a'—T)O(cosB+1) P O(cos 8 + 1)
_ . Sin@ . sinf (9)_
- };ﬂ 8 elrl—x-'z)cost9+1_ (1)2 =0
2 Derive d (sin x) =cos x
. ive: — (si = .
dx

Let y =sin x. Then y + Ay =sin (x + Ax) and
Ay =sin (x + Ax) — sin x = cos x sin Ax + sin x cos Ax — sin x
= cos x sin Ax + sin x(cos Ax — 1)

d_)j_l. ﬂ_l. ( sinAx cosAx—l)
2= Jim, 3 = Jim, (cosx S wein e S —
Ax cosAx — 1

. sin
=(c li
(cos x) Jim ——

= (cos x)(1) + (sin x)(0) = cos x

+ (sin x) Alimo Ax

3. Derive: dix (cos x) = —sin x.

% (cos x) = % [sin(%r —x)] = —cos(;—T —x) = —sinx

) d
4. Derive: o (tan x) = sec’ x.
i(tanx)_i(sinx)_cosxcosx—sinx(—sinx)
dx dx \cosx/ cos’ x
cos® x +sin’ x 1 )
= 5 = —5— =sec’x
cos’ x cos’ x
In Problems 5 to 12, find the first derivative.
. d ) d .
s. y =sin3x + cos 2x: y' = cos 3x o (3x) —sin 2x e (2x) =3 cos 3x — 2sin 2x
2 s 2.2 d 2 2.2
6. y=tanx": y =sec’ x a(x)=2xsccx
2 2 ’ d 2
7. y=tan x = (tan x)": y =2tanxzx~(tanx)=2tanxscc x
2 l 2 2y d 2 2 2
8. y=cot(l-2x%): y' = —csc (1—2x)a-(1—2x)=4xcsc (1-2x%

3 3 /2
9. y =sec’ VX =sec’ x''%:

123
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10.

11.

12.

13.

14.

15.

16.

17.

DIFFERENTIATION OF TRIGONOMETRIC FUNCTIONS [CHAP. 17

2 172

. 2 / d 3
y' =3sec’ x"' Y=3sec’ x'"?secx'*tanx'’? o (x'"?) = === sec’ VX tan vx

f_ (sec x
dx 2vVx

p = Vcsc 28 = (csc 20)''%:

1/2 i

1 _ 1 .
=3 (csc 28) o (csc20) = ) (csc20) "% (csc 26 cot 20)(2) = — Vs 26 cot 26

f(x) = x*sin x: f'x)=x° % (sin x) + sin x 4 (x*Y=x>cosx + 2xsinx
dx
2 (cosx) - cos x & (x)
coSs x , ¥y O TS X gy x —Xsinx —cosx
=% - S o Zxang

Let y = x sin x; find y".

y' =xcosx+sinx
y'=x(-sinx)+cosx+cosx=—~xsinx+2cosx

"wo__

y"=-xcosx—sinx—2sinx=-~xcosx— 3sinx

Let y =tan’ (3x — 2); find y".
y' =2tan (3x — 2) sec’ (3x —2)-3=6tan (3x — 2) sec’ (3x — 2)
y"=6ftan (3x —2)- 2sec(3x — 2)-sec (3x — 2) tan (3x — 2)- 3 + sec’ (3x — 2) sec’ (3x — 2)- 3]
=36tan® (3x — 2) sec® (3x — 2) + 18sec’ (3x - 2)

Let y =sin (x + y); find y’.

. . . ,_ _cos(x+y)
y'=cos(x+y)-(1+y"), so that T—cos(x )

Let sin y + cos x = 1; find y".

sin x

cosy-y —sinx=0. So yt:cosy

_cosycosx—sinx(—siny):y cosxcosy+sinxsiny:y’
cos® y cos’ y

Then y*

€08 x €Os y + sin x sin y (sin x)/(cos y) _ cos x cos’ y +sin’ x sin y
cos’ y cos’ y

Find f'(w/3), f'(x/3), and f"(ar/3), given f(x) = sin x cos 3x.

f'(x) = —3sin xsin3x + cos 3x cos x
= (cos 3x cos x — sin 3x sin x) — 2 sin x sin 3x
= cos 4x — 2 sin x sin 3x

So fi(mi3)=—-}-2(V3/2)(0)= -}

f(x) = —4sin4x — 2(3 sin x cos 3x + sin 3x cos x)
= —4sin 4x — 2(sin x cos 3x + sin 3x cos x) — 4 sin x cos 3x
= —6sin4x ~ 4f(x)

So f(wi3)=—6(-V3/2) - 4V3/2)(-1) =5V3

f(x)=—24cosdx ~ 4f'(x). So f(mwi3)=-24(-3)-4(—-3)=14
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18.  Find the acute angles of intersection of the curves (1) y =2 sin’ x and (2) y = cos 2x on the
interval 0<x <2. (See Fig. 17-6.)

Fig. 17-6

We solve 2sin’ x = cos 2x = 1 — 2 sin’ x to obtain @/6, 57/6, 7w/6, and 117/6 as the abscissas of
the points of intersection.

Moreover, y' = 4sin x cos x for (1), and y' = —2sin 2x for (2). Hence, at the point /6, the curves
have slopes m, = \/\_3}_ and \/rgz = —V3, respectively.
3+V3 .-
Since tan ¢ = -3 - —V3, the acute angle of intersection is 60°. At each of the remaining

intersection points, the acute angle of intersection is also 60°.

19. A rectangular plot of ground has two adjacent sides along Highways 20 and 32. In the plot is a
small lake, one end of which is 256 ft from Highway 20 and 108 ft from Highway 32 (see Fig.
17-7). Find the length of the shortest straight path which cuts across the plot from one
highway to the other and touches the end of the lake.

Let s be the length of the path, and @ the angle it makes with Highway 32. Then
s=AP+ PB=108cscd +256sec@

ds —108 cos”  + 256 sin” 6
& o _108csc B cot 8 +256sec 8 tan 8 = cos T T ooosn
do sin” @ cos” 6
Now ds/d® =0 when —108cos’ 8 +256sin® 8 =0, or when tan’ 8 =27/64, and the critical value is
@ = arctan 3/4. Then s = 108 csc 8 + 256 sec ¢ = 108(5/3) + 256(5/4) = 500 ft.

B

Highway 20

Highway 82

Fig. 17-7

20. Discuss the curve y = f(x) = 4sin x — 3 cos x on the interval [0, 2r].

When x =0, y = f(0) = 4(0) - 3(1) = —-3.
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Setting f(x) = 0 gives tan x = 3/4, and the x-intercepts are x = 0.64 rad and x = = + 0.64 = 3,78 rad.

f'(x) = 4cosx+3sinx. Setting f'(x) = 0 gives tanx = -—1%, and the critical values are
x=m~093=221 and x =27 - 0.93=5.35.

f'(x)= —4sinx + 3cos x. Setting f"(x) =0 gives tan x = 3/4, and the possible points of inflection
are x =0.64 and x = 7 + 0.64 =3.78.

f"(x) = —4cosx —3sin x. In addition,

1. When x =221, sinx=4/5 and cosx=—3/5; then f"(x)<0, so x =221 yields a relative
maximum of 5. x = 5.35 yields a relative minimum of —35.

2. f"(0.64)#0 and f(3.78) # 0. The points of inflection are (0.64,0) and (3.78, 0).

3. The curve is concave upward from x = 0 to x = 0.64; concave downward from x = 0.64 to 3.78;
and concave upward from x =3.78 to 2. (See Fig. 17-8.)

8]

0] w2 v \ sw2 2%

Fig. 17-8 Fig. 17-9

21.  Four bars of lengths a, b, ¢, and d are hinged together to form a quadrilateral (Fig. 17-9).
Show that its area A is greatest when the opposite angles are supplementary.

Denote by 8 the angle included by the bars of lengths 2 and b, by ¢ the opposite angle, and by h the
length of the diagonal opposite these angles. We are required to maximize

A=labsin@+ ledsin
subject to hl=a*+b*—2abcos6 =c’+d*—~2cdcos ¢

Differentiation with respect to 8 yields, respectively,

dA 1 1 dp Lo , do
dg—zabcos0+zcdcosd>do—0 and absm()-cdsmd)do
We solve for d¢/d6 in the second of these equations and substitute in the first to obtain
absin 0 . S _
abcos()+cdcosd>cdsin¢—0 or sin g cos @ +cos psind =sin(¢p +0)=0

Then ¢ + 6 =0 or =, the first of which is easily rejected.

22. A bombardier is sighting on a target on the ground directly ahead. If the bomber is flying 2 mi
above the ground at 240 mi/h, how fast must the sighting instrument be turning when the
angle between the path of the bomber and the line of sight is 30°?

We have dx/dt = —240 mi/h, 8 = 30°, and x =2 cot 8 in Fig. 17-10. From the last equation,
dx dé

dé dé 3
= — 2 —_— —_— = - — _— [ —Je—
i 2csc” O 7 or 240 2(4) ” so 7 30rad/h 5 degree/sec

23. A ray of light passes through the air with velocity v, from a point P, a units above the surface
of a body of water, to some point O on the surface and then with velocity v, to a point Q, b
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25.

P
N
240 mi/hr al
| B
A 0 |
!
L 8 |b
!
Q
Fig. 17-10 Fig. 17-11

units below the surface (Fig. 17-11). If OP and OQ make angles of 6, and 6, with a
perpendicular to the surface, show that passage from P to Q is most rapid when sin 6,/sin 8, =
v,/v,.

Let ¢ denote the time required for passage from P to Q, and ¢ the distance from A to B; then

asec 9, + b sec ,

and c=atan$, + btané,
v, v,

Differentiating with respect to 6, yields

dt asec@ tan8, btan@6,secd, db, ) , . de,
—_—= + = = + ‘e, =
6, o, o, 6, and O=asec" 6 + bsec” 6, a,

ds, asec’ 6,

From the last equation, —= = — el a. For ¢ to be a minimum, it is necessary that
\ sec” 6,

* do

dt _asec tand, b secd;tand, (_ a sec” 8,)
de, v, v, bsec’ 6,

from which the required relation follows.

Supplementary Problems

. . . .3
sin 2x . sin2x . sinax . sin” 2x
=2 lim ; (b) lim — s (¢) im ————.
x—0 2X x—0 Sin bx x—0 xsin” 3x

Evaluate: (a) lirr(l)

Ans. (a) 2; (b) a/b; (c) 8/9

. . L . 0! 1 .
Derive differentiation formula 17, using first (a) cot u = Zi ¥ and then (b) cotu = ona Also derive

differentiation formulas 18 and 19. nu

In Problems 26 to 45, find the derivative dy/dx or dp/d®.

26.

28.

30.

32.

33.

y =3sin2x Ans. 6cos2x 27. y=4cos 3x Ans. —2sin ix

y = 4 tan 5x Ans. 20sec’5x 29, y=1cot8x Ans. —2csc’ 8x
y=9sec ix Ans. 3sec ixtan ix 31 y=1cscdx Ans. —cscéx cot dx
y=sinx—xcosx+x’+4x+3 Ans. xsinx+2x+4

p=Vsin@ Ans. (cos 8)/(2Vsin 0) 3. y=sin2/x Ans. (—2cos2/x)/x’
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3s.

37.

39.

41.

42,

43.

47.

49.

50.

51,

52.
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y=cos (Il -x%) Ans. 2xsin (1 —x%)
y=cos{l—x)’ Ans. 2(1—x)sin (1 —x)*
y=sin’ (3x - 2) Ans. 3sin (6x — 4)
y=sin’ (2x - 3) Ans. 3 {cos (6x —9) — cos (2x — 3)}
y = §tanxsin2x Ans. sin2x
1 —3sec26 tan 20

p= (secT—l_)”_ Ans. W

tan 26 sec’ 26 — 4 csc 46
P =T cot26 Ame 2 T oy
y =x°sinx + 2x cos x — 2sin x Ans. x"cosx
sin y = cos 2x Ans.  —2sin2x/cos y
cos 3y =tan 2x Ans.  —2sec’ 2x/3sin 3y
xcos y = sin (x + y) Ans. cos y —cos (x + y)

xsin y + cos (x + y)
2 2n

d s d
If x = Asin kt + B cos ki for A, B, and k constants, show that E? = —k“x and Tzf =(-1)"k""x.

Show: (@) y" + 4y =0 when y =3sin (2x +3); (b) y"+y"+y'+ y=0 when y =sin x + 2 cos x.

Discuss and sketch on the interval 0= x <24r:
(a) y = !sin2x (b) y =cos’ x —cos x (¢) y=x-2sinx
(d) v=sinx (1 + cosx) () y=4dcos’ x —3cosx

Ans.  (a) maximum at x = w/4, S#/4; minimum at x = 3w/4, 7n/4; inflection point at x =0, #/2, m,

3w/2

() maximum at x =0, 7; minimum at x = #/3, 5#/3,; inflection point at x = 32°32’, 126°23’,
233737, 327°28’

(¢} maximum at x = 57/3; minimum at x = #/3; inflection point at x =0, =

(d) maximum at x = 7/3; minimum at x = 5=#/3; inflection point at x =0, =, 104°29’, 255°31"

(e) maximum at x =0, 27/3, 47/3;, minimum at x = w/3, 7, 57/3; inflection point at x = 7/2,
3n/2, wl6, S7/6, Tm/6, 11w/6

If the angle of elevation of the sun is 45° and is decreasing at § rad/h, how fast is the shadow cast on
level ground by a pole 50 ft tall lengthening? Ans. 25ft/h

A kite, 120 ft above the ground, is moving horizontally at the rate of 10 ft/sec. At what rate is the
inclination of the string to the horizontal diminishing when 240 ft of string are paid out?

Ans. % rad/sec

A revolving beacon is situated 3600 ft off a straight shore. If the beacon turns at 47 rad/min, how fast
does the beam sweep along the shore at (a) its nearest point, (b) at a point 4800 ft from the nearest
point? Ans.  (a) 2407 ft/sec; (b) 20007r/3 ft/sec

Two sides of a triangle are 15 and 20 ft long, respectively. (@) How fast is the third side increasing if the
angle between the given sides is 60° and is increasing at the rate 2°/sec? () How fast is the area
increasing? Ans. (@) m/V39 ft/sec; (b) i ft’/sec



Chapter 18

Differentiation of Inverse Trigonometric Functions

THE INVERSE TRIGONOMETRIC FUNCTIONS.

If x =sin y, the inverse function is written

y = arcsin x. (An alternative notation is y =sin~' x.) The domain of arcsinx is —1<x=<1,
which is the range of sin y. The range of arcsin x is the set of real numbers, which is the domain
of sin y. The domain and range of the remaining inverse trigonometric functions may be

established in a similar manner.

The inverse trigonometric functions are multivalued. In order that there be agreement on
separating the graph into single-valued arcs, we define in Table 18-1 one such arc (called the
principal branch) for each function. In Fig. 18-1, the principal branches are indicated by a

thicker curve.

Table 18-1

Principal Branch

Function
y = arcsin x
¥ = arccos x

y = arctan x
y = arccot x
y = arcsec x
y = arcesc x

—rsSy<-inm 0sy<iw
—T<ys-im 0<ysin

y = arcsin x

DIFFERENTIATION FORMULAS
1

1-x

d .
20. p (arcsin x) =

2

d 1
22. pp (arctan x) = 7 1

1

xVxi -1

d
24, T (arcsec x) =

+—r

y = arccos x

y = arctan x

Fig. 18-]

d 1
21 pe (arccos x) = — —
d 1
23. e (arccot x) = — T+ 2
1

d
25. p (arccsc x) = —

xVxi-1
129
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Solved Problems

1 d
1. Derive: (a) dix (arcsin ¥) = = (b) - (arcsec ) = +1
- X xXVx —

(a) Let y = arcsin x. Then x =sin y and
I N RO ) A d_ T2
1= [ (x)= 7 (smy)—dy(smy) I - oSy I-x

. dy 1
. . . . - : _1 < 1 — =
the sign being positive since cos y =0 on the interval — ;7 =y =< ;7. Thus, ! Viee

(b) Let y = arcsec x. Then x =sec y and

4 n-4 -4 dy _ Y _ VNI
l-dx(x)—dx(secy)—dy(secy)dx—secytanydx—x X 1dx

the sign being positive since tan y =0 on the intervals 0=y <jim and —w <y < —3}m Thus,

— (arcsec x) = ———.
dx V-1

In Problems 2 to 8, find the first derivative.

. dy 1 d 1
2. = arcsin (2x — 3): et A AUy (, YO |
Y ( ) dx \/1—(2x—3)2dx(x ) 3x-x'-2
dy 1 d 2x
3. = arccos x°: L= = (Y= —
Y & Vi & T T
= 2, y_ 1 6x
4. y = arctan 3x”: pr d.x( x%) = Tor
1+
5. f(x) = arccot =
"(x) = — 1 d (1+xy__ 1 A-x-(+x-1n _ 1
f(x) l+x)2dx(1—x) (1+X)Z (l_x)z = 1+ %2
1+ T 1+ —

. X
6. flx)=xV a’ — x* + a’ arcsin pr

' [ 1fn2 23172 2 2\1/2 2 1 1_\/:_2
fx)=xli(@a —x7) "(~20)]+(@ ~x) " +a \/___———1—_-(:/—‘1)-2-“—2 a —x

7. y=x arccsc -+Vli

~1 i(_ 14d 101 = 2) M2 (—20) = 1
\/—— pe +arccscx P (x)+3(-x7) ¥ 2x)—arccsc’r
2

8 ——l—rtn<2tn)'
. y——abaca aax.
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(bt )]- b
Ztanx) |= = 5———5— = sec’x
a ab a* + b*tan’ x a

S
]
2
o
—
+
——
|
-
0
=
=
——
~
Bl

_ sec’x 1
a’+b'tan’x  a’cos’ x + bsin’ x

9. y’sinx+ y=arctan x; find y".

2yy’sinx+ y’cosx +y' = 3

1+x

,_1-Q +x%)y* cos x
Y S 0+ )@2ysinx + 1)

Hence, y'(2ysinx +1) = s —y’cosx  and

1+x

10.  In a circular arena (Fig. 18-2) there is a light at L. A boy starting from B runs at the rate of
10 ft/sec toward the center O. At what rate will his shadow be moving along the side when he
is halfway from B to O?

Let P, a point x feet from B, be the position of the boy at time ; denote by r the radius of the arena,
by @ the angle OLP, and by s the arc intercepted by 6. Then s = r(26), and 6 = arctan OP/LO =
arctan (r — x)/r. Hence,

ds do 1 (_ 1) dx -2r° dx

P ek pn T yn L W) il ey s

When x = {r and dx/dr = 10, ds/dt = ~16 ft/sec. The shadow is moving along the wall at 16 ft/sec.

Fig. 18-2 Fig. 18-3

11.  The lower edge of a mural, 12 ft high, is 6 ft above an observer’s eyes. Under the assumption
that the most favorable view is obtained when the angle subtended by the mural at the eye is a
maximum, at what distance from the wall should the observer stand?

Let 8 denote the subtended angle, and x the distance from the wall. From Fig. 18-3, tan (6 + ¢) =
18/x, tan ¢ = 6x, and
tan(6 + ¢)~tand _ 18/x-6/x _ 12x
1+tan(60+ @)tan¢ 1+ (18/x)(6/x) x> + 108

Then 6 = arctan —22%_ and 98 = _ 12(=x" +108)
X108 " dx X" +360x + 11,664
observer should stand 10.4 ft in front of the wall.

tan 8 =tan[(6 + ¢) — @] =

The critical value is x =6V3~10.4. The
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12.

In

13.

15.

17.

18.

19,

21,

22,
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Supplementary Problems

Derive differentiation formulas 21, 22, 23, and 25.

Problems 13 to 20, find dy/dx.

3 1
= arcsin 3x Ans. ———= 14, y = arccos 3x Ans. - =
Y Vi-ox ’ 4-x
= arct 3 Ans. — 3 16 = arcsin (x — 1) Ans L
y = arctan ~ . 759 . y RV,
s 2 1
y = x" arccos 2/x Ans. 2x{arccos — + —= )
* x -4
2
=X _arcsin = Ans ad
y PR a T @ -x)"
y=(x-a)VZax—x2+a2arcsinx;a Ans. 2V2ax - x*
= x2_4+1 rcsec’E Ans _ 5 _
YT 2° 2 T oxXVxi-4

A light is to be placed directly above the center of a circular plot of radius 30 ft, at such a height that the
edge of the plot will get maximum illumination. Find the height if the intensity at any point on the edge
is directly proportional to the cosine of the angle of incidence (angle between the ray of light and the
vertical) and inversely proportional to the square of the distance from the source. (Hint: Let x be the
required height, y the distance from the light to a point on the edge, and 8 the angle of incidence. Then

[=k S0 ) Ans. 15Vt

y‘ - (xz+900)3/2

Two ships sail from A at the same time. One sails south at 15 mi/h; the other sails east at 25 mi/h for 1 h
and then turns north. Find the rate of rotation of the line joining them after 3 h. Ans. & rad/h



Chapter 19

Differentiation of Exponential
and Logarithmic Functions

DEFINE THE NUMBER ¢ by the equation

e= lim

Then e also can be represented by ll(in(\) (1+ k)"

1 1

1
e=1+1++—=+-+ —+-

21 3! n!

1)”
lim (1+ :

. In addition, it can be shown that

--=2.71828 . ..

The number e will serve as a base for the natural logarithm function (See Problem 1.)

LOGARITHMIC FUNCTIONS. Assume a >0 and a # 1. If a” = x, then define y = log, x. Another

definition of log, x will be given in Chapter 40.

NOTATION. Let Inx =log, x. (Then In x is called the natural logarithm of x.) See also Fig. 19-1.

Let log x =log,, x.

The domain of log, x is x > 0; the range is the set of real numbers.

o 0 z
y=Inz y=e= y=e=
Fig. 19-1
DIFFERENTIATION FORMULAS
26. dix(]ogax)=%logae,a>0,a#l 27. %(lnx)=%
28. dix (a")=da"lna, a>0 29. dix (e')=¢"

(See Problems 2 to 17.)

LOGARITHMIC DIFFERENTIATION.

If a differentiable function y = f(x) is the product and/or

quotient of several factors, the process of differentiation may be simplified by taking the natural

133
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logarithm of the function before differentiation. This amounts to using the formula

d d
30. S =y (ny)
(See Problems 18 and 19.)

BASIC PROPERTIES OF LOGARITHMS
Property 19.1: log, 1 =0 (In particular, In1=20.)
Property 19.2: log a =1 (In particular, Ine=1.)
Property 19.3: log, uv =log, u +log, v
Property 19.4: log, % = log, u — log, v
Property 19.5: log, u" = rlog, u

Solved Problems

l n
1. Verify: 2 < lim (1+ ;) <3.

n—+x

By the binomial theorem, for n a positive integer,

(4] o S () oD (1) et o

l+1+(l—%)%+(l—i—)(l—%)3—1!+...+(1_}1)(1_%).”(1_n;1)% o

1 n
Czlearly. for every value of n # 1, (1 + ,—') > 2. Also, if in (I) each difference (1 - %)
1- ’—1) ... is replaced by the larger number 1, we have

Ii

1)" 1 1 1
(l+; <2+i+§+ . +n—!

<2+1+.!_+i+...+ 1 (sinccl<L)
2727 27! n o2

<3 (sincel+i+l+...+_l_<1)
2 22 23 zn‘l
Hence, 2<(1+ %) < 3.

Let n— =« through positive integer values; then

ol (-2)0-2) (- %) 5 —4
1 n—*l,l n—>],..., and 1—’—l 1—; 1—; F_’F
This suggests that lim <1+l)n~1+1+l+l+-~+l+---—271828
88 RS nl = 21 " 31 k! e

. d 1 d 1
2, Derive P (log, x) = p log, e and ax (Inx)= P
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Let y =log, x. Then
y + Ay =log, (x + Ax)

+ A
=log, (x + Ax) — log, x =log, X—XA—{ = log, (] + Tx)

1 x/Ax
y_ L 1og,,(1 + %) ==X loga(l + f‘x—") 1og,,(1 + ﬁ)

Ax  Ax x Ax
dy B l ( A—x)x/Ax B l [ ( Ax)x/.sx] N l
and I x Al:r_r}ﬂ log, |1+ =2 log, Al}f'—r-l() 1+ T =3 log, e

Whena=¢,log, e=log, e=1 and—(lnx)——

In Problems 3 to 9, find the first derivative.

dy 1 d 2 6x

— 2 _ gy = _ &y =

3. y=log, (3x" =5): , 3x2_5(10gae) i (3x° - 5) 3x2—510g"e
_ 2 _ : dy _, _1 2

4. y=In(x+3) =2In(x+3): =273 ! (x+3)= 3

5. y=In"(x+3):

1 d +
y’=2ln(x+3)%[1n(x+3)]=21n(x+3);_—3~ = (x+3)= ?]—"x(—i3—3)

6. y=In(’+2)(x*+3)=In(x’+2)+1In(x*+3):

:__l_i 3 _‘l_i 2 __i 2x
y T Y42 dx(x +2)+x2+3 dx(x +3)—x3+2+x2+3
x4
7. f(x)=ln———==Inx'-InGx—4)’=4Inx—2In(3x —4):
B3x—4)
y=al Ly b 45 46
f(x)_4xdx(x) 234 & (% D= "33
1 cos3x
. = Insi : T=— =3cot3
8 y = Insin 3x Y= Gn3% 4 (sm3x) 3 T 3x cot 3x
9. y=ln(x+V1+x2):
1A+ X)) T2x) 1+x(1+x7) VP (X))
T+ (1+)TT T x+ (T A+ Vil
d .
10. Denve——(a )= (ln a)a" and (e =e.
Lety=a.Thenlny=x1naand
a _ldy @ _ -
dx(lny)—ydx—lna or dx-—ylna—a Ina

Whena=e¢,Ina=Ine=1 and we havegx—(e‘)=e‘.

In Problems 11 to 15, find the first derivative.
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TS P —ixi(_l )=_1 b
11. y=e y=e -5 5 €
x2 Zd
12. y=e¢e": y' =¢e a;(xz)=2xe"2
kres 3x? d 2 3x?
13. y=a : y'=a*(lna) Zx (3x°)=6xa" Ina
14 = x’3% o4 3‘)+3’ri 2)=x"3"In3 +32xr=x3*(xIn3+2
. y : y—xdx( dx(x)—x n x=x3"(xIn3+2)
ax ax d ax atr ax ax d ax ax
e — e (e +e )a(e —e “)—(e" —e )a;(e +e ™)
15. = oy T= =
y e +e y (eax+e a1)2

_ (eﬂ.l + e ax )(a)(eax + e uz) — (eﬂl —_ e ﬂl’)(a)(edl — e—ﬂ,l)
(eax + e~ax)2
(e2ux +2+(.’ ZaX)_(eZax_2+e»2ax) B 4a
(enx+e7a!)2 (eax+e—nx)2

16. Find y", given y=¢ "Inx.

r__ X d d -x _e_"' -x _ B
y'=e dx(lnx)+|nxdx(e )= T ¢ Inx = y
d . )
"=._r3;(e )-e dx(X)_ e S S —x(ZJ,L_l )
y e y e T te lnx=—e{ T+ 5 -Inx

17.  Find y”, given y = e **sin3x.
y=e % (sin 3x) + sin 3x % (e )=3e * cos3x —2e *sin3x = 3¢™ ™ cos3x — 2y

2x

e d d e
y'=3e dx(cosBx)+3cos3x dx(e ) -2y

2

= —9¢ *sin3x — 6 ** cos 3x — 2(3e”** cos 3x — 2¢** sin 3x)

= —e *(12 cos 3x + 5sin 3x)
In Problems 18 and 19, use logarithmic differentiation to find the first derivative.

8. y=("+2)0-x
Iny=In(x’+2)'(1-x")"=3In(x* +2) +4In (1 - x")

,=i 2 U (L2 3_34’6"__12:)
y ydx[3ln(x +2)+4In(1-x)}=(x"+2)(1 x)(x2+2 o

=6x(x> +2)(1 - X*)’(1 — 4x — 3x¢°)

x(1-x)

19. =S,
y (1 +x‘)‘ N
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ny=lnx+2In(1-x)~4$in(1+x%)
x(l~x2)2(l_ 4x x )__ (1-x  a’(-x) XFu-xy)

[

TA+a)7\x T 12 1+ a+HT 1+ (+28)?
_(1-5x —4x*)(1 - x%)
- (1+x2)3-’2

20. Locate (a) the relative maximum and minimum points and (b) the points of inflection of the
curve y = f(x) = x%" (Fig. 19-2).
fi(x) =2xe" + x’¢" = xe"(2 + x)
fix)=2e" +axe" + x'e* =" (2 +4x + X°)
f(x) = 6" + 6xe* + x’e* = ¢&*(6 + 6x + x°*)
(a) Solving f'(x) =0 gives the critical values x =0 and x = —2. Then f"(0) >0; so (0,0) is a relative
minimum point. Also, f(—2)<0; so (-2, 4/¢€%) is a relative maxim;xm point. _
(b) Solving f"(x) =0 gives possible points of inflection at x = ~2* V2. Since f"(-2-V2)#0 and
f"(~2+ VZ)#0, the points at x = —2 = V2 are points of inflection.

y ]

_[\L(/x /\
—2-v2 -2 -2+V2

—Vaies O] yvze %

Fig. 19-2 Fig. 19-3

21.  Discuss the probability curve y = ae ", a>0 (Fig. 19-3).

The curve lies entirely above the x axis, since e ™ >0forallx. Asx— ==, y— 0; hence the x axis
is a horizontal asymptote.

The first two derivatives are
y'=-2abxe™™™  and v =2ab’(2b°x7 - 1)e * T

When y'=0. x =0, and when x =0, y"<0. Hence the point (0, a) is a maximum point of the curve.
When y“ =0, 2b°x” — 1 = 0. yielding x = =V2/2b as possible points of inflection. We have:

-V2i2b VZi2b
[ O .
y'>0 ' 3" <0 ' 3> 0
concave up i concave down : concave up

1

Hence the points (=V32/2b.ae”' *) are points of inflection.

22. The equilibrium constant K of a balanced chemical reaction changes with the absolute
temperature T according to K = Kye 97770 Tol "where K,. q, and T, are constants. Find the

percentage rate of change of K per degree of change of T.

I 100 dK d In K
The percentage rate of change of K per degree of change of T is given by i 100 pr (In K).
Then.
- 1 T-T, d - _100g 3%
an_an"_iq_TuT and lOOd—T(an)" 3T i
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23.  Discuss the damped-vibration curve y = f(t) = e ¥ sin 2mt.
When t =0, y =0. The y intercept is thus 0.
When y =0, we have sin27¢t=0and r=...,—-3, -1, -4, 0, }, 1, 2,.... These are the ¢
intercepts.
Whent=...,—2, -3, 1 % ..., we have sin2mr=1 and y=e'5‘. When¢=..., -2, -1 3,
i,....,wehavesin2mt=—-landy= —e"!'. The given curve oscillates between the two curves y = e'i'

and y = —e'i', touching them at these points, as shown in Fig. 19-4.

Differentiation yields

y' = f(t)= e ¥(2m cos 2t — 1 sin 2mr)

Y= f(0y = e ¥[(3 — 4n?) sin 2 — 27 cos 2]
When y.’ =0, then 2w cos2mt — §sin2mwt =0; that is, tan2wt=47. If 1= £=0.237 is the smallest
positive angle satisfying this relation, then r=... 6 §—3, &1, é— L, & £+ 1%, ¢+1,... are the
critical values.

n+1
Forn=0,1,2,..., f(£* in) and f"(g: >

f"(g * n_;_-_2) have the same sign; hence, the critical values yield alternate maximum and minimum
points of the curve. These points are slightly to the left of the points of contact with the curves y = e~ b
and y = ~e ¥
When y"=0, tan2#xt=

) have opposite signs, whereas f"(¢ * {n) and

27 87
1/4—dm® 1-16m>
satisfying this relation, then t=...,n~1, -4, n, n+3i, n+1,... are the possible points of
inflection. These points, located slightly to the left of the points of intersection of the curve and the ¢
axis, are points of inflection.

If t=%=0.475 is the smallest positive angle

24, The equation 5 = ce ® sin (kt + @), where c, b, k, and 8 are constants, represents damped
vibratory motion. Show that a = —2bv — (k> + b”)s, where v = ds/dt and a = dv/dt.

ds

v= = ce "'[—bsin (kt + 0) + k cos (kt + 8)]
a= %%= ce "[(b® — k7)sin (kt + 8) — 2bk cos (kt + 0))

=ce "{—2b[~bsin (kt + 8) + k cos (kt + 8)] — (K> + b7} sin (kt + 6)}
= -2bv — (k* + b*)s

Supplementary Problems

In Problems 25 to 35, find dy/dx.

25, y=In(4x-5) Ans. 4/(4x~5) 26, y=InV3i-x’ Ans. x/(x*—3)
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27, y=In3x’ Ans. Six

8. y=In@x*+x-1) Ans. (6x+3)/(x*+x-1)

29, y=x-lnx-x Ans. Inx

30. y = In (sec x + tan x) Ans. secx

31. y =In(In tan x) Ans. 2/(sin2xIntan x)

2. y=(nx)/x’ Ans. (2-4Inx)/x’

33, y=ix'(lnx-1) Ans. x‘Inx

k” 3 y = x[sin (In x) — cos (In x)] Ans. 2sin(Inx)

35.  y=xIn(4+x’)+4arctan ix - 2x Ans. In(4+x%)

36. Find the equation of the line tangent to y = In x at any one of its points (x,, y,). Use the y intercept of
the tangent line to obtain a simple construction for the tangent line.

Ans. y—yo=(1/x,)(x — x,)

37. Discuss and sketch: y = x* In x. Ans. minimum at x = 1/Vv¢; inflection point at x =1/¢*"*

38. Show that the angle of intersection of the curves y =In(x —2) and y = x’ —4x +3 at the point (3,0} is
¢ = arctan 1.

In Problems 39 to 46, find dy/dx.

9. y=¢~ Ans. Se™* 4. y=e° Ans. 3x%

41,  y=etn Ans. 3e*" > cos3x 42. y=37" Ans. —2x(37" In3)
43. y=e "cosx Ans. —e "(cos x + sin x) 4. y = arcsin e” Ans. eV 1-—e™
45, y = tan® ¢** Ans. 6e’* tan e** sec’ e** 46. y=¢e" Ans. ™

47. If y = x%¢", show that y” = (x* + 6x + 6)e".

48. If y = e **(sin 2x + cos 2x), show that y” + 4y’ + 8y =0,

2
x

49. Discuss and sketch: (a) y = x%¢ ™" and (b) y = x%e *.
Ans. (@) maximum at x = 2; minimum at x = 0; inflection points at x =2 + V2

(b) maximum at x = £1; minimum at x = 0; inflection points at x = =1.51, x = =0.47

50. Find the rectangle of maximum area, having one edge along the x axis, under the curve y = e . (Hint:
A=2xy= 2xe™*, where P(x, y) is a vertex of the rectangle on the curve.) Ans. A=V2e

51. Show that the curves y =e”* and y =ée™ cosax are tangent at the points for which x =2nw/a
(n=1,2,3,...), and that the curves y = e “*/a* and y = ¢"* cos ax are mutually perpendicular at the

same points.
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52. For the curve y = xe®, show (a) (-1, —1/e) is a relative minimum point, (b) (-2, —2/¢%) is a point of
inflection, and (c) the curve is concave downward to the left of the point of inflection, and concave
upward to the right of it.

In Problems 53 to 56, use logarithmic differentiation to find dy/dx.

53. y=x" Ans. x"(1+Inx)
54. y=x’¢"cos3x Ans. x’¢** cos 3x(2/x + 2 — 3tan 3x)
§5. y=x"" Ans. 2x""* Vinx
. -x2
56. y=x' Ans. e "x* "(1/x - 2x1nx)
dn xN X, d’l n-1 — (n_l)'
57. Show (a) Py (xe*) =(x + n)e*; (b) i (x"""Inx)= —



Chapter 20

Differentiation of Hyperbolic Functions

DEFINITIONS OF HYPERBOLIC FUNCTIONS. For x any real number, except where noted, the
hyperbolic functions are defined as

X —-X x -x
e —e 1 e +e
sinh x = coth x = = -, x#0
2 tanhx e —¢e™
h ete’ sech x L 2
cosh x = = = —
2 coshx e +e”
sinhx e —e” 1 2
tanh x = = csch x = — = — —, x#0

sinhx ¢ —e

DIFFERENTIATION FORMULAS

31. dix (sinh x) = cosh x 32. ad; (cosh x) = sinh x
33 4 (tanh x) = sech’ x 34 4 (coth x) = —csch® x
Codx Todx
35. 4 (sech x) = —sech x tanh x 36. L (csch x) = —csch x coth x
dx dx

(See Problems 1 to 12.)

DEFINITIONS OF INVERSE HYPERBOLIC FUNCTIONS

- 5 B +
sinh ' x=In(x+V1+x*) forallx coth'xz%lnf_—i, x1>1
+ V1= 42
cosh ' x=In(x+Vx*-1), x=1 sech_1x=ln-1———x1——x—, O<x=1l
, 1+ _ Vi+x?
tanh ' x=1ln—> , x*<1 csch’x=|n(l+ 1 x)’ x#0
1-x X ||
(Only principal values of cosh™' x and sech™' x are included here.)
DIFFERENTIATION FORMULAS
d .. 1 d o 1
37. ——(sinh™ x)= 38. — (cosh™ " x)= ,x>1
dx( ) Vi+x? dx( ) x’ =1
d -1 _ 1 2 1 2
39. E(tanh x)—l_xz,x<l 40. -d;(coth )c)=1_x2 x >1
d -1 '—1 d -1 _1
41. ~——(sech  x)= , 0<x<1 42. —(csch” x)= ———=, x #0
dx xV1-x? dx [x[V1+ x

(See Problems 13 to 19.)
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Solved Problems

1. Prove that cosh® u —sinh® u = 1.

. . PN w w2 B .
cosh‘u—sinh‘u=<e 2e )~<e 2e )=§(62"+2+e‘")—%(6’2"—2+8—"")=1

d
2.  Derive o (sinh x) = cosh x.

e’—e")_e'+e

d . _d B
a(smhx)—d—x( 3 3 = cosh x

In Problems 3 to 10, find dy/dx.

e . dy _ 4 2.

3. y=sinh3x: dx—cosh3x dx(3x)—3cosh3x
d . d .
4. y=cosh ix: z{ =sinh {x o (ix)=1sinh ix
5. y=tanh(1+x"): d—X=sech2(l+x2)i(l+x2):2xsech2(1+x2)
’ dx dx

e dy 2111(1)_1 ) 1

6. y—colhx. 2y = oseht - g =z csch®

dy _ _d_ 2 2 i _ o 2 2 2
x5 (sech x”) + sech x P (x) = x(—sech x” tanh x*)2x + sech x

= —2x" sech x” tanh x* + sech x*
8. y=csch’ (x*+1):
dy _ 2 d 2 _ 2 2 2
— =2c¢sch(x” +1) e fesch (x* + 1)] = 2 csch (x° + 1)[—csch (x* + 1) coth (x” + 1} - 2x]

dx
= —4x csch” (x* + 1) coth (x* + 1)

9. y=1sinh2x— jx: %=;1(cosh2x)2—-;=-;(cosh2x-1)=sinh2x
It . dy 1 ech? 2y = 2 -
10. y=Intanh2x: dx = tanb 2x (2sech® 2x) = Sinh ax cosh2x - 4 csch 4x

11.  Find the coordinates of the minimum point of the catenary y = a cosh '-;-.

—x’a

)=+ (asinh %) =sinh £ vy = Leosn ¥ =1 € TE
f'(x)= ; a sinh - = sinh p and f'(x)= a cosh P 5
When f'(x) = ¢ _2 =0, x =0; and f"(0) > 0. Hence, the point (0, a} is the minimum point.

12.  Examine (a) y =sinh x, (b) y = cosh x, and (c) y = tanh x for points of inflection.
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(a) f'(x)=coshx, f(x)=sinh x, and f"(x) = cosh x.
f"(x) =sinh x =0 when x =0, and f"(0) # 0. Hence, the point (0,0) is a point of inflection.
(b) f'(x)=sinh x, and f"(x) = cosh x # 0 for all values of x. There is no point of inflection.
, ) sinh x " 4sinh® x — 2
(¢) f'(x)=sech’ x, f"(x) = —2sech® xtanh x = -2 o x’ and f"(x) = RS

f"(x) =0 when x =0, and f"(0) # 0. The point (0,0) is a point of inflection.

13.  Derive: (a) sinh™' x=In(x + Vx* + 1), for all x
- o1 1+V1-x*
(b) sech™ x =cosh™" S = ——— for0<x=1
(a) Let sinh™' x = y; then x =sinh y = }(e” — ¢7?) or, after multiplication by 2¢’, e* —2xe’ —1=0.
Solving for e” yields e’ = x + Vx® + 1, since ¢” >0. Thus, y =In (x + Vx* + 1).

_ 1 1 _
(b) Let sech™ x=y; then x =sech y = » 50 cosh y = . Hence y = cosh ! . =sech™' x. Also,

2 cosh y
x =sech y = ———, from which eZx—2e” +x=0.
s 1+V1-4 1+V1I- 4
Solving for e’ yields e’ = - for y=0. Thus, y =In — O<x=1.

d -1 1
14. Derive — (sinh™ x) = ————.
dx V1+x?
. : . N d
Let y =sinh ™' x. Then sinh y = x and differentiation yields cosh y d—i =1; so
dy 1 1 1

dc “coshy itsimhiy Vitx
In Problems 15 to 19, find dy/dx.

- dy
15. = sinh 13x: —_— = = — (3x) = ——
Y dx  \/(3x)* +1 & 0 Vox® +1

16. y=cosh™'e¢": Zx—y=ﬁ%(81)=_—eit—_l
17.  y=2tanh ' (tan ix): % =2C talnz e % (tan ix)
=2 1_—_talnz—%x_ (sec® 1x)(1) = i—i—e%-%isecx
18.  y=coth™ J—IC: % N 1_—_(11/—1:)2 % (i) - 1_—11/7;’ - xz_-ll
19. y=sech ' (cosx): %zﬁ %(COSX)Z#V;YT&:SCCX

Supplementary Problems

20. (a) Sketch the curves of y = ¢” and y = —e™*, and average the ordinates of the two curves for various
values of x to obtain points on y = sinh x. Complete the curve.
(b) Proceed as in (a), using y = ¢” and y = ¢~ * to obtain the graph of y = cosh x.
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21. For the hyperbola x* — y* =1 in Fig. 20-1, show that (@) P(cosh u, sinh 1) is a point on the hyperbola;
(b) the tangent line at A intersects the line OP at T(1, tanh u).

Fig. 20-1

22, Show: (a) sinh (x + y) = sinh x cosh y + cosh x sinh y
(b) cosh (x + y) = cosh x cosh y + sinh x sinh y
(¢) sinh 2x = 2 sinh x cosh x
(d) cosh 2x = cosh® x +sinh®* x = 2cosh® x — 1 =2sinh® x + 1

2 tanh x
(e) tanh 2x = m

In Problems 23 to 28. find dy/dx.

23.  y=sinh lx Ans. %cosh lx 24.  y=cosh’3x Ans. 3sinh6x
y =tanh 2x Ans. 2sech’2x 26. y =Incosh x Ans. tanhx
27. y = arc tansinh x Ans. sechx 28. y =InVtanh 2x Ans.  2csch 4x

1 3
29, Show: (a) If y = a cosh g. then y" = . Vi+(y'Y).
{(b) 1f y = A cosh bx + B sinh bx, where b, A, and B are constants, then y” = b’y.

5 1+ -
30. Show: (a) cosh 'u=In(u+Vu —1), u=1, and (b) tanh 'u="!1n ﬁ u <1.

31 (@) Trace the curve y =sinh ™' x by reflecting the curve y =sinh x in the 45° line.
{(b) Trace the principal branch of y = cosh ' x by reflecting the right half of y = cosh x in the 45° line.

32. Derive differentiation formulas 32 to 36, 38 to 40, and 42.

In Problems 33 to 36, find dy/dx.

. 1 a1 1
33. y =sinh ' lx Ans. = 34. y=cosh™' = Ans. - =
x +4 X V1 —x°
35. y = tanh "' (sin x) Ans. secx
36. x=asech™’ Y a’ -y Ans. - Y

a a’—y*



Chapter 21

Parametric Representation of Curves

PARAMETRIC EQUATIONS. If the coordinates (x, y) of a point P on a curve are given as
functions x = f(u), y = g(u) of a third variable or parameter u, the equations x = f(u) and
y = g(u) are called parametric equations of the curve.

EXAMPLE 1: (a) x =cos 6, y =4sin’ @ are parametric equations, with parameter 6, of the parabola
4x’ +y =4, since 4x> + y =4cos’ § + 4sin’ 6 = 4.
(b) x = 11, y =4 — ¢* is another parametric representation, with parameter 1, of the same curve.

It should be noted that the first set of parametric equations represents only a portion of the parabola
(Fig. 21-1(a)), whereas the second represents the entire curve (Fig. 21-1(5)).

b

Fig. 21-1

EXAMPLE 2: (a) The equations x = r cos 6, y = r sin 8 represent the circle of radius r with center at the
origin, since x* + y* = r? cos® @ + r*sin” @ = r’(cos’ @ + sin’ #) = r>. The parameter 8 can be thought of as
the angle from the positive x axis to the segment from the origin to the point P on the circle (Fig. 21-2).
(b) The equations x = a + rcos 6, y = b + r sin 8 represent the circle of radius r with center at (a, b), since
(x—a)’+(y—b) =r>cos’ 8+ r’sin’ 8 = r’(cos* 8 +sin’ 8) = r>

P(x, y)

Fig. 21-2
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RST DERIVATIVE & by & — dy/du
THE FIRS r is given by = o doldu
D DERIVATIVE 2 is given by 22 — 4 (dy ) du
THE SECON 3 is given by -5 = = e
Solved Problems
., dy dzy ) )
Fmd - and s given x =0 —sinf, y=1-cosé.
[ dy _ dy dy/d8  siné
dﬂ_l cos 6 and de =sind. So dx  dx/dé 1-cos@
d’y _d( sinf \do _ cosf-1 1 1
Also, dx> dG(l*COSB) dx (l—cos())2 1—C080 (l—cosﬂ)2
dy d’y _ o
Fmd — and el given x =¢’ cost, y=¢'sin .
ax o [ dy _dy/dt _sint+cost
dl—e(cost sin t) d’—e(smr+cost) e - deidi - cosi—sint
d’y _d (sint+cost)dx _ 2 1 B 2
Also 2 d (cos t —sin l) dit (cost-sint)’ e'(cost~sint) e‘(cost—sint)’

Find the equation of the tangent to x = V¢, y =t — 1/V/1 at the point where ¢ = 4.

de 1 dy 1 dy dyldt 1
a3 ™ Tt %e iy
Attt = 4, x = 2,y = 7/2, and m = dy/de = 17/4. The equation of the tangent is then

(y —7/2) = (17/4)(x — 2) or 17x — 4y = 20.

The position of a particle that is moving along a curve is given at time ¢ by the parametric
equations x =2 —3cost, y =3 + 2sin ¢, where x and y are measured in feet, and ¢ in seconds.
Find the time rate and direction of change of (a) the abscissa when ¢ = /3, (b) the ordinate
when 1 =57/3, (c) 6, the angle of inclination of the tangent, when ¢ = 27/3. (See Fig. 21-3.)

Fig. 21-3
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dx dy dy
sk S e AN =< =2cott
a =3sint and ar 2cost. So tan 68 il co

(@) When = /3, dx/dt = 3V3/2. The abscissa is increasing at 3V3/2 ft/sec.

(b) When t=5m/3, dy/dt =2(}) = 1. The ordinate is increasing at the rate 1 ft/sec.
8 = arctan (3 cot 1) dd—g————————ﬁcscz' When 1= 27 do_ _—6@IV3) 24 The angle
(o) arctan (5 cot ), and - = Sracollt’ en 3°dr 9+ 4(-1V3) TR 8

of inclination of the tangent is decreasing at a rate of § rad/sec.

Supplementary Problems

In Problems 5 to 9, find (a) dy/dx and (b) d’y/dx’.

10.

11.

12.

13.

14.

x=2+t,y=1+7 Ans. (a) 2t; (b) 2
x=t+1/t,y=t+1 Ans. (a) /(£ = 1); (b) =200 - 1)°
x=2sint, y=cos2t Ans. (a) —2sint; (b) -1

x=cos’ 6, y=sin’ @ Ans. (a) —tan @; (b) 1/(3cos’ 6sin6)

x=a(cos ¢ + ¢sin ), y = a(sin ¢ — ¢ cos ¢) Ans. (a) tan ¢; (b) 1/(a¢ cos’ ¢)
Find the slope of the curve x = e " cos2t, y = ¢ > sin 27 at the point £ =0. Ans. -2

Find the rectangular coordinates of the highest point of the curve x = 96¢, y = 96¢ — 16¢°. (Hint: Find 1
for maximum y.) Ans. (288, 144)

Find the equation of the tangent and the normal to the curve (@) x = 3¢,y = Se " att = 0
(b) x=acos* 9, y=asin*@at §=im

Ans. (a) Sx +3y—-30=0,3x—-5y+16=0; (b) 2x+2y—a=0,x~y=0

Find the equation of the tangent at any point P(x, y) of the curve x = a cos’ t, y = a sin” ¢. Show that the
length of the segment of the tangent intercepted by the coordinate axes is a.

Ans. xsint+ycost= jasin2t

For the curve x =t>— 1, y = > — ¢, locate the points where the tangent line is (a) horizontal and (b)

vertical. Show that at the point where the curve crosses itself, the two tangents are mutually
perpendicular.  Ans. (a) t==V3/3; (b)) 1=0



Chapter 22

Curvature

DERIVATIVE OF ARC LENGTH. Let y = f(x) be a function having a continuous first derivative.
Let A (see Fig. 22-1) be a fixed point on the graph, and denote by s the arc length measured
from A to any other point on the curve. Let P(x, y) be an arbitrary point, and Q(x + Ax, y +
Ay) a neighboring point on the curve. Denote by As the arc length from P to Q. The rate of
change of s (= AP) per unit change in x and its rate of change per unit change in y are given
respectively by

ds _ . As_ (dy)2 ds _ . As_ (dx)z
& TV &) 5 T TV
The plus or minus sign is to be taken in the first formula according as s increases or decreases as
x increases, and in the second formula according as s increases or decreases as y increases.
When a curve is given by the parametric equations x = f(u), y = g(u), the rate of change of

I+

2 2
s with respect to u is given by Zs_u =z <%) + <%) . Here the plus or minus sign is to be
taken according as s increases or decreases as u increases.
To avoid the repetition of ambiguous signs, we shall assume hereafter that direction on
each arc has been established so that the derivative of arc length will be positive. (See Problems
1to5.)

Q(x + Az, y + AY)

Fig. 22-1 Fig. 22-2

CURVATURE. The curvature K of a curve y = f(x), at any point P on it, is the rate of change in
direction (i.e., of the angle of inclination 7 of the tangent line at P) per unit of arc length s.
(See Fig. 22-2.) Thus,

dr . Ar d’yldx’ —d*x/dy’
.= lim == sy or K= e
ds as—0 As  [1+ (dy/dx)‘] [1+ (dx/dy)’]
From the first of these formulas, it is clear that K is positive when P is on an arc that is concave
upward, and negative when P is on an arc that is concave downward.

K is sometimes defined so as to be positive, that is, as only the numerical values given by
(22.1). With this latter definition, the sign of K in the answers below should be ignored.

K= (22.1)

THE RADIUS OF CURVATURE R for a point P on a curve is given by R = |1/K]|, provided K #0.

148
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THE CIRCLE OF CURVATURE or osculating circle of a curve at a point P on it is the circle of
radius R lying on the concave side of the curve and tangent to it at P (Fig. 22-3).
To construct the circle of curvature: On the concave side of the curve, construct the normal
at P, and on it lay off PC = R. The point C is the center of the required circle.

p z

Fig. 223

THE CENTER OF CURVATURE for a point P(x, y) of a curve is the center C of the circle of
curvature at P. The coordinates (a, 8) of the center of curvature are given by

2-(2)] (&)
_ooaU M) e
“ dyldx’ YT i yan
() 2 (2)]
dy dy dy
b —x- =2 —y- L A
or by T Ty A=y dxidy’

THE EVOLUTE of a curve is the locus of the centers of curvature of the given curve. (See Problems
6 to 13.)

Solved Problems

() 1)
1. Denve(dx =1+ )

Refer to Fig. 22-1. On the curve y = f(x), where f(x) has a continuous derivative, let s denote the
arc length from a fixed point A to a variable point P(x, y). Denote by As the arc length from P to a
neighboring point Q(x + Ax, y + Ay) of the curve, and by PQ by the length of the chord joining P and

Q. Now 2—i = % Z—g and, since (PQ) = (Ax)’ + (Ay)’,
(5) = (5) (22) = () g™ =(75) [+ ()]

As arc PQ

G - E—WP_Q—) 1. (For a proof of the

As Q approaches P along the curve, Ax—0, Ay —0, and
latter, see Problem 22 of Chapter 47.) Then

2

(&) = pim (85) = im [+ (52) ] =1 (22)
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2. Find ds/dx at P(x, y) on the parabola y = 3x°.
d’ \/1 ( ) =V1+(6x) = VI + 36x°

3. Find ds/dx and ds/dy at P(x, y) on the ellipse x* + 4y’ =8,

d d dx 4
Since 2x+8yd—§=0.d—i=—4—x;and5=—7y.Then

1+(Q):—1+ X xAl6y -3 ds  [32-38°

dx 16y° 16y° 32-4x° dx 32 — 4x?
dx\* 1 +1 :

l+(—) -1+ 6{/ x’ 26y 2+3} and ds _ 2+3y2
dy x* x 2-y dy 2-y

4, Find ds/d# at P(8) on the curve x =sec§, y =tan §.
lrde\*  (dy\’ 5 5 3 5
ds _ (& +{2) =Viec tan’ 9 + sec” 6 = Isec 8|Vtan® 8 + sec” 8
do

de dae

5. The coordinates (x, y) in feet of a moving particle P are given by x =cost—1,y=2sin¢ + 1,
where ¢ is the time in seconds. At what rate is P moving along the curve when (a) t =5/6,
(b) t=5m/3, and (c¢) P is moving at its fastest and slowest?
j: = \/(—5) + (7“;) =Vsin®t+4cos’ 1= V1 +3cos’ 1
(@) When ¢ =5m/6, ds/dt =1 +3(3)=V13/2 ft/sec.
(b) When 1-517/3 dsi/dt = \/1 +3(4 —\/_/23ft/sec
(c) Let §= 7 =V1+3cos’t. Then — = M Solving dS/dt =0 gives the critical values

dt S
t=0, /2, m, 3w/2.
When 1 =0 and w, the rate ds/dt = \/1 + 3(1) = 2 ft/sec is fastest. When t = 7/2 and 37/2, the
rate ds/dt =V 1+ 3(0) = 1 ft/sec is slowest. The curve is shown in Fig. 22-4,

t=§7

t='§r

Fig. 22-4

6. Find the curvature of the parabola y* = 12x at the points (a) (3, 6); (b) (3, —3); (¢) (0,0).
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36 d’ 6 d 36
T A
. dy)z_ dy 1 _ -6 V2
(a) At (3,6): 1+(dx 2 and dxzz_ 3 =T —\/_—24,
d dy 4 4/3  4V5
(b)At(A"‘3) 1+(y) —5adgx—2=§ S =W:—i§—.
dx _y _ (dx)z_ d’x 1 1
(c) At (0, 0) |s undefined. But dy 6 0,1+ dy —l,dy2 5 and K = 5

7.  Find the curvature of the cycloid x =80 —sin 8, y =1 — cos 8 at the highest point of an arch
(see Fig. 22-5).

To find the highest point on the interval 0 <x <2w: dy/d6 = sin 6, so that the critical value on the
interval is x = 7. Since d’y/d8” = cos § <0 when 6 = 7, the point § = = is a relative maximum point and
is the highest point of the curve on the interval.

To find the curvature,

Lol cosp Wogng Do N0 Ay _d( dno g 1
do cos de’s‘“ dr 1-cos® di® dé\1-cosb/ d (1-cos 8)
At 0=, dy/dy=0, d’y/dx’=—1%, and K=-1}.
Yy
1,1)
o x
0
X
Fig. 22-5 Fig. 226

8. Find the curvature of the cissoid y*(2 — x) = x> at the point (1,1). (See Fig. 22-6).

Differentiating the given equation implicitly with respect to x, we obtain

—y*+(2-x)2yy' =3x° (1
and =2yy’ +(2 - x)2yy" + (2— x)2(y')’ - 2yy’ = 6x (2)
From (1), for x=y=1, ~1+4+ 2y’ =3 and y' = 2. Similarly, from (2), forx =y =1 and y’' =2, we find

y"=3. Then K = 3/(1+4)”2—3\/‘/25

9. Find the point of greatest curvature on the curve y =In x.
dy __1 ~x dK 2 -1
P 2 So K= “—'*‘_XZ)TE and

The critical value is thus x = 1/V2. The required point is (1/V2, - } In2).

10.  Find the coordinates of the center of curvature C of the curve y = f(x) at a point P(x, y) at
which y’ #0. (See Fig. 22-3.)

The center of curvature C(a, B) lies (1) on the normal line at P and (2) at a distance R from P
measured toward the concave side of the curve. These conditions give, respectively,
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11.

12.

13.

CURVATURE [CHAP. 22

B—y=——1;(a—x) and (a-x)'+(B-y)i= M
y Oy
From the first, @ — x = —y’( B — y); substituting in the second yields
o2 ney L LH )T FLEACH )
B-yyit+(y)i= o) or  B-y= v

To determine the correct sign, note that when the curve is concave upward y” >0 and, since C then lies
above P, B — y > 0. Thus, the proper sign in this case is +. (You should show that the sign is also +
when y” <0.) Thus,

B=y+ 1+("y )’ and _yi+ o)y

y - y"
Find the equation of the circle of curvature of 2xy + x + y = 4 at the point (1, 1).

Differentiating yields 2y +2xy’ + 1+ y'=0. At (1,1), y'= -1 and 1+ (y')* = 2.
Differentiating again yields 4y’ + 2xy” + y" =0. At (1, 1), y"=%. Then

_ 413 _3V2 S (P ) .2 5
K=z R=7 e=l-735 =3 B=1*3373
The required equation is (x —a)*+(y - B)’' =R’or (x - 3 +(y- %) =1%.
Find the equation of the evolute of the parabola y* = 12x.
At P(x, y):
ﬂ:gz_\/_i. 1+(_d_y)_1+3_?:1 } d_%;—_~§_?__—___\/§‘
dx y X dx y X dx y 2x° ¢
V37x(1 + 3/x) 2V3(x + 3)
= -—— = 4+ — = +
Then a=x V32 X el 3x+6
_ 14360y yl+36y Y
and B=y* 36, 7Y T3 T 3%

The equations a = 3x + 6, 8 = —y"/36 may be regarded as parametric equations of the evolute with
x and y, connected by the equation of the parabola, as parameters. However it is relatively simple in
this problem to eliminate the parameters. Thus, x = (a — 6)/3, y = ~ 36[3 and substituting in the
equation of the parabola, we have

(36B8)° '=4(a-6) or 818 =4d(a -6)

The parabola and its evolute are shown in Fig. 22-7.

[

Evolute w j
(Cirele)

Fig. 22-7 Fig. 22-8

Find the equation of the evolute of the curve x =cos @ + @sin §, y =sin 6 — 8 cos 6.
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At P(x, y):
dx dy . ly d’y sec’8 sec' @
do—BcosH do—BsmB dx—tane ol Bcos8. 6
tan 0 sec’ 6 .
Then a=x—m=x—05m0=cos(i
2
and B=y+ sec’ =y+8cosB=sinb

(sec® @)/

and a = cos 8, B =sin 6 are parametric equations of the evolute (see Fig. 22-8).

Supplementary Problems

In Problems 14 to 16, find ds/dx and ds/dy.

14, +y'=25 Ans. ds/dx =5/V25—x° ds/dy =5/\/25 - y°
15. y'=x’ Ans. ds/dx = V& +9x, dsidy = V4 +9y> 3y' >

16. x*7+y"?=4" Ans. ds/dx = (a/x)'", dsidy = (aly)'"

In Problems 17 to 19, find ds/dx.

17. 6xy =x"+3 Ans. ds/dx =(x*+1)/2x°

18. 27ay*=4(x — a)’ Ans. ds/dx =\/(x + 2a)/3a

19. y=acoshx/a Ans. ds/dx =cosh x/a

20.  For the curve x = f(u), y = g(u), derive (ds/du)’ = (dx/du)* + (dy’/du)’.

In Problems 21 to 24 find ds/dt.

2. x=ry="r Ans. 1V4+9r 22.  x=cost, y=sint Ans. 1

x=2cost, y=3sint Ans. 4+ Scos’ ¢ 24. x=cos’t, y=sin’1t Ans. 2sin2t

25, Use dy/dx = tan 7 to obtain dx/ds = cos 7, dy/ds = sin 1.

dy . dr _dr dx y'
26. Use T:arctan(a;) to obtain K=a}=zz=w.
27. Find the curvature of each curve at the given points.
(@) y=x¥3atx=0,x=1x=-2 (b) x*=4ay at x =0, x=2a
—x2
(¢) y=sinxatx=0, x=1}w (d)y=e " atx=0

Ans. (a) 0, V2/2, —4V17/289; (b) 1/2a, V2/8a; (c) 0, —1; (d) -2

28. Show that (a) the curvature of a straight line is zero and (b) the curvature of a circle is numerically the
reciprocal of its radius.
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29.

31.

32.

33.

CURVATURE (CHAP. 22

Find the points of maximum curvature of (a) y = ¢*, (b) y = x/3.

Ans. (@x=}ilni, (b)) x=11/5

Find the radius of curvature of (a) x* + xy> —6y* =0at (3,3); (b)) x =asech™ ' y/a—Va’ —y*at (x. y);
(¢) x=2atan@, y=atan’ @; (d) x=acos' 6, y=asin* 6.

Ans.  (a) 5V35; (b) aVa® - y*/|y|; (¢) 2a |sec’ 8|: (d) 2a(sin* 6 + cos* 6)°*

Find the center of curvature of (a) Problem 30(a); (b) y = sin x at a maximum point.

Ans. (a) C(=7,8); (b) C(j7,0)

Find the equation of the circle of curvature of the parabola y° = 12x at the points (0, 0) and (3, 6).
Ans. (x—6) +y*=136; (x - 15)° + (y + 6)" =288

Find the equation of the evolute of (a) b’x* + a’y* = a’h%, (b) x** + y*"> =2, (c) x =2cos t + cos 21,

y=2sint +sin 2¢.

Ans.  (a) (@a)’* + (b)Y’ = (a’ ~ b*)*; (b) (a + B)*’ + (a — B)*"* =247
(c) @ = §(2cost—cos2t), B=5(2sint - sin2s)



Chapter 23

Plane Vectors

SCALARS AND VECTORS. Quantities such as time, temperature, and speed, which have mag-
nitude only, are called scalar quantities or scalars. Scalars, being merely numbers, obey all the
laws of ordinary algebra; for example, 5 sec + 3 sec = 8 sec.

Quantities such as force, velocity, acceleration, and momentum, which have both mag-
nitude and direction, are called vector quantities or vectors. Vectors are represented geometri-
cally by directed line segments (arrows). The direction of the arrow (the angle which it makes
with some fixed line of the plane) is the direction of the vector, and the length of the arrow (in
terms of a chosen unit of measure) represents the magnitude of the vector. Scalars will be
denoted here by letters a, b, c, ... in ordinary type; vectors will be denoted in bold type by
letters a, b, ¢, ... or OP (see Fig. 23-1(a)). The magnitude of a vector a or OP will be denoted

|a| or |OP].

P B
B
a/ b —a //f y‘q b
a A
a
P a
0 a=bh P
(d)

(a) (5) (o)
Fig. 23-1

Two vectors a and b are called equal (a = b) if they have the same magnitude and the same
direction. A vector whose magnitude is that of a but whose direction is opposite that of a is
defined as the negative of a and is denoted —a.

If a is a vector and k& is a scalar, then ka is a vector whose direction is that of a and whose
magnitude is k times that of a if k is positive, but whose direction is opposite that of a and
whose magnitude is |k| times that of a if k is negative.

Unless indicated otherwise, a given vector has no fixed position in the plane and so may be
moved under parallel displacement at will. In particular, if a and b are two vectors (Fig.
23-1(b)), they may be placed so as to have a common initial or beginning point P (Fig. 23-1(c))
or so that the initial point of b coincides with the terminal or end point of a (Fig. 23-1(d)).

We also assume a zero vector 0 with magnitude 0 and no direction.

SUM AND DIFFERENCE OF TWO VECTORS. If a and b are the vectors of Fig. 23-1(b), their
sum or resultant a + b is found in either of two ways:

1. By placing the vectors as in Fig. 23-1(¢) and completing the parallelogram PAQB of
Fig. 23-2(a). The vector PQ is the required sum.

2. By placing the vectors as in Fig. 23-1(d) and completing the triangle PAB of Fig.
23-2(b). Here, the vector PB is the required sum.

It follows from Fig. 23-2(b) that three vectors may be displaced to form a triangle provided
one of them is either the sum or the negative of the sum of the other two.

If a and b are the vectors of Fig. 23-1(b), their difference a — b is found in either of two
ways:

155
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&) (c) (d)
Fig. 23-2

1. From the relation a—b=a+ (—b) as in Fig. 23-2(c).
By placing the vectors as in Fig. 23-1(c) and completing the triangle. In Fig. 23-2(d),
the vector BA=a—b.

If a, b, and ¢ are vectors and k is a scalar, then
Property 23.1 (commutative law): a+b=b+a
Property 23.2 (associative law): a+(b+c)=(a+b)+c
Property 23.3 (distributive law): k(a+ b) = ka + kb
(See Problems 1 to 4.)

COMPONENTS OF A VECTOR. In Fig. 23-3(a), let a=PQ be a given vector, and let PM and PN
be any two other lines (directions) through P. Construct the paralielogram PAQB. Now

a=PA+PB

and a is said to be resolved in the directions PM and PN. We shall call PA and PB the vector
components of a in the pair of directions PM and PN.

(b)

Fig. 23-3

Consider next the vector a in a rectangular coordinate system (Fig. 23-3(b)) having equal
units of measure on the two axes. Denote by i the vector from (0,0) to (1,0), and by j the
vector from (0, 0) to (0, 1). The direction of i is that of the positive x axis, the direction of j is
that of the positive y axis, and both are unit vectors, that is, vectors of magnitude 1.

From the initial point P and the terminal point Q of a, drop perpendiculars to the x axis
meeting it in M and N, respectively, and to the y axis meeting it in § and T, respectively. Now
MN = a,i, with a, positive, and ST = a,j, with a, negative. Then MN=RQ = a,i, ST=PR =
4,j, and

a=ai+a,j (23.1)
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We shall call a,i and a,j the vector components of a (the pair of directions need not be
mentioned), and the scalars a, and a, the scalar components or x and y components or simply
components of a. Note that the zero vector 0= 0i + 0j.

Let the direction of a be given by the angle 6, for 0 < 8 <27, measured counterclockwise
from the positive x axis to the vector. Then

la| = Va; + a3 (23.2)
and tan 0 =a,/a, (23.3)
with the quadrant of 8 being determined by
a, = |ajcos 6 a, = la|sin 8

Ifa=a,i+a.,jand b=2> i+ b,j, then
Property 23.4: a=b if and only if a, = b, and a, = b,
Property 23.5: ka= ka,i+ ka,j
Property 23.6: a+b=(a, +b))i+ (a,+b,)j
Property 23.7: a-b=(a, - b))i+ (a,-b,)j
(Sec Problem 5.)

SCALAR OR DOT PRODUCT. The scalar or dot product of two vectors a and b is defined by
a-b=la||b|cos 8 (23.4)

where 6 is the smaller angle between the two vectors when they are drawn with a common
initial point (see Fig. 23-4). We also let a-0=0-a=0.
From (23.4) we have

Property 23.8 (commutative law): a-b=>b-a

Property 23.9: a-a=|aj|a] =|a)’ and |a] = va~a

Property 23.10: a-b=0if a=0 or b=0 or a is perpendicular to b
Property 23.11: i-i=j-j=1landi-j=0

Property 23.12: a-b=(a,i+ a,j):(b,i+ b,j)=a,b, + a,b,
Property 23.13 (distributive law): a-(b+c)=a-b+a-¢

Property 23.14: (a+b)-(c+d)=a-c+a-d+b-c+b-d

B
b
8 A
P a
Fig. 23-4 Fig. 23-5

SCALAR AND VECTOR PROJECTIONS. In (23.1), the scalar a, may be called the scalar
projection of a on any vector whose direction is that of the positive x axis, while the vector a;i
may be called the vector projection of a on any vector whose direction is that of the positive x
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axis. In Problem 7, the scalar projection a- L2 and the vector projection (a- %) b of a

Ib| |b|
vector a on another vector b are found. (Note that when b has the direction of the positive x
axis, then — =i.
b )
There follows

Property 23.15: a-b is the product of the length of a and the scalar projection of b on a, or the product
of the length of b and the scalar projection of a on b. (See Fig. 23-5.)

(See Problems 8 and 9.)

DIFFERENTIATION OF VECTORS. Let the curve of Fig. 23-6 be given by the parametric
equations x = f(u) and y = g(u). The vector
r=xi+yj=if(u) +jgu)

joining the origin to the point P(x, y) of the curve is called the position vector or radius vector
of P. (Hereinafter, the letter r will be used exclusively to denote position vectors; thus,
a=3i+4jis a "'free” vector, while r = 3i + 4j is the vector joining the origin to P(3,4).)

v /
dy . | dr
i r du
| .- P d_:‘i
- du
r
x

(0]

Fig. 23-6

The derivative of r with respect to u is given by
dr dx | dy
du” du'" du?

Let s denote the arc length measured from a fixed point P, of the curve so that s increases

with u. If 7is the angle that dr/du makes with the positive x axis, then

dyldu dy
dxdu - dr slope of curve at P

Moreover, dr/du is a vector of magnitude
dr

~ (dx)z (dy)2 _ ds
dul “VWau) "\au) T
whose direction is that of the tangent to the curve at P. It is customary to show this vector with
P as initial point.
If now the scalar variable u is the length of arc s, (23.5) becomes
dr _dx, dy

d_S_ZP*_ES—J (236)

(23.5)

tan 7 =

t=
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The direction of t is 7 as before, while its magnitude is \/(dx/ds)2 + (dy/ds)’ = 1. Thus,
t = dr/ds is the unit tangent to the curve at P.

Since t is a unit vector, t and dt/ds are perpendicular (see Problem 11). Denote by n a unit
vector at P having the direction of dt/ds. As P moves along the curve shown in Fig. 23-7, the
magnitude of t remains constant; hence, dt/ds measures the rate of change of the direction of t.
Thus, the magnitude of dt/ds at P is the numerical value of the curvature at P, that is,
|dt/ds| = | K|, and

dt
o [K|n (23.7)
(See Problems 10 to 13.)
¥

n

- Pt
r
T
0
Fig. 23-7

Solved Problems

1. Prove a+b=b+a.
From Fig. 23-8, a+b=PQ=Db +a.

Fig. 23-8

2. Prove (a+b)+c=a+(b+¢)
From Fig. 23-9, PC=PB+BC=(a+b)+c. Also, PC=PA+AC=a+(b+¢).

3. Let a, b, and ¢ be three vectors issuing from P such that their endpoints A, B, C lie on a line
as shown in Fig. 23-10. If C divides BA in the ratio x:y where x+ y =1, show that
c=xa+ yb.
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P
Fig. 23-10 Fig. 23-11

c=PB+BC=b+x(a—-b)y=xa+(1-x)b=xa+yb
For example, if C bisects BA, then ¢ = i(a+b) and BC = j(a —b).

Prove: The diagonals of a parallelogram bisect each other.

Let the diagonals intersect at Q, as in Fig. 23-11. Since PB=PQ + QB = PQ — BQ, there are
positive numbers x and y such that b=x(a+b)—y(a—b)=(x—y)a+ (x+y)b. Then x+y=1 and
x— y=0. Solving for x and y yields x = y = }, and Q is the midpoint of each diagonal.

For the vectors a=3i+4j and b= 2i—j, find the magnitude and direction of (a) a and b,
(b)a+b, (c)b-a.

(a) For a=3i+4j: |Ja|=Va +a2=V3 +4°=5; tan6 =a,/a, = $ and cos 6 = a,/|a} = }: then @ is a
first quadrant angle and is 53°8".
Forb=2i—j: |b|=Vd+1=V51an0 = -} and cos § =2/V'5; 8 = 360° — 26°34' = 333°26".

(b) a+b=(3i+4j)+ (2i—j)=5i+3j. Then |a+b|=V5" +3°=v34 Since tan§ =} and cos@ =
51734, 0 =30°58".

(c) b—a=(2i-j)—(3i+4j)=—i-5j. Then |b—a|l=+v76. Since tand =5 and cos § = —1/V26, 9 =
258°41",

Prove: The median to the base of an isosceles triangle is perpendicular to the base. (In Fig.
23-12, |a| = |b|.)

From Problem 3, since m bisects the base,

m=j(a+b)
Then m-(b—a)= i(a+b)-(b—a)
=}@b—a-a+tb-b-b-a)=;3(b-b—a-a)=0

as was to be proved.

Fig. 23-12
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7. Resolve a vector a into components a, and a,, respectively parallel and perpendicular to b.

In Fig. 23-13, we have a=a, +a,, a, = cb, and a,-b =0. These relations yield

b
azza—al=a_Cb and az-b=(a—cb)'b=ﬂ'b_c|b|2=0 or C:Tle—
b ‘b
Thus, a':CszbTband nz=a*cb=8“7_bl7b-

b — b\ b
The scalar a- m is the scalar projection of a on b; the vector (a- m) |b| is the vector projection of

aonb.

8. Resolve a=4i+ 3j into components a, and a,, parallel and perpendicular to b= 3i +j.

a‘b 12+3

From Problem 7, ¢ = W =0

3
=-2-.Then a,=cb=%i+ijanda,=a—a, = - }i+ 3j

9. Find the work done in moving an object along a vector a=3i+ 4j if the force applied is

b=2i+j.
Work done = (magnitude of b in the direction of a)(distance moved)
=(]bjcos 8)|aj=b-a=(2i+j)-(3i+4j)=10
. . da db
10.  If a=ifj(u) +jf,(u) and b=ig, (1) + jg,(u), show that - (a b)=—-b+a- I
By Property 23.12, a-b = (if, +if,) - (ig, +ig.) = f, +f2§"~ Then
d df (u
L @n=fig e+ e (n=20)
=(f1& t[:8)+(fi8:+ [,83)
db

d
= (1 +f3) (g, +ig,) + (if, +1f)-ig +igh) = 5 -b+a- =

11.  If a=if,(u) +jf,(u) is of constant magnitude, show that a and da/du are perpendicular.

Since |a| is constant ara = constant # 0, and we obtain, by Problem 10, ; (a-a) =
da da da da
® +a e =2a- E =0. Then a- u =0 so that a and 7 3T€ perpendicular.

Thus (as a geometric example), the tangent to a circle at one of its points P is perpendicular to the
radius drawn to P.

12.  Givenr=icos’ 0 +jsin’ 6, find t.

ds dr dr

dr .. . s _ -
29 = "isin26+jsin26  and - l2l= Vi 7 =V2sin 26
Hence t=£ dr d9 ——1—'+L'
ds ~d6 ds RV

13. Givenx=acos’8, y=asin’ 6, find t and n when 6 = ! 7.

We have r = agicos’ 8 + ajsin® 6. Then

d ) ) ds .
2%=—3aicosz051n0+3ajsm20c050 and —=|d—; = 3asin 0 cos ¢
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14.

18.

16.

PLANE VECTORS [CHAP. 23

. e D
ence L A8 & icos jsin

dat . i de 1 1 .
and E—(nsnn0+1cose)ds-—3acosoi+3asinoj
A 9_1 .(...___l_'+-1_ ﬂ—ﬁ'.{,ﬁ' 'Kl= ﬂ =£ andn=_1_£=_l_i+_l._‘
e Y ARV, £ L il PR vt & ds|~ 3a’ K| ds — V2 2

Show that the vector a = aqi + bj is perpendicular to the line ax + by + ¢ =0.

Let P(x,.y,) and P,(x,, y,) be two distinct points on the line. Then ax, + by, + c=0 and
ax, + by, + ¢ = 0. Subtracting the first from the second yields

a(XZ_xl)+b(y2_yl)=0 (1)
Now a(xz _x1)+ b()’z—)’|)=(ai+ bj)‘[(Xz —xl)i+(y2—y1)j]
=a-PP,

By (I), the left side is zero. Thus, a is perpendicular (normal) to the line.

Use vector methods to find:
(a) The equation of the line through P,(2, 3) and perpendicular to the line x4+ 2y +5=0
(b) The equation of the line through P (2, 3) and P,(5, —-1)

Take P(x, y) to be any other point on the required line.

(a) By Problem 14, the vector a =i+ 2j is normal to x + 2y + 5=0. Then P,P=(x - 2)i+ (y ~ 3)j is
parallel to a if
(x-2)i+(y—-3)j=k(i+2j) (kascalar)
Equating components, we have x —2 =k and y — 3 = 2k. Eliminating k, we obtain the required
equationas y —3=2(x~-2)or2x—y—-1=0.
(b) We have PP=(x-2)i+(y—3)j and PP, =3i—4j
Now a = 4i + 3j is perpendicular to P,P, and, hence, to P,P. Thus, we may write

O0=a-PP=(4i+3j)-[(x—2)i+ (y—3)j) or 4x+3y-17=0

Use vector methods to find the distance of the point P (2, 3) from the line 3x +4y —12=0.

At any convenient point on the line, say A(4,0), construct the vector a = 3i + 4j perpendicular to
the line. The required distance is d = |AP,| cos 8 in Fig. 23-14. Now a- AP, = |a| |AP,| cos 8 = |a| d; hence
a-AP, _ (3i+4j)-(-2i+3j) _-6+12 _6

4= 5 5 5

AW0

Fig. 23-14
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Supplementary Problems

17. Given the vectors a, b, ¢ in Fig. 23-15, construct (a) 2a; (b) —3b; (c) a+2b; (d) a+b~-c¢; (¢)
a—2b+3c.

Fig. 23-15 Fig. 23-16

18. Prove: The line joining the midpoints of two sides of a triangle is parallel to and one-half the length of
the third side. (See Fig. 23-16.)

19. If a, b, ¢, d are consecutive sides of a quadrilateral (see Fig. 23-17), show thata+b+c+d =0. (Hint:
Let P and Q be two nonconsecutive vertices.) Express PQ in two ways.

Fig. 23-17 Fig. 23-18 Fig. 23-19

20. Prove: If the midpoints of the consecutive sides of any quadrilateral are joined, the resulting
quadrilateral is a parallelogram. (See Fig. 23-18.)

21.  Using Fig. 23-19, in which |a] = |b| is the radius of a circle, prove that the angle inscribed in a semicircle
is a right angle.

22, Find the length of each of the following vectors and the angle it makes with the positive x axis: (@) i + j;
(b) —i+j; (c) i+ V3j; (d) i— V3j.
Ans. (@ V2,0=1m,(b) V2, 0=37/4;(c)2, 0=m/3; (d)2, 0=57/3

23. Prove: If u is obtained by rotating the unit vector i counterclockwise about the origin through the angle
0, then u=icos @ + jsin 6.

24.  Use the law of cosines for triangles to obtain a-b = |a||b| cos 8 = L ([a|* + |b]* - |¢|*).

25, Write cach of the following vectors in the form ai + bj:
(a) The vector joining the origin to P(2, —3) (b) The vector joining P (2, 3) to P,(4,2)
(c) The vector joining P,(4,2) to P,(2,3) (d) The unit vector in the direction of 3i+ 4§
(e) The vector having magnitude 6 and direction 120°

Ans. (@) 2i-3§; (b) 2i—j; (¢) —2i+]; (d) 3i+ &j; (e) —3i+3V3

26. Using vector methods, derive the formula for the distance between P (x,, y,) and P,(x,, y,).
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27.

29,

31.

32.

33.
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Given O(0,0), A(3,1), and B(1, 5) as vertices of the parallelogram OAPB, find the coordinates of P.
Ans. (4,6)

(a) Find k so that a=3i—2j and b=1i+ kj are perpendicular.
(b) Write a vector perpendicular to a = 2i + §j.

Prove Properties 23.8 to 23.15.

Find the vector projection and scalar projection of b on a, given: (@) a=i—2j and b= —-3i+j;
(bya=2i+3jand b=10i+2j. Ans. (a) —i+2j, —V5; (b) 4i+6j,2VI3

Prove: Three vectors a, b, ¢ will, after parallel displacement, form a triangle provided (a) one of them is
the sum of the other two or (b) a+b+c¢=0.

Show that a =3i — 6j, b=4i+2j, and ¢ = ~7i + 4j are the sides of the right triangle. Verify that the
midpoint of the hypotenuse is equidistant from the vertices.

Find the unit tangent vector t = dr/ds, given: (a) r = 4dicos§ + d4jsing; (b) r = i+ 7%
(c) r=8i+8%. ,

. fi—e’j i+28j
Ans. (a) —isin@ +jcos 8; (b =; (¢ =
@ Jeos 0 O) oo = 9 Vitae

(a) Find n for the curve of Problem 33(a).
(b) Find n for the curve of Problem 33(c).
(¢) Find t and n given x =cos @ + @sin 8, y =sinf — 6 cos 6.

Ans. (a) —icosd —jsin@; (b) \/1_28 i !

i+t = §; (c) t=icos@ +jsing, n=—isinfd +jcos g
T Vizaen 9 ! .



Chapter 24

Curvilinear Motion

VELOCITY IN CURVILINEAR MOTION. Consider a point P(x, y) moving along a curve with the
equations x = f(t), y = g(t), where ¢ is time. By differentiating the position vector

r=ix+jy (24.1)
with respect to ¢, we obtain the velocity vector
dr dx dy
= — =1 — i =1 i o
V=g Tl a4 +j 7 v, +ju, (24.2)

where v, = dx/dt and v, = dy/dt.
The magnitude of v is called the speed and is given by

|v|=VT=\/vi+v%:;i£I

The direction of v at P is along the tangent to the path at P, as shown in Fig. 24-1. If 7 denotes
the direction of v (the angle between v and the positive x axis), then tan 7 = v /v,, with the
quadrant being determined by v, =|v|cos 7 and v, =|v|sin 7.

v
a v
. . ¢
i ayj Y
a.i P
r
x X
0
Fig. 24-1 Fig. 24-2

ACCELERATION IN CURVILINEAR MOTION. Differentiating (24.2) with respect to 1, we
obtain the acceleration vector

dv _d’vr _dx _dY

7Rl R N Ry

. dt dt dt

where a, = d’x/dt* and a,= d*y/dr’. The magnitude of a is given by

la|=vara=Va +ad

The direction ¢ of a is given by tan ¢ =a /a,, with the quadrant being determined by
a, = |a| cos ¢ and a, = [a| sin ¢. (See Fig. 24-2.)
In Problems I to 3, two methods of evaluating v and a are offered. One uses the position vector

(24.1), th.e velocity vector (24.2), and the acceleration vector (24.3). This solution requires a
parametric representation of the path. The other and more popular method makes use only of the x

a= =ia, +ja, (24.3)

165
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and y components of these vectors; a parametric representation of the path is not necessary. The two
techniques are, of course, basically the same.

TANGENTIAL AND NORMAL COMPONENTS OF ACCELERATION. By (23.6),
_dr _dr ds ds

V—E=EE=(H‘; (24.4)
™ v s deds ds dtdsy’
en T a Tt Ta a4 s \ dt
d’s (ds)z
= ——-—+ —_
t— |Kin| = (24.5)
by (23.7).

Equation (24.5) resolves the acceleration vector at P along the tangent and normal there.
Denoting the components by a, and a,, respectively, we have, for their magnitudes

d’s _ (ds/dr)’

dr? R

where R is the radius of curvature of the path at P. (See Fig. 24-3.)
Since [a]® = a} + a} = a; + a,, we have

la| = and |a,|

v
" R

a, = al’ - o

as a second means for determining |a,|. (See Problems 4 to 8.)

Fig. 24-3

Solved Problems

1. Discuss the motion given by the equations x = cos 27¢, y = 3sin 27¢. Find the magnitude and
direction of the velocity and acceleration vectors when (a) 1= { and (b) 1= 3.

The motion is along the ellipse 9x° + y*> =9. Beginning (at ¢ =0) at (1,0), the moving point
traverses the curve counterclockwise.
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First solution:

r=ix+jy=icos2mt+3jsin2nt

v=%=ivx+jvy=——27risin27rt+67rjc0527n
dv _. . 24 2. .
a= - =ia, tja, = —4nicos2mi — 127 jsin 2mt
(@) Atr=1: v=-V37i+37j and a=-27%i-6V3r’j
[v| = vV ¥ =V(-V3n)Y + 37) =2V3nr
v, v, 1 -
tant= — = —-V3, CoOST= 5 =-2; SO T =120
v, v 2
|a] = va- =\/(—2'rr2)2+(—6\/§1r:)2=4\/7‘rr2
tan 6= = =3v3 sl o =259
an ¢ = - , cos "l
(b) At 1= 12: v=V3mi-3mj and a=27%i+6V3inj
1 5
|v| =2V3n, tan~r=—\/§cosr=§; s0 r=—371

1
la| =4VTn?, tan¢=3\/§cos¢=ﬁ; so ¢ =79%

Second solution:

dx d’
x = cos 27! v, =g ="2msin2mt  a = drf = —47’ cos 27t
. d d’ 2
y=3sin2mt v, = F}t} =6 cos 27t a, = dtr = —127" sin 2mt

(a) Atr=1}: v,=—-V3nw v, =37 V[ =Vuvi +v,=2V3n
v, X 1 R
tant=—==-V3, cost=t=--; so r=120
v, {v| 2
a,=-2n" a,=-6V3r’ [a|=Va]+a =4Vin®
tan ¢ = £ =3V3 SR = 259°
and>—ax— R cosd>—,a|— ek S0 ¢ =
(b) Atr=1%: v,=V3nm v,=-37 |v|=2V3n
5
tant=—-V3, cosT=1%; ) r=—37—7

a,=2n" a,=6V3n’ |a|=4V7g’

x

tan¢=3V3, cos¢= % ¢ so ¢ =79%

167

A point travels counterclockwise about the circle x* + y> = 625 at the rate |[v| = 15. Find 7, |a|,

and ¢ at (a) the point (20, 15) and (b) the point (5, —10V6). Refer to Fig. 24-4.

First solution: We have
[vI* =vi + 0% =225

and, by differentiation with respect to ¢,

va +tva =0

(1)

(2)
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S\

Vyj
(20, 15)
v,
x
o
‘U,i v
(6, -10V6)
Fig. 24-4
From x° + y® = 625, we obtain by repeated differentiation
xv, +yv, =0 (3)
and xa, + vl +ya, +0'y=0
or xa, +ya = —225 (4)

Solving (/) and (3) simultaneously, we have

v,=*3y (5)
Solving (2) and (4) simultaneously, we have
2250,
a, = T (6)

/N

(a) From Fig. 24-4, v <0 at (20,15). From (§), v,=-9; from (3), v, =12. Then tant= -3,
cos 7=~ ¢, and 7 = 126°52". From (6), a, = — % ; from (4), a, = — ¥ ; hence |a| =9. Then tan ¢ =
1.cosd=—1%, and ¢ =216°52".

(b) From the figure, v, >0 at (5, - 10/V6). From (5), v, = 6V6; from (3), v, = 3. Then tan 7 = V6/12,
sint = %, and 7 = 11°32". From (6), a, = - %: from (4), a, = 18V6/5; hence [a| =9. Then tan ¢ =

-2V6, cos ¢ = — }, and ¢ = 101°32".
Second solution: Using the parametric equations x = 25cos 8, y = 25sin 6, we have at P(x, y)

r = 25icos 0 + 25jsin ¢

dr L. Lo ode . .
V= = (—25isin 6 + 25j cos 8) - 15isin @ + 15jcos @
dv . .. do__ R e
a= 4 =(—15icos 8 — 15jsin @) - 9icos 8 — 9jsin @

since |v| = 15 is equivalent to a constant angular speed of d6/dt = %.
() At the point (20, 15), sin 8 = 3 and cos 6 = 5. Thus,

v=-9i+12j, tant=—3%. cosT=—1; SO 7= 12652’

a=-%i-¥j. |a=9. tang=31. cosp=-1%; so &=216"52’

(b) At the point (5, —10V6), sin @ = — #\/6 and cos 6 = .. Thus,

v=6V6i+3j. tant=V6/12, cost=H6; so =113
a=-ti+ ¥W§j, la|=9. tan ¢ = —2V6 . cosgp=-1; S0 ¢ = 101°32
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A particle moves on the first-quadrant arc of x* = 8y so that v, = 2. Find |v|, 7, |a], and ¢ at
the point (4, 2).

First solution: Differentiating x* = 8y twice with respect to ¢ and using v, =2, we have

2xv,=8v =16 or xv, =8 and xa, +vi=0

At (4,2): v,=§=2V, [v]| =2Vv2, tant=1, cost=W72; ) r=1m
a=-1, a, =0, la|=1, tang =0, cosd=-1; ) b=
Second solution: Using the parametric equations x =46, y = 26°, we have
de de
_ Az iq2 4 Y s 2V
r = 4i0 + 2j0 and v=4di dt+4'lo ar
. . de de 1
Since v, = 46 a =2 and & " 20 V€ have
2. .. L
v=(-)|+2_| and a=—;1
At the point (4,2). 8 =1. Then
v=2i+2j,. v/=2vZ, tanr=1, cost=}2; so r=lnx
a=—1i, laj]=1, tang =0, cosd=-1; SO b=

Find the magnitudes of the tangential and normal components of acceleration for the motion
x=e'cost, y=e'sint at any time 1.

We have r=ix+jy=ie cost+je sint
v=ie'(cos ¢ —sin t) + je'(sin t + cos 1)
a= —2ie'sint+2je’ cost

=V32e¢' Finally, |a | =Vla|* - a} = V2e'

, ds _ _ ' _ dzs
Then |a| = 2¢". Also, i |v] = V2¢' and |a,| = ’dtz

A particle moves from left to right along the parabola y = x* with constant speed 5. Find the
magnitude of the tangential and normal components of the acceleration at (1, 1).

dZ
Since the speed is constant. |a,| = ‘—f =0. .
, . a | . [L+ ()] * _5VS
At (1, 1),y =2x =2 and y” = 2. The radius of curvature at (1, 1) is then R = TI— =5
2
Hence |a,| = hIRJ— =2V5.

