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Preface

Ten years after the 1st edition, it was time to update, extend and reorganize the material.

The book still gives an introduction to modern ship hydrodynamics, which is in my

opinion suitable for teaching at a senior undergraduate level or even at a postgraduate

level. It is thus also suitable for engineers working in industry. The book assumes that the

reader has a solid knowledge of general fluid dynamics. In teaching, general fluid

dynamics and specific ship hydrodynamics are often mixed but I believe that universities

should first teach a course in general fluid dynamics which should be mandatory to

most engineering students. There are many good textbooks on the market for this purpose.

Naval architects should then concentrate on the particular aspects of their field and cover

material more suited to their needs. This book is organized to support such a strategy in

teaching.

The first chapter covers basics of computational fluid dynamics and model tests, and Chapters 2

to 6 cover the four main areas of propeller flows, resistance and propulsion, ship seakeeping

including ship vibrations, and maneuvering. Chapter 5 was added to cover ship vibrations from

a hydrodynamic point, as a natural extension of rigid-body motions in waves in seakeeping. It

is recommended that this sequence be followed in teaching. The book tries to find a suitable

balance for practical engineers between facts and minimizing formula work. However, there

are still formulae. These are intended to help those tasked with computations or programming.

Readers with a practical interest may simply skip these passages. Readers with a more

theoretical interest will find additional background, e.g. derivations of formulae, on the

associated website.

The final two chapters of the 1st edition involved more extensive background on boundary

element methods. They were intended for graduate and postgraduate teaching. Research is

no longer active in these methods and more modern field methods are covered in standard

textbooks. The original two chapters on boundary element theory are now still available but

only as appendices to this book.

The book is supplemented by exercises and solutions, formula derivations and texts, intended

to support teaching or self studies. The material can be downloaded from www.bh.com/

companions/0750648511.
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This book is based largely on lectures for German students. The nucleus of the book was

formed by lectures on ship seakeeping and ship maneuvering, which I have taught for several

years with Professor Heinrich Söding. I always felt that we should have a comprehensive

textbook that would also cover resistance and propulsion, as ship seakeeping and maneuvering

are both interwoven strongly with the steady base flow. Many colleagues helped with providing

material, allowing me to pick the best from their teaching approaches. A lot of material was

written and compiled in a new way, inspired by these sources, but the chapters on ship

seakeeping and maneuvering use extensive existing material. For this 2nd edition, material on

ship vibrations, propulsion-improving devices, and simple design approaches were added.

Also, CFD has progressed significantly over the past decade and required updating of

pertaining passages. Readers interested in marine CFD applications may see the latest progress

in the proceedings of the Numerical Towing Tank Symposium, a conference series that I

initiated for faster dissemination of research results in this field. The proceedings can be

downloaded from www.uni-due.de/IST/ismt_nutts8.

Thanks are due to Seehafen-Verlag Hamburg for permission to reprint text and figures from the

Manoeuvring Technical Manual, an excellent book unfortunately no longer in print. Thanks are

due to Hansa-Verlag Hamburg for permission to reprint text and figures from German

contributions in Handbuch der Werften XXIV. Thanks are also due to Germanischer Lloyd for

permission to reprint text and figures from its GL Technology on ship vibrations.

Countless colleagues supported the endeavor of writing this book by supplying material, proof-

reading, making comments, or just discussing engineering or didactic matters. Among these

are (in alphabetical order) Poul Andersen, Kai Graf, Mike Hughes, Hidetsugu Iwashita,

Gerhard Jensen, Meinolf Kloppenburg, Maurizio Landrini, Jochen Laudan, Eike Lehmann,

Friedrich Mewis, Holger Mumm, Prasanta Sahoo, Katsuji Tanizawa, Gerhard Thiart, Michel

Visonneau, and Hironori Yasukawa. Special thanks to Dodo Wagener for all the great artwork.

Most of all, Professor Heinrich Söding has supported this book to an extent that he should have

been named as co-author, but, typically for him, he declined the offer. He even refused to allow

me to dedicate this book to him. I then dedicate this book to the best mentor I ever had, a role

model as a scientist and a man, so much better than I will ever be. You know who.

Volker Bertram
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Models now in tanks we tow.

All of that to Froude we owe.

Will computers, fast and new,

Make us alter Euler’s view?
Marshall Tulin

1.1. Overview of Problems and Approaches

The prediction of ship hydrodynamic performance can be broken down into the general

areas of:

• resistance and propulsion;

• seakeeping and ship vibrations;

• maneuvring.

Propeller flows and propeller design can be seen as a subtopic of resistance and propulsion, but

it is so important and features special techniques that it is treated as a separate topic in its own
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right. Morgan and Lin (1998) give a good short introduction to the historical development of

these techniques to the state of the art in the late 1990s.

The basic approaches can be roughly classified into:

• Empirical/statistical approaches. Design engineers need simple and reasonably accurate

estimates, e.g. of the power requirements of a ship. Common approaches combine

a rather simple physical model and regression analysis to determine required coefficients

either from one parent ship or from a set of ships. The coefficients may be given in the form

of constants, formulae, or curves. Because of the success with model testing, experimental

series of hull forms have been developed for varying hull parameters. Extensive series

were tested in the 1940s and the subsequent two decades. These series were created around

a ‘good’ hull form as the parent form. The effect of essential hull parameters, e.g. block

coefficient, was determined by systematic variations of these parameters. Because of the

expense of model construction and testing, there are no recent comparable series tested of

modern hull forms and the traditional ship series must be considered as outdated by now.

Rather than using model tests, today computational fluid dynamics could be used to create

data for systematic series varying certain parameters for a ship type (Harries and Tillig

2011). Once such a dedicated ‘numerical hull series’ is set up, designers can rapidly

interpolate within such a database.

• Experimental approaches, either in model tests or in full-scale trials. The basic idea of

model testing is to experiment with a scale model to extract information that can be

scaled (transformed) to the full-scale ship. Despite continuing research and standardization

efforts, a certain degree of empiricism is still necessary, particularly in the model-to-ship

correlation, which is a method to enhance the prediction accuracy of ship resistance by

empirical means. The total resistance can be decomposed in various ways. Traditionally,

model basins tend to adopt approaches that seem most appropriate to their respective

organization’s corporate experience and accumulated databases. Unfortunately, this makes

various approaches and related aggregated empirical data incompatible. Although there

has been little change in the basic methodology of ship resistance since the days of Froude

(1874), various aspects of the techniques have progressed. We now understand better the

flow around three-dimensional, appended ships, especially the boundary layer effects. Also

non-intrusive experimental techniques like laser-Doppler velocimetry (LDV) or particle

image velocimetry (PIV) allow the measurement of the velocity field in the ship wake to

improve propeller design. Another more recent experimental technique is wave pattern

analysis to determine the wave-making resistance. In propulsion tests, measurements

include towing speed and propeller quantities such as thrust, torque, and rpm. Normally,

open-water tests on the propeller alone are run to aid the analysis process as certain

coefficients are necessary for the propeller design. Strictly, open-water tests are not

essential for power prediction. The model propeller is usually a stock propeller (taken from

a large selection (¼ stock) of propellers) that approximates the actual design propeller.
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Propulsion tests determine important input parameters for the actual detailed propeller

design, e.g. wake fraction and thrust deduction. The wake distribution, also needed for

propeller design, is measured behind the ship model using pitot tubes or laser-Doppler

velocimetry (LDV). For propeller design, measured nominal wakes (for the ship without

a propeller) for the model must be transformed to effective wakes (for the ship with

a working propeller) for the full-scale ship. While semi-empirical methods for this trans-

formation apparently work well for most hull forms, for those with considerable flow

separation at the stern, i.e. typically full hulls, there are significant scale effects on the wake

between model and full scale. To some extent, computational fluid dynamics can help here

in estimating the scale effects. Although the procedures for predicting full-scale resistance

from model tests are well accepted, full-scale data available for validation purposes are

extremely limited and difficult to obtain. The powering performance of a ship is validated

by actual ship trials, ideally conducted in calm seas. The parameters usually measured are

torque, rpm, and speed. Thrust is measured only as a special requirement because of the

difficulty and extra expense involved in obtaining accurate thrust data. Whenever possible

and appropriate, corrections are made for the effects of waves, current, wind, and shallow

water. Since the 1990s, the Global Positioning System (GPS) and computer-based data

acquisition systems have considerably increased the accuracy and economy of full-scale

trials. The GPS has eliminated the need for ‘measured miles’ trials near the shore with the

possible contamination of data due to shallow-water effects. Today trials are usually

conducted far away from the shore. Model tests for seakeeping are often used only for

validation purposes. However, for open-top container ships and ro-ro ships model tests are

often performed as part of the regular design process, as IMO regulations require certain

investigations for ship safety which may be documented using model tests. Most large

model basins have a maneuvring model basin. The favored method to determine the

coefficients for the equations of motion is through a planar motion mechanism. However,

scaling the model test results to full scale using the coefficients derived in this manner is

problematic, because vortex shedding and flow separation are not similar between model

and full scale. Appendages generally make scaling more difficult. Also, maneuvering tests

have been carried out with radio-controlled models in lakes and large reservoirs. These

tests introduce additional scale effects, since the model propeller operates in a different

self-propulsion point than the full-scale ship propeller. Despite these concerns, the

maneuvering characteristics of ships seem generally to be predicted with sufficient accu-

racy by experimental approaches.

• Numerical approaches, either rather analytical or using computational fluid dynamics

(CFD). For ship resistance and powering, CFD has become increasingly important and

is now an indispensable part of the design process. Typically inviscid free-surface methods

based on the boundary element approach are used to analyze the forebody, especially the

interaction of bulbous bow and forward shoulder. Viscous flow codes focus on the aftbody

or appendages. Flow codes modeling both viscosity and the wave-making are widely
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applied for flows involving breaking waves. CFD is still considered by industry as too

inaccurate for resistance or power predictions. So far CFD has been used to gain insight into

local flow details and derive recommendation on how to improve a given design or select

a most promising candidate design for model testing. However, numerical power prediction

with good accuracy has been demonstrated in research applications by 2010 for realistic

ship geometries. It is expected to drift into industry applications within the next decade. For

seakeeping, simple strip methods are used to analyze the seakeeping properties. These

usually employ boundary element methods to solve a succession of two-dimensional

problems and integrate the results into a quasi-three-dimensional result with usually good

accuracy. For water impact problems (slamming and sloshing), free-surface RANSE

methods are widely used in industry practice. Also, for problems involving green water on

deck, free-surface RANSE methods have become the preferred tool in practice, replacing

previously favored non-linear boundary element methods. A commonly used method to

predict the turning and steering of a ship is to use equations of motions with experimentally

determined coefficients. Once these coefficients are determined for a specific ship

design e by model tests, estimated from similar ships, by empirically enhanced strip

methods or CFD e the equations of motions are used to simulate the dynamic behavior of

the ship. The form of the equations of motions is fairly standard for most hull designs. The

predictions can be used, for example, to select rudder size and steering control systems, or

to predict the turning characteristics of ships. As viscous CFD codes became more robust

and efficient to use, the reliance on experimentally derived coefficients in the equations of

motions has been reduced. In some industry applications, CFD has been used exclusively

to compute maneuvering coefficients for ship simulators, for example.

Although a model of the final ship design is still tested in a towing tank, the testing sequence

and content have changed significantly over time. Traditionally, unless the new ship design was

close to an experimental series or a known parent ship, the design process incorporated

many model tests. The process has been one of design, test, redesign, test, etc., sometimes

involving more than ten models, each with slight variations. This is no longer feasible due

to time-to-market requirements from shipowners and no longer necessary thanks to CFD

developments. Combining CAD (computer-aided design) to generate new hull shapes in

concert with CFD to analyze these hull shapes allows for rapid design explorations without

model testing. With massive parallel computing and progress in optimization strategies (e.g.

response surfaces), formal optimization of hulls, propellers, and appendages has drifted into

industrial applications. CFD is increasingly used for the actual design of hull and propellers.

Then often only the final design is actually tested to validate the intended performance features

and to get a power prediction accepted in practice as highly accurate. As a consequence

of this practice, model tests for shipyard customers have declined considerably since the 1980s.

This was partially compensated for by more sophisticated and detailed tests funded from

research projects to validate and calibrate CFD methods.
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One of the biggest problems for predicting ship seakeeping is determining the nature of the sea:

how to predict and model it, for both experimental and computational analyses. Many long-

term predictions of the sea require a Fourier decomposition of the sea and ship responses with

an inherent assumption that the sea and the responses are ‘moderately small’, while the physics

of many seakeeping problems is highly non-linear. Nevertheless, seakeeping predictions are

often considered to be less important or covered by empirical safety factors where losses of

ships are shrugged off as ‘acts of God’, until they occur so often or involve such spectacular

losses of life that safety factors and other regulations are adjusted to a stricter level. Seakeeping

is largely not understood by shipowners and global ‘sea margins’ of, e.g., 15% to finely tuned

(�1%) power predictions irrespective of the individual design are not uncommon.

1.2. Model Tests e Similarity Laws

Since the purely numerical treatment of ship hydrodynamics has not yet reached a completely

satisfactory stage, model tests are still essential in the design process and for validation

purposes. The model tests must be performed such that model and full-scale ships exhibit

similar behavior, i.e. the results for the model can be transferred to full scale by

a proportionality factor. We indicate in the following the full-scale ship by the index s and the

model by the index m.

We distinguish between:

• geometrical similarity;

• kinematical similarity;

• dynamical similarity.

Geometrical similaritymeans that the ratio of a full-scale ‘length’ (length, width, draft, etc.) Ls
to a model-scale ‘length’ Lm is constant, namely the model scale l:

Ls ¼ l$Lm (1.1)

Correspondingly we get for areas and volumes: As¼ l2$Am; Vs¼ l3$Vm. In essence, the model

then ‘appears’ to be the same as the full-scale ship. While this is essential for movie makers, it

is not mandatory for naval architects who want to predict the hydrodynamic performance of

a full-scale ship. In fact, there have been proposals to deviate from geometrical similarity to

achieve better similarity in the hydrodynamics. However, these proposals were not accepted in

practice and so we always strive at least in macroscopic dimensions for geometrical similarity.

In microscopic dimensions, e.g. for surface roughness, geometrical similarity is not obtained.

Kinematic similarity means that the ratio of full-scale times ts to model-scale times tm is

constant, namely the kinematic model scale s:

ts ¼ s$tm (1.2)

Introduction 5



Geometrical and kinematical similarity result then in the following scale factors for velocities

and accelerations:

Vs ¼ l

s
$Vm; as ¼ l

s2
$am (1.3)

Dynamical similarity means that the ratio of all forces acting on the full-scale ship to the

corresponding forces acting on the model is constant, namely the dynamical model scale:

Fs ¼ k$Fm (1.4)

Forces acting on the ship encompass inertial forces, gravity forces, and frictional forces.

Inertial forces follow Newton’s law F ¼ m$a, where F denotes force, m mass, and

a acceleration. For displacement ships, m¼ r$V, where r is the density of water and V the

displacement. We then obtain for ratio of the inertial forces:

k ¼ Fs

Fm
¼ rs

rm
$
Vs

Vm
$
as
am

¼ rs

rm
$
l4

s2
(1.5)

This equation couples all three scale factors. It is called Newton’s law of similarity. We can

rewrite Newton’s law of similarity as:

k ¼ Fs

Fm
¼ rs

rm
$l2$

�
l

s

�2

¼ rs

rm
$
As

Am
$

�
Vs

Vm

�2

(1.6)

Hydrodynamic forces are often described by a coefficient c as follows:

F ¼ c$
1

2
r$V2$A (1.7)

V is a reference speed (e.g. ship speed), A a reference area (e.g. wetted surface in calm water).

The factor ½ is introduced in analogy to stagnation pressure q ¼ ½r$V2. Combining the above

equations then yields:

Fs

Fm
¼

cs$
1

2
rs$V

2
s $As

cm$
1

2
rm$V

2
m$Am

¼ rs

rm
$
As

Am
$

�
Vs

Vm

�2

(1.8)

This results in cs ¼ cm, i.e. the non-dimensional coefficient c is constant for both ship and

model. For the same non-dimensional coefficients Newton’s similarity law is fulfilled and vice

versa.

Gravity forces can be described in a similar fashion as inertial forces:

Gs ¼ rs$g$Vs resp: Gm ¼ rm$g$Vm (1.9)
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This yields another force scale factor:

kg ¼ Gs

Gm
¼ rs

rm
$
Vs

Vm
¼ rs

rm
$l3 (1.10)

For dynamical similarity both force scale factors must be the same, i.e. k ¼ kg. This yields for

the time scale factor:

s ¼
ffiffiffi
l

p
(1.11)

We can now eliminate the time scale factors in all equations above and express the

proportionality exclusively in the length scale factor l, e.g.:

Vs

Vm
¼

ffiffiffi
l

p
/

Vsffiffiffiffiffi
Ls

p ¼ Vmffiffiffiffiffiffi
Lm

p (1.12)

It is customary to make the ratio of velocity and square root of length non-dimensional with

g ¼ 9.81 m/s2. This yields the Froude number:

Fn ¼ Vffiffiffiffiffiffiffiffi
g$L

p (1.13)

The same Froude number in model and full scale ensures dynamical similarity only if inertial

and gravity forces are present (Froude’s law). For the same Froude number, the wave pattern

in model and full scale are geometrically similar. This is only true for waves of small

amplitude where gravity is the only relevant physical mechanism. Breaking waves and

splashes involve another physical mechanism (e.g. surface tension) and do not scale so easily.

Froude’s law is kept in all regular ship model tests (resistance and propulsion tests,

seakeeping tests, maneuvering tests). This results in the following scales for speeds, forces,

and powers:

Vs

Vm
¼

ffiffiffi
l

p Fs

Fm
¼ rs

rm
$l3

Ps

Pm
¼ Fs$Vs

Fm$Vm
¼ rs

rm
$l3:5 (1.14)

Frictional forces follow yet another similarity law, and are primarily due to frictional stresses

(due to friction between two layers of fluid):

R ¼ m$
vu

vn
$A (1.15)

m is a material constant, namely the dynamic viscosity. The partial derivative is the velocity

gradient normal to the flow direction. A is the area subject to the frictional stresses. Then the

ratio of the frictional forces is:

kf ¼ Rs

Rm
¼ msðvus=vnsÞAs

mmðvum=vnmÞAm
¼ ms

mm
$
l2

s
(1.16)
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Again we demand that the ratio of frictional forces and inertial forces should be the same,

kf ¼ k. This yields:

ms

mm
$
l2

s
¼ rs

rm
$
l4

s2
(1.17)

If we introduce the kinematic viscosity n ¼ m/r this yields:

ns

nm
¼ l2

s
¼ Vs$Ls

Vm$Lm
/

Vs$Ls
ns

¼ Vm$Lm
nm

(1.18)

Rn ¼ V$L/n is the Reynolds number, a non-dimensional speed parameter important in

viscous flows. The same Reynolds number in model and full scale ensures dynamic

similarity if only inertial and frictional forces are present (Reynolds’ law). (This is somewhat

simplified as viscous flows are complicated by transitions from laminar to turbulent flows,

microscopic-scale effects such as surface roughness, flow separation, etc.) The kinematic

viscosity n of seawater [m/s2] can be estimated as a function of temperature t (�C) and
salinity s (%):

n ¼ 10�6$ð0:014$sþ ð0:000645$t � 0:0503Þ$t þ 1:75Þ (1.19)

Sometimes slightly different values for the kinematic viscosity of water may be found. The

reason is that water is not perfectly pure, containing small organic and inorganic matter which

differs regionally and in time.

Froude number and Reynolds number are related by:

Rn

Fn
¼ V$L

n
$

ffiffiffiffiffiffi
gL

p
V

¼
ffiffiffiffiffiffiffiffi
gL3

p
n

(1.20)

Froude similarity is easy to fulfill in model tests, as with smaller models also the necessary test

speed decreases. Reynolds’ law on the other hand is difficult to fulfill as smaller models mean

higher speeds for constant kinematic viscosity. Also, forces do not scale down for constant

viscosity.

Ships operating at the free surface are subject to gravity forces (waves) and frictional

forces. Thus in model tests both Froude’s and Reynolds’ laws should be fulfilled. This would

require:

Rns

Rnm
¼ nm

ns
$

ffiffiffiffiffiffi
L3s
L3m

s
¼ nm

ns
$l1:5 ¼ 1 (1.21)

i.e. model tests should chose model scale and viscosity ratio of the test fluid such that (nm /ns)$

l1.5 ¼ 1 is fulfilled. Such fluids do not exist or at least are not cheap and easy to handle
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for usual model scales. However, sometimes the test water is heated to improve the viscosity

ratio and reduce the scaling errors for viscous effects.

Söding (1994) proposed ‘sauna tanks’ where the water is heated to a temperature of 90�C. Then
the same Reynolds number as in cold water can be reached using models of only half the

length. Smaller tanks could be used which could be better insulated and may actually require

less energy than today’s large tanks. The high temperature would also allow similar cavitation

numbers as for the full-scale ship. A futuristic towing tank may be envisioned that would also

perform cavitation tests on propellers, eliminating the need for special cavitation tunnels.

However, such ‘sauna tanks’ have not been established yet and there are doubts concerning the

feasibility of such a concept.

For model tests investigating vibrations Froude’s similarity law does not automatically also

give similarity in vibrations. For example, for propeller blade vibrations, model propellers of

the same material as the full-scale propeller are too stiff under Froude similarity. Similarity in

vibrations follows Cauchy’s scaling law, requiring that the Cauchy number is the same in

model and full scale:

Cn¼ E$I$t2

r$g$L6
(1.22)

where E is the modulus of elasticity, I the moment of inertia, t the time, and L the length. The

same Cauchy and Froude numbers mean that, for the same density, the modulus of elasticity is

downscaled by l from full scale to model scale.

1.3. Full-Scale Trials

Trial tests of the built ship are an important prerequisite for the acceptance of the ship by the

shipowner and are always specified in the contract between shipowner and shipyard. The

problem is that the trial conditions differ from both model test conditions and design

conditions. The contract usually specifies a contract speed at design load at a given

percentage of the maximum continuous rating of the engine, this at calm sea without wind

and current on deep water. Trial conditions are usually in ballast load, natural seaways, in

the presence of currents and sometimes shallow water. Only on rare occasions is it possible

to perform trial tests under ideal conditions as specified in the contract. However, upper

limits for the wind and sea conditions are usually defined in the contract and test trials

are performed only at times or places where the actual conditions are within the specified

limits.

The difference between contract and trial conditions requires various corrections to correlate

trial results to contract conditions. Apart from the difficulties and margins of uncertainties in
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the trial measurements, the correlation procedure is plagued by many doubts. The traditional

methods are partly empirical, involving curves with manual interpolation, etc. It was not

uncommon that the results of various consultants, e.g. towing tank experts, differed by several

tenths of a knot for the obtainable speed under contract conditions. This margin may make

a difference between paying and not paying considerable penalties! Subsequently, trial

evaluation was susceptible to disputes between representatives of shipowners and shipyards.

The increasing demand for quality management and clearly documented procedures,

preferably on an international standard, led to the formation of various panels of experts. The

Japan Marine Standards Association submitted in 1998 a proposal for an ISO standard for the

assessment of speed and power in speed trials. Also, the ‘trial and monitoring’ subcommittee of

the ITTC (International Towing Tank Conference) was tasked with the development of an

international standard.

Test trials were historically ‘measured mile trials’, as ships were tested between measured

miles near the coast for different ship speeds. The ship speed can be measured ‘over

ground’ (relative to the earth) or ‘in water’ (relative to the water). The speed in water

includes currents and local flow changes. Historically, various logs have been developed,

including devices towed behind the ship, on long rods alongside the ship, electro-acoustic

devices, and pitot tubes in the ship bottom. There is still no accurate and reliable way to

measure a ship’s speed through water. The speed over ground was traditionally determined

by electro-acoustic devices, celestial navigation, and radio navigation. The advent of

satellite systems, namely GPS (global positioning system) and DGPS (differential GPS), has

eliminated many of the previous uncertainties and problems. GPS allows accurate

determination of the speed over ground, although the speed of interest is the speed in water.

Trials are usually performed by repeatedly testing the ship on opposite courses to eliminate

the effects of current. It is best to align the course with the wind and predominant wave

propagation direction to make elimination of these effects in the correlation procedure

easier.

Seakeeping is usually not measured in detail as a normal procedure in ship deliveries.

Full-scale seakeeping tests are sometimes used in research and are discussed in more detail in

Section 4.2.

1.4. Numerical Approaches (Computational Fluid Dynamics)

1.4.1. Basic Equations

For the velocities involved in ship flows, water can be regarded as incompressible, i.e. the

density r is constant. Therefore we will limit ourselves here to incompressible flows. All

equations are given in a Cartesian coordinate system with z pointing downwards.
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The continuity equation states that any amount flowing into a control volume also flows out of

the control volume at the same time. We consider for the two-dimensional case an infinitely

small control volume as depicted in Fig. 1.1. u and v are the velocity components in x resp. y

direction. The indices denote partial derivatives, e.g. ux ¼ vu/vx. Positive mass flux leaves the

control volume; negative mass flux enters the control volume. The total mass flux has to fulfill:

�r dy uþ r dy ðuþ ux dxÞ � r dx vþ r dx vþ r dx ðvþ vy dyÞ ¼ 0 (1.23)

ux þ vy ¼ 0 (1.24)

The continuity equation in three dimensions can be derived correspondingly to:

ux þ vy þ wz ¼ 0 (1.25)

where w is the velocity component in z direction.

The NaviereStokes equations together with the continuity equation suffice to describe all real

flow physics for ship flows. The NaviereStokes equations describe conservation of momentum

in the flow:

rðut þ uux þ vuy þ wuzÞ ¼ rf1 � px þ mðuxx þ uyy þ uzzÞ
rðvt þ uvx þ vvy þ wvzÞ ¼ rf2 � py þ mðvxx þ vyy þ vzzÞ (1.26)

rðwt þ uwx þ vwy þ wwzÞ ¼ rf3 � pz þ mðwxx þ wyy þ wzzÞ
where fi is an acceleration due to a volumetric force, p the pressure, m the viscosity, and t

the time. Often the volumetric forces are neglected, but gravity can be included by setting f3 ¼ g

(¼ 9.81m/s2) or the propeller action can be modeled by a distribution of volumetric forces f1.

The l.h.s. of the NaviereStokes equations without the time derivative describes convection,

the time derivative describes the rate of change (‘source term’), the last term on the r.h.s.

describes diffusion.

The NaviereStokes equations in the above form contain on the l.h.s. products of the velocities

and their derivatives. This is a non-conservative formulation of the NaviereStokes equations.

A conservative formulation contains unknown functions (here velocities) only as first

derivatives. Using the product rule for differentiation and the continuity equation, the

y dy

y

u

v

x x dx

u ux dx

v vy dy

Figure 1.1:
Control volume to derive continuity equation in two dimensions
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non-conservative formulation can be transformed into a conservative formulation, e.g. for the

first of the NaviereStokes equations above:

ðu2Þx þ ðuvÞy þ ðuwÞz ¼ 2uux þ uyvþ uvy þ uzwþ uwz

¼ uux þ vuy þ wuz þ u ðux þ vy þ wzÞ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
¼0

(1.27)

¼ uux þ vuy þ wuz

NaviereStokes equations and the continuity equation form a system of coupled, non-linear

partial differential equations. An analytical solution of this system is impossible for ship flows.

Even if the influence of the free surface (waves) is neglected, today’s computers are not

powerful enough to allow a numerical solution either. Even if such a solution may become

feasible in the future, it is questionable if it is really necessary for engineering purposes in

naval architecture.

Velocities and pressure may be divided into a time average and a fluctuation part to bring the

NaviereStokes equations closer to a form where a numerical solution is possible. Time

averaging yields the Reynolds-averaged NaviereStokes equations (RANSE). u, v, w, and p are

from now on time averages. u0, v0, w0 denote the fluctuation parts. For unsteady flows (e.g.

maneuvering), high-frequency fluctuations are averaged over a chosen time interval (assembly

average). This time interval is small compared to the global motions, but large compared to the

turbulent fluctuations. Most computations for ship flows are limited to steady flows where

the terms ut, vt, and wt vanish. The RANSE have a similar form to the NaviereStokes

equations:

rðut þ uux þ vuy þ wuzÞ ¼ rf1 � px þ mðuxx þ uyy þ uzzÞ
�rððu0u0Þx þ ðu0v0Þy þ ðu0w0ÞzÞ

rðvt þ uvx þ vvy þ wvzÞ ¼ rf2 � py þ mðvxx þ vyy þ vzzÞ (1.28)

�rððu0v0Þx þ ðv0v0Þy þ ðv0w0ÞzÞ
rðwt þ uwx þ vwy þ wwzÞ ¼ rf3 � pz þ mðwxx þ wyy þ wzzÞ

�rððu0w0Þx þ ðv0w0Þy þ ðw0w0ÞzÞ
They contain as additional terms the derivatives of the Reynolds stresses:

�ru0u0 � ru0v0 � ru0w0

�ru0v0 � rv0v0 � rv0w0 (1.29)

�ru0w0 � rv0w0 � rw0w0

The time averaging eliminated the turbulent fluctuations in all terms except the Reynolds

stresses. The RANSE require a turbulence model that couples the Reynolds stresses to the
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average velocities. There are whole books and conferences dedicated to turbulence

modeling. Recommended for further studies is, e.g., Ferziger and Peric (1996). Turbulence

modeling will not be treated in detail here, except for a brief discourse in Section 1.5.1. It

suffices to say that, despite considerable progress in turbulence modeling, none of the

present models is universally convincing and research continues to look for better solutions

for ship flows. Because we are so far from being able to solve the actual NaviereStokes

equations, we often say ‘NaviereStokes’ (as in NaviereStokes solver) when we really mean

RANSE.

‘Large-eddy simulations’ (LES) are located between NaviereStokes equations and RANSE.

LES let the grid resolve the large vortices in the turbulence directly and only model the smaller

turbulence structures. Depending on what is considered ‘small’, this method lies closer to

RANSE or actual NaviereStokes equations. So far few researchers have attempted LES

computations for ship flows and the grid resolution was often too coarse to allow any real

progress compared to RANSE solutions. However, many experts see LES as a key technology

for maritime CFD applications that may drift into industry application within the next two

decades.

Neglecting viscosity e and thus of course all turbulence effects e turns the NaviereStokes

equations (also RANSE) into the Euler equations, which still have to be solved together with

the continuity equations:

rðut þ uux þ vuy þ wuzÞ ¼ rf1 � px

rðvt þ uvx þ vvy þ wvzÞ ¼ rf2 � py (1.30)

rðwt þ uwx þ vwy þ wwzÞ ¼ rf3 � pz

Euler solvers allow coarser grids and are numerically more robust than RANSE solvers. They

are suited for computation of flows about lifting surfaces (foils) and are thus popular in

aerospace applications. They are not so well suited for ship flows and generally not

recommended because they combine the disadvantages of RANSE and Laplace solvers

without being able to realize their major advantages: programming is almost as complicated as

for RANSE solvers, but the physical model offers hardly any improvements over simple

potential flow codes (Laplace solvers).

A further simplification is the assumption of irrotational flow:

V� v!¼
8<
:

v=vx
v=vy
v=vz

9=
;� v!¼ 0 (1.31)

A flow that is irrotational, inviscid and incompressible is called potential flow. In potential

flows the components of the velocity vector are no longer independent from each other. They
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are coupled by the potential f. The derivative of the potential in arbitrary direction gives the

velocity component in this direction:

v!¼
8<
:

u
v
w

9=
; ¼ Vf (1.32)

Three unknowns (the velocity components) are thus reduced to one unknown (the potential).

This leads to a considerable simplification of the computation.

The continuity equation simplifies to Laplace’s equation for potential flow:

Df ¼ fxx þ fyy þ fzz ¼ 0 (1.33)

If the volumetric forces are limited to gravity forces, the Euler equations can be written as:

V

�
ft þ

1

2
ðVfÞ2 � gzþ 1

r
p

�
¼ 0 (1.34)

Integration gives Bernoulli’s equation:

ft þ
1

2
ðVfÞ2 � gzþ 1

r
p ¼ const: (1.35)

The Laplace equation is sufficient to solve for the unknown velocities. The Laplace equation is

linear. This offers the big advantage of combining elementary solutions (so-called sources,

sinks, dipoles, vortices) to arbitrarily complex solutions. Potential flow codes are still the most

commonly used CFD tools in ship and propeller design.

Boundary layer equations represent a special branch in the development of hydrodynamics (see

Schlichting 1979), which are historically important. The boundary layer equations introduce

many simplifications in the physical model: diffusion in the predominant flow direction is

neglected, the thickness of the boundary layer is taken as small, and the pressure is constant

over the thickness. These assumptions are violated near separating boundary layers. Therefore

separation cannot be predicted properly. Of course, neither is any evaluation of the separated

flow possible. But this is the area of interest for improving aftbodies and designing the

propeller. One of the last doctoral theses on boundary layer methods for ship flows concluded

in 1993: ‘With the present method the practically interesting velocities at the propeller plane

cannot be determined because there is no wall. In order to compute all the velocity components

in a thick boundary layer and at the propeller plane, the NaviereStokes equations have to be

solved.’

Boundary layer methods had been substituted almost completely by RANSE solvers by the end

of the 1980s. A series of validation workshops demonstrated that the solution of the equations

for thin boundary layers failed in the stern region because of the rapid thickening of the
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boundary layer in this zone. The limited success of generalizations of thin boundary layer

equations involving high-order corrections was subsequently demonstrated so that the

tendency towards computing the full solution of the NaviereStokes equations became stronger

and stronger because increased computer resources became more and more available at

continuously decreasing costs.

Basic equations (and flows) are sometimes classified as elliptic, hyperbolic or parabolic.

Consider a two-dimensional differential equation of second order:

A
v2f

vx2
þ 2B

v2f

vxvy
þ C

v2f

vy2
þ a

vf

vx
þ b

vf

vy
þ cf þ d ¼ 0 (1.36)

For d¼ ACe B2 > 0 the equation is ‘elliptic’, for d¼ 0 ‘parabolic’ and for d< 0 ‘hyperbolic’.

The names are derived from an analogy to the algebraic equation:

Ax2 þ 2Bxyþ Cy2 þ axþ byþ d ¼ 0 (1.37)

This equation describes for d > 0 an ellipse, for d ¼ 0 a parabola, and for d < 0 a hyperbola.

Behind these rather abstract mathematical definitions lies a physical meaning (Fig. 1.2):

• Elliptic. disturbances propagate in all directions. RANSE and the Laplace equation are in

general elliptic.

• Hyperbolic. Disturbances are limited in their propagation to a conical (or in two

dimensions a wedge-shaped) region. Supersonic flow with a Mach cone follows a

hyperbolic field equation. The Kelvin angle in the wave pattern results in a radiation

condition of ‘hyperbolic’ character.

• Parabolic. The extreme case of a hyperbolic flow is a parabolic flow. Here the angle of the

cone/wedge opens up to 90�. Disturbances propagate only downstream. ‘Parabolic’

RANSE solvers allow faster solution with reduced storage requirements. They start the

computation at the upstream end and solve strip after strip marching downstream. Instead of

considering the whole domain at one time, only two adjacent strips have to be considered at

any time. However, local flow reversals could never be captured by such a method because

they violate the assumed parabolic character of the flow. Parabolic RANSE solvers thus

appeared only shortly in the 1980s and were replaced by fully elliptic solvers when more

computer power became widely available. All unsteady equations are parabolic in time.

Elliptic Hyperbolic Parabolic

Figure 1.2:
A disturbance propagates differently depending on the type of field equation
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1.4.2. Basic CFD Techniques

CFD comprises methods that solve the basic field equations subject to boundary conditions by

approaches involving a large number of (mathematically simple) elements. These approaches

lead automatically to a large number of unknowns.

Basic CFD techniques are:

• Boundary element methods (BEM). BEM are used for potential flows. For potential flows,

the integrals over the whole fluid domain can be transformed to integrals over the

boundaries of the fluid domain. The step from space (3-d) to surface (2-d) simplifies grid

generation and often accelerates computations. Therefore practical applications for

potential flows about ships (e.g. wave resistance problems) use exclusively BEM, which

are called panel methods. Panel methods divide the surface of a ship (and often part of the

surrounding water surface) into discrete elements (panels). Each of these elements

automatically fulfills the Laplace equation. Indirect methods determine the element

strengths so that at the collocation points (usually centers of the panels) a linear boundary

condition (e.g. zero normal velocity) is fulfilled. This involves the solution of a full system

of linear equations with the source strengths as unknowns. The required velocities are

computed in a second step, hence ‘indirect’ method. Bernoulli’s equation then yields the

pressure field. Direct methods determine the potential directly. They are less suited for

boundary conditions involving higher derivatives of the potential, but yield higher

accuracy for lifting flows. Most commercially used codes for ship flows are based on

indirect methods. BEM cannot be used to solve RANSE or Euler equations. Fundamentals

of BEM can be found in, e.g., Hess (1986, 1990).

• Finite element methods (FEM). FEM dominate structural analysis. For ship

hydrodynamics they play only a minor role. Unlike in structural analysis, the elementary

functions cannot also be used as weight functions to determine the weighted error integrals

(residuals) in a Galerkin method. This reduces the elegance of the method considerably.

Fundamentals of FEM can be found in, e.g., Chung (1978).

• Finite difference methods (FDM). FDM discretize (like FEM) the whole fluid domain. The

derivatives in the field equations are approximated by finite differences. Discretization

errors can lead to a violation of conservation of mass or momentum, i.e. in the course of

a simulation the amount of water might diminish continuously. While FDM lose popularity

and finite volume methods (FVM) gain popularity, in many cases FDM give results of

comparable quality.

• Finite volume methods (FVM). FVM also employ finite differences for the spatial and

temporal discretization. However, they integrate the equations for mass and momentum

conservation over the individual cell before variables are approximated by values at the

cell centers. This ensures conservativeness, i.e. mass and momentum are conserved

because errors at the exit face of a cell cancel with errors at the entry face of the neighbor
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cell. Most commercial RANSE solvers today are based on FVM. Fundamentals of FVM

can be found in Versteeg and Malalasekera (1995), and Ferziger and Peric (1996).

FEM, FDM, and FVM are called ‘field methods’, because they all discretize the whole fluid

domain (field) as opposed to BEM, which just discretize the boundaries.

Some textbooks on CFD also include spectral methods which use harmonic functions as

elementary solutions. Spectral methods have no practical relevance for ship flows. The

interested reader will find an introduction in Peyret and Taylor (1985).

1.4.3. Applications

Practical CFD applications for ship flows concentrate mainly on the ship moving steadily

ahead. A 1994 survey at ship model basins showed inviscid BEM computations for wave-

resistance and offshore seakeeping as still the most important CFD application for commercial

projects (ca. 40e50% of the turnover), followed by RANSE applications (30e40%) and

computations for propellers (10e20%). All other applications combined contribute less than

5% of the turnover in the commercial sector. This global decomposition has remained

remarkably stable despite an overall increase in CFD volume. Besides global aspects like

resistance, sometimes local flow details are the focus of attention, e.g. the design of shaft

brackets, stabilizing fins, or sonar domes (noise reduction), e.g. Larsson et al. (1998) and

Larsson (1997).

The most important applications are briefly discussed in the following.

• ‘Resistance and propulsion’. CFD applications are mainly concerned with steadily

advancing ships. For a double-body potential flow, where the wave-making at the free

surface and the effects of viscosity are neglected, the flow computation is relatively simple,

quick, and accurate. The name ‘double-body flow’ comes from an interpretation that the

ship’s hull is reflected at the waterline at rest. Then the flow in an infinite fluid domain is

computed and the lower half of the flow gives automatically the flow about a ship with an

undeformed (rigid) water surface. The double-body potential flow is only used as an

approximate solution for other methods (boundary layer, wave resistance, seakeeping).

The simultaneous consideration of viscosity and wave-making drifted into industry

applications after the year 2000. But even a decade later, many viscous flow computations

in practice still neglected wave-making. For steady free-surface flows (‘wave-resistance

problem’), inviscid BEM codes are still the workhorse. The propeller is almost always

neglected in BEM computations for the steady flow (‘resistance problem’). RANSE

computations include the propeller action (‘propulsion problem’), usually by applying an

equivalent body force in the r.h.s. of the RANSE. The body forces were traditionally

prescribed based on experience or experimental results. More sophisticated applications

used integrated propeller models. The body forces in both thrust and rotative directions are
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then estimated, e.g. by a panel method. The distributions obtained by this approach depend

on the propeller inflow and are determined iteratively using the RANSE data as input for

the propeller computation and vice versa. The approach usually converges quickly.

• Maneuvering. Aspects of maneuvering properties of ships gain in importance, as public

opinion and legislation are more sensitive concerning safety issues after spectacular

accidents of tankers and ferries. IMO regulations concerning the (documented)

maneuverability of ships increased the demand for CFD methods in this field. Model tests

as an alternative method are expensive and time-consuming. Traditional simple simulation

methods with hydrodynamic coefficients gained from analytical approaches or regression

analysis (of usually small databases) are often considered as too inaccurate. CFD

applications to simulate maneuvering model tests have progressed considerably over the

last decade. However, it is difficult to assess the state of the art. By 2010, several research

groups presented full maneuvers simulated in RANSE computations. Some companies

used by 2010 CFD rather than model tests to furnish maneuvering models to nautical

simulators. Yet at the same time, validation workshops showed disappointingly large

scatter of results between different simulations. CFD for ship maneuvering appears to be

a threshold technology, where we may need another decade before wider confidence in

CFD as preferred technique will be established in the industry. Predicting the flow around

the hull and appendages (including propellers and rudders) is much more complicated

than predicting the steady flow in resistance and propulsion problems. Often, both

viscosity and free-surface effects (e.g. dynamic trim and sinkage) play an important role.

The rudder is most likely in the hull boundary layer, often operating in the propeller wake.

The hull forces themselves are also difficult to predict computationally, because sway and

yaw motions induce considerable cross-flows with shedding of strong vortices. Both

BEM and field methods have been employed for selected maneuvering problems.

Selected problems like side forces and moments in steady yaw are well predicted, but

longitudinal forces and some flow details still showed considerable errors for real ship

geometries.

• Ship seakeeping. The 1990s saw the advent of Rankine panel methods for seakeeping. The

approaches are similar to those used for the steady wave-resistance problem, but failed to

reach a similar level of acceptance. Most properties of practical relevance are calculated

accurately enough for most ship types by strip methods, although the underlying physical

models are generally considered as crude. The two-dimensional flow calculations for the

individual strips today are based almost always on BEM, namely close-fit methods.

RANSE methods for global ship motions have matured over the past decade to industry

application. These simulations are applied when strong non-linearities are involved, e.g.

green water on deck.

• Slamming/water-entry problems. Using suitable spaceetime transformations, the water

entry of a two-dimensional wedge can also be used to model the hydrodynamics of
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planing hulls. We will focus here on the seakeeping aspect of modeling water-entry

problems. Slamming involves local loads changing rapidly in time and space. Hydro-

elastic effects, interaction between trapped air pockets and water, velocities that require

consideration of water compressibility with shockwaves forming and the complex shapes

of the water surface forming jets, make slamming problems already in two dimensions

very challenging. Traditional approaches work well for wedges of suitable deadrise angle

and two-dimensional flows. But usually ship cross-sections do not have suitable deadrise

angles and the phenomena are three-dimensional. CFD has brought substantial progress in

this field. Free-surface RANSE simulations are today standard industry practice to predict

slamming loads. The focus lies here on forces and deformations, not local pressures.

Similarly, sloshing analyses (¼ internal impact problem) are based on free-surface RANSE

simulations.

• Zero-speed seakeeping. For offshore applications, global loads and motions in seakeeping

can be computed quite well by BEM. For zero speed, the steady wave system vanishes and

various diffraction and radiation wave systems coincide. If the geometries of offshore

structure and waves are of the same order of magnitude BEM can successfully capture

three-dimensional effects and complex interactions. The employed three-dimensional

BEM determine forces and motions either in the time or the frequency domain. First-order

forces and motions are calculated reliably and accurately. For practically required accuracy

of first-order quantities, 1000e2000 elements are typically deemed sufficient. Commercial

program packages (WAMIT, TIMIT, AQWA, or DIODORE) are widely accepted and used

for offshore applications.

• Propeller flows. Inviscid flow methods have long been used in propeller design as a

standard tool yielding information comparable to experiments. Lifting-surface methods

and BEMs are equally popular. Lifting-surface methods (quasi-continuous method, vortex-

lattice method) allow the three-dimensional modeling of the propeller. They discretize the

mean camber surface of the propeller blade by individual vortex panels. In addition, the

free vortices are modeled by elements of given strength. Other than the BEM described

below, lifting-surface methods do not fulfill exactly the boundary conditions at the blade’s

lower and upper surfaces. However, the resulting errors are small for thin blades. BEM

represent an improvement concerning the treatment and modeling of the geometry. BEM

model both lift and displacement of the propeller blades by surface panels and/or dipoles.

They can also model the propeller hub. Despite the theoretical superiority, BEM results

were not clearly better than lifting-surface method results in benchmark tests. BEM codes

for propeller applications often use only dipole panels which are distributed over hub,

blade surfaces, and the wakes of each blade. Viscous flow CFD methods are applied by

industry for complex configurations. Considerable progress in propulsive efficiency is

expected when propellers are designed modeling ship, propeller and rudder together, for

full scale, with CFD. This is expected to become industry standard practice by 2030.

Introduction 19



Further, less frequently found applications of CFD in naval architecture include:

• Air flow. CFD has been applied to air flows around the upper hull and superstructure of

ships and offshore platforms. Topics of interest are:

• Wind resistance (especially of fast ships)

For fast ships the wind resistance becomes important. For example, for one project of

a 50 knot SES (surface effect ship ¼ air-cushion catamaran), the wind resistance

constituted ca. 25% of the total resistance. Hull changes limited to the bow decreased

the wind resistance by 40%.

• Wind-over-the-deck conditions for helicopter landing

This application concerns both combatants and offshore platforms.

• Wind loads

Wind loads are important for ships with large superstructures and relatively small

lateral underwater area, e.g. car transporters, car ferries, container ships, SES, and

air-cushion vehicles.

• Tracing of funnel smoke

This is important for passenger vessels (passengers on deck, paintwork) and for

offshore platforms (safety of helicopter operation). Formal optimization has been

combined with CFD to minimize smoke dispersion on the deck of a yacht (Harries and

Vesting 2010).

The comparison of CFD, wind-tunnel tests, and full-scale measurements shows an overall

good agreement, even if large discrepancies appear at some wind directions. The

differences between CFD and model-test results are not generally larger than between full-

scale and model-scale results. In fact, the differences are not much larger than often found

when the same vessel is tested in different wind tunnels. The determination of wind loads

on ships and offshore structures by CFD is a realistic alternative to the experimental

methods.

• Interior flows. Sloshing in partially filled tanks is a standard CFD application, and required

by classification societies for some cases. Sloshing computations may be coupled to the

outer (global) motions of a ship, but industry practice uses only weak coupling: the global

ship motions are prescribed for the tank, but the effect of the fluid motion in the tank on the

global ship motions is neglected. Related problems are flows in a roll damping tank and

water flowing into a damaged ship.

Table 1.1 summarizes an assessment of the maturity of the various CFD applications.

1.4.4. Cost and Value Aspects of CFD

The value of any product (or service) can be classified according to time, cost, and quality

aspects. For CFD this means:

• Time benefits (How does CFD accelerate processes in ship design?). In the shipbuilding

industry, we see the same trends towards ever-decreasing times for product development
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as in other manufacturing industries. In some cases, delivery time is the key factor for

getting the contract. CFD plays a special role in this context. A numerical pre-optimi-

zation can save time-consuming iterations in model tests and may thus reduce total

development time. The speed of CFD allows applications already in preliminary design.

Early use thus reduces development risks for new ships. This is especially important

when exploring niche markets for unconventional ships where design cannot be based

on experience. In addition, another aspect related to turnover has to be realized: CFD

improves chances of successful negotiations by supplying hydrodynamic analyses. It has

become standard for all high-tech shipbuilders to apply at least inviscid CFD analyses to

proposed hull designs when entering negotiations to obtain a contract for building

a ship.

• Quality benefits (How does CFD enable superior ships or reduce risks in new designs?).

Model tests are still more accurate for power prognosis than CFD. We see occasionally

good agreement of CFD power prediction with measured data, but these cases may just

benefit from fortunate error cancellation or tuning of parameters to fit a posteriori the

experimental data. No ‘blind’ benchmark test has yet demonstrated the ability of CFD

codes to predict, at least with 5% accuracy, consistently the power of ship hulls at design

speed. I expect this to remain so for some more years. In the long run, CFD should

outperform model tests, as with growing computational power, accurate simulations at full

scale will become available overcoming current uncertainties in correlating model tests to

full-scale predictions. For some projects, it is only important to ensure that a given installed

power will enable the ship to achieve contract speed. In these cases, CFD is of little

interest. However, CFD should be considered in cases where model test results show

problems or the shipowner is willing to pay a higher price for lower operating costs (due to

improved hull). CFD allows insight in flow details not offered by the standard model tests.

Insight in flow details is especially important in cases where initial model tests show that

power requirements for a given hull are far more than expected. Here CFD also allows the

investigation of the flow far below the waterline and modifications can be quickly analyzed

to see if major improvements are to be expected. The model tests and experience of

a towing tank mainly indicate the potential for improvement; CFD indicates where and

Table 1.1: Maturity of CFD application on a scale from e (not applicable, no applications

known) to •••• (very mature)

Viscous Inviscid

‘Resistance test’ ••• •••
‘Propulsion test’ ••• e
Maneuvering • •
Ship seakeeping •• •••
Offshore • •••
Propeller •• ••••
Others •• e
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how to improve the design. CFD also allows formal optimization, using hundreds of

‘numerical towing tanks’ in parallel.

• Cost benefits (How does CFD reduce costs in ship designs?). While the influence of

certain decisions and actions on the turnover can be estimated only qualitatively, costs

can usually be quantified directly. This explains why management prefers investments

with a short payback due to cost reductions even though there is general consent that cost

reductions alone do not ensure the economic future of a company. However, CFD’s

potential for direct cost reductions is small. CFD is still considered widely as not accurate

enough to substitute the model test for power prognosis. Therefore, one model test is

always performed. In three out of four projects of the Hamburg Ship Model Basin this was

sufficient already in 1990. By 2010, a single model test trial had become standard practice.

Thus, there is little direct cost reduction potential. Indirect cost savings in other

departments are difficult to quantify. Time benefits of CFD will also affect costs. It is

possible to determine 40e60% of the total production costs of a ship in the first weeks of

design. Costs for modifications in later stages are higher by order of magnitudes than those

necessary at the conceptual phase. Various decisions concerning production costs can be

made earlier and involve lower risks if CFD is employed consistently to determine the

final hull form at an earlier time.

The benefits discussed so far only cover one-half of a costebenefit analysis for a CFD strategy.

Understanding the cost structure of CFD is at least as important and some general management

guidelines can be deduced. This requires a closer look at the work process in CFD. The

work process is split into:

• preprocessing (generation and quality control of grids);

• computation;

• postprocessing (graphical displays, documentation).

The individual steps sometimes have to be performed several times in iterations. Cost

structures will be discussed separately for each step:

1. Preprocessing. Preprocessing requires staff familiar with the special programs for grid

generation, especially on the hull. This requires at least a basic understanding of the

subsequent CFD computation. Grid generation is best performed on workstations or fast

PCs with high-resolution screens. User experience and a degree of automation mainly

determine time (and labor) costs in this step. Progress in grid generation and more robust

CFD has reduced the man time involved in CFD analyses. Largely automatic procedures

are now available for many applications. Staff training and grid generation software are the

main fixed costs in this step.

2. Computation. The computation involves almost no man time. Computations for inviscid

CFD can usually run on PCs; viscous CFD and formal optimization require more

powerful computer environments with parallel computing. Computing costs usually
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account for less than 1% of total costs. Also, software licenses for the flow code are often

negligible compared to other costs, especially those for training (Bertram and Couser

2010).

3. Postprocessing. Postprocessing is generally based on commercial software. Postprocessing

requires some time (typically 10e30% of the total time). Increasingly, videos are used

for unsteady CFD applications. Interpretation of results still requires expertise. You pay

thus for the skilled interpretation, not the number of color plots.

The high fixed costs for training and user-defined macros to accelerate the CFD process lead to

considerable economies of scale. This is often not realized by management. Experience shows

that many shipyards buy CFD software, because the hardware is available or not expensive,

and the software license costs may be as much as a few CFD analyses at a consulting company.

The vendors are naturally only too happy to sell the software. Then the problems and the

disillusion start. Usually no initial training is given by the vendor (or bought by the shipyard).

Typical beginners’ mistakes are the consequence:

• Time is lost in program handling

• Unsuitable models and grids are used requiring repeated analyses or leading to useless

results.

By the time the management realizes the problems, it is usually too late. The software licenses

are all bought, the design engineer has now already invested (lost) so much time struggling

with the code. Nobody wants to admit defeat. So the CFD analyses are continued in-house with

the occasional outsourcing when problems and time pressures become too large. As a general

rule, outsourcing is recommended for shipyards and design offices with fewer than five projects

per year. In-house CFD makes sense starting from ten projects per year. For finite-element

analyses of structures we have seen a development that after an initial period where shipyards

performed the analyses in-house the pendulum swung the other way with shipyards now using

almost exclusively outsourcing as the sensible option. A similar development is expected for

most specialized CFD applications.

Model generation plays a vital role for costs, response time, and quality of results. In this

respect, CFD analyses have benefited considerably from the progress in guided or automated

grid generation since the year 2000.

• By making grid generation more user-friendly. Grid generation was largely a matter of

experience. The logical deduction was to incorporate this experience in the grid

generation codes to improve user-friendliness. A fundamental dilemma found in model

generation is that the procedures should be flexible to cope with a variety of problems, yet

easy to handle with a minimum of input. Many flow codes offer a lot of flexibility, often at

the cost of having many options which in turn leave inexperienced (i.e. occasional) users

frustrated and at risk to choose exactly the wrong options for their problems. Incorporation
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of expert knowledge in the model generation program offering reasonable default options

is a good solution to this dilemma. In the extreme case, a user may choose the ‘automatic

mode’ where the program proceeds completely on its own knowledge. On the other hand,

default values may be overruled at any stage by an experienced user.

• By making the computation more robust. A simple grid is cheap and fast to generate, but

unsuitable for most marine problems. Therefore modern, marine CFD applications use:

• block-structured grids, sometimes with sliding block interfaces;

• non-matching boundaries between blocks;

• unstructured grids;

• chimera grids (overlapping, non-matching blocks).

• By generating grids only once. Time for grid generation means total time for all grids

generated. The philosophy is to ‘Get it right the first time’, i.e. the codes are robust

enough or the grid generators good enough that grids need to be created only once. This

should also favor the eventual development of commercial codes with adaptive grid

techniques. First industrial applications to ships appeared around 2010.

Standard postprocessing could save time and would also help customers in comparing results

for various ships. However, at present we have at best internal company standards on how to

display CFD results.

1.5. Viscous Flow Computations

Fundamentals of viscous flows are covered in detail in Ferziger and Peric (1996).

Fundamentals of potential flow methods are found on the website. I will therefore limit myself

here to a naval architect’s view of the most important issues for applications of these methods.

This is intended to raise the understanding of the matter to a level sufficient to communicate

and collaborate with a CFD expert.

1.5.1. Turbulence Models

The RANSE equations require external turbulence models to couple the Reynolds stresses

(terms from the turbulent fluctuations) to the time-averaged velocities. Turbulence is in general

not fully understood. All turbulence models used for ship flows are semi-empirical. They use

some theories about the physics of turbulence and supply the missing information by empirical

constants. None of the turbulence models used so far for ship flows has been investigated for its

suitability at the free surface. On the other hand, it is not clear whether an exact turbulence

modeling in the whole fluid domain is necessary for engineering purposes. There are whole

books on turbulence models and we will discuss here only the most popular turbulence models,

which are standard options in commercial RANSE solvers. ITTC (1990) gives a literature

review of turbulence models as applied to ship flows.
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Turbulence models may be either algebraic (0-equation models) or based on one or more

differential equations (one-equation models, two-equation models, etc.). Algebraic models

compute the Reynolds stresses directly by an algebraic expression. The other models require

the parallel solution of additional differential equations which is more time consuming, but

also more accurate.

The six Reynolds stresses (or more precisely their derivatives) introduce six further unknowns.

Traditionally, the Boussinesq approach has been used in practice which assumes isotropic

turbulence, i.e. the turbulence properties are independent of the spatial direction. (Detailed

measurements of ship models have shown that this is not true in some critical areas in the

aftbody of full ships. It is unclear how the assumption of isotropic turbulence affects global

properties like the wake in the propeller plane.) The Boussinesq approach then couples the

Reynolds stresses to the gradient of the average velocities by an eddy viscosity mt:
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where k is the (average) kinetic energy of the turbulence:

k ¼ 1

2
ðu2 þ v2 þ w2Þ (1.39)

The eddy viscosity mt has the same dimension as the real viscosity m, but unlike m it is not

a constant, but a scalar depending on the velocity field. The eddy viscosity approach transforms

the RANSE to:

rðut þ uux þ vuy þ wuzÞ ¼ rf1 � px � 2

3
rkx þ ðmþ mtÞðuxx þ uyy þ uzzÞ

þmtx2ux þ mtyðuy þ vxÞ þ mtzðuz þ wxÞ

rðvt þ uvx þ vvy þ wvzÞ ¼ rf2 � py � 2

3
rky þ ðmþ mtÞðvxx þ vyy þ vzzÞ

þ mtxðuy þ vxÞ þ mty2vy þ mtzðwy þ vzÞ
rðwt þ uwx þ vwy þ wwzÞ ¼ rf3 � pz � 2

3
rkz þ ðmþ mtÞðwxx þ wyy þ wzzÞ

þ mtxðuz þ wxÞ þ mtyðwy þ vzÞ þ mtz2wz

(1.40)

Turbulence models generally use a reference length scale and reference velocity scale.

Alternatively, the velocity scale can be expressed as the fraction of length scale and a time
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scale. To obtain the proper dimension, the eddy viscosity is expressed proportional to the

product of length scale and velocity scale. The length scale is characteristic for the

larger turbulence structures which are mainly contributing to the momentum transfer

in the fluid. The velocity scale is characteristic for the intensity of the turbulent

fluctuations.

All commonly used turbulence models are plagued by considerable uncertainties.

Internationally renowned fluid dynamicists have described turbulence models as follows:

• ‘Turbulence models are voodoo. We still don’t know how to model turbulence.’

• ‘The word “model” is a euphemism for an uncertain, but useful postulated regularity. In the

last few decades, scientists have learned to simulate some aspects of turbulence effects by

the invention of “turbulence models” which purport to represent the phenomena by

postulated laws of conservation, transport and sources for supposed “properties of turbu-

lence” such as its “energy”, its “frequency” or its “length scale”. These “laws” are highly

speculative.’

Researchers have succeeded in direct numerical simulation of turbulence for Reynolds

numbers several orders of magnitude smaller than ship model Reynolds numbers and for very

simple geometries. These simulations allow one at best to understand phenomena of turbulence

better and to test engineering turbulence models.

The usefulness of a turbulence model for ship flows can only be evaluated in benchmark tests

for similar ships. Sometimes simple models work surprisingly well; sometimes the same model

fails for the next ship. The most popular turbulence model for ship flow applications in practice

remains the standard ke3 model, although its results were not convincing in benchmark tests

for several ship geometries.

By the late 1990s, keu models were proposed for ship flows. These models are like the ke3

two-equation models and can be seen as a further evolution of them. u is proportional to 3/k

and can be interpreted as a ‘turbulence frequency’. keu models yield better agreement with

experiments in many cases; however, they react more sensitively to grid quality.

Reynolds stress models calculate the individual Reynolds stresses from their modeled

transport equations without recourse to an eddy viscosity hypothesis. These models

require more computational effort than, e.g., the two-equation ke3 model, but showed

superior results in several ship flow applications. However, it is not yet decided if similarly

good results can be obtained by simple turbulence models with properly adjusted

coefficients.

Large-eddy simulations may eventually solve the current debate over turbulence modeling for

engineering applications, but for ship flows we will have to wait at least two more decades

before realistic LES solutions become available in practice.
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Probably the most widely used turbulence model in engineering applications is the (standard)

ke3 model (Launder and Spalding 1974). k is the kinetic energy of the turbulence, 3 the

dissipation rate of k. The ke3 model expresses the eddy viscosity mt as a simple function of

k and 3:

mx ¼ 0:09r
k2

3
(1.41)

where 0.09 is an empirical constant. k and 3 are expressed by two partial differential equations

involving further empirical constants:
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Pk is the production rate of k:

Pk ¼ mt

r
ð2uxux þ ðuy þ vxÞuy þ ðuz þ wxÞuz þ ðvx þ uyÞvx þ 2vyvy (1.44)

þðvz þ wyÞvz þ ðwx þ uzÞwx þ ðwy þ vzÞwy þ 2wzwzÞ
The substantial derivative is defined as usual:
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These equations contain four empirical constants (1.0, 1.2, 1.44, and 1.92) which were

determined (in a best fit approach) for very simple flows in physical and numerical

experiments. The applicability to other turbulent flows (e.g. around ship geometries) was never

explicitly validated.

The ke3 model cannot be applied directly at a wall (ship hull) as it assumes inherently high

(local) Reynolds numbers. If a no-slip condition (zero relative speed at the hull) is to be

enforced directly at the wall, the 3 differential equation must be substituted by an algebraic

equation near the wall. This is the so-called low-Re ke3 model. However, more popular is the

introduction of a wall function coupled to the standard ke3 model. The wall function is

empirically determined for two-dimensional flows. One assumes that the velocity increases

logarithmically with distance from the wall:

u

us
¼

(
yþ yþ � yþm

1

0:42
lnð9:0yþÞ yþ > yþm

(1.46)
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where ym + is implicitly given by:

yþm ¼ 1

0:42
lnð9:0yþmÞ (1.47)

0.42 and 9.0 are empirical constants. yþ¼ yrus/m is a non-dimensional distance from the wall,

u the velocity in longitudinal (parallel to the wall) direction, us ¼ ffiffiffiffiffiffiffiffiffiffi
sw=r

p
with sw the wall

shear stress.

The centers of the innermost cells should lie within a distance from the wall where the

logarithmic law of the wall function applies, i.e. 100 < yþ < 1000. However, yþ contains the

wall shear stress, which is part of the solution and not a priori known. It is thus only possible to

judge a posteriori if a chosen wall distance was appropriate. Higher Reynolds numbers require

generally smaller yþ.

The fundamental assumptions for the wall function are:

• velocity gradient in normal direction is much larger than in other directions;

• pressure gradient and gravity influence are so small that shear stresses in the boundary

layer are constant;

• shear stresses and velocity vectors have the same direction in the whole boundary layer;

• equilibrium of turbulence generation and dissipation;

• linear variation of the reference length for turbulence.

These assumptions are questionable for complex flows as found in the aftbodies of ships. The

standard ke3model usually over-predicts the turbulent kinetic energy in the stern region. Also,

the model cannot properly account for the reduction of the turbulent kinetic energy near the

wall when the viscous layer becomes thick over the stern. The wall function approach usually

yields worse results for the wall shear stresses than turbulence models that apply a no-slip

condition directly at the wall. However, the wall function saves many cells (and thus

computational time).

The ke3 model appears suitable for flows with a predominant boundary-layer character.

Problems with defining a reference length, as in many algebraic models, are avoided and at

least the important physical aspect of turbulence transport is explicitly reflected in the model.

The wall function makes the approach numerically efficient, but the model is in principle not

capable of predicting flow separation for curved surfaces (e.g. ships!).

1.5.2. Boundary Conditions

The computational grid can only cover part of the real fluid domain. This introduces artificial

boundaries of the computational domain in addition to the physical boundaries of the hull and

the free surface.
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For ships moving straight ahead (as in simulations of resistance or propulsion tests), the

midship plane is generally treated as a symmetry plane. The usual symmetry of the ship would

intuitively suggest that this indeed reflects physical reality. However, viscous flows with

symmetric inflow to symmetric bodies do not automatically result in symmetric flow patterns at

all times. Vortex shedding results in asymmetric flow patterns which only in the time average

are symmetric again. This may result in considerable differences in the resistance. The

following example may illustrate the problem (Fig. 1.3). Behind a circular cylinder in uniform

inflow one would assume intuitively a symmetrical flow which would hardly be disturbed by

a flat plate behind the cylinder. However, experiments yield a considerably smaller resistance

coefficient for the cylinder with a flat plate. The reason is vortex shedding behind the cylinder

with large vortices oscillating from one side to the other. These large-vortex oscillations are

blocked by the flat plate.

The boundary condition on the hull is a no-slip condition (zero relative speed) which is either

enforced directly or via a wall function depending on the turbulence model employed.

The side and bottom boundaries may correspond to an actual physical boundary as in a model

tank. In this case, the boundaries may be treated similar to the ship hull with a no-slip

condition. However, one should remember that the outer boundaries then have a relative

velocity to the ship. Usually, the physical boundaries would be too far away to be considered.

Then the side and bottom boundaries should be sufficiently removed from the ship. Often the

side and bottom boundaries form part of a cylinder (quarter for double-body flow with

symmetry in y), as a cylinder usually leads to better grids (for single-block grids) than a block-

type grid. A typical cylinder radius is one ship length.

At the inlet all unknowns are specified. If the inlet is chosen sufficiently upstream of the ship,

uniform flow with corresponding hydrostatic pressure can be assumed. If the ke3 model is

employed, the distributions of k and 3 at the inlet also have to be specified. The influence of the

specified values for k and 3 decays rapidly downstream, such that errors have decayed by some

Figure 1.3:
A cylinder with a flat plate in the wake has a considerably lower resistance coefficient than a cylinder
without a plate. Care is required when assuming symmetry planes for viscous flow computations
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orders of magnitude after several cells. One may then simply specify zero k and 3. A slightly

more sophisticated approach estimates the turbulence intensity I (turbulent fluctuation

component of a velocity component made non-dimensional with the ship speed V) at the inlet.

For isotropic turbulence we then get:

k ¼ 3

2
ðVIÞ2 (1.48)

In the absence of experimental data for I in a specific case, I¼ 5% has often been assumed. The

dissipation rate is typically assumed as:

3 ¼ 0:164
k1:5

‘
(1.49)

where 0.164 is an empirical constant and ‘ a reference length. For ship flows, there are few

indications as to how to choose this reference length. Our own computations have used 1/100th

of the radius of the cylinder forming the computational domain. However, the initial choice of

the quantities does not influence the final result, but ‘only’ the required number of iterations to

obtain this result. If only the aftbody is considered, then the inlet may be placed, for example,

amidships. In this case all unknowns must be specified from experiments (for validation

studies) or simpler computations (e.g. coarse grid computations for the whole domain, inviscid

flow computations coupled with boundary layer computations, etc.).

At the outlet usually the derivatives in the longitudinal direction are set for all unknowns to

zero and the flow leaving the domain is determined such that continuity is preserved for the

whole fluid domain. The longitudinal derivatives are in reality not zero, but this boundary

condition prevents upstream propagation of any reflections of disturbances created by the

numerical method. Numerical experiments show that these boundary conditions affect results

only in a small local region near the outlet.

At symmetry planes normal velocity and all derivatives in the normal direction are set to zero.

Since the normal derivatives of the tangential velocities vanish, the shear stresses are zero. The

outer boundary of the computational domain (side and bottom) may be treated as ‘symmetry

plane’, i.e. on each outer cell face normal velocity and all normal derivatives are set zero. In

this case, the outer boundary must be far away from the ship such that virtually uniform flow is

encountered. Another possibility is to specify values computed by inviscid codes at the outer

boundary, which allows much smaller computational domains, but not many fewer cells as

most cells are concentrated near the ship hull.

If a propeller is modeled in RANSE computations for ship flows (propulsion test condition),

it is generally simplified by specifying the propeller effect as body forces. This simulates the

acceleration of the flow by the propeller. The sum of all axial body forces yields the thrust. The

distribution is often assumed to be parabolic in the radial direction and constant in the
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circumferential direction. Alternatively, the distribution of the body forces for the propeller

may be specified from:

• experience with similar ships;

• experiments for the actual ship;

• alternating computations for the propeller loading with non-uniform inflow from the

RANSE computation. The propeller loading is then computed every 10 or 20 iterations

in the RANSE computation as the propeller loading converges much faster than the other

properties of the RANSE computation. Convergence for the propeller loading is usually

obtained with five or seven iterations.

1.5.3. Free-Surface Treatment

Most viscous flow computations for ships in design projects in the 1990s still assumed the free

surface to be a symmetry plane. In reality this is not true. The free surface forms waves which

break locally at the bow, and the ship changes trim and sinkage (squat) due to the free surface.

The problem of turbulence models (and their specific boundary conditions) near the free

surface has not been addressed in ship flows and generally the same conditions as for symmetry

planes are used.

A variety of methods exists to capture wave-making with various degrees of success. The

difficulty with the unknown free-surface position is usually resolved by considering the

problem transient, starting from rest. The hull is thus accelerated to the requested Froude

number and the time integration is continued until steady state conditions have been achieved.

(This procedure corresponds to usual practice in towing tank experiments.) The free-surface

position is updated as part of the iterative process.

The methods for computing flows with a free surface can be classified into two major groups:

• Interface-tracking methods define the free surface as a sharp interface whose motion is

followed. They use moving grids fitted to the free surface and compute the flow of

liquid only. Problems are encountered when the free surface starts folding or when the grid

has to be moved along walls of a complicated shape (like a real ship hull geometry).

• Interface-capturing methods do not define a sharp boundary between liquid and gas and

use grids which cover both liquid- and gas-filled regions. Either marker particles or

a transport equation for the void fraction of the liquid phase are used to capture the free

surface.

Interface tracking has become the standard approach as the ability to model complex

geometries of hull and water surface is essential for real ship flows. Interface-tracking

methods may also solve the flow in the air above the water, but for most ship flows this is not

necessary.
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A typical approach uses an extended volume-of-fluid (VOF) formulation introducing an

additional scalar function, which describes the volume concentration of water, to identify the

position of the free surface.

Initial problems with numerical damping of the ship wave propagation have been overcome by

better spatial resolution and using higher-order schemes.

1.5.4. Further Details

The vector equations for conservation of momentum yield three scalar equations for three-

dimensional computations. These determine the three velocity components for a given

pressure. Usually these velocities do not fulfill the continuity equation. The introduction of

a pressure correction equation derived from the continuity equation allows a correction of

pressure and velocities. Popular methods for such pressureevelocity coupling are:

• SIMPLE (semi-implicit pressure linked equations) and related methods;

• PISO (pressure implicit with splitting of operators).

In the 1990s most RANSE codes used for ship flows employed SIMPLE or related

pressureevelocity coupling. The SIMPLE method is fast, but tends to slow convergence for

suboptimal grids. Figure 1.4 gives a simple flow chart for the SIMPLE algorithm. PISO, like

SIMPLE, is based on a predictorecorrector method, but employs several corrector steps while

SIMPLE uses only one. This makes the PISO method more stable, but less efficient. In

personal experience, the computation time for one tanker was increased by a factor of

5 switching from SIMPLE to PISO. For unsteady problems, however, the PISO method is

generally preferred to the SIMPLE method due to its better stability. The discretization of the

fundamental differential equations leads to very large systems of linear equations which are

usually sparse, i.e. most of the elements of the matrix are zero. (This is fundamentally different

from boundary element methods where full matrices with an often not dominant main diagonal

need to solved.) Direct solvers like Gauss elimination or matrix inversion have prohibitively

excessive computational time and storage requirements. In addition, the solution of the system

of equations is embedded in an outer iteration which requires only an approximate solution,

because the coefficients due to the non-linearity of the differential equations and the

pressureevelocity coupling require further corrections. Therefore field methods generally

employ iterative solvers:

• GausseSeidel method (point iterative);

• LSOR (line successive overrelaxation), ADI (alternating direction implicit) (line iterative);

• ILU (incomplete lower upper) decomposition, e.g. SIP (strong implicit procedure);

• CG (conjugate gradient) method.

The various iterative methods differ in their prerequisites (dominant main diagonal, symmetry,

etc.), convergence properties, and numerical effort per iteration. Strongly implicit schemes
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such as SIP feature high convergence rates. The convergence is especially high for multigrid

acceleration which today is almost a standard choice.

1.5.5. Multigrid Methods

Multigrid methods use several grids of different grid size covering the same computational

fluid domain. Iterative solvers determine in each iteration (relaxation) a better approximation

to the exact solution. The difference between the exact solution and the approximation is called

residual (error). If the residuals are plotted versus the line number of the system of equations,

a more or less wavy curve appears for each iterative step. A Fourier analysis of this curve then

Input data

Initial values for all unknowns

Determine coeff.  source terms
for momentum equations

Solve momentum equations

Determine mass flux and coeff.  source terms
for pressure correction equation

Solve pressure correction equation

Correct pressures, cell center velocities, mass flux

Update cell face velocities

Invoke turbulence model

Convergence 
No

Yes

STOP

Figure 1.4:
Flow chart for SIMPLE algorithm
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yields high-frequency and low-frequency components. High-frequency components of the

residual are quickly reduced in all solvers, but the low-frequency components are reduced only

slowly. As the frequency is defined relative to the number of unknowns, respectively the grid

fineness, a given residual function is highly frequent on a coarse grid, and low frequency on

a fine grid. Multigrid methods use this to accelerate overall convergence by the following

general procedure:

1. Iteration (relaxation) of the initial system of equations until the residual is a smooth

function, i.e. only low-frequent components are left.

2. ‘Restriction’: transforming the residuals to a coarser grid (e.g. double the grid space).

3. Solution of the residual equation on the coarse grid. Since this grid contains for

three-dimensional flow and grid space halving only one-eighth of the unknowns and the

residual is relatively high frequency now, only a fraction of the computational time is

needed because a further iteration on the original grid would have been necessary for the

same accuracy.

4. ‘Prolongation’: interpolation of the residuals from the coarse grid to the fine grid.

5. Addition of the interpolated residual function to the fine-grid solution.

This procedure describes a simple two-gridmethod and is recursively repeated to formamultigrid

method. If the multigrid method restricts (stepwise) from the finest grid to the coarsest grid and

afterwards back to the finest grid, a V-cycle is formed. If the prolongation is only performed to an

intermediate level, again before restriction is used, this forms a W-cycle (Fig. 1.5).

The multigrid method accelerates the overall solutions considerably, especially for grids with

many unknowns. Multigrid algorithms obtain computational times which are almost

proportional to the number of cells, while single-grid solvers yield computational times

proportional approximately to the square of the number of cells.Multigridmethods are relatively

easy to combine with all major iterative solvers. The considerable speed-up of computations

more than justifies the additional expense of programming and storage requirements.

1.5.6. Numerical Approximations

Finite-volume methods require values (and derivatives) of various variables at the cell faces,

when they are originally only known at the cell centers. The flow direction is often considered
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Figure 1.5:
Multigrid cycles: V-cycle (left), W-cycle (right); h: grid spacing computations
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when these quantities are determined for convective terms. Time derivatives are also

numerically approximated. Consider, for example, the convective fluxes in the x direction. One

determines in general the value of a variable (e.g. pressure or velocity) at the location x by

employing an interpolation polynomial through the neighboring cell centers xi:

f ðxÞ ¼ a1 þ a2ðx� x1Þ þ a3ðx� x1Þðx� x2Þ þ. (1.50)

The coefficients ai are determined by inserting the known function values fi ¼ f(xi). The

simplest case uses just the value of the next cell centerupstream (upwind differencing scheme,

UDS):

f ðxÞ ¼
�
fi�1 u > 0
fi u < 0

(1.51)

where u is the flow velocity in the x direction. This is a first-order approximation, i.e. (for fine

grids) halving the grid size should halve the error in approximating the derivative. The order of

an approximation is derived from a Taylor expansion for equidistant grids. For non-equidistant

grids, an additional error appears that depends on the ratio of adjacent cell lengths. This

error may dominate for coarse to moderately coarse grids, but vanishes in the theoretical limit

of infinitely fine grids. The approximation thus depends on the direction of the velocity in the

cell center. UDS is unconditionally stable, but plagued by large numerical diffusion. Numerical

diffusion smoothes the derivatives (gradients) and may thus lead to wrong results. The

numerical diffusion becomes maximal for an angle of 45� between grid lines and flow

direction. Grid refinement reduces the numerical diffusion, but increases, of course, the

computational effort.

The central differencing scheme (CDS) uses the adjacent upstream and downstream points:

f ðxÞ ¼ fi�1 þ fi
2

(1.52)

This is a second-order approximation, i.e. halving the grid size will reduce the error by one-

quarter for fine grids. The approximation is independent of the sign of the flow direction.

CDS tends to numerical instabilities and is therefore (for usual discretizations and speeds)

unsuited for the approximation of the convective fluxes; the diffusive terms are usually

approximated by CDS.

The linear upwind differencing scheme (LUDS) uses the cell centers of the next two upstream

points:

f ðxÞ ¼

(
fi�2 � fi�1

xi�2 � xi�1
ðx� xi�1Þ þ fi�1 u > 0

fi � fiþ1

xi � xiþ1
ðx� xiÞ þ fi u < 0

(1.53)
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This second-order approximation considers again the flow direction. LUDS is more stable than

CDS, but can yield unphysical results. This is sometimes referred to as ‘numerical dispersion’.

Three points allow quadratic interpolation. The QUICK (quadratic upstream interpolation for

convective kinematics) uses two adjacent points upstream and one downstream:

f ðxÞ ¼

(
fi þ fi�1

2
� 1

8
ðfi�2 þ fi � 2fi�1Þ u > 0

fi þ fi�1

2
� 1

8
ðfiþ1 þ fi�1 � 2fiÞ u < 0

(1.54)

This third-order approximation may also produce unphysical results due to overshoots and

requires a higher computational effort than the other schemes presented so far.

Blended schemes combine the basic schemes in weighted averages. Optimum weight factors

depend on the problem. Blending combines the advantages (stability, accuracy) of the

individual schemes, but requires more effort in each iteration. For an optimum weight the

reduced number of iterations should more than compensate for this. For ship flows our

experience is still insufficient to give general recommendations for blending schemes. Ideally,

the weighting factors are chosen depending on the local flow. This usually involves the Peclet

number, i.e. a local Reynolds number based on the local velocity and the grid size. Even more

sophisticated techniques use a basic scheme (e.g. CDS) unless local instabilities (wiggles) are

diagnosed automatically. These instabilities are then smoothed or filtered. These schemes do

not require (error-prone) user input as do the simpler blending schemes. Blending may also be

time-dependent. Then a more robust blend is used in the beginning to ensure numerical

stability, and a more accurate blend is used later to obtain accurate converged results.

For the approximation of time derivatives implicit or explicit schemes may be used. In explicit

schemes, the variables (e.g. derivatives of velocities) depend at each point in space only on

known values of previous time steps. They can thus be computed directly (explicitly). Implicit

schemes couple the unknowns to neighboring values (in time) and require the solution of

a system of equations. Explicit schemes cannot usually be employed for ship flows, because

they require very small time steps for the necessary very fine spatial discretization. A popular

implicit scheme is the CrankeNicholson scheme.

1.5.7. Grid Generation

Model set-up, especially grid generation, is decisive for time, cost, and quality of results in any

CFD project. Grids must capture the changes in the geometries of hull and free surface (if

included), but also all changes in the flow, with sufficient accuracy. For reasons of

computational accuracy and efficiency (convergence rate), one should try to avoid extreme cell

side ratios and skewed angles in individual cells. However, for ship flows, the flow changes

drastically in the normal direction to the hull and little in the tangential longitudinal direction.
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One would like to have a similar resolution for all changes in the flow direction. This

automatically forces us to use cells with extreme side ratios, e.g. 1:1000. Grids should be rather

fine in regions of high velocity or pressure gradients. The curvature of the ship hull and the

experience with similar ship hull forms give some indications where such regions are to be

expected, but often one identifies only after computations regions where the grid should have

been finer. Ideally the computation should refine the grid in these regions automatically during

a computation. Such adaptive grid techniques are subject to research for ship flows. They

should bring considerable progress in accuracy without increasing computational effort

excessively, but usually require unstructured grid capabilities of the code.

Numerical (non-physical) diffusion can be reduced by aligning grid lines along streamlines.

However, flow separation and flow recirculation in ship flows allow this only to a limited

extent.

Cartesian grids consist of elements with cell edges parallel to the axes of a Cartesian

coordinate system. They are thus easy to generate, but unsuited for capturing complex

geometries like ship hulls.

Therefore, in practice, generally curvilinear grids (body-fitted grids) are employed. These

grids may be orthogonal or non-orthogonal. Orthogonal grids employ grid lines which

intersect orthogonally. Since real ship geometries do not intersect the water surface

orthogonally, at least some non-orthogonal grid lines have to be accepted. Otherwise,

orthogonal grids are preferred since they facilitate the description of the discretized equations.

Curvilinear orthogonal grids require considerable effort in grid generation, but keep the

complexity of the discretized equations relatively low. The velocity components may be grid

oriented (local) or Cartesian (global). A formulation in Cartesian coordinates seems to react

less sensitively to small deviations from smoothness in the grid.

Grid generation starts with specifying the cell faces on the boundaries (hull, water surface,

inlet, outlet, outer boundary). Then the internal cell nodes are interpolated. Various techniques

exist for this interpolation:

• Algebraic grid generation uses algebraic transformation and interpolation functions to

create the grid geometry. For complex geometries (like real ship hulls), the resulting

grid is often not smooth enough.

• Conformal mapping has been used for ships where the original mapping was enhanced by

additional transformations to ensure that for real ship geometries the grids (within

each two-dimensional section) were (nearly) orthogonal. However, this technique is

fundamentally limited to two dimensions, i.e. for cross-sections. Smoothness and

orthogonality in the longitudinal direction cannot be ensured automatically. Therefore,

these grid generation techniques have been replaced largely by methods that solve

a (simple) three-dimensional differential equation.
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• Grid generation based on differential equations solves first a (relatively simple) differential

equation subject to certain user-specified control functions or boundary conditions. The

most popular choice is the Poisson equation, i.e. the Laplace equation with a specified

non-zero function on the r.h.s. Thompson et al. (1985) describe such a method in detail

which allows the user to control distance and orientation of the grid lines by specifying

control functions. Poisson solvers create automatically smooth and orthogonal grids.

Solving the Poisson equation can be interpreted physically as determining lines of constant

temperature in the fluid where the ship is a heat source with heat distribution specified by

the control functions.

Staggered grids specify, for example, the pressure at the cell center and the velocities at the cell

faces. This improves automatically the numerical stability of the scheme, but is particularly

unsuited for multigrid acceleration. Therefore staggered grids have become unpopular. Instead,

other numerical techniques are employed to avoid pressure oscillations from cell to cell.

Grid generation is vital for the economic success of a CFD method. Grid techniques have been

successively developed to allow more flexibility and faster grid generation:

• Single-block structured grids. Structured grids arrange cells in a simple nx$ ny$ nz array

where each cross-section has the same number of cells, even though the cell shape and

size may differ arbitrarily. Structured grids allow easy automation of grid generation and

can easily be coupled with multigrid methods. They were traditionally employed because

they allow simple program structures. Neighboring cells can be determined by a simple

mathematical formula, avoiding the necessity for storing this information. However, this

approach to grid generation does not allow the arrangement of additional cells in areas

where the flow is changing rapidly. The choice is then either to accept insufficient accuracy

in some areas or unnecessarily many cells (and thus computational effort) for areas where

the flow is of little interest. In addition, complex ship geometries involving appendages are

virtually impossible to model with such a grid. At least, the resulting grid is usually not

smooth or involves highly skewed cells. As a result convergence problems are frequent.

• Block-structured grids. Block-structured grids combine various single-block grids. Each

block is then structured and easily generated. But the block-structured approach allows

some areas to discretize finer and others coarser. Blocks are also more easily adapted to

local geometries, allowing smoother grids with largely block-like cells which improve

convergence. The interpolation of results at each block requires some care, but techniques

have been developed that allow accurate interpolation even for non-matching block

interfaces, i.e. block interfaces where grid lines do not coincide. Block-structured grids are

still the most popular choice in industry projects, typically involving 20e50 blocks for ship

geometries.

• Chimera grids. Chimera was a fire-breathing (female) mythological monster that had

a lion’s head, a goat’s body, and a serpent’s tail. Chimera grids are arbitrarily assembled
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blocks of grids that overlap. They thus pose even fewer restrictions on grid generation and

appear to be a very good choice for grid generation in ships, even though the interpolation

between blocks is more complicated than for block-structured grids.

• Unstructured grids. Unstructured grids allow the largest flexibility in grid generation

(Fig. 1.6), but require more effort. Unstructured grid programs can also handle

structured or block-structured grids. One may then generate a simple grid and use adaptive

grid techniques which automatically generate unstructured grids in the computation.

Unstructured grids are popular, e.g. for aerodynamic flow analyses around superstructures

of ships. Here the complexity of the boundary geometry makes other grid generation

approaches at least very tedious. Adaptive grids and formal optimization procedures

(requiring fully automated grid generation) are trends that will make unstructured grids the

long-term preferred choice in many practical applications.

Figure 1.6:
Modern unstructured RANSE grid for ship with all appendages (one cross-section). Source: NUMECA

International.

Introduction 39



CHAPTER 2

Propellers

Chapter Outline
2.1. Introduction 41

2.2. Propeller Curves 44

2.3. Analysis of Propeller Flows 46
2.3.1. Overview of Methods 46

2.3.2. Momentum Theory 48

2.3.3. Lifting-Line Methods 50

2.3.4. Lifting-Surface Methods 52

2.3.5. Boundary Element Methods 55

2.3.6. Field Methods 56

2.4. Cavitation 56

2.5. Experimental Approach 60
2.5.1. Cavitation Tunnels 60

2.5.2. Open-Water Tests 60

2.5.3. Cavitation Tests 61

2.6. Propeller Design Procedure 62

2.7. Propeller-Induced Pressures 66

2.8. Unconventional Propellers 67

2.1. Introduction

Ships are predominantly equipped with ‘simple’ screw propellers. Special means of propulsion

are covered towards the end of this chapter.

We will limit ourselves in the following to ships equipped with propellers. Propellers turning

clockwise seen from aft are ‘right-handed’. In twin-screw ships, the starboard propeller is

usually right-handed and the port propeller left-handed. The propellers are then turning

outwards. The propeller geometry is given in technical drawings following a special

convention, or in thousands of offset points or spline surface descriptions, similar to the ship

geometry. The complex propeller geometry is usually characterized by a few parameters.

