
Algorithms Illuminated

Tim Roughgarden

Part 3:
Greedy Algorithms

and Dynamic Programming

c� 2019 by Tim Roughgarden

First Edition

ISBN: 978-0-9992829-4-6 (Paperback)
ISBN: 978-0-9992829-5-3 (ebook)

Library of Congress Control Number: 2017914282

Soundlikeyourself Publishing, LLC
New York, NY
soundlikeyourselfpublishing@gmail.com

www.algorithmsilluminated.org

Contents

Preface vii

13 Introduction to Greedy Algorithms 1
13.1 The Greedy Algorithm Design Paradigm 1
13.2 A Scheduling Problem 4
13.3 Developing a Greedy Algorithm 6
13.4 Proof of Correctness 12
Problems 21

14 Huffman Codes 23
14.1 Codes 23
14.2 Codes as Trees 28
14.3 Huffman’s Greedy Algorithm 32

*14.4 Proof of Correctness 41
Problems 49

15 Minimum Spanning Trees 52
15.1 Problem Definition 52
15.2 Prim’s Algorithm 57

*15.3 Speeding Up Prim’s Algorithm via Heaps 62
*15.4 Prim’s Algorithm: Proof of Correctness 69
15.5 Kruskal’s Algorithm 76

*15.6 Speeding Up Kruskal’s Algorithm via Union-Find 81
*15.7 Kruskal’s Algorithm: Proof of Correctness 91
15.8 Application: Single-Link Clustering 94
Problems 99

16 Introduction to Dynamic Programming 103
16.1 The Weighted Independent Set Problem 104
16.2 A Linear-Time Algorithm for WIS in Paths 108

16.3 A Reconstruction Algorithm 116
16.4 The Principles of Dynamic Programming 118
16.5 The Knapsack Problem 123
Problems 133

17 Advanced Dynamic Programming 137
17.1 Sequence Alignment 137

*17.2 Optimal Binary Search Trees 148
Problems 163

18 Shortest Paths Revisited 167
18.1 Shortest Paths with Negative Edge Lengths 167
18.2 The Bellman-Ford Algorithm 172
18.3 The All-Pairs Shortest Path Problem 185
18.4 The Floyd-Warshall Algorithm 187
Problems 198

Epilogue: A Field Guide to Algorithm Design 201

Hints and Solutions to Selected Problems 203

Index 211

Preface

This book is the third of a four-part series based on my online algo-
rithms courses that have been running regularly since 2012, which in
turn are based on an undergraduate course that I taught many times
at Stanford University. The first two parts of the series are not strict
prerequisites for this one, though portions of this book do assume
at least a vague recollection of big-O notation (covered in Chapter 2
of Part 1 or Appendix C of Part 2), divide-and-conquer algorithms
(Chapter 3 of Part 1), and graphs (Chapter 7 of Part 2).

What We’ll Cover

Algorithms Illuminated, Part 3 provides an introduction to and nu-
merous case studies of two fundamental algorithm design paradigms.

Greedy algorithms and applications. Greedy algorithms solve
problems by making a sequence of myopic and irrevocable decisions.
For many problems, they are easy to devise and often blazingly
fast. Most greedy algorithms are not guaranteed to be correct, but
we’ll cover several killer applications that are exceptions to this rule.
Examples include scheduling problems, optimal compression, and
minimum spanning trees of graphs.

Dynamic programming and applications. Few benefits of a se-
rious study of algorithms rival the empowerment that comes from
mastering dynamic programming. This design paradigm takes a lot of
practice to perfect, but it has countless applications to problems that
appear unsolvable using any simpler method. Our dynamic program-
ming boot camp will double as a tour of some of the paradigm’s killer
applications, including the knapsack problem, the Needleman-Wunsch
genome sequence alignment algorithm, Knuth’s algorithm for opti-

mal binary search trees, and the Bellman-Ford and Floyd-Warshall
shortest-path algorithms.

For a more detailed look into the book’s contents, check out the
“Upshot” sections that conclude each chapter and highlight the most
important points. The “Field Guide to Algorithm Design” on page 201
provides a bird’s-eye view of how greedy algorithms and dynamic
programming fit into the bigger algorithmic picture.

The starred sections of the book are the most advanced ones. The
time-constrained reader can skip these sections on a first reading
without any loss of continuity.

Topics covered in the other three parts. Algorithms Illumi-

nated, Part 1 covers asymptotic notation (big-O notation and its
close cousins), divide-and-conquer algorithms and the master method,
randomized QuickSort and its analysis, and linear-time selection algo-
rithms. Part 2 covers data structures (heaps, balanced search trees,
hash tables, bloom filters), graph primitives (breadth- and depth-first
search, connectivity, shortest paths), and their applications (ranging
from deduplication to social network analysis). Part 4 is all about NP -
completeness, what it means for the algorithm designer, and strategies
for coping with computationally intractable problems, including the
analysis of heuristics and local search.