The centrifugal force F exerted by a moving particle of weight W (both in pounds) at a point
in its path is F = w la,|. Find the centrifugal force exerted by a particle, weighing S 1b, at the
ends of the major and minor axes as it traverses the elliptical path x =20 cos ¢, y = 15sin ¢, the
measurements being in feet and seconds. Use g = 32 ft/sec’
We have r=20icost+ 15fsint
v=—-20isin¢+ 15jcos ¢
a=—20icost— 15jsint

Then g—f = |v| = V400sin® 1 + 225 cos® ¢

At the ends of the major axis (t=0 or t = m):

dZS 3 2 — 5 - 1
=0 la,| =V20" =07 =20 F=3520=371b

d_zs 175sin t cos ¢

5

dr’  V400sin" 1 +225cos” ¢

laj=20  ja|=




170 CURVILINEAR MOTION [CHAP. 24

At the ends of the minor axis (= m/2 or t =37w/2):

5 75
la|=15 |a|=0 |a,|=15 F=315=31b

7. Assuming the equations of motion of a projectile to be x = vyt cos ¢, y = vyt sin ¢ — 1 gt?,
where v, is the initial velocity, ¢ is the angle of projection, g = 32 ft/sec?, and x and y are
measured in feet and ¢ in seconds, find: (a) the equation of motion in rectangular coordinates;
(b) the range; (c) the angle of projection for maximum range; and (d) the speed and direction
of the projectile after 5 sec of flight if v, = 500 ft/sec and ¢ = 45°. (See Fig. 24-5.)

)
Vo
v o z
0|
Fig. 24-5
(a) We solve the first of the equations for ¢ = v c);s v and substitute in the second:
0
=y, ———siny — } ( ):=xtand;——g—xz—
Y=o v, COS i 28 v, COS 20’ cos’ ¢

(b) Solving y = v,tsiny — 1gt* =0 for 1, we get ¢t =0 and t = (2v, sin ¢:)/g. For the latter, we have

2u,sin g vgsin2¢

Range =x =wv,cos ¢

P4 g
202 cos 2
(¢) For x a maximum, Z—; = —U‘lcgii’ =0; hence cos2¢y =0 and ¢ = 7.
(d) For v, =500 and ¢ = {7, x =250V2¢ and y = 250V2s - 16¢°. Then v, =250V2 and v, =250V2 -

32t
When (=5, v, =250V2 and v, = 250V2 - 160. Then

v,
tan 7 = EL =0.5475 . So  T=284Y and  [v|= Vvl + v} =403 ft/sec

x

8. A point P moves on a circle x = rcos 8, y = rsin 3 with constant speed v. Show that, if the
radius vector to P moves with angular velocity w and angular acceleration «, (@) v = rw and
(bya=rVo'+a’

d
(a) v =—rsinB—B=—rwsinB and v =rcongg=rwcosB
* dr ¥ dt
Then v=\fuf+vi:\/(r2 sin® B8 + 1’ cos’ B)w’ = ro
_dv, dap ) do R )
(b) a == rw cos 8 d rsin B8 e cos B — ra sin B
dv, . dB dw .
a\‘—I-—rwsmB—d—l+rcosﬁz——rw sin B+ racos

Then a=Va +a =Vrie' +a®)=WVou'+a’
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10.

11.

12.

13.

14,

15.

16.

17.

Supplementary Problems

Find the magnitude and direction of velocity and acceleration at time ¢, given

(a) x=¢,y=e"—4e' +3;at 1=0 Ans. (a) |v|=V5, 1=296°34'; |a| =1, ¢ =0

() x=2-t,y=20-t;att=1 Ans. (b) [v|=V26, 7=101°19"; |a| =12, ¢ = im

(c) x=cos3t, y=sins; att=im Ans. (¢) |v|=V5, 1 =161°34"; |a| = VA1, ¢ = 353°40"
(d)x=e"cost,y=¢e'sins; at t=0 Ans. (d)|v|=V2,r=1im; |a|=2, 6=i7

A particle moves on the first-quadrant arc of the parabola y* = 12x with v_ = 15. Find v, |v|, and 7; and
a,, a,, |a|, and ¢ at (3,6).
Ans. v, =15, |V[=15V2, r=im a,=0,a,=-75/2, |a| =75/2, ¢ =3n/2

A particle moves along the curve y = x%3 with v_ =2 at all times. Find the magnitude and direction of
the velocity and acceleration when x =3.  Ans. |v|=2V82, 1=83%40"; |a|=24, ¢ = im

A particle moves around a circle of radius 6 ft at the constant speed of 4 ft/sec. Determine the
magnitude of its acceleration at any position. Ans. la|=0, |a|=]a,|=8/3 ftisec’

Find the magnitude and direction of the velocity and acceleration, and the magnitudes of the tangential
and normal components of acceleration at time ¢, for the motion
(@) x=31,y=9t-3t" att=2
(b) x=cost+¢tsint, y=sint—tcost; att=1.
Ans. (a) V|=3V2, r=7n/4; |a|=6, ¢ =3n/2; |a,|=]a,|=3V2
(b) vl =1, 7=1; |]a| = V2, ¢ =102°18'; |a,| =]a,| =1

A particle moves along the curve y = jx* ~ { Inx so that x = §>, for1>0. Find v,, v,, Iv|. and 7, a, . a,.
|al, and &; |a,| and |a,] when ¢ =1.

Ans. v, =1,v,=0,v[=1,7=0;a,=1,a,=2, |a|=V5, ¢ =6326";|a|=1,|a,|=2

x

A particle moves along the path y =2x — x* with v_ =4 at all times. Find the magnitudes of the
tangential and normal components of acceleration at the position (a) (1, 1) and (b) (2, 0).

Ans. (a) |a,|=0, |a,{=32; (b) |af=64/V3, |a,|=32/V5

If a particle moves on a circle according to the equations x = r cos wt, y = r sin w!?, show that its speed is
wr.

Prove that if a particle moves with constant speed, then its velocity and acceleration vectors are
perpendicular; and, conversely, prove that if its velocity and acceleration vectors are perpendicular, then
its speed is constant.



Chapter 25

Polar Coordinates

THE POSITION OF A POINT P in a given plane, relative to a fixed point O of the plane, may be
described by giving the projections of the vector OP on two mutually perpendicular lines of the
plane through O. This, in essence, is the rectangular coordinate system. Its position may also be
described by giving the directed distance p = OP and the angle 8 which OP makes with a fixed
half-line OX through O. This is the polar coordinate system (Fig. 25-1), in which point O is
called the pole.

To each number pair (p, 8) there corresponds one and only one point. The converse is
not true; for example, the point P in the figure may be described as (p, 0 £ 2nw) and
(—p.8 = (2n + 1)m), where n is any positive integer including 0. In particular, the polar
coordinates of the pole may be given as (0, 8) with 8 perfectly arbitrary.

The curve whose equation in polar coordinates is p = f(8) or F(p, 8) =0 consists of the
totality of distinct points (p, 8) that satisfy the equation.

P(p, 8)

Fig. 25-1 Fig. 25-2

THE ANGLE ¢ from the radius vector OP to the tangent PT to a curve, at a point P(p, 8) on it, is
given by

de p

d
tane,l/=p(—1[—)=;)—, where = 2P

T
Tan ¢ plays a role in polar coordinates somewhat similar to that of the slope of the tangent in
rectangular coordinates. (See Problems 1 to 3.)

THE ANGLE OF INCLINATION 7 of the tangent to a curve at a point P(p, 6) on it is given by

_pcosB+p'sing
—psin @ +cos 6

tanr

(See Problems 4 to 10.)

THE POINTS OF INTERSECTION of two curves whose equations are p = f,(8) and p = f,(8) may
frequently be found by solving

fi(8) = £,(6) (25.1)
EXAMPLE 1: Find the points of intersection of p=1+sin8 and p =5 - 3sin 6.

Setting 1 +sinf=5-3sin#, we have sinf=1. Then # = iw and (2, }7) is the only point of
intersection.

172
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Since a point may be represented by more than one pair of polar coordinates, the
intersection of two curves may contain points for which no single pair of polar coordinates
satisfies (25.1).

EXAMPLE 2: Find the points of intersection of p=2sin26 and p =1. Solution of the equation
2sin20 =1 yields sin26 =% and 8 = #/12, S«/12, 13%w/12, 177w/12. We have found four points of
intersection: (1, 7/12), (1,57/12), (1, 137/12), and (1,177/12).

But the circle p=1 also can be represented as p = —1. Now solving 2sin28 = —1, we obtain
0=Tn/12, 117/12, 197/12, 237w/12 and the four additional points of intersection (—1,7n/12),
(-1, 117/12), (=1,197/12), (—1,237/12).

When the pole is a point of intersection, it may not appear among the solutions of (25.1).
The pole is a point of intersection provided there are values of 6, say 6, and 6,, such that

£,(8,) =0 and f,(6,) =0.

EXAMPLE 3: Find the points of intersection of p = sin 8 and p = cos 8.

From the equation sin # = cos #, we obtain the point of intersection (}V2, {m). The curves are.
however, circles passing through the pole. But the pole is not obtained as a point of intersection from
sin @ = cos @, since on p =sin @ it has coordinate (0, 0) whereas on p =cos @ it has coordinate (0, } ).

EXAMPLE 4: Find the points of intersection of p = cos 26 and p = cos 6.

Setting cos 28 =2 cos’ # — 1 =cos 8, we find (cos # — 1)(2cos 8 + 1) = 0.

Then 8 =0, 27/3, 47/3, and we have as points of intersection (1,0}, (= },27/3), (- }.4m/3). The
pole is also a point of intersection.

THE ANGLE OF INTERSECTION ¢ of two curves at a common point P(p, 6), not the pole, is
given by

tan ¢y, —tan ,

1+ tan ¢, tan 4,

where ¢, and i, are the angles from the radius vecor OP to the respective tangents to the
curves at P (Fig. 25-3).

tan ¢ =

Cs

Fig. 25-3

The procedure for finding ¢ here is similar to that in the case of curves given in rectangular
coordinates; the use of the tangents of the angles from the radius vector to the tangent instead
of the slopes of the tangents is a matter of convenience in computing.

EXAMPLE 5. Find the (acute) angles of intersection of p = cos 8 and p = cos 26.
The points of intersection were found in Example 4. We also need ¢, and ,: For p = cos 8,
tan ¢, = —cot 8; for p = cos 26, tan ¢, = — } cot 26.
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At the pole: On p =cos 6, the pole is given by 8 = w/2; on p = cos 26, the pole is given by 8 = /4
and 3#/4. Thus, at the pole there are two intersections, the acute angle being w/4 for each.

At the point (1,0): tan ¢, = —cot 0 == and tan ¢, =>. Then ¢, = ¢, = /2 and ¢ =0.
V3/3+ V36

T =3V3/5

At the point (— 3, 27/3): tan ¢, = V3/3 and tan ¢, = —V3/6. Then tan ¢ =
and the acute angle of intersection is ¢ = 46°6".

By symmetry, this is also the acute angle of intersection at the point (~},4/3).
(See Problems 11 to 13.)

THE DERIVATIVE OF ARC LENGTH is given by ds/df =\ p’ + (p')’, where p’ = dp/d6, and with
the understanding that s increases as @ increases. (See Problems 14 to 16.)

p’+2(p') — pp"
[p?+(p')]"

THE CURVATURE of a curve is given by K = . (See Problems 17 to 19.)

CURVILINEAR MOTION. Suppose as in Fig. 25-4, a particle P moves along a curve whose
equation is given in polar coordinates as p = f(8). If the curve is represented parametrically as

x=pcosf=g0) y=psin 8= h(0)
then the position vector of P becomes
r=0P=xi+ yj=picos 8+ pjsin 0 = p(icos 8 + jsin §)

and the motion may be studied as in Chapter 24.

Uy

Fig. 25-4

An alternative procedure is to express r and, thus, v and a in terms of unit vectors along
and perpendicular to the radius vector of P. For this purpose, we define the unit vector

u, =icos 6 +jsin 6
along r in the direction of increasing p, and the unit vector
U, = —isin@ + jcos 9
perpendicular to r and in the direction of increasing 6. An easy calculation yields

du, _du, do _ ~do g due__ 6
. de 4t Mg " a Y

From r=pu,
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we obtain, in Problem 20,

_dr _ dp do
V-EI‘—UFEJfP“oE—UpUp*Uo“a
R T

and 8= =%l P\ [Tlr e i 4
=a,u, +a,u,

Here v, = dp/dt and v, = p df/dl are, respectively, the components of v along and perpendicu-

d2p (d0)2 d’ o dp df
lar to the radius vector, and a, = R P\ and a, = p +2 E 7 are the correspond-
ing components of a. (See Problem 21.)

Solved Problems

1. Derive tan ¢ = p d8/dp, where ¢ is the angle measured from the radius vector OP of a point
P(p, 8) on the curve of equation p = f(0) to the tangent PT.

In Fig. 25-5, Q(p + Ap, @ + AB) is a point on the curve near P. From the right triangle PSQ,

sin Ag
van a = 5P SP p sin A8 ~ p sin A8 ~ P "ag
SQ ORQ-08 p+Ap—pcosAf p(l—cosAf)+Ap 1-cosd8 Ap
P a6 Y
Now as J — P along the curve, A0 =0, OQ— OP, PQ— PT, and LA— L.
in Ag 1- A
As AB—0, 2% .1 and ﬂ-»o (see Chapter 17). Thus,
Ad Ag
- b P __ 4
tany = limtanA=2"% " B

In Problems 2 and 3, find tan ¢ for the given curve at the given point.
2. p=2+cos8; 8§ =m/3. (See Fig. 25-6.)
1

At = —: =24 === [ = -~ — = = - -
‘] 3 P 2 2 2,p sin & 2 ,and[and] 7 \/-5
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Fig. 25-6 Fig. 25-7

3. p =2sin30; 8 = w/4. (See Fig. 25-7.)
P S - - (_L - -£_
Ato=7:p 2\/5 V2, p =6c0os30=6 \/§) 3v2, and tan ¢
pcos@+p'sinf
—psin@+ p'cos @’
From Fig. 25-5, r = ¢ + 6 and

4. Derive tan r =

dé siné@
tan  +tan§ pa—p+c050
l—tandxtanﬂ—l# (_1?_&10_
pdp cos 6

tant=tan (¢ + 0) =

dp .
+ =5 .
—pCOSB dﬂbme_ pcosf+ p'sind

a _—psin0+p’cos()

dp .
26 cosf —psind

1
p' 3

[CHAP. 25

S. Show that if p = f(8) passes through the pole and 6, is such that f(8,) = 0, then the direction of

the tangent to the curve at the pole (0, 6,) is 6,. (See Fig. 25-8.)

Fig. 25-8

A1(0.6,), p=0and p'=f'(8,). If p' #0, then

pcosf+p'sing 0+ f'(8)siné, .
—psin®+p'cos® O+f(6)cost,

tant = an 6,

If p' =0, tan 7 = lim Lc0)siné _

80, f'(O) cos 8 = tan 0‘

In Problems 6 to 8, find the slope of the given curve at the given point.

6. p=1-cos; 0=m/2. (See Fig. 259.)
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Fig. 259 Fig. 25-10

At @=m/2:sinf=1,cos0=0,p=1, p'=sind =1, and
pcosf+p'sing  1-0+1-1 -
—psin@+p'cosd —1-1+1-0

tan 7 =

7. p = cos 38; pole. (See Fig. 25-10.)

When p =0, cos30 =0. Then 30 =w/2, 3nw/2, 5n/2, and 8 = w/6, 7/2, 57w/6. By Problem 5,
tant=1/V3, =, and - 1/V3.

8. pé=a; 8=m/3.
At 9=m/3:sin0=V3/2, cos@=1, p=3alm, and p’' = —a/8’ = —9a/w> Then

tan 5~ PCOsOtp sing _ _m-3V3
T —psin@+p'cosb V3im+3

9. Investigate p = 1 + sin @ for horizontal and vertical tangents. (See Fig. 25-11.)

4] z
Fig. 25-11
At P(p, 8):
tan‘r_(1+sin())c050+cos()sin()__ cos 0 (1 + 25sin 6)
—(1 +sin #)sin @ + cos* 0 (sin 8 + 1)(2sin 6 — 1)

We set cos @(1 + 2sin @) =0 and solve, obtaining 8 = w/2, 37/2, T7/6, and 11 7/6. We also set
(sin @ + 1)(2sin @ — 1) = 0 and solve, obtaining 6 =3%/2, w/6, and 57/6.

For @ = w/2: There is a horizontal tangent at (2, w/2).

For 8 =7w/6 and 117/6: There are horizontal tangents at (1/2,77/6) and (1/2, 117/6).

For 8 = w/6 and 5#/6: There are vertical tangents at (3/2, w/6) and (3/2,5n/6).

For 8 =3m/2: By Problem 5, there is a vertical tangent at the pole.
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Show that the angle that the radius vector to any point of the cardioid p = a(1 — cos 0) makes
with the curve is one-half that which the radius vector makes with the polar axis.

At any point P(p, 6) on the cardioid, p’ = asin 6 and

1 - 6 1
___cos_.ztan-g; S0 W=

sin & 2 0

2} o—

p
tan gy = — =
p

In Problems 11 to 13, find the angles of intersection of the given pair of curves.

11.

12.

13.

p=3cosh, p=1+cos0 (See Fig. 25-12.)

')
Fig. 25-12

Solve 3cos 8 =1+ cos 8 for the points of intersection, obtaining (3/2, 7/3) and (3/2,57/3). The
curves also intersect at the pole.

For p = 3 cos 8: p'=—-3sin b and tan ¢, = —cot ¥
1+cosé
=1+ : "= —gj =
For p=1+cos @ p sin 8 and tan y, P

At 6 = 7/3, tan ¢, = ~1/V'3, tan ¢, = — V3, and tan ¢ = 1/V3. The acute angle of intersection at
(3/2, w/3) and, by symmetry, at (3/2,5%/3) is w/6.
At the pole, either a diagram or the resuit of Problem 5 shows that the curves are orthogonal.

p=sec’ 18, p=3csc’ 16

Solve sec’ 16 = 3 csc? 1@ for the points of intersection, obtaining (4, 27/3) and (4, 47/3).
For p =sec” 16: p' =sec’ 191tan 18 and tan ¢, = cot 18
For p = 3csc’ 16: p’'=-3csc® 18 cot L9 and tan ¢, = ~tan 9

At 9=2w/3, tan y, = 13, tan ¥, = —V3, and ¢ = } =, the curves are orthogonal. Likewise, the
curves are orthogonal at § =47/3.

p =sin 26, p = cos 6. (See Fig. 25-13.)
The curves intersect at the points (V3/2, 7/6) and (—V3/2,57/6) and the pole.

For p = sin 28: p' =2cos 28 and tan , = § tan 26
For p =cos 8: p'=—sin@ and tan ¢, = —cot

At 6 = 7/6, tan ¢, = V3/2, tan ¢, = — V3, and tan ¢ = —3V3. The acute angle of intersection at
the point (V3/2, m/6) is ¢ = arctan 3V3 = 79°6". Similarly, at § =57/6, tan ¢, = —V3/2, tan ¢, = V3,
and the angle of intersection is arctan 3V3,

At the pole, the angles of intersection are 0° and #/2.

In Problems 14 to 16, find ds/d8 at the point P(p, 6).
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Fig. 25-13

14. p=cos26.

p'=—2sin26 and

% =Vp +(p') =Vcos20 + 4sin’ 20 = V1 + 3sin’ 20
15. p(1+cosh)=4.

Differentiation yields —p sin 8 + p'(1 + cos 8) = 0. Then

,_ psin® _ 4sinf s _ 7 42
P T 1+cos0  (1+cosb) and g = Ve r(e)

" (1 +cos 8)?

16. p=sin’ 16. (Also evaluate ds/df at 6 = 17.)

. ds - - 3 L2
p' =sin® 46 cos 16 and 7 =V/sin® 16 +sin® 16 cos> 48 =sin® 18

At 8= im, ds/de =sin® inw

1
3

It

2 2
. +2 ' _ ”
17. Derive K = £ 3 (p ),23[,)5
[p”+(p')]
By definition, K = dr/ds. Now 7 =8 + ¢ and
d_f=d_9+d_¢_d9+ﬂﬁ=d_9( d_¢’)

= P
P2 P it 7 il + 8 where Y = arctan —;
Also,
dy _[(p") —pp"1/(p’) _ (p') —pp" . dy _ . ()Y ~pp" _p +2p’') —pp’
e XV =3 NI SO 1+ =1+ NE F) 2
de L+ (plp’) P+ (p") do pi+(p") pi+(p")
+ + 2 e _ "
Thus. K=%(”%)=l dy/de _ 1+dyldo _ p* +2(p') — pp

dsidd [T+ (p ) [P ()]

18. Let p =2 +sin 8. Find the curvature at the point P(p, 8).

Ko p’+2(p') —pp" _(2+sin6)’ +2cos’ 8 + (sin B)(2 +sin8) _ 6(1 +sin §)
[p?+ ()" [(2 + sin 8)* + cos® 8]*'*

" (5+4sin9)*"?
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19. Let p(1 —cos @) =1. Find the curvature at § = #/2 and at 6 =47/3,

_ —sin® ,_ —cosd 2sin’ 8 .8
(1 ~cos 8)° p (1-cos 8y (1-cos@)’ 2

At0=7/2, K=(1/V2Y =V2/4; at 0 =47/3, K =(V3/2)’ = 3V3/8.

P and

20. From r = pu,, derive formulas for v and a in terms of u, and u,.

Differentiation yields

_dr_ dp dv, o dp o
VEG T TP T Ty TP g
dv d’p dp do d’e dp df

da)2
and a~E—u"F+u"7{—d—l+9u° d12+u° ar dr pu"(dt

— [fi_z‘_’_ (d_o)z]+ [ d_20+2@d_0]
"Wl TP\ Yol P dr dt

21. A particle moves counterclockwise along p = 4sin 26 with d8/dr = ; rad/sec. (a) Express v
and a in terms of u, and u,. (b) Find |v| and |a| when 8 = /6.

2

We have r=4sin26u, %’=8c0520—(§=4c0526 %Fp=—4sin20
(a) v=u, % + pu, Z—f = 4u, c0s 20 + 2u, sin 20
a=up[(‘11—:f - p(%?)z] +u,,[p Z—jg +2 ‘ji—‘: dz?] = —5u, sin 26 + 4u, cos 20
(b) At 8 = 7/6, u, =?i + %jandua= —%i + —\;—jj. Then v =l/_2§i +%jand|v| = VT,
a= —g)i* —\/—gj and |a| = VO1/2.
4 4
Supplementary Problems
In Problems 22 to 25, find tan ¢ for the given curve at the given points.
22. p=3-sin@at6=0,6=3n/4 Ans. —3;3V2-1
23. p=a(l-cos@)at §=mn/d, 8=37/2 Ans. V2-1; -1
24. p(l~cos@)=aatb=mn/3 6=>5n/4 Ans. —-V3/3;1+V2
25, p’=4sin20at @=57/12, 6 =2m/3 Ans. -1V3;, V3
In Problems 26 to 29, find tan r for the given curve at the given point.
26. p=2+sin@atf=mn/6 Ans. ~3V3 27. p’=9cos20até=m/6 Ans. 0

28. p =sin’ (8/3) at 0= 7/2 Ans. —V3 29, 2p(1 —sin8)=3 at 8=x/4 Ans. 1+V2
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30.

Investigate p = sin 26 for horizontal and vertical tangents.

Ans. horizontal tangents at 8 =0, m, 54°44", 125°16’, 234°44’, 305°16’; vertical tangents at 8 = 7/2,

37w/2, 35°16', 144°44’, 215°16', 324°44’

In Problems 31 to 33, find the acute angles of intersection of each pair of curves.

31.

32.

33.

3s.

37.

39.

41.

42.

43.

p=sin#, p=sin20 Ans. ¢ =79°" at 6 = 7/3 and Sw/3; ¢ =0 at the pole
p=V2sin 6, p°=cos20 Ans. ¢=m/3at 8 =m/6,57/6; ¢ = w/4 at the pole
p* = 165in 26, p>=4csc20 Ans. ¢ = m/3 at each intersection

Show that each pair of curves intersects at right angles at all points of intersection.

(@) p=4cos@, p=4sinh b p=¢’,p=e’
(c) p°cos20=4, p’sin20=9 (d) p=1+cos8, p=1-cosb
Find the angle of intersection of the tangents to p =2 — 4sin 8 at the pole. Ans. 2m/3

Find the curvature of each of these curves at P(p.0): (a) p=e"; (b) p=sin8; (¢) p° =4cos28;
(d) p=3sin @ +4cos 6.

Ans. (@) 1/(V2e°); (b) 2; (c) I cos28; (d) 2/5

Let p = f(#) be the polar equation of a curve, and let s be the arc length along the curve. Using

2

st g o () (25 (5] sme (8] -+
x—pcos@,y—psmﬂdndreca]hngthdt(d‘9 =\ 7 + de).dcnve ) =P +(p').

Find ds/dé for each of the following, assuming s increases in the direction of increasing 6:
(@) p=acos 8, (b) p=a(l+cos8); (c) p=cos2.

Ans. (a) a; (b) aV2+2cos8; (c) V1+3sin” 20

Suppose a particle moves along a curve p = f(8) with its position at any time ¢ given by p = g(1),
6 = h(1).

(a) Multiply the relation obtained in Problem 37 by (%) to obtain v’ = (%)h = pz(‘;—f>- + (%’)-

. do  de/d L _p de _ldp

(b) From tan ¢ = p dp =p dpldt’ obtain sin ¢ = v di and cos ¢ = o dr
du, ] du, de
Show that —dT =, E and 7 =-u, E

A particle moves counterclockwise about the cardioid p =4(1 + cos @) with d@/dt= n/6 rad/sec.
Express v and a in terms of u, and u,.
2 2

2 . 2 2 .
Ans. v=—?7ru"sm0+ —31u,,(1+coso9);a=—%up(1+2c030)—-9lu,,sm6

A particle moves counterclockwise on p = 8 cos 8 with a constant speed of 4 units/sec. Express v and a in
terms of u, and u,. Ans. v=—4u_sin8 +4u,cos §; a=—4u, cos § —4u,sin 0

If a particle of mass m moves along a path under a force F which is always directed toward the origin, we
have F=ma or a= m F. so that a, = 0. Show that when a, = 0. then p° i k. a constant, and the
radius vector sweeps over area at a constant rate.

[}

k-1
7 o3 where k is defined in Problem
p

A particle moves along p = with a, = 0. Show thata, = —

43.

1—cosé@
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In Problems 45 to 48, find all points of intersection of the given equations.

45.

46.

47.

p=3cos 8 p=3sinf
p=cosf, p=1—cos@

p=6p=m

p =sin 28, p = cos 28

Ans.

Ans,

Ans,

Ans.

(0,0), (3V2/2, n/4)
(0,0), (1/2, w/3), (1/2, —=/3)
(m, m), (-7, —7)

+
(0,0), (\/77 (2—"%’) forn=0,1,2,3,4,5

[CHAP. 25



Chapter 26

The Law of the Mean

ROLLE’S THEOREM. If f(x) is continuous on the interval a < x = b, if f(a) = f(b) =0, and if f'(x)
exists everywhere on the interval except possibly at the endpoints, then f'(x) = 0 for at least
one value of x, say x = x,,, between a and b.
Geometrically, this means that if a continuous curve intersects the x axis at x =g and x = b,
and has a tangent at every point between a and b, then there is at least one point x = x,,
between a and b where the tangent is parallel to the x axis. (See Fig. 26-1. For a proof, see
Problem 11.)

v v

|
!
!
!
|
!
i
|
|
|
|

>r——————

o] Ie (20, 0) bl o

Fig. 26-1 Fig. 26-2

Corollary: If f(x) satisfies the conditions of Rolle's theorem, except that f(a) = f(b) # 0,
then f'(x) = 0 for at least one value of x, say x = x,, between a and b.
(See Fig. 26-2 and Problems 1 and 2.)

THE LAW OF THE MEAN. If f(x) is continuous on the interval a < x < b, and if f'(x) exists
everywhere on the interval except possibly at the endpoints, then there is at least one value of
X, say x = x,, between a4 and b such that

b —
101y,

Geometrically, this means that if P, and P, are two points of a continuous curve that has a
tangent at each intervening point, then there exists at least one point of the curve between P,
and P, at which the slope of the curve is equal to the slope of P,P,. (See Fig. 26-3. For a proof

see Problem 12.)
The law of the mean may be put in several useful forms. The first is obtained by

multiplication by b — a:

f(b)y=fla) + (b —a)f'(x,) for some x, between a and b (26.1)
A simple change of letter yields

fix)=fla) + (x —a)f'(xy) for some x, between a and x (26.2)

It is clear from Fig. 26-4 that x,=a + 6(b — a) for some & such that 0<@ <1. With this
replacement, (26.1) takes the form

f(b)=f(a) + (b —a)f'|la + 8(b— a)] for some 6 such that 0< 8 <1 (26.3)
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Ps(b, f(b))

Pia, f(a))

(&)

- —— — —
| ——————— =

Fig. 26-3 Fig. 26-4

Letting b — a = h, we can rewrite (26.3) as
fla+ h)= f(a) + hf'(a + 6h) for some 6 such that 0 < g <1 (26.4)
Finally, if we let a = x and h = Ax, (26.4) becomes
flx + Ax) = flx) + Ax f'(x + 8 Ax) for some 6 such that 0 <6 <] (26.5)
(See Problems 3 to 9))

GENERALIZED LAW OF THE MEAN. If f(x) and g(x) are continuous on the interval a< x < b,
and if f'(x) and g'(x) exist and g'(x) # 0 everywhere on the interval except possibly at the
endpoints. then there exists at least one value of x, say x = x,,, between a and b such that

fb) - f(a) _ f(xq)
g(b) —gla)  g'(xy)
For the case g(x) = x, this becomes the law of the mean. (For a proof, see Problem 13.)

EXTENDED LAW OF THE MEAN. If f(x) and its first n — 1 derivatives are continuous on the
interval a =< x=b, and if f"’(x) exists everywhere on the interval except possibly at the
endpoints, then there is at least one value of x, say x = x,, between a and & such that

f( )( a)+£§,i)(b—a)2+--~

f‘" "(a) R AED)
Ty O

fib) = fa) +

(b—-a) (26.6)
(For a proof, see Problem 15.)
When b is replaced with the variable x, (26.6) becomes
" a
i) = fiay + & (- 0y + L2

(x —a)+ (x—a) +--

f(n»l)(a) f'n](xo)

+ TES] (x—a)"’l+—n! (x—a)" (26.7)

for some x, between a and x
When « is replaced with 0, (26.7) becomes

f(0) L0 f(" l’(0) f7(x) .
f(x)=f0) + =% T T Yooyt X (26.8)

for some x, between 0 and x
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Solved Problems

Find the value of x, prescribed in Rolle’s theorem for f(x)=x—12x on the interval
0=x=2V3.

f'(x)=3x>—12=0 when x = +2; then x, =2 in the prescribed value.

x> —4x d (b )_x2~4x
w =2 2 (B) ) ="

(a) f(x)=0 when x =0,4. Since f(x) is discontinuous at x =2, a point on the interval 0 =< x <4, the
theorem does not apply.

(b) f(x) =0 when x =0, 4. Here f(x) is discontinuous at x = —2, a point not on the interval 0 < x <4.
Morecover, f'(x) = (x’ + 4x — 8)/(x + 2)° exists everywhere except at x = —2. Hence, the theorem
applies and x, = 2(V3 — 1), the positive root of x* + 4x —8 =0.

?

Does Rolle’s theorem apply to the functions (@) f(x) =

Find the value of x, prescribed by the law of the mean, given f(x) =3x* +4x ~3,a=1,b=3.

Using (26.1) with f(a) = f(1) =4, f(b) = f(3) =36, f'(x,)=6x,+4, and b —a =2, we have 36 =
4+ 2x,+4)=12x,+ 12 and x, = 2.

Use the law of the mean to approximate V6s.

Let f(x) =VX.a=64. and b =65, and apply (26.1), obtaining

65 — 64
f(65) = fl64) + 2= . 64 x, <65
Q

Since x, is not known, take x, = 64; then approximately, V65 = V64 + 1/(6V64°) = 2 + 1/192 = 2.00521.

A circular hole 4in in diameter and 1 ft deep in a metal block is rebored to increase the
diameter to 4.12 in. Estimate the amount of metal removed.

The volume of a circular hole of radius x in and depth 12 in is given by V = f(x) = 127x’. We are to
estimate f(2.06) — f(2). By the law of the mean,

f(2.06) — f(2) = 0.06f'(x,) = 0.06(247x,), 2<x,<2.06
Take x, = 2; then, approximately, f(2.06) — f(2) = 0.06(247)(2) = 2.887 in".

Apply the law of the mean to y = f(x), a = x, b = x + Ax with all conditions satisfied to show
that Ay = f'(x) Ax approximately.

We have Ay =fx +Ax) - f(x) = (x + Ax — x)f'(x,) . x<x,<x+Ax
Take x, = x; then approximately Ay = f'(x) Ax.

Use the law of the mean to show sin x < x for x > 0.

Since sin x < 1, obviously sin x < x when x > 1. For 0 < x =<1, take f(x) = sin x with @ = 0 and apply
(26.2):
sinx =sin0+ x cos x, = xcos X, , 0<x,<x

Now on this interval cos x, <1 so x cos x, < x; hence, sin x <x.

X
1+x

Use the law of the mean to show <In(l+x)<xfor —1<x<0 and for x>0.
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10.

11.

12.

THE LAW OF THE MEAN [CHAP. 26

Apply (26.4) with f(x)=Inx,a=1, and h=x:

1 X
+x)= + =
In(1+x)=Inl x1+0x T+ ox° 0<e<1
x
> <l+0x<1+x; > >
When x>0, 1 <1+ 60x<1+ x; hence, 1 17 ox 11+xald >1+6x>1+x'
X X
-1< >1+80x>1+x; e < —
When —1 x<0,1 1+6x>1+x; hence, 1 X1+0x T+ an(;x 1+x0x>l+x'
P P “+ = . —_—  — =
xln edc}; case, 1+9.§<x and In(1+x) l+0x<x’ also, 1+8x>1+x and In(1+ x)
1+9X>1—+;.Hem:e,H_x<ln(l+x)<xwhen—1<x<Oandwhenx>0.

Use the law of the mean to show V1 +x <1+ 4x for —1<x <0 and for x > 0.

Take f(x) = vx and use (26.4) witha=1 and h = x:
x

Prx=l+ oo
x x
>0, VI+oxr<V1+ d > ; —I<x<U,
Whexnx 0, }t 0x X an N Vit: when —1<x<0, V1+6x>V1+x and

> .
2VIi+6x " 2V1+x X x
: : Vitx=1+ >1+
In each case, V1 +x =1 Y EXT 1 NI

0,wehave | +x>VIi+x+ixor VIi+x<l+lr

. Multiplying the outer inequality by V1 + x >

Find a value X, as prescribed by the generalized law of the mean, given f(x) =3x +2 and
g)=x"+1,1=x=<4,
We are to find x,, so that
f)-fla) _fA-f()) 14-5_3 _ filx) 3
gb)-gla) g@)-g(l) 17-2 5 §g'x) 2x,

Then 2x,=5 and x, = 3.

Prove Rolle’s theorem: If f(x) is continuous on the interval a < x < b, if f(a) = f(b) =0, and if
f'(x) exists everywhere on the interval except possibly at the endpoints, then f'(x) = 0 for at
least one value of x, say x = x,, between a and b.

If f(x) = 0 throughout the interval, then also f'(x) = 0 and the theorem is proved. Otherwise, if f(x)
is positive (negative) somewhere on the interval, it has a relative maximum (minimum) at some x = x,,
a<x,<b (see Property 8.2), and f'(x,)=0.

Prove the law of the mean: If f(x) is continuous on the interval a < x < b, and if f'(x) exists
everywhere on the interval except possibly at the endpoints, then there is a value of x, say

f(b) f(a) = F'(xy).

Refer to Fig. 26-3. The equation of the secant line P P, is y = f(b) + K(x — b) where K =
f0) = 1@) 5 h la<x<b, th I di from th t h
Th—a any point x on the interval a <x , the vertical distance from the secant line to the
curve is F(x) = f(x) ~ f(b) — K(x — b). Now F(x) satisfies the conditions of Rolle’s theorem (check this);
hence, F'(x) = f'(x) — K =0 for some x = x, between a and b. Thus,

K=fitey = L1

X = x,, between a and b such that

as was to be proved.
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13.

14.

Prove the generalized law of the mean: If f(x) and g(x) are continuous on the interval
a=x=b, and if f'(x) and g'(x) exist and g'(x) # 0 everywhere on the interval except possibly
at the endpoints, then there exists at least one value of x, say x = x,, between a and b such
f(b)—fla) _ f'(x0)

g(b) —gla) ~ g'(x,)’

Suppose g(b) = g(a); then by the corollary to Rolle’s theorem, g'(x) = 0 for some x between a and
b. But this is contrary to the hypothesis; thus g(b) # g(a).

Now set 8{—8—;—:% = K, a constant, and form the function F(x) = f(x) — f(b) — K[ g(x) — g(b)].
This function satisfies the conditions of Rolle’s theorem (check this), so that F'(x) = f'(x) - Kg'(x) =0

for at least one value of x, say x = x,, between a and b. Thus,

_ () _ fib) - fla)
g0 8(b) g(a)

that

as was to be proved.

A curve y = f(x) is concave upward on a<x <b if, for any arc PQ of the curve in that
interval, the curve lies below the chord PQ; and it is concave downward if it lies above all
such chords. Prove: If f(x) and f'(x) are continuous on a < x < b, and if f'(x) has the same
sign on a < x < b, then

1. f(x) is concave upward on @ <x < b when f"(x) > 0.
2. f(x) is concave downward on a < x < b when f"(x) <0.
. b)-fla
The equation of the chord PQ joining P(a, f(a)) and Q(b, f(b)) is y = f(a) + (x — a) ]%.
Let A and B be points on the arc and chord, respectively, having abscissa x = ¢, where e < ¢ < b (Fig.
26-5). The corresponding ordinates are f(c) and

fly+ (e - @ (OIS _ (b= 0f@ + (e~ af(d)

|
I
|
[ ]
I |
| !
| | z
c b

|
|
|
|
|
|
|
a

o
Fig. 26-5
b- +(c—
We first must prove f(c)<( c)f(ag.—ic 9f(6) when f“(x)>0. By the law of the mean,

fle) - fa)

= f'( £), where ¢ is between a and ¢, and fe ) f(c)
Since f'(x)>0 on a<x<b, f'(x) is an increasing functlon on the interval and f'(£) < f'(n). Thus

f9) - f(a) f(b) f(C)

c—a

= f'(n), where n is between ¢ and b.

, from which it follows that

(b= C)f(a) + (c ~ D)
flo< L

as required.
The proof of the second part is left as an exercise for the reader.
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18.

16.

17.

18.

19.

20.
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Prove: If f(x) and its first (n ~ 1) derivatives are continuous on the interval a < x < b, and if
f"(x) exists everywhere on the interval except possibly at the endpoints, then there is a value
of x, say x = x,, between a and b such that

f( ) f(a )( a)z+“_+f("_“(a) )

TR A A el GO}

For the case n = 1, this becomes the law of the mean. The following proof parallels that of Problem
12. Let K be defined by

fb)=fla)+ =7~ (b—a)+

" (n-1})
o=+ H2 6 -0+ B2 6oy et LB pmay e k-0 )
and consider
o, (n 1)
Fo = f0 - fib) + L8 (b -+ L2 "'+f(7:T(;—f!l(b—x)""+K(b‘x)"

Now F(a) = 0 by (1). and F(b) = 0. By Rolle's theorem, there exists an x = x,,, where a < x, < b, such
that

[f”’( x)

Fl(xu) :fl(x()) + [f”(xu)(b - Xn) —f‘(xn)] + (b - X") - f”(X(,)(b Xa J

+~~'+[{—;g%(b—x(,)""—%i)g’;‘;) (b= x,)" ]—Kn(b-x(,)” !
= {;)_(Xl))' (6-x,)' '~ Kn(b~x,)" '=0
Then K = f—(,]l(«,xl and (1) becomes
16y =iay + T oy T g L@ e ST

(n—1)

n!

Supplementary Problems

Find a value for x, as prescribed by Rolle’s theorem, given:

(@) flx)=x"-4x+3, 1=x=3 Ans. x,=2
(b) f(x)=sinx, 0=x=xw Ans. x,=im
(¢) fix)=cosx, w/2<x<3n/2 Ans. x,=m

Find a value for x, as prescribed by the law of the mean, given:

(@ y=x.0=sx<6 Ans. x,=2V3

(b) y=axr* +bx+c, x, =x=1x, Ans. x,= 3(x, +x,)
2e ~ 1

(c) y=lnx, 1=x=<2¢ Ans. %= T+

Use the law of the mean to approximate (a) V15; (b) (3.001)%; (c) 1/999.
Ans. () 3.875, (b) 27.027. (c) 0.001 001

Use the law of the mean to prove (a) tanx>x, O0<x<im; (b)

. x
(¢) x < arcsin x < \/1———2,0<x<1.
- X

x
7 < arctan x <x, x >0;
1+x

Show that | f(x) — f(x,)| =|x — x,|. x, being any number, when (a) f(x) =sin x; (b) f(x) = cos x.
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21.

22.

23.

25.

26.

Use the law of the mean to prove:

(a) If f’(x) = 0 everywhere on the interval a < x = b, then f(x) = f(a) = c. a constant, everywhere on the
interval.

(b) On a given interval a < x < b, f(x) increases as x increases if f'(x) > 0 throughout the interval. (Hint:
Let x, <x, be two points on the interval; then f(x,) = f(x,) + (x, — x,)f"(x,). x, <x,<x,.)

Use the theorem of Problem 21(a) to prove: If f(x) and g(x) are different but f'(x) = g’(x) throughout an
interval, then f(x) — g(x) = ¢ # 0, a constant, on the interval.

Prove: If f(x) is a polynomial of degree n and f(x) = 0 has n simple real roots, then f'(x) = 0 has exactly
n — 1 simple real roots.

Show that x* + px + g = 0 has (a) one real root if p >0, and (b) three real roots if 4p* +27¢" <0.
Find a value x, as prescribed by the generalized law of the mean, given:

(@ f)=x"+2x-3,gx)=x"—-4x+6;a=0,b=1 Ans. |
(b) f(x)=sinx, g{x)=cosx;a=mw/6.b=m/3. Ans. imw

Use (26.8) to show:

(a) sinx can be approximated by x with allowable error 0.005 for x <0.31. (Hint: For n=3,
sinx =x— \x'cosx,. Set}|x’cosx,|=1[x’]<0.005)

(b) sin x can be approximated by x — x*/6 with allowable error 0.00005 for x < 0.359.



Chapter 27

Indeterminate Forms

THE DERIVATIVE of a differentiable function f(x) is defined as
i flx + Ax) — f(x)

ax—0  (x +Ax) —x (27.1)

Since the limit of both the numerator and the denominator of the fraction is zero, it is
customary to call (27.1) indeterminate of the type 0/0. Other examples are found in Problem 6
of Chapter 7.

1 i S a 9

(see Problem 7 of Chapter 7) indeterminate of
0,

the type x/x. These symbols 0/0, x/=, and others (0-o, ©—x, 0 «° and 17) to be
introduced later must not be taken literally; they are merely convenient labels for distinguishing
types of behavior at certain limits.

INDETERMINATE TYPE 0/0; L’HOSPITAL’S RULE. If a is a number, if f(x) and g(x) are
differentiable and g(x)#0 for all x on some interval 0 <|x — a| <8, and if lim f(x) =0 and

lim g(x) =0, then, when lim ~; exists or is infinite,
1—a g( ) x—a g (x)
tim L8 L)

—— (L’Hospital's rule
e g (HHoP )

2 1. . .
EXAMPLE 1: lim rx is indeterminate of type 0/0. Because

-3
d
s _xt-81
lim ——————— =lim4x = 108, we have lim =108
—3 d e 3 v-»3 X —3
PR

(See Problems 1 to 7.)
Note: L'Hospital's rule remains valid when 1(1_@1 is replaced by the one-sided limits [im or

. x—a’
lim .

x—a’

INDETERMINATE TYPE x/x. The conclusion of I’Hospital’s rule is unchanged if one or both of
the following changes are made in the hypotheses:

1. “lim f(x) =0 and lim g(x) = 0" is replaced by “lim f(x) == and lim g(x) = x."”
2. “ais a number” is replaced by “*a =+, —x, or =" and “0< |x —a| < 8" is replaced
by “|x|>M.”

2

EXAMPLE 2: lim % is indeterminate of type /<. Then 'Hospital’s rule gives

im %= fim 2= im 2 =0

t-++tx £ 1=+ x @ x—+x £

(See Problems 9 to 11.)

190
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INDETERMINATE TYPES 0« and ® — . These may be handled by first transforming to one of

the types 0/0 or «/~. For example:
2

lim x’e " is of type 0-  but lim Z, is of type </

. 1 ) . . (x — sin x) .
—_— - — _ /
11_1’2) (cscx ;) of type © — but 11_1.13) ~sinx /S of type 0/0
{See Problems 13 to 16.)

INDETERMINATE TYPES 0°, «°, and 1%, If lim y is one of these types, then lim (In y) is of the type
0 oo, -

EXAMPLE 3: Evaluate lim (sec® 2x)°°" .
This is of the type 17, Let y = (sec® 2x)°°"
of the type 0/0. L'Hospital’s rule gives

31insec2x

;thenln y = cot’ 3x Insec’ 2x =
r= tan® 3x

and lirr(ll In yis

m 3linsec2x ; 6tan 2x im tan 2x
i = lim = lim ———
s~0 tan’3x o0 6tan3xsec’3x :—o tan3x

since ]in?) sec’ 3x = 1, and the last limit above is of the type 0/0. L’'Hospital's rule now gives

tan2x . 2 sec’ 2 _ 2

im
S tan3xr 00 3seci3x 3

cot? arx 2/3

Since lim In y = Z, lim y = lim (sec’ 2x) =e

(See Problems 17 to 19.)

Solved Problems

1. Prove I'Hospital’s rule: If a is a number, if f(x) and g(x) are differentiable and g(x) # 0 for all
x on some interval 0<|x — a| < §, and if lim f(x) = 0 and lim g(x) =0, then

x
If lim fx) exists, llm fx) f( )
= g'(x) e M g
When b is replaced by x in the generalized law of the mean (Chapter 26), we have, since

fla) = g(a) =0,
f&x)—fla) _ f(x) _ f'(x)
g(x)—gla) g(x) g'(xy)
where x, is between a and x. Now x,— a as x— a; hence,
fx) £ o 1)
et T AR ) PR )

2
. X' tx-—6
2. Evaluate lim —5——.

=2 x"—4
When x—2, both numerator and denominator approach 0. Hence the rule applies, and
+x-6 — i 2x+1 5

ll—lpz xZ -4 xl—Onl 2X - Z ’
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. x+sin2x
Evaluate lim ————.
=0 x —sin 2x

When x—0, both numerator fnd denominator approach 0. Hence the rule applies, and

x+sm2x_l. 1+2cos2x -3
X —sin2x 0 1-2cos2x 1-2 :

e*—1

Evaluate lin(l)

x__l . x

=1

&
i
I
8

L'Hospital’s rule gives ling
X

1
—

X

+e *-x? —2

Evaluate lim
x—=0 sm X — x

When x — 0, both numerator and denominator approach 0. Hence the rule applies and

L e tre t-x'-2 | e —e -2
lim — 7— = lim —
10 sin“x—x —0 sin2x —2x

Since the resulting function is indeterminate of the type 0/0, we apply the rule to it:

e‘+e"‘—x2—2_. e'—e " -2x . e+e -2

lim " = hm T =m -—07=
x 0 sm2 X — xz —0 sin2x —2x x—0 2C082x —2

Again, the resulting function is indeterminate of the type 0/0. With the understanding that each equality
is justified, we obtain, in succession,

lime"+e‘—x2—2=lime"—e"—2x= ime’-i»e"‘—Z
-0 sin‘x—x° x=0 sin2x —2x  s—o0 2cos2x —2
= lim e —e” - lim ee+e” 1
=0 —4sin2x  x—»0 —8cos2x 4
Criticize: lim fS—xz—x—Z i 2=l 6x=2 L6
=2 x" —=3x"+3x—-2 x—°23x —6x+3 x~26x 6 x—-z6

The given function is indeterminate of the type 0/0, and the rule applies. But the resulting function
is not indeterminate (the limit is 7/3); hence, the succeeding applications of the rule are not justified.
This is a fairly common error.

Criticize: l.n1,r3--x2—x+—l_3x2~2)c—1_6x—2__2
e e Y 2+ x 3Ix*~4x+1 6x—4 7

3 2 2
L. o x=x"—x+1l . 3x"-2x-1 . 6x~2

The correct statement is lim — 3 =lim — = lim = 2. The fact that the
o Coxe x = 2xT 4 x =1 3x" —4x+1  x—1 6x ~ 4
limit is correct does not justify the series of incorrect statements in obtaining it.

Evaluate lim —mX
v € ——=.
aluate im =3

x—mw

. sin x ) cos X . L2
lim =lim ————= = lim 2(x—w) “cosx =0
N ../_‘x _—1’7_ . %(X—' 17) 1/2 — ( )

x—>m x—em

Here the approach must be from the right, since otherwise (x — w)'"? is imaginary.

. In x
Evaluate lim —.

x—++x X
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When x— +o, both numerator and denominator approach +c. Then I'Hospital's rule gives

In sin x
10. Evaluate lim
0+ Intan x’

Insin x . cosx/sinx . 2
im = lim ————— = lim cos" x =1
o+ INtAN X .o+ sec’ x/tanx  <—o*

cotx
cot2x’

11. Evaluate hm

ese’x csc” x cot x

We have lim = lim = lim
=0 COL2X  x—0 2csc2x  x—o 4csc 2x cot 2x

Here each application of the rule results in an indeterminate form of the type >/x. Instead, we try a
trigonometric substitution:

cotx . tan2x . 2seci2x
im = lim = lim — =2
x—=0 COt2x x—0 tanx x—0 sec’x
f'(x) f(x)

12. Let llm x)=0 and hm x)=0. Prove: If lim =——=1L, then lim —/—% =
fx) = 8(x) = Jim Jim oS

. . fx) . f(Yy)
Letx=1/y. Asx—+«x, y—>0 and lim = = lim ——=. Then
Y Y e gr) T L2 g(1y)

d
' ' £ -2 “f(l/)’)
Y 6 W 010 S ¢ V00 VA

- im = - = S E—
smr= g(x)  amo0 (1Y) o —g'(Lly)y Tt o d 1/
e 8(17y)

- fayy oL fx)
N, ey =M. o)

13.  Evaluate lim (x°Inx).
x—0*

. In
As x—0", x*—0 and In x— —=. Then — has an indeterminate limit of type /=,

1/2

lim (Flnx) = lim 2%  jim —”/i;= fim (—%x2)=0

7,2
r—0* —o0* 1/x 10t —2/x x—0*

In Problems 14 to 16, evaluate the leftmost limit.

1—-tanx . ~sec’ x
14. ,P.T (1—tanx)sec2x—111."m—-m—sz—x——X_{m‘ Ssin2x
. (1 )_. e —1-x " - s 1
15. 1‘33(): e -1 _ll—r.r(l)x( -1) ;ltl-l-l(l)xe’+e‘—l_£'-r-r(1)xe’+2e‘_2

l—cosx_l. sin x

16.  lim (csc x —cot x) = lim — im
x—0 x—0 sSin x x—0 COS X

17.  Evaluate ]iml x"&7D_ (This is of the type 17)
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18.

19.

21.
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, |
Let y=x"“"" Thenlny= xn_xl has an indeterminate limit of type g The rule gives

. o Imx o 1ix _
aminy=lim =7 = lim =1

Since In y—1 as x— 1, it must be that y— e as x— 1. Thus the required limit is e.

cos x

Evaluate lim (tanx)“**. (This is of type ="

x—~fw"

In tan x . »
Let y =(tan x)*>**. Then In y =cos x Intan x = py has a limit of type —. The rule gives
. . Intan x . sec’ x/tan x . cos X
lim Iny= lim —— = —_— =1 =0

im —
b redm- SECX - secxtanx .- sin’x

ik

Since In y —0 as x— j# ", y— 1. Thus, the required limit is 1.

Evaluate lim x*"*. (This is of type 0°)

0"
sin x . Inx . . .. o
Let y=x""" Thenlny=sinxlnx = o x has an indeterminate limit of type =

. . Inx ) 1/x i sin® x . 2'sin x cos x
lim Iny = lim —— = lim ——————— = lim ———— = lim —————— =
fpes se0” CSCX ;0 —CSCXCOLX ;o0 —XCOSX  yoq* X SiN X — COS X

Since In y—0 as x— 07, y— 1. Thus, the required limit is 1.

g
Evaluate lim ___2___x_

x—+x

2

2+x X 2+ x°
By repeated application of 1'Hospital's rule, lim = Jlim = lim
y p Pp p =+t = X X— + = ‘\[2+x2 x—++ =
) ) i 2+x° 24 x°
Obviously, the rule is of no help here. However, we have lim P = lim 7 =
X~ + ¢ X—e 4 o X

2
lim J—2+1=1.
x—+ = X

The current in a coil containing a resistance R, an inductance L, and a constant electromotive

force E at time ¢ is given by i = & (1~ e Rt

is very small.

). Obtain a suitable formula to be used when R

) ) i E 1 . e—Rr/L) . t —RiL
hmz=hm—————( =limE~-e "=
R—0 R—0 R R—0 L

Et
T

Supplementary Problems

In Problems 22 to 63, evaluate the limit on the left to obtain the result on the right.

22,

24,

‘_ 1_ 256
lim =2 _ 256 23, lim 5—=2=32
i—a X —4 —a x°—16

2 _ x 2
lim x _1 25, lim e =
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xe* e -1 1
26. ,l(l-r.rcl)l—e =-1 2. ,l:l—l-rrln tan2x 2
. In(2+x) _ cosx—1 1
3. ,l_l.llln x+1 =1 3. socos2x—1 4
2x _ -2« x X
0. lim —— = . timSi 2 -l
=0 sinx 0 4x 2
0. lim 2 arc tan X-x_ 1. im In sec 2x
=0 2x —arcsin x =—0 Insecx
M, lim 2eSX_ ] 3. fim 8EECOSX
=0 X 2 10 sin” x
In x . cscbx 1
36. xllor{lua Vo =0 37. xl_l,T" csc2x 3
. S5x+2Inx *+xt
38. xllol?m x+3lnx 3. ,P.Tm e+1
. Incotx _ e +3x° 1
0. Jlim, et 0 o I e
42.  lim(e"—1)cosx =1 43.  lim_x’¢=0
Iin(l)xcscx=1 4s. lin}csc'rrxlnx=—1/1r
li;n e " sec’x=0 47.  lim (x - arcsin x) esc’x=—}
i 4 1 )_ ; ( 1_ L) _
4. ET}(,:Z—At x=-2/" 49. P—I»tt‘a x sinx =0
. 3 3 1 X
50. lim (sec” x —tan” x) =0 51. lim - ==
x—3mw x—+1 ln X x—1
(4 2 )_ : (lnx 1 )_
52 lim (x2 1-cosx/ 5. Jm \ /=0
54. lim x* =1 55.  lim (cos x)!'* =
x—0*
56.  lim (" +3x)"" = ¢* 57. lim (1-e™") " =1/e
S8. lim (sinx —cosx)'™*=1/e 59, lim (tanx)™ " =1
60.  lim x"" bre _ gm2m 6l.  lim (1+1/x)=¢
ex(l _ eX) x 1- ex . . x
62. (@) lim (=% M 733 im pg— g =1 0 Jim
. l s 1000
63. () lim “xz" =0; (b) lim — = X -0

2
— =0; (c hm
37 (o)

—3ix

x2

195



Chapter 28

Differentials

DIFFERENTIALS. For the function y = f(x), we define the following:

1. dx, called the differential of x, given by the relation dx = Ax
2. dy, called the differential of y, given by the relation dy = f'(x) dx

The differential of the independent variable is, by definition, equal to the increment of the
variable. But the differential of the dependent variable is not equal to the increment of that

variable. See Fig. 28-1.

Q(x+Ax, y+Ay)

47/

x

(d]
7 .
| L]
- x/ Yy o i
z z 42 x
0
Fig. 28-1 Fig. 28-2

EXAMPLE 1: When y=x° dy=2xdx while Ay =(x + Ax)’ — x* =2x Ax + (Ax)’ = 2x dx + (dx)". A
geometric interpretation is given in Fig. 28-2, where you can see that Ay and dy differ by the small square
of area (dx)>.

THE DIFFERENTIAL dy may be found by using the definition dy = f'(x) dx or by means of rules
obtained readily from the rules for finding derivatives. Some of these are:

d(c) = 0 d(cu) =c du d(uU) =u dv +u du
d(z—): M d(sin u) = cos u du d(In u):‘_iuﬁ
v

EXAMPLE 2: Find dy for each of the following:
(@) y=x"+4x"-5x+6

dy = d(x*) + d(4x*) — d(5x) + d(6) = (3x* + 8x — 5) dx
(b) y= (sz + 5)3/2
dy=3(2x +5)"d(2x’ +5) = 3(2x* + 5)"(6x7 dx) = 9x*(2x° +5)"'? dx

(See Problems 1 to 5.)

APPROXIMATIONS BY DIFFERENTIALS. If dx = Ax is relatively small when compared with x,
dy is a fairly good approximation of Ay.

196
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EXAMPLE 3: Take y =x’+ x +1, and let x change from x =2 to x =2.01. The actual change in y is
Ay =[(2.01)> +2.01 + 1] - (2° + 2+ 1) = 0.0501. The approximate change in y, obtained by taking x =2
and dx =0.01, is dy = f'(x) dx = (2x + 1) dx = [2(2) + 1]0.01 = 0.05

(See Problems 6 to 10.)

APPROXIMATIONS OF ROOTS OF EQUATIONS. Let x = x, be a fairly close approximation of a
root r of the equation y = f(x) =0, and let f(x,) =y, #0. Then y, differs from 0 by a small
amount. Now if x, were changed to r, the corresponding change in f(x,) would be Ay, = —y,.

An approximation of this change in x, is given by f'(x,) dx, = —y, or dx, = —f'(x, 3 Thus, a
1

second and better approximation of the root r is

y fx))
RN
A third approximation is x; = x, + dx, = x, — ff,(();z )) , and so on.
2
v
Q(x1, f(x1))
P(r,0) (21, 0) x
o //~z,0)

When x, is not a sufficiently close approximation of a root, it will be found that x, differs
materially from x,. While at times the process of finding these approximations is self-correcting,
it is often simpler to make a new first approximation. (See Problems 11 and 12.)

Solved Problems

1. Find dy for each of the following:

_x3+2x+1_
(@) y= Y +3
dy=(x2+3)d(x3+2x+12—(xz+2x+1)d(x2+3)
(x*+3)
=(x2+3)(3x2+2)dx—(x3+2x+1)(2x)d.x=x"+7x2—2x+6dx
(x*+3) (x? +3)°

b = cos’® 2x + sin 3x:
y
dy = 2 cos 2x d(cos 2x) + d(sin 3x) = (2 cos 2x)(— 2 sin 2x dx)} + 3 cos 3x dx
= —4sin2x cos 2x dx + 3 cos 3x dx = (—2sin 4x + 3 cos 3x) dx
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(c) y = €™ + arcsin 2x: dy = (3e3, N L) e

V- 4ax®

In Problems 2 to 5, use differentials to obtain dy/dx.

2. xy+x-2y=5

We have d(xy) + d(x) — d(2y) = d(5) or xdy+ydex+dx—-2dy=0

dy _ _y+1

Then (x—-2)dy+(y+1)dx=0 and L P

Xy = 2%y + 3xy° —8xy=6
Here 2x’y dy + 3x7y* dx —2x* dy —dxy dx + 6xydy + 3y’ dx —8xdy — 8y dx =0
dy _ 8y =3y’ +4xy - 3%y’

% dx  2x’y —2x* + 6xy — 8x
2x 3
x 3y _g
y X
rdx —xd dy — vdx L 3
Here Z(M)q(x_y_zy_):o g L2y
x de  3xy’ +2x

y

x=3cos 8 —cos 36, y=3sin 8 — sin 30

_ . . _ B dy _ cos 6 —cos 38
dx =(—3sin 6 + 3sin 30) db dy = (3cos 6 —3cos38) do &~ “sin6+sin30

Use differentials to approximate (a) v 124, (b) sin 60°1".
-1

13 - 1 — — &3 - _ = 1 (- p—
(@) For y =x"", dy-———3x2,3 dx. Take x=125=5" and dx = —1. Then dy = 3(125)2,3( 1)= 75 =

—0.0133 and, approximately, ViZd = y +dy=5-0.0133 = 4.9867.
(b) For x =60° and dx =1'=0.0003 rad, y =sin x = V3/2=0.86603 and dy = cos x dx = $(0.0003) =
0.00015. Then, approximately, sin 60°1' = y + dy = 0.86603 + 0.00015 = 0.86618.

Compute Ay, dy, and Ay — dy, given y = 1x’ +3x, x =2, and dx =0.5.

Ay = [1(2.5)* + 3(2.5)] - [ 1(2)" + 3(2)] = 2.625
dy = (x +3)dx =(2+3)(0.5)=2.5
Ay ~ dy =2.625—-2.5=0.125

Find the approximate change in the volume V of a cube of side x in caused by increasing the
sides by 1%.

V=x" and dV = 3x* dx. When dx =0.01x, dV = 3x*(0.01x) = 0.03x” in’.

Find the approximate weight of an 8-ft length of copper tubing if the inside diameter is 1 in
and the thickness is 1/8 in. The specific weight of copper is 550 lb/ft’.

First find the change in volume when the radius r = % ft is changed by dr = & ft:

_ 2 - - 11 _ 7 .
V=8mr av=16wrdr= 16w 24 9 = 14a ft

This is the volume of copper. Its weight is 550(w/144) = 12 Ib.



CHAP. 28] DIFFERENTIALS 199

10.

11.

12.

13.

14.

For what values of x may /% be used in place of Vx + 1, if the error must be less than 0.001?

When y =x'""and dx =1, dy = ix ‘”de It
If 1 x™** <1077 then x~ “’5<5(10 )and x“‘<5 (10° .

10 10*
If x * < 10(5°)(107 '), then x* > —— and x > ——— =752.1
(571077, 31250 V31250

Approximate the (real) roots of x* +2x —5=0or x’=5-2x.

On the same axes, construct the graphs of y = x* and y =5 — 2x. The abscissas of the points of
intersection of the curves are the roots of the given equation. From the graph, it may be seen that there
is one root whose approximate value is x, = 1.3.

A second approximation of this root is

flx,) (1.3’ +2(1.3) -5 -0.203
=x, - =13- =13~
BTNT G 3(1.3)%+2 7.07
The division above is carried out to yield two decimal places, since there is one zero immediately
following the decimal point. This is in accord with a theorem: If in a division, k zeros immediately follow
the decimal point in the quotient, the division can be carried out to yield 2k decimal places.
A third and fourth approximation are

=13+0.03=1.33

fix) (1.33)" +2(1.33) - 5
- —1.33- ~1.33-0.0017 = 1.3283
ST e,y T 3(1.33) + 2
P ff((’;))-mzss 0.000 031 14 = 1.328 268 86

Approximate the roots of 2cos x — x> =0.

The curves y =2 cos x and y = x° intersect in two points whose abscissas are approximately 1 and
—1. (Note that if r is one root, then —r is the other.)

. L B 2cos1-1 2(0.5403)-1 B
Using x, =1 yields x, =1 - enl—2 =1+ *2(0.8415)+2 =1+0.02=1.02.
) 2cos (1.02) — (1.02)° 0.0064
b= - = + 25, = 1.02+0. =1. . .
Then x' =1.02 2 5in (1.02) = 2(1.02) 102+ 3775 = 1.02+0.0017 = 1.0217. Thus, to four

decimal places, the roots are 1.0217 and —1.0217.

Supplementary Problems

Find dy for each of the following:

(@ y=(5-x) Ans. —3(5-x)? dx (b) y=e* Ans. 8xe* dx
. cos x — si
(¢) y=(sinx)/x Ans. f—s—irﬂ—n—{ dx (d) y = cos bx* Ans. —2bxsin bx* dx
-2 2 dx
= 2 L _
(e) y = arccos2x Ans Vi dx (f) y=Intanx Ans. Sinox

Find dy/dx as in Problems 2 to S:

, 2y(y* + 3x) . cos(x—y)—y
3432y =1 R AV St = - —
(@) 2xy” +3x%y Ans 32T+ %) (&) xy =sin(x —y) cos(x —y) ¥ x
Yy _ 2 2 2x +y
(¢) arctan T In(x"+y°) Ans. =2y
2 2
(d)xIny+y’Inx=2 Ans _(@xIny+y)y

(2y*Inx + x*)x
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15.

16.

17.

18.

19.

21.

22.

DIFFERENTIALS [CHAP. 28

Use differentials to approximate (a) W (b)\/S 1020, (c) cos 59°, and (d) tan 44°.
Ans.  (a) 2.03125; (b) 3.99688; (c) 0.5151; (d) 0.9651

Use differentials to approximate the change in (a) x” as x changes from 5 to 5.01; (b) 1/x as x changes
from 1 to 0.98. Ans. (a) 0.75; (b) 0.02

A circular plate expands under the influence of heat so that its radius increases from 5 in to 5.06 in. Find
the approximate increase in area.  Ans. 0.6m = 1.88 in’

A sphere of ice of radius 10 in shrinks to radius 9.8 in. Approximate the decrease in (a) volume and (b)
surface area. Ans. (a) 807 in”; (b) 167 in’

The velocity (v ft/sec) attained by a body falling freely a distance h ft from rest is given by v = V64.4h.
Find the error in v due to an error of (.5 ft when h is measured as 100 ft. Ans. 0.2 ft/sec

If an aviator flies around the world at a distance 2 mi above the equator, how many more miles will he
travel than a person who travels along the equator? Ans. 12.6 mi

The radius of a circle is to be measured and its area computed. If the radius can be measured to 0.001 in
and the area must be accurate to 0.1in% find the maximum radius for which this process can be
used. Ans. approximately 16 in

If pV' =20 and p is measured as 5+ 0.02, find V. Ans. V=47%0.016
If F=1/r" and F is measured as 4= 0.05, find ».  Ans. 0.5%0.003
Find the change in the total surface of a right circular cone when (@) the radius remains constant while

the altitude changes by a small amount; (b) the altitude remains constant while the radius changes by a

2 2
small amount.  Ans. (a) wrh dh/V 7" + 1% (b) w[ h ror | 2r] dr

\/rl + h..

Find, to four decimal places. (a) the real root of x’ + 3x + 1 =0; (b) the smallest root of ¢ * = sin x;
(c) the root of x> +Inx =2; (d) the root of x — cos x =0,

Ans.  (a) —0.3222; (b) 0.5885; (¢) 1.3141; (d) 0.7391



Chapter 29

Curve Tracing

SYMMETRY. A curve is symmetric with respect to

1. The x axis, if its equation is unchanged when y is replaced by —y

2. The y axis, if its equation is unchanged when x is replaced by —x

3. The origin, if its equation is unchanged when x is replaced by —x and y by -y
simultaneously.

4. The line y = x, if its equation is unchanged when x and y are interchanged

INTERCEPTS. The x intercepts are obtained by setting y =0 in the equation for the curve and
solving for x. The y intercepts are obtained by setting x =0 and solving for y.

EXTENT. The horizontal extent of a curve is given by the range of x, for example, the intervals of x
for which the curve exists. The vertical extent is given by the range of y.
A point (x,, y,) is called an isolated point of a curve if its coordinates satisfy the equation
of the curve while those of no other nearby point do.

ASYMPTOTES. An asymptote of a curve is a line that comes arbitrarily close to the curve as the
curve recedes indefinitely away from the origin (that is, as the abscissa or ordinate of the curve
approaches infinity).

The maximum and minimum points, points of inflection, and concavity of a curve are

discussed in Chapter 13.

Solved Problems

1. Discuss and sketch the curve y*(1 + x) = x*(1 — x). (See Fig. 29-1)

(1-x)
1+x

Symmetry: The curve is symmetric with respect to the x axis.

Intercepts: The x intercepts are x =0 and x = 1. The y intercept is y = 0.

Extent: For x =1, y = 0. For x = —1, there is no point on the curve. For other values of x, y* must
be positive so 1 + x and 1 — x must have the same sign; hence, for points on the curve, x is restricted to
—1<x<1. Thus, - 1<x=<1.

¥(1-x)

We may write the equation of the curve as y* =

Asymptotes: y* = TR Hence, y—«< as x— —1. Thus, x = —1 is a vertical asymptote.
xV1—x
Maxi d mini ints, etc.: The c nsists of two branch = —==— and
xaxz;niu;t and minimum poin urve consists of two branches y = =" an
N For the first of these,
1-x—x° d’ -2
dy X—x and y x

A+ (-2

—_ + -_— ‘/ —_
The critical values are x=1 and (—1+ V5)/2. The point ( 12 \/3‘ ( 1+\/§2) Vs 2)

dx ~ (1+x)(1-x)"?

is a

201
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(1l +x)=z(1—2x)

»*+y'—6x* =0

Fig. 29-1 Fig. 29-2

maximum point. There is no point of inflection. The branch is concave downward. By symmetry, there is
-1+V5 (m1+V3VV5-2
2 2
The curve passes through the origin twice. The tangent lines at the origin are the lines y = x and
y=-x.

a minimum point at ( ) and the second branch is concave upward.

Discuss and sketch the curve y* — x*(6 — x) = 0. (See Fig. 29-2.)

We may write the equation of the curve as y’ = x*(6 — x) = 6x* — x°.

Symmetry: There is no symmetry.

Intercepts: The x intercepts are x = 0 and x = 6. The y intercept is y = 0. y is negative when and only
when x > 6.

Extent: The curve is defined for all x. As x = + 0, y— —2; as x — —«, y — +. Hence, there is no
horizontal asymptote. 5

. - . ] dy 4-x dy -8

Maximum and minimum points, etc.. We have i ;,,—J(m/—, and ke m
critical values are x =0, x =4, and x =6. When x =0, y =0. Since y >0 to the left and right of the
origin, (0, 0) yields a relative minimum.

The point (4, 2\3/3) is a relative maximum point by the second-derivative text. The point (6,0) is a
point of inflection, the curve being concave downward to the the left of (6, 0) and concave upward to the
right.

Asymptotes: There are no horizontal or vertical asymptotes. There is an oblique asymptote
y=mx+ b. To find m and b, we expand (mx + b)* to obtain m>x* + 3m°bx® + 3mb’x + b> and set the
two leading coefficients, m” and 3m’b, equal to the corresponding coefficients of —x” + 6x”. This gives
m’ = -1 and 3m’» = 6. Hence, m = —1 and b = 2, and the asymptote (on the right and left) is the line
y=-x+2.

The

Discuss and sketch the curve y*(x — 1) — x> =0. (See Fig. 29-3.)

3

We may write the equation as y° = _—

Extent: Clearly, the origin is on thexgraph. At other points, the left side y* must be positive, and
therefore x> and x — 1 must have the same sign. Hence, x> 1 or x =0.

Symmetry: The curve is symmetric with respect to the x axis.

Intercepts: The only intercepts are x =0 and y = 0.

Maximum and minimum points, etc.: For the branch y =x\fL we have dy -1 2x—-3)-
[ 472 d?y 3 ’ : N x-1’ ‘dx 2\/_ .

’(-x"_—l)j and prie W The critical values are x =0 and 3/2. The point (3/2,3V3/2) is

a minimum point. There is no point of inflection. The branch is concave upward. By symmetry, there is a
maximum point (3/2, ~3V3/2) on the branch y = —x }%T’ and that branch is concave downward.
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Yy
TR N (%
R } /// \\ i : //
R\ | =7 \\ | | //
M l - N | s
N 17 \‘\ /(
N s | ,
N ! N |
N | | \\ // |
J0 | x —2! 12 x
7y |
/4 '\ }1 : //O \\\ :
/| S
P I\\ //| |\\
7 | \\ a | N
P i N\ 7 | | \\
| \§ s I N
| . ml 'f\
/ i i .
yx—1)—z* =0 Yz —4) = 2t
Fig. 29-3 Fig. 29-4

Asymptotes: There is a vertical asymptote x =1. Since y— x> as xX—x, there is no horizontal

X
. obtainin
x—1 &

(m* - 1)x> + (2mb — m*)x* + (b> - 2mb)x — b* =0

asymptote. To find oblique asymptotes y = mx + b, we set (mx + b)’ =

Setting m>—1=0 and 2mb - m*>=0, we obtain m= =1, b==1/2m. Thus, the asymptotes are
y=x+jand y=-x— 3.

4.  Discuss and sketch the curve y’(x’ —4) = x*. (See Fig. 29-4.)

Symmetry: The curve is symmetric with respect to the coordinate axes and the origin.
Intercepts: The intercepts are x =0 and y = 0.
Extent: The curve exists for x> >4, that is, for x >2 or x < -2, plus the isolated point (0, 0).

2 d S
Maximum and minimum points, etc.: For the portion y = ad , x>2, we have & xz—&:‘
dy _ 4+ 3 Vx® -4 de (-4
and —5 = The critical value is x = 2V2. The portion is concave upward, and (2V2,4) is a

dx? -4
relative mirEimum )point. By symmetry, there is a relative minimum point at (—2V2,4), and relative
maximum points at (2V2, —4) and (—~2V2, —4).

Asymptotes: The lines x =2 and x = —2 are vertical asymptotes. For the oblique asymptotes, we
replace y with mx + b to obtain

(m* = 1)x* + 2mbx® + (b> — 4m*)x* ~ 8mbx — 4b* =0

Solving simultaneously m*—1=0 and mb=0, we obtain m=1, b=0 and m=-1, b=0. The
equations of the oblique asymptotes are thus y = x and y = —x. They intersect the curve at the origin.

5. Discuss and sketch the curve (x + 3)(x* + y*) = 4. (See Fig. 29-5.)

dy =- (rt2x+2+ \/§z)(x *2 \/3). When x= -2, y=0 and dy has the indeterminate form
0 dx (x+3)y dx .
g Butif we let x=X -2 and y =Y, the equation becomes YA(X+1)+ X*-3Xx*=0.

Symmetry: The curve is symmetric with respect to the x axis.

Intercepts: The intercepts are X =0, X =3, and Y =0.

Extent: The curve is defined on the interval —1 < X =3 and for all values of Y.

Maximum and minimum points, etc.: For the branch Y = %%X
dy 3-Xx? a’y -12

T S L Ea

dX ~ G-X)A(x+1)"
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(x+3) ="+ = 4
Fig. 29-5

The critical values are X = V3 and 3. The point (V3, V6V3 —9) is a maximum point. The branch is
concave downward.

By symmetry, (V3, V6V3 —9) is a minimum point on the other branch, which is concave upward.

Asymptotes: The line X = —1 is a vertical asymptote. For the oblique asymptotes, replace Y with
mX + b to obtain (m®> +1)X” +--- = 0. There are no oblique asymptotes. Why?

In the original coordinates, (V3 = 2, V6V3 - 9) is a maximum point and (V3 -2, -V6V3 -9)isa

minimum point. The line x = —3 is a vertical asymptote.

|
Discuss and sketch the curve y = ﬂxf (See Fig. 29-6.)

Symmetry: There is no symmetry.
Intercepts: The only intercept is x = 1.
Exient: the curve is defined for x >0.

. - . d l1-Inx a’ 2Inx -3
Maximum and minimum points, etc.: We have Eﬁ- = >— an Ex—{ = - Hence, the
critical point is (e, 1/e). At that point, d’y/dx® = —1/e’ <0; so we have a relative maximum.

There is a point of inflection for 2 In x = 3, that is, at (¢*'>, 3/2¢>'?). The curve is concave downward
for 0<<x < e*? and concave upward for x > ¢*'2 |

L . . nx . , -

| Asymptotes: The y axis is a vertical asymptote, since - —x as x—07. By I'Hospital’s rule,
nx .. o .
~ — 0 as x— +x. Hence, the positive x axis is a horizontal asymptote.

Fig. 29-6
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CURVE TRACING

In Problems 7 to 38, discuss and sketch the curve.

7.
10.
13.
16.
19,
22.
25.
28.
31.
5.
37.

(x = 2)(x - 6)y =2x°

xy = (x* - 9)°

¥y =x(x*—4)

(x*—2x-3)y’=2x+3

y?=4x*(4 - x%)

y' =x’(3-x)

(x=6)y ' =x(x—4)

(x:z + y2)3 = 4x2y2
*=x(x-3)°

x3y3 - (x _ 3)2

y=e'/x

8.
11.
14.
17.
20.
23.
26.
29.
32.
3s.
38.

x(3-x)y=1

2xy =(x* — 1)’

y =" - 1) -4)
x(x—-1)y=x*-4
y?=5x*+4x°
-1y’ =x*

> -16)y’=x*(x-2)
y¢ _ 4xy2 =
yr=x(x-2)
y=xInx

2/3

5/3
y=x""—-x

Supplementary Problems

12.
15,
18.
21.

27.

33.

205

(1-x)y=x*

x(x* —4)y=x"-6

i =x"+3x+2
(x+1Dx+4)°y =x(x*-4)
y =x*(8-x7%)

(x-3)y’ =x*

(x* + y*)* = 8xy

(@ +y') =dxy(x® - y?)
3y = x(x* - 9)°
y=1l/x—Inx



Chapter 30

Fundamental Integration Formulas

IF F(x) IS A FUNCTION whose derivative F'(x) = f(x) on a certain interval of the x axis, then F(x) is
called an antiderivative or indefinite integral of f(x). The indefinite integral of a given function is
not unique; for example, x> x* +5, and x> — 4 are all indefinite integrals of f(x) = 2x, since

d d . .
dix (x*) = e (x*+5)= p (x* — 4) = 2x. All indefinite integrals of f(x) = 2x are then included
in F(x)=x" + C, where C, called the constant of integration, is an arbitrary constant.
The symbol | f(x) dx is used to indicate the indefinite integral of f(x). Thus we write

2xdx =x*+ C. In the expression | f(x) dx, the function f(x) is called the integrand.

FUNDAMENTAL INTEGRATION FORMULAS. A number of the formulas below follow immedi-
ately from the standard differentiation formulas of earlier chapters, while others may be
checked by differentiation. Formula 25, for example, may be checked by showing that

d 1 3 9 1 9 . X -~ 3
— |z xVa —x + -a‘arcsm;+()= at—x

dx \2 2
Absolute value signs appear in certain of the formulas. For example, for formula 5 we write

% =In|x| + C instead of
fgx)—c=lnx+Cforx>0 and J%:ln(—x)+Cforx<0
and for formula 10 we have ftan x dx = In|sec x| + C instead of
jtan xdx=Insecx+ C for all x such that secx =1

and ftan xdx=In{—-secx)+ C for all x such that secx = —1

& gojax=fn+ €

—

2. f[f(x)+g(x)] dx=Jf(x) dx+J'g(x) dx
3. jaf(x) dx=aff(x) dx . a any constant
xm’l
4, jx"'dx= +C, m#-1
m+1
dx R a
5. J—=ln|x|+C 6. fa dx = +C, a>0,a#1
X Ina
7. fe"dx=e"+C 8. jsinxdx=—cosx+C

206
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9. fcosxdx=sinx+C 10. jtanxdx=ln|secx|+C
11. fcotxdx=ln |sin x| + C 12. fsecxdx=ln |sec x + tan x| + C
13. [cscxdx=ln|cscx—cotx[+c 14. jseczxdxztanx+C
15. fcsczxdx=~cotx+C 16. fsecxtanxdx=secx+C
17 f txdy=—cscx+C 18 f—L-— sin > + C
. | escxcotxdx=—cscx . Voo arcsin —
dx 1 x dx 1 x
19. az+x2=;arctanz+C 20. I;‘W:EarCSCC;-FC
dx 1 xX—a dx 1 a+x
. == + . = — +
21 -2 22 NI, C 22 g 2aln — C
23. IL=ln(x+Vx2+a2)+C 24, I—L=ln[x+Vx2—az|+C
Vx? + a° Vx?l—a’
1 1
25. f\/az—xzdx=§x az—x2+§a2arcsin§+C

26. f\/x2+a2dx=%x x2+a2+%azln(x+ Vil +ah)+ C

27. f\/xz—azdx=%xVxZ—az—%azln|x+ Vx’—d’|+C

THE METHOD OF SUBSTITUTION. To evaluate an antiderivative j f(x) dx, it is often useful to
replace x with a new variable u by means of a substitution x = g(u), dx = g'(u) du. The equation

| 10 ax = [ stgng o) an (30.1)
is valid. After finding the right side of (30.1), we replace u with g~ '(x); that is, we obtain the
result in terms of x. To verify (30.1), observe that, if F(x)= j f(x) dx, then :_u F(x) =

d dx ' ' ' . :
2 P 2 = fx)8/ () = ()8 (w). Hence, F(x) = | f(g(u)g'(u) du, which is (30.1).
EXAMPLE 1: To evaluate f(x +3)" dx, replace x + 3 with u; that is, let x = u — 3. Then dx = du, and

we obtain

f(x+3)“dx=ju” du=}u”+C=L(x+)N?+C

QUICK INTEGRATION BY INSPECTION. Two simple formulas enable us to find antiderivatives
almost immediately. The first is

[ els) dr= = (g1 + € re (30.2)
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(81"} = '8

d
This formula is justified by noting that — {

de \r+1

EXAMPLE 2: () f “"x") dx = f (In x)* dx—— (Inx)*+C

(b) jx\/x2+3dx=%f(21)(x +3)" dezi[m(st)’ 2]+C=%[Vﬁ+3]~‘+c

The second quick integration formula is

g'(x)
dx=1In{g(x)|+ C 30.3
20 |g()l (30.3)
This formula is justified by noting that 4 (In|gx)|) = gx)
dx 8(x)

COs X
| 32 slinx
X 3
= - —_— = — -_— +
3Jx3_5dx 3lnlx 5|+ C

EXAMPLE 3: (a) Jcot x dx =j dx =Inlsinx| + C

Solved Problems

In Problems 1 to 8, evaluate the indefinite integral at the left.

()
fﬁm=%+c

fdx f ‘de——+C——l+C

43

3 — 1/3 _Z* =§ 4:3
j\/Edz fz dz—4/3+C i +C

1/3

f{}ﬁ—z=fx7mdx=%+c=3x“3+C
x

f(zx ~Sx+3)dx= 2fx dx—s[xdﬁs[dx-zi—%—uﬁc

f(l —):)\/T(bc=J'(x”2 —.x',l'z)d,r:fx”2 d)c—jx‘”Z dx=3x*?~-ix""+ C

f(3s+4)zds=f(9s2+24s+ 16)ds =9(1s’) +24(1s°) + 165+ C=3s" + 125" + 165 + C

LI . 4 1 4
J"—if—dx f(x+5 4x2)dx——x +5x——x—1+C—§x F5x+24C
. =

Evaluate (a) j(x3+2)2(3x2) dx, (b) I(xz +2)"% dx. (c )j 8x’ dxh
by means of (30.2).

and (d) J\/~+—2_
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(a) J(x3+2)2(3x2) de=4(x*+2)+C

(b) f(x3+2)”2x2dx=%f(x3+2)”2(3x2)d.x= %%(x3+2)3'2+c= %(IJ+2)3,Z+C
8x’ 8 [ 3. mesmzn g  8( 1\, 3, -2, ~_ 4 1

(©) f——(x,+2)3 dx=§f(x +2)7%(3x )dx~§(—§)(x +DFHC= 3 gt €

(*+2)y*+C= g &’ +2y+C

Wl

dx = % f(x3+2)'”‘(3x2)dx=%

@ |

All four integrals can also be evaluated by making the substitution u = x* 42, du=3x"dx.

10. Evaluate f?ax\/l ~-2x% dx.

Formula (30.2) yields
f3x\/1 —2x  dx =3(- %)[(1 -2 (~4x)dx = - 331 -2+ C
=-1a-2*"*+C
We could also use the substitution u =1 —2x> du = —4x dx.
(x+3)dx
(x* +6x)'"?"

Formula (30.2) yields

(x+3)dx
(x> + 6x)'"

11. Evaluate

1

= % f(x2 +6x)7"3(2x +6) dx = 5 ; (x* +6x)""+ C

= % (x*+6x)*>+ C
We could also use the substitution u = x* + 6x, du = (2x + 6) dx.

In Problems 12 to 15, evaluate the indefinite integral on the left.

12. f{’l—xzxdx=—'%](l—xz)'u(—z,tdx)=—%%(1—x2)4/3+c=—%(1—x2)4/3+c

13. j\/xz_z‘xa dx=j(1 —2x%) e dy = — ) f(l ~2x)'"}(—dx dx) 12(1-27)% 4 C

=-1(1-2*+C

(1+x)° 1+2x+x° - 4 2

14. f_de= _xT dx= (x 1/2+2x1/2+x3/2)dx=2x1/2+ §x3/2+ 5 xS/Z+C
42 1 1 x° X’

15. fx =f[ ——] = '= "=
(x+1)2dx : (x +1)° dx X+x+1+c x+l+1+C x+1+C

FORMULAS 5 TO 7

16. Evaluate f dx/x.

Formula 5 gives J' % =Inlx|+ C.
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17. Evaluate f xi’

T using (30.3).

j xd:Z =In|x + 2| + C. We also could use formula 5 and the substitution u = x + 2, du = dx.

18. Evaluate f E—dé-, using (30.3).

2dx 1 . _—
) J;%i; 3 2 33" 2 In |2x — 3| + C. Another method is to make the substitution u = 2x — 3,
u =

In Problems 19 to 27, evaluate the integral at the left.

19. fidi=%ffffx sInlx* -1+ C=

njx>=1+lnc=In(cVix’-1]),c>0

-1 5

X dx 1 [ —6x%dx 1 N c
. = | =5 =-Ch{1-2%"|+ C=In j——=
20 fl_le 6] T5m = -gmhi-2rl+C e R
21. j 1+— dx=x+In|x+1|+C
22. f = fe"‘( dx)=—e "+ C
23 J = jz‘de l‘1—21+C
) de =3 (2d)=3

Jx e}x

24. 3 (3dr)=5+C

l/x
25. j J’ l/x(_if_)= _el/x + C

pd

4 x 4
26. I(ex+1)3e‘dx=Ju’du="7+C=(L:_l)

J(e‘+1)3e‘dx=f(e‘+1)’d(e'+1)=£ex—:1—)—‘+C

+ C, where u=¢* +1 and du = ¢" dx, or

dx J’ 1 —x _ el
27. pe +1 fl+e' ,— In(1+e )+C—ln1+e,+C

=x—ln(l+e )+ C

The absolute-value sign is not needed here because 1+ e * >0 for all values of x.

FORMULAS 8 TO 17
In Problems 28 to 47, evaluate the integral at the left.

28. fsin%xdx=2f(sin%x)(%dx)=—2cos§x+c
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29,

31.

32.

33.

37.

39.

41.

42,

43.

jcosSxdx= 5 f(cosSx)(3dx)= fsin3x+ C

.3
. sin’ x
fsinzxcosxdx=fsm2 x(cos x dx) = 3+ C

sin x —sin x dx
Jtanxdx f =—j————=—In|cosx|+C=In|secx]+C
€Os x cos x

ftan 2xdx=1 I(tan 2x)(2dx)= 3 In|sec2x|+ C

f:ccotx2 dx=1 j(cotxz)(Zxdx)= Lin|sin x°| + C

sec x(sec x + tan x) sec x tan x + sec’ x
sec x dx = =
secx +tanx sec x +tan x

jsecﬁ % =2J(secx”2)(%,1"”2 dx)=21In |sec VX + tan Vx| + C

tan 2ax

fsec 2ax dx = f(sec 2ax)(2a dx) = +C

J’sinx+cosx

dx=j(tanx+1)dx=1n|secx|+x+ C
cos x

f sin y dy _
cos’ y

tan ysec ydy =secy+ C

[(1+tanx)2dx=f(l+2tanx+tanzx)dx=f(seczx+2tanx)dx

=tanx +2In|secx|+ C

Je‘ cos e dx = f (cose”)(e* dx)=sine" + C

3cos 2x
fe““z"stxdx——é > (= 6 sin 2x dx) = — & e +C

J’ [ 1—cosx J’l COs X
1+cosx 1—coszx sin” x
=—-cotx+cscx+ C

=f(csc2x—cotxcscx)dx

f (tan 2x + sec 2x)* dx = f (tan® 2x + 2 tan 2x sec 2x + sec” 2x) dx

=](256c22x+2tan2xsec2x—1)dx=tan2x+se02x—x+ C

=In|tan ju|+ C

du du f (SeC 2")(2 du)

fcscudu= ;
sin u 2sin 3ucos ju tan ju

dx=In|secx +tanx|+ C

21
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J(sec4x— 1)? dx=j(secz4x—2sec4x+l)dx= ! tandx — { In|secdx + tandx|+ x + C

sec x tan x dx (sec x tan x)(b dx) _ 1
46. Ia+bsecx _b a+ bsecx bn|a+bsecx|+C
dx _J’ sin2xdx 1 [ (sin2x)(2dx) _ 1 _ ,
47. J'csc2x—c0t2x— T cos2x 3 1~ cos 2x —zln(l cos2x) + C

1 1
=§1n(25in2x)+C'=i(1n2+2|nlsinx|)+C’=ln|sinx|+C

FORMULAS 18 TO 20
In Problems 48 to 72, evaluate the integral at the left.

48. j \/% =arcsinx + C 49. j 1 fxxz =arctanx + C
dx dx x
50. f ~—==—= =arcsecx + C 51. f =arcsin - + C
Vx' -1 Via - x? 2
dx 1 X
52. a—+_XZ = 5 arctan ‘3‘ +C
53 j f drcsm 4x +C
) Vx—wx T3 Vy Mx
54 f arctan 2 +C
) 4x +9 (2x)* 4—3 6 3
5s. j d.x =j 2dx2 2=larcsec2—x+C
V' -9 Jax(en?-3* 3 3
56. x_dx f 3x7de 1 arcsin x* + C
Vi-ax* 3 \/ - ) 3
xdx 1 [ 2xdx 11 x’ V3 x*V3
57. fx4+3-§ m—i——,jarctanﬁ+C—7arctan 3 +C
dx 1 2x dx 1 1 1
58. J == f = = - arcsecx’ + C = - arccos < + C
wWx'-1 2 xz\/(x‘)2 -1 2 2 x?
+
59. j __d.x—: = arcsin x+2 +C
Va~(x+2) 2
dx —J/ e.l _ .
60. e 2,+1—arctane +C
P _Ax? 4
61. —3—X———Z£idx=f(3x—4+ 24 )dx=3i—4x+4arctanx+C
x“+1 x“+1 2

[CHAP. 30
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62.

63.

65.

67.

69.

70.

71.