These include (Fig. 2.1):

• Propeller diameter D.

• Boss (or hub) diameter d.
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• Propeller blade number Z.

• Propeller pitch P.

A propeller may be approximated by a part of a helicoidal surface which in rotation screws its

way through the water. A helicoidal surface is generated as follows. Consider a line AB

perpendicular to a line AA0 as shown in Fig. 2.2. AB rotates around the axis of AA0 with
uniform angular velocity while moving along AA0 with uniform speed. AB then forms

a helicoidal surface. Its pitch is the distance AA0. A propeller with a flat face and radially

constant pitch would trace out a helicoidal surface. In reality, ship propellers often have neither

a radially constant pitch nor a flat face. Then averaging in the circumferential direction creates

a flat reference line to define the pitch as a function of the radius. Again averaging in a radial

direction may define an average pitch P used to describe the propeller globally. Alternatively,

the pitch at one radial position, typically 0.7R ¼ 0.35D, is taken as a single value to represent

the radial pitch distribution.

• Disc area A0 ¼ pD2/4.

• Projected area AP.

• The blade area can be projected on to a plane normal to the shaft yielding the projected

outline. Usually the area of the boss is not included.

Pitch P

A

B

A′

B′

Figure 2.2:
Helicoidal surface defining pitch
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• Expanded blade area AE. The expanded outline is obtained if the circumferential chord of

the blade is set out against the radius. The area of the formed outline is AE.

• Skew (back). The line of the half chord length of each radial cross-section of the propeller

is usually not a straight line, but curved back relative to the rotation of the blade. Skew is

usually expressed as the circumferential displacement of the propeller tip made non-

dimensional by the propeller diameter. Skew back evens out (to some extent) the influence

of a highly non-uniform wake field and reduces peak values of propeller-induced vibra-

tions. Modern ship propellers always have some skew back.

• Rake iG. The face of the propeller may be tilted versus the normal plane on the propeller

shaft. The tilt is usually backwards to increase the clearance between the blade tip and

the hull.

• Profile shape. A propeller section at a given radius is the intersection between the

blade and a circular cylinder of that radius. The section is then laid out flat

(developed) and displayed as a two-dimensional profile. Historically, the early

propeller designs had a flat face and circular cross-sections, which were then

completely described by the blade width and maximum thickness. Today’s profiles are

far more complicated, but again usually characterized by a few parameters. The

camber line is the line through the mid-thickness of the profile. If this line is curved,

the profile is ‘cambered’. The chord is the line joining the leading edge and the trailing

edge. The camber is the maximum distance between the camber line and the chord.

Profile sections are often defined by specifying the ordinates of the face and back as

measured from the camber line.

Some of these data are often given as non-dimensional ratios:

• d/D;

• AE/A0;

• P/D;

• iG.

The blade number Z is an important parameter for propeller-induced vibration. In general, odd

numbers Z feature better vibration characteristics than even numbers. High blade numbers

reduce vibration problems (due to less pronounced pressure peaks), but increase manufacturing

costs. For large ships, blade numbers of four to seven are typical. For small boats, blade

numbers of two to four are typical. The propellers for large ships are always tailored towards

the specific ship and involve extensive hydrodynamic analyses. The propellers for boats are

often mass-produced.

Typical extended blade area ratios are 0.3 < AE/A0 < 1.5. Area ratios above 1 mean

overlapping blades which are expensive to manufacture. AE/A0 is chosen such that the blade

load is kept low enough to avoid unacceptable cavitation. Therefore AE/A0 increases with

propeller load (thrust per propeller area A0). The propeller efficiency decreases with AE/A0
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since the increased area also increases frictional losses. Larger AE/A0 also often demands

higher blade numbers to avoid too small side ratios for the blades.

2.2. Propeller Curves

Thrust T and torque Q are usually expressed as functions of rpm n in non-dimensional form as:

KT ¼ T

r$n2$D4
(2.1)

KQ ¼ Q

r$n2$D5
(2.2)

The force T is made non-dimensional by the propeller disk area times the stagnation pressure

based on the circumferential speed, omitting a factor p2/8. The moment Q is made non-

dimensional by the additional length D, i.e. the propeller diameter.

The advance number J is defined as J ¼ VA/(nD). VA is the average inflow speed to the

propeller. The propeller open-water efficiency is derived from thrust and torque coefficients

and the advance number:

h0 ¼
T$VA

2p$n$Q
¼ KT$r$n

2$D4

KQ$r$n2$D4
$
VA

2p$n
¼ KT

KQ
$
J

2p
(2.3)

KT, KQ, and h0 are displayed over J. The curves are mainly used for propeller optimization and

to determine the operation point (rpm, thrust, torque, power) of the ship. While the use of

diagrams in education is still popular, in practice computer programs are almost exclusively

used in propeller design. These represent traditionally the curves as polynomials in the form:

KT ¼
X

CT$J
s$

�
P

D

�t

$

�
AE

A0

�u

$Zv (2.4)

with tables of coefficients:

CT s t u v

0.00880496 0 0 0 0
e0.20455403 1 0 0 0
. . . . .
e0.00146564 0 3 2 2

For standard Wageningen propellers the table consists of 49 coefficients for KT and 56

coefficients for KQ. While this may appear tedious, it is easy to program and fast to evaluate

either by higher programming languages or spreadsheets. Diagrams are still popular in practice

for documentation and visualization of tendencies.
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Another important open-water parameter is the thrust loading coefficient:

CTh ¼ T

r$V2
A$D

2$
p

8

(2.5)

This coefficient makes the thrust non-dimensional with the propeller disk area times stagnation

pressure based on the propeller inflow velocity. Sometimes CTh is also plotted explicitly in

propeller characteristics diagrams, but sometimes it is omitted as it can be derived from the

other quantities.

Figure 2.3 shows a typical propeller diagram. KT and KQ decrease monotonously with J. The

efficiency h0 has one maximum.

The open-water diagrams are based on stationary flow. They are only suitable for the case

when the ship moves steadily ahead. For cases where the speed is changed, so-called four-

quadrant diagrams are used. The name derives from a classification into four possible

combinations:

• ship has forward speed, propeller delivers forward thrust;

• ship has forward speed, propeller delivers reverse thrust;

• ship has reverse speed, propeller delivers forward thrust;

• ship has reverse speed, propeller delivers reverse thrust.

The results of corresponding open-water tests are displayed in diagrams as shown in Fig. 2.4.

The abscissa is the effective advance angle b defined by:

tan b ¼ VA

0:7$p$n$D
(2.6)

KT
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KQ

10 . KQ

Advance coefficient J

η
η

Figure 2.3:
Propeller diagram
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Displayed are non-dimensional modified thrust and torque coefficients:

C�
Th ¼

T

r$V2
RpD

2=8
(2.7)

C�
Q ¼ Q

r$V2
RpD

3=8
(2.8)

with VR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
A þ ð0:7pnDÞ2:

q
Four-quadrant diagrams require considerably higher experimental effort than regular open-

water diagrams. They are only available for some selected propellers. Four-quadrant diagrams

are mainly used in computer simulations of ship maneuvers.

2.3. Analysis of Propeller Flows

2.3.1. Overview of Methods

Propellers create thrust as each of the blades is subject to local lift forces. Ideally, this lift

is created with minimum drag losses. This basic goal is the same for other foil flows,
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e.g. airfoils, ship rudders, etc. Each propeller section resembles a cross-section of a foil.

However, ship propellers feature short and stubby blades with a much smaller span-to-chord

ratio than in aeronautical foils. The reason is that the limited diameter and the danger of

cavitation impose more severe restrictions on ship propellers.

The small span-to-chord ratio of a ship propeller blade is one of the reasons why ship propeller

flows are so complex. All two-dimensional approaches to model the flow around a propeller

blade (like lifting-line theories) introduce considerable errors that must be corrected

afterwards. Lifting-line approaches are still popular in propeller design as a preliminary step,

before more powerful, but also more expensive, three-dimensional methods are employed.

Many lifting-line codes in use today can be traced back to a fundamental formulation given by

Lerbs (1952, 1955).

The advent of high-skew propellers necessitated truly three-dimensional theories to model

the flow around the propeller. Empirical corrections for the lifting-line method could no

longer be applied satisfactorily to the new and more complex propeller geometries. The

approach was then to use lifting-line methods for an initial design serving as a starting

point for more sophisticated methods which could then serve to answer the following

questions:

• Will the propeller deliver the design thrust at the design rpm?

• What will be the propeller (open-water) efficiency?

• How will the propeller perform at off-design conditions?

• Will the pressure distribution be such that the propeller features favorable cavitation

characteristics?

• What are the time-dependent forces and moments from the propeller on the propeller

shaft and ultimately the shaft bearings?

• What are the propeller-induced pressures at the ship hull (exciting vibrations and

noise)?

These more sophisticated three-dimensional propeller theories used in practical propeller

design today are lifting-surface methods, namely vortex-lattice methods, which do not consider

the blade thickness, and boundary element methods or panel methods, which do consider

the blade thickness. Field methods are increasingly employed for advanced propulsors,

particularly for off-design conditions involving cavitation.

The main methods in increasing complexity are listed below with their respective advantages

and disadvantages:

• Momentum theory. The propeller is reduced to an actuator disk which somehow creates

a pressure jump in the flow. Thrust and corresponding delivered power are expressed by

increased velocities in the propeller plane and the contracted wake downstream of this

plane. This simple model is unsuitable for propeller design, but popular as a simple
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propeller model in RANSE ship computations and useful in understanding some basic

concepts of propeller flows.

þ Simple and fast; yields ideal efficiency hi
� Rotative and viscous losses not modeled; momentum theory is no method to design

propellers or analyze given propeller designs

• Lifting-line method. Propeller blade is reduced to radially aligned straight vortices (lifting

lines). The vortex strength varies over the radius. Free vortices are shed in the flow.

þ Proven in practice; suitable for initial design of propellers, rotative losses reflected in

model; viscous losses incorporated by empirical corrections

� Does not yield complete propeller geometry; cross-sections found, but angle of

incidence and camber require corrections; no simple way to consider skew

• Lifting-surface method, especially vortex-lattice method. Propeller blade is reduced to

a grid of horseshoe vortices; pressure distribution on the blade follows from Bernoulli’s

law from the induced velocities; pressure distribution yields forces and moments for

the whole propeller.

þ Blade modeled three-dimensionally; corrections only necessary for viscous effects;

good convergence to grid-independent solutions with grid refinement

�More complex programming; pressure distribution must be corrected at the propeller hub

• Boundary element method/panel method. Exact formulation of the potential theory

problem with source or dipole panels.

þ No simplifications besides the potential flow assumption; finite velocities in the hub

region

� Programming complex, especially for the Kutta condition; relatively large

number of dipole and/or source panels necessary; flow near propeller tip still not

well captured

• RANSE method. Field method formulation of the three-dimensional viscous flow.

þ Effective wake easily incorporated; viscous effects decreasing propeller efficiency

directly captured; flow well captured also near hub and tip of propeller

� Grid generation expensive; computation expensive; turbulence model questionable,

possibly requiring LES.

Dedicated treatment of propeller flow analysis methods, predominantly based on lifting-

surface and panel methods, can be found in, e.g., Breslin and Andersen (1994), Kinnas (1996),

Streckwall (1993, 1999), and Carlton (2007).

2.3.2. Momentum Theory

Momentum theory models the propeller as a simple actuator disk accelerating the flow in

the axial direction by somehow creating a pressure jump in the propeller plane. The

propeller is then seen as a continuous circular disk with infinite blades and AE/A0 ¼ 1. The
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model is too crude to be of any value in propeller design, but allows some valuable insight

into the global mechanisms of a propeller. The momentum theory regards inflow and

outflow of the propeller plane as the flow through a tube of varying cross-section, but

always of circular shape. Only the longitudinal velocity component is considered, i.e. the

velocity is a scalar quantity.

The inflow to the propeller is given by r$uA$AA, where AA is the cross-sectional area of the

considered propeller plane. The propeller induces a velocity jump to the outflow velocity uj and

the cross-sectional area of the ‘flow tube’ is Aj. The thrust T is the change in the momentum:

T ¼ r$uA$AA$ðuj � uAÞ (2.9)

Continuity requires Aj$uj¼AA$uA, i.e. the flow contracts after the propeller due to the higher

velocity (Fig. 2.5).

The velocity in the propeller plane is the average between the velocities far upstream and far

downstream of the propeller in this model. Bernoulli’s law couples the pressure to the velocity

yielding qualitatively the distribution shown in Figure 2.5.

The actuator disk yields an ideal efficiency for the propeller of:

Ship

p

uj

uA

x

x

Figure 2.5:
Momentum theory considers propeller flow as one-dimensional flow with sudden pressure jump

accelerating velocity from uA to uj

hi ¼
2uA

uj þ uA
(2.10)
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This formula can be interpreted as follows. The smaller the increase in velocity due to

the propeller, the better is the efficiency. If the velocity downstream is the same as the

velocity upstream, the efficiency would be an ideal hi ¼ 1. (But no thrust would be

produced.) The ideal efficiency can also be expressed in terms of the thrust loading

coefficient CTh as:

hi ¼
2

1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ CTh

p (2.11)

Thus a large thrust loading coefficient decreases the efficiency. The conclusion for practical

propeller design is that usually the propeller diameter should be chosen as large as possible to

increase the efficiency.

2.3.3. Lifting-Line Methods

Lifting-line methods still form a vital part of practical propeller design. They find the radial

distribution of loading optimum with respect to efficiency as a first step to determine the

corresponding blade geometry. Alternatively, the radial distribution of loading may be

specified to determine the corresponding blade geometry (Lerbs 1952, 1955). Of course, this

approach works only within limits. If unrealistic or too-demanding pressure distributions are

specified, either no solution is found or the error in the framework of the theory is so large that

the solution does not reflect reality.

Lifting-line methods for propellers were adapted from lifting-line theory for straight foils. We

shall therefore briefly review the lifting-line theory for straight foils.

A straight line of vorticity creates lift orthogonal to the direction of the vortex line and the

direction of the inflow (Fig. 2.6). Helmholtz’s first and second laws state:

1. The strength of a vortex line is constant along its length.

2. A vortex line must be closed; it cannot end in the fluid.

As a consequence, the vortex lines on a foil are bent downstream at the end of the foil. Far

downstream these vortex lines are closed again, but often ‘far downstream’ is interpreted

as ‘at infinity’, i.e. the vortex line forms a semi-infinite horseshoe vortex. The vortex

segment representing the foil is called the ‘bound’ vortex, as it always stays with the foil.

The two vortex segments swept downstream are the ‘trailing vortices’, also denoted as

axial vortices or tip vortices. The closing vortex segment far downstream is the ‘starting’

vortex.

In reality, the lift and thus the vorticity (vortex strength) are not constant over the foil span.

This can be considered by approximating the continuous lift by a number of discrete,

piecewise constant vortex segments. Each of these will then produce trailing vortices

(Fig. 2.7). In sum, the vortex segments form a ‘lifting line’ of (stepwise) variable vorticity.
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The trailing vortices induce a flow at the foil which is downward for positive lift. This

velocity is therefore called downwash and changes the effective inflow angle experienced by

each section of the foil.

The strengths of the individual vortex elements (each forming a closed or semi-infinite loop)

are determined by requiring that there is no flow through the foil at a corresponding number of

collocation points. This results in a system of linear equations which is solved numerically.

Once all vortex strengths are known, the velocities and pressures can be evaluated everywhere.

Lift and drag can then be computed.

For propellers, each blade is represented by one lifting line extending from hub to blade

tip. Typically the lifting lines are straight with skew and rake being neglected at this

point in the analysis. The proper end condition for the lifting line at the hub is unclear.

Usually, the hub is neglected and the vorticity is required to go to zero as at the blade tip.

This is called the ‘hubless propeller assumption’. Lerbs argued that, near the hub, the

blades are close enough together such that the positive pressure on the face of one blade is

canceled by the negative pressure on the back of the adjacent blade. However, in practice

Bound
vorticity

Trailing vorticity
x

z
y

Figure 2.7:
A better model represents the foil by a distribution of horseshoe vortices

Horseshoe
vortex Foil

Inflow

Lift

Figure 2.6:
Lifting-line theory is based on representing the foil by bound vortex and trailing vortices
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the lifting-line results near the hub, but also often near the blade, are unrealistic and are

then manually corrected (smooth connection to the rest of the lift distribution based on

human insight).

2.3.4. Lifting-Surface Methods

The discussion to substitute the lifting-line approach by lifting-surface theories dates back to

the 1950s, but the realization of this goal was initially impossible for real ship propeller

geometries due to insufficient computing power. The earliest lifting-surface attempts were

based on mode functions which prescribed continuous distributions of surface singularities.

At that time, the mode function approach was the ordinary procedure for solving lifting-line

or two-dimensional wing section problems and naturally it was tried first. For lifting surfaces

that had to fit propeller blades these mode functions needed a careful and complicated

mathematical treatment. Their ability to describe arbitrary blade geometries was poor. The

second generation of lifting-surface methods was developed around the late 1970s when

sufficient computer power became widely available (Kerwin 1986). These methods used

vortex lattices. Vortex-lattice methods are characterized by comparably simple mathematics.

They can handle arbitrary blade geometries, but neither considers the true blade thickness,

nor the propeller hub. This makes the theory of vortex-lattice methods more complicated than

panel methods, but reduces the number of unknowns and thus the computational effort

considerably. Despite the theoretical inferiority, vortex-lattice methods gave in benchmark

tests of the ITTC for propellers with moderate skew-back results of comparable quality to

panel methods. Figure 2.8 shows a typical discretization of the propeller blades and the wake.

The hub is not modeled, which leads to completely unrealistic results in the immediate

vicinity of the hub.

Vortex-lattice methods were extended in the 1990s to rather complicated propeller geometries,

e.g. contra-rotating propellers, and unsteady propeller inflow (nominal wake computations).

Cavitation may be simulated by additional singularities of both source and vortex type, but this

remains a rather coarse approximation of the real phenomenon.

A complete vortex-lattice method (VLM) can be established on the basis of the lifting-line

method just described. The lifting-line model was used to find a circulation G that corresponds

to a given resultant flow direction at the lifting line and is able to provide the predetermined

(design) thrust. With a vortex lattice instead of a lifting line, a model for the material blade is

inserted. One can now really investigate whether a given geometry corresponds to a desired

thrust, a task that is beyond the scope of a lifting-line theory.

Figure 2.9 shows a vortex-lattice system. The flow is generated by spanwise and

(dependent) streamwise line vortices. Control points are positioned inside the loops of the

vortex system. For steady flow, the vortex elements in the wake have the same strength in
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each spanwise segment. The vertical vortex lines then cancel each other and a semi-infinite

horseshoe vortex results. The most downstream control point is located at the trailing edge

behind the last streamwise vortex, which is a very robust measure to enforce the Kutta

condition.

Collocation point
Vortex line segment

Figure 2.9:
Allocation of vortex-lattice elements on propeller blade

Figure 2.8:
Vortex-lattice model of a propeller and trailing wakes
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The kinematic boundary condition (zero normal velocity in a blade-fixed coordinate system),

together with some basic relations between blade vortices and trailing vortices, is sufficient to

calculate blade surface pressures and thus propeller thrust and torque. Although the kinematic

condition is fulfilled on a zero-thickness blade, the influence of the blade thickness is not

excluded. The thin-wing theory provides a simple formula to derive a source system from the

slope of the section contours. This source system already enters the kinematic conditions and

serves to correct the angle of attack of the blade sections for the displacement effect of the

neighboring blades.

In most applications a ‘frozen’ vortex wake is used, i.e. the trailing vortex geometry is

fixed from the start. A more or less empirical relation serves to prescribe the pitch of the

helical lines. Since surface friction effects are not part of the solution, the forces and

moments from the vortex lattice must be corrected subsequently. This is usually achieved

by local section drag coefficients using empirical relations to express the Reynolds number

dependence.

Figure 2.10 shows a typical pressure distribution for a propeller blade cross-section. The

pressure coefficient can be decomposed into a mean value between both sides of the profile and

a difference Dcp. The pressure on the suction side is then obtained by subtracting Dcp from the

mean value, the pressure on the other side by adding Dcp. Lifting-surface methods arrange the

vortex and source elements on the mean chord surface of the blade. Following Bernoulli’s law,

the pressure can be computed from the velocities. This yields pressure distributions which

usually reproduce the actual pressure distributions quite well except for a narrow region at the

leading edge, which may extend to a length of approximately twice the nose radius. The

sources yield the average pressure distribution and the vortex elements induce the pressure

difference Dcp. As the source strengths are explicitly derived from the change of the profile

thickness in the longitudinal direction, the main problem is to determine the vortex strengths.
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Figure 2.10:
Pressure distribution on a propeller blade profile
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2.3.5. Boundary Element Methods

Panel methods were developed to overcome the disadvantage of an incomplete geometry

model. Panel methods also model the blade thickness and include the hub in the numerical

model. The development of panel methods for propellers was apparently not an easy task. After

the ship hull flow could be treated by panel methods it took another decade until the late 1980s

before the first successful panel approaches were established for propellers. The imple-

mentation of a robust Kutta condition is a decisive element of each propeller panel code, since

it controls torque and thrust. In principle, there exist many possibilities to create panel codes,

depending on panel type and the formulation of the problem (e.g. Kerwin et al. 1987). The

following panel types are found:

• dipole panels;

• source panels;

• mix of dipole panels and source panels.

The problem may be formulated as:

• direct formulation (potential formulation); potential itself is the unknown;

• indirect formulation (velocity formulation); source or dipole strength is unknown.

For indirect formulations, Kerwin et al. (1987) show how a dipole-based formulation can be

transformed to an equivalent vortex-based formulation.

The majority of the panel codes used for propellers follows Morino’s approach (Morino and

Kuo 1974, Morino 1975). Morino’s approach is a direct formulation, i.e. it solves directly for

the potential and determines velocities by numerical differentiation. The approach uses

exclusively dipole panels, which discretize the surfaces of the propeller blades, the hub, and

part of the wakes of each blade. The Kutta condition demands that at the trailing edge the

pressure difference between face and back should vanish. This couples the dipoles on the wake

to the dipoles on the propeller. The panels in the wake all have the same strength for steady flow

conditions. The pitch of the wake is either specified by largely empirical relations or

determined iteratively as part of the solution. The Kutta condition enforcing a vanishing

pressure jump at the trailing edge is a non-linear condition requiring an iterative solution. The

numerical implementation of the Kutta condition requires great care, since simplifications or

conceptual errors in the physical model may strongly affect the computed lift forces.

The main problems of these methods lie in:

• numerical realization of the Kutta condition (stagnation point at the trailing edge);

• numerical (accurate) determination of velocity and pressure fields.

In the 1990s, panel methods were presented that were also capable of solving the problem for

time-dependent inflow and ducted propellers (e.g. Kinnas 1996).
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2.3.6. Field Methods

The common procedure to run unsteady propeller vortex-lattice or panel methods contains an

inherent weakness. The ship is usually represented by the velocity field measured without the

propeller at the propeller plane, i.e. the nominal wake. But in a real ship, the propeller

rearranges the streamlines that reach the propeller plane, i.e. the propeller operates in the

effective wake. There are measures to correct the nominal wake, but it is doubtful if these treat

the details of the wake correctly.

No such complications arise in theory if viscous flow computations are employed. It is possible

to interactively couple viscous flow computations for the ship based on RANSE solvers with

potential flow computations for the propeller, e.g. vortex-lattice or panel methods. But

increasingly the preferred option is to solve the flow around hull, propeller, and rudder using

one RANSE model. The viscous flow representation for the propeller embedded in a viscous

model for the ship makes all problems from decoupling ship flow and propeller flow vanish. By

2010, only selected analyses have appeared, but eventually this approach is expected to

become standard for ship and propeller design.

Viscous flow computations are also able to deliver accurate flow details in the tip region of the

propeller blade. Typical propeller geometries require careful grid generation to assure

converged solutions. The warped propeller geometry makes grid generation particularly

difficult, especially for high-skew propellers.

2.4. Cavitation

Highvelocities result in lowpressures. If thepressure falls sufficiently low, cavities formandfill up

with air coming out of solution and by vapor. This phenomenon is called cavitation. The cavities

disappearwhen thepressure increases again. Theygrowandcollapse extremely rapidly, especially

if vapor is filling them. Cavitation involves highly complex physical processes with highly non-

linearmulti-phase flowswhich are subject to dedicated research by specialized physicists.Wewill

cover the topic only to the extent that any naval architect should know. For a detailed treatment of

cavitation for ship propellers, the reader is referred to the book by Isay (1989).

For ship propellers, the velocities around the profiles of the blade may be sufficiently high to

decrease the local pressures to trigger cavitation. Due to the hydrostatic pressure, the total

pressure will be higher on a blade at the 6 o’clock position than at the 12 o’clock position.

Consequently, cavitating propellers will then have regions on a blade where alternately

cavitation bubbles are formed (near the 12 o’clock position) and collapse again. The resulting

rapid succession of explosions and implosions on each blade will have various negative effects:

• vibration;

• noise (especially important for navy ships like submarines);
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• material erosion at the blade surface (if the bubble collapse occurs there);

• thrust reduction (Fig. 2.11).

Cavitation occurs not only at propellers, but everywhere where locally high velocities appear,

e.g. at rudders, shaft brackets, sonar domes, hydrofoils, etc.

Cavitation may be classified by:

• Location: tip cavitation, root cavitation, leading edge or trailing edge cavitation, suction

side (back) cavitation, face cavitation, etc.

• Cavitation form: sheet cavitation, cloud cavitation, bubble cavitation, vortex cavitation.

• Dynamic properties of cavitation: stationary, instationary, migrating.

Since cavitation occurs in regions of low pressures, it is most likely to occur towards the blade

tips where the local inflow velocity to the cross-sections is highest. But cavitation may also

occur at the propeller roots near the hub, as the angle of incidence for the cross-sections is

usually higher there than at the tip. The greatest pressure reduction at each cross-section profile

usually occurs between the leading edge and mid-chord, so bubbles are likely to form there

first.

In ideal water with no impurities and no dissolved air, cavitation will occur when the local

pressure falls below vapor pressure. Vapor pressure depends on the temperature (Fig. 2.12). At

15�C it is 1700 Pa. In real water, cavitation occurs earlier, as cavitation nuclei like microscopic

2

σ 22

σ 22

KT
KQ

10.K
Q

KT

J

Figure 2.11:
Influence of cavitation on propeller characteristics
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particles and dissolved gas facilitates cavitation inception. The cavitation number s is a non-

dimensional parameter to estimate the likelihood of cavitation in a flow:

s ¼ p0 � p

1

2
rV2

0

(2.12)

p0 is an ambient reference pressure and V0 a corresponding reference speed. p is the local

pressure. For s < sv (the cavitation number corresponding to vapor pressure pv) the flow will

be free of cavitation in an ideal fluid. In reality, one introduces a safety factor and sets a higher

pressure than vapor pressure as the lower limit.

Cavitation is predominantly driven by the pressure field in the water. Cavitation avoidance

consequently strives to control the absolute pressure minimum in a flow. This is achieved by

distributing the thrust on a larger area, either by increasing the diameter or the blade area ratio

AE/A0.

The most popular approach to estimate the danger of cavitation at a propeller uses Burill

diagrams. These diagrams can only give a rough indication of cavitation danger. For well-

designed, smooth propeller blades they indicate a lower limit for the projected area. Burill uses

the coefficient sc:
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Figure 2.12:
Vapor pressure as a function of temperature
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sc ¼ T

q20:7RAp
(2.13)

q0:7R ¼ 1

2
rV2

R (2.14)

VR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
A þ ð0:7pnDÞ2

q
(2.15)

VR is the absolute value of the local velocity at 0.7 of the propeller radius. VA is the inflow

velocity to the propeller plane. Ap is the projected propeller area. Burill uses as reference

pressure the atmospheric pressure plus the hydrostatic pressure at the propeller shaft:

p0 ¼ patm þ rgh (2.16)

The Burill diagram then yields limiting curves (almost straight) to avoid cavitation (Fig. 2.13).

The curves have been transformed into algebraic expressions and are also included in propeller

design programs. The upper limit for sc yields indirectly a minimum Ap which yields (for

Wageningen B-series propellers) approximately the expanded blade area:

AEz
Ap

1:067� 0:229ðP=DÞ (2.17)
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Burill diagram
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2.5. Experimental Approach

2.5.1. Cavitation Tunnels

Propeller tests (open-water tests, cavitation tests) are usually performed in cavitation tunnels.

A cavitation tunnel is a closed channel in the vertical plane recirculating water by means of an

impeller in the lower horizontal part. This way the high hydrostatic pressure ensures that even

for reduced pressure in the tunnel, the impeller itself will not cavitate. The actual test section

is in the upper horizontal part. The test section is provided with observation glass ports. The

tunnels are designed to give (almost) uniform flow as inflow to the test section. If just the

propeller is tested (with the driving shaft downstream), it is effectively tested in open water.

Larger circulation tunnels also include ship models, thus testing the propeller in the ship

wake. The ship models are sometimes shortened to obtain a thinner boundary layer in the

aftbody (which thus resembles more the boundary layer in a large-scale model).

Alternatively, sometimes grids are installed upstream to generate a flow similar to that of

a full-scale ship wake. This requires considerable experience and is still at best a good guess

at the actual wake field.

Vacuum pumps reduce the pressure in the tunnel and usually some devices are installed to

reduce the amount of dissolved air and gas in the water. Wire screens may be installed to

generate a desired amount of turbulence.

Cavitation tunnels are equipped with stroboscopic lights that illuminate the propeller inter-

mittently such that propeller blades are always seen at the same position. The eye then

perceives the propeller and cavitation patterns on each blade as stationary.

Usual cavitation tunnels have too much background noise to observe or measure the

noise-making or hydro-acoustic properties of a propeller, which are of great interest

for certain propellers, especially for submarines or antisubmarine combatants. Several

dedicated hydro-acoustic tunnels have been built worldwide to allow acoustical

measurements. The HYKAT (hydroacoustic cavitation tunnel) of HSVA is one of

these.

2.5.2. Open-Water Tests

Although in reality the propeller operates in the highly non-uniform ship wake, a standard

propeller test is performed in uniform flow yielding the so-called open-water characteristics,

namely thrust, torque, and propeller efficiency.

The model scale l for the model propeller should be the same as for the ship model in the

propulsion tests. For many propulsion tests, the ship model scale is determined by the stock

propeller, i.e. the closest propeller to the optimum propeller on stock at a model basin. The
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similarity laws (see Section 1.2, Chapter 1) determine for geometrical and Froude

similarity: �
VA

n$D

�
s

¼
�
VA

n$D

�
m

(2.18)

In other words, the advance number J¼ VA/(nD) is the same for model and full scale. J has thus

a similar role for the propeller as the Froude number Fn has for the ship. VA is the average

inflow speed to the propeller, n the propeller rpm, and D the propeller diameter. p$n$D is the

speed of a point at the tip of a propeller blade in the circumferential direction.

The Reynolds number for a propeller is usually based on the chord length of one blade at 0.7 of

the propeller radius and the absolute value of the local velocity VR at this point. VR is the

absolute value of the vector sum of inflow velocity VA and circumferential velocity:

VR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
A þ ð0:7pnDÞ2

q
(2.19)

Propeller model tests are performed for geometrical and Froude similarity. It is not possible to

keep Reynolds similarity at the same time. Therefore, as in ship model tests, corrections for

viscous effects are necessary in scaling to full scale. ITTC 1978 recommends the following

empirical corrections:

KTs ¼ KTm � 0:3$Z$
� c
D

�
r ¼ 0:7

$
P

D
$DCD (2.20)

KQs ¼ KQm þ 0:25$Z$
� c
D

�
r ¼ 0:7

$DCD (2.21)

c is the propeller blade chord length at 0.7R, R the propeller radius, DCD ¼ CDm � CDs is

a correction for the propeller resistance coefficient with:

CDm ¼ 2$
�
1þ 2

t

c

�
$

 
0:044

R
1=6
n

� 5

R
2=3
n

!
(2.22)

CDs ¼ 2$
�
1þ 2

t

c

�
$

�
1:89þ 1:62 log

� c
kp

���2:5

(2.23)

Here t is the (maximum) propeller blade thickness and Rn is the Reynolds number based on VR,

both taken at 0.7R. kp is the propeller surface roughness, taken as 3$10
e5 if not known otherwise.

2.5.3. Cavitation Tests

Cavitation tests investigate the cavitation properties of propellers. Experiments usually observe

the following similarity laws:

• Geometrical similarity, making the propeller as large as possible while still avoiding tunnel

wall effects.
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• Kinematical similarity, i.e. the same advance number in model and ship, Jm ¼ Js.

• Dynamical similarity would require that model and full-scale ship have the same

Froude and Reynolds numbers. Reynolds similarity is difficult to achieve, but the

water speed is chosen as high as possible to keep the Reynolds number high and

reduce scaling effects for the friction on the blades. Gravity effects are negligible in

propeller flows, i.e. waves usually play no role. Thus the Froude number may be

varied.

• Cavitation similarity requires the same cavitation numbers in model and full-scale ships.

The tunnel pressure is adjusted to give the same cavitation number at the propeller shaft

axis to approximate this condition.

• For similarity in bubble formation in cavitation, the Weber number should also be the same

in model and full scale:

�
r$V2

A$D

Te

�
m

¼
�
r$V2

A$D

Te

�
s

(2.24)

where Te is the surface tension and D the propeller diameter. This similarity law is usually

violated.

The cavitation tests are performed for given inflow velocity and cavitation number, varying

the rpm until cavitation on the face and back of the propeller is observed. This gives limiting

curves s ¼ s(J) for cavitation-free operation. The tests are often performed well beyond the

first inception of cavitation and then the extent and type of cavitation is observed, as often

designers are resigned to accept some cavitation, but individual limits of accepted cavitation

differ and are often subject to debate between shipowners, ship designers, and hydrodynamic

consultants. The tests are usually based entirely on visual observation, but techniques have

been developed to automatically detect and visualize cavitation patterns from video

recordings. These techniques substitute the older practice of visual observation and manual

drawings, making measurements by various persons at various times more objectively

comparable.

2.6. Propeller Design Procedure

Traditionally, propeller design was based on design charts. These charts were created by fitting

theoretical models to data derived from actual model or full-size tests and therefore their

number was limited. By and large, propeller design was performed manually. In contrast,

contemporary propeller design relies heavily on computer tools. Some of the traditional

propeller diagrams, such as for the Wageningen B-series of propellers, have been transformed

into polynomial expressions allowing easy interpolation and optimization within the traditional

propeller geometries. This is still a popular starting point for modern propeller design. Then,
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a succession of ever more sophisticated analysis programs is employed to modify and fine-tune

the propeller geometry.

Propeller design is an iterative process to optimize the efficiency of a propeller subject to more

or less restrictive constraints concerning cavitation, geometry, strength, etc. The severity of the

constraints depends on the ship type. For example, submarine propellers have strict constraints

concerning cavitation-induced noise. Subsequently the efficiencies of these propellers are

lower than for cargo ships, but the primary optimization goal is still efficiency. A formal

optimization is virtually impossible for modern propellers if the description of the geometry is

based on (some hundreds of) offsets, as the evaluation of the efficiency based on CFD requires

considerable time. Thus, while the word ‘optimization’ is often used, the final design is rather

‘satisficing’, i.e. a good solution satisfying the given constraints. However, parametric

description coupled with efficient CFD and optimization schemes had allowed formal propeller

optimization in industry by 2010.

Additional constraints are inherently involved in the design process, but often not explicitly

formulated. These additional constraints reflect the personal ‘design philosophy’ of a designer

or company and may lead to considerably different ‘optimal’ propellers for the same customer

requirements. An example of such a ‘design philosophy’ could be the constraint that no

cavitation should occur on the pressure side of the propeller. The following procedure will

reflect the design philosophy of HSVA as detailed in Reich et al. (1997). The overall procedure

will, however, be similar to any other state-of-the-art propeller design process. The main

engine influences the propeller design primarily through the propeller rpm and delivered

power. Modern turbo-charged diesels, almost exclusively used for cargo ships today, are

imposing a rather narrow bandwidth for the operating point (rpm/power combination) of the

propeller. We therefore limit ourselves to such cases where the rpm, the ship’s speed, and an

estimated delivered power PD are specified by requirement. This covers more than 90% of the

cases in practice.

The procedure follows a few main steps which involve model tests, analytical tools of

successive sophistication and power, and some experience in deciding trade-offs in conflict

situations:

1. Preparation of model

Known at this stage: experiments

rpm of the full-scale propeller ns
ship speed Vs

estimate of delivered power for the ship PD

ship hull form (lines plan)

classification society

often: number of blades Z

often: diameter of propeller D
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Generally, the customer specifies within small margins what power PD has to be delivered

at what speed Vs and what is the rpm of the (selected) main engine. While in theory such

a combination may be impossible to realize, in practice the shipyard engineers (i.e. the

customers) have sufficient experience to estimate a realistic power for a shipowner-

specified speed and rpm. The shipyard or another department in the model basin will

specify a first proposal for the ship lines. Often, the customer will also already determine

the number of blades for the propeller. A few simple rules gained from experience will

guide this selection, e.g. if the engine has an even number of cylinders, the propeller should

have an odd number of blades. The propeller of optimal efficiency can then be determined

automatically based on the Wageningen B-series by computer codes. The performance of

these older propellers is insufficient for today’s expectations and the propeller thus

determined will only be used as a starting point for the actual design. This procedure yields

the average (or representative) pitch-to-diameter ratio Pm/D and the diameter D. An upper

limit for the diameter is specified from the ship geometry. Sometimes the customer already

specifies the diameter, otherwise it is a result of the optimization. The expanded area ratio

AE/A0 is usually part of the optimization result, but may be restricted with respect to

cavitation if problems are foreseen. In this case, a limiting value for AE/A0 is derived from

Burill diagrams.

Then, from a database of stock propellers, the most suitable propeller is selected. This is

the propeller with the same number of blades, closest in Pm/D to the optimized propeller. If

several stock propellers coincide with the desired Pm/D, the propeller closest in AE/A0

among these is selected. A selection constraint comes from upper and lower limits for the

diameter of the stock propeller which are based on experience for the experimental

facilities. For example, for HSVA, the ship models may not exceed 11 meters in length to

avoid the influence of canal restrictions, but should be larger than 4 meters to avoid

problems with laminar flow effects. As the ship length is specified and the model scale for

propeller and ship must be the same, this yields one of the constraints for upper and lower

values of the diameter of the stock propeller. Usually, the search of the database is limited

to the last 300 stock propellers, i.e. the most recent designs.

The selected stock propeller then determines the model scale and the ship model may be

produced and tested. The output of the model tests relevant for the propeller designer is:

e nominal wake distribution (axial, tangential, and radial velocities in the propeller plane)

e thrust deduction fraction t

e effective wake fraction w

e relative rotative efficiency hR
e delivered power PD.

The delivered power PD is of secondary importance (assuming that it is close to the

customer’s estimate). It indicates how much the later propeller design has to strive for

a high efficiency. If the predicted PD is considerably too high, then the ship form has to be

changed and the tests repeated.
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2. Estimate effective wake distribution full scale

Known at this stage: all of the above and .
number of blades Z

diameter of propeller D

blade area ratio AE/A0

thrust deduction fraction t

effective wake fraction w

relative rotative efficiency hR
nominal wake field (axial, tangential, radial velocity

components)

Shipepropeller interaction is difficult to capture. The inflow is taken from experiments

and based on experience modified to account for scale effects (model/full-scale ship).

The radial distribution of the axial velocity component is transformed from the nominal

(without propeller action) value for the model to an effective (with propeller) value for

the full-scale ship. The other velocity components are assumed not to be affected.

Several methods have been proposed to perform this transformation. To some extent,

the selection of the ‘appropriate’ method follows rational criteria, e.g. one method is

based on empirical data for full ships such as tankers, another method for slender ships

such as container ships. But still the designer expert usually runs several codes, looks at

the results and selects the ‘most plausible’ based on ‘intuition’. The remaining

interaction effects such as thrust deduction fraction t and relative rotative efficiency hR
are usually taken as constant with respect to the results of ship model tests with

propellers.

3. Determine profile thickness according to classification society

Known at this stage: all of the above

Classification societies have simple rules to determine the minimum thickness of the foils.

The rules of all major classification societies are implemented in programs that adjust

automatically the (maximum) thickness of all profiles to the limit value prescribed by the

classification society.

4. Lifting-line and lifting-surface calculations

Known at this stage: all of the above and . . .

max. thickness at few radii

As additional input, default values are taken for profile form (NACA series), distribution of

chord length and skew. If this step is repeated at a later stage, the designer may deviate from

the defaults. At this stage, the first analytical methods are employed. A lifting-line method

computes the flow for a two-dimensional profile, i.e. the three-dimensional flow is

approximated by a succession of two-dimensional flows. This is numerically stable and

effective. The method needs an initial starting value for the circulation distribution. This is

taken as a semi-elliptic distribution. The computation then yields the optimal radial

distribution of the circulation. These results are directly used for a three-dimensional
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lifting-surface program. The lifting-surface code yields as output the radial distribution of

profile camber and pitch.

5. Smoothing results of Step 4

Known at this stage: all of the above and . . .

radial distribution of profile camber (estimate)

radial distribution of pitch (estimate)

The results of the three-dimensional panel code are generally not smooth and feature

singularities at the hub and tip of the propeller. The human designer deletes ‘stray’

points (point-to-point oscillations) and specifies values at hub and tip based on

experience.

6. Final hydrodynamic analysis

Known at this stage: all of the above (updated)

The propeller is analyzed in all operating conditions using a lifting-surface analysis

program and taking into account the complete wake distribution. The output can be

broadly described as the cavitational and vibrational characteristics of the propeller. The

work sometimes involves the inspection of plots by the designer. Other checks are already

automated. Based on his ‘experience’ (sometimes resembling a trial-and-error process),

the designer modifies the geometry (foil length, skew, camber, pitch, profile form and even,

as a last resort, diameter). However, the previous steps are not repeated and this step can be

treated as a self-contained module.

7. Check against classification society rules

Known at this stage: all of the above (updated)

A finite-element analysis is used to calculate the strength of the propeller under the

pressure loading. The von Mises stress criterion is plotted and inspected. As the analysis is

still limited to a radially averaged inflow, a safety margin is added to account for the real

inflow. In most cases, there is no problem. But if the stress is too high in some region

(usually the trailing edge), the geometry is adjusted and Step 6 is repeated. The possible

geometry modifications at this stage are minor and local; they have no strong influence on

the hydrodynamics and therefore one or two iterations usually suffice to satisfy the strength

requirements.

2.7. Propeller-Induced Pressures

Due to the finite number of blades the pressure field of the propeller is unsteady if taken at

a fixed point on the hull. The associated forces induce vibrations and noise. An upper limit for

the maximum pressure amplitude that arises on the stern (usually directly above the propeller)

is often part of the contract between shipyard and owner.

For many classes of ships the dominant source for unsteady hull pressures is the cavitation on

the propeller blades. The effect of cavitation in computations of propeller-induced pressures is
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usually modeled by a stationary point source positioned in the propeller plane. To assure

similarity with the propeller cavitation, the source must be given an appropriate volume

amplitude, a frequency of oscillation, and a suitable position in the propeller plane specified by

a radius and an angle. As the propeller frequency is rather high, the dominant term in the

Bernoulli equation is the time-derivative term. If mainly fluctuating forces from propeller-

induced hull pressures are of interest, the pressure is therefore usually sufficiently well

approximated by the term erft, where f denotes the potential on the hull due to the

perturbations from the propeller.

If pressures and forces induced by a fluctuating source on solid boundaries are to be

considered, the point source may be positioned underneath a flat plate to arrive at the simplest

problem of that kind. The kinematic boundary condition on the plate is ensured via an image

source of the same sign at the opposite side of the plate. For the pressure field on a real ship,

this model is too coarse, as a real ship aftbody does not look like a flat plate and the influence of

the free surface is neglected. Potential theory is still sufficient to solve the problem of a source

near a hull of arbitrary shape with the free surface present. A panel method (BEM) easily

represents the hull, but the free surface requires special treatment. The high frequency of

propeller rpm again allows a simplification of the treatment of the free surface. It is sufficient to

specify then at the free surface z ¼ z:

fðx; y; z ¼ z; tÞ ¼ 0 (2.25)

If the free surface is considered plane (z ¼ 0), f ¼ 0 can be achieved by creating a hull image

above the free surface and changing the sign for the singularities on the image panels. An

image for the source that represents the cavity (again of opposite sign in strength) has to be

introduced as well. The free surface can be considered in good approximation as a plane for

low Froude numbers, such as typically encountered for tankers and bulkers, but it is

questionable for moderate and high Froude numbers. A pronounced stern wave will have

a significant effect on the wetted areas at the stern.

The main problem of the above procedure is the reliability of calculated cavity volumes.

2.8. Unconventional Propellers

Special means of propulsion are covered in greater detail in Schneekluth and Bertram (1998)

and Carlton (2007). Unconventional propulsors have developed in various forms, for various

special applications:

• Nozzled propellers. The (Kort) nozzle is a fixed annular forward-extending duct around the

propeller. The propeller operates with a small gap between blade tips and nozzle internal

wall, roughly at the narrowest point. The nozzle ring has a cross-section shaped as
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a hydrofoil or similar section. Nozzled propellers have the following advantages and

disadvantages:

þ At high thrust-loading coefficients, better efficiency is obtainable. For tugs and pusher

boats, efficiency improvements of around 20% are frequently achievable. Bollard pull

can be raised by more than 30%.

þ The reduction of propeller efficiency in a seaway is lower for nozzle propellers than for

non-ducted propellers.

þ Course stability is substantially improved by the nozzle.

e Course-changing ability during astern operation is somewhat impaired.

e Owing to circulation in shallow water, the nozzle propeller tends to draw into itself

shingle and stones. Also possible is damage due to operation in ice. This explains

the rare application on seagoing ships.

e Due to the pressure drop in the nozzle, cavitation occurs earlier.

Nozzled propellers have been fitted frequently on tugs, fishing vessels, and inland water

vessels.

• Contra-rotating propellers (CRP). Rotational exit losses amount to about 8e10% in typical

cargo ships. Coaxial contra-rotating propellers (Fig. 3.15) can partially compensate these

losses, increasing efficiency by up to 6% (Isay 1964). To avoid problems with cavitation,

the after-propeller should have smaller diameter than the forward propeller. Contra-

rotating propellers have the following advantages and disadvantages:

þ The propeller-induced heeling moment is compensated (this is negligible for larger

ships).

þ More power can be transmitted for a given propeller radius.

þ The propeller efficiency is usually increased.

e The mechanical installation of coaxial contra-rotating shafts is complicated, expensive

and requires more maintenance.

e The hydrodynamic gains are partially compensated by mechanical losses in shafting.

Contra-rotating propellers are used on torpedoes due to the natural torque compensation.

They are also found in some motorboats. For normal ships, the task of boring out the outer

shafts and the problems of mounting the inner shaft bearings were not considered to be

justified by the increase in efficiency (in times of relatively cheap fuel), although in the

early 1990s some large tankers were equipped with contra-rotating propellers. The CRPs

should not be confused with the Grim wheel, where the ‘aft’ propeller is not driven by

a shaft. Unlike a CRP, the Grim wheel turns in the same direction as the propeller.

• Controllable-pitch propeller (CPP). CPPs with three to five blades are often used in

practice and feature the following advantages and disadvantages:

þ Fast stop maneuvers are possible.

þ The main engine does not need to be reversible.

þ The CPP allows one to drive the main generator with the main engine which is efficient

and cheap. Thus the electricity can be generated with the efficiency of the main engine
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and using heavy fuel. Different ship speeds can be driven with constant propeller rpm as

required by the generator.

e Fuel consumption is higher. The higher propeller rpm at lower speed is hydrodynamically

suboptimal. The CPP requires a bigger hub (0.3e0.32D). The pitch distribution is subop-

timal. The usual radial direction, almost constant, pitch would cause negative angles of

attack at the outer radii for reduced pitch, thus slowing the ship down. Therefore CPPs

usually have higher pitch at the outer radii and lower pitch in the inner radii. The higher

pitch in the outer radii necessitates also a larger propeller clearance.

e Higher costs for propeller.

• Azimuthing propellers. Azimuthing propellers (a.k.a. rudder propellers, slewable

propellers), usually equipped with nozzles, are not just a derivative of the well-

known outboarders for small boats. Outboarders can only slew the propeller by

a limited angle to both sides, while azimuthing propellers can cover the full 360�.
Turning the propeller by 180� allows reversing the thrust. This astern operation is much

more efficient than for conventional propellers turning in the reverse direction. By 2003,

rudder propellers were available for up to 4000 kW permanent power. Podded drives

housing an electric motor in the pod which drives the propeller(s) can be seen as

a special case of azimuthing propellers.

• Podded drives. Podded drives are characterized by two main features: there is an electric

motor inside a pod and the total unit is azimuthing. In 1990, the auxiliary vessel ‘Seiti’ was

the first ship to be equipped with a pod drive. Within only a decade, pod drives became the

dominant choice of propulsion for certain ship types. The hydrodynamic unit efficiency of

pod drives is approximately 5% lower than that of an identical conventional propeller with

a rudder as a unit. In many cases, in addition, some efficiency is lost for pod units, because

the pod propeller cannot have optimal diameter due to the torque limitation of the pod

motor. A small gain in propeller efficiency can be expected for twin pod arrangements

because the inflow to the propeller is more uniform (absence of shafts and shaft brackets).

This leads to better design conditions for the propeller and therefore to higher propeller

efficiencies.

Mewis (2001) gives advantages and disadvantages of pod drives:

þ More cargo space because the engine can be located more freely

þ Better maneuverability

þ Lower noise level

þ Low speeds are possible

þ Suited as booster drive in order to increase the speed

þ Less work expense in ship manufacturing

þ (Potentially) lower power requirement for twin screw ships

e Higher capital costs

e Diesel electric system required (power loss)

e Increased power requirement for single screw arrangements
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e Limitation in power (up to 32 MW in 2003)

e Limitation in speed (up to 30 knots in 2003).

The following order of suitability depending on ship type is given:

Very well suited: cruise liner, RoPax ferry, icebreaker

Well suited: supply vessel, bulker, tanker (single and twin screw)

Hardly suited: container vessel (single screw) < 3000 TEU

Not well suited: container vessel (twin screw)

Not feasible: container vessel (single screw) > 3000 TEU.

• Waterjets. Waterjets as alternative propulsive systems for fast ships, or ships operating in

extremely shallow water, are discussed by, e.g., Allison (1993), Kruppa (1994), and

Terswiga (1996). For high ship speed, restricted propulsor diameters and cavitation-free

operation, conventional propellers reach their limits. Since these problems are not

generally new, pumps were introduced as a propulsion system already in the early 1920s.

These ancient pump systems already included in principle the same components as

a modern waterjet: water inlets with inboard tubing system, the pump inducing energy to

the water and finally the nozzle, which deals with the propulsive power. With the early

waterjet systems, the steering of the vessel was performed separately by conventional

rudders, whereas in modern systems the steering and reversing systems are integrated in

the jets.

Special attention has to be paid to the shape of the waterjet inlets to avoid excessive

additional resistance, cavitation, and noise and on the other hand to ensure sufficient flow

of the pump.

Waterjet propulsion has become a popular propulsor choice for fast ships. The Royal Insti-

tution ofNavalArchitects has in addition hosted dedicated conferences onwaterjet propulsion

in 1994 and 1998 and the ITTC has a subcommittee reviewing the continuing progress on

waterjets.

The application of waterjets ranges from fast monohull car/passenger ferries to cata-

marans, motor yachts, speed boats, hydrofoils, and surface effect ships. Waterjets feature

the following advantages and disadvantages:

þ Higher efficiency at speeds above 35 knots (h > 0.8)

þ No appendage resistance for shafts, brackets, rudders

þ Operability in shallow water

þ More flexibility in locating main engines

þ Much smaller risk of cavitation

þ Excellent maneuvering

þ More thrust with smaller impeller diameter

þ Lower noise development (e7 to e10 dB (A9))

þ No need for reversing gear (except when gas turbines are used as prime mover)

e Drastically lower efficiency at lower speeds

e Larger weight of the waterjet unit incl. the added water mass within the pump
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e Power required to lift water from inlet to the nozzle level, especially for nozzle above

water line (hydrofoils)

e Higher cost for pumps and inlets

e Larger space requirements inside hull.

Model tests with waterjets are mostly performed at high model speeds and therefore the

available measuring time becomes relatively short so that the exact self-propulsion point is

difficult to match. Therefore it is common practice that different runs will be performed for

each speed with various impeller rpms. This procedure delivers a series of cross curves from

which the actual self-propulsion point can be found at the condition that the residuary force is

equal to the corresponding friction deduction.

• Surface-piercing propellers. Surface-piercing propellers operate only partially submerged,

typically with 30e50% of the propeller being surfaced. The propeller blades are designed

to operate such that the pressure face of the blade remains fully wetted and the suction side

is fully ventilated or dry. Surface-piercing propellers are used on fast craft, typically racing

boats and some fast naval vessels.

• VoitheSchneider propellers (cycloidal propellers). The VoitheSchneider propeller (VSP) is

a cycloidal drive that combines propulsion and maneuvering. The VSP consists of a circular

plate with an array of typically five vertical, foil-shaped blades. The plate is attached to the

bottom of the vessel (Fig. 2.14). It rotates around a vertical axis. Each blade in turn can rotate

around a vertical axis. An internal gear changes the angle of attack of the blades in sync with

the rotation of the plate, so that each blade can provide thrust in the same direction. The VSP

Figure 2.14:
VoitheSchneider propeller installed in a Voith water tractor tug. Source: Voith Turbo
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makes vessels highly maneuverable, as the thrust can be adjusted in magnitude and direction

arbitrarily without changing the engine’s rpm, almost instantaneously. VSPs are usually

arranged in tandem. It is widely used on tugs and ferries.

• Paddle-wheels. In the past, paddle-wheels played a large role in river boats, but have been

largely replaced now by propellers or waterjets.
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3.1. Resistance and Propulsion Concepts

3.1.1. Interaction Between Ship and Propeller

Any propulsion system interacts with the ship hull. The flow field is changed by the hull. The

propulsion system changes, in turn, the flow field at the ship hull. However, traditionally naval

architects have considered propeller and ship separately and introduced special efficiencies and

factors to account for the effects of interaction. While this decomposition is seen by many as an

important aid in structuring the complex problems of ship hydrodynamics, it also hinders

a system approach in design and can confuse as much as it can help. Since it is still the

backbone of our experimental procedures and ingrained in generations of naval architects,

the most important concepts and quantities are covered here. The hope is, however, that in the

future CFD will allow a more comprehensive optimization of the ship interacting with the

propeller as a whole system.

The general definition ‘power ¼ force $ speed’ yields the effective power

PE ¼ RT $Vs (3.1)

where RT is the total calm-water resistance of the ship excluding resistance of appendages

related to the propulsive organs. Sometimes the rudder is also excluded and treated as part of

the propulsion system. (This gives a glimpse of the conceptual confusion likely to follow from

different conventions concerning the decomposition. Remember that in the end the installed

power is to be minimized. Then ‘accounting’ conventions for individual factors do not matter.

What is lost in one factor will be gained in another.) Vs is the ship speed. PE is the power we

would have to use to tow the ship without a propulsive system.

Following the same general definition of power, we can also define a power formed by the

propeller thrust and the speed of advance of the propeller, the so-called thrust power:

PT ¼ T $VA (3.2)

The thrust T measured in a propulsion test is higher than the resistance RT measured in

a resistance test (without propeller). So the propeller induces an additional resistance:

1. The propeller increases the flow velocities in the aftbody of the ship which increases

frictional resistance.

2. The propeller decreases the pressure in the aftbody, thus increasing the inviscid resistance.

The second mechanism dominates for usual propeller arrangements. The thrust deduction

fraction t couples thrust and resistance:

t ¼ 1� RT

T
or Tð1� tÞ ¼ RT (3.3)
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where t is usually assumed to be the same for model and ship, although the friction component

introduces a certain scale effect. Empirical formulae for t are plagued by large margins of

uncertainty.

The propeller inflow, i.e. the speed of advance of the propeller VA, is generally slower than

the ship speed due to the ship’s wake. The wake is usually decomposed into three

components:

• Friction wake.Due to viscosity, the flow velocity relative to the ship hull is slowed down in

the boundary layer, leading in regions of high curvature (especially in the aftbody) to flow

separation.

• Potential wake. In an ideal fluid without viscosity and free surface, the flow velocity at the

stern resembles the flow velocity at the bow, featuring lower velocities with a stagnation

point.

• Wave wake. The steady wave system of the ship changes the flow locally as a result of the

orbital velocity under the waves. A wave crest above the propeller increases the wake

fraction, a wave trough decreases it.

For usual single-screw ships, the frictional wake dominates. Wave wake is only significant for

Fn > 0.3. The measured wake fraction in model tests is larger than in full scale as boundary

layer and flow separation are relatively larger in model scale. Traditionally, correction

formulae try to consider this overprediction, but the influence of separation can only be

estimated and this introduces a significant error margin. In validation studies, CFD has shown

good agreement with model test measurements. It is widely assumed that computing power and

turbulence modeling had improved by 2010 to the point where also full-scale computations

were expected to be accurate even though they could not be validated explicitly. Despite errors

in predicting the wake, the errors in predicting the required power remain small, as the energy

loss due to the wake is partially recovered by the propeller. However, the errors in predicting

the wake propagate completely when computing optimum propeller rpm and pitch.

The wake behind the ship without propeller is called the nominal wake. The propeller action

accelerates the flow field by typically 5e20%. The wake behind the ship with operating

propeller is called the effective wake. The wake distribution is either measured by

laser-Doppler velocimetry or computed by CFD. CFD also predicts the integral of the wake

over the propeller plane, the wake fraction w, well. The wake fraction is defined as:

w ¼ 1� VA

Vs
(3.4)

Empirical formulae to estimate w in simple design approaches consider only a few main

parameters, but actually the shape of the ship influences the wake considerably. Other

important parameters like propeller diameter and propeller clearance are also not explicitly

represented in these simple design formulae.
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The ratio of the effective power to the thrust power is called the hull efficiency:

hH ¼ PE

PT
¼ RT $Vs

T $VA
¼ 1� t

1� w
(3.5)

So the hull efficiency can be expressed solely by thrust deduction factor t and wake fraction w.

hH can be less or greater than 1. It is thus not really an efficiency, which by definition cannot be

greater than 100%.

The power delivered at the propeller can be expressed by the torque and the rpm:

PD ¼ 2p $ n $Q (3.6)

This power is less than the ‘brake power’ directly at the ship engine PB due to losses in

shaft and bearings. These losses are comprehensively expressed in the shafting efficiency

hS: PD ¼ hS $PB. The ship hydrodynamicist is not concerned with PB and can consider

PD as the input power in all further considerations of optimizing the ship hydrodynamics.

We use here a simplified definition for the shafting efficiency. Usually marine engineers

decompose hS into a shafting efficiency that accounts for the losses in the shafting only

and an additional mechanical efficiency. For the ship hydrodynamicist it suffices to know

that the power losses between engine and delivered power are typically 1.5e2%.

The losses from delivered power PD to thrust power PT are expressed in the (propeller)

efficiency behind ship hB: PT ¼ hB $PD.

The open-water characteristics of the propeller are relatively easy to measure and compute. The

open-water efficiency h0 of the propeller is, however, different to hB. Theoretically, the relative

rotative efficiency hR accounts for the differences between the open-water test and the

inhomogeneous three-dimensional propeller inflow encountered in propulsion conditions: hB¼
hR $ hB0. In reality, the propeller efficiency behind the ship cannot be measured and all effects

not included in the hull efficiency, i.e. wake and thrust deduction fraction, are included in hR. hR
again is not truly an efficiency. Typical values for single-screw ships range from 1.02 to 1.06.

The various powers and efficiencies can be expressed as follows:

PB > PD > PT > PE (3.7)

PE ¼ hH $PT ¼ hH $ hB $PD ¼ hH $ h0 $hR $PD ¼ hH $h0 $ hR $ hS $PB ¼ hD $ hS $PB

(3.8)

The propulsive efficiency hD collectively expresses the hydrodynamic efficiencies:

hH $ h0 $ hR.

3.1.2. Decomposition of Resistance

As the resistance of a full-scale ship cannot be measured directly, our knowledge about the

resistance of ships comes from model tests. The measured calm-water resistance is usually
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decomposed into various components, although all these components interact and most of them

cannot be measured individually. The concept of resistance decomposition is thought to help in

designing the hull form as the designer can focus on how to influence individual resistance

components. Larsson and Baba (1996) give a comprehensive overview of modern methods of

resistance decomposition (Fig. 3.1).

The total calm-water resistance of a new ship hull can be decomposed into:

• Friction resistance. Due to viscosity, directly at the ship hull water particles ‘cling’ to the

surface and move with ship speed. A short distance away from the ship, the water particles

already have the velocity of an outer, quasi-inviscid flow. The region between the ship

surface and the outer flow forms the boundary layer. In the aftbody of a container ship with

Rn z 109, the boundary layer thickness may be 1 m. The rapid velocity changes in the

normal direction in the boundary layer induce high shear stresses. The integral of the shear

stresses over the wetted surface yields the friction resistance.

• Viscous pressure resistance. A deeply submerged model of a ship will have no wave resis-

tance, but its resistance will be higher than just the frictional resistance. The form of the

ship induces a local flow field with velocities that are sometimes higher and sometimes

lower than the average velocity. The average of the resulting shear stresses is then higher.

Also, energy losses in the boundary layer, vortices and flow separation prevent an increase

to stagnation pressure in the aftbody as predicted in ideal fluid theory. Full ship forms have

a higher viscous pressure resistance than slender ship forms.

Total resistance RT

Residual resistance RR

Form effect on skin friction

Pressure resistance RP Friction resistance RF

Wave resistance RW Viscous pressure resistance RPV

Wavemaking
resistance RWM

Wavebreaking
resistance RWM

Viscous resistance  RV

Total resistance  RT

Skin friction resistance RFO
(equivalent flat plate)

Figure 3.1:
Resistance decomposition
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• Wave resistance. The ship creates a typical wave system which contributes to the total

resistance. In the literature, the wave system is often (rather artificially) decomposed

into a primary and a secondary wave system:

1. Primary wave system (Fig. 3.2)

In an ideal fluid with no viscosity, a deeply submerged body would have zero resistance

(D’Alembert’s paradoxon). The flowwould be slower at both ends of the body and faster

in the middle. Correspondingly at each end, the pressure will be higher than average,

reaching at one point stagnation pressure, and the pressure in the middle will be lower

than average. Now imagine a body consisting of the ship hull below the calm-water

surface and itsmirror image at the calm-water surface (Fig. 3.3). This double bodywould

create a certain pressure distribution at the symmetry plane (calm-water surface) in an

infinite ideal fluid. Following Bernoulli’s equation, we could express a corresponding

surface elevation (wave height) distribution for this pressure distribution, yielding wave

crests at the ship ends and a longwave trough along themiddle. This is called the primary

wave system. The shape of the primary wave system is speed independent, e.g. the

locations of maxima, minima, and zero crossings are not affected by the speed. The

vertical scale (wave height) depends quadratically on the speed.

2. Secondary wave system (Fig. 3.4)

At the free surface, a typical wave pattern is produced and radiated downstream. Even if

we assume an ideal fluid with no viscosity, this wave pattern will result in a resistance.
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Figure 3.2:
‘Primary’ wave system
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Figure 3.3:
Double-body flow
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The wave pattern consists of transverse and divergent waves. In deep water, the wave

pattern is limited to a wedge-shaped region with a half-angle of 19.5�. This angle is
independent of the actual shape of the ship. On shallow water, the half-angle widens to

90� (for depth Froude number Fnh ¼ 1.0) and then becomes more and more narrow for

supercritical speeds above Fnh ¼ 1. The ship produces various wave patterns which

interfere with each other. The main wave patterns are created where strong changes in

the geometry near the water surface occur, i.e. at the bulbous bow, the bow, the forward

shoulder, the aft shoulder, and the stern. The wave length l depends quadratically on the

ship speed. Unfavorable Froude numbers with mutual reinforcement between major

wave systems, e.g. bow and stern waves, should be avoided. This makes, e.g., Fn ¼ 0.4

an unfavorable Froude number. The interference effects result in a wave resistance curve

with humps and hollows. If the wave resistance coefficient is considered, i.e. the wave

resistance is made non-dimensional by an expression involving the square of the speed,

the humps and hollows become very pronounced.

In reality, the problem is more complex:

• The steepness of waves is limited. The pressure in the ‘primary wave system’ changes

rapidly at the ship ends enforcing unrealistically steep waves. In reality, waves break

here and change the subsequent ‘secondary wave pattern’. At Froude numbers around 0.25

usually considerable wave-breaking starts, making this Froude number often unfavorable,

although many textbooks recommend it as favorable based on the above interference

argument for the ‘secondary wave pattern’.

• The free surface also results in a dynamic trim and sinkage. This also changes the wave

pattern. Even if the double-body flow around the dynamically trimmed and sunk ship is

computed, this is not really the ship geometry acting on the fluid, as the actually wetted
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Figure 3.4:
‘Secondary’ wave system
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surface (wave profile) changes the hull. The double-body flow model breaks down

completely if a transom stern is submerged, but dry at design speed. This is the case for

many modern ship hulls.

The wave resistance cannot be properly estimated by simple design formulae. It is usually

determined in model tests. Although efforts to compute the wave resistance by theoretical

methods date backmore than 100 years, the problem is still not completely solved satisfactorily.

The beginning of computational methods is usually seen with the work of the Australian

mathematician Michell, who in 1898 proposed an integral expression to compute the wave

resistance. Today, boundary element methods have become a standard tool to compute the

‘wave resistance problem’, but the accurate prediction of thewave resistance only came close to

a satisfactory solution by the end of the 1990s. Even then, problems remained with breaking

waves and the fundamental dilemma that in reality ship resistance exists only as a whole

quantity. Its separation into components is merely a hypothesis to facilitate analysis, but the

theoretically cleanly divided resistance components interact and require a comprehensive

approach for a completely satisfactory treatment. Free-surface RANSE has made a great deal of

progress possible in this respect, despite some remaining problems in capturing accurately

breaking waves and spray formation at the ship’s bow (Peric and Bertram 2011).

Computational methods for the analysis of the wave resistance will be discussed in detail in

Section 3.5.1.

3.2. Experimental Approach

3.2.1. Towing Tanks and Experimental Set-Up

Despite the ever-increasing importance of numerical methods for ship hydrodynamics, model

tests in towing tanks are still seen as an essential part in the design of a ship to validate the

power requirements in calm water, which form a fundamental part of each contract between

shipowner and shipyard.

We owe the modern methodology of predicting a ship’s resistance to William Froude, who

presented his approach in 1874 to the predecessor of the Royal Institution of Naval Architects

in England. His hypothesis was that the ship resistance is divisible into frictional and

wavemaking resistance, with the wavemaking resistance following his ‘law of comparison’

(Froude similarity). This ingenious concept allowed Froude to show, for the first time, how the

resistance of a full-scale ship may be determined by testing scale models. His success

motivated building the first model basin in 1879 in Torquay, England. Soon further model

basins followed in Europe and the USA.

Tests are usually performed in towing tanks, where the water is still and the model is towed by

a carriage. (Alternatively, tests can also be performed in circulating tanks, where the model is
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still and the water moves.) The carriage in a towing tank keeps its speed with high precision.

The model is kept on course by special wires at the ship ends. Usually, models are free to trim

and sink. After the initial acceleration, some time has to pass before a stationary state is

reached. Then the remaining measuring time is determined by the remaining towing tank

distance and the deceleration time of the carriage. Therefore, towing tanks are usually several

hundred meters long to allow sufficient measuring time (in most cases).

The model size is determined by a number of boundary conditions:

• The model should be as large as possible to minimize viscous scale effects, especially

concerning laminar/turbulent flow and flow separation.

• The model should be small enough to avoid strength problems (both internal strength of the

model and loads on the test carriage).

• The model should be small enough such that the corresponding test speed can be achieved

by the carriage.

• The model should be small enough to avoid noticeable effects of restricted water in the test

basin.

This leads to a bandwidth of acceptable model sizes. Typically models for resistance and

propulsion tests have a size 4 m � Lm � 10 m. Model scales range between 15 � l � 45. In

practice, often the selected stock propeller decides the exact model scale.

Tests are performed keeping Froude similarity, i.e. Froude numbers of model and full scale are

the same. The Reynolds numbers differ typically by two orders of magnitude. The scale effect

(error of not keeping the Reynolds similarity) is then partially compensated by empirical

corrections.

Models operate at considerably lower Reynolds numbers. (Typically for models Rn z 107 and

for full-scale ships Rn z 109.) This means that in the model the transition from laminar to

turbulent flow occurs relatively further aft. As a consequence, the resistance would be more

difficult to scale. Therefore, the model is equipped with artificial turbulence stimulators (sand

strip, studs, or trip wire) in the forebody. One assumes that the transition from laminar to

turbulent flow occurs at a length corresponding to Rn ¼ 0.5 $ 106 from the stem. In practice,

often the turbulence stimulators are located somewhat further aft. Then the reduced resistance

due to the longer laminar flow compensates (at least partially) the additional resistance of the

turbulence stimulators.

The models are made of special paraffin wax or special tropical wood that hardly changes

volume and shape with time or temperature. Wax models are cheaper, but less robust. Wooden

models receive a smooth finish of paint. Yellow is the preferred color for regular models as this

color contrasts nicely with the (blackish) water, which is important for visual observations, e.g.

of the wave profile. For icebreakers, often for similar purposes, red is the preferred color as it

appears to be a good compromise for contrasts of water and ice.
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3.2.2. Resistance Test

Resistance tests determine the resistance of the ship without propeller (and often also without

other appendages; sometimes resistance tests are performed for both the ‘naked’ hull and the

hull with appendages). Propulsion tests are performed with an operating propeller and other

relevant appendages. A problem is that the forces on appendages are largely driven by viscosity

effects with small to negligible gravity effects. As Reynolds similarity is violated, the forces

cannot be scaled easily to full scale. For ships with large and unusual appendages, the margins

of errors in prediction are thus much larger than for usual hulls, where experience helps in

making appropriate corrections.

The model is towed by weights and wires (Fig. 3.5). The main towing force comes from the

main weight G1. The weight G2 is used for fine-tuning:

RT ¼ G1 � G2 sin a (3.9)

The sign is positive if the vertical wire moves aft. The angle a is determined indirectly by

measuring the distance on the length scale. Alternatively, modern experimental techniques also

use strain gauges as these do not tend to oscillate as the wire-weight systems do.

The model test gives the resistance (and power) for towing tank conditions:

• (usually) sufficiently deep water;

• no seaway;

• no wind;

• fresh water at room temperature.

This model resistance has to be converted for a prediction of the full-scale ship. To do this

conversion several methods are outlined in the following chapters, namely:

Course
keeper

Measuring
mass

Measuring scale

Sand strip
(turbulence stimulator)

V

RT

RT

G1 G2

G2

Figure 3.5:
Experimental set-up for resistance test
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• Method ITTC 1957;

• Method of HugheseProhaska;

• Method ITTC 1978;

• Geosim method of Telfer.

The most important of these methods in practice is the method ITTC 1978. Resistance tests are

also used to measure the nominal wake, i.e. the wake of the ship without propeller.

Measurements of the nominal wake are usually limited to the propeller plane. The local

velocities were traditionally measured by pitot tubes. Laser-Doppler velocimetry also allows

non-intrusive measurements of the flow field. The results are usually displayed as contour lines

of the longitudinal component of the velocity (Fig. 3.6). These data play an important role in

the design of a propeller. For optimizing the propeller pitch as a function of the radial distance

from the hub, the wake fraction is computed as a function of this radial distance by integrating

the wake in the circumferential direction:

wðrÞ ¼ 1

2p

Z2p
0

wðr;fÞ df (3.10)

The wake field is also used in evaluating propeller-induced vibrations.
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Figure 3.6:
Results of wake measurement
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3.2.3. Method ITTC 1957

The resistance of the hull is decomposed as:

RT ¼ RF þ RR (3.11)

RF is the frictional resistance, RR the residual resistance. Usually the resistance forces are

expressed as non-dimensional coefficients of the form:

ci ¼ Ri

1

2
rV2

s S
(3.12)

S is the wetted surface in calm water, Vs the ship speed. The resistance coefficient of the ship is

then determined as:

cTs ¼ cFs þ cR þ cA ¼ cFs þ ðcTm � cFmÞ þ cA (3.13)

The index s again denotes values for the full-scale ship, the index m values for the model. cR is

assumed to be independent of model scale, i.e. cR is the same for model and full scale. The

model test serves primarily to determine cR. The procedure is as follows:

1. Determine the total resistance coefficient in the model test:

cTm ¼ RTm

1

2
rmV

2
mSm

(3.14)

2. Determine the residual resistance, the same for model and ship:

cR ¼ cTm � cFm (3.15)

3. Determine the total resistance coefficient for the ship:

cTs ¼ cR þ cFs þ cA (3.16)

4. Determine the total resistance for the ship:

RTs ¼ cTs $
1

2
rsV

2
s Ss (3.17)

The frictional coefficients cF are determined by the ITTC 1957 formula:

cF ¼ 0:075

ðlog10Rn � 2Þ2 (3.18)
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This formula already contains a global form effect, increasing the value of cF by 12%

compared to the value for flat plates (Hughes formula).

Historically cAwas a roughness allowance coefficient which considered that the model was

smooth while the full-scale ship was rough, especially when ship hulls were still riveted.

However, with the advent of welded ships cA sometimes became negative for fast and big ships.

Therefore, cA is more appropriately termed the correlation coefficient. cA encompasses

collectively all corrections, including roughness allowance, but also particularities of the

measuring device of the model basin, errors in the modeleship correlation line, and the method.

Model basins use cA not as a constant, but as a function of the ship size, based on experience.

The correlation coefficient makes predictions from various model basins difficult to compare

and may in fact be abused to derive overly optimistic speed predictions to please customers.

Formulae for cA differ between various model basins and shipyards. Examples are Table 3.1 and:

cA ¼ 0:35 $ 10�3 � 2 $ Lpp $ 10
�6 (3.19)

3.2.4. Method of HugheseProhaska

This approach decomposes the total resistance (coefficient) as follows:

cT ¼ ð1þ kÞ $ cF0 þ cw (3.20)

Both form factor (1 þ k) and wave resistance coefficient cw are assumed to be the same for

model and full scale, i.e. independent of Rn. The model test serves primarily to determine the

wave resistance coefficient. The procedure is as follows:

1. Determine the total resistance coefficient in the model test as for the ITTC 1957 method:

cTm ¼ RTm

1

2
rmV

2
mSm

(3.21)

Table 3.1: Recommended values for cA

Lpp (m) cA

50e150 0.00035e0.0004
150e210 0.0002
210e260 0.0001
260e300 0
300e350 e0.0001
>350 e0.00025
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2. Determine the wave resistance coefficient, the same for model and ship:

cw ¼ cTm � cF0m $ ð1þ kÞ (3.22)

3. Determine the total resistance coefficient for the ship:

cTs ¼ cw þ cF0s $ ð1þ kÞ þ cA (3.23)

4. Determine the total resistance for the ship:

RTs ¼ cTs $
1

2
rsV

2
s Ss (3.24)

The frictional coefficients cF0 for flat plates are determined by Hughes’ formula:

cF ¼ 0:067

ðlog10Rn � 2Þ2 (3.25)

The correlation coefficient cA differs fundamentally from the correlation coefficient for the

ITTC 1957 method. Here cA does not have to compensate for scaling errors of the viscous

pressure resistance. ITTC recommends universally cA ¼ 0.0004.

The HugheseProhaska method is a form factor method. The form factor (1 þ k) is assumed to

be independent of Fn and Rn and the same for model and ship. The form factor is determined by

assuming:

cT
cF0

¼ ð1þ kÞ þ a
F4
n

cF0
(3.26)

Model test results for several Froude numbers (e.g. between 0.12 and 0.24) serve to determine

a in a regression analysis (Fig. 3.7).

3.2.5. Method of ITTC 1978

This approach is a modification of the HugheseProhaska method. It is generally more accurate

and also considers the air resistance. The total resistance (coefficient) is again written in a form

factor approach:

cTs ¼ ð1þ kÞcFs þ cw þ cA þ cAA (3.27)

cw is the wave resistance coefficient, assumed to be the same for model and ship, i.e.

independent of Rn. cFs is the frictional coefficient, following the ITTC 1957 formula. cA is

the correlation coefficient, which depends on the hull roughness:

cA $ 10
3 ¼ 105 $

ffiffiffiffiffiffiffiffi
ks
Loss

3

r
� 0:64 (3.28)
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where ks is the roughness of the hull and Loss is the wetted length of the full-scale ship. For new

ships, a typical value is ks/Loss ¼ 10e6, i.e. cA ¼ 0.00041.

cAA considers globally the air resistance as follows:

cAA ¼ 0:001 $
AT

S
(3.29)

where AT is the frontal area of the ship above the waterline and S the wetted surface.

The model test serves primarily to determine the wave resistance coefficient. The procedure is

similar to the procedure for HugheseProhaska, but the frictional coefficient is determined

following the ITTC 1957 formula instead of Hughes’ formula. The form factor is also

determined slightly differently:

cT
cF

¼ ð1þ kÞ þ a $
Fn
n

cF
(3.30)

Both n and a are determined in a regression analysis.

3.2.6. Geosim Method of Telfer

Telfer proposed in 1927 to perform model tests with families of models which are

geometrically similar, but have different model scale. This means that tests are performed

at the same Froude number, but different Reynolds numbers. The curve for the total

resistance as a function of the Reynolds number is then used to extrapolate to the full-scale

Reynolds number.
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Figure 3.7:
Extrapolation of form factor
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Telfer plotted the total resistance coefficient over log Rn
e1/3. For each model, a curve of the

resistance is obtained as a function of Fn. Points of the same Froude number for various model

scales are connected by a straight line which is easily extrapolated to full scale.

Telfer’s method is regarded as the most accurate of the discussed prediction methods and

avoids theoretically questionable decomposition of the total resistance. However, it is used

only occasionally for research purposes as the costs for the model tests are too high for

practical purposes.

3.2.7. Propulsion Test

Propulsion tests are performed to determine the power requirements, but also to supply wake

and thrust deduction, and other input data (such as the wake field in the propeller plane) for the

propeller design. The ship model is then equipped with a nearly optimum propeller selected

from a large stock of propellers, the so-called stock propeller. The actual optimum propeller

can only be designed after the propulsion test. The model is equipped with a propulsive drive,

typically a small electro-motor (Fig. 3.8).

The tests are again performed for Froude similarity. The total resistance coefficient is then

higher than for the full-scale ship, since the frictional resistance coefficient decreases with

increasing Reynolds number. This effect is compensated by applying a ‘friction deduction’

force. This compensating force is determined as follows (see Section 3.2.5):

FD ¼ 1

2
r $V2

m $ Sm $ ðð1þ kÞðcFm � cFsÞ � cA � cAAÞ (3.31)

The propeller then has to produce a thrust that has to compensate the total resistance RT minus

the compensating force FD. The propulsion test is conducted with constant speed. The rpm of the

propeller is adjusted such that the model is in self-propelled equilibrium. Usually the speed of the

towing tank carriage is kept constant and the rpm of the propeller varied until an equilibrium is

Acceleration and
retardation clutch

Mechanical
dynamometer

FD

Trim
meter

FP

Model

AP

Propeller
dynamometer

Electr.
motor

Carriage

Figure 3.8:
Experimental set-up for propulsion test

88 Chapter 3



reached. A propeller dynamometer then measures thrust and torque of the propeller as a function

of speed. In addition, dynamical trim and sinkage of the model are recorded. The measured

values can be transformed from model scale to full scale by the similarity laws: speed

Vs ¼
ffiffiffi
l

p
$Vm, rpm ns ¼ nm=

ffiffiffi
l

p
, thrust Ts ¼ Tm $ ðrs=rmÞ $ l3, torque Qs ¼ Qm $ ðrs=rmÞ $ l4.

A problem is that the propeller inflow is not geometrically similar for model and full scale due to

the different Reynolds number. Thus the wake fraction is also different. Also, the propeller rpm

should be corrected to be appropriate for the higher Reynolds number of the full-scale ship.

The scale effects on thewake fraction are attempted to be compensated by the empirical formula:

ws ¼ wm $
cFs
cFm

þ ðt þ 0:04Þ $
�
1� cFs

cFm

�
(3.32)

t is the thrust deduction coefficient and is assumed to be the same for model and full scale.

The evaluation of the propulsion test requires the resistance characteristics and the open-water

characteristics of the stock propeller. There are two approaches:

1. ‘Thrust identity’ approach. The propeller produces the same thrust in a wake field of wake

fraction w as in open water with speed Vs(1 e w) for the same rpm, fluid properties, etc.

2. ‘Torque identity’ approach. The propeller produces the same torque in a wake field of wake

fraction w as in open water with speed Vs(1 e w) for the same rpm, fluid properties, etc.

The ITTC standard is the ‘thrust identity’ approach. It will be covered in more detail in the next

chapter on the ITTC 1978 performance prediction method.

The results of propulsion tests are usually given in diagrams, as shown in Fig. 3.9. Delivered

power and propeller rpm are plotted over speed. The results of the propulsion test prediction

are validated in the sea trial of the ship introducing necessary corrections for wind, seaway, and

shallow water. The diagrams contain not only the full-load design condition at trial speed, but

also ballast conditions and service speed conditions. Service conditions feature higher

resistance, reflecting the reality of the ship after some years of service: increased hull

roughness due to fouling and corrosion, added resistance in seaway and wind.

3.2.8. ITTC 1978 Performance Prediction Method

The ITTC 1978 performance prediction method (IPPM78) has become a widely accepted

procedure to evaluate model tests. It combines various aspects of resistance, propulsion, and

open-water tests. These are comprehensively reviewed here. Further details may be found in

Section 3.2.5, Section 3.2.7, and Section 2.5, Chapter 2. The IPPM78 assumes that the

following tests have been performed yielding the corresponding results:

resistance test RTm ¼ f ðVmÞ
open-water test Tm ¼ f ðVAm; nmÞ
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Qm ¼ f ðVAm; nmÞ
propulsion test Tm ¼ f ðVm; nmÞ

Qm ¼ f ðVm; nmÞ
RT is the total resistance, V the ship speed, VA the average inflow speed to the propeller, n the

propeller rpm, KT the propeller thrust coefficient, and KQ the propeller torque coefficient.

Generally, m denotes model, s full scale.

The resistance is evaluated using the ITTC 1978 method (for single-screw ships) described in

Section 3.2.5:

1. Determine the total resistance coefficient in the model test:

cTm ¼ RTm

1

2
rmV

2
mSm

(3.33)

2. Determine the frictional resistance coefficient for the model following ITTC 1957:

cFm ¼ 0:075

ðlog10Rnm � 2Þ2 (3.34)

The Reynolds number of the model is Rnm ¼ VmLosm/nm, where Los is the wetted length of

the model. Los is the length of the overall wetted surface, i.e. usually the length from the tip

of the bulbous bow to the trailing edge of the rudder.
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Figure 3.9:
Result of propulsion test
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3. Determine the wave resistance coefficient, same for model and ship:

cw ¼ cTm � ð1þ kÞcFm (3.35)

The determination of the form factor (1 þ k) is described below.

4. Determine the total resistance coefficient for the ship:

cTs ¼ cw � ð1þ kÞcFs þ cA þ cAA (3.36)

cFs is the frictional resistance coefficient following ITTC 1957, but for the full-scale ship.

cA is a correlation coefficient (roughness allowance). cAA considers the air resistance:

cA ¼
�
105

ffiffiffiffiffiffiffiffi
ks
Loss

3

r
� 0:64

�
$ 10�3 (3.37)

ks is the roughness (¼ 1.5 $ 10e4 m) and Loss the wetted length of the ship.

cAA ¼ 0:001
AT

Ss
(3.38)

AT is the frontal area of the ship above the water, Ss the wetted surface.

5. Determine the total resistance for the ship:

RTs ¼ cTs $
1

2
rsV

2
s Ss (3.39)

The form factor is determined in a least square fit of a and n in the function:

cTm
cFm

¼ ð1þ kÞ þ a $
Fn
n

cFm
(3.40)

The open-water test gives the thrust coefficient KT and the torque coefficient KQ as functions

of the advance number J:

KTm ¼ Tm
rmn

2
mD

4
m

KQm ¼ Qm

rmn
2
mD

5
m

J ¼ VAm

nmDm

(3.41)

Dm is the propeller diameter. The model propeller characteristics are transformed to full scale

(Reynolds number correction) as follows:

KTs ¼ KTm þ 0:3 $ Z $
c

Ds
$
Ps

Ds
$DCD (3.42)

KQs ¼ KQm � 0:25 $ Z $
c

Ds
$DCD (3.43)

Z is the number of propeller blades, Ps /Ds the pitchediameter ratio, Ds the propeller diameter

in full scale, and c the chord length at radius 0.7D.

DCD ¼ CDm � CDs (3.44)
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This is the change in the profile resistance coefficient of the propeller blades. These are

computed as:

CDm ¼ 2

�
1þ 2

tm
cm

� 
0:044

R
1=6
nco

� 5

R
2=3
nco

!
(3.45)

t is the maximum blade thickness, c the maximum chord length. The Reynolds number

Rnco ¼ Vcocm/nm at 0.7Dm, i.e. Vco ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
Am þ ð0:7pnmDmÞ2

q
.

kp is the propeller blade roughness, taken as 3 $ 10e5 if not otherwise known.

The evaluation of the propulsion test requires the resistance and open-water characteristics.

The open-water characteristics are denoted here by the index fv. The results of the propulsion

test are denoted by pv:

CDs ¼ 2

�
1þ 2

ts
cs

��
1:89þ 1:62 log10

cs
kp

��2:5

(3.46)

Thrust identity is assumed, i.e. KTm,pv ¼ KTm,fv. Then the open-water diagram can be used to

determine the advance number Jm. This in turn yields the wake fraction of the model:

wm ¼ 1� JmDmnm
Vm

(3.47)

The thrust deduction fraction is:

t ¼ 1þ FD � RTm

Tm
(3.48)

FD is the force compensating for the difference in resistance similarity between model and full-

scale ship:

FD ¼ 1

2
r $V2

m $ S $ ðð1þ kÞðcFm � cFsÞ � cA � cAAÞ (3.49)

With known Jm the torque coefficient KQm,fv can also be determined. The propeller efficiency

behind the ship is then:

hbm ¼ KTm;pv

KQm;pv
$
Jm
2p

(3.50)

The open-water efficiency is:

h0m ¼ KTm;fv

KQm;fv
$
Jm
2p

(3.51)
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This determines the relative rotative efficiency:

hR ¼ hbm

h0m
¼ KQm;fv

KQm;pv
$
KTm;fv

KTm;fv
(3.52)

While t and hR are assumed to be the same for ship and model, the wake fraction w has to be

corrected:

ws ¼ wm
cFs
cFm

þ ðt þ 0:04Þ
�
1� cFs

cFm

�
(3.53)

A curve for the parameter KT/J
2 as function of J is introduced in the open-water diagram for the

full-scale ship. The design point is defined by:�
KT

J2

�
s

¼ Ts

rs $D
2
s $V

2
As

¼ Ss
2D2

s

$
cTs

ð1� tÞð1� wsÞ2
(3.54)

The curve for KT/J
2 can then be used to determine the corresponding Js. This in turn

determines the torque coefficient of the propeller behind the ship KQs ¼ f(Js) and the

open-water propeller efficiency h0s ¼ f(Js). The propeller rpm of the full-scale propeller

is then:

ns ¼ ð1� wsÞ $Vs

Js $Ds

(3.55)

The propeller torque in full scale is then:

Qs ¼ KQs

hR
rs $ n

2
s $D

2
s (3.56)

The propeller thrust of the full-scale ship is:

Ts ¼
�
KT

J2

�
s

$ J2s $ rs $ n
2
s $D

4
s (3.57)

The delivered power is then:

PDs ¼ Qs $ 2p $ ns (3.58)

The total propulsion efficiency is then:

hDs ¼ h0 $ hR $ nHs (3.59)
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3.3. Additional Resistance Under Service Conditions

The model test conditions differ in certain important points from trial and service conditions

for the real ship. These include effects of:

• appendages;

• shallow water;

• wind;

• roughness;

• seaway.

Empirical corrections (based on physically more or less correct assumptions) are then used to

estimate these effects and to correlate measured values from one state (model or trial) to

another (service). The individual additional resistance components will be briefly discussed in

the following.

• Appendages

Model tests can be performed with geometrically properly scaled appendages. However,

the flow around appendages is predominantly governed by viscous forces and would

require Reynolds similarity. Subsequently, the measured forces on the appendages for

Froude similarity are not properly scaled up to the real ship. Appendages may be tested

separately and often the resistance of the appendages is scaled separately and added in

a prediction for the full-scale ship. Unfortunately, this procedure does not account for

interaction between hull and appendages and also introduces considerable error margins.

Fortunately, most ships have only a few appendages and errors in estimating their

resistance can be accepted. For unconventional ships with many and complex appendages,

the difficulties in estimating the resistance of the appendages properly leads to a larger

margin of uncertainty for the global full-scale prediction.

Schneekluth and Bertram (1998) compiled some data from shipbuilding experience:

• Properly arranged bilge keels contribute only 1e2% to the total resistance of ships.

However, trim and ship motions in seastates increase the resistance more than for

ships without bilge keels. Thus, in evaluation of model tests, a much higher increase of

resistance should be made for ships in ballast condition.

• Bow thrusters, if properly designed and located, do not significantly increase

resistance. Transverse thrusters in the aftbody may increase resistance by 1e6%.

• Shaft brackets and bossings increase resistance by 5e12%. For twin-screw ships with

long propeller shafts, the resistance increase may be more than 20%.

• Rudders increase resistance little (~1%) if in the neutral position and improve

propulsion. But moderate rudder angles may increase resistance already by 2e6%.

• Shallow water

Shallow water increases friction resistance and usually also wave resistance. Near the

critical depth Froude number Fnh ¼ 1, the resistance is strongly increased. Figure 3.10
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allows estimating the speed loss for weak shallow-water influence. The figure follows

Schlichting’s hypothesis that the wave resistance is the same if the wave lengths of the

transversal waves are the same. Similar, but more sophisticated, diagrams are still popular

in practice. For strong shallow-water influence, a simple correction is impossible as

wave-breaking, squat and deformation of the free surface introduce complex physical

interactions. In this case, only model tests or CFD may help.

In numerical simulations (CFD), the inclusion of shallow water is relatively simple.

Boundary element methods based on Rankine elements use mirror images of the elements

with respect to the water bottom. The image elements have the same strength as the original

elements. This automatically yields zero normal velocity on the water bottom due to

symmetry. The analytical inclusion of the bottom in Green function methods is more

difficult, but also feasible. Field methods discretize the fluid domain to the water bottom and

enforce a suitable boundary condition there. Shallow-water flows often feature stronger

non-linearities than deep-water flows, making them in turn more difficult to solve

numerically. CFD is much better suited to predict squat (dynamic trim and sinkage) in

restricted waters than empirical formulae or even model tests.

• Wind

Wind resistance is important for ships with large lateral areas above the water level, e.g.

container ships and car ferries. Fast and unconventional ships, e.g. air-cushioned vehicles,
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Figure 3.10:
Percentage loss of speed in shallow water (Lackenby 1963); Am ¼ midship section area,

H ¼ water depth, V 2/(gH) ¼ Fnh
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also require the contribution of wind or air resistance. Schneekluth and Bertram (1998)

give simple design estimates with empirical formulae. Usually wind tunnel tests are the

preferred choice for a more accurate estimate, as they are fast and cheap to perform. CFD is

not yet competitive, as grid generation is so far too time-consuming and expensive for most

applications. However, several prototype applications have shown the capability of CFD to

compute air flow about complex ship and offshore geometries with good results. As costs

for grid generation will decrease, CFD may also increasingly substitute for wind tunnel

tests.

• Roughness

The friction resistance can increase considerably for rough surfaces. For new ships, the

effect of roughness is included in the ITTC line or the correlation constant. The problem of

correlating roughness and resistance is insufficiently understood. Model tests try to produce

a hull surface as smooth as possible. As a rule, CFD does not consider roughness at all.

Coating roughness is best defined by the average maximum peak-to-trough in a 50mm

sample length, measured along the hull surface (Swain 2010). This value can be measured

using a hull roughness analyzer instrument. The mean roughness is obtained by making

typically 10e15 of these measurements in one pass. It is recommended that at least 100

locations distributed around the hull are measured and the values combined to get an average

hull roughness (AHR) value. The AHR can then be used to correct the resistance coefficient,

following ITTC (1990):

Dcf ¼
 
44

" ffiffiffiffiffiffiffiffiffiffi
AHR

L

3

r
� 10R�1=3

n

#
þ 0:125

!
$ 10�3 (3.60)

This formula is valid for coatings with roughness values up to 225 microns. According to this

formula, a rough hull surface (without fouling) may increase the frictional resistance by up to

5%. Fouling can increase the resistance by much more. Swain (2010) gives an example for the

required power increase for a frigate at 15 knots, using the Naval Ships’ Technical Manual

(NSTM) rating:

NSTM rating Description
Increase in

required power

0 Hydraulically smooth surface 0%
0 Typical as applied antifouling coating 2%

10e20 Deteriorated coating or light slime 11%
30 Heavy slime 21%

40e60 Small calcareous fouling or weed 35%
70e80 Medium calcareous fouling 54%
90e100 Heavy calcareous fouling 86%
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Fouling is estimated to be a serious problem. Munk and Kane (2009) found (based on statistical

data of 10 years) that some 20% of the world’s fleet are in poor condition with added resistance

due to fouling in excess of 50% of the total resistance.

• Seaway

The added resistance of a ship in a seaway is generally determined by computational

methods and will be discussed in more detail in the chapters treating ship seakeeping. Such

predictions for a certain region or route depend on the accuracy of seastate statistics, which

usually introduce a larger error than the actual computational simulation. Ship size is

generally more important than ship shape. Schneekluth and Bertram (1998) give simple

design estimates for the speed loss due to added resistance in waves.

3.4. Fast Ships

3.4.1. Fast Monohulls

Most fast monohulls operate at Froude numbers 0.3 < Fn < 1.7. There is a considerable

overlap in operational speed ranges for various fast ship hull forms, but care should be taken in

selecting the appropriate hull form. For example, planing hulls operated at Fn < 0.6 require

more power than round-bilge non-planing hulls of the same displacement.

The most common representatives of fast monohulls are:

• Displacement ships. Typical examples are corvettes, frigates, and working boats. The hulls

are characterized by straight V-shaped sections in the forebody, slender waterlines, round

bilge with decreasing radius going to the transom stern and centerline skeg. They are

frequently fitted with an integrated trim wedge. The LCB (longitudinal center of buoy-

ancy) positions usually lie between 2% and 3% aft of Lpp/2 for larger ships. Displacement

ships operate up to Fn ¼ 0.4e0.6, i.e. they approach only the beginning of the planing

condition. Advantages of this hull form are good seakeeping behavior, good course-

keeping ability, and e if the vessel operates above the resistance hump e relatively low

dynamic trim at top speed. The steep run of the power curve at higher speeds, caused by the

fact that little hydrodynamic lift is produced, is the main disadvantage and determines the

operational limits of this type.

• Semi-displacement ships. Typical examples are patrol boats, special navy craft, pleasure

yachts, pilot boats, etc. Semi-displacement ships achieve higher speeds than displace-

ment ships due to increased dynamical lift and corresponding reduction in resistance.

Vessels can reach the planing condition with speeds of up to Fn z 1. The course-changing

and course-keeping behavior is similar to that of pure displacement ships. The seakeeping

is in general good. At high speeds, roll-induced transverse instability can arise under

certain circumstances.
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• Planing hulls. Typical examples are fast patrol boats, racing boats, search and rescue

boats, and fast small passenger ferries. Planing hull designs should normally be used

for high-speed vessels only. The stations have straight sections and knuckle lines

(with a bilge knuckle running from the stem over the entire length to the transom),

relatively large deadrise angles in the forebody decreasing further aft to approxi-

mately L/2 and continuing at nearly constant angles of not less than 10� to the

transom. Early planing hull designs with warped deadrise are not common today. The

forward part of the longitudinal knuckle is designed to work as a spray rail. Trim

wedges with adjustable tabs are often installed to control the dynamic trim. These

become less effective for Fn > 1 as there is generally a reduction in dynamic trim in

that speed range. The typical advantages of this hull form develop at speeds Fn > 1.

The seakeeping qualities of these vessels are not as good as for displacement and

semi-displacement hulls. This disadvantage can be partially compensated by selecting

relatively high L / B (L / B z 7e8) and deadrise angles s > 10� in the aft part. The

high-speed stability problem of semi-displacement hulls may also occur with planing

hulls.

The power requirements of fast ships can be estimated following Bertram and Mesbahi (2004),

who derived formulae based on graphs given by Fritsch and Bertram (2002). The resistance of

high-speed vessels is primarily a function of the vessel’s displacement, wetted length and

surface, speed and additionally breadth for planing hulls. Therefore significant parameters are

the slenderness L /V1/3 and the specific resistance RT /V. The total resistance RT is decomposed

as usual:

RT ¼ RF þ RR (3.61)

RF ¼ cF $
r

2
$V2 $ S (3.62)

RR ¼ RW þ RAPP þ RAA þ RPARAS (3.63)

The wetted surface S is defined at rest except for planing hulls as described in more detail

below; cF follows ITTC’57 with Reynolds number based on Lwl. The appendage

resistance RAPP, the air and wind resistance RAA, and the parasitic resistance RPARAS

(resistance of hull openings such as underwater exhaust gas exits, scoops, zinc anodes,

etc.) can be estimated globally with 3e5% RF for a projected vessel, but the

determination of RR (which includes wave, wave-making, spray and viscous pressure or

separation resistance) is more difficult. It is common practice to take data from one of the

systematical series, e.g. Bailey (1976) or Blount and Clement (1963). However, these

prediction methods are time-consuming and semi-empirical formulae are more helpful for

design engineers.

RAA can be calculated following empirical formulae given in Section 3.6.
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Considering the propulsive efficiencies yields the necessary engine power PB from the

effective power PE:

PB ¼ PE

hD $hM
(3.64)

hM ¼ 95% is a typical mechanical efficiency of gearbox and shaft bearings. The propulsive

efficiency is hD ¼ hH $hR $ h0. Since hH z 1 and hR z 1 for these hull forms, the main

influence is the propeller efficiency h0. Modern propeller designs and waterjet propulsion

systems can reach values of more than 70% under good operational conditions.

The power may be predicted for conventional fast ships as follows:

• Planing hulls. Different test series are available for the necessary reliable power prediction

in the early design phase. The most useful is the DTMB Series 62 (Blount and Clement

1963). More recently, HSVA formulae offer a simple estimate (Fritsch and Bertram 2002):

PB ¼ 0:7354 $

�
D $V

765:2
þ B2

C $V3

1051:1

�
(3.65)

BC [m] is the mean of the maximum beam at chines and the chine beam at the

transom. V [kn] is the speed and PB [kW] the brake power. BC can be estimated in the

design stage by:

BC ¼ 0:215 $D0:275 (3.66)

D [t] is the displacement mass.

• Semi-displacement hulls. The procedure for estimating resistance and power is very similar

as for planing hulls. The NPL High Speed Round Bilge Displacement Hull Series (Bailey

1976) is available to aid the selection of main dimensions, lines design, resistance, and

power prediction. This series also deals with examples for practical application. A simple

estimate following HSVA is (Bertram and Mesbahi 2004):

RT ¼ CTV $
r

2
$V2 $V2=3 (3.67)

CTV is a function of the Froude number, given by the following relations:

For 0.002 < CTV < 0.005, 0.4 < Fn < 1.2:

CTV ¼ c0 þ c1 $ sig ½b0 þ b1 $ sigða10 þ a11 $ x1 þ a12 $ x2Þ
þ b2 $ sigða20 þ a21 $ x1 þ a22 $ x2Þ þ b3 $ sigða30 þ a31 $ x1 þ a32 $ x2Þ
þ b4 $ sigða40 þ a41 $ x1 þ a42 $ x2Þ þ b5 $ sigða50 þ a51 $ x1 þ a52 $ x2Þ�

(3.68)
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x1 ¼ 1:125 $Fn � 0:4 x2 ¼ 0:299 $ CTV � 0:5481

a10 ¼ 0:07700 a11 ¼ �5:28009 a12 ¼ 1:58541

a20 ¼ �4:15170 a21 ¼ �4:40526 a22 ¼ 1:49122

a30 ¼ 0:49661 a31 ¼ 2:49719 a32 ¼ � 5:00270

a40 ¼ �12:78673 a41 ¼ 13:63660 a42 ¼ �0:00639

a50 ¼ 1:38547 a51 ¼ �29:74828 a52 ¼ �0:04912

b0 ¼ �1:04511 b1 ¼ 5:51238 b2 ¼ �0:98215

b3 ¼ �2:13594 b4 ¼ 4:56969 b5 ¼ �6:46482

c0 ¼ 0:02688 c1 ¼ 0:0522

For 0.0025 < CTV < 0.007, 0.2 < Fn < 0.45:

CTV ¼ c0 þ c1 $ sig ½b0 þ b1 $ sigða10 þ a11 $ x1 þ a12 $ x2Þ
þ b2 $ sigða20 þ a21 $ x1 þ a22 $ x2Þ
þ b3 $ sigða30 þ a31 $ x1 þ a32 $ x2Þ
þ b4 $ sigða40 þ a41 $ x1 þ a42 $ x2Þ�

(3.69)

x1 ¼ 3 $Fn � 0:55 x2 ¼ 0:1992 $CTV � 0:44642
a10 ¼ 2:47120 a11 ¼ �4:70440 a12 ¼ �0:71328
a20 ¼ 2:80191 a21 ¼ �5:08604 a22 ¼ �0:80876
a30 ¼ 0:53110 a31 ¼ �2:42700 a32 ¼ �0:61778
a40 ¼ 0:15070 a41 ¼ 0:85700 a42 ¼ 0:72333
b0 ¼ 0:89195 b1 ¼ �1:74315 b2 ¼ �1:91516
b3 ¼ �0:80806 b4 ¼ 0:60328
c0 ¼ 0:019134 c1 ¼ 0:05333

For frigates and corvettes, for 0.0016 < CTV < 0.0029, 0.25 < Fn < 0.8:

CTV ¼ c0 þ c1 $ sig ½b0 þ b1 $ sigða10 þ a11 $ x1 þ a12 $ x2Þ
þ b2 $ sigða20 þ a21 $ x1 þ a22 $ x2Þ þ b3 $ sigða30 þ a31 $ x1 þ a32 $ x2Þ
þ b4 $ sigða40 þ a41 $ x1 þ a42 $ x2Þ þ b5 $ sigða50 þ a51 $ x1 þ a52 $ x2Þ�

(3.70)

x1 ¼ 1:636 $Fn � 0:359 x2 ¼ 0:75541 $CTV � 1:1959

a10 ¼ �5:38402 a11 ¼ 16:26584 a12 ¼ �0:6375

a20 ¼ �2:84961 a21 ¼ 9:28172 a22 ¼ �1:9176

a30 ¼ �3:62339 a31 ¼ �4:52883 a32 ¼ 6:16248

a40 ¼ 1:91471 a41 ¼ �3:14575 a42 ¼ 2:17611

a50 ¼ 0:93425 a51 ¼ �11:05182 a52 ¼ 1:45755

b0 ¼ �1:1453 b1 ¼ 3:40313 b2 ¼ �3:32619

b3 ¼ 1:88172 b4 ¼ 1:22925 b5 ¼ �3:5398

c0 ¼ 0:01331 c1 ¼ 0:04177
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Since the value found for the effective power is valid for the bare hull only, allowances for

RAPP and RAA must be added. RAPP can be calculated directly, e.g. Bailey (1976), or

estimated from statistical data:

Two propellers:

RAPP=RT ½%� ¼ c0 þ c1 $ sig ½b0 þ b1 $ sigða10 þ a11 $ x1Þ þ b2 $ sigða20 þ a21 $ x1Þ� (3.71)

x1 ¼ 0:6544 $Fn þ 0:0338
a10 ¼ �7:3461 a11 ¼ 14:1181 a20 ¼ �3:5455 a21 ¼ 13:3944
b0 ¼ 2:9959 b1 ¼ 4:0700 b2 ¼ �6:8369
c0 ¼ 7:0235 c1 ¼ 8:7183

Three propellers:

RAPP=RT ½%� ¼ c0 þ c1 $ sig ½b0 þ b1 $ sigða10 þ a11 $ x1Þ þ b2 $ sigða20 þ a21 $ x1Þ� (3.72)

x1 ¼ 0:6453 $Fn þ 0:0477
a10 ¼ �4:231 a11 ¼ 15:0686 a20 ¼ �7:375 a21 ¼ 14:0019
b0 ¼ 2:7373 b1 ¼ �6:4811 b2 ¼ 4:0462
c0 ¼ 10:7197 c1 ¼ 12:5462

Four propellers:

RAPP=RT ½%� ¼ c0 þ c1 $ sig ½b0 þ b1 $ sigða10 þ a11 $ x1Þ þ b2 $ sigða20 þ a21 $ x1Þ� (3.73)

x1 ¼ 0:6859 $Fn � 0:007964
a10 ¼ 3:7972 a11 ¼ �16:4323 a20 ¼ 5:9647 a21 ¼ �11:98701
b0 ¼ 0:3437 b1 ¼ 6:2153 b2 ¼ �3:7455
c0 ¼ 14:2334 c1 ¼ 16:4206

These formulae do not include interference effects from the individual parts of the

appendages.

Appendages play a special role for fast ships. Many fast displacement, semi-displacement, and

also planing hulls are characterized by moderate to severe spray generation. The spray comes

from the bow wave rising up the hull with speed. This is particularly caused by the relatively

blunt waterlines and hard buttock forward when L/V1/3 is unfavorably small or the beam too

large. Severe spray generation has a number of disadvantages:

• The increase of frictional (due to larger wetted surface) and wave-making resistance.

• Wetness of deck and superstructures, unfavorable for yachts and unacceptable for gas

turbine-powered ships (due to their demand for very dry and salt-free combustion air).

• Increased radar signature (for navy craft).

Spray generation can be taken into account when designing the hull before entering the

construction phase. Sometimes hull changes are not possible. Then spray rails can often be an

effective and relatively cheap measure to reduce spray generation. Spray rails can also improve
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the performance of existing fast ships. Typical spray rail arrangements either use an additional

triangular profile or integrate a two-step knuckle line into the form. These run from the stem to

about amidships. In both cases a horizontal deflection area with a sharp edge must be created.

Spray rails also influence the dynamic lift on the forebody, thus improving the resistance also

indirectly.

The resistance of a fast ship is fundamentally linked with the dynamic trim. Recommended

optimum trim angles for fast vessels in modern practice according to HSVA are (Bertram and

Mesbahi 2004):

Displacement and semi-displacement hulls

q ¼ 0:7 $ fc0 þ c1 $ sig ½b0 þ b1 $ sigða10 þ a11 $ x1 þ a12 $ x2Þ
þ b2 $ sigða20 þ a21 $ x1 þ a22 $ x2Þ
þ b3 $ sigða30 þ a31 $ x1 þ a32 $ x2Þ
þ b4 $ sigða40 þ a41 $ x1 þ a42 $ x2Þ�g

(3.74)

x1 ¼ 0:9 $
�
V2=3=B $T

�
� 1:975 x2 ¼ 0:71 $Fn � 0:0795

a10 ¼ �3:75198 a11 ¼ �1:69432 a12 ¼ 9:49288
a20 ¼ �2:49216 a21 ¼ 3:86243 a22 ¼ �1:65272
a30 ¼ 3:87188 a31 ¼ 0:61239 a32 ¼ �17:00609
a40 ¼ �2:68088 a41 ¼ �3:55418 a42 ¼ 3:42624
b0 ¼ 1:63558 b1 ¼ �2:18713 b2 ¼ 2:15603
b3 ¼ �4:84437 b4 ¼ �1:51677
c0 ¼ �0:17276 c1 ¼ 2:364

B is the width; T the draft;V the volumetric displacement:

Planing hulls

q ¼ 0:7 $ fc0 þ c1 $ sig ½b0 þ b1 $ sigða10 þ a11 $ x1 þ a12 $ x2Þ
þ b2 $ sigða20 þ a21 $ x1 þ a22 $ x2Þ�g

(3.75)

x1 ¼ 0:6 $ ðV2=3=B $ TÞ � 0:85 x2 ¼ 0:6624 $Fn � 0:01936
a10 ¼ �2:66906 a11 ¼ 0:12856 a12 ¼ 8:06127
a20 ¼ 6:30112 a21 ¼ �3:37513 a22 ¼ �3:66594
b0 ¼ �0:83869 b1 ¼ 4:16294 b2 ¼ �2:71566
c0 ¼ �0:39046 c1 ¼ 6:535

Fixed trim wedges or moveable trim flaps can be used to optimize the dynamic trim for a given

speed and slenderness. Trim wedges should normally be considered during the design phase, but

they are also acceptable for improving craft already in service. Trim wedges are most effective at

speeds in the resistance hump range at Fn z 0.4e0.5. They have almost no effect for Fn > 1.2.

Reductions in total resistance of more than 10% are possible in the resistance hump range. The

most effective trim wedge for a certain craft and operational range is best found in model tests.
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Fixed or adjustable interceptors offer an alternative to control the dynamic trim of a vessel. An

interceptor is basically a vertical extension of the transom beyond the shell plating. Forward of

the interceptor plate the flow is decelerated and the local pressure is increased which generates

a lift force to the vessel’s stern. The effect is identical to that of a conventional stern wedge.

However, the height of the interceptor needs only to be 50% of that of a wedge for the same

effect on the dynamic trim and resistance. This is an advantage at lower speed due to the

smaller immersed transom area.

Appendages strongly influence resistance and propulsive efficiency of fast ships (RAPP¼ 6e15%

RT). Recommendations are:

• Avoid over-sizing the shaft brackets, bossings, and rudder profiles.

• V-bracket designs may have approximately 5e7% higher RAPP than I-bracket designs.

• If V-brackets are obligatory for whatever reason the inner and outer legs should be aligned

with the flow to minimize resistance and wake disturbance (vibration, cavitation). Opti-

mization of the brackets may employ CFD or model tests (three-dimensional wake

measurements).

• For twin-screw vessels, power consumption may differ by 3e5%, changing the sense of

propeller rotation, depending on the aftbody lines. The propulsive coefficient hD is also

influenced by the degree of shaft inclination 3, expressed by an additional efficiency h3,

(Hadler 1966):

h3 ¼ 1� 0:00187 $ 31:5 (3.76)

The decreasing tendency at increasing shaft angles 3 indicates that the shaft arrangement

should be considered carefully in the design. The phenomenon is due to the

inhomogeneous flow to the propeller blades which reduces the propeller efficiency. Also

cavitation may be increased to a certain degree.

• For twin-rudder arrangements, an inward inclination of the rudders’ trailing edges by 2e3�

can increase the propulsive efficiency by up to 3%.

• Strut barrels should be kept as small as possible and their noses should be rounded or have

parabolic shapes.

• Bilge keels should generally be aligned with the flow at the bilge. The line of flow may be

determined in paint tests or CFD.

• If non-retractable stabilizer fins are projected, the angle of attack with least resistance can be

determined in model tests (with different adjusted fin angles) or employing CFD.

3.4.2. Catamarans

One of the advantages of catamarans vs. monohulls is the up to 70% larger deck area. On the

other hand, catamarans have typically 20% more weight and 30e40% larger wetted surface.

Catamarans usually require 20e80% (the higher values near Fn ¼ 0.5) more power than

monohulls due to higher frictional resistance and higher wave resistance. Catamarans feature
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high transverse stability, but roll periods are similar to monohulls due to high moments of

inertia. Catamaran designs come at low, medium and high speeds. Thus catamaran hull forms

range from pure displacement up to real planing hulls.

Displacement catamarans usually operate near the hydrodynamically unfavorable hump speed

(Fn z 0.5). The design is then usually driven by the demand for a large and stable working

platform, high transverse stability and shallow draft where speed is not so important, e.g. for

buoy layers, sight-seeing boats, etc. There is no typical hull form for displacement catamarans.

Round bilge, hard chine, and combinations of both are used. Asymmetric hull forms are

common to reduce the wave interference effects between the hulls. For catamarans with low

design speed, a relatively large L /V1/3 should be selected to minimize the resistance. The

majority of displacement catamarans are driven by fully immersed conventional propellers.

Due to the frequent shallow draft requirements for catamarans the clearance for the propellers

becomes rather small. Then arrangements of tunnels and propeller nozzles are usual.

Semi-displacement catamarans operate at higher speeds, frequently at the beginning of the

planing condition at Fnz 1 or slightly above. Again, no typical hull characteristic is observed;

both round-bilge and hard-chine sections are common. For rough seas (like the North Sea),

round-bilge sections are more advantageous with respect to ride comfort. Most wave-piercer

catamarans also have round-bilge sections. Semi-displacement catamarans may have propeller

drives or waterjet propulsion.

Planing catamarans operate at speeds up to 50 knots or more and Fn up to 2.0 and higher.

Typical knuckled planing hull forms dominate. Symmetric and asymmetric hull forms show

only marginal performance differences. For high speeds, waterjets offer better efficiencies than

conventional propellers with lower cavitation risk. Thus for planing catamarans, waterjets are

the most favorable propulsion system. Surface-piercing propellers are also an option which has

been employed by some racing boats and navy craft.

Foils may reduce resistance and improve seakeeping. Foil-assisted catamarans (FACs) have

forward and aft foils, supporting part of the total weight. The bow is usually lifted clear of the

water, but the stern remains partially immersed, which is necessary for waterjet operation and

stability. Increasing the foil area decreases the resistance. For modern FACs, the foils are

equipped with efficient ride control systems which usually adjust a movable flap on the forward

foil and in more advanced systems also on the rear foils. Controllable flaps are recommended

for several reasons. The risk of broaching in quartering or side waves can be reduced,

especially when operating with foils in maximum lift condition. Controllable flaps also help to

tune dynamical trim and foil adjustment for maximum lift and minimum resistance. For FACs,

wetted length and surface of the model change very much with speed.

The highest stresses for fast catamarans are slamming impacts on the fore part of the wetdeck.

The most common anti-slamming device (ASD) is a deep-V part in the forward wetdeck
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above the calm waterline, as in wave-piercing catamarans. The wave energy in slamming

events remains unchanged by ASDs, but is smeared over a longer period, thus reducing peaks.

Arranging longitudinal rails and steps on the bottom of the wetdeck also reduces the slamming

impacts as airewater cushions are formed between the longitudinal rails. Alternatively,

longitudinal stiffeners with holes have been proposed.

The resistance for catamarans can be estimated following HSVA (Fritsch and Bertram 2002):

CTV ¼ 0:2

L=V1=3
þ 2:05

½1þ 25ðFn � 0:45Þ2� $ ðL=V1=3Þ2 round bilge (3.77)

CTV ¼ 0:25

½1þ 25ðFn � 0:45Þ2� $ ðL=V1=3Þ þ
2:5

½1þ 25ðFn � 0:45Þ2� $ ðL=V1=3Þ2 hard chine

(3.78)

RAPP and RAA must be added separately.

3.4.3. Problems for Fast and Unconventional Ships

Model testing has a long tradition for the prediction and optimization of ship performance of

conventional ships. The scaling laws are well established and the procedures correlate model

and ship with a high level of accuracy. The same scaling laws generally apply to high-speed

craft, but two fundamental problems may arise:

1. Physical quantities may have major effects on the results which cannot be deduced from

classical model tests. The physical quantities in this context are: surface tension (spray),

viscous forces and moments, aerodynamic forces, cavitation.

2. Limitations of the test facilities do not allow an optimum scale. The most important limi-

tations are generally water depth and carriage speed.

Fast and unconventional ships are often ‘hybrid’ ships, i.e. they produce the necessary

buoyancy by more than one of the three possible options: buoyancy, dynamic lift (foils or

planing), aerostatic lift (air cushion). For the propulsion of fast ships, subcavitating, cavitating,

and ventilated propellers as well as waterjets with flush or pitot-type inlets are used. Due to

viscous effects and cavitation, correlation to full-scale ships causes additional problems.

Generally we cannot expect the same level of accuracy for a power prediction as for

conventional ships. The towing tank should provide an error estimate for each individual case.

Another problem arises from the fact that the resistance curves for fast ships are often quite flat

near the design point as are the curves of available thrust for many propulsors. For example,

errors in predicted resistance or available thrust of 1% would result in an error of the attainable

speed of also about 1%, while for conventional cargo ships the error in speed would often be

only 1/3%, i.e. the speed prediction is more accurate than the power prediction.
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The main problems for model testing are discussed individually:

• Model tank restrictions

The physics of high-speed ships are usually highly non-linear. The positions of the ship in

resistance (without propeller) and propulsion (with propeller) conditions differ strongly.

Viscosity and free-surface effects, including spray and overturning waves, play significant

roles, making both experimental and numerical predictions difficult.

Valid predictions from tank tests for the resistance of the full-scale ship in unrestricted water

are only possible if the tank is sufficiently large, as compared to the model to allow similarity

in flow. Blockage, i.e. the ratio of the submerged cross-section of the model to the tank cross-

section, will generally be very low for models of high-speed ships. However, shallow-water

effects dependmainly on themodel speed and the tankwater depth. The depth Froudenumber

Fnh should not be greater than 0.8 to be free of significant shallow-water effects.

The frictional resistance is usually computed from the frictional resistance of a flat plate of

similar length as the length of the wetted underwater body of the model. This wetted length

at test speed differs considerably from the wetted length at zero speed for planing or semi-

planing hull forms. In addition, the correlation requires that the boundary layer is fully

turbulent. Even when turbulence stimulators are used, a minimum Reynolds number has to

be reached. We can be sure to have a turbulent boundary layer for Rn > 5 $ 106. This gives

a lower limit to the speeds that can be investigated depending on the model length used.

Figure 3.11 illustrates, using a towing tankwithwater depthH¼ 6m and awater temperature

15�C, how an envelope of possible test speeds evolves from these two restrictions. A practical
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Figure 3.11:
Possible speed range to be safely investigated in a 6m deep

towing tank at 15�C water temperature
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limitation may be the maximum carriage speed. However, at HSVA the usable maximum

carriage speed exceeds the maximum speed to avoid shallow-water effects.

• Planing hulls

In the planing condition a significant share of the resistance is frictional and there is some

aerodynamic resistance. At the design speed, the residual resistance, i.e. the resistance

component determined from model tests, may only be 25e30% of the total resistance. In

model scale, this part is even smaller. Therefore the measurements of the model resistance

must be very accurate. Resistance of planing hulls strongly depends on the trim of the

vessel. A careful test set-up is needed to ensure that the model is towed in the correct

direction. The most important problem, however, is the accurate determination of the

wetted surface and the wetted length which is needed to compute the frictional resistance

for both the model and the ship. Side photographs, while popular, are not adequate.

Preferably underwater photographs should be used. In many cases, the accurate

measurement of trim and sinkage may be adequate in combination with hydrostatic

computation of wetted surface and length. As the flotation line of such vessels strongly

depends on speed, proper arrangement of turbulence stimulation is needed as well.

Depending on the propulsion system, planing vessels will have appendages like rudders

and shafts. For typical twin-screw ships with shafts, one pair of I-brackets and one pair of

V-brackets, the appendage resistance could account for 10% of the total resistance of the

ship. As viscous resistance is a major part of the appendage resistance and as the Reynolds

number of the appendages will be small for the model in any case or the appendage may be

within the boundary layer of the vessel, only a crude correlation of the appendage

resistance is possible: the resistance of the appendage is determined in model scale by

comparing the resistance of the model with and without appendages. Then an empirical

correction for transferring the appendage resistance to the full-scale ship is applied. In

many cases, it may be sufficient to perform accurate measurements without any

appendages on the model and then use empirical estimates for the appendage resistance.

• Craft with hydrofoils

Hydrofoils may be used to lift the hull out of the water to reduce resistance. Besides

classical hydrofoil boats which are lifted completely out of the water and are fully

supported by foil lift, hybrid hydrofoil boats may be used which are partially supported by

buoyancy and partially by foil lift, e.g. catamarans with foils between the two hulls. When

performing and evaluating resistance and propulsion tests for such vessels, the following

problems have to be kept in mind:

• The Reynolds number of the foils and struts will always be very low. Therefore the

boundary layer on the foil may become partially laminar. This will influence the lift

and the frictional resistance of the foils in a way requiring special correlation proce-

dures to compensate at least partially for these scaling errors. The uncertainty level is

still estimated as high as 5%, which is definitely higher than for conventional craft.
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• Cavitation may occur on the full-scale hydrofoil. This will influence the lift and drag

of the foils. Significant cavitation will certainly occur if the foil loading exceeds

105 N/m2. With configurations not fully optimized for cavitation avoidance, signifi-

cant cavitation is expected for foil loadings already in excess of 5 $ 104 N/m2.

Another important parameter is the vessel’s speed. Beyond 40 knots, cavitation has to

be expected on joints to struts, flaps, foil tips, and other critical parts. At speeds

beyond 60 knots, cavitation on the largest part of the foil has to be expected. When

model testing these configurations in model tanks, no cavitation will occur. Therefore

similarity of forces cannot be expected. To overcome this problem, resistance and

propulsion tests could be performed in a free-surface cavitation tunnel. However, due

to the usually small cross-sections of these tunnels, shallow-water effects may then

be unavoidable. Therefore HSVA recommends the following procedure:

1. Perform tests in the towing tank using non-cavitating foils from stock, varying

angle of attack, and measure the total resistance and the resistance of the foils.

2. Test the foils (including struts) in a cavitation tunnel varying angle of attack,

observe cavitation and measure forces.

3. Combine the results of both tests by determining the angle of attack for similar lift

of foils and summing the resistance components.

In the preliminary design phase, the tests in the cavitation tunnel may be substituted by

correspondingflowcomputations.Alternatively, full-scaleRANSEcomputations can beused.

• Surface effect ships (SES)

SES combine aerostatic lift and buoyancy. The wave resistance curve of SES exhibits

humps and hollows as in conventional ships. The magnitude of the humps and hollows in

wave resistance depends strongly on the cushion L/B ratio. Wave-making of the submerged

hulls and the cushion can simply be scaled according to Froude similarity as long as the

tank depth is sufficient to avoid shallow-water effects. Otherwise a correction based on

the potential flow due to a moving pressure patch is applied. Due to the significant

influence of trim, this method has some disadvantages. To determine the wetted surface,

observations inside the cushion are required with a video camera. The frictional resistance

of the seals cannot be separated out of the total resistance. The pressure distribution

between seals and cushion has to be controlled and the air flow must be determined. Also,

the model aerodynamic resistance in the condition under the carriage has to be determined

and used for separating the wave resistance. Generally separate wind tunnel tests are

recommended to determine the significant aerodynamic resistance of such ships.

• Propulsion with propellers

• Conventional propellers.Most of the problems concerning the scaling of resistance also

appear in the propulsion test, as they determine the propeller loading. The use of a thrust

deduction fraction is formally correct, but the change in resistance is partially due to

a change of trim with operating propellers. For hydrofoils, the problem is that cavitation
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is not present at model scale. Therefore, for cases with propeller loading where

significant cavitation is expected, additional cavitation tests are used to determine the

thrust loss due to cavitation. Z-drives which may even be equipped with contra-rotating

propellers are expensive to model and to equip with accurate measuring devices.

Therefore propulsion tests with such units are rarely performed. Instead the results of

resistance and open-water tests of such units in a proper scale are numerically combined.

• Cavitating propellers. Certain high-speed propellers are designed to operate with

a controlled extent of cavitation on the suction side of the blades. They are called

super-cavitating or partially cavitating (NewtoneRader) propellers. These propulsors

cannot be tested in a normal towing tank. Here again either resistance tests or

propulsion tests with non-cavitating stock propellers are performed and combined with

open-water tests in a cavitation tunnel.

• Surface-piercing propellers. Surface-piercing or ventilated propellers operate directly at

the free surface. Thus the suction side is ventilated and therefore the collapse of cavi-

tation bubbles on the blade surface is avoided. Due to the operation at the free surface,

Froude similarity has to be maintained in model tests. On the other hand, thrust and

torque, but more important also the side and vertical forces, strongly depend on the

cavitation number. The vertical force may amount to up to 40% of the thrust and

therefore will strongly influence the resistance of planing vessels or SES, ships where

this type of propeller is typically employed.

• Waterjet propulsion

A common means of propulsion for high-speed ships is the waterjet. Through an inlet in the

bottomof the craft,water enters into a bent duct to thepump,where the pressure level is raised.

Finally the water is accelerated and discharged in a nozzle through the transom. Power

measurements on a model of the complete system cannot be properly correlated to full scale.

Only the inlet and the nozzle are built to scale and an arbitrary model pump with sufficient

capacity is used. The evaluation of waterjet experiments is difficult and usually involves

several special procedures involving a combination of computations, e.g. the velocity profile

on the inlet by boundary layer or RANSE computations, and measured properties, e.g.

pressures in the nozzle. The properties of the pump are determined either in separate tests of

a larger pump model, taken from experience with other pumps, or supplied by the pump

manufacturer. A special committee of the ITTCwas formed to cover waterjet propulsion and

latest recommendation and literature references may be found in the ITTC proceedings.

3.5. CFD Approaches for Steady Flow

3.5.1. Wave Resistance Computations

The wave resistance problem considers the steady motion of a ship in initially smooth water

assuming an ideal fluid, i.e. especially neglecting all viscous effects. The ship will create waves

Resistance and Propulsion 109



at the freely deformable water surface. The computations involve far more information than the

mere resistance, which is of minor importance in many applications and usually computed

quite inaccurately. But the expression ‘wave resistance problem’ is easier than ‘steady, inviscid

straight-ahead course problem’, and thus more popular.

The work of the Australian mathematician J. H. Michell in 1898 is often seen as the birth of

modern theoretical methods for ship wave resistance predictions. While Michell’s theory

cannot be classified as computational fluid dynamics in the modern sense, it was a milestone at

the time and is still inspiring mathematicians today. Michell expressed the wave resistance of

a thin wall-sided ship as:

Rw ¼ 4

p
rV2n2

ZN
1

l2ffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 � 1

p jAðlÞj2 dl (3.79)

with:

AðlÞ ¼ �inl

Z
S

enl
2zþinlxf ðx; zÞ dz dx (3.80)

V is the ship speed, r water density, n ¼ g/V2, g gravity acceleration, f(x,z) half-width of ship, x

longitudinal coordinate (positive forward), z vertical coordinate (from calm waterline, positive

upwards), and S ship surface below the calm waterline. The expression gives realistic results for

very thin bodies (width/length ratio very small) for arbitrary Froude number, and for slender

ships (width/length ratio and depth/length ratio very small) for high Froude numbers. Michell’s

theory (including all subsequent refinements) is in essence unacceptable for real ship geometries

and ship speeds. However, on occasions it is still useful. An example may be the prediction of the

wave resistance of a submarine near the free surface with a streamlined snorkel piercing the free

surface. While CFD can discretize the main submarine, it will neglect all appendages of much

smaller scale. Then Michell’s theory can be applied to analyze the additional influence of the

snorkel, which will have a very large Froude number based on the chord length of its profile

cross-section. Söding (1995) gives a FORTRAN routine to compute Michell’s integral.

The classical methods (thin ship theories, slender-body theories) introduce simplifications

which imply limitations regarding the ship’s geometry. Real ship geometries are generally not

thin or slender enough. The differences between computational and experimental results are

consequently unacceptable. Practical applications in industry are based largely on boundary

element methods. These remain the most important design tools for naval architects despite the

increasing application of viscous flow tools.

Classical methods using so-called Kelvin or Havelock sources fulfill automatically a crude

approximation of the dynamical and kinematical free-surface conditions. Kelvin sources are

complicated and require great care in their numerical evaluation. Rankine sources on the other
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hand are quite simple. Wave resistance codes represent the flow as a superposition of Rankine

sources and sometimes also dipoles or vortices. The potential of a Rankine point source is

a factor divided by the distance between the point source and the considered point in the fluid

domain. The factor is called the source strength. The derivative of the potential in an arbitrary

spatial direction gives the velocity in this direction. This mathematical operation is simple to

perform for Rankine sources.

Boundary element methods discretize surfaces into a finite number of elements and a

corresponding number of collocation points. A desired (linear) condition is fulfilled exactly at

these collocation points by proper adjustment of the initially unknown source strengths. One

hopes/claims that between these points the boundary condition is fulfilled at least in good

approximation. Laplace’s equation and the decay condition (far away the ship does not disturb

the flow) are automatically fulfilled. Mirror images of the panels at the bottom of the fluid

domain walls may enforce a no-penetration condition there for shallow-water cases. Repeated

use of mirror images at vertical canal walls can enforce in similar fashion the side-wall

condition. For numerical reasons, this is preferable to a treatment of the side walls as

collocation points similar as for the ship hull.

In the wave resistance problem, we consider a ship moving with constant speed V in water of

constant depth and width. For inviscid and irrotational flow, this problem is equivalent to a ship

being fixed in an inflow of constant speed. The following simplifications are generally assumed:

• Water is incompressible, irrotational, and inviscid.

• Surface tension is negligible.

• There are no breaking waves.

• The hull has no knuckles which cross streamlines.

• Appendages and propellers are not included in the model. (The inclusion of a propeller

makes little sense as long as viscous effects are not also included.)

The governing field equation is Laplace’s equation. A unique description of the problem

requires further conditions on all boundaries of the modeled fluid domain:

• Hull condition: water does not penetrate the ship’s surface.

• Transom stern condition: for ships with a transom stern, we generally assume that the flow

separates and the transom stern is dry. Atmospheric pressure is then enforced at the edge of

the transom stern. The condition is usually linearized assuming that the water flows only in

the longitudinal direction. This can only approximately reflect the real conditions at the

stern, but apparently works well as long as the transom stern is moderately small, as for

most container ships. For fast ships which have a very large transom stern, several

researchers report problems. For submerged transom sterns at low speed, the potential flow

model is inapplicable and only field methods are capable of an appropriate analysis.

• Kinematic condition: water does not penetrate the water surface.
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• Dynamic condition: there is atmospheric pressure at the water surface. Beneath an air

cushion, this condition modifies to the air cushion pressure. The inclusion of an air

cushion in wave resistance computations has been reported in various applications.

However, these computations require the user to specify the distribution of the pressure,

especially the gradual decline of the pressure at the ends of the cushion. In reality, this is

a difficult task as the dynamics of the air cushion and the flexible skirts make the problem

more complicated. Subsequently, the computations must be expected to be less accurate

than for conventional displacement hulls.

• Radiation condition: waves created by the ship do not propagate ahead. (This condition is not

valid for shallow-water cases when the flow becomes unsteady and soliton waves are pulsed

ahead. For subcritical speeds with depth Froude number Fnh < 1, this poses no problem.)

• Decay condition: the flow is undisturbed far away from the ship.

• Open-boundary condition: waves generated by the ship pass unreflected any artificial

boundary of the computational domain.

• Equilibrium: the ship is in equilibrium, i.e. trim and sinkage are changed in such a way that

the dynamical vertical force and the trim moment are counteracted.

• Bottom condition (shallow-water case): no water flows through the sea bottom.

• Side-wall condition (canal case): no water flows through the side walls.

• Kutta condition (for catamaran/SWATH): at the stern/end of the strut the flow separates.

The Kutta condition describes a phenomenon associated with viscous effects. Potential

flow methods use special techniques to ensure that the flow separates. However, the point

of separation has to be determined externally ‘by higher insight’. For geometries with

sharp aftbodies (foils), this is quite simple. For twin-hull ships, the disturbance of the flow

by one demi-hull induces a slightly non-uniform inflow at the other demi-hull. This

resembles the flow around a foil at a very small angle of incidence. A simplified Kutta

condition usually suffices to ensure a realistic flow pattern at the stern: zero transverse flow

is enforced. This is sometimes called the ‘Joukowski condition’.

The decay condition substitutes the open-boundary condition if the boundary of the

computational domain lies at infinity. The decay condition also substitutes the bottom and side-

wall conditions if bottom and side wall are at infinity, which is the usual case.

Hull, transom stern, and Kutta conditions are usually enforced numerically at collocation

points. Also, a combination of kinematic and dynamic conditions is numerically fulfilled at

collocation points. Combining dynamic and kinematic boundary conditions eliminates the

unknown wave elevation, but yields a non-linear equation to be fulfilled at the a priori unknown

free-surface elevation.

Classical methods linearize the differences between the actual flow and uniform flow to

simplify the non-linear boundary condition to a linear condition fulfilled at the calm-water
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surface. This condition is called the Kelvin condition. For practical applications, this crude

approximation is unsuitable.

Dawson proposed in 1977 to use the potential of a double-body flow and the undisturbed water

surface as a better approximation. Double-body linearization was popular until the early 1990s.

The original boundary condition of Dawson was inconsistent. This inconsistency was copied

by most subsequent publications following Dawson’s approach. Sometimes this inconsistency

is accepted deliberately to avoid evaluation of higher derivatives, but in most cases and

possibly also in the original it was simply an oversight. Dawson’s approach requires the

evaluation of terms on the free surface along streamlines of the double-body flow. This

required either more or less elaborate schemes for streamline tracking or some ‘courage’ in

simply applying Dawson’s approach on smooth grid lines on the free surface which were

algebraically generated.

The first consistently linearized free-surface condition for arbitrary approximations of the base

flow and the free-surface elevation was developed in Hamburg by Söding. This condition is

rather complicated involving up to a third of the derivatives of the potential, but it can be

simply repeated in an iterative process which is usually started with uniform flow and no

waves.

Fully non-linear methods were first developed in Sweden and Germany in the late 1980s. The

success of these methods quickly motivated various other research groups to copy the

techniques and apply the methods commercially. The best-known codes used in commercial

applications include SHIPFLOW-XPAN, SHALLO, n-SHALLO, RAPID, SWIFT, and

FSWAVE/VSAERO. The development is very near the limit of what potential flow codes can

achieve. The state of the art is well documented in two PhD theses, Raven (1996) and Janson

(1996). Despite occasional other claims, all ‘fully non-linear’ codes have similar capabilities

when used by their designers or somebody well trained in using the specific code. Everybody

loves his own child best, but objectively the differences are small. All ‘fully non-linear’ codes

in commercial use share similar shortcomings when it comes to handling breaking waves,

semi-planing or planing boats or extreme non-linearities. Free-surface RANSEmethods are the

appropriate tools in these cases where wave resistance codes are no longer applicable.

Waves propagate only downstream (except for rare shallow-water cases). This radiation

condition has to be enforced by numerical techniques. Most methods employ special finite

difference (FD) operators to compute second derivatives of the potential in the free-surface

condition. Dawson proposed a four-point FD operator for second derivatives along streamlines.

Beside the considered collocation point, the FD operator uses the next three points upstream.

Dawson’s method automatically requires grids oriented along streamlines of the double-body

flow approximate solution. Dawson determined his operator by trial and error for a two-

dimensional flow with a simple Kelvin condition. His criteria were that the wave length should
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correspond to the analytically predicted wave length and the wave amplitude should remain

constant some distance behind the disturbance causing the waves.

Dawson approximated the derivative of any function H with respect to ‘ at the point i

numerically by:

H‘izCAiHi þ CBiHi�1 þ CCiHi�2 þ CDiHi�3 (3.81)

H‘i is the derivative with respect to ‘ at point Pi. Hi to Hi�3 are the values of the function H at

points Pi to Pi�3, all lying on the same streamline of the double-body flow upstream of Pi. The

coefficients CAi to CDi are determined from the arc lengths Lj (j ¼ 1 to i�3) of the streamline

between point Pi and point Pj:

Lj ¼
ZPj

Pi

d‘ on the streamline (3.82)

CAi ¼ �ðCBi þ CCi þ CDiÞ (3.83)

CBi ¼ L2i�2L
2
i�3ðLi�3 � Li�2ÞðLi�3 þ Li�2Þ=Di (3.84)

CCi ¼ �L2i�1L
2
i�3ðLi�3 � Li�1ÞðLi�3 þ Li�1Þ=Di (3.85)

CDi ¼ L2i�1L
2
i�2ðLi�2 � Li�1ÞðLi�2 þ Li�1Þ=Di (3.86)

Di ¼ Li�1Li�2Li�3ðLi�3 � Li�1ÞðLi�2 � Li�1ÞðLi�3 � Li�2Þ $ ðLi�3 þ Li�2 þ Li�1Þ (3.87)

This four-point FD operator dampens the waves to some extent and gives usual discretizations

(about ten elements per wave length) wave lengths which are about 5% too short. Strong point-

to-point oscillations of the source strength occur for very fine grids. Various FD operators have

been subsequently investigated to overcome these disadvantages. Of all these, only the spline

interpolation developed at MIT was really convincing as it overcomes all the problems of

Dawson (Nakos 1990, Nakos and Sclavounos 1990).

An alternative approach to FD operators involves ‘staggered grids’ as developed in Hamburg.

This technique adds an extra row of source points (or panels) at the downstream end of the

computational domain and an extra row of collocation points at the upstream end (Fig. 3.12).

Panel (center marked by dot)

Collocation point
v

Figure 3.12:
‘Shifting’ technique (in 2d)
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For equidistant grids this can also be interpreted as shifting or staggering the grid of collocation

points vs. the grid of source elements. This technique shows absolutely no numerical damping

or distortion of the wave length, but requires all derivatives in the formulation to be evaluated

numerically.

Only part of the water surface can be discretized. This introduces an artificial boundary of the

computational domain. Disturbances created at this artificial boundary can destroy the whole

solution. Methods based on FD operators use simple two-point operators at the downstream

end of the grid which strongly dampen waves. At the upstream end of the grid, where waves

should not appear, various conditions can be used, e.g. the longitudinal component of the

disturbance velocity is zero. Nakos (1990) has to ensure in his MIT method (SWAN code)

based on spline interpolation that waves do not reach the side boundary. This leads to relatively

broad computational domains. Time-domain versions of the SWAN code use a ‘numerical

beach’. For the wave resistance problem, the time-domain approach seems unnecessarily

expensive and is rarely used in practice. Norwegian researchers tried to reduce the

computational domain by matching the panel solution for the near-field to a thin-ship-theory

solution in the far field. However, this approach saved only little computational time at the

expense of a considerably more complicated code and was subsequently abandoned. The

‘staggered grid’ technique is again an elegant alternative. Without further special treatment,

waves leave the computational domain without reflection.

Most methods integrate the pressure on the ship’s surface to determine the forces (especially

the resistance) and moments. ‘Fully non-linear’ methods integrate over the actually wetted

surface while older methods often take the CWL as the upper boundary for the integration. An

alternative to pressure integration is the analysis of the wave energy behind the ship (wave cut

analysis). The wave resistance coefficients should theoretically tend to zero for low speeds.

Pressure integration usually gives resistance coefficients which remain finite for small Froude

numbers. However, wave cut analysis requires larger grids behind the ship, leading to increased

computational time and storage. Most developers of wave resistance codes have at some point

tried to incorporate wave cut analysis to determine the wave resistance more accurately. So far

the evidence has not been compelling enough to abandon the direct pressure integration.

Most panel methods give as a direct result the source strengths of the panels. A subsequent

computation determines the velocities at the individual points. Bernoulli’s equation then gives

pressures and wave elevations (again at individual points). Integration of pressures and wave

heights finally yields the desired forces and moments, which in turn are used to determine

dynamical trim and sinkage (‘squat’).

Fully non-linear state-of-the-art codes fulfill iteratively an equilibrium condition (dynamical

trim and sinkage) and both kinematic and dynamic conditions on the actually deformed free

surface. The differences in results between ‘fully non-linear’ and linear or ‘somewhat

non-linear’ computations are considerable (typically 25%), but the agreement of computed and
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measured resistances is not consistently better in ‘fully non-linear’ methods. This may in part

be due to the computational procedure or inherent assumptions in computing a wave resistance

from experimental data (usually using a form factor method), but also due to computational

errors in determining the resistance, which are of similar magnitude as the actual resistance.

One reason for the unsatisfactory accuracy of the numerical procedures lies in the numerical

sensitivity of the pressure integration. The pressure integration basically involves subtracting

forces of the same magnitude which largely cancel. The relative error is strongly propagated in

such a case. Initial errors stem from the discretization. For example, integration of the

hydrostatic pressure for the ship at rest should give zero longitudinal force, but usual

discretizations show forces that may lie within the same order of magnitude as the wave

resistance. Still, there is consensus that panel methods capture the pressure distribution at the

bow quite accurately. The vertical force is not affected by the numerical sensitivity. Predictions

for the dynamical sinkage usually differ by less than 5% for a large bandwidth of Froude

numbers. Trimmoment is not predicted as well due to viscous effects and numerical sensitivity.

This tendency is amplified by shallow water.

Panel methods are still themost important CFD instrument for form improvement of ships. They

are widely used by ship designers. For at least a decade, they have also been used in formal hull

optimization in industrial applications. The fundamental limitation of panel methods lies in the

neglect of viscosity (aftbody and appendages) and breaking waves. The intersection between

water surface and ship will remain a problem zone for panel methods, because the problem is ill-

posed here within a potential flow model. The immediate vicinity of the bow of a ship always

features breaking waves and spray, which cannot be included by panel methods. Ad hoc

solutions are subject to research, but no convincing solution has been published yet. In industry

practice, these limitations are overcome by using free-surface RANSE methods rather than

boundary element methods, when breaking waves must be captured. Free-surface RANSE

methods can simulate flows with complicated free-surface geometries (breaking waves,

splashes), allowing the analyses of problems beyond the realm of BEM applications.

3.5.2. Viscous Flow Computations

RANSE solvers are state of the art for viscous ship flows. A computational prediction of the total

calm-water resistance using RANSE solvers to replace model tests would be desirable. So far

the accuracy of the RANSE predictions is largely perceived as insufficient, but this is expected

to change within the next decade. Nevertheless, RANSE solvers are widely applied to analyze:

• the flow around aftbodies of ships;

• the flow around appendages.

The first research applications for RANSE solutions with wave-making for ships appeared in

the late 1980s. By the late 1990s various research groups also presented results for ships free to
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trim and sink. Ten years later, free-surface RANSE computations were used regularly in many

industry projects.

The basic techniques of RANSE codes have been discussed in Section 1.5. Various

applications to ship design and research applications are found in the literature.

Representative for the development of the state of the art for ship design applications are the

proceedings of the Numerical Towing Tank Symposium (NuTTS) and surveys by leading

companies in the field such as Flowtech (Larsson 1997, Larsson et al. 1998), or HSVA

(Bertram and Jensen 1994, Bertram 1998a). The state of the art in research is documented in

validation workshops like the Tokyo 1994 and 2005 workshops, the Gothenburg 2000 and

2010 workshops. RANSE computations require considerable skill and experience in grid

generation and should therefore as a rule be executed by experts usually found in special

consulting companies.

3.6. Simple Design Approaches

In early design stages, the power requirements have to be estimated to judge the weight and

volume requirements of the main engine and fuel. As this has to be done repeatedly in design

loops, model tests are not suitable solutions for reasons of time and costs. Instead, simple,

largely empirical methods are employed which only require a few global design parameters.

These methods are discussed in more detail by Schneekluth and Bertram (1998).

The main approaches are:

• Estimate from parent ship, e.g. by admiralty or similar formulae

The estimate from a parent ship may give good estimates if the parent ship is close enough

(in geometrical properties and speed parameters) to the design ship. The ‘admiralty

formula’ is still used today, but only for a very rough estimate:

PB ¼ D2=3 $V3

C
(3.88)

The admiralty constant C is assumed to be constant for similar ships with similar Froude

numbers, i.e. ships that have almost the same CB, CP, V/L
3, Fn, V, etc. Typical values for C

[in t2/3 $ kn3 ¼ kW] are:

multi-purpose vessel 400e600

bulker and tanker 600e750

reefer 550e700

feeder ship 350e500

warship 150

These values give an order of magnitude only. The constant C should be determined

individually for basis ships used in design.
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Generalized admiralty formulae are of the form:

PB ¼ Dm $Vn

C
(3.89)

where m and n are determined from regression analysis of databases.

Völker (1974) gives a modified admiralty formula for cargo ships with smaller scatter

for C:

PB ¼ D0:567 $V3:6

C $hD
(3.90)

hD in this formula may be estimated by empirical formulae. Strictly speaking, the exponent of

V should be a function of speed range and ship hull form. The admiralty formula is thus only

useful if a ship of the same type, size, and speed range is selected to determineC. It is possible

to increase the accuracy of the Völker formula by adjusting it to specific ship types.

The admiralty formula is very coarse and not recommended (unless a very close similar ship is

used to determine C), but an estimate based on a form factor approach is popular in practice.

Here, it is usually assumed that the parameter cw/Fn
4 and the form factor remain constant in

the conversion from parent ship to design ship. Such a more or less sophisticated plus/minus

conversion from a parent ship is currently the preferred choice for a quick estimate.

Tugs are special ships which differ in many ways from regular cargo ships (Allan 2004).

The main design specification concerns maneuverability and ability to assist escort vessels

inmaneuvering. This requires a somewhat different approach in design. Bertram and Bentin

(2001) use neural nets to express the required power PB [kW] of harbor tugs as function of

design speed V [kn], bollard pull bp [t] and length between perpendiculars Lpp [m]:

PB ¼ 1060þ 3354 $ sigð1:23� 6:44 $ sigð0:08652 $ Lpp � 0:3171 $ bp � 3:84 $V

þ 60:4709Þ þ 2:97 $ sigð0:8539 $ Lpp þ 0:2307 $ bp � 0:484 $V

� 23:07Þ � 5:98 $ sigð0:2596 $ Lpp þ 0:0856 $ bp þ 0:51 $V

� 17:577Þ þ 2:61 $ sigð0:2857 $Lpp þ 0:7132 $ bp þ 0:476 $V

� 25:7645ÞÞ
(3.91)

• Systematic series (e.g. TayloreGertler, Series-60, SSPA) or regression analysis of many

ships (e.g. LapeKeller, HoltropeMennen, Hollenbach)

All of the systematic series andmost of the regression analysis approaches are outdated. They

often underestimate the actual resistance of modern ship hulls. It may come as a surprise that

older ships were apparently better in terms of resistance. There are several explanations:

• suitability for container stowage plays a larger role in modern ships;

• modern ships often have a higher propulsive efficiency compensating partially for the

higher resistance;
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• more severe safety regulations, e.g. concerning stability, pose additional constraints on

the hydrodynamic optimization.

It is fairly difficult to estimate accurately the residual resistance or the wave resistance.

The method of choice today would be a CFD code, but for a quick estimate one may

accept larger margins of errors and resort to classical estimates. Schneekluth and

Bertram (1998) list some of the older methods for resistance predictions including the

LapeKeller method. These methods are historical and should no longer be applied in

modern ship design. More ‘modern’ methods which are often found imbedded in ship

design systems are (Table 3.2):

• ‘TayloreGertler’ (for slender ships) (Gertler 1954)

• ‘GuldhammereHarvald’ (Guldhammer and Harvald 1974)

• ‘HoltropeMennen’ (Holtrop and Mennen 1978, 1982, Holtrop 1977, 1978, 1984)

• ‘Hollenbach’ (Hollenbach 1998, 1999)

• ‘NPL’ (for fast ships) (Bailey 1976).

The older methods like ‘TayloreGertler’ do not consider the bulbous bow. The effect of

a bulbous bow may then be approximately introduced by increasing the length in the

calculation by two-thirds of the bulb length.

Oortmerssen (1971) presents a simple method to estimate the residual resistance of tugs

and trawlers based on regression analysis of model basin data. The range of parameters for

which the coefficients of the basic expressions are valid, are as follows: 8 m< LWL< 80 m;

5 m3 < V < 3000 m3; 3 < L/B < 6.2; 1.9 < B/T < 4.0; 0.50 < CP < 0.73; 0.70 < CM <

0.97; e7% L < lcb < 2.8% L forward of 0.5 L; 0< Fn < 0.5; 10� < iE < 46�. iE is the half
angle of entrance of the design waterline. The residual resistance made non-dimensional

by the displacement weight in his expression:

RR

D $ g
¼ C1 $ exp

�
�mF2

n

9

�
þ C2 $ exp

�
�m

F2
n

�
þ C3 $ exp

��mF2
n

�
$ sin

�
1

F2
n

�

þ C4 $ expð�mF2
nÞ $ cos

�
1

F2
n

�
(3.92)

C1 $ 10
3 ¼ 79:32134� 0:09287 lcb� 0:00209 lcb2 � 246:45896 CP þ 187:13664 C2

P

�1:42893 L=Bþ 0:11898 ðL=BÞ2 þ 0:15727 CIE � 0:00064 C2
IE

�2:52862 B=T þ 0:50619 ðB=TÞ2 þ 1:62851 CM

(3.93)

C2 $ 10
3 ¼ 6714:88397þ 19:83 lcbþ 2:66997 lcb2 � 19662:024 CP þ 14099:9 C2

P

þ137:33613 L=B� 13:36938 ðL=BÞ2 � 4:49852 CIE þ 0:021 C2
IE

þ216:44923 B=T � 35:07602 ðB=TÞ2 � 128:72535 CM

(3.94)

C3 $ 10
3 ¼ �908:44371þ 2:52704 lcb� 0:35794 lcb2 þ 755:1866 CP � 48:93952 C2

P
þ 9:86873 L=B � 0:77652 ðL=BÞ2 þ 3:79020 CIE � 0:01879 C2

IE

�9:24399 B=T þ 1:28571 ðB=TÞ2 þ 250:6491 CM

(3.95)
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Table 3.2: Resistance prediction methods

Resistance procedure ‘TayloreGertler’

Basis for procedure: Systematic model tests with a model warship
Target value: CR

Input values: Lwl; Fn;wl ¼ V=
ffiffiffiffiffiffiffiffiffiffiffiffi
g $ Lwl

p
; CP;wl ¼ V=L3wl; B/T; S

Remarks:
1. Influence of bulb not taken into account
2. The procedure generally underestimates by 5e10%
3. Area of application: fast cargo ships, warships
4. Constant or dependent variable values: CM ¼ 0.925 ¼ constant, lcb ¼ 0.5 Lwl

Resistance procedure ‘GuldhammereHarvald’

Basis for procedure: Evaluation of well-known resistance calculation procedures
(Taylor, Lap, Series 60, Gothenburg, BSRA, etc.)
Target value: CR and CF

Input values: Lwl; Fn,wl; B/T; lcb, section shape; ABT (bulb); S; CP,wl; Lwl /V
1/3

Remarks:
1. Influence of bulb taken into account
2. Reference to length in WL
3. Area of application: universal, tankers
4. The correction for the center of buoyancy appears (from area to area) overestimated
5. The procedure underestimates resistance for ships with small L/B

Resistance procedure ‘HoltropeMennen’

Basis for procedure: Evaluation of database of the Dutch Model Basin MARIN
Target value: CT

Input values: Fn; Lpp; Lwl; B; T; V; lcb; CWP; S; section shape; trim; .
Remarks:
1. Resistance decomposition like ITTC’78
2. Considers bulbous bow and transom stern
3. Covers wide range of ships
4. Many parameters; some may have to be estimated in early design

Resistance procedure ‘Hollenbach’

Basis for procedure: Evaluation of database of Vienna ship model basin
Target value: RT
Input values: Fn; Lpp; Lwl; B; T; CB; DP; trim; number of appendages

Remarks:
1. Considers twin-screw ships
2. Relatively modern database
3. Applicable to modern cargo ship
4. Several typing mistakes between various publications
5. Gives also ‘minimum’ and ‘maximum’ resistance curves

Resistance procedure ‘NPL Series’

Basis for procedure: Systematic model tests with high-speed, round-bilge
displacement forms
Target value: RR/(V $ g)
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C4 $ 103 ¼ 3012:14549þ 2:71437 lcbþ 0:25521 lcb2 � 9198:8084 CP

þ6886:60416 C2
P � 159:92694 L=Bþ 16:23621 ðL=BÞ2 � 0:82014 CIE

þ0:00225 C2
IE þ 236:3797 B=T � 44:1782 ðB=TÞ2 þ 207:2558 CM

(3.96)

m ¼ 0:14347 C�2:1976
P (3.97)

CIE ¼ iE $L/B, where iE is taken in degrees. L ¼ (LPPþLWL)/2 in Van Oortmerssen’s

formula.

MacPherson (1993) provides some background and guidance to designers for simple

computer-based prediction methods, and these are recommended for further studies.

Some of the old estimation methods are still popular as they are easy to program. Thus they are

embedded in naval architectural CAD systems or more recently in design expert systems.

However, they are fundamentally limited to global predictions, as they represent the hull shape

by few global parameters.

The following compiles assorted simple design formulae, mostly taken from Schneekluth and

Bertram (1998):

• Propulsive efficiency hD
Typical values are: hD z 0.6e0.7 for cargo ships

hD z 0.4e0.6 for tugs

Danckwardt (1969) gives the following estimate (Henschke 1965):

hD ¼ 0:836� 0:000165 $ n $V1=6 (3.98)

Table 3.2: Continued

Input values: FnV; L/B; L/V
1/3

Remarks:
1. For fast displacement ships; (originally) graphical method
2. Simple HSVA formulae recommended instead as easy to program and based on more modern ship

designs

Resistance procedure ‘Van Oortmerssen’

Basis for procedure: Evaluation of database of Dutch model basin MARIN for small ships
Target value: RR/(V $ g)
Input values: Fn; lcb, L/B; B/T; CM; CIE; CP; L/V

1/3

Remarks:
1. For tugs and trawlers up to Fn ¼ 0.5
2. CIE ¼ iE $ L/B, where iE is the half angle of entrance of the design waterline
3. Easy to program
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n is the propeller rpm and V [m3] the displacement volume. All ships checked were within

�10% of this estimate; half of the ships were within �2.5%.

Keller (1973) gives:

hD ¼ 0:885� 0:00012 $ n $
ffiffiffiffiffiffiffi
Lpp

p
(3.99)

HSVA gave, for twin-screw ships, in 1957:

hD ¼ 0:69� 12000 $

�
0:041� Vs

n $Dp

�3

�0:02 (3.100)

Ship speed Vs [in kn], propeller diameter Dp [in m], 0.016 � Vs/(n $Dp) � 0.04.

• Hull efficiency hH
The hull efficiency can be estimated indirectly by estimating thrust deduction fraction t and

wake fraction w separately or directly. For small ships with rake of keel, Helm (1980) gives

an empirical formula:

hH ¼ 0:895� 0:0065 $ L

V1=3
� 0:005 $

B

T
� 0:033 $CP þ 0:2 $CM þ 0:01 $ lcb (3.101)

lcb here is the longitudinal center of buoyancy taken from Lpp/2 [in %Lpp]. The basis for

this formula covers 3.5 � L/V1/3 � 5.5, 0.53 � CP � 0.71, 2.25 � B/T � 4.50, 0.60 � CM

� 0.89, rake of keel 40%T, DP ¼ 0.75T. T is taken amidships.

Usually, it is preferable to estimate t and w separately and then deduct hH from there.

• Thrust deduction fraction t

For single-screw ships:

t ¼ 0:5 $CP � 0:12; Heckscher for cargo ships (3.102)

t ¼ 0:77 $CP � 0:30; Heckscher for trawlers (3.103)

t ¼ 0:5 $CB � 0:15; Danckwardt for cargo ships (3.104)

t ¼ w $ ð1:57� 2:3 $CB=CWP þ 1:5 $CBÞ; SSPA for cargo ships (3.105)

t ¼ 0:001979 $
L

Bð1� CPÞ þ 1:0585 $
B

L
� 0:00524� 0:1418 $

D2
P

BT
; Holtrop and Mennen

(3.106)

For twin-screw ships:

t ¼ 0:5 $CP � 0:18; Heckscher for cargo ships (3.107)

t ¼ 0:52 $CB � 0:18; Danckwardt for cargo ships (3.108)

t ¼ w $ ð1:67� 2:3 $CB=CWP þ 1:5 $CBÞ; SSPA for cargo ships (3.109)
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t ¼ 0:325 $CB � 0:1885 $
DPffiffiffiffiffiffi
BT

p ; Holtrop and Mennen (3.110)

Alte and Baur (1986) give an empirical coupling between t and the wake fraction w:

ð1� tÞ ¼ ð1� wÞ0:4�0:8 (3.111)

In general, in the early design stage it cannot be determined which t will give the best hull

efficiency hH. t can be estimated only roughly in the design stage and all of the above

formulae have a much larger uncertainty margin than those for w given below. t thus

represents the largest uncertainty factor in the power prognosis.

• Wake fraction w

For single-screw ships:

w ¼ 0:5 $CP $
1:6

1þ DP=T
$

16

10þ L=B
; Schneekluth for ships with stern bulb (3.112)

w ¼ 0:75 $CB � 0:24; Kr€uger (3.113)

w ¼ 0:7 $CP � 0:18; Heckscher for cargo ships (3.114)

w ¼ 0:77 $CP � 0:28; Heckscher for trawlers (3.115)

w ¼ 0:25þ 2:5ðCB � 0:6Þ2; Troost for cargo ships (3.116)

w ¼ 0:5 $CB; Troost for coastal feeders (3.117)

w ¼ CB=3þ 0:01; Caldwell for tugs with 0:47 < CB < 0:56 (3.118)

w ¼ 0:165 $CB $
V1=3

DP
� 0:1 $ ðFn � 0:2Þ; Papmehl (3.119)

w ¼ 3

1� ðCP=CWPÞ2
$
B

L
$
E

T
$

	
1� 1:5 $Dþ ð3þ rÞ

B



; Telfer for cargo ships (3.120)

3 is the skew angle in radians, r is the rake angle in radians, and E is height of the shaft

center over keel.

For twin-screw ships:

w ¼ 0:81 $CB � 0:34; Kr€uger (3.121)

w ¼ 0:7 $CP � 0:3; Heckscher for cargo ships (3.122)

w ¼ CB=3� 0:03; Caldwell for tugs with 0:47 < CB < 0:56 (3.123)
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Holtrop and Mennen (1978) and Holtrop (1984) give further more complicated formulae

for w for single-screw and twin-screw ships, which can be integrated in a power prognosis

program.

All the above formulae consider only a few main parameters, but the shape of the ship,

especially the aftbody, influences the wake considerably. Other important parameters are

propeller diameter and propeller clearance, which are not explicitly represented in the

above formulae. For bulk carriers with CB z 0:85, w < 0.3 have been obtained by form

optimization. The above formulae can thus predict too high w values for full ships.

• Relative rotative efficiency hR
The relative rotative efficiency is driven by many different effects. This makes it difficult to

express hR as a function of just a few parameters.

Holtrop and Mennen (1978) and Holtrop (1984) give:

hR ¼ 0:9922� 0:05908 $AE=A0 þ 0:07424 $ ðCP � 0:0225 $ lcbÞ for single-screw ships

(3.124)

hR ¼ 0:9737� 0:111 $ ðCP � 0:0225 $ lcbÞ � 0:06325 $P=DP for twin-screw ships

(3.125)
lcb here is the longitudinal center of buoyancy taken from Lwl/2 [in %Lwl]

AE/A0 is the blade area ratio of the propeller

P/DP is the pitch-to-diameter ratio of the propeller.

Helm (1980) gives for small ships:

hR ¼ 0:826þ 0:01
L

V1=3
þ 0:02

B

T
þ 0:1 $CM (3.126)

The basis for this formula is the same as for Helm’s formula for hH.

Alte and Baur (1986) recommend, as a simple estimate, hR ¼ 1.00 for single-screw ships,

hR ¼ 0.98 for twin-screw ships.

Jensen (1994) gives hR ¼ 1.02e1.06 for single-screw ships, depending also on details of

the experimental and correlation procedure.

• Wetted surface S

Non-dimensional resistance coefficients require the wetted surface S, usually taken at

calm-water conditions. CAD systems compute S accurately, but if only the main

dimensions are known, one may resort to estimates:

S ¼ V1=3 $ ð3:4 $V1=3 þ 0:5 $LwlÞ Lap ð1954Þ for cargo ships and ferries (3.127)

S ¼ L $ ð1:8 $ T þ CB $BÞ Schneekluth for warships (3.128)

S ¼ V

B
$

	
1:7

CB � 0:2 $ ðCB � 0:65Þ þ
B

T



Danckwardt for cargo ships and ferries (3.129)
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S ¼ V

B
$

	
1:7

CB
þ B

T
$ ð0:92þ 0:092

CB
Þ



Danckwardt for trawlers (3.130)

S ¼ L $ ð2T þ BÞ $C0:5
M $ ð0:453þ 0:4425 $CB � 0:2862 $CM

�0:003467 $B=T þ 0:3696 $CWPÞ Holtrop�Mennen for cargo ships (3.131)

• Viscous pressure resistance coefficient CPV

CPV $ 103 ¼ ð26 $CV þ 0:16Þ þ
�
B

T
� 13� 103 $CV

6

�
$ ðCP þ 58 $CV � 0:408Þ $ ð0:535� 35 $CVÞ

(3.132)

The formula was derived by Schneekluth from the Taylor experiments (dating back to 1910

and 1954), based on B/T ¼ 2.25e4.5, CP ¼ 0.48e0.8, CV ¼ V/L3 ¼ 0.001e0.007.

• Form factor k ¼ RPV/RF

k ¼ 18:7 $ ðCB $B=LÞ2 Granville ð1956Þ (3.133)

k ¼ 14 $ ðV=L3Þ $ ðB=TÞ Alte and Baur ð1986Þ (3.134)

k ¼ �0:095þ 25:6 $
CB

ðL=BÞ2 $ ffiffiffiffiffiffiffiffiffi
B=T

p Watanabe ð1986Þ (3.135)

• Appendage resistance RAPP

Simple semi-empirical formula for appendages are:

Exposed shafting, stern tubes and bossings:

RAPP ¼ 1

2
r V2 Ld ð1:1 sin3 3þ p CFÞ (3.136)

Here CF is calculated with a Reynolds number based on the diameter d. L is the length of

shaft and 3 its inclination relative to the keel.

Struts and rudders:

RAPP ¼ r V2 S CF ð1þ 2ðt=cÞ þ 60ðt=cÞ4Þ (3.137)

Here CF is calculated with a Reynolds number based on chord length c. t is the thickness of

the strut and S the projected surface (one side) of the strut.

Bilge keels:

RAPP ¼ r V2 SB CF (3.138)
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Here CF is calculated with a Reynolds number based on the bilge keel length.

Transom wedges:

RAPP ¼ 0:0001196 c d r V2 Sðsþ dÞ (3.139)

Here d is the wedge angle, s the trim angle of the vessel (positive stern down), S the wetted

surface, and c the chord length of the wedge.

• Wind resistance RAA

Wind resistance is important for ships with large lateral areas above the water level, e.g.

container ships and car ferries. Fast and unconventional ships, e.g. air-cushioned vehicles,

also require inclusion of the contribution of wind or air resistance. Jensen (1994) gives

a very simple estimate for the wind resistance of cargo ships:

RAA ¼ CAA $
rair

2
$ ðV þ VwindÞ2 $AF (3.140)

For cargo ships, Jensen (1994) gives CAA ¼ 0.8e1.0. rair ¼ 1.25 kg/m3 the density of air,

Vwind is the absolute value of wind speed and AF is the frontal projected area of the ship

above sea level.

The wind resistance may be estimated with more accuracy following Blendermann (1993,

1996):

RAA ¼ rair

2
$ u2 $AL $CDl $

cos 3

1� d

2

�
1� CDl

CDt

�
sin223

(3.141)

Here u is the apparent wind velocity, AL the lateral-plane area, 3 the apparent wind

angle (3 ¼ 0� in head wind), and d the cross-force parameter. CDt and CDl are the

non-dimensional drag coefficients in beam wind and head wind, respectively. It is

convenient to give the longitudinal drag with respect to the frontal projected area AF:

CDl;AF ¼ CDl $
AL

AF
(3.142)

Table 3.3 gives typical values for CDt, CDl,AF and d. The maximumwind resistance usually

occurs for 0� < 3 < 20�. The above formulae and the values in the table are for uniform or

nearly uniform flow, e.g. above the ocean. The wind speed at a height of 10 m above sea

level u10 is usually taken as reference speed. Wind speed in Beaufort (Beaufort number

BN) is converted to m/s by:

u10 ¼ 0:836 $BN1:5 (3.143)

• Speed loss in wind and waves
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Townsin and Kwon (1983) give simple approximate formulae to estimate the speed loss

due to added resistance in wind and waves:

DV ¼ Cm $Cship $V% (3.144)

Cm is a factor considering the predominant direction of wind and waves, depending on the

Beaufort number BN:

Cm ¼ 1:0 for m ¼ 0�30� (3.145)

Cm ¼ 1:7� 0:03 $ ðBN � 4Þ2 for m ¼ 30�60� (3.146)

Cm ¼ 0:9� 0:06 $ ðBN � 6Þ2 for m ¼ 60�150� (3.147)

Cm ¼ 0:4� 0:03 $ ðBN � 8Þ2 for m ¼ 150�180� (3.148)

Cship is a factor considering the ship type:

Cship ¼ 0:5BN þ BN6:5=ð2:7 $V2=3Þ for tankers; laden (3.149)

Cship ¼ 0:7BN þ BN6:5=ð2:7 $V2=3Þ for tankers; ballast (3.150)

Cship ¼ 0:7BN þ BN6:5=ð2:2 $V2=3Þ for container ships (3.151)

V is the volume displacement in m3. Tables 3.4 and 3.5 give relations between Beaufort

number, wind speeds, and average wave heights.

Table 3.3: Coefficients to estimate wind resistance (Blendermann 1996)

CDt CDl,AF d

Car carrier 0.95 0.55 0.80
Cargo ship, container on deck, bridge aft 0.85 0.65/0.55 0.40
Containership, loaded 0.90 0.55 0.40
Destroyer 0.85 0.60 0.65
Diving support vessel 0.90 0.60 0.55
Drilling vessel 1.00 0.70e1.00 0.10
Ferry 0.90 0.45 0.80
Fishing vessel 0.95 0.70 0.40
LNG tanker 0.70 0.60 0.50
Offshore supply vessel 0.90 0.55 0.55
Passenger liner 0.90 0.40 0.80
Research vessel 0.85 0.55 0.60
Speedboat 0.90 0.55 0.60
Tanker, loaded 0.70 0.90 0.40
Tanker, in ballast 0.70 0.75 0.40
Tender 0.85 0.55 0.65
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• Natural periods for ship motions

For ‘normal’ ships, the natural frequencies in roll, heave, and pitch can be estimated by

simple formulae.

Natural roll period [s]:

Troll ¼ C $
Bffiffiffiffiffiffiffiffi
GM

p (3.152)

with

C ¼ 0:746þ 0:046
B

T
� 0:086 $

L

100
following IMO (3.153)

C ¼ 0.7627e0.8229 (typically 0.8) for cargo ships following Parsons (2004)

Table 3.4: Wind strengths in Beaufort (Bft) (Henschke 1965)

Bft Wind description Wind speed

0 No wind 0.0e0.2 m/s
1 Gentle current of air 0.3e1.5 m/s
2 Gentle breeze 1.6e3.3 m/s
3 Light breeze 3.4e5.4 m/s
4 Moderate breeze 5.5e7.9 m/s
5 Fresh breeze 8.0e10.7 m/s
6 Strong wind 10.8e13.8 m/s
7 Stiff wind 13.9e17.1 m/s
8 Violent wind 17.2e20.7 m/s
9 Storm 20.8e24.4 m/s
10 Violent storm 24.5e28.3 m/s
11 Hurricane-like storm 28.5e32.7 m/s
12 Hurricane >32.7 m/s

Table 3.5: Sea strengths for North Sea coupled to wind strengths (Henschke 1965)

Approximate average

Sea state Bft Sea description Wave height Wave length

0 0 Smooth sea e e
1 1 Calm, rippling sea 0e0.5 m 0e10m
2 2e3 Gentle sea 0.5e0.75 m 10e12.5 m
3 4 Light sea 0.75e1.25 m 12.5e22.5 m
4 5 Moderate sea 1.25e2.0 m 22.5e37.5 m
5 6 Rough sea 2.0e3.5 m 37.5e60.0 m
6 7 Very rough sea 3.5e6.0 m 60.0e105.0 m
7 8e9 High sea >6.0 m >105.0 m
8 10 Very high sea Up to 20m Up to 600m
9 11e12 Extremely heavy sea Up to 20m Up to 600m
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C ¼ 0.6924e1.0035 generally following Parsons (2004)

B [m] is the width, L [m] the length in the waterline, T [m] the draft, GM [m] the

metacentric height.

Natural pitch period [s]:

Tpitch ¼ C $
Lffiffiffiffiffiffiffiffiffiffi
GML

p (3.154)

C ¼ 0.4817e0.5218 generally following Parsons (2004)

L [m] is the length in the waterline.

Tpitch ¼ 1:776 $

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TCBð0:6þ 0:36 $B=TÞp

CWP
following Lamb ð1969Þ (3.155)

B [m] is the width, T [m] the draft, CB the block coefficient, and CWP the waterplane

coefficient.

Natural heave period [s]:

Theave ¼ 2:007 $

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T
CB

CWP
$

�
B

3T
þ 1:2

�s
following Lamb ð1969Þ (3.156)

Variables as above for pitch period.

3.7. Fuel-Saving Options

3.7.1. Introduction

For decades, ships have been designed for much lower fuel costs. Increasing fuel prices and

IMO regulations to curb CO2 (carbon dioxide) emissions put pressure on ship owners to obtain

more fuel-efficient ships. As a result, we have seen a renaissance of some concepts of the 1970s

which were developed in response to the first oil crisis, as well as new proposals for fuel-saving

devices. Many publications (including promotional material by companies) give unrealistically

optimistic claims for fuel-saving potential of these devices. There are various reasons for false

estimations:

• The published savings achieved with a particular device are normally for the best case. For

example, formal hull optimization has improved the fuel efficiency of one vessel by 16% at

design speed and draft. Subsequent literature then e correctlye states that up to 16% may

be gained. This is quoted as ‘16% gains’ in a subsequent survey or report and taken as

typical value.
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• Quoted savings are valid for initially bad designs, whereas hydrodynamically optimized

designs would never reach that saving.

• Numbers valid for one certain ship type (say high-speed container vessels) are taken for

other ships (e.g. bulk carriers), where they do not apply.

• Numbers are taken for design speed and draft. Frequently encountered off-design condi-

tions are ignored. Utilization of a fuel-saving device is often incorrectly assumed to be

100% of the time at sea for a ship and 100% over fleets for global estimates.

• Saving potential refers to calm-water resistance, but is applied to total resistance or total

fuel consumption (including the on-board energy consumption).

• For propulsion-improving devices, published savings are based on a comparison of power

requirement measured before and after conversion. Measurements are not corrected for

hull and propeller roughness (ship and propeller are often cleaned while the ship is refitted

with a propulsion-improving device), sea state and loading condition. If measures are

corrected for a ‘neutral condition’, the correction procedure in itself has an uncertainty of

2e3%.

• Saving potential is quoted based on model tests and questionable extrapolation to full

scale. Model tests violate Reynolds similarity and hence boundary layers and flows at

appendages in the boundary layer are not similar. Most quoted figures are based on

publications (and model tests) of the 1970s and 1980s. There is usually no documentation

on how figures were derived. In my personal experience, re-analyses and detailed full-scale

measurements with today’s technology always showed substantially lower figures.

3.7.2. Global Measures to Reduce Resistance

On the most global level, there are two (almost trivial) options following from the admiralty

formula:

• Reduce ship size. The ship size (or displacement) is driven by the cargo weight, ballast,

steel weight and equipment, and outfit weight. The fuel consumption scales with

displacement to the power 2/3. As cargo weight usually is a fixed quantity and dominates

the overall displacement, savings through minimizing steel weight and ballast are usually

only small to moderate. However, other measures to reduce power requirements lead to

smaller engines and associated periphery (power trains, cooling pumps, fuel tanks, etc.).

This yields secondary savings in new designs due to smaller ship size.

• Reduce speed. Speed reduction is a very effective way to reduce fuel consumption and

emission. The admiralty formula assumes a cubic relationship between power and

speed. This is a widely used assumption for small speed changes, but actual speed curves

exhibit local deviations from this rule of thumb. The rule applies for the bare-hull, calm-

water condition. A 10% speed reduction (i.e. taking 90% of the reference speed) yields

a 27% reduction in required power (0.93 ¼ 0.73). In addition, slower design speeds allow

higher propeller efficiency. This may add another 2% fuel savings for 10% design speed
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reduction. Slower speed often also results in lower added resistance in seaways. As

mentioned above, there are secondary savings to the smaller installed engine power. For

new buildings, design for slower speed is thus a very effective lever to reduce fuel

consumption. Necessary measures to keep delivery capacity constant (larger fleet size or

larger cargo capacity) may increase fuel consumption in fleets by 6e8% (as port times are

not affected by ship speed). The net reduction in fuel consumption is then 23e25% for

10% design speed reduction and constant delivery capacity. Several factors introduce

penalties or constraints for lower speeds:

• Lower speed often attracts less cargo.