72,

2secx

J'secxtanxdx_l 25ecxtanxdx=larctan + C
9+4sec’x 2J) 3+ (2secx)’ 6 3
(x+3)dx x dx J'
= +3 1-x"+3arcsinx + C
Viee Jvie v
(2x-T)dx [ 2xdx dx > 7 X
f parramil o yver 7 x2+9—ln(x +9) 3arct.m3+C
+
f _d =f & =f dy V5 etan QIS
y + 10y + 30 (y "+ 10y +25)+5 (y+5)+5 5 5
f —f dx = :arcsinx
V20 +8x — x° V36 — (x* — 8x + 16) V36— (x — 4)°
j dx __J 2 dx _J' 2 dx latn2x+1+C
Wi+ 2x+5 Jadvax+10 ) @xr)yieo 37N T3
[ x+1 f 2042 _1f@x-4)+6 _1((@Qr-4)dr
Yo s T v s ® x’—4x+8 2) ¥ -4x+8

_1[(@x-4)dx 3f 1
20 ¥ —4x+8 (x - 2) +a4 2

The absolute-value sign is not needed here because x* — 4x + 8 >0 for all values of x.

[ dx =f dx =J' dx
Va-12x-x I Vea- (P +12x+36) 7 64— (x +6)

_x+3 1 ~2x—6 1 (-2x—-4)-2

=—z | ——=dx=— 3 | —V——— dx
V5-4x-x’ 2 V5 —4x —x° 2 V5 —dx — x°
1 -2x—4 dx
--3 dx+ | :
2) Vs —4x-x° \/5—4x—x‘

1 -2x—-4 f
2)Vs—ax-x V9 - (x+2)

+
——V5—4x—x2+arcsinx 2

3 +C
j 2x+3 [ 18x+27  _ (18x —12) + 39
9x>— 12x +8 9> —12x+8 9 9x>—12x+8
f 18x-12 1_3_f
9x® -~ 12x + 8 3) (3x-2)"+4
1 —
=5 In(x —12x+8)+1—3arctan3x2 +C
+2 1 -2x—4 —2x +4) -
x  dx = —2x-4 dx——— (—2x 4)’8dx
Vix - x V x—x° 2 Vdx — x*
1 4—-2x dx 3 X
= — = ——h—dx+4f—=—m+4arcsin
2J Vax-»x° Va-(x-2)

In (x* —4x+8)+3

. x+6
= arcsin

213
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FORMULAS 21 TO 24
In Problems 73 to 89, evaluate the integral at the left.

e _ 1 x-ll de 1 |1+x
73. it Rl Feerd R4 74. ik Ll Ene Be
dc 1 x—2’ dx 1 3+x
75. a3l e 76. o g3 ¢
77 dx =ln(x+Vx'+1)+C 78 I & Injx+Vx*-1|+C
. = . = X -
Vil +1 Vxi-—1
dx 1 2dx ]
79. f—~——-=—f—,=—ln2x+\/4xz+9+(’
Vax'+9  2Jyax)+30 2 ( )
dz 1 3dz 1 =
80. j—~—=—[—,——=—ln3z+V9‘—25+C
V9z'-25 3J V9z2-25 3 | ‘ |
dx 1 3x -4
L AN
8 9x - 16 3 (3x) —16 a5 tC
dy 1 4 dy 1 ‘5+4y'
82. f-,=— — = +
316y 4) 5-(4y a0 M[5oay| T C
dx ‘f dx (x+3)—l) 1 x+2)
83. fx2+6x+8_ x+3)Y -1 ] (x+3)+1 M Rl et Rl
dx dx I 2) 1 X
PR R S N T
m-x Ja G-z At iyl Tt || * €
85. J ds ,=f ds, =ln{s+2+Vds+s°|+ C
Vas+s® D V(s+2)7 -4
x+2 1 2x+4 1 2x dx dx
86. —dx= dx = = + f -
Vxi+9 21 vVxi49 20 Vel +9 Vx°+9
=Vx'+9+2In(x+ VX' +9)+ C
2x -3 1 8x—12 1 8x dx 3 2dx
. ST dx=- | S gy= | XE 224X
87 - al - un YTl T2 o
_1 ) IVIT, [2x-V1T
T3 Infax” - 1| 4 Vit T ¢
38 _ox+2 dx—l _2x+4 1 o x+2 f dx
) Vr +2x~-3 20 V4243 Vx +2x -3 Vir+1)" -4

=Vxi+2x-3+Injx+1+Vx'+2x =3[+ C
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89 I__z_—x_ = j 8x—16 . __1[_ 8x+4 +_j_—_
. i 3T T a3 %78 a3 2) x+1)y -4

5 2x —

e a4 -3+ 2
= 8lnl4x +4x 3l+16] P +3+C

FORMULAS 25 TO 27
In Problems 90 to 95, evaluate the integral at the left.

xV25-x2+z§arcsin'E +C

90. fVZS—xzdx= > 5

SR

o, [Vitara=)[oATanean=5(EVioar+ Jarein 25) 4 ¢

1 ) . 2xV3
—ix 3-4x +Zarcsm 3 +C

92, jVx:—36dx=%xVx2—36—181n[x+ Vx®—36l+C

93, f\/3x2+5dx=%f\/3x2+5\/§dx:%[?x\/3x1+5+gln(\/§x+\/3x2+5)}+C

x\/3x2+5+5—6‘/—§1n(\/§x+\/3x3+5)+c

I
2

9. fv3—2x—x2dx=f\/4—(x+l)zdx:xgl V3—2x—x2+23rcsinx+1

+C

95s. JV4x2—4x+de=%J( (2x = 1Y + )2 dx)
=%[2X2_1 V4x2—4x+5+2]n(2x—I+\/4xl—4x+5)]+C
2x -1 5 -
=3 Vax’—4x+5+In(2x -1+ Vax’ —4x +5)+ C

Supplementary Problems
In Problems 96 to 200, evaluate the integral at the left.
96. f(4x*‘+3x2+2x+5)dx=x“+x"+xz+5x+C
97. f(3—2x—x“)dx=3x— -i*+C
f(2—3x+x3)dx=2x-— I+ i+ C

f(xz-l)zdx=x’/5—zx~‘/3+x+C
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100.

101,

103.

105.

107.

109.

111.

113.

118.

117.

119.

121.

123,

125.

127.

129.

131,

133.

135.

137.

139.

FUNDAMENTAL INTEGRATION FORMULAS

f(\/f— Ly 42T de = P - I 4P+ C

J(a+x)3d.x=%(a+x)4+C

a__ 1

X 2x°

[ & —avar3sc
Vx+3

f\/2—3xdx——-(2 3x)*? +
J(x—l)zxdx=%°—§x3+%x2+C
f1+y"y y=t(1+y')Y"7 +

J'(4—xz)x2dx Byl 8t i+ C

x dx 1
=- +C
f (x* +4) 4(x* +4)°

f(]—x’)zxdx=%x2— I+ i+ C

f(x2 —x)'Q2x-Ddx=ix*-x)’+C

(X+l)dx \/——_——
x*+2x—-4+C
Vxi+2x -4
[ S
J'(x-f-l\)/(;—Z)dx=§x5/z_§x.hz_4xuz+
dx
et lnl3x+1|+c

xtdx 1 3
— =z -+ C
J'l_XJ 3lnll x|

dex 3 X ‘42Injx+2/+ C
x+2

f( de  dx )_ ‘2):—1'
2x-1 2x+1/7 12

J’e4xdx=.%e4x+c
a2 42
J'e rdx=—4e "7+ C

J(e‘+1)2dx=% *+2e*+x+ C

102.

104.

106.

108.

110,

112.

114.

116.

118.

120.

122.

124.

126.

128.

130.

132,

134,

136.

138,

140.

(CHAP. 30

j(x -2y dx=3x -2+ C

a1
[(x—1)3_ 2(x—1)2+C
f\/3x—1dx=%(3x~1)”+c

I(sz +3) xdx = F(2x7+3)7+ C
I(xz -Dxde=1x*-1)+C

f(x’+3)xzdx= H* 43P+ C

dy 1
= C
f(z—y)’ -y "

f(l—x) de=x-ix*+3ix+C

f(l ~xYxPde=-5(1-x)Y+C

3:dl3=§(t2+3)2/3+c
e’t +

dx 3 ,
[t o0 c

f\/}(3—5x) dx=2x"*(1-x)+ C

dx
I;*__—l—ln|x—ll+c

3x dx

3 2
=2
212 2ln(,t +2)+C

x—1
=x- +1|+
Jx+1dx x=2lnjx+1|+C

x+1 1 5
—————dx=31 +2x+2)+C
Jx2+2x+2dx g In(i+2r+2)

Iahdx:

lix
I—sdx=—%e”‘z+C

X
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141.

143.

145.

147.

149.

151.

153,

155.

157.

159.

161.

163.

165.

167.

169.

171,

173.

175.

177.

179.

J(e"+1)2e‘dx= He*+1)+ C
2 1 1

f(e’+l,) dx = e2’+2x——2—x+C
e 4

e -1 2 |
- —dx = T+3)Y P - - x+
feh+3dx In(e” +3) 3% C

dx

_3 5 In C(x*?+1),C>0
x+x

fcos%xdx=25in Ix+C
jcchZxdx-—Acot2x+C
ftanzxdxztanx—x+C
fcsc3xdx= YInjesc3x —cot3x|+ C
f(cosx—sinx)zdx=x+ fcos2x+ C
fsin“xcosxdx=£sin‘x+€
Jtansxseczxdx=%,tan°x+c

]%ﬁ =2(tan 3x +sec 1x)+ C

dx

1
————— =x+ - (cotax —cscax) + C
1+ secax a

sec’ 3x 1
j tan 3x dx = 3 In [tan 3x| + C

feranz:r sec22xdx= %elan2x+c
f—dx——arc infﬁ +C
V5 - x? ° 5
f—————ﬁarcsecﬂwtC
wWVx -5 5 5

edx 1 .
f—4—x=—arctane2 +C
1+e¢ 2

;dx—-lact §3‘-+C
9x’+4 67
secxdx

= arcsm QRtanx)+ C

V1-4tan® x
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146.

148,
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154.

156.

158.

160.

162.

164.

168.

170.

172,

174.

176.

178.

180.
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er _l 2
jez,+3dx~2ln(e +3)+C

-1 . 2
fmdx—ln(e +1)Y-x+C

C

=1 _
T35

C>0

f dx
Va(l = vx)
Jsin2xdx=—%cost+C
Jsechtaandx=%sec3x+C
fxseczxzdx=%tanx2+C
flan%xdx=2|n|sec%x|+€
b
bsecaxtanaxdx=;secax+C
. 1 .,
smaxcosaxdx=-2—asm ax + C
1 2 1 "
=——c¢cos ax+C' ' =—--—cos2ax+ C
2a 4a

jcos‘xsinxdx= ~leos®x+ C

Jcot4 3rcese’3xdr=— g cot’3x + C

1 - cos 3x

3sin 3x +C

f l+cos3x

X X 1 X
jsecz—tan—dx=-atan‘—+C
a a 2 a

5

sec” x 1

f dr=-sec*x+ C
csC x 4

jez‘"‘ Meos3xdx = §e* " + C

dx Vs

2=—arctanx—5+C
5+x 5 5

flﬁ—- =arcsine” + C
\/] _elx -

j arcsm 3 +C
V4 -9x* 2
sin 8x | sin? 4x
jmdx—lzarcta 3 +C
372 + C

dx 1 .
——————— = = arcsin In x
ij4-91n2x 3
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2t - xf 1 V2 f cos2xdx V2 sin 2x
. = -x+ = . —_— = -

181 ey * = x X+ arctan xV2 + C 182 Gniacsg - 8 arctan o=+ C
(2x - 3) dx (2x + 6) dx J dx 2 9 x+3

183. = 9| 5————=In(x’+6x+13)- 2

83 P brt 3 Y i6es 3 9 P r6c 13 n(x"+6x+13) 2arctan 3 +C
(x-1dx (6x —4) dx dx \/3 3x -2

184, = - 3 —4x+3)- —= =+
3x —dx+3 37 —axs3 ) o C1zers g mBX T4t arctan —7s— + €

185. xdx —V27 + 6x — x* + 3 arcsin _3+C
V27 + 6x — x° 6

186. _Godndy 4x)dx =VI12x - 4x° —8—1arcsm(2x—3)+C
Vi12x —4x* - 2
de 1 x—2 J’ _1 2x =3

187. x2_4—4ln P +C 188. =—|n 313 +C
dx 1 x+3 f 3x+5|

9. =~ il

18 -2 6 n 190. 25— 052 ln 3

191. f-—dx——=ln(x+\/x2+4)+c 192. IL=11n|2x+V4x2—25|+c
Vxi+4 Vax*-25 2

193. jmdx=%x\/m+§arcsini—x+C

194. [ Vi l6dr= Ve~ 16-8Inlx + VEZ - 16| + €

195. fmdx=;x\/m+2ln(zx+\/zuz—+§)+c

196. f\/mdpg(xq)\/m—zmu—nmuc
197. fm——xzdx=é(x—2)m+8arcsin%(x—2)+C

198. fmdp;(ﬁz)m—zmlﬁumuc

199. J-sz—&rdx=%(x—4)Vx2—8x—81nlx—4+Vx2—8x|+C

3+C

200. IV6x—x2dx=%(x—3)V6x—x2+%arcsinx_

3



Chapter 31

Integration by Parts

INTEGRATION BY PARTS. When u and v are differentiable functions of x,

d(uv) = udv + v du
or udv=d(uv)—vdu

and fudv=uv—]vdu (31.1)

When (31.1) is to be used in a required integration, the given integral must be separated into
two parts, one part being u and the other part, together with dx, being dv. (For this reason,
integration by use of (31.1) is called integration by parts.) Two general rules can be stated:

1. The part selected as dv must be readily integrable.

2. v du must not be more complex than | « dv.
EXAMPLE 1: Find f e dx.
Take u = x* and dv = e* x dx; then du=2x dx and v = Le*. Now by (31.1),
fx”e’z dx = x%e” - jx eCdx=1xe " — e+ C

EXAMPLE 2: Find f]n (x? +2) dx.

Take u = In (x> + 2) and dv = dx; then du=}2—2x—%andv x. By (31.1),

2 _ 2 2x2dx_ 2 _J _ 4
fln(x +dx=xIn(x"+2) - e =xIn(x’+2) (2 x2+2)dx

=xln(x2+2)—2x+2\/§arctan—%+C

(See Problems 1 to 10.)

REDUCTION FORMULAS. The labor involved in successive applications of integration by parts to
evaluate an integral (see Problem 9) may be materially reduced by the use of reduction
formulas. In general, a reduction formula yields a new integral of the same form as the original
but with an exponent increased or reduced. A reduction formula succeeds if ultimately it
produces an integral that can be evaluated. Among the reduction formulas are:

& =iz[ a 4 2m-3 dxm_,],m#l (31.2)

(@ +x*)" 2m~ 2)(a +x Zym=t " 2m—2J (@’ = x*)

f(aztxz)mdx=x(;mt+xl) + 2m+1 f(aztxz)'"“dx, m#—1/2 (31.3)
dx 1 [ x 2m -3 dx ]

-~ + ,m#1 (314
f(x a) (2m—2)(x2~az)"'_l 2m=2J (x*-a')y""! " (31.4)
2w, _ X —a)” gty - 315
(x*~a )Y dx= T 1 2m+1 (x*—-d’ dx, m#-1/2 (31.5)
f m ax dx_ _ _f m-1 ax (316)

219
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. com-1
. sin” ‘xcosx m-—1 . w2
Jsm"'x dx=— + Ism'" x dx
m m
m-~1 .
cos xsinx m-~—1 -2
J cos”x dx = + J cos™ “x dx
m m
. 1 -1
o n o, _sin""xcos" 'x n-1{_ . o2
sin”" x cos x dx = + sin"x cos” “xdx
m+tn m+n

n+l

sin” xcos" x m-—1 . m-2

=- + sin” “xcos"xdx, m# ~—n
m+n m+n

s om-—1

fx'"sinbxdx= —%cosbxi—%fx'""cosbxdx

Jx"‘cosbxdx= ib—sinbx— %fxm'lsinbxdx

(See Problem 11.)

Solved Problems

1. Find f xsin x dx.

[CHAP. 31

(31.7)

(31.8)

(31.9)

(31.10)

(31.11)

We have three choices: (a) u = xsin x, dv =dx; (b) u =sinx, dv = x dx; (c) u=x, dv =sin x dx.

(a) Let u = xsinx, dv = dx. Then du = (sin x + x cos x) dx, v = x, and

J‘xsinxdx=x-xsinx—jx(sinx+xcosx)dx

The resulting integral is not as simple as the original, and this choice is discarded.
(b) Let u=sinx, dv=xdx. Then du =cos x dx, v = 1x°, and

. 2 . 2
fxsmxdx=%x smx—J'%x cos x dx

The resulting integral is not as simple as the original, and this choice too is discarded.

(c¢) Let u=x, dv =sinx dx. Then du = dx, v = —cos x, and

stinxdx=—xcosx—f—cosxdx=—xcosx+sinx+C

2. Find jxe’ dx.
Let u=x, dv=¢" dx. Then du = dx, v = ¢*, and

fxe"dx=xe’—fe‘dx=xe‘—e’+C

3. Find fﬁ In x dx.

a
x

3
Let u=Inx, dv=x" dx. Then du = ,v=%—,and
3

3 3 3
: S e [ x _lfz T SR S
jx Inxdx = 3lnx [3 P 3 Inx 3% dx 3 Inx g ¥ +C
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4, Find fx\/l + x dx.
Let u=x, dv=VT+ xdx. Then du = dx, v=3(1+x)"" and

fx\/‘_1 Fxde=23x(1+x)"~1% f(1 +x) 2 dx=x(1+ ) - {2+ 0"+ C

5. Find farcsin x dx.

dx
Let u = arcsin x, dv = dx. Then du = ——=—===, v =1x, and
V1-x

2

] . x dx ) 5
farcsmxdx=xarcsmx—J\/i-—;=xarcsmx+\/1—x7+C
_x-

6. Find [sin2 x dx.
Let u =sin x, dv =sin x dx. Then du = cos x dx, v = —cos x, and

fsinzxdx=—sinxcosx+fcoszxdx=—sinxcosx+f(1—sin2x)dx
=—%sin2x+[dx—fsin2xdx

Hence 2jsin2xdx=—§sin2x+x+C' and J’sinzxdx=§ —Lisin2x+ C

7. Find jsec3 x dx.
Let u = sec x, dv = sec’ x dx. Then du = sec x tan x dx, v = tan x, and

fsecsxdx=secxtanx~fsecxtan2xdx=secxtanx—fsecx(seczx— 1) dx
=secxtanx—jsec3xdx+Jsecxdx
Then 2fsec”xdx=secxtanx+jsecxdx=secxtanx+ln]secx+tanx|+ C'

and fscc’xdx= y{secxtanx +In|secx +tan x|} + C

8. Find f x* sin x dx.
Let u = x°, dv =sin x dx. Then du =2x dx, v = ~cos x, and

fxzsinxdx=—xzcosx+2jxcosxdx

For the resulting integral, let ¥ = x and dv = cos x dx. Then du = dx, v = sin x, and

szsinxdx=—xzcosx+2<xsinx—jsinxdx>=—xzcosx+2xsinx+2005x+C

9, Find [xaez" dx.
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x°, dv=e""dx. Then du =3x’dx, v = }e”*, and

Ix’ez’ dx = bx’e’" - fxzez’ dx
For the resulting integral, let u = x* and dv = ¢** dx. Then du =2xdx, v = le
2 I

3 2 3.2 2 2 32
jxe‘dx*ixe'—g(%xe jxe‘dx) i ”—%x262‘+§jxez"dx

Let u=

2
*, and

2x

For the resulting integral, let u = x and dv = ™ dx. Then du = dx, v = }¢™, and

J}Zxdx_7 2x 2x (% %jerdx)_1x3e2x_3 22.:+ xe _3_,+C
dx m—
dnd(b)fx(aw) "dx.

10.  Find reduction formulas for (a) f __x—)_
x

*1

x dx
(a) Take u=x, dv @ then du = dx, v am 2@ =)y and
f Pt Fx L1 J’ X
(aZIxZ)m (2m_2)(02ix2)m-1 - 2m -2 (aztxz)m—l

+1
(b) Take u = x, dv=x(a’ = x*)" ' dx; then du=dx, v = > (@* = x*)", and

sz(aztx:)"'"d,t*;—(a +x)"F ——J(az*-x) dx

11.  Find: (a) j T and (b) J(9+x Y2 dx.

(a) Since (31.2) reduces the exponent in the denominator by 1, we use this formula twice to obtain

J dx _ x + gj dx _ X +z x i C
(1+x2)5/2 - 3(1+x2)3/2 3 (1+x2)3l2 3(] +x2)3/2 3(1 +x2)| 2
(b) Using (31.3). we obtain
j(9+x2)3='2 dx= %x(9+x2)3/2 + 2‘_7 J’(9+x.’_)l/2 dx
P2+ Z 9+ ) +9In(x + VO+x*)|+ C

=1x(9+ 47

« om=—1
sin xcosx m—1  m2
+ fsm'" x dx.

12.  Derive reduction formula (31.7): fsin'" xdx=— =
”™~'x and dv =sinxdx; then du=(m - 1)sin

We use integration by parts: Let u =sin

cos x dx. v = —cos x, and

. . - . - 2
fsm”'xdx=—cosxsm"‘ ‘x+(m—1)fsm"' ? xcos® x dx

—cosxsin™ ' x+(m-1) J (sin™ 2 x)(1 - sin® x) dx

=~cosxsin™ ' x+ (m— l)fsin”'zxdx—(m - l)fsin”'xdx

Hence, mfsin"'xdx =—cosxsin™ 'x+(m-— 1)Jsin""2 x dx

and division by m yields (31.7).

2
X
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Supplementary Problems

In Problems 13 to 29 and 32 to 40 evaluate the indefinite integral at left.
13. chosxdx=xsinx+cosx+C

14. J’xsec2 3xdx = lxtan3x - § In[sec3x|+ C

15. jarccos 2x dx = x arccos 2x — ;m +C

16. farctanxdx=xarctanx—lnV1+x2+C

17. fﬁ\/l “xdi= -1 -5 + 12x+8)+ C

18 Jxe’dx _ e s
) (1+xP° 1+x
19. jxarctanxdx= I« + Darctanx — lx + C
20. sze"3' dx=-1e (X’ +ix+§)+C
21. fsin’xdx=—§cos3x—sin2xcosx+C
22. fx’sinxdx=—-chosx+3xzsinx+6xcosx~63inx+C
2. \/;ixbxzz(bx_23agz\/m+c
2. x” dx 2 (3 —ax+8VITE+C

V1+x=l_5

25. jx arcsinx’ drx = ix*arcsinx’* + IV1-x'+C
26. fsinxsin3xdx=§sin3xcos —3sinxcos3x+ C

27. fsin (lnx)dx=ix(sinlnx —coslnx)+ C

e”*(b sin bx + a cos bx)
2 2 +
a+b

28. J' €"" cos bx dx = C
e“(a sin bx — b cos bx) +

a+b? ¢

29, fe'" sin bx dx =
. a’ dx @ =x)Fx’ dx _] x* dx
30. (a) Write j @ =) =J- @) dx=j @) x @ =) and use the result of
Problem 10(a) to obtain (31.2).
(b) Write f(a’ =) de=qa" | (@£ x*)" " dx :t[x’(a2 +x%)” 7" dx and use the result of Problem
10(b) to obtain (31.3).

31 Derive reduction formulas (31.4) to (31.11).

dx =x(5—3x2)+il ]
A-x) 81-x3) 16"

1+x

32.
1-x

+C
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dx X
3. j(4+x2)}:2 - 4(4+X2)”2 +C

M. f(4—xz)"zdx= 1x(10- x*)V4 - x* + 6 arcsin §x + C

-4
n X—H+C

3. x+4

dx 1 [x(3x2-80)+§
(x*~16)° 2048 L (x*—-16)° 8

36. I(x 1) dx = &x(8x* —26x* + 3V - 1- Zn|x+ Vx' = 1|+ C

37. jsin‘xdx=%x—§sinxcosx—}sin’xcosx+C
38. jcos“xdx=,'-5(3cos“x+4coszx+8)sinx+C

39. [sin’xcoszxdx——-cos x@GinPx+ )+ C

40, jsin‘xcos"xdx=%,sinsx(cos‘x+?,coszx+§;)+C

An alternative procedure for some of the more tedious problems of this section can be found by noting (see
Problem 9) that in

J’xle._xdx_ l_ 3e21~3 Zelx+ Xe %er+C (1)

the terms on the right, apart from the coefficients, are the different terms obtained by repeated differentiations
of the integrand x’¢*. Thus, we may write at once

j e dx = Ax’e™ + Bx’e™ + Dxe™ + Ee™ + C (2)
and from it obtain by differentiation
X’ =2Ax"e” + (3A + 2B)x’e® + (2B + 2D)xe** + (D + 2E)e*
Equating coefficients, we have
24=1 3A+2B=0 2B+2D =0 D+2E=0

sothat A=} B=-31A4= ,D=-B=3, E=~}D=—3. Substituting for A, B, D, E in (2), we obtain
(1).

This procedure may be used for finding Jf(x) dx whenever repeated differentiation of f(x) yields only a
finite number of different terms.

41. Find f e” cos 3x dx = 5e’*(3sin3x + 2 cos 3x) + C, using
f e™ cos 3x dx = Ae** sin3x + Be** cos3x + C

42, Find f e**(2sin4x — 5cos 4x) dx = £e>* (- 14sin 4x — 23 cos 4x) + C, using

f e**(2sin4x — Scos 4x) dx = Ae* sindx + Be¥ cosdx + C

43. Find fsin 3x cos 2x dx = — {(2 sin 3x sin 2x + 3 cos 3x cos 2x) + C, using

fsin3xc052xdx=Asin3x5in2x+ Bcos3xcos2x + Dcos3xsin2x + Esin3xcos2x + C

Jx

. 3¢ 2
4. Find fe x“sinxdx = 350

[25x%(3sin x — cos x) — 10x(4 sin x — 3cos x) + 9sin x — 13 cos x) + C.



Chapter 32

Trigonometric Integrals

THE FOLLOWING IDENTITIES are employed to find some of the trigonometric integrals of this

chapter:
1. sinfx+cos’x=1 2. l+tan’x=sec’ x
3. 1+cot’ x=csc’ x 4. sin’ x=1(1-cos2x)
5. cos’x =1(1+ cos2x) 6. sinxcosx = }sin2x
7. sinxcos y = j[sin (x — y) +sin (x + y)] 8. sin xsin y = $[cos (x — y) — cos (x + y)]
9. cosxcosy=3[cos(x—y)+cos(x+y)] 10. 1-cosx=2sin’ ix
11. 1+cosx=2cos jx 12. 1xsinx=1xcos(im—x)

TWO SPECIAL SUBSTITUTION RULES are useful in a few simple cases:
1. For f sin™ x cos” x dx: If m is odd, substitute u = cos x. If n is odd, substitute u = sin x.

2. For f tan™ xsec” xdx: If n is even, substitute u =tanx. If m is odd, substitute
u =secx.

Solved Problems

SINES AND COSINES

In Problems 1 to 17, evaluate the integral at the left.

3

fsinzxdx=f%(l—cos2x)dx= fx—1lsin2x+ C
2. jcosz3xdx=j%(1+cos6x)dx=%x+i‘isin6x+c

3. Jsin3xdx=fsinzxsinxdx=f(l —cos’ x)sinxdx=—cosx+ §cos’>x+ C
This solution is equivalent to using the substitution u = cos x, du = —sin x dx, as follows:

fsin’xdx=—f(1—u2)du=-u+§u3+C=—cosx+%cos3x+C

4. fcos’xdx=fcos4xcosxdx=j(l—sinzx)zcosxdx

=jcosxdx—2fsin2xcosxdx+jsin‘xcosxdx
=sinx— Isin’x+ isin®x+ C

This amounts to the use of the substitution u = sin x. We have also used (30.2).

225
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10.

11.

12.

13.

TRIGONOMETRIC INTEGRALS

fsinzxcos“xdx=jsin2xcoszxcosxdx=fsin2x(1—sinzx)cosxdx

—_ =2 -4 — 1 o103 .5

-jsm xcosxdx-—J'sm xcosxdx=4sin" x~ tsin®x+ C
fcos" 2xsin’ 2x dx = fcos‘ 2x sin’® 2x sin 2x dx =fcos" 2x (1 - cos’ 2x) sin 2x dx

fcos 2x sin 2x dx — fcos 2xsin2xdx=—f5cos’2x + & cos’ 2x + C

J sin® 3x cos® 3x dx = J (1 — cos? 3x) cos® 3x sin 3x dx
=fcos’3xsin3xdr—fcos73xsin3xd =—tcos®3x+ % cos®3x+ C

or f sin’ 3x cos’ 3x dx = J'sinJ 3x (1 - sin® 3x)? cos 3x dx

fsin’ 3xcos3xdx -2 f sin® 3x cos 3x dx + fsin’ 3x cos 3x dx

Hsin*3x— §sin®3x+ & sin®3x+ C

Ico f —sin® 3 cos L ax= 3sm3—sin3§+C

jsm xdx = j(sm x)? dx—lf(l—COSZx) dx

i

%jdx—%fcostdx+%fcosz2xdx

i

ifdx—%jcostdx+§f(l+cos4x)dx

=lxy—lsin2x+ixr+ &sindx+ C=3x~}sin2x+ %sindx+ C
jsinzxcoszxd.x=%jsinZZxdx=éj(l—cos4x)dx=éx—f‘fsin4x+c

fsin‘ 3xcos’3xdx = I(sinz 3x cos® 3x)sin®3x dx =} Isin2 6x (1 — cos 6x) dx

jsm 6x dx — 3 | sin® 6x cos 6x dx

% J(l—colex)dx— i jsin26xcos6xdx

= f&x~ b sin12x — L sin® 6x + C

jsin 3x sin 2x dx =J L{cos (3x — 2x) —cos (3x +2x)] dx = } j(cos x — cos 5x) dx

=1lsinx—fHsind5x+C

jsin3xc055xdx=f 3[sin (3x — 5x) +sin (3x + 5x)] dx = § cos 2x — % cos 8x + C

[CHAP. 32
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14. jcos4xcostdx= 3 j(c052x+cos6x)dx= Lsin2x+ & sin6x + C
15. f\/l—cosxd.x=\/§jsin;‘;xdx=—2\/7cosix+C

16. ](l + cos 3x)*"? d.rc=2\/§jcos3 3x dx =2\/§j(1 —sin® x)cos ¥x dx

=2VZ(4sin ix— Zsin’ $x)+ C

dx dx V2 dx V2 1
17. f\/l—sinlx __J'\/l—cos(%,”_zx) ‘—z—fm—TICSC(zW—x)dx
=—QInlcsc(%-rr—x)—cot(iqr—x)“c

2

TANGENTS, SECANTS, COTANGENTS, COSECANTS
Evaluate the integral at the left.

18. ftan‘xdx=ftan2xtan2xdx=ftanzx(scczx—1)dx=[tan2xscc2xdx—ftan2xdx

=jtan2xseczxdx—f(sec2x—1)dx=%tan3x—tanx+x+C

19. ftansxd.x=jtan3xtan2xdx=J’tan3x(sec2x—l)dx
=ftan3xsec2xdx—ftan3xdx=Jtanaxseczxdx—ftanx(seczx—l)dx
=1tan*x - ltan’ x +In[sec x|+ C

20. fsec‘ 2xdx= fsecz 2x sec? 2xdx=!sec2 2x (1 + tan® 2x) dx

=jsec22xdx+jtan22xsec22xdx=%tan2x+ Ltan’2x + C

21. j tan’ 3x sec* 3x dx = f tan® 3x (1 + tan® 3x) sec” 3x dx
= J'tan3 3xsec’ 3xdx + j tan’ 3xsec’ 3xrdyr = S tan* 3x + L tan®3x + C
22. jtanzxsec3xdx=f(sec2x— l)sechdx=jsec’xdx—jsec3xdx
=4isec’xtanx— }secxtanx — } In|secx + tanx|+ C (integrating by parts)
23. f tan’ 2x sec’ 2x dx = f (tan” 2x sec” 2x)(sec 2x tan 2x dx)
= f (sec” 2x — 1)(sec’ 2x)(sec 2x tan 2x dx)

= f (sec* 2x)(sec 2x tan 2x dx) — f (sec’ 2x)(sec 2x tan 2x dx)

= &sec’2x— Lsec*2x+ C
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24,

25.

26.

27.

28.

TRIGONOMETRIC INTEGRALS [CHAP. 32

jcot’Zxdx=fcot2x(csc22x—1)dx=—§cot22x+%lnlcsc2x|+C

fcot‘3xdx=fcot’ 3x (csc® 3x — l)ci:|c=J'cot23xcsc23xdx-Icot2 3x dx

=fcotz3xcsc23xdx—I(csc23x—1)d.x=—$cot33x+§c0t3x+x+C

fcw“xdx=fcx2x(l+cot2x)2dx=fcsc2xdx+2fcotzxcsc2xdx+fcot‘xcsc2xdx

=—cotx—3cot’x—Ltcot’x+C

jcot 3xcsc’ 3xdx = f cot 3x (1 + cot® 3x) csc” 3x dx

=fcot3xcsc23xdx+fcot’3xcsc23xdx=—%c0t23x— Scot*3x+ C

Jcot3 xcsc' xdx = j (cot® x csc* x)(csc x cot x dx) = J (csc® x — 1)(esc* x)(csc x cot x dx)

= I(csc" x)(csc x cot x dx) — f (csc’ x)(cscxcotxdx)=—Lesc’ x+ desc’x+ C

Supplementary Problems

In Problems 29 to 56, evaluate the integral at the left.

29.

30.

31.

J2.

33.

3s.

37.

fcoszxdx=%x+isin2x+C
jsin’Zxdx=;‘,cos’2x—%cost+C
Jsin‘2xdx=% ~Lsindx+ & sin8x+ C
Jcos‘%xdx=%x+%sinx+ﬁsin2x+c

sin’ xdx=13cos  x— 2cos’x+cos’x—cosx+C
cos® Ixdr=Sx+ isinx+ $sin2x— &sin*x+ C
sinxcos’xde=13sin’x—¢sinx+ dsin"x+C
sin*xcos’xdr=1}cos’x~}cos’x+C

N 3
sin® x cos” xdx = & cos®2x — & cos2x + C

—_— — —— —— —
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38. jsin'xcos‘xdx=ﬁ(3x—sin4x+f§sin8x)+C
39. fsin 2xcosdxdx =} cos2x — & cosb6x + C
40. jcos3xc052xdx=%sinx+%sin5x+C

41. fsinstinxdx=};sin4x—,—‘isin6x+C

3
42, M=sinx+lsin2x+C
1-sinx 2

213

cos” T x 3 s

43. J'—.-———dx=——cot x+C
sin®? x 5

3
Ccos” X 1
4. J'—————dx=cscx——csc3x+C

sin* x 3

45. fx(cos’ x* —sin® x?) dx = & (sin x* + cos x*)(4 +sin2x*) + C
46. ftan’xdx=%tan2x+]n |cos x| + C

47. ftan3 3xsec3xdx=4sec’3x— Lsec3x+ C

48. ftan”zxsec‘xdx= Z2tan®?x + i tan®?x+ C
49. jtan‘xsec‘xdx=%tan7x+%tan5x+C 50. fcsc‘Zxdx=—%cot2x—};cot’2x+C
secx\* 1 1
51. fcot’xdx=—%cotzx—lnlsinx|+c 52 f( ) =- — - +
tan x 3tan’x tanx
cot’ x :
53, fcot’xcsc‘xdx=—§col‘x—%cot°x+C 54, fcscx dx=-sinx—cscx+ C
55. jcot’xcsc’xdx=—§cscsx+%csc’x+C 56. ]tanszecxdx=2Vsecx+C
57. Use integration by parts to derive the reduction formulas
- 1 ~— m— _
[sec udu= sec™ ? utan u + Isec"’zudu
m-—1 m-—1
- _ m-—2 -
and Jcsc udu=— csc™ 2 ucotu + fcsc *udu
m-—1 m-—1

Use the reduction formulas of Problem 57 to evaluate the left-hand integral in Problems 58 to 60.
58. fsechdx=%secxtanx+%lnlsecx+tanx|+C
59. fcscjxdx= —lesc*xcotx— 3 cescxcotx + 2 Infescx —cot x|+ C

60. Iscchdx=%sec‘xtanx+%seczxtanx+,—",tanx+C=%tan5x+§tan3x+tanx+C



Chapter 33

Trigonometric Substitutions

SOME INTEGRATIONS may be simplified with the following substitutions:

1. If an integrand contains Va® — x°, substitute x = a sin z,
2. 1f an integrand contains Va’ + x’, substitute x = a tan z.
3. If an integrand contains Vx? — a’, substitute x = a sec z.

More generally, an integrand that contains one of the forms Va® - b’x’, Va® + b2 or

Vb’x® —~ a° but no other irrational factor may be transtormed into another involving trig-
onometric functions of a new variable as follows:

For Use To obtain
a -
Va® - b’x? x = sinz aV1—sin®z=acosz
2 T 2 _a \/ 7 _
Va' + b'x x-Etanz aVl+tan z=asecz

5 a
Vbl ~a x = secz aVsec’z—1=atanz

In each case, integration yields an expression in the variable z. The corresponding expression in
the original variable may be obtained by the use of a right triangle as shown in the solved

problems that follow.

Solved Problems

1 Find f L

Let x =2tan z, so that x and z are related as in Fig. 33-1. Then dx =2sec’ zdz and V4 + x* =

2sec z, and
j dx —J 2sec” zdz —lf ez dz*ljsin'zzcoszdz
2Va+ 52 (4tan® z)(2secz) 4 ) tan’:z 4
\/ 2
=- 1 +C=- 4+X+C
4sin z 4x
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2
] X
2. Fmdj—z—-dx.
Vx' -4
Let x=2secz, so that x and z are related as in Fig. 33-2. Then dx =2secztanzdz and
x’—4=2tan z, and
x’ 4sec’ z J .
f——\/)?—?-idx— m—z—(Zsccztande)—4 sec” zdz
=2secztanz +2lIn|sec z +tan z| + C’
=V —4+2Injx+ V' -4+ C
. V9 —4x’
3. Fde————dx.
X
Let x = 2 sin z (see Fig. 33-3); then dx = } cos zdz and V9 — 4x* = 3 cos z. and
V9 —4x’ 3 : 1—sin’
j——xdx= ::Cf)sz (—coszdz)=3jc(?S Zdz=3| —2 2 4
X 3sinz \2 sin z sin z
=3fcsczdz—3fsinzdz=3ln|cscz—cotz|+3cosz+ C
_1\/go— 2
=3]n‘3—% +V9-4x’+ C
3
2x
z
V9 —4z*
Fig. 33-3
dx
4. Findf————.
xV9 + 4x?

Let x = 3 tan z (see Fig. 33-4); then dx = § sec’ z dz and V9 + 4x” = 3sec z, and

J’ dx _f 3 sec’ zdz _1J’ d—1|| 2]+ C
Vorar (%tanz)(3secz)_3 csczdz = 3 Injescz —cot 2

1, | V9+4x’ -3
=3h|—F——|+C

021372
5.  Find j a6 -9 ) "~ 4.
X

Let x = 4 sin z (see Fig. 33-5); then dx = % cos z dz and V16 — 9x” = 4 cos z, and
J' (16 — 9x%)*"? (64 cos’ 2)(3 cos zdz) 243 [ cos' z 243
__x.ﬁ— dx = = dz =

4 2
- - z=—{cot’ zesc® zdz
9% sin® z 16 J sin®z 16

24 — 215/2 _ 24572
LM s oo MBS0 1 (16-9%)

80 80 243x° 80 x ¢
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: 3z ! x-1
z z
Vi6 =9z Vez— 2t
Fig. 33-5 Fig. 33-6
2 2
) x°dx x“dx
6. Fmdf = = =.
V2x —x Vi-(x-1)
Let x — I =sin z (see Fig. 33-6); then dx = cos z dz and V2x —x*=cos z, and
x* dx (1 + sin 2)° j . J(3 _ 1 )
= = = - 4+ _ -
Voo cos 2 cos z dz (1 +sinz) dz 2 2sin z 2cosZz dz
3 | . 3 3
=3 z—2cosz—Zsm22+C=%arcsm(x—l)—2\/2x—x‘~%(x~l)V2x—x‘+C
=%arcsin(x~1)—%(x+3)v2x—x2+C

dx dx
7. Find f = J .
(4x* —24x +27)*"* [4(x —3)° - 9]*"*
Let x — 3= }secz (see Fig. 33-7); then dx = } sec ztan zdz and V4x® —24x + 27 =3 tan z. and

j dx _J’%sccztanzdz_ljsm,,2 cos 2 d
(4x° = 24x +27)*? 27 tan’ z 8 z
1 x—3

1
=-—ccz+C=—-7 =——=—=—+C
18 9 Vax® -24x +27

5 Viz' = 24z + 27

Fig. 33-7

Supplementary Problems

In Problems 8 to 22, integrate to obtain the given result.

8 f dx _ x
' @-x"7 44—

V25 - x? 5-V25-x?
——;—dx=5ln —_—

+C

+V25—-x'+C
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dx a’—x’
. =- +
10 f *Va - x? a’x ¢
11. fo2+4dx=%x\/x2+4+21n(x+\/x2+4)+C
2 j ldc x sin® + C
. @-x)" = Vi - 22 arcsin a
13. f\/x2—4dx=5x\/x2—4—21n|x+vx2—4|+c
14 j__wdx_ P N L S Sl S
’ x 2 Va'+x'+a
x* dx x*
o [re 2
! A-xY"7 124- X"
dx x
16. f — = +C
(@+x°)Y"? Vet +x
dx Vo —x*
17. = - +C
V9 — i 9x
x*dx 1 5 >
18. ﬁ—ixVx—16+81n|x+Vx—l6|+C
2
19. J'xSVaz—x2 dx=%(az—xz)m—?(a2~x2)“+C
20. J'Z;ix—=ln(x—2+Vx2—4x+l3)+C
Vx°—4x + 13
dx x-2
21. f = +C
(4x—x*Y"?  aVax-?
dx 1 x x
22. — = It o+
2 9+ ) 54 arctan 3 1809 + 1) C
In Problems 23 and 24, integrate by parts and apply the method of this chapter.
23, fxarcsinxdx=%(2x2—1)arcsinx+%le—x2+C
24. fxarccosxdx=3(2x2—1)arccosx—%le—x2+C
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Chapter 34

Integration by Partial Fractions

A POLYNOMIAL IN x is a function of the form agx" + a,x" "' + - +a,_,x + a,, where the a’s are
constants, a, # 0, and n, called the degree of the polynomial, is a nonnegative integer.

If two polynomials of the same degree are equal for all values of the variable, then the
coefficients of the like powers of the variable in the two polynomials are equal.

Every polynomial with real coefficients can be expressed (at least, theoretically) as a
product of real linear factors of the form ax + b and real irreducible quadratic factors of the
form ax’ + bx + c. (A polynomial of degree 1 or greater is said to be irreducible if it cannot be
factored into polynomials of lower degree.) By the quadratic formula, ax’ + bx + ¢ is irreduc-
ible if and only if b — 4ac <0. (In that case, the roots of ax’ + bx + ¢ =0 are not real.)

EXAMPLE 1: (a) x* - x + 1 is irreducible, since (—1)> —4(1)(1) = -3 <0.

1
(b) x* —x -1 is not irreducible, since (-1)° —4(1)(~1)=5>0. In fact, xz-x—1=(x— +\/§)
2
( i 1—\/3)
X 3 .

A FUNCTION F(x) = f(x)/g(x), where f(x) and g(x) are polynomials, is called a rational fraction.

If the degree of f(x) is less than the degree of g(x), F(x) is called proper; otherwise, F(x) is
called improper.

An improper rational fgaction can be expressed as the sum of a polynomial and a proper
rational fraction. Thus, Tx__ =x- _Zx_

x+1 x+1

Every proper rational fraction can be expressed (at least, theoretically) as a sum of simpler
fractions ( partial fractions) whose denominators are of the form (ax + b)" and (ax’ + bx + ¢)",
n being a positive integer. Four cases, depending upon the nature of the factors of the
denominator, arise.

CASE I: DISTINCT LINEAR FACTORS. To each linear factor ax + b occurring once in the
denominator of a proper rational fraction, there corresponds a single partial fraction of the

form where A is a constant to be determined. (See Problems 1 and 2.)

ax+ b’

CASE I1: REPEATED LINEAR FACTORS. To each linear factor ax + b occurring n times in the
denominator of a proper rational fraction, there corresponds a sum of n partial fractions of the
form

Al + AZ + + An
ax+b  (ax +b)’ (ax + b)"

where the A’s are constants to be determined. (See Problems 3 and 4.)

CASE III: DISTINCT QUADRATIC FACTORS. To each irreducible quadratic factor ax® + bx + ¢

occurring once in the denomi{gator Bof a proper rational fraction, there corresponds a single
, R X +
partial fraction of the form —
+bx+c

Problems 5 and 6.)

, where A and B are constants to be determined. (See

234



CHAP. 34] INTEGRATION BY PARTIAL FRACTIONS 235

CASE IV: REPEATED QUADRATIC FACTORS. To each irreducible quadratic factor ax’ + bx + ¢
occurring n times in the denominator of a proper rational fraction, there corresponds a sum of n
partial fractions of the form

Ax+ B, Ax+ B, Ax+B,
2 + 2 sttt S
ax“+bx+c (ax"+bx+ o) (ax" + bx + ¢)
where the A’s and B’s are constants to be determined. (See Problems 7 and 8.)

Solved Problems

1.
We factor the denominator int —2+2)dw't1—A+BCl'f
e factor the denominator into (x —2)(x an nexz_4—x_2 T3 Clearing o
fractions yields
1=A(x+2)+ B(x-2) (1)
or 1=(A+B)x+(2A—2B) (2)
We can determine the constants by either of two methods.
General method: Equate coefficients of like powers of x in (2) and solve simultaneously for the
constants. Thus, A+ B=0and 24A-2B=1; A=}and B=—}.
Short method Substitute in (1) the values x =2 and x = —2 to obtain 1 =44 and 1 = —4B; then
=} and B = —}, as before. (Note that the values of x used are those for which the denominators of
the partial fractlons become 0.) . .
. 1 3 H
By either method, we have F-4a 12 1+2 Then
1 f dx 1 1 x=2 ‘
x_4 4f ~3 T2 4lnlx 2| ln|x+2|+C—4 2+C
+1)dx
2. Find f xt 1)
Ptxt-6x’
. . 3, 2 g _ x+1 _4 B C
Factoring yields x™ + x° — 6x = x(x — 2)(x + 3). Then i 6 x + P + 753 and
x+1=A(x—-2)x+3)+ Bx(x+3) + Cx(x - 2) )
x+1=(A+B+C)x*+(A+3B-2C)x-6A 2)

General method: We solve simultaneously the system of equations
A+B+C=0 A+3B-2C=1 -6A=1

toobtain A=—-%, B=2,and C=-4%.

Short method: We substitute in (1) the values x =0, x =2, and x = -3 to obtain 1=-6A or
A=-1/6,3=108B or B=3/10, and -2=15C or C=-2/15.

By either method,

(x+1)dx _ J‘dx j dx 2 dx
x +x*—6x 10 x+3

=-2inld+ & - njx -2 - —ln|x+3|+C

lx_2|3/10



INTEGRATION BY PARTIAL FRACTIONS [CHAP. 34

236

+
3. F.df _Bxr3)dx

Toxt x4l
Ix+5§ A + B + C d
-x-x+1 x+1 x-1 (x—l)zan

x*—x>=x+1=(x+1)x— 1) Hence,
x

Ix+5=A(x -1 +Bx+1Dx-1+Clx +1)
Forx=-1,2=4A and A=}. Forx=1, 8=2C and C =4. To determine the remaining constant, we
use any other value of x, say x =0; forx=0,5=A - B+ C and B= —%. Thus,

j 3x+5 d—l dx _l J’ dx
-t -x+1 o 2) x+1 x—l
1 4 4 1 x+1 .
—§In|x+1|—5lnlx—l|‘x—_—l+C——'x—_—l+§ln _1|+C

S-x-x-1
4, Findj—3—2dx.

X — X
The integrand is an improper fraction. By division,
xt=xt-x-1 S x+1 e x+1
' -x’ ' -x (x—1)
. +1 A B C _
We write 2)‘— =—+ =+ and obtain
x-1) x x x—1

x+1=Ax(x- 1D+ Bx-1)+ Cx’

Forx=0,1=-Band B =—1. Forx=1,2=C Forx=2,3=2A+ B+4C and A= -2. Thus,

f"————f — ldx—fxd“zfd" fd"—zj
x x—1

|+ c

1 1 1 1
= +2Inx|- = —2lnjx -1+ C=zx' - = +2In|-—
X 2 x x -1

T2

CAXF 42
S. Fmdj dx.
f+3x7 42
‘+x'+x+2 Ax+B  Cx+D

x‘+3x1+2=(x2+1)(x2+2).Wewrite"x,Hx2+2 =St s
X +2=(Ax+ B +2)+(Cx+ DY)(x* + 1)
=(A+ O’ +(B+Dx*+(2A+ C)x+ (2B + D)
Hence A+ C=1,B+D=1,2A+ C=1, and 2B + D =2. Solving simultaneously yields A =0, B=1,
C=1, D=0. Thus,

and obtain

[M x = i—+J X dx —arctanx+lln(x2+2)+C
' +3x2 42 2+1 )P 2 2
x* dx
6. Solve the equation f 1= f k dt, which occurs in physical chemistry.
a —x
x’ A B Cx+ D
. _ + .
Wewrltea4_x4 i—x aix T A o Then

x*=A(a+ x)(@* + x*) + B(a — x)(@’ + x*) + (Cx + D)(a — x)(a + x)

Forx=a, a*=4Aa’ and A=1/4a. For x= —a, a =4Ba” and B=1/4a. Forx=0,0= Aa’ + Ba' +

Da*=a%2+ Da* and D = - }. For x =2a, 4a’ = 15Aa’ — 5Ba’ — 6Ca® —3Da’ and C = 0. Thus,
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fxzdx _1 dx L dx 1 dx
at-x* 4al a-—x 4a a+x 2 ad+x°

1 1 1 x
=— -x|+ = +x|- == <+
o @~ x| ypRL la + x| 5, arctan — C

1 + 1
so that jkdt=kt=—ln A - —arctan 2 + C
4a a—x 2a a
S 4 3 2
xXX—x +4x —4x" +8x—4
7. Findj 5 3 dx.
(x* +2)
S E) 3 2
x'—x"+4x —4x“+8x-4 Ax+B Cx+D Ex+ F
i = +— + . Th
We write 12y F12 T2 (e et
x4t a8y —4=(Ax+ B)(X + 2V + (Cx + DY) +2)+ Ex+ F
= A’ + Bx* + (4A+ CO)x’ + (4B + D)x° + (4A+2C + E)x
+(4B+2D + F)
from which A=1, B=-1,C=0, D=0, E=4, F=0. Thus the given integral is equal to
x—1 J’ V2 x 1
= +2) -~ — +
f dx o +2) 2ln(x 2) drctan\/i T2y C
. 25°+3
8. Find ~3 .2
(x*+1)

x*+3 _Ax+B Cx+D

@+1)7 41 (FP+1)Y
20 +3=(Ax+ B)Y (X’ + D)+ Cx+D=Ax"+ BX’ + (A+ C)x + (B + D)
from which A=0, B=2, A+ C=0,B+D=3. Thus A=0,B=2,C=0,D=1 and
2x*+3 2dx dx

—_— = +
AT e Ty

For the second integral on the right, let x =tan z. Then

‘zd 1
dx =fsecz Z=J'coszzdz=—z+1sin22+C

. Then

We write

x>+ 1) sec z 2 4
and f-z—xfl—i- dx = 2 arctan x + % arctan x + xT%-t_l +C= g arctan x + xj+ 1 +C
Supplementary Problems
In Problems 9 to 27, evaluate the integral at the left.
s [ismamhalc e e Ll b
11. j;y%%=%]nl(x+l)(x-4)‘|+c 12. f%dx=x+ln|(x+2)(x—4)“]+(’
13. J)?_:—jf__z—lxdx=ln )‘I(T"_’le)—‘—z +C 14. f(xx_d’z‘)2=|nlx—2|—x—3—2+c
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1S.

16.

17.

18.

19.

20.

21.

22.

25.

27,

INTEGRATION BY PARTIAL FRACTIONS

x! 1, o 4 1
=-Zx-3x- -x)° - o
[t =g -aemma-n - gt
dx x ’
=1 +C
X +x n\/x2+1

TrxT x4+ 5
fx—,lfx—de:Ian'+3+arctanx+C
(x"+1)}(x" +3)

fxa_leﬂx:_“‘zdx—1x2+ln — |+c
X = 2x7+3x 2 x*=2x+3
20 dx 3
5 = +1 + +C
(x~+ 1) In (x ) ¥ +1
'+ x+4 2 1 1 4
———dx = 2 = - X+ 55—+
) dx =In(x +4)+2arctan2x Iy C
jwd =InV :+1—larctan —1( X )+C
(Crpy? TV 2 T\
J'.r‘+8.r"—x;+2x+ldx_ln -xl+x 3 +iarctan2x—
T+ 0+ 1) (x+1)* x+1 V3 V3
T+t -Sx+15 2 5 x+1 x
; : =V +2x+3+ o= B I
J(x‘+5)(x“+2x+3) dx=InVx’ +2x + +\/§arctan 75 V3 arctan S C

fx“+7x-‘+15x*+32x‘+23x3+25x—3dx_ 13
(FF+x+2) W+ 1) +tx+2 41

JL— 1 +_lln
e —3e" 3¢" 9

"6’—_,3' + C (Hint: Let " = u.)

J sin v dx 5 =In ‘ 1+ cos” x + C (Hint: Let cos x = u.)
cos x (1 +cos™ x) cos x
(2 + tan” 8) sec” @ do 2 2tan @ — 1

+C

= + 1 + ==
T’ e In |1+ tan 6| U3 arctan ——=

[CHAP. 34
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Miscellaneous Substitutions

IF AN INTEGRAND IS RATIONAL except for a radical of the form

1. Vax + b, then the substitution ax + b = z" will replace it with a rational integrand.

2. Vg + px + x° then the substitution g + px + x° = (z — x)° will replace it with a rational
integrand.

Vag+px-— x =V(at x)(/S' x), then the substitution g + px — x* = (a + x)’z* or

g+px—x'=(B - x)%2% will replace it with a rational integrand.
(See Problems 1 to 5.)

THE SUBSTITUTION x = 2 arctan z will replace any rational function of sin x and cos x with a
rational function of z, since
2z 1-2° 2dz

cos x = and dx =
14 2° 1427 1422

(The first and second of these relations are obtained from Fig. 35-1, and the third by
differentiating x = 2 arctan z.) After integrating, use z =tan ix to return to the original
variable. (See Problems 6 to 10.)

sinx =

Fig. 35-1

EFFECTIVE SUBSTITUTIONS are often suggested by the form of the integrand. (See Problems 11
and 12))

Solved Problems

1. Fmdf
xV1—x’

Let1—x=2% Thenx=1-2% dx=—22dz, and
dx —-2zdz dz 1+z Vl-—
= = = —In T_— + C=1In

wWl-x (1-2z)z “J1-27 1+VI-x

+C

. dx
Find f m
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Let x +2=z> Then x = 2> - 2, dx =2z dz, and

I dx [ 2zdz dz —lln Z_2|+C—1ln Vx+2-2 4 C
(x—2)Vx +2 2(2* - 4) P-4 2 1z+2 2 V242
. dx
3. Fmdfx,z_
Let x = z* Then dx =4z> dz and
dx  (4z2'dz _ J z? _ J’( 1 )
J‘x”—xm_ 22_2—4 Z_ldz—4 2-0—1+z__1 dz
=47+ z+In|z - 1)+ C=2vI+4vT+InWx~1)*+ C
dx
4. Findf—.
XV +x+2
Let x* + x +2=(z — x)> Then
2 =2 A+ z2+2)dz < 2Ptz +2
T KT T vy Vet x+2= 105,
A+ 2+2)
dx (1+2z) J' dz 1 z2~-V2
d f =f S dz=2 = +
an AWVt +2 27-2 22+ z+2 \/- z2+V2 ¢
1+2z 1+22
Va3V

+C

1
_ll
V2 IVl v x+24x+ V3

x dx
5. Fi df
n (5-4x—-x )3/2

Let 5—4x~ x> =(5+ x)(1 - x) = (1 - x)°z°. Then

2_
x=£—5— dx=1—2212— Vi—dx-x'=(1-x)z= 622

14 2° (1+2°)° 142
2’-5 122
x dx B 1+2° (1+z) J’
and J’(5—4x—x2)3"2 - 2162° T 18
a+z22y
1 s 5~ 2x
(o) e i e

In Problems 6 to 10, evaluate the integral at the left.

2dz
+ 72
6. .dx =J' 1*z 2=J' dz =lhnjz|-In|1+z|+C
1+sinx—cosx 2z 1-z 2(1+2)
1+ 2 T 2
1+ 2 1+2
z tan ix
=1In 1+l’+C-—ln




CHAP. 35] MISCELLANEOUS SUBSTITUTIONS
2dz
dx 1+27° 2dz 2V§
7 - ) )
3-2cosx 1- 22 1352 5 arctan zV5 + C
3-2 .
1+z2

2V3
= =5~ arctan (V5tan ix)+ C

+ 2
8. fsecxdx=fl 2 2dz =ZI dzz=ln}l+z'+c=ln’
1-z 1-z

1-22 142

=i jin (5 5+ 7))
=In tan(2x+41,- +C
2dz
dx j 1+22 dZ 2 z
. = _ _2 z
9 j2+cosx +1—22 2 3151 V3 Artan 5 C
1+ 22
_.2__3 t: (-@t 1 )+C
= 3 arctan 3 anzx
2dz

10 J’ dx =f 1+ 7* _f 2dz =2J dz
‘ S+4sinx s 2z S+8z+52° S5J) (z+4)Y+3

+4

1+2°
2 z+ % 2 Stan ix +4
= - arctan —— + C= 7 arctan ——— + C
3 3 3 3

11.  Use the substitution 1 — x° = z° to find fﬁv 1—x° dx.

The substitution yields x* = 1 — 2% 3x® dx = —2z dz, and

fxsmdx=jx3m(x2 dx)=f(l - 2z(-izd2) = —% J(l~zz)z2 d:z

3 5
4 r4

__2(___) __2 L san )
=-3 +C= 45(1 )2 +3x)+ C

3 5

12. Usex=ltofmdf—:-dx.
z x

The substitution yields dx = —dz/z°, Vx —x*=Vz - 1/z, and

f\/ﬁdx:f_vzz—;l(‘%)
x* 1/z*

Let z —1=5% Then

[viTia- [ e noesa - o5 +5)

5

—2[(2 i Y € l)m] +C= -2[

5 3

. dx
13. Find f W .

=-fz\/mdz
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242 MISCELLANEOUS SUBSTITUTIONS [CHAP. 35

=4 and x''? = u*. Then we obtain

1 1
)du=6(§u3—§u2+u—ln|u+1|)+C

Let u = x"'® so that x = u®, dx = 6u’ du, x"'

6u’ du J
ua + uz =6

— 2_ —_
u+1du—6J'(u u+1

=22 3t llb—lnlx”6+1|+C

u+1l

Supplementary Problems

In Problems 14 to 39, evaluate the integral at the left.

14.

i vire I

=2In(1+Vvx)+ C

dx
16. f3+\/}T 2Vx+2-6In(3+Vx+2)+ C

-V3ix+2 4{ }
17. —l+\/3_x—+_2dx__x+3 Vax+2-In(1+V3x+2);+C
dx
18. f—=ln 2Vxi-x+1+2x -1+ C
el |
dx
19. J————=2arctan Vil+x-1+x)+C
xVei+x -1 ( )
dx 2x -1
20. J————=arcsin—+C
V6 +x—x’ 5
— _ 2332
21. J'V4x3 x dx=—(4x xs) e
x 6x
22. j T dx l/‘=2(x+1)112_4(x+1)1/4+4ln(1+(x+1)]/4)+c
+D"7+ @+
de 2 2tan ix + 1
23. fﬁsi—n;—ﬁarctan 73 +C
tan jx -2 - V3
TR e e
1-2sinx 3 tan ix —2+V3
1 3tan ix +1 f dx l
2. f3+55inx—3n anixs3 | 7€ 2. S oo - inltan dx—1]+C
1 Stan 3x +3 jsmxdx \/_ tan® ix +3-2V2
. _— = T T4 :
7 IS+35mx g retan 4 ¢ 28 1+sincx 4 “ltan? Ix+3+2V2 *C
29 dx - =In|1+tan }x|+ C 30. j = arctan(\/-tan X+ C
: 1+sinx +cos x 2 cosx 3 3

31. ]sin\/i'dx=—2x/icosx/i+25in\/f+c

32,

J’ =—arcsm1 +C (Hint: Letx=1/z)
Vi +2x -1 2x

33, f (ee —+2}e =e¢*—3In(e*+1)+ C (Hint: Let &* +1=2)



CHAP. 35]} MISCELLANEOUS SUBSTITUTIONS
4. S;n_x;(;sxx dx=cosx+In{l—cosx)+ C (Hint: Let cosx=z.)
dx V4 - x? '
3. fxz\/4 — T 4x + C (Hint: Let x=2/z.)
dx 1 1 2
36. m——rx+§ar¢tan;+C
37. fvl+\/§dx=§(1+ﬁ)5/2_g(1+m3r2+c
3s8. f dx _ 2V1+x +C
1-x)—(S+an)V1-x 3IVI+x-Vi-zx
39, J' x1/2 dx = lO(i le/m - 1 xnuo+ l x9/10_ l x7/m + 1 xsno _ l xg,m

13 11 9 7 5
+ C (Hint: Let u=x""")

xl/S + 1
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Chapter 36

Integration of Hyperbolic Functions

INTEGRATION FORMULAS. The following formulas are direct consequences of the differentia-
tion formulas of Chapter 20.

28. J’sinh xdx=coshx+ C 29. fcosh xdx=sinhx+ C
30. J’tanhxdx=lncoshx+ C 31. fcothxdx=ln |sinh x| + C
32. fsechz xdx=tanhx + C 33. fcschzxdx = —cothx+ C

34. jsechxtanhxdx =—-sechx+ C 3s. fcschxcothxdx= —cschx+ C

dx X dx 1 X
36. f—=sinhl—+C 37. f——=cosh1-+C, x>a>0
Vx?+ a’ a Vi® - a’ a
1 -
38. de 2 =- tanh ! { + C y xz < az
a —-x a a
d 1 -
3. | 5= =--cth” Z4C, ’>d
x"—a a a

Solved Problems

In Problems 1 to 13, evaluate the integral at the left.

1. jsinh %xdx=2J'sinh fxd(3x)=2cosh ix+ C

2. Jcosh 2xdx =} | cosh2x d(2x) = } sinh2x + C

3. fsech2 Cx-1Ddx=1} J‘sech2 (2x-1)d2x—-1)=}tanh 2x - 1)+ C

4. fcsch 3xcoth3xdx =1} jcsch 3xcoth3xd(3x)= -4 csch3x+ C

1 J’ cosh x I cosh x .
. = = = = -+
5 f sech x dx f oz dx cochZx 1T simhx dx = arctan (sinh x) + C

6. J'sinhzxdx=§j(c0sh2x—l)dx=%sinth—§x+C

7. J'tanh2 2xdx=f(l —sech’2x)dx=x - { tanh2x + C
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CHAP. 36] INTEGRATION OF HYPERBOLIC FUNCTIONS

8. J'COS"S lxdx= f (1 +sinh? ix) cosh fxdx=2sinh ix+ Zsinh® ix+ C

9. fsech"xdx =f(1 ~tanh® x)sech’ xdr=tanh x — { tanh’ x + C

10. J *
w |

_;J(ez"+l)dx=%e2’+lx+c

2
_lj __f -x
=3 xe” dx xe

1 oo _ .o e +e e —e
=§(xe—e) 2(xe e+ C=x > > +C
=xcoshx —sinhx+ C
dx 1 1 2x J' dx 1 -1 3x
. —— = + . ———— =——coth™ =+
12 j\/4x2——9 2coh 3 C 13 9% — 35 15coh 5 C

14. Find f\/x2+4dx.

Let x = 2sinh z. Then dx =2 cosh z dz, Vx* + 4 =2 cosh z, and
f\/x2+4dx=4fcoshzzdz=2f(cosh22+1)dz=sinh2z+22+C

=2sinhzcoshz+22+ C=xVx'+4+2sinh ' ix+C

dx
xV1-x*
Let x = sech z. Then dx = —sech z tanh z dz, 1 — x* = tanh z, and

f dx =_fsechztanhz
V1-x sech z tanh z

15. Find [

Supplementary Problems

In Problems 16 to 39, evaluate the integral at the left.

16. jsmh 3xdx=1cosh3x+ C 17. fcosh ixdx=4sinh ix+ C

18. jcoth 3xdx =%In[sinh ix|+ C 19. jcsch2(1+3x)d =-jcoth(1+3x)+C

20. fsech2xtanh2xdx~——sech2x+c 21. ICSChxdx=ln fcosh x — 1 Ny
coshx +1

22. fcostﬁ Ixdx=1i(sinhx+x)+C 23. fcom23xdx=x— leoth3x + C

4. fsinh’xdx=%cosh’x—coshx+C 25, J'e sinhxdyx=lte” - ix+C

dz=—fdz=—z+C=—sech—1x+C
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29.

31,

33.

3s.

INTEGRATION OF HYPERBOLIC FUNCTIONS [CHAP. 36

fezxcoshxdx=ée3‘+%e"+C 27. jxcoshxdx=xsinhx—coshx+C
fxzsinhxdx=(x2+2)coshx*2xsinhx+C
fsinh}xcosh2 xdx=Lcosh®x—lcosh’x+ C

fsinh x In cosh® x dx = cosh x (Incosh® x ~2) + C

dx x dx X
—e———=sinh™' 2 + C 3. f—————=cosh"—+C
JV):Z+9 3 Vxi-25 5

dx« 1 3 a1 4
4-;9—-;3—6(311}1 2).’+C 3. —_—_-1612‘9_ 12C0(h 3X+C
J’\/;_Z—_de=§\/x7—_§—%cosh"§+C

dx oo x—1 f dx _ 1 ~1( é)

fm—Slnh 2 +C a7. Tl s 4coth x+2 +C

2
X - X X x*+1 i
J(x2+4)3’2dx=5'nhl§_~v;T_4+C 39. j p dx = sinh x—~x—+C



Chapter 37

Applications of Indefinite Integrals

WHEN THE EQUATION y = f(x) of a curve is known, the slope m at any point P(x, y) on it is given
by m = f'(x). Conversely, when the slope of a curve at a point P(x, y) on it is given by
m = dy/dx = f'(x), a family of curves, y = f(x) + C, may be found by integration. To single out
a particular curve of the family, it is necessary to assign or to determine a particular value of C.
This may be done by prescribing that the curve pass through a given point. (See Problems 1 to
4.)

AN EQUATION s = f(¢), where s is the distance at time ¢ of a body from a fixed point in its
(straight-line) path, completely defines the motion of the body. The velocity and acceleration at
time ¢ are given by

dv d’s

a=3 =7 =0

Conversely, if the velocity (or acceleration) is known at time ¢, together with the position (or

position and velocity) at some given instant, usually at ¢ = (), the equation of motion may be

obtained. (See Problems 7 to 10.)

ds
U—E—f(t) and

Solved Problems

1. Find the equation of the family of curves whose slope at any point is equal to the negative of
twice the abscissa of the point. Find the curve of the family which passes through the point

(1,1).

We are given that dy/dx = —2x. Then dy = —2x dx, from which fdy = f —2xdx,andy=-x"+ C.
This is the equation of a family of parabolas.

Setting x = 1 and y = 1 in the equation of the family yields 1 = —1 + C or C = 2. The equation of the
curve passing through the point (1, 1) is then y = —x* + 2.

2, Find the equation of the family of curves whose slope at any point P(x, y) is m = 3x’y. Find
the equation of the curve of the family which passes through the point (0, 8).
. _dy dy . 3 _ .3 S
Since m= —= =3x"y, we have — =3x"dx. Thenlny=x"+ C=x"+Incand y =ce’ .
When x =0 and y =8, then 8 =yce° = ¢. The equation of the required curve is y = 8e* .

3. At every point of a certain curve, y” = x’— 1. Find the equation of the curve if it passes
through the point (1, 1) and is there tangent to the line x + 12y = 13.

dz)’__ d w2 J d ' j 2 ) x’
Herezx—z——a(y)—x — 1. Then E(y)d.x— (x*—1)dx and y '§_X+C|~
At (1, 1), the slope y* of the curve equals the slope — & of the line. Then — 5 =4 -1+ C,, from
which C, = 5. Hence y’ = dy/dx = 1x> — x + &, and integration yields

X+ px+C,

Rail—

fdy=f(%x’—x+%)dx or y=fx'-
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At (1,1, 1=% -1+ %+ C, and C, = . The required equation is y = 5x* — {x* + Zx+ 2.

The family of orthogonal trajectories of a given system of curves is another system of curves,
each of which cuts every curve of the given system at right angles. Find the equations of the
orthogonal trajectories of the family of hyperbolas x* — y* = c.

At any point P(x, y), the slope of the hyperbola through the point is given by m, = x/y, and the
slope of the orthogonal trajectory through P is given by m, = dy/dx = —y/x. Then

J%X=—J% sothat  Injyl=-Injx|+InC" or |xy|=C

The required equation is xy = *C’ or, simply, xy = C.

A certain quantity q increases at a rate proportional to itself. If g =25 whens=0and g =75
when ¢ =2, find g when t=6.

Since dq/dt = kq, we have dq/q = k dt. Integration yields In ¢ = kt + In ¢ or g = ce®.
When 1 =0, g =25 = ce’; hence, ¢ =25 and g = 25¢*"

When 1 =2, g =25¢** =75; then e** =3 =¢""". So k =0.55 and g = 25¢" """

Finally, when t = 6, g =25¢"°* =25¢* * =25(¢' ')' =25(27) = 675.

A substance is being transformed into another at a rate proportional to the untransformed
amount. If the original amount is 50 and is 25 when ¢ = 3, when will f}; of the substance remain
untransformed?

Let ¢ represent the amount transformed in time . Then dg/df = k(50 — g). from which
dgq

50~ gq

When =0, ¢ =0 and ¢ = 50; thus 50 — g = 50e “".

When =3, 50— ¢=25=50e ; then ¢ *=05=¢"", k=023, and 50-g=50—¢
When the untransformed amount is 5, 50e °?*=5; then e "?* =0.1=¢ > and 1 = 10.

ki

=kdt 50 that In(50-¢g)=-kt+Inc or 50—-¢g =ce

-1.23«¢

A ball is rolled over a level lawn with initial velocity 25 ft/sec. Due to friction, the velocity
decreases at the rate of 6 ft/sec’. How far will the ball roli?

Here dv/di= —6. So v = —61+ C,. When t =0, v =25; hence C, =25 and v = ~6¢ +25.

Since v = ds/dt = — 61 + 25, integration yields s = —3:° + 25¢+ C,. When 1 =0, 5 = 0; hence C, =0
and s = —3¢* + 25¢.

When v =0, 1= ¥; hence, the ball rolls for £ sec before coming to rest. In that time it rolls a
distance s = - 3(¥)Y +25(2)=-F + L =% ft.

A stone is thrown straight down from a stationary balloon, 10,000 ft above the ground, with a
speed of 48 ft/sec. Locate the stone and find its speed 20 sec later.

Take the upward direction as positive. When the stone leaves the balloon, it has acceleration
a=dv/dt = —32 ft/sec’ and velocity v = —32r+ C,.

When 1 =0, v = ~48; hence C, = —48. Then v = ds/dt = —32t - 48 and s = - 161° — 48t + C,.

When ¢ =0, s = 10,000; hence C, = 10,000 and s = — 16° — 48¢ + 10,000.

When t =20,

s = —16(20)° — 48(20) + 10,000 =2640  and v = —32(20) - 48 = - 688
After 20 sec, the stone is 2640 ft above the ground and its speed is 688 ft/sec.
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10.

11.

12.

13.

14,

A ball is dropped from a balloon that is 640 ft above the ground and rising at the rate of
48 ft/sec. Find (a) the greatest distance above the ground attained by the ball, (b) the time
the ball is in the air, and (c) the speed of the ball when it strikes the ground.

Take the upward direction as positive. Then @ = dv/dt = —32 ft/sec’ and v = -32r + C,.
When t =0, v =48; hence C, =48. Then v =ds/dt = —321+ 48 and s = — 1617 + 481 + C,. When
t=0, s =640; hence C, =640 and s = — 161> + 48¢ + 640.
(@) When v =0, 1= 2 and s = —16(1)’ + 48(3) + 640 = 676. The greatest height attained by the ball is
676 ft.
(b) When s =0, — 161> + 48t + 640 =0 and ¢ = — 5, 8. The ball is in the air for 8 sec.
(c) When ¢t =8, v = —32(8) + 48 = —208. The ball strikes the ground with speed 208 ft/sec.

The velocity with which water will flow from a small orifice in a tank, at a depth A ft below the
surface, is 0.6\/2gh ft/sec, where g = 32 ft/sec’. Find the time required to empty an upright
cylindrical tank of height 5 ft and radius 1 ft through a round 1-in hole in the bottom.

Let h be the depth of the water at time . The water flowing out in time df generates a cylinder of
height v dt ft, radius 1/24 ft, and volume 7(1/24)* v dt = 0.67(1/24)°\/2gh d! ft°.

Let —dh represent the corresponding drop in the surface level. The loss in volume is ~ 7(1)° dh ft”,
Then 0.67(1/24)’(8VR dt) = — 7 dh, or dt = —(120 dh)/VF and 1t = —=240VR + C.

Att=0, h=5 and C = 240VS5; thus 1 = —240Vh + 240V5.

When the tank is empty, & =0 and ¢ = 240V5 sec = 9 min, approximately.

Supplementary Problems

Find the equation of the family of curves having the given slope, and the equation of the curve of the
family which passes through the given point, in each of the following:

(@) m=4x;(1,5) (b) m=vx; (9,18) (c) m=(x-1)*; (3,0)
(d) m=1/x*;(1,2) (&) m=xly; (4,2) (f)y m=x%y*, (3,2)
(g) m=2yix; (2.8) (h) m=xy/(1+x%); (3,5)

Ans. (a) y=2x+C, y=2x"+3; (b) 3y=2x"?+C, 3y=2x"% (c) d4y=(x—-1)*+C, 4y=
(x=1)"'-16; (d) xy=Cx—1, xy=3x-1; (&) X’ =y’ =C, X’ = y*=12; (f) 3y*=4x"+ C,
3y =4x"~60; (g) y = Cx’, y =20 (h) y* = C(1 + &%), 29" = 5(1 + x7)

(a) For a certain curve, y"=2. Find its equation given that it passes through P(2,6) with slope
10. Ans. y=x"+6x-10

(b) For a certain curve, y” = 6x — 8. Find its equation given that it passes through P(1,0) with slope
4. Ans. y=x'—4r’+9x-6

A particle moves along a straight line from the origin (at ¢ = 0) with the given velocity v. Find the
distance the particle moves during the interval between the two given times 1.

(@) v=4:+1;0, 4 b)yv=66+3;1,3 (¢c) v=3rr+21;2, 4

(d)v=Vr+5;4,9 () v=2-2,0,5 (Hv=1r"=-31+2,0,4

Ans. (a) 36: (b) 30; (c) 68; (d) 373; (e) 17; (f) 53

Find the equation of the family of orthogonal trajectories of the system of parabolas y* =2x + C.
Ans. y=Ce"
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18.

16.

17.

18.

19.

APPLICATIONS OF INDEFINITE INTEGRALS [CHAP. 37

A particle moves in a straight line from the origin (at ¢ = 0) with given initial velocity v, and acceleration
a. Find s at time .
(@) a=32,v,=2 (b) a=-32;0,=96 (¢) a=12+6¢;v,= -3 (dya=1Vt;v,=4

Ans. (@) s=168+2t; (b) s =~ 1617 +961; (c) s=1* + £ =31, (d) s= $(£>'* +31)

A car is slowing down at the rate 0.8 ft/sec>. How far will the car move before it stops if its speed is
initially 15 mi/hr? Ans. 302} ft

A particle is projected vertically upward from a point 112 ft above the ground with initial velocity
96 ft/sec. (@) How fast is it moving when it is 240 ft above the ground? (b) When will it reach the highest
point in its path? (c¢) At what speed will it strike the ground?

Ans. (a) 32 ft/sec; (b) after 3 sec; (c) 128 ft/sec
A block of ice slides down a chute with acceleration 4 ft/sec’. The chute is 60 ft long, and the ice reaches

the bottom in 5 sec. What are the initial velocity of the ice and the velocity when it is 20 ft from the
bottom of the chute? Ans. 2 ft/sec; 18 ft/sec

What constant acceleration is required (a) to move a particle 50 ft in 5 sec; (b) to slow a particle from a
velocity of 45 ft/sec to a dead stop in 15 ft?  Ans. (a) 4 ft/sec’; (b) — 67} ft/sec’

The bacteria in a certain culture increase according to dN/dt = 0.25N. If originally N =200, find N when
t=8. Ans. 1478



Chapter 38

The Definite integral

THE DEFINITE INTEGRAL. Let a<x=<b) be an interval on which a given function f(x) is

continuous. Divide the interval into n subintervals A,, h,, ..., h, by the insertion of n—1
points £,, &, ..., &, ,, where a<§,<§,<---<§,_,<b, and relabel a as & and b as §,.
Denote the length of the subinterval h, by A;x =¢, — &, of h, by A,x=¢,—§,,...,0f h, by

A x=¢ — &, . (This is done in Fig. 38-1. The lengths are directed distances, each being
positive in view of the above inequality.) On each subinterval select a point (x, on the
subinterval h,, x, on h,,...,x, on h,) and form the sum

S, = i fx) Bex = flx) Ax + flxy) Box + - + flx,) A x (38.1)

each term being the product of the length of a subinterval and the value of the function at the
selected point on that subinterval. Denote by A, the length of the longest subinterval appearing
in (38.1). Now let the number of subintervals increase indefinitely in such a manner that
A,— 0. (One way of doing this would be to bisect each of the original subintervals, then bisect
each of these, and so on.) Then

lim S, = lim > f(x,)A,x (38.2)
n—+x n—+x k=1

exists and is the same for all methods of subdividing the interval a=x=b, so long as the
condition A, — 0 is met, and for all choices of the points x, in the resulting subintervals.

i O S W { ™o I i 1b

1 Mo T 2w 1 T aw | 2z | Y

0 éo 1 {2 k-1 £k fn—1 £n
Fig. 38-1

A proof of this theorem is beyond the scope of this book. In Problems 1 to 3 the limit is
evaluated for selected functions f(x). It must be understood, however, that for an arbitrary
function this procedure is too difficult to attempt. Moreover, to succeed in the evaluations
made here, it is necessary to prescribe some relation among the lengths of the subintervals (we
take them all of equal length) and to follow some pattern in choosing a point on each
subinterval (for example, choose the left-hand endpoint or the right-hand endpoint or the
midpoint of each subinterval).

By agreement, we write

n—+x

L fx)dx= lim S, = lim i flx)Ax

b
The symbol f f(x) dx is read “the definite integral of f(x), with respect to x, from x = a to

x = b.” The function f(x) is called the integrand; a and b are called, respectively, the lower and
upper limits (boundari%s) of integration. (See Problems 1 to 3.)

We have defined | f(x) dx when a < b. The other cases are taken care of by the following
definitions:

f f(x)dx =0 (38.3)

251
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a b
If a<b, then L flx)dx = -L flx) dx (38.4)

PROPERTIES OF DEFINITE INTEGRALS. If f(x) and g(x) are continuous on the interval of
integration a < x < b, then

3 3
Property 38.1: J cf(x) dx = L‘J; flx) dx, for any constant ¢
(For a proof, see Problem 4.)
Property 38.2: | [f(n = gmldc= | fdex [ gwax

Property 38.3: J:f(x)dx+fc f(x)dx=£bf(x)d,x, fora<c<b

b
Property 38.4 (first mean-value theorem): f fx)dx = (b - a)f(x,) for at least one value x =x,
between a and b.

(For a proof, see Problem 5.)

Property 38.5: If F(u) = f ’ f(x) dx, then % F(u) = f(u)

(For a proof, see Problem 6.)

FUNDAMENTAL THEOREM OF INTEGRAL CALCULUS. If f(x) is continuous on the interval
a=<x=b, and if F(x) is any indefinite integral of f(x), then

b
= F(b) - Fla)

b
J; f(x) dx = F(x)

(For a proof, see Problem 7.)

b

b
EXAMPLE 1: (a) Take f(x) = c, a constant, and F(x) = cx; then J’ cdx = cx' =¢(b — a).

s 1 525 25

— =1 2. == ? =5 - =5

(b) Take f(x) = x and F(x)= 3x ,thenjoaxd.x 2x o 2 0 7
© Takef(x)=x: and F(x)=%x‘;thenjl xjdx=%x‘ 1:%—%=20.

These results should be compared with those of Problems 1 to 3. The reader can show that any indefinite
integral of f(x) may be used by redoing (c) with F(x) = {x* + C.

(See Problems 8 to 20.)

THE THEOREM OF BLISS. If f(x) and g(x) are continuous on the interval a<x=b, if the
interval is divided into subintervals as before, and if two points are selected in each subinterval
(that is, x, and X, in the kth subinterval), then

Jim 3 fx)g() Ax = || f0g() d

We note first that the theorem is true if the points x, and X, are identical. The force of the
theorem is that when the points of each pair are distinct, the result is the same as if they were
coincident. An intuitive feeling for the validity of the theorem follows from writing
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3 80X Aux = 2 5 )g) A+ 3 fx){8(X,) - k)] dex

and noting that as n— + (that is, as A,x—0) x, and X, must become more nearly identical

and, since g(x) is continuous, g(X,) — g(x,) must then go to zero.
In evaluating definite integrals directly from the definition, we sometimes make use of the

following summation formulas:

_n(n+1)

D ok=1+42+--+n 5 (38.5)
k=1

n ” +

Y TSR LGRR CLARY (38.6)
k=1

zk3:13+2a+...+n3=[”(_'1211_)] (38.7)

These formulas can be proved by mathematical induction.

Solved Problems
In Problems 1 to 3, evaluate the integral by setting up S, and obtaining the limit as n— +x.

b
1. f cdx = ¢(b — a), ¢ constant

Let the interval a = x = b be divided into n equal subintervals of length Ax = (b — a)/n. Since the
integrand is f(x) = c, then f(x,) = ¢ for any choice of the point x, on the kth subinterval, and

n

s = flx)Ax= > cAx)=(c+c+ -+ c)Ax) = nc Ax = nc

n
k-

b-a

=¢(b — a)

b
Hence f cdx= lim § = lim c(b—a)=c(b-a)

n-—+ x

iR

5
2. f xdx =
(1]

Let the interval 0 = x =5 be divided into n equal subintervals of length Ax = 5/n. Take the points x,
as the right-hand endpoints of the subintervals; that is, x, = Ax, x, =2 Ax, ..., x, =nAx, as shown in
Fig. 38-2. Then

n n . + 2
S = > fx)Ax= > (kAx)Ax=(l+2+-~-+n)(Ax)'=M (é) -2 (l+ l)
k=1 k=1 2 n 2 n
and fxdx=|ims=1im 2§(1+1)=-2é
o Nt 0 ne+x 2 n 2
0 X1 X X Xu-1 Xnm
| l |- | 1 N |
Taxlaxl | T Taxl 1T T
o & b2 &3 & $e—1 &k $n—2 En-1 én

Fig. 38-2
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3
3. f xtdx =20
I
Let the interval 1 = x =3 be divided into n subintervals of length Ax =2/n.
First method: Take the points x, as the left-hand endpoints of the subintervals, as in Fig. 38-3; that
is, x, =1, x,=1+4x,..., x, =14 (n—1)Ax. Then

S,= 2 flx)Bn=x Ax+x3Ax+ - +x}Ax
k=1

{1+ +Axy +(1+2Ax)° +---+[1 + (n— 1) Ax]’} Ax
={n+3[1+2+ -+ (n-D]Ax +3[1°+27 +--- + (n - 1)*|(Ax)’
+[1P+28 4+ (n - 1)Y)(Ax)’} Ax

= [n+3 ("]‘_;)" % 3 11).’12(.2;_ ) (,,) (n(l—lz)) (n) ] %

Cefom ) (s A (un B Ay im0 8
n n n n

n n n-
3
’ 26 8
and fx‘dx: lim (20——+—2)=20
! A x n n
X X2 xa Lx  Tx+i xa 3
ol ] | ] 1 | ]
Az | Ax T Ax | T ax ! i T |
o & &2 & k-1 &k fn—-1 £n
Fig. 38-3

Second method: Take the points x, as the midpoints of the subintervals, as in Fig. 38-4; that is,

2n—-1
x,=1+3Ax. x,=1+3Ax,.. . x =1+ n2 Ax. Then

:[(HiAx)‘+(1+§Ax)3+---+(1+2”2_1AX)3]Ax
([ a() s o) s (3) @] e[ Fan+a(3) wor+(3) (x) ]+
' ) o] ax

+ [1 +3 2"2_ Ax + 3( 2"2_ 1)A(Ax)2 + (

a2 2n(2) s faw-m(2) oy (3)
a2 (n +4(4n n)n (2 )n)
4
:2+6+(8-%)+(4—%)=20——:
n n n
3
and fx dx = lim (20——)=20
1 2 Xy X3 T Zn 3
I N T I I O | [ ] 111
laxT Az Tax ] R T T
0 & & & $—1 £k n—1 &a
Fig. 384

4, Prove: Ja cf(x) dx = CL flx) dx.

For a proper subdivision of the interval a = x = b and any choice of points on the subintervals,



CHAP. 38] THE DEFINITE INTEGRAL 255

S, = i flx)dx=c 2 f(x)A,x

k=1

b n b
Then [ of(x)dr=c lim D, f(x,)Ax=c f f(x) dx
n— + x k=1 a
S. Prove the first mean- value theorem of the integral calculus: If f(x) is continuous on the

interval a =< x < b, then j f(x) dx = (b — a)f(x,) for at least one value x = x, between a and
b.

The theorem is true, by Example 1(a), when f(x) = ¢, a constant. Otherwise, let m be the absolute
minimum value, and M be the absolute maximum value, of f(x) on the interval a <x <b. For any
proper subdivision of the interval and any choice of the points x, on the subintervals,

S mAx<D fx)Ax< > MAx
k=1 k=1 k=1
Now when n— +«<, we have

J;bmdx<£bf(x)dx<fde

-which, by Problem 1, becomes

m(b—a)<£bf(x)dx<M(b—a)

b
Then m<b—1a-f fx)dx<M

so that f flx) dx = N, where N is some number between m and M. Now since f(x) is continuous

on the interval a < x < b, it must, by Property 8.1, take on at least once every value from m to M.
Hence, there must be a value of x, say x = x,, such that f(x,) = N. Then

D ad [ fode=-afix,)

6. Prove: If F(u)= f: f(x) dx, then d—d& F(u) = f(u).

utAdu

We have Fa+aw) - Fuy= [ feode- [ oo ax

By Properties 38.3 and 38.4, this becomes

F(u + Au) — F(u) = f fix)dx + J:“M fix) dx = ﬁ“h flx) dx = f(u,) Au

where ¥ <u,<u+ Au. Then

F(u + AAuz - F(u) = fluy) and %’ - lim F(u + Au) - F(u)

Au—0 Au
since u,— u as Au—0.
This property is most frequently stated as:

= Jlim fu,) = f(u)

If F(x)= f f(x) dx, then F'(x) = f(x) . (1)

The use of the letter u above was merely an attempt to avoid the possibility of confusing the roles of the
several x's. Note carefully in (1) that F(x) is a function of the upper limit x of integration and not of the
dummy letter x in f(x) dx. In other words, the property might also be stated as:
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If F(x) = f " () dr, then F'(x) = fx) .

It follows from (1) that F(x) is simply an indefinite integral of f(x).

7.  Prove: If f(x) is continuous on the interval a < x < b, and if F(x) is any indefinite integral of
f(x), then

L f(x) dx = F(b) — F(a)

Use the last statement in Problem 6 to write J f(x) dx = F(x) + C. When the upper limit of
integration is x = @, we have

ff(x)dx=0=F(a)+c o  C=-F(a)

Tben j f(x) dx = F(x) — F(a). and when the upper limit of integration is x = b, we have, as required,
flx) dx = F(b) — F(a).

In Problems 8 to 17, use the fundamental theorem of integral calculus to evaluate the integral at the
left.

10. f%=[2\/?]*,=2(\/3—ﬁ)=2

11. J’_‘,ei' de:[_ze “2]{3:_2(6-];2‘8):4,9904

10
12. I_h xdx —[ln|x+2|] 10 ~In8—1nd=1In2
imes
13. I’ sinxdx ={- cosx]""—_ S W3-0)= W3
2 dx _[1 1 ]z 1[ ) ] |
14. Jr—+4:_ Earctanix LT3 ( Z") L
-3 . 1 i ] 3 v-s
1s. f.sm‘“—[zxm 2l + IENSE IO ¢ v

Zd.x[l

O x-9 L6

-3 1( 1 1
16. n H_l—a ln——ln2) In0.1

x+3 5

6

17. Llnxdx=[xlnx—x]‘,=(elne—e)~(ln1—1)=

L]
18. Find ﬁ xy dx when x =6¢o0s 8, y =2sin 6.
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We shall express x, y, and dx in the integral in terms of the parameter 6 and df, change the limits of
integration to corresponding values of the parameter, and evaluate the resulting integral. We have,
immediately, dx = —65sin 6 d6. Also, when x =6cos 8 =6, then @ =0; and when x = 6cos 6 = 3, then

9 = m/3. Hence
6 [¢] (]
J’ xy dx =f , (6.cos 8)(2sin 8)(~6sin 0) df = —72[ , sin” 6 cos 6 do
3 ” "/

=[~24sin*6]°,, = —24[0 - (V3/2)’] = 9V3

2n/3
19. Find L df

S+4cos @’
2dz
N . . de _J' 1+22  2dz
The substitution 6 =2 arctan z (Fig. 38-5) vyields ]5+4c056 = g il freped To
+4 1+ 2°
determine the z limits of integration, note that when 8 =0, z =0; when 8 =27/3, arctan z = /3 and
z=%3. Then
szs do _ZJV_B dZ B 2 [ retan i]\/i- Z
o 5+4cos8 “Jo 9+ 3143 T 9
by
>’ 22
1— 2t
Fig. 38-5
. dx
20. Fmdj _
0 1-sinx
2dz
+ 72
The substitution x =2arctan z yields j dx =f 142 = 2dz 7. When x=0,
1-sinx - 2z (1-2)
1+ z°
arctan z =0 and z =0; when x = /3, arctan z = 7/6 and z = V3/3. Then
w3 d V313 d 2 V33 2
[P [ ke (2] 2, 4y
o l-sinx o (1-2) 1-z1lo 1-V3/3

Supplementary Problems

b
21. Evaluate f cdx of Problem 1 by dividing the interval a <x=b into n subintervals of lengths A x,

a

A,x, ..., A x. Note that 2 Ax=b-a.

k=1
5
22. Evaluate f x dx of Problem 2 using subintervals of equal length and (a) choosing the points x, as the
left-hand endpoints of the subintervals; (b) choosing the points x, as the midpoints of the submtervals
and (c) choosing the points x, one-third of the way into each subinterval, that is, taking x, = } Ax,
x,=%Ax,. ...
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27.

29.

31.

THE DEFINITE INTEGRAL (CHAP. 38

4
Evaluate | x” dx = 21 using subintervals of equal length and choosing the points x, as (a) the right-hand
endpoints of the subintervals; (b) the left-hand endpoints of the subintervals; (c) the midpoints of the
subintervals.

4
U4sing the same choice of subintervals and points as in Problem 23(a), evaluate L xdx and
1 (x> + x) dx, and verify that f [f(x) + g(x)] dx -I fix)dx + | g(x) dx.

2 4
Evaluate L x* dx and , x* dx. Compare the sum with the result of Problem 23 to verify that

ff(x)dx+ff(x)dx=ff(x)dx fora<c<b

=2 e Ax= ete-1) AAx i Ax

k=1 e‘—l'

1
Evaluate L efdx=e—1. (Hint: e

ns+x @

A "
Alimu o ad 3 is indeterminate of the type 0/0. )

Prove Properties 38.2 and 38.3.

Use the fundamental theorem to evaluate each integral:

(a)L(2+x)dx=6
(¢) J:(3—2x+x2)d.x=9

(e) f(l—u)\/idu=—%°

®) [ @-nrar=1
(d) fl (A-ede= -3

(f) f\/'ﬁs‘xdx:ze

® [ P +nar=4

() Lr(l‘mzﬂ=$

4 _ll 3 ) x* dx \/§1r__§
(m)325_x2—3n2 (n Sz i+ x4+ 1 9 8
*Vie- dx 3 8

(o) |, x dx=4ln(2+\/—) 2V3 (p)L x_xm—ilng

2w
(r)J0 sin 3t dr =

j dx _\/777
) o 3+cos2x 8

() L In(x*+1)dx=In2+§m -2

(s)J; x*sin3xdx= &(w’—4)

3 dx
Show that f =j .
3 Vel+16 Iy VP46

6 =2w
Evaluate J;_G ydx=3m, given x =0 ~sin6, y =1~ cos 0.

In2, given y = 4x’ -} Inx.

4
Evaluate‘,‘l Vi+(y'Yde=%+}
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/ d
32. Evaluatef y dt—\/_e (e—1), given x=¢"cost, y=e'sint.

33. Use the appropriate reduction formulas {Chapter 31) to establish Wallis’ formulas:

3. (n=3)(n-1) =
4---(n—-2)n 2

if n is even and >0
w/2 2

f sin"xdx=f cos” x dx =
0 ¢ 4---(n—3)n-1)
3---(n—=2)n
(13- (m-1)-1-3---(n-1) =
24 (m+n-2)m+n) 2

if n is odd and >1

if m and n are even and >0

4---(m-3)(m-1)

w2
L sin™ x cos” x dx = i D)(n+3) - (n+tm) if mis odd and >1

4 (n=3)n-1)

\(m+ 1)(m +3)---(m +n) if n is odd and >1

5. Evaluate each integral:

11
= . _ o8 c052x _1 _
(@) 3 2x+3dx=3 ()f cost+1 _47r 1
()f 1+\/_dx 4ln§—l (d)f e’ dx=1L(?+1)
© j”"" sin x dx =ll 7+3V32
cos’x—5cosx+4 3 7-3V2
ox-1 3-2V2
—————— dx=1In +2V2 - V15
(f)[‘z Vx? —4x +3 4-VT5

w3 dx
(8) L/e sin2x In V3

(h)fl ln(x+Vxi—1)dx=3In(3+2V3)-2V2

et a ) Pt tDdr L 18
O [, o= -0 va- 0 [, G =amy-5
-3 4
x+2)de _1 3 1 " de 1 V2 o¢m
(k)f—s x(x - 2) =ang*s3 (I)J; 2+tanx gl 7 10

3s. Prove (38.5) to (38.7).

36. Prove: L jb f(u) du = —f(x).

8(x)

ST Prove: 1 [ ftu) du = f(8C0)8'(x) ~ SO ')

3s. Evaluate — f sin u du = sin x,
39, Evaluate — ] wdu=—-x*

40. Evaluate — j w® du = sin® x cos x.

41. Evaluate - f cos u du = 4 cos 4x — 2x cos x°.



Chapter 39

Plane Areas by Integration

AREA AS THE LIMIT OF 1} SUM. If f(x) isncontinuous and nonnegative on the interval a < x < b,
the definite integral | f(x) dx = lim > flx,}A,x can be given a geometric interpretation.
a n—+x 4

Let the interval @ = x = b be subdivided and points x, be selected as in the preceding chapter.
Through each of the endpoints &, = a, £, &,, ..., £, = b erect perpendiculars to the x axis,
thus dividing into n strips the portion of the plane bounded above by the curve y = f(x), below
by the x axis, and laterally by the abscissas x =a and x = b. Approximate each strip as a
rectangle whose base is the lower base of the strip and whose altitude is the ordinate erected at
the point x, of the subinterval. The area of the kth approximating rectangle, shown in Fig.

39-1, is f(x,) A, x. Hence > f(x,) A x is simply the sum of the areas of the n approximating
k=1

y= f7
Py (x:‘,\V

X

o Y

rectangles.

r\- h = f(x) —

[~
R

iy o

Fig. 39-1

The limit of this sum, as, the number of strips is indefinitely increased in the manner

prescribed in Chapter 38, is J f(x) dx; it is also, by definition, the area of the portion of the

plane described above, or, more briefly, the area under the curve from x =a to x = b. (See
Problems 1 and 2.)
Similadrly, if x = g(y) is continuous and nonnegative on the interval ¢ < y < d, the definite

integral [ g(y) dy is by definition the area bounded by the curve x = g( y), the y axis, and the
ordinates y = ¢ and y = d. (See Problem 3.)

b
If y=f(x) is continuous and nonpositive on the interval a=<x < b, then f f(x) dx is
negative, indicating that the area lies below t‘l}e x axis. Similarly, if x = g(y) is continuous and

nonpositive on the interval c =y =d, then | g(y) dy is negative, indicating that the area lies
<

to the left of the y axis. (See Problem 4.)

If y = f(x) changes sign on the interval a < x < b, or if x = g( y) changes sign on the interval
c=y=d, then the area ‘‘under the curve” is given by the sum of two or more definite
integrals. (See Problem 5.)

260
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AREAS BY INTEGRATION. The steps in setting up a definite integral that yields a required area
are:

1. Make a sketch showing the arca sought, a representative (kth) strip, and the approx-
imating rectangle. We shall generally show the representative subinterval of length Ax
(or Ay), with the point x, (or y,) on this subinterval as its midpoint.

2. Write the area of the approximating rectangle and the sum for the n rectangles.

3. Assume the number of rectangles to increase indefinitely, and apply the fundamental
theorem of the preceding chapter.

(See Problems 6 to 14.)

AREAS BETWEEN CURVES. Assume that f(x) and g(x) are continuous functions such that
0= g(x) = f(x) for a=x=b. Then the area A of the region R between the graphs of y = f(x)
and y = g(x) and between x = a and x = b (see Fig. 39-2) is given by

A =L f(x) dx ‘L 8(x) dx =L [f(x) — g(x)] dx (39.1)

b
That is, the area A is the differencg between the area f f(x) dx of the region above the x axis

and below y = f(x) and the area | g(x) dx of the region above the x axis and below y = g(x).

Formula (39.1) holds when one or both of the curves y = f(x) and y = g(x) lie partially or
completely below the x axis, that is, when we assume only that g(x) < f(x) fora<x=<b, as in
Fig. 39-3.

Fig. 39-2

~ y=f(x)

y = g(x)

Fig. 39-3
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Solved Problems

1. Find the area bounded by the curve y = x?, the x axis, and the ordinates x =1 and x = 3.

Figure 39-4 shows the area KLMN sought, a representative strip RSTU, and its approximating
rectangle RVWU. For this rectangle, the base is A,x, the altitude is y, = f(x,) = xZ, and the area is
x2 A,x. Then

n 3 3733 1 26
= lim ExiA,‘x=fl xzdx=[x—] =9~ 3 =3 square units

n—+ > 4y 3 1

/ Pu(xv, y)

Pu(Ig, yS)ZT
Vi w
/l

A

A -
L T : \
K Af N x 0 : 4 x
0 1 RalU 3 Az \
Fig. 39-4 Fig. 39-5
2 Find the area lying above the x axis and under the parabola y = 4x — x°

The given curve crosses the x axis at x =0 and x = 4. When vertical strips are used, these values
become the limits of integration. For the approximating rectangle shown in Fig. 39-5, the width is A, x,
the height is y, = 4x, — x;, and the area is (4x, — x;) A, x. Then

n 4
A= lim 2 (4x, - x)A,x =L (4x — x*) dx = [2x* — {x’]; = ¥ square units

ne—e+x

With the complete procedure, as given above, always in mind, an abbreviation of the work is
possible. It will be seen that, aside from the limits of integration, the definite integral can be formulated
once the area of the approximating rectangle has been set down.

3. Find the area bounded by the parabola x =8 + 2y — y? the y axis, and the lines y = —1 and
y=3.

Here we slice the area into horizontal strips. For the approximating rectangle shown in Fig. 39-6,
the width is Ay, the length is x =8+ 2y — y®, and the area is (8 + 2y — y?) Ay. The required area is

’ Y 9
A=J_1(8+2Y"y2)dy=[8y+y2—g]_l=75quare units

\ y\1 2 Az s] z

!
APl ——— - - — 2 P(z,y) |
[

2

Fig. 39-6 Fig. 39-7
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Find the area bounded by the parabola y = x* — 7x + 6, the x axis, and the lines x =2 and
x=6.

For the approximating rectangle shown in Fig. 39-7, the width is Ax, the height is —y=
— (x> = 7x +6), and the area is —(x° — 7x + 6) Ax. The required area is then

6 3 2 6
N N (- e =% ~
A—L (x*=Tx+6)dx= (3 2 + 6x , = 3 Square units

Find the area between the curve y = x> — 6x* + 8x and the x axis.

The curve crosses the x axis at x =0, x =2, and x = 4, as shown in Fig. 39-8. For vertical strips, the
area of the approximating rectangle with base on the interval (g<x <2is (x* - 6x’ + 8x) Ax, and the

area of the portion lying above the x axis is given by | (x>~ 6x° — 8x) dx. The area of the
approximating rectangle with base on the int4erval 2<x<4is —(x’ —6x’ + 8x) Ax. and the area of the

portion lying below the x axis is given by , — (x> = 6x* + 8x) dx. The required area is, therefore,

2 4 4 2 4 4
A=f (x-‘—6x2+8x)dx+f —(x3—6x2+8x)dx=[x- —2x-‘+4xz] —["— —2x“+4x:]
0 2 4 0 4 2
=4 + 4 = § square units
The use of two definite integrals is necessary here, since the integrand changes sign on the interval of
4

integration. Failure to note this would have resulted in the incorrect integral A (x> —6x" +8x) dx =0.

P(x,y)

2§ Ax 4} X

P(x, y)

Fig. 39-8

Find the area bounded by the parabola x =4 — y* and the y axis.

The parabola crosses the x axis at the point (4, 0), and the y axis at the points (0, 2) and (0, —2).
We shall give two solutions.

Using horizontal strips: For the approximating rectangle of Fig. 39-9(a), the width is Ay, the length
is 4 — y%, and the area is (4 — y°) Ay. The limits of integration of the resulting definite integral are y = —2
and y = 2. However, the area lying below the x axis is equal to that lying above. Hence, we have, for the
required area,

? 2 : 2 O )
A=J'_2(4-y )d}’=2L 4-y )dy=2[4y—?]0=?square units
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“2'!\ T Pv)
P(x, !
Ayl -— z:4—y’§ il :
Ax
4 x | 4 x
0 o !
I
]
=2 2
(a) (b)

Fig. 39-9

Using vertical strips: For the approximating rectangle of Fig. 39-9(b), the width is Ax, the height is

2y =2V4 - x, and the area is 2V4 — x Ax. The limits of integration are x =0 and x =4. Hence the

required area 1s

L 2VA—xdx =[-$(4 - x)""}; = ¥ square units

Find the area bounded by the parabola y* = 4x and the line y = 2x — 4.

The line intersects the parabola at the points (1, —2) and (4, 4). Fig. 39-10 shows clearly that when
vertical strips are used, certain strips run from the line to the parabola, and others from one branch of
the parabola to the other branch; however, when horizontal strips are used, each strip runs from the
parabola to the line. We give both solutions here to show the superiority of one over the other and to
indicate that both methods should be considered before beginning to set up a definite integral.

4 4, 4) v P(z,ys) (4, 4)
Pz, ¥) |
Ayh_“ v t+2) -4 oVz - 2z —4)
- - P )
(I” U) I
. Ar ; P,y
0 (0] QIR %4
-
(1,-2) (1,-2)
y=2z—4 ¥t = 4z
(a) (h)

Fig. 39-10

Using horizontal strips (Fig. 39-10(a)): For the approximating rectangle of Fig. 39-10(a). the width is
Ay, the length is [(value of x of the line) — (value of x of the parabola)] = (1 y +2) = [y =2+ Ly - 1y°
and the area is (2+ 1y — $¥?) Ay. The required area is

2

4 4
- Ly Ly = y__y_] = 9 square uni
A= J’AZ 2+iy~3v)d [2)/ T T 9 square units

3

-2

Using vertical strips (Fig. 39-10(b)): Divide the area A into two parts with the line x = 1. For the
approximating rectangle to the left of this line, the width is Ax, the height (making use of symmetry) is
2y = 4vx. and the area is 4vx Ax. For the approximating rectangle to the right, the width is Ax, the
height is 2vx — (2x —4) =2vX — 2x + 4, and the area is (2vx —2x + 4) Ax. The required area is

[} 4
A=J:, 4\ffdx+J: (2\/}—2x+4)dx=[gx3’3][')+[§x! 3‘x3+4x]7

= 4{+ ¥ =9 square units
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CHAP. 39]

8.  Find the area bounded by the parabolas y =6x — x* and y = x* - 2x.
The parabolas intersect at the points (0, 0) and (4, 8). It is readily seen in Fig. 39-11 that vertical

slicing will yield the simpler solution.
For the approximating rectangle, the width is Ax, the height is [(value of y of the upper

boundary) — (value of y of the lower boundary)]=(6x - x) — (x* —2x) = 8x — 2x°, and the area is
(8x — 2x?) Ax. The required area is

4
A =L (8x — 2x%) dx = [4x* — 1x’]; = ¥ square units

Y P,y
P

0

)

3 j

{

% P(x,v)

|

S >

!Q Az z
0

2 'Ax:P(x»y‘) 6 x
0 \

Fig. 39-12

Fig. 39-11

9.  Find the area enclosed by the curve y> = x* — x*.
The curve is symmetric with respect to the coordinate axes. Hence the required area is four times

the portion lying in the first quadrant.
For the approximating rectangle shown in Fig. 39-12, the width is Ax, the heightisy =V x*—x*=

xV1 - x? and the area is xV 1 — x* Ax. Hence the required area is

1
A= 4"’0 xV1-x?de=[-4(1-x*)*"*]) = 4 square units

10.  Find the smaller area cut from the circle x* + y* =25 by the line x = 3.

Based on Fig. 39-13,

s 5 5
A=L 2ydx=2J; \/25—x2dx=2[§\/25—x2+ 22—Sarcsin§]3

= (%é 7 — 12 ~ 25 arcsin ?S—) square units
v Y a.vi
P(x,y) L.
ay
x z
ol 3]s 0
Az (1.-V3)

Fig. 39-13 Fig. 39-14
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11.  Find the area common to the circles x* + y* =4 and x* + y* = 4x.

The circles intersect in the points (1, =V3). The approximating rectangle shown in Fig. 39-14
extends from x =2 — /4 — y*> to x =V4 -y Then

V3 V3
A=2L [\/4—y2—(2—\/4—y2)]dy=4L (Va-y*-1)dy
y 5 1 Vi 8m
=4[§\/4—y +2arcsin5 y—yL =(—3——2\/§) square units

12.  Find the area of the loop of the curve y* = x*(4 + x). (See Fig. 39-15.)

0 0
From the figure, A = J:‘ 2ydx = ZJ_‘ x*V&+ xdx. Let 4+ x = z%; then

2 7 s 332
- 2 _ 2oz g _ a2 82 16z ] _ 4096 .
A —4L (2" -4y dz= 4[ 7~ %5 t 3 |,= o5 square units

13.  Find the area of an arch of the cycloid x=8 —sin 8, y =1~ cos 6.
A single arch is described as 6 varies from 0 to 2 (see Fig. 39-16). Then dx = (1 — cos 6) df and

8 =2 2% 2

A= ydx = 5 (1 —cos 8)(1 —cos 8) d8 = \ 2 -2cos@+ §cos26)do

=0

[}
=[36 —2sin @ + 4 sin 20].” = 37 square units

]
v
P(x,y) x
z 0
X
0 Ax 2r
Fig. 39-15 Fig. 39-16 Fig. 39-17

14.  Find the area bounded by the curve x =3 +cos 8, y = 4sin 8. (See Fig. 39-17.)

The boundary of the shaded area in the figure (one-quarter of the required area) is described from
right to left as @ varies from 0 to ; =. Hence,

8=mi2 w2 w2 w2
A=—4J;K0 ydx=—4j0 (4$inl))(—sin0)d0=16]0 sin20d0=8L (1 —cos 20) de

=8[0 - ! sin20]]"* = 47 square units

Supplementary Problems

15. Find the area bounded by the given curves, or as described.
(@) y=x"y=0,x=2,x=5 B) y=xy=0,x=1,x=3
(c) y=d4x-x* y=0,x=1,x=3 (dx=1+y>x=10
() x=3y"-9,x=0,y=0,y=1 (f)x=y*+4y,x=0
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() y=9-x",y=x+3 (h) y=2-x",y=—x

(i) y=x*-4,y=8-2x" (j) y=x'—4ax’ y=4x°

(k) A loop of y*> = x*(a* - x7%) (!) The loop of 9ay’ = x(3a — x)°

(myy=e y=e " x=0,x=2 (n) y=e'"+e** y=0,x==a

(0) xy=12,y=0,x=1,x=¢" (py=1/(1+x%),y=0,x==1

(@) y=tanx, x=0,x= 7w (r) A circular sector of radius r and angle a
(s) Within the ellipse x =acost, y=bsin¢ (1) x=2cos® —cos20—1, y=2sin8 —sin 20
(u) x=acos’t, y=asin’ ¢ (v) First arch of y = ¢ °* sin ax

(w) y=xe ", y=0, and the maximum ordinate

(x) The two branches of (2x — y)’=x>and x=4

(y) Within y =25 — x7% 256x = 3y°, 16y =9x’

Ans. (all in square units): (a) 39; (b) 20; (c) %; (d) 36; (e) 8; (f) %; (g) 2. (B) 3; (1) 32; ()
512V2/15; (k) 2a3; (1) 8V3a"/5; (m) (e* + 1/e* = 2); (n) 2a(e — 1/e); (0) 24; (p) i 7: (q)
1In2; (1) 377 (5) wab; (1) 67; (u) 37a™8;, (v) (1+1/e7)/2a; (w) (1 - 1/Ve); (x) ‘B (y) &

By the average ordinate of the curve y = f(x) over the interval a <x <b is meant the quantity

b
wea . 0 dx

base  b-a

16.

17.

18.

19.

Find the average ordinate (a) of a semicircle of radius; (b) of the parabola y =4 — x* from x = -2 to
x=2. Ans. (a) wri/4; (b) 8/3

(a) Find the average ordinate of an arch of the cycloid x = a(8 —sin 8), y = a(1 — cos 8) with respect to
X.
(b) Repeat part (a), with respect to 6.

2 3a

2n
Ans. (a)iﬁf az(l—cos@)zdt9=7;(b)%rf0 a(l—cos8)do=a

(1]

For a freely falling body, s =  gt* and v = gt = \/2gs.

(a) Show that the average value of v with respect to ¢ for the interval 0 =r =1, is one-half the final
velocity.

(b) Show that the average vaiue of v with respect to s for the interval 0 <5 <y, is two-thirds the final
velocity.

Prove that (39.1) holds when the curves may lie partially or completely below the x axis, as in Fig. 39-3.



Chapter 40

Exponential and Logarithmic Functions;
Exponential Growth and Decay

THE NATURAL LOGARITHM. A more rigorous definition of the natural logarithm than that
given in Chapter 19 is based on integration.

Definition 40.1: Inx =Jl % dt, for x >0.

Thus, for x > 1, In x is the area under the curve y = 1/t between 1 and x, that is, the shaded
area in Fig. 40-1.

y=1/t

1 2 X
Fig. 40-1
PROPERTIES OF NATURAL LOGARITHMS
d 1 d 1
40.1. d—x(lnx)—;forx>0 40.2. d—x(lnlxl)—;for x#0
40.3. J%dx=lnlx|+Cf0rx#O 40.4. In1=0
40.5. Inx is an increasing function. 40.6. In2>}
(Hence, if Inu =Inv, then u=1v.) "
40.7. lnww=Inu+Inv 40.8. ln;=lnu—lnv
409. In % =-Inv 40.10. Inu =rlnu for all rational numbers r
40.11. lim (Inx)= +x 40.12. lim (lnx)=—x
x—+ > x—0*

40.13. For each real number y, there is a unique positive number x such that In x = y.
(See Problems 1 to 6.)

DEFINITIONS

Definition 40.2: e is the unique positive number such that Ine =1,

268
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Definition 40.3: Let a be greater than zero, and let x be any real number. Then a” is the unique positive
number such that lna* =xIna.

Definition 40.4: Let a be greater than zero. Then log, x = :2—: for x > 0.
PROPERTIES OF a* AND ¢*
40.14. a’=1 40.15. a'=a
40.16. a“""=a"a" 017, a7 =%
40.18. (a*)'=a"" 40.19. (ab)" =a"b"
40.20. Ine*=x 40.21. " =x
(See Problems 7 to 9.)
DERIVATIVES AND INTEGRALS involving a* and e*:
d s _ x
7 (@ )=(Ina)a (40.1)
d o x
e {(e')=¢ (40.2)
Je’dx=e’+C (40.3)
f fdx= Loy C 40.4
N (40.4)

(See Problem 10.)

d
EXPONENTIAL GROWTH AND DECAY. Assume that a quantity y varies with time and % = ky

for some nonzero constant k. Then:
y=ye  where  y,=y(0) (40.5)

If k >0, we say that y grows exponentially with growth constant k. If k <0, we say that y decays
exponentially with decay constant k.

If a substance decays exponentially with decay constant k, then its halflife T is the time
required for half a given quantity of the substance to disappear, that is, such that y(T)= 3 y,.
Then

kT=-In2 (40.6)
(See Problems 11 to 14.)

Solved Problems

1. Prove Properties 40.1 and 40.2.

d d ([*1
Property 40.1 follows from the fact that o (Inx)= p (fl 7 d )by definition, and that the
right-hand side is equal to 1/x by Property 38.5.
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d d 1 d 1 1
When x<0, Z (In |x|)= '&; (ln(—x))= t; a (—X)= —_X (—1)= ;

2. Prove Property 40.5.

d 1 . . ) .
o (Inx)= X > 0. Hence, In x is an increasing function.

3. ProveIn2>1.

11 | i 1
For 1<t<2, we have - > . Then In2 = - dt> —dt= 3.
t 2 1t v 2 2

4. Prove Property 40.7: Inuv =lnu +Inv.

d 1 1 d
We hdvea(lnax)—aa—;— E(lnx). Hence, Inax=Ilnx + C.
When x=1,Ina=In1+ C=0+ C=C. Hence, Inax=Inx +Ina. Now let u = x and v = q, and

Property 40.7 follows.

5. Prove Property 40.10: In a" = r In a for rational r.

d
£=d—x(rlnx), Hence, Inx"=rInx+ C.
nl=0=rlnl+C=C. Thus, C=0and Inx"=rlInx.

d N 1 r=1y _
We have o (ln'x )= Py (" )=
When x = 1, this becomes In1" =1

6. Prove Property 40.11: lirfn Inx= +=.

Given any positive integer N, choose x =2°. Then Inx =1n2*¥ =2NIn2> N by Property 40.6.
Since In x is increasing, In x > N for all x =2°".

7.  Prove Properties 40.14 and 40.15.

By definition, Ina”=01lna=0=1In 1. Hence Property 40.14: 2’ = 1.
By definition, Ina' = 1In a = In a. Hence Property 40.15: a' = a.

8.  Prove Property 40.16.
Ina

utrv

=(u+tv)lna=ulna+vina=Ina" +Ina’ =In{a"a")

v u v

Hence, a“'" = a“a".

9.  Prove Properties 40.20 and 40.21.

For Property 40.20: Ine* = xlne=x-1=x.
For Property 40.21: In e~

x

=Inxlne=Inx. Hence, e"*=x.

- . d . ‘
10.  Assuming that y = a" is differentiable, show that P (a')=a" Ina.

d
Let y=a'. Then In y =In a* = x In a. Differentiate to obtain
d
is—i}:ma from which £y=ylna=a'lna

d
11.  Show that, if 7); = ky. then y = y "', where y, = y(0).

g (_)_) _ ek'(d)'/dl) - kye"' B t’k'(ky) _ kye'“ o
dt \e* - P = I =
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12.

13.

14.

15,
16.

17.

18.

19.

21.

22,

Hence —)% = C, so y = Ce*". Now y, = y(0) = Ce’ = C, so that y = y e*"
e

Prove the relation k7T = —In 2 between the decay constant and the halflife 7.

By the definition of halflife, y,/2=y,e*”, or §=¢*". Then In3 =Ine*" =kT. But In4=-In2,
proving the relation.

If 20% of a radioactive substance disappears in one year, find its haiflife. Assume exponential
decay.
By (40.5), 0.8y, = y,e*. So 0.8=¢* from which k =In0.8=In ¢ =In4 —In5. Then (40.6) yields
2 2

k In5-In4’

If the number of bacteria in a culture grows exponentially with a growth constant of 0.02, with
time measured in hours, how many bacteria will be present in one hour if there are initially
1000?

From (40.5), y = 1000¢% % = 1000(1.0202) = 1020.2 = 1020.

Supplementary Problems

Prove Properties 40.8, 40.9, 40.12, and 40.13.
Prove Properties 40.17 to 40.19.

Prove the following properties of logarithms to the base a: u
(a) log,1=0 (b) log, uv =log, u + log, v (c) log, o= log, u —log, v

1
(d) log, u =rlog, u (e) log, v -log, v (f)a“% =x

Assume that, in a chemical reaction, a certain substance decomposes at a rate proportional to the
amount present. In 5 hours, an initial quantity of 10,000 grams is reduced to 1000 grams. How much will
be left of an initial quantity of 20,000 grams after 15 hours? Ans. 20 grams

A container with a maximum capacity of 25,000 fruit t}icg initially contains 1000 fruit flies. If the
n

0 fruit flies per day, in how many days will

population grows exponentially with a growth constant of
the container be full? Ans. 20 days

The halflife of radium is 1690 years. How much will be left of 32 grams of radium after 6760
years? Ans. 2 grams

A saltwater solution initially contains 51b of salt in 10 gal of fluid. If water flows in at the rate of
3 gal/min and the mixture flows out at the same rate, how much salt is present after 20 min?

Ans. dS/de= - 3(5/10); at r=20, S=5/e=1.83951b

Assume that a population grows exponentially and increases at the rate of K% per year. (a) Find its
growth constant k. (b) Approximate k when K =2.

Ans. (a) k=In(1+ K/100); (b) k=0.0198



Chapter 41

Volumes of Solids of Revolution

A SOLID OF REVOLUTION is generated by revolving a plane area about a line, called the axis of
rotation, in the plane. The volume of a solid of revolution may be found with one of the
following procedures.

DISC METHOD. This method is useful when the axis of rotation is part of the boundary of the
plane area.

1. Make a sketch showing the area involved, a representative strip perpendicular to the
axis of rotation, and the approximating rectangle, as in Chapter 39.

2. Write the volume of the disc (or cylinder) generated when the approximating rectangle
is revolved about the axis of rotation, and sum for the n rectangles.

3. Assume the number of rectangles to be indefinitely increased, and apply the fundamen-
tal theorem.

When the axis of rotation is the x axis and the top of the plane area is given by the curve
y = f(x) between x = a and x = b (Fig. 41-1), then the volume V of the solid of revolution is
given by

v=£ wy’ dx=7rfu [ f(x))? dx (41.1)

y = f(x) /

Fig. 41-1

Similarly, when the axis of rotation is the y axis and one side of the plane area is given by the
curve x = g(y) between y=c and y=d (Fig. 41-2), then the volume V of the solid of
revolution is given by

d d
v=f( mx’ dy = wf [g(»] dy (41.2)
(See Problems 1 and 2.)

272



CHAP. 41] VOLUMES OF SOLIDS OF REVOLUTION 273

x=g(y)

Fig. 41-2

WASHER METHOD. This method is useful when the axis of rotation is not a part of the boundary
of the plane area.

1. Same as step 1 of the disc method.

2. Extend the sides of the approximating rectangle ABCD to meet the axis of rotation in
E and F, as in Fig. 41-9. When the approximating rectangle is revolved about the axis
of rotation, a washer is formed whose volume is the difference between the volumes
generated by revolving the rectangles EABF and ECDF about the axis. Write the
difference of the two volumes, and proceed as in step 2 of the disc method. '

3. Assume the number of rectangles to be indefinitely increased, and apply the fundamen-
tal theorem.

If the axis of rotation is the x axis, the upper boundary of the plane area is given by
y = f(x), the lower boundary by y = g(x), and the region runs from x = a to x = b (Fig. 41-3),
then the volume V of the solid of revolution is given by

Ve [ (U - (s0P) dx (41.3)
y
y=flx)
y = 8() ‘
. b *

Fig. 41-3
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Similarly, if the axis of rotation is the y axis and the plane area is bounded to the right by
x = f(y), to the left by x =g(y), above by y = d, and below by y = ¢ (Fig. 41-4), then the
volume V is given by

v [ WADF -8 dy (41.4)
(See Problems 3 and 4.)
¥y
dt
f{—

Fig. 41-4

SHELL METHOD

1. Make a sketch showing the area involved, a representative strip parallel to the axis of
rotation, and the approximating rectangle.

2. Write the volume (=mean circumference X height X thickness) of the cylindrical shell
generated when the approximating rectangle is revolved about the axis of rotation, and
sum for the n rectangles.

3. Assume the number of rectangles to be indefinitely increased, and apply the fundamen-
tal theorem.

If the axis of rotation is the y axis and the plane area, in the first quadrant, is bounded
below by the x axis, above by y = f(x), to the left by x = a4, and to the right by x = b (Fig. 41-5),
then the volume V is given by

b

V=21r£ xydx=27r£ xf(x) dx (41.5)

d| x=f(y)

y=f(x)

Fig. 41-5 Fig. 41-6
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Similarly, if the axis of rotation is the x axis and the plane area, in the first quadrant, is
bounded to the left by the y axis, to the right by x = f( ), below by y = ¢, and above by y = d
(Fig. 41-6), then the volume V is given by

d d
V=27rf xydy=27rJ’ yf(y) dy (41.6)
{See Problems 5 to 8.)

Solved Problems

1. Find the volume generated by revolving the first-quadrant area bounded by the parabola
y* = 8x and its latus rectum (x =2) about the x axis.

We divide the plane area vertically, as can be seen in Fig. 41-7. When the approximating rectangle is
revolved about the x axis, a disc whose radius is y, whose height is Ax, and whose volume is 7y° Ax is
generated. The sum of the volumes of n discs, corresponding to the n approximating rectangles, is
£ 7y’ Ax, and the required volume is
2

b 2 2
sz dV=L wy’dx = 7TJ.0 8x dx = 4mx’ 0 167 cubic units

v 2,4)
II
2 | x
I||
/
(2,—4) | [2.—4]
Fig. 41-7 Fig. 41-8
2. Find the volume generated by revolving the area bounded by the parabola y* = 8x and its

latus rectum (x =2) about the latus rectum.

We divide the area horizontally, as can be seen in Fig. 41-8. When the approximating rectangle is
revolved about the latus rectum, it generates a disc whose radius is 2 ~ x, whose height is Ay, and whose
volume is m(2 ~ x)* Ay. The required volume is then

2

4 4 4 y- 2 256
= — 2 = —-— 2 = —_ = — i 1
V= ﬁ“ m(2—x) dy ZwL (2-x)dy 217J’0 (2 8) dy o cubic units

3. Find the volume generated by revolving the area bounded by the parabola y* = 8x and its
latus rectum (x =2) about the y axis.

We divide the area horizontally, as shown in Fig. 41-9. When the approximating rectangle is
revoived about the y axis, it generates a washer whose volume is the difference between the volumes
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v 2,4) _
Pz, v) — v y=6
A i
E" : C ] I
Ft/ D b
B x \ Pz, )
] 2
4 z
?(T'_‘) 0 Az
Fig. 41-9 Fig. 41-10

generated by revolving the rectangle ECDF (of dimensions 2 by Ay) and the rectangle EABF (of
dimensions x by Ay) about the y axis, that is, w(2)° Ay — 7(x)* Ay. The required volume is then

) ) ) s 128
V= J'J 47 dy—J:“ nx’ dy =27TJ; (4—x2)dy=2ﬂ-J; (4_ 6—4) dy = < cubic units

4. Find the volume generated by revolving the area cut off from the parabola y = 4x — x° by the
x axis about the line y = 6.

We divide the area vertically (Fig. 41-10). The solid generated by revolving the approximating
rectangle about the line y =6 is a washer whose volume is 7(6)’ Ax — 7(6 — y)" Ax. The required
volume is then

Ve[ [0~ 6~y ldi=n [ (2y-y)as

¢ 1408
= ﬂJ; (48x — 28x° + 8x" ~ x*) dx = T T cubic units

5. Justify (41.5).

Refer to Fig. 41-11. Suppose the volume in question is generated by revolving about the y axis the
first-quadrant area under the curve y = f(x) from x = a to x = b. Let this area be divided into n strips,
and each strip be approximated by a rectangle. When the representative rectangle is revolved about the
y axis, a cylindrical shell of height y,, inner radius ¢, _, outer radius £,. and volume

AV=m(& - €1 )Ys (1)

is generated. By the law of the mean for derivatives,

d
§I2:—§:7|=[d*x(xz)]‘_:xk(fk—fkfl)=2XkAkx (2)
where £, |, < X, <&,. Then (1) becomes

AV=27X,y, A x=27X, f(x,)A,x

and, by the theorem of Bliss,

n b
V=27 lim 2, ka(xk)Akx=27rJ xf(x) dx
"_”xk'—l a

Note: 1f the policy of choosing the points x, as the midpoints of the subintervals, used in the
preceding chapter, is followed, the theorem of Bliss is not needed. For, by Problem 17(b) of Chapter 26,
the X, defined by (2) is then X, = }(£, + &..;) = x,. Thus, the volume generated by revolving the n

rectangles about the y axis is > 2nx, f(x YA x = > g(x,) A, x, of the type (38.1).
k=1 k=1
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]
/z ¥
e : ¥v=fl(z) Pz,y)
I
[ |
. I
/ 2 .
|
: ! | 0 Ala x
| L l z
0 <——_Ja ] Tx | Ib
\\ J"H' f,{-_._’ | ] ;
/& ‘? / 4
N A/ !
L ‘(,r v‘#‘; x'r
i / / —
~a / (2,—4)
Fig. 41-11 Fig. 41-12
6. Find the volume generated by revolving the area bounded by the parabola y* = 8x and its

latus rectum about the latus rectum. Use the shell method. (See Problem 2.)

We divide the area vertically (Fig. 41-12) and, for convenience, choose the point P so that x is the
midpoint of the segment AB. The approximating rectangle has height 2y = 4Vv2x and width Ax, and its
mean distance from the latus rectum is 2 — x. When the rectangle is revolved about the latus rectum, the
volume of the cylindrical shell generated is 27(2 — x)(4V2x Ax). The required volume is then

2 2
V=8V2n L 2-0)Vvxde=8V2n L (2x"* = x**) dx = 251(;" cubic units
7. Find the volume of the torus generated by revolving the circle x* + y* = 4 about the line x = 3.

We shall use the shell method (Fig. 41-13). The approximating rectangle is of height 2y, thickness
Ax, and mean distance from the axis of revolution 3 — x. The required volume is then

2 2 2 2
V=2m f_ij(S—x) dx=47rjiz(3—x)\/4—x2 dx =127 L\/4—x2 dx — 4w f_’x\/él—xz dx

2

4 2 s . .
= []277(% V4 — x* +2arcsin %) + Tﬂ (4 - x“)'“] = 247% cubic units

Yy
Plx,y) -
\ 1
8
-2 o 2 x ¥
f 3—-x P(.’t, y)
| X
0 Ax 27
Fig. 41-13 Fig. 41-14
8. Find the volume of the solid generated by revolving about the y axis the area between the first

arch of the cycloid x =60 —sin 6, y =1 — cos 8 and the x axis. Use the shell method.

From Fig. 41-14,
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6=2n 2m
V=217L xydx =2m X (8 —sin 8)(1 — cos 8)(1 — cos ) do

27
=2n-] (8 — 20 cos 8 + 8 cos” @ —sin 8 + 2sin  cos 8 — cos’ 8 sin 8) d6
0

=27[26% — 2(8sin 6 + cos 8) + 1(165in20 + } cos28) + cos 8 + sin® 9 + } cos’ 8)7
=67 cubic units
9. Find the volume generated when the plane area bounded by y = -x*-3x+6andx+y-3=
0 is revolved (a) about x = 3, and (b) about y =0.
From Fig. 41-15,

' ! 3 2 256w . .
(a) V=21rj_‘(yc—yL)(3—x)dx=2qu_3(x -x —9x+9)dx = 3 cubic units
1 1
1
b) v= nf , yi-yide=m [;3 (x* +6x —4x’ —30x +27) dx = 7;952” cubic units
v
(xn yC)
(—3,6)
[sc)
i
(Z, yl.) B
(1,2)
0O x
T X
Fig. 41-15

Supplementary Problems

In Problems 10 to 19, find the volume generated by revolving the given plane area about the given
line, using the disc method. (Answers are in cubic units.)

10. Within y =2x%, y =0, x =0, x =5; about x axis Ans. 25007
1. Within x> - y* =16, y =0, x = 8; about x axis Ans. 256m/3
12.  Within y =4x% x =0, y = 16; about y axis Ans. 327

13. Within y = 4x°, x =0, y = 16; about y = 16 Ans. 40967/15
14.  Within y° = x’, y =0, x = 2; about x axis Ans. 4w

15.  Within y=x’, y =0, x =2; about x =2 Ans. 16m/5
16.  Within y’> = x*(1 — x%); about x axis Ans. 4m/35

17.  Within 4x° + 9y = 36; about x axis Ans. 167
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18.

19.

Within 4x” + 9y* = 36, about y axis Ans. 247

Within x =9 — yz, between x — y — 7 =0, x =0; about y axis Ans. 963w/5

In Problems 20 to 26, find the volume generated by revolving the given plane area about the given
line, using the washer method. (Answers are in cubic units.)

20.

21.

22.

23.

4.

25,

26.

Within y =2x°, y =0, x =0, x = 5; about y axis Ans. 6257
Within x* — y> =16, y =0, x = 8; about y axis Ans. 128V3n
Within y = 4x% x =0, y = 16; about x axis Ans. 20487/5
Within y = x>, x =0, y = 8; about x =2 Ans. 1447/5
Within y = x°, y = 4x — x°; about x axis Ans. 327/3
Within y = x*, y = 4x — x”; about y = 6 Ans. 64m/3
Withinx=9—y2, x—y—7=0; about x =4 Ans. 153w/5

In Problems 27 to 32, find the volume generated by revolving the given plane area about the given
line, using the shell method. (Answers are in cubic units.)

27,

28.

29.

30.

31.

3.

Within y =2x%, y =0, x =0, x = 5; about y axis Ans. 625t
Within y=2xz, y=0,x=0, x=5; about x =6 Ans. 3757
Within y = x°, y =0, x =2; about y =8 Ans. 320m/7
Within y = x5, y=4x - x%; about x =5 Ans. 647/3
Within y = x> — 5x + 6, y = 0; about y axis Ans. 5m/6
Within x=9—yz, between x — y —7=0, x=0; about y =3 Ans. 3697/2

In Problems 33 to 39, find the volume generated by revolving the given plane area about the given
line, using any appropriate method. (Answers are in cubic units.)

33.

3.

3s.

36.

37.

8.

39.

Within y = e"l, y=0, x=0, x=1; about y axis Ans. w(l-1/e)

Within an arch of y = sin 2x; about x axis Ans. a’

Within first arch of y = e” sin x; about x axis Ans. w(e’"—1)/8

Within first arch of y = ¢” sin x; about y axis Ans. #wl(m—1)e" - 1]

Within first arch of x =8 —sin g, y =1 —cos 8; about x axis Ans. 5x°

Within the cardioid x =2cos @ — cos28 — 1, y =2sin § —sin 28, about x axis Ans. 64n/3
Within y =2x% 2x ~ y +4=10; about x =2 Ans. 21w

Obtain the volume of the frustum of a cone whose lower base is of radius R, upper base is of radius r,
and altitude is h.  Ans.  1wh(r’ + rR + R?) cubic units



Chapter 42

Volumes of Solids with Known Cross Sections

THE VOLUME OF THE SOLID OF REVOLUTION that is generated by revolving about the x axis

the plane area bounded by the curve y = f(x), the x axis, and the lines x = a and x = b is given
b

by | y®dx. The integrand wy” = 7[ f(x)]° may be interpreted as the area of the cross section

a

of the solid made by a plane perpendicular to the x axis and at a distance x units from the
origin.

Conversely, assume that the area of a cross section ABC of a solid, made by a plane
perpendicular to the x axis at a distance x from the origin, can be expressed as a function A(x)
of x. Then the volume of the solid is given by

V= Lﬁ A(x) dx

(See Fig. 42-1.) The x coordinates of the points of the solid lie in the interval a =x < §.

Solved Problems

1. A solid has a circular base of radius 4 units. Find the volume of the solid if every plane section
perpendicular to a particular fixed diameter is an equilateral triangle.

Take the circle as in Fig. 42-2, with the fixed diameter on the x axis. The equation of the circle is
x’+y?=16. The cross section ABC of the solid is an equilateral triangle of side 2y and area
A(x)=V3y’ = V3(16 - *). Then

<] 4 A4 ”
v:f A(x)dx:\/gf4(16—x:)dx:\/§[1()x—%]7 =%§\/§cubic units

2. A solid has a base in the form of an ellipse with major axis 10 and minor axis 8. Find its
volume if every section perpendicular to the major axis is an isosceles triangle with altitude 6.

280
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v/ A
Fig. 42-2 Fig. 42-3
x2 2
Take the ellipse as in Fig. 42-3, with equation % + {—6 = 1. The section ABC is an isosceles triangle

of base 2y, altitude 6, and area A(x) =6y =6(¥V 25— x”). Hence,
4 (°
V= 2? J V25— x* dx = 607 cubic units

2 2
3. Find the volume of the solid cut from the paraboloid fg + JZV_S = z by the plane z = 10.

Refer to Fig. 42-4. The section of the solid cut by a plane parallel to the plane xOy and at a distance
z from the origin is an ellipse of area wxy = m(4vZ)(5vZ) =20mz. Hence

10

V= 207rJ z dz = 10007 cubic units

(]

z z
0,0,2) & \\_D
4y'z %r
/ Vi TR
, y‘_ ] I
x (TR
/0 > .
. v
v/ x
Fig. 42-4 Fig. 42-5
4, Two cuts are made on a circular log of radius 8 inches, the first perpendicular to the axis of the

log and the second inclined at the angle of 60° with the first. If the two cuts meet on a line
through the center, find the volume of the wood cut out.
Refer to Fig. 42-5. Take the origin at the center of the log, the x axis along the intersection of the

two cuts, and the positive side of the y axis in the face of the first cut. A section of the cut made by a
plane perpendicular to the x axis is a right triangle having one angle of 60° and the adjacent leg of length
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y. The other leg is of length V3y, and the area of the section is }V 3y’ = 1V 3(64 — x”). Then

1 ¥ 2 .
V= 3 \/37‘[8(64—x’)dx=1—0325\/§m3

5. The axes of two circular cylinders of equal radii r intersect at right angles. Find their common
volume.
Refer to Fig. 42-6. Let the cylinders have equations x> + z° = r*and y + z° = r’. A section of the

solid whose volume is required, as cut by a plane perpendicular to the z axis, is a square of side
2x =2y =2Vr* - 2% and area 4(r* — z%). Hence

T, 16r° . ,
V=4] (r"'-z7)dz= 3 cubic units
Y
Fig. 42-6
6. Find the volume of the right cone of height # whose base is an ellipse of major axis 2a and

minor axis 2b.

A section of the cone cut by a plane parallel to the base is an ellipse of major axis 2x and minor axis
2y (Fig. 42-7). From similar triangles,

pC_PM x_h-z ¢ FPD_PM y_h-z
OA-0oM ° 2~ Tk ame oB oM °" b7 Th
_ 2
The area of the section is thus wxy = %Z-)-. Hence
h
1
V= 1r_azb j (h — z)* dz = - mwabh cubic units
e Jo 3
Supplementary Problems
7. A solid has a circular base of radius 4 units. Find the volume of the solid if every plane perpendicular to

a fixed diameter (the x axis of Fig. 42-2) is (a) a semicircle; (b) a square; (c) an isosceles right triangle
with the hypotenuse in the plane of the base.

Ans.  (a) 1287/3; (b) 1024/3; (c) 256/3 cubic units
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10.

11.

12,

13.

14.

15.

16.

17.

18.

A solid has a base in the form of an ellipse with major axis 10 and minor axis 8. Find its volume if every
section perpendicular to the major axis is an isosceles right triangle with one leg in the plane of the
base. Ans. 640/3 cubic units

The base of a solid is the segment of the parabola y* = 12x cut off by the latus rectum. A section of the
solid perpendicular to the axis of the parabola is a square. Find its volume. Ans. 216 cubic units

The base of a solid is the first-quadrant area bounded by the line 4x + 5y = 20 and the coordinate axes.
Find its volume if every plane section perpendicular to the x axis is a semicircle.

Ans.  10#/3 cubic units

The base of a solid is the circle x* + y* = 16x, and every plane section perpendicular to the x axis is a
rectangle whose height is twice the distance of the plane of the section from the origin. Find its
volume. Ans. 10247 cubic units

A horn-shaped solid is generated by moving a circle, having the ends of a diameter on the first-quadrant
arcs of the parabolas y> +8x =64 and y®+ 16x =64, parallel to the xz plane. Find the volume
generated. Ans. 2567/15 cubic units

The vertex of a cone is at (a,0,0), and its base is the circle y*>+ z> —2by =0, x=0. Find its
volume. Ans. Ymab? cubic units

Find the volume of the solid bounded by the paraboloid y* + 4z° = x and the plane x = 4.

Ans. 47 cubic units

A barrel has the shape of an ellipsoid of revolution with equal pieces cut from the ends. Find its volume
if its height is 6 ft, its midsection has radius 3 ft, and its ends have radius 2 ft. Ans. 447t

The section of a certain solid cut by any plane perpendicular to the x axis is a circle with the ends of a
diameter lying on the parabolas y* = 9x and x*> = 9y. Find its volume. Ans. 65617/280 cubic units

The section of a certain solid cut by any plane perpendicular to the x axis is a square with the ends of a
diagonal lying on the parabolas y* = 4x and x*> = 4y. Find its volume. Ans. 144/35 cubic units

A hole of radius 1 inch is bored through a sphere of radius 3 inches, the axis of the hole being a diameter
of the sphere. Find the volume of the sphere which remains. Ans. 647V2/3in’



Chapter 43

Centroids of Plane Areas and Solids of Revolution

THE MASS OF A PHYSICAL BODY is a measure of the quantity of matter in it, whereas the
volume of the body is a measure of the space it occupies. If the mass per unit volume is the
same throughout, the body is said to be homogeneous or to have constant density.

It is highly desirable in physics and mechanics to consider a given mass as concentrated at a
point, called its center of mass (also, its center of gravity). For a homogeneous body, this point
coincides with its geometric center or centroid. For example, the center of mass of a
homogeneous rubber ball coincides with the centroid (center) of the ball considered as a
geometric solid (a sphere).

The centroid of a rectangular sheet of paper lies midway between the two surfaces but it
may well be considered as located on one of the surfaces at the intersection of the diagonals.
Then the center of mass of a thin sheet coincides with the centroid of the sheet considered as a
plane area.

The discussion in this and the next chapter will be limited to plane areas and solids of
revolution. Other solids, the arc of a curve (a piece of fine homogeneous wire), and
nonhomogeneous masses will be treated in later chapters.

THE (FIRST) MOMENT M, OF A PLANE AREA with respect to a line L is the product of the area
and the directed distance of its centroid from the line. The moment of a composite area with
respect to a line is the sum of the moments of the individual areas with respect to the line.

The moment of a plane area with respect to a coordinate axis may be found as follows:

1. Sketch the area, showing a representative strip and the approximating rectangle.

2. Form the product of the area of the rectangle and the distance of its centroid from the
axis, and sum for all the rectangles.

3. Assume the number of rectangles to be indefinitely increased, and apply the fundamen-
tal theorem.

(See Problem 2.)
For a plane area A having centroid (x, y) and moments M, and M, with respect to the x
and y axes,

Ax=M, and Ay=M,

(See Problems 1 to 8.)

THE (FIRST) MOMENT OF A SOLID of volume V, generated by revolving a plane area about a
coordinate axis, with respect to the plane through the origin and perpendicular to the axis may
be found as follows:

1. Sketch the area, showing a representative strip and the approximating rectangle.

2. Form the product of the volume, disc, or shell generated by revolving the rectangle
about the axis and the distance of the centroid of the rectangle from the plane, and sum
for all the rectangles.

3. Assume the number of rectangles to be indefinitely increased, and apply the fundamen-
tal theorem.

When the area is revolved about the x axis, the centroid (x, y) is on that axis. If M__ is the

284
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moment of the solid with respect to the plane through the origin and perpendicular to the x
axis, then

Vx=M, and y=0

Similarly, when the area is revolved about the y axis, the centroid (x, y) is on that axis. If M,
is the moment of the solid with respect to the plane through the origin and perpendicular to the
y axis, then

-
It
o)

Vy=M_, and
(See Problems 9 to 12.)

FIRST THEOREM OF PAPPUS. If a plane area is revolved about an axis in its plane and not
crossing the area, then the volume of the solid generated is equal to the product of the area and
the length of the path described by the centroid of the area. (See Problems 13 to 15.)

Solved Problems

1. For the plane area shown in Fig. 43-1, find (a) the moments with respect to the coordinate
axes and (b) the coordinates of the centroid (x, y).

(@) The upper rectangle has area 5x2=10 units and centroid A(2.5,9). Similarly, the areas and
centroids of the other rectangles are: 12 units, B(1.5); 2 units, C(2.5,5); 10 units, D(2.5.1).
The moments of these rectangles with respect to the x axis are, respectively, 10(9), 12(5). 2(5).
and 10(1). Hence the moment of the figure with respect to the x axis is M, = 10(9) + 12(5) +2(5) +
10(1) = 170.
Similarly, the moment of the figure with respect to the y axis is M_ = 10(2.5) + 12(1) + 2(2.5) +
10(2.5) = 67.
(b) The area of the figurc is A = 10+ 12 + 2 + 10 = 34. Since AXx = M, 34x =67 and £ = §]. Also, since
Ay=M_ 34y =170 and y = 5. Hence the point (4, 5) is the centroid.

Yy
5
10
Ae 2
8f -+
1
IC v
Be ;- 2
/L—-—
2 P(zx,
=) =y |ay
o} -4
De 2
x
z
0 5 0

Fig. 43-1 Fig. 43-2
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2, Find the moments with respect to the coordinate axes of the plane area in the second quadrant
bounded by the curve x = y* - 9.

We use the approximating rectangle shown in Fig. 43-2. Its area is —x Ay, its centroid is (ix. y),
and its moment with respect to the x axis is y(—-x Ay). Then

M,=—L yxdy=—ﬁ, Wy -9dy=*%

Similarly, the moment of the approximating rectangle with respect to the y axis is 1x(—x Ay) and

3 3
M_v=—%L xzdy=—§L (' =9V dy=-32

3. Determine the centroid of the first-quadrant area bounded by the parabola y = 4 ~ x°.

The centroid of the approximating rectangle, shown in Fig. 43-3, is (x, ;y). Then its area is

2 2
A=J:) ydx=f“ d-x")de=1¢

and M= [ iy =1 [ (- xar=

M_‘.=J’n xydx=L x(4-x)dr=4

Wi
—

Hence. i =M /A=1},y=MJ/A =1, and the centroid has coordinates (1,

x

y
’J v = 23
P(z,y) =z
i, 1)
Pz, y»)
(x'éy)qL\ (x, $lx + 2%)
d :Pl(x. V)
]
Ax 2 x H : x
0 0 Az
Fig. 43-3 Fig. 43-4

4, Find the centroid of the first-quadrant area bounded by the parabola y = x* and the line y = x.

The centroid of the approximating rectangle, shown in Fig. 43-4, is (x, j(x + ). Then

1
A=J:) (x—x)dr=1}

1 1
M‘=L Lo+ x)x - x)de = & M‘=J’0 x(x~x)dx= 3%

Hence, =M /A=}%,y=M_/A =1, and the coordinates of the centroid are (i, %).

S. Find the centroid of the area bounded by the parabolas x = y® and x° = —8y.
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The centroid of the approximating rectangle, shown in Fig. 43-3, is (x. 1(—x%8 ~ v7¥)). Then

v Ax x
B
0 | L Pyz, u) v
(z, 41 + 1)) P(x,y)
Pz v (z, 3)
¥ =—Vy«x
“-a Az x
yr» = —x%/8 (4] 7/3\
Fig. 43-5 Fig. 43-6

Find the centroid of the area under the curve y =2sin 3x from x =0 to x = #/3.

6.
The approximating rectangle, shown in Fig. 43-6, has the centroid (x, ; y). Then
/3 w/3 2 w3 4
Azfo ydx=L 2sm3xd.x=[—§cos3x]0 =3
w/3 1 w/3 1 1 w3
= —_ = in? = — — — g = —
M, J; 5 y(y dx) 2L sin” 3x dx 2[2 x =13 sin 6x]0 3
/3 w/3 ) 2 [ . ]w’} 2
MY=J; xydx=2J; xsm3xdx=§ sm3x—3xcos3x0 =357
The coordinates of the centroid are (M,/A, M,/A)=(m/6, m/4).
7. Determine the centroid of the first-quadrant area of the hypocycloid x = a cos’ 6, y = a sin 6.

By symmetry, x = y. (See Fig. 43-7.) We have
=m/2 /2 w2 +
A=L‘0 xdy=L (a cos? )(3a sin 6 cos @ d@) = % a’L (sinzzo)(lczﬂ’) do

T P P I
—8a 3 85m40+6sm 200 —321ra
™2 w2

8=m/2
MX:J;:O yxdy=3a3fo c05405i056d0=303f cos* (1 — cos” )’ sin 6 do

o

_ _3“3[cos5 9 2cos’ 8 cos’ 0]"’2 _ 24a’
B 5 7 9 do 315

Hence, y = M /A =256a/315m, and the centroid has coordinates (256a/315xw, 256a/315).
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v ¥ (r cos e, r 8in #)

. VP =y + -

A = ycote), ¥y
yF'—_ P(I, V)
’ r z
(3=, ) Of\/o
= P(x, y)
a
x
O a
Fig. 43-7 Fig. 43-8

‘ : . . . . 2rsin @
8.  Show that the centroid of a circular sector of radius r and angle 28 is at a distance from

. 36
the center of the circle.
Take the sector so that the centroid lies on the x axis (Fig. 43-8). By symmetry, the abscissa of the

required centroid is that of the centroid of the area lying above the x axis bounded by the circle and the
line y = x tan 6. For this latter sector,

rsng 1 - - . - 1 rsin @ , , N .
M‘=L 5(\/r'—y‘+ycot0)(\/r‘—y'—ycot@)dy=iL (r" —y ~y cot” 8)dy

}

_1[2_1 3~1 s , ]rsma_l 5.
—2ry 3y 3ycot()0 —3rsm0
__M\:erine

*TA 39

9.  Find the centroid (x, 0} of the solid generated by revolving the area of Problem 3 about the x
axis.

We use the approximating rectangle of Problem 3 and the disc method:

2 2
_ 1, a2 . 256w
V—"L y dx«wiI 4-x7) dx———ls ,
2 2
M‘z=rrLxyzdx=1rj;)x(4—x2)2dx=3—237—r

and x=M_/V=1}.

10.  Find the centroid (0, y) of the solid generated by revolving the area of Problem 3 about the y
axis.

We use the approximating rectangle of Problem 3 and the shell method:

2

2
V=2‘rrf0 xydx=21rL x(4—x*)dx =87

: 2 27
M“=21rL %y(xydx)=1rL x(4—x2)2dx=T

and y=M_/V=14%.

11.  Find the centroid (x, 0) of the solid generated by revolving the area of Problem 4 about the x
axis.
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12.

13.

14.

15.

We use the approximating rectangle of Problem 4 and the disc method:

! 27 J" ™
= 2 _ 4 = = L = —
V= TTL (x* —x")dx 15 and M, = , x(x*—x")dx 2

andx=M /V=3.

yz

Find the centroid (0, y) of the solid generated by revolving the area of Problem 4 about the y
axis.

We use the approximating rectangle of Problem 4 and the shell method:

1 1
1
V=277J0 x(x —x*)dx = %T and M“=27rj0 §(x+x2)(x)(x—x2) dx = %

andy=M_/V=3.

Find the centroid of the area of a semicircle of radius r.

Take the semicircle as in Fig. 43-9, so that x =0. The area of the semicircle is Lr?, the solid
generated by revolving it about the x axis is a sphere of volume $ 7%, and the centroid (0, y) of the area
describes a circle of radius y. Then, by the first theorem of Pappus, }mr’ 2wy = {mr’, from which
y =4r/37. The centroid is at the point (0,4r/37).

0,9

]

Fig. 43.9

Find the volume of the torus generated by revolving the circle x* + y* = 4 about the line x = 3.
(See Fig. 43-10.)

The centroid of the disc describes a circle of radius 3. Hence, V= (2)" - 2m(3) = 247 cubic units,
by the first theorem of Pappus.

The rectangle of Fig. 43-11 is revolved about (a) the line x =9, (b) the line y = -5, and (c)
the line y = —x. Find the volume generated in each case.

Y

2 .4,3) i
8
4
- T
!

Fig. 43-10 Fig. 43-11
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(a) The centroid (4, 3) of the rectangle describes a circle of radius 5. Hence, V=2(4)-2m(5) =80

cubic units.

(b) The centroid describes a circle of radius 8. Hence, V= 8(167) = 1287 cubic units.
(c) The centroid describes a circle of radius (4 + 3)/V2. Hence, V=56V2 cubic units.

Supplementary Problems

In Problems 16 to 26, find the centroid of the given area.

16.

17.

18,

19.

20.

21,

22.

27.

Between y = x°, y =9

Between y =4x—x’, y =0

Between y =4x—x’, y=x

Between 3y’ =4(3-x), x=0

Within x> =8y, y=0,x=4

Between y = x°, 4y = x’

Between x’ — 8y +4 =0, x* = 4y, in first quadrant
First-quadrant area of x’ + y* = a*

First-quadrant area of 9x* + 16y° = 144

Right loop of y* = x*(1 — x%)

First arch of x=0 —sin g, y=1—cos 8

Show that the distance of the centroid of a triangle from the base is one-third the altitude.

Ans.

Ans.

(4a/3m,4al37m)

(16/3 7, 4/7)

(32/15, 0)

(m §)

In Problems 28 to 38, find the centroid of the solid generated by revolving the given plane area about
the given line.

28.

29.

30.

3.

32.

33.

Within y = x% y =9, x = 0; about y axis
Within y = x? y =9, x = 0; about x axis
Within y = 4x — x°, y = x; about x axis
Within y = 4x — x°, y = x; about y axis

Within x* — y* = 16, y = 0, x = 8; about x axis
Within x’ — y* =16, y =0, x = 8; about y axis

Within (x —2)y2 =4, y=0, x =3, x =35, about x axis

Ans.

Ans.

=, = -,
I [ I
;It'l ana N

)
1}
al

=
1]
=4

y=3V3n

£=(2+2In3)/(In3)
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3s.

37.

39.

41.

42.

43.

Within x’y = 16(4 — y), x=0, y =0, x = 4; about y axis Ans. y=1/(In2)

First quadrant area bounded by y* = 12x and its latus rectum; about x axis Ans. x=2
Area of Problem 36; about y axis Ans. y=3
Area of Problem 36; about directrix Ans. y=3

Prove the first theorem of Pappus.

Use the first theorem of Pappus to find (@) the volume of a right circular cone of altitude a and radius of
base b; (b) the ring obtained by revolving the ellipse 4(x — 6)° + 9(y — 5)° = 36 about the x axis.

Ans. (a) §wab® cubic units; (b) 607 cubic units

For the area A bounded by y=-x*>-3x+6 and x + y —3=0, find (a) its centroid; (b) the volume
generated when A is revolved about the bounding line.

x+y-3  256V2

Ans. (a) (—1,28/5); (b) 2= 3 A= T cubic units

For the volume generated by revolving the area A (shaded in Fig. 43-12) about the bounding line L,
obtain

ax+y—b 2 L f’ 2

V=2x A= aM_+ M_ - bA)= - dx
Va1 AT Vaa TVE b e

Use the formula of Problem 42 to obtain the volume generated by revolving the given area about the

bounding line if

(@ y=-x"-3x+6and Lisx+y~3=0

(b) y=2x’and Lis2x—y+4=0

Ans. (a) see Problem 41; (b) 162V57/25 cubic units




Chapter 44

Moments of Inertia of Plane Areas
and Solids of Revolution

THE MOMENT OF INERTIA I, OF A PLANE AREA A with respect to a line L in its plane may be
found as follows:

1. Make a sketch of the area, showing a representative strip parallel to the line and
showing the approximating rectangle.

2. Form the product of the area of the rectangle and the square of the distance of its
centroid from the line, and sum for all the rectangles.

3. Assume the number of rectangles to be indefinitely increased, and apply the fundamen-
tal theorem.

(See Problems 1 to 4.)

THE MOMENT OF INERTIA [, OF A SOLID of volume V generated by revolving a plane area
about a line L in its plane, with respect to line L, may be found as follows:

1. Make a sketch showing a representative strip parallel to the axis, and showing the
approximating rectangle.

2. Form the product of the volume generated by revolving the rectangle about the axis (a
shell) and the square of the distance of the centroid of the rectangle from the axis, and
sum for all the rectangles.

3. Assume the number of rectangles to be indefinitely increased, and apply the fundamen-
tal theorem.

(See Problems 5 to 8.)

RADIUS OF GYRATION. The positive number R defined by the relation /, = AR’ in the case of a
plane area A, and by I, = VR? in the case of a solid of revolution, is called the radius of
gyration of the area or volume with respect to L.

PARALLEL-AXIS THEOREM. The moment of inertia of an area, arc length, or volume with
respect to any axis is equal to the moment of inertia with respect to a parallel axis through the
centroid plus the product of the area, arc length, or volume and the square of the distance
between the parallel axes. (See Problems 9 and 10.)

Solved Problems

1. Find the moment of inertia of a rectangular area A of dimensions a and b with respect to a
side.

Take the rectangular area as in Fig. 44-1, and let the side in question be that along the y axis. The
approximating rectangle has area = b Ax and centroid (x, }6). Hence its moment element is x’b Ax.

292
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v P(z, b)
£ b
O LB N
0 Ax x
Fig. 44-1
Then
“ 21 ba’ 1
= 2 = P, = —_— = - 2
IY‘,(O“bd"‘[bz,]o 3 "3

Thus the moment of inertia of a rectangular area with respect to a side is one-third the product of the
area and the square of the length of the other side.

Find the moment of inertia with respect to the y axis of the plane area between the parabola
y =9 — x* and the x axis. Also find the radius of gyration.

First solution: For the approximating rectangle of Fig. 44-2, A =y Ax and the centroid is (x, }y).
Then

3 3
1y=J‘_3)c2yd):=2J'0 (9x7 - x*) dx = 2

Y} ¥
7 P(zx,y) -
(=, §v) Ay Piz,v)
-3 Ax 3 x 3 x
1 0 ) L Y L4 0 A
Fig. 442 Fig. 44-3

Second solution: For the approximating rectangle of Fig. 44-3, the area is x Ay and the dimension
perpendicular to the y axis is x. Hence, from Problem 1, the moment element is §(x Ay)x’. Thus, owing
to symmetry,

9 9
1y=2(%L x’dy)=’fo (9-y)"dy =%

9 9
Since [, = % = AR? and A =2J; x dy =2L V9 ~ y dy = 36, the radius of gyration here is R =
3INVG.

Find the moment of inertia with respect to the y axis of the first-quadrant area bounded by the
parabola x° = 4y and the line y = x. Find the radius of gyration.

We use the approximating rectangle of Fig. 44-4, whose area is (x — 1x°) Ax and whose centroid is
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v y = iz} v
y=2x
(4, 4) P(z,y)
Ps(x, y) \
(@ 3=+ $2%) (= d
| P:(Z, y’)
L
'ax) z ax x
0 0 T\

Fig. 44-4 Fig. 44-5

(x, $(x + ix?)). It yields

4 4
A=J;(x—§x2)dx=§‘ 1y=J;x2(x—.‘;x2)dx=%=%“A R=V%=#30

Find the moment of inertia with respect to each coordinate axis of the area between the curve
y =sin x from x =0 to x = 7 and the x axis.

From Fig. 44-5, A =J0 sinx dx =[—cos x]; =2 and
I, =J:) y2(4 sinx dx) = | L sin’ xdx = }[-cosx+ {cos’ x|y =4=12A

l),=‘[) x>sinxdx=[2cos x +2xsinx —x’cos x]] = (7’ —4)= L{(n? —4)A

Find the moment of inertia with respect to its axis of a right circular cylinder whose height is b
and whose base has radius a.

Let the cylinder be generated by revolving the rectangle of dimensions a and b about the y axis as in
Fig. 44-6. For the approximating rectangle of the figure, the centroid is (x, 3b) and the volume of the
shell generated by revolving the rectangle about the y axis is AV = 2mbx Ax. Then, since V= wba’,

I,=27 L x’(bx dx)= iwba*= Lmba’-a’ = v’

Thus the moment of inertia with respect to its axis of a right circular cylinder is equal to one-half the
product of its volume and the square of its radius.

Find the moment of inertia with respect to its axis of the solid generated by revolving about
the x axis the area in the first quadrant bounded by the parabola y? = 8x, the x axis, and the
line x = 2.

First solution: The centroid of the approximating rectangle of Fig. 44-7 is (3(x +2), y), and the
volume generated by revolving the rectangle about the x axis is 27ry(2 — x) Ay = 27y(2 — y*/8) Ay. Then

2

4 2 4 2
- ~ ) ay- 2 [ yp(2- L) 0] - B0 = 18
1% 2#[) y(2 8 dy =167 and I.=27] y*[yl2 3 dy 3 T3 v

0

Second solution: The volume generated by revolving the approximating rectangle of Fig. 44-8 about
the x axis is #y° Ax and, by the result of Problem 5, its moment of inertia with respect to the x axis is
Ly (wy? Ax) = S wy* Ax. Then

2 2
V=1r[ yzdx=87rL xdx=16m

0
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[¥
v v
/ N )Pl b)
T (2,4) 2,4)
\_|/ l&[I +2), v
i B B — | P(z, )
i | (z, 3] ay| Plz,y) ® |
e I =
¢ o S| | o
o
~ai -‘z',’ |
—3 0 N 0 Az x
Fig. 44-6 Fig. 44-7 Fig. 44-8
and 1‘=%17J0 yadx=327r.[] Cdx=8g=2YV
7. Find the moment of inertia with respect to its axis of the solid generated by revolving the area

of Problem 6 about the y axis.

The volume generated by revolving the approximating rectangle of Fig. 44-8 about the y axis is
2wxy Ax. Then

2

2
V=21rJ“ xydx=4\/§7rJ( dy=%7

)

2

and L=2n [ Plyd0=avin [ ¥ dr=pn=

)

b

0

1%

|

8. Find the moment of inertia with respect to its axis of the volume of the sphere generated by
revolving a circle of radius r about a fixed diameter.

Take the circle as in Fig. 44-9, with the fixed diameter along the x axis. The shell method yields

V=21TJU 2x(ydy)=ims’ and I. =47 L y(xy dy) = 4 fo yVri-yidy

Let y = rsin z; then \/r* — y* = rcos z and dy = rcos z dz. To change the y limits of integration to z
limits, consider that when y = 0 then 0 = r sin z, so 0 =sin z and z = 0, also, when y = r then r = rsin z,
so 1=sinz and z = }7w. Now

w2

w2
5 = .3 2 s 2 2 . 5 2
I =4xr J- sin” zcos” zdz=4mr j (1—cos’z)cos’ zsinzdz= Exr’=2r'V
0 0

¥ Y y=3s8

el \ (32, 4)
3 tow P(z,y) / ;__Sj\P(x,y)
P2
(&) x
r
9] x
{ I

Fig. 44-9 Fig. 44-10
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10.

11.

12.

13.

4.

15.

16.

MOMENTS OF INERTIA OF PLANE AREAS AND SOLIDS OF REVOLUTION [CHAP. 44

Find the moment of inertia of the area of a circle of radius r with respect to a line s units from
its center.

Take the center of the circle at the origin (see Fig. 44-10). We find first the moment of inertia of the
circle with respect to the diameter parallel to the given line as

/, =4f“ y(xdy) =4L Ve —yidv=lrlm=1rA

Then 1, =1 + As® = (ir’ +5°) A, by the parallel-axis theorem.

The moment of inertia with respect to its axis of the solid generated by revolving an arch of
y = sin 3x about the x axis is /= 7716 = 3V/8. Find the moment of inertia of the solid with
respect to the line y = 2.

By the parallel-axis theorem, [, , =1 +2°V=3V/8§+ 4V =35V/8.

Supplementary Problems

Find the moment of inertia of the given plane area with respect to the given line or lines.

(a) Within v =4 — x%, x =0, y = 0; about x axis, y axis Ans. 128A/35; 4A/5
(b) Within v =8x", y =0, x = 1; about x axis. y axis Ans. 128A/15;2A/3
(¢) Within x° + y° = a°; about a diameter Ans. a'Al4

(d) Within v* = 4x, x = 1; about x axis, y axis Ans. 4A/I5, 3A/7
(¢) Within 4x” + 9y” = 36; about x axis, y axis Ans. A;9A/4

Use the results of Problem 11 and the parallel-axis theorem to obtain the moment of incrtia of the given
area with respect to the given line: (a) within y =4 — 25, y=0, x=0, about x =4; (b) within
x>+ y7 = 4", about a tangent; (¢) within y° =4x, x =1, about x = 1.

Ans. (u) 84A/5. (b) Sa’A/4; (¢) 10A/7

Find the moment of inertia with respect to its axis of the solid generated by revolving the given plane
area about the given line:

(a) Within v =4x — x". y =0; about x axis. y axis (b) Within y* = 8x. x = 2: about x axis. y axis
(c) Within 4x* + 9y = 36; about x axis. y axis (d) Within x" + v’ =a"; about y=bh, b>a

Ans. (a) 128Vi21, 32Vi5; (b) 16Vi3, 20V/9; (¢) 8VIS, 18V/5; (d) (b° + 1a° WV

Use the parallel-axis theorem to obtain the moment of inertia of: (a) a sphere of radius r about a line
tangent to it: (b) a right circular cylinder about one of its elements. Ans. (@) 7rVIS: (b) 3r°VI2

Prove: The moment of inertia of a plane area with respect to a line L perpendicular to its plane (or with
respect to the foot of that perpendicular) is equal to the sum of its moments of inertia with respect to any
two mutually perpendicular lines in the plane and through the foot of L.

Find the polar moment of inertia I, (the moment of inertia with respect to the origin) of: (a) the triapgle
bounded by v =2x, y=0, x =4, (b) the circle of radius r and center at the origin: (c) the circle
x* = 2rx +y? = 0; (d) the area bounded by the line y = x and the parabola y* = 2x.

Ans. (@) I,=1 +1 =56A13; (b) LriA: (c) 3r'A/2; (d) T2A/35



Chapter 45

Fluid Pressure

PRESSURE is defined as force per unit area:

force acting perpendicular to an area
area over which the force is distributed

The pressure p on a horizontal surface of area A due to a column of fluid of height h resting on
it is p = wh, where w = weight of fluid per unit of volume. The force on this surface is
F = pressure X surface area = whA.

At any point within a fluid, the fluid exerts equal pressures in all directions.

FORCE ON A SUBMERGED PLANE AREA. Fig. 45-1 shows a plane area submerged vertically in
a liquid of weight w pounds per unit of volume. Take the area to be in the xy plane, with the x
axis in the surface of the liquid and the positive y axis directed downward. Divide the area into
strips (always parallel to the surface of the liquid), and approximate each with a rectangle (as in
Chapter 39).

(2] Surface of Liquid
[
L x = g(y)
x
3 > (x, Y1)
d
Yy
Fig. 45-1

Denote by h the depth of the upper edge of the representative rectangle of the figure. The
force exerted on this rectangle of width A,y and length x, = g(y,) is wY, g(y,) A,y, where Y,
is some value of y between h and k& + A, y. The total force on the plane area is, by the theorem
of Bliss,

n d d
F=lim 2 wY,g(y,) A,y = WJC ya(y)dy=w [ yrdy
Hence, the force exerted on a plane area submerged vertically in a liquid is equal to the product
of the weight of a unit volume of the liquid, the submerged area, and the depth of the centroid
of the area below the surface of the liquid. This, rather than a formula, should be used as the
working principle in setting up such integrals.

297



298 FLUID PRESSURE [CHAP. 45

Solved Problems

1. Find the force on one face of the rectangle submerged in water as shown in Fig. 45-2. Water
weighs 62.5 Ib/ft’

The submerged area is 2 x 8 = 16 ft’, and its centroid is 1 ft below the water level. Hence,

F = specific weight X area X depth of centroid = 62.5 Ib/ft’ x 16 ft x 1 ft = 1000 Ib

Surface of Water

2
Surface of Water L
2 i 6
8 15
Fig. 45-2 Fig. 45-3
2. Find the force on one face of the rectangle submerged in water as shown in Fig. 45-3.

The submerged area is 90 ft>, and its centroid is Sft below the water level. Hence, F=
62.51b/ft> X 90 ft* x 5 ft = 28,125 Ib.

3 Find the force on one face of the triangle shown in Fig. 45-4. The units are feet, and the liquid
weighs 50 Ib/ft’.
First solution: The submerged area is bounded by the lines x =0, y = 2, and 3x + 2y = 10. The force

10-2
3 yAy. Then

exerted on the approximating rectangle of area x Ay and depth y is wyx Ay = wy
10-2 4 —9w=4501b.

Second solution: The submerged area is 3 ft°, and its centroid is 2 + 1(3) = 3 ft below the surface of
the liquid. Hence, F = 50(3)(3) =450 1b.

F=wzy

0 Surface of Liquid g Surface of Water x
o
3
2.2
4,3)
Ay [
P(z,y) Ay P, y)
©.5) (0,6)
v v
Fig. 45-4 Fig. 45-5
4. A triangular plate whose edges are 5, 5, and 8 ft long is placed vertically in water with its

longest edge uppermost, horizontal, and 3 ft below the water level. Calculate the force on a
side of the plate.

First solution: Choosing the axes as in Fig. 45-5, we see that the required force is twice the force on
the area bounded by the lines y = 3, x =0, and 3x + 4y = 24. The area of the approximating rectangle is
x Ay, and its mean depth is y. Hence AF = wyx Ay = wy(8 — 4y/3) Ay and

6
F=2wJ; y(8— $y) dy = 48w = 3000 Ib
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Second solution: The submerged area is 12 ft%, and its centroid is 3+ 1(3) =4 ft below the water
level. Hence F =62.5(12)(4) = 3000 Ib.

Find the force on the end of a trough in the form of a semicircle of radius 2 ft, when the
trough is filled with a liquid weighing 60 Ib/ ft’,

With the coordinate system chosen as in Fig. 45-6, the force on the approximating rectangle is
wyx Ay = wy\/4 — y* Ay. Hence F=2wJ; yVa—y'dy=2%w=3201Ib.

v
Surface of Liquid 2,0) x Surface of Water (6,4)
(o]
= P(z,y)
0,2
0,2) "
Fig. 45-6 Fig. 45-7

A plate in the form of a parabolic segment of base 12 ft and height 4 ft is submerged in water
so that its base is at the surface of the liquid. Find the force on a face of the plate.

With the coordinate system chosen as in Fig. 45-7, the equation of the parabola is x* = 9y. The area
of the approximating rectangle is 2x Ay, and the mean depth is 4 — y. Then

4
AF=2w(4 - y)x Ay =2w(4 - y)(3Vy Ay) and F=6w L (4- y)Vydy=5w=32001b

3

Find the force on the plate of Problem 6 if it is partly submerged in a liquid weighing 48 Ib/ft’
so that its axis is parallel to and 3 ft below the surface of the liquid.

With the coordinate system chosen as in Fig. 45-8, the equation of the parabola is y* = 9x. The area
of the approximating rectangle is (4 — x) Ay, its mean depth is 3 —y, and the force on it is AF =
w(3 - y)(4 — x) Ay = w(3 - y)(4 — y"/9) Ay. Then

3 2
F=wf6(3-y)<4—y—)dy=@w=4860|b

- 9 4
v
(4,6)
/ Surface of Liquid
y=3
3-y
o x
_t
P(z, y)
(4,-6)

Fig. 45-8
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10.

11.

12.

13.

14.

FLUID PRESSURE [CHAP. 45

Supplementary Problems

A 6-ft by 8-ft rcctangular plate is submerged vertically in a liquid weighing w Ib/ft’. Find the force on
one face

(a) If the shorter side is uppermost and lies in the surface of the liquid

(b) If the shorter side is uppermost and lies 2 ft below the surface of the liquid

(c¢) If the longer side is uppermost and lies in the surface of the liquid

(d) If the plate is held by a rope attached to a corner 2 ft below the liquid surface

Ans. (a) 192w Ib; (b) 288w 1b; (¢) 144w Ib; (d) 336w Ib

Assuming the x axis horizontal and the positive y axis directed downward, find the force on a side of
each of the following areas. The dimensions are in feet, and the fluid weighs w Ib/ft’,

(a) Within y = x°, y =4; fluid surface at y =0 Ans. 128w/5 b

(b) Within y = x°, y =4; fluid surface at y = -2 Ans. 704w/15 Ib
(c) Within y =4 - x°, y = 0; fluid surface at y =0 Ans. 256w/15 Ib
(d) Within y =4 — x%, y =0; fluid surface at y = -3 Ans. 736w/151b
(e) Within y =4 — x°, y = 2; fluid surface at y = -1 Ans. 152V2w/151b

A trough of trapezoidal cross section is 2 ft wide at the bottom, 4 ft wide at the top, and 3 ft deep. Find
the force on an end (a) if it is full of water; (b) if it contains 2 ft of water.

Ans. (a) 750 1b; (b) 305.6 Ib

A circular plate of radius 2 ft is lowered into a liquid weighing w 1b/ft” so that its center is 4 ft below the
surface. Find the force on the lower half of the plate and on the upper half.

Ans. (8w +16/3)w lb; (87 — 16/3)w b

A cylindrical tank 6 ft in radius is lying on its side. If it contains oil weighing w Ib/ft’ to a depth of 9 ft,
find the force on an end. Ans. (727 +81V3)w b

The center of pressure of the area of Fig. 45-1 is that point (x, y) where a concentrated force of
magnitude F would yield the same moment with respect to any horizontal or vertical line as the

distributed forces. .

d
(a) Show that Fi = iw J yx* dy and Fy = wj yix dy.

(b) Show that the depth of the center of pressure below the surface of the liquid is equal to the moment
of inertia of the area divided by the first moment of the area, each with respect to a line in the
surface of the liquid.

Use part (b) of Problem 13 to find the depth of the center of pressure below the surface of the liquid in
(@) Problem 5, (b) Problem 6; (¢) Problem 7; (d) Problem 9(a); (¢) Problem 9(b).

Ans. (a) 3m/8; (b) %3 (c) B3 (d) ¥ (&)



Chapter 46

Work

CONSTANT FORCE. The work W done by a constant force F acting over a directed distance s
along a straight line is Fs units.

VARIABLE FORCE. Consider a continuously varying force acting along a straight line. Let x
denote the directed distance of the point of application of the force from a fixed point on the
line, and let the force be given as some function F(x) of x. To find the work done as the point
of application moves from x = a to x = b (Fig. 46-1):

ka

0 a L & 4 b

Fig. 46-1

1. Divide the interval @ = x = b into n subintervals of length A, x, and let x, be any point
in the kth subinterval.

2. Assume that during the displacement over the kth subinterval the force is constant and
equal to F(x,). The work done during this displacement is then F(x,)A,x. and the
total work done by the set of n assumed constant forces is given by > F(x,)Ax.

k=1
3. Increase the number of subintervals indefinitely in such a manner that each A, x—0
and apply the fundamental theorem to obtain

n b
W=lim 2, F(x,)Ax= f F(x) dx
T k=1 a

Solved Problems

1. Within certain limits, the force required to stretch a spring is proportional to the stretch, the
constant of proportionality being called the modulus of the spring. If a given spring at its
normal length of 10 inches requires a force of 25 1b to stretch it § inch, calculate the work done
in stretching it from 11 to 12 inches.

Let x denote the stretch; then F(x) = kx. When x = {, F(x) = 25; hence 25 = }k, so that k = 100 and
F(x) = 100x.

2
The work corresponding to a stretch Ax is 100x Ax, and the required work is W=Jl 100x dx =
150 in-Ib.

2, The modulus of the spring on a bumping post in a freight yard is 270,000 Ib/ft. Find the work
done in compressing the spring 1 inches.

Let x be the displacement of the free end of the spring in feet. Tbgn F(x)=270,000x. and the work
corresponding to a displacement Ax is 270,000x Ax. Hence, W= : 270,000x dx = 937.5 ft-1b.

301



302

WORK [CHAP. 46

A cable weighing 3 1b/ft is unwinding from a cylindrical drum. If 50 ft are already unwound,
find the work done by the force of gravity as an additional 250 ft arc unwound.

300

Let x = length of cable unwound at any time. Then F(x)=3x and W= L 3x dx = 131,250 ft-lb.

0

A 100-ft cable weighing 5 Ib/ft supports a safe weighing 500 Ib. Find the work done in winding
80 ft of the cable on a drum.

Let x denote the length of cable that has been wound on the drum. The total weight (unwound cable
and safe) is 500 + 5(100 — x) = 1000 — 5x, and thx% work done in raising the safe a distance Ax is

(1000 — 5x) Ax. Thus, the required work is W= . (1000 — 5x) dx = 64,000 ft-Ib.

A right circular cylindrical tank of radius 2 ft and height 8 ft is full of water. Find the work
done in pumping the water to the top of the tank. Assume that the water weighs 62.5 Ib/ft’,

First solution: Imagine the water being pushed up by means of a piston that moves upward from the
bottom of the tank. Figure 46-2 shows the piston when it is y ft from the bottom. The lifting force, being
equal to the weight of the water remaining on the piston, is approximately F(y)= mr'w(8 —y)=
47w(8 — y), and the work corresponding to a displacement Ay of the piston is approximately
47w(8 — y) Ay. The work done in emptying the tank is then

®
W=4rmw ﬁ (8—y)dy = 1287w = 1287(62.5) = 80007 ftIb

)
-
7
Y

Yy
= | SN - i
Y \_]_/ Ay 1 ﬁ\ — Ay
il ]
e ke |
¥ | Y x ~ 2
0
ly
Fig. 46-2 Fig. 46-3

Second solution: Imagine that the water in the tank is sliced into n disks of thickness Ay, and that
the tank is to be emptied by lifting each disk to the top. For the representative disk of Fig. 46-3, whose
mean distance from the top is y, the weight is 47w Ay and the work done in moving it to the top of the
tank isK 47wy Ay. Summing for the n disks and applying the fundamental theorem, we have W=

drw ﬁ ydy = 1287w = 80007 ft-lb.

The expansion of a gas in a cylinder causes a piston to move so that the volume of the
enclosed gas increases from 15 to 25in’ Assuming the relation between the pressure
(p Ib/in’) and the volume (v in’) to be pv'* =60, find the work done.

If A denotes the area of a cross section of the cylinder, pA is the force exerted by the gas. A volume

incrcasAc Av causes the piston to move a distance Av/A, and the work corresponding to this displacement
AU

1$ [)A 7 - F Av. Then,

T dv 60 o] 1 I :
W =60 s F:[— v (4} =—150<F—1‘5m)=9.39 in-ib

15

0.4
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10.

11.

12,

13.

14.

A conical vessel is 12 ft across the top and 15 ft tall. If it contains a liquid weighing w Ib/ft’ to
a depth of 10 ft, find the work done in pumping the liquid to a height 3 ft above the top of the
vessel.

Consider the representative disk in Fig. 46-4 whose radius is x, thickness is Ay, and mean distance
from the bottom of the vessel is y. Its weight is mwx” Ay, and the work done in lifting it to the required
height is wwx’(18 — y) Ay.

v
Outlet
[ 1
{8
15 i 5
i ilS -y
10 |
IL_ l
Ay . -
t P(z,y)
0 x
Fig. 46-4

6 4 10
From similar triangles, ; =15rs0x= % y. Then W= 75 T J:) y*(18 — y) dy = 5607w ft-lb.

Supplementary Problems

If a force of 80 1b stretches a 12-ft spring 1 ft, find the work done in stretching it (a) from 12 to 15 ft; (b)
from 15 to 16 ft. Ans. (a) 360 ft-1b; (b) 280 ft-1b

Two particles repel each other with a force that is inversely proportional to the square of the distance
between them. If one particle remains fixed at a point on the x axis 2 units to the right of the origin, find
the work done in moving the second along the x axis to the origin from a point 3 units to the left of the
origin. Ans. 3k/10

The force with which the earth attracts a weight of w pounds at a distance s miles from its center is
F = (4000)’w/s”, where the radius of the earth is taken as 4000 mi. Find the work done against the force
of gravity in moving a 1-lb mass from the surface of the earth to a point 1000 mi above the
surface. Ans. 800 mi-lb

Find the work done against the force of gravity in moving a rocket weighing 8 tons to a height 200 mi
above the surface of the earth. Ans. 32,000/21 mi-tons

Find the work done in lifting 1000 Ib of coal from a mine 1500 ft deep by means of a cable weighing
2 Ib/ft. Ans. 1875 ft-tons

A cistern is 10 ft square and 8 ft deep. Find the work done in emptying it over the top if (a) it is full of
water; (b) it is three-quarters full of water. Ans. (a) 200,000 ft-1b; (b) 187,500 ft-1b

A hemispherical tank of radius 3 ft is full of water. (a) Find the work done in pumping the water over
the edge of the tank. (b) Find the work done in emptying the tank through an outlet pipe 2 ft above the
top of the tank. Ans.  (a) 3976 ft-lb; (b) 11,045 ft-1b
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15.

16.

17.

19.

WORK [CHAP. 46

How much work is done in filling an upright cylindrical tank of radius 3 ft and height 10 ft with liquid
weighing w Ib/ft’ through a hole in the bottom? How much if the tank is horizontal?

Ans. 4507w ft-lb; 270w ft-Ib

Show that the work done in pumping out a tank is equal to the work that would be done by lifting the
contents from the center of gravity of the liquid to the outlet.

A 200-1b weight is to be dragged 60 ft up a 30° ramp. If the force of friction opposing the motion is Nu,
where u = 1/V 3 is the coefficient of friction and N = 200 cos 3(° is the normal force between weight and
ramp. find the work done. Ans. 12,000 ft-1b

Solve Problem 17 for a 45° ramp with the coefficient of friction p = 1/V2. Ans.  6000(1 + V2) ft-lb

Air is confined in a cylinder fitted with a piston. At a pressure of 20 Ib/ft?, the volume is 100 ft”. Find the

work done on the piston when the air is compressed to 2 ft* (@) assuming pv = constant: (b) assuming
|

pv'* = constant. Ans. (a) 7824 ft-lb; (b) 18,910 ft-1b



Chapter 47

Length of Arc

THE LENGTH OF AN ARC AB of a curve is by definition the limit of the sum of the lengths of a set

of consecutive chords AP, P,P,,..., P,_,B, joining points on the arc, when the number of
points is indefinitely increased in such a manner that the length of each chord approaches zero
(Fig. 47-1).

v

P... B
A
P:
P,
(%) x
Fig. 47-1

If A(a, c) and B(b, d) are two points on the curve y = f(x), where f(x) and its derivative
f'(x) are continuous on the interval a = x < b, the length of arc AB is given by

b 3
s=j ds=j \fl+(d—y) dx
AB a dx

Similarly, if A(a, ¢) and B(b, d) are two points on the curve x = g(y), where g( y) and its
derivative with respect to y are continuous on the interval ¢ =y = d, the length of arc AB is

given by
d dx)Z
S—fABdS—L \)l+(a; dy

If A(u=u,) and B(u = u,) are two points on a curve defined by the parametric equations
x = f(u), y = g(u), and if conditions of continuity are satisfied, the length of arc AB is given by

B B uy .d_x)?. (EX)Z
5 ABdS_L, V(du * du du

(For a derivation, see Problem 1.)

Solved Problems

b
1. Derive the arc-length formula s =j V1+ (dyldx)’ dx.

Let the interval a<x=<b be divided into subintervals by the insertion of points £ =a, £,.
f S £, ., £,=0b, and erect perpendiculars to determine the points P,= A, P, P,, ..., P

n-1
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2.

3.

4.

S.

6.

LENGTH OF ARC [CHAP. 47

| A.x]b x
& & Ee—1® & a1 b

Fig. 47-2

P, = B on the arc as in Fig. 47-2. For the representative chord of the figure,

Iy
PerP = V(B2 + (Ay) = 1+(A"y) A,x
k

By the law of the mean (Chapter 26), there is at least one point, say x = x,, on the arc P, _, P, where the
slope of the tangent f'(x,) is equal to the slope A,y/A,x of the chord P, | P,. Thus,

PP = I+[f’(xk)]2Akx for §,_, <x, <¢,

and, using the fundamental theorem, we have
”n b 2
AB= lim 3, 1+[f‘(xk)]2Akx=f \/1+(‘f—é) dx
A+ a

Find the length of the arc of the curve y = x*'* from x =0 to x = 5.
Since dy/dx = ix''?