• Capital costs of cargo depend on transport time and cargo value. Slower transport

increases capital costs on the cargo and reduces freight rates accordingly.

• Transitional costs for logistics pose barriers in intermodal transport chains. These costs

occur once for adapting existing schedules, but can be considerable in large transport

networks.

• Slower ships transport less and additional ships are needed to maintain a transport

capacity. Correspondingly, crew costs increase.

• The auxiliary power needed for crew (hotel-load), navigation and (if applicable) cargo

care is independent of speed. Correspondingly, the associated costs increase.

• Safety aspects pose lower limits for very low speeds. However, a 10% reduction in

design speed is generally not critical in this respect.

Reduced speed for existing ships is called slow steaming. Slow steaming is less effective than

designing for lower speed as there are no savings for better propeller efficiency and lower ship

weight. Instead, hull, propeller, and engine operate in an off-design condition and thus at

a lower efficiency. Slow steaming is adopted only when there is a slump in demand for shipping

transport. Extended operation in off-design conditions leads to increased maintenance and

down-time costs. In addition to technical obstacles, non-technical obstacles (like existing

delivery contracts and logistics chains) hinder wider adoption.

In the following, we consider more detailed options for given speed and displacement. The

attractiveness or sense of these measures depends generally on the composition of the total

resistance of a ship, which differs significantly between various ship types. It is recommended

to estimate at the beginning of a project the composition of the total resistance to facilitate

a subsequent discussion on the effectiveness of fuel-saving measures.

Ships experience added resistance in seaways. This resistance is dominated in long waves by the

ship motions, in short waves by wave reflection/diffraction. The motions can be influenced

mainly by the length of the ship and to some extent by local shape details (flare of foreship or

X-bow for example). The added resistance in seaways (and the saving potential for this item) is

generally larger for smaller ships. For large ships, the reflection/diffraction can be reduced by

different bow forms. Such proposals appear to be academic and not attractive in a holistic view.
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Ideally, total power requirements should be minimized, considering also added resistance in

waves in design (or even formal optimization). This has been proposed, but requires reliable

prediction of the added resistance in waves. Added resistance in waves is difficult to measure and

compute. Options to reduce added resistance in seaways by routing are discussed further below.

3.7.3. Hull Coatings and Air Lubrication

The frictional resistance is generally the largest part of the total resistance. The frictional

resistance (for a given speed) is governed by wetted surface (main dimensions and trim) and

surface roughness of the hull (average hull roughness of coating, added roughness due to

fouling and coating degradation). Ships with severe fouling may require twice the power as

with a smooth surface. Munk (2006) estimates that only one-third of the world fleet is in good

coating condition with less than 20% added resistance compared to smooth surface condition.

Advanced hull coatings can reduce frictional resistance. An average hull roughness (AHR) of

65 mm is very good, 150 mm standard, and AHR > 200 mm sub-standard. As a rule of thumb,

every 20 mm of hull roughness adds 1% to the required propulsion power (Townsin et al. 1980).

Low-surface-energy (LSE) coatings or foul release coatings create non-stick surfaces similar to

those known in Teflon-coated pans, but best-practice LSE coatings reach barnacle adhesion

strengths 10e20 times lower than Teflon. On the other hand, dynamic tests on moving ships

have shown that well-attached barnacles (e.g. after longer stays in port) may require relatively

high ship speeds to be released (Swain 2010). Some publications claim fuel savings in excess

of 10% due to LSE coatings as compared to copper-based ‘standard’ coatings. These figures

are misleading. Large improvements may be measured directly after coating, with the

prerequisite hull cleaning, blasting and possibly also propeller cleaning. However, an

appropriate assessment should consider the period between dry dockings. Here, a major

supplier of marine coatings gives average savings of 4% for a supertanker, which can be seen as

the upper limit for this ship type. All other ship types will have smaller savings, corresponding

to the percentage that frictional resistance contributes to total resistance.

Coatings based on nanotechnologies have been on the market for several years and enjoy

increasing popularity. It is difficult to judge claims concerning their fuel-saving potential, but

a major supplier of marine coatings rated in 2010 their fuel-saving potential not higher than

that of LSE coatings.

Surface-treated composites (STC) use embedded glass flakes to achieve a hard outer finish.

This hard surface can be cleaned without damaging the coating. In principle, one coating

would then suffice for the lifetime of a ship, but in practice local touch-ups may still be

necessary. This approach is seen by many experts as very promising.

Air lubrication has attracted considerable media and industry attention. The basic idea is that

a layer of air (on part of the hull) reduces the frictional resistance. The considerable technical
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effort is most attractive for large, slow ships with small draft. Air lubrication concepts can be

classified into (Foeth 2008): air bubble concept (injection of air bubbles along the hull), air

cavity concept (recesses underneath the hull are filled with air), and air film concept (using

a larger film of air to cover the ship bottom).

There is no consensus on the saving potential with estimates ranging from e5% (i.e. increased

fuel consumption) to 15% fuel savings. With no reliable, third-party evaluation, it remains to

be seen whether this technology lives up to its claims.

3.7.4. Optimization of Hull and Appendages

Much can be gained in fuel efficiency in the proper selection of main dimensions and ship lines.

Ship model basins should be consulted to assess the impact of main dimensions based on their

experience and databases. For given main dimensions, wave resistance offers the largest design

potential, as moderate changes may yield significant improvements. In most cases fast codes

based on simplified potential flow models suffice (Abt and Harries 2007). For fuller hull shapes

(tankers, bulkers), viscous flow computations are required, as viscous pressure resistance and

hullepropeller interaction are significant. For limited computational resources, simplified

approaches using resistance and wake fraction may be used, but proper simulations of the

propulsion case at full scale are expected to become standard as computer hardware increases in

power. Gains of formal optimization vary between 1.5% and 17%, with 4e5% as typical value.

The term appendages includes here negative appendages, i.e. recesses, e.g. for side thrusters or

sea chests. Appendages contribute disproportionately to the resistance of a ship.

Hydrodynamic analyses (model tests or CFD simulations) can determine proper local design

and alignment of appendages.

Rudders offer an often underestimated potential for fuel savings. Improving the profile or

changing to a highly efficient flap rudder allows reducing rudder size, thus weight and

resistance. Due to the rotational component of the propeller, conventional straight rudders (at

zero degree rudder angle) encounter oblique flow angles to one side at the upper part and to the

other side in the lower part. This creates for most rudder profiles a slight additional thrust

which recuperates part of the rotational losses of the propeller and improves propulsion. Some

experts therefore recommend straight rudders. Others argue in favor of twisted rudders (e.g.

Hollenbach and Friesch 2007). Dedicated CFD analyses are recommended to resolve these

contradictions and to quantify expected savings in actual projects.

Ships are usually optimized for the trial or design speed in calm water, but later operated most

of the time at lower speeds, even when they are not slow steaming. Fuel consumption is

expected to be lower if a ship were to be designed for a more realistic mix of operational

speeds, load conditions, and environmental conditions. The fuel savings gained are estimated

to be 0.5e1.0% at the expense of a higher design effort.
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3.7.5. Improved Propeller Designs

Modern CFD methods should lead to better propeller design, especially if design methods

progress to reliable prediction of full-scale wake fields and hullepropeller interaction,

considering speed and load case ranges instead of just a single operation point. Such improved

propeller design procedures may be in place within the next 10 years. Potential savings of

1e4% were estimated by experts from various ship model basins in a confidential survey. The

variability of propeller design and the high degree of interaction with the hull make it difficult

to predict globally a fuel-saving potential.

Propellers with tip-modified blades form one special class of high-efficiency propellers. These

propellers increase the efficiency without increasing diameter, similar to the tip fins often seen

on aircraft wings. There are several variations on the theme (ITTC 1999, Carlton 2007):

• contracted and loaded tip (CLT) propellers with blade tips bent sharply towards the rudder

(Perez Gomez and Gonzalez-Adalid 1997);

• SparenbergeDeJong propellers with two-sided shifted end plates (Sparenberg and

de Vries 1987);

• Kappel propellers with smoothly curved winglets (Andersen et al. 2002).

In interviews, propeller experts estimated 4e6% efficiency gains feasible for tankers and

bulkers, but only negligible savings for ferries. Tip-modified propellers seem best suited for

ships trading long-distance at a given speed.

3.7.6. Propulsion-Improving Devices (PIDs)

The propeller transforms the power delivered from the main engine via the shaft into a thrust

power to propel the ship. Typically, only two-thirds of the delivered power is converted into

thrust power. Various devices to improve propulsion e often by obtaining a more favorable

flow in the aftbody e have been developed and installed since the early 1970s, motivated

largely by the oil crisis (Blaurock 1990, Östergaard 1996). Some of the systems date back

much further, but the oil crisis gave the incentive to research them more systematically and to

install them on a larger scale. ITTC (1999) discussed extensively assorted propulsion-

improving devices. Opinions on these devices differ widely, from negative effects (increasing

fuel consumption) to more than 10% improvements. Model tests for these devices suffer from

scaling errors, making any resulting quantification of savings for the full-scale ship

questionable. Instead, CFD simulations for the full-scale ship are recommended to evaluate the

effectiveness of a propulsion-improving device in design; the detailed insight in CFD

simulations also allows a better comprehension of why a device is effective or not. While the

absolute prediction accuracy of CFD is still questioned by many experts, the relative gain

between two variants (with and without a duct, for example) is predicted with much higher

accuracy.
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Many devices have been proposed to recover rotational energy losses of the propeller. These

can be categorized into pre-swirl (upstream of the propeller) and post-swirl (downstream of the

propeller) devices. Devices can only recover losses partially; 30e50% of the losses are an

upper limit of what a device may recuperate. Buhaug et al. (2009) give the following indicators

for rotational losses:

• tanker/bulker: 3.4% at 10.9 knots, 3.9% at 15.6 knots

• container vessel: 3.9% at 15.5 knots, 5.3% at 21.2 knots

• multi-purpose vessel: 4.5% at 9.5 knots, 6.0% at 13.4 knots

• ro-pax vessel: 4.7% at 14.7 knots, 5.0% at 20.1 knots.

This would indicate (optimistic) upper limits for fuel-saving potential for devices targeted at

rotational losses of 1.5e2% for tankers/bulkers, 2e2.5% for container vessels, 2e3% for

MPVs and 2e2.5% for ro-pax vessels. Rudders behind the propeller already recover some of

the rotational energy, reducing the fuel-saving potential further. Higher estimates found in

various publications are then probably based on considering the propeller in open-water

condition without rudder.

Pre-swirl devices are generally easier to integrate with the hull structure. Pre-swirl devices

include the pre-swirl fin (proposed by SVA Potsdam) and pre-swirl stator blades. Asymmetric

aftbodies (Schneekluth and Bertram 1998; Fig. 3.13) are a very robust way to generate swirl,

but involve major changes in design. The added costs in ship construction are named frequently

as an argument why asymmetric aftbodies are not considered as fuel-saving devices.

The Grim vane wheel (Fig. 3.14; Grim 1980, Schneekluth and Bertram 1998, Carlton 2007) is

a freely rotating device installed behind the propeller (on the tail shaft or the rudder horn). The

vane wheel is composed of a turbine section inside the propeller slipstream and a propeller

section (vane tips) outside the propeller slipstream. The system appears suitable for a wide

range of conventional cargo ships, but only few actual installations have been reported.

Operators remain hesitant to use this device, as it appears mechanically delicate and involves

considerable investment. There are concerns that collisions with wood or ice floes may damage

the vane wheel. Improvements of 7e10% are reported (Breslin and Andersen 1994). The

higher values are possible for higher propeller loading.

Rudder thrust fins are foils attached at the rudder. Both x-shaped thrust configurations and

configurations with only two blades have been proposed. The blades are designed to generate

thrust in the rotating propeller slipstream. Full hull forms (tanker, bulker) are expected to benefit

more from such fins than slender ships (container vessels, ro-pax vessels). Fuel-saving potential

of up to 9% has been claimed (Buhaug et al. 2009). However, no competent third-party proof for

such claims is available and interviews with experts in several ship model basins resulted in

rather pessimistic average fuel-saving potential estimates of 0.05%. Stator fins are another

post-swirl device fixed on the rudder and intended for slender, high-speed ships like car carriers

(Hoshino et al. 2004). No explicit claims on their fuel-saving potential have been published.
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Contra-rotating propellers combine recuperation of rotational energy losses with better

propeller loading (Van Manen and Sentic 1956, Schneekluth and Bertram 1998, Carlton 2007).

Reported claims range from 6% to 20% in fuel efficiency improvement. However, contra-

rotating propellers also have larger surface, more losses in bearing and recuperate rotational

energy that otherwise would be recuperated by the rudder. Buhaug et al. (2009) give much

lower estimates of 3e6% based on the estimates of rotational energy losses. This appears to be

realistic. The mechanical complexity associated with frequent failure and down-time problems

make the adoption of contra-rotating propellers unlikely. However, podded drives and

Figure 3.13:
Hull sections of asymmetric aftbody

Figure 3.14:
Vane wheel
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conventional propellers have been combined to hybrid CRPePOD propulsion. This option

appears attractive for vessels that require redundant propulsion anyway, e.g. dangerous goods

tankers.

Devices may be added to the propeller hub to suppress the hub vortex. Propeller boss cap fins

(PBCF) were developed in Japan (ITTC 1999). The Hub Vortex Vane (HVV), a small vane

propeller fixed to the tip of a cone-shaped boss cap, may have more blades than the propeller.

There is no consensus about the effectiveness of the device that is popular due to its low costs,

with estimates ranging from 0.1% to 7%.

3.7.7. Wake-Improving Devices

The propeller operates in an inhomogeneous wake behind the ship. The inhomogeneous wake

induces pressure fluctuations on the propeller and the ship hull above the propeller, which in

turn excite vibrations. The magnitude of these vibrations poses more or less restrictive

constraints for the propeller design. A more homogeneous wake then translates into better

propeller efficiency. Ideally, the hull lines (including discontinuities like appendages and

inlets) should already be optimized in the design stage to have good hullepropeller interaction.

Wake-equalizing devices, such as Schneekluth nozzles, the Sumitomo Integrated Lammeren

Duct (SILD) or the Hitachi Zosen nozzle (Carlton 2007), may improve propulsion in

suboptimal designs, particularly for full hulls (tanker, bulker). Arguably the best-known

wake-equalizing device is the Schneekluth nozzle (Fig. 3.16; Schneekluth 1986, Schneekluth

and Bertram 1998). The Schneekluth nozzle is a ring-shaped flow vane with foil-type

cross-section fitted to the hull in front of the upper propeller area. The Schneekluth nozzle is

the propulsion-improving device with (by far) the most installations.

Figure 3.15:
Contra-rotating propeller
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Independent analyses came to contradicting evaluations of the effectiveness of wake-equalizing

devices (Ok 2005, Celik 2007). ITTC (1999) states cautiously: ‘In conclusion, partial ducts may

result in energy saving at full scale, but this was not, and probably cannot be proven by model

tests.’ Mewis (2009) combines a wake-equalizing duct with pre-swirl fins. The same general

comments as for wake-equalizing devices apply. The effectiveness may depend on local flow

details like the strength and position of the bilge vortex in the propeller plane, making the

wake-equalizing devices effective in some cases and ineffective in others. The effectiveness

should then be assessed on an individual case base by full-scale CFD simulations.

Grothues-Spork (1988) proposed spoilers e fitted before the propeller on both sides of the

stern post e to straighten horizontally the boundary layer flow right before the propeller,

thus creating direct thrust and improving the propeller efficiency. He used parts of

a cylindrical surface such that they divert stronger near the hull and less further out. These

fins are called Grothues spoilers (Fig. 3.17). Older literature, as quoted in Schneekluth and

Bertram (1998), and Carlton (2007), gives power savings up to 9%, based on model tests.

However, they are expected to increase fuel consumption rather than lead to any fuel

Figure 3.16:
Wake-equalizing duct
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savings. Grothues spoilers and vortex generators have been employed to fix vibration

problems in suboptimal designs.

Ducted propellers have been proposed as propulsion-improving devices (Buhaug et al. 2009).

Tugs, offshore supply vessels, and fishing vessels frequently feature ducted propellers

(Schneekluth and Bertram 1998). The Kort nozzle is an annular forward-extending duct around

the propeller (Schneekluth and Bertram 1998). The nozzle ring has a cross-section shaped as

a hydrofoil or similar section. The nozzle supplies the propeller with a larger water quantity

(increasing ideal efficiency) and the foil shape serves to produce additional thrust. Kort nozzles

feature the following advantages and disadvantages:

þ At high thrust-loading coefficients, better efficiency is obtainable. For tugs and pusher

boats, efficiency improvements of around 20% are reported. Bollard pull can be raised

by more than 30%.

þ The reduction of propeller efficiency in a seaway is lower for nozzle propellers than for non-

ducted propellers.

þ Course stability is substantially improved by the nozzle.

e Course-changing ability during astern operation is somewhat impaired.

e Due to circulation in shallow water, the nozzle propeller tends to draw into itself shingle,

stones, and ice floes.

e Due to the pressure drop in the nozzle, cavitation occurs earlier.

Only a small number of tankers were fitted with ducted propellers, back in the 1970s. Then

ducts were no longer used for large ships, probably due to vibration and cavitation problems.

Figure 3.17:
Grothues spoilers
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These problems could be overcome in view of present analysis capabilities (CFD and finite

element analyses), leading to a renaissance of ducted propellers for large ships.

3.7.8. Wind-Assisted Ships

Wind was the predominant power source for ships until the late 19th century. Wind assistance

has enjoyed a renaissance in recent years. Wind-assisted ships are mainly driven by engine

propulsion. Sails are then used to reduce necessary power for a given service speed, provided

that the wind is favorable in force and direction. Wind assistance becomes increasingly

unattractive with increasing ship speed and decreasing fuel prices. Based on a fuel price of

$500 per ton, the systems may be attractive for ship speeds below approximately 14e16 knots.

Stability considerations, safety aspects (view field from the bridge) and cargo-handling aspects

prevent wide use of sail assistance. For modern cargo vessels, automatic systems are the only

viable option and the additional structural effort for mast support on ships with sails can be

considerable. Sails for cargo vessels are typically high-performance rigid sails allowing

automatic handling and giving propulsive forces even in apparent wind directions in the

forward sector. Kites and Flettner rotors are generally more efficient than sails per surface area,

but smaller in overall size. Optimum solutions depend on many parameters, most notably ship

type, route, and speed.

Modern sails can be controlled automatically. They may be reefable cloth type (sail wings) or

rigid profile type such as wing sails.

Kites have been brought to commercial maturity. Kites harness wind power at larger heights

without the stability penalties of high masts. They move with much higher speeds than wind

speed through the air, exploiting lifting forces similar to foils. By 2010, four ships were

equipped with kites, 3 years after the first installation. Kites are claimed to be 25 times as

effective (per given surface area) as regular sails. By May 2011, the largest available size was

a 32 t pull (320 kN) kite. Kites with up to 130 t pull are envisioned. Savings of 10e35% are

claimed for smaller ships on transatlantic routes.

Flettner rotors are another technology harnessing wind energy for ship propulsion. After

80 years of obscurity, they resurfaced in 2010 with the delivery of the E-Ship 1, a freighter

equipped with Flettner rotors. These four cylinders, each 27 m tall and 4 m in diameter, are

claimed to save 30% of the conventional fuel needed by the ship (10 000 tdw at 17.5 kn design

speed, 7000 kW installed power). Flettner rotors create additional wind resistance for head

winds and typically increase air draft (unless they are retractable, which requires additional

system effort and complexity).

Solar power and wind power can be combined, using fixed sails equipped with solar panels.

This option is employed successfully on the SolarSailor ferry operated in Sydney. The

fuel-saving potential for large cargo vessels should be comparable to that of best-practice sails.

140 Chapter 3



Sufficiently large units are yet to be developed and the technology, including high-performance

solar panels, is still expensive.

There are few wind-assisted modern cargo ships. Kites are most mature with four installations

(August 2010). The potential of other wind assistance options may be similar in magnitude.

The saving potential differs largely between ship types, ship sizes, and trading routes.

Therefore detailed studies are recommended on an individual case basis.

Reported fuel savings for wind assistance are probably in significant part due to reduced ship

motions due to the dampening effect of sails. In many wind conditions, the sails cause more

resistance and side drift than propulsion and are thus counter-productive.

3.7.9. Voyage Optimization

Trim optimization: for each draft and speed, there is a fuel-optimum trim. For ships with large

transom sterns and bulbous bows, the power requirements for the best and worst trim may

differ by more than 10%. Systematic model tests or CFD simulations are recommended to

assess the best trim and the effect of different trim conditions. Decision support systems for

fuel-optimum trim have been proven to result in considerable fuel savings for relatively low

investment (Hansen and Freund 2010). For full hulls (tanker, bulker) the saving potential is

smaller.

Weather routing (i.e. optimization of a ship’s course and speed) may reduce the average added

resistance in seaways. Buhaug et al. (2009) give 1e5%. The saving potential beyond what is

already widely done may be less than 1% in practice. It depends among other factors on the

routes which are traded (for example, Mediterranean or Atlantic).

Even engine load profile (rather than an even speed profile) offers considerable saving potential

(Söding 1992). An even load profile during an entire voyage requires accurate ship models and

accurate prediction at the beginning of the voyage of weather, currents, and possible other

constraints during the voyage.

Adjusting an autopilot to more fuel-efficient setting has been claimed to save up to 2.5% fuel,

but no reliable source is known. A significantly lower value appears to be more realistic for

most large ships under professional management.
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4.1. Introduction

Seakeeping of ships is investigated with respect to the following issues:

• Maximum speed in a seaway: ‘involuntary’ speed reduction due to added resistance in

waves and ‘voluntary’ speed reduction to avoid excessive motions, loads, etc.

• Route optimization (routing) to minimize, e.g., transport time, fuel consumption, or total

cost.

• Structural design of the ship with respect to loads in seaways.

• Habitation comfort and safety of people on board: motion sickness, danger of accidental

falls, man overboard.
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• Ship safety: capsizing, large roll motions and accelerations, slamming, wave impact on

superstructures or deck cargo, propeller racing resulting in excessive rpm for the engine.

• Operational limits for ships (e.g. for offshore supply vessels or helicopters landing on

ships).

Tools to predict ship seakeeping are:

• Model tests.

• Full-scale measurements on ships at sea.

• Computations in the frequency domain: determination of the ship reactions to harmonic

waves of different wave lengths and wave directions.

• Computations in the time domain (simulation in time): computation of the forces on the

ship for given motions at one point in time; based on that information the computation

of the motions at a following point in time, etc.

• Computations in the statistical domain: computation of statistically significant seakeeping

values in natural (irregular) seaways, e.g. average frequency (occurrence per time) of

events, such as exceeding certain limits for motions or loads in a given seaway or ocean

region.

For many seakeeping issues, seakeeping is determined as follows:

1. Representation of the natural seaway as superposition of many regular (harmonic) waves

(Fourier decomposition).

2. Computation (or sometimes measurement in model tests) of the ship reactions of interest in

these harmonic waves.

3. Addition of the reactions in all these harmonic waves to a total reaction (superposition).

This procedure assumes (respectively requires) that the reaction of one wave on the ship is not

changed by the simultaneous occurrence of another wave. This assumption is valid for small

wave heights for almost all ship reactions with the exception of the added resistance.

This procedure is often applied also for seaways with large waves. However, in these cases it

can only give rough estimates requiring proper corrections. One consequence of the assumed

independence of the individual wave reactions is that all reactions of the ship are proportional

to wave height. This is called linearization with respect to wave height.

The computations become considerably more expensive if this simplification is not made. Non-

linear computations are usually necessary for the treatment of extreme motions (e.g. for

capsizing investigations); here simulation in the time domain is the proper tool. However, for

the determination of maximum loads it often suffices to apply corrections to initially linearly

computed loads. The time-averaged added resistance is in good approximation proportional to

the square of the wave height. Here the effect of harmonic waves of different lengths and

direction can be superimposed as for the linear ship reactions.
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To determine global properties (e.g. ship motions and accelerations) with sufficient accuracy,

simpler methods suffice than for the determination of local properties (pressures, relative

motions between water and ship).

Further recommended reading includes Faltinsen (1993, 2005) and Lewis (1990).

4.2. Experimental Approaches (Model and Full Scale)

Seakeeping model tests usually employ self-propelled models in narrow towing tanks or broad,

rectangular seakeeping basins. The models are sometimes completely free, being kept on

course by a rudder operated in remote control or by an autopilot. In other cases, some degrees

of freedom are suppressed (e.g. by wires). If internal forces and moments are to be determined,

the model is divided into a number of sections. The individual watertight sections are coupled

to each other by gauges. These gauges consist of two rigid frames connected by rather stiff flat

springs with strain gauges. Model motions are determined either directly or by measuring the

accelerations and integrating them twice in time. Waves and relative motions of ships and

waves are measured using two parallel wires penetrating the water surface. The change in the

voltage between the wires is then correlated to the depth of submergence in water. The

accuracy of ultrasonic devices is slightly worse. The model position in the tank can be

determined from the angles between the ship and two or more cameras at the tank side. Either

lights or reflectors on the ship give the necessary clear signal.

The waves are usually created by flaps driven by hydraulic cylinders. The flaps are inclined

around a horizontal axis lying at the height of the tank bottom or even lower. Traditionally,

these flaps were controlled mechanically by shaft mechanisms which created a (nearly)

sinusoidal motion. Modern wave-makers are computer controlled following a prescribed time

function. Sinusoidal flap motion creates harmonic waves. The superposition of many

sinusoidal waves of different frequency creates irregular waves similar to natural wind seas.

Some wave-makers use heightwise segmented flaps to simulate better the exponential decay of

waves with water depth. Sometimes, but much less frequently, vertically moved bodies or air

cushions are used to generate waves. These facilities create not only the desired wave, but also

a near-field disturbance which decays with distance from the body or the air cushion. More

harmful is the generation of higher harmonics (waves with an integer multiple of the basic

wave frequency), but these higher harmonics can be easily filtered from the measured reactions

if the reactions are linear. In computer-controlled wave-makers they can be largely eliminated

by proper adjustment of the flap motions.

In towing tanks, waves are usually generated by one flap at one tank end spanning the complete

tank width. The other tank end has a ‘beach’ to absorb the waves (ideally completely) so that no

reflected waves influence the measurements and the water comes to rest as soon as possible

after a test. If several, independently controlled flaps are used over the tank width, waves with
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propagation direction oblique to the tank longitudinal axis can be generated. These waves will

then be reflected at the side walls of the tank. This is unproblematic if a superposition of many

waves of different direction (‘short-crested sea’) is created as long as the distribution of the

wave energy over the propagation direction is symmetrical to the tank longitudinal axis. In

natural wind seas the energy distribution is similarly distributed around the average wind

direction.

Rectangular wide seakeeping basins typically have a large number of wave-making flaps at two

adjacent sides. An appropriate phase shift in the flap motions can then create oblique wave

propagation. The other two sides of such a basin are then equipped with ‘beaches’ to absorb

waves.

Seakeeping model tests are usually only performed for strongly non-linear seakeeping

problems which are difficult to compute. Examples are roll motion and capsizing, slamming

and water on deck. Linear seakeeping problems are only measured for research purposes to

supply validation data for computational methods. In these cases many different frequencies

can be measured at the same time. The measured data can then be decomposed (filtered) to

obtain the reactions to the individual wave frequencies.

Seakeeping tests are expensive due to the long waiting periods between tests until the water has

come to rest again. The waiting periods are especially long in conventional towing tanks. Also,

the scope of the experiments is usually large as many parameters need to be varied, e.g. wave

length, wave height, angle of encounter, ship speed, draught and trim, metacentric height, etc.

Tests keep Froude similarity just as in resistance and propulsion tests. Gravity and inertia

forces then correspond directly between model and full-scale ship. However, scale effects

(errors due to the model scale) occur for forces which are due to viscosity, surface tension,

compressibility of the water, or model elasticity. These effects are important, for example, for

slamming pressure, water on deck, or sway, roll and yaw motions. However, in total, scale

effects play a lesser role for seakeeping tests than for resistance and propulsion tests or

maneuvering tests.

Seakeeping can also be measured on ships in normal operation or during special trial tests. Ship

motions (with accelerometers and gyros) and sometimes also global and local loads (strain

gauges), loss of speed, propeller rpm and torque are all measured. Recording the seaway is

difficult in full-scale measurements. The options are:

1. No recording of actual seaway during trial; instead measurements of seaway over many

years such that, for example, the expected maximum values during the lifetime of the

ship can be extrapolated from the recorded distribution of long-term measured values

(long-term measurement). The random variation of the actual seastate encountered by the

ship introduces considerable inaccuracies for the predicted extreme values even if several

years of measurements are available.
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2. Computation of the seaway from the ship motions based on computed or model-test

measured response amplitude operators for the motions. This allows only a rather rough

estimate of the seaway. In following seas this method is hardly applicable. Nevertheless,

averaging over, say, 10e100 half-hour measurements usually yields good estimates for the

correlation of loads and seaway (medium-term measurement).

3. Parallel measurement of the seaway. Options are:

• Using seastate measuring buoys (brought by the ship).

• Performing the sea trials near a stationary seaway measuring installation.

• Measuring the ship motions (by accelerometers) and the relative motion between water

and ship (by pressure measurements at the hull or water level measurements using

a special radar device); based on these data indirect determination of the absolute

motion of the water surface is possible.

• Measuring the wave spectrum (energy distribution over frequency and propagation

direction) by evaluating radar signals reflected by the waves.

• Computation or estimation of the seaway from the wind field before and during the

experiments.

• Estimation of significant wave height and period from ‘experienced’ seamen. This

common practice is far too inaccurate: the correlation coefficient between measured

(actual) and estimated wave period is typically <50%! This holds also if the estimates

are used to derive statistical distributions. For most extreme values of interest the errors

in the estimates do not cancel, but are rather concentrated around the extreme values.

4.3. Waves and Seaway

4.3.1. Airy Waves (Harmonic Waves of Small Amplitude)

Wind-induced seaways can be approximated by the superposition of regular waves of small

wave height (elementary waves, Airy waves). Each elementary wave has a sinusoidal profile

with an infinite number of wave troughs and wave crests (Fig. 4.1). Thewave troughs and crests

are perpendicular to the direction of wave propagation. Such elementary waves are an important

building block for all computational methods for linear seakeeping problems. Steep regular

waves can be computed by, for example, Stokes’ theory or panel methods. However, the

superposition principle no longer applies to these waves. Therefore they play virtually no role

at all in the prediction of ship seakeeping and are of rather academic interest for naval architects.

Unfortunately, in using the superposition principle for elementary waves, all properties of the

seaway which are non-linear with wave steepness (¼ wave height/wave length) are lost.

These are, for example, the broader wave troughs and steeper wave crests, the higher celerity of

steeper waves which results in a tendency to form wave groups in natural wind seas: groups of

waves with low wave height are followed by groups of waves with larger wave heights.
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For ship seakeeping, the relevant waves are dominated by gravity effects. Surface tension,

water compressibility and (for deep and moderately shallow water) viscosity can be neglected.

Computations can then assume an ideal fluid (incompressible, inviscid) without surface

tension. Consequently potential theory can be applied to describe the waves.

Generally, regular waves are described by a length parameter (wave length l or wave number

k) and a time parameter (wave period T or (circular) frequency u). k and u are defined as

follows:

k ¼ 2p

l
; u ¼ 2p

T
(4.1)

The celerity c denotes the speed of wave propagation, i.e. the speed of an individual wave crest

or wave trough:

c ¼ l

T
¼ u

k
(4.2)

For elementary waves, the following (dispersion) relation holds:

k ¼ u2

g
on deep water (4.3)

k tanhðkHÞ ¼ u2

g
on finite depth (4.4)

g ¼ 9.81 m/s2 and H is the water depth (Fig. 4.1).

The above equations can then be combined to give the following relations (for deep

water):

c ¼
ffiffiffi
g

k

r
¼ g

u
¼

ffiffiffiffiffiffi
gl

2p

r
¼ gT

2p
(4.5)

ξ

λ
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x

y

z
x

c

H

Figure 4.1:
Elementary waves
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The potential f of a wave traveling in the þx direction is:

f ¼ Reð�icbhe�kzeiðut�kxÞÞ for deep water (4.6)

f ¼ Re

 
�icbh

sinhðkHÞcoshðkðz� HÞÞeiðut�kxÞ
!

for finite depth (4.7)

Re denotes the real part of a complex quantity; i ¼ ffiffiffiffiffiffiffi�1
p

; z as in Fig. 4.1; ^ denotes as usual

a complex amplitude; bh ¼ the complex amplitude of the wave. h ¼ jbhj is the (real-valued)
wave amplitude, i.e. half the wave height (from wave trough to wave crest). The real part of bh
gives the distance of the wave trough from the calm-water level at time t ¼ 0 at x ¼ 0; the

imaginary part gives the same value at ¼ period earlier. The deep-water formulae are

applicable with errors of < 0.5% if the water depth is larger than half a wave length.

The velocity is obtained by differentiation of the potential, e.g. for deep water:

vx ¼ vf

vx
¼ fx ¼ Reð�ubhe�kzeiðut�kxÞÞ (4.8)

vz ¼ vf

vz
¼ fz ¼ Reðiubhe�kzeiðut�kxÞÞ (4.9)

The complex amplitudes of the velocities have the same absolute value and a phase shift of 90�. A
water particle thus follows a circular track or orbitalmotion (fromLatinorbis¼ circle). Inwater of

finite depth, the motion of a water particle follows an ellipse. The vertical axis of each ellipse

decreases with depth until at thewater bottom z¼H themotion is only in the horizontal direction.

If we excite a group of waves (not elementary waves, but, say, ten wave crests and troughs) in

initially calm water we will notice that the front of the wave crests decay while at the end of the

wave packet new wave crests are formed (Fig. 4.2). The wave packet thus moves slower than

the wave crests, i.e. with a speed slower than celerity c, namely with group velocity cgr:

cgr ¼ 1

2
c for deep water (4.10)

cgr ¼ c

�
1

2
þ kH

sinhð2kHÞ
�

for finite depth (4.11)

The linearized Bernoulli equation

pþ r
vf

vt
� rgz ¼ p0 (4.12)

and the wave potential give the difference pressure to atmospheric pressure at a point below the

water surface (for deep water):

p� p0 ¼ rgz� rg Re
�bhe�kzeiðut�kxÞ

�
(4.13)
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p0 is the atmospheric pressure, r the water density, and z the depth of the point below the

calm-water surface. The first term represents the hydrostatic pressure in calm water. The

second term represents the pressure change due to the wave. As with all wave effects, it

decays exponentially with depth. The pressure gradient vp/vz for the hydrostatic case is

equal to the specific weight of the fluid and causes a buoyant lifting force on the immersed

body that equals the weight of the displaced water. This lifting force changes in a wave!

The lifting force is lower in a wave crest, higher in a wave trough. This is called the Smith

effect.

The mechanical energy E per area of the water surface is composed of potential and kinetic

energy. Let z be the momentary elevation of the free surface. Then the potential energy (per

area) is:

Epot ¼ �z

2
rgð�zÞ ¼ 1

2
rgz2 (4.14)

The potential energy is positive both in wave troughs and wave crests and oscillates in time and

space between 0 and
1

2
rgjbhj2. The time average is

Epot ¼ 1

4
rgjbhj2 (4.15)

X

t

Group

C C/2

Figure 4.2:
Celerity and group velocity
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The kinetic energy per area is:

Ekin ¼
ZN
z

1

2
r
�
v2x þ v2z

�
dz ¼

ZN
z

1

2
ru2jbhj2e�2kz dzz

ZN
0

. dz ¼ 1

4
rgjbhj2 (4.16)

Here Eqs. (4.8) and (4.9) have been used and in a linearization the wave elevation z was

substituted by 0. The kinetic energy is constant in time and space. The time-averaged total

energy per area for a deep-water wave is then:

E ¼ 1

2
rgjbhj2 (4.17)

The average energy travels with cgr in the same direction as the wave. For finite-depth water the

average energy remains the same but the kinetic energy also oscillates in time and space.

The elementary wave was so far described in an earth-fixed coordinate system. In a reference

system moving with ship speed V in the direction of the ship axis xs under an angle of encounter

m (Fig. 4.3), the wave seems to change its frequency. The (circular) frequency experienced by

the ship is denoted encounter frequency:

ue ¼ ju� kV cos mj ¼
				u� u2V

g
cos m

				 (4.18)

Figure 4.4 illustrates this phenomenon. For course against the sea (m > 90�) the encounter
frequency is higher than the incident wave frequency u. For course with the sea (m < 90�) the
encounter frequency is usually lower than the incident wave frequency u. An exception is short

following seas which are passed by the ship. The condition for the ship passing the waves is:

Fn >
0:4

cos m

ffiffiffi
l

L

r
(4.19)

y

y
s

μ
c

v

xs

x

Figure 4.3:
Definition of angle of encounter
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An important parameter in this context is:

s ¼ ueV

g
¼ uV

g
�
�
uV

g

�2

cos m (4.20)

For following sea for cases with s cos m < 0.25, for given speed V, encounter angle m, and

encounter frequency ue three possible u values exist:

u1 ¼ g

2V cos m
ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4s cos m

p
Þ (4.21)

u2 ¼ g

2V cos m
ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4s cos m

p
Þ (4.22)

u3 ¼ g

2V cos m
ð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4s cos m

p
Þ (4.23)

The potential of a deep-water wave in a coordinate system moving with ship speed is:

f ¼ Reð�icbhe�kze�ikðxs cos m�ys sin mÞeiuetÞ (4.24)

The above formulae for velocities and pressures can correspondingly be derived in the

coordinate system moving with ship speed.
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4.3.2. Natural Seaway

Wind-excited seaway can be approximated with good accuracy as the superposition of many

elementary waves of different wave lengths and propagation directions. The phase shifts

between these elementary waves change with time and location and are taken as random

quantities for the origin and time t ¼ 0. The randomness of the phases e which corresponds

to the randomness (irregularity) of the natural seaway e means that only statistical

statements can be made, e.g. what the probability is that the wave height exceeds a given

limit.

The initial assumptions are:

1. The seaway is stationary, i.e. its statistical properties (e.g. average wave height, average

wave period, etc.) do not change within the considered time frame.

2. The seaway is not too steep so that linearized equations are still accurate enough. Then any

linear superposition of two or more waves with the same or differing frequency or prop-

agation direction will again be a possible form of the water surface.

Only those seaway properties which do not change for small variations of the registration

location or the registration time are of interest for ship seakeeping. The procedure to obtain

these properties is as follows. Assume we have a record of the wave elevation z(t) at a given

point for the time interval t ¼ 0 to T. Then z is decomposed in a Fourier analysis, i.e. the

complex constants bAj are determined in a finite series:

zðtÞ ¼ A0 þ
PJ
j¼1

Reð bAj e
iujtÞ with uj ¼ jDu; Du ¼ 2p=T (4.25)

The average wave elevation A0 is of no interest here. The phase angle 3j of the complex

amplitudes bAj ¼ j bAjjei3j would be different at a different (nearby) location and is therefore also
of no interest here. The absolute value of bAj depends on the registration time T. Only the sea

spectrum remains as constant and of interest in the above sense:

SzðujÞ ¼ Average value of j bAjj
2

2Duj
(4.26)

The averaging can be done:

• over many records of statistically equivalent seaways (e.g. at various locations spaced by

a few kilometers at the same time), or

• over many records of time intervals of the total registration time T, or

• over several (10 to 30) ‘neighboring’ j bAjj2 (preferred choice in practice); e.g. for j ¼ 1 to

10, 11 to 20, 21 to 30 etc., an average j bAjj2 can be found as the arithmetic average of ten

j bAjj2 in each case.
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The uj in the argument of the sea spectrum Sz is the (circular) frequency (in the last case the

average frequency) on which the average is based.

The wave energy per horizontal area in an elementary wave is:

E ¼ 1

2
rgj bAj2 (4.27)

rgSz is thus the average seaway energy per frequency interval and area. Therefore Sz is also

called the energy spectrum of a seaway. It describes the distribution of wave energy over the

frequency u. Its dimension is, e.g., m2$s.

The spectrum can be used to reconstruct the time function z(t) given in Eq. (4.25):

zðtÞ ¼
XJ
j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2SzðujÞDuj

q
$cosðujt þ 3jÞ (4.28)

(Instead of Re eia we simply write here cos a.) We substituted here j bAjj2 by its average value;
this usually has no significant effect. As the phase angle information is no longer contained in

the spectrum (and we usually only have the spectrum information to reconstruct a seaway) the

phase angles 3j are chosen as random quantities equally distributed in the interval [0, 2p].

This creates various functions z(t) depending on the actual choice of 3j, but all these functions

have the same spectrum, i.e. the same characteristic (non-random) properties as the original

seaway.

If all phase angles are chosen as zero the extremely unlikely (but not impossible) case

results that all elementary waves have a wave trough at the considered location at time

t ¼ 0. The number of terms in the sum for z(t) in the above equation is taken as infinite in

theoretical derivations. In practical simulations, usually 30 to 100 terms are taken.

Each elementary wave in a Fourier decomposition of natural seaway depends on time and

space. The superposition of many elementary waves all propagating in the x direction, but

c

y y
x x

z, ξ z, ξ

Figure 4.5:
Long-crested (left) and short-crested (right) seaways
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having different frequencies, yields long-crested seaways as depicted in Fig. 4.5 (left).

Long-crested seaway is described by:

zðtÞ ¼
XJ
j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2SzðujÞDuj

q
$cosðujt þ kjxþ 3jÞ (4.29)

kj ¼ uj /g is the wave number corresponding to frequency uj.

Short-crested seaway (Fig. 4.5 (right)) is a better approximation to wind-excited seaway. Short-

crested seaway is described if the wave energy is distributed not only over frequency, but also

over wave propagation direction m. The corresponding description is:

zðtÞ ¼
XJ
j¼1

XL
l¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Szðuj;mlÞDujDml

q
$cos½ujt � kjðx cos ml � sin mlÞ þ 3jl� (4.30)

Sz(uj,ml) is the directional or two-dimensional spectrum as opposed to the one-dimensional

spectrum Sz(uj).

At a ship, the wave elevation oscillates in a regular wave with encounter frequency ue. The

encounter spectrum Se(ue) describes the distribution of the wave energy in a seaway over ue

instead of u. The energy must be independent of the reference system:

SzðuÞ$jDuj ¼ SzeðueÞ$jDuej (4.31)

This yields:

SzeðueÞ ¼ SzðuÞ
due=du

¼ SzðuÞ			1� 2u

g
V cos m

			 (4.32)

If several u result in the same ue the contributions of all three frequencies are added on the r.h.s.

of this equation (Fig. 4.6). Correspondingly an encounter directional spectrum can also be

determined. Because of the several possible contributions on the r.h.s. and the singularity at See

where the denominator on the r.h.s. in the above equation becomes zero e the encounter

spectrum is not used in seakeeping computations. However, it is needed for the analysis of data if

these were measured from a ship with forward speed.

0 0 0.25 g /v
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Figure 4.6:
Sea spectrum and corresponding encounter spectrum
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4.3.3. Wind and Seaway

We distinguish between swell and wind sea. Swell waves have a celerity higher than the

present wind speed (e.g. measured in 10 m height above mean sea level; only the

component in the wave propagation direction is considered). Swell has been excited

originally by some stronger winds at some other location and propagates without significant

damping or excitation until it is damped in shallow-water regions or excited again to wind

sea in stronger winds. By definition, wind sea has celerity less or equal to the wind speed.

Due to the gustiness of wind and other factors, the distinction between swell and wind sea is

not sharp.

Swell, sometimes also wind sea (for winds changing rapidly in time or space), can change the

form of the spectrum considerably. On the other hand, a rather uniform form of a wind sea

spectrum is achieved within ½ to 1 hour if the wind is constant in time and space. The relevant

area in this context extends over a distance of (½ to 1 hour)/group velocity of waves in

a downwind direction. In the following, we will consider only spectra developed in constant

wind. The spectrum parameters, especially wave height and period, converge only after many

hours or several days to constant values. The form of the spectrum is determined by the

physical processes of:

• wave generation (e.g. the wind resistance of wave crests);

• dissipation (wave-breaking; in shallow water also friction at the ocean bottom);

• convection (transport of wave energy with group velocity);

• non-linear interaction between waves of different frequencies and direction.

The directional spectrum is described as the product of a one-dimensional spectrum Sz(u) with

a function f. f describes the distribution of the wave energy over the propagation direction m

assumed to be symmetrical to a main propagation direction m0:

Szðu;mÞ ¼ SzðuÞ$f ðm� m0Þ (4.33)

Söding and Bertram (1998) give a more modern form than the often cited PiersoneMoskowitz

and JONSWAP spectra. The older spectra assume a stronger decay of the wave energy at higher

frequencies (proportional to ue5, while more recent measurements indicate decay proportional

to ue4).

The one-dimensional spectrum Sz(u) must be zero for small frequencies (where the wave

celerity is much higher than the wind speed) and converge to zero for high frequencies, because

high frequency means short waves, which in turn can only have small height as the wave

steepness before breaking is limited. In between, there must be a maximum. The (circular)

frequency where the spectrum assumes its maximum is called modal frequency or peak

frequency up. The function Sz(u) contains as an important parameter Uc/cp. Uc is the

component of the wind velocity in the main direction of wave propagation, measured in 10 m
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height. cp is the celerity of elementary waves of frequencyup. cp is computed using the formula

cp ¼ g/up which is valid for elementary waves. In reality, waves of frequency up travel some

5e10% faster due to their larger steepness. The ratio Uc/cp usually lies between 1 (fully

developed seaway) and 5 (strongly increasing seaway).

Sz(u) is written as the product of three factors:

• an initial factor ag2/up
5

• a ‘base form’ containing the u dependency (corresponding to the PiersoneMoskowitz

spectrum widely used previously)

• a peak enhancement factor gG independent of Uc/cp:

SzðuÞ ¼ ag2

u5
p

$
�up

u

�4
exp



�
�up

u

�4�
$gG (4.34)

with a ¼ 0.006(Uc/cp)
0.55.

Figure 4.7 illustrates a, Fig. 4.8 the base form, and Fig. 4.9 the peak enhancement

for three representative values of Uc/cp. The peak enhancement makes the maximum

of the spectrum very pointed for a not fully developed seaway (Uc/cp > 1), while fully

developed seaways feature broader and less-pronounced maxima. g describes the maximum

of the peak enhancement over u. It occurs at up and increases the ‘base form’ by a

factor of:

g ¼ 1:7þmax½0:6 log10ðUc=cpÞ� (4.35)
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Figure 4.7:
Spectrum factor
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G describes how the enhancement factor decays left and right of the model frequency up; for

this purpose a formula corresponding to a normal (Gaussian) distribution is chosen (but

without a forefactor; thus the maximum of G is 1):

G ¼ exp

 
� ðu=up � 1Þ2

2s2

!
with s ¼ 0:08

"
1þ 4

ðUc=cpÞ3
#

(4.36)
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Peak enhancement factor
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The distribution of the wave energy over the propagation direction f(m e m0) is independent of

Uc/cp. Instead, it depends on the non-dimensional frequency u/up:

f ðm� m0Þ ¼
0:5b

cosh2½bðm� m0�
with (4.37)

b ¼ max
�
1:24; 2:61ðu=upÞ1:3

�
for u=up < 0:95 (4.38)

b ¼ max
�
1:24; 2:28ðu=upÞ�1:3

�
for u=up � 0:95 (4.39)

Figure 4.10 illustrates f(m e m0). Figure 4.11 illustrates b(u/up).
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Angular distribution of seaway energy
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Since short waves adapt more quickly to the wind than long waves, a changing wind direction

results in a frequency-dependent main propagation direction m0. Frequency-dependent m0 are

also observed for oblique offshore wind near the coast. The wave propagation direction here is

more parallel to the coast than the wind direction, because this corresponds to a longer fetch.

The (only statistically defined) wave steepness ¼ wave height/wave length does not depend

strongly on the wind velocity, Uc/cp, or u/up. The wave steepness is so large that the celerity

deviates noticeably from the theoretical values for elementary waves (of small amplitude) as

described above. Also, the average shape of the wave profiles deviates noticeably from the

assumed sinusoidal wave forms of elementary waves. However, non-linear effects in the waves

are usually much weaker than the non-linear effects of ship seakeeping in the seaway.

The significant wave height H1/3 of a seaway is defined as the mean of the top third of all

waves, measured from wave crest to wave trough. H1/3 is related to the area m0 under the sea

spectrum:

H1=3 ¼ 4
ffiffiffiffiffiffi
m0

p
with m0 ¼

ZN
0

Z2p
0

Szðu;mÞ dm du (4.40)

For the above given wind sea spectrum, H1/3 can be approximated by:

H1=3 ¼ 0:21
U2
c

g

�
Uc

cp

��1:65

(4.41)

The modal period is:

Tp ¼ 2p=up (4.42)

The periods T1 and T2, which were traditionally popular to describe the seaway, are much

shorter than the modal period. T1 corresponds to the frequency u where the area under the

spectrum has its center. T2 is the average period of upward zero crossings.

If we assume that water is initially calm and then a constant wind blows for a duration t and

over a distance x, the seaway parameter Uc/cp becomes approximately:

Uc

cp
¼ maxð1; 18x�3=10; 110q�3=7Þ (4.43)

x is the non-dimensional fetch x, q the non-dimensional wind duration t:

x ¼ gx=U2
c ; q ¼ gt=Uc (4.44)

The fetch is to be taken upwind from the point where the seaway is considered, but of course at

most to the shore. In reality, there is no sudden and then constant wind. But the seakeeping
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parameters are not very sensitive towards x and t. Therefore it is possible to estimate the

seaway with practical accuracy in most cases when the wind field is given.

Table 4.1 shows how the above formulae estimate the seaway parameters H1/3 and Tp for

various assumed wind durations t for an exemplary wind velocityUc¼ 20 m/s. The fetch xwas

assumed to be so large that the center term in the ‘max’-bracket in the above formula for Uc /cp
is always smaller than one of the other two terms. That is, the seaway is not fetch-limited, but

either time-limited (for 110qe3/7 > 1) or fully developed.

Figure 4.12 shows wind sea spectra forUc¼ 20 m/s for various fetch values. Figure 4.13 shows

the relation between wave period Tp and significant wave height H1/3 for various values of

Uc/cp. cp (lower scale) and Uc/cp together yield the wind velocity Uc that has excited the wind

Table 4.1: Sea spectra for various wind duration times for Uc [ 20m/s

Quantity Case 1 Case 2 Case 3

Assumed wind duration time t 5 h 20 h 50 h
Non-dimensional duration time q 8830 35000 88000
Maturity parameter Uc/cp 2.24 1.24 1
Significant wave height H1/3 2.26 m 6.00 m 8.56 m
up ¼ g/cp ¼ g/Uc $ Uc/cp 1.10 Hz 0.61 Hz 0.49 Hz
Modal period 2p/up 5.7 s 10.3 s 12.8 s
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Figure 4.12:
Wind sea spectra for Uc ¼ 20 m/s for various fetch values
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sea characterized by H1/3 and Tp. For swell, we can assume Uc z cp. Figure 4.14 shows the

relation between various seaway parameters, the ‘wind force’ and the wind velocity Uc.

Programs to compute the given wind sea spectrum from either Uc, t, and x or H1/3 and Tp are

given by Söding (1997).
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Figure 4.13:
Correlation between significant wave height H1/3, modal period Tp, wind speed Uc, and wave
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4.3.4. Wave Climate

Predictions of maximum loads, load spectra for fatigue strength analyses, etc. require

distributions of the significant seaway properties in individual ocean areas. The best sources

for such statistics are computations of the seaway based on measured wind fields. ANEP-II

(1983) gives such statistical data extensively for North Atlantic, North Sea, Baltic Sea,

Mediterranean Sea, and Black Sea. Based on these data, Germanischer Lloyd derived

distributions for H1/3 and T1 for all of the Atlantic between 50 and 60 longitudinal and the

western Atlantic between 40 and 50 longitudinal (Table 4.2). The table is based on data for

a period of 10 years. T1 is the period corresponding to the center of gravity of the area under

the sea spectrum. The modal period for this table is:

Tp ¼ T1=0:77

The values in the table give 106 the time share when T1 was in the given time interval and H1/3

in the interval denoted by its mean value, at an arbitrary point in the sea area. FCUM denotes

the cumulated share in per cent. Similar tables can be derived from ANEP-II and other

publications for special seaway directions, seasons, and other ocean areas.

Table 4.2 can also be used to approximate other ocean areas by comparing the wind field in the

North Atlantic with the wind field in another ocean area, using data of Blendermann (1998),

and employing the relation between wind and sea as given in the previous chapter.

4.4. Numerical Prediction of Ship Seakeeping

4.4.1. Overview of Computational Methods

If the effect of the wave amplitude on the ship seakeeping is significantly non-linear, there is

little sense in investigating the ship in elementary waves, since these waves do not appear in

Table 4.2: Relative occurrence $ 106 of combinations of H1/3 and T1 in the North Atlantic
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nature and the non-linear reaction of the ship in natural seaways cannot be deduced from the

reaction in elementary waves. In these non-linear cases, simulation in the time domain is the

appropriate tool.

If the non-linearity is weak or moderate the seakeeping properties of a ship in natural seaways

can be approximated by superposition of the reactions in elementary waves of different

frequency and direction. In these cases, the accuracy can be enhanced by introducing some

relatively simple corrections of the purely linear computations to account for force

contributions depending quadratically on the water velocity or considering the time-dependent

change of position and wetted surface of the ship, for example. Even if iterative corrections are

applied the basic computations of the ship seakeeping is still based on its reaction in

elementary waves, expressed by complex amplitudes of the ship reactions. The time

dependency is then always assumed to be harmonic, i.e. sinusoidal.

For flows involving strong non-linearities, particularly breaking waves or green water on deck,

free-surface RANSE simulations are the most appropriate tool. Such simulations have entered

industry practice to an increasing extent since the year 2000.

In practice, potential flow solvers still dominate in seakeeping predictions. The most frequent

application is the computation of the linear seakeeping properties of a ship in elementary

waves. In addition to the assumption for Euler solvers potential flow assumes that the flow is

irrotational. This is no major loss in the physical model, because rotation is created by the

water adhering to the hull and this information is already lost in the Euler flow model. Relevant

for practical applications is that potential flow solvers are much faster than Euler and RANSE

solvers, because potential flows have to solve only one linear differential equation instead of

four non-linear coupled differential equations. Also, potential flow solvers are usually based on

boundary element methods and need only to discretize the boundaries of the domain, not the

whole fluid space. This reduces the effort in grid generation considerably. On the other hand,

potential flow methods require a simple, continuous free surface. Flows involving breaking

waves and splashes cannot be analyzed properly by potential flow methods.

In reality, viscosity is significant in seakeeping, especially if the boundary layer separates

periodically from the hull. This is definitely the case for roll and yaw motions. In practice,

empirical corrections are introduced. Also, for flow separation at sharp edges in the aftbody

(e.g. vertical sterns, rudder, or transoms) a Kutta condition is usually employed to enforce

a smooth detachment of the flow from the relevant edge.

The theoretical basics and boundary conditions of linear potential methods for ship seakeeping

are treated extensively in the literature, e.g. by Newman (1978). Therefore, we can limit

ourselves here to a description of the fundamental results important to the naval architect.

The ship flow in elementary waves is described in a coordinate systemmoving with ship speed in

the x direction, but not following its periodic motions. The derivatives of the potential give the
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velocity of water relative to such a coordinate system. The total velocity potential is

decomposed:

ft ¼ ð�Vxþ fsÞ þ ðfw þ fIÞ (4.45)

with

ft potential of total flow

eVx potential of (downstream) uniform flow with ship speed V

fs potential of the steady flow disturbance

fw potential of the undisturbed wave as given at the end of Section 4.3.1

fI remaining unsteady potential.

The first parenthesis describes the steady (time-independent) flow, the second parenthesis the

periodic flow due to sea waves. The potentials can be superimposed, since the fundamental

field equation (Laplace equation, describing continuity of mass) is linear with respect to ft:

Dft ¼
�
v2

vx2
þ v2

vy2
þ v2

vz2

�
ft (4.46)

Various approximations can be used for fs and fI which affect computational effort and

accuracy of results. The most important linear methods can be classified as follows:

• Strip method. Strip methods are the standard tool for ship seakeeping computations. They

omit fs completely and approximate fI in each strip x ¼ constant, independently of the

other strips. Thus in essence the three-dimensional problem is reduced to a set (e.g. typi-

cally 10e30) of two-dimensional boundary value problems. This also requires a simplifi-

cation of the actual free surface condition. The method originated in the late 1950s with the

work of Korvin-Kroukovsky and Jacobs. Most of today’s strip methods are variations of the

strip method proposed by Salvesen, Tuck, and Faltinsen (1970). These are sometimes also

called STF strip methods where the first letter of each author is taken to form the abbre-

viation. The two-dimensional problem for each strip can be solved analytically or by panel

methods, which are the two-dimensional equivalents of the three-dimensional methods

described below. The analytical approaches use conform mapping to transform semicircles

to cross-sections resembling ship sections (Lewis sections). Although this transformation is

limited and, for example, submerged bulbous bow sections cannot be represented in

satisfactory approximation, this approach still yields for many ships results of similar

quality as strip methods based on panel methods (close-fit approach). A close-fit approach

(panel method) to solve the two-dimensional problem is described on the website. Strip

methods are e despite inherent theoretical shortcomings e fast, cheap, and for most

problems sufficiently accurate. However, this depends on many details. Insufficient accu-

racy of strip methods often cited in the literature is often due to the particular implemen-

tation of a code and not due to the strip method in principle. But, at least in their

conventional form, strip methods fail (as do most other computational methods) for waves
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shorter than perhaps one-third of the ship length. Therefore, the added resistance in short

waves (being considerable for ships with a blunt waterline) can also only be estimated by

strip methods if empirical corrections are introduced. Section 4.4.2 describes a linear strip

method in more detail.

• Unified theory. Newman (1978) and Sclavounos developed at the MIT the ‘unified theory’

for slender bodies. Kashiwagi (1997) describes more recent developments of this theory. In

essence, the theory uses the slenderness of the ship hull to justify a two-dimensional

approach in the near field which is coupled to a three-dimensional flow in the far field. The

far-field flow is generated by distributing singularities along the centerline of the ship. This

approach is theoretically applicable to all frequencies, hence ‘unified’. Despite its better

theoretical foundation, unified theories failed to give significantly and consistently better

results than strip theories for real ship geometries. The method therefore failed to be

accepted in practice.
• ‘High-speed strip theory’ (HSST). Several authors have contributed to the high-speed strip

theory after the initial work of Chapman (1975). A review of work since then can be found

in Kashiwagi (1997). HSST usually computes the ship motions in an elementary wave

using linear potential theory. The method is often called the 2.5d or 2dþt method, since it

considers the effect of upstream sections on the flow at a point x, but not the effect of

downstream sections. Starting at the bow, the flow problem is solved for individual strips

(sections) x ¼ constant. The boundary conditions at the free surface and the hull (strip

contour) are used to determine the wave elevation and the velocity potential at the free

surface and the hull. Derivatives in the longitudinal direction are computed as numerical

differences to the upstream strip which has been computed in the previous step. The

computation marches downstream from strip to strip and ends at the stern resp. just before

the transom. HSST is the appropriate tool for fast ships with Froude numbers Fn > 0.4. For

lower Froude numbers, it is inappropriate.

• Green function method (GFM). ISSC (1994) gives a literature review of these methods.

GFM distributes panels on the average wetted surface (usually for calm-water floating

position neglecting dynamical trim and sinkage and the steady wave profile) or on

a slightly submerged surface inside the hull. The velocity potential of each panel (Green

function) fulfills automatically the Laplace equation, the radiation condition (waves

propagate in the right direction) and a simplified free-surface condition (omitting the fs

completely). The unknown (either source strength or potential) is determined for each

element by solving a linear system of equations such that for each panel at one point the

no-penetration condition on the hull (zero normal velocity) is fulfilled. The various

methods differ primarily in the way the Green function is computed. This involves the

numerical evaluation of complicated integrals from 0 to N with highly oscillating

integrands. Some GFM approaches formulate the boundary conditions on the ship under

consideration of the forward speed, but evaluate the Green function only at zero speed.

This saves a lot of computational effort, but cannot be justified physically and it is not
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recommended. As an alternative to the solution in the frequency domain (for excitation

by elementary waves), GFM may also be formulated in the time domain (for impulsive

excitation). This avoids the evaluation of highly oscillating integrands, but introduces

other difficulties related to the proper treatment of time history of the flow in so-called

convolution integrals. Both frequency and time domain solutions can be superimposed to

give the response to arbitrary excitation, e.g. by natural seaway, assuming that the

problem is linear. All GFMs are fundamentally restricted to simplifications in the

treatment of fs. Usually fs is completely omitted, which is questionable for usual ship

hulls. It will introduce, especially in the bow region, larger errors in predicting local

pressures.

• Rankine singularity method (RSM). Bertram and Yasukawa (1996) give an extensive over-

view of these methods covering both frequency and time domains. RSMs, in principle,

capture fs completely and also more complicated boundary conditions on the free surface

and the hull. In summary, they offer the option for the best approximation of the

seakeeping problem within potential theory. This comes at a price. Both ship hull and the

free surface in the near field around the ship have to be discretized by panels. Capturing all

waves while avoiding unphysical reflections of the waves at the outer (artificial) boundary

of the computational domain poses the main problem for RSMs. Since the early 1990s,

various RSMs for ship seakeeping have been developed. By the end of the 1990s, the time-

domain SWAN code (SWAN ¼ Ship Wave ANalysis) of MITwas the first such code to be

used commercially.

• Combined RSMeGFM approach. GFMs are fundamentally limited in capturing the

physics when the steady flow differs considerably from uniform flow, i.e. in the near

field. RSMs have fundamental problems in capturing the radiation condition for low s
values. Both methods can be combined to overcome the individual shortcomings and to

combine their strengths. This is the idea behind combined approaches. These are described

as ‘Combined Boundary Integral Equation Methods’ by the Japanese, and as ‘hybrid

methods’ by Americans. Initially only hybrid methods were used which matched near-field

RSM solutions directly to far-field GFM solutions by introducing vertical control surfaces

at the outer boundary of the near field. The solutions are matched by requiring that the

potential and its normal derivative are continuous at the control surface between near field

and far field. In principle methods with overlapping regions also appear possible.

4.4.2. Strip Method

This section presents the most important formulae for a linear frequency-domain strip

method for slender ships in elementary waves. The formulae will be given without derivation.

For a more extensive coverage of the theoretical background, the reader is referred to

Newman (1978).
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Two coordinate systems are used:

• The ship-fixed system x, y, z, with axes pointing from amidships forward, to starboard

and downwards. In this system, the ship’s center of gravity is time-independent xg,

yg, zg.

• The inertial system x, h, z. This system follows the steady forward motion of the ship with

speed V and coincides in the time average with the ship-fixed system.

The main purpose of the strip method is to compute the ship’s rigid-body motions, i.e. the three

translations of the origin of ship-fixed system in the x, h, z direction and the three rotations

around these axes. We denote (Fig. 4.15):

u1 surge u4 roll

u2 sway u5 pitch

u3 heave u6 yaw

The motions are combined in a six-component vector u!. The forces and moments acting on the

ship are similarly combined in a six-component vector F
!
. u! and F

!
are harmonic functions of

time t oscillating with encounter frequency ue:

F
!¼ ReðcF!eiuetÞ and u!¼ Reðcu!eiuetÞ (4.47)

The fundamental equation of motion is derived from F
!¼ M$ €u! :

½�u2
eðM þ AÞ þ iueN þ S�cu! ¼ cF!e (4.48)

Here M, A, N, and S are real-valued 6 � 6 matrices. For mass distribution symmetrical to

y ¼ 0 the mass matrix M is:

u6
u4

u2

u3
u1

u5

Figure 4.15:
Six degrees of freedom for motions
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M ¼

26666664
m 0 0 0 mzg 0
0 m 0 �mzg 0 mxg
0 0 m 0 �mxg 0
0 �mzg 0 qxx 0 �qxz

mzg 0 �mxg 0 qyy 0
0 mxg 0 �qxz 0 qzz

37777775 (4.49)

The mass moments of inertia q are related to the origin of the ship-fixed coordinate system:

qxx ¼
Z

ðy2 þ z2Þ dm ; qxz ¼
Z

xz dm ; etc: (4.50)

If we neglect contributions from a dry transom stern and other hydrodynamic forces due to the

forward speed of the ship, the restoring forces matrix S is:

S ¼

26666664
0 0 0 0 0 0
0 0 0 0 0 0
0 0 rgAw 0 �rgAwxw 0
0 0 0 gmGM 0 0
0 0 �rgAwxw 0 gmGML 0
0 0 0 0 0 qzzu

2
g

37777775 (4.51)

Here Aw is the waterline area, xw the x coordinate of the center of the waterline, GM the

metacentric height, GML the longitudinal metacentric height, and ug the circular natural

frequency of yaw motions. ug is determined by the control characteristics of the autopilot and

usually has little influence on the yaw motions in seaways. In computing GML, the moment of

inertia is taken with respect to the origin of the coordinate system (usually amidships) and not,

as usual, with respect to the center of the waterline. For corrections for dry transoms and

unsymmetrical bodies reference is made to Söding (1987).

N is the damping matrix; it contains mainly the effect of the radiated waves. A is the added

mass matrix. The decomposition of the force into hydrostatic (S) and hydrodynamic (A)

components is somewhat arbitrary, especially for the ship with forward speed. Therefore,

comparisons between computations and experiments are often based on the term �u2
eA + S.

F
!

e is the vector of exciting forces which a wave would exert on a ship fixed on its average

position (diffraction problem). The exciting forces can be decomposed into a contribution due to

the pressure distribution in the undisturbed incident wave (FroudeeKrilov force) and the

contribution due to the disturbance by the ship (diffraction force). Both contributions are of

similar order of magnitude. To determine A and N, the flow due to the harmonic ship motions u!
must be computed (radiation problem). For small frequency of the motion (i.e. large wave

length of the radiated waves), the hydrostatic forces dominate and the hydrodynamic forces are

almost negligible. Therefore large relative errors in computing A and N are acceptable. For high
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frequencies, the crests of the waves radiated by the ship motions are near the ship almost parallel

to the ship hull, i.e. predominantly in the longitudinal direction. Therefore the longitudinal

velocity component of the radiated waves can be neglected. Then only the two-dimensional

flow around the ship sections (strips) must be determined. This simplifies the computations

a great deal.

For the diffraction problem (disturbance of the wave due to the ship hull), which determines the

exciting forces, a similar reasoning does not hold: unlike radiation waves (due to ship motions),

diffraction waves (due to partial reflection at the hull and distortion beyond the hull) form

a similar angle (except for sign) with the hull as the incident wave. Therefore, for most incident

waves, the diffraction flow will also feature considerable velocities in the longitudinal

direction. These cannot be considered in a regular strip method, i.e. if we want to consider all

strips as hydrodynamically independent. This error is partially compensated by computing the

diffraction flow for wave frequency u instead of encounter frequency ue, but a residual error

remains. To avoid these residual errors, sometimes F
!

e is determined indirectly from the

radiation potential following formulae of Newman (1965). However, these formulae are only

valid if the waterline is also streamline. This is especially not true for ships with submerged

transom sterns.

For the determination of the radiation and (usually also) diffraction (¼ exciting) forces, the

two-dimensional flow around an infinite cylinder of the same cross-section as the ship at the

considered position is solved (Fig. 4.16). The flow is generated by harmonic motions of the

cylinder (radiation) or an incident wave (diffraction). Classical methods used analytical

solutions based on multipole methods. Today, usually two-dimensional panel methods are

preferred due to their (slightly) higher accuracy for realistic ship geometries. These two-

dimensional panel methods can be based on GFM or RSM (see Chapter 3).

The flow and thus the pressure distribution depend on:

• for the radiation problem: hull shape, frequency ue, and direction of the motion (vertical,

horizontal, rotational)

• for the diffraction problem: hull shape, wave frequency u, and encounter angle m.

For the radiation problem, we compute the pressure distributions for unit amplitude motions in

one degree of freedom and set all other motions to zero and omit the incident wave. For the

diffraction problem, we set all motions to zero and consider only the incident wave and its

diffraction. We denote the resulting pressures by:

bp2 for horizontal unit motion of the cylinder;bp3 for vertical unit motion of the cylinder;bp4 for rotational unit motion of the cylinder around the x axis;bp0 for the fixed cylinder in waves (only the pressure in the undisturbed wave);bp7 for the fixed cylinder in waves (only the disturbance of the pressure due to the body).
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Let the actual motions of the cylinder in a wave of amplitude bhx be described by the complex

amplitudes bu2;0x, bu3;0x, bu4;0x. Then the complex amplitude of the harmonic pressure is:

bpi ¼ bp2bu2;0x þ bp3bu3;0x þ bp4bu4;0x þ ðbp0 þ bp7Þbhx (4.52)

The amplitudes of the forces per length on the cylinder are obtained by integrating the pressure

over the wetted surface of a cross-section (wetted circumference):

8><>:
bf 2bf 3bf 4
9>=>; ¼

Z l
0

8<: n2
n3

yn3 � zn2

9=;$bpi d[ ¼ Z l
0

8<: n2
n3

yn3 � zn2

9=;$

8>>><>>>:
bp2bp3bp4bp0 þ bp7

9>>>=>>>;
T

d[$

8>>><>>>:
bu2;0xbu3;0xbu4;0xbhx

9>>>=>>>; (4.53)

{0, n2, n3} is here in the inward unit normal on the cylinder surface. The index x in the last

vector indicates that all quantities are taken at the longitudinal coordinate x at the ship, i.e. the

position of the strip under consideration. [ is the circumferential length coordinate of the

wetted contour. We can write the above equation in the form:

c
f
! ¼ bH$

nbu2;0x; bu3;0x; bu4;0x; bhxoT (4.54)

y

z

x

Figure 4.16:
Principle of strip method
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The elements of the matrix bH , obtained by the integrals over the wetted surface in the above

original equation, can be interpreted as added masses aij, damping nij and exciting forces per

wave amplitude bf ei:
bH ¼

264u2
ea22 � iuen22 0 u2

ea24 � iuen24 bf e2
0 u2

ea33 � iuen33 0 bf e3
u2
ea42 � iuen42 0 u2

ea44 � iuen44 bf e4
375 (4.55)

For example, a22 is the added mass per cylinder length for horizontal motion.

The added mass tends towards infinity as the frequency goes to zero. However, the effect of the

added mass also goes to zero for small frequencies, as the added mass is multiplied by the

square of the frequency.

The forces on the total ship are obtained by integrating the forces per length (obtained for the

strips) over the ship length. For forward speed, the harmonic pressure according to the

linearized Bernoulli equation also contains a product of the constant ship speed eV and the

harmonic velocity component in the x direction. Also, the strip motions denoted by index x

have to be converted to global ship motions in six degrees of freedom. This results in the global

equation of motion: h
S� u2

eðM þ bBÞi bu ¼ bEh (4.56)

bB is a complex matrix. Its real part is the added mass matrix A. Its imaginary part is the

damping matrix N:

u2
e
bB ¼ u2

eA� iueN ¼
Z
L

VðxÞ$
�
1þ iV

ue

v

vx

�� bHB$WðxÞ� dx (4.57)

This equation can be used directly to compute bB, e.g. using the trapezoidal rule for the integrals
and numerical difference schemes for the differentiation in x. Alternatively, partial integration

can remove the x derivatives. The new quantities in the above equations are defined as:

c
E
! ¼

c
F
!

E

h
¼
Z
L

VðxÞ$
 bHE þ iV

u

v bHE7

vx

!
eikxcos m dx (4.58)

WðxÞ ¼
24 0 1 0 tx 0 x� V=ðiueÞ
0 0 1 0 �xþ V=ðiueÞ 0
0 0 0 1 0 0

35 (4.59)
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tx is the z coordinate (in the global ship system) of the origin of the reference system for a strip.

(Often a strip reference system is chosen with origin in the waterline, while the global ship

coordinate system may have its origin on the keel.)

VðxÞ ¼

26666664
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 tx 0 1 0
�tx 0 �x 0 1
0 x 0 0 0

37777775 (4.60)

bHB ¼

266664
0 0 0

u2
ea22 � iuen22 0 u2

ea24 � iuen24
0 u2

ea33 � iuen33 0
u2
ea42 � iuen42 0 u2

ea44 � iuen44
0 0 0

377775 (4.61)

bHE ¼

8>>>><>>>>:
�irgkAx cosmbf e2bf e3bf e4
�irgkAxsx cosm

9>>>>=>>>>; (4.62)

Ax is the submerged section area at x; sx is the vertical coordinate of the center of the submerged

section area in the global system. bHE contains both the FroudeeKrilov part from the

undisturbed wave (Index 0) and the diffraction part (Index 7), while bHE7 contains only the

diffraction part.

The formulae for bB and
c
E
!

contain x derivatives. At locations x, where the ship cross-section

changes suddenly (propeller aperture, vertical stem, submerged transom stern), this would

result in extremely high forces per length. To a large extent, this is actually true at the bow, but

not at the stern. If the cross-sections decrease rapidly there, the streamlines separate from the

ship hull. The momentum (which equals added mass of the cross-section times velocity of the

cross-section) then remains in the ship’s wake while the above formulae would yield in strict

application zero momentum behind the ship as the added mass is zero there. Therefore, the

integration of the x derivatives over the ship length in the above formulae has to end at such

locations of flow separation in the aftbody.
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The global equation of motion above yields the vector of the response amplitude operators

(RAOs) (¼ complex amplitude of reaction/wave amplitude) for the ship motions:

bu
h
¼
�
S� u2

e ½M þ bB���1
$
c
E
!

(4.63)

The effect of rudder actions due to course deviations (yaw oscillations) was already

considered in the matrix S. In addition, there are forces on the rudder (and thus the ship)

due to ship motions (for centrally located rudders only due to sway, yaw, and roll) and due

to the incident wave. Here it is customary to incorporate the rudder in the model of the

rigid ship filling the gaps between rudder and ship. (While this is sufficient for the

computation of the ship motions, it is far too crude if the forces on the rudder in a seaway

are to be computed.)

Accurate computation of the motions, pressures, internal forces, etc. requires further additions

and corrections, e.g. to capture the influence of non-linear effects especially for roll motion,

treatment of low encounter frequencies, influence of bilge keels, stabilizing fins, etc. The

special and often empirical treatment of these effects differs in various strip methods. Details

can be found in the relevant specialized literature.

4.4.3. Rankine Singularity Methods

Bertram and Yasukawa (1996) give an extensive survey of these methods. A linear frequency-

domain method is described briefly here to exemplify the general approach.

In principle, RSM can consider the steady potential completely. If fs is completely captured

the methods are called ‘fully three-dimensional’ to indicate that they capture both the

steady and the harmonic flow three-dimensionally. In this case, first the ‘fully non-linear’

wave resistance problem is solved to determine fs and its derivatives, including second

derivatives of fs on the hull. The solution also yields all other steady flow effects, namely

dynamic trim and sinkage, steady wave profile on the hull, and the steady wave pattern on

the free surface. Then the actual seakeeping computations can be performed considering the

interaction between steady and harmonic flow components. The boundary conditions for fI

are linearized with regard to wave amplitude h and quantities proportional to h, e.g. ship

motions. The Laplace equation (mass conservation) is solved subject to the boundary

conditions:

1. Water does not penetrate the hull.

2. Water does not penetrate the free surface.

3. At the free surface there is atmospheric pressure.

4. Far away from the ship, the flow is undisturbed.

5. Waves generated by the ship radiate away from the ship.
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6. Waves generated by the ship are not reflected at the artificial boundary of the computa-

tional domain.

7. For antisymmetric motions (sway, roll, yaw), a Kutta condition is enforced on the stern.

8. Forces (and moments) not in equilibrium result in ship motions.

For s ¼ ueV/g > 0.25 waves generated by the ship travel only downstream, similar to the

steady wave pattern. Thus also the same numerical techniques as for the steady wave resistance

problem can be used to enforce proper radiation, e.g. shifting source elements relative to

collocation points downstream. Values s < 0.25 appear especially in following waves. Various

techniques have been proposed for this case, as discussed in Bertram and Yasukawa (1996).

However, there is no easy and accurate way in the frequency domain. In the time domain,

proper radiation follows automatically and numerical beaches have to be introduced to avoid

reflection at the outer boundary of the computational domain.

We split here the six-component motion vector of the section on the strip method approach

into two three-component vectors. u!¼ fu1; u2; u3gT describes the translations, a!¼
fa1;a2;a3gT the rotations. The velocity potential is again decomposed as in Section 4.4.1:

ft ¼ ð�Vxþ fsÞ þ ðfw þ fIÞ (4.64)

The steady potential fs is determined first. Typically, a ‘fully non-linear’ wave resistance code

employing higher-order panels is also used to determine second derivatives of the potential on

the hull. Such higher-order panels are described in the section on boundary elements. fw is the

incident wave as in Section 4.3:

fw ¼ Reð�icbhe�kze�ikðx cos m�y sin mÞeiuetÞ (4.65)

The wave amplitude is chosen to bh ¼ 1. The remaining unknown potential fI is decomposed

into diffraction and radiation components:

fI ¼ fd þ
X6
i¼1

fiui (4.66)

The boundary conditions 1e3 and 7 are numerically enforced in a collocation scheme, i.e. at

selected individual points. The remaining boundary conditions are automatically fulfilled in

a Rankine singularity method. Combining 2 and 3 yields the boundary condition on the free

surface, to be fulfilled by the unsteady potential fw þ fI:�
�u2

eþBiue

�bfð1Þ þ
��

2iueþB


Vfð0Þ þ a!ð0Þ þ a!g

�
Vbfð1Þ þVfð0ÞðVfð0ÞVÞVbfð1Þ ¼ 0

(4.67)

with:

fð0Þ ¼ �Vxþ fs steady potential (4.68)
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a!ð0Þ ¼ ðVfð0ÞVÞVfð0Þ steady particle acceleration (4.69)

a!g ¼ a!� f0; 0; ggT (4.70)

B ¼ � 1

ag3

vðVfð0Þ a!gÞ
vz

(4.71)

V ¼ fv=vx; v=vy; v=vzgT (4.72)

The boundary condition 1 yields on the ship hull:

n!Vbfð1Þ þcu!ðm!� iue n
!Þ þca!½ x!� ðm!� iue n

!Þ þ n!� Vfð0Þ� ¼ 0 (4.73)

Here the m-terms have been introduced:

m!¼ ð n!VÞVfð0Þ (4.74)

Vectors n! and x! are to be taken in the ship-fixed system.

The diffraction potential fd and the six radiation potentials fi are determined in a panel method

that can employ regular first-order panels. The panels are distributed on the hull and on (or

above) the free surface around the ship. The Kutta condition requires the introduction of

additional dipole (or alternatively vortex) elements.

Test computations for a container ship (standard ITTC test case S-175) have shown

a significant influence of the Kutta condition for sway, yaw, and roll motions for small

encounter frequencies.

To determine fd, all motions (ui, i ¼ 1 to 6) are set to zero. To determine the fi, the

corresponding ui is set to 1, all other motion amplitudes, fd and fw to zero. Then the boundary

conditions form a system of linear equations for the unknown element strengths which is

solved, for example, by Gauss elimination. Once the element strengths are known, all

potentials and derivatives can be computed.

For the computation of the total potential ft, the motion amplitudes ui remain to be

determined. The necessary equations are supplied by the momentum equations:

mð €u!þ €a!� x!gÞ ¼ � a!� G
!þ

Z
ðpð1Þ � r½ u! a!g þ a!ð x!� a!gÞ� n! dS (4.75)

mð x!g � €u!Þ þ I €a!¼ � x!g � ð a!� G
!Þ þ

Z
ðpð1Þ � r½ u! a!g þ a!ð x!� a!gÞ�

�ð x!� n!Þ dS
(4.76)
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G¼ gm is the ship’s weight, x!g its center of gravity and I the matrix of the moments of inertia

of the ship (without added masses) with respect to the coordinate system. I is the lower-right

3 � 3 sub-matrix of the 6 � 6 matrix M given in the section for the strip method.

The integrals extend over the average wetted surface of the ship. The harmonic pressure p(1)

can be decomposed into parts due to the incident wave, due to diffraction, and due to radiation:

pð1Þ ¼ pw þ pd þ
X6
i¼1

piui (4.77)

The pressures pw, pd and pi, collectively denoted by pj, are determined from the linearized

Bernoulli equation as:

p j ¼ �rðfj
t þ Vfð0ÞVfjÞ (4.78)

The two momentum vector equations above form a linear system of equations for the six

motions, ui, which is easily solved.

The explicit consideration of the steady potential s changes the results for computed heave and

pitch motions for wavelengths of similar magnitude as the ship length e these are the

wavelengths of predominant interest e by as much as 20e30% compared to total neglect. The

results for standard test cases such as the Series-60 and the S-175 agree much better with

experimental data for the ‘fully three-dimensional’ method. For the standard ITTC test case of

the S-175 container ship, in most cases good agreement with experiments could be obtained

(Fig. 4.17). Only for low encounter frequencies are the antisymmetric motions over-predicted,

probably because viscous effects and autopilot were not modeled at all in the computations.

If the steady flow is approximated by double-body flow, similar results are obtained as long

as the dynamic trim and sinkage are small. However, the computational effort is nearly the same.

Japanese experiments on a tanker model indicate that for full hulls the diffraction pressures in

the forebody for short head waves (l/L ¼ 0.3 and 0.5) are predicted with errors of up to 50% if

fs is neglected (as typically in GFM or strip methods). Computations with and without

consideration of fs yield large differences in the pressures in the bow region for radiation in

short waves and for diffraction in long waves.

4.4.4. Problems for Fast and Unconventional Ships

Seakeeping computations are problematic for fast and unconventional ships. Seakeeping

plays a special role here, as fast ships are often passenger ferries, which need good

seakeeping characteristics to attract passengers. This is the reason why, for instance, planing

boats with their bad seakeeping are hardly ever used for commercial passenger transport. For

fast cargo ships, the reduced speed in seaways can considerably influence transport
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efficiency. A hull form, which is superior in calm water, may well become inferior in

moderate seaways. Warships also often require good seakeeping to supply stable platforms

for weapon systems, helicopters, or planes.
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Figure 4.17:
Selected response amplitude operators of motions for the container ship S-175 at

Fn ¼ 0.275: experiment, computation surge (top left) for m ¼ 180�; roll (top right) for m ¼120�;
heave (bottom left) for m ¼ 150�; pitch (bottom right) for m ¼ 150�
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Unfortunately, computational methods for conventional ships are usually not at all or

only with special modifications suitable for fast and unconventional ships. The special

‘high-speed strip theory’ (see Section 4.4.1) has been successfully applied in various

forms to both fast monohulls and multihulls. Japanese validation studies showed that for

a fast monohull with transom stern the HSST fared much better than both conventional

strip methods and three-dimensional GFM and RSM. However, the conventional strip

methods and the three-dimensional methods did not use any special treatment of the large

transom stern of the test case. This impairs the validity of the conclusions. Researchers at

the MIT have shown that at least for time-domain RSM the treatment of transom sterns

is possible and also yields good results for fast ships, albeit at a much higher

computational effort than the HSST. In most cases, HSST should yield the best

costebenefit ratio for fast ships.

It is often claimed in the literature that conventional strip methods are only suitable for

low ship speeds. However, benchmark tests show that strip methods can yield good

predictions of motion RAOs up to Froude numbers Fn z 0.6, provided that proper care is

taken and the dynamic trim and sinkage and the steady wave profile at the hull are

included to define the average submergence of the strips. The prediction of dynamic trim

and sinkage is relatively easy for fast displacement ships, but difficult for planing

boats. Neglecting these effects, i.e. computing for the calm-water wetted surface, may

be a significant reason why often a lower Froude number limit of Fn z 0.4 is cited in the

literature.

For catamarans, the interaction between the hulls plays an important role especially for low

speeds. For design speed, the interaction is usually negligible in head seas. Three-dimensional

methods (RSM, GFM) capture automatically the interaction as both hulls are simultaneously

modeled. The very slender form of the demihulls introduces smaller errors for GFM catamaran

computations than for monohulls. Both RSM and GFM applications to catamarans can be

found in the literature, usually for simplified research geometries. Strip methods require special

modifications to capture, at least in good approximation, the hull interaction, namely multiple

reflection of radiation and diffraction waves. Simply using the hydrodynamic coefficients for

the two-dimensional flow between the two cross-sections leads to strong overestimation of the

interaction for V > 0.

Seakeeping computations for air-cushioned vehicles and surface effect ships are particularly

difficult due to additional problems:

• The flexible skirts deform under the changing air cushion pressure and the contact with the

free surface. Thus the effective cushion area and its center of gravity change.

• The flow and the pressure in the cushion contain unsteady parts which depend strongly on

the average gap between free surface and skirts.

• The dynamics of fans (and their motors) influences the ship motions.
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In particular the narrow gaps between skirts and free surface result in a strongly non-linear

behavior that so far excludes accurate predictions.

4.4.5. Further Quantities in Regular Waves

Within a linear theory, the velocity and acceleration RAOs can be directly derived, once the

motion RAOs are determined. The relative motion between a point on the ship and the water

surface is important to evaluate the danger of slamming or water on deck. The RAOs for

relative motion should incorporate the effect of diffraction and radiation, which is again quite

simple once the RAOs for the ship motions are determined. However, effects of flared hull

shape with outward forming spray for heave motion cannot be modeled properly within a linear

theory, because these depend non-linearly on the relative motion. In practice, the section flare

is important for estimating the amount of water on deck.

Internal forces on the ship hull (longitudinal, transverse, and vertical forces, torsional,

transverse, and longitudinal bending moments) can also be determined relatively easily for

known motions. The pressures are then only integrated up to a given cross-section instead of

over the whole ship length. (Within a strip method approach, this also includes the matrix of

restoring forces S, which contains implicitly many hydrostatic pressure terms.) Also, the mass

forces (in matrix M) should only be considered up to the given location x of the cross-section.

Stresses in the hull can then be derived from the internal forces. However, care must be taken

that the moments are transformed to the neutral axis of the ‘beam’ ship hull. Also, stresses in the

hull are often of interest for extreme loads where linear theory should no longer be applied.