~a 3:2S8
y 9 8 9 ) ]_335
f \/1+( dx f\ll+—xdx [2—.7(1+—x O—E—umts

32

Find the length of the arc of the curve x=3y"“—1 from y=0to y =4,

9 ]!2

s—J- \f dy dy j\/ vy ydy 243(82\/_—l)umts

Find the length of the arc of 24xy = x* + 48 from x =2 to x = 4.

dy _ x'—16 (dy)_i(x +16) _ f 16) _17
I 8 and 1+ i @ - Then s = 3 xz dx-—6umts.

Since dx/dy =

x/a

Find the length of the arc of the catenary y = la(e*’* + ¢ *'*) from x =0 to x = a.

2
dy _1 e’ —¢ ")y and 1+ ) _ 1+ 1 Xt =2+ ey =
2

x/a —xlay2
2 ax i ( (e**+e "), Then

FNIEN

_l ¢ x'a —-x/a _l xla _ Axlaa___l_ ( ___l) .
s—ZL(e t+e )dx-—za[e e ]0—2ae ;) units

Find the length of the arc of the parabola y* = 12x cut off by its latus rectum,



CHAP. 47]

LENGTH OF ARC

307

Yy

. dx
The required length is twice that from the point (0, 0) to the point (3,6). We have @ =% and

dx)z_36+y2
1+(@ =35 . Then

6
s=2(%)L V36 +y* dy = 3[3yV36+y" +18In(y + V36 + y));
=6[VZ + In (1 + V2)] units

- (5] 4
Herea—m‘, d[—3t,and a +

dy

dt

Find the length of the arc of the curve x = £, y="0 fromt=0to =4

: 9
) =47 +9¢* =412(1 + 2 12). Then

4

4
S B N _8 ~ 1) uni
s—J; L+t (2dry= = (37V37 - 1) units

Find the length of an arch of the cycloid x =6 —sin6, y =1 —cos 6.

dy

dx .
An arch is described as @ varies from 8 =0 to 6 =27. We have 20 =1 7. cos 6, 20 = sin @, and

s de

2 2w ”
(dx) +(ﬂ) =2(1 - cos 8) = 4sin” 18. Thens=2J; singd0=[~4cos§]o = 8 units.

Supplementary Problems

In Problems 9 to 20, find the length of the entire curve or indicated arc.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19,

y’=8x’fromx=1tox=8
6xy=x'+3fromx=1tox=2
y=Inx fromx=1to x=2V2
27y* = 4(x - 2)° from (2,0) to (11, 6V3)
y=In(e"~1)/e*+1 fromx=2to x=4
y=In(1-x*) fromx=4tox=3}
y=ix—ilnxfromx=1tox=e
y=Incosx from x = w/6 to x = 7w/4
x=acos8, y=asiné

x=¢é'cost,y=¢e'sintfromt=0tor=4

x=InV1+¢ y=arctant fromt=0to¢t=1

x=2cos @ +cos20+1, y=2sin 8 +sin 26

Ans.

Ans.

Ans.

Ans.

(104V13 - 125)/27 units

Y units

3-V2+1n (2 + V2) units
14 units

In (e* + 1) — 2 units

In 3 — § units

Le? — I units

in (1 + V2)/V3 units
27ra units

V2(e* — 1) units

In (1 + V2) units

16 units
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2

21.  The position of a point at time ¢ is given as x = 3%, y = §(6r + 9)*". Find the distance the point travels

fromtr=0tor=4, Ans. 20 units

22. Let P(x, y) be a fixed point and Q(x + Ax, y + Ay) be a variable point on the curve y = f(x). (See Fig.
22-1.) Show that

im 2TC PQ lim As _ ds/dx _
o-r chord PO o=r \f(Ax)’ + (ay)' V1 + (dy/dx)’
23.  (a) Show that the length of the first-quadrant arc of x = acos’ 8, y = asin’ @ is 3a/2.
N : , (7 dx

(b) Show that when the arc length of (a) is computed from x* '+ y° > =a° " we obtain @' I) —=.in
o x''-

which the integrand is infinite at the lower limit of integration. Definite integrals of this type will be
considered in Chapter 52.

4. A problem leading to the so-called curve of pursuit may be formulated as follows: A dog at A(1,0) sees
his master at (0, 0) walking along the y axis and runs (in the first quadrant) to meet him. Find the path
of the dog assuming that it is always headed toward its master and that each moves at a constant rate. p
for the master and g > p for the dog. This problem can be solved in Chapter 76. Verify here that the
equation y = f(x) of the path may be found by integrating y’ = }(x”"¥ — x 7'?).
(Hint: Let P(a, b), for 0 <a < 1, be a position of the dog, and denote by Q the intersection of the y
axis and the tangent to y = f(x) at P. Find the time required for the dog to reach P, and show that the
master is then at Q.)



Chapter 48

Area of a Surface of Revolution

THE AREA OF THE SURFACE generated by revolving the arc AB of a continuous curve about a
line in its plane is by definition the limit of the sum of the areas generated by the n consecutive
chords AP,, P,P,, ..., P,_,B joining points on the arc when revolved about the line, as the
number of chords is indefinitely increased in such a manner that the length of each chord
approaches zero.

If A(a, ¢) and B(b, d) are two points of the curve y = f(x), where f(x) and f(x) are
continuous and f(x) is nonnegative on the interval @ =< x =< b (Fig. 48-1), the area of the
surface generated by revolving the arc A B about the x axis is given by

y ———

_ - / Qf
X—ZﬂLﬁyds—Zn'L y\!l+(\dx dx (48.1)

Fig. 48-1

When, in addition, f'(x) # 0 on the interval, an alternative form of (48.1) is

d / NN
| dx ,
Sv‘—ZWLRyds—Z'nl[ yV1+<d—y) dy (48.2)

If A(a, c) and B(b, d) are two points of the curve x = g(y), where g(y) and its derivative
with respect to y satisfy conditions similar to those listed in the previous paragraph, the area of
the surface generated by revolving the arc AB about the y axis is given by

) f ds=2 fb ’jl+<ﬂ):d =2 fd--‘fw(@):d- 48.3
,=2m | xds=2m | x\ o) x=2m | xy R y (48.3)

If A(u = u,) and B(u = u,)} are two points on the curve defined by the parametric equations
x = f(u), y = g(u) and if conditions of continuity are satisfied, the area of the surface generated
by revolving the arc AB about the x axis is given by

~ ~ sy ,ﬁ
SX—27TJAByds—27TL y\,(a) +(Ezi) du

and the area generated by revolving the arc AB about the y axis is given by

S, =2m Lgxds =27 f x\fim du

309
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Solved Problems

1. Find the area of the surface of revolution generated by revolving about the x axis the arc of
the parabola y* = 12x from x =0 to x = 3. (See Fig. 48-2.)
dyy _ y® +36

: . ) dy 6 (m)z
Solution using (48.1): Here dx "y and 1+ ax 3 Then

3 y' +36
N

k]
dx =2m L V12x + 36 dx = 24(2V2 — 1) 7 square units

d dx\* +y°
Solution using (48.2): ﬁ = % and 1+ (21;) = 26—3(% Hence,

5, =2 f ”36”2(1—[
=2m |y dy =

6
g (36 + yz)""z]" =24(2V2 - 1)}m square units

v
(3,6) )
Ok _ z OA z
Fig. 48-2 Fig. 48-3
2. Find the area of the surface of revolution generated by revolving about the y axis the arc of

x=y' fromy=0toy=1.
Using (48.3) and Fig. 48-3, we have

—_—

o & e TS 0o
S =27 X 1+ @ dy—21r0y 1 +9y y—_ﬁ(l+9y)

= 2—1% (10V10 - 1) square units

1

iy

3. Find the area of the surface of revolution generated by revolving about the x axis the arc of
y'+4x=2Inyfromy=1toy=3.
“#T)lff‘HyZ_f a2 .
Sx—27rJ: y\/l +(‘7y- dy =2m Y % dy == : (1+y)dy= 3 ™ square units

4. Find the area of the surface of revolution generated by revolving a loop of the curve
8a’y’ = a’x* — x* about the x axis. (See Fig. 48-4.)
d_y 2 ~ (a: _ 2x:)z _ (3a: _ 2/\’3)3
I+ (dx) =t 8a’(a’ — x*)  8a’(a’ - x")

d_y _ a’x - 2x°
dx 8a’y

Here and

- dy\’ “xVai-x* 3a7-2¢°
Hence .:2”fy 1+<—> dx=2—rrj = = dx
a \/ dx o 2aV2 2aVIVa - x*

: 2 l 2 .
= ;1%5 J:) (3a® - 2x%)x dx = n ma" square units
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Fig. 48-4

Find the area of the surface of revolution generated by revolving about the x axis the ellipse
x )’

—+==1

16

b 2 4 62 2
s,=21rf y\/1+(%) dx:21rJ:4y————Wd v ~3x dx

l
4y 27
4
. 4
=T [x—\z/j V64 - 3x° + 32 arcsin x—\/—?]4 :8ﬂ(1 + T\/_ 7") square units

8

Find the area of the surface of revolution generated by revolving about the x axis the
hypocycloid x=acos* 8, y=asin’d (a>0).
dx
The required surface is generated by revolving the arc from 6 =0 to 6 =m We have 6

. d .
—3acos’ @sin 6, d_i) = 3asin’ 6 cos 8, and

dx\’ dy\’ i .
Y 3acosfsin8dd 0< o< m 2
ds= (—- + —) d9={

\! dO) (do ~dacosfsinfdp w2<O8<nm

[recall that ds is intrinsically positive]. Then

f 72 . -
S.=2n f y 2 do= 27rJ (asin®@)(3acos 8 sin 8) 46 + 2 f (asin'8)(~3acos@sin @ 49) db
0 o

=202nw) L (a sin? 6)(3a cos 8 sin 8) df =

12a’n .
3 square units

Find the area of the surface of revolution generated by revolving about the x axis the cardioid
x=2cos 0 —cos 260, y=2sin 0 —sin 26.

The required surface is generated by revolving the arc from 8 =0 to 8 = m (Fig. 48-5). We have
dx dy (dx)‘ (dy) _ . .
0 - 2sin § + 2sin 26, 0 2cos 6 — 2 cos 26, and so ) T\ = B8(1-sin8sin28 -
cos 0 cos26)=8(1 -cos®). Then

s, = 2nL (2sin 6 — sin 20)(2V2V1 — cos 8 df)

" ‘ " 12 A
=8\/§1rL smB(l—cosB)"'de=[¥ m(1 - cos 8)° ] = :Trsquare units
"

0 T
6=nx 6=0
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b ,’__7—3
Derive: s,:2n£ y\,"1+(d—i) dx.

Let the arc AB be approximated by n chords, as in Fig. 48-1. The representative chord P, P,.
when revolved about the x axis, generates the frustum of a cone whose bases are of radii y, | and y,.
whose slant height is

K K f‘ Ay ; ; 3
P, Po= Va0 + A0 = {1+ (32) 8 = VIF[JGOF aux
k
(see Problem 1 of Chapter 47), and whose lateral area (circumference of midsection X slant height) is

Y vtV
2

Since f(x) is continuous, there exists at least one point X, on the arc P, | P, such that
fX) = 2y, )= &6 )+ f(E)]
Hence. S, =27f(X, )V + [f'(x,)]" A,x and. by the theorem of Bliss.

" n b
S = tim 2 8 = lim X 2nf(XOV1+ [ (x)] Ad,x =znf FEOVI+ [ (0] dx
noeed Xy nEE oL a

=27r£b y\lll + (Z—i) dx

S, =2m L+ (x)] Ax

Supplementary Problems

In Problems 9 to 18, find the area of the surface generated by revolving the given arc about the given
axis. (Answers arc in square units.)

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

y =mx from x =0 to x =2; x axis Ans. dmmV 1+ o
v=1ix'from x =0to x=3; x axis Ans. w(82V82-1)/9
y=1x"from x =010 x=3; y axis Ans. Aw[9VEZ +1n (9 + VED))
One loop of 8y° = x*(1 — x7); x axis Ans. iw

v=x%6+1/2x from x =1 to x =2, y axis Ans. (% +In2)=w

y=Inx from x=11to x=7; y axis Ans. [33VZ+1In(3+2V2)|w
One loop of 9y = x(3 - x)*: y axis Ans. 287V3/S

y = acosh x/a from x = ~a to x = a; x axis Ans. %n’az(e: —e 7 +4)

An arch of x = a(8 —sinf), y = a(l — cos 8); x axis Ans. 64ma*l3
x=¢e'cost. y=¢sintfromt=01t0r1=4m; x axis Ans. 2mV72(2e” +1)/5

Find the surface area of a zone cut from a sphere of radius r by two parallel planes, each at a distance la
from the center. Ans. 2mar square units

Find the surface area cut from a sphere of radius r by a circular cone of half angle a with its vertex at the
center of the sphere. Ans. 2mr*(1 — cos @) square units



Chapter 49

Centroids and Moments of Inertia of
Arcs and Surfaces of Revolution

CENTROID OF AN ARC. The coordinates (x, y) of the centroid of an arc AB of a plane curve of
equation F(x, y) =0 or x = f(u), y = g(u) satisfy the relations

xs=xLHds=LBxds and ys=yLBds=LByds

(See Problems 1 and 2.)

SECOND THEOREM OF PAPPUS. If an arc of a curve is revolved about an axis in its plane but
not crossing the arc, the area of the surface generated is equal to the product of the length of
the arc and the length of the path described by the centroid of the arc. (See Problem 3.)

MOMENTS OF INERTIA OF AN ARC. The moments of inertia with respect to the coordinate
axes of an arc AB of a curve (a piece of homogeneous fine wire, for example) are given by

1,=J y'ds  and 1‘,=f X ds
AB - AR

(See Problems 4 and 5.)

CENTROID OF A SURFACE OF REVOLUTION. The coordinate x of the centroid of the surface
generated by revolving an arc AB of a curve about the x axis satisfies the relation
xS =27 LB xy ds
MOMENT OF INERTIA OF A SURFACE OF REVOLUTION. The moment of inertia with respect
to the axis of rotation of the surface generated by revolving an arc AB of a curve about the x

axis is given by

= 2 — 3
IX—ZWLB)’()’dS) waABy ds

Solved Problems

1. Find the centroid of the first-quadrant arc of the circle x* + y* =25. (See Fig. 49-1.)
dy | _x (ﬂ)z PN SO N
Heredx— yand1+ p =l+== 2.Smces—z‘rr,wehave

y y
S [ (2] e [ s
27Ty~0y dx X—“‘ X =

313
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ol 5
Fig. 49-1 Fig. 49-2

Hence, y = 10/7. By symmetry, x = y and the coordinates of the centroid are (10/7, 10/7).

2. Find the centroid of a circular arc of radius r and central angle 26.
Take the arc as in Fig. 49-2, so that x is identiczal wigh the abscissa of the centroid of the upper half
dx
of the arc and y =0. Then dx =-Y and 1+ (—) = 53 For the upper half of the arc, s = r§ and
dy x dy x

~ rsing /—dx)Z jrsmo ..
r()x—L x\/1+(a; dy—rn dy =r"sin@

Then x = (rsin 8)/6. Thus, the centroid is on the bisecting radius at a distance {r sin 8) /8 from the center
of the circle.

3. Find the area of the surface generated by revolving the rectangle of dimensions a by b about
an axis that is ¢ units from the centroid (¢ > a, b).

The perimeter of the rectangle is 2(a + b), and the centroid describes a circle of radius ¢ (Fig. 49-3).
Then § =2(a + b)(2mc) = 4w(a + b)c square units by the second theorem of Pappus.

v
a
I b
r
¢ o z
. T ¥
Fig. 49-3 Fig. 49-4
4. Find the moment of inertia of the circumference of a circle with respect to a fixed diameter.
Take the circle as in Fig. 49-4, with the fixed diameter along the x axis. The required moment is four
. . dy  x ‘ ( dy)2 o N
times that of the first-quadrant arc. Since &y and \/1 *\Z) = 5 and s =27r, we have

1‘=4J'0 yzds=4J’U yzidx=4rﬁ) Vr®—x* dx

1 5 s 1 . " 1,
=4r[— xVr —x + z rarcsin 5] =qr'=2r%s
2 2 rlo 2

5. Find the moment of inertia with respect to the x axis of the hypocycloid x = asin’#,
3
y=acos 8.
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10.

11.

12.

B
N

Fig. 49-5

The required moment is four times that of the first-quadrant arc. We have dx/df = 3a sin’ 6 cos 6
and dy/d@ = —3a cos’ 9 sin 8, and

w2

1x=4jy2ds=1203f cos"ﬂsinf)cos@d@=%a3

0

Supplementary Problems

Find the centroid of

(a) The first-quadrant arc of x>"* + y** = a*'*, using s = 3a/2 Ans. (2al5,2a/5)

(b) The first-quadrant arc of the loop of 9y® = x(3 — x)’, using s = 2V3 Ans. (7/5,V3/4)
(c) The first arch of x = a(8 —sin 8), y = a(l — cos 8) Ans. (ma,4a/3)

(d) The first-quadrant arc of x =acos* 8, y =asin’ 6 Ans. same as (a)

Find the moment of inertia of the given arc with respect to the given line or lines:

(a) Loop of 9y = x(3 — x)*; x axis, y axis (Use s = 4V3.) Ans. 1, =85/35 1, =99s/35
(b) y =acosh (x/a) from x =0 to x = a; x axis Ans. (a°+ 45%)s
Find the centroid of a hemispherical surface. Ans. y=\ir

Find the centroid of the surface generated by revolving

(@) 4y + 3x =8 from x =0 to x =2 about the x axis Ans. x=4/5

(b) An arch of x =a(@ —sin 8), y = a(1 - cos 8) about the y axis Ans. y=4a/3

Use the second theorem of Pappus to obtain

(a) The centroid of the first-quadrant arc of a circle of radius r Ans. (2rim, 2rim)

(b) The area of the surface generated by revolving an equilateral triangle of side a about an axis that is ¢

units from its centroid. Ans. 6mac square units

Find the moment of inertia with respect to the axis of rotation of

(@) The spherical surface of radius r Ans. 35

(b) The lateral surface of a cone generated by revolving the line y = 2x from x = 0 to x = 2 about the x
axis Ans. 8§

Derive each of the formulas of this chapter.



Chapter 50

Plane Area and Centroid of an Area in
Polar Coordinates

THE PLANE AREA bounded by the curve p = f(8) and the radius vectors § = 6, and 8 = 6, is given
by

A=1 § 246
N P

When polar coordinates are involved, considerable care must be taken to determine the proper
limits of integration. This requires that, by taking advantage of any symmetry, the limits be
made as narrow as possible. (See Problems 1 to 7.)

CENTROID OF A PLANE AREA. The coordinates (x, y) of the centroid of a plane area bounded
by the curve p = f(8) and the radius vectors § = 8, and @ = 6, are given by

= & 2 % 3 % 2
Af=x(%J;l p d¢9)=§fs1 p*c059d0=%f8 $xp” do
1

6, L) L)
and A)7=)7<%J;l pzd())=§LI p3sin0d0=§J; 2yp® de

1

(See Problems 8 to 10.)

Solved Problems

6
1.  Derive A=} L p* db.
1
Let the angle BOC of Fig. 50-1 be divided into n parts by rays OP, = OB, OP,, OP,,...,OP, |,
OP_ = OC. The figure shows a representative slice P, _, OP, of central angle A, 8 and its approximating
circular sector R, _,OR, of radius p,, of central angle A, 6, and (see Problem 15(r) of Chapter 39) of area

P
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1p2 A0 =L[f(6,)) A, Hence, by the fundamental theorem,

" o 5
A= im 3 lfeFa0=4 [ @Fdo=L [ o as

Find the area bounded by the curve p’ = a’ cos 26.

From Fig. 50-2 we see that the required area consists of four equal pieces, one of which is swept
over as @ varies from 8 =0 to 8 = i 7. Thus,

mid /4
A= 4(% L p’ dO) =2a’ J; cos 28 df = [a” sin 20]]* = @’ square units

Fig. 50-2

Since portions of the required area lie in each of the quadrants, it might appear reasonable to use,
for the required area,

2n 2
%,L p’de= %azj; cos26 df =[la’sin28)3" =0

or 2(%[0 p2d0)=a2ﬁ’ cos 26 do =0

To see why these integrals give incorrect results, consider
" w4 In/a ”
2 — 2 2
%L p2d0=%ﬁ) pd(z?+§‘L/4 plde+ %Ji‘"“p do=‘'a"—ia"+ ia
On the intervals [0, w/4] and [37/4, 7], p = aVcos 28 is real; thus the first and third integrals give the
areas swept over as @ ranges over these intervals. But on the interval [7/4,37/4], p°<0 and p is

3m/4

imaginary. Thus, while } f a’ cos 20 df is a perfectly valid integral, it cannot be interpreted here as

w4

an area.

Find the area bounded by the three-leaved rose p = a cos 36.

The required area is six times the shaded area in Fig. 50-3, that is, the area swept over as 0 varies
from 0 to 7/6. Hence,

6, 6
A=6(%L p2d0)=3f0 a2c05230d8=3a2J’

Y 0

£

6
(L + ! cos68) df = L mwa’ square units

Find the area bounded by the limacon p =2 + cos # in Fig. 50-4.

The required area is twice that swept over as 8 varies from 0 to 7

1 ” m
A=2[5L (2+CO50)2d0]=L (4 +4cos 8 +cos” ) do

. 1 1 . ]"_917 )
[40+4sm0+20+4sm29 o = 3 square units
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C
X
o A B
Fig. 50-3 Fig. 50-4 Fig. 50-5
5. Find the area inside the cardioid p =1 + cos 6 and outside the circle p = 1.

In Fig. 50-5, area ABC = area OBC — area OAC is one-half the required area. Thus,
w2 wil
A=2[%J:) (l+c039)2d0]—2[§J; (1)%13}

w2
= 2cos 8 +cos’ 0) d6 =2+ L7 square units
, q

6. Find the area of each loop of p = ; + cos 6. (See Fig. 50-6.)
Larger loop: The required area is twice that swept over as 6 varies from 0 to 2%/3. Hence,

B 1 2n 1<1 )2 ]_J‘ZW/J(l , ) _‘7T 3\/§ )
A—Z[EL §+c050 de | = ) 3+c030+cos ¢ d0—5+—8—square units

Smaller loop: The required area is twice that swept over as 6 varies from 27/3 to 7. Hence.

o L[ (1 > ]_1_7_3\/3 .
A_Z[ZJ’:M 2+C°50 o =3~ g Square units

. ¥
\\\\\‘i
\@
\

\ x x
0

Fig. 50-6 Fig. 50-7
7. Find the area common to the circle p = 3 cos 8 and the cardioid p = 1 + cos 6.

Area OAB in Fig. 50-7 consists of two portions, one swept over by the radius vector p = 1 + cos 0 as
0 varies from 0 to 7/3, and the other swept over by p =3 cos € as 6 varies from /3 to 7/2. Hence

IR 2 ] [lj'mz 2 ]_517 .
A—Z[EJ; (1+cos@) do|+2 3.4 9cos“ 0 do | = 2 square units

] 8
8. Derive the formulas Ax = %J; p’ cos 8 db, Ay = ;L p’sin 0 df, where (x, y) are the
1

1

coordinates of the centroid of the plane area BOC of Fig. 50-1.
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Consider the representative approximating circular sector R, _,OR, and suppose, for convenience,
that OT, bisects the angle P, _,OP,. To approximate the centroid C,(x,, y,) of this sector, consider it
to be a true triangle. Then its centroid will lie on OT, at a distance $p, from O; thus, approximately,

£, =%p, cos8 =31f(8)cos8, and y,=3f(6,)sin6,
Now the first moment of the sector about the y axis is
x_k(%Pi 8,8)=3p, cos gk(lzpi a.0)= $[f(6,)) cos 6, 4,6

and, by the fundamental theorem,

8,
Ai= lim 2, %[f(ﬁk)]3c050kAk0=%J; pcos 6 do
At 4 h

It is left as an exercise to obtain the formula for Ay.
Note From Problem 8 of Chapter 42, the centroid of the sector R, _,OR, lies on OT, at a distance
2p,sin 3 A, 8

from O. You may wish to use this to derive the formulas.
3(34,0)

9.  Find the centroid of the area of the first-quadrant loop of the rose p =sin 26, shown in Fig.

50-8.

—IJ’WQ 2 _ll: 1 ) :Ifrfz—ﬂ

=5, sin 20d0-4 (/] 4sm46 o TR
S ’—T'—lf e edo—lf " gin® 26 odo—§fm2'3o ‘9 do
0 gX=3), P cos =3 sin cos =3, sin @cos

8 (7* 16
=3 e (1-cos® @) cos* Bsinf do = — 105

from which ¥=128/1057. By symmetry, y=128/105m. The coordinates of the centroid are
(128/1057, 128/1057).

wy

X
v 0
X
Ol /
Fig. 50-8 Fig. 50-9
. . 6 R
10.  Find the centroid of the first-quadrant area bounded by the parabola p = ———— in Fig.
1+ cos@
50-9.
B 1[ : 9 fnlz o 1
A—2 A _—(1+c050)2d0~2 , Sec 20d0
_9’”2( 21) , 1 _[ 1 1 31]"’2
—2L 1+tan20 sec20d0—9tan§0+§tan§00 =12
216cos 8 ™'? 2 cos’ (8/2) -1 iz 0 0
o wesg [l 0=9 ), <o), fosect § —sect )
© =3 (1+c050) =9 cos® 0/2 d8=9 0 2sec 27 %3 dé
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11.

12.

13.

14.

15.

PLANE AREA IN POLAR COORDINATES [CHAP. 50

= lS[tan & _1an® 9] -2

2 5 21o 5
_ 1™ 216sin0
and 12y = 3 O +coso) =27

Hence x = ¢ and y =}, and the centroid is (6/5,9/4).

Supplementary Problems

Find the area bounded by each of the following curves. (Answers are in square units.)

(a) p>=1+cos28 Ans. m (b) p* =a’sin (1 - cos @) Ans. a’
(¢) p=4cos @ Ans. 4xw (d) p=acos26 Ans. lnmd’
(e) p=4sin° 9 Ans. 6w (f) p=4(1 -sin 9) Ans. 24w
Find the area described in each of the following. (Answers are in square units.)

(a) Inside p = cos @ and outside p =1 - cos 8 Ans. (V3-17/3)

(b) Inside p = sin 8 and outside p =1 — cos @ Ans. (1-m/4)

(c) Between the inner and outer ovals of p° = a’(1 + sin 9) Ans. 4a°

(d) Between the loops of p =2 —4sin 8 Ans. 4(m+3V3)

(@) For the spiral of Archimedes, p = a6, show that the additional area swept over by the nth revolution,
for n>>2, is n — 1 times that added by the second revolution.

(b) For the equiangular spiral p = ae’®, show that the additional area swept over by the nth revolution,
for n>2, is ¢'” times that added by the previous revolution.

Find the centroids of the following areas:

(a) Right half of p = a(1 — sin @) Ans. (16a/9m, —5a/6)
(b) First-quadrant area of p =4 sin® 6 Ans. (128/63m,2048/3157)
(c) Upper half of p =2+ cos @ Ans. (17718, 80/27m)

. _ 16 + 57 10 )
(d) First-quadrant area of p =1+ cos 8 Ans. <16 T6n 8+3m

(32+ 1S 22 )

(e) First-quadrant area of Problem 5. Ans. B 6n 24537

Use the first theorem of Pappus to obtain the volume generated by revolving
(a) p = a(l —sin 8) about the 90° line Ans. 8ma’3 cubic units
(b} p =2+ cos 8 about the polar axis Ans. 407/3 cubic units



Chapter 51

Length and Centroid of an Arc and
Area of a Surface of Revolution
in Polar Coordinates

THE LENGTH OF THE ARC of the curve p = f(8) from 6 = 6, to 6 = 8, is given by

8 8 s (dp)z
s—‘les—j;1 Ve + Fr do
(See Problems 1 to 4.)

CENTROID OF AN ARC. The coordinates (x, y) of the centroid of the arc of the curve p = f(8)
from 6 = 6, to 6 = 8, satisfy the relations

L] 6 6
is=if ds=f pcos()ds=f xds
6 LY L}

_ (% 8 ) %
ys=yf9] ds—j;1 psml)ds—Ll yds
(See Problems 5 and 6.)

THE AREA OF THE SURFACE generated by revolving the arc of the curve p = f(8) from 6 = 6, to
6 = 6, about the polar axis is

8 8
Sx=2ﬂ'J; yds=27rj; psin 0 ds
1 1

and about the 90° line is

8 ]
Sy=27rj xds=277f p cos 8 ds
8 6

1

The limits of integration should be taken as narrowly as possible. (See Problems 7 to 10.)

Solved Problems

1. Find the length of the spiral p = ¢*® from 6 =0to § =27 (Fig. 51-1).
Here dp/d8 = 2¢*® and p® + (dp/d6)’ = Se*°. Hence

27 27
s =L Ve’ +(dp/de) dé = \GL e* d8 = 1V'5(e*” - 1) units

2. Find the length of the cardioid p = a(1 - cos 8).

321
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4.

LENGTH AND CENTROID OF AN ARC IN POLAR COORDINATES {CHAP. 51

Fig. 51-1 Fig. 51-2

The cardioid is+described as @ varies from 0 to 27 (see Fig. 51-2). Since p’ + (dp/d6)’ =
a*(1 — cos 8)* + (asin 8)° = 4a* sin” 16, we have

2m

2w
s =L p+ (dp/de)* do =2a J sin 18 d6 = 8a units

0

In this solution the instruction to take the limits of integration as narrow as possible has not been

followed, since the required length could be obtained as twice that described as 6 varies from 0 to .
However, see Problem 3 below.

Find the length of the cardioid p = a(1 — sin 8), shown in Fig. 51-3.

Here p° + (dp/d8)’ = a*(1 —sin 8)° + (—a cos )* = 2a’(sin 16 — cos 16)°. Following Problem 2, we
write

27 2n
s=J; Vp'+ (dp/d8) do =VZa , Gin 19 —cos 16) d8
=[2V2a(—cos 18 —sin 18)]5" = 4V2a units

The cardioids of the two problems differ only in their positions in the plane; hence their lengths
should agree. An explanation for the disagreement is to be found in a comparison of the two integrands
sin 36 and sin 18 ~ cos 16. The first is never negative, while the second is negative as 8 varies from 0 to
{7 and positive otherwise. By symmetry, the required length in this problem is twice that described as 8
varies from 7/2 to 37/2. It may be found as

In/2
5= 2\/§af ., (sin 38 —cos 18) df = [4V2a(- cos 48 - sin 16)]27;% = 8a units
v ]
z
(0]
30 x
Fig. 51-3 Fig. 51-4

Find the length of the curve p = a cos* 4.

The required length is twice that described as 8 varies from 0 to 2% in Fig. 51-4. We have
dp!d8 = —acos® 18sin {6 and p” + (dp/d8) = a® cos® }8. Hence, .

2m
s= 2<aJU cos® 16 do) =8a(sin 18 — | sin” 10]2" = £a units
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5. Find the centroid of the arc of the cardioid p = a(1 ~ cos 8). Refer to Problem 2 and Fig. 51-2.

By symmetry, y =0 and the abscissa of the centroid of the entire arc is the same as that for the
upper half. From Problem 2, half the length of the cardioid is 4a; hence,

4ax'=J; p cos p2+(dp/d0)2d0=2azj; (1 —cos 8) cos 8 sin 18 do

=4a2J; (—2cos* 10 +3cos’ 10— 1)sin 40 d0 = 4a’[# cos® 18 —2cos’ 10 + 2cos 10]; = ¥a’

and x = —4a/5. The coordinates of the centroid are (—4a/5,0).

6. Find the centroid of the arc of the circle p=2sin8 + 4cos 0 from § =0to 8= im.

We can see that the curve is a circle passing through the origin with center (2, 1) and radius V3 (see
Fig. 51-5) by noting that x* + y* = p* = 2p sin 8 + 4p cos 8 = 2y + 4x, which simplifies to (x —2)* + (y -
1)’ =5. Also, dp/df =2 cos 8 —4sin @ and p* + (dp/d8)* = 20. Since the radius is V3, s=V35x. Then

/2 wi2
\/§1rx'=L pcos8\p®+ (dplde) d0=4\/3L (sin 8 cos 6 + 2 cos’ ) d6
=4V5[Lsin® 6+ 6+ 1sin28))? =2V5(w+1)

w2 w2
and \/317)7=L psin8\p’ + (dp/df)’ do = 4V/3 L {sin® @ + 2 sin 8 cos 6) d
=4V35[10 — }sin20 +sin’ ]2 =4V5(inm + 1)

Hence x =2(w + 1)/m and y = (7w + 4)/7.

Fig. 51-5

7. Find the area of the surface generated by revolving the upper half of the cardioid
p = a(1 - cos #) about the polar axis.

From Problem 2, p® + (dp/d6)* = 4a® sin® }6. Then

S, = 21rL psin8Vp® + (dp/do) do = 4a27rj; (1 —cos 6) sin 8 sin 160 do

"

= l6az7rj; sin* 30 cos 10 d0 = ¥a’m square units

8. Find the area of the surface generated by revolving the lemniscate p° = a’ cos 20 about the
polar axis.
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Fig. 51-6

The required area is twice that generated by revolving the first-quadrant arc (see Fig. 51-6). Since
a’ sin 2(9)2 _a
T2

P

-

) (
2 ) = 42 -
p +(d0 a’ cos26 +

/4 2 w4
S, = 2(2#[ psiné a; dO) =4a’nr J; sin 6 df = 2a’m(2 — V2) square units

0

9.  Find the area of the surface generated by revolving a loop of the lemniscate p* = a’ cos 26
about the 90° line.

The required area is twice that generated by revolving the first-quadrant arc:

w4

w4 2
S, = 2(2”L p cos @ % do) = 4a21r] cos § dd = 2V2a’w square units

0

10. Use the second theorem of Pappus to find the centroid of the arc of the cardioid
p=a(l —cos@) from § =0to 6 =m.

If the arc is revolved about the polar axis, then according to the theorem, § = 2wys. Substituting
from Problems 2 and 7 yields 32a’w/5 = 2wy(4a), from which y = 4a/5. By Problem 5, ¥ = —4a/5 und
so the centroid has coordinates (—4a/5, 4a/5).

Supplementary Problems

11. Find the length of each of the following arcs.

(@) p=0°from6=0to §=2V3 Ans. 56/3 units
(b) p=¢*?from0=0to 6=8 Ans.  V3(e* - 1) units
(c) p=cos’ (8/2) Ans. 4 units
(d) p =sin’ (8/3) Ans. 3m/2 units
(e) p=cos‘(8/4) Ans. 16/3 units
Vait ol
(f) p=a/0 from (p,,8,) to (p,.6,) Ans. Va*+p -Va*+pi+aln p,_(a__gz___p;_) units
p(a+Va' +p))
, Vi-2 . 22+V3)
=2atand éf 8=0to 6=mu/3 Ans. 2 [~+ ———] i
(g) p =2atan 6 sin @ from o T ns. 2aV3 7 In VT3 | units

12, Find the centroid of the upper half of p =8 cos 6. Ans. (4,8/7)

13. For p = asin @ + b cos 6, show that s = #V @’ + b°. S, = aws, and 5, = brs.
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14.

15.

16.

17.

18.

19.

20.

Find the area of the surface generated by revolving p = 4 cos 8 about the polar axis.

Ans. 167 square units

Find the area of the surface generated by revolving each loop of p =sin® (§/3) about the 90° line.

Ans. /256 square units; 5137/256 square units

Find the area of the surface generated by revolving one loop of p° = cos 26 about the 90° line.

Ans.  2V2m square units

Show that when the two loops of p = cos” (8/4) are revolved about the polar axis, they generate equal
surface areas.

Find the centroid of the surface generated by revolving the right-hand loop of p* = a* cos 26 about the
polar axis. Ans. x=V2a(V2+1)/6

Find the area of the surface generated by revolving p = sin’ (8/2) about the line p = csc 4.

Ans. B square units

Derive the formulas of this chapter.



Chapter 52

Improper Integrals

b
THE DEFINITE INTEGRAL J f(x) dx is called an improper integral if either
1. The integrand f(x) has one or more points of discontinuity on the intervala=x = b, or

2. At least one of the limits of integration is infinite.

DISCONTINUOQUS INTEGRAND. If f(x) is continuous on the interval @ = x < b but is discontinu-
ous at x = b, we define

b b-e
j f(x) dx = lim f f(x) dx provided the limit exists
a e—0* Ja
If f(x) is continuous on the interval a < x = b but is discontinuous at x = a, we define
b b
j f(x) dx = lim j f(x) dx provided the limit exists
a e—0* Jate

If f(x) is continuous for all values of x on the interval a=x =5 except at x = ¢, where
a<c<b, we define

b c—€ b
j f(x) dx = lim f f(x) dx + lim j f(x) dx provided both limits exist
a e—0° Ja e’ =0t Jote
(See Problems 1 to 6.)
INFINITE LIMITS OF INTEGRATION. If f(x) is continuous on every interval a=x=U, we
define
+= 17
L flx) dx = Ulin)x L f(x) dx provided the limit exists
If f(x) is continuous on every interval u = x = b, we define
b b
f_x fx)dx = “l_i'rpxj; f(x) dx provided the limit exists
If f(x) is continuous, we define

+x u a
f L fx)dx = Ulin}:c L f(x) dx + lim_ f f(x) dx provided both limits exist
(See Problems 7 to 13))

Solved Problems

3
T dx . C g . .
1. Evaluate J . The integrand is discontinuous at x =3. We consider
0 V9 x
[P dx . x| . 3-€ . 1
lim = lim |arcsin 7 = lim arcsin =arcsinl= - w
e—0* JO 9 — x2 e—0* 3 ¢ e—0" 3 2

326
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3
Tood 1
Hence, f = -
0 Vo 2
P dx .
2 Show that is meaningless.
0 2—x

The integrand is discontinuous at x =2. We consider

) 2-¢ d).’ . [ 1 ]2»« ) ( 1 l)
lim = lim lnz_xo = lim ln;—lni

e—0* J0 2—Xx  or e—0"

The limit does not exist; so the integral is meaningless.

4
d
3. Show that f ——i—, is meaningless.
o (x-1)

The integrand is discontinuous at x =1, a value between the limits of integration 0 and 4 (see Fig.
52-1). We consider

i Tt dx L f dx __ . [ -1 ]'7‘+ i [ -1 ]
o -1) - Jiee (x—1)7° - lx =1l ,-l_r.r(:‘ x-1hse

e—n' JO (x €' —0" €e—0"
= lim (1—1)+ lim (—1+i)
e—0" VE e —0" 3 €

These limits do not exist.

Ol 1 2 34

Fig. 52-1

4 4
If the point of discontinuity is overlooked, we obtain J; . ixl)z = [_ p 1 : ]0 = - g This result is

absurd because 1/(x — 1)° is always positive.

4
dx
4. Evaluate f .
0 \/3 x—1

The integrand is discontinuous at x = 1. We consider

1-¢ 4 4

dx

lim

«e—0"

. . [é _ 2/3]1_( . [3 _ ::3]
+(!l—{rl:’ l+"\3/;—T _l]jor(l;" 2 (x 1) 0 +¢ll—on(:‘ E (x l) 1+e’
3

=‘1_i’r€|+%((—e)2"‘—l)+ lim %(&‘/‘—e'z"’)zi(\"/@—l)

e —0"

o dx 3 3
Hence, ,[) = —5(\/5—1).
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10.

11.
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w2

Show that J

sec x dx is meaningless.
)]

The integrand is discontinuous at x = { 7. We consider
T -«

lim sec x dx = lim [In(secx+tanx)](’,"‘= lim In[sec(jm —€) +tan (i7 — ¢€)]
«e—n"

e—0" JU «—0°

The limit does not exist, so the integral is meaningless.

Evaluat 2 cosx d
valuate X
VI1-sinx
The integrand is discontinuous at x = } 7. We consider
lim |7 S e fim [~2(1-sinx) ] =2 lim {~[1-sin (b7 - €)] + 1) =2
A VTzeinx T sinx)"; =2 lim {-{1-sin(3m e B
" cosx
H . —dx = 2.
ence T x
T dx
Evaluate J' — .
v x +4
The upper limit of integration is infinite. We consider
Iz 15 v x
. d . 1 1 . d
lim f ~,L = lim [‘ arctan - x] =1 from which J 5 X -7
Ceexdo X440 = L2 2710 4 o x+4 4

EvaluateJ e dx.

The lower limit of integration is infinite. We consider

0 i)
, [P lz‘]_l o b 1
“I_l.m‘ L ¢ dx—ullm*[2 I (1 “l_l.ml ;€= 5 0
Hence,j e dr =14
+x
Show that fl dx/+/x is meaningless.
[

The upper limit of integration is infinite. We consider Ulim . dx/\/Y=Ulim (2vE] =
lim (20/U - 2). The limit does not exist.

U+ =

T dx f” e' dx
-

Evaluatcf — = —.
x e te < ¥ 41

Both limits of integration are infinite. We consider

[ ! o a
e dx . e' dx . . .
lim J ——— + lim J ——— = lim |arctane’]] + lim [arctan ]
{om e ox e+ 1 u—~ x Ju g U - —x

0 et %

(il

lim (arctan e’ - @)+ lim (l# — arctan e*)
u—- - x

{mes

I

jm-ilm+inm-0=\7

+x
Evaluate f e 'sin xdx.
0



CHAP. 52] IMPROPER INTEGRALS 329

The upper limit of integration is infinite. We consider

1
lim e “sinxdx = Ulim [—ie *(sinx + cos x)]Y = Ulim [-ie “sinU +cosU)] + 4
—+ % ——

U—+x

+
As U— +%, e”Y—0 while sin u and cos u vary from 1 to —1. Hence, L e “sinxdx=1.

2
12.  Find the area between the curve y’ = 1—f? and its asymptotes. (See Fig. 52-2.)

1
x dx
The required area is A = 4J' —=——==, as can be seen from the approximating rectangle
0 Vi-x?

in the figure. Since the integrand is discontinuous at x = 1, we consider

1-¢€
. xdx . e
e Vioe s AT i (o V2em e =

The required area is 4(1) = 4 square units.

|

Fig. 52-2 Fig. 523

13.  Find the area lying to the right of x =3 and between the curve y = 21 1 and the x axis. (See
-
Fig. 52-3))

+x U
A=f B Jim A _

3

1

3 lim [l x—1]”_1 tim n 22— 1in]

o1 vl h 2o s s T2 g 3N

, 1-1/U 1
= lim 1

— (1 ) )
=5 am In 1+1/U+ 21112—( In2} square units

2

Supplementary Problems

14. Evaluate the integral on the left in each of the following:

(a) J; % =2 (b) J;) f‘_x—x (meaningless) (c) fo \/;bi—x =4
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15.

16.

17.

18.

19.

21.

22.
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4 dx ) fz dx i J’B dx 9
@ | G- (meaningless) @ |, Vel N =2
¢ dx k! ! dx . ] fl B
(8}, G-2)° 6V2 (h) f_l - (meaningless) (i) | Inxde=-1

(j) ,[) xlnxdx= -4

Find the area between the given curve and its asymptotes. (Answers are in square units.)

! ,_4- : 1
e O Y= @Yy Aw @ 4w () 4O 2n

(a) y* =

Evaluate the integral on the left in each of the following:

T odx Code J’” .
@ [ =i CY v @ |, eae=1
¢ dx . J'”‘ dx 1 J’“‘ e 2
(d) J:x @) (meaningless) (e) s Tmix 2 §2) . dx = S
+x e B +x dx B . ) J>() . B
(g)f,, xe' " dx=0 (h)jfx Trac 3 () o xedx=—1

(i) fo x’e “dx=6
Find the area between the given curve and its asymptote. (Answers are in square units.)

(b) y=

x*12

@ y=—7 (4+X—x2)2 (c) y=xe Ans. (a) 4m; (b) }; (c) 2

Find the area (@) under y =
x=2.

Ans. (a) i InS square units; (b) 1 — In 2 square units

and to the right of x = 3; (b) under y = . 5 and to the right of

1
-4 (x—-1)

Show that the following are meaningless: (a) the area under y = y) from x =2 to x = -2, (b) the

2
-x
area under xy =9 to the right of x = 1.

Show that the first-quadrant area under y = ¢~

* is 3 square unit, and the volume generated by revolving
the area about the x axis is {7 cubic units.

Show that when the portion R of the plane under xy =9 and to the right of x = 1 is revolved about the x
axis the volume generated is 817 cubic units but the area of the surface is infinite.

Find the length of the indicated arc:
a) 9y’ = x(3 - x)?, a loo b) x*? +y*"* = a>” entire length (&) 9y = x*(2x +3), a loo
y P P

Ans.  (a) 4V3 units; (b) 6a units; (c) 2V3 units

Find the moment of inertia of a circle of radius r with respect to a tangent. Ans. 3r’s/2

Show that L Py diverges for all values of p.

b
dx .
(a) Show that j B exists for p <1 and is meaningless for p = 1.

(b) Show that J; P exists for p > 1 and is meaningless for p < 1.



CHAP. 52] IMPROPER INTEGRALS 331

27.

Let f(x) < g(x) be defined and nonnegative everywhere on the intervala<=x < b, agad let llT flx)=

and lir't'\_ g(x) = +=. From Fig. 52-4, it appears reasonable to assume that (1) if f g(x) dx exists so also

b b b
does f f(x) dx and (2) if f f(x) dx does not exist neither does f g(x) dx.
1 a

As an example consnder

l—l/ix ] 1 does not exist, neither does the given integral.
1 1. f dx .
Now consnder A +\/_ .For0<x=1, P +\/§< vk Since , Vx CXists so also does the given
integral.
cos x
Determme whether or not each of the following exists: (a) f — (b) f dx;
© f cosx 0 x

Ans. (a) and (c) exist

A M Y

Fig. 52-4 Fig. 52-5

Let f(x) =g(x) be defined and nonnegative everywhere on the interval x =g while lim f(x)=

lirp g(x) = 0. From Fig. 52-5, it appears reasonable to assume that (1) if g(x) dx exists so also does

L f(x) dx and (2) if Jn f(x) dx does not exist neither does J”I g(x) dx.

Tde
As an example, consider [ .Forx=1, . Since f —3 €XIsts 50
Vx +2x + Vx +2x + x

also does the given integral.

Determme whether or not each of the following exists: (a) L %; ) fl
x +2x
©f 2=
x + x*

Ans. all exist




Chapter 53

Infinite Sequences and Series

AN INFINITE SEQUENCE {s,} =s5,,5,,53,...,5,,...is a function of n whose domain is the set of
positive integers. (See Chapter 6.)

A sequence {s,} is said to be bounded if there exzist r+1ulmbers Pand Qsuchthat P=s, = Q
for all values of n. For example, -, 6 nz , ... 1s bounded since, for all n,
1<s,=<2:but2,4,6,...,2n,...is not bounded.

A sequence {s,} is called nondecreasing if s, =s,<s;=---=s5 =---, and is called

nonincreasing if s, =5, =5, =---=s5, =---. For example, the sequences { } ~1479
16 "~ R 2 3 n - ' n+ 11 2 J 31v ‘{v
T and {2n —(—1)"}=3,3,7,7,... are nondecreasing; and the sequences i 1, 33
FRRRE and {—-n}=-1, -2, =3, —4, ... are nonincreasing.

A sequence {s,} is said to converge to the finite number s as limit ( lim s = s) if for any

positive number €, however small, there exists a positive integer m suchnth:n whenever n > m,
then s — s, | < e. If a sequence has a limit, it is called a convergent sequence; otherwise, it is a
divergent sequence. (See Problems 1 and 2.)

A sequence {s,} is said to diverge to >, and we write "qux s, =, if, for any positive
number M. however large, there exists a positive integer m such that, whenever n > m, then
Is,| > M. If we replace |s,|> M in this definition by 5, > M, we obtain the definition of the
expression lim s, = +x; and, if we replace |s,| > M by s, < — M, we obtain the definition of

n— %

lim s, = —x.

n—+ x

THEOREMS ON SEQUENCES

Theorem 53.1: Every bounded nondecreasing (nonincreasing) sequence is convergent.
A proof of this basic theorem is beyond the scope of this book.
Theorem 53.2: Every unbounded sequence is divergent.

(For a proof, see Problem 3.)
A number of the remaining theorems are merely restatements of those given in Chapter 7.

Theorem 53.3: A convergent (divergent) sequence remains convergent {divergent) after any or all of its
first 7 terms are altered.

Theorem 53.4: The limit of a convergent sequence is unique.

{For a proof, see Problem 4.)
For Theorems 33.5 to 53.8, assume lim s, = A and lim ¢, = B.

n- b x n—s +x

Theorem 53.5: lim (ks,)=k lim s, = kA, for k constant

no— e

Theorem 53.6: lim (s, *¢,)= lim s, = lim 1, =A* 8B

Theorem 53.7: lim (s,,)= lim s, lim f = AB
lim s,

Theorem 53.8: lim % =%*""— = é ift#0 and ¢, #0 for all n
n— o x f” lim {" B "

N—e e x

332
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Theorem 53.9: If {s,} is a sequence of nonzero terms and if lim s, =2, then lim 1/s, =0.
(For a proof, see Problem 5.)
Theorem 53.10: If a>1, then lim a" = +x.

(For a proof, see Problem 6.)

Theorem 53.11: If |r]< 1, then lim r"=0.

INFINITE SERIES. Let {5} be an infinite sequence. By the infinite series

Zs,,:zsn=sl+s2+s3+-~-+sn+--- (33.1)
n=1
we mean the following sequence {S,} of partial sums S _:
$,=5,, S,=5+s5,, S=s5,ts5,+5;,..., S, =5, +s,+s5,+ - +5s,,
The numbers s, s,, 55, ... are called the terms of the series L s,.
If lirp S, = §, a finite number, then the series (53.1) is said to converge and § is called its
n— > - . -
sum. If lim S does not exist, the series (53.1) is said to diverge. A series diverges either
n—+x -
because lim S = or because, as n increases, S, increases and decreases without approach-
ing a limit. An example of the latter is the oscillating series 1 —1+1~1---. Here, §, =1,
S,=0,8,=1,5,=0,.... (See Problems 7 and 8.)

From the theorems above, follow several more:

Theorem 53.12: A convergent (divergent) series remains convergent (divergent) after any or all of its
first n terms are altered.

(See Problem 9.)

Theorem 53.13: The sum of a convergent series is unique.

Theorem 53.14: If Is, converges to §, then I ks,, k being any constant, converges to kS. If £ s,
diverges, so also does L ks, if k #0.

Theorem 53.15: If L s, converges, then lim s, =0. (For a proof, see Problem 10.)

The converse is not true. For the harmonic series (Problem 7(c)), lim s, = 0 but the series
. n—+x
diverges.

Theorem 53.16: If lim s, #0, then L s, diverges. (See also Problem 11.)

The converse is not true; see Problem 7(c).

Let the sequence {s,} converge to s. Lay off on a number scale (Fig. 53-1) the points s,
s — €, 5 + €, where € is any small positive number. Now locate in order the points s, §,, 55, . . . .
The definition of convergence assures us that while the first m points may lie outside the
e-neighborhood of s, the point s, ,, and all subsequent points will lie within the neighborhood.

In Fig. 53-2, a rectangular coordinate system is used to illustrate the same idea. First draw
in the linesy =5,y =5 — €, and y = s + €, determining a band (shaded) of width 2¢. Now locate
in turn the points (1,s,), (2,s,), (3,5,),.... As before, the point (m+1,s_,;) and all
subsequent points lie within the band, for a suitably larger value of m.

It is important to note that only a finite number of points of a convergent sequence lie
outside an e-interval or e-band.

} Il &
T T o | T T >

L1 82 8m 8m+1t
I \
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v
8+e
s ————————————————
°
.
8—¢ e e
e 33
. £ 3 3
* E -
| L - z
0| )
Fig. 53-2

Solved Problems

7-~-(2n—1)}

. 1 o ) | L3
Use Theorem 53.1 to show that the sequences (a) {1 p and (b) 246820

are convergent.

1 1 1
=1--—4+———-=
n+1 n nn+1)
that is s, ,, =s,, the sequence is nondecreasing. Thus the sequence converges to

(a) The sequence is bounded because 0=s, =1 for all #. Since s, =1—

st —,
”n n(n + 1)
some number s < 1.

b) Th is bounded b se 0=5, <1 f Si a7t )
(h) 2ne;.lequence is bounded because O=s5 =1 for every n. Since s, , = 2:4-6-8---(2n +2)

EPUE A the sequence is nonincreasing. Thus the sequence converges to some number s =0,
n

n!

Use Theorem 53.2 to show that the sequence {?} is divergent.

Loont _(D@Y3) () _ 134 n_n i , :
Since 7= 2)22) (2 =353 3 > 5 for n >4, it follows that the t;le'rms of the sequence
are unbounded. Hence, by Theorem 53.2, the sequence diverges. In fact, lim —; = +=x.

n—tx 2"

Prove: Every unbounded sequence {s,} is divergent.

Suppose {s,} were convergent. Then for any positive €, however small, there would exist a positive
integer m such that whenever n > m, then |s, — s| < e. Since all but a finite number of the terms of the
sequence would lie within this interval, the sequence would be bounded. But this is contrary to the
hypothesis; hence the sequence is divergent.

Prove: The limit of a convergent sequence is unique.

Suppose the contrary, so that lim s,=s and lim s, =t where |s—(|>2e>0. Now the
n—+ x n—t x

e-neighborhoods of s and ¢ have two contradictory properties: (1) they have no points in common, and
(2) ecach contains all but a finite number of terms of the sequence. Thus s = and the limit is unique.

Prove: If {s } is a sequence of nonzero terms and if lim s, =%, then lim 1/s =0.
n—+ x

n—+x
Let € >0 be chosen. From lim s, ==, it follows that for any M > 1/e. there exists a positive

integer m such that whenever 7 >"m then |s,| > M > 1/e. For this m, [1/s,]| < 1/M < € whenever n > m;
hence, lim 175, =0.

n— 4z
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6. Prove: Ifa>1, then lim a" = +oo,

n—+x
Let M >0 be chosen. Suppose a =1+ b, for b >0; then
a*=(1+b)=1+nb+ nin 1)bz >1+nb>M
1(2)
when n > Mb. Thus an effective m is the largest integer in M/b.

7. Prove:
(a) The infinite arithmetic series a +(a+d)+(a+2d)+ -+ [a+ (n—1)d] + - diverges
when a° + d* > 0.
(b) T}[}e infinite geometric series a + ar + ar*+---+ar" ' +---, where a #0, converges to
1= if |7| <1 and diverges if |r] = 1.
(¢) The harmonic series 1 +1/2+1/3+1/4+---+1/n+--- diverges.

(a) Here S, = in[2a+(n—1)d] and lim S, =« unless a=d=0. Thus the series diverges when
@ +d*>0. T
a—ar” a
I-r 1-r 1-
If |r|>1, lim r”=c, and §, diverges.
If |r|=1, the series is either a+a+a++--ora—a+a—a+--- and diverges.

(c) When the partial sums are formed, it is found that $,>2,5,>25,8,>3,5,>35,85,>4,....
Thus the sequence of partial sums (and hence the series) is unbounded and diverges.

(b) Here §, = el If || <1, lim r"=0,and lim S =

n—+x l—r-

1 1 1
<3

. 1
oo _ —
and (b) the series T + + 32 +

o8]
|
w

1 1
8. Find S, and S f th ies - + =5 +
1ln , an or (a) the series 3 g3

" 5 G
1,1 D SR TR S R D
(5) $i=127177 S=rgptiatltataticlos
1 11 1 1
$=5t3g=1-3t3737173
S,=1-— a  s=im (1-—1-)-
n n+v1 0 T T )T

9. Theseriesl+ 3+ §+§+ &+ converges to 2. Examine the series that results when (a) its
first four terms are dropped; (b) the terms 8 + 4 + 2 are adjoined to the series.

() The series 5 + 35 + - is an infinite geometric series with r= 1. It converges to S=2—-(1+ } +
Leh= 1

(b) The series 8+4+2+1+ 3+ 4 +--- is an infinite geometric series with »= 1. It converges to
s=2+(8+4+2)=16.

10. Prove: If £5,=§, then lim s,=0.
Since £s,=S, lim §,=Sand lim §,_, =5 Nows,=S,-S5, ,; hence,

n—s+ = n—e+x

lim s, = llm 5,-S,_,)=1lim § - lim §,_ ,=5~-5S=0

n—s+x
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12.

13.

14,

15.

16.

17.

18.
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LAl

Show that the series (@) §+ i+ 3+ 3+ ---and ()5 + 3+ 1+ & + - diverge.

1 1

1 ;and lim s, = lim e fim = =2 %0,

(@) Here s, = 5 A T A e T 2

(b) Heres,,———zz:land lim 22:1= lim (1——1—>=1¢0.

n
n—+x n—stx 2

A series L s, converges to § as limit if the sequence {S,} of partial sums converges to S, that
is, if for any € >0, however small, there exists an integer m such that whenever n > m then
|S — §,| < €. Show that the series of Problem 8 converge by producing for each an effective m
for any given e.

In4de

1
<€, then 5" > — nin5> —In(4¢), and n > — s

YL ( _ L) !
@ Is-St={3-3-5)|" 775 e e’
m = greatest integer not greater than — ins is effective.

1)_
l(l n+1/i

teger not greater than Pl 1 is effective.

. Thus,

1 1
by |S-S5,|= <, then n +1>_and n> - — 1. Thus, m = greatest in-

n+1

Supplementary Problems

Determine for each sequence whether or not it is bounded, nonincreasing or nondecreasing, and
convergent or divergent.

(a) {n + %} (b) {( 1)’ } () {sin inm) (d) (Vn) (e) {110";} ) {Inn]

Ans. (a). (d), and (e) are unbounded; (a), (d), and (e) are nondecreasing, ( f) is nonincreasing, and
(b) and (c) are neither nonincreasing nor nondecreasing; (b) and ( f) are convergent

Show that lim ¥1/n” =1, for p > 0. (Hint: n*" =€'7'"""")

n—et x

For the sequence {n—i—l} verify that (a) the neighborhood |1 — 5| < 0.01 contains all but the first 99
terms of the sequence, (b) the sequence is bounded, and (¢) lim s =1.

Prove: If |r| <1, then lim r"=0.

Examine each of the following geometric series for convergence. If the series converges, find its sum.
(@ 1+1/2+1/4+1/8+--- (b) 4= 1+1/4—1/16+ - (€) 1+3/2+9/4+27/8+---

Ans. (a) $=2.(b) S="¢; (c) diverges

Find the sum of each of the following series.

n 1 1
@ T3 ®) % GrhE T (C)Z<;;;—m),p>0
@3 0% - NS i

©2 Gmmmn ® g
Ans. (@) 23 (b) 15 (o) 1 (@) §: (e) i (f) L (@) 55 (R) 5

n<n+°) TR
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19. Show that each of the following diverges.

(a) 3+5/2+7/13+9/4+--- (b) 2+ VI+VZ+V2+---
1
2 3 4 « 0
(c) ete/8+e/27+ /64 + (d) Z—\/ﬁ —

20. Prove: If lirp s, #0, then I s, diverges.

21. Prove that the series of Problem 18(a) to (d) converge by producing for each an effective positive integer
m such that for € >0, |S — §,| < € whenever n>m.

1 1
Ans. m = greatest integer not greater than (a) — ]nn_23€; (b) ﬁ ~ 55 (©) ViTe - 1;
(d) the positive oot of 2em* —2(1 —3e)m — (3 —4¢) =0



Chapter 54

Tests for the Convergence and Divergence
of Positive Series

SERIES OF POSITIVE TERMS. A series L s5,, all of whose terms are positive, is called a positive

series.
Theorem 54.1: A positive series I 5, is convergent if the sequence of partial sums {S,} is bounded.

This theorem follows from the fact that the sequence of partial sums of a positive series is
always nondecreasing.

Theorem 54.2 (the integral test): Let f(x) be a function such that f(n) is the general term s, of the series
Ls, of positive terms. If f(x) >0 and never increases on the interval x > £, where £ is some positive

integer, then the series £ s, converges or diverges according as ] f(x) dx exists or does not exist.

(See Problems 1 to S.)

Theorem 54.3 (the comparison test for convergence): A positive series L s, is convergent if each term
(perhaps, after a finite number) is less than or equal to the corresponding term of a known convergent
positive series L c,,.

Theorem 54.4 (the comparison test for divergence): A positive series L s, is divergent if each term
(perhaps, after a finite number) is equal to or greater than the corresponding term of a known divergent
positive series L 4.

(See Problems 6 to 11.)

sn*l

Theorem 54.5 (the ratio test): A positive series L s, converges if lim <1, and diverges if

net 541

. . . Spa . L "o .
lim >1 orif lim =+= If lim '; L =1 or if the limit does not exist, the test gives no
n—e+ % n—e ¢+ x n—+x

n
information about convergence or divergence.

(See Problems 12 to 18.)

Solved Problems

THE INTEGRAL TEST

1.

Prove the integral test: Let f(n) denote the general term s, of the positive series Ls, . If
f(x) > 0 and never increases on the interval x > £, where £ is a positive integer, then the series

L s, converges or diverges according as ) f(x) dx exists or does not exist.
In Fig. 54-1, the area under the curve y = f(x) from x = £ to x = n has been approximated by two

sets of rectangles having unit bases. Expressing the fact that the area under the curve lies between the
sum of the areas of the small rectangles and the sum of the areas of the large rectangles, we have

n-1

n
s“,+s£*2+~-+s"<J; f(x)yde<s +s,,  +-+s

338
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v
—---\\
x
0 4 Lo - n
+ + 4+ 4+ !
- w W ®
Fig. 54-1

Suppose lim L f(x)dJr=fé f(x)dx=A. Then
Seaqts,,to+s, <A

and S, =5, +s,,, + - +s5,is bounded and nondecreasing, as n increases. Thus, by Theorem 54.1, £ 5,
converges.

Now suppose lim L f(x) dx =£ f(x) dx does not exist. Then § =5, +s,  +---+5, 1is
unbounded and L s, diverges.

In Problems 2 to 5, examine the series for convergence, using the integral test.

1 1 1 1

2. — =t =t —= -
V3 V5 V7 V9
1 1
Here f(n) =5, = Vo so take f(x) = TSk On the interval x > 1, f(x) > 0 and decreases as
x increases. Take £ =1 and consider
+x (4
Y dx T v_ g _
Jo e = pim [ g = i VT = i VITT- 3=
The integral does not exist, so the series is divergent.
N UL A T
) 4 16 36 o4
1 1
Here f(n) =5, = —3, so we take f(x)= ypl On the interval x > 1, f(x)>0 and decreases as x
increases. We take £ =1 and consider
= _1_”dx1_[1]”1.(1)1
fl fyde=g Jim ), F=aSm vyl T m \mg Y=g
The integral exists, and the series is convergent.
4. sin7+ isiniw+isinig+ ksinla+--

1 1 T 1 .
Here f(n)=s, = o sin — 7, we take f(x) = Z sin _ . On the interval x >2, f(x) >0 and de-
creases as x increases. We take ¢ =2 and consider
+ u (%
. 1 .1 1 . 1 1
f f(x)dx = lim J’ ~sin - wdx=— lim [cos - 71] = —
2 U—s+=J2 x X T U—+=x X 2 m

The series converges.
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1 1 1 .
S. 1 + 5+ 37 + — + -, for p>0 (the p series).
1
Here f(n)=s_ = %; take f(x) = pry On the interval x > 1, f(x) >0 and decreases as x increases.
Take £ =1 and consider

xl—P]U 1 ( . - p )
fl f(x)dx = hm fl Ua«n[l—p l—m ul—'."}mu -1) forp=*1

1(. l_,,_)_I(. 1_)__1 .
lfp>1,-—_P lim U 1 =13 U&ngx TG 1 p_land the series converges.

1 Ut = ~p
Ifp=1, f f(x)dx = Ulim In U = += and the series diverges.
1 — +

If p<l1, l—é; ( lim U'™" - 1) = +x and the series diverges.

Ut =

THE COMPARISON TEST

The general term of a series that is being tested for convergence is compared with general terms
of known convergent and divergent series. The following series are useful as test series:

1. The geometric series a + ar + ar’ +--- +ar" + - -+, for a#0, which converges for 0<r <1
and diverges for r =1 ) )
2. The p series 1 + 75 + 3 + 77 + -4 P + - - -, which converges for p > 1 and diverges for

p=1
3. Each new series tested

In Problems 6 to 11, examine the series for convergence, using the comparison test.

1

6 ! + ! + L + 1 + + + -
2 5 10 17 n’+1
1 . .
The general term of the series is s, = e < —3; hence the given series is term by term less than
the p series 1 + 3 + - 3 + b =+ The test series is convergent because p =2, and so also is the

given series. (The integral test may be used here as well.)

1 l 1 1
7. —t—=+—=+—=+
V1 2 V3 Vi
1 . 1 1 . o
The general term of the series is Tr Since VA e the given series is term by term greater than
or equal to the harmonic series and is divergent. (The integral test may be used here as well.)

1 1 1
8 1+'§i+:i'+37+
U T | 1 . L
The general term of the series is R Since n! 22", = TR The given series is term by term
' N 1 :
less than or equal to the convergent geometric series 1+ > + 3 + g +--- and is convergent. (The
integral test cannot be used here.)
3 4 5
9. 2+ 5+ S+t3+-
2 3 4’
.. .n+1l  n+1 2n 2 ) .
The general term of the series is —5—. Since —5— =< — = —, the given series is term by term less
n n n n
. . 1 .
than or equal to twice the convergent p series 1 + 7 + 3 + e +--- and is convergent.
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1 1
10. 1+ =s+5+2+
2., 33 44
N 1 1 . L
The general term of the series is pcp Since P = T the given series is term by term less than or

. . 1 1 1 . . .
equal to the convergent geometric series 1 + 5 + = + - + - - and is convergent. (Also, the given series

is term by term less than or equal to the convergent p series with p =2.)

22+1 3%+l 47 +1
3 + 3 3
2°+1 3 +1 4" +1
4
The general term is n} : = rlz Hence the given series is term by term greater than or equal to the

1. 1+

n
harmonic series and is divergent.

THE RATIO TEST

s
12.  Prove the ratio test: A positive series L s, converges if lim —“— <1 and diverges if
. S et n
lim = >1.
n—+ x sn
. s . e
Suppose lim 2! = L < 1. Then for any r, where L < r < 1, there exists a positive integer m such
pp s y B
n—ix S, s .
that whenever n > m then s—” < r, that is,
n
sm0~
<r or I A
sm+l
Sm+3
T <r or Spme 3 <T80S, 0
sm‘l ’ B
Sm“vd 3
——<r or Spra TSy <77 8500
smo}
Thus each term of the series s,,,, +5,,,,*5,,., + - is less than or equal to the corresponding term of

the geometric series s +ors . +rs + - - - which converges since r <1. Hence L s, is convergent
by Theorem 54.3.

. Sps . i
Suppose lim p L= L >1 (or = +x). Then there exists a positive integer m such that whenever

mtl mil

s n .
n>m, =1 >1 Now s, , >s,, and {5, } does not converge to 0. Hence T s, diverges by Theorem
$

53.16.
LS, . . 1 .
Suppose lim '; ' = 1. An example is the p series > a7 P >(, for which
: Sn+1 _ . np _ . ( 1 )p _
Jim_ s, Jim (n+1)" dm \TrR) T

Since the series converges when p > 1 and diverges when p < 1, the test fails to indicate convergence or
divergence.

In Problems 13 to 23, examine the series for convergence, using the ratio test.

3.0 1.2, 3,40
. 37 TP T
n _n+tl s“,_n+13_"_n+1 R Y L B |
Heres,,—3,,.s,”,— 3,,“,and =3 5T 3n . Then ,.L"Px s, —"!lrpx i —3and

the series converges.
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14.

15.

16.

17.

18.

19.

TESTS FOR THE CONVERGENCE AND DIVERGENCE OF POSITIVE SERIES [CHAP. 54

ra2 3t 4.
303 3 3
! +1)! + +1
Here s, = 2, 5 =D g S o84 e tim 2220 = gim 2L — w0 and the
" 3" " 3 S” 3 n—s4+ o S" n—s+
series diverges.
1+1-2 l- 2-3+1-2~3-4+
1-3  1-3-5 3-5-7
_ n! _ (n+1)! S, n+l
Here 5. =135 @n-1n° % 135 @n+r1y M 5 “2,77 Then
. n+1 1 .
lim mil 3 and the series converges.
1 1 + 1 1 +.
2 2.2 3.2 4.2
_ _ 1 S,00 _ N n 1
Here sn—(—"ﬁ,—),s"+,—("+l)(2n,,),and s, ——————2("+1).Then "l_l.rpm————z( —h 2and the
series converges.
2+3 ! + 41 +§l+
24 34 44
n+1l 1 _n+21 Spe1 _ N(n+2) nn+2) 1
Here s, = Py DA e 4~,ad s, ————4(n+1)2.Then ,,1'.'?, 4(n+1)2—4and the
series converges.
22+1+3*+1+42+1+
2241 341 4+1
s =nz+l s _(n+l)z+1 S_,,:_l_(n+1)2+ln3+1
"o+ Lo n+ 1)’ +1 s, (m+1)’+1A7+1

. s,
Then Ilim

n—s+ x

L =1 and the test fails. (See Problem 12.)

n

Supplementary Problems
Verify that the integral test may be applied, and use the test to determine convergence or divergence:
1
(@) 2 ‘b>2n(n+1) (c) 2 () 2
2n
N5 ()2 hy 2 ———

(n+1)(n+2)(n+3)

nlnn m

(e @n+ 1)

Ans. (a), (c), (d), (e) divergent
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20. Determine the convergence or divergence of each series, using the comparison test:
1
© 25~
n+2 1 Inn
()En(nH) (N2 == (0% 5 (h) 2 —
: . Inn 1 ln n
P> 3n D2 o (k) 2 57— 0 25
n*+5 n + 1
(m) 2 3 m =i (0) 2= (P Z ——==
Ans.  (a), (b), (d), (f). (i), (k), (1) for p >2 convergent
21. Determine the convergence or divergence of each series, using the ratio test:
(n+D(n+2) 5" _n_ 3!
) X (6) 2 ©) 2 55 () X =
(n + 1)2n (g)n nl
) 2 () 2 nl3 (8) 2 5 (lnz)n ") 2 3y
(i) ¥ ——— NZ% k) 2 0S5
n(n n(n +2) n! 2n -1 3”
Ans.  (a), (b), (c), (), (f). (h), (I) convergent
22, Determine the convergence or divergence of each series:
(a)_l_ l+L+_l_+... (b)3+3 i+i+.
427100 13 v3 5 V3
1 1 1 1 1 1 1
@1+rs+grypt @3+33%556" 5678
311 9 2 3 4 5
@3+3+ 7345 D3rozsytos”
1 1 1 1 2 3 4 5
(g)§+2'22+3'21+4.24+- (h)T-E’Lz_-ZJ"ﬁ)'ﬂ“L'
L1 2 3 4 1 1 1
(l)§+?+F+;+ (;)1+§3+3m+?+
3 4 5 2 24 2-4.6 2:4-6-8
B2+5+ptm O 3+53* 58 58 111

Ans. (a), (d), (f). (8). (). (J), () convergent

23. Prove the comparison test for convergence. (Hint: If L ¢, = C, then {S,} is bounded.)

n

24. Prove the comparison test for divergence. (Hinr: > = > d>Mforn> m)
1 1

25, Pro;;e the polynomial test: 1f P(n) and Q(n) are polynomials of degree p and g, respectively, the series
n

2 Q(n)

converges if 4 > p + 1 and diverges if ¢ <p + 1. (Hinr: Compare with 1/n?77)

26. Use the polynomial test to determine the convergence or divergence of each series:

1
+o— (b)

+o (@
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27.

TESTS FOR THE CONVERGENCE AND DIVERGENCE OF POSITIVE SERIES [CHAP. 54

Lo, .2 3 4 (f)1+1+1+1
22 -1 32-2  4%- 52_4 AR R T S P ERR S

3
2 3 4 5
(8) 13 + 3.3 + 35 + i +o Ans. (a), (c), (d), (f) convergent

Prove the root test: A positive series L s, converges if lim /5, <1 and diverges if lim /5, > 1. The
test fails if lim v/ 5, =1. (Hint: If lim \"/s,, < 1, then \"/s,, <r<lforn>m, and s, <r")

2" —~ 1
Use the root test to determine the convergence or divergence of (a) 2 Pk ;(b) Z ,, ; (©) Z :
(d) z ( ) Ans. all convergent



Chapter 55

Series with Negative Terms

A SERIES having only negative terms may be treated as the negative of a positive series.

ALTERNATING SERIES. A series whose terms are alternately positive and negative. as
21" =5 m st sy m s, b (=D (55.1)
in which each s, is positive, is called an alternating series.

Theorem 55.1: An alternating series (55.1) converges if (1) 5, >s,,, for every value of n, and (2)
lim s, =0.

n—s+ x

(See Problems 1 and 2.)

ABSOLUTE CONVERGENCE. A series Ls,=s,+s,+---+5s,+ -, with mixed (positive and
negative) terms, is called absolutely convergent if Tls,|=|s,|+[s;| +[s3[+---+]s, |+ -
converges.

Every convergent positive series is absolutely convergent. Every absolutely convergent
series is convergent. (For a proof, see Problem 3.)

CONDITIONAL CONVERGENCE. If I s, converges while £ |s | diverges, L s, is called condition-
ally convergent.
As an example, the series 1 — } + 3 — 4 -+ is conditionally convergent since it converges
while 1+ 3 + 1 + 4 + - diverges.

RATIO TEST FOR ABSOLUTE CONVERGENCE. A series L s, with mixed terms is absolutely
Sy Lo . Sp+ L .
convergent if lir:rrl };—l( <1 and is divergent if lim ‘—" > 1. If the limit is 1, the test gives

n—+x
n

no information. (See Problems 4 to 12.)

Solved Problems

1. Prove: An alternating series s, — s, + 5, — s, - - - converges if (1) s, > s, for every value of
n, and (2) lim s, =0.
n—+ x

Consider the partial sum §,,, =5, — s, + s, — s, -- + 5, _, — 5,,.. which may be grouped as follows:
Spm = (5, =s)+(s3=s) 4+ (s, , 52m) ()
or Som =810 78) = = Sz ™ S20 1) T Sz (2)

By hypothesis, s, >, ,,
Thus, the sequence (S,

2m

so that 5, —s, ., >0. Hence, by (1), 0< 8§, <S and, by (2). §,,, <s,.
} is increasing and bounded and, therefore. converges to a limit L <s,.

2 - 2

345
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Consider next the partial sum S, ,, =S, +5,,,,,; we have

lim S, ., = Iin) Som lin} Symey =L +0=1L
m—+ ® m—+x

m—s+®

Thus lim S, = L and the series converges.

n—+ x

Show that the following alternating series converge.

1 1 1
ADl-=+—=~——.--:
(@) YR
1 . .
5, = " and s,,, = —————(n " l)z; thens, >s, ., "l_l’rpnn 5, =0, and the series converges.
() b=d+dh—b-
. d ——L—'thcn >s lim —1-—0 and the serie
Sa = 2T and s, = iy +1 Su>Spers M , series converges.
1 2 3 4
c —_ __+____.-.'
© ;- 5*5

. . . n . 1 o
The series converges since s, >s,,, and lim pi lim — =0, by I'Hospital’s rule.
A+ o

n—+ x> e"
Prove: Every absolutely convergent series is convergent.

Let Es,,=s,+s2+s3+s4+~'+s,,+~-

having both positive and negative terms, be the given series whose corresponding convergent positive
series is

Zlsa=lsi #lsal +lsgl +- +ls |+
For all n, 0=<s, +|s5,|=<2|s,|. Since L|s,| converges, so does L2ls,|. By the comparison test,

(s, +|s,|) also converges. Hence, Ls, =L (s, +|s,|) — L |s,| converges, since the difference of two
convergent series is convergent.

ABSOLUTE AND CONDITIONAL CONVERGENCE

In Problems 4 to 12, examine the convergent series for absolute or conditional convergence.

NEUE U

2 4 8

The series 1 + % + % + % + -, obtained by making all the terms positive, is convergent, being a
geometric series with r = 3. Thus the given series is absolutely convergent.
2,3 4

3 3 3

The series 1 + % + % + % + - - -, obtained by making all the terms positive, is convergent by the

ratio test. Thus the given series is absolutely convergent.

1,1 1
V2 V3 V4

1 1
. The series 1 + 7 + % + v + - - - diverges, being a p series with p = } < 1. Thus the given series
is conditionally convergent.

|
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10.

11.

12.

13.

121,31 41
2 32 43 54
. 21 31 41 L

The series 1+ 3 + 173 + § g + +++ converges, since it is term by term less than or equal to
the p series with p = 3. Thus the given series is absolutely convergent.
2 31,41 51
3 42 53 64

2 31 41 51 - .

The series 3 3 + 23 + 33 + z Z + -+ is divergent, being term by term greater than one-half the
harmonic series. Thus the given series is conditionally convergent.

2 2 7
2 _—— 4 — = — ...

st m

23 25 27 22n~l

The series 2+ 37 3 y + 7 +or 4 (Z—n_:l—)‘_ + .-+ is convergent (by the ratio test), and the given
series is absolutely convergent.
1 4 + 9 16
2 22+1 3+1 4 +1

The series  + =4+ =2+ 10 L P diver nt (by the integral test), and

27241 P+l £ +1 w1 ergent (by the integral test), an

the given series is conditionally convergent.

12 , 3 __4 .
2 22+1 3F+1 4+1
The seriesl+ 2 + 3 + 4 bt o s convergent, being term by term less
2 2+1 3+1 4+1 *+1 ’

than the p series for p = 2. Thus the given series is absolutely convergent.

S 11 1
1-22-223-2° 4-2°
The series — L 1 + 1 + ! + - - - is convergent, being term by term less th 1t
12 2_22 32T i ergent, being te y term less than or equal to
. . 1.1 1 . L
the convergent geometric series 5 + n + g + % +---. Thus the given series is absolutely convergent.

Supplementary Problems

Examine each of the following alternating series for convergence or divergence.

) T C PSS
3 (-1t 2(1)"‘ Syt L
@) (o) N g

Ans. (a), (b), (d), (e) convergent



348 SERIES WITH NEGATIVE TERMS [CHAP. 55

4, Examine each of the following for conditional or absolute convergence.

(o) 1)"” 1y G20 cu
E b 2 n(n+1) 9 2 (n+1)* @2 ‘+2
(—1) (G, i _n o _n?
(© 25,7 NZ G D2 =g WECEYT

Ans.  (a), (), (4), (f), (h) absolutely convergent, the others conditionally convergent.



Chapter 56

Computations with Series

OPERATIONS ON SERIES. Let

s, =5, F S, st (56.1)
be a given series, and let I 7, be obtained from it by the insertion of parentheses. For example,
one possibility is

zf,,=(s| F5,)H (5345, F85) (St 8) F (s tsg+s,0+s, )+

Theorem 56.1: Any series obtained from a convergent series by the insertion of parentheses converges
to the same sum as the original series.

Theorem 56.2: A scries obtained from a divergent positive scries by the insertion of parentheses
diverges. but one obtained from a divergent series with mixed terms may or may not diverge.

(Sec Problem 1))
Now let £ u, be obtained from (56.1) by a reordering of the terms, for example, as

DU, =5, F Sy sat s, s, Fst

Theorem 56.3: Any series obtained from an absolutely convergent series by a reordering of the terms
converges absolutely to the same sum as the original series.

Theorem 56.4: The terms of a conditionally convergent series can be rearranged to give either a
divergent series or a convergent series whose sum is a preassigned number.

2n + 1

EXAMPLE 1: The series ¥ (—1)" ( ) diverges. (Why?) When grouped as

(z_§)+(z_2)+(H_l§)+_"+<4m~l_4m+l)+

T2 3 4 5 6 2m -1 2m

the series converges. since the general term ( m-l _Am+l ) = ——i*—— L
2m -1 2m dm - -2m m”

1 1 !

— e — - — 4 . " 1
a -1 2n is convergent, and it may be grouped

EXAMPLE 2: The series | - & + % -

2
Z!S(l‘l)"'(l—l)"'""*'( ! _i)+...l ield the co t seri 1+i+l+...—
> 373 =1 3n o yie nvcrgenlsencls2 }2 13()1
When it is arranged in the pattern + - -+ — — .-  we have (1————)+ ————— +-- 4+
(T L SRR
2n-1 4n-2 4n T4 24T 60 2

ADDITION, SUBTRACTION, AND MULTIPLICATION. If Is, and X ¢, are any two series, their

sum series L u, . their difference series L v,, and their product series . w_ are defined as
Du, =2 (s, +1,)
2u,=2,-1,)
> w, =58t (st +s,0)H (st 50, + s 0)+

Theorem 56.5: If s, converges to § and I ¢, converges to T, then ¥ (5, +¢,) converges to S + T and
Y(s,—1,)converges to S —T. If £ and Lt are both absolutely convergent. so also are £ (s, *1,).

349
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(See Problems 2 and 3.)

Theorem 56.6: If L s, and I ¢, converge, their product series £ w, may or may not converge. If £ s and
L1, converge and at least one of them is absolutely convergent, then £ w, converges to ST. If £ s, and
L1, are absolutely convergent, so also is £ w_.

COMPUTATIONS WITH SERIES. The sum of a convergent series can be obtained readily

provided the nth partial sum can be expressed as a function of n; for example, any convergent
geometric series. On the other hand, any partial sum of a convergent series may be taken as an
approximation of the sum of the series. If the approximation §, of § is to be useful, information
concerning the possible size of |S, — S| must be known.

For a convergent series L s, with sum §, we write

§=S,+R,

where R, called the remainder after n terms, is the error introduced by using S, , the nth partial
sum, instead of the true sum S. The theorems below give approximations of this error in the
form R, < a for positive series and |R,| < a for series with mixed terms.

For a convergent alternating series s, — s, + 5, — s, + -,

RZm = Somat " Samar T Samey T Samea T <S8
and Rt = " Some2 t Sames  Somea T Sames = > TS0
by Problem 1 of Chapter 55. Thus, we have:

Theorem 56.7: For a convergent alternating series, (R,[<s,,,; moreover, R, is positive when n is
even, and R, is negative when n is odd.

(See Problem 4.)

ar”
1-r
Theorem 56.9: If the positive series ¥ s, converges by the integral test, then

Theorem 56.8: For the convergent geometric series L ar” ', |R,| =

R, < f fix) dx
(See Problems 5 to 7.)

Theorem 56.10: If L ¢ is a known convergent positive series, and if for the positive series Zs,. s, =¢
for every value of n>n,, then

n

+x
RHSZC’ for n>n,
n+l

(See Problems 8 to 10.)

Solved Problems

Let s,=s5,+s,+s,+---+s,+- - be a given positive series, and let L ¢, =(s, +s5,)+
§3+ (s, +s5)+s,+ - be obtained from it by the insertion of parentheses according to the

pattern 2, 1, 2, 1, 2, 1,.. .. Discuss the convergence or divergence of L ¢,.
For the partial sums of L 1,, we have T, = S,, T,=S8,. T,=8,,T,=S,,.... If L5, convergesto §
so also does Lt , since lim T,= lim §,. If Es, diverges, {§,} is unbounded and so also is {7,};

H—s+ x n—+x

hence ¥ ¢, diverges.
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Sh tht3+1+32+23+33+33+ +3"+n3+ nverges

o a -+ - converges.

w 3.1 3,57 3.3 3" 3 g
. "+ n? 1 . o , ! 1 :
Since 3,,—:3— = i, + 3 the given series is the sum of the two series > e and 2, 3 Each is

convergent; hence by Theorem 56.5 the given series converges.

n

3"+
Show that the series —-T,? diverges,

= E( ,,) converges. Then, since E converges, so also (by Theorem

56.5) does E But this is false; hence the given series dlverges.

(a) Estimate the error when Es, =1— § +{ — & --- is approximated by its first 10 terms.
() How many terms must be used to compute the value of the series with allowable error
0.05?

(a) This is a convergent alternating series. The error R, <s,, = 1/11° =0.0083.

1 >
(b) Since |R,|<s,,,.sets,,, = ——= =0.05. Then (n + 1)’ =20 and n = 3.5. Hence four terms are

(n+1)

required.

Establish R <j f(x) dx as given in Theorem 56.9.

In Fig. 54-1, let the approximation (by the smaller rectangles) of the area under the curve be
extended to the right of x = n. Then

Rn:5n+1+sn+z+5n+3+"'<f flx) dx

Estimate the error when E — is approximated by its first 10 terms.
4n

This series converges by the integral test (Problem 3 of Chapter 54). Then

1 ”dx_l, “de 1 (1 l)_l_
Rm<4fm x2_4ul—-+xfm;2_—4.,l_l.q]1 ;+E —5—0.025

Estimate the number of terms necessary to compute

This series converges by comparison with z o which, in turn, converges by the integral test. Then
+ x d 1
R, <f x = Settmg =0.00001, we ﬁnd n*=25000 and n=12.6. Thus 13 terms are

nccessary

an*

1
Estimate the error when E P is approximated by its first 12 terms.

This senes was found to converge (in Problem 8 of Chapter 54) by comparison with the geometric

series 2 . Thus the error R, for the given series is less than the error R, for the geometric series:
/)1
that is, RI <R, = ( ) =37 = 0.0005. .
—172 27 (1/4)" 1

= — - = 0.000 000 08.

; hence, R|2<1——]/4 3(4“)

We can do better! For n > 6, o< FCRIE
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11.

12.

13.

14.

15.

16.
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Estimate the error when L5, = 2 + 1(2)" + 1(2)* + {(2)* + - - - is approximated by its first 10
terms.

. . . . 2 . . .
The series converges by the ratio test, since et in : I and r = "l_l.l‘f\: s;—"‘ = % Now f’;—"' < %
for every value of n, so that the given series is term by term less than or equal to the geometric series
l (2)11 <2>12 (2)13 (2/3)11 211
" <t{z) +{z) +{3) +- =" =="%=
Ls,rr Hence R, 3 3 3 =373 310 0.04.

A better approximation may be obtamed by noung that after the tenth term the given series is term

2 not
by term less than 2, s ”(i) —Z ( ) (2) 2 =0.004.

3 T 11-3°
. 1 2 3 4 . ) .
Estimate the error when 2, S, 3 + 3 + 7 + 7 + - -+ is approximated by its first 10 terms.
: : : srn-l 1 + 1 +l 1
The series converges by the ratio test, since S T3 n and r= 3 Here 22 T 3 for every

S, .
value of n, and we cannot use the geometric series L ()" as comparison series. However, { } is a
4 n
nonincreasing sequence, and S—” =1’ hence after the first 10 terms the given series is term by term less
1 4 \"° 1t 4 \"" 1 4\"" 1
than or equal to the geometric series > s,,( ) = =7 (1—1) . Then R, <2 3T (——) =

11 3 1
=3 = 0.000097 58 < 0.0001.

Supplementary Problems

Rearrange the terms of 1 ~ } + {1 — {--- to produce a convergent series whose sum is (a) 1, (b) —2.

(Hint: In (a), write the first 2, positive terms until their sum first exceeds 1, then follow with the first
n, negative terms until the sum first falls below 1, and repeat.)

Can the sum of two divergent series converge? Give an example.
~1
Ans. yes; a trivial example is Z -+ '

(@) Estimate the error when the series 2 (—_—)—1—

(b) Estimate the number of terms necessary to compute the sum if the allowable error is 0.000 005.

Ans. (a) 0.01; (b) 100,000

is approximated by its first 50 terms.

t
(a) Estimate the error when > ( ) is approximated by its first eight terms.
(b) Estimate the number of terms necessary to compute the sum if the allowable error is 0.00005.

Ans.  (a) 0.0002; (b) 11

(a) Estimate the error when the geometric series > s approximated by its first six terms.
(b) How many terms are necessary to compute the sum if the allowable error is 0.00005?

Ans.  (a) 0.05; (b) 16
Prove: If the positive series L 5, converges by comparison with the geometric series L 7", for 0<r <1,
"+l

then R, < .
l-r
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17.

18.

19.

Estlmate the error when (a) > +1 +1 (< > 3%) is approximated by its first six terms; (b)
2557 3+ 4"

Ans. () 0.0007; (b) 0.00009

< E is approximated by its first six terms.

The series (a) Z and (b) 2 s 1)3
each is approxlmated by its first elght terms. Ans. (a) 0.00009; (b) 0.00007

———— are convergent by the ratio test. Estimate the error when

1
(p-1n*!

For the convergent p series, show that R, < . (Hint: See Problem 7.)

1
The series (a) > pE and (b) 2 are convergent by comparison with appropriate p series.

Estimate the error when each is approxnmated by its first six terms, and find the number of terms needed
for the sum if the allowable error is 0.005. Ans. (a) 0.014, 10 terms; (b) 0.002, S terms



Chapter 57

Power Series

AN INFINITE SERIES of the form

+x
dexX = cx=cptox et tox (57.1)
i=0
where the ¢’s are constants, is called a power series in x. Similarly, an infinite series of the form
+x ‘
dcx—a)=2clx—a)=co+c(x—a)+cy(x—a)Y+ -+, (x—a)+--
(=0

' (57.2)

is called a power series in (x — a).
For any given value of x, both (57.1) and (57.2) become infinite series of constant terms
and (see Chapters 54 and 55) either converge or diverge.

INTERVAL OF CONVERGENCE. The totality of values of x for which a power series converges is
called its interval of convergence. Clearly, (57.1) converges for x =0 and (57.2) converges for
x = a. If there are other values of x for which a power series (57.1) or (57.2) converges, then it
converges either for all values of x or for all values of x on some finite interval (closed, open, or
half-open) having as midpoint x =0 for (57.1) or x = a for (57.2).
The interval of convergence will be found here by using the ratio test for absolute
convergence supplemented by other tests of Chapters 54 and 55 at the endpoints. (See
Problems 1 to 9.)

CONVERGENCE AND UNIFORM CONVERGENCE. The discussion and theorems given below
involve series of the type of (57.1) but apply equally after only minor changes to series of the
type of (57.2).
Consider the power series (57.1). Denote by
n~-1

2 -
S,0)=2 cx'=cotex+exittc, 1!
=0

the nth partial sum and by

+x

+2

Rn(x)= Z Ckxk=cnx"+cn+lxn*l+Cn+2'xn +-
k=n
the remainder after n terms. Then
2 cx'=5,(x)+ R, (x) (57.3)

If for x=1x,, I cx' converges to S(x,), a finite number, then lim §, (x,)=S8(x,). Since
[S(xy) = S, (x0)] = [R,,(xy)], "l_i.'l]x [8(xy) = S, (x0)] = nl_i’r&c [R,.(xo)l =0. Thus, £ c;x’ converges
for x = x, if for any positive €, however small, there exists a positive integer m such that
whenever n > m then |R (x,)| <e.

Note that here m depends not only upon € (see Problem 12 of Chapter 53) but also upon
the choice x, of x. (See Problem 10.)

In Problem 11, we prove the first of our theorems:

354
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Theorem 57.1: 1If £ c,x’ converges for x = x,, and if |x,| <|x,|. then the series converges absolutely for
x=1x,.

Suppose now that (57.1) converges absolutely, that is, T |c,x'| converges, for all values of x
such that |x| < P. Choose a value of x, either x = p or x = —p, so that |x| = p < P. Since (57.1)
converges for |x| = p, it follows that for any € >0, however small, there exists a positive integer

m such that whenever n>m, then |R,(p)| = > |c,p*| < e. Now let x vary over the interval
k=n
|x| < p. Every term of [R,(x)| = 2., |c,x*| has its maximum value at |x| = p; hence |R,(x)| has
its maximum value on the interval |x| < p when |x| = p.
Let € be chosen and m be found when |x| = p. Then for this € and m, |R,(x)| < € for all x
such that [x| =< p; that is, m depends on € and p but not on the choice x, of x on the interval

|x] = p as in ordinary convergence. We say that (57.1) is uniformly convergent on the interval
|x| = p. We have proved

Theorem 5§7.2: If L c.x' converges absolutely for |x| < P, then it converges uniformly for |x|<p < P.

As an example, the series £ (—1)'x' is convergent for |x|<1. By Theorem 57.1 it is
absolutely convergent for |x|=0.99, and by Theorem 57.2 it is uniformly convergent for
lx| =0.9.

Theorem 57.3: A power series represents a continuous function f(x) within the interval of convergence
of the series.

(For a proof, see Problem 12.)

Theorem 57.4: If T ¢ x' converges to the function f(x) on an interval /, and if a and b are within the
interval, then

J;b fx)dx = g;f: c.x' dx

b b b b
=j codx+j clxdx+f czxzdx+-'-+f c, x"tdx+---
a a

a a

(For a proof, see Problem 13.)

Theorem 57.5: If L c.x’ converges to f(x) on an interval /, then the indefinite integral EOLI cx' dx
converges to g(x) = A f(x) dx for all x within the interval [.

Theorem 57.6: If L c.x’ converges to the function f(x) on the interval /, then the term-by-term
derivative of the series, >, % (c,x') converges to f'(x) for all x within the interval /.

Theorem 57.7: The representation of a function f(x) in powers of x is unique.

Solved Problems

1. Find the interval of convergence of x — x* + 1x* - Ix*... ¢ -n! ! x"e
n

The ratio test yields
sn +1 "

5

n

. . n .
"l_l’l'l’lx —nl—l. n—f-],\'7 _Ix'nl_l.Txn+1_|x'

+
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The series converges absolutely for |x| <1 and diverges for |x| > 1. Individual tests must be made at the
endpoints x =1 and x = — 1:

For x = 1, the series becomes 1 — 3 + 1 — { --- and is conditionally convergent.

For x = —1, the series becomes ~(1+ 1 + 1 + § +---) and is divergent.

Thus the given series converges on the interval —1<x=<1.

2 3 n

. . X x
Find the interval of convergence of 1+ x+ —— + =+ -+ — +---,
213 n!
H lim |2=1| = XA =0
cre n—ir{lw S, - ,.-.n+1m (n+1) x" =X n—lon n+1
The given series converges for all values of x.
: , x=2  (x-2° (x-2)° x—2)
Find the interval of convergence of 1 + ( 5 ) + ( 3 ) +-0+ g——n—)— + -
. (x - 2)n+l n _ _ . n _
Here Jdm | oy T e = -2

The series converges absolutely for {x —2{ <1 or 1 < x <3 and diverges for |x —2|>1 or for x <1 and
x>3.

For x =1 the series becomes —1+ 3 — 1+ —--- and for x =3 it becomes 1 + } + 1 + 1 +---
The first converges, and the second diverges. Thus the given series converges on the interval 1 < x <3
and diverges elsewhere.

_ _ 2 _ 3 _ n-1
Find the interval of convergence of 1+ x123 + x 223) + (x 323) +0 4+ %—31)—2- +---
"n—

O S CRp TR (n—l)’_ B
Here Jim P =|x 3|"l_|’r{1m " =|x—3

The series converges absolutely for |x — 3| <1 or 2 < x <4 and diverges for |x ~ 3| >1 or for x <2 and
x>4.

For x =2 the series becomes 1 -1+ } —}j + .-, andforx =4itbecomes 1 +1+ § + } + - -. Since
both are absolutely convergent, the given series converges absolutely on the interval 2=<x =<4 and
diverges elsewhere. Note that the first term of the series is not given by the general term with n =0.

+1 +1)° +1)° +1)
Find the interval of convergence of X + (x+1) + x+1) +ei 4 Ve +--

Vi V2 V3 v
e+ VA | . o
Here Jim_ VirT Gl fx + 1] lim_ \f——n i |x + 1]

The series converges absolutely for |x + 1| <% or —12 < x <0 and diverges for x < -2 and x >0. .

For x = -2 the series.becomcs -1+ VY2 V3 + W -»-, and for x =0 it becomes 1+ bV, +
V3 + Vi + - -+, The first is convergent, and the second is divergent (why?). Thus, the given series
converges on the interval —2 =< x <0 and diverges elsewhere.

m mim-1) ,
T x+ x +
1 1-2 1-2-3

This is the binomial series. For positive integer values of m, the series is finite; for all other values of
m, it is an infinite series. We have

m(m — 1)(m — 2) RS

Find the interval of convergence of 1+

I mm-1)(m-2)---(m—-—n+1)x" (n-1)!
e n! mm-1)(m=2)--(m-n+2)x"""
. — 1
= 1af tim_ |72
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10.

11.

The infinite series converges absolutely for x| <1 and diverges for |x|>1.

At the endpoints x = =1, the series converges when m =0 and diverges when m = —1. When
—1<m <0, the series converges when x =1 and diverges when x = — 1. To establish these facts, tests
more delicate than those of Chapter 54 are needed.

3 5 7 2n—-1
. . X X X ol X
Find the interval of convergence of x — — + — ~ = 4+ (-1
& 37577t DTt
2n+1
x 2n—1| 2n—1_
Here nl—l.4x 2n + 1 xz" =X "I—[IP:: 2n + 1

The series is absolutely convergent on the interval x> <1 or —1<x<1.
For x = —1 the series becomes -1+ }—}+1-.- and for x=1 it becomes 1- 1+ -1...
Both series converge; thus the given series converges for —1 = x =1 and diverges elsewhere.

Find the interval of convergence of (x — 1) +2/(x = 1)* +3!(x = 1)’ + -+ nl(x —1)" + - -

+ DHx—1)"""
Here lim (DM =D

n—e+x n!(x—l)" |X llnl_l.fpm (" 1) ®

The series converges for x =1 only.

. . 1 3 n .. .
Find the interval of convergence of — + — + — + - -+ + —— + - --. This is a power series
. 2x  4x" 8« 2"x
m 1/x.

Here lim ntl 2% ! im = 1 !
L = m 2o
e ko 2n¢1xn*l n 2!x| e+ x n 2|x|
, 1
The series converges absolutely for 0 <1lor |x|>3
For x = % the series becomes 1 + 2 +3 + 4 + --- and for x = —1 the series becomes
—1+2-3+4---. Both these series diverge Thus the given series converges on the intervals x < — 3}
and x > § and dlverges on the interval -} =x =< 3.

The series 1 —x + x> — x> +- -+ (—1)"x" + - - - converges for |x| < 1. Given € = 0.000 001, find
m when (@) x = } and (b) x = § so that |R, (x)| < e for n>m.

R, (x)= ; (= 1)*x* so that

D=0y

=337 and  |R,(})|=

IR.(3)| =
k=n

(a) We seek m such that for n>m then 3(1)" ' <0.000001 or 1/2" ' <0.000003. Since 1/2'% =
0.000004 and 1/2'° =0.000002, m = 19.
(b) We seek m such that for n> m then }(4)" " <0.000001 or 1/4" ' <0.000005. Here, m = 9.

Prove: If a power series L c,x' converges for x = x, and if |x,| <|x,|, the series converges
absolutely for x = x,.

Since I c,x| converges, llm ¢,x; =0 by Theorem 53.15; also {|c,x}|}, being convergent, is
bounded, say, 0<[c x7| < K for all values of n. Suppose |x,/x,|=r, for 0<r<1; then

X
= Je.xjl| 22

and I [c_x7|, being term by term less than the convergent geometric series £ Kr”, is convergent. Thus
L ¢,x}, converges and, in fact, converges absolutely.

n

x

n

< Kr"
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12.

13.

14.
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Prove: A power series represents a continuous function f(x) within the interval of convergence
of the series.

Set f(x) =E cx' = 5,(x) + R,(x). For any x = x, within the interval of convergence of I ¢ x' there
is, by Theorem 57.1, an interval I about x, on which the series is uniformly convergent. To prove f(x)
continuous at x = x,, it is necessary to show that hm | f(x, + Ax) — f(x,)| = 0 when x, + Ax is on /; that
is, it is necessary to show that for a given € >0, héWever small, Ax may be chosen so that x, + Axison/

and |f(x, + Ax) - f(x,)| < e
Now for any Ax such that x, + Ax is on the interval I,

| fxg + Ax) = flx)| =[5, (x5 + Ax) + R (x, + Bx) = S, (x,) = R, (x,)]
=[8,(xo + Ax) = 8, (xy)| + [R,(xo + X)| + R, (x,)| (1)

Let € be chosen. Since x, + Ax is on the interval of convergence of the series, an integer m >0 can be
found so that whenever n>m then |R, (x,+ Ax)|<e/3 and |R, (x,)| <e€/3. Also, since S, (x) is a
polynomial, a smaller |Ax| can be chosen, if necessary, so that |S,(x, + Ax) — §,(x,)| < €/3. For this new
choice of Ax, |R, (x, + Ax)| remains less than €/3 since the series is uniformly convergent on [ and
IR, (x,)| is unchanged. Hence, by (1),

[flx, +Ax) — fix,)|<e/3+el3+el3=¢

Thus f(x) is continuous for all x within the interval of convergence of the series.

Prove: If ¥ c,x' converges to the function f(x) on an interval, and if x = @ and x = b are within
the interval, then

b b b b b
j f(x)dx=f C‘,dx+j clxdx+f czxzdx+--~+f Coy X" ldx + -
Suppose b > a and write f(x) =X ¢,x' = §,(x) + R, (x). Then

Lb f(x) dx=f S,,(x)dx+f R, (x) dx

Lh flx) dx — Lb S, (x)dx| =

Since I ¢ x' is convergent on an interval, say |x[ < P, the series is uniformly convergent on an interval
x| =p< P which includes both x=a and x = b. Then for any € >0, however small, n can be chosen

sufficiently large that |R, (x)| <3 for all |x|= p. Thus,

<f
« b—a

ff(X)dx—J;bS,,(x)dx‘=0 and Lbf(x)d,c:gfc,x-dx

and

(x) dx - _L S, (x) dx

—a)=¢€

So lim

n—tx

as was to be proved.

Supplementary Problems

Find the interval of convergence of each of the following series.

2 3 4
(a) x +2x° +3x  +dx' + - (b)ﬁi+%§+%z+z’f—5+-
> 2 X x x X’ x*
PRSI Z . + - 4.
@x-5+t35- 57 @) 3-35 35 7.5
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15.

16.

1 x! xd Xb x:‘ X4 xS
+ +oe + + +

@ 1-2-3+2-3'4+3'4-5 4-5-6 () (In2) (ln3)" (In4y*  (In5)°

(g) The series obtained by differentiating (@) term by term

(h) The series obtained by differentiating (b) term by term

2 3 4
X X

X
i) x+ + + +
) s+ I 17 P 1e s

(j) The series obtained by differentiating (i) term by term
(k) The series obtained by differentiating (j) term by term
(1) The series obtained by integrating (a) term by term
(m) The series obtained by integrating (c) term by term

BN N Lot M Ot &
N TR
x-3Y x-3 (x—3)
+ — +

©) T3 " 53 3-3 4.3
(3x-2)° (3x -2

52 5} +
(g) The series obtained by differentiating (a) term by term
(r) The series obtained by integrating (n) term by term

() )
1-x 1—x 1-x

2 3
w1-243- %y
X X X

()1— +

(s) 1+

) 1+x2+6x+7+(x3+6x+7)3+(x:+6x+7)-‘+
2 22 23 24
Ans. (@) —1<x<1;(b) —1=x=1;(c) all values of x; (d) -5<x=5;(¢) —1=x=1;(f) all values
of x; (g) —1<x<l; (h) -1=x<1; (1) —-1=x=1; (j) -1=x=1; (k) —-I=x<I;
() —1<x<1; (m)all values of x; (n) 1=x=3; (0) 0=x<6; (p) ~1<x<{:(g)1=x<3;
Ni=sx=3)x<i; (HDx<-1,x>1; (u) -S5<x<-3, -3<x<—1

Prove: A power serles can be dlfferentlatcd term by term within its mterval of convergence. (Him:

flx) = 2 cx' and Z — (cx') = Z je,x' " converge for x| < lim ' Use Theorems 57.1, 57.2,

n—s+ x

i=0 Cn+|

and 57.5 to show fn f'(x)dx =f(x).)

Prove: The representation of a function f(x) in powers of x is unique. (Him: Let f(x) =Es,x" and
fix)=Z¢x" on |x|<a#0. Put x=0 in E(s, -1, )x" =0,
0,...toobtains, =1,j=0,1,2,3,....

L@, -1 )x"=0, —= E(s, —1,)x" =

dx dx?



Chapter 58

Series Expansion of Functions

POWER SERIES in x may be generated in various ways; for example, imagining the division
continued indefinitely, we find that

1
——=1lt+tx+xX’+x+ - tx
1-x

(Note that for, say, x = 5 this is a perfectly absurd statement.) In Example 1 below, it is shown

n-1

TR (58.1)

that the series (58.1) represents . only on the interval |x| <1; that is,

1_

1 2,03
— =l+x+x"+x +--+x
1-x

Other methods for generating power serics are illustrated below and in Problem 1.

n—1

+oee —l<x<l

A GENERAL METHOD for expanding a function in a powers series in x and in (x — a) is given
below. Note the requirement that the function and its derivatives of all orders must exist at
x=0or at x =a. Thus 1/x, In x, and cot x cannot be expanded in powers of x.

Maclaurin’s series: Assuming that a given function can be represented by a power series in
x, that series is necessarily of the form of Maclaurin’s series:

0 0) 5. f0) . 00y -,
f(r) f(())"'f() fé')x- f3(')x++f(n_—$)£')x + - (582)

Taylor's series: Assuming that a given function can be represented by a power series in

(x — a), that series is necessarily of the form of Taylor's series:
f( ) f(a) f"(a) £ a)
2! 3! (n—1)

(x—a)y +--+ (x—a)" '+

(58.3)

f)=fla)y+ —— (x —a) + (x-a) +

(See Problem 2.4))
The question of the interval on which f(x) is represented by its Maclaurin’s or Taylor’s series
will be considered in the next chapter. For the functions of this book, the interval on which a
series represents the function coincides with the interval of convergence of the series (See
Problems 3 to0 9.)

Another and very useful form of Taylor’s series

3 n -l

1, h " n-
f(a+h)—f(a)+ f(a)+ > f( T A O R CESI fO @y +-- 0 (38.4)
is obtained by replacing x by a + & in (58.3).
EXAMPLE 1: The power series 1 + x +x* + x" +--+ x""' + -+ is an infinite geometric series with
a=1 and r=x. For |r| =|x| <1, the series converges to Ti—r =Ty for |r| =|x| =1, the series

diverges.

By repeated differentiation of the series of Example 1, we obtain other power series,
1+2x +3x° +dx' + -+ x4 (58.5)

2+6x+ 120"+ 206 + -+ n(n+ Dx" 4 (58.6)

360
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d 1 1 .
By Theorem 57.6, the series (58.5) represents the function o (l—x) = % in the
d 1 .
interval |x| <1, and (58.6) represents the function o ((1 —x)z) = - a=2 in the same
interval.
By repeated integration between the limits 0 and x of the series of Example 1, we obtain
LIS W SRR S SR S
x+2x+3x+4x+ +nx+ (58.7)
1 2 1 1 1 1 n+l
= = =X+t —— 4+ .
R RIS TR At ) " (58.8)

o
By Theorem 57.5, the series (58.7) represents the function fo 11— dx = —In(1-x) in the

interval |x| < 1. The series (58.7) also converges for the endpoint x = —1. In such a case, and
where the function that is represented inside the interval is continuous at an endpoint, the

function is equal to the series at the endpoint also. (The proof of this fact is beyond the scope

. 1 1 1 _ 1 1 1
of this book.) Hence, —In2=-1+ 373 + 3 , and, therefore, In2=1 3 + 374 .

Similarly, the series (58.8) represents the function fo —In(1 - x)dx =
x+(1—-x)In(1-x) in the interval —1=x<1.

Solved Problems

1. Find the power series y = L ¢,x” satisfying the conditions y =2 when x =0, y’' =1 when x =0,
and y" +2y’' =0.
Consider y=cotoxtox’tex’+eee 1)
y =c, +2c,x+3c,x* +dcx’+ - (2)
Y =2c, +6c,x + 12c,x° +20c,x> + - - - (3)
From (1) with x =0 and y =2 we find ¢, = 2; from (2) with x =0 and y' =1 we find ¢, = 1. Since the
third condition requires y" = —2y’, we set
C, +6c,x+12c,x" +20c,x’ + - - = —2¢, —4c,x —6cx’ —8c xP — -
from which it follows that ¢, = —¢, = =1, ¢, = -3¢, =%, ¢c,=—$c;=-4,.... Thus, y =2+x - x* +

2x’ — 1x*+ - is the required series.

2. Assuming that f(x) together with its derivatives of all orders exist at x = a and that f(x) can be
represented as a power series in (x — a), show that this series is
2 (n—-1)
a .
=+ 52 -0+ B2 gt s L0 oy
Let the series be
)= ot e(x =)+ eylx=af +e(x=a) 4o de, (- a) T e (1)

Differentiating successively, we obtain

f()=c, +2c,(x—a)+3c,(x—a)i+4c(x—a)’+ - +nc(x—a)" '+ (3]
fi(x)=2¢c, +6cy(x —a)+ 12¢,(x —a)* +20c5(x—a)’ + -+ (n+ Vnc,,, ,(x—a)" ' +-- - (3)
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f(x)=6c,+24c,(x —a)+ 60c(x —a)* + -+ (n+2)(n+ Vnc, ,(x—a)" ' + - (4)
Setting x =a in (1), (2), (3),..., we find in turn

Gef@). =@, &= 5 L@ o 6= oy @,

When these replacements are made in (1), we have the required Taylor’s series.

In Problems 3 to 8, obtain the expansion of the function in powers of x or x — a as indicated, under
the assumptions of this chapter, and determine the interval of convergence of the series.

3. e **; powers of x
We have fy=e floy=1
f=-22  f(0)=-2
f"(x) = 228~21 frI(O) = 22
ful(x) — _23e72x fm(o) = _23
- 2 2 2¢ 2
2x __ s W2 3 i —1yt o .n. ..
Then € —1—2x+2!x T +4!x +(-1) X
d ) l 2n+]xn+l n! _| | l 2 _
and since D 27 | T AL R

the series converges for every value of x.

4, sin x; powers of x

We have fx)=sinx fv)y=0
f'(x)=cos x f(0)=1
f'(x) = —sinx f(0)=0
f"(x) = —cos x f"(0)= -1

0 —
sinx=0+1x+5x2+3—!1x3+%x‘+%x5+--~
3 h] 7 2n-1
T S A PR DN R .
B TR TIP3
2n+1
. . x Qr-1)! 5 1 _
and since N e ey i T LTS i
the series converges for every value of x.
s. In (1 + x); powers of x
Here flxy=In(1+x) f(0)=0
(o 1 O
F0= 19— f@=1
", 1 ",
fi(x) =~ f0)=-1

(1 +x)2
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" = e =71

o=y =2

i 1-2-3 i

iv - = iv = 721
=G [T0=-3

x? x x* . x"
Hence In(1+x)=x—i+2!§——3!H+---+(—1)"_ (n—l)!m-’

S R S N DI P SURENPER VT S
=x-5x +3x 4x+ +(-1) o

By Problem 1 of Chapter 57, the series converges on the interval —1<x=1

6. arctan x; powers of x
We have f(x) = arctan x floy=0
FE=rra = lmR e f(0)=1
fi(x)=-2x+4x’ —6x* + - - £1(0)=0
frx)= =2+ 12x2 = 30x* + - - - f10) = -2
Fr(x)=24x—-120x> + - - Fr0)=0
Fr(x)=24-360x"+ - £ 0)=4
fw(x)=_720x+... f"‘(()):()
i) =-720+-- £(0) = -6!
! 4! 6!
So arctan x = x — 3 x’+5! x° ﬂ"7+
¥ X X oy x!
_x—?+§__7_+...+(_1) 2n_1...

From Problem 7 of Chapter 57, the interval of convergence is —1=x=1.

7. e*’?; powers of x —2
We have fix)y=e"? f2Q)=e
f@)=13e"  f(2)=1e
frxy=14e"?  f1(2)=ie
2 1 1(x 2)° ) 1 (x-2)"
Hence € —e[1+2(x 2)+4 20 + 7 D)
, =2y 2 - T
and since lim_ T a2 |2 |x — 2] Jim n 0

the series converges for every value of x.

8. In x; powers of x -2

f(x)=Inx f(2)=In2
fy=x" f@=:
f@=-x7 @)=~}

Here

363
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11.
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£ =267 2

fx)y=—-6x"" @

1(x—2) L= 3 -
TR ST g ar T

So lnx=ln2+l(x 2)-

2 l 3 l 4
ln2+—(x—2)— (x-—2) +§(x—2)‘—a(x—2) +oe

_ ntt
Since lim (x —2) 2'n l x—2| lim

n 1
n=t= 12" n+ 1) (x—2)" =3 Jm Ty

the series converges for [x — 2| <2 or 0<x<4.
For x =0, the series is In 2 — (harmonic series) and diverges; for x = 4, the series is In2 + 1 —

5 — i--- and converges. Thus the series converges on the interval 0 < x <4.

+

Obtain the Maclaurin's series expansion for V1 +sin x =sin {x + cos ix.

Replace x by !x in the expansion for sin x (Problem 4) to obtain

_1_1_13+x5_x7+.
R R SN TR ST TR LI T
Differentiate this expansion to obtain
1 wz(l_ x’ . L o +__.)_1_ x’ E
A R T N TR SRPTRS YT 2220 204 26
Th VIV S x =sin 2 +(:051 =1+ - LS § + x + LA
e Spr=sing X 7 R L TR O TR LDV T LIy
for all values of x.
Obtain the Maclaurin’s series expansion for ™ * = e(e'*™ "™V,
2 3 2 4 6
X X X
Usinge“=1+u+%+%+--~andu=cosx—1=~i+ﬁ—a+'--,weﬁnd
casx [1+( x2+x_‘_x_°+“.)+l( x‘ _2xb+...)+_1_(__§6_.+...)+...]
€7 20 4 6 202y 2 @y
— (l_x_z+x_‘_£ f’+...)
AN T2 T 70

Under the assumption that all necessary operatlons are valid, show that (a) e” =cosx +

isinx, (b) e =cosx—isinx, (c)sinx=(e" —e *)/2i, (d) cosx =(e” + e *)/2, where
i=vV-1.
ZZ Z_\ Z4 ZS
Since e’ 1+z+5+3v +—.+§+-~-,we have the following:

_ (Uf) (Uf) ('»x) (ix)* I T A e &

(a) e" =1+ (ix)+ = St e + 51 +---—1+1x*i—1§+a+1§---
2 xd x3 xS

(1—5 4!~---)+i(x—§+§!-—---)=cosx+isinx
(b) e " =cos(—x)+isin(-x)=cosx —isinx
(c) ¢ —e " =2isinx; hence, sinx = (e — e *)/2i

(d) ¢ + ¢ " =2cos x; hence, cos x = (¢ + & *)/2
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Supplementary Problems

12. Verify that (a) series (58.5) and (58.6) converge for |x| < 1; (b) series (58.7) converges for —1=x <1;
(c) series (58.8) converges for —1=x=<1.

13. Verify that (@) the series obtained by adding (58.5) and (58.6) converges for |x| <1; (b) the series
obtained by adding (58.7) and (58.8) converges for -1 =< x <.

14. Find the power series y = T ¢, x" satisfying the conditions (1) y =2 when x =0, (2) y’' =0 when x =0,
4 2x2n

"= - R .
and (3) y"—y=0. Ans. y=2+x +]2+ +(2")!+

15. Find the power series y = L ¢, x" sastisfying the conditions (1) y =1 when x =0, (2) y' =1 when x =0,
2 3 4 5

" X X X X
and (3) y"+y=0. Ans. y=1+1_5——§+ﬂ+§

16. Obtain the given Maclaurin’s series expansion:
3 2n-1

2 2
2 . _ L 2 £ 4. _ n 2n __ .
(@) cos”x =1 51 + ik +(-1) ) x , for all x

1 5 61
) sccx=1+§x2+2—4x4+mx"+-~-,for —wl2<x<7/2

, 1x 1-:3x° 1-3:5%
= 4+ - — 4+ — — J— ‘e Py
(d) arcsin x = x >3 32 5+2-46 7+ Jfor ~1<x <1
2 2'! 25 22n—l
-2 - = 2_ & 4 L L6 . _ n+l £ 2n .
(e) sin” x = TR T + P X +(-1) @n)! x7+---, for all x
17. Obtain the given Taylor’s series expansion:

(x—a)2+(x—a)3+”.+(x—a)" !

(a) e":e"[1+(x—a)+ +---],forallx

2! 3! (n—1)!
N2 N3
(b) sinx =sina+ (x —a)cosa— (x 2'a) sina — (x 3‘a) cosa+---, for all x
1 . (x-im)’ (-
(¢) cosx=—\/—-2- I-(x—3im)-— 21 + 3 + -1, for all x

18. Differentiate the expansion for sin x (Problem 4) to obtain the expansion for cos x. Then identify the
solution of Problem 15 as y =sin x + cos x.

19. Replace x by ix in the expansion for ¢ ** (Problem 3) to obtain the expansion for e *. In this latter
series replace x by —x to obtain the expansion for e*; then identify the solution of Problem 14 as
y=e" +e"

. . . Lo . 2x* 32x° #
20.  Obtain the Maclaurin's series expansion sin’ x = (sin x)° = x* — > 4 2= _ %x . .. -, for all x.
3t 35 3
x 3 xS x'l

21. Show that f e dy=x— .-+, for all x.

o TR T T

22, Obtain by division the series expansion of %; then obtain
x
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dx
o 1+x

arctan x = s=x~ i+ AT+

and compare with the result of Problem 6.

. . . 1 1, -3 1-3-5
. h ——— =]+ -+ — e —= ai
23 By the binomial theorem, establish = 1 Xt Y Yy e + ---; then obtain
arcsinx—jx & +l'x3+1-3-x5+1-3'5-x7+
o Vi 237245 2467

i 5 6

. . . . . . s, X X x
24. Multiply the respective series expansions to obtain (@) € sinyx=x+x"+ 7 — — — — ... ;

PR SR 3 30 9

(b) e’cosx=l+x—?—g— 00
1

25. Write sec x = =¢,+c,x + ¢, x> + ¢,x” + - --. Multiply the two series and

cosx 1-xY20+xY4l—- ,
equate 10 zero the coefficient of each positive power of x to obtain ¢, =1, ¢, =0,....



Chapter 59

Maclaurin’s and Taylor’s Formulas
with Remainders

MACLAURIN’S FORMULA. If f(x) and its first n derivatives are continuous on an interval
containing x = 0, then there are numbers x, and xj between 0 and x such that

£O O oy L0

s =0+ B2 e B e s 00
(n)
where R, (x)= f—’—l(-!& x" (Lagrange form)
(n)g =
or R, (x)= [ xa) (x - x%)""'x (Cauchy form)

(n-1)!

TAYLOR’S FORMULA. If f(x) and its first n derivatives are continuous on an interval containing
x = a, then there are numbers x, and x§ between a and x such that

1 (n~1)
f=fa+ E a-a+ L p-apv s L oo r)
(m
where R (x)= 'f—(;ri)- (x—a)" (Lagrange form)
(n)e %
or R.(x)= { (xg 1))' (x —x%)""(x —a) (Cauchy form)

Maclaurin’s formula is a special case (a = 0) of Taylor’s formula. Taylor’s formula with the
Lagrange form of the remainder is a simple variation of the extended law of the mean (see
Chapter 26). For the derivation of the formula with the Cauchy form of the remainder, see
Problem 10.

The Maclaurin’s and Taylor’s series expansions of a function f(x) as obtained in Chapter 58
represent that function for those values, and only those values, of x for which "!i’rpsc R, (x)=0.

SERIES FOR REFERENCE. The following series, with the functions they represent and the
intervals on which theyzdo sQ, are listed here for reference:

n

x° x x
e—l+x+§+3+-~+m+--- for all x
3 5 7 2n-1
mx=x—-—+X X Lt 4
sin x = x 3!+5! 7!+ +(-1) (2n—1)!+ for all x
2 x4 x6 x2n
-+ - n
cosx=1-— TP 6!+ +(—1) (2n)!+ for all x
] +) l +__x_2+x3 ...+(_1)"_1£+... for—a<x<a
n(a+x)=Ina 22 T 37 e =
+1-x3+1-3-x5+'”+ 1:3-5---(2n = 3)x*""! for —1<x=1
aresinx=x+ 53 * 745 24 (2n—2)(2n—1) ormi=Ex=
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arctan x = x — g + %j - x77 +oo (=17 Zx:"—'l +-- for~1=sx=1
Inx=lna+%(x—a)— 212 (x—a)2+$(x~a)‘1—-~+ %(x-a)"+
for 0<x=2a
e'=e°[l+(x—a)+ (x;!a)z + (x;a)" et (_)(c_n—Tai")_!' +] for all x
sinx=sina+(x—a)cosa—(;—!a)zsina—(i;—!a—)]cosa+~-- for all x
cosx=cosa—(x~a)sina-(—x;!—a)zcosa+ %ﬁisina+'-- for all x
Solved Problems
1. Find the interval for which ¢* may be represented by its Maclaurin’s series.
f7(x) = e'; the Lagrange form of the remainder is |R (x)| = :—: f""(x“)’ = l:—;' e*, where x, is

between 0 and x.

2 2

3
x" . . X x Lo
The factor isa general termof e =1+ x + o + 3 + - - - which is known to converge for every
value of x. Thus, lim T =0. The factor €™ is bounded by the maximum of e’ and 1. Hence,

lim R, (x)=0 and the series represents e” for all values of x.

2. Find the interval for which sin x may be represented by its Maclaurin’s series.
Apart f : N o d IR _ X" |x"| .
part from sign, f'"'(x) =sin x or cosx, and |R (x)| = al [sin x,| or o [cos x,|. where x, is

between () and x.

n
. x . .
As in Problem 1, = —0 as n— +x. Since [sin x,| and |cosx,| are never greater than 1,
lim R_(x) =0 and the series represents sin x for all values of x.
et

3. Find the interval for which cos x may be represented by its Taylor’s series in powers of
(x — a).
x — a n _ n
For the Lagrange form of the remainder, we have |R (x)| = I(—"'LI sin x,| or &Tla)—l |cos x|,
where x, is between a and x. ' '
Since _x%)l — 0 as n— + =, while |sin x,| and |cos x,| are never greater than 1. lim R (x)=0
and the series represents cos x for all values of x.
4, Find the interval for which In (1 + x) may be represented by its Maclaurin’s series.
- -1y .
Here f'(x)=(=1)""" E'l’ — x))"; then with x, and x between 0 and x. the Lagrange form of the
remainder is
s S Gl VL G Vi ( X )"
R"(.«\f) ( ]) n! (l + x”)n - n 1+x” (])
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and the Cauchy form of the remainder is

x=x)"" (n-1)
(n—1) (1+x})

R )= (-1 ¢ o S @)

x=(-1)

When 0<x,<x=<1, then 0<x<1+x,and ] < 1; then, from (I).

Xo

IR, (x)| = ( al )<l and  lim R,(x)=

1+x, n
When ~1<x<x}<0, then 0<l+x<1l+x} and —— <-——. From (2),
l+x} 1+x
PRNLEE: YN I 21 | NE £
" (1+x3) 1+x} 1+x} 1+ x3 1+ xg 1+ x} 1+x
: * * * x * X“+|Xl
Now since x* <0 and 1> |x|, we have x} <xZ|x|, x2 + |x| <|x| + x7|x|. and T < |x|. Thus.

Il and lim R (x)=0

IR, (X)|<1+x Jim

Hence, In (1 + x) is represented by its Maclaurin’s series on the interval —1<x <1.

S. For the Maclaurin’s series representing e”, show that

In n_x

IR, (x)| < ;' when x<0 and R,(x)< al e“

when x>0

n

From Problem 1. R (x)= i— e*, where x, is between 0 and x. When x <0, e'°<1; hence,

[R,(x)| < =. When x>0, e*®<¢"; hence, R, (x) < "7‘,’—
6. For the Maclaurin’s series representing In (1 + x), show that
x" x|
R (x)<—when 0<x =1 and R, (x)] < ————= when -1 <x<0
" n " n(1+ x)
From (1) of Problem 4, lR x)]=- ] ol where x, is between 0 and x. When 0<x,<x =1,
1 x" 1
T+ x, <1 l|1e’l'1ice, IR, (x) < ot When —1<x<x,,<0, 1+x,>1+x and T+x, <“I3x% hence,
IRl < 55
Supplementary Problems
7. Find the interval for which cos x may be represented by its Maclaurin’s series.

Ans. all values of x

8. Find the intervals for which (a) e* and (b) sin x may be represented by their Taylor’s series in powers of
(x —a). Ans. all values of x
9. Show that In x may be represented by its Taylor’s series in powers of (x — @) on the interval 0 < x = 2a.

(x—a)x - x5)"!

(x3)"

X_Xu

<)

. For 0<x <a and for a < x <2a,

(Hint: R, (x)| =

(l
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10.

11.

12.

13.
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Let T be defined by

o, (n—1)
oy =s@+HP o-a+ B2 e-ar+ o L 6oy e 10 -0
and define
Flx) = —f(b)+f(x)+f(")( ~x)+ f"(")(b—)+ +%)1(—;)(b—x)""+T(b-x)

Carry through as in Problem 15 of Chapter 26, and obtain Taylor’s formula with the Cauchy form of the
remainder,

(a) In the Cauchy form of the remainder of Taylor’s formula, put xj = a + 8(x ~ a), where 0< 6 <1.

Show that R (x) = wﬂ(lx)’_“l] (1-6)"""(x-a)

(n
(m) ]
(b) Show that R (x)= { ( 13;)‘ (1-6)""'x" in Maclaurin’s formula.
Show that = is represented by its Maclaurin’s series on the interval —1=<x <1. (Him: From Problem
1—8) ‘¢
11(6), R, (x) = '%_ZiTj for 0<§<1. For x| <1, —0 "~ <1and 1-6x>1-lx|. )

+x +x 2

(a) Show that xe" = z o x" for all values of X and Z i = ¢, also show that (x* + x)e* = 2 :' x"
2 i=1 . +x 3 4 i=1 . i=1

and E — = 2e. (b) Obtain 2 — =5e and z — = 15e.



Chapter 60

Computations Using Power Series

TABLES OF LOGARITHMS, trigonometric functions, and such are computed by means of power
series. Other uses of series are suggested in the problems below.
It is usually necessary to have some estimate of how well the sum of the first n terms of a
series represents the corresponding function for a given value of the variable. For this purpose
two theorems from preceding chapters are useful:

1. If f(x) is represented by an alternating series, and if x = ¢ is on its interval of
convergence, the error introduced by using the sum of the values of the first # terms as
an approximate value of f(£) does not exceed the numerical value of the first term
discarded.

2. If f(x) is represented by its Taylor’s series, and if x = £ is on its interval of convergence,
the error introduced by using the sum of the values of the first n terms as an
approximate value of f(£) does not exceed |x —a|"M/n!, where M is equal to the

maximum value of | f(x)| on the interval a to £. For a Maclaurin’s series, a = 0.

CORRECTNESS OF APPROXIMATIONS. If an actual value V is approximated by a number A,
we say that the approximation is correct to k decimal places if the error [A — V| is less than
5% 10**". This is equivalent to saying that A would be the result of rounding off V to k decimal

places.
Solved Problems
1. Find the value of 1/e correct to five decimal places.
2 3 n-1
i ST D S S N
Since e =1 x+2! 3!+ +(-1) (n—l)!+
- 1 1.1 1
we have e _1_1+§?_§+B_§!_+
=1-1+0.500 000 — 0.166 667 + 0.041 667 — 0.008 333 + 0.001 389
- 0.000 198 + 0.000 025 — 0.000 003 + - - -
=0.36788
2 Find the value of sin 62° correct to five decimal places.

The Taylor’s for sin x series in powers of (x — a) is

ERPRY N3
(x 2'a) sina — (x 3'a)
Take a =60°, since it is near 62° and its trigonometric functions are known. Then x —a = 62° - 60° =
2°= 7/90=0.034 907 and

sin 62° = V3 + 1(0.034907) — {V3(0.034907)° — £(0.034907)* + - - -

=0.866 025 + 0.017 454 — 0.000 528 — 0.000 004 + - - - = 0.88295

cosa+ -

sinx=sing+ (x—a)cosa—

371
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Find the value of In0.97 correct to seven decimal places.

2 3 n
X X X X
For ln(a—x)—lna~;—2—‘13—3—03—-~-;F—--~
we take g = 1 and x = 0.03; then
In0.97 = —0.03 - 4(0.03)° - 1(0.03)* — 1(0.03)* - 1(0.03)° — - -- = —0.030 4592

How many terms in the expansion of In (1 + x) must be used to ensure finding In 1,02 with an
error not exceeding 0.000 000 05?

(0.02)°  (0.02)" (0.02)

2 7 34 e
Since this is an alternating series, the error introduced by discarding all terms after the first n is not
greater than the numerical value of the first term discarded. The problem here is to find the first term
whose numerical value is less than 0.000 000 05. This must be done by trial. Since (0.02)*/3 = 0.000 002 7
and (0.02)*/4 = 0.000 000 04, the desired accuracy is obtained when the first three terms are used.

We have In1.02=0.02 -

For what values of x can sin x be replaced by x, if the allowable error is 0.0005?

sinx = x — x%3!'+ x*5! — -+ is an alternating series. The error in using only the first term x is thus
less than |x*|/3!. Now [x’[/3! = 0.0005 requires [x*| =0.003 or [x|=0.1442; thus, |x| < 8°15".

How large may the angle be taken if the values of cos x are to be computed using three terms
of the Taylor’s series in powers of (x — 77/3) and the error must not exceed 0.00005?

sin x,
Since f"(x) =sinx, |R,|= | 3|X)|

Since Jsin x,| < L. [R,|= L|x = #/3]" = 0.00005.
Then [x — /3| =V0.0003 = 0.0669 = 3°5(0". Thus x may have any value between 56°10’ and 63°50.

|x — 7/3{°, where x, is between 7/3 and x.

Approximate the amount by which an arc of a great circle on the earth 100 miles long will
recede from its chord.

Let x be the required amount. From Fig. 60-1, x = OB — OA = R — R cos a, where R is the radius
of the earth. Since angle a is small, cos & = 1 — }x°, approximately, and

Taking R = 4000 mi yields x = % mi.

B

Re

A

Rcosa

0
Fig. 60-1

Derive the approximation formula sin ({7 + x) = §V'2(1 + x), and use it to find sin 43°.

Using the first two terms of the Taylor’s expansion, we have
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sin(lm+x)=sinim+xcosim= W2+ WVix=V2l +x)
sin43° =sin [1 7 + (= 7/90)] = }V2(1 - 0.0349) = 0.6824

9.  Solve the equation cos x —2x* = 0.
Replace cos x by the first two terms, 1 — 1x?% of its Maclaurin’s series. Then the equation is
1-3°-2x*=0  or 2-5x"=0

The roots are +V10/5 = £0.632. Newton's method gives the roots as =0.635.

X - X
. . . € —e¢
10.  Use power series expansions to evaluate lim ———.
=0 sinx
(1+ +x2+x3+ ) (1 x+x2 x3+ )
. [P I R L
e —e "t 2t 3 20 3
im —; = lim 3 <
x—0  SIn X 21—0 X X
TR
1.m2x+2x3/3!+--- ,m2+x2/3+--- 5
s=0 x—xY3 4 x=0 l—xY6+

3.2

11.  Expand f(x)=x'-11x' + 43x* — 60x + 14 in powers of (x —3), and find , f(x) dx.

f(3)=5, f(3)=9, f'(3) = —4. f"(3) =6, and f™(3) = 24. Hence,
f)=5+9(x =3)—2(x —=3)* + (x = 3)* + (x - 3)°

and L fyde=[5x+3(x =3 - 3(x=3) + 4(x-3)" + {(x - 3)');7? = 1185

1
n x

12. Evaluate j dx.

Q0

The difficulty here is that ]—S—lgidx cannot be expressed in terms of elementary functions.

However,
"sinx J"l( X x ) f'( X oxt % )
N A S TR ik TR Ll N U T T T ol

3 s 7 1
X X X
S +"']o‘°'946083

. 1
The error in using only four terms is = 391 0.000 000 3.

Supplementary Problems

13. Compute to four decimal places (a) e~ *; (b) sin 32° (c) cos 36°; (d) tan 31°.
Ans.  (a) 0.1353; (b) 0.5299; (c) 0.8090; (d) 0.6009
14. For what range of x can

(a) ¢ be replaced by 1 + x + $x* if the allowable error is 0.0005?
(b) cos x be replaced by 1 — x? if the allowable error is 0.0005?
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15.

16.

17.

COMPUTATIONS USING POWER SERIES [CHAP. 60

(¢) sin x be replaced by x — x%/6 + x*/120 if the allowable error is 0.00005?
Ans.  (a) |x[<0.1; (b) |x] < 18°57'; (c) |x| < 47°

cos x x sin x

. . . e—e N A 4 . coshx —cosx
Use power series expansions to evaluate (a) lim ————; (b) lim ———; (¢) lim ————,
-0 x x—=0 x x—0 sinh x —sin x

Ans. (a) e/2; (b) L; (c) »

dx
x

w2 I 0.5
Evaluate (a) (1-1sin® ) V"? de; (b) | cos vX dx; (c)
0 0 o 1+

Ans.  (a) 1.854; (b) 0.76355; (c) 0.4940
Find the length of the curve y = x”3 from x =01t0o x=0.5.  Ans. 0.5031

Find the area under the curve y =sin x* from x =0 to x = 1. Ans. 0.3103



Chapter 61

Approximate Integration

b
AN APPROXIMATE VALUE of j f(x) dx may be obtained by means of certain formulas and by the

use of modern computers. Approximation procedures are necessary when ordinary integration
is difficult, when the indefinite integral cannot be expressed in terms of elementary functions, or
when the integrand f(x) is defined by a table ofbvalues.

In Chapter 39, an approximation of f(x) dx was obtained as the sum §, =

a

> f(x,)A,x. In obtaining S, we interpreted the definite integral as an area, divided the area
k=1
into n strips, approximated the area of each strip as that of a rectangle, and summed the several

approximations. The formulas developed below vary only as to the manner of approximating
the areas of the strips.

TRAPEZOIDAL RULE. Let the area bounded above by the curve y = f(x), below by the x axis,
and laterally by the lines x =a and x = b be divided into n vertical strips, each of width
h=(b—a)/n, as in Fig. 61-1. Consider the ith strip, bounded above by the arc P,_ P, of
y = f(x). As an approximation of the area of this strip, we take

ih[fla+ (i = 1)h) + f(a + ih)]

the area of the trapezoid obtained by replacing the arc P,_, P, by the straight line segment
P,_ P. When each strip is so approximated, we have (where = is to be read ‘s
approximately’’)

|| o0 de =" (f@) + fla+ W)+ 2 [fa v my+ fa+2m) ¢+ 2 (fla+ (= D) + 5

or J; flx) dx = g [fla) +2fla+ h)+2f(a+2h)+ - - +2fla+ (n— 1)h) + f(b)] (61.1)

P— 3
-1

'/
1/

at+h
at+ 2h
a+{i— i
a+1th

Fig. 61-1
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b

PRISMOIDAL FORMULA. Let the area defined by f f(x) dx be separated into two vertical strips
of width 4 = }(b — a), and let the arc P,P P, of y = f(x) be replaced by the arc of the parabola
y = Ax’ + Bx + C through the points P,, P,, P,, as in Fig. 61-2. Then

a+b

f f(")d’“g[f(“)*“f( 3 )+f(b)] (61.2)

(See Problem 1.)

Yy
P,
P,y
Po Pl Po
0 | | = (o) |k
a a+d b a
2
Fig. 61-2 Fig. 61-3

SIMPSON’S RULE. Let the area under discussion be separated into n = 2m strips, each of width

h=(b— a)/n, as in Fig. 61-3. Using the prismoidal formula to approximate the area under each
of the arcs P,P,P,, P,P,P,,.. ., P, P, P, we have

* 2 2m-2
b f(x) dx = h [ f(@) + 4f(a + k) + 2f(a + 2h) + 4f(a + 3h) + 2f(a + 4h)
[ 3

+ -+ 2f(a+ (2m - 2)h) + 4f(a + (2m — 1)h) + f(b)] (61.3)

b
POWER SERIES EXPANSION. This procedure for approximating f f(x) dx consists in replacing

the integrand f(x) by the first n terms of its Maclaurin’s or Taylor’s series. This method is
available provided the integrand may be so expanded and the limits of integration fall within
the interval of convergence of the series. (See Chapter 60.)

Solved Problems

+
1. For the parabola y = Ax* + Bx + C, passing through the points P,(£, y,), Pl(g—zp—, y,), and
g -
Py(n. ;) as shown in Fig. 61-4, show that | ydx= 36— (yo+ 4y, + y,).

K " 2 A 3 3 B, 3
webave [ yde= [ (Ac+Br+ Coar=5 - €)+ 5 (- &) hetn-©)

= L 1A(8 + g+ n7) + 1B(& + ) +3C)
Now if y = Ax® + Bx + C passes through the points P,, P,, P,, then
yo= A+ BE+ C
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Py
P,

Yo W Yz

L]

Fig. 61-4

(5 a3

y:=An’ + Bn+ C
and Yo+ Ay, +y,=2A(E+ En+0°)+ IB(E +7) +3C)

" —
Thus, L ydx= 2’6—;’ (y, + 4y, +y,) as required.

1/2 d
. e |
Approximate o T 5

1/2-0
]

Trapezoidal rule with n=5: Here, h=
a+3h=03,a+4h =04, and b =0.5. Hence,

=0.1. Then a=0, a+h=0.1, a+2h=0.2,

L” dx T] [£(0) + 2/(0.1) + 2£(0.2) + 2/(0.3) + 2f(0.4) + £(0.5)]

1+ %7
~L( 2,2 .2 L __)_
~ % 1+1.01+104+ 9 + + 55 =1(.4631
Prismoidal formula: Here, h = 1/22_0=—andf(a) flo)y=1, f(a;b)=f(i)— 16 .and f(b) =
f '2' =§.Then
1/2 dx
L ]+x2--§%(1+%+§)=$(1+3.76471+0.8)=0.4637
. , . 1/2-0 _
Simpson’s rule with n = 4: Here, h = n — . Thena=0,a+h=},a+2h=},a+3h=3,

and b = 1. Hence,

fw dx ~i<1+4 L SR (g S — )
o 1+x 24 1+(4) 1+ (1) 1+(3)  1+(})
~1( 256 32 256 4)_
~5a\I+ %5 5+t s =0.4637
Series expansion, using seven terms:
1,2 dX jl/Z 5 . . . 0 '2 [ x} xﬁ x7 XQ X” xl,:ll.-l
L i X l-x"+x"—x"+x —x +x )dx= x—?+-5———7+—9———1T+—1§u

1t N S S NN B

2 3.2° 528 7.27 9.2 11-2'"  13.2"

=(.50000 — 0.04167 + 0.00625 — 0.00112 + 0.00022 — 0.00004 + 0.00001 = 0.4636

w

12
Integration: J:) = [arctan x],'* = arctan { =0.4636

1+x?
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APPROXIMATE INTEGRATION [CHAP. 61

Find the area bounded by y=e_‘2, the x axis, and the lines x =0 and x=1 using
(a) Simpson’'s rule with n =4 and (b) series expansion.

(a) Here, h=1;sincea=0,a+h=%,a+2h=1%,a+3kh=3,and b=1. Then

I
e—xldxz_l;_4(1+4e—1/|o+2e—1/4+4e~9/16+e—l)

=

]

(1 +4(0.9399) + 2(0.7788) + 4(0.5701) + 0.3679] = 0.747 square units

b l7Z 1 , x4 Xb xﬂ xl(] xlz
() J;e dIzJ:](l—X+E—3—!+H—S—!+a>dX

~[ +x3+ xS B x7 N x‘) B xll + le ]1
TP I TS5 T 73 T o a T 11-5 T 1346 o
11 1 1 1 1

~1-3+ - + - +

3 520 7.3t 9.4 11-5!  13-6!
~=1-0.3333 + 0.1 — 0.0238 + 0.0046 — 0.0008 + 0.0001 = 0.747 square units

A plot of land lies between a straight fence and a stream. At distances x from one end of the
fence, the width of the plot y was measured (in yards) as follows:

x L 0 20 40 60 80 100 120

y ‘ 0 22 41 53 38 17 0

Use Simpson’s rule to approximate the area of the plot.

Here, A =20 and

120
L f(x)dx=2(0+4-22+2-41+4-53+2-38+4- 17 + 0) = 3507 yd’

A certain curve is given by the following pairs of rectangular coordinates:

xllZ 3 4 5 6 7 8 9

y I 0 0.6 0.9 1.2 1.4 1.5 1.7 1.8 2

(a) Approximate the area between the curve, the x axis, and the lines x =1 and x =9, using
Simpson’s rule.

(b) Approximate the volume generated by revolving the area in (a) about the x axis, using
Simpson’s rule.

(a) Here, A =1 and
f y dx = 1[0+ 4(0.6) + 2(0.9) + 4(1.2) + 2(1.4) + 4(1.5) + 2(1.7) + 4(1.8) + 2]
=10.13 square units
(b) T f vy dx= g [0+ 4(0.6)° + 2(0.9)° + 4(1.2)" + 2(1.4)° + 4(1.5)° + 2(1.7)* + 4(1.8)" + 4]

= 46.58 cubic units
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10.

11.

12.

Supplementary Problems

Derive Simpson’s rule.

6
d
Approximate & using (a) the trapezoidal rule with n=4, (b) the prismoidal formula, and

(c) Simpson’s rule ‘with n = 4. (d) Check by integration.
Ans.  (a) 1.117; (b) 1.111; (c) 1.100; (d) 1.099

5
Approximate J; V35 + x dx as in Problem 7. Ans. (a) 24.654; (b) 24.655; (c) 24.655; (d) 24.655

3
Approximate fl In x dx using (a) the trapezoidal rule with n =5 and (b) Simpson’s rule with n=8.
(¢) Check by integration. Ans. (a) 1.2870; (b) 1.2958; (c) 1.2958

1
Approximate L V1+x’ dx using (a) the trapezoidal rule with n=5 and (b) Simpson’s rule with
n=4, Ans. (a) 1.115; (b) 1.111

. 7 sin x
Approximate J;

dx by Simpson’s rule with n =6. Ans. 1.852

Use Simpson’s rule to find (a) the area under the curve determined by the data below and (b) the
volume generated by revolving the area about the x axis

xll 2 3 4 5

y , 1.8 42 78 92 123

Ans. (a) 27.8; (b) 228.447



Chapter 62

Partial Derivatives

FUNCTIONS OF SEVERAL VARIABLES. If a real number z is assigned to each point (x, y) of a
part (region) of the xy plane, then z is said to be given as a function, z = f(x, y), of the
independent variables x and y. The locus of all points (x, y, z) satisfying z = f(x, y) is a surface
in ordinary space. In a similar manner, functions w = f(x, y, z,...) of several independent
variables may be defined, but no geometric picture is available.

There are a number of differences between the calculus of one and of two variables.
Fortunately, the calculus of functions of three or more variables differs only slightly from that
of functions of two variables. The study here will be limited largely to functions of two
variables.

LIMITS AND CONTINUITY. We say that a function f(x, y) has a limit A as x—x, and y— y,,
and we write lim f(x, y) = A, if, for any € > 0, however small, there exists a § > 0 such that,
X—‘Xo

y—*¥o
for all (x, y) satisfying

0<V(x—x,) +(y—y,)’ <5 (62.1)

we have | f(x, y) — A] < e. Here, (62.1) defines a deleted neighborhood of (x,, y,), namely, all
points except (x4, y,) lying within a circle of radius & and center (x,, y,).

A function f(x, y) is said to be continuous at (x,, y,) provided f(x,, y,) is defined and
Jjglo f(x, ) = f(x,, yo). (See Problems 1 and 2.)

bamd {]

PARTIAL DERIVATIVES. Let z = f(x, y) be a function of the independent variables x and y. Since
x and y are independent, we may (1) allow x to vary while y is held fixed, (2) allow y to vary
while x is held fixed, or (3) permit x and y to vary simultaneously. In the first two cases, z is in
effect a function of a single variable and can be differentiated in accordance with the usual
rules.

If x varies while y is held fixed, then z is a function of x; its derivative with respect to x,

f.(x, y) = o fFax y) ~ flx, y)

ax A i Ax
is called the ( first) partial derivative of z = f(x, y) with respect to x.
If y varies while x is held fixed, z is a function of y; its derivative with respect to y,

e = 2 = i 22280 = flx.

Ay—>0 Ay
is called the ( first) partial derivative of z = f(x, y) with respect to y. (See Problems 3 to 8.)

If z is defined implicitly as a function of x and y by the relation F(x, y, z) =0, the partial
derivatives dz/dx and dz/dy may be found using the implicit differentiation rule of Chapter 11.
(See Problems 9 to 12.)

The partial derivatives defined above have simple geometric interpretations. Consider the
surface z = f(x, y) in Fig. 62-1. Let APB and CPD be sections of the surface cut by planes
through P, parallel to xOz and yOz, respectively. As x varies while y is held fixed, P moves
along the curve APB and the value of dz/dx at P is the slope of the curve APB at P.

Similarly, as y varies while x is held fixed, P moves along the curve CPD and the value of
dz/dy at P is the slope of the curve CPD at P. (See Problem 13.)

380
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Fig. 62-1

PARTIAL DERIVATIVES OF HIGHER ORDERS. The partial derivative dz/dx of z = f(x, y) may
in turn be differentiated partially with respect to x and y, yielding the second partial derivatives

Teren=£(2) wma Sropen=L(Z)

dy dx ox
Similarly, from 4z/dy we may obtain

9’z ( 6z ) Jz ? K ( az)
= =2 (2= d g«
sxay ~fee =50 (50) =hpe =55
If z = f(x, y) and its partial derlvatlves are continuous, the order of differentiation turns out to
a7z 9’z
be immaterial; that is =

) = . (See Problems 14 and 15.)
dx dy dyodx

Solved Problems

1. Investigate z = x* + y* for continuity.
For any set of finite values (x, y)=(a, b), we have z=a’+b>. As x—q and y— b, x* +y’—
a’ + b’. Hence, the function is continuous everywhere.
2.

The following functions are continuous everywhere except at the origin (0, 0), where they are
not defined. Can they be made continuous there?

(@) z = sin (x + y)

x+y
Let (x, y)— (0, 0) over the line y = mx; then z = sin (x + ) = sin (1 + m)x — 1. The function
xty (1+ m)x
may be made continuous everywhere by redefining it as z = w for (x, y)#(0.0); z=1 for
(x. ¥)=(0,0).
X
(b 2= 7

Let (x, y)— (0, 0) over the line y = mx; the limiting value of z =

m

= 5> depends on
Pyl T 1+m

the particular line chosen. Thus, the function cannot be made contmuous at (0, 0).

In Problems 3 to 7, find the first partial derivatives.
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3. z=2x" - 3xy + 4y’

. . - . L0
Treating y as a constant and differentiating with respect to x yield i =4x —3y.

. . _— . . d
Treating x as a constant and differentiating with respect to y yield 8_; = —3x + 8y.

2 2
4. =2+ L
y x

. . o . .. d
Treating y as a constant and differentiating with respect to x yield O_T; = % - y_
il x“
. . - . .., 02 2y
Treating x as a constant and differentiating with respect to y yield 7y =-=+ E
y
s. z=sin(2x + 3y)
Jz 0z
_— = + - =
P 2 cos (2x + 3y) and dy 3cos (2x + 3y)
6. z = arctan xly + arctan xyz
a ' : J : 2
9z _ 2X)4w+ ,V” and 9z _ X4Z+ X)i4
dx  1+xy. l+xy ay 1+x’y 1+ x%y
7 7= exlmx_\'
a Ty d 2eay
e (2x +y)=z(2x +y) and Zoe (x)=xz

ax dy

8. The area of a triangle is given by K = ab sin C. If a =20, b =30, and C = 30°, find:
(a) The rate of change of K with respect to 4, when b and C are constant.
(b) The rate of change of K with respect to C, when a and b are constant.
(c) The rate of change of b with respect to a, when K and C are constant.

(a) % = % bsin C= % (30)(sin 30°) = ]?S
(b) K _1bcosc=1 (20)(30)(cos 30°) = 150V3
aC 2 2
2K ab 2K 2(Lab sin C) b 3
@P=TGnc ™M T T Fae T dsmc a2

In Problems 9 to 11, find the first partial derivatives of z with respect to the independent variables x
and y.

9. X +y +2°=25
Solution 1: Solve for z to obtain z ==*V25-x" —y°. Then

ff -Xx

d —
= = and - -
ax  +\[25 - ¥’ - p° dy  =\25-xT—y’ z

Solution 2: Differentiate implicitly with respect to x. treating y as a constant, to obtain

N =

az dz X
2x+2z — =0 — ==
o de o ax z

Then differentiate implicitly with respect to y, treating x as a constant:
0z y

dz
|+ I — = —_— = -
2y +2 ¢9y_0 or dy- o
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10. X’y +32) + y’(3x —4z) + 2% (x —2y) = xyz

The procedure of Solution 1 of Problem 9 would be inconvenient here. Instead. differentiating
implicitly with respect to x yields

2 0Z 2 2 02 az 2 dz
hd - = - — 4+ 7= had
2x(2y +32) + 3x e +3y -4y o +2z(x —2y) PP + xy X

8z _ dxy +6xz+3y  + 27— yz
ax 3x° —4y? +2xz —4yz — xy

so that

Differentiating implicitly with respect to y yields

az
2x* +3x° —y+2y(3x-—4z) 4y* —+2z(x~2y)——22 =xz+xy(?—y

9z _ 2x* + 6xy —8yz — 227 ~—xz
«9y T3 - 4y* +2xz —4yz — xy

so that

11. xy+yz+zx=1

t g ith respect t 1d + _+ __+ = d(z_ y z

Differentiating wi sp o X yle Sy+y X z an = —_.
t g tllleSpCCttO yeldsx+ —+z+x——Oa d—“——

Differentiating wi ywyn y ;y ;y y .

ar dr d8 el
. P ) s o h - 0
12 Con51dermg x and y as independent variables, find P ay > 3y when x = e’ cos

y=e " sin 6.

First differentiate the given relations with respect to x:

J .0 .. a . 30
1=2€2’c050—r—ez’sm0— and 0=3¢" sm()—r+e3 cos @ —
ax dx ax ax

Th Ive simult Iv to obtai ar cos 8 0 a0 3sin @
en solve simultaneously to obtain — = ————=——and — =~ 5 ——+——5—.
y dx  €¥(2+sin’ 9) dx ¥ (2 +sin’ 9)
Now differentiate the given relations with respect to y:

. 20 . a3 20
O=2e2'cosﬂﬂ—e2'sm0— and 1=3e3'sm0—r+e“'c056—
ay dy ay ay
. 0 sin @ 00 2cos 6
Then solve simultaneously to obtain LAV L - and — = 0

dy e”(2+sin’ 9) dy e"(2+sin’0)’
13.  Find the slopes of the curves cut from the surface z = 30+ 4y2 — 6 by planes through the

point (1,1, 1) and parallel to the coordinate planes xOz and yO-:.

The plane x = 1, parallel to the plane yOz, intersects the surface in the curve z =4y’ —3, x = 1.
Then dz/9y =8y =8 X 1 =8 is the required slope.

The plane y = 1, parallel to the plane xOz, intersects the surface in the curve z =3x* -2,y =1.
Then dz/6x = 6x =6 is the required slope.

In Problems 14 and 15, find all second partial derivatives of z.

14, z=x"+3xy+y’

2 2
£=2x+3y é—25=—a—<£)=2 9z =i(£)=3
ox ay

dx ax ax dy dx ox
2 2
=3x+2y 6_;23_(?_2_):2 92 =i(6_z)=3
ay ay \dy dxdy Jx \dy



384

15.

16.

17.

18.

19.

20.

PARTIAL DERIVATIVES

Z=XCOSy— yCOsX

ﬂ-cos + ysinx — =—xsiny- ‘—9—2—
rri yty ay xsin y —cos x i
772 —i(g)——sin +sinx = L l—
gy dx Ay \ax Y ax dy ay:

Supplementary Problems

[CHAP. 62

[nvestlgate each of the followmg to determine whether or not it can be made continuous at (0, 0):

(@) no; (b) no; (c) yes; (d) no

v X+ y
@ s 0 O @ 5 Ans.
For each of the following functions, find dz/dx and dz/dy.
> > a
(@) z=x"+3xy+y" Ans. 6—§—2x+3y, =3x+2y
dz 1 9z 2
) z=5-% Ans. =—2+2—y,;—-=~_§—i2
y ox ax y ay y x
. az Jz
(¢) z=sin3xcosdy Ans. =3cos3xcosdy; ——
ax a
- y 9z __—y 9z _ _«x
(d) z = arctan T Ans. xS Ay ay iy
2 2 2 dz x dz 4y
- + = L e —— = =
(e) x* —4y" +92° =36 Ans X 9z 3y ~ 92
N s dz  2y(x—2) 9z x(x-—2z)
Y- 3xy + = L, — = L =
(f)z -3xy +6xyz=0 Ans ox T Zt2xy dy - 2+ 2xy
az yt+z Jz x+z
+xz+xy= . = — =
(g) yz+txz+xy=0 Ans % ¥y’ dy Xty
a
(@) If z=Vx*+y°, show thatxf;—+ya)z)—z.
3 az 0z
) If z=InVx* +y7, showthatx—+yay—1.
y ¥4 dz
= — + < - =0.
(¢) If z=¢""sin y e’ cos , show that x T +y — 3y =0

(d) If z = (ax + by)* + ¢ *** +sin (ax + by), show that b 6_ =a —

Find the equation of the line tangent to
(a) The parabola z =2x> — 3y’ y =1 at the point (-2, 1, 5)
(b) The parabola z = 2x* - 3y’, x = -2 at the point (-2, 1, 5)
(c) The hyperbola z =2x* —3y?% z =S5 at the point (-2, 1, 5)
Show that these three lines lie in the plane 8x + 6y + z +5=0.

For each of the following functions, ﬁnd

3’z 82 62
pyek and —
éxay 6y6x dy

2z
3y’

9’z

3 .

= —4sin 3xsin 4y

Ans. Bx+z+11=0,y=1
Ans. 6y+z—-11=0,x=-2
Ans. 4x+3y+5=0,z=5
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3’z 9’z 3z 3’z
— 2 2 —_— =4 = —= =% — =
(a) z=2x"-Sxy+y Ans. Py 4, axdy  dyox 5; 3y 2
X d’z_ by 9z _ﬁl_(i 1) %z _6x
(b) Ty Ans. S x*’oxdy dyox Ay y 7oyt oyt
3’z 3’z 3’z 3’z
= ¢ . _— = C— . —— = — '4;——:—1
(¢) z =sin 3x cos 4y Ans. —5 =923 3y~ 3yax 12 cos 3x sin 4y 2y 6z
= Y ‘9_22__‘9_22_ 2y 9%z = 9’z - y-x
(d) z = arctan o Ans. o 9y (+y) dxdy dydx  (x+y)
xy 2 'z %z N %z
) - LALN) +y2 2L <.
21 (a) If z -y’ show that x Py xy 7x 9y y 3y’
9’z 3’z
=" = *a, show that — + — =0.
(b) If z=¢""cos By and B a, show tha o T3y

- 3’z 3’z oz
(c) If z=e "(sinx + cos y), show that}?+;}7— TR

2 62 ‘92
(d) If z =sin ax sin by sin kftVa’ + b’, show that % = kz(—z + ——E)

ax’ ay’
22, For the gas formula (p + ;%)(u — b) = ct, where a, b, and ¢ are constants, show that
dp _2a(v - b)—(p+alv’)v’ v _ cv’
dv vv-b) at  (p+alv)v®-2a(v-b)
ot_v-b dp v _
ap c v a1t dp

[For the last result, see Problem [1 of Chapter 64.]
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Chapter 63

Total Differentials and
Total Derivatives

TOTAL DIFFERENTIALS. The differentials dx and dy for the function y = f(x) of a single

independent variable x were defined in Chapter 28 as
d
dr=Ax and dy=f'(x)dx= E}é dx

Consider the function z = f(x, y) of the two independent variables x and y, and define
dx = Ax and dy = Ay. When x varies while y is held fixed, z is a function of x only and the

partial differential of z with respect to x is defined as d, z = f (x, y) dx = 22 ax. Similarly, the
partial differential of z with respect to y is defined as d,z =f(x, y)dy = a—; dy. The total
differential dz is defined as the sum of the partial differentials,

f— + —_—
dz Tx dx 3y dy (63.1)
For a function w = F(x, y, z, ..., t), the total differential dw is defined as
Iw aw aw ow
e + —_— —_— ... —
dw Fy dx 3y dy + oz dz +---+ Py dt (63.2)

(See Problems 1 and 2.)

As in the case of a function of a single variable, the total differential of a function of several
variables gives a good approximation of the total increment of the function when the
increments of the several independent variables are small.

a d
EXAMPLE 1: When z=xy, dz = Ei dx + a—; dy = y dx + x dy; and when x and y are given increments
Ax = dx and Ay = dy, the increment Az taken on by z is

Az=(x+Ax)(y +Ay)~xy=xAy +y Ax + Ax Ay
=xdy+ydx+dxdy

A geometric interpretation is given in Fig. 63-1: dz and Az differ by the rectangle of area Ax Ay = dx dy.

(See Problems 3 to 9.)

a x4y Ax Ay
y xy y Ax
x Ax
Fig. 63-1

THE CHAIN RULE FOR COMPOSITE FUNCTIONS. If z = f(x, y) is a continuous function of the
variables x and y with continuous partial derivatives dz/dx and dz/dy, and if x and y are
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differentiable functions x = g(¢) and y = h(t) of a variable ¢, then z is a function of ¢ and dz/dt,
called the rotal derivative of z with respect to ¢, is given by

dz 9dz dx QQ

=24 .

dt  odx dt Jy dt (63.3)
Similarly, if w=f(x, y,z,...) is a continuous function of the variables x, y, z,... with
continuous partial derivatives, and if x, y, z, . . . are differentiable functions of a variable ¢, the

total derivative of w with respect to ¢ is given by

dw dw dx oJw dy Jw dz
—_— = _ = — — 4 ..
dt gx dt Jdy dt 9z dt (63.4)
(See Problems 10 to 16.)

If z=f(x, y) is a continuous function of the variables x and y with continuous partial
derivatives dz/dx and dz/dy, and if x and y are continuous functions x = g(r, s) and y = h(r, 5)
of the independent variables r and s, then z is a function of r and s with

dz dz dx dz ¢ a0z Jdz dx dz @
L2, 20 g B2 (63.5)
ar dx dr dy or s dx ds dy 0ds
Similarly, if w=f(x, y,z,...) is a continuous function of the variables x, y, z,... with
continuous partial derivatives dw/dx, dw/dy, dw/éz, ..., and if x, y, z,... are continuous
functions of the independent variables r, s, ¢, ..., then
aw _ow ax dw dy  ow oz
ar dx dr dy dr dz Ir
(63.6)

dw _ 9w 9x  owdy  dw oz
as ox ads ady ds 4z ds

(See Problems 17 to 19.)

Solved Problems

In Problems 1 and 2, find the total differential.

1.

z= x3y + xzy2 + xy3

dz 2 2 3 9z 3 2 2
We have I 3x‘y+2xy° +y and 2y X"+ 2x°y + 3xy
_2 ﬂ _ 2 2 3 3 2 2
Then dz—axdx+aydy—(3xy+2xy +y)dx+ (x° +2x°y + 3xy°) dy
z=xsiny—ysinx
dz . dz .
We have gy Siny - ycosx and 7 =xcos y—sinx
9z 9z . .
Then dz=xdx+5dy=(smy—ycosx)dx+(xcosy—smx)dy

Compare dz and Az, given z = x* + 2xy — 3y~
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0z 0z
— =2x+2y and — =2x—6y. So dz =2(x+y)dx+2(x —3y)dy
ax ay
Also, Az={(x+dx)’ +2(x +dx)(y + dy) - 3(y + dy)z] - (¥ + 2xy — 3y%)

=2(x + y) dx + 2(x — 3y) dy + (dx)* + 2 dx dy — 3(dy)*
Thus dz and Az differ by (dx)* + 2 dx dy — 3(dy)’.

Approximate the area of a rectangle of dimensions 35.02 by 24.97 units.

For dimensions x by y, the area is A = xy so that dA = 5— dx + 3y dy y dx + x dy. With x = 35,

dx =0.02, y =25, and dy = —0.03, we have A =35(25) =875 and dA = 25(0.02) + 35(-0.03) = —0.55.
The area is approximately A + dA = 874.45 square units.

Approximate the change in the hypotenuse of a right triangle of legs 6 and 8 inches when the
shorter leg is lengthened by § inch and the longer leg is shortened by  inch.
Let x, y, and z be the shorter leg, the longer leg, and the hypotenuse of the triangle. Then

— az x dz _ y dz=a—z-dx+£dy—de+ydy

zZ= x‘+ — T ————— —_ = =
YoaTEy o TV e et e s

6(3)+8(—3 1
When x=6, y =8, de =1}, and dy = — 3, then dz —% 20 inch. Thus the hypotenuse is

lengthened by approximately 3 inch.

The power consumed in an electrical resistor is given by P=E %R (in watts). If E =200 volts
and R =8 ohms, by how much does the power change if E is decreased by 5 volts and R is
decreased by 0.2 ohm?

2E 4P _ E° 2E E?

R GR- R dP—‘—dE*R2

-5, and dR = —0.2, then
2(200 200
( )( 5) - ( )

We have = dR

T

When E =200, R=8, dE

dP = (-0.2)=-250+125=—-125

The power is reduced by approxlmatcly 125 watts.

The dimensions of a rectangular block of wood were found to be 10, 12, and 20 inches, with a
possible error of 0.05 in in each of the measurements. Find (approximately) the greatest error
in the surface area of the block and the percentage error in the area caused by the errors in
the individual measurements.
The surface area is § = 2(xy + yz + zx); then
as as as

dS=—-dx ydy+Edz=2(y+z)dx+2(x+z)dy+2(y+x)dz

The greatest error in § occurs when the errors in the lengths are of the same sign, say positive. Then
dS =2(12 + 20)(0.05) + 2(10 + 20)(0.05) + 2(12 + 10)(0.05) = 8.4 in’
The percentage error is (error/area)(100) = (8.4/1120)(100) =0.75%.

For the formula R = E/C, find the maximum error and the percentage error if C =20 with a
possible error of 0.1 and E = 120 with a possible error of 0.05.
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éR dR 1 E
Here dR—;EdE-F%dC—EdE—PdC
. . 0.05 120
The maximum error will occur when dE = 0.05 and dC = —0.1; then dR = >0 " 200 (—-0.1) =0.0325
d .03
is the approximate maximum error. The percentage error is R (100) = 98—25 (100) = 0.40625 =

0.41%.

9.  Two sides of a triangle were measured as 150 and 200 ft, and the included angle as 60°. If the
possible errors are 0.2 ft in measuring the sides and 1° in the angle, what is the greatest
possible error in the computed area?

1 . dA 1 | dA 1 dA 1
Here A—ixysm(? a—x—iysmﬂ ay—zxsml) ae—zxycosﬂ
- 1 1
and dA=§ysm0dx+ixsm0dy+Exycosedﬁ

When x =150, y =200, 8 =60°, dx =0.2, dy = 0.2, and 46 = 1° = =/180, then
dA = 1(200)(sin 60°)(0.2) + 3 (150)(sin 60°)(0.2) + 1(150)(200)(cos 60°)(7/180) = 161.21 ft*

10. Find dz/dt, given z = x2+ 3xy + Syz; X =sint, y =cos!t.

. dz 9z dx dy .
— = + —_ = + -_ = - = -
Since ox 2x + 3y dy 3x + 10y a - cost ar sin ¢
d dz dx 9z d
we have z——z—+—z—y=(2x+3y)cost—(3x+10y)sin1

dr ax di dy di

11. Find dz/dt, given z =In(x*+ y*); x=e™', y=¢"

Since 9z _2x oz de - dy _
dx  x*+y? ﬁy_x2+y2 a - ° d ¢
dz _dzdx dzdy 2 . 2y ., . ye'—xe'
we have dt ~ dx dt+0y dt_x2+y2(e )+x2+yze—2—x§_+7

12.  Let z = f(x, y) be a continuous function of x and y with continuous partial derivatives dz/dx
and dz/dy, and let y be a differentiable function of x. Then z is a differentiable function of x.
Find a formula for dz/dx.

dz _ of dx  of dy _ of  of dy
By (63.3), dx ~ dx dx+dy dx—ax+ay dx

The shift in notation from z to f is made here to avoid possible confusion arising from the use of
dz/dx and 8z/9x in the same expression.

13.  Find dz/dx, given z = f(x, y) = x" + 2xy + 4y’, y = ™.

dz _ of L of dy

dx  ax  ay dx =(2x +2y) + (2x + 8y)ae™ = 2(x + y) + 2a(x + 4y)e

4.  Find (a) dz/dx and (b) dz/dy, given z = f(x, y) = xy’ + x°y, y=Inx.
(a) Here x is the independent variable:
ds _of | Of dy

1
(2 o1l _ '
dx dx dy dx—(y +21y)+(2xy+x)x y +2xy+2y +x
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(b) Here y is the independent variable:
d of d d
d~;=a—£di ﬁi—(y +2xy)x + 2xy + x°) = xy? +2x%y + 2xy + x°

15.  The altitude of a right circular cone is 15 inches and is increasing at 0.2 in/min. The radius of
the base is 10 inches and is decreasing at 0.3 in/min. How fast is the volume changing?

Let x be the radius, and y the altitude of the cone (Fig. 63-2). From V = }#x’y, considering x and y
as functions of time ¢, we have

dV _ 3V dx dV dy 7r( dr d_y)_a_f ~ , o .
& o @ oy a -3\ g tx ) = 3 [2010)15)(-03) + 10°(0.2)] = = 70/3 in*/min

Fig. 63-2

2 2

16. A point P is moving along the curve of intersection of the paraboloid T ’% = z and the

cylinder x* + y* =5, with x, y, and z expressed in inches. If x is increasing at 0.2 in/min, how
fast is z changing when x =2?

2 2
Xy n 4z _dzdx ordy xdx dydy o oz o _
From z2=16 " g W obtain priie dt+0y T 9 dt.Smcex +y =5 y==1
when x = 2; also, differentiation yleldsx§+y [(11"; 0.
dy x dx dz 2 2 5 . .
When y = IE _;E_ 1(02)——04andE——(0.2)——(—0.4)—%m/mm.
_ dy _x dx 2 .
When y = -1, -y =04 andd —8(0.2) ( 1)(0.4) = m/mm.

17.  Find dz/dr and 9z/ds, given z = x* + xy+y i x=2r+s, y=r—2s.

az iz ax ax ay ay
—_—= “+ —_— = —_— = —_= _— = —_— = -
Here I 2x+y ay x+2y 2 2 s ar s 2
a Jz d dz ¢
Then 02272 OX P20 (x4 y)2) + (x + 2y)(1) = Sx + 4y

ar dx dr dy dr

9z_ 9z dx 0z 9y _2)=-
and 55" ax 35 Ty 3o T XN HGEHN-2)= -3y

. du Ju Ju . 2 2 5 . . .
18. Find —, —, d —, given u=x"+2y" +2z°; = psin B cos 8, = p sin B sin 6,
md 50 a0 M G0 8 x"+2y x=psinp y=psinfp
z=pcos B.
du d ou a9
u_ du x+a—uﬂ+—u—2=2xsinBcos(9+4ysinﬁsin0+4zcos[3

dp  dx dp Jdy dp dz dp
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19.

20.

21,

du _ Ju dx  du dy | du 0z . .
—_— s —+ — =+ — — = 0+4 # —4z psin
9B ox o ayop ez 2x p cos f3 cos y p cos B sin zpsin B

du _du dx c_?gﬂ du oz

— = T4 +— — = - i ing +4 i [/}
96 3x 30 T ay 96 T az 8 2x psin Bsin @ + 4y p sin B cos

Find du/dx, given u=f(x, y,z)=xy+yz+zx; y=1/x, z=x"

From (63.6),
du _of  of dy  of dz (_L) -y _xtz
dx ax Toydx ez dx DTG -G =y 22y y) -y

If z = f(x, y) is a continuous function of x and y possessing continuous first partial derivatives
dz/dx and dz/dy, derive the basic formula

2z dz
Az=5;Ax+3;Ay+e,Ax+esz (n

where €, and ¢,— 0 as Ax and Ay—0.
When x and y are given increments Ax and Ay respectively, the increment given to z is
Az=fx+Ax, y+ Ay) - f(x, y)
=[flx+Ax, y + Ay) = flx, y + Ay)] + [f(x. y + Ay) = f(x, y)] (2)

In the first bracketed expression, only x changes; in the second, only y changes. Thus, the law of the
mean (26.5) may be applied to each:

flx+Ax, y+Ay)—fx, y + Ay) = Ax f(x + 6, Ax, y + Ay) 3)
fl, y+Ay) = flx, y) = Ay f(x. y + 6, Ay) (4)

where 0< 6, <1 and 0< 6§, <1. Note that here the derivatives involved are partial derivatives.
Since dz/dx = f,(x, y) and 3z/dy = f (x, y) are, by hypothesis, continuous functions of x and y,

A]imo f(x+6 Ax, y +Ay)=f.(x, y) and _\lim” Ly +6,Ay)=f(x.y)

Ay—0 Ay—0
Then f(x+6,Ax, y+Ay)=f(x,y) +e¢ and f‘(x,y+02Ay)=f‘,(x. ¥)te

where €,—~0 and ¢,— 0 as Ax and Ay—0.
After making these replacements in (3) and (4) and then substituting in (I ), we have, as required,

Az = [f,(x, Y +elAx+{f(x, Y)+ &]Ay =f.(x. y)Ax + f.(x, y) Ay + €, Ax + €, Ay

Note that the total derivative dz is a fairly good approximation of the total increment Az when |Ax| and
|Ay] are small.

Supplementary Problems

Find the total differential, given:

(a) z=x"y +2xy’° Ans. dz=(3x*+2y*)ydx + (x* + 6y’ )x dy
(b) 8 =arctan (y/x) Ans. do = xdyZh—y_zdx

Xty
(c) z= e Ans. dz=2z(xdx - ydy)

dr = Yy dx —xdy)

d)z= Ty 2 Ans.
(d) z=x(x"+y%) ns (x2+y2)3’2



392

22.

27.

29.
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The fundamental frequency of vibration of a string or wire of circular section under tension T is

1 T
"Tom Nad )
approximate effect of changing / by a small amount d!, (b) the effect of changing T by a small amount
dT. and (c) the effect of changing / and T simultaneously.

Ans.  (a) —(n/l)dl; (b) (n/2T)dT; (¢) n(—di/l + dT/2T)

where ! is the length, r the radius, and d the density of the string. Find (a) the

Use differentials to compute (a) the volume of a box with square base of side 8.005 and height 9.996 ft;
{b) the diagonal of a rectangular box of dimensions 3.03 by 5.98 by 6.01 ft.

Ans.  (a) 640.544 ft’; (b) 9.003 ft

Approximate the maximum possible error and the percentage of error when z is computed by the given
formula:

(a) z= arth; r=5+005 h=12+0.1 Ans. 8.5w; 2.8%
(b) liz=1/f+1/g, f=420.01,g=8=x0.02 Ans. 0.0067; 0.25%
(©) z=vy/x;x=1.820.1,y=24%0.1 Ans. 0.13; 10%

Find the‘approximatc maximum percentage of error in:
(a) w =V g/b if there is a possible 1% error in measuring g and a possible ;% error in measuring b.

1/d
(Hinl: lnw=§(lng—lnb);‘%=—(?g—%); d—gl=0.01; db =0.005) Ans. 0.005

3 g b
(b) g =2s/t" if there is a possible 1% error in measuring s and §% error in measuring .

Ans. 0.015

Find du/dt, given:
(@) u=x’y' x=2,y=3¢° Ans.  6xy’t(2yt + 3x)
(b) u=xcosy+ysinx; x=sin2¢t y=cos2t
Ans. 2(cos y + y cos x) cos 2t —2(—x sin y + sin x) sin 2¢
(&) u=xy+yz+zx;x=ée,y=e ' z=¢+e”' Ans. (x+2y+2)e'~(2x+y+z)e”’

At a certain instant the radius of a right circular cylinder is 6 inches and is increasing at the rate
0.2 in/sec. while the altitude is 8 inches and is decreasing at the rate 0.4 in/s. Find the time rate of
change (a) of the volume and (b) of the surface at that instant.

Ans. (a) 4.87 in*/sec; (b) 3.2 in’/sec

A particle moves in a plane so that at any time ¢ its abscissa and ordinate are given by x =2 + 3¢,
y=1"+4 with x and y in feet and ¢ in minutes. How is the distance of the particle from the origin
changing when =17  Ans. 5/V2 ft/min

A point is moving along the curve of intersection of x* + 3xy + 3y = z* and the plane x — 2y +4=0.
When x =2 and is increasing at 3 units/sec, find (@) how y is changing. (b) how z is changing, and (c)
the speed of the point.

Ans. (a) increasing 3/2 units/sec; (b) increasing 75/14 units/sec at (2,3,7) and decreasing 75/
14 units/sec at (2,3, —7); (¢) 6.3 units/sec

Find dz/9s and dz/41, given:

(@) z=x"-2y*; x=3s+2t, y=35s -2t Ans. 6(x —2y); 4(x + 2y)

b) z=x"+ Jxy + y?; x =sins +cost, y=sins—cos¢t Ans. S5(x+ y)coss; (x — y)sint
(¢) z=x"+2y"1x=¢e—-¢. y=e+¢ Ans. 2(x +2y)e’; 2(2y — x)e’
(d)yz=sin(dx+5y); x=5+t, y=5—1 Ans. 9cos (4x + 5y); —cos (4x + Sy)

Y]

() z=e";x=5+2st, y=2st+ 1 Ans. 2e™[x + (s + t)y]; 27 [(s + Hx + sy]
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31

32.

33.

35.

(a) If u= f(x, y) and x = rcos 8, y = rsin 6, show that

(52) (%) = (%) + 2 (%)
ax ay/ ~\ar r* \ a8

(b) If u= f(x, y) and x = rcosh s, y = rsinh s, show that

(5 -G -0+ (G)

2
z

5. (Hint: Write z = f(u) + g(v), u=x+ ay,

2

(@) If 2= f(x + ay) + g(x — ay), show that gx—i -1
[a 4

L

5

Yy
=x-ay.)
(b) If z = x"f( y/x), show that x dz/dx + y 3z/dy = nz.
(¢) If z = f(x, y) and x = g(¢), y = h(r), show that, subject to continuity conditions
dzz L4 I " n
a =fu (&) +2f 8" +f (W) +fg"+fh

(d) If z = f(x, y); x = g(r, s), y = h(r, 5), show that, subject to continuity conditions

3%z
P fo (&Y +2f 8h +f (h) +fg, +fh,

2

a’z
Sy e =L 8 T (8h + g h )+ f hh + g +fh,

3%z
F =f;x(g:)2 + zf;ygsh: + f:vy(h.\‘)z +f:rg.n + f:vh.u

A function f(x, y) is called homogeneous of order n if f(ix, ty) = t"f(x, y). (For example, f(x, y)=
x? +2xy + 3y’ is homogeneous of order 2; f(x, y) = x sin ( y/x) + y cos ( y/x) is homogeneous of order
1.) Differentiate f(tx, ty) = t"f(x, y) with respect to t and replace ¢ by 1 to show that xf, + yf, = nf. Venfy
this formula using the two given examples. See also Problem 32(b).

., ou _dv Ju _ ‘ﬂ
If z = ¢(u, v), where u = f(x, y) and v = g(x, y), and if ox  dy an 3y ax’ show that
d’u 9w dv % ¢ % Ju\’ [av\\/d'd %
@72+t =75+ 55=0 (&) 2+_T={(_) +(—) }(—z _2)
X ay ax ay ax ay ax ax du v

Use (1) of Problem 20 to derive the chain rules (63.3) and (63.5). (Hint: For (63.3), divide by At)



Chapter 64

Implicit Functions

THE DIFFERENTIATION of a function of one variable, defined implicitly by a relation f(x, y) =0,
was treated intuitively in Chapter 11. For this case, we state without proof:

Theorem 64.1: If f(x, y) is continuous in a region including a point (x,, y,) for which f(x,, y,) =0, if
dflox and df/@y are continuous throughout the region, and if df/dy #0 at (x,, y,). then there is a
neighborhood of (x,. y,) in which f(x, y) = 0 can be solved for y as a continuous differentiable function of

i ‘ - dy _ dflox
x, y = ¢(x), with y, = ¢(x,) and dx  oflay”

(See Problems 1 to 3.)
Extending this theorem, we have the following:

Theorem 64.2: If F(x, y,z) is continuous in a region including a point (x,, y,, z,) for which

dF 4F dF . . .
F(x,, v4.2,) =0, if —, —, and —— are continuous throughout the region, and if dF/dz+#0 at

(Xg» Yo 2,), then there is a ﬁeighborhood of (x4, ¥o» 2,) in which F(x, v, z) =0 can be s%lved fog;/z;s a
z X

ggntinu%qu/g;fferentiable function of x and y, z = ¢(x, y), with z,= ¢(x,.y,) and ox = FFlaz’

dy  dFlez
(See Problems 4 and 5.)

Theorem 64.3: If f(x, v, u, v) and g(x, y. u, v) are continuous in a region including the point (x,, y,,
u,y, vy) for which f(x,, y,, 4,, v,) =0 and g(x,, ¥4, Uy, V,) =0, if the first partial derivatives of f and
of g are continuous throughout the region, and if at (x,. y,, u,. v,) the determinant J(f’*g) =

affou dflduv , , . . u, v
dgldu ag/au #0, then there is a neighborhood of (x,, y,, #,, v,) in which f(x, y, u, v)=0 and

g(x, y, u, v) = 0 can be solved simultaneously for u and v as continuous differentiable functions of x and

y, u=d@(x,y) and v=4y(x, y). If at (x4, y4. uy. vy) the determinant J(£’—8—)#O. then there is a

neighborhood of (x,, y,. u,, v,) in which f(x, y, u,v)=0and g(x, y, u, v) =0 cz;n be solved for x and y as
continuous differentiable functions of « and v, x = h(u, v) and y = k(u, v).

(See Problems 6 and 7.)

Solved Problems

1. Use Theorem 64.1 to show that x>+ y* —13=0 defines y as a continuous differentiable
function of x in any neighborhood of the point (2, 3) that does not include a point of the x
axis. Find the derivative at the point.

Set f(x, y)=x"+y>—13. Then f(2,3) =0, while in any neighborhood of (2,3) in which the
function is defined, its partial derivatives df/dx = 2x and df/dy = 2y are continuous, and df/dy # 0. Then

S A, ¢ L _dex_ x=—%at(2,3)

ox 3y dx an dx = afley  y

2. Find dy/dx, given f(x, y) =y + xy —12=0.

of of 2 dy aflox y
— = —_ = “+ . y = - ==
We have ar Y and ay Iy +x So ! ofidy 3+ x

394
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3 Find dy/dx, given e"sin y + e’ sinx =1,

. . dy aflax e"siny+ e’ cosx
=e* +e -1 = =- == - :
Put f(x, y)=e¢*sin y + ¢’ sinx — 1. Then o ofidy e cos y + e sinx

4. Find dz/dx and 9z/dy, given F(x, y, z) = x> +3xy — 2y’ +3xz + z° = 0.

Treating z as a function of x and y defined by the relation and differentiating partially with respect
to x and again with respect to y, we have

dF oJF 9z

= S o (2x 43y +32)+ (Bx+22) — 1
ox 37 o (2x +3y +32) + (3x 22) (1
dF OJF 9z
and 5+$a—§—(3x—4y)+(3x+22)—— 2)
8z _ dFlox  2x+3y+3z dz __dF/dy  3x—dy
From (1), 5 =~ GFaz =~ 3x+2z DOm0 =" GFG, T Taxvas

s. Find #z/6x and dz/dy, given sin xy + sin yz +sin zx = .

Set F(x, y, z) =sin xy + sin yz +sin zx — 1; then

ar _ cos xy + z cOS zx 9F _ cos xy + z oS yz 9F_ cos yz + z
o Y y &y-—x y+ zcosy 5 ¥ €0s yz + xcoszx
and dz _ dF/lgx _ ycosxy+ zcoszx dz  JFldy  xcosxy+ zcosyz
dx dF/dz y €OS yz + X cOS zx dy dFiaz y €OS yz + x COSs zX
6. If u and v are defined as functions of x and y by the equations

fx, y, u,v) =x+y* +2uv =0 glx, yvyu,v)=x’—xy+y' +u*+0v*=0
find (a) du/dx, dv/dx and (b) duldy, dv/dy.