The longitudinal force on the ship in a seaway is to first order within a linear theory also

a harmonically oscillating quantity. The time average of this quantity is zero. However, in

practice the ship experiences a significantly non-zero added resistance in seaways. This added

resistance (and similarly the transverse drift force) can be estimated using linear theory. Two

main contributions appear:

• Second-order pressure contributions are integrated over the average wetted surface.

• First-order pressure contributions are integrated over the difference between average

and instantaneous wetted surface; this yields an integral over the contour of the water-

plane.

If the steady flow contribution is completely retained (as in some three-dimensional BEM), the

resulting expression for the added resistance is rather complicated and also involves second

derivatives of the potential on the hull. Usually this formula is simplified assuming:

• uniform flow as the steady base flow;

• dropping a term involving x-derivatives of the flow;

• considering only heave and pitch as main contributions to added resistance.
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4.4.6. Ship Responses in Stationary Seaway

Here the issue is how to get statistically significant properties in natural seaways from

a response amplitude operator Yr (u,m) in elementary waves for an arbitrary response r

depending linearly on wave amplitude. The seaway is assumed to be stationary with known

spectrum Sz(u,m).

Since the spectrum is a representation of the distribution of the amplitude squared over u and

m, and the RAO bY r is the complex ratio of rA/zA, the spectrum of r is given by:

Srðu;mÞ ¼ jYrðu;mÞj2Szðu;mÞ (4.79)

Values of r, chosen at a random point in time, follow a Gaussian distribution. The average of r

is zero if we assume r ~ zA , i.e. in calm water r ¼ 0. The probability density of randomly

chosen r values is:

f ðrÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2psr

p exp

�
� r2

2s2r

�
(4.80)

The variance s2r is obtained by adding the variances due to the elementary waves in which the

natural seaway is decomposed:

s2r ¼
ZN
0

Z2p
0

Srðu;mÞ dm du (4.81)

The sum distribution corresponding to the frequency density f(r) above is:

FðrÞ ¼
Zr

�N

f ðrÞ dr ¼ 1

2
½1þ fðr=srÞ� (4.82)

The probability integral f is defined as:

f ¼ 2ffiffiffiffiffiffi
2p

p
Zx

�N

e�t2=2 dt (4.83)

F(r) gives the percentage of time when a response (in the long-term average) is less or equal to

a given limit r. 1 e F(r) is then the corresponding percentage of time when the limit r is

exceeded.

More often the distribution of the amplitudes of r is of interest. We define here the amplitude of

r (differing from some authors) as the maximum of r between two following upward zero
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crossings (where r ¼ 0 and _r > 0). The amplitudes of r are denoted by rA. They have

approximately (except for extremely ‘broad’ spectra) the following probability density:

f ðrAÞ ¼ rA
s2r

exp

�
� r2A
2s2r

�
(4.84)

The corresponding sum distribution is:

FðrAÞ ¼ 1� exp

�
� r2A
2s2r

�
(4.85)

sr follows again from Eq. (4.81). The formula for F(rA) describes a so-called Rayleigh

distribution. The probability that a randomly chosen amplitude of the response r exceeds rA is:

1� FðrAÞ ¼ exp

�
� r2A
2s2r

�
(4.86)

The average frequency (occurrences/time) of upward zero crossings is derived from the r

spectrum to:

f0 ¼ 1

2psr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZN
0

Z2p
0

u2
eSrðu;mÞ dm du

vuuut (4.87)

Together with Eq. (4.86) this yields the average occurrence of r amplitudes which exceed

a limit rA during a period T:

zðrAÞ ¼ Tf0 exp

�
� r2A
2s2r

�
(4.88)

Often we are interested in questions such as, ‘What is the probability that during a period T

a certain stress is exceeded in a structure or an opening is flooded?’ Generally, the issue is then

the probability P0(rA) that during a period T the limit rA is never exceeded. In other words,

P0(rA) is the probability that the maximum amplitude during the period T is less than rA. This is

given by the sum function of the distribution of the maximum of r during T. We make two

assumptions:

• zðrAÞ << Tf0; this is sufficiently well fulfilled for rA � 2sr.

• An amplitude rA is statistically nearly independent of its predecessors. This is true for most

seakeeping responses, but not for the weakly damped amplitudes of elastic ship vibration

excited by seaway, for example.

Under these assumptions we have:

P0ðrAÞ ¼ e�zðrAÞ (4.89)
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If we insert here the above expression for z(rA) we obtain the ‘double’ exponential distribution

typical for the distribution of extreme values:

P0ðrAÞ ¼ e�Tf0 expð�r2A=ð2s2
r ÞÞ (4.90)

The probability of exceedence is then 1e P0(rA). Under the (far more limiting) assumption that

z(rA) << 1 we obtain the approximation:

1� P0ðrAÞzzðrAÞ (4.91)

The equations for P0(rA) assume neither a linear correlation of the response r from the wave

amplitude nor a stationary seaway. They can therefore also be applied to results of non-linear

simulations or long-term distributions.

4.4.7. Time-Domain Simulation Methods

The appropriate tools to investigate strongly non-linear ship reactions are simulations in the

time domain. The seaway itself is usually linearized, i.e. computed as superposition of

elementary waves. The frequencies of the individual elementary waves uj may not be integer

multiples of a minimum frequency umin. In this case, the seaway would repeat itself after

2p/umin unlike a real natural seaway. Appropriate methods to choose the uj are:

• The uj are chosen such that the area under the sea spectrum between uj and ujþ1 is the

same for all j. This results in constant amplitudes for all elementary waves regardless of

frequency.

• The frequency interval of interest for the simulation is divided into intervals. These

intervals are larger where Sz or the important RAOs are small and vice versa. In each

interval a frequency uj is chosen randomly (based on constant probability distribution).

One should not choose the same uj for all the L encounter angles under consideration.

Rather each combination of frequency uj and encounter angle ml should be chosen anew

and randomly.

The frequencies, encounter angles, and phase angles chosen before the simulation must be kept

during the whole simulation.

Starting from a realistically chosen start position and velocity of the ship, the simulation

computes in each time step the forces and moments acting from the moving water on the ship.

The momentum equations for translations and rotations give the translational and rotational

accelerations. Both are three-component vectors and are suitably expressed in a ship-fixed

coordinate system. The momentum equations form a system of six scalar, coupled ordinary

second-order differential equations. These can be transformed into a system of 12 first-order

differential equations which can be solved by standard methods, e.g. fourth-order

RungeeKutta integration. This means that the ship position and velocity at the end of a small
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time interval, e.g. 1 second, are determined from the corresponding data at the beginning of this

interval using the computed accelerations.

The forces and moments can be obtained by integrating the pressure distribution over the

momentary wetted ship surface. Three-dimensional methods are usually too expensive for this

purpose. Therefore modified strip methods are most frequently used. A problem is that the

pressure distribution depends not only on the momentary position, velocity, and acceleration,

but also on the history of the motion which is reflected in the wave pattern. This effect is

especially strong for heave and pitch motions. In computations for the frequency domain, the

historical effect is expressed in the frequency dependency of the added mass and damping. In

time-domain simulations, we cannot consider a frequency dependency because there are many

frequencies at the same time and the superposition principle does not hold. Therefore, the

historical effect on the hydrodynamic forces and moments F
!

is either expressed in convolution

integrals ( u! contains here not only the ship motions, but also the incident waves):

F
!ðtÞ ¼

Z t
�N

KðsÞ u!ðsÞ ds (4.92)

Or one considers 0 to n time derivatives of the forces F
!

and 1 to (nþ 1) time derivatives of the

motions u! :

B0 F
!ðtÞ þ B1

_
F
!ðtÞ þ B2

€
F
!ðtÞ þ. ¼ A0

_u!ðtÞ þ A1
€u!ðtÞ þ A0 u

!.ðtÞ þ. (4.93)

The matrix K(s) in the first alternative and the scalars Ai, Bi in the second alternative are

determined in potential flow computations for various sinkage and heel of the individual strips.

The second alternative is called the state model and appears to be far superior to the first

alternative. Typical values for n are 2e4; for larger n, problems occur in the determination of the

constants Ai and Bi resulting, for example, in numerically triggered oscillations. Pereira (1988)

gives details of such a simulation method, namely SIMBEL. The simulation method has been

extended considerably in the meantime and can also consider simultaneously the flow of water

through a damaged hull, sloshing of water in the hull, or water on deck.

A far simpler and far faster approach is described, e.g., in Söding (1987). Here only the

strongly non-linear surge and roll motions are determined by a direct solution of the equations

of motion in the time-domain simulation (code ROLLS). The other four degrees of freedom are

linearized and then treated similarly as the incident waves, i.e. they are computed from RAOs

in the time domain. This is necessary to couple the four linear motions to the two non-linear

motions. (Roll motions are often simulated as independent from the other motions, but this

yields totally unrealistic results.) The restriction to surge and roll much simplifies the

computation, because the history effect for these degrees of freedom is negligible. Extensive

validation studies for this approach with model tests gave excellent agreement for capsizing of
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damaged ro-ro vessels drifting without forward speed in transverse waves (Chang and Blume

1998).

Simulations often aim to predict the average occurrence z(rA) of incidents where in a given

period T a seakeeping response r(t) exceeds a limit rA. A new incident is then counted when

after a previous incident another zero crossing of r occurred. The average occurrence is

computed by multiple simulations with the characteristic data, but other random phases 3jl for

the superposition of the seaway. Alternatively, the simulation time can be chosen as nT and the

number of occurrences can be divided by n. Both alternatives yield the same results except for

random fluctuations.

Often seldom (extremely unlikely) incidents are of interest which would require simulation

times of weeks to years to determine z(rA) directly if the occurrences are determined as

described above. However, these incidents are expected predominantly in the presence of one

or several particularly high waves. One can then reduce the required simulation time drastically

by substituting the real seaway of significant wave height Hreal by a seaway with larger

significant wave height Hsim. The periods of both seaways shall be the same. The following

relation between the incidents in the real seaway and in the simulated seaway exists

(Söding 1987):

H2
sim

H2
real

¼ ln½zrealðrAÞ=zð0Þ� þ 1:25

ln½zsimðrAÞ=zð0Þ� þ 1:25
(4.94)

This equation is sufficiently accurate for zsim /z(0) < 0.03. In practice, one determines in

simulated seaway, e.g. with 1.5e2 times larger significant wave height, the occurrences

zsim(rA) and z(0) by direct counting; then Eq. (4.94) is solved for the unknown zreal(rA):

zrealðrAÞ ¼ zð0Þexp
 
H2
sim

H2
real

fln½zsimðrAÞ=zð0Þ� þ 1:25g � 1:25

!
(4.95)

4.4.8. Long-Term Distributions

Section 4.4.6 treated ship reactions in stationary seaway. This section will cover probability

distributions of ship reactions r during periods T with changing sea spectra. A typical

example for T is the total operational time of a ship. A quantity of interest is the average

occurrence zL(rA) of cases when the reaction r(t) exceeds the limit rA. The average can be

thought of as the average over many hypothetical realizations, e.g. many equivalently

operated sister ships.

First, one determines the occurrence z(rA;H1/3,Tp,m0) of exceeding the limit in a stationary

seaway with characteristics H1/3, Tp, and m0 during total time T. (See Section 4.4.6 for linear
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ship reactions and Section 4.4.7 for non-linear ship reactions.) The weighted average of the

occurrences in various seaways is formed. The weighing factor is the probability p(H1/3,Tp,m0)

that the ship encounters the specific seaway:

zLðrAÞ ¼
X

all H1=3

X
all Tp

X
all m0

zðrA;H1=3;Tp;m0Þ$pðH1=3;Tp;m0Þ (4.96)

Usually, for simplification, it is assumed that the ship encounters seaways with the same

probability under nm encounter angles m0:

zLðrAÞ ¼ 1

nm

X
all H1=3

X
all Tp

Xnm
i¼1

zðrA;H1=3; Tp;m0iÞ$pðH1=3;TpÞ (4.97)

The probability p(H1/3,Tp) for encountering a specific seaway can be estimated using

data as given in Table 4.2. If the ship were to operate exclusively in the ocean area for

Table 4.2, the table values (divided by 106) could be taken directly. This is not the

case in practice and requires corrections. A customary correction then is to base the

calculation only on 1/50 or 1/100 of the actual operating time of the ship. This correction

considers, e.g.:

• The ship usually operates in areas with not quite so strong seaways as given in Table 4.2.

• The ship tries to avoid particularly strong seaways.

• The ship reduces speed or changes course relative to the dominant wave direction, if it

cannot avoid a particularly strong seaway.

• Some exceedence of rA is not important, e.g. for bending moments if they occur in load

conditions when the ship has only a small calm-water bending moment.

The sum distribution of the amplitudes rA, i.e. the probability that an amplitude r is less than

a limit rA, follows from zL:

PLðrAÞ ¼ 1� zLðrAÞ
zLð0Þ (4.98)

zL(0) is the number of amplitudes during the considered period T. This distribution is used

for seakeeping loads in fatigue strength analyses of the ship structure. It is often only

slightly different from an exponential distribution, i.e. it has approximately the sum

distribution:

PLðrAÞ ¼ 1� e�rA=r0 (4.99)

r0 is a constant describing the load intensity. (In fatigue strength analyses, often the

logarithm of the exceedence probability log(1 e PL) is plotted over rA; since for an

exponential distribution the logarithm results in a straight line, this is called a log-linear

distribution.)
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The probability distribution of the largest loads during the period T can be determined from

(see Section 4.4.6 for the underlying assumptions):

P0ðrAÞ ¼ e�zðrAÞ (4.100)

The long-term occurrence zL(rA) of exceeding the limit rA is inserted here for z(rA).

4.5. Slamming

In rough seas with large relative ship motion, slamming may occur with large water impact

loads. Usually, slamming loads are much larger than other wave loads. Sometimes ships suffer

local damage from the impact load or large-scale buckling on the deck. For high-speed

ships, even if each impact load is small, frequent impact loads accelerate fatigue failures of

hulls. Thus, slamming loads may threaten the safety of ships. The expansion of ship size and

new concepts in fast ships have decreased relative rigidity, causing in some cases serious

wrecks.

A rational and practical estimation method of wave impact loads is one of the most important

prerequisites for safety design of ships and ocean structures. Wave impact has challenged many

researchers since von Karman’s work in 1929. Today, mechanisms of wave impacts are

correctly understood for the two-dimensional case, and accurate impact load estimation is

possible for the deterministic case. The long-term prediction of wave impact loads can also be

given in the framework of linear stochastic theories. However, our knowledge on wave impact

is still insufficient. A fully satisfactory theoretical treatment has been prevented so far by the

complexity of the problem:

• Slamming is a strongly non-linear phenomenon, which is very sensitive to relative motion

and contact angle between body and free surface.

• Predictions in natural seaways are inherently stochastic; slamming is a random process in

reality.

• Since the duration of wave impact loads is very short, hydro-elastic effects are large.

• Air trapping may lead to compressible, partially supersonic flows where the flow in the

water interacts with the flow in the air.

Most theories and numerical applications are for two-dimensional rigid bodies (infinite

cylinders or bodies of rotational symmetry), but slamming in reality is a strongly three-

dimensional phenomenon. We will here briefly review the most relevant theories. Further

recommended literature includes:

• Tanizawa and Bertram (1998) for practical recommendations translated from the Kansai

Society of Naval Architects, Japan.

• Mizoguchi and Tanizawa (1996) for stochastic slamming theories.
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• Korobkin (1996) for theories with strong mathematical focus.

• SSC (1995) for a comprehensive compilation (more than 1000 references) of older slam-

ming literature.

The wave impact caused by slamming can be roughly classified into four types (Fig. 4.18):

1. Bottom slamming occurs when emerged bottoms re-enter the water surface.

2. Bow-flare slamming occurs for high relative speed of bow-flare to the water surface.

3. Breaking wave impacts are generated by the superposition of incident wave and bow wave

hitting the bow of a blunt ship even for small ship motion.

4. Wet-deck slamming occurs when the relative heaving amplitude is larger than the height of

a catamaran’s wet-deck.

Both bottom and bow-flare slamming occur typically in head seas with large pitching and

heaving motions. All four water impacts are three-dimensional phenomena, but have been

treated as two-dimensional for simplicity. For example, types 1 and 2 were idealized as two-

dimensional wedge entry to the calm-water surface. Type 3 was also studied as a two-

dimensional phenomenon similar to wave impact on breakwaters. We will therefore review

two-dimensional theories first.

• Linear slamming theories based on expanding thin-plate approximation

Classical theories approximate the fluid as inviscid, irrotational, incompressible, and free

of surface tension. In addition, it is assumed that gravity effects are negligible. This allows

a (predominantly) analytical treatment of the problem in the framework of potential theory.

For bodies with small deadrise angle, the problem can be linearized. Von Karman (1929)

was the first to study theoretically water impact (slamming). He idealized the impact as

a two-dimensional wedge entry problem on the calm-water surface to estimate the water

impact load on a seaplane during landing (Fig. 4.19). Mass, deadrise angle, and initial

penetrating velocity of the wedge are denoted as m, b and V0. Since the impact is so rapid,

von Karman assumed very small water surface elevation during impact and negligible

gravity effects. Then the added mass is approximately mv ¼ 1=2prc2. r is the water

(1) Bottom slamming (2) 'Bow-flare' slamming

(4) Wetdeck slamming(3) Breaking wave impact

Catamaran

Figure 4.18:
Types of slamming impact of a ship
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density and c the half width of the wet area implicitly computed from dc=dt ¼ cot b. The

momentum before the impact mV0 must be equal to the sum of the wedge momentum mV

and added mass momentum mvV, yielding the impact load as:

P ¼ V2
0=tan b�

1þ rpc2

2m

�3
$rpc (4.101)

Since von Karman’s impact model is based on momentum conservation, it is usually

referred to as momentum impact, and because it neglects the water surface elevation, the

added mass and impact load are underestimated, particularly for small deadrise angle.

Wagner derived a more realistic water impact theory in 1932. Although he assumed still

small deadrise angles in his derivation, the theory was found to be unsuitable for b < 3�,
since then air trapping and compressibility of water play an increasingly important role. If

b is assumed small and gravity neglected, the flow under the wedge can be approximated

by the flow around an expanding flat plate in uniform flow with velocity V (Fig. 4.19).

Using this model, the velocity potential and its derivative with respect to y on the plate

y ¼ 0þ is analytically given as:

f ¼
�
V
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � x2

p
for x < c

0 for x > c
(4.102)

vf

vy
¼
�

0 for x < c
V=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2=x2

p
for x > c

(4.103)

The time integral of the last equation gives the water surface elevation and the half width of

the wetted area c. The impact pressure on the wedge is determined from Bernoulli’s

equation as:

pðxÞ
r

¼ vf

vt
� 1

2
ðVfÞ2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � x2

p dV

dt
þ V

cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � x2

p dc

dt
� 1

2

V2x2

c2 � x2
(4.104)

V

y

x

L
L

W
W

c

c
c

Added mass

β

Figure 4.19:
Water impact models of von Karman (left) and Wagner (right)
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Wagner’s theory can be applied to arbitrarily shaped bodies as long as the deadrise angle is

small, but not so small that air trapping plays a significant role. Wagner’s theory is simple

and useful, even if the linearization is sometimes criticized for its inconsistency as it retains

a quadratic term in the pressure equation. This term is indispensable for the prediction of

the peak impact pressure, but it introduces a singularity at the edge of the expanding plate

(x ¼ �c) giving negative infinite pressure there. Many experimental studies have checked

the accuracy of Wagner’s theory. Measured peak impact pressures are typically a little

lower than estimated. This suggested that Wagner’s theory gives conservative estimates for

practical use. However, a correction is needed on the peak pressure measured by pressure

gauges with finite gauge area. Special numerical FEM analyses of the local pressure in

a pressure gauge can be used to correct measured data. The corrected peak pressures agree

well with estimated values by Wagner’s theory. Today, Wagner’s theory is believed to give

accurate peak impact pressure for practical use, albeit only for suitable hull forms with

small deadrise angles.

The singularity of Wagner’s theory can be removed taking spray into account. An ‘inner’

solution for the plate is asymptotically matched to an ‘outer’ solution of the spray region,

as, for example, proposed byWatanabe in Japan in the mid-1980s (Fig. 4.20). The resulting

equation for constant falling velocity is consistent and free from singularities. Despite

this theoretical improvement, Watanabe’s andWagner’s theories predict basically the same

peak impact pressure (Fig. 4.21).

c

c

x

y

V

LW

z = x + iy

dc/dt

Figure 4.20:
Water impact model of Watanabe

0

Cp
Wagner

Wagner

Watanabe

Watanabe

0 0.1X/a

β = 4˚ β = 8˚

0

Cp

0 0.1X/a

Figure 4.21:
Spatial impact pressure distribution
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• Simple non-linear slamming theories based on self-similar flow

We consider the flow near the vertex of a two-dimensional body immediately after water

penetration. We can assume:

• Near the vertex, the shape of the two-dimensional body can be approximated by

a simple wedge.

• Gravity accelerations are negligible compared to fluid accelerations due to the impact.

• The velocity of the body V0 is constant in the initial stage of the impact.

Then the flow can be considered as self-similar depending only on x/V0t and y/V0t, where

x, y are Cartesian coordinates and t is time. Russian scientists have converted the problem

to a one-dimensional integral equation for f(t). The resulting integral equation is so

complicated that it cannot be solved analytically. However, numerically it has been solved

by Faltinsen in Norway up to deadrise angles b � 4�. The peak impact pressure for b ¼ 4�

was almost identical (0.31% difference) to the value given by Wagner’s theory.

• Slamming theories including air trapping

So far slamming theories have neglected the density of air, i.e. if a deformation of the free

surface was considered at all it occurred only after the body penetrated the water surface.

The reality is different. The body is preceded by an air cushion that displaces water already

before the actual body entry. Air plays an even bigger role if air trapping occurs. This is

especially the case for breaking wave impacts. In the 1930s, Bagnold performed

pioneering work in the development of theories that consider this effect. Bagnold’s impact

model is simply constructed from added mass, a rigid wall, and a non-linear air cushion

between them (Fig. 4.22). This model allows qualitative predictions of the relation

between impact velocity V0, air cushion thickness H, and peak impact pressure. For

example, the peak impact pressure is proportional to Vand
ffiffiffiffi
H

p
for slight impact and weak

non-linearity of the air cushion; but for severe impact, the peak impact pressure is

proportional to V2 and H. These scaling laws were validated by subsequent experiments.

Trapped air bottom slamming is another typical impact with air cushion effect. For two-

dimensional bodies, air trapping occurs for deadrise angles b � 3�. Chuang’s (1967)
experiment for two-dimensional wedges gave peak impact pressures as in Table 4.3. The

V

B m mk

k

Trapped air
Added mass DK

Figure 4.22:
Bagnold’s model
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impact velocity V is given in m/s. For b¼ 0� air trapping is significant and the peak impact

pressure is proportional to V. Increasing the deadrise angle reduces the amount of air

trapping and thus the non-linearity. For practical use, the peak impact pressure is usually

assumed to be proportional to V2 for all b. This results in a conservative estimate.

Johnson and Verhagen developed two-dimensional theories for bottom impact with air

trapping considering one-dimensional air flow between water surface and bottom to

estimate the water surface distortion and the trapped air volume (Fig. 4.23).

The peak impact pressure thus estimated was much higher than measured. This

disagreement results from the boundary condition at the edge of the flat bottom, where a jet

emits to the open air. The theory assumes that the pressure at the edge is atmospheric

pressure. This lets the air between water surface and bottom escape too easily, causing an

underestimated trapped air volume. Experiments showed that the pressure is higher than

atmospheric. Yamamoto has therefore proposed a modified model using a different

boundary condition.

Experiments at the Japanese Ship Research Institute observed the trapped air impact with

high-speed cameras and measured the initial thickness of air trapping. It was much thicker

than the estimates of both Verhagen and Yamamoto. The reason is that a mixed area of air

and water is formed by the high-speed air flow near the edge. Since the density of this

mixed area is much higher than that of air, this area effectively chokes the air flow

increasing air trapping.

The mechanism of wave impact with air trapping is in reality much more complicated.

Viscosity of air, the effect of air leakage during compression, shock waves inside the air

flow, and the complicated deformation of the free surface are all effects that may play an

important role. Computational fluid dynamics may be the key to significant success here,

but has not yet progressed sufficiently.

Table 4.3: Chuang’s (1967) relation for peak impact pressures

b 0� 1� 3� 6� 10� 15� ‡18�

Ppeak (kPa) 102V 115V1.4 189V1.6 64.5V2 31V2 17.8V2 Wagner’s theory

y

h(x,t) u(x,t)

x

v(t)

Figure 4.23:
One-dimensional air flow model of Verhagen

192 Chapter 4



• Effect of water compressibility

When a blunt body drops on calm water or a flat bottom drops on a smooth wave crest,

usually no air trapping occurs. Nevertheless, one cannot simply use Wagner’s theory,

because at the top of such a blunt body or wave crest the relative angle between body and

free surface becomes zero. Then both Wagner’s and Watanabe’s theories give infinite

impact pressure. In reality, compressibility of liquid is important for a very short time at the

initial stage of impact, when the expansion velocity of the wet surface dc/dt exceeds the

speed of sound for water (cw z 1500 m/s) producing a finite impact pressure. Korobkin

(1996) developed two-dimensional theories which consider compressibility and free-

surface deformation. For parabolic bodies dropping on the calm-water surface, he derived

the impact pressure simply as P ¼ rcwV. Korobkin’s theory is far more sophisticated,

also yielding the time history of the pressure decay, but will not be treated here.

• Three-dimensional slamming theories

All slamming theories treated so far were two-dimensional, i.e. they were limited to cross-

sections (of infinite cylinders). Slamming for real ships is a strongly three-dimensional

phenomenon due to, for example, pitch motion and cross-sections in the foreship changing

rapidly in the longitudinal direction. Traditionally, approaches were used that obtain quasi

three-dimensional solutions based on strip methods or high-speed strip methods. At the

University of Michigan, Troesch developed a three-dimensional boundary element method

for slamming. However, the method needs to simplify the physics of the process and the

geometry of body and free surface and failed to show significant improvement over simpler

strip-method approaches when compared to experiments.

Limiting oneself to axisymmetric bodies dropping vertically into the water makes the

problem de facto two-dimensional. The study of three-dimensional water impact started

from the simple extension of Wagner’s theory to such cases. The water impact of a cone

with small deadrise angle can then be treated in analogy to Wagner’s theory as an

expanding circular disk. A straightforward extension of Wagner’s theory by Chuang over-

predicts the peak impact pressure. Subsequent refinements of the theory resulted in a better

estimate of the peak impact pressure:

pðrÞ ¼ 1

2
rV2

�
2

p

�2
"

4 cotbffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2=c2

p � r2=c2

1� r2=c2

#
(4.105)

r and c correspond to x and c in Fig. 4.19. This equation gives about 14% lower peak

impact pressures than a straightforward extension of Wagner’s theory. Experiments

confirmed that the impact pressure on a cone is lower than that on a two-dimensional

wedge of the same deadrise angle. So the three-dimensional effect reduces the impact

pressure at least for convex bodies. This indicates that Wagner’s theory gives conservative

estimates for practical purposes. Since the impact on a ship hull is usually a very local

phenomenon, Wagner’s equation has also been used for three-dimensional surfaces using

local relative velocity and angle between ship hull and water surface.
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Watanabe (1986) extended his two-dimensional slamming theory to three-dimensional

oblique impact of flat-bottomed ships. This theory was validated in experiments observing

three-dimensional bottom slamming with a high-speed video camera and transparent

models. Watanabe classified the slamming of flat-bottomed ships into three types:

1. Slamming due to inclined re-entry of the bottom. The impact pressure runs from stern

to bow. No air trapping occurs.

2. Slamming due to vertical (orthogonal) re-entry of the bottom to a wave trough with

large-scale air trapping.

3. Slamming due to vertical (orthogonal) re-entry of the bottom to a wave crest with only

small-scale, local air trapping.

Type 1 (typical bottom impact observed for low ship speed) can be treated by Watanabe’s

three-dimensional theory. Type 3 (typical for short waves and high ship speed) corresponds

to Chuang’s theory for very small deadrise angle. Type 2 (also typical for short waves and

high ship speed) corresponds to Bagnold’s approach, but the air trapping and escaping

mechanisms are different to simple two-dimensional models.

• Hydro-elastic approaches in slamming

It is important to evaluate not only peak impact pressures but also structural responses to

the impact, to consider the impact pressure in the design of marine structures. Whipping

(large-scale, weakly dampened oscillations of the longitudinal bending moment) is

a typical elastic response to impact. In the late 1960s and 1970s, slamming and whipping

resulted in some spectacular shipwrecks, e.g. bulkers and container ships breaking

amidships. The disasters triggered several research initiatives, especially in Japan, which

eventually contributed considerably to the development of experimental and numerical

techniques for the investigation of slamming and whipping.

Let us denote the slamming impact load as Z(t) and the elastic response of a ship as S(t).

Assuming a linear relation between them, we can write:

SðtÞ ¼
ZN
0

hðt � sÞZðsÞ ds (4.106)

h(s) is the impulse response function of the structure. An appropriate modeling of the

structure is indispensable to compute h(s). For example, the large-scale (whipping)

response can be modeled by a simple beam, whereas small-scale (local) effects can be

modeled as panel responses. For complicated structures, FEM analyses determine h(s).

When the duration of the impact load is of the same order as the natural period of

the structure, the hydro-elastic interaction is strong. The impact load on the flexible bottom

can be about twice that on the rigid bottom. Various theories have been developed, some

including the effect of air trapping, but these theories are not powerful enough to

explain experimental data quantitatively. Coupling free-surface RANSE solvers and

194 Chapter 4



FEM to analyze both fluid and structure simultaneously should improve considerably our

capability to analyze hydro-elastic slamming problems within the next decade.

• CFD for slamming

For most practical impact problems, the body shape is complex, the effect of gravity is

considerable, or the body is elastic. In such cases, analytical solutions are very difficult or

even impossible. This leaves CFD as a tool. Due to the required computer resources, CFD

applications to slamming appeared only since the 1980s. While the results of boundary

element methods for water entry problems agree well with analytical results, it is doubtful

whether they are really suited to this problem. Real progress is only likely with field

methods. Various researchers have approached slamming problems, usually employing

surface-capturing methods. The three-dimensional treatment of slamming has benefited

greatly from the rapid increase in computing power. State-of-the-art analyses by 2010 used

three-dimensional, free-surface RANSE simulations for rigid-body motions. These capture

impact forces well enough for whipping analyses (hull girder vibration triggered by

slamming impacts). Local pressure peaks are still not captured well, as local hydro-

elasticity is not considered.

4.6. Roll Motion

4.6.1. Linear, Undamped Free Roll

A heeled ship in smooth water will return to its original upright position due to the restoring (or

righting) moment m$g$h(4). However, due to its kinetic energy, the ship will roll beyond the

upright position to a heel angle on the other side and from there back, etc. In the absence of

damping, this oscillatory motion would continue forever. For small roll angles, the roll motion

of such an undamped free roll motion in calm water is characterized by:

ðm44 þ a44Þ$€4þ m$g$GM$4 ¼ 0 (4.107)

m44¼ qxx is the mass moment of inertia for roll, a44 the added (hydrodynamic) mass moment of

inertia, typically 10% of m44. The natural roll frequency is thus:

un ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m$g$GM

m44 þ a44

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
g$GM

k02xx

s
(4.108)

The formula is valid up to roll angles 4 < 5�. k0xx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðm44 þ a44Þ=m

p
is the radius of inertia

(with respect to the roll axis). The corresponding natural roll period (¼ period between two

maximum positive roll angles) is Tn ¼ 2p=un. Section 3.6 gives empirical formulae to

estimate Tn. The relation for Tn is used to determine GM experimentally. The seaway changes

the average metacentric height GM. In addition, larger roll angles introduce non-linear effects,
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changing the roll period considerably; e.g. the roll period tends towards infinity if the roll angle

is close to angles where the righting lever is again zero.

For symmetric ships, within linear ship seakeeping theories, the roll motion is coupled only to

yaw and sway motions. The roll axis (i.e. the axis where the sway and yaw motions disappear,

leaving pure roll) is typically approximately halfway between waterline and center of gravity,

with slightly higher values aft and lower values forward.

4.6.2. Capsizing in Waves

Few cases of capsizing are attributed directly to wave-excited roll motions, but capsizing has

quite often been attributed to cargo shifts triggered by strong roll. While only numerical

methods like non-linear strip methods can give detailed quantitative information, simplified

considerations help in giving some quick estimates and general guidelines.

In regular waves from abeam, for wave length much longer than the ship width, the ship

response is quasi-static. Within linear theory, the roll angle is given by:

j4j ¼ jbu4j ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1�



ue

un

�2�2

þ
�
2D

ue

un

�2
s $k$h with 2D ¼ n44

ðm44 þ a44Þ$un
(4.109)

The response amplitude operator j4j/(kh) features a maximum for D � ffiffiffi
2

p
=2 (at resonance)

(Fig. 4.24). For D > 1 (very small GM), the damping prevents any oscillation. GM can then no

longer be measured in a roll experiment as a roll period. Model tests show that the roll damping

n44 is nearly constant up to roll angles of 10� and then increases.

3

D=0

D=2

D=0.2

D=0.707

V 

2

2

1

0 1

max

Figure 4.24:
Response amplitude operator for roll motion in waves from abeam
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Non-linear effects often cannot be neglected in roll motion. For example, the

restoring moment is only approximated by m$g$GM for small angles, but for larger

angles the real restoring moment curve has to be considered (Biran 2003). The

solution of the resulting non-linear problem should be solved numerically. Different

roll responses (roll angles) may then be obtained at a given exciting frequency,

depending on whether the exciting frequency is approached from higher or from lower

frequencies.

Following seas (and sometimes also head waves) may cause severe roll and even capsize for

ships. In fact, following seas by themselves are more dangerous than beam seas. The resulting

‘parametric excitation’ can lead to severe rolling within a few roll periods, if the exciting

frequency is near twice the natural roll frequency and metacentric heights vary greatly between

hogging condition (ship in wave crest) and sagging condition (ship in wave trough). The

righting lever in waves changes (for most ship hulls) with time, depending on the current

waterline shape (Fig. 4.25). The slope of the curve at the origin is the metacentric height. Thus,

for a ship in a seaway, there is no unique ‘metacentric height’ as for the ship in calm water. If

people still use the word they implicitly mean the calm-water metacentric height.

Assuming a linear restoring moment, we write the fundamental differential equation for a free,

undamped roll motion as:

ðm44 þ a44Þ$€4þ m$g$GM$4 ¼ 0 (4.110)
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Figure 4.25:
Fluctuation of righting lever for ship in waves

Ship Seakeeping 197



The restoring moment now depends on a parameter, namely time t. The metacentric height is

approximated to oscillate harmonically with exciting frequency ue:

GMðtÞ ¼ GM0 þ DGM$sin uet (4.111)

This yields a so-called Mathieu equation:

€4þ u2
n$

�
1þ DGM

GM0
$sinuet

�
$4 ¼ 0 (4.112)

The solution of this differential equation features unstable areas where infinite amplitudes can

be reached. For a ship, ‘unstable response’ means the ship capsizes. If un/ue is close to

a multiple of 1/2, the roll amplitudes can get infinitely large (resonance). The instability region

increases as the fluctuation DGM/GM0 increases. Unstable areas can be plotted in a stability

map (StrutteInce diagram, Fig. 4.26).

In reality, roll damping and non-linear restoring moments (righting moment curve) decrease

the instability regions and roll amplitudes are no longer ‘infinite’. With increasing frequency

ratio, the amplitude decreases, making un/ue ¼ 0.5 (i.e. ue ¼ 2 un) most critical.

The irregularity of real seaway makes parametric excitation less critical compared to regular

waves in laboratory conditions, but still accidents due to parametric rolling have been reported

at a rate showing that the phenomenon is not considered enough. A modern approach consists

of selecting assorted time histories of representative seaways and using time-domain

simulation tools to predict rolling of ships. Typically, rather than using long simulation times

for ‘normal’ seaways, one then selects extreme seaways (e.g. with ten times the significant

wave height for a given region) and simulates rather short times, comparing hull forms with

respect to how often they capsize.

Unresisted rolling (K=0)

1.0

GM

1.51.0

0.5

0.50

K > 0

GM

Figure 4.26:
InceeStrutt diagram (stability map of Mathieu equation) plotting stable regions as shaded areas,

linear restoring moment, without damping (solid lines) and with damping (dotted lines)
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Parametric roll can be in practice a concrete danger if all the following conditions

coincide:

1. The hull features large fluctuations of GM (between sagging and hogging conditions)

(Fig. 4.4). Critical with respect to parametric roll excitation are hull forms with low

block coefficient and large sectional flare at the ship ends like many modern hulls

including container ships, ro-ro ferries, combatants, etc. The large change in waterline area

between sagging and hogging then results in large changes of GM. The fluctuations are

largest for wave lengths near ship length.

2. The ship speed U is such that the maximum of the encounter spectrum is near twice

the natural roll frequency. For most ships, following and quartering seas are most

critical. For large container ships, head waves can be critical. These ships are then

excited to large pitch motions which increase the fluctuations of the metacentric

height.

Large roll motions and accelerations, harmful to ship, cargo and humans (crew and

passengers), may be avoided by:

(a) avoiding hull shapes with large difference in GM between ship in wave crest and ship in

wave trough;

(b) shifting natural roll frequency to prevent resonance (changing GM);

(c) shifting exciting frequency (changing course or speed);

(d) increasing damping by active systems (foils, tanks).

Advance warning systems combining information on sea state and ship data with some simple

rules are commercially available.

4.6.3. Roll Damping

Roll damping is usually weak. As a consequence, response amplitude operators for roll

have a pronounced maximum near natural roll frequency. This is different for pitch and

heave response amplitude operators which feature typically only weak and sometimes no

local maxima. All computational methods, even simple strip methods, consider wave

radiation and the associated damping. However, wave radiation is only for multi-hulls, an

effective damping mechanism. For rotational bodies rolling around their axis of rotation,

the wave radiation and associated damping is zero. For usual ship geometries, it is

negligibly small.

The shear stress (tangential friction) on the hull is also negligible at zero speed. At forward

speed, the damping moment can be estimated as:

Mroll; f ¼ Rf
uru4
V

R2 (4.113)
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Rf is the frictional resistance of the ship following ITTC’57, ur the actual roll frequency, V the

ship speed, u4 the roll amplitude, and R is the average distance of the hull surface to the roll

axis.

The roll motion induces an oblique flow at the rudder (at center position). This in turn creates

a rudder force which dampens the roll motion. The angle of attack is approximately

a ¼ ur$z

V
$u4 (4.114)

where z is the distance of a point on the rudder from the roll axis. We assume that the effects of

wake (reducing the inflow speed) and propeller slipstream (increasing the inflow speed)

cancel each other approximately. In addition, we neglect the oblique flow induced by

the rolling ship and the propeller in oblique flow. We employ the usual estimate for the

lift coefficient at the rudder (in rough approximation as this formula is valid for uniform flow

with constant angle of attack over the height). Then we get for the roll damping moment due

to the rudder:

Mroll;rudder ¼ ur$u4$
LðLþ 0:7Þ
ðLþ 1:7Þ2 $p$r$V$IR (4.115)

IR is the areal moment of inertia of the rudder area with respect to the roll axis.

For a rectangular rudder, IR ¼ cðz32 � z31Þ=3; c is the chord length of the rudder. z1 indicates the
upper edge of the rudder, z2 its lower edge. L is the rudder aspect ratio, c the chord length.

Controlled rudder action can be used to actively dampen roll motions. Some course

interference and added resistance must then be accepted. Similarly, VoitheSchneider

propellers can be used to dampen roll motions. Unlike rudders, the VSP is also effective at zero

forward speed.

Similar to the rudder, an immersed transom stern creates a roll damping moment for the ship at

forward speed. We can use an equivalent formula as for the rudder, but employ the immersed

beam instead of the rudder height. However, as the hull has water only on the underside,

a factor 0.5 has to be applied:

Mroll;transom ¼ 1

2
ur$u4$

LtðLt þ 0:7Þ
ðLt þ 1:7Þ2 $p$r$V$IR;t (4.116)

Lt ¼ Bt/(2Lpp) (where Bt is the transom beam in the waterline) and IR;t ¼ B3
t Lpp=12.

Because the damping mechanisms discussed so far are rather weak (particularly at low speed),

ships typically employ additional means to increase roll damping. These are discussed in the

following.
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Bilge keels are fitted on most ships. Bilge keels are narrow strips extending along the

central part of the ship in the bilge region. They project no further than the width and depth

of the ship to prevent contact damage. The effect of the bilge keels depends hardly on the

ship speed. The damping moment can be estimated following:

Mroll;bilge ¼ 2$
r

2
$w2$CD$lbk$hbk$R (4.117)

lbk is the length of the bilge keel, hbk its height, CD a resistance coefficient. Figure 4.27 shows

the definition of R. The factor 2 considers that we have bilge keels on port and on starboard.

w is the transverse relative flow speed found approximately at half keel height if there

were no bilge keel:

wzur$u4$R$k (4.118)

The factor k considers the local flow changes in the bilge region (Fig. 4.28). Bilge keels are not

very effective in comparison to even the passive roll damping of the rudder at design speed, but

are still necessary for zero or low speed. Bilge keels also increase exciting forces (and

resistance). For ships with effective alternative damping mechanisms (fins, tanks), one should

then rather omit bilge keels. If the roll motion is largely suppressed, only the negative effect of

increased exciting forces remains. The only argument left is then having a back-up in case of

failure of the other more complex systems.

Blume (1979) gives the following values for CD, depending on the amplitude of relative motion

between bilge keel and water, x0 z u4$R$k:

D

R

Figure 4.27:
Definition of R. D indicates the roll axis

x0/hbk 0.4 0.8 1.2 1.6 2 3 4 6 8

CD 11.7 9.6 7.8 7.0 6.5 5.0 4.3 3.6 3.2

Fin stabilizers are usually arranged symmetrically near the bilge, approximately amidships.

The fins are tilted around an axis perpendicular to the ship to create a roll damping moment.
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The fins are usually retractable (to avoid damage in port). The damping moment furnished by

a pair of fins can be estimated as

Mroll;fin ¼ 2$
r

2
$V2$CL$Afin$R (4.119)

R is the leverage as shown in Fig. 4.27, Afin the fin area. The lift coefficient as function of angle

of attack a can be estimated by:

CL ¼ 1:6

 
2p

Leff$ðLeff þ 0:7Þ
ðLeff þ 1:7Þ2 $sin aþ sin a$

		sin a
		$cos a! (4.120)

Leff is the effective side ratio of the fin. If there is (almost) no flow around the edge of the fin at

the hull (due to small gap), we haveLeffz 2L. The factor 1.6 considers that stabilizing fins are

usually flapped rudders where the aft flap turns by approximately 2d if the main forward foil

turns by d. For single-foil fins the factor is 1. The maximum lift coefficient CL,max lies typically

between 3 and 3.5, provided that sufficiently high angles of attack are obtained.

The fin angle d differs from the angle of attack a. Considering just the roll motion of the ship

and assuming d in phase with the roll velocity, we have:
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Figure 4.28:
Factor k for local flow speed in bilge region with dimensions as appearing in the diagram
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a ¼ dþ arctan
ur$u4$R$k

V
(4.121)

The fins are rather ineffective at low speed. At high speeds, a theoretical maximum CL,max

cannot be obtained due to structural overloading of the shaft and its supports. Therefore d has to

be limited to smaller values at higher speeds.

Roll stabilizing tanks are cheaper than fins and also effective at low speeds. This comes at the

expense of larger weight (including the necessary water in the tanks), larger volume and

a reduction of the metacentric height due to the free-surface effects. Unless special measures are

taken, roll stabilizing tanks can also cause noise, which is particularly disturbing if the ship is

transporting passengers. There are in principle two types of tanks: U-shaped tanks consist of two

narrow tanks located at port and starboard, connected via the double bottom. Flume tanks are

tanks with a free surface over the complete ship’s width. In either case the tanks are partially

filled, allowing thewater to slosh from one side to the other. If the lowest natural frequency of the

water sloshing coincides with the roll natural frequency of the ship and the ship is excited at this

frequency by the waves the ship is excited to roll motion with a phase shift of 90� to the exciting
waves and the sloshing water with another phase shift of 90� to the roll motion, yielding

a total phase shift of 180� between exciting wave moment and damping tank moment. Ideally,

the ship rests almost calm and the seaway excites only an oscillation of the water in the tank.

U-shaped tanks create a roll damping moment:

Mroll;tank ¼ r$g$A0$hcol$B1 (4.122)

A0 is the horizontal cross-section area of one side of the symmetric tank. The water level rises

and falls by �hcol, without touching the top or the connecting pipe at the bottom. B1 < B is the

horizontal distance of the tank centers on both sides. The natural frequency of such a tank can

be estimated within the framework of a simple flow tube theory:

un;tank ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2g

A0

ZS
0

1

A
ds

vuuuuut
(4.123)

A(s) is the local cross-section area at the local one-dimensional flow coordinate s, S the total

length of the flow tube. The formula shows that the dimensions of the connecting pipe

influence the natural frequency. Once installed, different filling heights allow only small

changes in natural frequency and come at the possible expense of reducing the maximum

sloshing height h. A better strategy is therefore to design the tank such that the natural

frequency is above the highest natural roll frequency and then retard the tank water motion in

operation. The retard can be realized either by direct valves in the connecting pipe or (better)

by controlling the air in the tanks above the water.
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Flume tanks are typically rectangular tanks which extend over the whole ship width and are

partially filled. They require more space and weight than U-shaped tanks, but can dampen

wider ranges of frequencies without active control due to the effective damping in wave

breaking. The natural frequency of a flume tank is approximately (for small water depth

H compared to tank width b):

un ¼ p
ffiffiffiffiffiffiffi
gH

p
b

(4.124)
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Vibrations
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5.1. Introduction

Ship vibrations consider the ship hull and its structural members as elastic structures.

Vibrations are important in the structural design due to the following design trends:

• Lightweight construction (with low stiffness and mass)

• Arrangement of living and working quarters near the propeller to optimize stowage space

• High propulsion power

• Small tip clearance of the propeller (to increase propeller efficiency)

• Fuel-efficient, slow-running main engines.

It has become standard practice to regulate vibration aspects for a newbuilding on a contractual

basis. Therefore, vibration analyses are performed already during the preliminary or structural

design stage for many ship types.

Practical Ship Hydrodynamics. DOI: 10.1016/B978-0-08-097150-6.10005-3

Copyright � 2012 Volker Bertram. Published by Elsevier Ltd. All rights reserved.
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Vibrations cover the frequency range of 1 to 80 Hz according to ISO 6954. Table 5.1 shows

typical natural frequencies of ship structures. Lower frequencies appear in ‘ship motions’

(classical ship seakeeping), higher frequencies in structure-borne noise (some overlap exists;

noise may be perceived from 20 Hz upwards). Ship vibrations can become problematic if the

exciting frequency is close to a natural frequency of the structure (resonance). Practical

measures to avoid vibration problems include reduction of excitation amplitudes (e.g. elastic

support for diesel engines) and avoidance of resonance at the lowest natural frequencies. As

excitation frequencies of engines and propellers fluctuate with changing rpm, and natural

frequencies of ship and some local structures (e.g. for tanks with various filling height) change

with loading conditions, resonance at certain speeds often appears unavoidable.

Advances in computer methods have made many classical advanced beam models rather

obsolete. Finite element analyses using rather large three-dimensional models are today

standard tools, although simple beam theory allows understanding of certain typical relations

and simple, fast (but often inaccurate) estimates.

5.2. Theory

Ship vibrations can generally be described by a linear equation of motion, allowing

superposition of harmonic oscillations at different frequencies. The deflection (vector) z(x) at

point (vector) x of the vibrating structure follows then:

zðx; tÞ ¼ Re½bzðx; tÞe iut� (5.1)

The circular frequency u is connected to the frequency f by u ¼ 2pf.

The motion equation for vibration problems contains the deflection and its first and second

time derivatives:

KðzÞ þ Dð _zÞ þMð€zÞ ¼ F (5.2)

Table 5.1: Natural frequency ranges in shipbuilding applications

Min Max

Global hull structures 0.5 Hz 10 Hz
Local structures 10.0 Hz 50 Hz
Deckhouse and aftbody structures 4.0 Hz 15 Hz
Structures above propeller 18.0 Hz > 100 Hz
Large deck-panel structures 6.0 Hz 20 Hz
Engine foundations 20.0 Hz > 100 Hz
Mast structures 7.0 Hz 21 Hz
Slow-running engines 4.5 Hz 12 Hz
Medium-speed engines, realistically supported 20.0 Hz 60 Hz
Medium-speed engines, mounted resiliently 1.5 Hz 7 Hz
Propeller shaft lines 4.0 Hz 19 Hz
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KðzÞ is the stiffness operator, Dð _zÞ the damping operator, and Mð€zÞ the mass operator, which

may include added mass terms. F(x,t) is the excitation force. For usually assumed harmonic

excitation, we have:

Fðx; tÞ ¼ Re½ bFðxÞe iut� (5.3)

For linear operators K, D, and M, we then have:

KðbzÞ þ iuDðbzÞ � u2MðbzÞ ¼ bFðxÞ (5.4)

The natural frequency of a beam with flexible support on both ends (Fig. 5.1) is:

f ¼ p

2‘2
$

ffiffiffiffiffiffi
EI

rA

r
(5.5)

Equation (5.5) can also be used to estimate the lowest natural frequency of a longitudinal

stiffener (with plate) supported by many equidistant transverse large stiffeners. The transverse

stiffeners increase both the stiffness of the support and the vibrating mass and the effects cancel

each other largely, making the above formula applicable for each segment of such a continuous

beam.

For a single beam, the next highest natural frequency appears for the natural mode of a full

sinusoidal wave between the supports. The beam then vibrates as in lowest natural mode for

half the beam length. The natural frequencies are thus four times as high. Generally the

natural frequencies of the single beam on two supports increase as 1:4:9:16, etc. This is not

the case for a continuous beam on equidistant supports (of distance ‘). Here, higher natural

modes can appear with more nodes in only one or several segments. Therefore the next

highest natural frequencies of very long continuous beams are only a little higher than the

lowest natural frequency and above the lowest natural frequency there is practically no

resonance-free region.

A beam under compression close to the buckling limit will deflect largely even under minimum

transverse load. Thus, such a beam has vanishing bending stiffness. Correspondingly its natural

frequency will approach zero. For longitudinal stiffeners in ships, the natural frequency is thus

changed depending on the global bending moments due to static (weight/buoyancy) and

dynamic (seaway) bending moments, which induce compressive stresses particularly at the top

deck or bottom of the ship.

x

l

Figure 5.1:
Beam with flexible support on both ends
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Consider a rectangular plane plate field (e.g. a plate between two longitudinal stiffeners and

two transverse frames), considerably longer than wide (Fig. 5.2). Here the support from the

longitudinal stiffeners (long side) is much stronger than the support from the transverse frames

(short side). Each strip then vibrates almost like a beam with cross-section b$t, where t is the

plate thickness. However, unlike in a beam, the transverse contraction is suppressed by the

adjacent strips. The effect is like an increased Young’s modulus:

E� ¼ E

1� n2
(5.6)

The material constants for steel are E ¼ 2.1$1011 N/m2, r ¼ 7800 kg/m3, n ¼ 0.3. With

I ¼ b$t3/12 and A ¼ b$t, we then get the lowest natural frequency of a plate field:

f ¼ p

2$‘2
$

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Et2

12rð1� n2Þ

s
(5.7)

The remarks concerning continuous beams and influence of compressive stress apply likewise

for the case of continuous plate fields, but the effect is less pronounced.

Plate curvature influences stiffness. The effect depends on the support (boundary conditions).

Example: A rectangular plate of side ratio 1:5, flexibly supported at all edges, vibrates in

lowest natural mode (half wave in each direction) and has an initial deflection of the same form

as the vibration mode. The lowest natural frequency is then increased as follows:

Deflection at plate center/plate thickness 0.25 0.50 0.75 1.00
Natural frequency increased by factor 1.04 1.15 1.30 1.50

In stiffened plate fields (with longitudinal and transverse stiffeners), one should then consider

the following options to avoid resonance:

• vibration of plate fields, as treated above;

• vibration of the longitudinal stiffeners (modeling the transverse frames as supports), as

treated above;

L

lb

Figure 5.2:
Strip in a vibrating plate
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• vibration of the transverse stiffeners. These are usually not slender enough to follow simple

beam theory. Instead, bending and shear have to be considered together. Also, the support

by the longitudinal stiffeners is usually too weak for the above simple models. More

sophisticated analyses, typically employing finite element methods, are recommended.

The most important numerical techniques available to solve numerical vibration problems are:

• Finite element methods (FEM) approximate deflections by first-degree (for simple

elements like trusses) and higher-order (for beams and plates) polynoms, typically

Hermite polynoms.

• Spectral method, e.g. Doyle and Loh (1997): exact solutions are used for an idealized part

of the structure, e.g. for a truss of constant section area.

• Rayleigh method, energy method: typically only one function is chosen to approximate the

deflection, namely an estimated natural mode.

FEM are most popular, probably because the same software can be employed for static and

vibration analysis, although spectral methods can be more efficient, particularly for higher

frequencies.

5.3. Global Ship Hull Vibrations

The ship hull may perform global vibrations. The ship hull is usually (almost) symmetric to the

centerplane in geometry and mass distribution. Then we can distinguish two types of natural

modes:

• Vertical oscillations where points on the centerplane are displaced only within the center-

plane. Vertical oscillations may induce significant longitudinal oscillations far away from

the neutral layer (particularly on the bridge).

• Horizontal and torsional oscillations where points on the centerplane are displaced normal to

the centerplane. For tankers, where the center of gravity and the shear center of cross-

sections are close together, the horizontal vibrations are only weakly coupled to the torsional

vibrations. Strong coupling is found in ships with large deck opening (container ships).

The lowest natural frequency for vertical vibrations appears for the two-node natural mode

where two cross-sections remain (nearly) at rest. For a simple beam idealization, the next

highest mode has three nodes (roughly twice the frequency), then four nodes (roughly three

times the frequency), etc. A more detailed analysis shows further natural frequencies between

these beam natural frequencies. These are due to local vibrations, e.g. of superstructures. The

lowest natural frequency in vertical vibrations (two nodes) for ships of 150 m length lies

typically around 1.5 Hz, for ships of 300 m length around 0.5 Hz. Because ships are typically

wider than high, they are stiffer in the horizontal direction and the natural frequencies for

horizontal vibrations are thus higher.
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For a quick estimate, approximate formulae based on the simple beam models are useful.

Lehmann (2000) gives for the lowest natural frequency (two nodes) for the steel ship hull

girder in vertical bending:

f0 ¼ 1:62$106$

ffiffiffiffiffiffiffiffiffiffiffiffi
I

Di$L3

r
(5.8)

The frequency is in Hz . I is the section moment of inertia amidships (m4), Di the displacement

including a hydrodynamic mass (effect of surrounding water on vibrations) in kg:

Di ¼
�
1:2þ 1

3

B

T

�
$D (5.9)

D is the mass of the ship (kg), L the ship length (m), B its width (m), T its draft (m).

For higher frequencies with n nodes we have:

f ¼ ðn� 1Þm$f0 (5.10)

The exponent m accounts for the effect of shear stiffness:

m ¼ 1.02 for tankers;

m ¼ 1.0 for bulkers;

m ¼ 0.845 for cargo ships.

These formulae cannot give more than a rough indication, particularly for the higher-order

vibration modes.

Fast numerical computations of the ship hull vibrations employ beam models. The ship

hull is then divided into beam segments. For each segment, mass per length, moments of

inertia, etc. are taken as constant. The actual computation employs the method of transfer

matrices. Vertical bending vibrations are relatively easy to analyze this way. They require

‘only’ the correct determination of bending stiffness and mass distribution. For horizontal

vibrations, torsion and bending are strongly coupled, particularly for container ships. In

practice, finite element programs are then employed, often using the services of

classification societies.

The computations require longitudinal mass and stiffness distribution as input. The mass

distribution considers the ship, the cargo and the hydrodynamic ‘added’ mass. The added mass

reflects the effect of the surrounding water and depends on the frequency. Its determination is

problematic. One can use estimates based on experience or employ sophisticated

hydrodynamic simulations. Determination of the stiffness is also not trivial. Stress distributions

in the stiffened bottom and deck plates depend on vibrational modes. Again either estimates

based on experience or complex finite element analyses are employed. Estimates based on

experience often work well. Of course the quality of the results depends on the input, which in
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turn depends on experience. The large classification societies usually have enough experience

to give good estimates for estimating stiffness and added mass.

If the hull is modeled in (relatively) great detail in a finite element analysis, the effective

width does not have to be specified explicitly. Then the added mass matrix is best determined

for all degrees of freedom using special potential flow codes. The finite element models have

typically 20 000 to 40 000 degrees of freedom (Fig. 5.3). The primary structural components

including large web frames are typically modeled using plane stress elements. The grids are

not fine enough to reflect explicitly smaller structural details, such as stiffeners. If considered

at all, these stiffeners are approximated by increasing the plate thickness. This reflects only

the effect on the membrane stresses (in the plane of the plate), but not the change in bending

stiffness. These models yield 50e150 vibration natural modes in the range up to 20 Hz

(examples are given in Fig. 5.4). The container ship features particularly low natural

frequencies in torsional vibrations due to large deck-opening (¼ low torsional stiffness).

After the analysis, one then has to check whether the chosen model for the predicted natural

modes is appropriate. Consideration of bending stiffness of the deck grillages in the finite

element model requires representation of transverse and longitudinal deck girders at least in

the form of beam elements. Such models have typically 40 000 to 80 000 degrees of freedom

(Fig. 5.5), yielding 300 to 500 natural modes in the range up to 20 Hz (examples given in

Fig. 5.6).

The preparation of the finite element input (elements, associated values, added masses)

involves considerable experience and man-time (Fricke 2002), typically outsourced to special

consultants or classification societies. Natural frequencies change with loading conditions.

Typical loading conditions (mass distributions) should be selected rather than extreme

conditions.

Despite the considerable effort, the employed finite element models are still not really

satisfactory. Differences between computed and on-board measured vibration amplitudes by

a factor of 3 are not uncommon. The reasons for this disappointing performance are not

completely clear. One factor is modeling errors for curved shells, found particularly at the ship

ends. The stiffness of these shells with respect to longitudinal bending depends very much on

the arrangement of internal bulkheads and stiffeners, as well as the longitudinals between these

transverse structural elements. These finer details of the structure are lost in the ‘coarse’ finite

element grids typically employed.

5.4. Vibrations of Local Structures

Resonance problems often appear for local ship structures. This can affect human comfort, but

also induce fatigue problems of structures. The vibration analysis of these local structures is

similar to that for the ship hull and nowadays is often based on finite element methods.
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Figure 5.3:
FEM grids of some cargo ships. Source: Germanischer Lloyd
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Figure 5.4:
Computed first torsional and second vertical vibration natural modes and corresponding natural

frequencies for the ships in Fig. 5.3. Source: Germanischer Lloyd
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Figure 5.5:
FEM grids of a yacht, a passenger vessel, and a frigate. Source: Germanischer Lloyd
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Figure 5.6:
Computed first torsional and second vertical vibration natural modes and corresponding natural

frequencies for the ships in Fig. 5.5. Source: Germanischer Lloyd
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For individual concentrated masses, the surrounding structure can be modeled in a single

spring constant. The natural frequency of such a single mass-spring system is:

f ¼ 1

2p

ffiffiffiffi
c

m

r
¼ 1

2p

ffiffiffiffiffiffiffiffiffiffiffi
g

dstatic

r
(5.11)

c is the spring constant, which follows from the static deflection of the system dstatic under

a single mass load m$g. Table 5.2 lists natural frequencies for several structures.

More often we have to consider distributed masses. The most common cases and

corresponding natural modes and boundary conditions are listed in Table 5.3 with

a ¼ ½rA=ðEIÞ��4 ffiffiffiffiffiffiffiffi
2pf

p
for a beam. For case 1 in Table 5.3, the (lowest) natural frequency is:

f0 ¼ p

2‘2

ffiffiffiffiffiffi
EI

rA

r
(5.12)

For all other boundary conditions we get f ¼ C$f0. Table 5.4 compiles the constants C and

natural modes. The free-free support yields the lowest natural frequencies. The lowest

vibration mode and the next highest vibration mode are in this case rigid-body motions. The

end supports influence the natural frequency. Figure 5.7 shows the natural frequency factor for

a beam on two supports. The end support then varies from flexible (3¼ 0) to fixed (3¼ 1). The

natural frequency is again given by f ¼ C$f0 . f0 is the natural frequency of the beam with

flexible end supports.

Some classification societies give approximate formulae to estimate the lowest natural

frequencies of isotropic and orthotropic plate systems. These formulae often inherently assume

partial support of the plate edges. The degree of support is often difficult to estimate, but

influences the natural frequency. Generally, natural frequencies are given as functions of:

fz

 
1

‘2
;

ffiffiffiffi
I

m

r !
(5.13)

Errors in estimating effective lengths between vibrational nodes propagate strongly (quadratic

dependence on length). Errors in stiffness or mass are less important (square root dependence).

For the determination of the stiffness, it generally suffices to take an average plate width in the

computations as follows:

Bm ¼ 0:3$‘ for ‘=B � 3

Bm ¼ B for ‘=B � 3

Here ‘ is the length between vibrational nodes. Stiffness and mass form a fraction. Thus errors

usually cancel each other. Generally, accuracy decreases with higher vibrational modes. There

is little sense in computing natural frequencies higher than the second or third harmonic.
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Table 5.2: Natural frequencies f of typical structures (Lehmann 2000)

No. System Direction of vibration Natural frequency

1

l

EI m i 1

2p

ffiffiffiffiffiffiffiffi
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r
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r
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l1 l2

l
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3EI‘3
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s
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mEI
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2p
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i
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2
2$m

s
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I1 I2

m k ¼ I1‘2
I2‘1

i
1

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12EI1

‘31$ð4þ 3kÞ$m
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s

(Continued)
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Table 5.2: Continued

No. System Direction of vibration Natural frequency

8

l 1 l 2, I 1 , I 2
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i 1
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For vibrations of plates, we can use Fig. 5.8 to determine the lowest natural frequency for

assorted side ratios and end supports with f ¼ C$f0:

f0 ¼ p

2b2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eh2

12ð1� n2Þr

s
(5.14)

The simple formulae given above yield predictions which are good enough for practical

purposes, provided that the following conditions are met (Asmussen et al. 1998):

• freely rotatable, fixed support at the edges;

• rectangular shape of grillage systems and plates;

Table 5.2: Continued

No. System Direction of vibration Natural frequency

14 springs parallel:

m
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1EI
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2l

i
1

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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d1d2
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I2‘1

�
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�
1þ 3

‘1
‘2

�

Vibrations 219



• regular arrangement of stiffeners;

• no pillars or stanchions within the considered system;

• uniform distribution of added mass.

If these conditions are violated, finite element analyses must be employed. Because of the

relatively high natural frequencies of local structures, the finite element models must be quite

detailed, including also the bending stiffness of structural elements. The amount of work

required for the creation of such models is considerable (and often underestimated) despite

modern pre-processors with parameterized input possibilities and graphic support. Beam

grillage models usually suffice for the lowest natural modes; for higher natural modes, three-

dimensional models of higher precision are needed.

The distribution of effective masses in such models is often impossible to specify accurately.

Asmussen et al. (1998), based on the experience of many vibration analyses for ship structures

at Germanischer Lloyd, recommend taking an effective additional mass of 40 kg/m2 into

account for decks in living and working spaces and 20 kg/m2 for bulkheads.

Ideally, ship structures have natural frequencies (well) above the main exciting frequencies

(subcritical design). Asmussen et al. (1998) give as guidelines:

• natural frequency greater than 1.2 times, twice the propeller blade frequency or main

engine ignition frequency in the ship’s aftbody, engine room, and deckhouse area;

Table 5.3: Natural modes for distributed mass systems (Lehmann 2000)

Case System Natural mode

1
x

A$sin ax

2

x

A$
h
sinh ax � sin ax � sinh a‘� sin a‘

cosh a‘� cos a‘
$ðcosh ax � cos axÞ

i

3

x

A$½sinh ax � sin ax � tan a‘$ðcosh ax � cos axÞ�

4

x

A$
h
sinh ax � sin ax � sinh a‘� sin a‘

cosh a‘� cos a‘
$ðcosh ax � cos axÞ

i
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• natural frequency greater than 1.1 times the propeller blade frequency for the ship’s shell

structure directly above the propeller.

The assumption of simply supported edges is conservative, as any constraining effect increases

the natural frequency further. To avoid in turn over-dimensioning, stiff bracket connections are

sometimes considered by taking 50e70% of the bracket length as ‘effective’, reducing

correspondingly the lengths of beam elements.

In most cases, it is sufficient to design natural frequencies of local structures subcritically up to

35 Hz. Further increases of natural frequencies usually come at exhibitive cost. A supercritical

design (natural frequency (well) below exciting frequency) or a ‘design in frequency windows’

(between exciting frequencies) is then chosen for such high frequencies.

Table 5.4: Natural modes and natural frequency for beams (Lehmann 2000)

1 2 3 4

= 0.356= 2.267 = 1.562= 1.0

= 4.0 = 5.07= 6.259 = 1.562

= 6.259= 10.78= 12.241= 9.0
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= 20.244= 27.59= 30.15= 25.0

l 0
.5

0.
5

0.
58

8

0.
74

4
0.

86
8

0.
5

0.
69

1

0.
38

5

0.
64

1

0.
35

9

0.
66

7

0.
33

3
0.

25

0.
5

0.
75

0.
27

8
0.

5
0.

72
2

0.
29

6
0.

52
6

0.
76

6

0.
35

6

0.
64

4

0.
92

6
0.

72
3

0.
5

0.
27

9

0.
81

0.
61

6
0.

42
9

0.
23

9

0.
22

7
0.

40
9

0.
59

1
0.

77
3

0.
8

0.
6

0.
4

0.
2

0.
90

4

2.
 h

ig
he

r
3.

 h
ig

he
r

4.
 h

ig
he

r
1.

 h
ig

he
r

f
f 0

f
f 0

f
f 0

f
f 0

f
f 0

f
f 0

f
f 0

f
f 0

f
f 0

f
f 0

f
f 0

f
f 0

f
f 0

f
f 0

f
f 0

f
f 0

f
f 0

f
f 0

f
f 0

f
f 0

Vibrations 221



5.5. Effects of Adjacent Fluids: Hydrodynamic Mass

Ship structures often border water or other fluids (e.g. fuel), either on one side (outer hull

plates) or both sides (fuel tank bulkhead). Fluid immersion can be total or partial. If the

structure borders a fluid, structure vibrations will induce fluid motions. This induces a pressure

from the fluid to the structure.

The effect of adjacent fluids on the mass operator is usually large, its effect on damping and

stiffness small. The small effect on damping can nevertheless be important, because other

damping mechanisms are also small. Changes in displacement volume (increased or decreased

immersion) affect the stiffness operator (restoring forces). The ‘hydrostatic stiffness’ increases

the natural frequency of vertical bending vibrations of the hull girder. The effect is usually

negligible, except perhaps for particularly ‘soft’ ships such as inland cargo vessels.

In the following we discuss the influence on the mass operator. The ‘added mass’ or

‘hydrodynamic mass’ is the equivalent mass one would have to fix to the structure to obtain the

same effect on the structure as the adjacent accelerated fluid has.

The fundamental equation for the hydrodynamic mass A is:

A ¼
X Z

S

1

u2
$pa$ n

!$ q!j dS (5.15)

0,25 0,5 0,75 1,0
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ql 2

Figure 5.7:
Beam on two supports (from flexible to fixed)
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n! is the unit normal pointing from the fluid to the body, q!j the j
th deflection form, and pa the

amplitude of the oscillating part of the pressure (due to a certain natural mode).

For an infinite plate with the fluid of density r above the plate (Fig. 5.9) the added mass for

a plate strip of length a and width b orthogonal to the paper plane is:

A ¼ ra2b

p
(5.16)

The formula is valid for infinite plate extension with all plate segments vibrating sinusoidally

and no obstacles in the flow. The formula is based on potential flow considerations. Viscosity

generally plays a negligible role in plate vibrations in ships. For typical ship plates covered by

water or fluids of similar density (like oil), the added mass exceeds the structural mass.

fluid

air 
x

y
a

Figure 5.9:
Plate with adjacent fluid on one side
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Figure 5.8:
Natural frequencies of rectangular plates; //// fixed support, - - - - flexible support

(Lehmann 2000)
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For example, for a 10-mm steel plate and distance between nodes 700 mm, the steel mass per

area is 7.8 t/m3$0.01 m ¼ 0.078 t/m2; the added mass due to fresh water on one side is already

1 t/m3$0.7 m/p ¼ 0.223 t/m2. If the plate has water on both sides, the added mass value

doubles. For larger stiffened plate areas which oscillate including their stiffeners, the added

mass effect dominates even more.

Equation (5.7) for a plate vibrating in air is now modified for adjacent fluids:

f ¼ p

2$‘2
$

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Et3

12ð1� n2Þðrst$t þ rf $‘=pÞ

s
for fluid on one side (5.17)

f ¼ p

2$‘2
$

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Et3

12ð1� n2Þðrst$t þ 2rf $‘=pÞ

s
for fluid on both sides (5.18)

rst is the density of the structure, rf the density of the adjacent fluid, ‘ the length between nodes

(plate length in lowest frequency mode ¼ spacing of stiffeners), and t the plate thickness.

Various factors may in practice change the effect of adjacent fluids and thus the natural

frequency of ship plates. Generally, each constraint of fluid motion increases the added mass,

each relaxation (e.g. due to three-dimensional effects) decreases the added mass. In

particular:

• Rectangular plates (limited side ratio)

The previous formulae for plates assumed large side ratio (a << b). For the general case,

the lowest natural frequency is:

f ¼
�

p

2$a2
þ p

2$b2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Et3

12ð1� n2Þðrst$t þ rf $dÞ

s
(5.19)

d is the thickness of an equivalent ‘water layer’ (a mass layer attached to the structure

giving the same mass effect as the added mass). In this case:

d ¼ 1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a�2 þ b�2

p (5.20)

• A rigid wall at distance h parallel to the vibrating plate modifies d by a factor:

1

tanhðph ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a�2 þ b�2

p
Þ (5.21)

• A constant flow parallel to the plate with speed V (hull plating neglecting boundary layer)

modifies d by the factor 1þ
�Vp
ua0
�2
. a 0 is the distance between vibration nodes in the flow

direction.
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• Vibrating plate between rigid walls orthogonal to the plate

The added mass becomes very large, unless the plate moves in a vibration mode keeping

the fluid volume constant (i.e. lowest natural mode is full sine wave between nodes). This

case appears typically for tank walls. As a consequence of these natural modes, the added

masses are much lower.

• Plate curvature (shells)

Plate curvature decreases/increases added mass if the fluid is on the convex/concave side.

The effect is usually small.

• Perforated plates

If the structure is perforated, the added mass is reduced by multiplying the added mass of

the full plate by a reduction factor, which can be simply approximated following Lehmann

(2000):

Cred ¼ 1� 8:44aþ 27:6a2 � 30:2a3, where a is the ratio of area of hole/area of the plate.

5.5.1. Hydrodynamic Mass and Damping at Rudders

We consider first the two-dimensional case (infinite rudder height) in uniform flow of speed U.

The rudder makes harmonic transverse motions q1 and rotational motions q2 around the center

of the chord (Fig. 5.10).

Let the non-dimensional frequency be p$f$c/U >2. Then the transverse force F1 and the

transverse F2 (around the point on half chord length) are almost the same as for infinite

frequency. The hydrodynamic force vector is then expressed as usual, with components

proportional to accelerations, velocities, and deflections:�
F1

F2

�
¼ �A

�
€q1
€q2

�
� D00

�
_q1
_q2

�
� K 00

�
q1
q2

�
(5.22)

The hydrodynamic stiffness matrix K00 is negligibly small in comparison to the structural

stiffness. Added mass and damping matrices are:

A ¼
	
prf c

2=4 0

0 prf c
4=128



and D00 ¼

	
prf cjUj=2 3prf c

2jUj=8
�prf c

2jUj=8 prf c
3jUj=32



(5.23)

c

q1
q2

U

Figure 5.10:
Notation for rudder
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For three-dimensional flow (finite rudder height h), the top left element of the added mass

matrix is reduced by a factor as follows:

h/c 10 5 4 2.5 2 1.5 1 0.5

Reduction factor 0.94 0.90 0.87 0.80 0.76 0.70 0.48 0.38

Reduction factors for other matrix elements are not known. If required they should be

determined by more elaborate numerical simulations. If the coordinate system is not at half

chord length, but shifted upstream by a distance e (e.g. at the center of the profile area), we

have (neglecting the small hydrodynamic stiffness):�
F1

F2

�
w:r:t: e

¼ �
	
1 0
e 1



M

	
1 e
0 1


�
€q1
€q2

�
w:r:t: e

�
	
1 0
e 1



D

	
1 e
0 1


�
_q1
_q2

�
w:r:t: e

(5.24)

5.5.2. Hydrodynamic Mass and Damping for Propellers

Schwanecke (1963) used an unsteady lifting-line method to compute mass and damping

matrices for propellers vibrating in six degrees of freedom as rigid bodies. x points forward, y

to port, z upward. Then forces and moments are expressed as:8>>>>>><>>>>>>:

Fx

Mx

Fy

My

Fz

Mz

9>>>>>>=>>>>>>;
¼ �

26666664
a11 a12 0 0 0 0
a12 a22 0 0 0 0
0 0 a33 a34 0 0
0 0 a34 a44 0 0
0 0 0 0 a33 a34
0 0 0 0 a34 a44

37777775

8>>>>>><>>>>>>:

€ux
€ax
€uy
€ay
€uz
€az

9>>>>>>=>>>>>>;

�

26666664
b11 b12 0 0 0 0
b12 b22 0 0 0 0
0 0 b33 b34 b35 b36
0 0 b34 b44 b45 b46
0 0 �b35 �b36 b33 b34
0 0 �b45 �b46 b34 b44

37777775

8>>>>>><>>>>>>:

_ux
_ax
_uy
_ay
_uz
_az

9>>>>>>=>>>>>>;
(5.25)

u denotes deflections, a rotations. Schwanecke approximates the elements of the mass

and damping matrices as functions of area ratio AE/A0, propeller pitch P, blade number Z,

diameter D, and propeller circular frequency uw:

a11 ¼ 0:209 pr D3ðAE=A0Þ2=Z a12 ¼ �0:105 r D4ðP=DÞðAE=A0Þ2=Z
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a22 ¼ 0:052 r D5ðP=DÞ2ðAE=A0Þ2=ðpZÞ a33 ¼ 0:566 r D3ðP=DÞ2ðAE=A0Þ2=ðpZÞ
a34 ¼ 0:052 r D4ðP=DÞðAE=A0Þ2=Z a44 ¼ 0:009 pr D5ðAE=A0Þ2=Z
b11 ¼ 0:066 pruwD

3 ðAE=A0Þ b12 ¼ �0:033 ruwD
4ðAE=A0Þ

b22 ¼ 0:017ruwD
5ðP=DÞ2ðAE=A0Þ=p b33 ¼ 0:124 ruwD

3ðP=DÞ2ðAE=A0Þ=p
b44 ¼ 0:004 pruwD

5ðAE=A0Þ b34 ¼ 0:017 ruwD
4ðP=DÞðAE=A0Þ

b35 ¼ 0:566 ruwD
3ðP=DÞ2ðAE=A0Þ2=ðpZÞ b36 ¼ 0:105 ruwD

4ðP=DÞ ÞðAE=A0Þ2=Z
b45 ¼ 0:052 ruwD

4ðP=DÞðAE=A0Þ2=Z b46 ¼ 0:017 pruwD
5ðAE=A0Þ2=Z

5.5.3. Computation of Hydrodynamic Mass for Ships

Because ships are longitudinal, slender structures, we assume (approximately) that the

water flows around individual strips (rather than in the x direction). This assumption for

the ship vibrations is the same as for the rigid-body motions of the ship in ship seakeeping.

Lewis (1929) already computed the motion of water around vertically oscillating ship cross-

sections using conformal mapping for the limiting case of infinite frequency. This

approximation is already sufficiently accurate for the lowest vibration natural mode with two

nodes. In this case, the free-surface water motion is limited to a vertical motion. (However, for

lower frequencies as in rigid-body ship seakeeping, we should also consider the horizontal

water motion in a more sophisticated model.) The result of the Lewis approach can be

summarized as follows. The added mass (per length) of a cross-section is:

m00
33 ¼ r$

p

2
r2½ð1� aÞ2 þ 3b2� (5.26)

r is the water density. The three parameters r, a, and b characterize size and shape of the cross-

section. They follow from the following non-linear system of equations:

B

2T
¼ 1� aþ b

1þ aþ b
(5.27)

CM ¼ p

4

1� a2 � 3b2

ð1þ bÞ2 � a2
(5.28)

r ¼ B

2ð1� aþ bÞ (5.29)

B is the cross-section width in the waterline, T its draft (at y ¼ 0), and CM its cross-section

coefficient ¼ cross-section area/(B$T). This system of equations has two solutions. The
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resulting minimum added mass m00 is taken. Figure 5.11 shows results for a non-dimensional

coefficient of the added mass.

For high-frequency horizontal vibrations of a cross-section at a free surface, the hydrodynamic

mass (per length) is almost independent of the cross-section shape:

m00
22 ¼ 0:205prT2 (5.30)

The hydrodynamicmass for roll motion can be approximated for a surface piercing cross-section:

m00
44 ¼

	
1�

�
2T

B

�2
2
$p

rB4

256
(5.31)

For submerged cross-sections near the free surface, this value needs to be doubled. For cross-

sections with sharp bilge corners or bilge keels, the hydrodynamic added mass can be

considerably larger.

All these values are for two-dimensional strips, assuming that the water moves only in the plane

of the strip. This assumption is increasingly less valid as the distance between vibration nodes

decreases with respect to strip width (for vertical and torsional vibrations) and draft (for

horizontal vibrations). Figure 5.12 gives necessary reduction factors J to account for three-

dimensional effects. These curves were determined numerically by a boundary element method.

5.5.4. Damping of Ship Hull Vertical Vibrations

Numerical (deformation) methods compute the vertical vibrations of the ship hull using mass,

damping, and stiffness matrices. The damping matrix is generally expressed as follows:
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Figure 5.11:
Coefficient of hydrodynamic mass of ship cross-section Cz ¼ m00/(rpB2/8) for high-frequency vertical

motion at the water surface
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Dij ¼
Z
L

dðxÞ$qiðxÞ$qjðxÞ dx (5.32)

d(x) is the damping force per length, divided by the vertical velocity of the cross-section. qi and

qj are the shape functions for the vertical deflections of the ship cross-sections.

If we use the vibration natural modes for qi, the mass matrix and the stiffness matrix are simple

diagonal matrices. The damping of vertical ship hull vibrations is weak. Therefore, the off-

diagonal elements in the damping matrix can be neglected and the individual vibration modes

can be considered separately.

We can estimate the hydrodynamic damping as follows:

Dii ¼
Z
L

�
q2i þ

U2

u2
ðq0iÞ2

�
N dxþ r

Z
L

cwB
��w��q2i dx

þU2

u2
qiTq

0
iT NT þ Uq2iTm

00
T þ r

4
nDPP

2q2iP

(5.33)

The first term is due to the waves radiated from the vibrating hull and can be computed in a

strip method as for the rigid-body motions. U is the ship speed and qi
0 the derivative of the

shape function (natural mode) with respect to x. N(x) is the damping constant (per

length) for a given strip. N depends on section shape and frequency. For high-frequency
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Figure 5.12:
Reduction factor J for hydrodynamic masses for three-dimensional flow in vertical ship

vibrations
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radiated waves (with wave lengths much shorter than the section width), we can

approximate:

NðxÞzr
gBðxÞtana

2u
(5.34)

B(x) is the local section width and a the flare angle in the waterline measured against the

vertical (a ¼ 0�, i.e. N ¼ 0, for wall-sided sections).

The second term is due to the pressure resistance of the vertically moving cross-sections. The

contribution of the vibrations by themselves is negligibly small, but the interaction with rigid-

body motions is considered here by the average vertical velocity jwj. cw is the vertical motion

resistance coefficient of the section. Lacking better data, one employs here steady flow

resistance values, typically 0.5 < cw < 1 for the midbody sections. At the ship ends, where the

sections are well-rounded, cw is negligibly small.

The third and fourth terms consider the effect of the transom stern (thus index T, e.g. qiT ¼
qi(xT) is the value of the shape function at the transom). NT is the damping constant, m00

T the

added mass, both for high-frequency and the transom shape. These terms assume a detaching

flow at the transom, similar to that in the strip method. Note that the wetted transom stern in

operation (with ship wave system and motions in seaways) differs from that at rest. The third

term containing NT is typically much smaller than the fourth term and can usually be

neglected.

The last term is due to the propeller. qiP is the value of the shape function at the propeller, DP

the propeller diameter, P the propeller pitch, and n the propeller revolutions (in 1/s).

The terms depend on ship speed, motions in seaways and propeller actions. Therefore vibration

damping in port will be different from actual operation conditions.

Besides hydrodynamic damping, material damping and component damping (due to floor and

deck coverings) play a role in damping. In the literature, widely different values are stated for

damping characteristics and the uncertainty increases for higher frequencies. For simple

practical estimates, Asmussen et al. (1998) give:

• for ship in loaded condition: w ¼ min (8; 7$f/20 þ 1)%

• for ship in ballast condition: w¼ min (6; 5.5$f/20 þ 0.5)%

The frequency f is taken in Hz. The degree of damping w is coupled to the logarithmic

decrement L:

L ¼ 2p$wffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� w2

p (5.35)

The logarithmic decrement describes the ratio of two successive maxima: eL¼A1/A2.

230 Chapter 5



5.6. Excitation of Vibration

Ship hull vibrations are mainly excited by seaway, propeller, and main engines. In addition

there are special cases, where periodic flow separation at structure appendages or torque

fluctuations in electric engines excite structural vibrations, for example.

5.6.1. Propellers

Propellers excite vibrations by induced pressure fluctuations on the ship hull and on the rudder.

The propeller induces a pressure field, due to the displacement effect of the propeller blades

and due to the changing cavitation volume on cavitating propellers. The contribution due to

cavitation is often more important for vibration excitation. The exciting frequencies of

a propeller are generally rpm� number of blades and higher harmonics. Thus we have, say, for

a four-bladed propeller with 120 rpm ¼ 2 Hz: 8, 16, 24, . Hz as exciting frequencies. In

choosing an appropriate number of propeller blades, one tries to place the propeller excitation

in an interval between hull natural frequencies. For modern propellers, excited pressure

impulses at second, third, or fourth blade frequency are typically higher than at blade

frequency. The explanation is that modern numerical propeller design tools (panel methods)

allow the cavitation volume on the propeller responsible for pressure fluctuations at blade

frequency to be relatively well minimized. Higher-frequency excitations are largely due to tip-

vortex cavitation. Scale effects play a more significant role for higher-order excitations. Holden

et al. (1980) give empirical formulae to estimate the cavitation-induced pressure on the ship

hull of single-screw ships, but numerical methods (panel methods or lifting surface methods)

are state-of-the-art to numerically predict induced pressure fluctuations. RANSE methods

including cavitation models drift increasingly into industrial applications. Still, numerical

simulations in the initial design phase are usually followed by model tests, using facilities that

allow high Reynolds numbers. Model tests can measure pressure impulses on the hull. For

simpler tests, the ship wake is approximated using a fine grid upstream and the pressure

impulses are measured on a flat plate above the propeller approximately at a position where in

reality the ship hull is. For tests with complete ship models, a grid of pressure probes is

installed in the model above the propeller (typically 10e20 probes). The measured time

histories of the pressures are decomposed in a Fourier analysis into the individual exciting

orders (z, 2z, 3z, etc.) These can be used for comparisons among different design alternatives or

as input for FEM simulations of structural vibrations.

Practical experience is that the pressure amplitude above the propeller alone is not adequate to

characterize the excitation behavior of a propeller. Therefore, no generally valid limits can be

stated for pressure fluctuation amplitudes. These amplitudes depend on propeller tip clearance,

transmitted power, cavitation extent, etc. Nevertheless, Asmussen et al. (1998) give some

guidelines: ‘[.] pressure amplitudes at blade frequency of 1 to 2, 2 to 8, and over 8 kPa at

a point directly above the propeller can be categorized as “low”, “medium” and “high”,
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respectively. Total vertical force fluctuations at blade frequency, integrated from pressure

fluctuations, range from about 10 kN for a high-performance special-purpose ship to 1000 kN

for a high-performance container vessel. For usual ship types and sizes, corresponding values

lie between 100 and 300 kN. Whether these considerable excitation forces result in large

vibrations depends on dynamic characteristics of the ship structure and can only be judged

rationally on the basis of forced vibration analysis.’

Propellers also excite vibrations by way of unsteady propeller blade forces. These are due to

the inhomogeneous wake of the ship and are transmitted via the propeller shaft into the ship.

Reducing the inhomogeneity of the ship wake reduces the vibration excitation. The wake is

usually determined in experiments in the model basin. In practice, the unsteady propeller

forces for given wake are determined in numerical simulations.

5.6.2. Engine

Donath and Bryndum (1988) discuss in detail ship engine vibrations. Engines can be

responsible for considerable vibrations. Diesel engines are far more critical in this respect than

turbines. The main effects are due to the moving parts and the gas forces between pistons and

cylinders. For large main engines, the vibration excitation due to horizontal and vertical total

forces is typically almost zero. One often introduces the ‘order’ of excitation:

order ¼ exciting frequency

rpm

For slow two-stroke diesels with N cylinders, the first, second,., Nth order may excite

vibrations. For four-stroke diesels, half orders may also be excited. A diesel engine located on

the centerplane of the ship excites (usually) vertical vibrations of first and second (i.e. with one

and two times the frequency of the engine rpm) and horizontal-torsional vibrations of Nth order.

(Also, torsional vibrations of second order may be excited.) Engines arranged off-center excite

both horizontal and vertical vibrations in all integer orders. However, one can couple two

symmetrically arranged engines in rpm and phase such that their excitations in horizontal or

vertical vibrations cancel each other.

The natural frequencies of the ship girder change depending on the load condition (ballast,

fully loaded). Nevertheless, one tries to exploit remaining off-resonance intervals for the lower

natural frequencies. Besides moments around the x axis, moments around the y and z axes are

excited, because mass forces of the cylinders act at different x positions. For slender, single-

screw ships, the main engine has to be arranged on a slender skeg and the moments around

the z axis cannot be as well absorbed as for twin-screw ships where the engines are arranged on

a relatively broad flat bottom. For twin-screw ships, the moments around the x axis are more

critical. Moments about the x axis appear only at orders N, 2N, 3N, . for two-stroke engines

and 0.5N, N, 1.5N, 2N, . for four-stroke engines. Fundamental natural frequencies of main
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engine vibrations depend on the distribution of stiffness values and masses of the engine itself,

but also to a large extent on the stiffness of adjoining structures. For large engines, particularly

slow two-stroke engines, the foundation cannot be regarded as completely stiff and vibration

analyses using FEM models of engine and supporting elastic structure show considerably

lower natural frequencies than for infinitely rigid support (Asmussen et al. 1998).

Propeller shaft lines have to be considered together with their supporting structures. Torsional

vibrations are covered by classification society rules. Axial vibrations are usually calculated by

isolated models consisting of masses, springs, and damping elements. For bending vibrations,

finite element computations are performed including a simple three-dimensional model of the

surrounding aftbody structure. The oil film stiffness in the slide bearings for the propeller shaft

and the hydrodynamic (added) mass of the propeller need to be included in the model to get

realistic results. As both parameters are difficult to estimate, sensitivity analyses with

parametric variations are recommended.

5.6.3. Seaway

Seaway excites a broadband of frequencies, so avoiding resonance is impossible. Ship

vibrations are mainly excited by propeller and engines. The seaway excites mainly rigid-body

motions such as roll, heave, and pitch. The lowest natural frequencies of vibrations of the ship

hull usually lie above the significant frequencies of the seaway and are thus seldom excited.

Only for very large ships, the lowest natural frequencies may become less than 1 Hz and

seaway may also play a role in exciting continuous vibrations (‘springing’). Slamming can

induce considerable free vibrations (whipping). Studies of Germanischer Lloyd for a large

LNG carrier have shown that whipping may increase bending moments (and thus longitudinal

stresses) by 25%.

5.6.4. Vortex-Induced Vibrations

If unpleasant vibrations appear on board ships normally the respective frequency clearly

identifies either engine or propeller as exciting source. However, for vortex-induced vibrations,

the identification of the exciting sources requires considerably greater effort. In the past, the

exciting source was often found only after an extensive trial-and-error approach, starting with

modifications of the most likely appendages such as V-brackets, fins, sea chests, etc. This

approach is inefficient, time-consuming, and costly.

Modern simulation techniques allow a more detailed insight into the physical mechanisms

involving vortex shedding. They also allow rapid assessment of potential design changes.

This saves time and cost for shipyard and owner. The simulations used for vortex-induced

vibrations combine computational fluid dynamics (CFD) for the vortex generation and the

associated vibration excitation and finite element analyses for vibration response. Based on
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the simulations, many potential excitation sources can be excluded. In the end, a single final

sea trial suffices to verify the excitation source in measurements and to quantify the

excitation.

Menzel et al. (2008) describe the procedure for an actual case study:

• Sea trials reveal vibration problems. The sea trial measurements determine frequency

and amplitudes.

• Comparison with engine and propeller frequencies rules out engine and propeller as

exciting source.

• Three-dimensional RANSE model of ship with all appendages (and recesses like sea

chests) is created and simulated in the time domain (unsteady RANSE simulation).

• Pressure histories at all appendages and recesses are analyzed to detect unsteady vortex

formation with (approximately) the frequency causing the vibration problems.

• If several appendages with such critical frequency are found, finite element analyses can

indicate the effect of pressure fluctuations on the structural vibration (e.g. in a given

cabin). This typically narrows the source of vibration down to the appendage where large

pressure amplitudes are created by the vortices, which have strong effect on a given cabin

or structural part of the ship.

• Optional at this point, a dedicated sea trial may be performed with specific and

detailed measurement only for this part. Increasingly, the confidence in CFD is there to

avoid the added expense and time of sea trials.

• The appendage is then re-designed, typically smoothing transitions, and re-analyzed

until the critical vortices disappear in the simulation.

• Then the new design is built and verified in sea trials. There is no case known where

sea trials did not confirm the disappearance of the problem.

Industry experience has shown that this approach allows solving complicated vibration

problems. The simulation-based approach is time- and cost-efficient, and therefore clearly

superior to the traditional trial-and-error approach.

5.7. Effect of Vibrations

Despite careful analysis and design, vibrations on board ships cannot be avoided completely.

Suitable upper limits for the effects on ship, cargo, engines, and humans can be found in

various regulations and norms. Parameters employed in the evaluation of vibrations are

frequency f, displacement s, vibrational velocity v and vibrational acceleration a. For harmonic

vibrations, the amplitudes of s, v, and a are coupled to each other by the frequency: v ¼ 2p$f$s

and a ¼ 2p$f$v. Displacement and frequency thus determine also velocity and acceleration.

Results of experiments or computations for vibrational analyses are often displayed in double-

logarithmic form (Fig. 5.13). Above the displayed band, vibrations are no longer acceptable
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Double-logarithmic vibration diagram, ISO 6954
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according to ISO 6954. Below the band, vibrations are uncritical. Inside the band, they are

acceptable in certain conditions.

According to ISO 6954, vibration measurements on board ships shall be performed in course

straight ahead, deep water and calm (at most light) sea state during usually at least 1 min (2 min

if significant frequency components exist in the range below 2 Hz). These measurements are

used to determine the overall frequency-weighted root mean square of the acceleration in the

direction where this value is maximum. The locations where the measurements are taken are

typically agreed with the ship owner. The frequency weight reflects the individual human

sensitivity for different frequencies. Figure 5.14 shows the frequency weights according to ISO

6954; 10 dB (decibels) express a factor 10 for the vibration energy which is proportional to the

square of the amplitudes. Example: a weight of e15 dB means that the amplitude is to be

multiplied by a factor
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10�15=10

p
¼ 0:1778.

5.7.1. Effects of Vibrations on the Ship

The main problem here is fatigue of the structural design. To estimate the life expectancy of

a ship structure under dynamic load, one needs the frequencies, the vibrational amplitudes,

the time span of each load group, and the Wöhler (or SeN) curve of the material. For a one-

step load, i.e. a continuous harmonic load of constant amplitude, the time to crack initiation

follows directly from the Wöhler curve. An ensemble of dynamic loads of different

amplitudes is called a spectrum. Spectral loading increases life expectancy considerably

compared to one-step loads. For reasons of fatigue strength, Germanischer Lloyd

recommends limits for deflections and velocity amplitudes of vibrations in aftbodies of ships

(Asmussen et al. 1998). Below 5 Hz a deflection amplitude limit of 1 mm is recommended,

above 5 Hz a velocity amplitude limit of 30 mm/s. Above twice these values, premature

fatigue damage is considered as probable.

-60

-40

-20

0
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0.25 1 4 16 64 254Hz

Figure 5.14:
Frequency weight according to ISO 6954
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5.7.2. Effects on Engines

ISO 7919 and ISO 10816 specify that engines and connected aggregates should generally not

be subject to vibrations exceeding any of the following limits: 0.71 mm deflection amplitude;

14 mm/s velocity amplitude; 0.7 g acceleration amplitude. For rudder gear rooms and bow

thruster rooms, we accept velocity amplitudes approximately twice as high and acceleration

amplitudes approximately four times as high. Classification societies have also incorporated

these limits in their rules.

5.7.3. Effects of Vibrations on Humans

The most frequent cause of re-design due to vibration problems concerns effects on humans.

Different standards exist for vibrations in ship rooms. ISO 6954 covers vibrations on merchant

ships and its effects on humans. ISO 6954 gives values for the overall frequency-weighted

root mean square acceleration and velocity, above which adverse comments are probable

(Table 5.5). Below half these values, adverse comments are not probable. The zone between

upper and lower values reflects the shipboard vibration environment commonly experienced

and accepted. The values are determined over the frequency range from 1 Hz to 80 Hz. The

limits are different for categories A (e.g. passenger cabins), B (e.g. crew rooms), and C (e.g.

operational rooms).

For harmonic oscillations, root mean square s and maximum amplitude a are coupled by

a ¼ ffiffiffi
2

p
$s.

Classification societies have introduced ‘comfort classification’ with respect to vibration levels

(e.g. Det norske Veritas, Table 5.6): for comfort rating number 1, 2, or 3, the velocity

amplitudes are considered separately for all appearing frequencies. For each individual

frequency and each measured location, limit values may not be exceeded. Only for

frequencies below 5 Hz can the measured velocity amplitude be reduced by the ratio of actual

frequency to 5 Hz.

ISO 2631 also concerns the effect of mechanical vibrations on humans, at low frequencies

0.1e0.5 Hz (ship motion sickness) and higher frequencies 0.5e80 Hz (health, comfort).

Important parameters are frequency, direction of vibration, and the form in which the

vibrations enter the human body. We thus perceive vibrations differently depending on whether

Table 5.5: Values of overall frequency-weighted r.m.s. values for acceleration and velocity, above

which adverse comments are probable, ISO 6954

A B C

143 mm/s2 4 mm/s 214 mm/s2 6 mm/s 286 mm/s2 8 mm/s
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they enter the body via our feet, our hands, or our buttocks. The relevant frequency range lies

approximately between 1 and 100 Hz. For vibrations below 1 Hz, the body reacts with motion

sickness (nausea). Objective criteria cannot be formulated as individual people react very

differently to vibrations. This may be due to different natural frequencies of individual body

parts. Subjective criteria are comfort (feeling well), ability to perform, and health. ISO 2631

classifies the direction of vibrations in a body-fixed coordinate system (Fig. 5.15), and gives

admissible vibrational accelerations (e.g. Fig. 5.16). The curves have the duration of the effect

as a parameter.

Table 5.7 lists typical natural frequencies of body parts and symptoms for vertical vibrational

exciting of a sitting human with amplitude at tolerance threshold.

Table 5.6: Velocity amplitude limits (mm/s) for three comfort classes following Det norske Veritas

Comfort rating number 1 2 3

High speed and light craft
� passenger localities, navigation bridge, offices
� control rooms

2.0
3.0

3.5
4.5

5.0
6.0

Passenger ships
� top-grade cabins
� standard cabins, public spaces
� open deck recreation

1.5
1.5
2.5

2.0
2.5
3.5

2.5
4.0
5.0

Yacht (owner and guest areas)
� accommodation on sea/in port
� outdoor recreation areas
� navigation bridge

1.0/0.5
2.0/0.5
1.5

2.0/1.0
3.0/1.0
2.5

3.0/2.0
4.0/2.0
4.0

Cargo ships
� cabins, mess, recreation rooms, offices, bridge
� control rooms, work places

2.5
3.5

3.5
4.5

5.0
6.0

Z

Z

Z

Y

Y

Y

X

X

X

Figure 5.15:
Vibration directions with reference to human body
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Figure 5.16:
Threshold values in the direction of the body’s longitudinal axis, ISO 2631

Table 5.7: Effect of vibrations on sitting human

Body part Effect of threshold vibration Natural frequency

Brain General discomfort, nausea 4.5e9 Hz
Head Difficulty to speak 13e20 Hz
Chest Pain in chest, breathing difficulties 4e8 Hz
Back Back pain 8e12 Hz
Intestines Urge to release feces 10.5e16 Hz
Bladder Urge to release urine 10e18 Hz
Legs Increased muscle tension 13e20 Hz
Abdomen Abdominal pain 4.5e10 Hz
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6.1. Introduction

Ship maneuvering comprises:

• course keeping (this concerns only the direction of the ship’s longitudinal axis);

• course changing;

• track keeping (important in restricted waters);

• speed changing (especially stopping).

Maneuvering requirements are a standard part of the contract between shipyard and shipowner.

IMO regulations specify minimum requirements for all ships, but shipowners may introduce
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additional or more severe requirements for certain ship types, e.g. tugs, ferries, dredgers,

exploration ships. Important questions for the specification of ship maneuverability may

include:

• Does the ship keep a reasonably straight course (in autopilot or manual mode)?

• Under what conditions (current, wind) can the ship berth without tug assistance?

• Up to what ratio of wind speed to ship speed can the ship still be kept on all courses?

• Can the ship lay rudder in acceptable time from one side to the other?

Ship maneuverability is described by the following main characteristics:

• initial turning ability: ability to initiate a turn (rather quickly);

• sustained turning ability: ability for sustained (rather high) turning speed;

• yaw checking ability: ability to stop turning motion (rather quickly);

• stopping ability: ability to stop (in rather short distance and time);

• yaw stability: ability to move straight ahead in the absence of external disturbances (e.g.

wind) at one rudder angle (so-called neutral rudder angle).

The sustained turning ability appears to be the least important, since it describes the ship

behavior only for a time long after initiating a maneuver. The stopping ability is of interest only

for slow speeds. For avoiding obstacles at high ship speed, it is far more effective to change

course than to stop. (Course changes require less distance than stopping maneuvers for full

speed.)

Understanding ship maneuvering and the related numerical and experimental tools is important

for the designer for the choice of maneuvering equipment of a ship. Items of the maneuvering

equipment may be:

• rudders;

• fixed fins (e.g. above the rudder; skeg);

• jet thrusters;

• propellers (including fixed pitch, controllable pitch, slewable, and cycloidal (e.g.

VoitheSchneider propellers);

• adjustable ducts for propellers, steering nozzles;

• waterjets.

Both maneuvering and seakeeping of ships concern time-dependent ship motions, albeit with

some differences:

• The main difficulty in both fields is to determine the fluid forces on the hull (including

propeller and rudder) due to ship motions (and possibly waves).

• At least a primitive model of the maneuvering forces and motions should be part of any

seakeeping simulation in oblique waves.
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• Contrary to seakeeping, maneuvering is often investigated in shallow (and usually calm)

water and sometimes in channels.

• Linear relations between velocities and forces are reasonable approximations for many

applications in seakeeping; in maneuvering they are applicable only for rudder angles of

a few degrees. This is one reason for the following differences.

• Seakeeping is mostly investigated in the frequency domain; maneuvering investigations

employ time-domain simulations.

• In seakeeping, motion equations are written in an inertial coordinate system; in

maneuvering simulations a ship-fixed system is applied. (This system, however,

typically does not follow heel motions.)

• For fluid forces, viscosity is usually assumed to be of minor importance in seakeeping

computations. In maneuvering simulations, the free surface is often neglected. Ideally,

both free surface and viscous effects should be considered for both seakeeping and

maneuvering.

Here we will focus on the most common computational methods for manoeuvring flows. Far

more details, especially on maneuvering devices, can be found in Brix (1993).

6.2. Simulation of Maneuvering with Known Coefficients

6.2.1. Introduction and Definitions

The hydrodynamic forces of main interest in maneuvering are:

• the longitudinal force (resistance) X;

• the transverse force Y;

• the yaw moment N;

depending primarily on:

• the longitudinal speed u and acceleration _u;

• transverse speed v at midship section and acceleration _v;

• yaw rate (rate of rotation) r ¼ _j (rad/time) and yaw acceleration _r ¼ €j, where j is the

yaw angle;

• the rudder angle d (positive to port).

For heel angles exceeding approximately 10�, these relations are influenced substantially by

heel. The heel may be caused by wind or, for Froude numbers exceeding approximately 0.25,

by the maneuvering motions themselves. Thus at least for fast ships we are also interested in:

• the heeling moment K;

• the heel angle f.
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For scaling these forces and moments from model to full scale, or for estimating them from

results in similar ships, X, Y, K, and N are made non-dimensional in one of the following ways:8>><
>>:

X0
Y 0
K 0
N 0

9>>=
>>; ¼ 1

q $ L2

8>><
>>:

X
Y

K=L
N=L

9>>=
>>; or

8>><
>>:

CX

CY

CK

CN

9>>=
>>; ¼ 1

q $ L $T

8>><
>>:

X
Y

K=L
N=L

9>>=
>>; (6.1)

with q ¼ r $ u2/2 and r water density. Note that here we use the instantaneous longitudinal

speed u (for u s 0) as reference speed. Alternatively, the ship speed at the beginning of the

maneuver may be used as reference speed. L is the length between perpendiculars. The term

‘forces’ will from now on include both forces and moments, unless otherwise stated.

The motion velocities and accelerations are also made non-dimensional by suitable powers of u

and L:

v0 ¼ v=u ; r0 ¼ r $ L=u ; _u0 ¼ _u $L=u2 ; _v0 ¼ _v $ L=u2 ; _r0 ¼ _r $ L2=u2 (6.2)

6.2.2. Force Coefficients

CFD or model tests may be used to determine the force coefficients. Then the body forces may

be approximated by expressions like:

Y 0 ¼ Y _v
0 $ _v0 þ Y _r

0 $ _r0 þ Y 0
v $ v

0 þ Y 0
v3 $ ðv0Þ3 þ Y 0

vr2 $ v
0ðr0Þ2 þ Y 0

vd2
$ v0d2 þ Y 0

r $ r
0

þ Y 0
r3 $ ðr0Þ3 þ. (6.3)

Y _v
0. are non-dimensional coefficients. Unlike the above formula, such expressions may also

involve terms like Y 0
ru $ r

0 $Du0, where Du0 ¼ ðu� VÞ=u. V is a reference speed, normally the

speed at the beginning of the maneuver. Comprehensive tables of such coefficients have been

published, e.g. Wolff (1981) for models of five ship types (tanker, Series 60 CB ¼ 0.7, mariner,

container ship, ferry) (Tables 6.1 and 6.2). The coefficients for u are based on Du ¼ u e V in

these tables. Corresponding to the small Froude numbers, the values do not contain heeling

moments and the dependency of coefficients on heel angle. Such tables, together with the

formulae for X, Y, and N as given above, may be used for time simulations of motions of such

ships for an arbitrary time history of the rudder angle.

Wolff’s results are deemed to be more reliable than other experimental results because they

were obtained in large-amplitude, long-period motions of relatively large models (L between

6.4 and 8.7 m). Good accuracy in predicting the maneuvers of sharp single-screw ships in full

scale from coefficients obtained from experiments with such models has been demonstrated.

For full ships, for twin-screw ships, and for small models, substantial differences between

model and full-scale maneuvering motions are observed. Correction methods from model to

full scale need still further improvement.
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For small deviations of the ship from a straight path, only linear terms in the expressions for the

forces need to be retained. In addition we neglect heel and all those terms that vanish for

symmetrical ships to obtain the equations of motion:

ðX _u
0 � m0Þ _u0 þ X0

uDu
0 þ X0

nDn
0 ¼ 0 (6.4)

ðY _v
0 � m0Þ _v0 þ ðY _r

0 � m0x0GÞ _r0 þ Y 0
vv

0 þ ðY 0
r � m0Þr0 ¼ �Y 0

dd (6.5)

ðN _v
0 � m0x0GÞ _v0 þ ðN _r

0 � I0zzÞ _r0 þ N 0
vv

0 þ N0
vv

0 þ ðN0
r � m0x0GÞr ¼ �N 0

dd (6.6)

Izz is the moment of inertia with respect to the z-axis:

Izz ¼
Z

ðx2 þ y2Þ dm (6.7)

m0¼ m/(½ rL3) is the non-dimensional mass, I0zz ¼ Izz=ð1=2rL5Þ the non-dimensional moment

of inertia coefficient.

If we just consider the linearized equations for side forces and yaw moments, we may write:

M0 _u!0 þ D0 u!0 ¼ r!0
D (6.8)

with:

M0 ¼
"
�Y _v

0 þ m0 �Y _r
0 þ m0x0G

�N _v
0 þ m0x0G �N _r

0 þ I0zz

#
; u!0 ¼

�
v0

r0

�
(6.9)

Table 6.1: Data of four models used in maneuvering experiments (Wolff 1981)

Tanker Series 60 Container Ferry

Scale 1:35 1:26 1:34 1:16
Lpp 8.286 m 7.034 m 8.029 m 8.725m
B 1.357 m 1.005 m 0.947 m 1.048m
Tfp 0.463 m 0.402 m 0.359 m 0.369m
Tm 0.459 m 0.402 m 0.359 m 0.369m
Tap 0.456 m 0.402 m 0.359 m 0.369m
CB 0.805 0.700 0.604 0.644
Coord. origin aft of FP 4.143 m 3.517 m 4.014 m 4.362m
LCG (xG) e0.270m 0.035 m e0.160m e0.149 m
Radius of gyration iz 1.900 m 1.580 m 1.820 m 1.890m
No. of propellers 1 1 2 2
Propeller turning Right Right Outward Outward
Propeller diameter 0.226 m 0.279 m 0.181 m 0.215m
Propeller P/D 0.745 1.012 1.200 1.135
Propeller AE/A0 0.60 0.50 0.86 0.52
No. of blades 5 4 5 4
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D0 ¼
��Y 0

v �Y 0
r þ m0

�N 0
v �N 0

r þ m0x0G

�
; r!0 ¼

�
Y 0
d

N0
d

�
(6.10)

M0 is the mass matrix, D0 the damping matrix, r!0
the rudder effectiveness vector, and u!0

the

motion vector. The terms on the right-hand side thus describe the steering action of the rudder.

Some modifications of the above equation of motion are of interest:

1. If in addition a side thruster at location xt is active with thrust T, the (non-dimensional)

equation of motion modifies to:

M0 _u!0 þ D0 u!0 ¼ r!0
Dþ

�
T 0
T 0x0t

�
(6.11)

Table 6.2: Non-dimensional hydrodynamic coefficients of four ship models (Wolff 1981);

values to be multiplied by 10�6
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2. For steady turningmotion ( _u!0 ¼ 0), the original linearized equation ofmotion simplifies to:

D0 u!0 ¼ r!0
d (6.12)

Solving this equation for r 0 yields:

r ¼ Y 0
dNv � YvNd

Y 0
vðY 0

r � m0ÞC 0d (6.13)

C0 is the yaw stability index:

C0 ¼ N0
r � m0x0G
�m0 � N 0

v

Y 0
v

(6.14)

Y 0
vðY 0

r � m0Þ is positive, the nominator (almost) always negative. Thus C0 determines the

sign of r 0. Positive C0 indicates yaw stability, negative C0 yaw instability. Yaw instability is

the tendency of the ship to increase the absolute value of an existing drift angle. However,

the formula is numerically very sensitive and measured coefficients are often too

TABLE 6.2 continued
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inaccurate for predictions. Therefore, usually more complicated analyses are necessary to

determine yaw stability.

3. If the transverse velocity in the equation of motion is eliminated, we obtain a differential

equation of second order of the form:

T1T2€r þ ðT1 þ T2Þ $ _r þ r ¼ �Kðdþ T2 _dÞ (6.15)

The Ti are time constants. jT2j is much smaller than jT1j and thus may be neglected,

especially since linearized equations are anyway a (too) strong simplification of the

problem, yielding the simple ‘Nomoto’ equation:

T _r þ r ¼ �Kd (6.16)

T and K here denote time constants. K is sometimes called rudder effectiveness. This

simplified equation neglects not only all non-linear effects, but also the influence of

transverse speed, longitudinal speed, and heel. As a result, the predictions are too

inaccurate for most practical purposes. The Nomoto equation allows, however, a quick

estimate of rudder effects on course changes. A slightly better approximation is the

‘Norrbin’ equation:

T _r þ r þ ar3 ¼ �Kd (6.17)

a here is a non-linear ‘damping’ factor of the turning motions. The constants are

determined by matching measured or computed motions to fit the equations best. The

Norrbin equation still does not contain any unsymmetrical terms, but for single-screw ships

the turning direction of the propeller introduces an asymmetry, making the Norrbin

equation questionable.

4. The stability index is difficult to compute due to the numeric sensitivity. Subsequently, the

slope of the spiral curve in the origin (for three degrees of freedom) has gained popularity

as a single, relatively simple indicator for ships that handle ‘correctly’:

N 0
v0 $ Y

0
d � Y 0

v0 $N
0
d

Y 0
v0 ðN 0

r0 � m0x0gÞ � N 0
v0 ðY 0

r0 � m0Þ < 0 (6.18)

The following regression formulae for linear velocity and acceleration coefficients have been

proposed (Clarke et al. 1983):

Y _v
0 ¼ �pðT=LÞ2 $ ð1þ 0:16CB $B=T � 5:1ðB=LÞ2Þ (6.19)

Y _r
0 ¼ �pðT=LÞ2 $ ð0:67B=L� 0:0033ðB=TÞ2Þ (6.20)

N _v
0 ¼ �pðT=LÞ2 $ ð1:1B=L� 0:041B=TÞ (6.21)
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N _r
0 ¼ �pðT=LÞ2 $ ð1=12þ 0:017CB $B=T � 0:33B=LÞ (6.22)

Y 0
v ¼ �pðT=LÞ2 $ ð1þ 0:40CB $B=TÞ (6.23)

Y 0
r ¼ �pðT=LÞ2 $ ð�0:5þ 2:2B=L� 0:08B=TÞ (6.24)

N 0
v ¼ �pðT=LÞ2 $ ð0:5þ 2:4T=LÞ (6.25)

N0
r ¼ �pðT=LÞ2 $ ð0:25þ 0:039B=T � 0:56B=LÞ (6.26)

T is the mean draft. These formulae apply to ships on even keel. For ships with draft difference

t ¼ Tap e Tfp, correction factors may be applied to the linear even-keel velocity coefficients

(Inoue and Kijima 1978):

Y 0
vðtÞ ¼ Y 0

vð0Þ $ ð1þ 0:67t=TÞ (6.27)

Y 0
rðtÞ ¼ Y 0

rð0Þ $ ð1þ 0:80t=TÞ (6.28)

N0
vðtÞ ¼ N0

vð0Þ $ ð1� 0:27t=T $ Y 0
vð0Þ=N 0

vð0ÞÞ (6.29)

N 0
rðtÞ ¼ N 0

rð0Þ $ ð1þ 0:30t=TÞ (6.30)

These formulae are based both on theoretical considerations and on model experiments with

four 2.5 m models of the Series 60 with different block coefficients for 0.2 < t/T < 0.6.

In cases where u and/or the propeller turning rate n vary strongly during a maneuver or

even change sign as in a stopping maneuver, the above coefficients will vary widely.

Therefore, the so-called four-quadrant equations (e.g. Sharma 1986) are better suited to

represent the forces. These equations are based on a physical explanation of the forces

due to hull, rudder, and propeller, combined with coefficients to be determined in

experiments.

6.2.3. Physical Explanation and Force Estimation

In the following, forces due to non-zero rudder angles are not considered. If the rudder at

the midship position is treated as part of the ship’s body, only the difference between

rudder forces at the actual rudder angle d and those at d ¼ 0� have to be added to the

body forces treated here. The gap between ship stern and rudder may be disregarded in

this case. Propeller forces and hull resistance in straightforward motion are neglected

here.

We use a coordinate system with origin fixed at the midship section on the ship’s center plane at

the height of the center of gravity (Fig. 6.1). The x-axis points forward, y to starboard, z

vertically downward. Thus the system participates in the motions u, v, and r of the ship, but

does not follow the ship’s heeling motion. This simplifies the integration in time (e.g. by
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a RungeeKutta scheme) of the ship’s position from the velocities u, v, r and eliminates several

terms in the force formulae.

Hydrodynamic body forces can be imagined to result from the change of momentum (¼mass $

velocity) of the water near to the ship. Most important in maneuvering is the transverse force

acting upon the hull per unit length (e.g. meter) in the x-direction. According to the slender-

body theory, this force is equal to the time rate of change of the transverse momentum of the

water in a ‘strip’ between two transverse planes spaced one unit length. In such a ‘strip’ the

water near to the ship’s side mostly follows the transverse motion of the respective ship section,

whereas water farther from the hull is less influenced by transverse ship motions. The total

effect of this water motion on the transverse force is the same as if a certain ‘added mass’ per

length m0 moved exactly like the ship section in transverse direction. (This approach is thus

similar to the strip method approach in ship seakeeping.)

The added mass m0 may be determined for any ship section as:

m0 ¼ 1

2
p $ r $T2

x $ cy (6.31)

Tx is the section draft and cy a coefficient. cy may be calculated:

• analytically if we approximate the actual ship section by a ‘Lewis section’ (conformal

mapping of a semicircle); Figure 6.2 shows such solutions for parameters (Tx/B) and

b ¼ immersed section area/(B $ Tx);

• for arbitrary shape by a close-fit boundary element method as for ‘strips’ in seakeeping

strip methods, but for maneuvering the free surface is generally neglected;

• by field methods including viscosity effects.

Neglecting influences due to heel velocity _f and heel acceleration €f, the time rate of change of

the transverse momentum of the ‘added mass’ per length is:�
v

vt
� u $

v

vx

�
m0ðvþ x $ rÞ�½ (6.32)

v/vt takes account of the local change of momentum (for fixed x) with time t. The term u $ v/vx

results from the convective change of momentum due to the longitudinal motion of the water

‘strip’ along the hull with appropriate velocity eu (i.e. from bow to stern). v þ x $ r is the

N
r,

x, u,

y, v, Y

, K
X

φ

Figure 6.1:
Coordinates x, y; direction of velocities u, v, r, forces X, Y, and moments K, N
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transverse velocity of the section in the y-direction resulting from both transverse speed v at

midship section and the yaw rate r. The total transverse force is obtained by integrating the

above expression over the underwater ship length L. The yaw moment is obtained by

multiplying each force element with the respective lever x, and the heel moment is obtained by

using the vertical moment zym
0 instead of m0, where zy is the depth coordinate of the center of

gravity of the added mass. For Lewis sections, this quantity can be calculated theoretically

(Fig. 6.3). For CFD approaches the corresponding vertical moment is computed directly as part
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Section added mass coefficient cy for low-frequency, low-speed horizontal acceleration
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of the numerical solution. Söding gives a short FORTRAN subroutine to determine cy and zy
for Lewis sections in Brix (1993, p. 252).

Based on these considerations we obtain the ‘slender-body contribution’ to the forces as:

8>><
>>:

X
Y
K
N

9>>=
>>; ¼

Z
L

8>><
>>:

0
1
1
x

9>>=
>>; $

�
v

vt
� u $

v

vx

��
m0ðvþ x $ rÞÞ $

0
BB@
8>><
>>:

0
m0

�zym
0

m0

9>>=
>>;
�
vþ x $ rÞ

1
CCA dx (6.33)

The ‘slender-body contribution’ to X is zero. Several modifications to this basic formula are

necessary or at least advisable:

1. For terms involving ev/vt, i.e. for the acceleration-dependent parts of the forces,

correction factors k1, k2 should be applied. They consider the lengthwise flow of

water around bow and stern which is initially disregarded in determining the

sectional added mass m0. The acceleration part of the above basic formula then

becomes: 8>><
>>:

X1

Y1
K1

N1

9>>=
>>; ¼

Z
L

8>><
>>:

0
�k1m

0
zym

0
�k2xm

0

9>>=
>>; $ ðk1 _vþ k2x $ _rÞ dx (6.34)

k1 and k2 are approximated here by regression formulae which were derived from the

results of three-dimensional flow calculations for accelerated ellipsoids:

k1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 0:2453� 1:6832

p
(6.35)

k2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 0:763� 4:4132

p
(6.36)

with 3 ¼ 2Tx/L.

2. For parts in the basic formula due to u $ v/vx, one should distinguish terms where v/vx

is applied to the first factor containing m0 from terms where the second factor v þ x $ r

is differentiated with respect to x (which results in r). For the former terms, it was

found by comparison with experimental values that the integral should be extended

only over the region where dm0/dx is negative, i.e. over the forebody. This may be

understood as the effect of flow separation in the aftbody. The flow separation causes

the water to retain most of its transverse momentum behind the position of maximum

added mass, which for ships without trim may be taken to be the midship section. The

latter terms, however, should be integrated over the full length of the ship. This

results in:
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8>><
>>:

X2

Y2
K2

N2

9>>=
>>; ¼ u

8>><
>>:

0
�m0

m
zymm

0
m

�xmm
0
m

9>>=
>>; $ ðvþ xm $ rÞ þ u $ r

Zxm
xa

8>><
>>:

0
m0

�zymm
0

xm0

9>>=
>>; dx� u

Zxf
xm

8>><
>>:

0
0
0
m0

9>>=
>>;ðvþ x $ rÞ dx

(6.37)

xa is the x coordinate of the aft end, xf of the forward end of the ship. The index m refers to

the x coordinate where m0 is maximum. For negative u the differences in treating the fore-

and aftbody are interchanged.

3. The slender-body theory disregards longitudinal forces associated with the added mass of

the ship in the longitudinal direction. These additional terms are taken from potential-flow

theory without flow separation (Newman 1977):8>><
>>:

X3

Y3
K3

N3

9>>=
>>; ¼

8>><
>>:

�mx $ _u
�mx $ u $ r

0
�mx $ u $ v

9>>=
>>; (6.38)

mx is the added mass for longitudinal motion; it may be approximated by a formula which

was also fitted to theoretical values for ellipsoids:

mx ¼ m

p
ffiffiffiffiffiffiffiffiffiffiffi
L3=V

p
� 14

(6.39)

V denotes here the volume displacement. Theoretically additional terms proportional to

r $ v and r2 should appear in the formula for X. According to experiments with ship models,

however, the r $ v term is much smaller and the r2 term may even have a different sign than

the theoretical expression. Therefore these terms, which are influenced substantially by

flow separation, have been omitted. Further, some theoretical terms of small magnitude

involving heeling motion or referring to the heeling moment have also been omitted in the

above formula for X3, etc.

4. Because slender-body theory neglects flow separation in transverse flow around ship

sections (only longitudinal flow separation is roughly taken into account), an additional

‘cross-flow resistance’ of the ship sections has to be added. The absolute value of this

resistance per unit length is:

1

2
r $Tx $ v

2
x $CD (6.40)

vx ¼ v þ x $ r is the transverse velocity of the section. CD is a cross-flow resistance

coefficient. The direction of the resistance is opposite to the direction of vx. Thus for
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arbitrary direction of motion, the term �vxjvxj is required instead of v2x . Therefore the

cross-flow resistance adds the following contributions to the body forces:8>><
>>:

X4

Y4
K4

N4

9>>=
>>; ¼ 1

2
r

Z
L

8>><
>>:

0
�1
zD
�x

9>>=
>>;ðvþ x $ rÞ $ jvþ x $ rj $ TxCD dx (6.41)

zD is the z coordinate (measured downward from the center of gravity G of ship’s mass m)

of the action line of the cross-flow resistance. For typical cargo ship hull forms, this force

acts on about 65% of the draft above the keel line. Thus a constant (mean) value over ship

length of:

zD ¼ KG� 0:65T (6.42)

may be applied to the formula for X4, etc. For tug models, values of 1.0� 0.1 instead of the

above 0.65 were found.

CD is estimated as 1.0 averaged over the whole ship length for cargo vessels like container

ships with bilge keels. For fuller hulls values between 0.5 and 0.7 may be suitable. The CD

values are generally higher in the aftbody than in the forebody due to stronger flow

separation in the aftbody.

Results of transverse towing tests (at zero speed) with and without heel with large models

are presented in Table 6.3. These results differ from the situation at considerable forward

speed.

The sum of contributions 1 to 4 constitutes the total body force:8>><
>>:

X
Y
K
N

9>>=
>>; ¼

8>><
>>:

X1

Y1
K1

N1

9>>=
>>;þ

8>><
>>:

X2

Y2
K2

N2

9>>=
>>;þ

8>><
>>:

X3

Y3
K3

N3

9>>=
>>;þ

8>><
>>:

X4

Y4
K4

N4

9>>=
>>; (6.43)

Table 6.3: Results of transverse towing tests with large models upright and with 10� heel; models

were equipped with rudder and propeller but without bilge keels

Cargo ship Tanker Tanker Container ship
Twin-screw
salvage tug

L/B 6.66 5.83 6.11 7.61 5.21
B/T 2.46 2.43 2.96 2.93 2.25
CB 0.66 0.84 0.81 0.58 0.58
CD 0.562 0.983 0.594 0.791 0.826

CD10� 0.511 1.151 � 1.014 �
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For steady traversing or pure yaw motion without forward speed, only terms listed under 4

above are relevant.

The yaw stability is very sensitive to small changes in the body forces. Therefore a reliable

prediction of yaw stability based on the slender-body theory or regression analysis of model

tests is not possible. Substantial improvements of theoretical calculations seem possible only if

the flow separation around the hull is determined in detail by computational simulation of the

viscous, turbulent flow in a RANSE code (with appropriate turbulence model) or even LES

simulations. However, the slender-body approach described here appears to be useful and

sufficient in most cases in deep water. Extensions of the theory to shallow water exist.

6.2.4. Influence of Heel

For exact motion predictions including the coupling of maneuvering motions with heel one

should take account of:

• the heeling moments due to weight and mass moments, hydrostatic and hydrodynamic

moments on hull, rudder, and propeller, and possibly wind heeling moments or other

external influences;

• the dependence of X, Y, and N on heel angle, heel velocity, and heel acceleration.

Details may be drawn from Bohlmann’s (1989, 1990) work on submarine maneuvering.

By choosing our coordinate origin at the height of the ship’s center of gravity, many of these

influences are zero, others are small in cargo ships. For example, the dependence of X, Y, and N

on the heel rate and heel acceleration can be neglected if the interest is not in the rolling

motions themselves, but only in their influence on maneuvering motions. In this case, the heel

angle may be determined by the equilibrium resulting from the maneuvering heel moment K as

stated before, the hydrostatic righting moment, and possibly the wind- and propeller-induced

moments. However, the dependence of X, Y, and N on the heel angle may be substantial.

The following procedure is recommended to evaluate the influence of heel:

1. In the equations for X1 etc., m
0 is determined taking into account the heel angle. This leads

to larger m0 values in the midship range due to increase of draft with heel for the full

midship sections. Capturing the influence of heel in the computations of m0 is
straightforward in CFD computations, but also a Lewis transformation approach can be

extended to include heel (Söding 1984).

2. In the equations for X1, instead of v the expression v e u $ vyB/vx should be used, where yB
is the y coordinate of the center of gravity of the immersed section area due to heel. The

term takes account of the curvature of the ‘centerline’ of the heeled hull.

3. The cross-flow resistance coefficient CD depends on the heel angle. CD may decrease by

1e3% per degree of heel in the direction of drift motion. Due to the increase of section
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draft (at least in the midship region) with heel, however, the actual cross-flow resistance

may increase with heel angle.

4. For larger heel angles exceeding approximately 25�, the cross-flow velocity in the equation

for X4, etc. should be determined with respect to the curved line being composed of the

points of maximum draft of the ship sections. If this line has transverse coordinate yT(x),

instead of v þ x $ r the expression v þ x $ r e vyT/vx $ u has to be used in the equation for

X4, etc. for heel angles exceeding 25�. For smaller heel, a linear interpolation of the

correction term vyT/vx $ u over heel is recommended.

This procedure improves predictions, but still has substantial deficiencies for larger heel

angles.

6.2.5. Shallow Water and Other Influences

Body forces depend not only on the actual acceleration, speed, and (in case of heel) state of the

vessel, but also on the previous time history of body motion. This is due to vortex shedding and

waves generated by the ship. However, these ‘memory effects’ are very small in ordinary

maneuvering motions. Exceptions where memory effects may be important are:

• PMM experiments with the usual too small amplitudes;

• self-induced motions of a moored ship.

Shallow water, non-uniform current and interactions with other ships may substantially

influence the body forces as discussed in detail in Brix (1993). The influence of shallow water

can be roughly described as follows. If the ship keel is just touching the sea bottom, the

effective side ratio of the ship hull is increased from approximately 0.1 (namely 2T/L; factor 2

due to mirror image at waterplane) toN. This increases the transverse forces by approximately

a factor of 40 (following the simple estimate formula for rudder lift in Section 6.4). The rudder

itself increases its effective side ratio from approximately 2 for deep water toN for extremely

shallow water. The rudder forces are then increased by a factor of approximately 2.6. The hull

forces for a yaw stable ship decrease the course-changing ability, the rudder forces increase the

course-changing ability. Since the hull forces increase more than the rudder forces on shallow

water, the net result for yaw stable ships is:

• increased radius of turning circle;

• increased turning time;

• increased yaw checking time.

For yaw instable ships, this may be different, especially if the yaw stability changes drastically.

Shallow water may increase or decrease yaw stability. One of several effects is the change of

trim. Boundary element methods, namely ‘wave resistance’ codes, may be used to predict trim

and sinkage of real ship geometries, usually with good accuracy on shallow water. The results

of such computations have been used to estimate the amount of yaw instability.
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6.2.6. Stopping

The rudder behind a reverse turning propeller is almost without effect. The track of a stopping

ship is thus largely determined by the maneuvering forces of the propeller(s) and wind. For yaw

instable ships, the track can be largely influenced by small initial port or starboard motions. For

sister ships (large tankers) under ‘same’ conditions, stopping times vary between 12 and

22 minutes with largely differing tracks. The differences are attributed to such small (random)

initial differences in yaw motions.

For low speeds, the stopping times and distances can be determined as follows. One assumes

that between two points in time t1 and t2 the reverse thrust (minus thrust deduction) T is

approximately constant and that the resistance R is proportional to speed u:

R

u2
¼ R0

U2
0

¼ k (6.44)

k is the stopping constant. The index 0 denotes the values at the beginning of the maneuver. If

we assume a straight stopping track, the fundamental equation of motion is:

m $ _u ¼ �kðu2 þ u2TÞ (6.45)

The mass m includes the hydrodynamic added mass m00 for longitudinal motion which may

be estimated by Eq. (6.39). uT ¼ U0

ffiffiffiffiffiffiffiffiffiffiffi
T=R0

p
is the speed the ship would have after a long

time if the thrust T were directed forward. The above differential equation can be solved

(by separation of variables) to yield:

Dt ¼ t2 � t1 ¼ m

kuT

�
arctan

u1
uT

� arctan
u2
uT

�
(6.46)

The distance is given by multiplying the above differential equation by u ¼ ds/dt and solving

again (by separation of variables) to yield:

Ds ¼ s2 � s1 ¼ m

2k
ln

 
u21 þ u2T
u22 þ u2T

!
(6.47)

These two equations for Dt and Ds can be used to compute stepwise the stopping process by

splitting the process into time intervals where the thrust T can be assumed to be constant. The

reverse thrust is best determined by using four-quadrant diagrams for the propellers, if these

diagrams are available.

6.2.7. Jet Thrusters

Transverse jet thrusters consist of a transverse pipe through the ship hull usually located at the

bow or at the stern. The pipe contains a screw propeller which pumps water either to port or
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starboard, thus creating a side thrust (and moment). The purpose of a jet thruster is to increase

maneuverability at low speeds, allowing the ship to maneuver with no or less tug assistance. As

the rudder astern already supplies maneuvering forces, jet thrusters are more effective at the

bow and usually placed there (‘bow thrusters’). Also, stern jets need to cope with potential

collision problems in arranging both jet pipe and propeller shaft. Jet thrusters may also serve as

an emergency backup for the main rudder. Backups for rudders are needed for ships with

dangerous cargo. Jet thrusters are less attractive for ships on long-distance routes calling at few

ports. The savings in tug fees may be less than the additional expense for fuel.

For ocean-going ships, side thrusts of 0.08e0.12 kN per square meter underwater lateral area

are typical values. These values relate to zero forward speed of the ship. Installed power P,

cross-section area of the pipe A, and flow velocity v in the jet thruster are related by:

T ¼ r $A $ v2 (6.48)

P ¼ 1

h
$
1

2
r $A $ v3 (6.49)

h is here the efficiency of the thruster propeller. These equations yield:

P

T
¼ v

2h
(6.50)

T

A
¼ rv2 (6.51)

h ¼ 0.8 and v ¼ 11 m/s yield typical relations: approximately 120 kN/m2 thrust per thruster

cross-section area and 7 kW power per kN thrust.

With increasing speed, jet thrusters become less effective and rudders become more effective.

The reason is that the jet is bent backwards and may reattach to the ship hull. The thrust is then

partially compensated by an opposite suction force. This effect may be reduced by installing

a second (passive) pipe without a propeller downstream of the thruster (Brix 1993).

6.2.8. CFD for Ship Maneuvering

For most ships, the linear system of equations determining the drift and yaw velocity in steady

turning motion is nearly singular. This produces large relative errors in the predicted steady

turning rate, especially for small rudder angles and turning rates. For large rudder angle and

turning rate, non-linear forces alleviate these problems somewhat. But non-linear hull forces

depend crucially on the cross-flow resistance or the direction of the longitudinal vortices, i.e.

on quantities which are determined empirically and which vary widely. In addition, extreme

rudder forces depend strongly on the rudder stall angle which e for a rudder behind the hull

and propeller e requires at least two-dimensional RANSE simulations. Thus large errors are
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frequently made in predicting both the ship’s path in hard maneuvers and the course-keeping

qualities. (The prediction of the full ship is fortunately easier as at the higher Reynolds

numbers stall rarely occurs.) In spite of that, published comparisons between predictions and

measurements based on inviscid, classical approaches have indicated almost always excellent

accuracy; a notable exception is Söding (1993). The difference is that Söding avoids all

information which would not be available had the respective model not been tested previously.

The typical very good agreement published by others is then suspected to be either chosen as

best results from a larger set of predictions or due to empirical corrections of the calculation

method based on experiments which include the ship used for demonstrating the attained

accuracy. Naturally, these tricks are not possible for a practical prediction where no previous

test results for the ship design can be used. Thus accurate maneuvering predictions require

RANSE approaches, and even then care has to be taken in grid generation and turbulence

modeling. It may also be possible to predict full-scale ship motions with sufficient accuracy,

but the experience published so far is insufficient to establish this as state of the art. However,

differences between alternative designs and totally unacceptable designs may be detected using

simper methods for maneuvering prediction.

The simplest approach to body force computations is the use of regression formulae based on

slender-body theory, but with empirical coefficients found from analyzing various model

experiments, e.g. Clarke et al. (1983). The next more sophisticated approach would be to apply

slender-body methods directly, deriving the added mass terms for each strip from analytical

(Lewis form) or BEM computations. The application of three-dimensional RANSE methods

yields the best results, but only a few industry applications had appeared by 2010. The main

individual approaches are ranked in increasing complexity:

• Lifting surface methods

An alternative to slender-body theory, applicable to rudder and hull (separately or in

combination), is the lifting surface model. It models the inviscid flow about a plate (center

plane), satisfying the Kutta condition (smooth flow at the trailing edge) and usually the

free-surface condition for zero Fn (double-body flow). The flow is determined as a super-

position of horseshoe vortices which are symmetrical with respect to the water surface

(mirror plane). The strength of each horseshoe vortex is determined by a collocation

method from BioteSavart’s law. For stationary flow conditions, in the ship’s wake there

are no vertical vortex lines, whereas in instationary flow vertical vortex lines are required

also in the wake. The vortex strength in the wake follows from three conditions:

1. Vortex lines in the wake flow backwards with the surrounding fluid velocity, approx-

imately with the ship speed u.

2. If the sum of vertical (‘bound’) vortex strength increases over time within the body

(due to larger angles of attack), a corresponding negative vorticity leaves the trailing

edge, entering into the wake.

3. The vertical vortex density is continuous at the trailing edge.
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Except for a ship in waves, it seems accurate enough to use the stationary vortex model for

maneuvering investigations.

Vortex strengths within the body are determined from the condition that the flow is parallel

to the midship (or rudder) plane at a number of collocation points. The vortices are located

at one-quarter of the chord length from the bow, the collocation points at three-quarters of

the chord length from the bow. This gives a system of linear equations to determine the

vortex strengths. Transverse forces on the body may then be determined from the law of

KuttaeJoukowski, i.e. the body force is the force exerted on all ‘bound’ (vertical) vortices

by the surrounding flow.

Alternatively, one can smooth the bound vorticity over the plate length, determine the

pressure difference between port and starboard of the plate, and integrate this pressure

difference. For shallow water, reflections of the vortices are necessary both at the water

surface and at the bottom. This produces an infinite number of reflections, a subset of which

is used in numerical approximations. If the horizontal vortex lines are arranged in the ship’s

center plane, only transverse forces depending linearly on v and r are generated. The

equivalent to the non-linear cross-flow forces in slender-body theory is found in the vortex

models if the horizontal vortex lines are oblique to the center plane. Theoretically the

position of the vortex lines could be determined iteratively to ensure that they move with the

surrounding fluid flow which is influenced by all other vortices. But practically this

procedure is usually not applied because of the high computing effort and convergence

problems. According to classical foil theory, the direction of the horizontal vortices should

be halfway between the ship longitudinal direction and the motion direction in deep water.

More modern procedures arrange the vortices in the longitudinal direction within the ship

length, but in an oblique plane (for steady motion at a constant yaw angle) or on a circular

cylinder (for steady turning motion) in the wake. The exact direction of the vortices is

determined depending on water depth. Also important is the arrangement of vortex lines and

collocation points on the material plate. Collocation points should be about halfway between

vortex lines in both longitudinal and vertical directions. High accuracy with few vortex lines

is attained if the distance between vertical vortices is smaller at both ends of the body, and if

the distance between horizontal vortices is small at the keel and large at the waterline.

• Lifting body methods

A body with finite thickness generates larger lift forces than a plate. This can be taken into

account in different ways:

1. by arranging horseshoe vortices (or dipoles) on the hull on both sides;

2. by arranging a source and a vortex distribution on the center plane;

3. by arranging source distributions on the hull and a vortex distribution on the center plane.

In the third case, the longitudinal distribution of bound vorticity can be prescribed arbitrarily,

whereas the vertical distribution has to be determined from the Kutta condition along the
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trailing edge. The Kutta condition can be approximated in different ways. One suitable

formulation is: the pressure (determined from the Bernoulli equation) should be equal at port

and starboard along the trailing edge. If the ship has no sharp edge at the stern (e.g. below the

propeller’s axis for a stern bulb), it is not clear where the flow separation (and thus the Kutta

condition) should be assumed. This may cause large errors for transverse forces for the hull

alone, but when the rudder is modeled together with the hull, the uncertainty is much smaller.

Forces can be determined by integrating the pressure over the hull surface. For a very thin

body, the lifting surface and lifting body models should result in similar forces. In practice,

however, large differences are found. The lifting-body model with source distributions on

both sides of the body has difficulties if the body has a sharp bow. Assuming a small radius

at the bow waterline produces much better results. For a ship hull it seems difficult to

obtain more accurate results from lifting-body theory than using slender-body theory. For

the rudder and for the interaction between rudder and hull, however, lifting-surface or

lifting-body theory is the method of choice for angles of attack where no stall is expected to

occur. Beyond the stall angle, only RANSE methods (or even more sophisticated viscous

flow computations) may be used.

By the early 1990s research applications for lifting-body computations including free-

surface effects appeared for steady drift motions. The approach of Zou (1990) is typical.

First the wave resistance problem is solved including dynamic trim and sinkage. Assuming

small asymmetry, the difference between symmetrical and asymmetrical flow is linearized.

The asymmetrical flow is then determined by a lifting-body method with an additional

source distribution above the free surface.
• Field methods

In spite of the importance of viscosity for maneuvering, viscous hull force calculations

appeared in the 1990s only as research applications and were mostly limited to steady flow

computations around a ship with a constant yaw angle. By 2010, simulations for freely

maneuvering ships, even in waves, were presented in research applications. However,

industry applications still relied largely on inviscid approaches with semi-empirical

corrections, due to the large required resources for RANSE maneuvering simulations.

Difficulties in RANSE computations for maneuvering are:

• The number of computational cells is much higher than for resistance computations,

because both port and starboard sides must be discretized and because vortices are

shed over nearly the full ship length.

• The large-scale flow separation requires advanced turbulence models, adding to the

computational effort.

State-of-the-art computations for ship hulls at model scale Reynolds numbers were capable

of predicting transverse forces and moments well, even for large yaw angles, but predicted

the longitudinal force (resistance) with large relative errors. Computations have included

dynamic trim and sinkage, which play an important role in shallow-water maneuvering.
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RANSE computations including free-surface effects will grow in importance and have

started to drift into practical applications. They are expected to substantially improve the

accuracy of maneuvering force predictions over the next decade.

6.3. Experimental Approaches

6.3.1. Maneuvering Tests for Full-Scale Ships in Sea Trials

The main maneuvering characteristics as listed in the introduction to maneuvering are

quantified in sea trials with the full-scale ship. Usually the design speed is chosen as initial

speed in the maneuver. Trial conditions should feature deep water (water depth > 2.5 ship

draft), little wind (less than Beaufort 4) and ‘calm’ water to ensure comparability to other ships.

Trim influences the initial turning ability and yaw stability more than draft. For comparison

with other ships, the results are made non-dimensional with ship length and ship length travel

time (L/V).

The main maneuvers used in sea trials follow recommendations of the Manoeuvring Trial Code

of ITTC (1975) and the IMO circular MSC 389 (1985). IMO also specifies the display of some

of the results in bridge posters and a maneuvering booklet on board ships in the IMO resolution

A.601(15) (1987) (Provision and display of maneuvering information on board ships).

The main maneuvers in sea trials are:

1. Turning circle test

Starting from straight motion at constant speed, the rudder is turned at maximum speed to

an angle y (usually maximum rudder angle) and kept at this angle, until the ship has

performed a turning circle of at least 540�. The trial is performed for both port and star-

board sides. The essential information obtained from this maneuver (usually by GPS)

consists of (Fig. 6.4):

• tactical diameter;

• maximum advance;

• transfer at 90� change of heading;
• times to change heading 90� and 180�;
• transfer loss of steady speed.

Typical values are tactical diameter of 4.5e7L for slender, 2.4e4 L for short and full ships.

Decisive is the slenderness ratio L=
ffiffiffiffi
V3

p
, where V is the volume displacement.

Fast displacement ships with Fn > 0.25 may feature dangerously large heel angles in

turning circles. The heel is always outwards, i.e. away from the center of the turning circle.

(Submarines and boats with dynamic lift like hydrofoils are exceptional in that they may

heel inwards.) The heel is induced by the centrifugal force m $ u $ r acting outwards on the

ship’s center of gravity, the hull force Yvv þ Yrr acting inwards, and the much smaller
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rudder force Ydd acting outwards. For maneuvering predictions it is important to consider

that the ship is faster at the beginning of the turning circle and slower at sustained turning.

The heeling angle exceeds dynamically the static heel angle due to forces listed above.

The turning circle test is used to evaluate the turning ability of the ship.

2. Spiral maneuvers

We distinguish between:

• ‘Direct’ spiral maneuver (Dieudonne) e With the ship on an initial straight course, the

rudder is put hard to one side until the ship has reached a constant rate of change of

heading. The rudder angle is then decreased in steps (typically 5�, but preferably less near
zero rudder angle) and again held until a steady condition is reached. This process is

repeated until the rudder has covered thewhole range to themaximumrudder angle on the

other side. The rate of turn is noted for each rudder angle. The test should be performed at

least for yaw unstable ships going both from port to starboard and from starboard to port.

• ‘Indirect’ (reverse) spiral maneuver (Bech) e The ship is steered at a constant rate of

turn and the mean rudder angle required to produce this yaw rate is measured. This

way, points on the curve rate of turn vs. rudder angle may be taken in any order.

The spiral test results in a curve as shown in Fig. 6.5. The spiral test is used to evaluate the

turning ability and the yaw stability of the ship. For yaw unstable ships, there may be three
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possible rates of turn for one given rudder angle as shown in Fig. 6.5. The one in the middle

(dotted line) represents an instable state which can only be found by the indirect method. In

the direct method, the rate of turn ‘switches’ at the vertical sections of the curve suddenly

to the other part of the curve if the rudder angle is changed. This is indicated by the dotted

arrows in Fig. 6.5.

The spiral test, especially with the direct method, is time-consuming and sensitive to

external influences. The results show that a linearization of the body force equations is

acceptable only for small jrj (Fig. 6.5). For yaw stable ships, the bandwidth of acceptable

rudder angles to give small jrj is small, e.g. �5�. For yaw unstable ships, large jrj may

result for any d.

3. Pull-out maneuver

After a turning circle with steady rate of turn the rudder is returned to midship. If the ship is

yaw stable, the rate of turn will decay to zero for turns both port and starboard. If the ship is

yaw unstable, the rate of turn will reduce to some residual rate of turn (Fig. 6.6).

The pull-out maneuver is a simple test to give a quick indication of a ship’s yaw stability, but

requires very calmweather. If the yaw rate in a pull-out maneuver tends towards a finite value
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in single-screw ships, this is often interpreted as yaw instability, but it may be at least partially

due to the influence of asymmetry induced by the propeller in single-screw ships or wind.

4. Zigzag maneuver

The rudder is reversed alternately by a rudder angle d to either side at a deviation je from the

initial course. After a steady approach the rudder is put over to starboard (first execute).When

the heading isje off the initial course, the rudder is reversed to the same rudder angle to port at

maximum rudder speed (second execute). After counter rudder has been applied, the ship

continues turning in the original direction (overshoot) with decreasing turning speed until the

yaw motion changes direction. In response to the rudder the ship turns to port. When the

heading is je off the initial course to port, the rudder is reversed again at maximum rudder

speed to starboard (third execute). This process continues until a total of, say, five rudder

executes have been completed. Typical values for je are 10
� and 20�. The test was especially

developed for towing tank tests, but it is also popular for sea trials. The test yields initial

turning time, yaw checking time, and overshoot angle (Fig. 6.7).

For the determination of body force coefficients a modification of the zigzag maneuver is

better suited: the incremental zigzag test. Here, after each period other angles d and je are

chosen to cover the whole range of rudder angles. If the incremental zigzag test is properly

executed it may substitute for all other tests as the measured coefficients should be

sufficient for an appropriate computer simulationof all other requiredmaneuveringquantities.

Figure 6.8 shows results of many model zigzag tests as given by Brix (1993). These yield

the following typical values:

• initial turning time ta: 1e1.5 ship length travel time;

• time to check starboard yaw ts: 0.5e2 ship travel length time (more for fast ships);

• starboard overshoot angle as: 5e15�;
• turning speed to port r (yaw rate): 0.2e0.4 per ship travel length time.
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5. Stopping trial

The most common maneuver in stopping trials is the crash-stop from full-ahead speed. For

ships equipped with fixed-pitch propellers, the engine is stopped and then as soon as

possible reversed at full astern. Controllable-pitch propellers (CPP) allow a direct

reversion of the propeller pitch. Sometimes the rudder is kept a midships, sometimes one

tries to keep the ship on a straight course, which is difficult as the rudder effectiveness

usually decreases drastically during the stopping maneuver and because the reversing

propeller induces substantial transverse forces on the aftbody. The reaction to stopping

maneuvers is strongly non-linear. Thus environmental influences (e.g. wind) and slight

changes in the initial conditions (e.g. slight deviation of the heading to either port or

starboard) may change the resulting stopping track considerably.

The maneuver ends when u ¼ 0. Results of the stopping maneuver are (Fig. 6.9):

• head reach (distance traveled in the direction of the ship’s initial course);

• lateral deviation (distance to port or starboard measured normal to the ship’s initial

course);

• stopping time.
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Crash-stops from full speed are nautically not sensible as turning usually offers better

avoidance strategies involving shorter distances. Therefore stopping maneuvers are also

recommended at low speed, because then the maneuver is of practical interest for

navigation purposes.

Single-screw ships with propellers turning right (seen from abaft clockwise) will turn to

starboard in a stopping maneuver. For controllable-pitch propellers, the propeller pitch is

reversed for stopping. Since according to international nautical conventions, collision

avoidance maneuvers should be executed with starboard evasion, single-screw ships

should be equipped with right-turning fixed-pitch propellers or left-turning CPPs.

Simulations of stopping maneuvers typically use the four-quadrant diagrams for propellers

to determine the propeller thrust also in astern operation (see Section 2.2, Chapter 2).

6. Hard rudder test

With the ship on an initially straight course, the rudder is put hard to 35� port. As soon as

this rudder angle is reached (i.e. without waiting for a specific heading or rate of turning),

the rudder is reversed to hard starboard. The time for changing the rudder angle from 35� on
one side to 30� on the other side must not exceed 28 seconds according to IMO regulations

(SOLAS 1960). This regulation is rightfully criticized as the time limit is independent of

ship size. The IMO regulation is intended to avoid under-dimensioning of the rudder gear.

7. Man-overboard maneuver (Williamson turn)

This maneuver brings the ship in minimum time on opposite heading and same track as at

the beginning of the maneuver, e.g. to search for a man overboard. The rudder is laid

initially hard starboard, at, say, 60� (relative to the initial heading) hard port, and at, say,

e130� to midship position again (Fig. 6.10). The appropriate angles (60�, e130�) vary
with each ship and loading condition and have to be determined individually such that at

the end of the maneuver the deviation in heading is approximately 180� and in track

approximately zero. This is determined in trial-and-error tests during ship trials. However,

an approximate starting point is determined in computational simulations beforehand.

6.3.2. Model Tests

Model tests to evaluate maneuverability are usually performed with models ranging between

2.5 m and 9 m in length. The models are usually equipped with propeller(s) and rudder(s),

electrical motor, and rudder gear. Small models are subject to considerable scaling errors and

usually do not yield satisfactory agreement with the full-scale ship, because the too small

model Reynolds number leads to different flow separation at model hull and rudder and thus

different non-dimensional forces and moments, especially the stall angle (angle of maximum

lift force shortly before the flow separates completely on the suction side), which will be much

smaller in models (15� to 25�) than in the full-scale ship (>35�). Another scaling error also

contaminates tests with larger models: the flow velocity at the rudder outside the propeller
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slipstream is too small (due to a too large wake fraction in model scale) and the flow velocity

inside the propeller slipstream is too large (because the too large model resistance requires

a larger propeller thrust). The effects cancel each other partially for single-screw ships, but

usually the propeller effect is stronger. This is also the case for twin-screw twin-rudder ships,

but for twin-screw midship-rudder ships the wake effect dominates for free-running models.

For a captured model, propeller thrust minus thrust deduction does not have to equal resistance.

Then the propeller loading may be chosen lower such that scale effects are minimized.

However, the necessary propeller loading can only be estimated.

Model tests are usually performed at Froude similarity. For small Froude numbers, hardly any

waves are created and the non-dimensional maneuvering parameters become virtually

independent of the Froude number. For Fn < 0.3, for example, the body forces Y and N may

vary with speed only by less than 10% for deep water. For higher speeds the wave resistance

changes noticeably and the propeller loading increases, as does the rudder effectiveness if the

rudder is placed in the propeller slipstream. Also, in shallow water, trim and sinkage change

with Fn, influencing Y and N. If the rudder pierces the free surface or is close enough for

ventilation to occur, the Froude number is always important.

Model tests with free-running models are usually performed indoors to avoid wind effects. The

track of the models is recorded either by cameras (two or more) or from a carriage following

the model in longitudinal and transverse directions. Turning circle tests can only be performed

in broad basins and even then usually only with rather small models. Often, turning circle tests

are also performed in towing tanks with an adjacent round basin at one end. The maneuver is

δ = 0°

–35°

+35°

Figure 6.10:
Man-overboard maneuver (Williamson turn)
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then initiated in the towing tank and ends in the round basin. Spiral tests and pull-out

maneuvers require more space than is usually available in towing tanks. However, towing tanks

are well suited for zigzag maneuvers. If the ship’s track is precisely measured in these tests, all

necessary body force coefficients can be determined and the other maneuvers can be

numerically simulated with sufficient accuracy.

Model tests with captured models determine the body force coefficients by measuring the

forces and moments for prescribed motions. The captured models are also equipped with

rudders, propellers, and electric motors for propulsion.

• Oblique towing tests can be performed in a regular towing tank. For various yaw and

rudder angles, resistance, transverse force, and yaw moment are measured, sometimes

also the heel moment.

• Rotating arm tests were performed in a circular basin. The carriage was supported by an

island in the center of the basin and at the basin edge. The carriage rotates around the

center of the circular basin. The procedure is otherwise similar to oblique towing tests.

Due to the disturbance of the water by the moving ship, only the first revolution could

be used to measure the desired coefficients. Large non-dimensional radii of the turning

circle are only achieved for small models (inaccurate) or large basins (expensive). Today,

this technology is obsolete and replaced by planar motion mechanisms which can also

generate accelerations, not just velocities.

• Planar motion mechanisms (PMMs) are installed on a towing carriage. They superimpose

sinusoidal transverse or yawing motions (sometimes also sinusoidal longitudinal motions)

to the constant longitudinal speed of the towing carriage. The periodic motion may be

produced mechanically from a circular motion via a crankshaft or by computer-controlled

electric motors (computerized planar motion carriage (CPMC)). The CPMC is far more

expensive and complicated, but allows the extension of model motions over the full width

of the towing tank, arbitrary motions and a precise measuring of the track of a free-running

model.

6.4. Rudders

6.4.1. General Remarks and Definitions

Rudders are hydrofoils pivoting on a vertical or nearly vertical axis. They are normally placed

at the ship’s stern behind the propeller(s) to produce a transverse force and a steering moment

about the ship’s center of gravity by deflecting the water flow to a direction of the foil plane.

Table 6.4 gives offsets of several profiles used for rudders depicted in Fig. 6.11. Other profile

shapes and hydrodynamic properties are available from Abbott and Doenhoff (1959) and

Whicker and Fehlner (1958).
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Rudders are placed at the ship’s stern for the following reasons:

• The rudder moment turning the ship is created by the transverse force on the rudder and an

oppositely acting transverse force on the ship hull acting near the bow. This moment

increases with distance between the rudder force and the hull force.

• Rudders outside of the propeller slipstream are ineffective at small or zero ship speed (e.g.

during berthing). In usual operation at forward speed, rudders outside of the propeller

slipstream are far less effective. Insufficient rudder effectiveness at slow ship speed can be

temporarily increased by increasing the propeller rpm, e.g. when passing other ships.

During stopping, rudders in the propeller slipstream are ineffective.

• Bow rudders not exceeding the draft of the hull are ineffective in ahead motion, because

the oblique water flow generated by the turned rudder is redirected longitudinally by the

Table 6.4: Offsets of rudder profiles

c (m) ¼ chord length of foil
x/c (e) ¼ dimensionless abscissa

y/c (e) ¼ dimensionless half ordinate

Note: last digits of profile designation correspond to the thickness form, e.g. 25 for t/c ¼ 0.25.
For differing thickness t0 the half ordinates y0 to be obtained by multiplication

y0

c ¼ t0
t $

y
c

IFS62-
TR 25

IFS61-
TR 25

IFS58-
TR 15

HSVA-
MP71-20

HSVA-
MP73-20

NACA
00-20

NACA
643-018

x/c y/c y/c y/c y/c y/c y/c y/c
0.0000 0.0000 0.0000 0.0000 0.0000 0.04420* 0.04420* 0.02208*

0.0125 0.0553 0.0553 0.0306 0.0230 0.03156 0.03156 0.02177
0.0250 0.0732 0.0732 0.0409 0.0306 0.04356 0.04356 0.03005
0.0500 0.0946 0.0946 0.0530 0.0419 0.05924 0.05924 0.04186
0.1000 0.1142 0.1142 0.0655 0.0583 0.07804 0.07804 0.05803
0.1500 0.1226 0.1226 0.0715 0.0706 0.08910 0.08910 0.06942
0.2000 0.1250 0.1250 0.0743 0.0801 0.09562 0.09562 0.07782
0.2500 0.1234 0.1226 0.0750 0.0881 0.09902 0.09902 0.08391
0.3000 0.1175 0.1176 0.0740 0.0939 0.10000 0.10000 0.08789
0.4000 0.0993 0.1002 0.0669 0.0996 0.09600 0.09672 0.08952
0.4500 e e e 0.1000 e e 0.08630
0.5000 0.0742 0.0766 0.0536 0.0965 0.08300 0.08824 0.08114
0.6000 0.0480 0.0533 0.0377 0.0766 0.06340 0.07606 0.06658
0.7000 0.0263 0.0357 0.0239 0.0546 0.04500 0.06106 0.04842
0.8000 0.0123 0.0271 0.0168 0.0335 0.02740 0.04372 0.02888
0.9000 0.0080 0.0250 0.0150 0.0140 0.01200 0.02414 0.01101
1.0000 0.0075 0.0250 0.0150 0.0054 0.00540 0.00210 0.00000

*radius.

x

y

t

c

ymax
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hull. Thus, transverse forces on a bow rudder and on the forward moving hull cancel each

other. The same generally applies to stern rudders in backward ship motion. The yaw

instability of the backward-moving ship in one example could not be compensated by

rudder actions if the drift angle exceeded b ¼ 1.5�. To improve the maneuverability of

ships which frequently have to move astern (e.g. car ferries), bow rudders may be

advantageous. In reverse flow, maximum lift coefficients of rudders range between 70%

and 100% of those in forward flow. This force is generally not effective for steering the

ship astern with a stern rudder, but depending on the maximum astern speed it may cause

substantial loads on the rudder stock and steering gear due to the unsuitable balance of

normal rudders for this condition.

The rudder effectiveness in maneuvering is mainly determined by the maximum transverse

force acting on the rudder (within the range of rudder angles achievable by the rudder gear).

Rudder effectiveness can be improved by:

• rudder arrangement in the propeller slipstream (especially for twin-screw ships);

• increasing the rudder area;

• better rudder type (e.g. spade rudder instead of semi-balanced rudder);

• rudder engine which allows larger rudder angles than the customary 35�;
• shorter rudder steering time (more powerful hydraulic pumps in rudder engine).

Figure 6.12 defines the parameters of main influence on rudder forces and moments generated

by the dynamic pressure distribution on the rudder surface. The force components in the flow

direction a and perpendicular to it are termed drag D and lift L, respectively. The moment

about a vertical axis through the leading edge (nose) of the rudder (positive clockwise) is

termed QN. If the leading edge is not vertical, the position at the mean height of the rudder is

used as a reference point.

NACA
643018

NACA
0020

HSVA
MP 73-20

HSVA
MP 71-20

IFS
58-TR15

IFS
61-TR25

IFS
62-TR25

Figure 6.11:
Some rudder profiles, offsets given in Table 6.4
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The moment about the rudder stock at a distance d behind the leading edge (nose) is:

QR ¼ QN þ L $ d $ cos aþ D $ d $ sin a (6.52)

The stagnation pressure q¼ ½ rV2 and the mean chord length cm ¼ AR/b are used to define the

following non-dimensional force and moment coefficients:

lift coefficient CL ¼ L=ðq $ARÞ (6.53)

drag coefficient CD ¼ D=ðq $ARÞ (6.54)

nose moment coefficient CQN ¼ QN=ðq $AR $ cmÞ (6.55)

stock moment coefficient CQR ¼ QR=ðq $AR $ cmÞ (6.56)

The stock moment coefficient is coupled to the other coefficients by:

CQR ¼ CQN þ d

cm
ðCL $ cos aþ CD $ sin aÞ (6.57)

For low fuel consumption of the ship (for constant rudder effectiveness), wewant tominimize the

ratioCL/CD for typical small angle of attacks as encountered in usual course-keepingmode.Due to

Z

b/2

b

V
t

V

+L+D

+QR

c

d

AR

Z Z

:Z – Z

Figure 6.12:
Definition sketch of rudder geometry and rudder forces; AR ¼ rudder area; b ¼ rudder height;

c ¼ chord length; d ¼ rudder stock position; D ¼ drag; L ¼ lift; QR ¼ rudder stock torque; t ¼ rudder
thickness; v ¼ flow velocity; z ¼ vertical rudder coordinate at b/2; a ¼ angle of attack; d ¼ rudder

angle; L ¼ b2/AR ¼ aspect ratio
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the propeller slipstream, angles of attack of typically 10� to 15� (with opposing sign below and

above the propeller shaft) occur for zero-deflected rudders.Reducing the rudder resistance by10%

in this range of angles of attack improves the propulsive efficiency by more than 1%. Various

devices to improve ship propulsion by partial recovery of the propeller’s rotative energy have been

proposed in the course of time, e.g. Schneekluth and Bertram (1998). However, the major part of

this energy is recovered anyhow by the rudder in the propeller slipstream.

Size, and thus cost, of the rudder engine are determined by the necessary maximum torque at

the rudder stock. The stock moment is zero if the center of effort for the transverse rudder force

lies on the rudder stock axis. As the center of effort depends on the angle of attack, this is

impossible to achieve for all angles of attack. Rudder shapes with strongly changing centers of

effort therefore require larger rudder engines. The position of the center of effort behind the

leading edge (nose) is:

cs ¼ c $CQN

CLcos aþ CDsin a
(6.58)

The denominator in this formula is the non-dimensional force coefficient for the normal force

on the rudder.

6.4.2. Fundamental Hydrodynamic Aspects of Rudders and Simple Estimates

CL, CD, and CQN can be determined in wind tunnel tests or computations. Extensive wind

tunnel measurements have been published by Thieme (1992) and Whicker and Fehlner (1958).

Figure 6.13 shows an example. Practically these data allow rough estimates only of rudder

forces and moments of ships, because in reality the flow to the rudder is irregular and highly

turbulent and has a higher Reynolds number than the experiments, and because interactions

with the ship’s hull influence the rudder forces. For angles of attack smaller than stall angle as
(i.e. the angle of maximum CL) the force coefficients may be approximated with good accuracy

by the following formulae:

CL ¼ CL1 þ CL2 ¼ 2p
L $ ðLþ 0:7Þ
ðLþ 1:7Þ2 $ sin aþ CQ $ sin a $ jsin aj $ cos a (6.59)

CD ¼ CD1 þ CD2 þ CD0 ¼ C2
L

p $L
þ CQ $ jsin aj3þCD0 (6.60)

CQN ¼ �ðCL1 $ cos aþ CD1 $ sin aÞ $
�
0:47� Lþ 2

4ðLþ 1Þ
�
� 0:75 $ ðCL2 $ cos a

þ CD2 $ sin aÞ (6.61)

Figure 6.14 illustrates the CL formula. The first term in the CL formula follows from potential

thin-foil theory for the limiting aspect ratios 0 and L ¼ 1. For other aspect ratios it is an
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Figure 6.13:
Force and moment coefficients of a hydrofoil L ¼ 1; rudder stock position d/cm ¼ 0.25; NACA-

0015; Rn ¼ 0.79 $ 106; QN ¼ nose moment; QR ¼ rudder stock torque
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Figure 6.14:
Lift coefficient CL versus angle of attack a with the aspect ratio L as parameter
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approximation to theoretical and experimental results. The first term in the CD formula is the

induced resistance due to the generation of trailing vortices behind the foil. The equation

includes a 10% increase in the minimum induced drag which occurs for an elliptical load

distribution over the rudder height. The first term in the CQN formula would be a good

approximation of the theoretical moment in ideal fluid if 0.5 were used instead of the

empirical value 0.47. The second terms in the formulae for CL and CD follow from the

assumption of an additional resistance-like force depending quadratically on the velocity

component V $ sin a which is perpendicular to the rudder plane. A resistance coefficient CQ

z 1 may be used for rudders with a sharp upper and lower edge. Rounding the edges (which

is difficult in practice) would lead to much smaller CQ values. The second term in the CQN

formula follows from the assumption that this force component acts at 75% chord length

from the leading edge. CD0 in the formula for CD approximates the surface friction. We may

approximate:

CD0 ¼ 2:5 $
0:075

ðlogRn � 2Þ2 (6.62)

This is 2.5 times the frictional resistance coefficient following the ITTC 1957 formula. CD0

refers to the rudder area which is about half the wetted area of the rudder. In addition a form

factor has to be taken into account to yield the factor 2.5.

For hydrofoils the Reynolds number is defined as:

Rn ¼ V $ c

n
(6.63)

where V is the inflow velocity (for rudders usually VA), c the mean chord length and n z
1.35 $ 106 m2/s the kinematic viscosity of water at 10�C.

Table 6.5 shows the good agreement of the approximate formulae with model test

measurements of Whicker and Fehlner (1958) (upper table) and Thieme (1962) (lower table).

Thieme’s results suffer somewhat from small Reynolds numbers. Rudder Reynolds numbers

behind a large ship are in the vicinity of Rn ¼ 5 $ 107. Too small Reynolds numbers result in

larger drag coefficients, a backward shift of the center of effort of the rudder force and smaller

stall angles as (by up to a factor of 2) than in reality. The Reynolds number of the last column

in the lower table corresponds approximately to the conditions in model maneuvering

experiments. However, the strong turbulence behind a ship model and its propeller act similarly

to a larger Reynolds number in these experiments.

The formulae for CL, CD, and CQN do not take into account the profile shape. The profile shape

affects mainly the stall angle as, the maximum lift and the cavitation properties of the rudder,

but hardly the lift at a given angle of attack below as. Table 6.5 shows that, compared to

the ‘standard’ NACA profiles, concave profiles with thickness maximum in front of the
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standard value of 30% of the chord length (measured from the leading edge) produce larger

maximum lift and less change of the center of effort of the rudder force. The latter fact allows

a smaller steering gear if the rudder is properly balanced. On the other hand, these profiles

have higher drag coefficients, thus requiring more propulsive power for the same ship

speed. (For a rudder behind a propeller, the slipstream rotation causes angles of attack of

typically 10� to 15�.) A 10% increase of the rudder resistance in this angle-of-attack range

accounts for approximately 1% increase in the necessary propulsion power. For ship speeds

exceeding 22 knots and the rudder in the propeller slipstream, profiles with the opposite

Table 6.5: Measured (M) and computed (C) force and moment coefficients of different profiles

(Thieme 1964,Whicker and Fehlner 1958);þ: independent from profile shape; *: uncertain values,

probably due to experimental technique

Profile þ) NACA 0015 þ) NACA 0015 þ) NACA 0015

L 1 1 2 2 3 3
(t/c)max þ) 15 þ) 15 þ) 15
at x/c 30 30 30
Rn/10

6 2.7 2.7 2.7 2.7 2.7 2.7
Source C M C M C M
CL at a ¼ 10� 0.27 0.27 0.44 0.44 0.55 0.55
CL at a ¼ 20� 0.59 0.60 0.92 0.93 1.14 1.10
CL at a ¼ as 1.17 1.26 1.33 1.33 1.32 1.25
as (

�) 38.5 38.5 28.7 28.7 23.0 23.0
CL/CD at a ¼ 10� 8.11 7.26 10.45 10.35 12.28 12.40
CL/CD at a ¼ 20� 4.62 4.25 5.70 5.79 6.63 7.05
CL/CD at a ¼ as 2.28 2.20 3.88 4.00 5.76 6.00
cs/c at a ¼ 10� 0.17 0.16 0.18 0.19 0.19 0.18
cs/c at a ¼ as 0.30 0.31 0.24 0.25 0.23 0.23

Profile NACA
0015

NACA
0025

IFS62 TR
25

IFS61 TR
25

IFS58 TR
15

Plate t/c [
0.03

NACA
0015

L 1 1 1 1 1 1 1
(t/c)max 15 25 25 25 15 3 15
at x/c 30 30 20 20 25 � 30
Rn/10

6 0.79 0.78 0.78 0.79 0.79 0.71 0.20
Source M M M M M M M
CL at a ¼ 10� 0.29 0.27 0.33 0.32 0.32 0.34 0.35
CL at a ¼ 20� 0.62 0.59 0.71 0.69 0.67 0.72 0.55
CL at a ¼ as 1.06 1.34 1.48 1.34 1.18 1.14 0.72
as (

�) 33.8 46.0* 46.0* 41.0* 33.5 40* 35.0*

CL/CD at a ¼ 10� 7.20 5.40 4.70 4.00 6.40 3.80 2.80
CL/CD at a ¼ 20� 4.40 4.20 3.60 3.60 3.90 2.50 1.75
CL/CD at a ¼ as 2.30 1.70 1.50 1.80 2.40 1.30 1.19
cs/c at a ¼ 10� 0.18 0.20 0.27 0.26 0.25 0.28 0.28
cs/c at a ¼ as 0.35 0.35 0.36 0.25 0.33 0.41 0.43
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tendency (backward-shifted maximum thickness) are preferred because they are less prone to

cavitation.

Greater profile thickness produces greater maximum lift at the (correspondingly greater) stall

angle as, but it increases the rudder drag, and in most cases the danger of cavitation in high-

speed ships. Thus, the smallest thickness possible to accommodate the rudder post and bearing

is normally used. For rudders of small aspect ratio, the greater maximum lift of thick rudders is

realized only in yaw checking, but not at all if the steering gear allows the normal d ¼ 35�

rudder angle only (Fig. 6.14). A trailing edge of substantial thickness decreases the change of

the center of effort cs with angle of attack a, but it causes substantially increased drag; thus,

because of too large drag, the application of these profiles should be avoided, at least in long-

range vessels.

The approximate formulae for the force coefficients are only valid for angles of attack a < as.

Beyond the stall angle as the flow separates near the profile leading edge (nose) on the suction

side of the profile without reattachment. Then the lift decreases strongly and the drag increases

(Fig. 6.13). The sudden drop in lift beyond the stall angle as is not found for certain other

profiles and in rudders behind a propeller.

The stall angle as depends primarily on:

• the aspect ratio L;

• the profile shape and thickness;

• the Reynolds number;

• probably the surface roughness;

• the turbulence of the inflow;

• the spatial distribution of the inflow velocity.

Because of the last four parameters, an exact prediction of maximum rudder lift from wind

tunnel or towing tank experiments is impossible. Whereas a greater aspect ratio L (height-to-

chord ratio b/cm) increases the lift for a given angle of attack a < as, the maximum lift

coefficient is practically independent of the aspect ratio (Fig. 6.14). Thus increasing the rudder

area by increasing the chord length is of equal effect as by increasing the rudder height with

respect to the maximum rudder force if the stall angle is reached by the steering gear;

otherwise, an increase in rudder height is much more effective than a corresponding increase in

chord length. (A rudder angle d ¼ 35� relative to the ship’s longitudinal axis corresponds to

angles of attack as, of nearly the same size in initial turning, of smaller size during steady

turning and of larger size in the yaw checking phase.)

Because of the different stall angles as and lift curve slopes of rudders of different aspect ratios it

would be advantageous to use an effective rudder angle deff instead of the geometrical rudder

angle d for rules, e.g. about the maximum rudder angle and the rudder rate of the steering gear, as

well as for nautical use. This would be ‘fairer’ for rudders of different aspect ratio; it would also
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make better use of rudders of smaller aspect ratio (today their greater stall angle as is frequently

not realized because of a too small maximum rudder angle d) and would lead to more equal

response of different ships on (effective) rudder angles. If geometric and effective rudder angles

are defined to coincide for a normal aspect ratio of L ¼ 2, their relationship is (Fig. 6.15):

deff ¼ 2:2 $L

Lþ 2:4
$ d (6.64)

For aspect ratios L < 3, which are typical for ship rudders, the vertical distribution of the lift

force in homogeneous, unbounded flow is practically elliptic:

lift per length ¼ L

b
$
4

p
$

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

�
z

b=2

�2
s

(6.65)

Here z is the vertical distance from the mean height between the lower and upper edges of the

rudder. The distribution is hardly influenced by the rudder shape for the usual trapezoidal shape

with a taper ratio 0.5 < cmin /cmax < 1.0. Thus, for a free-running rudder of trapezoidal shape

the lift center is nearly at half the rudder height, not at the center of gravity of the shape. This

effect is even more pronounced for lower aspect ratios. If there is only a small gap between the

upper edge of the rudder and fixed parts of the hull (at the rudder angles concerned), the center

of effort moves up a little, but never more than 7.5% of b, the value for a rudder without a gap at

its upper edge.

Air ventilation may occur on the suction side of the rudder if the rudder pierces or comes close

to the water surface. The extent of the ventilation may cover a large part of the rudder (even the

1.5
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Figure 6.15:
Ratio between effective and geometrical angles of attack
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whole rudder height), decreasing the rudder effectiveness drastically. This is important for

maneuvers at ballast draft for full speed, e.g. at ship trials.

The dynamic pressure along the profile of a rudder depends on the local velocity v according to

Bernoulli’s law:

pdyn ¼ r

2
$
�
V2 � v2


 ¼ q $

�
1� v2

V2

�
(6.66)

For the usual straight profiles v/V is decomposed into two components:

1. Component vt/V due to the profile thickness t. This component is equal on both sides of the

profile. vt/Vmay be taken from Table 6.6. For different profile thickness t, the velocity ratio

vt/V must be corrected by��vt
V

�
actual

�1

�
¼
��vt

V

�
table

�1

�
$
tactual
ttable

(6.67)

Information on other profiles may be found in Abbott and Doenhoff (1959) or computed by

CFD (e.g. boundary element method).

2. Component va/V due to the angle of attack as. This component has opposite sign on both

sides of the profile. It is practically independent of the profile shape. Only in the front part

Table 6.6: vt ¼V ; flow speed vt along the profile over inflow velocity V as a function of the profile

abscissa x, a [ 0�

NACA NACA HSVA HSVA IFS58 IFS61 IFS62
x/c (%) 643-018 0020 MP73-20 MP71-20 TR15 TR25 TR25

0 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.75 0.77 0.69 0.69 0.57 0.79 0.67 0.68
1.25 0.96 0.91 0.91 0.88 1.06 0.95 0.94
2.5 1.05 1.03 1.08 1.00 1.20 1.09 1.18
6.0 1.11 1.17 1.22 1.10 1.29 1.47 1.48
7.5 1.15 1.25 1.27 1.12 1.30 1.52 1.53
10 1.17 1.27 1.29 1.14 1.28 1.50 1.52
15 1.20 1.30 1.31 1.18 1.26 1.47 1.48
20 1.22 1.29 1.30 1.20 1.23 1.43 1.44
30 1.25 1.26 1.27 1.24 1.20 1.31 1.33
40 1.26 1.21 1.24 1.28 1.16 1.18 1.21
50 1.20 1.17 1.17 1.30 1.08 1.06 1.08
60 1.13 1.13 1.07 1.14 1.00 0.96 0.97
70 1.06 1.08 1.01 1.04 0.94 0.90 0.90
80 0.98 1.03 0.95 0.96 0.93 0.90 0.87
90 0.89 0.96 0.88 0.87 0.96 0.94 0.90
95 0.87 0.91 0.89 0.87 0.97 0.95 0.93
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does it depend on the profile nose radius. Figure 6.16 illustrates this for a lift coefficient

CLl z 1. The values given in Fig. 6.16 have to be multiplied by the actual local lift

coefficient:

3.

CLl ¼ lift per length

c $ q
¼ CL $

4

p
$

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

�
z

b=2

�2
s

(6.68)

where CL (L) is estimated by Eq. (6.59).