(a) Differentiating f and g partially with respect to x, we obtain

v
w0 o —y+2u —
1 2v ox 2u ix 0 and 2x ~y 2u + 2v ¢9x =0
Solving these relations simultaneously for du/dx and Jv/dx, we ﬁnd
du _ v +u(y-2x) an v _v(2x—y)—u
ax 20’ — v?) ax  2u-vY)
(b) Differentiating f and g partially with respect to y, we obtain
Ju du Jdv
2 +20—+2u—=0 and —x+2y+2u—+2—=0
Y ay ay Y ay ay
du  u(x —2y)+2vy d v(2y — x) = 2uy
Th s d — ="
en ay 2 -0v) and ey T T = oY
d
7. Given u’ —v* +2x+3y=0and uv +x —y =0, ﬁnd()—u v du AN d(b) — ox ay,
dx dy ax’ dy dy du’ du

duv’ v’
(a) Here x and y are to be considered as independent variables. Differentiate the given equations
partially with respect to x, obtaining

ad a
w2 42=0 and v Z%+uZ41-0
ox ax X X
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. . . d + d -
Solve these relations simultaneously to obtain L % and = = U, uz.
) ] ) ) ) . u +uv dx  u +v
Differentiate the given equations partially with respect to y, obtaining
a 0 a
2u—u—2v—~+3 0 and vI-+uiZ-1=0
dy ay ay ay
du 2v-3u dv _ 2u+3v

Solve simultancously to obtain —— = —=——— an = — .

y gy 2 +o) oy T Al + o)
(b) Here u and v are to be considered as mdepcndent variables. Differentiate the given equations
partially with respect to u, obtaining 2u +2 - +3 ﬁ—O and v+ 22 - 22 20, Then a—z =

2u + 3v ay 2(v - u) du  du
- and - 5
Differentiate the given equations partially with respect to v, obtaining —2v + 2 N 3 =0
d +(9_x_r9_y 0. Then dx _2v-3u dr?y 2u(u+v) v ‘90
ancuT S50 " au v 5 % 5

Supplementary Problems

8. Find dy/dx. given

(@) ' - xXyv+xy’-y'=1 (b) xy —e*siny=0 (¢) In(x* + y?) — arctan y/x =0
30t = 2xy +y? e'siny—y  2xty
Ans.  (a) x2—2xy+3yz’( )x—e‘cosy’ ( )x—2y

9. Find dz/dx and 3z/dy, given

(@) 3" +4y° -5 =60 Ans. 0z/dx =3x/5z; dz/3y = d4y/5z
Pyt g _ 9z xtytdz 9z xryt2z
(b) x + ¥y + 2 +2xy +4yz +8zx =20 Ans. dx  ax+t2ytz'dy  dx+2y+z
9z z dz 3z
, V> = — = T =
() x+3y+2z=Inz Ans. dx 1-2z"4dy 1-2z
d . ~e'sin(y+z
(d) z=¢" cos(y + 2) Ans. = d : bt 2)

ax ]+esm(y+z) (9y 1+e'sin(y+2)

(e) sin{x +y)+sin(y+z)+sin(z+x)=1

Az cos(x + yy+cos(z+x) @z cos(x +y)+cos(y+ z)
Ans. — = =
ax cos(v+z)+cos(z+x) ay cos(y+z)+cos(z+x)
10. Find all the first and second partial derivatives of z, given x* + 2yz + 2zx = 1.
A i{__x+z dz 2 Hz x—y+22. 3’z _x+22.c9_zz# 2z
ek x+y'ay x+y ax’ (x+y) “axdy (x+y) 9y’ (x+y)
dx dy dz _
11, If F(x, ¥y, 2)=0 show that 5 5z Ax 1.
of 98 _ of 98
o ) B o dz _dx dy dy ox _ 1 (f_g)
12. If z=f(x. v) and g(x, y) = 0, show that e 2 = 2 J oyl

ay ay
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- - of 98 9y _ of 98
13. If f(x, y) =0 and g(z, x) =0, show that 3y ax 3z ox 9z’

14. Find the first partial derivatives of u and v with respect to x and y and the first partial derivatives of x
and y with respect to « and v, given 2u—v+ x> +xy =0, u+2v +xy —y’ =0.

du 1 duv 1 du 1 Jv _dy—x Jdx 4y — x
R —_ = - = + f— = = — T — = — — C — = ¢ = .
Ans ax 5 (4x 3)’)’ ax 5 (2x y)’ ay 5 (2)' 3x)1 dy 5 + l?ll 2(12 _ 2Xy _ yz) *
ay _ y—2x L 9x _ 3x -2y -Q: —4x — 3y
du  2Ax*-2xy-y’)’dv  2x’-2xy—y’)’ v 2(x’—2xy-y?)
15. fu=x+y+z,v=x"+y"+2% and w=x’+y’ + 2°, show that

ox ¥z gy _ __x+tz 9z v
du (x— y)(x—2) v 2x-y)(y-2) aw  3(x-2)(y - 2)



Chapter 65

Space Vectors

VECTORS IN SPACE. As in the plane (see Chapter 23), a vector in space is a quantity that has
both magnitude and direction. Three vectors a, b, and ¢, not in the same plane and no two
parallel, issuing from a common point are said to form a right-handed system or triad if ¢ has the
direction in which a right-threaded screw would move when rotated through the smaller angle
in the direction from a to b, as in Fig. 65-1. Note that, as seen from a point on ¢, the rotation
through the smaller angle from a to b is counterclockwise.

We choose a right-handed rectangular coordinate system in space and let i, j, and k be unit
vectors along the positive x, y and z axes, respectively, as in Fig. 65-2. The coordinate axes
divide space into eight parts, called octants. The first octant, for example, consists of all points
(x, v, z) for which x>0, y >0, z >0,

z
VL SR
P(2,y,2)
3 I
1k
i e
o > 3 4
-
A v B
x
Fig. 65-1 Fig. 65-2

As in Chapter 23, any vector a may be written as
a=aqai+ajtak

If P(x, v, z) is a point in space (Fig. 65-2), the vector r from the origin O to P is called the
position vector of P and may be written as

r=OP=0B+BP=0A+AB+BP=xi+yj+zk (65.1)

The algebra of vectors developed in Chapter 23 holds here with only such changes as the
difference in dimensions requires. For example, if a=a,i+ a,j + a;k and b= b,i + b,j + b.k,
then

ka= ka i+ ka,j + ka;k for k any scalar

a=bif and only if a, = b,. a, = b,, and a, = b,

atb=(a, *b))i+(a,xb,)j+(a,xb;)k

a-b = |a||b| cos 6. where 6 is the smaller angle between a and b

isizj-j=k-k=1landi-j=j-k=k-i=0

398
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a|l=Vvara= a2+az+a§
1 2 ;

a*b=0ifa=0, or b=0, or a and b are perpendicular

From (65.1), we have
rl=vEr=Vx'+y +2° (65.2)

as the distance of the point P(x, y, z) from the origin. Also, if P,(x,, ¥,, z;) and P,(x,, y,, z,)
are any two points (see Fig. 65-3), then

P,P,=PB+BP,=P A+ AB+BP, = (x, —x)i+(y, _YI)j +(z,— 21)k
and PP, =V, —x)" +(y, -y )V +(z,— 2,) (65.3)

is the familiar formula for the distance between two points. (See Problems 1 to 3.)

§ z
£ Y
Ps(zs, y1, 21)
d fa
= B kY
74 4 P
P -
: = 1 j Y
i >
k Py(z1, y1, 21) g 0
i
0 i
x
Fig. 65-3 Fig. 65-4

DIRECTION COSINES OF A VECTOR. Let a=a,i+ a,jtak make angles a, B, and v,
respectively, with the positive x, y, and z axes, as in Fig. 65-4. From

ira=li|l]ajcosa =|ajcosa  j-a=|alcosB  k-a=|a|cosy

we have
ira a jra a k-a «a
cosa ==+ cos,3='l-—=—2 cosy=—=—3—
la|  |al la|  |al
These are the direction cosines of a. Since
2 2 2
a,ta,+a
cos” a + cos’ ﬁ+coszy= % =1
a

the vector u=icos a +jcos 8 + kcos y is a unit vector paraliel to a.

VECTOR PERPENDICULAR TO TWO VECTORS. Let
a=gqit+aj+ak and b=b,i+b,j+ bk

be two nonparallel vectors with common initial point P. By an easy computation it can be
shown that
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c= bz bal b3 b1'j bn b2 = bl bz bz (65.4)
1 2 3

is perpendicular to (normal to) both a and b and, hence, to the plane of these vectors.
In Problems 5 and 6, we show that

|c| = |a||b] sin @ = area of a parallelogram with nonparallel sides a and b (65.5)

If a and b are parallel, then b= ka, and (65.4) shows that ¢=0; that is, ¢ is the zero
vector. The zero vector, by definition, has magnitude 0 but no specified direction.

VECTOR PRODUCT OF TWO VECTORS. Take
a=a|itaj+ak and b=b,i+ b,j+ b,k

with initial point P and denote by n the unit vector normal to the plane of a and b, so directed
that a, b, and n (in that order) form a right-handed triad at P, as in Fig. 65-5. The vector
product or cross product of a and b is defined as

axb=]allb|sinén (65.6)

where 6 is again the smaller angle between a and b. Thus, a X b is a vector perpendicular to
both a and b.

axb

Fig. 65-5

We show in Problem 6 that |a x b| = |a||b| sin @ is the area of the parallelogram having a and
b as nonparallel sides.
If a and b are parallel, then § =0 or = and a X b= 0. Thus,

ixXi=jxj=kxk=0 (65.7)
In (65.6), if the order of a and b is reversed, then n must be replaced by —n; hence,
bxa=—-(axb) (65.8)
Since the coordinate axes were chosen as a right-handed system, it follows that
S i= Cx k=i -
iXxXj=k ixXxk=i kxi=j (65.9)

jxi=-k kxj=—i ixk=—j
In Problem 8, we prove for any vectors a, b, and ¢, the distributive law

(@a+b)xc=(axc)+(bxc) (65.10)
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Multiplying (65.10) by —1 and using (65.8), we have the companion distributive law

cxX(at+b)y=(cxa)+(cxb) (65.11)
Then, also,
(a+b)X(c+d)=axXxc+taxd+bxc+bxd (65.12)
i j k
and axb=|a, a, a (65.13)
b, b, b,

(See Problems 9 and 10.)

TRIPLE SCALAR PRODUCT. In Fig. 65-6, let 6 be the smaller angle between b and ¢ and let ¢ be
the smaller angle between a and b X ¢. Then the triple scalar product is by definition

a-(bXc)=a-|bllc|sin & n = |a||b|c| sin 6 cos ¢ = (|a] cos $)(|b]|c| sin 8) = hA
= volume of parallelepiped

/J
!
!/
¢ r;
I
I
L -h s
n DF el it o
~T\e A
b
Fig. 65-6
It may be shown (see Problem 11) that
a, a4, a,
ar(bxc)=|b, b, byl=(axb)-c (65.14)
€ G G
€ 6 G a, a, 4a
Also, c-(axb)y={a, a, ay|=1b, b, byl=a-(bxc)
b, b, b, € € G
b, b, by a, a; 4a,
while b-(axc)=|a, a, a;|=—-|b, b, byj=—-a-(bxc)
€ 6 6 ¢ & G
Similarly, we have
a-(bXc)=c-(axb)=b-(cxa) (65.15)
and a-(bxc)=—-b-(axc)=—-c-(bxa)=—a-(cxb) (65.16)

From the definition of a-(b X ¢) as a volume, it follows that if a, b, and ¢ are coplanar, then
a-(bx¢)=0, and conversely.

The parentheses in a- (b X ¢) and (a X b) - ¢ are not necessary. For example, a-b X ¢ can be
interpreted only as a- (b X ¢) or (a-b) X ¢. But a-b is a scalar, so (a-b) X ¢ is without meaning.
(See Problem 12.)
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TRIPLE VECTOR PRODUCT. In Problem 13, we show that
axX(bxe¢)=(a-c)b—(a-b)c (65.17)
Similarly, (axb)xc=(a-c)b—(b-c)a (65.18)

Thus, except when b is perpendicular to both a and ¢, a x (b X ¢) # (a X b) X ¢ and the use of
parentheses is necessary.

THE STRAIGHT LINE. A line in space through a given point P,(x,, y,. z,) may be defined as the
locus of all points P(x, y, z) such that P P is parallel to a given direction a= a,i + a,j + a;k.
Let r, and r be the position vectors of P, and P (Fig. 65-7). Then

r—r,=ka where k is a scalar variable (65.19)

Fig. 65-7

is the vector equation of line PP,. Writing (65.19) as
(x —x )i+ (y—y)i+(z—zy)k=k(a,i+ a,j+ ak)
then separating components to obtain
X x,= ka, y—y,= ka, z—2,= ka,
and eliminating &, we have
X=Xy _Y—Vo_Z7 2
a, a, a,

(65.20)

as the equations of the line in rectangular coordinates. Here, [a,, @,, a,] is a set of direction
numbers for the line and [%", %l, %‘]] is a set of direction cosines of the line.

If any one of the numbers a,, a,, a, is zero, the corresponding numerator in (65.20) must
be zero. For example, if a; =0 but a,, a, 0, the equations of the line are

x—x,=0 and =
a, as;

THE PLANE. A plane in space through a given point Py(x,, y,, z,) can be defined as the locus of
all lines through P, and a perpendicular (normal) to a given line (direction) a = Ai+ Bj+ Ck
(Fig. 65-8). Let P(x, y, z) be any other point in the plane. Then r — r, = P,P is perpendicular to
a, and the equation of the plane is

(r—ry)-a=0 (65.21)
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Fig. 65-8

In rectangular coordinates, this becomes
[(x =x )i+ (y = yo)i+(z = z)k] - (Ai+ Bj+ Ck) =0
or Ax ~x)) + By —yg) + C(z = z,) =0
or Ax+By+Cz+ D=0 (65.22)

where D = —(Ax, + By, + Cz,).
Conversely, let P,(x,. y,, z,) be a point on the surface Ax + By + Cz + D = 0. Then also
Ax, + By, + Cz, + D =0. Subtracting the second of these equations from the first yields

Alx —xo) + B(y =)+ C(z —z,) = (Ai+ Bj + CK) - [(x — x,)i + (y — yoit(z—z)k]=0

and the constant vector Ai+ Bj+ Ck is normal to the surface at each of its points. Thus, the
surface is a plane.

Solved Problems

Find the distance of the point P,(1, 2, 3) from (a) the origin, () the x axis, (¢) the z axis, (d)
the xy plane, and (e) the point P,(3, ~1,5).

In Fig. 65-9,

Fig. 65-9
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(@) r=OP, =i+ 2j+3k; hence, |rj=V1° +2° + 3’ = V14,

(b) AP, = AB + BP, = 2j + 3k; hence, |AP,|=V4+9=V13,

(¢) DP, = DE + EP, = 2j +i; hence, [DP,| = V5.

(d) BP, =3k, so [BP,| =3.

(e) P,P,=(3-1)i+(—1-2)j+(5-3)k=2i-3j+2k; hence, |P,P,| =VAa+9+4=VTI].

Find the angle 8 between the vectors joining O to P,(1,2,3) and P,(2, -3, -1).
Let r, =OP, =i+2j+3k and r, = OP, = 2i - 3j — k. Then

roor, 1(2)+2(=3)+3(-1)

1
6= = __ 1 _ .
o |rl||r2| \YATAVAY 2 and 9 =120

Find the angle a = 2 BAC of the triangle ABC (Fig. 65-10) whose vertices are A(1,0, 1),
B(2,-1,1), C(~2.1,0).

Leta=AC=-3i+j—kand b=AB=i—j. Then
ab -3-1

cos a = E”Tl = V5 = —0.85280 and a = 148°31

Find the direction cosines of a = 3i + 12j + 4k.

rection cosincs _iw 3 o dm 12 ka4
The direction cosines are cos a = al —13,cosﬁ— al —13,cosy— = .

If a=a,i+a,j+ak and b= b i+ b,j+ b,k are two vectors issuing from a point P and if

a,

a, a, a;|,
b, by

b, b,

a, a,

b, b,[¥

c= i+

show that |¢| = |a||b| sin 8, where 8 is the smaller angle between a and b.

a‘b
We have cos 8 = —— and
[af|b]

o ."1 ( a‘b )3 Vel +al+al)b?+bl+b2)—(ab, +ab,+ab.) Je|
s =y\1l- = =
ARRYMITY Jal[b| Jallb]

Hence, |c| = |a||b] sin 8 as required.

Find the area of the parallelogram whose nonparallel sides are a and b.

From Fig. 65-11, k = |b|sin 8 and the area is k|a| = |a]|b] sin 8.
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Fig. 65-11 Fig. 65-12

7. Let a, and a,, respectively, be the components of a parallel and perpendicular to b, as in Fig.
65-12. Show that a, xb=axb and a, Xxb=0.

If @ is the angle between a and b, then |a,| = |a|cos § and |a,| = |a]sin 6. Since a, a,, and b are
coplanar,

a,xb=

a,||b| sin ¢n = |a| sin 8|bjn = |a||b| sinén=a x b

Since a, and b are parallel, a, xb=0.

8. Prove: (a+b)xXe=(axc)+ (bXc)

In Fig. 65-13, the initial point P of the vectors a, b, and c is in the plane of the paper, while their
endpoints are above this plane. The vectors a, and b, are, respectively, the components of a and b
perpendicular to ¢. Thena,,b,,a, + b ,a, X¢, b, X¢, and (a, + b ) X c all lie in the plane of the paper.

In triangles PRS and PMQ,

RS _lbyx¢l _ [bjle] _b,| MQ

PR fa, xc|  lalel ~ la,]  PM

Fig. 65-13
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Thus, PRS and PMQ are similar. Now PR is perpendicular to PM, and RS is perpendicular to MQ;
hence PS is perpendicular to PQ and PS = PQ X ¢. Then, since PS = PQ X ¢ = PR + RS, we have

(a, +b,) xc=(a, xc)+ (b, Xc)

By Problem 7, a, and b, may be replaced by a and b, respectively, to yield the required result.

i j kK
When a=gaji+a,j+ak and b=>b i+ b,j+ b,k, show that axb=|a;, a, a3|.
b] bZ b3

We have, by the distributive law,
axb={(ai+a,j+ak)x(bitb,j+ b,k)
=aix(bi+bj+bk)ta,jx(biitbj+bk)+akx(bjitb,j+bk)
= (a,b,k — a,bj) + (—a,bk + a,b,i) + (a;,bj — a;b,1)
=(a,b, —a,b,)i—(a,b, ~a,b,)j+ (a,b, —a,b,)k

i j k
=l|a, a, a,
b, b, b,

Derive the law of sines of plane trigonometry.

Consider the triangle ABC, whose sides a, b, ¢ are of magnitudes a, &, c, respectively, and whose
interior angles are a, B, v. We have

atbh+c=0
Then aX(atb+c)=axb+axc=0 or axXxb=cXa
and bXx(a+b+c)=bxa+bxc=0 or bxc=axb
Thus, aXxb=bxc=cXa
so that |al|b| sin ¥ = |b|c] sin « = [c||a]| sin B
or ab sin y = bcsin a = casin 8

siny sina sinf3
and = =
c a b

Ifa=aji+a,j+tak, b=bji+b,j+ bk, and ¢=c,i+ ¢,j + c;k, show that

a, a, a
a'(bXC)= b] bz b3
€ € 6
By (65.13),
i j k
a-(bxc)=(a,i+a,j+ak)-|b, b, b,
€ € G
=(a,i+aj+ak)-[(byc; —byc,)i+ (bic, —bic;))j+ (b,c,— b,c,)k]
a, a, a,
=a,(b,c, — byc,) + ay(bye, — bicy) +ay(bic, — bye,)= b b, by
€ € G

Show that a-(ax¢)=0.
By (65.14), a-(axc)=(axa)-c=0.

For the vectors a, b, and ¢ of Problem 11, show that ax (bxc¢)=(a-¢c)b— (a-b)c.
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14.

15.

Here
i j k
ax(bxc)=(ai+aj+ak)x|b b, b,
€, G &

=(a,i+a,j+ak)X[(bye,—byc,)i+(bsc,—bc))it(bc,- b,c k]

i i k
a, a, a,
byey = by, by, —bic, bic,- by,

=i(a,b,c, - a,b,c, —ab,c, +abic,)+ijlab.c,—abyc,—abc.+abyc)
+kiabyc, —ab,c;—abyc,+abic,)

=ib,(a,c, + a,c, + ayc,) +jb,(a,c, + a,c, + a,c,) +kby(a,c, +a,c, +ac,)
—lic,(a,b, + a,b, +a,b,) +jc,(a,b, +ab, +ab,) +key(ab, +ab, +a;b,)]

=(b,i+b,j+t bk}a-c)—(c,i+c,j+c;k)(a-b)

=b(a-¢c) ~c{a-b)=(a-c)b—(a-b)c

If [/, and [, are two nonintersecting lines in space, show that the shortest distance d between
them is the distance from any point on /, to the plane through /, and parallel to /,; that is.
show that if P, is a point on /, and P, is a point on /, then, apart from sign, d is the scalar
projection of PP, on a common perpendicular to /, and /..

Let /, pass through P, (x,, y,,z,) in the direction a=a,i+ a,j+ a,k. and let [, pass through

P,(x,. y,,z,) in the direction b= b i+ b,j+ b.k.
Then PP, = (x, — x,)i+ (y, — ¥,)j + (z, — z, )k, and the vector a X b is perpendicular to both /,

and /,. Thus,
(r,—r,)-(axb)
|a x b|

_}P,Pz-(axb) )
- |ax b a

d

Write the equation of the line passing through P,(1, 2, 3) and parallel to a = 2i — j ~— 4k. Which
of the points A(3,1, —1), B(1/2,9/4,4), C(2,0,1) are on this line?

From (65.19), the vector equation is
(xi+yj+2zk) - (i+2j+3k)=k(2i—j—4k)
or (x—-Di+(y—-2)j+(z-3)k=k(2i—j—4k) (n
The rectangular equations are
x—1 -2 z-3
=7 2)

2 -1 -4
Using (2). it is readily found that A and B are on the line while C is not.
In the vector equation (1), a point P(x, y, z) on the line is found by giving & a value and comparing
components. The point A is on the line because

B-Di+(1-2)j+(-1-3)k=k(2i—j-4k)
when & = 1. Similarly B is on the line because
—di+ Lj+k=k(2i—j-4Kk)
when k = — . The point C is not on the line because
i—2j—2k=k(2i—j— 4k)

for no value of k.
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16.  Write the equation of the plane
(a) Passing through P,(1, 2, 3) and parallel to 3x -2y +42-5=0
(b) Passing through Py (1,2,3) and P,(3,-2,1), and perpendicular to the plane
3x -2y +42z-5=0
(¢) Through P,(1,2,3), P,(3,-2,1) and P,(5,0, - 4)
Let P(x, y, z) be a general point in the required plane.
(a) Here a=3i —2j + 4k is normal to the given plane and to the required plane. The vector equation of
the latter is (r —r,)-a =0 and the rectangular equation is
3x-1)-2(y—-2)+4(z-3)=0
or Ix-2y+4z-11=0
(b) Here r, —r, =2i — 4j — 2k and a = 3i — 2j + 4k are parallel to the required plane; thus, (r, —r,) X a
is normal to this plane. Its vector equation is (r —r,) - [(r, ~r,) X a] = 0. The rectangular equation is
i j Kk
2 -4 =2
3 4

(r—ry)- =[x - Di+(y—2)j+(z~3)k]-[-20i — 14 + 8Kk]

=~20(x—1)— 14(y —2) + 8z —3) =0

or 20x + 14y — 8z —24=0.

(c) Here r, —r,=2i—-4j—-2k and r, —r,=4i - 2j -7k are parallel to the required plane, so that
(r, — v,) X (r, — r,) is normal to it. The vector equation is (r —r,) - [(r, —r,) X (r, —r,)] = 0 and the
rectangular equation is

i j k
(r—r)) 2 =4 =2{=[(x-1)i+(y~2)j+(z—-3)k]-[24i+6j + 12k]
4 -2 -7

=24(x—1)+6(y—-2)+12(z-3)=0
or dx+y+2z—-12=0.

17. Find the shortest distance d between the point P,(1,2,3) and the plane Il given by the
equation 3x —2y + 52 —-10=0.

A normal to the plane is a = 3i — 2j + 5k. Take P,(2, 3,2) as a convenient point in Il. Then, apart
from sign, d is the scalar projection of P,P, on a. Hence,

e or)cal |(i+j-kK)-@Gi-2§+5k)| 2
ol e V3 =g V38

Supplementary Problems

18. Find the length of (@) the vector a=2i+ 3j + k, (b) the vector b =3i —5j + 9k, and (c) the vector c,
joining P,(3,.4,5) to P,(1,-2.3).  Ans. (a) V14, (b) V115, (¢) 2V11

19. For the vectors of Problem 18,
(a) Show that a and b are perpendicular.
(b) Find the smaller angle between a and ¢, and that between b and c.
(c) Find the angles that b makes with the coordinate axes.

Ans.  (b) 165°14", 85°10"; (c) 73°45', 117°47", 32°56’

20. Prove:ici=j-j=k-k=1landi-j=j-k=k-i=0.
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21.

22.

23.

25,

26.

27.

28,

29,

30.

31.

Write a unit vector in the direction of a and a unit vector in the direction of b of Problem 18.

Via . 3vVi4 . Vid 3 9

5
— i+ + —k: (b i-— i+ k
Ans. (a) 7 ' J k; ( ) V115 ! V 115] V115

14 14

Find the interior angles 8 and vy of the triangie of Problem 3. Ans. B =22°12"; y=9°1¢'

For the unit cube in Fig. 65-14, find (2) the angle between its diagonal and an edge, and (b) the angle
between its diagonal and a diagonal of a face.

Ans.  (a) 54°44"; (b) 35°16'

Fig. 65-14

Show that the scalar projection of b onto a is given by a|;|.
a

Show that the vector ¢ of (63.4) is perpendicular to both a and b.

Given a=i+j, b=1- 2k, and ¢ = 2i + 3j + 4k, evaluate the left-hand member:

(@) axb=-2i+2j—k (b) bxc=6i—8 +3k (¢) exa=—-4di+4j—-k
(d) (a+b)x(a—b)=4i-4j+2k (e) a-(axh) =0 (fla-(bxc)=-2
(g)ax(bxc)=3i-3j— 14k (h) ex(axb)=—11i—-6j+ 10k

Find the area of the triangle whose vertices are A(1,2.3). B(2,—1,1), and C(-2,1, —1). (Hint:
|AB x AC| = twice the area.) Ans. 5V3

Find the volume of the parallelepiped whose edges are OA, OB, and OC, for A(1,2,3), B(1.1.2), and
(2,1, 1). Ans. 2

Ifu=axb, v=bXc¢, w=cXa, show that

(@) urc=v-a=w-b

(b)Y aru=b-u=0,b-v=c-v=0,c-w=a-w=0
(&) u-(vxw)=[a-(bxc)]

Show that (a+b):[(b+¢) X (c+a)]=2a-(bXc).

Find the smaller angle of intersection of the planes 5x — 14y + 2z -8=0and 10x — 11y +2z + 15=0.
(Hint: Find the angle between their normals.) Ans. 22°25’
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32.

3.

3s.

37.

39.

41.

42.

SPACE VECTORS {CHAP. 65

Write the vector equation of the line of intersection of the planesx+y—z—-5=0and4x-y~2+2=
0. Ans. (x=1)i+(y-5)+(z—1k=k(-2i-3j-5k), where P,(1,5,1) is a point on the line

Find the shortest distance between the line through A(2, — 1, —1) and B(6, —8, 0) and the line through
C(2,1,2) and D(0,2, - 1). Ans. V6/6

Define a line through P,(x,, y,, z,) as the locus of all points P(x, y, z) such that P,P and OP, are
perpendicular. Show that its vector equation is (r—r,)-r, =0.

Find the rectangular equations of the line through P (2. -3,5) and
(a) Perpendicular to 7x —4y +2z —8=0

(b) Parallel to the line x —y +2z+4=0,2x+3y+6z-12=0

(c) Through P (3.6, -2)

x—2 y+3 :z
7 T -4

_y+3 _z-5 x—-2 y+3 z-5
S S SR ) R B - S

-5 x—2
Ans. (ﬂ) 7 (b) 12
Find the equation of the plane
(a) Through P (1,2,3) and parallel to a=2i+j—k and b=3i + 6j — 2k
{b) Through P,(2, ~3,2) and the line 6x +4y +3z2+5=0,2x+y+2z-2=0
(c) Through P,(2.~1.-1) and P,(1, 2, 3) and perpendicular to 2x +3y — 52 -6=0

Ans. (@) 4x+y+9z-33=0;(b) 16x+7y+82~27=0; (c) Ix-y+32-16=0

If rp=i+j+k, r,=2i+3j+4dk, and r, = 3i + 5j + 7k are three position vectors, show that r, Xr, +
r, Xr, +r,xr, =0 What can be said of the terminal points of these vectors? Ans. collinear

If P,, P,, and P, are three noncollinear points and r,, r,, and r, are their position vectors, what is the
position of r, Xr, +r, Xr, +r, Xr, with respect to the plane P,P P,? Ans. normal

Prove: (a) aX(bXxc)+bx(cxa)t+tcx(axb)=0
(b) (axb)-(cxd)=(a-c)(b-d)—(a-d}b-c)

Prove: (a) The perpendiculars erected at the midpoints of the sides of a triangle meet in a point.
(b) The perpendiculars dropped from the vertices to the opposite sides (produced if necessary)
of a triangle meet in a point.

Let A(1,2,3). B(2,-1,5), and C(4, 1, 3) be three vertices of the parallelogram ABCD. Find (a) the
coordinates of D, (b) the area of ABCD, and (c) the area of the orthogonal projection of ABCD on each
of the coordinate planes. Ans. (a) D(3,4,1); (b) 2V26; (¢) 8, 6,2

Prove that the area of a parallelogram in space is the square root of the sum of the squares of the areas
of projections of the parallelogram on the coordinate planes.



Chapter 66

Space Curves and Surfaces

TANGENT LINE AND NORMAL PLANE TO A SPACE CURVE. A space curve may be defined
parametrically by the equations

x=fly y=gt) z=h() (66.1)

At the point Py(x,, y,, z,) of the curve (determined by ¢ = ¢,), the equations of the tangent line
are
X7Xg_Y " Yo_Z7 2
dx/dt dyldt dz/dt

and the equation of the normal plane (the plane through P, perpendicular to the tangent line
there) is

(66.2)

dx dy dz _
dt (x XO)+Z('V )’o)+z(z"zo)—0 (66.3)

(See Fig. 66-1.) In both (66.2) and (66.3) it is understood that the derivatives have been
evaluated at the point P,. (See Problems 1 and 2.)

Tangent line

Normal plane -,
Plz,y,2)

Normal line

Pi(zs + Az, o + Ay, 8e + A2)7]
~

/Tangem plane

Fig. 66-1 Fig. 66-2

TANGENT PLANE AND NORMAL LINE TO A SURFACE. The equation of the tangent plane to
the surface F(x, y, z) =0 at one of its points P,(x,, y,, Z,) is
dF oF oF
—(x-x)+— (y- —(z2—24)= )
ox TR Sy * g (2 20)=0 (66.4)
and the equations of the normal line at P, are
XX _ Y7 Yo _%2" 2
dF/leox dFldy dF/o:z

with the understanding that the partial derivatives have been evaluated at the point P,. (Refer
to Fig. 66-2.) (See Problems 3 to 9.)

(66.5)

A SPACE CURVE may also be defined by a pair of equations
Fx,y,z)=0  G(x,y,2)=0 (66.6)

411
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At the point Py(x,, y,. z,) of the curve, the equations of the tangent line are

XX _ Y~ Yo _ zZ2—2,
JdF 9F| ~ [dF 9F| | 3F 4F (66.7)
dy oz iz  dx dx dy
G aG| |96 96| 14G 4G
dy 9z dz Jdx ax dy
and the equation of the normal plane is
9F oF oF oF IF oF
dy 9z 9z ox ax dy
- VRN N
E E {(x—xy)+ E E (y = yo) _a_G E (z—2,)=0 (66.8)
dy 9oz dz  Ix ax dy

In (66.7) and (66.8) it is to be understood that all partial derivatives have been evaluated at
the point P,. (See Problems 10 and 11.)

Solved Problems

Derive (66.2) and (66.3) for the tangent line and normal plane to the space curve x = f(¢),
y = g(1), z = h(r) at the point Py(x,. y,. z,) determined by the value ¢ = ¢,. Refer to Fig. 66-1.

Let Py(x,+ Ax, y, + Ay, z, + Az), determined by 1 = ¢, + At, be another point on the curve. As
P,— P, along the curve, the chord P P, approaches the tangent line to the curve at P, as limiting

position.

A simple set of direction numbers for the chord P, P, is [Ax,Ay,Az], but we shall use
ax 4y Az [ax dy 2] [dr dy ds | et
[At’ Al Al Then as P,— P,, At—0 and At Al Ar — a0 di ) a set of direction

numbers of the tangent line at P,. Now if P(x, y, z) is an arbitrary point on this tangent line, then
[x = x4, ¥y = yo. 2 = 2] is a set of direction numbers of P,P. Thus, since the sets of direction numbers are

proportional, the equations of the tangent line at P, are

X—x“=y-y(,=2—20

dx/dt  dyldt dz/dr
If R(x. y, z) is an arbitrary point in the normal plane at P, then, since P,R and P P are perpendicular,
the equation of the normal plane at P, is

dx dy dz
(X—X())E+(y_yn)37+(2_zu)z_0

Find the equations of the tangent line and normal plane to
(a) The curve x =1, y=1r", z =1 at the point t=1
(b) The curve x =t—2, y =31+ 1, z =2¢ at the point where it pierces the yz plane.

(a) Atthe pointr=1or(1,1,1), dx/dt =1.dy/dt=2t=2, and dz/dt = 3t* = 3. Using (66.2) yields, for
-1 -1 -1

the equations of the tangent line, y -1 ; using (66.3) gives the equation of the
normal plane as (x —1)+2(y — 1)+ 3(z - l)=x+2y+3z—6 0.

(b) The given curve pierces the yz plane at the point where x =t —2 =0, that is, at the point t =2

or (0,13,16). At this point, dx/dt=1, dy/dt=6t=12, and dz/dr=6t"=24. The equations

. x y—13 z—16 . .

of the tangent line are ; = ——— = 57 and the equation of the normal plane is

12
x+12(y —13)+24(z - 16) =x + 12y + 24z — 540=0.
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Derive (66.4) and (66.5) for the tangent plane and normal line to the surface F(x, y, z) = 0 at
the point P,(x,, y,, z,). Refer to Fig. 66-2.
Let x = f(t), y = g(¢), z = h(r) be the parametric equations of any curve on the surface F(x, y, z) =0
and passing through the point P;. Then, at P,
dF dx ade+¢9Fdz

+
9x di gy dt ' 9z dt

with the understanding that all derivatives have been evaluated at P,.

dx d .
This relation expresses the fact that the line through P, wm’): dlr;::cuglr; numbers [— o4 %;]
d
perpendicular to the line through P, having direction numbers L 6y e . The first set of dlrecnon

numbers belongs to the tangent to the curve which lies in the tangent plane of the surface. The second
set defines the normal line to the surface at P,. The equations of this normal are

X" X Y7 Yo_Z "%
dFiox oF/dy dFidz
and the equation of the tangent plane at Py is
aF

G-t S G 2 =0

In Problems 4 and 5, find the equations of the tangent plane and normal line to the given surface at
the given point.

4.

z=3x"+2y" - 11; (2,1,3)

Put F(x, y,z)=3x"+2y’ - z—-11=0. At (2,1, 3) —6x 12,%=4y=4,and%=—1.“e

equation of the tangent plane is 12(x —2)+4(y — 1) - (z —=3)=0or 12x +4y — z=25.

The equations of the normal line are x1—22 =7 ; L. 2:13.

F(x,y,z)=x"+3y" —42"+3xy — 10yz + 4x — 5z - 22=0; (1, -2, 1)

aF dF
At (1,«2,1),; =2x+3y+4=0,5—y =6y +3x — 10z = —19, and%g= —~8z—10y —5=7. The
equation of the tangent plane is O(x ~ 1) —19(y +2) +7(z —1)=0o0r 19y -7z +45=0.

2 _z-1
10 7 orx=1,7y+19z-5=0.

The equations of the normal line are x —1 =0 and yz<

. X
Show that the equation of the tangent plane to the surface — - %2- - Z— =1 at the point
a ¢’
o _ Yo 2%y
o(X0) Yo» Z0) 18 — — [XIRR: 1
c
dF 2x aF _ 2y aF 2z
At P, =2 id) CLA 1) i i
o 33 29y and 3z e The equation of the tangent plane is

X 2y 2z
_O(X_xo)___zo(y—yo)_?(z_zo)=0~

2 2 2
XXo Yo ZZo _ X0 _ Yo 2o

This becomes —* ~ = — £ = =2 — =2 — =2 =1, since P, is on the surface.
a b c a b &

Show that the surfaces

F(x,y,z)=x2+4y2—4zz—4=0 and G(x,y,z)=x2+y2+zz—6x—6y+22+10=0

are tangent at the point (2,1, 1).
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It is to be shown that the two surfaces have the same tangent plane at the given point. At (2,1, 1),
dF dF IF
;;-—2):—4 -(9';—8)/—8 E—_SZQ_S
aG
—=2z+2=4

oG dG
and E—Zx—é——Z —(;—2y—6——4 9z
Since the sets of direction numbers [4, 8, —8] and [-2, —4, 4] of the normal lines of the two surfaces are

x+2y-2z=2

proportional, the surfaces have the common tangent plane
or

(x-2)+2(y-1D)-20z-1)=0
Show that the surfaces F(x, y, z) = xy + yz —4zx =0 and G(x, y, z) =3z° — 5x + y = 0 inter-

8.
sect at right angles at the point (1,2, 1).
It is to be shown that the tangent planes to the surfaces at the point are perpendicular or, what is the

same, that the normal lines at the point are perpendicular. At (1,2, 1),
oF aF
=x+z=2 - =

oF
Loy —4r=— =
ax YA ) 9z
A set of direction numbers for the normal line to F(x, y, z)=01is [{,, m,,n ] =[1, —1,1]. At the same
point,
G G G
I{-—S ;;—1 82_62—6
A set of direction numbers for the normal line to G(x, y, z2)=0is {{,, m,. n,}=[~5,1,6].
Since /[, + mm, + n,n, =1(-5) + (— 1)L + 1(6) = 0, these directions are perpendicular.

9.
4z° — 6 =0 intersect at right angles.
. oF JF aF
At any point Py(x,. y,. 2z,) on the two surfaces, Fri 6x,. Fr 8y,. and e 16z,; hence
[3x,.4y,.82,] is a set of direction numbers for the normal to the surface F(x, y, z) =0 at P,. Similarly,

[x,,2y,. —4z,] is a set of direction numbers for the normat line to G(x, y, 2) =0 at P,. Now, since

Show that the surfaces F(x, y,z)= 3x°+4y* +82°-36=0 and G(x,y,2)=x"+2y’ -

3X”(X“) + 4,VI)(2.VU) + 82()(—'42(]) = 3r(2) + 8y(2; - 322(2'
6(x) +2ys —d4z2) — (3x) +4y] +82) = 6(6) — 36 =0

these directions are perpendicular.

Derive (66.7) and (66.8) for the tangent line and normal plane to the space curve C:

o aF oF aF], [aG iG 4G
At P, the directions [ax' Jy" 3z and ax’ 3y 9z
plancs of the surfaces F(x, y, z) =0 and G(x, y. z) =0. Now the direction
dFloz HF/(?x} dFidx JdFidy ]
*1aGlox aGlay

10.
F(x, y,2)=0, G(x, y, z) =0 at one of its points Py(x,, ¥,, Zy)-
] are normal, respectively, to the tangent

dGldy 9Glaz]" |3Gloz oGlox

[ dFldy JF/dz
being perpendicular to each of these directions, is that of the tangent line to C at P,. Hence, the

aGlay 9Gloz

equations of the tangent line are
XX _ Y~ Yo _ 272y
dFldy JFidz aFldz JdFidx dFiox JdFidy
’ | lﬁ(}/ﬂz 19G/(7x| ‘ac/ax aGlay

(z - z,)=0

and the equation of the normal plane is
dFlay dFlaz dFléz  9F/ox aF/éx aF/ay
= X)* 5610z BG/dx((y T Yt ‘aG/ax 3Glay

aG/ldy o0Gldz
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11.

12,

13.

14.

15.

16.

17.

Find the equations of the tangent line and the normal plane to the curve Oy + =14,
x+y+z=06 at the point (1,2, 3).
Set F(x, y,z)=x*+y*+2z°-14=0and G(x, y,z)=x+y+z-6=0. At (1,2,3),
dFldy dFlaz| |2y 27.| B ’4 6| _
aGlay aG/ez| |1 11" 11 11~

dF/oz aFlax‘=‘6 2~=4 ‘:9F/3x aF/dy ___’2 4‘2_2
dGldz dGlox 11 dG/ax dGlay 1 1

. x—1 -2 z-3
With [1, —2, 1] as a set of direction numbers of the tangent, its equations are = y_2 =

The equation of the normal plane is (x =1)—2(y -2)+(z—-3)=x-2y+z=0.

Supplementary Problems

Find the equations of the tangent line and the normal plane to the given curve at the given point:

x—2 y—-1 2z-1

(@) x=21,y=1} z=0r;t=1 Ans. 5= =S5 =5 +2y+32-9=0
-1

) x=te!, y=e€,z=1,1=0 Ans. %=¥1—=%;x+y+z—l=0

(¢) x=tcost,y=tsint, z=1t;t=0 Ans. x=z,y=0;x+2z=0

Show that the curves (@) x =2—t,y=—1/t,z=2and (b)) x=1+6, y =sin 0 — 1. z = 2 cos 0 intersect

at right angles at P(1, —1, 2). Obtain the equations of the tangent line and normal plane of each curve at

P.

x—1 y+1 z-2
-1 1 4

Ans. (a) 1 X—y—4z+6=0;(b)x—y=2,z=2,x+y=0
Show that the tangents to the helix x =acost, y = asint, z = bt meet the xy plane at the same angle.
Show that the length of the curve (66.1) from the point ¢t = ¢, to the point ¢ = ¢, is given by
" dx)z (dy)2 (dz)z
L \/( dt dr al

Find the length of the helix of Problem 14 from t=0tor=1t,.  Ans. Va'+b’1,

Find the equations of the tangent line and the normal plane to the given curve at the given point:
(@) ¥’ +2y°+22°=5,3x-2y—2=0; (1,1,1)
(b) 9x° +4y*—362=0,3x+y+2-2"-1=0; (2, -3,2)
(c) 42 =xy, x> +y* =82, (2,2,1)
-1 -1 -1 -2 -2
Ans.  (a) "2 =y7 =Z_8  2x+7y—82—1=0; (b) xl =Zl L y+3=0; x+z-4=0;

(c)x12=y__12,z—1=0;x—y=0

Find the equations of the tangent plane and normal line to the given surface at the given point:

(@) ¥ +y 4 2= 14; (1,-2,3) Ans. x-2y+3z=1a il Y2_ 273

x—x - -z
B) ¥+ y + 22 =1 (x,,¥,.2)) Ans. xx+yy+zz=r’; . ’=yvy’ = !
1 J1 1
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(c) x*+22°=3y* (2,-2,-2) Ans. x+3y=2z=0,"7=="5~ ="
(d)2x*+2xy+y  +2+41=0; (1, -2, -3) Ans. z—2y=1;x—1=0,)%2= Z_+13
(e) z=xy; (3, —4, —12) Ans. 4x—3y+z=12;x;3 =y_+34 = ”112

18.  (a) Show that the sum of the intercepts of the plane tangent to the surface x''> + y''? + z''* = ¢''? at

any of its points is a.
(b) Show that the square root of the sum of the squares of the intercepts of the plane tangent to the
surface x°"* + y2” + 22> = a®"> at any of its points is a.

19. Show that each pair of surfaces is tangent at the given point:
p g g p
(@) ¥*+y*+z°=18,xy=9;(3,3,0)
(b) xX*+y*+ 27 —8x—8y—-62+24=0,x"+3y"+2z°=9; (2,1,1)

20. Show that each pair of surfaces is mutually perpendicular at the given point:
(@) X¥*+2y° -4z =8, 4x* - y* +22°=14; (2,2, 1)
(b) X +y*+2°=50, ¥’ +y* — 102+ 25=0; (3,4,5)

21. Show that each of the surfaces (a) 14x” + 11y® + 82° =66, (b) 3z2° —Sx + y =0, and (¢) xy + yz — 4zx =
0 is perpendicular to the other two at the point (1,2, 1).



Chapter 67

Directional Derivatives;
Maximum and Minimum Values

DIRECTIONAL DERIVATIVES. Through P(x, y, z), any point on the surface z = f(x, y), pass
planes parallel to the coordinate planes xOz and yOz cutting the surface in the arcs PR and PS
and the plane xOy in the lines P*M and P*N, as shown in Fig. 67-1. The partial derivatives
dz/dx and 4z/dy evaluated at P*(x, y) give, respectively the rates of change of z = P*P when y
is held fixed and when x is held fixed, that is, the rates of change of z in directions parallel to
the x and y axes or the slopes of the curves PR and PS at P.

2 = f(=, )

Fig. 67-1

Consider next a plane through P perpendicular to the plane xOy and making an angle 6
with the x axis. Let it cut the surface in the curve PQ and the xOy plane in the line P*L. The
directional derivative of f(x, y) at P* in the direction 6 is given by

dz Jz az .

—_— = — + —_— A

- ax Cos ) 5y Sin ] (67.1)
The direction 6 is the direction of the vector (cos 8)i + (sin 8)j. The directional derivative gives
the rate of change of z = P*P in the direction of P*L or the slope of the curve PQ at P.

The directional derivative at a point P* is a function of 6. There is a direction, determined
by a vector called the gradient of f at P* (Chapter 68), for which the directional derivative at P*
has a maximum value. That maximum value is the slope of the steepest tangent line that can be
drawn to the surface at P. (See Problems 1 to 8.)

For a function w= F(x, y, z), the directional derivative at P(x, v, z) in the direction
determined by the angles «, 8, v is given by

dF oF

0 +8F0 +(9F
— = — COs — cos — ¢o
ds  ox “ dy A gz 7

7

By the direction determined by «, 8, and ¥, we mean the direction of the vector (cos a)i +
(cos B)j + (cos y)k. (See Problem 9.)

417
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RELATIVE MAXIMUM AND MINIMUM VALUES. Suppose that z = f(x, y) has a relative
maximum (or minimum) value at Py(x,, y,, Z,). Any plane through P, perpendicular to the
plane xQOy will cut the surface in a curve having a relative maximum (or minimum) point at P,;

. o . .. d af .
that is, the directional derivative —% cos 6 + §£ sin § of z = f(x, y) must equal zero at P,, for
d d
any value of 8. Thus, at P,, —I =0 and —f =0.
ax ay

The points, if any, at which z = f(x, y) has a relative maximum (or minimum) value are
among the points (x,, y,) for which ¢f/dx =0 and df/dy = 0 simultaneously. To separate the
cases, we quote without proof:

Let z = f(x, y) have first and second partial derivatives in a certain region including the

J AN ENAYES
point (x,, y,. z,) at which g—f =0 and a—'; =0.If A= (—f) - (—'f)(——é) <0 at P, then

x dx dy ax*/\ay
z = f(x, y) has
N Lo 4
A relative minimum at P, if —{ + —fz- >0
dx dy
: . L If 8
or A relative maximum at Py if 97 + —j; <0

ax’

If A>0, P, yields neither a maximum nor a minimum value; if A =0, the nature of the critical
point P, is undetermined. (See Problems 10 to 15.)

Solved Problems

1, Derive (67.1).

In Fig. 67-1, let P7(x + Ax, y + Ay) be a second point on P* L and denote by As the distance P* P}.
Assuming that z = f(x, y) possesses continuous first partial derivatives, we have, by Problem 20 of
Chapter 63,

9z az
=—Ax+ — Ay + +
Az Ix Ax ay Ay + €, Ax + €, Ay

where €, and €,— 0 as Ax and Ay — 0. The average rate of change of z between the points P* and P7 is

Az 9z Ax+iz_ﬂ Ax Ay

As  dx As | dy As TE As T

s 050+¢9_z
ax © ay

where 0 is the angle that the line P*P} makes with the x axis. Now let P}— P* along P*L; the
instantaneous rate of change of z, or the directional derivative at P*, is

sin@ + €, cos 6 + ¢, sin @

E—(—95c056P+£sint')
ds dx ay

2. Find the directional derivative of z=x’—6y’ at P*(7,2) in the direction (a) 6 = 45°
(b) 6 =135°.
The directional derivative at any point P*(x, y) in the direction 8 is
dz dz

Jz . .
— = - + — = -~
! 75 08 0 3y sin @ =2xcos @ —~ 12y sin 6
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(@) At P*(7,2) in the direction 8 = 45°, dz/ds = 2(7)(3}V2) - 12(2)(}V2) = -5V2.
(b) At P*(7,2) in the direction 8 = 135°, dz/ds = 2(7)(— }V2) — 12(2)(}V2) = - 19V2.

Find the directional derivative of z = ye* at P*(0, 3) in the direction (a) & = 30°, (b) 6 = 120°.

Here, dz/ds = ye* cos 8 + e” sin 6.
(a) At (0,3) in the direction @ = 30°, dz/ds =3(1)(4V3) + } = 1(3V3+1).
(b) At (0,3) in the direction 6 =120°, dz/ds =3(1)(- §) + }V3=L(-3+ V3).

The temperature T of a heated circular plate at any of its points (x, y) is given by
64

T= 132 the origin being at the center of the plate. At the point (1, 2) find the rate of
r+y
change of T in the direction 6 = #/3.
dT _ 64(20) e
We have i —_(xz Ty +2) cos @ _—(XZ Ty +2) sin 8

. o m dT_ 1281 25 V3 _ 64
At(1,2)mthedlrect10nO—E,K ~ 9339 3 " 49(1+2\/§).

The electrical potential V at any point (x, ) is given by V=1InVx’ + y> Find the rate of
change of V at the point (3, 4) in the direction toward the point (2, 6).
dv

X y .
Here, E=x2+y2 cosd.':‘+xz+y2 sin @

Since 6 is a second-quadrant angle and tan 0 (6 -4)/(2- 3) =-2,cos0=—1/V5 and sin 8 =2/V5.
-3 (_ L) L4 2 Vv
’ ds 25\ V5/ 25 V5 25

Hence, at (3,4) in the indicated direction

Find the maximum directional derivative for the surface and point of Problem 2.

At P*(7,2) in the direction 6, dz/ds = 14cos § — 24 sin 8.

To find the value of @ for which fi—i is a maximum, set :0 ((z) = ~14sin @ — 24 cos § =0. Then
tan 8 = ~ 3 = — ¥ and 6 is either a second- or fourth-quadrant angle. For the second-quadrant angle,

sin # = 12/v 193 and cos 8 = —7/V 193. For the fourth-quadrant angle, sin @ = —12/V'193 and cos 8 =

V193

Since :02 (%) ( 14sin § —24cos ) = — 1‘;1 cos @ + 24 sin @ is negative for the fourth-quad-
re'mt z.mglc'e the maxlmum directional derivative is P 14(m) 24( Vio3 =2V193, and the
direction is 6 = 300°15".

Find the maximum directional derivative for the function and point of Problem 3.

At P*(0, 3) in the direction 8, dz/ds = 30050 +sin 8. 4 rd
To find the value of 8 for which E is a maximum, set ] (di) =—3sind +cos§=0. Then
tan 6 = § and 8 is elther a first- or third-quadrant angle.

Since ;; (‘Z) = — (—3 sin 6 + cos 0) =-3cosf —sind is ncgative for the first-quadrant angle,
the maximum dlrectxonal derivative 1s Z - \/-— Vio = V10, and the direction is § = 18°26".

In Problem 5, show that V changes most rapidly along the set of radial lines through the
origin.
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10.

11.

12,

13.

14.
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N dv x )
At any point (x,, y,) in the direction 6, Z - 2+' 5 cos @ + 2‘:’ 5 sin 8. Now V changes most
. d {dv X yo  oTh SNy xi ey oy
rapidly when — (—) =~ —5——3sin8+ —<—— cos § =0, and then tan § = ————7 = —. Thus,
do \ ds Xty Xty x /(i +y)) X

6 is the angle of inclination of the line joining the origin and the point (x,, y,).

Find the directional derivative of F(x, y, z) = xy + 2xz — y* + z* at the point (1, —2, 1) along
the curve x =, y =t -3, z= ¢ in the direction of increasing z.

A set of direction numbers of the tangent to the curve at (1, =2, 1) is [1. 1, 2]; the direction cosines
are [1/V6,1/V6,2/V6]. The directional derivative is

- co +§——cosﬁ+ﬂ:cos —0L+5L+4i=M
ax B ET 5y az YT Ve Ve 6

Examine f(x, y) = x> + y° — 4x + 6y + 25 for maximum and minimum values.

The conditions Jf/dx =2x —4 =0 and df/dy =2y + 6 =0 are satisfied when x =2, y = - 3.

Since flx, y)=(x"—dx+4)+ (Y’ +6y+9)+25-4-9=(x—2)"+(y+3)°+12, it is evident
that f(2, —3) =12 is a minimum value of the function.

Geometrically, (2, —3, 12) is the minimum point of the surface z = x* + y* — 4x + 6y + 25.

Examine f(x. y) = x" + y' + 3xy for maximum and minimum values.

The conditions df/dx = 3(x* + y) =0 and 3f/dy = 3(y* + x) =0 are satisfied when x =0, y =0 and
whenx=-1,y=-1.

2 2 2
At ((),()),a—fz=6x=0, s =3, and(;f,
ax dx gy ay”

yields neither a maxirznum nor minimum. . L
Jd 3 a’ af \* 3 a°
At (-1, 1), f; = -6, 9T =3, and —]_: = —6. Then (—f—) - —): —{ = -27<0, and
i o ax dx dy ay dx dy ax’ dy
Py + Py < 0. Hence, f(—1, —1) =1 is the maximum value of the function.
X y

alf J_a_lf (?Zf_
am}_) L 2L~ 90, and (0.0)

=6y =0. Then (

Divide 120 into three parts such that the sum of their products taken two at a time is a
maximum.

Let x, y, and 120 — (x + y) be the three parts. The function to be maximized is
S=xy+(x+y)(120 - x - y), and
aS as

E:y+(120‘x—y)—(x+y)=120—2x—y 5=x+(120—x—y)—(x+y)=120—x—2y

Setting (;—f = %;E =0 yields 2x + y = 120 and x + 2y = 120. Simultaneous solution gives x =40, y = 40,
and 120 - (x + y) = 40 as the three parts, and § = 3(40°) = 4800. For x = y =1, § = 237; hence, § = 4800

is the maximum value.

Find the point in the plane 2x — y + 2z = 16 nearest the origin.

Let (x. y.z) be the required point; then the square of its distance from the origin is D =
x*+y '+ 2" Since also 2x —y +2z=16, we have y=2x+2z-16 and D=x"+ (2x +2z - 16)° + z°
Then the conditions dD/dx =2x +4(2x +2z —16)=0 and dD/dz =4(2x +2z - 16) + 2z =0 are
equivalent to 5x + 4z =32 and 4x + 5z =32, and x = z = . Since it is known that a point for which D is

a minimum exists, (3, — ¢, ¥) is that point.

Show that a rectangular parallelepiped of maximum volume V with constant surface area S is a
cube.



CHAP. 67] DIRECTIONAL DERIVATIVES, MAXIMUM AND MINIMUM VALUES 421

15.

16.

17.

18.

19.

Let the dimensions be x, y, and z. Then V= xyz and § =2(xy + yz + zx).
The second relation may be solved for z and substituted in the first, to express V as a function of x
and y. We prefer to avoid this step by simply treating z as a function of x and y. Then

A W
ax YR Gy ay xzZT Ry ay
a8 ( 9z az) S ( 9z az)
—=0= tz+x—+y— —=0=2lx+z+x—+y—
ax 0=y rEAx oty o gy O=Ax TV S
. dz _ y+tz dz _ x+:z G .
From the latter two equations, x T xty and 3y xty Substituting in the first two yields the

-+-
_nyt2) =0 and Al =xz— )
x+y ay x+y
¥’ (z—y)=0. Thus x = y = z, as required.

a .
conditions 6—: =yz =0, which reduce to y*(z — x) =0 and

Find the \ziolumze | 4 9f the largest rectangular parallelepiped that can be inscribed in the

. L X z
ellipsoid 5 + 55 + 5 = 1.
a b <
Let P(x, y, z) be the vertex in the first octant. Then V = 8xyz. Consider z to be defined as a function
of the independent variables x and y by the equation of the ellipsoid. The necessary conditions for a
maximum are

A% ( 62) av ( az)
% 8l yz + xy Tx 0 and 3y 8l xz + xy 3y 0 )
. L .2 2 2 2 .
From the equation of the ellipsoid, obtain a—f + c—f % =0 and —b—{ + ;f— Z—; = (. Eliminate dz/dx and

dz/dy between these relations and (1) to obtain

v ( czx"y) _ vV ( czxyz) _

x =8l yz e =0 and 3y =8l xz b =0
xZ 22 2

and, finally, ? = ? = %2 (2)

Combine (2) with the equation of the ellipsoid to get x = aV3/3, y = bV3/3, and z = ¢V3/3. Then
V =8xyz = (8V3/9)abc cubic units.

Supplementary Problems

Find the directional derivative of the given function at the given point in the indicated direction:
(@ z=x*+xy+y’ (3, 1), 6=n/3 (b) z=x*+y’—3xy, (2,1), 8 =arctan 2/3
(c) z=y+xcosxy, (0,0), 6=n/3 (d) z=2x"+3xy - y% (1, —1), toward (2.1)

Ans. (@) 2(7+5V3); (b) 21VI3/13; (¢) 1(1 + V3); (d) 11V5/5
Find the maximum directional derivative for each of the functions of Problem 16 at the given point.
Ans.  (a) V74; (b) 3V10; (¢) VZ; (d) V26

Show that the maximum directional derivative of V=1InVx” + y* of Problem 8 is constant along any
circle x* + y* =r2.

On a hill represented by z = 8 — 4x” — 2y?, find (a) the direction of the steepest grade at (1,1, 2) and (b)
the direction of the contour line (direction for which z = constant). Note that the directions are mutually
perpendicular. Ans. (a) arctan 3, third quadrant; (b) arctan —2
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20.

21.

22.

26.

27.

29,
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Show that the sum of the squares of the directional derivatives of z = f(x, y) at any of its points is
constant for any two mutually perpendicular directions and is equal to the square of the maximum
directional derivative.

Given z = f(x, y) and w = g(x, y) such that 9z/dx = dw/dy and dz/dy = —dw/dx. If 6, and 6, are two
mutually perpendicular directions, show that at any point P(x, y), dz/ds, = dw/ds, and dz/ds, =
—awlds,.

Find the directional derivative of the given function at the given point in the indicated direction:

(@) xy’z, (2,1,3), [1,-2,2]

(b) x> +y + 2% (1.1, 1), toward (2, 3,4)

(c) x*+y*—2xz. (1,3,2), along x* + y> —2xz=6, 3x’ — y* + 3z =0 in the direction of increasing z

Ans. (a) — 4 (b) 6V14/7,(c) 0

Examine each of the following functions for relative maximum and minimum values.

(@) z=2x+4y—x"—y* -3 Ans. maximum =2 when x =1, y =2
(b) z=x"+y" = 3xy Ans. minimum = —1 when x =1, y =1
() z=x"+2xy+2y’ Ans. minimum =0 when x=0, y=0
d) z=(x—y)(1—-2xy) Ans. neither maximum nor minimum
() z=2x"+y +6xy+10x — 6y +5 Ans. neither maximum nor minimum

(fHz=3x-3y—-2x"—xy’ +2%y +y° Ans. minimum = —V6 when x = —V6/6, y = V6/3;
maximum = V6 when x =V6/6, y = —V6/3
(g) z=xy(2x +4y + 1) Ans. maximum = sz when x = —{, y=-4

Find positive numbers x, y, z such that
(@) x+y+2=18 and xyz is a maximum (b) xyz=27 and x + y + z is a minimum
(¢) x+y+2z=20 and xyz’ is a maximum (d) x+y+z=12 and xy’z* is a maximum

Ans. (@) x=y=2=6;(b)x=y=2=3;(c)x=y=5,2z=10,(d)x=2,y=4,2=6

Find the minimum value of the square of the distance from the origin to the plane Ax+ By + Cz + D =
0. Ans. DY¥A'+ B+ (%)

(a) The surface area of a rectangular box without a top is to be 108 ft>. Find the greatest possible
volume. (b) The volume of a rectangular box without a top is to be 500 ft”. Find the minimum surface
area. Ans. (a) 108 ft>; (b) 300 ft’

Find the point on z = xy — 1 nearest the origin. Ans. (0,0, -1)

Find the equation of the plane through (1, I, 2) that cuts off the least volume in the first octant.

Ans. 2x+2y+2z=6

Determine the values of p and g so that the sum § of the squares of the vertical distances of the points
(0.2). (1,3), and (2, 5) from the line y = px + ¢ is a minimum. (Hint: S=(q -2y +(p+q-3)°+

1

(2p+q-5)) Ams. p=3;9=%



Chapter 68

Vector Differentiation and Integration

VECTOR DIFFERENTIATION. Let
r=if(1) +jL() + kfi() =if, +if, HKf
s=ig, (1) +jg,(1) +kg;(1) =ig, +jg, T kg,
u=ih,(t) + jh,(t) + khy(t) =ih, + jh, + kh,
be vectors whose components are functions of a single scalar variable t having continuous first

and second derivatives.
We can show, as in Chapter 23 for plane vectors, that

d (r-s) dr s4r ds
— r . == — * —_—
d YT dt
Also, from the properties of determinants whose entries are functions of a single variable, we

(68.1)

have
d i j k i j k i j k
Euxg=zflﬁ.ﬁ=f{ﬂfé+ﬁ Lo f (68.2)
& 82 83 8 8 & 81 82 &3
=£><s+r><é
dt dt
and dir-exwi=2 - exwy e (% xu)ree(sx ) (68.3)

These formulas may also be established by expanding the products before differentiating.
From (68.2) follows

d dr d
E[rx(sxu)]_zx(qu)+rxE(sxu)
_dr (95 ) v s 49)
—dtx(SXu)+r>< dt><u +rx|{sx ar (68.4)

SPACE CURVES. Consider the space curve
x=f(t) y=g(t) z=h() (68.5)

where f(¢), g(f), and h(¢) have continuous first and second derivatives. Let the position vector
of a general variable point P(x, y, z) of the curve be given by

r=xi+yj+:zk
As in Chapter 23, t = dr/ds is the unit tangent vector to the curve. If R is the position vector of
a point (X, Y, Z) on the tangent line at P, the vector equation of this line is (see Chapter 65)

R—-r=kt for k a scalar variable (68.6)
and the equations in rectangular coordinates are
X-x Y-y Z-:
dx/ds  dylds  dzl/ds

dx dy d
where [Ex’ d_:: Ez] is a set of diregtiondcos(iines of the line. In the corresponding equation,
(66.2), a set of direction numbers X L 221 gas used.

dt’ dt’ dt

423
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The vector equation of the normal plane to the curve at P is given by
(R—-r1)-t=0 (68.7)

where R is the position vector of a general point of the plane.
Again, as in Chapter 23, dt/ds is a vector perpendicular to t. If n is a unit vector having the
direction of dt/ds, then

dt

7 = |Kln
where |K| is the magnitude of the curvature at P. The unit vector
n= |—11?| %E (68.8)
is called the principal normal to the curve at P.
The unit vector b at P, defined by
b=txn (68.9)

is called the binormal at P. The three vectors t, n, b form at P a right-handed triad of mutually
orthogonal vectors. (See Problems 1 and 2.)

At a general point P of a space curve (Fig. 68-1), the vectors t, n, b determine three
mutually perpendicular planes:

1. The osculating plane, containing t and n, of equation (R —r)-b=0
2. The normal plane, containing n and b, of equation (R—r)-t=0
3. The rectifying plane, containing t and b, of equation (R~r)-n=0

In each equation, R is the position vector of a general point in the particular plane.

e

Osculating plane

Normal plane

Fig. 68-1

SURFACES. Let F(x, y,z) =0 be the equation of a surface. (See Chapter 66.) A parametric
representation results when x, y, and z are written as functions of two independent variables or
parameters u and v, for example, as

x=fiwv)  y=fwv)  z=fuv) (68.10)

When u is replaced with u,, a constant, (68.10) becomes

x = fi(uy, v) y = fo(uy, v) z = fy(uy, v) (68.11)
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the equation of a space curve (u curve) lying on the surface. Similarly, when v is replaced with
Uy. @ constant, (68.10) becomes

x = fi(u, vy) y = f(u, vp) 2= fi(u, vy) (68.12)
the equation of another space curve (v curve) on the surface. The two curves intersect in a
point of the surface obtained by setting u = u, and v = v, simultaneously in (68.10).
The position vector of a general point P on the surface is given by
r=uxi+yj+zk=ifi(u, v) +jfilu, v) + kfy(u, v) (68.13)
Suppose (68.11) and (68. 12) are the u and v curves through P. Then, at P,
ar i
e f1(u()av)+.| fz(uo’v)*'k fx(“n’v)
is a vector tangent to the u curve, and

;9_;_. fiuve) +j — fz(u v0)+k ~ fi(u vy)

is a vector tangent to the v curve. The two tangents determme a plane that is the tangent plane
r r
to the surface at P (Fig. 68-2). Clearly, a normal to this plane is given by — x —. The unit

v’
normal to the surface at P is defined by
ar _ or
Gu " v
n=s ——— (68.14)
‘ or _ ar
—_— x —_—
du  Ju

ar

P
Normal line e

Tangent plane

Fig. 68-2

If R is the position vector of a general point on the normal to the surface at P, its vector
equation is
Jr _ Jr
R-r)= k(— X —)
( ) du  dv
If R is the position vector of a general point on the tangent plane to the surface at P, its vector
equation is

(68.15)

F
r ‘9’)=0 (68.16)

(R-r)- (—ux—

av
(See Problem 3.)
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THE OPERATOR V. In Chapter 67 the directional derivative of z = f(x, y) at an arbitrary point
(x, ¥) and in a direction making an angle 6 with the positive x axis is given as

dz _ of af .
s ar cos 8 + dy sin 6
Let us write
of of ( of . of )
L + = + :
5y 08 0 3y sin 8 = ax a?y +(icos 8 + jsin @) (68.17)

Now a=icos 8 + jsin 8 is a unit vector whose direction makes the angle 8 with the positive x

axis. The other factor on the right of (68.17), when written as (1 x )f, suggests the

+j—
ay
definition of a vector differential operator V (del), defined by
a
V=il 4

iy (68.18)

0f of .

In vector analysis, Vf —1 +j —; is called the gradient of f or grad f. From (68.17), we see

that the component of Vf in the direction of a unit vector a is the directional derivative of f in
the direction of a
Let r = xi + yj be the position vector to P(x, y). Since

g_a_f£+8_fd_y=(i‘9_f+jﬂ).(i%+.d)’)

ds oxds adyds \'ax Jay 1
dr
_vf.Es_
and ‘%‘=|Vf|cas¢

where ¢ is the angle between the vectors Vf and dr/ds, we see that df/ds is maximal when
cos ¢ = 1, that is, when Vf and dr/ds have the same direction. Thus, the maximum value of the
directional derivative at P is |Vf]; and its direction is that of Vf. (Compare the discussion of
maximum directional derivatives in Chapter 67.) (See Problem 4.)
For w = F(x, y, z), we define
aF dF aF
VF=i 8— +j 5; +k E
and the directional derivative of F(x, y, z) at an arbitrary point P(x, y, z) in the direction
a=gjitajtakis
%=VF-a (68.19)
As in the case of functions of two variables, |VF| is the maximum value of the directional
derivative of F(x, y, z) at P(x, y, z), and its direction is that of VF. (See Problem 5.)
Consider now the surface F(x, y, z) = 0. The equation of the tangent plane to the surface at
one of its points Py(x,, ¥,, Z,) is given by

F
(=3 Gt ) 2 5

F
=[(x—x0)i+(y—y0)j+(z—zo)k]-[i‘;—fﬂjy k"—F]-o (68.20)

with the understanding that the partial derivatives are evaluated at P,. The first factor is an
arbitrary vector through P, in the tangent plane; hence the second factor VF, evaluated at P, is
normal to the tangent plane, that is, is normal to the surface at P,. (See Problems 6 and 7.)
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DIVERGENCE AND CURL. The divergence of a vector F =if,(x, y, z) +jf,(x, y, 2) + kfi(x, y, 2),
sometimes called del dot F, is defined by

divF=V~F=%fl+%f2+£ﬁ (68.21)
The curl of the vector F, or del cross F, is defined by
i j k
g 4 4
curlF=VxF= 9x :9; 9z
i b f
(gt (T hm il (- ok @2

{See Problem 8.)

INTEGRATION. Our discussion of integration here will be limited to ordinary integration of
vectors and to so-called “line integrals.” As an example of the former, let

F(u)=icos u + jsin u + auk
be a vector depending upon the scalar variable u. Then
F'(u)=—isinu +jcos u + ak

and fF’(u) du = f (—isinu + jcos u + ak) du

=if—sinudu+jfcosudu+kfadu

=icosut+jsinu+ auk +c¢
=F(u)+c

where ¢ is an arbitrary constant vector independent of u. Moreover,

[ P du=[r) + o122 = F6) ~ F@)

(See Problems 9 and 10.)

LINE INTEGRALS. Consider two points P, and P, in space, joined by an arc C. The arc may be
the segment of a straight line or a portion of a space curve x = g,(r), y = g,(r), z = g,(1), or it
may consist of several subarcs of curves. In any case, C is assumed to be continuous at each of
its points and not to intersect itself. Consider further a vector function

F=F(x, y,2)=ifi(x, y, 2) +jfo(x. y, 2) T kf3(x, y, 2)

which at every point in a region about C, and, in particular, at every point of C, defines a
vector of known magnitude and direction. Denote by

r=xi+yj+:zk (68.23)
the position vector of P(x, y, z) on C. The integral
Py dr Py
fpﬂ (F-‘—is—)ds= PﬂF-dr (68.24)
C C

is called a line integral, that is, an integral along a given path C.
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As an example, let F denote a force. The work done by it in moving a particle over dr is
given by (see Problem 9 of Chapter 23)
|F||dr| cos @ =F - dr

and the work done in moving the particle from P, to P, along the arc C is given by

Py

F-dr
Fy
.
From (68.23).
dr=idx+jdy+kd:z

and (68.24) becomes

Py Py

fp F:dr= P(fldx+f2dy+f3dz) (68.25)
() o

C C

(See Problem 11.)

Solved Problems

1. A particle moves along the curve x =4cost, y=4sin¢, z =61 Find the magnitude of its
1
2

velocity and acceleration at times t =0 and ¢ = ;7.

Let P(x, y, z) be a point on the curve, and
r=xi+yj+zk=4icost+ 4jsint + 6kt
be its position vector. Then

d . d’ .
V= I.=—4ismt+4jcosl+6k and a r=—4icosl—4jsmr

dr Tl
At =0 v =4j + 6k [v| = V16 +36 = 2V13
a=—di la] =4
Atr= 47 v=—-4i+ 6k |v|=V]6+36=2\/T§
a=—4j |a| =4
2. At the point (1,1,1) or t=1 of the space curve x =t, y = 12, z= t’, find

(a) The equations of the tangent line and normal plane
(b) The unit tangent, principal normal, and binormal
(¢} The equations of the principal normal and binormal

We have r=ti+’j+ 'k
dr . . 2
— =i+ 2+
Pk 2t + 3tk
ds |dr 5 5
S8 Vi +ar +
il 1+4+9¢

_dr_drdr_ i+26+30k
ds dt ds  V1+4r +9°

1
Atr=lor=i+j+kand t= = (i+2+3k).
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(a) If R is the position vector of a general point (X, Y, Z) on the tangent line, its vector equation is
R-r=ktor

(X—l)i+(Y—1)j+(Z—l)k=%(i+2j+3k)

and its rectangular equations are
X-1_ Y-1 Z-1
1 2 3
If R is the position vector of a general point (X, Y, Z) on the normal plane, its vector equation
is(R—r)-t=0or

1
v Y _ D PO TR
[(X-1)i+(Y-1)j+(Z-1)] m(l+2j 3k)=0
and its rectangular equation is
(X-D+2Y-1)+3(Z-1)=X+2Y+3Z2-6=0

(see Problem 2(a) of Chapter 66.)
dt _dt di (=40 =188 + (2~ 18t")j + (61 + 12¢°)k

) ds dt ds (1+ 472 +91%)?
dt —11.—8,+9k ‘ ‘
Atr=1,— = ——g=— =|K|. Then
n——l—d—-—lll_8'1+9k
K] & V756
1 ik
—txXn= = 2 3= —=(Gi-3+k
and b= Ve | 2 5| VB I

(c) If R is the position vector of a general point (X, Y, Z) on the principal normal, its vector equation is
R—-r=knor
—11i — 8j + 9%
X-Di+(Y-D)j+(Z-Dk=k —F—=——
(X =1+ (Y- Dj+(Z - Dk=k — =2

and the equations in rectangular coordinates are

X-1_Y-1_2Z-1

-1 -8 9
If R is the position vector of a general point (X, Y, Z) on the binormal, its vector equation is
R—-r=k-bor

ETNP g i3tk
(X=Di+ (Y- Dj+(Z - Dk=k =

and the equations in rectangular coordinates are
X-1 Y-1 Z-1

3 -3 1
3. Find the equations of the tangent plane and normal line to the surface x =2(u + v),
y=3(u —v), z=uv at the point P(u=2,v=1).
ar .. air _ .. ..
Here r=2(u+ v)i+3(u -~ v)j+ uk 5=2|+3_|+uk £=21—3J+uk

and at the point P,

r=6i+3j+ 2k a—;=2i+3j+k j—:=2i—3j+2k
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or ar A .
and ﬁ X 5 =90j 2_] 12k
The vector and rectangular equations of the normal line are
R-r=k CLaNLs
r du  dv
or (X=6)i+(Y-3)j+(Z-2)k=k(% —2j~ 12k)
and X—6+Y—3_Z—2
an 9 V)
The vector and rectangular equations of the tangent plane are
ar dr) _
(R=r) (au X ov =0
or (X -6)i+(Y—-3)j+(Z—-2)k}-[9—2j—12k]=0
and 9X-2Y-12Z-24=0

(a) Find the directional derivative of f(x, y)=x" — 6y® at the point (7,2) in the direction
0="'m
(b) Find the maximum value of the directional derivative at (7, 2).

_.i i) 2 2:.i 2 g2 i 2 2y _ . .
(a) Vf = (l o +j 3y (x"—6y7) i (x"—6y ) +j 3y (x° ~6y7)=2xi— 12yj
and a=ic038+jsin0:%i+%j

At (7.2), Vf = 14i — 24j, and
Vf~a=(l4i—24j)-(%i+ %j)=7\/§—12\/_=—5\/§

is the directional derivative.
(b) At (7.2), with Vf=14i - 24j, |Vf| = V14’ +24° =2V193 is the maximum directional derivative.
Since
vf 7 12
Mo e 6+ isin
N = Vi i \/mj i cos jsin

the direction is 8 = 300°15". (See Problems 2 and 6 of Chapter 67.)

(a) Find the directional derivative of F(x, y, z)=x’ — 2y’ +4z% at P(1,1, —1) in the direc-
tiona=2i+j— k.
(b) Find the maximum value of the directional derivative at P.

14 a : 2 5
Here VF=(i——+ J +k$)(x‘-2y‘+4z')=2xi—4yj+82k

ax "5
and at (1,1, —1), VF =2i—4j - 8k.
(@) VF-a=(2i-4j - 8Kk)-(2i+j - k) =8
(b) At P. |VF| = V84 =2V21. The direction is a = 2i — 4j — 8k.

Given the surface F(x, y,z)=x"+3xyz +2y’ — z° —=5=0 and one of its points P,(1,1,1),
find (a) a unit normal to the surface at P,, (b) the equations of the normal line at Py, and
(c) the equation of the tangent plane at F,,.

Here VF=(3x" + 3yz2)i + 3xz + 6y7)j + (Bxy — 3z7)k
and at P,(1.1.1), VF =6i + 9j.
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(a) E—‘—2——i+—3— j is a unit normal at P,; the other is ——z—i—i'
VFl~ Vi3 viz! o vz vt
(&) The equations of the normal line are X2— ! = 13?—1 Z=1.

(¢) The equation of the tangent plane is 2(X —1)+3(Y - 1)=2X+3Y -5=0.

7. Find the angle of intersection of the surfaces
Fo=x"+y"+2°-9=0 and F,=x"+2y"-2-8=0
at the point (2,1, —2).
We have VF, =V(x" +y* + 2> = 9) = 2xi + 2yj + 2zk
and VF,=V(x*+2y> -z - 8) =2xi+4dyj — k

At (2,1, -2), VF, = 4i + 2j — 4k and VF, = 4i + 4j — k.
Now VF, -VF, = |VF,||VF,| cos 8, where 8 is the required angle. Thus,

(4i+ 2§ — 4K) - (4i + 4§ — k) = J4i + 2j — 4Kk||4i + 4j — k| cos 8
from which cos 8 = &V 33 =0.81236, and 8 = 35°40".

8. When B = xy’i + 2x’yzj — 3yz’k, find (a) divB and (b) curl B.

. d a ., J . . >
(a) divB=V-B= (5i+ 3y t k) (xyli+ 2x%yzj — 3y2°K)

_0 a0 a2 2 a2
= 3% )+ o (2X) + (=32
=y*+2x’z — 6yz
i k
a a a
(b) curlB=VxB=|_= 3y 9z
xy® 2x’yz -3yz®
=i_z_iz]-[iz_i_z] [i 22y~ 9 z]
[‘,y( 3y2°) = 57 Xy i | 57 () = 52 (F3v2) i+ | 50 (2xTyz) = 50 (o) [k

= —(32% + 2x°y)i + (4xyz — 2xy)k

9.  Given F(u) = ui + (u® — 2u)j + 3u’ + u®)k, find (a) f F(u) du and (b) L F(u) du.

(@) jF(u) du =J [ui + (2 - 2w)j + Bu? + w)k] du
=iJ'udu+jj(u2—2u)du+kJ'(3u2+u3)du

W, uw? )( u‘)
= — i+ —-u})jH{wr+ — Jk+te
2'(3 ) 4

where ¢ = ¢ji + c;j + ¢;k + with ¢, 3, ¢; arbitrary scalars.
1

! w w3 . ut __1,-_2- gk
(b) fOF(u)du=[7l+<?'uz)]+(u3+7)k]o—zI 3.|+4
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10.

11.

VECTOR DIFFERENTIATION AND INTEGRATION

[CHAP. 68

The acceleration of a particle at any time ¢ =0 is given by a=dv/dr=e'i + e”j + k. Ifat 1 =0,

the displacement is r =0 and the velocity is v=1i+ j. find r and v at any time ¢.

Here v=jadt=ije’dl+jfe2’dt+kfdt
=éi+ le”j+tk+e,
Att=0, we have v=i+ }j+c¢, =i+j, from which ¢, = ij. Then
=ei+ J(e¥ +1)j+ 1tk
and r=Ivdt=e'i+(%e2'+ Inj+ ifk+e,
Att=0,r=i+ jj+c,=0, from which ¢, = =i~ 3j. Thus,

r=(e'— )i+ (le¥ + r—1)j+ ik

Find the work done by a force F= (x + yz)i + (y + xz)j + (z + xy)k in moving a particle from
the origin O to C(1,1,1), (a) along the straight line OC; (b) along the curve x =1, y = I
=¢*: and (¢) along the straight lines from O to A(1,0,0), A to B(1,1,0), and B to C.

F-dr=[(x+yz)i+(y+xz)j+(z+xy)k][idx+jdy +kdz]
=(x+yz)dc+(y+xz)dy+(z+xy)dz

(a) Along the line OC, x =y = z and dx = dy = dz. The integral to be evaluated becomes

10,0,0)

(1.1.1) 1
W=f F-dr=3f0 (x+x)de =[x+ 7)) =3
P4

(b) Along the given curve, x =tand dx =dt; y =" and dy =2t dt; z =" and dz = 31° dt. At O, 1=0; at

C,t=1. Then
1
W=L U+ )dt+(C+1)2ede+ (£ + )30 de
t
=f (t+20+98)de =307+ 3 + 36, = 3
[\]
(¢) From O to A: y=2z=0 and dy = dz =0, and x varies from O to 1.

From Ato B: x=1, z=0, dx = dz =0, and y varies from 0 to 1.
From B to C: x=y =1 and dx = dy =0, and z varies from 0 to 1.

1 1
Now, for the distance from O to A, W, = J:) x dx = }; for the distance from A to B, W, = L ydy =
1

i and for the distance from B to C, W, =L (z+1)dz=3. Thus, W=W, + W, + W, = 3.

In general, the value of a line integral depends upon the path of integration. Here is an example of
one which does not, that is, one which is independent of the path. It can be shown that a line integral

(f,dx +f,dy +f,dz) is independent of the path if there exists a function ¢(x, y, z) such that

iid) =f, dx+ f,dy + f, dz. In this problem the integrand is
(x+y2)de+(y+xz)dy+(z+xy)dz= d[%(x2 +y*+ %) + xyz]
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12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Supplementary Problems

Find ds/dt and d’s/dt’, given (a) s=(t+ 1)i+(Z+1+ 1)j+ (' + 1+ 1+ 1)k and (b) s=ie' cos 2t +

je'sin2t + ’k.

Ans. (a) i+ 2+ 1)j+ (37 + 21+ 1)k, 2j + (61 + 2)k; (b) e'(cos 2t — 2sin 2¢)i + e'(sin 21 + 2 cos 20)j +
21k, e'(—4sin2t — 3 cos 21)i+ e'(—3sin 21 + 4 cos 21)j + 2k

Given a=ui+ u’j+ u'k, b=icos u +jsin «, and ¢ = 3u’i — 4uk. First compute a-b, ax b, a-(bxc),
and a x (bx ¢), and find the derivative of each. Then find the derivatives using the formulas.

A particle moves along the curve x =3¢%, y = 1> = 2t, z = 1", where t is time. Find (a) the magnitudes of
its velocity and acceleration at time ¢ = 1; (b) the components of velocity and acceleration at time ¢ = 1 in

the direction a = 4i — 2j + 4k. Ans. (a) |v|=3V5, |al=2V19; (b) 6, %

Using vector methods, find the equations of the tangent line and normal plane to the curves of Problem
11 of Chapter 66.

Solve Problem 12 of Chapter 66 using vector methods.

uv .
Show that the surfaces x=u, y=5u—3v’, z=vand x=u, y=v, z= au o e perpendicular at

P(1,2,1).

Using vector methods, find the equations of the tangent plane and normal line to the surface
(@) x=u, y=v, z=uv at the point (u, v) =(3, - 4)
(b) x=u, y=v, z=u’ -0’ at the point (u, v)=(2,1)

- + +
Ans. (@) aX-3v+z-12=0 X3 YFEA_ZHI2 )y ay-z-3-0,
X-2 vy-1_z-3 4 3 -1

-4 2 1

(a) Find the equations of the osculating and rectifying planes to the curve of Problem 2 at the given
point.
(b) Find the equations of the osculating, normal, and rectifying planestox =21 — 1, y =", z =21 + 1° at
t=1.
Ans. (a) 3X-3Y+Z-1=0, 1X+8Y-9Z-10=0; (b) X+2Y~-Z=0, Y+2Z-7=0,
5X-2Y+Z-6=0
Show that the equation of the osculating plane to a space curve at P is given by

dr dzr)

(R_l')'<E XE[? =0

Solve Problems 16 and 17 of Chapter 67, using vector methods.

]
Find f F(u) du, given
(a) F(u)=u'i+ (3u’ - 2u)j+3k; a=0, b=2 (b) F(u)=e¢"i+e ™j+uk,a=0,b=1
Ans. (a) 4i+4j+6k; (b) (e— i+ (1 -e Hj+ ik
The acceleration of a particle at any time ¢ is given by a=dv/dr=(t+ )i+ ’j + (£ = 2)k. If at £ =0,
the displacement is r =0 and the velocity is v =i —k, find v and r at any time ¢.

Ans. v=(3r+t+ )i+ i+ (10 -2t - Dk =0+ 30+ i+ S+ (S0 -7 -k
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In each of the following, find the work done by the given force F in moving a particle from O(0, 0, 0) to
C(1, 1, 1) along (1) the straight line x =y = z, (2) the curve x = ¢,y = f%, z = ’, and (3) the straight lines
from O to A(1,0,0), A to B(1,1,0), and B to C.

(@) F=xi+2yj+3xk

by F=(y+2)i+(x+2)j+(x+yk

(0) F=(x+xyz)i+(y +x"2)j + (z + X'y)k

If r = xi + yj + zk, show that (@) diver =3 and (b) curl r=0.

If f = f(x, y, z) has partial derivatives of order at least two, show that (a) Vx Vf =0,

d 3° 9’
and (b) VVf= (ﬁ + W + ﬁ—zz)f

If F is a twice-differentiable vector function of position, show that ¢. (Vx F)=0.



Chapter 69

Double and Iterated Integrals

b
THE (SIMPLE) INTEGRAL f f(x) dx of a function y = f(x) that is continuous over the finite
interval @ < x = b of the X axis was defined in Chapter 38. Recall that

1. The interval ¢ < x = b was divided into n subintervals k,, h,,..., h, of respective
lengths A x, A,x,...,A,x with A, the greatest of the A, x.
2. Points x,;in h, x, in hz, ..., x,in A, were selected, and the sum Z f(x,) A x formed.

The interval was further subdmded in such a manner that A, —>0 as n— +o,
4. We defined f f(x)dx = lim_ Z Fx,) Agx.

THE DOUBLE INTEGRAL. Consider a function z = f(x, y) continuous over a finite region R of
the xOy plane. Let this region be subdivided (see Fig. 69-1) into n subregions R,, R,,..., R,
of respective areas A A, A,A, ..., A A. In each subregion R,, select a point P,(x,, y,) and
form the sum

121 i y) 8 A = flx, y) A A+ flxy, y2) 8,4+ -+ flx,, y,) A,A (69.1)

Now, defining the diameter of a subregion to be the greatest distance between any two points
within or on its boundary, and denoting by A, the maximum diameter of the subregions,
suppose the number of subregions to be increased in such a manner that A, —0 as n— +o.
Then the double integral of the function f(x, y) over the region R is defined as

f f flx, y)dA= tim 2 f(x,, y,) 8,A (69.2)
ot
R
z
y e BT “I:?r'll'%:u -
(2%, yx) 4 =Y s
: J2 = f(z,¥)
F;
. x " R
Fig. 69-1 Fig. 69-2

When z = f(x, y) is nonnegative over the region R, as in Fig. 69-2, the double integral
(69.2) may be interpreted as a volume. Any term f(x,, y,) A, A of (69.1) gives the volume of a
vertical column whose parallel bases are of area A, A and whose altitude is the distance z,
measured along the vertical from the selected point P, to the surface z = f(x, y). This, in turn,
may be taken as an approximation of the volume of the vertical column whose lower base is the
subregion R, and whose upper base is the projection of R, on the surface. Thus, (69.1) is an
approximation of the volume ‘“‘under the surface” (that is, the volume with lower base in the

435
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xOy plane and upper base in the surface generated by moving a line parallel to the z axis along
the boundary of R). and, intuitively, at least, (69.2) is the measure of this volume.

The evaluation of even the simplest double integral by direct summation is difficult and will
not be attempted here.

THE ITERATED INTEGRAL. Consider a volume defined as above, and assume that the boundary
of R is such that no line paralle]l to the x axis or to the y axis cuts it in more than two points.
Draw (see Fig. 69-3) the tangents x = @ and x = b to the boundary with points of tangency K
and L, and the tangents y = ¢ and y = d with points of tangency M and N. Let the equation of
the plane arc LMK be y = g,(x), and that of the plane arc LNK be y = g,(x).

e M| W 7."'_.[ v
4] i

Fig. 69-3
Divide the interval ¢ = x =< b into m subintervals k, h,, . . ., k,, of respective lengths A x,
A,x,...,A x by the insertion of points x=¢,x=&,,...,x=¢, , (as in Chapter 38), and
divide the interval ¢ <y =d into n subintervals k,, k,, ... .k, of respective lengths Ay,
A,y,...,A,y by the insertion of points y=n,, y=m,....,y=m,_,. Denote by A, the
greatest A x, and by p, the greatest A, y. Draw in the parallel nes x = ¢, x=§,,. .. ,.x=§,_,
and the parallel lines y=mn,, ¥y =7,,..., y=m, ,, thus dividing the region R into a set of

rectangles R, of areas Ax Ay plus a set of nonrectangies that we shall ignore. On each
subinterval A, select a point x = x,, and on each subinterval &, select a point y = y,, thereby
determining in each subregion R, a point P (x,.y;). With each subregion R, associate by
means of the equation of the surface a number z,, = f(x,, y;). and form the sum

2 fx,y)AxAy (69.3)

Jj=1.2.....n

Now (69.3) is merely a special case of (69.1), so if the number of rectangles is indefinitely
increased in such a manner that both A — 0 and u, — 0, the limit of (69.3) should be equal to
the double integral (69.2).

In effccting this limit, let us first choose one of the subintervals, say &,, and form the sum

[}i} flx,, y].) A,y] Ax (i fixed)
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of the contributions of all rectangles having A, as one dimension, that is, the contributions of all
rectangles lying in the ith column. When n— +%, u,—0 and

lim [E fxi ¥)) 8, y] Ax= U

n—+x £1(x;)

82(11)

fxi, y) dY] Ax=d(x)Ax

Now summing over the m columns and letting m— + >, we have

lim 2 d(x)Ax = fb &(x) dx = Lb [f::) flx, y) dy] dx

m—s+x )

j jSz(x) flx, y) dy dx (69.4)

Although we shall not use the brackets hereafter, it must be clearly understood that (69.4) calls
for the evaluation of two simple definite integrals in a prescribed order: first, the integral of
f(x, y) with respect to y (considering x as a constant) from y = g,(x), the lower boundary of R,
to y = g,(x), the upper boundary of R, and then the integral of this result with respect to x from
the abscissa x = a of the leftmost point of R to the abscissa x = b of the rightmost point of R.
The integral (69.4) is called an iterated or repeated integral.

It will be left as an exercise to sum first for the contributions of the rectangles lying in each
row and then over all the rows to obtain the equivalent iterated integral

f LZM f(x, y) dx dy (69.5)

where x = h(y) and x = h,(y) are the equations of the plane arcs MKN and MLN, respec-
tively.
In Problem 1 it is shown by a different procedure that the iterated integral (69.4) measures
the volume under discussion. For the evaluation of iterated integrals see Problems 2 to 6.
The principal difficulty in setting up the iterated integrals of the next several chapters will
be that of inserting the limits of integration to cover the region R. The discussion here assumed
the simplest of regions; more complex regions are considered in Problems 7 to 9.

Solved Problems

1. Let z = f(x, y) be nonnegative and continuous over the region R of the plane xOy whose
boundary consists of the arcs of two curves y = g,(x) and y = g,(x) intersecting in the points K
and L, as in Fig. 69-4. Find a formula for the volume V under the surface z = f(x, y).