The dynamic pressure is then:

pdyn ¼
�
1�

�vt
V
� va

V
$CLl

�2�
$ q (6.69)

Due to the quadratic relationship in this equation, the pressure distribution will generate the

given CLl only approximately. For better accuracy, the resulting local lift coefficient should be

integrated from the pressure difference between both sides of the profile. If it differs

substantially from the given value, the pressure distribution is corrected by superimposing the

va/V distribution in Eq. (6.69) with a factor different from CLl such that the correct CLl is

attained by the integration of the pressure difference.
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Figure 6.16:
Relative change of velocity va/V on the surface due to the angle of attack as for CLl z 1
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The dynamic pressure is negative over most of the profile length, for moderate lift coefficients

even on the pressure side of the rudder. This is illustrated in Fig. 6.17 for an NACA0021

profile. The curve for CLl ¼ 0 corresponds to the component due to the profile thickness alone.

For other CLl values, the upper and lower curves refer to the pressure and suction sides,

respectively. For profiles with a curved mean line, an additional velocity component has to be

added. It may be taken from Abbott and Doenhoff (1959, pp. 77ff and App. II), or it may be

determined by a two-dimensional potential-flow calculation for which various methods and

codes are available. Brix (1993, p. 84) gives a sample calculation for the NACA643-018

profile for a ¼ 15�.

6.4.3. Rudder Types

Various rudder types have been developed over the years (Fig. 6.18):

• Rudder with heel bearing (simplex)

The most common rudder type formerly built was a rectangular profile rudder with heel

bearing. The heel has to have considerable width to withstand the horizontal forces. Flow

separation at the heel increases resistance and the non-homogeneity of the wake field at the

propeller plane, which in turn increases propeller-induced vibrations. Therefore modern

single-screw ships are usually equipped with other rudder types, but the rudder with heel

bearing is still popular for small craft and some fishery vessels, because it is cheap.
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Distribution of the non-dimensional dynamic pressure along an NACA0021 profile as a function of

the local lift coefficient CLl (Riegels 1958)
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• Spade rudder

This type of rudder is commonly applied, especially on ferries, ro-ro ships, and special craft.

The rudder stock is subject to high bending moments, especially for high ship speed and

large rudder height. For stock diameters larger than 1 m, this design becomes impractical.

• Semi-balanced rudders

For semi-balanced rudders, a fixed guide-head (sometimes called rudder horn) extends

over the upper part of the rudder. This type of rudder has the following properties:

• Decreased rudder bending moment compared to spade rudders.

• Reduced rudder effectiveness compared to spade rudders. For steady turning circles,

the semi-balanced rudder produces only approximately half the transverse force as

a spade rudder of the same area (including the area of the rudder horn). The reasons for

the reduced transverse force are:

• The horizontal gap between horn and rudder opens wide for large rudder angles.

Sometimes horizontal plates are attached at the horn along the gap as a remedy

for this problem (rudder scissors).

• Unfavorable angle of attack for the rudder horn (fixed guide-head).

• Drag/lift ratio of the rudder about twice as high as for spade rudders.

• Flap rudders

Flap rudders (e.g. Becker rudders) consist of a movable rudder with a trailing edge flap

activated by a mechanical or hydraulical system, thus producing a variable flap angle as

a function of the rudder angle. This system works like an airfoil with a flap. Flap rudders

give a much higher lift per rudder angle and a 60e70% higher maximum lift compared to

a conventional rudder of the same shape, size, and area.

Less frequently, the following rudder types are employed:

• Rudders with rotating cylinders

These rudders have a rotating cylinder at the leading edge. Whereas the freely arranged

rotating cylinderworks according to theMagnus effect, the combination of a rotating cylinder

and a conventional rudder shifts the stall to a much higher angle of attack by eliminating the

Simplex rudder Spade rudder Semi-balanced
rudder

Flap rudder

Figure 6.18:
Various rudder types
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boundary layer at the separation-prone leading edge. However, at full scale the stall angle of

conventional rudders is often so high that the added complexity of this rudder is not justified.

• Active rudder/rudder propellers

Rudder propellers are azimuthing ducted or free-running propellers in a fixed or hinged

vertical position. They are active control devices with directed thrust. The ‘active

propeller’ is a special solution of a motor-driven ducted propeller integrated in the main

rudder. Thus, besides auxiliary propulsion qualities, a directed thrust is available within the

range of the main rudder angles. This increases the maneuvering qualities of the ship,

especially at low speeds.

• Steering nozzle with rudder

Steering nozzle may be fitted with flapped or unflapped rudders. This highly effective

steering device is sometimes fitted to tugs, or research or fishery ships.

A fixed fin above the rudder improves the yaw checking stability as much as if the area of

the fixed fin were included in the movable rudder. However, for course-changing ability

only the movable rudder is decisive. In fact, a fixed fin has a course-stabilizing property and

increases, for example, the turning circle diameter. A gap between the rudder top and the

hull increases the rudder resistance at center position due to the induced resistance of

the oblique inflow of the propeller slipstream and the resistance of the rudder.

Twin-screw ships may be fitted with spade or semi-balanced rudders, either behind the

propellers or as midship rudders. For fast ships with a rudder arrangement on the centerplane

cavitation problems are avoided, but this arrangement is less effective than rudders in the

propeller slipstream, especially on shallow water.

6.4.4. Interaction of Rudder and Propeller

Rudders are normally placed in the propeller slipstream for the following reasons:

• A profiled rudder increases the propulsive efficiency by utilizing a part of the rotational

energy contained in the propeller slipstream.

• In steady ahead motion, the rudder forces are typically more than twice those of a rudder

outside of the propeller slipstream.

• Even for a stationary or slowly moving ship, substantial rudder forces may be generated by

increasing the propeller rpm (especially to provide increased rudder effectiveness during

transient maneuvers).

Because the rudder forces are proportional to the flow speed squared at the rudder, an accurate

determination of the speed in the propeller slipstream at the rudder position is required to

correctly predict rudder forces. According to the momentum theory of the propeller, the mean

axial speed of the slipstream far behind the propeller is:
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VN ¼ VA

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ CTh

p
(6.70)

where CTh is the thrust loading coefficient according to Eq. (2.5). VA is the mean axial speed of

inflow to the propeller, AP the propeller area. The theoretical slipstream radius rN far behind

the propeller flows from the law of continuity, assuming that the mean axial speed at the

propeller is the average between VA and VN:

rN ¼ r0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

�
1þ VA

VN

�s
(6.71)

Here r0 is half the propeller diameter D.

Normally the rudder is in a position where the slipstream contraction is not yet completed. The

slipstream radius and axial velocity may be approximated by (Söding 1982):

r ¼ r0 $
0:14ðrN=r0Þ3 þ rN=r0 $ ðx=r0Þ1:5

0:14ðrN=r0Þ3 þ ðx=r0Þ1:5
(6.72)

and

Vx ¼ VN $
�rN
r

�2
(6.73)

Here x is the distance of the respective position behind the propeller plane. To determine rudder

force and moment, it is recommended to use the position of the center of gravity of the rudder

area within the propeller slipstream.

The above expression for r is an approximation of a potential-flow calculation. Compared to

the potential flow result, the slipstream will increase in diameter with increasing distance x

from the propeller plane due to turbulent mixing with the surrounding fluid. This may be

approximated (Söding 1986) by adding:

Dr ¼ 0:15x $
Vx � VA

Vx þ VA
(6.74)

to the potential slipstream radius and correcting the slipstream speed according to the

momentum theorem:

Vcorr ¼ ðVx � VAÞ
� r

r þ Dr

�2þVA (6.75)

The results of applying this procedure are shown in Fig. 6.19. Vcorr is the mean value of the

axial speed component over the slipstream cross-section.

The rudder generates a lift force by deflecting the water flow up to considerable lateral

distances from the rudder. Therefore the finite lateral extent of the propeller slipstream
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diminishes the rudder lift compared to a uniform inflow velocity. This is approximated (Söding

1982) (based on two-dimensional potential flow computations for small angles of attack) by

multiplying the rudder lift determined from the velocity within the rudder plane by the

correction factor l determined from:

l ¼
�

VA

Vcorr

�f

with f ¼ 2 $

�
2

2þ d=c

�8

(6.76)

Here VA is the speed outside of the propeller slipstream laterally from the rudder. d is the half-

width of the slipstream. For practical applications, it is recommended to transform the circular

cross-section (radius r þ Dr) of the propeller slipstream to a quadratic one (edge length 2d) of

equal area. This leads to the relation:

d ¼
ffiffiffi
p

4

r
ðr þ DrÞ ¼ 0:886 $ ðr þ DrÞ (6.77)
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The inflow velocity in the rudder plane varies along the rudder height due to the wake

distribution and the propeller slipstream. The effect of this variation may be approximated by

using the mean squared velocity:

V2 ¼ 1

AR

Zb
0

V2 $ c dz (6.78)

for the determination of the rudder lift.

Lifting-surface calculations show that, compared to a uniform distribution, the lift coefficient

(defined with reference to V2) is some 5% higher for rudders extending downward beyond the

lower edge of the propeller slipstream (Fig. 6.20). Hence it is recommended to extend the

rudder as far to the baseline of the ship as possible.

A simple global correction for the lift force of a rudder behind a propeller (to be added to

the lift computed by the usual empirical formulae for rudders in free stream) is (Söding

1998a, b):

DL ¼ T $

�
1þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ CTh
p

�
$ sin d (6.79)
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The additional drag (or decrease in propeller thrust) is:

DD ¼ T $

�
1þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ CTh
p

�
$ ð1� cos dÞ (6.80)

In these formulae, T denotes the propeller thrust.

6.4.5. Interaction of Rudder and Ship Hull

If the hull above the rudder is immersed, it suppresses the flow from the pressure to the suction

side around the upper edge of the rudder. This has effects similar to an increase of the rudder

aspect ratio L:

• It decreases the induced drag.

• It increases the slope of the lift curve versus angle of attack a.

• It hardly influences the maximum lift at the stall angle as.

The magnitude of this effect depends on the size of the gap between the upper edge of the

rudder and the hull. For very small gaps, the aspect ratio Leff is theoretically twice the

nominal value, in practice Leff z 1.6 $Lgeom. To close the gap between hull and rudder at

least for small rudder angles d e and thus increasing the rudder effectiveness e a fixed fin

above the rudder is advantageous for small rudder angles. If the hull above the rudder is not

immersed or if the rudder intersects the water surface, the free surface may also increase

somewhat the effective aspect ratio Leff. However, this effect decreases with increasing ship

speed and may turn to the opposite at higher speed by rudder ventilation drawn from the

surface along the suction side of the rudder. To decrease rudder ventilation, a broad stern

shape sufficiently immersed into the water, especially above the front part of the rudder, is

advantageous.

The wake of the hull decreases the inflow velocity to the rudder and increases the propeller

load. Differences in wake and propeller load between model and ship are the main cause of

scale effects in model maneuvering experiments. Whereas the wake due to hull surface

friction will be similar at the rudder and at the propeller, the potential wake e at least for

small Froude numbers, i.e. without influence of the free surface e is nearly zero at the

rudder, but typically amounts to 10e25% of the ship’s speed at the propeller of usual

single-screw ships. It amounts nearly to the thrust deduction fraction t. Thus the flow

outside of the propeller slipstream is accelerated between the propeller and the rudder by

about t $V. This causes a pressure drop which also accelerates the propeller slipstream to

approximately:

Vx ¼ V2
corr þ t $V2

Vcorr
(6.81)
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The corresponding slipstream contraction is:

rx ¼ ðr þ DrÞ $
ffiffiffiffiffiffiffiffiffi
Vcorr

Vx

r
(6.82)

For non-zero rudder angle and forward ship speed, an interaction between the flow around

rudder and hull occurs which decreases the lift force at the rudder; however, an additional

transverse force of equal direction is generated at the aftbody. Compared to the rudder lift

without hull interaction, the total transverse force is increased by the factor (1 þ aH). The term

aH may be approximated (Söding 1982):

aH ¼ 1

1þ ð4:9 $ e=T þ 3c=TÞ2 (6.83)

Here T is the draft of the ship, e the mean distance between the front edge of the rudder and the

aft end of the hull, and c the mean rudder chord length. Compared to the free-running rudder,

the center of effort of the total transverse force is shifted forward by approximately:

Dx ¼ 0:3T

e=T þ 0:46
(6.84)

Potential flow computations show that Dx may increase to up half the ship’s length in shallow

water if the gap length e between rudder and hull tends to zero, as may be the case for twin-

screw ships with a center rudder. This would decrease the ship’s turning ability on shallow

water. For a non-zero drift velocity v (positive to starboard, measured amidships) and a non-

zero yaw rate r (positive clockwise if seen from above) of the ship, the hull in front of the

rudder influences the flow direction at the rudder position. Without hull influence, the

transverse flow velocity v relative to the hull at the rudder position xR is:

vR ¼ �ðvþ xR $ rÞ (6.85)

xR is the distance between rudder and midship section, negative for stern rudders. However,

experiments of Kose (1982) with a freely rotating, unbalanced rudder behind a ship model

without propeller indicated a mean transverse velocity at the rudder’s position of only:

vR ¼ �ð0:36 $ vþ 0:66 $ xR $ rÞ (6.86)

From the rudder angle d (positive to port side), the mean longitudinal flow speed Vx (positive

backward) and the mean transverse flow speed vR at the rudder position, the angle of attack

follows:

a ¼ dþ arctan
vR
Vcorr

(6.87)
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6.4.6. Rudder Cavitation

Rudder cavitation may occur even at small rudder angles for ship speeds exceeding 22 knots

with rudder(s) in the propeller slipstream and P/AP > 700 kW/m2. Here P is the delivered

power, AP the propeller disk area.

Rudder cavitation e as with propeller cavitation e is caused by water evaporation where at

points of high flow velocity the pressure locally drops below the vapor pressure of the water.

Cavitation erosion (loss of material by mechanical action) occurs when small bubbles filled

with vapor collapse on or near to the surface of the body. During the collapse a microscopic

high-velocity jet forms, driven by surface tension and directed onto the body surface. It causes

small cracks and erosion, which in seawater may be magnified by corrosion (galvanic loss of

material). Paint systems, rubber coatings, enamel, etc. offer no substantial resistance to

cavitation, but austenitic steel and some types of bronze seem to retard the erosion compared to

the mild steel normally used for rudders.

The cavitation number s (Fig. 6.21) is a non-dimensional characteristic value for studying

cavitation problems in model experiments:
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Cavitation number s as a function of the ship speed V with the submersion h (depth below water

surface) as parameter
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s ¼ p� pv

1=2rV
2

(6.88)

p is the pressure in undisturbed flow, i.e. atmospheric pressure plus hydrostatic pressure, pv
vaporization pressure, V ship speed, r density of water.

There are different types of rudder cavitation:

1. Bubble cavitation on the rudder side plating

For large rudder angles, cavitation is unavoidable in ships of more than about 10 knots. It

will decrease the rudder lift substantially if the cavitation causes a complete separation of

flow from the suction side. Otherwise its influence on rudder forces is small (Kracht 1987).

Cavitation erosion is of interest only if it occurs within the range of rudder angles d ¼ �5�

used for course keeping. Evaluation of model experiments shows that the onset of cavi-

tation is indeed observed if the pressure determined by potential-flow theory is smaller

than the water vaporization pressure pv. pv lies typically between 1% and 3% of the

atmospheric pressure. It may therefore (not in model tests, but for full-scale ships) simply

be taken as zero. Thus, to test for blade side cavitation in the design stage of ships, one may

proceed as follows:

• Determine the slipstream radius r þDr and the inflow speed to the rudder Vcorr from

Fig. 6.19 or the corresponding formulae at about 80% of the propeller tip radius

above and below the propeller axis.

• Correct these values to obtain Vx and rx by Eqs (6.81) and (6.82).

• Because of non-uniform distribution of the slipstream velocity, add 12% of V to obtain

the maximum axial speed at the rudder:

Vmax ¼ Vx þ 0:12 $ ðVcorr � VAÞ (6.89)

• Estimate the inflow angle a to the rudder due to the rotation of the propeller slipstream

by:

a ¼ arctan

�
4:3 $

KQ

J2
$

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� w

1� wlocal

r
$

VA

Vmax

�
(6.90)

w is the mean wake number and wlocal the wake number at the respective position. The

equation is derived from the momentum theorem with an empirical correction for the

local wake. It is meant to apply about 0.7 to 1.0 propeller diameter behind the propeller

plane. The position relevant to the pressure distribution is about one-half chord length

behind the leading edge of the rudder.

• Add d ¼ 3� ¼ 0.052 rad as an allowance for steering rudder angles.

• Determine the maximum local lift coefficient CLlmax from Fig. 6.22, where aþ d are to

be measured in radians. c is the chord length of the rudder at the respective height,
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rx the propeller slipstream radius following from Eq. (6.70) with rx in the place of rN.

Figure 6.22 is based on lifting-line calculations of a rudder in the propeller slipstream.

It takes into account the dependence of the local lift coefficient on the vertical variation

of inflow velocity and direction.

• Determine the extreme negative non-dimensional pressure on the suction side

depending on profile and local lift coefficient CLlmax. For this we use Fig. 6.23

derived from potential flow calculations.

• Add to pdyn (negative) the static pressure pstat ¼ 103 kPa þ r $ g $ h. h is the distance

between the respective point on the rudder and the water surface, e.g. 80% of the

propeller radius above the propeller axis.

If the resulting minimum pressure on the suction side is negative or slightly positive (less

than 3 kPa), the side plating of the rudder is prone to cavitation. For a right-turning

propeller (turning clockwise looking forward) cavitation will occur:

• on the starboard side in the upper part of the rudder relative to the propeller axis;

• on the port side in the lower part of the rudder relative to the propeller axis.

Brix (1993, pp. 91e92) gives an example for such a computation. Measures to decrease

rudder side cavitation follow from the above prediction method:

• Use profiles with small pdyn at the respective local lift coefficient. These profiles have

their maximum thickness at approximately 40% behind the leading edge.

• Use profiles with an inclined (relative to the mean rudder plane) or curved mean line to

decrease the angle of attack (Brix et al. 1971). For a right-turning propeller, the rudder

nose should be on the port side above the propeller axis, on the starboard side below it.

2. Rudder sole cavitation

Due to the pressure difference between both sides of the rudder caused, say, by the rotation

of the propeller slipstream, a flow component around the rudder sole from the pressure to
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Diagram for determining the local values of maximum lift coefficient CLlmax
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the suction side occurs. It causes a rudder tip vortex (similar to propeller tip vortices) which

may be filled by a cavitation tube. This may cause damage if it attaches to the side of the

rudder. However, conditions for this are not clear at present. If the rudder has a sharp corner

at the front lower edge, even for vanishing angles of attack the flow cannot follow the sharp

bend from the leading edge to the base plate, causing cavitation in the front part of the

rudder sole. As a precaution the base plate is bent upward at its front end (Brix et al. 1971).

This lowers the cavitation number below which sole cavitation occurs (Fig. 6.24). For high

ship speeds exceeding, say, 26 knots cavitation has still been reported. However, it is

expected that a further improvement could be obtained by using a smoothly rounded lower

face or a baffle plate at the lower front end (Kracht 1987). No difficulties have been

reported at the rudder top plate due to the much lower inflow velocity.

3. Propeller tip vortex cavitation

Every propeller causes tip vortices. These are regions of low pressure, often filled with

cavitation tubes. Behind the propeller they form spirals which are intersected by the rudder.

2.5

2.0

1.5

1.0

0.5

0
0.25 0.50

CLl

0.75

IFS 61−TR 25 
IFS 62−TR 25 

NACA−0015

IFS 58−TR 15

NACA−0024

NACA−0021

NACA−0018

NACA 642−015

NACA 643−018

NACA 644−021

HSVA−MP
73−20

P
dy

n

(ρ
⋅ V

2 m
ax

) 
/ 2

HSVA−MP 71−20

Figure 6.23:
Extreme negative dynamic pressure of the suction side as a function of the local lift

coefficient CLl and the profile

Ship Maneuvering 293



Therefore, cavitation erosion frequently occurs at the rudder at the upper and sometimes

lower slipstream boundaries, mainly (for right-turning propellers) on the upper starboard

side of the rudder. This problem is not confined to high-speed ships. The best means to

reduce these effects is to decrease gradually the propeller loading to the blade tips by

appropriately reduced pitch, and to use a high propeller skew. These methods also reduce

propeller-induced vibrations.

4. Propeller hub cavitation

Behind the propeller hub a vortex is formed which is often filled by a cavitation tube.

However, it seems to cause fewer problems at the rudder than the tip vortices, possibly due

to the lower axial velocity behind the propeller hub.

5. Cavitation at surface irregularities

Surface irregularities disturbing the smooth flow cause high flow velocities at convex

surfaces and edges, correspondingly low pressures, and frequently cavitation erosion. At

the rudder, such irregularities may be zinc anodes and shaft couplings. It is reported that

also behind scoops, propeller bossing, etc. cavitation erosion occurred, possibly due to

increased turbulence of the flow. Gaps between the horn and the rudder blade in semi-

balanced rudders are especially prone to cavitation, leading to erosion of structurally

important parts of the rudder. For horizontal and vertical gaps (also in flap rudders) the

rounding of edges of the part behind the gap is recommended.
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6.4.7. Rudder Design

There are no regulations for the rating of the rudder area. The known recommendations give the

rudder area as a percentage of the underwater lateral area L $T. Det NorskeVeritas recommends:

AR

L $T
� 0:01 $

�
1þ 25

�
B

L

�2�
(6.91)

This gives a rudder area of approximately 1.5% of the underwater lateral area for ships of usual

width; for unusually broad ships (large mass, low yaw stability) a somewhat larger value is

given. This corresponds to typical rudder designs and can serve as a starting point for further

analyses of the steering qualities of a ship.

Recommended minimum criteria for the steering qualities of a ship are:

• Non-dimensional initial turning time in Z 20�/10� maneuvers: t0a ¼ 1 + 1:73Fn.

• Non-dimensional yaw checking time in Z 20�/10� maneuvers: t0s ¼ 0:78 + 2:12Fn.

• The rudder should be able to keep the ship on a straight course with a rudder angle of

maximum 20� for wind from arbitrary direction and vw/V ¼ 5. vw is the wind speed, V

the ship speed.

• The ship must be able to achieve a turning circle of less than 5 $L at the same vw/V for

maximum rudder angle.

The criteria for initial turning time and yaw checking time were derived by Brix using regression

analysis for 20�/10� zigzag test results for many ships (Fig. 6.8). The time criteria are critical for

large ships (bulkers, tankers), while the wind criteria are critical for ships with a large lateral area

above the water (ferries, combatants, container ships). An additional criterion concerning yaw

stability would make sense, but this would be difficult to check computationally.

The rudder design can be checked against the above criteria using computations (less accurate)

or model tests (more expensive). A third option would be the systematically varied

computations of Wagner, described in Brix (1993, pp. 95e102). This approach yields

a coefficient CYd for rudder effectiveness which inherently meets the above criteria. The

method described in Brix (1993) uses design diagrams. For computer calculations, empirical

formulae also derived by Wagner exist.

6.4.8. CFD for Rudder Flows and Conclusions for Rudder Design

The determination of forces on the rudder is important for practical design purposes:

• The transverse force is needed to evaluate the maneuverability of ships already in the

design stage as required by IMO.

• The longitudinal force influences noticeably the propulsive efficiency.

• The shaft torsional moment is decisive for selecting a suitable rudder gear.
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In principle, there are three sources of information for these forces:

• Model experiments which produce accurate forces at model Reynolds numbers, but suffer

from severe scale effects when predicting the maximum lift at full scale.

• RANSE computations appear to be the most reliable source of information and should gain

in importance also for practical design of rudders.

• BEM computations can often give sufficiently accurate results with a minimum of effort if

some empirical relationships and corrections are applied.

Söding (1998a, b) described the state of the art for BEM comparing the results to RANSE and

experimental results. The RANSE computations used for comparison were finite-volume

methods employing a standard ke3 turbulence model with wall function.

Söding’s BEM approach for rudder flows introduces some special features:

• Special adaptations of the BEM take the irrotational inflow to the rudder induced by hull

and propeller into account.

• The propeller slipstream is averaged in the circumferential direction. The radial thrust

distribution is assumed such that it approaches gradually zero at the outer limit and is

zero in the hub region.

• The ship hull above the rudder can either be modeled as horizontal mirror plane or as

a separate body discretized by boundary elements.

The BEM results were compared to RANSE and experimental results for various rudders.

According to potential theory, a thin foil in two-dimensional flow (i.e. for aspect ratio L ¼N)

at a small angle of attack a produces lift nearly linearly increasing with a corresponding to:

dCL

da
¼ 2p (6.92)

In three-dimensional flow, the lift gradient is decreased by a reduction factor r(L) which is well

approximated by:

rðLÞ ¼ L
Lþ 0:7

ðLþ 1:7Þ2 (6.93)

Except for L, details of the rudder shape in side view (e.g. rectangular or trapezoidal) have

hardly any influence on dCL/da. However, the profile thickness and shape have some influence.

Computations and measurements of the lift coefficient corrected for infinite aspect ratio by the

formula above yield the following conclusions:

• All values differ from the theoretical value 2p by less than �17%.

• For the same profile, measurements and computations by any method differ generally by

only a few per cent, except for NACA profiles with thickness ratio greater than 25%.

• Two-dimensional and three-dimensional RANSE computations hardly differ from each

other except for thick NACA profiles.
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• The Reynolds number based on axial inflow velocity and mean rudder chord length has

relatively little effect on the lift gradient.

• The BEM fails to predict the low lift gradient of profiles with large opening angle of the

trailing edge. For such profiles, the Kutta condition used in potential flow is a poor

approximation.

• Substantial thickness at the trailing edge increases the lift slope.

Further detailed investigations based on RANSE computations produced the following insight

into the effect of profile thickness:

• Thick profiles produce more lift than thinner ones if they have a sharp end (concave sides),

and a lower lift if they end in a larger angle (convex or flat sides).

• The mostly used NACA00 profiles are worse than the other profiles investigated, both with

respect to lift slope and to the ratio between lift and drag.

• For all profiles, the lift/drag ratio decreases with increasing thickness. Therefore, for

a good propulsive efficiency, one should use the thinnest possible profile.

• The IFS profile generates the largest lift. However, when compared to the HSVAMP73-25

profile the difference is small and the lift/drag ratio is worse than for the HSVA profile. The

IFS profile is also more liable to suffer from cavitation due to its very uneven pressure

distribution on the suction side.

BEM is not capable of predicting the stall angle because stall is inherently a viscous

phenomenon. For hard-over maneuvers, the stall angle and its associated maximum lift may be

more important than dCL/da. RANSE computations show that higher Reynolds numbers

produce larger maximum CL. Thus experimental values without extrapolation to actual

Reynolds numbers are misleading with respect to maximum lift forces. Other conclusions for

the maximum lift at stall angle from RANSE computations are:

• The maximum CL ranges between 1.2 and more than 2. This upper limit is substantially

larger than assumed in classification rules.

• The aspect ratio L is of minor influence only. Larger aspect ratio produces somewhat

smaller CL,max.

• Small L yield large stall angles. (They also yield small dCL/da, hence little change in the

maximum CL.)

• The taper ratio of the rudder has practically no influence on the maximum CL.

• Profiles with concave sides produce larger CL,max than those with flat or convex sides.

Three-dimensional RANSE computations give slightly lower maximum CL than two-

dimensional RANSE computations. The relation between the two-dimensional and three-

dimensional values approximately determines the maximum lift while avoiding the

complexities (and cost) of three-dimensional RANSE computations, especially for complex

configurations and non-uniform inflow.
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The recommended procedure is then:

• Perform a two-dimensional RANSE computation for the actual profile and Reynolds

number in uniform flow to determine the maximum CL.

• Perform a panel calculation for the three-dimensional arrangement.

• Convert the computed lift to CL using an average inflow velocity. The averaged velocity is

the root mean square axial velocity averaged over the rudder height.

• Determine the approximate stall angle as that where the three-dimensional CL in potential

flow amounts to 95% of the maximum CL,2d in the two-dimensional RANSE computation.

• Truncate the computed lift forces at that angle, but not drag and stock moment.

In practice, the aftbody arrangement with propeller and rudder is rather more complicated and

may even involve additional complexities such as nozzles, fins, and bulbs. These make grid

generation for field methods (and even BEM) complicated. However, by 2010 RANSE

simulations for hullepropellererudder interaction at full-scale Reynolds numbers started to

drift into industry applications.
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APPENDIX A

Boundary Element Methods

Introduction

The Laplace equation is a linear differential equation, i.e. arbitrary linear combinations

(superpositions) of elementary solutions of the Laplace equation will again form a possible

solution. This chapter is devoted to various elementary solutions used in the computation of

ship flows. It is not really necessary to understand the given formulae, but the concepts should

be understood. Fortran subroutines for elements are in the public domain and may be obtained

on the internet (see Preface).

Consider the case if still water is seen from a passing airplane with speed V, or from a razor

blade ship not disturbing the flow. Here the water appears to flow uniformly in the negative

direction x with the speed V. The water has no velocity component in the y or z direction, and

everywhere uniformly the velocity is eV in the x direction. The corresponding potential is:

f ¼ �Vx

Another elementary potential is that of an undisturbed incident wave as given in Section 4.3.1,

Chapter 4.

Various elements (elementary solutions) exist to approximate the disturbance effect of the ship.

These more or less complicated mathematical expressions are useful to model displacement

(‘sources’) or lift (‘vortices’, ‘dipoles’). The common names indicate a graphical physical

interpretation of the abstract mathematical formulae and will be discussed in the following.

The basic idea of all the related boundary element methods is to superimpose elements in an

unbounded fluid. Since the flow does not cross a streamline just as it does not cross a real fluid

boundary (such as the hull), any unbounded flow field in which a streamline coincides with the

actual flow boundaries in the bounded problem can be interpreted as a solution for the bounded

flow problem in the limited fluid domain. Outside this fluid domain, the flow cannot (and

should not) be interpreted as a physical flow, even though the computation can give velocities,

pressures, etc. everywhere.

The velocity at a field point ~x induced by some typical panel types and some related formula

work is given in the following. Expressions are often derived in a local coordinate system. The

derivatives of the potential are transformed from the local xeyez system to a global xeyez
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system. In two dimensions, we limit ourselves to x and z as coordinates, as these are the typical

coordinates for a strip in a strip method. ~n ¼ ðnx; nzÞ is the outward unit normal in global

coordinates, coinciding with the local z vector.~t and~s are unit tangential vectors, coinciding

with the local x and y vectors, respectively. The transformation from the local to the global

system is as follows:

1. Two-dimensional case

fx ¼ nz$fx þ nx$fz

fz ¼ �nx$fx þ nz$fz

fxx ¼
�
n2z � n2x

�
$fxx þ ð2nxnzÞ$fxz

fxz ¼
�
n2z � n2x

�
$fxz � ð2nxnzÞ$fxx

fxxz ¼ nz
�
1� 4n2x

�
$fxxz � nx

�
1� 4n2z

�
$fxzz

fxzz ¼ nx
�
1� 4n2z

�
$fxxz þ nz

�
1� 4n2x

�
$fxzz

2. Three-dimensional case

fx ¼ t1$fx þ s1$fy þ n1$fz

fy ¼ t2$fx þ s2$fy þ n2$fz

fz ¼ t3$fx þ s3$fy þ n3$fz

fx x ¼ t21fxx þ s21fyy þ n21fzz þ 2ðs1t1fxy þ n1t1fxz þ n1s1fyzÞ
fx y ¼ t1t2fxx þ t1s2fxy þ t1n2fxz þ s1t2fxy þ s1s2fyy þ s1n2fyz þ n1t2fxz

þ n1s2fyz þ n1n2fzz

fx z ¼ t1t3fxx þ t1s3fxy þ t1n3fxz þ s1t3fxy þ s1s3fyy þ s1n3fyz þ n1t3fxz

þ n1s3fyz þ n1n3fzz

fyy ¼ t22fxx þ s22fyy þ n22fzz þ 2ðs2t2fxy þ n2t2fxz þ n2s2fyzÞ
fy z ¼ t2t3fxx þ t2s3fxy þ t2n3fxz þ s2t3fxy þ s2s3fyy þ s2n3fyz þ n2t3fxz

þ n2s3fyz þ n2n3fzz

fx x z ¼ t21ðt3fxxx þ s3fxxy þ n3fxxzÞ þ s21ðt3fxyy þ s3fyyy þ n3fyyzÞ
þ n21ðt3fxzz þ s3fyzz þ n3fzzzÞ þ 2ðs1t1ðt3fxxy þ s3fxyy þ n3fxyzÞ
þ n1t1ðt3fxxz þ s3fxyz þ n3fxzzÞ þ n1s1ðt3fxyz þ s3fyyz þ n3fyzzÞÞ

300 Appendix A



fx y z ¼ t1t2ðt3fxxx þ s3fxxy þ n3fxxzÞ þ ðt1s2 þ s1t2Þ
� ðt3fxxy þ s3fxyy þ n3fxyzÞ þ s1s2ðt3fxyy þ s3fyyy þ n3fyyzÞ
þ ðt1n2 þ n1t2Þðt3fxxz þ s3fxyz þ n3fxzzÞ
þ n1n2ðt3fxzz þ s3fyzz þ n3fzzzÞ þ ðs1n2 þ n1s2Þ
� ðt3fxyz þ s3fyyz þ n3fyzzÞ

fx z z ¼ t1t3ðt3fxxx þ s3fxxy þ n3fxxzÞ þ ðt1s3 þ s1t3Þ
� ðt3fxxy þ s3fxyy þ n3fxyzÞ þ s1s3ðt3fxyy þ s3fyyy þ n3fyyzÞ
þ ðt1n3 þ n1t3Þðt3fxxz þ s3fxyz þ n3fxzzÞ
þ n1n3ðt3fxzz þ s3fyzz þ n3fzzzÞ þ ðs1n3 þ n1s3Þ
� ðt3fxyz þ s3fyyz þ n3fyzzÞ

fy y z ¼ t22ðt3fxxx þ s3fxxy þ n3fxxzÞ þ s22ðt3fxyy þ s3fyyy þ n3fyyzÞ
þ n22ðt3fxzz þ s3fyzz þ n3fzzzÞ þ 2ðs2t2ðt3fxxy þ s3fxyy þ n3fxyzÞ
þ n2t2ðt3fxxz þ s3fxyz þ n3fxzzÞ þ n2s2ðt3fxyz þ s3fyyz þ n3fyzzÞÞ

fy z z ¼ t2t3ðt3fxxx þ s3fxxy þ n3fxxzÞ þ ðt2s3 þ s2t3Þ
� ðt3fxxy þ s3fxyy þ n3fxyzÞ þ s2s3ðt3fxyy þ s3fyyy þ n3fyyzÞ
þ ðt2n3 þ n2t3Þðt3fxxz þ s3fxyz þ n3fxzzÞ
þ n2n3ðt3fxzz þ s3fyzz þ n3fzzzÞ þ ðs2n3 þ n2s3Þ
� ðt3fxyz þ s3fyyz þ n3fyzzÞ

Source Elements

The most common elements used in ship flows are source elements which are used to model the

displacement effect of a body. Elements used to model the lift effect such as vortices or dipoles

are also employed if lift plays a significant role, e.g. in yawed ships for maneuvering.

Point Source

1. Two-dimensional case

The coordinates of the source are (xq, zq). The distance between source point and field point

(x, y) is r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xqÞ2 þ ðz� zqÞ2

q
. The potential induced at the field point is then:

f ¼ s

2p
ln r ¼ s

4p
lnððx� xqÞ2 þ ðz� zqÞ2Þ
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Figure A.1:
Effect of a point source

This yields the velocities:

~y ¼
�
fx

fz

�
¼ s

2pr2

�
x� xq
z� zq

�

The absolute value of the velocity is then:

y ¼ s

2pr2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xqÞ2 þ ðz� zqÞ2

q
¼ s

2pr

The absolute value of the velocity is thus the same for all points on a radius r around the

point source. The direction of the velocity is pointing radially away from the source point

and the velocity decreases with distance as 1/r. Thus the flow across each concentric ring

around the source point is constant. The element can be physically interpreted as a source of

water which constantly pours water flowing radially in all directions. s is the strength of this

source. For negative s, the element acts like a sink with water flowing from all directions

into the center. Figure A.1 illustrates the effect of the element.

Higher derivatives are:

fxx ¼ �fzz ¼
s

2p

1

r2
� fx$

2ðx� xqÞ
r2
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fxz ¼ �fx$
2ðz� zqÞ

r2

fxxz ¼ �fzzz ¼ �2$

�ðx� xqÞ
r2

fxz þ
ðz� zqÞ

r2
fxx

�

fxzz ¼ �2$

�ðx� xqÞ
r2

fzz þ
ðz� zqÞ

r2
fxz

�

2. Three-dimensional case

The corresponding expressions in three dimensions are:

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xqÞ2 þ ðy� yqÞ2 þ ðz� zqÞ2

q
f ¼ �s

1

4pr

fx ¼ s
1

2pr3
ðx� xqÞ

fy ¼ s
1

2pr3
ðy� yqÞ

fz ¼ s
1

2pr3
ðz� zqÞ

fxx ¼ ð�3fxðx� xqÞ � fÞ=r2

fxy ¼ ð�3fxðy� yqÞÞ=r2

fxz ¼ ð�3fxðz� zqÞÞ=r2

fyy ¼ ð�3fyðy� yqÞ � fÞ=r2

fyz ¼ ð�3fyðz� zqÞÞ=r2

fxxz ¼ �ð2ðf=r2Þ þ 5fxxÞdz=r2

fxyz ¼ �5fxydz=r
2

fxzz ¼ �5fxzdz=r
2 � 3fx=r

2

fyyz ¼ �ð2ðf=r2Þ þ 5fyyÞdz=r2

fyzz ¼ �5fyzdz=r
2 � 3fy=r

2
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Regular First-Order Panel

1. Two-dimensional case

For a panel of constant source strength we formulate the potential in a local coordinate

system. The origin of the local system lies at the center of the panel. The panel lies on the

local x-axis; the local z-axis is perpendicular to the panel pointing outward. The panel

extends from x ¼ �d to x ¼ d. The potential is then

f ¼
Z d

�d

s

2p
$ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xqÞ2 þ z2dxq

q
With the substitution t ¼ x � xq this becomes:

f ¼ 1

2

Z xþd

x�d

s

2p
$lnðt2 þ z2Þdt

¼ s

4p

	
t ln ðt2 þ z2Þ þ 2z arctan

t

z
� 2t


xþd

x�d

Additive constants can be neglected, giving:

f ¼ s

4p

�
x ln

r1
r2

þ d lnðr1r2Þ þ z2 arctan
2dz

x2 þ z2 � d2
þ 4d

�

with r1 ¼ ðxþ dÞ2 þ z2 and r2 ¼ ðx� dÞ2 þ z2. The derivatives of the potential (still in

local coordinates) are:

fx ¼
s

2p
$
1

2
ln

r1
r2

fz ¼
s

2p
$arctan

2dz

x2 þ z2 � d2

fxx ¼
s

2p
$

�
xþ d

r1
� x� d

r2

�

fxz ¼
s

2p
$z$

�
1

r1
� 1

r2

�

fxxz ¼
s

2p
$ð�2zÞ$

 
xþ d

r21
� x� d

r22

!
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fxzz ¼
s

2p
$

 
ðxþ dÞ2 � z2

r21
� ðx� dÞ2 � z2

r22

!

fx cannot be evaluated (is singular) at the corners of the panel. For the center point of the

panel itself fz is:

fzð0; 0Þ ¼ lim
z/0

fzð0; zÞ ¼
s

2

If the ATAN2 function in Fortran is used for the general expression of fz, this is
automatically fulfilled.

2. Three-dimensional case

In three dimensions the corresponding expressions for an arbitrary panel are rather

complicated. Let us therefore consider first a simplified case, namely a plane rectangular

panel of constant source strength (Fig. A.2). We denote the distances of the field point to

the four corner points by:

r1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
r2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� ‘Þ2 þ y2 þ z2

q
r3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ ðy� hÞ2 þ z2

q
r4 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� ‘Þ2 þ ðy� hÞ2 þ z2

q

Figure A.2:
Simple rectangular flat panel of constant strength; origin at center of panel
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The potential is:

f ¼ � s

4p

Z h

0

Z ‘

0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xÞ2 þ ðy� hÞ2 þ z2

q dx dh

The velocity in the x direction is:

vf

vx
¼ s

4p

Z h

0

Z ‘

0

x� xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xÞ2 þ ðy� hÞ2 þ z2

q 3
dx dh

¼ s

4p

Z h

0
� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx� ‘Þ2 þ ðy� hÞ2 þ z2
q þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ ðy� hÞ2 þ z2
q dh

¼ s

4p
ln

ðr3 � ðy� hÞÞðr1 � yÞ
ðr2 � yÞðr4 � ðy� hÞÞ

The velocity in the y direction is, in similar fashion:

vf

vy
¼ s

4p
ln

ðr2 � ðx� ‘ÞÞðr1 � xÞ
ðr3 � xÞðr4 � ðx� ‘ÞÞ

The velocity in the z direction is:

vf

vy
¼ s

4p

Z h

0

Z ‘

0

zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xÞ2 þ ðy� hÞ2 þ z2

q 3
dx dh

¼ s

4p

Z h

0
� zðx� ‘Þ
ððy� hÞ2 þ z2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� ‘Þ2 þ ðy� hÞ2 þ z2

q
þ zx

ððy� hÞ2 þ z2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ ðy� hÞ2 þ z2

q dh

Substituting:

t ¼ h� yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ ðh� yÞ2 þ z2

q
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yields:

vf

vz
¼ s

4p

264Z ðh�yÞ=r4

�y=r2

�zðx� ‘Þ
z2 þ ðx� ‘Þ2t2 dt þ

Z ðh�yÞ=r3

�y=r1

zx

z2 þ x2t2
dt

375
¼ s

4p

	
� arctan

x� ‘

z

h� y

r4
þ arctan

x� ‘

z

�y

r2
� arctan

x

z

�y

r1
þ arctan

x

z

h� y

r3



The derivation used:

Z
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ a2
p dx ¼ lnðx þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ a2

p
Þ þ CZ

xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ a2

p 3
dx ¼ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ a2
p þ C

Z
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ a2
p 3

dx ¼ x

a2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ a2

p þ C

Z
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aþ bx2
p dx ¼ 1ffiffiffiffiffi

ab
p arctan

bxffiffiffiffiffi
ab

p for b > 0

The numerical evaluation of the induced velocities has to consider some special cases. As

an example: the finite accuracy of computers can lead to problems for the above given

expression of the x component of the velocity, when for small values of x and z the argument

of the logarithm is rounded off to zero. Therefore, for ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ z2

p � yÞ the term r1 e ymust

be substituted by the approximation (x2 + z2) /2x. The other velocity components require

similar special treatment.

Hess and Smith (1964) pioneered the development of boundary element methods in

aeronautics, thus also laying the foundation for most subsequent work for BEM applications

to ship flows. Their original panel used constant source strength over a plane polygon,

usually a quadrilateral. This panel is still the most popular choice in practice.

The velocity is again given in a local coordinate system (Fig. A.3). For quadrilaterals of unit

source strength, the induced velocities are:

vf

vx
¼ y2 � y1

d12
ln

�
r1 þ r2 � d12
r1 þ r2 þ d12

�
þ y3 � y2

d23
ln

�
r2 þ r3 � d23
r2 þ r3 þ d23

�

þ y4 � y3
d34

ln

�
r3 þ r4 � d34
r3 þ r4 þ d34

�
þ y1 � y4

d41
ln

�
r4 þ r1 � d41
r4 þ r1 þ d41

�
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Figure A.3:
A quadrilateral flat panel of constant strength is represented by Hess and Smith

as superposition of four semi-infinite strips

vf

vy
¼ x2 � x1

d12
ln

�
r1 þ r2 � d12
r1 þ r2 þ d12

�
þ x3 � x2

d23
ln

�
r2 þ r3 � d23
r2 þ r3 þ d23

�

þ x4 � x2
d34

ln

�
r3 þ r4 � d34
r3 þ r4 þ d34

�
þ x1 � x4

d41
ln

�
r4 þ r1 � d41
r4 þ r1 þ d41

�
vf

vz
¼ arctan

�
m12e1 � h1

zr1

�
� arctan

�
m12e2 � h2

zr2

�
þ arctan

�
m23e2 � h2

zr2

�
� arctan

�
m23e2 � h3

zr3

�
þ arctan

�
m34e3 � h3

zr3

�
� arctan

�
m34e4 � h4

zr4

�
þ arctan

�
m41e4 � h4

zr4

�
� arctan

�
m41e1 � h1

zr1

�
xi, yi are the local coordinates of the corner points i, ri the distance of the field point (x, y, z)

from the corner point i, dij the distance of the corner point i from the corner point

j;mij ¼ ðyj � yiÞ=ðxj � xiÞ; ei ¼ z2 þ ðx� xiÞ2 and hi ¼ ðy� yiÞðx� xiÞ: For larger distances
between field point and panel, the velocities are approximated by a multipole expansion

consisting of a point source and a point quadrupole. For large distances the point source alone

approximates the effect of the panel.

For real ship geometries, four corners on the hull often do not lie in one plane. The panel

corners are then constructed to lie within one plane approximating the four points on the actual

hull: the normal on the panel is determined from the cross-product of the two ‘diagonal’

vectors. The center of the panel is determined by simple averaging of the coordinates of the

four corners. This point and the normal define the plane of the panel. The four points on the hull

are projected normally on this plane. The panels thus created do not form a closed body. As
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long as the gaps are small, the resulting errors are negligible compared to other sources of

errors, e.g. the assumption of constant strength, constant pressure, constant normal over each

panel, or enforcing the boundary condition only in one point of the panel. Hess and Smith

(1964) comment on this issue:

‘Nevertheless, the fact that these openings exist is sometimes disturbing to people hearing

about the method for the first time. It should be kept in mind that the elements are simply

devices for obtaining the surface source distribution and that the polyhedral body. has no

direct physical significance, in the sense that the flow eventually calculated is not the flow

about the polyhedral-type body. Even if the edges of the adjacent elements are coincident,

the normal velocity is zero at only one point of each element. Over the remainder of the

element there is flow through it. Also, the computed velocity is infinite on the edges of

the elements, whether these are coincident or not.’

Jensen Panel

Jensen (1988) developed a panel of the same order of accuracy, but much simpler to program,

which avoids the evaluation of complicated transcendental functions and in it implementation

relies largely on just a repeated evaluation of point source routines. As the original publication

is little known and difficult to obtain internationally, the theory is repeated here. The approach

requires, however, closed bodies. Then the velocities (and higher derivatives) can be computed

by simple numerical integration if the integrands are transformed analytically to remove

singularities. In the formulae for this element, ~n is the unit normal pointing outward from the

body into the fluid, ( the integral over S excluding the immediate neighborhood of~xq, and V the

Nabla operator with respect to ~x.

1. Two-dimensional case

A Rankine source distribution on a closed body induces the following potential at a field

point ~x:

fð~xÞ ¼
Z
s
sð~xqÞGð~x;~xqÞ dS

S is the surface contour of the body, s the source strength, and Gð~x;~xqÞ ¼ ð1=2pÞ lnj~x�~xqj
is the Green function (potential) of a unit point source. Then the induced normal velocity

component is:

ynð~xÞ ¼ ~nð~xÞVfð~xÞ ¼ (sð~xqÞ~nð~xÞVGð~x;~xqÞ dSþ 1

2
sð~xqÞ

Usually the normal velocity is given as boundary condition. Then the important part of the

solution is the tangential velocity on the body:

ytð~xÞ ¼~tð~xÞVfð~xÞ ¼ (sð~xqÞ~tð~xÞVGð~x;~xqÞ dS
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Without further proof, the tangential velocity (circulation) induced by a distribution of

point sources of the same strength at point xq vanishes:

(Sð~xÞ VGð~x;~xqÞ~tð~xÞ dS ¼ 0

Exchanging the designations ~x and ~xq and using VGð~x;~xqÞ ¼ �VGð~xq;~xÞ, we obtain:

(s VGð~x;~xqÞ~tð~xqÞdS ¼ 0

We can multiply the integrand by sð~xÞ e which is a constant as the integration variable is

~xq e and subtract this zero expression from our initial integral expression for the tangential

velocity:

ytð~xÞ ¼ (S sð~xqÞ~tð~xÞVGð~x;~xqÞdS� (
S

sð~xÞVGð~x;~xqÞ~tð~xqÞdS|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼0

¼ (S
�
sð~xqÞ~tð~xÞ � sð~xÞ~tð~xqÞ



VGð~x;~xqÞdS

For panels of constant source strength, the integrand in this formula tends to zero as~x/~xq,

i.e. at the previously singular point of the integral. Therefore this expression for yt can be

evaluated numerically. Only the length DS of the contour panels and the first derivatives of

the source potential for each ~x;~xq combination are required.

2. Three-dimensional case

The potential at a field point ~x due to a source distribution on a closed body surface S is:

fð~xÞ ¼
Z
s
sð~xqÞGð~x;~xqÞdS

s is the source strength andGð~x;~xqÞ ¼ �ð4pj~x�~xqjÞ�1 is the Green function (potential) of

a unit point source. Then the induced normal velocity component on the body is:

ynð~xÞ ¼ ~nð~xÞVfð~xÞ ¼ (S sð~xqÞ~nð~xÞVGð~x;~xqÞ dS þ 1

2
sð~xqÞ

Usually the normal velocity is prescribed by the boundary condition. Then the important

part of the solution is the velocity in the tangential directions ~t and ~s. ~t can be chosen

arbitrarily,~s forms a right-handed coordinate system with ~n and~t. We will treat here only

the velocity in the t direction, as the velocity in the s direction has the same form. The

original, straightforward form is:

ytð~xÞ ¼~tð~xÞVfð~xÞ ¼ (S sð~xqÞ~tð~xÞVGð~x;~xqÞdS
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A source distribution of constant strength on the surface S of a sphere does not induce

a tangential velocity on S:
(S~tð~xÞVGð~x; ~kÞdS ¼ 0

for ~x and ~k on S. The sphere is placed touching the body tangentially at the point ~x. The

center of the sphere must lie within the body. (The radius of the sphere has little influence

on the results within wide limits. A rather large radius is recommended.) Then every point

~xq on the body surface can be projected to a point ~k on the sphere surface by passing

a straight line through ~k;~xq, and the sphere’s center. This projection is denoted by
~k ¼ Pð~xqÞ. dS on the body is projected on dS on the sphere. R denotes the relative size of

these areas: dS¼R dS. Let R be the radius of the sphere and ~c be its center. Then the

projection of ~xq is:

Pð~xqÞ ¼ ~xq �~c

j~xq �~c j Rþ~c

The area ratio R is given by:

R ¼ ~n$ð~xq �~cÞ
j~xq �~c j

�
R

j~xq �~c j
�2

With these definitions, the contribution of the sphere (‘fancy zero’) can be transformed into

an integral over the body surface:

(S~tð~xÞVGð~x;Pð~xqÞÞR dS ¼ 0

We can multiply the integrand by sð~xÞ e which is a constant as the integration variable is

~xq e and subtract this zero expression from our original expression for the tangential

velocity:

ytð~xÞ ¼ (S sð~xqÞ~tð~xÞVGð~x;~xqÞdS � (
S

sð~xÞ~tð~xÞVGð~x;Pð~xqÞÞR dS|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼0

¼ (S
�
sð~xqÞ~tð~xÞVGð~x;~xqÞ � sð~xÞ~tð~xÞVGð~x;Pð~xqÞÞR



dS

For panels of constant source strength, the integrand in this expression tends to zero as

~x/~xq, i.e. at the previously singular point of the integral. Therefore this expression for yt
can be evaluated numerically.

Higher-Order Panel

The panels considered so far are ‘first-order’ panels, i.e. halving the grid spacing will halve the

error in approximating a flow (for sufficiently fine grids). Higher-order panels (these are
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invariably second-order panels) will quadratically decrease the error for grid refinement.

Second-order panels need to be at least quadratic in shape and linear in source distribution.

They give much better results for simple geometries which can be described easily by

analytical terms, e.g. spheres or Wigley parabolic hulls. For real ship geometries, first-order

panels are usually sufficient and may even be more accurate for the same effort, as higher-order

panels require more care in grid generation and are prone to ‘overshoot’ in regions of high

curvature as in the aftbody. For some applications, however, second derivatives of the potential

are needed on the hull and these are evaluated simply by second-order panels, but not by

first-order panels.

1. Two-dimensional case

We want to compute derivatives of the potential at a point (x, y) induced by a given curved

portion of the boundary. It is convenient to describe the problem in a local coordinate system

(Fig. A.4). The x- or x-axis is tangential to the curve and the perpendicular projections

on the x-axis of the ends of the curve lie equal distances d to the right and the left of the

origin. The y- or h-axis is normal to the curve. The arc length along the curve is denoted by

s, and a general point on the curve is ðx;hÞ. The distance between (x, y) and (x, h) is:

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xÞ2 þ ðy� hÞ2

q
The velocity induced at (x, y) by a source density distribution sðsÞ along the boundary curve
is:

Vf ¼ 1

2p

Z d

�d

�
x� x

y� h

�
sðsÞ
r2

ds

dx
dx

The boundary curve is defined by h ¼ hðxÞ. In the neighborhood of the origin, the curve has
a power series:

h ¼ cx2 þ dx3 þ/

d d
s x, ξ

ξ ,η

y, η x , y

r

r0

Figure A.4:
Coordinate system for higher-order panel (two-dimensional)
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There is no term proportional to x, because the coordinate system lies tangentially to the

panel. Similarly the source density has a power series:

sðsÞ ¼ sð0Þ þ sð1Þsþ sð2Þs2 þ/

Then the integrand in the above expression for Vf can be expressed as a function of x and

then expanded in powers of x. The resulting integrals can be integrated to give an expansion

for Vf in powers of d. However, the resulting expansion will not converge if the distance of

the point (x, y) from the origin is less than d. Therefore, a modified expansion is used for the

distance r:

r2 ¼
h�

x� xÞ2 þ y2
i
� 2yh þ h2 ¼ r2f � 2yhþ h2

rf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xÞ2 þ y2

q
is the distance (x, y) from a point on the flat element. Only the latter

terms in this expression for r2 are expanded:

r2 ¼ r2f � 2ycx2 þ Oðx3Þ

Powers Oðx3Þ and higher will be neglected from now on:

1

r2
¼ 1

r2f � 2ycx2
$
r2f þ 2ycx2

r2f þ 2ycx2
¼ 1

r2f
þ 2ycx2

r4f

1

r4
¼ 1

r4f
þ 4ycx2

r6f

The remaining parts of the expansion are straightforward:

s ¼
Z x

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
dh

dx

�2
s

dx ¼
Z x

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð2cxÞ2

q
dx

z

Z x

0
1þ 2c2x2dx ¼ xþ 2

3
c2x3

Combine this expression for s with the power series for sðsÞ:

sðsÞ ¼ sð0Þ þ sð1Þxþ sð2Þx2
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Combine the expression of s with the above expression for 1/r2:

1

r2
ds

dx
¼
 
1

r2f
þ 2cyx2

r4f

!�
1 þ 2c2x2Þ ¼

 
1

r2f
þ 2cyx2

r4f
þ 2c2x2

r2f

!

Now the integrands in the expression for Vf can be evaluated:

fx ¼ 1

2p

Z d

�d
s
ðx� xÞ

r2
ds

dx
dx

¼ 1

2p

Z d

�d
ðsð0Þ þ sð1Þxþ sð2Þx2 Þðx� xÞ

 
1

r2f
þ 2cyx2

r4f
þ 2c2x2

r2f

!
dx

¼ 1

4p

h
fð0Þ
x sð0Þ þ fð1Þ

x sð1Þ þ cfðcÞ
x sð0Þ þ fð2Þ

x ðsð2Þ þ 2c2sð0ÞÞ
i

fð0Þ
x ¼

Z d

�d

2ðx� xÞ
r2f

dx ¼
Z xþd

x�d

2t

t2 þ y2
dt ¼ �lnðt2 þ y2Þ
xþd

x�d
¼ lnðr21=r22Þ

with r1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxþ dÞ2 þ y2

q
and r2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� dÞ2 þ y2

q
:

fð1Þ
x ¼

Z d

�d

2xðx� xÞ
r2f

dx ¼ 2

Z xþd

x�d

tðx� tÞ
t2 þ y2

dt ¼ xfð0Þ
x þ yfð0Þ

y � 4d

fðcÞ
x ¼

Z d

�d

4ðx� xÞyx2
r4f

dx ¼ 4y

Z xþd

x�d

tðt � xÞ2
ðt2 þ y2Þ2 dt � 2fð1Þ

y þ ð2dÞ3xy
r21r

2
2

fð2Þ
x ¼

Z d

�d

2ðx� xÞx2
r2f

dx ¼ 2

Z xþd

x�d

tðt � xÞ2
t2 þ y2

dt ¼ xfð1Þ
x þ yfð1Þ

y

Here the integrals were transformed with the substitution t ¼ ðx� xÞ.
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fy ¼
1

2p

Z d

�d
s
ðy� hÞ

r2
ds

dx
dx

¼ 1

2p

Z d

�d
ðsð0Þ þ sð1Þxþ sð2Þx2Þðy� cx2Þ �

 
1

r2f
þ 2cyx2

r4f
þ 2c2x2

r2f

!
dx

¼ 1

4p

h
fð0Þ
y sð0Þ þ fð1Þ

y sð1Þ þ cfðcÞ
y sð0Þ þ fð2Þ

y ðsð2Þ þ 2c2sð0ÞÞ
i

f
ð0Þ
y ¼

Z d

�d

2y

r2f
dx ¼ 2

Z xþd

x�d

y

t2 þ y2
dt

¼ 2

	
arctan

t

y


xþd

x�d

¼ 2 arctan
2dy

x2 þ y2 � d2

fð1Þ
y ¼

Z d

�d

2xy

r2f
dx ¼ 2y

Z xþd

x�d

ðx� tÞ
t2 þ y2

dt ¼ xfð0Þ
y � yfð0Þ

x

f
ðcÞ
y ¼

Z d

�d
4y2

x2

r4f
� 2x2

r2f
dx

¼ 4y2
Z xþd

x�d

ðt � xÞ2
ðt2 þ y2Þ2 dt � 2

Z xþd

x�d

ðt � xÞ2
t2 þ y2

dt

¼ 2f
ð1Þ
x � 4d3

x2 � y2 � d2

r21r
2
2

fð2Þ
y ¼

Z d

�d

2yx2

r2f
dx ¼ 2y

Z xþd

x�d

ðt � xÞ2
t2 þ y2

dt ¼ xfð1Þ
y � yfð1Þ

x

The original formulae for the first derivatives of these higher-order panels were analytically

equivalent, but less suited for programming involving more arithmetic operations than the

formulae given here. Higher derivatives of the potential are given in Bertram (1999).

2. Three-dimensional case

The higher-order panels are parabolic in shape with a bi-linear source distribution on each

panel. The original procedure of Hess was modified by Hughes and Bertram (1995) to

also include higher derivatives of the potential. The complete description of the formulae

used to determine the velocity induced by the higher-order panels would be rather lengthy.
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So only the general procedure is described here. The surface of the ship is divided into

panels as in a first-order panel method. However, the surface of each panel is approximated

by a parabolic surface, as opposed to a flat surface. The geometry of a panel in the local

panel coordinate system is described as:

z ¼ C þ Ax þ Bh þ Px2 þ 2Qxh þ Rh2

The x-axis and h-axis lie in the plane tangential to the panel at the panel control point, and

the z-axis is normal to this plane. This equation can be written in the form:

z� z0 ¼ Pðx� x0Þ2 þ 2Qðx� x0Þðh� h0Þ þ Rðh� h0Þ2

The point ðx0;h0; z0Þ is used as a collocation point and origin of the local panel coordinate
system. In the local panel coordinate system, terms depending on A, B, and C do not appear

in the formulae for the velocity induced by a source distribution on the panel. R and P

represent the local curvatures of the ship in the two coordinate directions,Q the local ‘twist’

in the ship form.

The required input consists of the coordinates of panel corner points lying on the body

surface and information concerning how the corner points are connected to form the

panels. In our implementation, each panel is allowed to have either three or four sides.

The first and third sides of the panel should be (nearly) parallel. Otherwise, the

accuracy of the panels deteriorates. For a given panel, the information available to

determine the coefficients A . R consists of the three or four panel corner points of

the panel and the corner points of the panels which border the panel in question. For

a quadrilateral panel with neighboring panels on all sides, eight ‘extra’ vertex points

are provided by the corner points of the adjacent panels (Fig. A.5). For triangular

panels and panels lying on the edges of the body, fewer extra vertex points will be

available. The panel corner points will be listed as xi; yi; zi; i ¼ 1. 4, and the extra

vertex points as ~xj; ~yj; ~zj; j ¼ 1. Ny, where Ny is the number of extra vertex points (3

< Ny < 8). For triangular panels four corner points are also specified, but either the

first and second or the third and fourth corner points are identical (i.e. the first or third

side of the panel has zero length). The curved panel is required to pass exactly through

all of its corner points and to pass as closely as possible to the extra vertex points of

the neighboring panels. The order in which the corner points are specified is

important, in that this determines whether the normal vector points into the fluid

domain or into the body. In our method, the corner points should be ordered clockwise

when viewed from the fluid domain, so that the normal vector points into the fluid

domain.

The source strength on each panel is represented by a bi-linear distribution, as opposed to

a constant distribution as in a first-order method:

sðx;hÞ ¼ s0 þ sxðx� x0Þ þ syðh� h0Þ
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sx and sy are the slopes of the source strength distribution in the x and h directions respec-

tively. In the system of linear equations set up in this method, only the value of the source

strength density at the collocation point on each panel, the s0 term, is solved for directly. The

derivatives of the source density (sx and sy terms) are expressed in terms of the source

strength density at the panel collocation point and at the collocation points of panels

bordering the panel in question. First the collocation points of the adjacent panels are

transformed into the local coordinate system of the panel in question. Then the above

equation for the source strength is fitted in a least squares sense to the values of source density

at the collocation points of the adjacent panels to determine s0;sx; and sy. For a four-sided

panelwhich does not lie on a boundary of the body, four adjacent panel collocation pointswill

be available for performing the least squares fit (Fig. A.6). In other cases only three or

possibly two adjacent panels will be available. The procedure expresses the unknown source

strength derivatives in terms of the source density at the collocation point of the adjacent

panels. If the higher-order terms are set to zero, the element reduces to the regular first-order

panel. A corresponding option is programmed in our version of the panel.

Vortex Elements

Vortex elements are useful to model lifting flows, e.g. in the lifting-line method for propellers

and foils (see Section 2.3, Chapter 2).

x1y1z1
~ ~ ~

x8y8z8
~ ~ ~

x7y7z7
~ ~ ~

x4y4z4
~ ~ ~

x6y6z6
~ ~ ~

x5y5z5
~ ~ ~

x3y3z3
~ ~ ~

x2y2z2

x1y1z1 x4y4z4

x3y3z3

x2y2z2
~ ~ ~

Figure A.5:
Additional points used for computing the local surface curvature of a panel (seen from

the fluid domain)
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1. Two-dimensional case

Consider a vortex of strength G at xw, zw and a field point x, z. Denote Dx ¼ x� xw and

Dz ¼ z� zw. The distance between the two points is r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dx2 þ Dz2

p
. The potential and

velocities induced by this vortex are:

f ¼ � G

2p
arctan

z� zw
x� xw

fx ¼
G

2p

Dz

r2

fz ¼ � G

2p

Dx

r2

The absolute value of the velocity is then ðG=2pÞ1=r, i.e. the same for each point on

a concentric ring around the center xw, zw. The velocity decays with distance to the center.

So far, the vortex has the same features as the source. The difference is the direction of the

velocity. The vortex induces velocities that are always tangential to the concentric ring

(Fig. A.7), while the source produced radial velocities. The formulation given here

produces counter-clockwise velocities for positive G.

The strength of the vortex is the ‘circulation’. In general, the circulation is defined as the

integral of the tangential velocities about any closed curve. For the definition given above,

this integral about any concentric ring will indeed yield G as a result.

(ξo2, ηo2)

(ξo0, ηo0)(ξo3, ηo3)
(ξo4, ηo4)

(ξo1, ηo1)

3 0

1

4

2

Figure A.6:
Adjacent panels used in the least-squares fit for the source density derivatives
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This point vortex of strength G leads to similar expressions for velocities and higher

derivatives as a point source of strength s. One can thus express one by the other as

follows:

2p

G
Fx ¼ 2p

s
fz

2p

G
Fz ¼ �2p

s
fx

2p

G
Fxx ¼ 2p

s
fxz

2p

G
Fxz ¼ �2p

s
fxx

2p

G
Fxxz ¼ 2p

s
fxzz

2p

G
Fxzz ¼ �2p

s
fxxz

F is the potential of the vortex and f the potential of the source. The same relations hold for

converting between vortex panels and source panels of constant strength. It is thus usually

not necessary to program vortex elements separately. One can rather call the source

Figure A.7:
Velocities induced by vortex
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subroutines with a suitable rearrangement of the output parameters in the call of the

subroutine.

Avortex panel of constant strengthe i.e. all panels have the same strengthe distributed on

the body coinciding geometrically with the source panels (of individual strength) enforces

automatically a Kutta condition, e.g. for a hydrofoil.

2. Three-dimensional case

The most commonly used three-dimensional vortex element is the horseshoe vortex. A

three-dimensional vortex of strength G, lying on a closed curve C, induces a velocity field:

~y ¼ Vf ¼ G

4p

Z
C

d~s� ~D

D3

We use the special case that a horseshoe vortex lies in the plane y ¼ yw ¼ const., from

x ¼ �N to x ¼ xw. Arbitrary cases may be derived from this case using a coordinate

transformation. The vertical part of the horseshoe vortex runs from z ¼ zl to z ¼ z2
(Fig. A.8). Consider a field point (x, y, z). Then: Dx ¼ x� xw; Dy ¼ y� yw; Dz1 ¼ z� z1;

Dz2 ¼ z� z2; t1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dx2 þ Dy2 þ Dz21

q
and t2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dx2 þ Dy2 þ Dz22

q
.

The horseshoe vortex then induces the following velocity:

~y ¼ G

4p

24�Dz1
t1

� Dz2
t2

�
1

Dx2 þ Dy2

8<:�Dy
Dx
0

9=;þ
�
1� Dx

t1

�

� 1

Dy2 þ Dz21

8<: 0
�Dz1
Dy

9=;i�
�
1� Dx

t2

�
1

Dy2 þ Dz22

8<: 0
sdz2
Dy

9=;
35

The derivation used
R ðt2 þ a2Þ�3=2dt ¼ t=ða2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t2 þ a2
p Þ. For Dx2 þ Dy2 � jDz1jjDz2j

or Dy2 þ Dz21 � Dx2 special formulae are used. Bertram (1992) gives details and expres-

sions for higher derivatives.

(xw, z2)

(xw, z1)

Figure A.8:
Horseshoe vortex
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Dipole Elements

Point Dipole

The dipole (or doublet) is the limit of a source and sink of equal strength brought together along

some direction (usually x) keeping the product of distance and source strength constant. The

result is formally the same as differentiating the source potential in the required direction. The

strength of a dipole is usually denoted by m. Again, r denotes the distance between field point~x

and the dipole at ~xd. We consider a dipole in the x direction here. We define D~x ¼~x�~xd.

1. Two-dimensional case

The potential and derivatives for a dipole in the x direction are:

f ¼ m

2pr2
Dx

fx ¼
m

2pr2
� 2f

Dx

r2

fz ¼ �2f
Dz

r2

fxx ¼
�
� 6 þ 8

Dx2

r2

�
$
f

r2

fxz ¼ �2
Dz$fx þ Dx$fz

r2

The streamlines created by this dipole are circles (Fig. A.9).

Figure A.9:
Velocities induced by point dipole
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2. Three-dimensional case

The three-dimensional point dipole in the x direction is correspondingly given by:

f ¼ � m

4pr3
Dx

fx ¼ � m

4pr3
� 3f

Dx

r2

fy ¼ �3f
Dy

r2

fz ¼ �3f
Dz

r2

fxx ¼
�5fxDx� 4f

r2

fxy ¼
�5fxDyþ 2Dy$ð�m=4pr3Þ

r2

fxz ¼
�5fxDzþ 2Dz$ð�m=4pr3Þ

r2

fyy ¼
�5fxDy� 3f

r2

fyz ¼
�5fzDy

r2

fxx ¼
�5fxDx� 4f

r2

The expressions for the dipole can be derived formally by differentiation of the corresponding

source expression in x. Therefore usually source subroutines (also for distributed panels) are

used with a corresponding redefinition of variables in the parameter list of the call. This

avoids double programming. Dipoles like vortices can be used (rather equivalently) to

generate lift in flows.

Thiart Element

The ship including the rudder can be considered as a vertical foil of considerable thickness and

extremely short span. For a steady yaw angle, i.e. a typical maneuvering application, one would

certainly enforce a Kutta condition at the trailing edge, either employing vortex or dipole

elements. For harmonic motions in waves, i.e. a typical seakeeping problem, one should

similarly employ a Kutta condition, but this is often omitted. If a Kutta condition is employed

in frequency-domain computations, the wake will oscillate harmonically in strength. This can
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be modeled by discrete dipole elements of constant strength, but for high frequencies this

approach requires many elements. The use of special elements which consider the oscillating

strength analytically is more efficient and accurate, but also more complicated. Such a ‘Thiart

element’ has been developed by Professor Gerhard Thiart of Stellen-bosch University and is

described in detail in Bertram (1998), and Bertram and Thiart (1998). The oscillating ship

creates a vorticity. The problem is similar to that of an oscillating airfoil. The circulation is

assumed constant within the ship. Behind the ship, vorticity is shed downstream with ship

speed V. Then: �
v

vt
� V

v

vx

�
gðx; z; tÞ ¼ 0

g is the vortex density, i.e. the strength distribution for a continuous vortex sheet. The

following distribution fulfills the above condition:

gðx; z; tÞ ¼ ReðbgaðzÞ$eiðue=VÞðx�xaÞ$eiuetÞ for x � xa

Here bga is the vorticity density at the trailing edge xa (stern of the ship). We continue the vortex

sheet inside the ship at the symmetry plane y ¼ 0, assuming a constant vorticity density:

gðx; z; tÞ ¼ ReðbgaðzÞ$eiuetÞ for xa � x � xf

xf is the leading edge (forward stem of the ship). This vorticity density is spatially constant

within the ship.

A vortex distribution is equivalent to a dipole distribution if the vortex density g and the dipole

density m are coupled by:

g ¼ dm

dx

The potential of an equivalent semi-infinite strip of dipoles is then obtained by integration. This

potential is given (except for a so far arbitrary ‘strength’ constant) by:

Fðx; y; zÞ ¼ Re

0@Z xf

�N

Z zo

zm

bmðxÞ y
r3

dxdzeiuet

1A¼ Reð4ðx; y; zÞ$eiuetÞ

with r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xÞ2 þ y2 þ ðz� zÞ2

q
and:

bmðxÞ ¼
8<:

xf � x

V

iue
ð1� eiðue=VÞðx� xaÞÞ þ ðxf � xaÞ

for xa � x � xf

for �N� x � xa
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It is convenient to write 4 as:

4ðx; y; zÞ ¼ y

Z zo

zn

Z xf

xa

x� x

r3
dxdzþ ðxf � xÞ

Z zo

zm

Z xf

xa

y

r3
dx dz

þ
�

V

iue
þ ðxf � xaÞ

�Z zo

zu

Z xa

�N
y

r3
dx dz

�
�

V

iue
e�iuexa=V

�
y

Z zo

zu

Z xa

�N
eiuex=V

1

r3
dx dz

The velocity components and higher derivatives are then derived by differentiation ofF, which

can be reduced to differentiation of 4. The exact formulae are given in Bertram (1998), and

Bertram and Thiart (1998). The expressions involve integrals with integrands of the form

‘arbitrary smooth function’ $ ‘harmonically oscillating function’. These are accurately and

efficiently evaluated using a modified Simpson’s method developed by Söding:

Z x1þ2h

x1

f ðxÞeikxdx ¼ eikx1

k

	
e2ikh

�
0:5f1 � 2f2 þ 1:5f3

kh
� i

�
f3 � D2f

k2h2

��

þ 1:5f1 � 2f2 þ 0:5f3
kh

þ i

�
f1 � D2f

h2k2

�


where f1¼ f ðx1Þ; f2 ¼ f ðx1 þ hÞ; f3 ¼ f ðx1 þ 2hÞ; D2f ¼ f1 � 2f2 þ f3.

Special Techniques

Desingularization

The potential and its derivatives become singular directly on a panel, i.e. infinite terms appear

in the usual formulae which prevent straightforward evaluation. For the normal velocity, this

singularity can be removed analytically for the collocation point on the panel itself, but the

resulting special treatment makes parallelization of codes difficult. When the element is placed

somewhat outside the domain of the problem (Fig. A.10), it is ‘desingularized’, i.e. the

singularity is removed. This has several advantages:

• In principle the same expression can be evaluated everywhere. This facilitates parallel

algorithms in numerical evaluation and makes the code generally shorter and easier.

• Numerical experiments show that desingularization improves the accuracy as long as the

depth of submergence is not too large.
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The last point surprised some mathematicians. Desingularization results in a Fredholm integral

equation of the first kind. (Otherwise a Fredholm equation of second kind results.) This can

lead in principle to problems with uniqueness and existence of solutions, which in practice

manifest themselves first by an ill-conditioned matrix for the unknowns (source strengths or

directly potential). For engineers, the problems are directly apparent without going into

mathematical classification:

• If the individual elements (sources) are too far from the collocation points, they will all

have almost the same influence. Then they will not be able to represent arbitrary local

flow patterns.

• If the individual elements are somewhat removed, the individual sharp local steepness in

flow pattern (singularity) will smooth out rapidly, forming a relatively smooth flow

distribution which can relatively smoothly approximate arbitrary flows.

• If the individual elements are very close, an uneven cobblestone flow distribution results

due to the discontinuity between the individual elements.

Thus the desingularization distance has to be chosen appropriately within a bandwidth to yield

acceptable results. The distance should be related to the grid size. As the grid becomes finer, the

desingularized solution approaches the conventional singular-element solution. Fortunately,

several researchers have shown that the results are relatively insensitive to the desingularization

distance, as long as this ranges between 0.5 and 2 typical grid spacings.

The historical development of desingularization of boundary element methods is reviewed in

Cao et al. (1991), and Raven (1998).

Desingularization is used in many ‘fully non-linear’ wave resistance codes in practice for the

free-surface elements. Sometimes it is also used for the hull elements, but here narrow pointed

bows introduce difficulties often requiring special effort in grid generation. Some close-fit

Figure A.10:
Desingularization
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routines for two-dimensional seakeeping codes (strip-method modules) also employ

desingularization.

Patch Method

Traditional boundary element methods enforce the kinematic condition (no-penetration

condition) on the hull exactly at one collocation point per panel, usually the panel center. The

resistance predicted by these methods is for usual discretizations insufficient for practical

requirements, at least if conventional pressure integration on the hull is used. Söding (1993)

therefore proposed a variation of the traditional approach which differs in some details from

the conventional approach. Since his approach also uses flat segments on the hull, but not as

distributed singularities, he called the approach ‘patch’ method to distinguish it from the usual

‘panel’ methods.

For double-body flows the resistance in an ideal fluid should be zero. This allows the

comparison of the accuracy of various methods and discretizations as the non-zero numerical

resistance is then purely due to discretization errors. For double-body flows, the patch method

reduces the error in the resistance by one order of magnitude compared to ordinary first-order

panel methods, without increasing the computational time or the effort in grid generation.

However, higher derivatives of the potential or the pressure directly on the hull cannot be

computed as easily as for a regular panel method.

The patch method basically introduces three changes to ordinary panel methods:

• ‘Patch condition’

Panel methods enforce the no-penetration condition on the hull exactly at one collocation

point per panel. The ‘patch condition’ states that the integral of this condition over one

patch of the surface is zero. This averaging of the condition corresponds to the techniques

used in finite element methods.

• Pressure integration

Potentials and velocities are calculated at the patch corners. Numerical differentiation of

the potential yields an average velocity. A quadratic approximation for the velocity using

the average velocity and the corner velocities is used in pressure integration. The unit

normal is still considered constant.

• Desingularization

Single point sources are submerged to give a smoother distribution of the potential on the

hull. As desingularization distance between patch center and point source, the minimum of

10% of the patch length, 50% of the normal distance from patch center to a line of

symmetry is recommended.

Söding (1993) did not investigate the individual influence of each factor, but the higher-order

pressure integration and the patch condition contribute approximately the same.
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The patch condition states that the flow through a surface element (patch) (and not just at its

center) is zero. Desingularized Rankine point sources instead of panels are used as elementary

solutions. The potential of the total flow is:

f ¼ �Vxþ
X
i

si4i

s is the source strength, 4 is the potential of a Rankine point source, r is the distance between

source and field point. Let Mi be the outflow through a patch (outflow ¼ flow from interior of

the body into the fluid) induced by a point source of unit strength.

1. Two-dimensional case

The potential of a two-dimensional point source is:

4 ¼ 1

4p
lnr2

The integral zero-flow condition for a patch is:

�V$nx$lþ
X
i

siMi ¼ 0

nx is the x component of the unit normal (from the body into the fluid), l the patch area

(length). The flow through a patch is invariant of the coordinate system. Consider a local

coordinate system x, z (Fig. A.11). The patch extends in this coordinate system fromes to s.

The flow through the patch is:

M ¼ �
Z s

�s
fzdx

A Rankine point source of unit strength induces at x, z the vertical velocity:

fz ¼
1

2p

z� zq

ðx� xqÞ2 þ ðz� zqÞ2

A B

z

xq,zq

x

Figure A.11:
Patch in 2d
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Since z ¼ 0 on the patch, this yields:

M ¼
Z s

�s

1

2p

zq

ðx� xqÞ2 þ z2q
dx ¼ 1

2p
arctan

lzq
x2q þ z2q � s2

The local zq transforms from the global coordinates:

zq ¼ �nx$ðxq � xcÞ � nz$ðzq � zcÞ
xc; zc are the global coordinates of the patch center, xq; zq of the source.

From the value of the potential f at the corners A and B, the average velocity within the

patch is found as:

~y ¼ fB � fA

j~xB �~xAj$
~xB �~xA
j~xB �~xAj

i.e. the absolute value of the velocity is:

Df

Ds
¼ fB � fA

j~xB �~xAj

The direction is tangential to the body; the unit tangential is ð~xB �~xAÞ=j~xB �~xAj. The
pressure force on the patch is:

D~f ¼ ~n

Z
pdl ¼ ~n

r

2

�
V2$l�

Z
~y2dl

�
~y is not constant! To evaluate this expression, the velocity within the patch is approximated

by:

~y ¼ aþ bt þ ct2

t is the tangential coordinate directed from A to B.~yA and~yB are the velocities at the patch

corners. The coefficients a, b, and c are determined from the conditions:

• The velocity at t ¼ 0 is~yA: a ¼~yA.

• The velocity at t ¼ 1 is~yB: a + b + c ¼~yB.

• The average velocity (integral over one patch) is~y : aþ 1=2bþ 1=3c ¼~y:

This yields:

a ¼~yA

b ¼ 6~y� 4~yA � 2~yB

c ¼ �6~y þ 3~yA þ 3~yB
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Using the above quadratic approximation for~y, the integral of~y2 over the patch area is found

after some lengthy algebraic manipulations as:Z
~y2dl ¼ l

Z 1

0
~y 2dt ¼ l$

�
a2 þ abþ 1

3
ð2acþ b2Þþ 1

2
bcþ 1

5
c2
�

¼ l$

�
~y 2 þ 2

15
ðð~yA �~yÞ þ ð~yB �~yÞÞ2 � 1

3
ð~yA �~yÞð~yB �~yÞ

�

Thus the force on one patch is:

D~f ¼ �~n$l$
��
~y2 � V2Þ þ 2

15
ðð~yA �~yÞ þ ð~yB �~yÞÞ2 � 1

3
ðð~yA �~yÞð~yB �~yÞÞ

�

2. Three-dimensional case

The potential of a three-dimensional source is:

4 ¼ � 1

4p
��~x�~xq

��
Figure A.12 shows a triangular patch ABC and a source S. Quadrilateral patches may be

created by combining two triangles. The zero-flow condition for this patch is:

�V
ð~a� ~bÞ1

2
þ
X
i

siMi ¼ 0

The first term is the volume flow through ABC due to the uniform flow; the index 1

indicates the x component (of the vector product of two sides of the triangle). The flow M

through a patch ABC induced by a point source of unit strength is �a=ð4pÞ. a is the solid

angle in which ABC is seen from S. The rules of spherical geometry give a as the sum of the

angles between each pair of planes SAB, SBC, and SCA minus p:

a ¼ bSAB;SBC þ bSBC;SCA þ bSCA;SAB � p

S
C

A
Bc

b
a

Figure A.12:
Source point S and patch ABC
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where, e.g.,

bSAB;SBC ¼ arctan
� ½ð~A� ~BÞ � ð~B� ~CÞ�$~B

ð~A� ~BÞ$ð~B� ~CÞj~Bj

Here ~A, ~B, ~C are the vectors pointing from the source point S to the panel corners A, B, C.

The solid angle may be approximated by A*/d2 if the distance d between patch center and

source point exceeds a given limit. A* is the patch area projected on a plane normal to the

direction from the source to the patch center:

~d ¼ 1

3
ð~Aþ ~Bþ ~CÞ

A� ¼ 1

2
ð~a� ~bÞ

~d

d

With known source strengths si, one can determine the potential f and its derivatives Vf at

all patch corners. From the f values at the corners A, B, C, the average velocity within the

triangle is found as:

�~y ¼ Vf ¼ fA � fC

~n2AB
~nAB þ fB � fA

~n2AC
~nAC

~nAB ¼ ~b�~c$~b

~c2
~c and ~nAC ¼~c�

~b$~c

~b
2
~b

With known �~y and corner velocities~yA, ~yB,~yC, the pressure force on the triangle can be

determined:

D~f ¼ ~n

Z
p dA ¼ ~n

r

2
ðV2$A�

Z
~y2dAÞ

where ~y is not constant! A ¼ 1=2j~a� ~bj is the patch area. To evaluate this equation, the

velocity within the patch is approximated by:

~y ¼ �~yþ ð~yA � �~yÞð2r2 � rÞ þ ð~yB � �~yÞð2s2 � sÞ þ ð~yC � �~yÞð2t2 � tÞ

r is the ‘triangle coordinate’ directed to patch corner A: r¼ 1 at A and r¼ 0 at the line BC.

s and t are the corresponding ‘triangle coordinates’ directed to B resp. C. Using this

quadratic v formula, the integral of~y2 over the triangle area is found after some algebraic

manipulations as:
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Z
~y2dA ¼ A$

	
�~y 2 þ 1

30
ð~yA � �~yÞ2 þ 1

30
ð~yB � �~yÞ2 þ 1

30
ð~yC � �~yÞ2

� 1

90
ð~yA � �~yÞ ð~yB � �~yÞ � 1

90
ð~yB � �~yÞ ð~yC � �~yÞ

� 1

90
ð~yC � �~yÞð~yA � �~yÞ
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APPENDIX B

Numerical Examples for BEM

Two-Dimensional Flow Around a Body in Infinite Fluid

One of the most simple applications of boundary element methods is the computation of the

potential flow around a body in an infinite fluid. The inclusion of a rigid surface is

straightforward in this case and leads to the double-body flow problem which will be discussed

at the end of this chapter.

Theory

We consider a submerged body of arbitrary (but smooth) shape moving with constant speed V

in an infinite fluid domain. For inviscid and irrotational flow, this problem is equivalent to

a body being fixed in an inflow of constant speed. For testing purposes, we may select a simple

geometry like a circle (cylinder of infinite length) as a body.

For the assumed ideal fluid, there exists a velocity potential f such that~y ¼ Vf. For the

considered ideal fluid, continuity gives Laplace’s equation, which holds in the whole fluid

domain:

Df ¼ fxx þ fzz ¼ 0

In addition, we require the boundary condition that water does not penetrate the body’s surface

(hull condition). For an inviscid fluid, this condition can be reformulated requiring just

vanishing normal velocity on the body:

~n$Vf ¼ 0

~n is the inward unit normal vector on the body hull. This condition is mathematically

a Neumann condition as it involves only derivatives of the unknown potential.

Once a potential and its derivatives have been determined, the forces on the body can be

determined by direct pressure integration:

f1 ¼
Z
s
pn1 dS
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f2 ¼
Z
s
pn2 dS

S is the wetted surface. p is the pressure determined from Bernoulli’s equation:

p ¼ r

2
ðV2 � ðVfÞ2Þ

The force coefficients are then:

Cx ¼ f1
r

2
V2S

Cz ¼ f2
r

2
V2S

Numerical Implementation

The velocity potential f is approximated by uniform flow superimposed by a finite number N

of elements. These elements are in the sample program DOUBL2D desingularized point

sources inside the body (Fig. A.10). The choice of elements is rather arbitrary, but the most

simple elements are selected here for teaching purposes.

We formulate the potential f as the sum of parallel uniform flow (of speed V) and a residual

potential which is represented by the elements:

f ¼ �Vxþ
X

si4

si is the strength of the ith element, 4 the potential of an element of unit strength. The index i

for 4 is omitted for convenience but it should be understood in the equations below that 4 refers

to the potential of only the ith element.

Then the Neumann condition on the hull becomes:

XN
i¼1

sið~n$V4Þ ¼ Vn1

This equation is fulfilled on N collocation points on the body, thus forming a linear system of

equations in the unknown element strengths si. Once the system is solved, the velocities and

pressures are determined on the body.
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The pressure integral for the x force is evaluated approximately by:

Z
s
pn1 dSz

XN
i¼1

pin1;isi

The pressure pi and the inward normal on the hull ni are taken constant over each panel. si is the

area of one segment.

For double-body flow, an ‘element’ consists of a source at z ¼ zq and its mirror image at

z ¼ �zq. Otherwise, there is no change in the program.

Two-Dimensional Wave Resistance Problem

The extension of the theory for a two-dimensional double-body flow problem to a two-

dimensional free-surface problem with optional shallow-water effect introduces these main

new features:

• ‘fully non-linear’ free-surface treatment

• shallow-water treatment

• treatment of various element types in one program.

While the problem is purely academical as free-surface steady flows for ships in reality are

always strongly three-dimensional, the two-dimensional problem is an important step in

understanding the three-dimensional problem. Various techniques have in the history of

development always been tested and refined first in the much faster and easier two-dimen-

sional problem, before being implemented in three-dimensional codes. The two-dimensional

problem is thus an important stepping stone for researchers and a useful teaching example for

students.

Theory

We consider a submerged body of arbitrary (but smooth) shape moving with constant speed V

under the free surface in water of constant depth. The depth may be infinite or finite. For

inviscid and irrotational flow, this problem is equivalent to a body being fixed in an inflow of

constant speed.

We extend the theory simply repeating the previously discussed conditions and focusing on

the new conditions. Laplace’s equation holds in the whole fluid domain. The boundary

conditions are:

• Hull condition: water does not penetrate the body’s surface.

• Kinematic condition: water does not penetrate the water surface.
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• Dynamic condition: there is atmospheric pressure at the water surface.

• Radiation condition: waves created by the body do not propagate ahead.

• Decay condition: far ahead of and below the body, the flow is undisturbed.

• Open-boundary condition: waves generated by the body pass unreflected any artificial

boundary of the computational domain.

• Bottom condition (shallow-water case): no water flows through the sea bottom.

The decay condition replaces the bottom condition if the bottom is at infinity, i.e. in the usual

infinite fluid domain case.

The wave resistance problem features two special problems requiring an iterative solution:

1. A non-linear boundary condition appears on the free surface.

2. The boundaries of water (waves) are not a priori known.

The iteration starts by approximating:

• the unknown wave elevation by a flat surface

• the unknown potential by the potential of uniform parallel flow.

In each iterative step, wave elevation and potential are updated yielding successively better

approximations for the solution of the non-linear problem.

The equations are formulated here in a right-handed Cartesian coordinate system with x

pointing forward towards the ‘bow’ and z pointing upward. For the assumed ideal fluid, there

exists a velocity potential f such that~y ¼ Vf. The velocity potential f fulfills Laplace’s

equation in the whole fluid domain:

Df ¼ fxx þ fzz ¼ 0

The hull condition requires vanishing normal velocity on the body:

~n$Vf ¼ 0

~n is the inward unit normal vector on the body hull.

The kinematic condition (no penetration of water surface) gives at z ¼ z:

Vf$Vz ¼ fz

For simplification, we write zðx; zÞ with zz ¼ vz=vz ¼ 0:

The dynamic condition (atmospheric pressure at water surface) gives at z ¼ z:

1

2
ðVfÞ2 þ gz ¼ 1

2
V2
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with g¼ 9.81 m/s2. Combining the dynamic and kinematic boundary conditions eliminates the

unknown wave elevation z ¼ z:

1

2
Vf$VðVfÞ2 þ gfz ¼ 0

This equation must still be fulfilled at z ¼ z. If we approximate the potential f and the wave

elevation z by arbitrary approximationsF and z, linearization about the approximated potential

gives at z ¼ z:

VF$V

�
1

2
ðVFÞ2 þ VF$Vðf� FÞ

�
þ Vðf� FÞ$V

�
1

2
ðVFÞ2

�
þ gfz ¼ 0

F and f�F are developed in a Taylor expansion about z. The Taylor expansion is

truncated after the linear term. Products of z� z with derivatives of f� F are neglected.

This yields at z ¼ z:

VF$V

�
1

2
ðVFÞ2 þ VF$Vðf� FÞ

�
þ Vðf� FÞ$V

�
1

2
ðVFÞ2

�
þ gfz

þ
�
1

2
VF$VðVFÞ2 þ gFz

�
z

ðz� zÞ ¼ 0

A consistent linearization about F and z substitutes z by an expression depending solely on z,

FðzÞ and fðzÞ. For this purpose, the original expression for z is also developed in a truncated

Taylor expansion and written at z ¼ z:

z ¼ � 1

2g
ð�ðVFÞ2 þ 2VF$Vfþ 2VF$VFzðz� zÞ � V2Þ

z� z ¼
�1

2
ð2VF$Vf� ðVFÞ2 � V2Þ � gz

gþ VF$VFz

Substituting this expression in our equation for the free-surface condition gives the consistently

linearized boundary condition at z ¼ z:

VFV½�ðVFÞ2 þ VF$Vf� þ 1

2
VfVðVFÞ2 þ gfz þ

�
1

2
VFVðVFÞ2 þ gFz

�
z

gþ VF$VFz

�
�
� 1

2
½�ðVFÞ2 þ 2VF$Vf� V2� � gz

�
¼ 0

The denominator in the last term becomes zero when the vertical particle acceleration is equal

to gravity. In fact, the flow becomes unstable already at 0.6 to 0.7g both in reality and in

numerical computations.
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It is convenient to introduce the following abbreviations:

~a ¼ 1

2
VððVFÞ2Þ ¼

�
FxFxx þ FzFxz

FxFxz þ FzFzz

�

B ¼

�
1

2
VFVðVFÞ2 þ gFz

�
z

gþ VF$VFz
¼ ½VF~aþgFz�z

gþ a2

¼ 1

gþ a2
ðF2

xFxxz þ F2
zFzzz þ gFzz þ 2½FxFzFxzz þ Fxz$a1 þ Fzz$a2�Þ

Then the boundary F condition at z ¼ z becomes:

2ð~aVfþ FxFzfxzÞ þ F2
xfxx þ F2

zfzz þ gfz � BVFVf

¼ 2~aVF� B

�
1

2
ððVFÞ2 þ V2Þ � gz

�
The non-dimensional error in the boundary condition at each iteration step is defined by:

3 ¼ maxðj~aVFþ gFzjÞ=ðgVÞ
where ‘max’ means the maximum value of all points at the free surface.

For given velocity, Bernoulli’s equation determines the wave elevation:

z ¼ 1

2g

�
V2 � ðVfÞ2

	
The first step of the iterative solution is the classical linearization around uniform flow. To

obtain the classical solutions for this case, the above equation should also be linearized as:

z ¼ 1

2g
ðV2 þ ðVFÞ2 � 2VFVfÞ

However, it is computationally simpler to use the non-linear equation.

The bottom, radiation, and open-boundary conditions are fulfilled by the proper arrangement

of elements as described below. The decay condition e like the Laplace equation e is

automatically fulfilled by all elements.

Once a potential has been determined, the force on the body in the x direction can be

determined by direct pressure integration:

f1 ¼
Z
s
pn1 dS
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S is the wetted surface. p is the pressure determined from Bernoulli’s equation:

p ¼ r

2

�
V2 � ðVfÞ2

	
The force in the x direction, f1, is the (negative) wave resistance. The non-dimensional wave

resistance coefficient is:

Cw ¼ �f1=
�r
2
V2S

	

Numerical Implementation

The velocity potential f is approximated by uniform flow superimposed by a finite number of

elements. These elements are, in the sample program SHAL2D:

• desingularized point source clusters above the free surface

• desingularized point sources inside the body.

The choice of elements is rather arbitrary, but very simple elements have been selected for

teaching purposes.

The height of the elements above the free surface is not corrected in SHAL2D. For usual

discretizations (10 elements per wave length) and moderate speeds, this procedure

should work without problems. For finer discretizations (as often found for high speeds),

problems occur which require a readjustment of the panel layer. However, in most cases

it is sufficient to adjust the source layer just once after the first iteration and then

‘freeze’ it.

We formulate the potential f as the sum of parallel uniform flow (of speed V) and a residual

potential which is represented by the elements:

f ¼ �Vxþ
X

si4

si is the strength of the ith element, 4 the potential of an element of unit strength. The

expression ‘element’ refers to one source (cluster) and all its mirror images. If the collocation

point and source center are sufficiently far from each other, e.g. three times the grid spacing,

the source cluster may be substituted by a single point source. This accelerates the computation

without undue loss of accuracy.

Then the no-penetration boundary condition on the hull becomes:X
sið~n$V4Þ ¼ Vn1
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The linearized free-surface condition becomes:X
si


2ð~aV4þ FxFz4xzÞ þ F2

x4xx þ F2
z4zz þ g4z � BVFV4Þ

¼ 2ð~aVFþ a1VÞ � B

�
1

2
ððVFÞ2 þ V2Þ � gzþ VFx

�

These two equations form a linear system of equations in the unknown element strengths si.

Once the system is solved, the velocities (and higher derivatives of the potential) are

determined on the water surface. Then the error 3 is determined.

For shallow water, mirror images of elements at the ocean bottom are used. This technique is

similar to the mirror imaging at the still waterplane used for double-body flow.

The radiation and open-boundary conditions are fulfilled using ‘staggered grids’. This

technique adds an extra row of panels at the downstream end of the computational domain

and an extra row of collocation points at the upstream end (Fig. 3.11). For equidistant grids,

this can also be interpreted as shifting or staggering the grid of collocation points vs. the grid

of elements, hence the name ‘staggered grid’. However, this name is misleading as for

non-equidistant grids or three-dimensional grids with quasi-streamlined grid lines, adding an

extra row at the ends is not the same as shifting the whole grid.

The pressure integral for the x force is evaluated approximately by:

Z
s
pn1 dSz

XNB

i¼1

pin1;isi

NB is the number of elements on the hull. The pressure pi, and the inward normal on the hull,

ni, are taken constant over each panel. si is the area of one segment.

Three-Dimensional Wave Resistance Problem

The extension of the theory for a two-dimensional submerged body to a three-dimensional

surface-piercing ship free to trim and sink introduces these main new features:

• surface-piercing hulls

• dynamic trim and sinkage

• transom stern

• Kutta condition for multihulls.

The theory outlined here is the theory behind the STEADY code (Hughes and Bertram 1995).

The code is a typical representative of a state-of-the-art ‘fully non-linear’ wave resistance code

of the 1990s.
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Theory

We consider a ship moving with constant speed V in water of constant depth. The depth and

width may be infinite and are in fact assumed to be so in most cases. For inviscid and

irrotational flow, this problem is equivalent to a ship being fixed in an inflow of constant

speed.

For the considered ideal fluid, continuity gives Laplace’s equation, which holds in the whole

fluid domain. A unique description of the problem requires further conditions on all boundaries

of the fluid resp. the modeled fluid domain:

• Hull condition: water does not penetrate the ship’s surface.

• Transom stern condition: for ships with a transom stern, we assume that the flow separates

and the transom stern is dry. Atmospheric pressure is then enforced at the edge of the

transom stern.

• Kinematic condition: water does not penetrate the water surface.

• Dynamic condition: there is atmospheric pressure at the water surface.

• Radiation condition: waves created by the ship do not propagate ahead. (This condition is

not valid for transcritical depth Froude numbers when the flow becomes unsteady and

soliton waves are pulsed ahead. But ships are never designed for such speeds.)

• Decay condition: far away from the ship, the flow is undisturbed.

• Open-boundary condition: waves generated by the ship pass unreflected any artificial

boundary of the computational domain.

• Equilibrium: the ship is in equilibrium, i.e. trim and sinkage are changed such that the

dynamic vertical force and the trim moment are counteracted.

• Bottom condition (shallow-water case): no water flows through the sea bottom.

• Kutta condition (for multihulls): at the end of each side floater the flow separates smoothly.

This is approximated by setting the y velocity to zero.

The decay condition replaces the bottom condition if the bottom is at infinity, i.e. in the usual

infinite fluid domain case.

The problem is solved using boundary elements (in the case of STEADY higher-order panels

on the ship hull, point source clusters above the free surface). The wave resistance problem

features two special problems requiring an iterative solution approach:

1. A non-linear boundary condition appears on the free surface.

2. The boundaries of water (waves) and ship (trim and sinkage) are not a priori known.

The iteration starts by approximating:

• the unknown wave elevation by a flat surface

• the unknown potential by the potential of uniform parallel flow

• the unknown position of the ship by the position of the ship at rest.
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Input; initialize flow
field with uniform folw

Compute geometry
information for panels

Set up system of equations
for unknown source strengths

Solve system of equation

Error decreased?

Compute new wave height

Compute velocity on hull

Pressure integration

New sinkage and trim

Iteration end?

Out put

STOP

Compute velocity etc.
on new free surface

Compute velocity etc. (up to 2
derivatives) on free surface

N

N

Underrelax unknown
source strengths

Figure B.1:
Flow chart of iterative solution

In each iterative step, wave elevation, potential, and position are updated, yielding successively

better approximations for the solution of the non-linear problem (Fig. B.1).

The equations are formulated here in a right-handed Cartesian coordinate system with x

pointing forward towards the bow and z pointing upward. The moment about the y-axis (and

the trim angle) are positive clockwise (bow immerses for positive trim angle).

For the assumed ideal fluid, there exists a velocity potential f such that~y ¼ Vf. The velocity

potential f fulfills Laplace’s equation in the whole fluid domain:

Df ¼ fxx þ fyy þ fzz ¼ 0

A unique solution requires the formulation of boundary conditions on all boundaries of the

modeled fluid domain.
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The hull condition (no penetration of ship hull) requires that the normal velocity on the hull

vanishes:

~n$Vf ¼ 0

~n is the inward unit normal vector on the ship hull.

The transom stern condition (atmospheric pressure at the edge of the transom stern z ¼ zT) is

derived from Bernoulli’s equation:

1

2
ðVfÞ2 þ gzT ¼ 1

2
V2

with g ¼ 9.81 m/s2. This condition is non-linear in the unknown potential. We assume that the

water flows at the stern predominantly in the x direction, such that the y and z components are

negligible. This leads to the linear condition:

fx þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2 � 2gzT

p
¼ 0

For points above the height of stagnation V2/2g, this condition leads to a negative term in the

square root. For these points, stagnation of horizontal flow is enforced instead. Both cases can

be combined as:

fx þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxð0;V2 � 2gzTÞ

q
¼ 0

The Kutta condition is originally a pressure condition, thus also non-linear. However, the

obliqueness of the flow induced at the end of each side floater is so small that a simplification

can be well justified. We then enforce just zero y velocity (Joukowski condition):

fy ¼ 0

The kinematic condition (no penetration of water surface) gives at z ¼ z :

Vf$Vz ¼ fz

For simplification, we write zðx; y; zÞ with zz ¼ vz=vz ¼ 0.

The dynamic condition (atmospheric pressure at water surface) gives at z ¼ z:

1

2
ðVfÞ2 þ gz ¼ 1

2
V2

Combining the dynamic and kinematic boundary conditions and linearizing consistently yields

again at z ¼ z:

2ð~aVfþ FxFyfxy þFxFzfxz þ FyFzfyzÞ þ F2
xfxx

þF2
yfyy þ F2

zfzz þ gfz � BVFVf ¼ 2~aVF� B

�
1

2
ððVFÞ2 þ V2Þ � gz

�
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with

~a ¼ 1

2
VððVFÞ2Þ ¼

8<
:

FxFxx þ FyFxy þ FzFxz

FxFxy þ FyFyy þ FzFyz

FxFxz þ FyFyz þ FzFzz

9=
;

B ¼

�
1

2
VFVðVFÞ2 þ gFz

�
z

gþ VF$VFz
¼ ½VF~aþ gFz�z

gþ a3

¼ 1

gþ a3

�
F2
xFxxz þF2

yFyyz þ F2
zFzzz þ gFzz þ 2½FxFyFxyz

þFxFzFxzz þ FyFzFyzz þFxz$a1 þFyz$a2 þ Fzz$a3�
�

The bottom, radiation, and open-boundary conditions are fulfilled by the proper arrangement

of elements as described below. The decay condition e like the Laplace equation e is

automatically fulfilled by all elements.

Once a potential has been determined, the forces can be determined by direct pressure

integration on the wetted hull. The forces are corrected by the hydrostatic forces at rest. (The

hydrostatic x force and y moment should be zero, but are non-zero due to discretization errors.

The discretization error is hoped to be reduced by subtracting the value for the hydrostatic force):

f1 ¼
Z
S
pn1 dS�

Z
S0

psn1 dS

f3 ¼
Z
S
pn3 dS�

Z
S0

psn3 dS

f5 ¼
Z
S
pðzn1 � xn3Þ dS�

Z
S0

psðzn1 � xn3Þ dS

S is the actually wetted surface. S0 is the wetted surface of the ship at rest. ps ¼ � rgz is the

hydrostatic pressure, where r is the density of water. p is the pressure determined from

Bernoulli’s equation:

p ¼ r

2

�
V2 � ðVfÞ2

	
� rgz

The force in the x direction, f1, is the (negative) wave resistance. The non-dimensional wave

resistance coefficient is:

Cw ¼ �f1

.�r
2
V2S

	
The z force and ymoments are used to adjust the position of the ship. We assume small changes

of the position of the ship. Dz is the deflection of the ship (positive, if the ship surfaces) and Dq

is the trim angle (positive if bow immerses) (Fig. B.2).
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For givenDz andDq, the corresponding z force and ymoment (necessary to enforce this change

of position) are: �
f3
f5

�
¼
�
AWL$r$g �AWL$r$g$xWL

�AWL$r$g$xWL IWL$r$g

��
Dz
Dq

�

AWL is the area, IWL the moment of inertia, and xWL the center of the still water-plane. IWL and

xWL are taken relative to the origin, which we put amidships. Inversion of this matrix gives an

equation of the form: �
Dz
Dq

�
¼
�
a11 a12
a21 a22

��
f3
f5

�
The coefficients aij are determined once in the beginning by inverting the matrix for the still

waterline. Then during each iteration the position of the ship is changed by Dz and Dq giving

the final sinkage and trim when converged. The coefficients should actually change as the ship

trims and sinks and thus its actual waterline changes from the still waterline. However, this

error just slows down the convergence, but (for convergence) does not change the final result

for trim and sinkage.

Numerical Implementation

The velocity potential f is approximated by parallel flow superimposed by a finite number of

elements. These elements are, for STEADY higher-order panels lying on the ship surface,

linear panels (constant strength) in a layer above part of the free surface, and vortex elements

lying on the local center plane of any side floater. However, the choice of elements is rather

arbitrary. If just wave resistance computations are performed, first-order elements are sufficient

and actually preferable due to their greater robustness.

The free-surface elements are again usually ‘desingularized‘. We place them approximately

one panel length above the still-water plane (z ¼ 0).

We formulate the potential f as the sum of parallel uniform flow (of speed V) and a residual

potential which is represented by the elements:

f ¼ �Vxþ
X

si4

z

x

f3

f1
f5θ

Figure B.2:
Coordinate system; x points towards bow, origin is usually amidships in still waterline;

relevant forces and moment
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si is the strength of the ith element, 4 the potential of an element of unit strength. The index i

for 4 is omitted for convenience but it should be understood in the equations below that 4

refers to the potential of only the ith element. The expression ‘element’ refers to one panel or

vortex and all its mirror images.

Then the no-penetration boundary condition on the hull becomes:X
sið~n$V4Þ ¼ Vn1

The Kutta condition becomes: X
si4y ¼ 0

The transom stern condition becomes:

X
si4x ¼ V �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxð0;V2 � 2gzTÞ

q
The linearized free surface condition then becomes:

P
sið2ð~aV4þ FxFy4xy þ FxFz4xz þFyFz4yzÞ þF2

x4xx þ F2
y4yy

þF2
z4zz þ g4z � BVFV4Þ¼ 2ð~aVFþa1VÞ � B

�
1

2
ððVFÞ2 þ V2Þ � gzþ VFx

�

These four equations form a linear system of equations in the unknown element strengths

si. Once the system is solved, the velocities (and higher derivatives of the potential) are

determined on the water surface and the error 3 is determined. A special refinement

accelerates and stabilizes to some extent the iteration process: if the error 3i+1 in iteration

step i+1 is larger than the error 3i in the previous ith step the source strengths are

underrelaxed:

siþ1;new¼ siþ1;old$3i þ si$3iþ1

3i þ 3iþ1

Velocities and errors are evaluated again with the new source strengths. If the error is decreased

the computation proceeds, otherwise the underrelaxation is repeated. If four repetitions still do

not improve the error compared to the previous step, the computation is stopped. In this case,

no converged non-linear solution can be found. This is usually the case if breaking waves

appear in the real flow at a location of a collocation point.

Mirror images of panels are used (Fig. B.3):

1. In the y direction with respect to the center plane y ¼ 0.

2. For shallow water in the z direction with respect to the water bottom z ¼ zbottom : z0 ¼
�2jzbottomj � z:
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The computation of the influence of one element on one collocation point uses the fact that the

influence of a panel at A on a point at B has the same absolute value and opposite sign as

a panel at B on a point at A. Actually, mirror images of the collocation point are produced and

the influence of the original panel is computed for all mirror points. Then the sign of each

influence is changed according to Table B.1.

The radiation and open-boundary conditions are fulfilled using ‘staggered grids’ as for the two-

dimensional case. No staggering in the y direction is necessary.

For equidistant grids and collocation points along lines of y ¼ const., this can also be

interpreted as shifting or staggering the grid of collocation points vs. the grid of elements,

hence the name ‘staggered grid’. However, for three-dimensional grids around surface-piercing

Table B.1: Sign for derivatives of potential due to interchanging source and

collocation point; mirror image number as in Fig. B.4

1 2 3 4

fx
+ + + +

fy
+ � + �

fz
+ + + +

fxx
+ + + +

fxy
+ � + �

fxz
+ + + +

fyy
+ + + +

fyz
+ � + �

fxxz
+ + + +

fxyz
+ � + �

fxzz
+ + + +

fyyz
+ + + +

fyzz
+ � + �

Plane of symmetry in y direction

Bottom of water

`Original'
points / panels

1 2

3 4

Figure B.3:
Mirror images of panels are used
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ships the grids are not staggered in a strict sense as, with the exception of the very ends,

collocation points always lie directly under panel centers.

The pressure integral for the x force e the procedure for the z force and the y moment are

corresponding e is evaluated approximately by:Z
s
pn1 dSz2

XNB

i¼1

pin1;isi

NB is the number of elements on the hull. The pressure pi and the inward normal on the hull

ni are taken constant over each panel. The factor 2 is due to the port/starboard symmetry.

The non-linear solution makes it necessary to discretize the ship above the still waterline.

The grid can then be transformed (regenerated) such that it always follows the actually

wetted surface of the ship. However, this requires fully automatic grid generation, which is

difficult on complex ship geometries prefering to discretize a ship initially to a line z ¼
const. above the free waterline. Then the whole grid can trim and sink relative to the free

surface, as the grids on free surface and ship do not have to match. Then in each step, the

actually wetted part of the ship grid has to be determined. The wetted area of each panel

can be determined as follows.

A panel is subdivided into triangles. Each triangle is formed by one side of the panel and the

panel center. Bernoulli’s equation correlates the velocity in a panel to a height zw where the

pressure would equal atmospheric pressure:

zw ¼ 1

2g
ðV2 � ðVfÞ2Þ

If zw lies above the highest point of the triangle, si is taken as the triangle area. If zw lies below

the lowest point of the triangle, si ¼ 0. If zw lies between the highest and the lowest point of the

triangle, the triangle is partially submerged and pierces the water surface (Fig. B.4).

In this case, the line zw divides the triangle into a subtriangle ABC and the remaining trapezoid.

If the triangle ABC is submerged (left case) si is taken to the area of ABC, otherwise to the

triangle area minus ABC. The value of z in the pressure integral (e.g. for the hydrostatic

contribution) is taken from the center of the submerged partial area.

C

C

B
B

A

A
zw

zw

Figure B.4:
Partially submerged triangle with subtriangle ABC submerged (left) or surfaced (right)
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If a panel at the upper limit of discretization is completely submerged, the discretization was

chosen too low. The limit of upper discretization is given for the trimmed ship by:

z ¼ msymxþ nsym

Strip Method Module (Two-Dimensional)

Strip methods as discussed in Section 4.4.2, Chapter 4, are the standard tool in evaluating ship

seakeeping. An essential part of each strip method is the computation of hydrodynamic masses,

damping, and exciting forces for each strip. This computation was traditionally based on

conformal mapping techniques, where an analytical solution for a semicircle was transformed

to a shape resembling a ship section. This technique is not capable of reproducing complex

shapes as found in the forebody of modern ships, where possibly cross-section may consist of

unconnected parts for bulbous bow and upper stem. Numerical ‘close-fit’ methods became

available with the advent of computers in naval architecture and are now widely used in

practice. In the following, one example of such a close-fit method to solve the two-dimensional

strip problem is presented. The Fortran source code for the method is available on the internet

(www.bh.com/companions/0750648511).

We compute the radiation and diffraction problems for a two-dimensional cross-section of

arbitrary shape in harmonic, elementary waves. As usual, we assume an ideal fluid. Then

there exists a velocity potential f such that the partial derivatives of this potential in an

arbitrary direction yield the velocity component of the flow in that direction. We neglect all

non-linear effects in our computations. The problem is formulated in a coordinate system as

shown in Fig. B.5. Indices y, z, and t denote partial derivatives with respect to these

variables.

Xk

αik

X k+1

n
k

i

k+1

z

z

y

y

Figure B.5:
Flow chart of iterative solution
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We solve the problem in the frequency domain. The two-dimensional seakeeping potentials

will then be harmonic functions oscillating with encounter frequency ue:

fðy; z; tÞ ¼ Reðf̂ðy; zÞeiuetÞ

The potential must fulfill the Laplace equation:

fyy þ fzz ¼ 0

in the whole fluid domain (z < 0) subject to the following boundary conditions:

1. Decaying velocity with water depth:

lim
z/N

Vf ¼ 0

2. There is atmospheric pressure everywhere on the free surface z ¼ z (dynamic condition).

Then Bernoulli’s equation yields:

ft þ
1

2
ðVfÞ2 � gz ¼ 0

3. There is no flow through the free surface (kinematic condition), i.e. the local vertical

velocity of a particle coincides with the rate of change of the surface elevation in

time:

fz ¼ zt

4. Differentiation of the dynamic condition with respect to time and combination with the

kinematic condition yields:

ftt þ fyfyt þ fzfzt � gfz ¼ 0

This expression can be developed in a Taylor expansion around z ¼ 0. Omitting all non-

linear terms then yields:

ftt � gfz ¼ 0

5. There is no flow through the body contour, i.e. the normal velocity of the water on the body

contour coincides with the normal velocity of the hull (or, respectively, the relative normal

velocity between body and water is zero):

~n$Vf ¼ ~n$~y

Here~y is the velocity of the body, ~n is the outward unit normal vector.
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6. Waves created by the body must radiate away from the body:

lim
jyj/N

f ¼ Reð4̂e�kzeiðuet�kjyjÞÞ

4̂ here is a yet undetermined, but constant, amplitude.

Using the harmonic time dependency of the potential, we can reformulate the Laplace equation

and all relevant boundary conditions such that only the time-independent complex amplitude

of the potential f̂ appears:

Laplace equation:

f̂yy þ f̂zz ¼ 0 for z < 0

Decay condition:

lim
z/N

Vf̂ ¼ 0

Combined free-surface condition:

u2
e

g
f̂þ f̂z ¼ 0 at z ¼ 0

The body boundary condition here is explicitly given for the radiation problem of the body in

heave motion. This will serve as an example. The other motions (sway, roll) and the

diffraction problem are treated in a very similar fashion. The body boundary condition for

heave is then:

~nVf̂ ¼ iuen2

n2 is the z component of the (two-dimensional) normal vector ~n.

The radiation condition for f̂ is derived by differentiation of the initial radiation condition for f

with respect to y and z, respectively. The resulting two equations allow the elimination of the

unknown constant amplitude 4̂, yielding:

if̂z ¼ sign ðyÞ$f̂y

f̂ can be expressed as the superposition of a finite number n of point source potentials (see

Appendix A). The method described here uses desingularized sources located (a small

distance) inside the body and above the free surface. The grid on the free surface extends to

a sufficient distance to both sides depending on the wavelength of the created wave. Due to

symmetry, sources at yi, zi should have the same strength as sources at �yi, zi. (For sway and
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roll motion, we have antisymmetrical source strength.) We then exploit symmetry and use

source pairs as elements to represent the total potential:

f̂ðy; zÞ ¼
Xn
i¼1

si4i

4i ¼
1

4p
ln½ðy� yiÞ2 þ ðz� ziÞ2� þ 1

4p
ln½ðyþ yiÞ2 þ ðz� ziÞ2�

This formulation automatically fulfills the Laplace equation and the decay condition. The

body, free surface, and radiation conditions are fulfilled numerically by adjusting the element

strengths si appropriately. We enforce these conditions only on points yi > 0. Due to

symmetry, they will then also be fulfilled automatically for yi < 0.

The method described here uses a patch method to numerically enforce the boundary

conditions (see Appendix A). The body boundary condition is then integrated over one patch,

e.g. between the points k and k + 1 on the contour (Fig. B.5):

Xn
i¼1

si

Z pkþ1

pk

V4i~nk dS ¼ iue

Z pkþ1

pk

n2 dS

As n2 can be expressed as n2 ¼ dy/ds, this yields:

Xn
i¼1

si

Z pkþ1

pk

V4i~nk dS ¼ iueðykþ1 � ykÞ

The integral on the l.h.s. describes the flow per time (flux) through the patch (contour section)

under consideration due to a unit source at yi, zi and its mirror image. The flux for just the

source without its image corresponds to the portion of the angle aik (Fig. B.5):Z pkþ1

pk

V4i~nk dS ¼ aik

2p

Correspondingly we write for the elements formed by a pair of sources:Z pkþ1

pk

V4i~nk dS ¼ aþik
2p

þ a�ik
2p

The angle aþik is determined by:

aik ¼ arctan

�
~xkþ1 �~xk
~xkþ1$~x k

�
1

The index 1 here denotes the x component of the vector.
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The other numerical conditions can be formulated in an analogous way. The number

of patches corresponds to the number of elements. The patch conditions then form a

system of linear equations for the unknown element strengths si, which can be solved

straightforwardly. Once the element strengths are known, the velocity can be computed

everywhere. The pressure integration for the patch method, then yields the forces on

the section. The forces can then again be decomposed into exciting forces (for diffraction)

and radiation forces expressed as added mass and damping coefficients analogous to

the decomposition described in Section 4.4, Chapter 4. The method has been encoded

in the Fortran routines HMASSE and WERREG (see www.bh.com/companions/

0750648511).

Rankine Panel Method in the Frequency Domain

Theory

The seakeeping method is limited theoretically to s> 0.25. In practice, accuracy problems may

occur for s< 0.4. The method does not treat transom sterns. The theory given is that behind the

FREDDY code (Bertram 1998).

We consider a ship moving with mean speed V in a harmonic wave of small amplitude h with

s ¼ Vue=g > 0:25. ue is the encounter frequency, g ¼ 9.81 m/s2. The resulting (linearized)

seakeeping problems are similar to the steady wave resistance problem described previously

and can be solved using similar techniques.

The fundamental field equation for the assumed potential flow is again Laplace’s equation. In

addition, boundary conditions are postulated:

1. No water flows through the ship’s surface.

2. At the trailing edge of the ship, the pressures are equal on both sides. (Kutta condition.)

3. A transom stern is assumed to remain dry. (Transom condition.)

4. No water flows through the free surface. (Kinematic free surface condition.)

5. There is atmospheric pressure at the free surface. (Dynamic free surface condition.)

6. Far away from the ship, the disturbance caused by the ship vanishes.

7. Waves created by the ship move away from the ship. For s > 0.25, waves created by the

ship propagate only downstream. (Radiation condition.)

8. Waves created by the ship should leave artificial boundaries of the computational domain

without reflection. They may not reach the ship again. (Open-boundary condition.)

9. Forces on the ship result in motions. (Average longitudinal forces are assumed to be

counteracted by corresponding propulsive forces, i.e. the average speed V remains constant.)

Note that this verbal formulation of the boundary conditions coincides virtually with the

formulation for the steady wave resistance problem.
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All coordinate systems here are right-handed Cartesian systems. The inertial Oxyz system

moves uniformly with velocity V. x points in the direction of the body’s mean velocity V, z

points vertically upwards. TheOxyz system is fixed at the body and follows its motions. When

the body is at rest position, x; y; z coincide with x, y, z. The angle of encounter m between body

and incident wave is defined such that m ¼ 180� denotes head sea and m ¼ 90� beam sea.

The body has six degrees of freedom for rigid body motion. We denote corresponding to the

degrees of freedom:

u1 surge motion of O in the x direction, relative to O

u2 heave motion of O in the y direction, relative to O

u3 heave motion of O in the z direction, relative to O

u4 angle of roll ¼ angle of rotation around the x-axis

u5 angle of pitch ¼ angle of rotation around the y-axis

u6 angle of yaw ¼ angle of rotation around the z-axis

The motion vector ~u and the rotational motion vector ~a are given by:

~u ¼ fu1; u2; u3gT and ~a ¼ fu4; u5; u6gT ¼ fa1;a2;a3gT

All motions are assumed to be small, of order O(h). Then for the three angles ai, the following

approximations are valid: sin(ai) ¼ tan(ai) ¼ ai, cos(ai) ¼ 1.

The relation between the inertial and the hull-bound coordinate system is given by the

linearized transformation equations:

~x ¼~x þ~a�~x þ~u

~x ¼~x�~a�~x�~u

Let~y ¼~yð~xÞ be any velocity relative to the Oxyz system and~y ¼~y ðx Þ the velocity relative to

the Oxyz system where ~x and ~x describe the same point.

Then the velocities transform:

~y ¼~y þ~a�~y þ ð~at �~x þ~utÞ

~y ¼~y�~a�~yþ ð~at �~xþ~utÞ

The differential operators Vx and Vx transform:

Vx ¼ fv=vx; v=vy; v=vzgT ¼ Vx þ~a� Vx
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Vx ¼ fv=v x ; v=v y ; v=v z gT ¼ Vx �~a� Vx

Using a three-dimensional truncated Taylor expansion, a scalar function transforms from one

coordinate system into the other:

f ð~xÞ ¼ f ð~x Þ þ ð~a�~x þ~uÞVx f ð~x Þ

f ð~x Þ ¼ f ð~xÞ � ð~a�~xþ~uÞVx f ð~x Þ

Correspondingly we write:

Vx f ð~x Þ ¼ Vx f ð~x Þ þ ðð~a�~x þ~u ÞVx ÞVx f ð~x Þ

Vx f ð~x Þ ¼ Vx f ð~x Þ þ ðð~a�~xþ~u ÞVxÞVx f ð~x Þ

A perturbation formulation for the potential is used:

ftotal ¼ fð0Þ þ fð1Þ þ fð2Þ þ $$$

fð0Þ is the part of the potential which is independent of the wave amplitude h. It is the solution

of the steady wave resistance problem described in the previous section (where it was denoted

by just f). fð1Þ is proportional to h, fð2Þ proportional to h2, etc. Within a theory of first order

(linearized theory), terms proportional to h2 or higher powers of h are neglected. For reasons of

simplicity, the equality sign is used here to denote equality of low-order terms only, i.e. A ¼ B

means A ¼ B + O(h2).

We describe both the z-component of the free surface z and the potential in a first-order

formulation. fð1Þ and zð1Þ are time harmonic with ue, the frequency of encounter:

ftotalðx; y; z; tÞ ¼ fð0Þðx; y; zÞ þ fð1Þðx; y; z; tÞ
¼ fð0Þðx; y; zÞ þ Reðf̂ð1Þðx; y; zÞeiuetÞ

ztotalðx; y; tÞ ¼ zð0Þðx; yÞ þ zð1Þðx; y; tÞ
¼ zð0Þðx; yÞ þ Reðẑð1Þðx; yÞeiuetÞ

Correspondingly the symbol ^ is used for the complex amplitudes of all other first-order

quantities, such as motions, forces, pressures, etc.

The superposition principle can be used within a linearized theory. Therefore the radiation

problems for all six degrees of freedom of the rigid-body motions and the diffraction problem

are solved separately. The total solution is a linear combination of the solutions for each

independent problem.
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The harmonic potential fð1Þ is divided into the potential of the incident wave fðwÞ, the
diffraction potential fd, and six radiation potentials:

fð1Þ ¼ fd þ fw þ
X6
i¼1

fiui

It is convenient to decompose fw and fd into symmetrical and antisymmetrical parts to take

advantage of the (usual) geometrical symmetry:

fwðx; y; zÞ ¼ fwðx; y; zÞ þ fwðx;�y; zÞ
2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
fw;s

þfwðx; y; zÞ � fwðx;�y; zÞ
2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
fw;a

fd ¼ fd;s þ fd;a ¼ f7 þ f8

Thus:

fð1Þ ¼ fw;s þ fw;a þ
X6
i¼1

fiui þ f7 þ f8

The conditions satisfied by the steady flow potential fð0Þ are repeated here without further

comment.

Also, suitable radiation and decay conditions are observed.

The linearized potential of the incident wave on water of infinite depth is expressed in the

inertial system:

fw ¼ Re

�
� igh

u
e�ikðx cos m�y sin mÞ�kzeiuet

�
¼ Reðf̂weiuetÞ

u ¼ ffiffiffiffiffi
gk

p
is the frequency of the incident wave, ue ¼ ju� kVcos mj the frequency of

encounter, k is the wave number. The derivation of the expression for fw assumes

a linearization around z ¼ 0. The same formula will be used now in the seakeeping

The particle acceleration in the steady flow is: ~a ð0Þ ¼ ðVfð0ÞVÞVfð0Þ

We define an acceleration vector ~ag ~a g ¼ ~a ð0Þ þ f0; 0; ggT

For convenience I introduce an abbreviation: B ¼ 1

ag3

v

vz
ðVfð0Þ~agÞ

In the whole fluid domain: Dfð0Þ ¼ 0

At the steady free surface: Vfð0Þ~a g ¼ 0

1
2ðVfð0ÞÞ2 þ gzð0Þ ¼ 1

2V
2

On the body surface: ~n ð~x ÞVfð0Þð~x Þ ¼ 0
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computations, although the average boundary is at the steady wave elevation, i.e. different

near the ship. This may be an inconsistency, but the diffraction potential should compensate

this ‘error’.

We write the complex amplitude of the incident wave as:

f̂w ¼ �igh

u
e~x

~d with ~d¼ f�ik cos m; ik sin m; � kzgT

At the free surface (z ¼ ztotal ) the pressure is constant, namely atmospheric pressure (p ¼ p0):

Dðp� p0Þ
Dt

¼ vðp� p0Þ
vt

þ ðVftotalVÞðp� p0Þ ¼ 0

Bernoulli’s equation gives at the free surface (z ¼ ztotal) the dynamic boundary condition:

ftotal
t þ 1

2
ðVftotalÞ2 þ gztotal þ p

r
¼ 1

2
V2 þ p0

r

The kinematic boundary condition gives at z ¼ ztotal:

Dztotal

Dt
¼ v

vt
ztotal þ ðVftotalVÞztotal ¼ ftotal

z

Combining the above three equations yields at z ¼ ztotal:

ftotal
tt þ 2VftotalVftotal

t þ VftotalV

�
1

2
Vftotal

�2

þ gftotal
z ¼ 0

Formulating this condition in fð0Þ and fð1Þ and linearizing with regard to instationary terms

gives at z ¼ ztotal:

f
ð1Þ
tt þ 2Vfð0ÞVfð1Þ

t þ Vfð0ÞV
�
1

2
ðVfð0ÞÞ2 þ Vfð1ÞVfð0Þ

�
þVfð1ÞV

�
1

2
ðVfð0ÞÞ2

�
þ gfð0Þ

z þ gfð1Þ
z ¼ 0

We develop this equation in a linearized Taylor expansion around zð0Þ using the abbreviations

~a;~ag, and B for steady flow contributions. This yields at z ¼ z0:

f
ð1Þ
tt þ 2Vfð0ÞVfð1Þ

t þ Vfð0Þ~a
g þ Vfð0ÞðVfð0ÞVÞVfð1Þ þ Vfð1Þð~aþ~agÞ þ Bag3z

ð1Þ ¼ 0

The steady boundary condition can be subtracted, yielding:

f
ð1Þ
tt þ 2Vfð0ÞVfð1Þ

t þ Vfð0ÞðVfð0ÞVÞVfð1Þ þ Vfð1Þð~aþ~agÞ þ Ba
g
3z

ð1Þ ¼ 0
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zð1Þ will now be substituted by an expression depending solely on zð0Þ;fð0Þðzð0ÞÞ and

fð1Þðzð0ÞÞ. To this end, Bernoulli’s equation is also developed in a Taylor expansion.

Bernoulli’s equation yields at z ¼ zð0Þ þ zð1Þ:

ftotal
t þ 1

2
ðVftotalÞ2 þ gztotal ¼ 1

2
V2

A truncated Taylor expansion gives at z ¼ zð0Þ:

f
ð1Þ
t þ 1

2
ðVftotalÞ2 þ gzð0Þ � 1

2
V2 þ ðVftotalftotal

z þ gÞzð1Þ ¼ 0

Formulating this condition in fð0Þ and fð1Þ, linearizing with regard to instationary terms and

subtracting the steady boundary condition yields:

f
ð1Þ
t þ Vfð0ÞVfð1Þ þ ag3z

ð1Þ ¼ 0

This can be reformulated as:

zð1Þ ¼ f
ð1Þ
t þ Vfð0ÞVfð1Þ

a
g
3

By inserting this expression in the free-surface condition and performing the time derivatives

leaving only complex amplitudes, the free-surface condition at z ¼ zð0Þ becomes:

ð�u2
e þ BiueÞf̂ ð1Þ þ ðð2iue þ BÞVfð0Þ þ~a ð0Þ þ~a gÞVf̂ð1Þ þ Vfð0ÞðVfð0ÞVÞVf̂ð1Þ ¼ 0

The last term in this condition is explicitly written:

Vfð0ÞðVfð0ÞVÞVf̂ ð1Þ ¼ ðfð0Þ
x Þ2fð1Þ

xx þ ðfð0Þ
y Þ2fð1Þ

yy þ ðfð0Þ
z Þ2fð1Þ

zz þ 2$ðfð0Þ
x fð0Þ

y fð1Þ
xy

þ fð0Þ
x fð0Þ

z fð1Þ
xz þ fð0Þ

y fð0Þ
z fð1Þ

yz Þ
Complications in formulating the kinematic boundary condition on the body’s surface arise

from the fact that the unit normal vector is conveniently expressed in the body-fixed coordinate

system, while the potential is usually given in the inertial system. The body surface is defined

in the body-fixed system by the relation S ð~x Þ ¼ 0.

Water does not penetrate the body’s surface, i.e. relative to the body-fixed coordinate system

the normal velocity is zero, at S ð~x Þ ¼ 0:

~n ð~x Þ$~y ð~x Þ ¼ 0

~n is the inward unit normal vector. The velocity transforms into the inertial system as:

~y ð~x Þ ¼~yð~xÞ �~a�~yð~xÞ � ð~at �~xþ~utÞ
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where~x is the inertial system description of the same point as~x .~y is expressed as the sum of the

derivatives of the steady and the first-order potential:

~yð~x Þ ¼ Vfð0Þð~x Þ þ Vfð1Þð~x Þ
For simplicity, the subscript x for the V operator is dropped. It should be understood that

from now on the argument of the V operator determines its type, i.e. Vfð~x Þ ¼ Vxfð~x Þ and
Vfð~x Þ ¼ Vxfð~x Þ. As fð1Þ is of first order small, fð1Þð~x Þ ¼ fð1Þð~x Þ ¼ fð1Þ.

The r.h.s. of the above equation for~yð~x Þ transforms back into the hull-bound system:

~yð~xÞ ¼ Vfð0Þð~x Þ þ ðð~a�~x þ~uÞVÞVfð0Þð~x Þ þ Vfð1Þ

Combining the above equations and omitting higher-order terms yields:

~n ð~x ÞðVfð0Þð~x Þ �~a� Vfð0Þ þ ðð~a�~x þ~uÞVÞVfð0Þ þ Vfð1Þ � ð~at �~xþ~utÞÞ ¼ 0

This boundary condition must be fulfilled at any time. The steady terms give the

steady body-surface condition as mentioned above. Because only terms of first order are

left, we can exchange ~x and ~x at our convenience. Using some vector identities we

derive:

~nVf̂ð1Þ þ ~̂u½ð~nVÞVfð0Þ � iue~n � þ ~̂a½~n � Vfð0Þ þ~x � ðð~nVÞVfð0Þ � iue~n Þ� ¼ 0

where all derivatives of potentials can be taken with respect to the inertial system.

With the abbreviation ~m ¼ ð~nVÞVfð0Þ the boundary condition at S ð~x Þ ¼ 0 becomes:

~nVf̂ð1Þ þ ~̂uð~m� iue~n Þ þ ~̂að~x � ð~m� iue~n Þ þ~n � Vfð0ÞÞ ¼ 0

The Kutta condition requires that at the trailing edge the pressures are equal on both sides. This

is automatically fulfilled for the symmetric contributions (for monohulls). Then only the

antisymmetric pressures have to vanish:

�rðfi
t þ Vfð0ÞVf̂iÞ ¼ 0

This yields on points at the trailing edge:

iuef̂
i þ Vfð0ÞVf̂i ¼ 0

Diffraction and radiation problems for unit amplitude motions are solved independently as

described in the next section. After the potentials f̂i (i¼ 1. 8) have been determined, only the

motions ui remain as unknowns.
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The forces ~F and moments ~M acting on the body result from the body’s weight and from

integrating the pressure over the instantaneous wetted surface S. The body’s weight ~G is:

~G ¼ f0; 0;�mggT

m is the body’s mass. (In addition, a propulsive force counteracts the resistance. This force

could be included in a similar fashion as the weight. However, resistance and propulsive force

are assumed to be negligibly small compared to the other forces.)

~F and ~M are expressed in the inertial system (~n is the inward unit normal vector):

~F ¼
Z
S
ðpð~xÞ � p0Þ~nð~xÞ dSþ ~G

~M ¼
Z
S
ðpð~xÞ � p0Þð~x�~nð~xÞÞ dSþ~xg � ~G

~xg is the center of gravity. The pressure is given by Bernoulli’s equation:

pð~xÞ � p0 ¼ �r

�
1

2
ðVftotalð~x ÞÞ2 � 1

2
V2 þ gzþ ftotal

t ð~xÞ
�

¼ �r

�
1

2
ðVftotalð~x ÞÞ2 � 1

2
V2 þ gz

�
�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

pð0Þ

rðVfð0ÞVfð1Þ þ f
ð1Þ
t Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

pð1Þ

The r.h.s. of the expressions for ~F and ~M are now transformed from the inertial system to the

body-fixed system. This includes a Taylor expansion around the steady position of the body.

The normal vector ~n and the position ~x are readily transformed as usual:

~x ¼~x þ~a�~x þ~u

~nð~x Þ ¼ ~n ð~x Þ þ~a�~n ð~x Þ
The steady parts of the equations give:

~F
ð0Þ ¼

Z
Sð0Þ

pð0Þ~n dS þ ~G ¼ 0

~M
ð0Þ ¼

Z
Sð0Þ

pð0Þð~x �~n ÞdS þ~xg � ~G ¼ 0

The ship is in equilibrium for steady flow. Therefore the steady forces and moments are all

zero.
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The first-order parts give (r.h.s. quantities are now all functions of ~x ):

~F
ð1Þ ¼

Z
Sð0Þ

½ðpð1Þ þ Vpð0Þð~a�~x þ~uÞ�~n dS �~a� ~G

~M
ð1Þ ¼

Z
Sð0Þ

½ðpð1Þ þ Vpð0Þð~a�~x þ~uÞ�ð~x �~n ÞdS �~xg � ð~a� ~GÞ

where ð~a�~x Þ �~n þ~x � ð~a�~n Þ ¼ ~a� ð~x �~n Þ and the expressions for ~Fð0Þ
and ~M

ð0Þ
have

been used. Note: Vpð0Þ ¼ �r~ag. The difference between instantaneous wetted surface and

average wetted surface still does not have to be considered as the steady pressure p(0) is small

in the region of difference.

The instationary pressure is divided into parts due to the incident wave, radiation and

diffraction:

pð1Þ ¼ pw þ pd þ
X6
i¼1

piui

Again the incident wave and diffraction contributions can be decomposed into symmetrical

and antisymmetrical parts:

pw ¼ pw;s þ pw;a

pd ¼ pd;s þ pd;a ¼ p7 þ p8

Using the unit motion potentials, the pressure parts pi are derived:

pi ¼ �pðfi
t þ Vfð0ÞVfiÞ

pw ¼ �pðfw
t þ Vfð0ÞVfwÞ

pd ¼ �pðfd
t þ Vfð0ÞVfdÞ

The individual terms in the integrals for ~F
ð1Þ

and ~M
ð1Þ

are expressed in terms of the motions ut,

using the vector identity ð~a�~x Þ~a g ¼ ~að~x �~agÞ:

~F
ð1Þ ¼

Z
Sð0Þ



pw þ pdÞ~n dS þ

X6
i¼1

�Z
Sð0Þ

pi~n dS

�
ui

þ
Z
Sð0Þ

�rð~u~ag þ~að~x �~a gÞÞ~n dS �~a� ~G
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~M
ð1Þ ¼

Z
Sð0Þ

ðpw þ pdÞð~x�~nÞdS þ
X6
i¼1

�Z
Sð0Þ

pið~x�~n ÞdS
�
ui

�~xg � ð~a� ~GÞ þ
Z
Sð0Þ

�rð~u~a g þ~að~x �~a gÞÞð~x�~nÞdS

The relation between forces, moments and motion acceleration is:

~F
ð1Þ ¼ mð~utt þ~att �~x gÞ

~M
ð1Þ ¼ mð~x g �~uttÞ þ I~att

I is the matrix of moments of inertia:

I ¼
2
4 Qx 0 �Qxz

0 Qy 0
�Qxz 0 Qz

3
5

where mass distribution symmetrical in y is assumed.Qx etc. are the moments of inertia and the

centrifugal moments with respect to the origin of the body-fixed Ox y z system:

Qx ¼
Z

ðy2 þ z2Þ dm; Qx y ¼
Z

x y dm; etc:

Combining the above equations for ~F
ð1Þ

and ~M
ð1Þ

yields a linear system of equations in the

unknown ui that is quickly solved using Gauss elimination.

Numerical Implementation

Systems of equations for unknown potentials

The two unknown diffraction potentials and the six unknown radiation potentials are

determined by approximating the unknown potentials by a superposition of a finite number of

Rankine higher-order panels on the ship and above the free surface. For the antisymmetric

cases, in addition Thiart elements (Appendix A) are arranged and a Kutta condition is imposed

on collocation points at the last column of collocation points on the stern. Radiation and open-

boundary conditions are fulfilled by the ‘staggering’ technique (adding one row of collocation

points at the upstream end of the free-surface grid and one row of source elements at the

downstream end of the free-surface grid). This technique only works well for s > 0.4.

Elements use mirror images at y ¼ 0 and for shallow water at z ¼ zbottom. For the symmetrical

cases, all mirror images have the same strength. For the antisymmetrical case, the mirror images

on the negative y sector(s) have negative element strength of the same absolute magnitude.
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Each unknown potential is then written as:

f̂i ¼
X

ŝi4

si is the strength of the ith element, 4 the potential of an element of unit strength. 4 is real for

the Rankine elements and complex for the Thiart elements.

The same grid on the hull may be used as for the steady problem, but the grid on the free

surface should be created new depending on the wave length of the incident wave. The

quantities on the new grid can be interpolated within the new grid from the values on the old

grid. Outside the old grid in the far field, all quantities are set to uniform flow on the new grid.

For the boundary condition on the free surface, we introduce the following abbreviations:

fq ¼ �u2
e þ iueB

fqx ¼ ð2iue þ BÞfð0Þ
x þ 2a1

fqy ¼ ð2iue þ BÞfð0Þ
y þ 2a2

fqz ¼ ð2iue þ BÞfð0Þ
z þ 2a3

fqxx ¼ fð0Þ
x $fð0Þ

x � fð0Þ
z $fð0Þ

z

fqxy ¼ 2$fð0Þ
x $fð0Þ

y

fqxz ¼ 2$fð0Þ
x $fð0Þ

z

fqyy ¼ fð0Þ
y $fð0Þ

y � fð0Þ
z $fð0Þ

z

fqyz ¼ 2$fð0Þ
y $fð0Þ

z

Then we can write the free-surface condition for the radiation cases (i ¼ 1 . 6):P
ŝ ið fq4þ fqx4x þ fqy4y þ fqz4z þ fqxx4xx þ fqxy4xy þ fqxz4xz þ fqyy4yy þ fqyz4yzÞ ¼ 0

where it has been exploited that all potentials fulfill Laplace’s equation. Similarly, we get for

the symmetrical diffraction problem:P
ŝ iðfq4þ fqx4x þ fqy4y þ fqz4z þ fqxx4xx þ fqxy4xy þ fqxz4xz þ fqyy4yy þ fqyz4yzÞ
þ fqf̂

w;s þ fqxf̂
w;s
x þ fqyf̂

w;s
y þ fqzf̂

w;s
z þ fqxxf̂

w;s
xx þ fqxyf̂

w;s
xy þ fqxzf̂

w;s
xz þ fqyyf̂

w;s
yy

þ fqyzf̂
w;s
yz ¼ 0
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The expression for the antisymmetrical diffraction problem is written correspondingly using

f̂w;a on the r.h.s.

Hull condition

For the hull conditions for the eight radiation and diffraction problems, we introduce the

following abbreviations, where the auxiliary variable h is used as a local variable with different

meaning than further below for the system of equations for the motions:

fh1; h2; h3gT ¼ ~m � iue~n

fh4; h5; h6gT ¼~x � ð~m� iue~n Þ þ~n � Vfð0Þ

h7 ¼ Vf̂w;s$~n

h8 ¼ Vf̂w;a$~n

Then the hull condition can be written for the jth case (j ¼ 1. 8):X
ŝið~n $4Þ þ hj ¼ 0

The Kutta condition is simply written:X
ŝiðiue4þ Vfð0ÞV4Þ ¼ 0 for case j ¼ 2; 4; 6

X
ŝiðiue4þ Vfð0ÞV4Þ þ iuef̂

w;s þ Vfð0ÞVf̂w;s ¼ 0 for case j ¼ 8

The l.h.s. of the four systems of equations for the symmetrical cases and the l.h.s. for the four

systems of equations for the antisymmetrical cases each share the same coefficients. Thus four

systems of equations can be solved simultaneously using a Gauss elimination procedure.

System of equations for motions

We introduce the abbreviations:

fh1; h2; h3gT ¼ �r~a g

fh4; h5; h6gT ¼ �r~x �~a g

h7 ¼ pw;s ¼ �rðiuef̂
w;s þ Vfð0ÞVf̂w;sÞ

h8 ¼ pw;a ¼ �rðiuef̂
w;a þ Vfð0ÞVf̂w;aÞ
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Recall that the instationary pressure contribution is:

pi ¼ �rðiuef̂
i þ Vfð0ÞVf̂iÞ

Then we can rewrite the conditions for ~F
ð1Þ

and ~M
ð1Þ
:

�mð~utt þ~att �~xgÞ þ
X8
i¼1

 Z
Sð0Þ

ðpi þ hiÞ~n dS

!
ui �~a� ~G ¼ 0

�mð~xg �~uttÞ � I~att
X8
i¼1

 Z
Sð0Þ

ðpi þ hiÞð~x �~n Þ dS
!
ui �~xg � ð~a� ~GÞ ¼ 0

The weight terms �~a� ~G and �~xg � ð~a� ~GÞ contribute with W ¼ mg:2
6666664

0 0 0 0 W 0
0 0 0 �W 0 0
0 0 0 0 0 0
0 0 0 zgW 0 0
0 0 0 0 zgW 0
0 0 0 xgW 0

3
7777775

8>>>>>><
>>>>>>:

u1
u2
u3
u4
u5
u6

9>>>>>>=
>>>>>>;

The mass terms �mðûtt þ âtt �~xgÞ and �mð~xg � ûttÞ � Iâtt contribute:

�m
v2

vt2

2
66666664

1 0 0 0 zg 0
0 1 0 �zg 0 xg
0 0 1 0 �xg 0
0 �zg 0 k2x 0 �k2xz
zg 0 �xg 0 k2y 0

0 xg 0 �k2xz 0 k2z

3
77777775

8>>>>>><
>>>>>>:

u1
u2
u3
u4
u5
u6

9>>>>>>=
>>>>>>;

where the radii of inertia k have been introduced, e.g. Qx ¼ mk2x , etc.
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Söding, H. (1994). Was kann und sollte unsere Forschung im nächsten Jahrzehnt leisten? Schiff & Hafen, 46/12,
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Index

A
Active rudder/rudder propellers,

284
‘Acts of God’, 5
Adjacent fluids and hydrodynamic

mass (vibrations):
introduction, 222-5
propellers, 226-7
rudders, 225-6
ship hull vertical damping,

228-31
ships, 227-8

Admiralty constant (C),
117-18

‘Admiralty formula’, 117-18
Air:
flows, 20
lubrication, 132-3

Airy waves (harmonic waves
of small amplitude),
147-52

Algebraic grid generation, 37
Anti-slamming device (ASD),

104
Appendages (resistance and

propulsion):
bilge keels, 94, 103
bow thrusters, 94
design, 125-6
fast ships, 103
rudders, 94
shaft brackets and bosses,

94
shallow water, 94-5

Asymmetric aftbodies, 135-6
Average hull roughness (AHR),

96, 132
Azimuthing (rudder) propellers,

69, 284

B
Bagnolds’ approach (slamming),

191, 194
Beams:
natural frequency, 221
vibration, 207-8, 210

Beaufort Number (wind), 127,
262

Becker rudders, 283
Bernoulli:
equation
airy waves, 149
BEM, 338, 344, 348, 357-8
CFD, 16
lifting body methods, 261
panel methods, 115
RSM, 177
slamming, 89
strip method, 172
wave resistance, 78

law, 48-9, 280
Bilge keels:
appendage resistance, 125-6
resistance and propulsion, 94,

103
roll damping, 201
strip method, 174

BioteSavart’s law (lifting surface),
259

Blended schemes (numerical
approximations), 36

Block-structured grids, 38
Bottom slamming, 188
Boundary conditions (viscous

flow), 28-31
Boundary element methods (BEM):
CFD, 16-18
introduction, 299-301
numerical examples

Rankine panel method in
frequency domain, 353-65

strip method module, 349-53
three-dimensional wave
resistance problem, 340-9

two-dimensional flow around
a body in infinite fluid,
333-5

two-dimensional wave
resistance problem,
335-40

propeller flows, 48, 55
rudder design, 296-8
ship maneuvering, 259
source elements
dipole elements, 321-2
higher-order panel, 311-17
Jensen panel, 309-111
point source, 301-4
regular first order panel,
304-9

Thiart element, 322-4, 363
vortex elements, 317-20

special techniques
desingularization, 324-6
patch method, 326-31

viscous flow computations, 32
water resistance, 111

Boundary layer equations,
14-15

Boussinecq approach (turbulence),
25

Bow thrusters (resistance and
propulsion), 94

Bow-flare slamming, 188
Breaking wave impact (slamming),

188
Burill diagram (propellers and

cavitation), 58-9, 64
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C
CAD (computer-aided design):

hulls, 4
resistance and propulsion, 121,

124
Calm-water:

friction resistance, 77
viscous pressure resistance,

77
wave resistance, 78-80

Capsizing in waves (roll motion):
cargo shifts, 196
parametric roll, 197-9
righting lever, 197

Cartesian grids, 37
Catamarans:

advantages over monohulls,
103

anti-slamming device, 104-5
foil-assisted, 104
planing, 104
semi-displacement, 104
slamming impacts, 104

Cauchy:
number, 9
scaling law, 9

Cavitation:
hydrofoils, 108
propellers
classification, 57
description, 56-9, 109
fast ships, 109
tests, 60, 61-2
tunnels, 60

rudders
bubble cavitation on side
plating, 291-2

introduction, 290-1
number (s), 290-1
propeller hub, 293
propeller tip vortex, 293-4
sole, 292-3
surface irregularities, 294

Central differencing scheme
(CDS), 35

Chimera grids, 38-9
Combined RSMeGFM approach

(ship seakeeping
computation), 167

Computational fluid dynamics
(CFD):

applications
air flows, 20
interior flows, 20
propeller flows, 19-20
resistance and propulsion,
17-18

ship seakeeping, 18
slamming/water-entry
problems, 18-19

zero speed seakeeping, 19
basic techniques
boundary element methods, 16
finite difference methods,
16-17

finite element methods, 16-17
finite volume methods, 16-17,
34-5

numerical approaches, 3-4,
13-14

bilge keels, 103
brackets, 103
cost and value
computation, 22-4
cost benefits, 22
grid generation, 23-4
model generation, 23-4
postprocessing, 23
preprocessing, 22
quality benefits, 21-2
robust computation, 24
time benefits, 20-1

fuel saving
hull and appendages, 133
propeller design, 134
propulsion-improving devices,
134-7

grid generation, 38
non-retractable stabilizer fins,

103
propellers, 63, 74, 134
resistance and propulsion, 119
rudders, 280, 295-6
shallow water, 94
ship maneuvering
description, 258-62
force coefficients, 244-9, 251
heel, 255
lifting body methods, 260-1

lifting surface methods,
259-60

slamming, 195
steady flow

boundaries of modeled
domain, 111-12

finite difference operators,
113-15

‘fully non-linear’ methods,
115-16

Kutta condition, 112
non-linear methods, 113,
115

panel methods, 115-16
viscous flow computations,
116-17

wave resistance, 109-16
vortex-induced vibrations,

233-4
wake-improving devices, 137
wave impact, 192
wind resistance, 95-6

Computational tools for ship
seakeeping, 144

Computerized planar motor
carriage (CPMC), 270

Conformal mapping, 37
Contra-rotating propellers (CRPs),

68, 136-7
Contracted and loaded tip (CLT)

propellers, 134
Controllable-pitch propellers

(CPPs):
advantages/disadvantages, 68-9
stopping trials, 267-8

Conventional propellers, 108-9
Cost benefits of CFD, 22
CrankeNicholson scheme (viscous

flow computation), 36
Curvilinear grids, 37

D
D’Alembert’s paradoxon, 78
Damping:
propellers, 226-7
rudders, 225-6. See also roll

damping
Decomposition of resistance

concept (calm-water), 77-8
Design of propellers, 62-6

374 Index



Desingularization (BEM), 324-6
DGPS (differential GPS), 10
Dipole elements (BEM), 321-2
Direct spiral test (Dieudonne),

263
Displacement ships (fast

monohulls), 97
Ducted propellers (wake

improvement), 139-40
Dynamical similarity (models), 5-7

E
Elementary waves, 147-8, 153-4,

157
Elliptic equations (flows), 15
Empirical/statistical approaches, 2
Encounter frequency (waves),

151-2, 155
Engines vibrations, 232-3, 237
Euler flowmodel (ship seakeeping),

164
Excitation of vibrations:
engines, 232-3
propellers, 231-2
seaway, 233
vortex-induced vibrations,

233-4
Experimental approaches, 2-3

F
Fast monohulls:
appendages, 103
displacement ships, 97
dynamic trim, 102
planing hulls, 98-9
semi-displacement ships, 97,

99-101
Fast ships:
catamarans, 103-5
‘hybrid’, 105
monohulls, 97-103
problems, 105-9

Field methods,
ship maneuvering, 261
viscous flow computations, 32
whole fluid domain, 17, 95

Field methods (propeller flows), 56
Fin stabilizers for bilge keels, 174,

201-3

Finite difference (FD) operators,
113-15

Finite difference methods (FDM)
and CFD, 16

Finite element methods (FEM):
CFD, 16
ship vibrations
engine, 232-3
grids, 212-15
numerical problems, 209
propellers, 231-2

slamming, 187, 194-5
Finite volume methods (FVM) and

CFD, 16-17, 34-5
Flap rudders, 283
Flettner rotors (wind-assisted

ships), 140
Flume tanks (roll damping), 204
Foil-assisted catamarans (FACs),

104
Force coefficients (ship

maneuvering), 244-9
Form factor (resistance and

propulsion), 125
Fouling and resistance, 96
Free surface treatment (viscous

flow):
computing methods, 31-2
iterative methods, 32-3

Friction:
calm-water, 77
resistance, 106, 132
similarity law, 7
wake, 75

Froude:
number
cavitation tests, 62
CFD and steady flow, 110
fast monohulls, 97
free-surface treatment, 31
Geosim method of Telfer, 87-8
‘high speed strip theory’, 166
high-speed strip theory, 166
models and ship
maneuverability, 269

Reynolds number, 8
rudder/hull interaction, 288
semi-displacement hulls, 99
shallow water, 94
ship design, 117

strip methods, 179
towing tanks, 80
wave resistance, 7, 79, 110

similarity law, 8-9, 88-9, 269
Froude, William:
‘law of comparison’, 80
resistance, 80

FroudeeKilov force, 169, 173
Fuel saving:
CO2 emissions, 129
false estimations, 129-30
global measures to reduce

resistance
reduce power, 132
reduce ship size, 130
reduce speed, 130-1
seaways, 131

hull
appendages optimization,
133

coatings and lubrication,
132-3

propeller design, 134
propulsion-improving devices,

134-7
voyage optimization, 141
wake-improving devices,

137-40
wind assisted ships, 140-1

Full-scale trials, 9-10
‘Fully non-linear’ methods (CFD

and steady flow), 115-16

G
GausseSeidel method (viscous

flow computation), 32
Geometrical similarity (models), 5
Geosim method of Telfer

(resistance and propulsion),
87-8

Germanischer Lloyd:
vibration analyses, 212-15, 220,

233, 236
wave climate, 163

GPS (Global Positioning System):
full scale trials, 3, 9
turning circle test, 262-3

Green-function method (GFM) and
ship seakeeping, 95, 166-7,
177, 179
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Grid generation (CFD cost and
value), 23-4

Grid generation (viscous flow
computation):

algebraic, 37
block-structured, 38
cartesian, 37
chimera, 38-9
conformal mapping, 37
differential equations, 38
single-block structure, 38
staggered grids, 38
unstructured grids, 39

Grim wheel (vanes):
contra-rotating propellers, 68
propulsion, 135-6

Grothues spoilers, 138-9

H
Hamburg Ship Model Basin, 22
Hard rudder test, 268
Heel of ship:

bearing rudders, 282-3
maneuvering, 255-6
seakeeping, 195

Helmholtz’s laws, 50
‘High-speed strip theory’ (HSST),

166, 179
Higher-order panel (BEM), 311-17
Hitachi Zosen nozzle, 137
HSVA (ship consultancy):

hydrofoils and cavitation, 107,
108

HYKAT cavitation tunnel, 60
planing hulls, 98
propellers, 63-6
resistance
catamarans, 105
propulsion, 122

semi-displacement hulls, 99
trim angles, 102

Hub Vortex Vane (HVV), 137
HugheseProhaska method

(resistance and propulsion),
85-6, 87-8

Hulls:
appendages optimization (fuel

saving), 133
coatings and lubrication, 132-3
efficiency, 122

fuel saving, 132-3
hydrofoils, 107
planing, 98-9
rudder interaction, 288-9
semi-displacement, 99
ship vibrations, 205, 209-11
spray generation, 101-2
wake-equalizing devices, 137

Humans and vibrations, 237-9
‘Hybrid ships’, 105
Hydro-elastic approaches in

slamming, 194-5
Hydrodynamic mass:
propeller damping, 226-7
rudder damping, 225-6
ships, 227-8
term, 222

‘Hydrodynamic stiffness’, 222
propeller damping, 226-7

Hydrofoils:
cavitation, 108
conventional propellers, 108-9
fast and unconventional ships,

105-9
Hyperbolic equations (flows), 15

I
IMO regulations:
CO2 emissions, 129
hard rudder test, 268
maneuvering of ships,
CFD requirement, 18
minimum requirement, 241
rudders, 295

tests for full-scale ships in sea
trials, 262-8

ship safety, 3
Ince-strutt diagram (roll motion),

198
Indirect (reverse) spiral test (Bech),

263
Interior flows (sloshing), 20
International Standards

Organization. See ISO
International Towing Tank

Conference. See ITTC
Introduction to ship

hydrodynamics:
full-scale trials, 9-10
model tests - similarity laws, 5-9

numerical approaches (CFD),
10-24

problems and approaches, 1-5
viscous flow computations,

24-39
Inviscid flow methods (propeller

design), 19
ISO:
speed and trials, 10
vibrations

engine, 235, 237
humans, 237-9
ship, 236

iterative methods (viscous flow
computations), 32-3

ITTC:
maneuvering tests, 262
method (resistance and

propulsion)
1957, 84-5, 90-1, 98, 276
1978, 86-7, 90
1978 performance prediction,
89-93

partial ducts and fuel saving, 138
propulsion-improving devices,

134-7
Rankine singularity methods,

174-7
resistance test, 82-3
speed trials, 10
turbulence, 25
waterjets, 70, 109

J
Japan Marine Standards

Association, 10
Jensen panel (BEM), 309-11
Jet thrusters (simulation with

known coefficients), 257-8
JONSWAP spectrum (wind and

seaway), 156
‘Joukowski condition’ (steady

flow), 112, 260, 343

K
Kappel propellers, 134
Kelvin methods (wave resistance),

110, 113
Kinematic similarity (models),

5-6
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Kites (wind-assisted ships), 140-1
Korobkin’s theory and water

compressibility, 193
Kutta condition (steady flow):
boundary element methods

propeller flows, 48, 55
Rankine panel method in
frequency domain, 353

Thiart element, 322-4
three-dimensional wave
resistance problem, 340

vortex elements, 317-20,
345

flow separation and aftbody,
164

lifting body methods, 260-1
lifting surface methods, 259-60
Rankine singularity methods,

174-7
resistance and propulsion, 108
rudder design, 295

KuttaeJoukowski law, 260

L
Laplace equation:
boundary element methods, 299,

333, 341
continuity of mass, 165
elliptic equations, 15
green function method, 166
numerical approaches, 14
Rankine singularity method, 174
wave resistance, 111

Large-eddy simulations (LES):
numerical approaches, 13
RANSE and propeller flows, 48
turbulence, 26

Laser-Doppler velocimetry (LDV),
2-3

‘Law of comparison’, 80
Lewis sections (Strip method), 165,

250
Lifting-line methods (propeller

flows), 48, 50-2
Lifting-surface methods (propeller

flows), 48, 52-4
Linear, undamped free roll, 195-6
Linear upward differencing scheme

(LUDS), 35-6
Long-crested seaway, 155

Long-term distributions, numerical
predictions (ship
seakeeping), 185-7

Low-surface energy (LSE)
coatings, 132

M
Magnus effect (rudders), 283
Man-overboard maneuver

(Williamson turn), 268
Maneuvering of ships:
hydrodynamic performance, 1
introduction, 241-3
model tests, 268-70
rudders, 270-98
simulation with known

coefficients, 243-62
tests for full scale ship in sea

trials, 262-8
Mathieu equation (roll motion), 198
‘measured mile trials’, 10
Michell, J.H., 110
Models:
CFD, 23-4
fast ships, 105-6
hull vibrations, 211
maneuvering of ship tests,

268-70
ship seakeeping, 144, 146
tests and similarity laws, 5-9
towing tanks, 80-1
turbulence, 26
vibrations tests, 9

Momentum theory (propellers),
47-50

Motion of ship analysis, 168-9,
175

Multigrid methods (viscous flow
computations), 33-4

N
Natural frequencies:
rectangular plates, 223
ship motion and resistance

design, 128-9
structures, 206, 217-19

Natural modes:
distributed mass systems, 220
natural frequency for beams, 221

Natural seaway, 153-5

Naval Ships’ Technical Manual
(NSTM) rating, 96

NaviereStokes equation, 11-15.
See also RANSE

Newton’s law of similarity, 6
NewtoneRader propellers, 109
Nominal wake, 75
Nomoto equation (rudder effects),

248
Non-linear methods:
CFD and steady flow, 113, 115
slamming theories based on

self-similar flow, 191
Norrbin equation (rudder effects),

248
North Atlantic wind field, 163
Nozzled propellers, 67-8
Numerical approaches:
computational fluid dynamics,

10-15
problems, 3-4
viscous flow computation, 34-6

Numerical predictions (ship
seakeeping):

combined RSMeGFM
approach, 167

computational methods
overview, 163-5

green-function method, 166-7
‘high-speed strip theory’, 166
long-term distributions, 185-7
problems for fast and

unconventional ships, 177-80
Rankine singularity method, 167,

174-7
regular waves, 180
ship responses in stationary

seaway, 181-3
strip method, 165-6, 167-74
time domain simulation

methods, 183-5
unified theory, 166

Numerical Towing Tank
Symposium (NuTTS), 117

O
Oblique towing tests, 270
Open-water (propeller flows), 45,

60-1
Orthogonal grids, 37
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P
Panel methods, CFD and steady

flow, 115-16
Parabolic equations (flows), 15
Parametric roll, 199
Particle image velocimetry (PIV), 2
Patch method (BEM), 326-31
PiersoneMoskowitz spectrum

(wind and seaway), 156-7
PISO (pressure implicit with

splitting of operators), 32
PIV. See particle image velocimetry
Planar motor mechanisms (PMMs),

270
Planing catamarans, 104
Planing hulls:

fast monohulls, 97-103
fast and unconventional ships,

126
Podded drives (propellers), 69-70
Point source (BEM), 301-3
Postprocessing (CFD), 23
Potential wake, 75
Power (fast ships):

planing hulls, 99
semi-displacement hulls, 99-101

Pre-swirl devices (propulsion),
135

Preprocessing (CFD), 22
Pressureevelocity coupling, 32
‘Primary wave pattern’, 79
Problems for fast and

unconventional ships:
hydrofoils, 107-8
models, 105-6
numerical prediction, 177-88
planing hulls, 106
propellers
cavitating, 109
conventional, 108-9
surface-piercing, 109

surface effect ships, 108
surface-piercing propellers, 109
waterjet propulsion, 109

Propeller boss cap fins (PBCFs),
137

Propeller-induced pressures, 66-7
Propellers:

blade vibrations, 9

CFD, 63
conventional, 108
curves, 44-6
design, 62-6
experimental approach
cavitation tests, 61-2
cavitation tunnels, 60
open-water tests, 45, 60

fast ships
cavitating, 109
conventional, 108-9
surface-piercing, 109

flow analysis
boundary element/panel, 48
CFD, 19-20
high-skew, 47
lifting-line, 48
lifting-surface, 48
momentum theory, 47-8
RANSE, 48

fuel saving
contra-rotating, 136
contracted and loaded tip, 134
Kappel, 134
rotational energy losses, 135
SparenbergeDeJong, 134

HSVA design and testing, 63
hydrodynamic mass and

damping, 226-7
introduction
blade area, 42-4
blade number, 43
geometry, 41-2
helicoidal surfaces, 42
pitch, 42
profile shape, 43
rake, 43
skew back, 43

model tests and ship
maneuverability, 268

NewtoneRader, 109
propeller-induced pressures,

66-7
propulsion test, 88-9
RANSE, 30-1, 48, 56
rudder interaction, 135, 284-8
ship, 74-5
stopping, 257
submarine, 60, 63
surface-piercing, 109

tests, 60
thrust, 74
unconventional

azimuthing, 69
contra-rotating, 68
controllable-pitch, 68-9
nozzled, 67-8
podded drives, 69
surface-piercing, 71
Voith Schneider, 71-2
waterjets, 70-1

vibrations, 231-2
Wageningen, 44, 62, 64
wake-improving devices,

139. See also cavitation
Propulsion test (resistance and

propulsion), 88-9
Propulsion-improving devices

(PIDs):
CFD simulations, 134
contra-rotating propellers,

136-7
Grim vane wheel, 135
Hub Vortex vane, 137
pre-swirl devices, 135
propeller boss cap fins, 137
rudder thrust fins, 135

Propulsive efficiency, 121-2
Pull-out maneuver, 264-5

Q
Quality benefits and CFD, 21-2

R
Rankine method (wave resistance),

110-11
Rankine panel method:
frequency domain (BEM),

353-65
seakeeping, 18

Rankine singularity method (RSM),
167, 174-7, 179

RANSE (Reynolds-averaged
NaviereStokes equation):

CFD
description, 13-20
ship maneuvering, 255, 258,
261-2

steady flow, 113, 116
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free-surface simulations, 164,
194-5

grids, 39
hydrofoils and cavitation, 108
propellers, 30-1, 48, 56
rudder design, 295
ship flows, 32
SIMPLE algorithm, 32
sloshing, 19
turbulence, 24
viscous flow computation,

116-17
vortex-induced vibrations,

234
water impact problems, 4
waterjet propulsion, 109
wave resistance, 80

RAOs (response amplitude
operators):

regular waves, 180
ships and stationary seaway,

181-3
Strip method, 174, 179
time-dimension simulation,

183-5
Regular first order panel, (BEM),

304-9
Regular waves (numerical

predictions), 180
Relative rotative efficiency, 124
Resistance and propulsion:
additional resistance

appendages, 94
roughness, 94, 96-7
seaway, 94, 97
shallow water, 94-5
wind, 94, 95-6

CFD
resistance and propulsion, 17-18
steady flow, 109-16

concepts
decomposition of resistance,
76-80

ship and propeller, 74-6
design

appendage resistance, 125-6
CAD, 121, 124
empirical methods, 117
form factor, 125
hull efficiency, 122

natural period for ship motion,
128-9

prediction methods, 120-1
propulsive efficiency, 121-2
relative rotative efficiency, 124
speed loss in wind and waves,
126-8

thrust deduction factor, 122-3
viscous pressure resistance
coefficient, 125

wake fraction, 122-3
wetted surface, 124-25
wind resistance, 126

experimental approach
Geosim method of Telfer, 87-8
HugheseProhaska, 85-6, 87
ITTC1957, 84-5, 90
ITTC1978, 86-7, 90
ITTC 1978 performance
prediction, 89-93

propulsion test, 88-9
resistance test, 82-3
towing tanks, 80-2

fast ships
catamarans, 103-5
fast monohulls, 97-103
problems, 105-9

fuel saving, 129-41
ship hydrodynamic

performance, 1
Resonance in ship structures, 211
Response amplitude operators. See

RAOs
Reynolds:
law, 8
number
appendage resistance, 125-6
bilge keels, 126
blended schemes, 36
cavitation tests, 62
Froude number, 8
hydrofoils, 107-8, 276
ITTC 1978 performance
prediction, 89-93

model tests, 8-9
models and ship
maneuverability, 268

open-water tests, 60-1
planing hulls, 98
propellers, 89, 231-2

rudders, 276, 278, 296
towing tanks, 81
turbulence models, 27-8

similarity, 82, 94, 130
stresses, 24-6

Righting lever (capsizing in waves),
197

Roll damping:
bilge keels, 201
flume tanks, 204
roll stabilizing tanks, 203

Roll motion:
capsizing in waves, 196-9
linear, undamped free roll, 195-6
roll damping, 199-204
stabilizing tanks, 203
time-domain simulation, 184

Rotating arm tests, 270
Rotating cylinder rudders, 283-4
Royal Institute of Naval Architects,

70, 80
Rudder propellers. See azimuthing

propellers
Rudders:
air ventilation, 279-80
Becker, 283
Bernoulli’s law, 280
CFD and flows, 295-8
definition, 270-4
design, 295-8
dynamic pressure, 280-2
engine, 274
fast ships, 103
fuel saving, 133
hard rudder test, 268
hull interaction, 288-9
hydrodynamic mass and

damping, 225-6
hydrodynamics, 274-82
introduction, 270-4
maneuvering effectiveness, 272
model tests and ship

maneuverability, 268
profile thickness, 278
propeller interaction, 135,

284-8
resistance, 4, 94
stall angle, 278
stern position, 271-2
thrust fins, 135
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Rudders: (Continued )
types
active/propeller, 284
flap, 283
heel bearing, 282
rotating cylinders, 283-4
semi-balanced, 283
spade, 283
steering nozzle, 284. See also
cavitation

RungeeKutta integration
(time-domain simulation),
183-4, 250

S
‘Sauna tanks’, 9
Schneekluth nozzle, 137
Schichtling’s hypothesis (wave

resistance), 95
Sea spectra and wind duration,

161
Sea strengths and wind, 128
Seaway:

excitation of vibrations, 233
fuel saving, 131
resistance, 94, 97
wind, 156-63. See also ship

seakeeping
‘Secondary wave pattern’, 79
Semi-balanced rudders, 283-4
Semi-displacement ships:

catamarans, 103-5
fast monohulls, 97-103

Shaft brackets/bosses (resistance),
94, 103

Shallow water:
resistance and propulsion, 94-5
simulation with known

coefficients, 256
Ship seakeeping:

computations, 144, 163-87
experimental approaches,

145-7
introduction, 143-5
natural seaway, 153-5
numerical predictions, 163-87
roll motion, 195-204
sea nature, 5
slamming, 187-95
stationary seaway, 181-3

vibrations, 1, 18
viscosity, 164
wave climate, 163
waves and seaway, 147-63
wind and seaway, 156-63

Short-crested seaway, 155
SIMBEL simulation method, 184
SIMPLE (semi implcit pressure

linked equation), 32-3
SIP (strong implicit procedure),

32-3
Simulation with known coefficients

(ship maneuvering):
CFD, 258-62
force coefficients, 244-9, 251
heel, 255-6
introduction/definition, 243-4
jet thrusters, 257-8
physical explanation and force

estimation, 249-55
shallow water, 256
stopping, 257

Slamming (ship seakeeping):
air trapping, 191-2
computational fluid dynamics,

192
hydro-elastic approaches, 194-5
introduction, 187-8
linear slamming theories, 188-9
simple non-linear slamming

theories based on
self-similar flow, 191

slamming theories including air
trapping, 191-2

three-dimensional slamming
theories, 193-4

Wagner’s theory, 190, 193
Watanabe’s theory, 190, 194
water compressibility, 193
wave impact classification, 187
wet-deck, 188

Slamming/water-entry problems,
18-19

Slender-body theory (ship
maneuvering), 253, 260

Slewable propellers. See
azimuthing propellers

Sloshing (interior flows), 20
Slow steaming (fuel saving), 131
Smith effect (waves), 150

Solar power (wind-assisted ships),
140-1

SolarSailor Ferry, Sydney, 140
Spade rudders, 283
SparenbergeDeJong propellers,

134
Speed:
loss in wind and waves, 126-8
trials, 10

Spiral tests:
‘direct’, 263-4
‘indirect’, 263
yaw stable/unstable, 264

Spoilers and wake-improvement,
138-9

Spray generation and hull design,
101-2

Steering nozzle with rudder, 284
STF (Salvesen, Tuck and Faltinsen)

strip methods, 165
Stopping:
simulation with known coeffi-

cients (ship maneuvering),
257

trial (ship maneuverability),
267-8

Strip method module (BEM),
349-53

Strip method (numerical
predictions), 165-6, 167-74,
177

Submarine propellers, 60, 63
Sumitomo Integrated Lammern

Duct (SILD), 137
Surface effect ships (SES), 20,

108
Surface-piercing propellers, 71, 109
Surface-treatment composites

(STC), 132
SWAN (Ship Wave ANalysis) code,

115, 167
Swell (waves), 156, 162
Swirl and asymmetric aftbodies,

135-6

T
Telfer’s method (resistance), 87-8
Tests for full scale ships in sea

trials:
hard rudder test, 268
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man-overboard maneuver,
268

pull-out maneuver, 264-5
spirals, 263-4
stopping trial, 267-8
turning circle, 262-3
zigzag maneuver, 265-6

Thiart element (BEM), 322-4, 363
Three-dimensional slamming

theories, 193-4
Three-dimensional wave resistance

problem (BEM), 340-9
Thrust:
deduction factor, 122-3
loading coefficient (open-water),

45
propeller, 74

‘Thrust identity approach’
(resistance and propulsion),
89

‘Thrust identity’ (propulsion test),
89

Time benefits and CFD, 20-1
‘Torque identity’ (propulsion test),

89
Towing tanks:
cavitation tests and propellers, 9
fast and unconventional ships,

105-9
resistance, 80-1, 82-3
ship seakeeping, 145

Tugs design, 118
Turbulence:
large-eddy simulations, 26
models, 24-8
viscous flow computations, 24-8

Turning circle test, 262-3, 269
Two-dimensional flow around

a body in infinite fluid
(BEM), 333-5

Two-dimensional wave resistance
problem (BEM), 335-40

U
Unified theory and numerical

predictions (ship
seakeeping), 166

Unstructured grids, 39
Upwind differencing scheme

(UDS), 35

V
Vibrations:
adjacent fluids, hydrodynamic

mass, 222-30
beams, 207, 209
effects
humans, 237-9
introduction, 234
ship, 236

excitation, 231-4
finite element methods, 209,

211
frequency, 206, 217-19, 220-1
global ship hulls, 209-11
introduction, 205-6
local structures, 211-22
Rayleigh method, 209
ship hydrodynamic

performance, 1
spectral methods, 209
theory, 206-9

Viscosity and ship seakeeping, 164
Viscous flow computations:
boundary conditions, 28-31
dynamic viscosity, 7
free surface treatment, 31-2
grid generation, 36-9
iterative methods, 32-3
kinematic viscosity, 8
multigrid methods, 33-4
numerical approximations, 34-6
pressureevelocity coupling,

32
RANSE codes, 32
resistance and propulsion,

116-17
steady flow, 116-17
turbulence, 24-8

Viscous pressure resistance:
calm-water, 77
coefficient, 125

VoitheSchneider propellers
(VSPs), 71, 242

Völker formula, 118
Volume-of-fluid formulation

(VOF), 32
Von Karman’s impact model

(slamming), 187-9
Von-Mises stress criterion

(propellers), 66

Vortex elements (BEM), 317-20
Vortex-induced vibrations,

233-4
Vortex-lattice methods (VLM),

54
Voyage optimization and fuel

saving, 141

W
Wageningen propellers, 44,

62, 64
Wagner’s theory (slamming), 190,

193
Wake:
field, 83
fraction, 89, 92, 123
friction, 75
nominal, 73
potential, 75
wave, 75

Wake fraction, 269
Wake-equalizing devices, 137
Wake-improving devices:
CFD simulations, 138
ducted propellers, 139-40
Hitachi Zosen nozzle, 137
Schneekluth nozzle, 137
spoilers, 138
Sumitomo Integrated Lammern

Duct, 137
Watanabe’s theory (slamming),

190, 194
Water compressibility and

slamming, 193
Waterjets:
propellers, 70
propulsion, 109

Wave resistance:
calm-water, 78-80
CFD, 109-16
design, 119
hull and appendages, 133
Schlichtling’s hypothesis, 95
wake, 73

‘Wave resistance problem’, 80,
111, 336

Waves:
airy, 147-52
capsizing, 196-9
climate, 163
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Waves: (Continued )
elementary, 147-8, 153-4, 157
encounter frequency, 151-2,

155
frequency, length and encounter

frequency, 151-2
impact, 188, 192
numerical predictions, 180
regular, 180
Smith effect, 150
swell, 156
wind, 160

Wet-deck slamming, 188
Wetted surface (resistance and

propulsion), 124-5
Wind:
Beaufort Number, 126
duration and sea spectra, 167
resistance, 95-7, 126
sea strengths, 128
seaway, 156-63
waves, 160

Wind-assisted ships (fuel saving):
Flettner rotors, 140

kites, 140-1
solar power, 140-1

Wöhler curve (ship vibrations),
236

Y
Young’s modulus, 208

Z
Zero speed seakeeping, 19
Zigzag maneuver, 265-6, 270
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