Let the section of this volume cut by a plane x = x,, where @ < x, < b, meet the boundary of R in the
points S(x,, g,(x,)) and T(x,, g,(x,)). and the surface z = f(x, y) in the arc UV along which z = f(x,, y).
The area of this section STUV is given by

£2(x;)
A(x,) =f flx;. ¥) dy

Thus, the areas of cross sections of the volume cut by planes parallel to the yOz plane are known

&2

functions A(x) = f f(x, y) dy of x, where x is the distance of the sectioning plane from the origin. By
&(

Chapter 42, the requ1red volume is given by

oo awrace [ e ]

This is the iterated integral of (69.4).
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In Problems 2 to 6, evaluate the integral at the left.

2,

1 x 1 1 7 x2 x} 1 1
LL"W’FL U’hzdﬁﬁ, (x—x)dx=[7"?]o=a
2 3y 2 )
2 3 2
fn fy (x+y)dXdy:f1 [5x *‘xy]y’dy:f1 6y” dy =[2)°) =14
2 xex 2 i 5
J—l L szdy dx:jil [XY];;;jzdx:Ll P+ 2P -2 +2x) dx =3
T rcosé - N
J‘) L psmﬂdde:J; [%pzsiﬂﬁlgosodoz%L COSZOSin9d0=[—écos30]g=§

w2 dcos 8 w2 1 4co56 w2
3 _ - 4 — 4 _
J; L p dp dO—J;) [4 p ]2 de L (64cos” 0 —4) db

_ 30 sin28 sin40> ]””2_
—[64(8+ 7 + n 400 =107

Evaluate J JdA, where R is the region in the first quadrant bounded by the semicubical

R
parabola y* = x* and the line y = x.

The line and parabola intersect in the points (0, 0) and (1, 1) which establish the extreme values of x
and y on the region R.

Solution 1 (Fig. 69-5): Integrating first over a horizontal strip, that is, with respect to x from x = y
(the line) to x = y*'* (the parabola), and then with respect to y from y =0 to y =1, we get

] }'2'3 1

R

Solution 2 (Fig. 69-6): Integrating first over a vertical strip, that is, with respect to y from y = x**
(the parabola) to y = x (the line), and then with respect to x from x =0 to x = 1, we obtain

1 x 1
J'J'dA=J; L’Z dydx=L (x=x"HNdx=[ix*-3x"? =%
R
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1,1 (1,1

Fig. 69-5 Fig. 69-6

8. Evaluate fjdA where R is the region between y = 2x and y = x” lying to the left of x = 1.
R
Integrating first over the vertical strip (see Fig. 69-7), we have

1 2x 1
ffdA=LJ;z dydx=L 2x—-x)dx=1
R

When horizontal strips are used (see Fig. 69-8), two iterated integrals are necessary. Let R, denote
the part of R lying below AB, and R, the part above AB. Then

1 oV 2 1
[fan-ffaneffanm[ [ [ o= 52
R R, &; ¥ ¥

Fig. 69-7 Fig. 69-8

9. Evaluate ffxz dA where R is the region in the first quadrant bounded by the hyperbola
R
xy = 16 and the lines y =x, y =0, and x = 8. (See Fig. 69-9.)

It is evident from Fig. 69-9 that R must be separated into two regions, and an iterated integral
evaluated for each. Let R, denote the part of R lying above the line y = 2, and R, the part below that

line. Then
4 rlery 2 8
ffxsz=J.fx2dA+jfxsz=LI xzdxdy+L[xzdxdy
y v
R R,

16’
3 ——y dy+3 (8 —y*) dy = 448

As an exercise, you might separate R with the line x = 4 and obtain

4 rx f l167x
2 —_ 2 2
ffx dA—LLx dydx+J;J; x*dydx
R
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Yy
¥
& o
R 8,2 =
AL EES 02 oot 0 x
1
0 R, x
Fig. 69-9 Fig. 69-10

1 3
Evaluate L L e* dx dy by first reversing the order of integration.
¥

The given integral cannot be evaluated directly, since j e* dx is not an elementary function. The
region R of integration (see Fig. 69-10) is bounded by the lines x =3y, x =3, and y = 0. To reverse the
order of integration, first integrate with respect to y from y =0 to y = x/3, and then with respect to x
from x =0 to x = 3. Thus,

13 o 3 rxi3 B 3 o
J;)jlye d.xdy=J:)J; € dydx:L [e Y]n dx

3
=1 L e  xdx=[te" D= ("~ 1)

Supplementary Problems

Evaluate the iterated integral at the left:

1 2 2 3
(a)J;f'drdy=1 (b)LL(X+y)dxdy=9
4 2 1 .
(C)le(xz+y2)d)’dx=%o (d)LJ;;xyzd)’dx=%
2 ’J/z . v
@ [ ) ot acay= O [ o aya=g
1 x2 4 [B-y
(g)f f xel dydx=13e—1 (h)f J ydedy = 2
(1] 0 2 y
arctan 372 25ec P .2 2
(i)L L pdpdf=3 (i)L Lp’cosedpd0=%

n/3 tan 6 scc @ 2w 1-¢cos @
(k)L L p’cos’ 0.dp do = % ) L L plcos’0dpdo=Er
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12. Using an iterated integral, evaluate each of the following double integrals. When feasible, evaluate the
iterated integral in both orders.
(a) x over the region bounded by y = x> and y = x° Ans. %
(b) y over the region of part (a) Ans. 3
() x* over the region bounded by y=x, y =2x, and x =2 Ans. 4
(d) 1 over each first-quadrant region bounded by 2y = X,y=3x,and x+y=4 Ans. §. %
(e) y over the region above y = 0 bounded by y* =4x and y*=5—-x Ans. 5
Ans. 4

1 2
) ———=—== over the region in the first quadrant bounded by x* =4 -2
(f m g q y y

13. In Problem 11(a) to (h), reverse the order of integration and evaluate the resulting iterated integral.



Chapter 70

Centroids and Moments of
Inertia of Plane Areas

PLANE AREA BY DOUBLE INTEGRATION. If f(x, y) =1, the double integral of Chapter 69

becomes dA. In cubic units, this measures the volume of a cylinder of unit height; in square

units, it measures the area of the region R. (See Problems 1 and 2.)

B [oy(8)
In polar coordinates, A = ffdA =f f p dp do, where 0 = a, 8 = 8, p,(6), and p,(8)

e1(8)

R
are chosen to cover the region R. (See Problems 3 to S.)

CENTROIDS. The coordinates (x, y) of the centroid of a plane region R of area A = f J d A satisfy
R

the relations

Ax = My and y

Ay=M,
or f].fdA=fJ'di and fffdA=ffydA
R R R R

(See Problems 6 to 9.)

THE MOMENTS OF INERTIA of a plane region R with respect to the coordinate axes are given by

1x=[jy2 dA and 1),=fj’x2 dA
R R

The polar moment of inertia (the moment of inertia with respect to a line through the origin
and perpendicular to the plane of the area) of a plane region R is given by

[(,=lx+1_\,=fj(x2+y2)dA
R

(See Problems 10 to 12))

Solved Problems

1. Find the area bounded by the parabola y = x* and the line y =2x + 3.

Using vertical strips (see Fig. 70-1), we have

3 2x+3 3
A =j_l Jz dy dx =j_l (2x + 3 — x*) dx = 32/3 square units

2 Find the area bounded by the parabolas y> =4 — x and y* =4 — 4x.

442
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¥

©.2)

v 3,9)

xr

0

-1,1) .
70 —-7 ©,—2)
Fig. 70-1 Fig. 70-2

Using horizontal strips (Fig. 70-2) and taking advantage of symmetry, we have
2 ra-y? 2
— = 2y 12
a=2f [ aray=2[ @-y)-a- e
2
= 6J; (1 - %y*) dy =8 square units

3. Find the area outside the circle p = 2 and inside the cardioid p = 2(1 + cos 6).

Owing to symmetry (see Fig. 70-3), the required area is twice that swept over as 0 varies from 8 =0
to 8 = 3 7. Thus,

w/2 r2(l+cos@) w2 wi2
A=2L L pdpd0=2J; [%pz]i“”°’°’d0=4j; (2 cos @ + cos’ 9) d6

/2

=4[2sin @ + 16 + }sin20];"° = (7 + 8) square units

Fig. 70-4

4, Find the area inside the circle p = 4 sin 8 and outside the lemniscate p° = 8 cos 26.

The required area is twice that in the first quadrant bounded by the two curves and the line 6 = ! 7.
Note in Fig. 70-4 that the arc AO of the lemniscate is described as 8 varies from 6 = 7/6 to 8 = #/4,
while the arc AB of the circle is described as 8 varies from 8 = 7/6 to 8 = /2. This area must then be
considered as two regions, one below and one above the line 8 = 7/4. Thus,

/4 4 5in 6 w/2 4s51in @
A=2L/o J;Vz—cm—mpdpd0+2f"/4f<1 p dp do
m/4

mi2

=J/6 (16sin20~8c0520)d6+J'M 16 sin’ 8 do

”

= (%7 + 4V3 - 4) square units
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Evaluate N = L e * dr. (See Fig. 70-5.)

+x s + o ;
Sincef e dx=j0 e’ dy, we have
[}

N2=J’o e"zde'0 ef":dy=J; L e"":”z’dxdy:jfe"’z"z) dA
R

Changing to polar coordinates (x* + y* = p°, dA = p dp d8) yields

T R L I P I e
) 0 0 2 0 2 Jo 4

a— + %

and N =Vv7/2.

4 )

Fig. 70-5 Fig. 70-6

[CHAP. 70

Find the centroid of the plane area bounded by the parabola y = 6x — x° and the line y = x.

(See Fig. 70-6.)
5 rox-x2 s
A=JJ'dA=Lf dydx:J:,(SX—xz)dxz%

R

5 6x —x? 5
M,f””f“ﬁ,f xdydx=L (5x* = x')dx = B
R

s réx—x? s
Mx=ffydA=Lf ydydx=%ﬁ) [(6X—X2)2—x2]dx=%
R

Hence, t=M_/A=3,y=M_/A =5, and the coordinates of the centroid are (3, 35).

Find the centroid of the plane area bounded by the parabolas y =2x — x* and y = 3x% - 6x.

(See Fig. 70-7.)

2 - x? 2
= = _ 42 T
A—]fdA—LLJZ_mdydx—L (8x —4x"}dx = 7§
R
2 r2x-x? 2
My=ffdi=J0L2-6 xdydx=L(8x2—4x")dx=%"
R

2 (2r-x2 2
M,=”ydA=L L ydydx=§L [(@x - x*)" = (3x* ~ 6x)"] dx = -
R

Hence,. =M /A=1,y=M,/A=~4%, and the centroid is (1, - 3).
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v
v
0 (2,0) x
x
0
Fig. 70-7 Fig. 70-8

8. Find the centroid of the plane area outside the circle p=1 and inside the cardioid
p=1+cosé.

From Fig. 70-8 it is evident that y = 0 and that x is the same whether computed for the given area or
for the half lying above the polar axis. For the latter area,

w2 1+cos @ l w2 7l’+8
— = = = 2_ 12 =
A—]fdA J; J; p dp do 2[0 [(1+cos@) —1°] db 3
R

n/2 1+cos @ 1 w2
My=[fdi=L ﬁ (pcosO)pdpd0=5j0 (3cos® 6 +3cos® 6 +cos® @) db
R

1[3 3. . .. 3 1. 1, ]"’2_157r+32
—3[20+4sm20+35m8 sin 0+80+4sm20+3251n400 = T
. . 157 + 32 )
The coordinates of the centroid are ( 6(m +8)° 0).

9. Find the centroid of the area inside p = sin 8 and outside p =1 — cos 6. (See Fig. 70-9.)

w/2 rsiné 1 "2 4_"
A=ffdA=L fl pdpd6=§fo (2c050—1—c0s20)d9=T
R

—cos @

w2 sin 8
My=f]di=L J:‘w”(pcoso)p dp dB
R

1 _
== (sm30—l+3cosB—3c0520+cos30)cosod8=u
3 Jo 48

w/2 rsiné@

M,=ffydA=L jl_ o(psin())pdpdt)
R
—1f"/2 in® 0 — 1+ 3cos 8 — 3cos 6 + cos® 6) sin 6 d6 = S —2
=3 (sin cos cos cos” #) sin T

157 -44 37 -4 )

The coordinates of the centroid are (12( =) 2(=m)

10. Find I, I, and ], for the area enclosed by the loop of y* = x*(2 — x). (See Fig. 70-10.)

x fyo

2 rxVZ-x 2
A=jfdA=2LL dydx=2J; xV2—-xdx
R

15]" 32V2
vi 15

0
- 2 ygr=—a| 2}
= 4]\5(22 z2)dz= 4[32 52
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Fig. 70-9 Fig. 70-10

where we have used the transformation 2 — x = z°. Then

2 rxV2-x 2 2
1,=ffy2dA=2LL ydydx= 7 ox’(z—x)“dx

R

°  2048VZ 64

= - = _9__L ll] — - T
52777377007 | s o A

_ 4 2“_4[8,12,2
=3 \/5(2 ')z dz-—§

2 xV2-x 2
IL=]]x"dA=2 dyde=2] ©V2Z-xdx
4 o Jo 0
R

(1]
8 12 6
—415(2 Z2°Y'z% dz 4[32 5z+,’z z

+1_133l2\/§_ﬂ
7T 3465 231

11.  Find I,, I,, and [, for the first-quadrant area outside the circle p =24 and inside the circle
p =4acos 6. (See Fig. 70-11.)

w/3 rdacos@ 1 "3 +
A=jfdA=f f ,odpd6=—f [(4acos(9)2—(2a)2]d8=ZL—3\/—§a2
0 2a 2 0 3
R

w/3 prdacosé w3
1= j j y dA= J; L (psin 6)°p dp do = % L {(4a cos 8)* ~ (2a)*} sin® 9 db
R

411’ + QVE a4 — 4” + 9V§ a
6 202w +3V3)
ni3 [4acosd 127 + 11V3 3127 + 11V3)
- 2 = 2 = ‘= :
1,“UX an=[ [, (oeosoyodpas 2 T amevy

207 +21V3 gt = 20 +21V3
3 27 +3V3

w3
=4a‘L (16 cos* 8 — 1) sin” 9 d9 = ‘A

L=1+1= a’A

12. Find [/

X

I, and I, for the area of the circle p = 2(sin 8 + cos 8). (See Fig. 70-12.)

Since x* + y2 =p?
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CENTROIDS AND MOMENTS OF INERTIA OF PLANE AREAS

v
14
z
o X
(#]
Fig. 70-11 Fig. 70-12
3w/ 4 2(sin 8 +cos 0) 3nm/4
10=fj(x2+y2)dA=j_ oo ppdp do=4 e (sin @ + cos 8)* do
R
=4[36 —cos20 - }sind46] i =67 =3A
It is evident from Fig. 70-12 that I, = I . Hence, I, =1I = }I,= 3 A.
Supplementary Problems
13. Use double integration to find the area:
(a) Bounded by 3x +4y =24, x =0,y =0 Ans. 24 square units
(b) Bounded by x + y=2,2y=x+4,y=0 Ans. 6 square units
(c) Bounded by x* =4y, 8y = x> + 16 Ans. ¥ square units
(d) Within p =2(1 - cos 6) Ans. 6m square units
(e) Bounded by p =tan@sec and 8 = /3 Ans.  }V3 square units
(f) Outside p =4 and inside p =8 cos 8 Ans. 8(%iw+ V3) square units
4. Locate the centroid of each of the following areas.
(a) The area of Problem 13(a) Ans. (8.2)
(b) The first-quadrant area of Problem 13(c) Ans. (3, %)
(c) The first-quadrant area bounded by y*=6x, y =0, x =6 Ans. (2.9
(d) The area bounded by y* =4x, x’=5-2y, x=0 Ans. (8. %)
(e) The first-quadrant area bounded by x> —8y +4=0, x* =4y, x =0 Ans. (2, %)
(f) The area of Problem 13(e) Ans. (V3,8
+
(g) The first-quadrant area of Problem 13( f) Ans (126:+ 36\/\? oy 323\/3)
B B g8
1S. Verify that } j [g3(8)— g2(8)] do =j f o P dp de =ffdA; then infer that
a a 8
R
jff(x, y)dA =J’ff(p cos 6, p sin 8)p dp db
R R
16. Find /, and I, for each of the following areas.
(a) The area of Problem 13(a) Ans. I, =6A;1 =%A
(b) The area cut from y* = 8x by its latus rectum Ans. I, =%A; 1 =%A
(c) The area bounded by y = x> and y = x Ans. I =73A1 =3%A
(d) The area bounded by y =dx — x> and y =x Ans. 1= A1,=%
17 Find /, and I, for one loop of p° = cos 20 A 1 *(l—l)A'! —(1+1)A
. 8 , p of p* = cos 26. ns. L=\176"6/40L=\16"5
18. Find I, for (a) the loop of p =sin 26 and (b) the area enclosed by p =1+ cosé. Ans.

(b) A

447

(a) A,



Chapter 71

Volume Under a Surface by
Double Integration

THE VOLUME UNDER A SURFACE :z = f(x, y) or z = f(p, 8), that is, the volume of a vertical

1.

2.

column whose upper base is in the surface and whose lower base is in the xOy plane, is defined

by the double integral V= z dA, the region R being the lower base of the column.

Solved Problems

Find the volume in the first octant between the planes z =0 and z = x + y + 2, and inside the
cylinder x* + y* = 16.

From Fig. 71-1, it is evident that z=x + y + 2 is to be integrated over a quadrant of the circle
x*>+y® =16 in the xOy plane. Hence,

4 Vie—x2 4 1
v=”sz=L L (x+y+2)dydx=fo (x\/lé—x2+8—§x2+2\/16—x2>dx
R

3 4
= [—% (16 — x*)"? + 8x — % + xV16 — x* + 16 arcsin % x]o = (% + 817) cubic units

Find the volume bounded by the cylinder x° + y° =4 and the planes y + z =4 and z = 0.

From Fig. 71-2, it is evident that z =4 — y is to be integrated over the circle x° + y° = 4 in the xOy
plane. Hence,

2 Va2 2 Va2
V= j‘z f_m (4—-y)dxady =2f_2j (4 — y) dx dy = 167 cubic units

0

Fig. 71-3
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Find the volume bounded above by the paraboloid x* + 4y* = z, below by the plane z = 0, and
laterally by the cylinders y2 =x and x~ =y. (See Fig. 71-3.)

The required volume is obtained by integrating z = x* + 4y* over the region R common to the
parabolas y* = x and x* = y in the xOy plane. Hence,

1 VX 1
V:ﬁ f (x* +4y*) dy dx :L [x*y + §y°]\¥ dx = 3 cubic units
) X

Find the volume of one of the wedges cut from the cylinder 4x* + yi= a’ by the planes z =0
and z = my. (See Fig. 71-4.)

The volume is obtained bv integrating z = my over half the ellipse 4x* + y* = a”. Hence,

ar2 Vaz—ax? ar2 _ ma
V=2J:] J; mydydx:mj; [Ye " dx = 3

3

cubic units

Find the volume bounded by the paraboloid x* + y* = 4z, the cylinder x* + y2 =8y, and the
plane z =0. (See Fig. 71-5.)

The required volume is obtained by integrating z = }(x* + y*) over the circle x* + y* =8y. Using
cylindrical coordinates, the volume is obtained by integrating z = 1 p° over the circle p = §sin 8. Then,

w r8siné 7 r8sing
- - =1 3
V—szdA J;L zp dp db AJ’OL p~ dp dp
R

=% L [p%)5¢ do = 256L sin® 6 d0 = 967 cubic units

Fig. 71-4 Fig. 71-6

Find the volume removed when a hole of radius a is bored through a sphere of radius 2a, the
axis of the hole being a diameter of the sphere. (See Fig. 71-6.)

From the figure, it is obvious that the required volume is eight times the volume in the first octant
bounded by the cylinder p* = a’, the sphere p° + z° = 44°, and the plane z =0. The latter volume is
obtained by integrating z = \/4a” — p* over a quadrant of the circle p = a. Hence,

w2 a wi2
V= 8L J:) Vda™ - p'pdp dg =1 L (8a® — 3V3a’) d8 = 4(8 — 3V3)a’w cubic units
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10.

11,

12.

13.

14.

18.

16.

17.

18.

19.

21.

22.

VOLUME UNDER A SURFACE BY DOUBLE INTEGRATION [CHAP. 71

Supplementary Problems

Find the volume cut from 9x* + 4y’ + 36z = 36 by the plane z = 0. Ans. 3 cubic units

Find the volume under z =3x and above the first-quadrant area bounded by x =0, y =0, x =4, and
x*+y'=25  Ans. 98 cubic units

Find the volume in the first octant bounded by x> + z=9, 3x+4y =24, x =0, y =0, and z =0.
Ans. 1485/16 cubic units

Find the volume in the first octant bounded by xy =4z, y = x, and x = 4. Ans. 8 cubic units
Find the volume in the first octant bounded by x> + y* =25 and z = y. Ans. 3 cubic units

Find the volume common to the cylinders x> + y* =16 and x> + z° =16.  Ans. % cubic units
Find the volume in the first octant inside y> + z° =9 and outside y* =3x.  Ans. 27#/16 cubic units
Find the volume in the first octant bounded by x* + z2 =16 and x ~y=0.  Ans. % cubic units

Find the volume in front of x =0 and common to y> + z° =4 and y*> + z*> + 2x = 16.

Ans. 28w cubic units

Find the volume inside p =2 and outside the cone z° = p>. Ans. 32w/3 cubic units

Find the volume inside y*> + z° =2 and outside x’ —y’ — z° =2. Ans. 8mw(4—V2)/3 cubic units
Find the volume common to p°+ z* =4 and p = asin 6. Ans. 2(37 — 4)a*9 cubic units

Find the volume inside x> + y*> =9, bounded below by x* + y* + 4z = 16 and above by z = 4.

Ans. 8lw/8 cubic units
Find the volume cut from the paraboloid 4x* + y> = 4z by the plane z — y = 2. Ans. 9 cubic units

Find the volume generated by revolving the cardioid p = 2(1 — cos 8) about the polar axis.
Ans. V= Zﬂff yp dp d6 = 647/3 cubic units

Find the volume generated by revolving a petal of p = sin 26 about either axis.

Ans. 327/105 cubic units

A square hole 2 units on a side is cut symmetrically through a sphere of radius 2 units. Show that the
volume removed is $(2V2 + 197 — 54 arctan V?2) cubic units.



Chapter 72

Area of a Curved Surface by
Double Integration

TO COMPUTE THE LENGTH OF A(PLANAR) ARC, (1) the arc is projected on a convenient coor-

2
dinate axis, thus establishing an interval on the axis, and (2) an integrand function, 14 (?)
2 b
if the projection is on the x axis or 1+ (d_y) if the projection is on the y axis, is integrated
over the interval.

A similar procedure is used to compute the area S of a portion R* of a surface z = f(x, y):
(1) R* is projected on a convenient coordinate plane, thus establishing a region R on the plane,
and (2) an integrand function is integrated over R. Then,

az\’ dz\’
s s o 05 [ 1+ () + () o
If R* is projected on xOy, S I[\/l % + 3y dA
R
. . ax\’ ax\’
If R* is projected on yOz, § = 1+\—=] + (— dA.
ay dz
R

2 J 2
If R* is projected on zOx, S=ff \/1 + (%) + (%) dA.
R

Solved Problems

1. Derive the first of the formulas for the area S of a region R* as given above.

Consider a region R* of area S on the surface z = f(x, y). Through the boundary of R* pass a
vertical cylinder (see Fig. 72-1) cutting the xOy plane in the region R. Now divide R into n subregions

z y = 73
i

P, &

R
e .'_J 3

Fig. 72-1

451
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AREA OF A CURVED SURFACE BY DOUBLE INTEGRATION [CHAP. 72

AA, (of areas AA,), and denote by AS, the area of the projection of A4, on R*. In each subregion AS,,
choose a point P, and draw there the tangent plane to the surface. Let the area of the projection of AA,
on this tangent plane be denoted by AT,. We shall use AT, as an approximation of the corresponding
surface area AS,.

Now the angle between the xOy plane and the tangent plane at P, is the angle v, between the z axis

. d d
with direction numbers [0. 0, 1], and the normal, [— —I — —f 1] =[ ii j—;

s s 1], to the surface at
ax ay
P;; thus

1
B
\!((716 + (9)’) + 1

AT.cosy, =AA, and AT, =secy, AA,

cos vy, =

Then (see Fig. 72-2),

AT,

Hence, an approximation of § is 2 AT, = E secy, AA,, a

S= lim Zsecy,AA ffsecydA f] a—;) +1dA

n— k%

Find the area of the portion of the cone x* + y° = 3z” lying above the xOy plane and inside the
cylinder x* + y2 =4y.

Solution 1: Refer to Fig. 72-3. The projection of the required area on the xOy plane is the region R
enclosed by the circle x* + y* = 4y. For the cone,

dz 1x dz 1 Y (62) (62)2 927+ X +y* 1227 4
g = ==Z + +{ =) = . = = -
dx 3z and dy 3z So ! dax ay 9z° 9z 3
B (92 . ((9_2 J¢ J\4‘_‘ B J‘ J\/J\ ¥
Then = j y B + ) + ﬁy/ dA = Vi —=dx dy = \/— o Jo dx dy

, 5 3
= % J Vdy —y  dy = 8’,;\/—_ 7 square units

Solution 2: Refer to Fig. 72-4. The projection of one-half the required area on the yOz plane is the
region R bounded by the line y =V3z and the parabola y = 3z°, the latter obtained by eliminating x
between the equations of the two surfaces. For the cone,

ax y dx 3z 1+<ax) +(ﬂ)2=’r2+y2+922 127° 1277

=—= —=—. S
ay X and dz x © ay iz

¥ P 372 — yz

1 TAR 5 4\/— , 4\/—
Then SZZL f’\_‘ V;\/—z dz dy - j [,/"—'_)\,\,zxzd _ J' Vay =y dy
VAW z __‘/
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(0. 4

Fig. 72-3 Fig. 72-4

d ] 2
Solution 3: Using polar coordinates in solution 1, we must integrate \ 1 + ( ﬂi) + ((T;) =3

over the region R enclosed by the circle p = 4sin 6. Then,
2 ™ 4 sin @ 2 1 ™ Jiseinn
5*”73‘”‘—[, o G edeas= 5 [ 1

8V3
\/— j *0.do = —3 7 square units

3. Find the area of the portion of the cylinder x* + z° = 16 lying inside the cylinder x* + y* = 16.
P y ying y y

Figure 72-5 shows one-eighth of the required area, its projection on the xOy planc being a quadrant
of the circle x* + y*> = 16. For the cylinder x* + z° =16,

9z x dz (dz)z (32)2 Xtz 16
_— = — = _— = R “+ _ + _ = = =
P . and 3y 0 So 1 X 3y . T

V lﬁ x2
Then S= 8] f dy dx = 32J dx = 128 square units

4. Find the area of the portion of the sphere XX+ y2 + z° = 16 outside the paraboloid
X’ +y +z=16.

Figure 72-6 shows one-fourth of the required area, its projection on the yOz plane being the region
R bounded by the circle y* + z° = 16, the y and z axes, and the line z = |. For the sphere,

: -I'.._‘

(4,0,0)

Fig. 72-5
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x__Y and 9x __z So 1+(a_x)2+(5_x)2=x2+y2+22= 16
ay x dz x’ dy dz x* 16-y*—2°
2 F v Vie-z?
Then S=4J'!'\/l+(£) +(§) dA=4j f -—-iz—zdydz
i ay 2z o Jo \/lﬁ—y — 2
V16— 22

3
dz = 16J0 % 7 dz = 87 square units

1
= 16f [arcsin —y——]
0 Vie— z2 1o

5. Find the area of the portion of the cylinder x* + y* = 6y lying inside the sphere x* + y*> + z° =
36.

2+ 6y = 36,
z=0

Fig. 72-7

Figure 72-7 shows one-fourth of the required area. Its projection on the yOz plane is the region R
bounded by the z and y axes and the parabola z* + 6y = 36, the latter obtained by eliminating x from the
equations of the two surfaces. For the cylinder,

dx 3-y ox (8x)2 (d’x)2 ¥ +9-6y+y° 9
—_— = — —_—= . +{ — —_ = =
ay x and 9z 0 So 1 Ay %z % 6y —y°
6 \V36-6y 3 6 \/6
Then S= 4[0 J:] ——6\/7—)12 dzdy= 12!'0 Vs dy = 144 square units

Supplementary Problems

6. Find the area of the portion of the cone x* + y* = z” inside the vertical prism whose base is the triangle
bounded by the lines y = x, x =0, and y =1 in the xOy plane. Ans. V2 square units

7. Find the area of the portion of the plane x + y + z = 6 inside the cylinder x* + y* = 4.

Ans.  4V37 square units

8. Find the area of the portion of the sphere x* + y* + z* = 36 inside the cylinder x* + y* = 6y.

Ans.  72(w — 2) square units
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10.

11.

12,

13.

14,

15.

Find the area of the portion of the sphere x* + y* + z* = 4z inside the paraboloid x* + y* = z.

Ans. 41 square units

Find the area of the portion of the sphere x* + y* + z> =25 between the planes z =2 and z = 4.

Ans. 207 square units

Find the area of the portion of the surface z = xy inside the cylinder x* + y* =1.

Ans. 2m(2V2 - 1)/3 square units

Find the area of the surface of the cone x* + y*> — 9z” = 0 above the plane z =0 and inside the cylinder
x*+y*=6y.  Ans. 3V10# square units

Find the area of that part of the sphere x* + y* + z% = 25 that is within the elliptic cylinder 2x* + y* = 25,

Ans. 507 square units

Find the area of the surface of x> + y° — az = 0 which lies directly above the lemniscate
4 5
4p* = a’ cos 26. Ans. S= p ff Vap® + a’p dp do = % (3 - %) square units

Find the area of the surface of x* + y*> + z° = 4 which lies directly above the cardioid p =1 — cos 6.

Ans.  8[m — VZ—In(V2+ 1)] square units



Chapter 73

Triple Integrals

CYLINDRICAL AND SPHERICAL COORDINATES. Assume that a point P has coordinates
(x,y,z) in a right-handed rectangular coordinate system. The corresponding cylindrical
coordinates of P are (r, 6, z), where (r, 8) are the polar coordinates for the point (x, y) in the
xy plane. (Note the notational change here from (p, 8) to (r, 8) for the polar coordinates of
(x. y); see Fig. 73-1.) Hence we have the relations

x=rcos@ y=rsiné rr=x"+y? tan6=£

In cylindrical coordinates, an equation r = ¢ represents a right circular cylinder of radius ¢ with
the z axis as its axis of symmetry. An equation 6§ = c represents a plane through the z axis.

p P(r, 8, 2)

I P(p. 6, ¢)
I
7 ¢/ 12
0 y o ' y
x/ 8 r 6N l
x ™ !
— N,
/ y N
x K Y
Fig. 73-1 Fig. 73-2

A point P with rectangular coordinates (x, y, z) has the spherical coordinates (p, 6, ¢),
where p = |OP|, 8 is the same as in cylindrical coordinates, and ¢ is the directed angle from the
positive z axis to the vector OP. (See Fig. 73-2.) In spherical coordinates, an equation p = ¢
represents a sphere of radius ¢ with center at the origin. An equation ¢ = ¢ represents a cone
with vertex at the origin and the z axis as its axis of symmetry.

The following additional relations hold among spherical, cylindrical, and rectangular
coordinates:

r=psin¢ z=pcos ¢ pl=xt+y'+ 7’
X =psin ¢ cos 8 y=psin¢sin g
(See Problems 14 to 16.)

THE TRIPLE INTEGRAL J’ j J f(x, ¥, z) dV of a function of three independent variables over a

R
closed region R of points (x, y, z), of volume V, on which the function is single-valued and
continuous, is an extension of the notion of single and double integrals.

456
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If f(x, y,z)=1, then jjjf(x, y, z) dV may be interpreted as measuring the volume of
R

the region R.

EVALUATION OF THE TRIPLE INTEGRAL. In rectangular coordinates,

b ry(x) rzyx.y)
ffff(x,y,z)d‘/:f f " j( ) flx. y, 2)dz dy dx
a Jy(x zp{x.y
R

d rxy(y) rza(x.y)
:f f f f(x. y, 2) dz dx dy, etc.

82l 1 (x.¥)

where the limits of integration are chosen to cover the region R.
In cylindrical coordinates,

B [ry6) [230n0)
fRf J' f(r,8,z)dV= L fn«’) J;l(r.ﬂ) f(r. 0, z)r dz dr dé

where the limits of integration are chosen to cover the region R.
In spherical coordinates,

B rd,(0) rpy(6.6) .
[! f flp, &, 8) dV=j!z 00 Jio0) f(p, &.0)p"sin ¢ dp dop d6

where the limits of integration are chosen to cover the region R.

Discussion of the definitions: Consider the function f(x, y, z), continuous over a region R
of ordinary space. After slicing R with planes x = £ and y =7, as in Chapter 69, let these
subregions be further sliced by planes z = ¢,. The region R has now been separated into a
number of rectangular parallelepipeds of volume AV, = Ax, Ay; Az, and a number of partial
parallelepipeds which we shall ignore. In each complete parallelepiped select a point
P (x;s ¥, 2,); then compute f(x,, y,, z,) and form the sum

2 flx.y,.2,)Ax, Ay, Az, (73.1)

The triple integral of f(x, y, z) over the region R is defined to be the limit of (73.1) as the
number of parallelepipeds is indefinitely increased in such a manner that all dimensions of each
go to zero.

In evaluating this limit, we may sum first each set of parallelepipeds having A, x and Ay, for
fixed i and j, as two dimensions and consider the limit as each A,z — 0. We have

14 £33
lim X flxin v 2,) 8,z Ax Ay :[ flxi yi, 2)dz Ax Ay
k=1 21

p—+x

Now these are the columns, the basic subregions, of Chapter 69; hence,

i=1..... m

lim > fix, ¥, 2,) AV, =ijf(x, v, z) dz dx dy =ffff(x. v, z) dz dy dx
R R

CENTROIDS AND MOMENTS OF INERTIA. The coordinates (x, y, z) of the centroid of a
volume satisfy the relations
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ffaref [ e 5] [fare [ [ra
of [Jar=f{]cav

The moments of inertia of a volume with respect to the coordinate axes are given by

1,=”f(y2+z2)dv 1y=f”(zz+x2)dv Iz=[jj(x2+y2)dv

Solved Problems

1. Evaluate the given triple integrals:

1 1~x p2-x
(a) fo L L xyz dz dy dx

:LX -J: X(J:quzdz)dy] dx
LU e L2 0

r 2 _ 2qy=)-x
:j i&%ﬁ] d,x—lj(4x—12)t +13x° —6x* + x%) dx = 5
0 L

13
240

y=40

il i 2
(b) j f f zr’sin @ dz dr do
0 4 Jo

J j[ ]r sin @ dr d@ = ZJ’ [r sin @ dr d@

2
3

=3 J:) (r’]isin@ do = [cos 0]y =
Ed sec ¢
(©) Ju L J:J sin2¢ dp d¢ db

=2L"L"dsin¢d¢do=2f(1»%x/i)d():(z—\/?)n

2, Compute the triple integral of F(x, y, z) = z over the region R in the ﬁrst octant bounded by
the planes y =0, z=0, x + y=2, 2y + x =6, and the cylinder y*> + z° =4. (See Fig. 73-3.)

Integrate first with respect to z from z = 0 (the xOy plane) to z = \/4 — y* (the cylinder), then with
respect to x from x =2 — y to x = 6~ 2y, and finally with respect to y from y =0 to y = 2. This yields

2 ro-2v Vaoy? 2 r6-2y
— _ 1,2)1Va-y?
J'IJ‘de-LJ;_y L zdzdxdy—LL_y [:12°)5 dx dy
R

[ T aea=1 ey a-
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=%
XY
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e li
_s |
gt = i
\ 1
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|
(0,2,0) v
- F 0 B ———
il 77
.8 A
z / - 7
x
Fig. 73-3 Fig. 73-4

3. Compute the triple integral of f(r, 6, z) = r® over the region R bounded by the paraboloid
r* =9 -z and the plane z =0. (See Fig. 73-4.)

Integrate first with respect to z from z=0to z=9 - r*, then with respect to r from r=0to r = 3,
and finally with respect to 6 from 8 =0 to 8 =27, This yields

27 £3 pu-—pt 27 3
fffrzdv=f“ L f“ rz(rdzdrd9)=J; J:' (9~ r’)drdd
R

2 2w
4 3 243 2
=J [57 —%,r°]l,d0=J B do=%q
QO (4]

4 Vib-x2 4 4 r2VZ pVdAzZ-x2
4. Show that the integrals (a) 4[ f f ) dz dy dx, (b) 4f f j dy dx dz, and
a4 4 Viaz o2 0 Jo (x2+y) /4 0o Jo 0
(c) 4J; fzm L dx dz dy give the same volume.

(a) Here z ranges from z = 1(x” + y°) to z = 4; that is, the volume is bounded below by the paraboloid
4z =x*+y* and above the plane z =4. The ranges of y and x cover a quadrant of the circle
x* +y? =16, z =0, the projection of the curve of intersection of the paraboloid and the plane z = 4
on the xOy plane. Thus, the integral gives the volume cut from the paraboloid by the plane z = 4.

(b) Here y ranges from y =0 to y = V4z — x7; that is, the volume is bounded on the left by the zOx
plane and on the right by the paraboloid y° = 4z — x”. The ranges of x and z cover one-half the area
cut from the parabola x* =4z, y =0, the curve of intersection of the paraboloid and the zOx plane,
by the plane z =4. The region R is that of (a).

(¢) Here the volume is bounded behind by the yOz plane and in front by the paraboloid 4z = x* + y°.
The ranges of z and y cover one-half the area cut from the parabola y° =4z, x =0, the curve of
intersection of the paraboloid and the yOz plane, by the plane z = 4. The region R is that of (a).

5. Compute the triple integral of F(p, ¢, 8) = 1/p over the region R in the first octant bounded
by the cones ¢ = }7 and ¢ = arctan2 and the sphere p = V6. (See Fig. 73-5.)
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Fig. 73-5 Fig. 73-6

Integrate first with respect to p from p =0 to p = V6, then with respect to ¢ from ¢ = ;7 to
¢ =arctan 2, and finally with respect to 6 from 8 =0 to 8 = }#. This yields

1 w/2 farctan 2 /6 7!/2 farctan 2
J'J’f dv = ] f f) —p smd;dpd(todﬂ 3J' J sin ¢ d¢ df

o[ (e - )

6. Find the volume bounded by the paraboloid z = 2x + y and the cylinder z =4 — y? (See Fig.
73-6.)

Integrate first with respect to z from z =2x” + y’ to z =4 — y°, then with respect to y from y =0 to

y =V2 - x? (obtain x* + y* =2 by eliminating x between the equations of the two surfaces), and finally
with respect to x from x =0 to x = V2 (obtained by setting y =0 in x” + y* =2) to obtain one-fourth of
the required volume. Thus,

2-x , F 2-x
v=4L L Lz+zdzdydx=4j’o J’“ [(4—y*)+ (2" + y*)) dy dx
3]\/2 x2

2
- 4L [4y —2xy - %I_ Sy j Y*'? dx = 44r cubic units

7. Find the volume within the cylinder r = 4 cos # bounded above by the sphere r* + 2 = 16 and
below by the plane z =0. (See Fig. 73-7.)

Integrate first with respect to z from z =0 to z = V16 — r>. then with respect to r from r =0 to
r=4cos 6, and finally with respect to 8 from § =0 to 8 = 7 to obtain the required volume. Thus,

T fdcosd rV16—r2 7 r4cosd
V=J; J:] L rdzdrd6=J:) J'n rV16 — r* dr do

=-9 L (sin® 6 — 1) d8 = % (3w — 4) cubic units
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Fig. 73-7 Fig. 73-8

8. Find the coordinates of the centroid of the volume within the cylinder r = 2 cos 8, bounded
above by the paraboloid z = r* and below by the plane z =0. (See Fig. 73-8.)

2cos B w2 2cos @
V= 2J f [ rdzdrdg= ZJ' f ridrde

=%J; [Feee? do = 8] cos* @do =3

wi2 r2cos® [rl
M.vz:fff“w:z[) J; J; (rcos 8)rdzdrdb
R

2cos @ w2
=2L L r"cosﬂdrd0=%ﬁ) cos® 9 dp =2m

Then ¥ =M _,/V= 4. By symmetry, y =0. Also,

w2 2¢cos @ 2 w2 2cos @
=fffzdv=2f J J zrdzdrdozf J r*drde
0 0 0 0 Q
R

=¥J'0 cos® 0 df = i

and z=M_/V= 4. Thus, the centroid has coordinates (3,0, %

9. For the right circular cone of radius a and height A, find (a) the centroid, (&) the moment of
inertia with respect to its axis (c), the moment of inertia with respect to any line through its
vertex and perpendicular to its axis, (4) the moment of inertia with respect to any line through
its centroid and perpendicular to its axis, an (e) the moment of inertia with respect to any
diameter of its base.

Take the cone as in Fig. 73-9, so that its equation is r = - z. Then

2
h
h
V= 4_{ ff rdzdrdf= 4J j( —; drdB

f d0——17ha

b)l



462 TRIPLE INTEGRALS [CHAP. 73

(0,,0)

Fig. 73-9

(a) The centroid lies on the z axis, and we have

w/2 ra rh
Mxy=fjjzdv=4f f f zrdz dr do
0 0 Jhria

_ _n _l 2 ZJ.”/Z _1 2.2
2J J ’r 2r drd9—2ha . d9~417ha
Then 7= M,,/V= }h, and the centroid has coordinates (0, 0, ih).

() 1—ffj(x +y*)dv= 4J’ JLa(r Vrdzdrde = %5mha' = £a’V

(c) Take the line as the y axis. Then

w2 a h
Iy=jjf(x2+zz)dv=4j; LL/ (r* cos® @ + z°)r dz dr db
w2 l h3
—4f f[ hr ——r)c0520+§(h3r——3r‘)]drd0
a

= % 1rha2(h2 + % az) = % (h2 + % a2>V
(d) Let the line ¢ through the centroid be parallel to the y axis. By the parallel-axis theorem,
L=1+V(h)?® and I =3k +ia V- Fh'V=g(h" +4a")V
(e) Let d denote the diameter of the base of the cone parallel to the y axis. Then
I,=1+V(ihY = (W’ +4a°)V + Lh°V= 5 (2h* + 3a*)V

10.  Find the volume cut from the cone ¢ = j# by the sphere p =2a cos ¢. (See Fig. 73-10.)

w2 n/d r2acosd
V:4fjjdV=4L JO L p’sin ¢ dp dé de
R

_ 324’

w/4 wi2
J; L cos’ ¢ sin ¢ do do =24’ fo d® = ma® cubic units

11.  Locate the centroid of the volume cut from one nappe of a cone of vertex angle 60° by a
sphere of radius 2 whose center is at the vertex of the cone.
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Fig. 73-10 Fig. 73-11

Take the surfaces as in Fig. 73-11, so that x = y = 0. In spherical coordinates, the equation of the
cone is ¢ = 7/6, and the equation of the sphere is p =2. Then

o[ [fares [ st 2 [ [ ansan

2 (F-) [ -

Mxy=fjfzdv=4£”2£w J; (p cos ¢)p’sin ¢ dp d dP

w2 rw
=8f0 L sin2¢ d¢p db =«
and 2=M_/V=3(2+V3).

12.  Find the moment of inertia with respect to the z axis of the volume of Problem 11.

1, =Jjj(x2 +yY) (1V=4Lmj:/ﬁ J: (p?sin® ¢)p’ sin ¢ dp dep do

128 (72 (¢ | 128 /2 3 ™2 5— 2\/‘
R ] s saa=1E(3-3va) [ a0 5T e ovi)-

Supplementary Problems

13. Describe the curve determined by each of the following pairs of equations in cylindrical coordinates.
(@) r=1,2z=2 by r=2,z=¢ (c) 8=m/d, r=V2 d)ye==m/4,z=r

Ans.  (a) circle of radius 1 in plane z = 2 with center having rectangular coordinates (0, 0, 2); (b) helix
on right circular cylinder r =2; (c) vertical line through point having rectangular coordinates
(1,1,0); (d) line through origin in plane 6 = w/4, making an angle of 45° with xy plane



14.

15.

16.

17.

18.

19.

21.

22.

TRIPLE INTEGRALS (CHAP. 73

Describe the curve determined by each of the following pairs of equations in spherical coordinates.
™ m

Ans. (a) circle of radius 1 in xz plane with center at origin; (b) halfline of intersection of plane
6 = 7/4 and cone ¢ = m/6; (c) circle of radius V2 in plane z = V2 with center on z axis

@ p=1,0=m ) 6=17.

Transform each of the following equations in either rectangular, cylindrical, or spherical coordinates into
equivalent equations in the two other coordinate systems.
(@) p=5 ) 22=r° () F+y +(z—1)Y=1

Ans. (@) X +y’+27=25r+2°=25, (b) 22 =x*+y’ cos’ ¢ =
(¢)r*+2 =2z, p=2cos ¢

i (thatis, ¢ = 7/4 or ¢ =3w/4);

Evaluate the triple integral on the left in each of the following:

1 2 3
(a) J;flfzdzdxdy=l
1 x xy
(b) L J':J; dzdydx = %
6-x/2 r4-2%/3-x/3
L xdzdydx]

6 F12-2v (4—2y:3-x/3 12
(c) L L J; xdzdxdy =144 [=L L

w2 r4 VTGS
@] [,

2w pmw S
(e) L L L p*sin ¢ dp dé db = 2500

(16 -r)Y%rzdrdz do = 3w

Evaluate the integral of Problem 16(b) after changing the order to dz dx dy.
Evaluate the integral of Problem 16(c), changing the order to dx dy dz and to dy dz dx.

Find the following volumes, using triple integrals in rectangular coordinates:

(a) Inside x* + y* =9, above z =0, and below x + z =4 Ans. 367 cubic units
(b) Bounded by the coordinate planes and 6x + 4y + 3z =12 Ans. 4 cubic units
(c) Inside x* + y* =4x, above z =0, and below x° + y* =4z Ans. 6 cubic units

Find the following volumes, using triple integrals in cylindrical coordinates:
(a) The volume of Problem 4

(b) The volume of Problem 19(c)

(¢) That inside r* = 16, above z =0, and below 2z =y Ans. 64/3 cubic units

Find the centroid of each of the following volumes:

(a) Under z° = xy and above the triangle y = x, y =0, x =4 in the plane z=0 Ans. (3,%.9)
(b) That of Problem 19(b) Ans. (3.2,
64 -97 23 737 - 128
(c) The first-octant volume of Problem 19(a) Ans. (16(17 ) B -1) 327 1) )
(d) That of Problem 19(c) Ans. (3.0, %
(e) That of Problem 20(c) Ans. (0, 31r/4 37/16)
Find the moments of inertia /., I,, I, of the following volumes:
(a) That of Problem 4 Ans. 1 =1 =%V [ =%V
(b) That of Problem 19(b) Ans. 1, =3V, =2V, [ =RV
(¢) That of Problem 19(c) Ans. 1 =RV, 1 =BV, I =%V
(d) That cut from z = r* by the plane z =2 Ans. I =1 =3V;1 =3V
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23,

Show that, in cylindrical coordinates, the triple integral of a function f(r, 6. z) over a region R may be

represented by
B rra(8) riy(r.6)
f J’ J f(r, 0, z)rdz dr do

18 1(r.8)

(Hint: Consider, in Fig. 73-12, a representative subregion of R bounded by two cylinders having Oz as
axis and of radii r and r+ Ar, respectively, cut by two horizontal planes through (0,0, z) and
(0,0, z + Az), respectively, and by two vertical planes through Oz making angles 6 and 6 + A8,
respectively, with the xOz plane. Take AV = (r A6) Ar Az as an approximation of its volume.)

z z
& Ap
p-\._‘ e
Sl = pA®
B A\
A T\
0 | l v
e A
AT
v @
‘_.:. pli!w As
z)
x
Fig. 73-12 Fig. 73-13

Show that, in spherical coordinates, the triple integral of a function f( p, ¢, 8) over a region R may be
represented by

B [#3(8) rpid.8)
] f f f(p, &, 6)p° sin & dp do dé

100) Jp(0.8)

(Hint: Consider, in Fig. 73-13. a representative subregion of R bounded by two spheres centered at O, of
radii p and p + Ap, respectively, by two cones having O as vertex, Oz as axis. and semivertical angles ¢
and ¢ + A¢, respectively, and by two vertical planes through Oz making angles 8 and 6 + A8,
respectively, with the zOy plane. Take AV = (p A¢)(p sin ¢ AB)(Ap) = p’sin ¢ Ap Ad Af as an approx-
imation of its volume.)



Chapter 74

Masses of Variable Density

HOMOGENEOQUS MASSES have been treated in previous chapters as geometric figures by taking
the density 8 = 1. The mass of a homogeneous body of volume V and density & is m = 8V.
For a nonhomogeneous mass whose density 8 varies continuously from point to point, an

element of mass dm is given by:

8(x, y) ds for a material curve (e.g., a piece of fine wire)
8(x, y) dA for a material two-dimensional plate (e.g., a thin sheet of metal)

8(x, y, z) dV for a material body

Solved Problems

1. Find the mass of a semicircular wire whose density varies as the distance from the diameter
joining the ends.

Take the wire as in Fig. 74-1, so that 8(x, y) = ky. Then, from x* + y* = r’,

) dy)2 r
ds = 1+<dx dx—;dx

and m= J 8(x, y)ds = L ky ; dx=kr [_ dx =2kr* units
2, Find the mass of a square plate of side a if the density varies as the square of the distance from
a vertex.

Take the square as in Fig. 74-2, and let the vertex from which distances are measured be at the
origin. Then &(x, y) = k(x> + y*) and

m=JJ6(x, y) dA=L L k(x2+y2)dxdy=kL (1@’ + ay?) dy = 2ka® units
R

v vy
P(z, y) |
| ]
z 2z,
(=r,0) 0 ) ,]J/"" Py
0 z
|
Fig. 74-1 Fig. 74-2 Fig. 74-3
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3. Find the mass of a circular plate of radius r if the density varies as the square of the distance
from a point on the circumference.

Take the circle as in Fig. 74-3, and let A(r,0) be the fixed point on the circumference. Then
8(x, y)=k[(x — r)* + y’] and

m= J’ J( 8(x, y)dA=2 [_ J; K[(x — r)’ + y*] dy dx = 3kmr® units
R

4, Find the center of mass of a plate in the form of the segment cut from the parabola y* = 8x by
its latus rectum x =2 if the density varies as the distance from the latus rectum. (See Fig.
74-4.)

Here, 8(x, y) =2 — x and, by symmetry, y = 0. For the upper half of the plate,

m= jf&(x y)dA = ff k(2—x)dxdy= kf 2——+m)dy——5k

M, = ”a(x y)xdA = ff k(2= x)x dx dy = kf[ (24§:64)]dy=13—258k

and X = M,/m = §. The center of mass has coordinates (5,0).

Fig. 74-4 Fig. 74-5 Fig. 74-6

5. Find the center of mass of a plate in the form of the upper half of the cardioid r = 2(1 + cos #)
if the density varies as the distance from the pole. (See Fig. 74-5.)

7 r2(l+cosé) -
m=”6(r,0)dA=J;L (kr)rdrd6=§kL (1+cos @) df = Lk
R
7 2(1+cos8)
M,=JJ5(T, 8)y dA ZL fo (kr)(rsin 8)r dr dé
R

=4kL (1+cosB) sing do =12k

m 2(l+cos@)
M = jf&(r, 6)xdA = L J; (kr)(rcos 8)rdrdd =14km
R

M, 21 _ M __ 9 (2 96 )
Then x = Tn_ =107 " T % and the center of mass has coordinates 10° 57
6. Find the moment of inertia with respect to the x axis of a plate having for edges one arch of

the curve y = sin x and the x axis if its density varies as the distance from the x axis. (See Fig.
74-6.)
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m=[f5(x,y)dA=J'0J; kydydx=%kL sin x dx = Lk
R

1x=jj6(x, Ny’ dA=fU L (ky)(y*) dy dx = %kL sin* xdx = 3km=3m
R

7. Find the mass of a sphere of radius a if the density varies inversely as the square of the
distance from the center.
Take the sphere as in Fig. 74-7. Then &(x, y, z) = ;2 = iz and

x2+y2+z p
w2 rwi2
m= fff&(x y,2)dv= SJ' f f —5 p’sin ¢ dp do do

= 8kaf J sin ¢ d¢p db = 8kaf do = 4kmwa units

P(z,y,12)
*
%
I’-— 0 v
x
Fig. 74-7 Fig. 74-8
8. Find the center of mass of a right circular cylinder of radius a and height /4 if the density varies

as the distance from the base.

Take the cylinder as in Fig. 74-8, so that its equation is r = a and the volume in question is that part
of the cylinder between the planes z =0 and z = k. Clearly, the center of mass lies on the z axis. Then

w2 fra rh wl2 ra
m=jff6(z,r,6)dv=4j; J;J;(kz)rdzdrd6=2kh2j0 errdﬂ
R
w2
= khzaZJ; de = Yknh’a’

w2 ra rh w/2 ra
ff]a(z,r,e)zdv=4f ff(kzz)rdzdrd0=§kh3f frdrdo
i 0 0 o 0 (1]
R

w2
= 1kh’a® jo o = Skmh'a®

X
I

and Z =M, /m = {h. Thus the center of mass has coordinates (0,0, 3#).
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10.

11.

Supplementary Problems

Find the mass of:

(a) A straight rod of length a whose density varies as the square of the distance from one end
Ans.  1ka® units

(b) A plate in the form of a right triangle with legs a and b, if the density varies as the sum of the
distances from the legs Ans.  tkab(a + b) units

(¢) A circular plate of radius a whose density varies as the distance from the center
Ans. %ka’w units .

(d) A plate in the form of an ellipse b*x* + a’y” = a’b’, if the density varies as the sum of the distances

from its axes Ans.  %kab(a + b) units
(e) A circular cylinder of height b and radius of base a, if the density varies as the square of the distance
from its axis Ans.  Lka*bm units

(f) A sphere of radius 2 whose density varies as the distance from a fixed diametral plane
Ans.  LSka'm units

(g) A circular cone of height b and radius of base a whose density varies as the distance from its
axis Ans.  Lka’br units

(h) A spherical surface whose density varies as the distance from a fixed diametral plane
Ans. 2ka’m units

Find the center of mass of:

(a) One quadrant of the plate of Problem 9(c) Ans. (3a/2m, 3a/2m)

(b) One quadrant of a circular plate of radius a, if the density varies as the distance from a bounding
radius (the x axis) Ans. (3a/8, 3am/16)

(c) A cube of edge a, if the density varies as the sum of the distances from three adjacent edges (on the
coordinate axes) Ans. (5a/9, 5a/9, 5a/9)

(d) An octant of a sphere of radius a, if the density varies as the distance from one of the plane
faces Ans. (16a/15m, 16a/15m, 8a/15)

(e) A right circular cone of height & and radius of base a, if the density varies as the distance from its
base Ans. (0,0,2b/5)

Find the moment of inertia of:
(a) A square plate of side a with respect to a side, if the density varies as the square of the distance from

an extremity of that side Ans. La'm

(b) A plate in the form of a circle of radius a with respect to its center, if the density varies as the square
of the distance from the center Ans. 3a’m

(c) A cube of edge a with respect to an edge, if the density varies as the square of the distance from one
extremity of that edge Ans. %a'm

(d) A right circular cone of height b and radius of base a with respect to its axis, if the density varies as
the distance from the axis Ans. ia’m

(e) The cone of (d), if the density varies as the distance from the base Ans. ia’m



Chapter 75

Differential Equations

A DIFFER;ZNTIAL EQUATION is an equation that involves derivatives or differentials; examples

d d
are E{ +2(—i£ +3y =0 and dy = (x + 2y) dx.

The order of a differential equation is the order of the derivative of the highest order
appearing in it. The first of the above equations is of order two, and the second is of order one.
Both are said to be of degree one.

A solution of a differential equation is any relation between the variables that is free of
derivatives or differentials and which satisfies the equation identically. The general solution of a
differential equation of order » is that solution which contains the maximum number (=n) of

essential arbitrary constants. (See Problems 1 to 3.)

AN EQUATION OF THE FIRST ORDER AND DEGREE has the form M(x, y) dx + N(x, y) dy = 0.
If such an equation has the particular form f,(x)g,(y) dx + f,(x)g,(y) dy = 0, the variables are
separable and the solution is obtained as

fl(x) gl()’)
0 T 6k

dy=0C

(See Problems 4 to 6.)

A function f(x, y) is said to be homogeneous of degree n in the variables if f(Ax, Ay) =
A’f(x, y). The equation M(x, y) dx + N(x, y) dy = 0 is said to be homogeneous if M(x, y) and
N(x, y) are homogeneous of the same degree. The substitution

y=uvx dy=vdx+xdv

will transform a homogeneous equation into one whose variables x and v are separable. (See
Problems 7 to 9.)

CERTAIN DIFFERENTIAL EQUATIONS may be solved readily by taking advantage of the
presence of integrable combinations of terms. An equation that is not immediately solvable by
this method may be so solved after it is multiplied by a properly chosen function of x and y.
This multiplier is called an integrating factor of the equation. (See Problems 10 to 14.)

d
The so-called linear differential equation of the first order d—i + Py = Q, where P and Q are

{ Pdx

functions of x alone, has é(x) =¢ as integrating factor. (See Problems 15 to 17.)

d
An equation of the form :i% + Py = Qy", where n #0, 1, and where P and Q are functions

of x alone, is reduced to the linear form by the substitution

l-n __ 7!1511_ 1 E
y o=z y dc  1-—n dx

(See Problems 18 to 19.)

470
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Solved Problems

1. Show that (a) y =2¢", (b) y=3x, and (c) y = C,e" + C,x, where C, and C, are arbitrary
constants, are solutions of the differential equation y"(1 —x)+ y'x —y =0.

(a) Differentiate y = 2¢" twice to obtain y' = 2¢* and y” = 2¢*. Substitute in the differential equation to

obtain the identity 2¢*(1 — x) + 2e*x — 2¢" = 0.

(b) Differentiate y =3x twice to obtain y’=3 and y”=0. Substitute in the differential equation to
obtain the identity 0(1 — x) + 3x —3x =0.

(c) Differentiate y = C,e” + C,x twice to obtain y' = C,e” + C, and y” = C,e". Substitute in the differen-
tial equation to obtain the identity C,e"(1 — x) + (C,e" + C,)x —(C,e" + C;x) =0.

Solution (c) is the general solution of the differential eqution because it satisfies the equation and
contains the proper number of essential arbitrary constants. Solutions (a) and (b) are called particular
solutions because each may be obtained by assigning particular values to the arbitrary constants of the
general solution.

2. Form the differential equation whose general solution is (a) y=Cx’—x; (b) y=C,x’ +
Cx + C,.

"+
(a) Differentiate y = Cx* — x once to obtain y’ =2Cx — 1. Solve for C = Ty+1 and substitute in
y 1 2 x
'+
4 ¥*—xoryx=2+x.

the given relation (general solution) to obtain y = >

x

(b) Differentiate y = C,x’ + C,x + C, three times to obtain y' = 3C,x* + C,, y"=6C,x, y" = 6C,. Then

y" = xy" is the required equation. Note that the given relation is a solution of the equation '™ =0
but is not the general solution, since it contains only three arbitrary constants.

3. Form the second-order differential equation of all parabolas with principal axis along the x
axis.

The system of parabolas has equation y° = Ax + B, where A and B are arbitrary constants.
Differentiate twice to obtain 2yy’ = A and 2yy” + 2(y’)* = 0. The latter is the required equation.

2
y 1
+ dx
1+y3 dy x(1+x%)

Here xy’(1 + x*)dy + (1+ y*)dx =0, or = 0 with the variables separated.

Then partial-fraction decomposition yields
yidy dx xdx

+ — —
1+y  x  1+x°

1

and integration yields
imt+y+Inlx|-imQ+x*)=c

or 2in|1+y*|+6In)x| -3In(1+ x*)=6¢
6 3452 6 352
. x(1+y7) r(+y’) .
from which In Tx{)r =6¢ and -(1—+;—2—)-3— =e¥*=C
5. Solve o 1tY
ve — = .
dc  1+x°
dy dx . . .
Here 5 = 5. Then integration yields arctan y = arctan x + arctan C, and
1+y 1+x

x+C
1-Cx

y = tan (arctan x + arctan C) =
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10.

11.

12.
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dy cos’y
Solve — = ——.
dx  sin’x
. . . dy _  dx 2 o, . .
The variables are easily separated to yield —5— = —— or sec® y dy = csc” x dx, and integration

) cos”y sin”x
yields tan y = —cotx + C.
Solve 2xy dy = (x* — y*) dx.
The equation is homogeneous of degree two. The transformation y = vx, dy = v dx + x dv yields
2ud dx
(2x)(vx)(v dx + x dv) = (x* — v’x) dx or " f 3:2 = — - Then integration yields

—{in|1-3v*=In|x|+Inc

from which In |1 - 3v*|+ 3In (x| +In C' =0 or C'|x*(1~3v%)|=1.

Now = C'x'(1 - 3v’) = Cx'(1 - 3v®) = 1, and using v = y/x produces C(x* — 3xy?) =1.

Solve xsinf—;(ydx+xdy)+ycos§(xdy—ydx)=0.

The equation is homogeneous of degree two. The transformation y = vx, dy = v dx + x dv yields

x sin v(vx dx + x> dv + vx dx) + vx cos v(x’> dv + vx dx — vx dx) =0

or sinv(Qvdx + xdv) + xvcosvdv =0
sinv + v cos v dx
or —dv+2 — =0
vsinv X

Then In [vsin v| +21n x| =In C’, so that x’vsinv = C and xy sin f =C.

Solve (x* —2y*) dy + 2xy dx =0.
The equation is homogeneous of degree two, and the standard transformation yields
(1-20°)Wvdx+xdv)+2vde=0
1-20° dx

dv+—=0

o v(3 - 20%) x

or @___—40(10 +£—0

v 3(3-20Y)  «x
Integration yields § In|v|+ §In[3 - 2v°| +In}x| =Inc, which we may write as In|v|+In|3 ~ 207 +
3In|x|=1n C’. Then vx*(3 —2v’) = C and y(3x* - 2y*) = C.

Solve (x* + y)dx + (y’ + x) dy =0.

3 4

Integrate x* dx + (y dx + x dy) + y* dy = 0, term by term, to obtain % +xy + % =C.
Solve (x + e “siny)dx—(y+e “cos y)dy=0.
Integrate xdx —~ ydy — (¢ “cos ydy — e "sin y dx) =0, term by term, to obtain

Ix* =1y’ —e“siny=C

Solve x dy — y dx =2x’ dx.
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13.

14.

15.

16.

17.

18.

_xdy—ydx
xZ
= 2x dx, from which§=x2+Cory=x3+Cx.

The combination x dy — y dx suggests d(%) . Hence, multiplying the given equation

dy —ydx
by &(x) = é, we obtain ’F_X;zy—

Solve xdy + ydx = 2x2y dx.

xdy +ydx
Xy

=2x dx, from which In |xy| = x* + C.

The combination x dy + y dx suggests d(In xy) = . Hence, multiplying the given equation

1 dy + ydx
by &(x, y) = x_y we obtain xyx—y

Solve xdy + 3y —e") dx =0.
Multiply the equation by £(x) = x” to obtain x> dy + 3x%y dx = x’¢* dx. This yields

vy = f x’e*dx = x’e" — 2xe* +2¢" + C

dy 2 3
Solve — + — y=6x".
dx " x?
2 . 13 nx H
Here P(x)= . fP(x) dx=Inx% and an integrating factor is £&(x)=€""* = x> We multiply the
given equation by £(x) = x° to obtain x’ dy + 2xy dx = 6x° dx. Then integration yields x’y = x° + C.
Note 1: After multiplication by the integrating factor, the terms on the left side of the resulting
equation are an integrable combination.
Note 2: The integrating factor for a given equation is not unique. In this problem x*, 3x°, ix? etc.,
are all integrating factors. Hence, we write the simplest particular integral of P(x) dx rather than the
general integral, Inx* +1n C =In Cx*

d)’
SO]VC tan x / y S€C x

. d
Since Ey + y cot x = ¢sc x, we have f P(x) dx =[cot xdx =In|sin x|, and &(x) =" """ *! = |sin x|.
Then multiplication by £(x) yields

. (d . .
smx(ay+ycotx)=smxcscx or sinx dy + ycos x dx = dx

and integration gives ysinx = x + C.

dy -
Solve =X

Here P(x) = —x, f P(x)dx=—1x" and £&(x)=e” 42 This produces
e ¥ dy — xye~ 4 g = xe ¥ dx

and integration yields ye~ o by C,ory= Cel - 1.

dy 2
Solve — + y = xy~.
ve dr y=xy
L d . I - -
The equation is of the form Ey + Py = Qy", with n = 2. Hence we use the substitutiony' "=y ' =
2 d d . . .. L - -
z, y7? ay = —EZ. For convenience, we write the original equation in the form y~’ % +y =g,

- dz dz
obtaining ——-+z=xo0or .- —z=—ux,

dx dx
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The integrating factor is &(x) = ¢’ " = ¢ 1% = ¢™" It gives us ¢ * dz — ze * dx = —xe * dx, from

which ze *=xe * + ¢ * + C. Finally, since z =y, we have; =x+1+ Ce".

d
19. Solve 2y ytanx = y? sec x.

dx
z d
‘}Nnte the equatlon in the form y~ d—i +y ?tanx =secx. Then use the substitution y 2 =z,
_ z
: Ey =3 a to obtain -— — 2z tan x = —2sec x.
The integrating factor is &(x)=e */'" % = cc2>sz x. It gives cos’ xdz —2zcosxsinxdx=
. . cos” x .
—2cos x dx, from which z cos’ x = —2sinx + C, or 7— = —2sinx + C.

20. When a bullet is fired into a sand bank, its retardation is assumed equal to the square root of
its velocity on entering. For how long will it travel if its velocity on entering the bank is
144 ft/sec?

Let v represent the bullet’s velocity ¢seconds after striking the bank. Then the retardation is
= V7, so\/—%=—d:and2\/'=—:+c

When t=0,v =144 and C=2V144 =24. Thus, 2vv = —t + 24 is the law governing the motion of
the bullet. When v =0, 1 = 24; the bullet will travel 24 seconds before coming to rest.

21. A tank contains 100 gal of brine holding 200 Ib of salt in solution. Water containing 1 1b of salt
per gallon flows into the tank at the rate of 3 gal/min, and the mixture, kept uniform by
stirring, flows out at the same rate. Find the amount of salt at the end of 90 min.

Let g denote the number of pounds of salt in the tank at the end of t minutes. Then dq is the rate of

dt
change of the amount of salt at time . d
Three pounds of salt enters the tank each minute, and 0.03g pounds is removed. Thus, ?? =
3 - 0.03q. Rearranged, this becomes 3—_—010—3— = dr, and integration yields _O—Og; =-1+C.

n3 -
When t=0, ¢ =200 and C = 03 so that In (0.03g — 3) = —0.03s + In 3. Then 0.01g —1=¢ ",
and g = 100 + 100e °°”". When ¢t =90, ¢ = 100 + 100e *7 = 106.72 lb.

22.  Under certain conditions, cane sugar in water is converted into dextrose at a rate proportional
to the amount that is unconverted at any time. If, of 75 grams at time =0, 8 grams are
converted during the first 30 min, find the amount converted in 1! hours.

dq dq

Let g denote the amount converted in t minutes. Then i k(75 — g), from which 754 =kdt,

and integration gives In(75—¢q) = -kt + C.
When 1=0, g =0 and C =1In75, so that In(75—¢q)= —kt+1In75.
When 7= 30 and ¢ =8, we have 30k =1In75 — In 67; hence, k =0.0038, and g =75(1 -
When =90, g =75(1 — e °?*) = 21.6 grams.

e—o 00381).
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27.

Supplementary Problems

Form the differential equation whose general solution is:

(a) y=Cx*+1 (b) y=Cx+C () y=Cx*+C?
@) xy=x-C () y=Ci+ Cx+ Cx’ (f) y=Cie*+ Ce™
(g) y=C,sinx+ C,cosx (h) y=Cie*cos(3x + C,)

Ans. (@) xy’'=2(y —1); (b) ¥’ =(y —xy")%; (¢) 4x7y =27y + (¥")%; (d) xy' + y =3x% (e) y"=0;
(NYy -3y +2y=0;(g) y"+y=0; (h) y"—2y" + 10y =0

Solve:

(@) ydy—4xdx=0 Ans. y'=4x*+C

(b) y*dy -3 dx=0 Ans. 2y =3x*+C

(c) x’y' =y (x—4) Ans. x*—xy+2y= Cx’y
(d)(x—2y)dy+(y+4x)dx=0 Ans. xy-y +2x'=C
(e) (2y* + 1)y’ =3x%y Ans. y*+In|y|=x+C
(N xy'(2y - 1)=y(1-x) Ans. Inlxy|=x+2y+C
(8) (X* +y*) dx =2xy dy Ans. x*-y’=Cx

(W) (x+y)dy=(x—y)dx Ans. xX*-2xy—-y'=C
() x(x+y)dy—y*de=0 Ans. y=Ce "
(j)xdy—ydc+xe”*dx=0 Ans. ¢ +In|Cx|=0
(k) dy =3y +e”) dx Ans. y=(Ce* —1)e*

() *y*dy=(1-xy)dx Ans. 2xy* =3+ C

The tangent and normal to a curve at point P(x, y) meet the x axis in T and N, respectively, and the y
axis in § and M, respectively. Determine the family of curves satisfying the condition:
(a) TP=PS (b) NM = MP (¢} TP=OP (d) NP=OP

Ans. @D xy=C, () 2x*+y’=C; (0)xy=C,y=Cx; (d) X’ +y*=C

Solve Problem 21, assuming that pure water flows into the tank at the rate 3 gal/min and the mixture
flows out at the same rate. Ans. 13.441b

Solve Problem 26 assuming that the mixture flows out at the rate 4 gal/min. (Hint: dg =

__Y4 )
00— & Ans. 0.021b




Chapter 76

Differential Equations of Order Two

THE SECOND-ORDER DIFFERENTIAL EQUATIONS that we shall solve in this chapter are of the
following types:

d’ Y -

dx’

d’y _ of ) ,

e —f(}x, o (See Problems 2 and 3.)

d')

e = f(y) (See Problems 4 and 5.)
X

d’ dy dy

d + P dx + Qy = R, where P and Q are constants and R is a constant or function of x only
X

(See Problems 6 to 11.)

If the equation m” + Pm+ Q =0 has two distinct roots m, and m,, then y = C,e™" +

.d d
C,e™" is the general solution of the equation 2——)21 + P :i% + Qy =0. If the two roots are
x
identical so that m, = m, = m, then y = C,e™" + C,xe™" is the general solution.
d’ d
The gene 7 )_} di) =0 is called the complementary function of the
x

d}
dx
function + f(x) is its general solution. The function f(x) is called a particular solution.

gquation Z—‘ + P + Qy = R(x). If f(x) satisfies the latter equation, then y = complementary
X

Solved Problems

5

d..
1. y = xe" + cos x.
X
d (dy . dy ‘ T
Here 7 \dx = xe' +cos x. Hence, r =1 {xe"+cosx)dx=xe'— e +sinx+ C,, and another
integration yields y = xe' ~2¢* —cosx + C\x + C,.
. d’ d
2. Solve x° y T
dx” dx
d’y _d ) . d
Letp = d . then dx‘ = :5 and the given equation becomes x* d_lx) +xp=aorxdp+pdx= g dx.
Then integration yields xp=aln|x|+ C,, or x E% =alnlx|+ C,. When this is written as dy =
aln|x| % +C, T\’ integration gives y = laln’|x| + C, In|x| + C,.
3. Solve xy" + v+ x =0.

476
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dy d’y dp . . dp
= —_— —_— = ——— -~ = + =
Let p I Then —= 7 and the given equation becomes x %x +p +1x 0or xdp+pdx
—x dx. Integration gives xp = —ix’ + C,, substitution for p gives ___!y =-5xt _xl . and another

integration yields y = — 1x* + C, In|x| + C,.

2

d’y
4. Solve ? =2y=0.

Since — [(y )’] = 2y'y", we can multiply the given equation by 2y’ to obtain 2y'y" =4yy’, and
integrate to obtam 'y —4J yy'de=4| ydy=2y*+C,.

dy dy : :
Then —— = V2y® + C,, so that \/2—_C,- =dx and In|V2y + V2y® + C,| = V2x + In C;. The last

2y° +
equation yields VZy + \2y* + C, = C,e¥™

5.  Solve y"=—1/y’.

2 !
Multiply by 2y’ to obtain 2y'y" = — yL Then integration yields

1 Vi+Cy'
(y')+5+C, sothat dy _VI+Cy or ydy -
) &=y ity

Another integration gives V1+ C,y° = C,x+ C,, or (C,x+ C,)° = C,y° = 1.

d 2}’ dy
. _ +
6 Solve 3 !

Here we have m® + 3m — 4 =0, from which m = 1, —4. The general solution is y = C,e* + C.e

—4y=0.

-4

d’y . dy
7. Solve e +3dx =0.

Here m’ + 3m =0, from which m =0, —3. The general solution is y = C, + C,e ™

d’y  dy
8. SolvelZ 4% y13,=0.
olve —= ir y =

Here m* — 4m + 13 =0, with roots m, =2+ 3i and m, = 2 - 3i. The general solution is
y= Cle(243i)x + Cze(z—s.)x — ez):(cle_m + Cze - _m)

Since ¢‘™* = cos ax + i sin ax, we have ¢’ =cos 3x + isin3x and e "

the solution may be put in the form

=cos 3x — i sin 3x. Hence,

y = e”*[C,(cos 3x + i sin 3x) + C,(cos 3x — i sin 3x)]
= e”[(C, + C,) cos 3x + i(C, — C,) sin 3x]
= ¢**(A cos 3x + B sin 3x)

d’y  dy
9.  Solve £ _ +4y=0.
olve —-3 o Ty

Here m® —4m + 4 = 0, with roots m =2, 2. The general solution is y = C,e*" + C,xe"".
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10.

11.

12.

13.

14,
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d’y . dy
Solve . +3 dr

From Problem 6, the complementary function is y = C,e* + C,e”*".

To find a particular solution of the equation, we note that the right-hand member is R(x) = x°. This
suggests that the particular solution will contain a term in x’ and perhaps other terms obtained by
successive differentiation. We assume it to be of the form y = Ax® + Bx + C, where the constants A, B,
C are to be determined. Hence we substitute y = Ax’ + Bx+ C, y' =2Ax+ B, and y"=2A in the
differential equation to obtain

4y = x".

24+3Q2Ax+ B)-4AxX* + Bx+ C)=x> or —4Ax*+(6A-4B)x+(2A+3B-4C)=x"
Since this latter equation is an identity in x, we have —44=1,6A4A-48B=0, and 24 +3B-4C=0.
These vield A=—-3, B=—3, C=~4, and y=—1x* — ix— ¥ is a particular solution. Thus, the

. . x -4 2
general solution is y = C,e" + Ce ™ — §x* — 3x — 8.

d’y _ dy
Solve —5 —2 = —3y=cosx.
dx2 dx y
Here m® - 2m — 3 =0, from which m = —1, 3; the complementary function is y = C,e™* + C,e**.

The right-hand member of the differential equation suggests that a particular solution is of the form
Acosx + Bsinx. Hence, we substitute y= Acosx+ Bsinx, y'=Bcosx— Asinx, and y"=
— A cos x — Bsin x in the differential equation to obtain

(—Acosx — Bsinx)—2(Bcosx ~ Asinx)—3(Acosx + Bsinx)=cosx
or —2(2A+ B)cosx +2(A - 2B)sinx=cos x

The latter equation yields —2(2A + B)=1and A - 2B =0, from which 4 = -}, B= - {;. The general
solution is C,e " + C,e™ — § cos x — {5 sin x.

A2 weight attached to a spring moves up and down, so that the equation of motion is
d ds

d_tf + 16s = 0, where s is the stretch of the spring at time ¢. If s =2 and i 1 when ¢t =0, find
s in terms of ¢.

Here m’ +16=0 yields m = *4i, and the general solution is s = A cos 4t + B sin 4t. Now when
t=0,5s=2= A, so that s =2cos 4t + Bsin4r.

Also when 1 =0, ds/dt = 1= —8sindt + 4B cos 41 = 4B, so that B = }. Thus, the required equation
is s =2 cos 4t + 1 sin4s.

2
The electric current in a certain circuit is given by % +4 % +25041=110. If 1=0 and

i 0 when r=0, find / in terms of ¢.

Here m’+4m+2504=0 yields m=—2+50i, —2-50i; the complementary function is
e *(A cos 50t + B sin 50¢). Because the right-hand member is a constant, we find that the particular
solution is /= 110/2504 = 0.044. Thus, the general solution is /= e *(A cos 50t + B sin 50¢) + 0.044.

When t =0, [=0= A +0.044; then A = —0.044.

Also when 1=0, dI/dt=0=¢ *[(~2A + 50B) cos 50t — (2B + 50 A) sin 50t} = -2 A + S0B. Then
B = -0.0018, and the required relation is / = —e~>'(0.044 cos 50¢ + 0.0018 sin 50¢) + 0.044.

A chain 4 ft long starts to slide off a flat roof with 1 ft hanging over the edge. Discounting
friction, find (a) the velocity with which it slides off and (b) the time required to slide off.

Let s denote the length of the chain hanging over the edge of the roof at time ¢.
(a) The force F causing the chain to slide off the roof is the weight of the part hanging over the edge.
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That weight is mgs/4. Hence.
F = mass X acceleration = ms" = | mgs or =4S
Multiplying by 2s’ yields 25s's” = } gss' and integrating once gives (s'Y = bgs" + C,.
When r=0, s=1 and s'=0. Hence, C,=-1g and s'= }\/gVs - 1. When s=4, 5’ =

5V 15g ft/sec.
. d . . . 5
(b) Since \/;%I = L\/Z dt, integration vyields In|s + Vs* — 1| = \/gr+ C.. When r=0,s=1. Then
C,=0and In(s+ Vs’ = 1)= WWEr
=4, 1= = 1In(4+ .
When s =4, ¢ 7 In (4 + V15) sec

15. A speedboat of mass 500 kilograms has a velocity of 20 meter/second when its engine is suddenly
stopped (at 18 0). The resistance of the water is proportional to the speed of the boat and is 2000
newtons when 7 = 0. How far will the boat have moved when its speed is 5 meter/second?

Let s denote the distance traveled by the boat ¢ seconds after the engine is stopped. Then the force F
on the boat is

F=ms"=-Ks' from which 5s"=—ks’
To determine &, we note that at t =0, s’ =20 and 5" = force __-2000 =—4. Thenk=-s"s"= .
dv v ] _ ) mass SOOA
Now s" = iR and integration gives In v (:1 -+ CLorv=Cpe’
When 1 =0, v =20. Then C, =20 and v = 2 _20e ' * Another integration yiclds s = — 100¢ " +

di

When ¢=0, s=0; then C, =100 and s =100(1 — e ' *). We require the valuc of s when v =5 =
20e "%, that is, when e " = 1. Then s = 100(1 — }) = 75 meters.

C,.

Supplementary Problems

In Problems 16 to 32, solve the given equation.

16. ol 3x+2 Ans. y=ix'+x+ Cx+ C,
o d’ 2 :
17. e’ —X—’Y =4(e™ +1) Ans. y=e¢'+e '+Cx+C(,
d’y . . .
18. i = —9sin3x Ans. y=sin3x+ Cx+ C,
d’y d ,
19. xF—3£+4x=0 Ans. y=x"+Cx'+C,
dz)’ dy _ 2 x' x
20. o dr =2x—x Ans. y—?+Cle + C,
d’y d . :
b] T dx};_d_i=gx Ans. y=x'+Cx + C,
d’y dy _ _ ) L)
22. e 3 pp +2y=0 Ans. y=Ce' + C,e
d’y d . )
3. 2245 yey=0 Ans. y=Ce ™ +Ce "

dx® T dx
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27.

31.

32.

33.

DIFFERENTIAL EQUATIONS OF ORDER TWO [CHAP. 76

2

%_%=0 Ans. y=C,+ C,e

2

%‘2%"y=0 Ans. y=Cuxe" + Cpe”

d’y

F+9y=0 Ans. y=C, cos3x+ C,sin3x

2

%_2%4,5},:0 Ans. y=¢€"(C,cos2x + C,sin 2x)

2

%_4%+5y=0 Ans. y=¢>*(C, cos x + C, sin x)

2

i—x%+4%+3y=6x+23 Ans. y=Ce "+ Ce " +2x+5

d2 i ) e}x
ax—);+4y=e3 Ans. y=C,sm2x+C2c052x+ﬁ .
dly _ dy oo o P wy o, X2
—d?—6$+9y—x+e Ans. y=Ce"+Cuxe” +e t5ty
d’y

E-y=c052x—25in2x Ans. y=Ce"+C,e” " — 4 cos2x + isin2x

A particle of mass m, moving in a medium that offers a resistance proportional to the velocity, is subject

to an attracting force proportional to the displacement. Find the equation of motion of the particle if at
d’s ds d’s ds

i t=0,5=0and s =v,. (Hint: Hete m — = ~k, — —k,sor —5 +2b — + ¢’5s =0, b>0.)

time t=0, s o i ' 2 i PR

- . v - . .
Ans. If b*=c% s=vge ™ if b*<c’, s=2—°b2e Psin V2 = bty if b2 > ¢
pram
. (e(—bo\/b—z:?i)l_e(Ab—\/El——cz)t)

Yo
§= ——
VhI-¢*



Index

Abscissa, 8 Circular motion, 112
Absolute convergence, 345 Comparison test, 338
Absolute value, 1 Complementary function, 476
Absolute maximum and miminum, 106 Completing the square, 32
Acceleration: Components:

angular, 112 of acceleration, 166

in curvilinear motion, 165 of a vector, 156

in rectilinear motion, 112, 247 Composite functions, 80

tangential and normal components of, 166 Concavity, 97, 187

vector, 165 Conditional convergence, 345
Alternating series, 345 Conic sections, 40
Analytic proofs of geometric theorems, 10 Constant of integration, 206
Angle: Convergence of series, 333

between two curves, 91, 173 absolute, 345

of inclination, 172 conditional, 345
Angular velocity and acceleration, 112 Coordinate system:
Antiderivative, 206 cylindrical and spherical, 456
Approximate integration, 375 linear, 1
Approximations, 371 rectangular, 8

by differentials, 196 polar, 172

by the law of the mean, 185 Continuity, 68, 380

of roots, 197 Cosecant, 120
Arc length, 148, 321 Cosine, 120

by integration, 305 Cotangent, 120

derivative of, 148, 174 Critical numbers, points, values, 96
Area: Cubic curve, 42

by integration, 260 Curl, 427

in polar coordinates, 316 Curvature, 148, 174

of a curved surface, 451 Curve tracing, 201

of a surface of revolution, 309 Curvilinear motion, 165, 174
Asymptote, 40, 201 Cylindrical coordinates, 456

Average rate of change, 73
Average ordinate, 267
Axis of rotation, 272
Decay constant, 269
Definite integral, 251
Binormal vector, 424 Delta neighborhood, 4
Bliss’s theorem, 252 Derivative, 73
directional, 417
higher order, 81, 88

Center of curvature, 149 of arc length, 148, 174
Centroid: partial, 380

of arcs, 213, 321 second, 81

of plane area, 284, 316, 442 total, 387

of surface of revolution, 321 Differentiability, 74

of volume, 457 Differential, 196
Chain rule, 80, 386 approximation by, 196
Circle, 31 partial, 386

equation of, 31 total, 386

of curvature, 149 Differential equations, 470

osculating, 149 second-order, 476

481
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Differentiation, 79 Functions (continued)
implicit, 88 logarithmic, 133, 268
logarithmic, 133 one-to-one, 79
of exponential functions, 133, 269 range of, 52
of hyperbolic functions, 141 trigonometric, 120
of inverse hyperbolic functions, 141 Fundamental theorem of integral calculus, 252

of inverse trigonometric functions, 129
of logarithmic functions, 133, 268

of trigonometric functions, 122 Generalized law of the mean, 184
of vector functions, 158 Gradient, 417, 426
partial, 380 Graphs of equations, 39
Direction cosines, 399, 402 Graphs of functions, 53
Direction numbers, 402 Growth constant, 269

Directional derivative, 417
Directrix of a parabola, 43

Disc method, 272 Halflife, 269
Discontinuity, 68 Homogeneous bodies, 284
Distance formula, 10 Homogeneous:
Divergence of a vector function, 427 equation, 470

Domain of a function, 52 function, 393, 470
Double integral, 435 Hyperbolas, 40

asymptotes of, 40
center, conjugate axes, eccentricity, foci, trans-

e, 133, 268 verse axes, vertices of, 46
Ellipses, 39 equilateral, 49
center, eccentricity, foci, major axis, minor axis Hyperbolic functions, 141
of, 45 differentiation, 141
Equations, graphs of, 39 integration of, 244
Evolute, 149 inverse, 141

Expansion in power series, 360
Exponential functions, 133, 269

Exponential growth and decay, 269 Implicit differentiation, 88
Extended law of the mean, 184 Implicit functions, 88, 394
Extent of a graph, 201 Improper integrals, 326

Increment, 73
Indefinite integral, 206

First-derivative test, 97 Indeterminate forms, 190
Fluid pressure, 297 Inequalities, 2
Focus of a parabola, 43 Infinite sequences, 58, 322
Foci: general term of, 58
of an ellipse, 45 limit of, 58
of a hyperbola, 46 Infinite series, 333
Force, work done by a, 301 Infinity, 60
Functions, 52 Inflection point, 97
composite, 80 Instantaneous rate of change, 73
continuous, 68 Integrand, 206, 251
decreasing, 96 Integral:
domain of, 52 definite, 251
exponential, 133, 269 double, 435
graphs of, 33 improper, 326
homogeneous, 393 indefinite, 206
hyperbolic, 141 iterated, 436
implicit, 88, 394 line, 427
increasing, 96 test for convergence, 338
inverse, 79 triple, 456

inverse trigonometric, 129 Integrating factor, 470



Integration:

approximate, 375

by partial fractions, 234

by parts, 219

by substitution, 207, 239

by trigonometric substitutions, 230

of exponential functions, 269

of hyperbolic functions, 244

of trigonometric functions, 225

standard formulas of, 206
Intercepts, 201
Interval of convergence, 354
Intervals, 2
Inverse function, 79
Inverse hyperbolic functions, 141
Inverse trigonometric functions, 129
Irreducible polynomial, 234
Iterated integral, 436

Latus rectum of a parabola, 43
Law of the mean, 183
Length of arc, 305, 321
L’Hospital’s rule, 190
Limit:

of a function, 58, 380

of a sequence, 58

right and left, 59
Line, 17, 402

equations of, 19, 402

slope of, 17
Line integral, 427
Linear differential equation of the first order, 470
Logarithmic differentiation, 133
Logarithmic functions, 133, 268

Maclaurin’s formula, 367
Maclaurin’s series, 360
Mass, 284, 466
Maximum and minimum:
applications, 106
of functions of a single variable, 96
of functions of several variables, 418
Mean, law of the, 183
Midpoint formulas, 10
Moments of plane areas and solids, 284
Moments of inertia:
of arcs, 213
of plane area, 292, 442
of surface of revolution, 213
of volume, 292, 458
Motion:
circular, 112
curvilinear, 165
rectilinear, 112

INDEX

Natural logarithm, 268

Normal line to a plane curve, 91
equation of, 91

Normal line to a surface, 411

Normal plane to a space curve, 411, 424

Octants, 398

One-to-one function, 79
Operations on series, 349
Ordinate, 8

Osculating circle, 149
Osculating plane, 424

Pappus, theorems of, 285, 213
Parabolas, 39
focus, directrix, latus rectum, vertex of, 43
Parallel-axis theorem, 292
Parametric equations, 145, 424
Partial derivatives, 380
Partial differential, 386
Partial fraction, 234
Particular solution, 476
Plane, 402
Point of inflection, 97
Point-slope equation of a line, 20
Polar coordinates, 172
Pole, 172
Polynomial test for convergence, 343
Position vector, 398
Power series, 354
approximations using, 372, 376
differentiation of, 355
integration of, 355
interval of convergence of, 354
uniform convergence of, 355
Principal normal, 424
Prismoidal formula, 376

Quadrants, 9

Radian measure, 120
Radius:

of curvature, 148

of gyration, 292
Range of a function, 52
Rate of change, 73
Ratio test, 338, 345
Real numbers, 1
Rectangular coordinate system, 8
Rectifying plane, 424
Rectilinear motion, 112
Reduction formulas, 219

483



484 INDEX

Related rates, 116 Total differential, 386
Relative maximum and minimum, 96, 418 Trapezoidal rule, 375
Remainder after n terms of a series, 350, 367 Triangle inequality, 1
Right-handed system, 398 Trigonometric functions, 120
Rolle’s theorem, 183 differentiation of, 122
Root test for convergence, 344 Trigonometric integrals, 225

Trigonometric substitutions, 230
Triple integral, 456
Scalars, 155
Secant function, 120
Second-derivative test, 97
Sequences, 58, 332
bounded, 332

convergent and divergent, 332 .
limit of, 332 8 Variables, separable, 470

Vector(s):
acceleration, 165
addition of, 155
components of, 156
cross product of, 400
direction cosines of, 399
dot product of, 157
equation of a line, 402

Uniform convergence, 355

nondecreasing and nonincreasing, 332
Series, infinite, 333

alternating, 345

computations with, 371

convergent, 333

divergent, 333

geometric, 335

harmonic, 335

Maclaurin’s, 360 equation of a plane, 402

partial sums of, 333, 354 magnitude of, 155

positive, 338 plapt?, 155

power, 354 position, 398

remainder after n terms of, 354 scalar pro<_iuc¥ of, 157

Taylor's, 360 scalar projection of, 157

sum of, 333 space, 398

terms of, 333 triple scalar product of, 401
Shell meth;)d 274 triple vector product of, 402

Simpson’s rule, 376 unit, 156
Sine, 120 unit tangent, 159

vector p.oduct of, 400
vector projection of, 157
velocity, 165

Slope of a line, 17

Slope-intercept equation of a line, 20
Solid of revolution, 272 .
Space curve, 411, 423 Vector functions:

Space vectors, 398 Cl‘m of, 427

Speed, 112, 165 d{fferentlatnon of, 158, 423
Spherical coordinates, 456 divergence of, 427
Stationary points, 96 nntggratlon of, 427
Surface, 411, 424 Velocity:

Surface of revolution, 309 angular, 112 .
Symmetry, 201 in curvilinear motion, 165

in rectilinear motion, 112, 247
Vertex of a parabola, 43
Volume:

given by an iterated integral, 448

of solids of revolution, 272

under a surface, 448

with area of cross section given, 280

Tangent function, 120

Tangent line to a plane curve, 91
equation of, 91

Tangent line to a space curve, 411

Tangent plane to a surface, 411

Taylor’s formula, 367

Taylor’s series, 360

Time rate of change, 116 Washer method, 273

Total derivative, 387 Work, 301