Skills You’ll Learn

Mastering algorithms takes time and effort. Why bother?

Become a better programmer. You’ll learn several blazingly
fast subroutines for processing data as well as several useful data
structures for organizing data that you can deploy directly in your own
programs. Implementing and using these algorithms will stretch and
improve your programming skills. You’ll also learn general algorithm
design paradigms that are relevant to many different problems across
different domains, as well as tools for predicting the performance of
such algorithms. These “algorithmic design patterns” can help you
come up with new algorithms for problems that arise in your own
work.

Sharpen your analytical skills. You’ll get lots of practice describ-
ing and reasoning about algorithms. Through mathematical analysis,

you’ll gain a deep understanding of the specific algorithms and data
structures that these books cover. You’ll acquire facility with sev-
eral mathematical techniques that are broadly useful for analyzing
algorithms.

Think algorithmically. After you learn about algorithms, you’ll
start seeing them everywhere, whether you’re riding an elevator,
watching a flock of birds, managing your investment portfolio, or even
watching an infant learn. Algorithmic thinking is increasingly useful
and prevalent in disciplines outside of computer science, including
biology, statistics, and economics.

Literacy with computer science’s greatest hits. Studying al-
gorithms can feel like watching a highlight reel of many of the greatest
hits from the last sixty years of computer science. No longer will you
feel excluded at that computer science cocktail party when someone
cracks a joke about Dijkstra’s algorithm. After reading these books,
you’ll know exactly what they mean.

Ace your technical interviews. Over the years, countless stu-
dents have regaled me with stories about how mastering the concepts
in these books enabled them to ace every technical interview question
they were ever asked.

How These Books Are Different

This series of books has only one goal: to teach the basics of algorithms

in the most accessible way possible. Think of them as a transcript
of what an expert algorithms tutor would say to you over a series of
one-on-one lessons.

There are a number of excellent more traditional and encyclopedic
textbooks about algorithms, any of which usefully complement this
book series with additional details, problems, and topics. I encourage
you to explore and find your own favorites. There are also several
books that, unlike these books, cater to programmers looking for
ready-made algorithm implementations in a specific programming
language. Many such implementations are freely available on the Web
as well.

Who Are You?

The whole point of these books and the online courses upon which
they are based is to be as widely and easily accessible as possible.
People of all ages, backgrounds, and walks of life are well represented
in my online courses, and there are large numbers of students (high-
school, college, etc.), software engineers (both current and aspiring),
scientists, and professionals hailing from all corners of the world.

This book is not an introduction to programming, and ideally
you’ve acquired basic programming skills in a standard language (like
Java, Python, C, Scala, Haskell, etc.). If you need to beef up your
programming skills, there are several outstanding free online courses
that teach basic programming.

We also use mathematical analysis as needed to understand how
and why algorithms really work. The freely available book Mathe-

matics for Computer Science, by Eric Lehman, F. Thomson Leighton,
and Albert R. Meyer, is an excellent and entertaining refresher on
mathematical notation (like

P
and 8), the basics of proofs (induction,

contradiction, etc.), discrete probability, and much more.

Additional Resources

These books are based on online courses that are currently running
on the Coursera and Stanford Lagunita platforms. I’ve made several
resources available to help you replicate as much of the online course
experience as you like.

Videos. If you’re more in the mood to watch and listen than
to read, check out the YouTube video playlists available from
www.algorithmsilluminated.org. These videos cover all the topics
in this book series, as well as additional advanced topics. I hope they
exude a contagious enthusiasm for algorithms that, alas, is impossible
to replicate fully on the printed page.

Quizzes. How can you know if you’re truly absorbing the concepts
in this book? Quizzes with solutions and explanations are scattered
throughout the text; when you encounter one, I encourage you to
pause and think about the answer before reading on.

End-of-chapter problems. At the end of each chapter you’ll find
several relatively straightforward questions for testing your under-

standing, followed by harder and more open-ended challenge problems.
Hints or solutions to all of these problems (as indicated by an “(H)” or
“(S),” respectively) are included at the end of the book. Readers can
interact with me and each other about the end-of-chapter problems
through the book’s discussion forum (see below).

Programming problems. Each of the chapters concludes with a
suggested programming project whose goal is to help you develop a
detailed understanding of an algorithm by creating your own working
implementation of it. Data sets, along with test cases and their
solutions, can be found at www.algorithmsilluminated.org.

Discussion forums. A big reason for the success of online courses
is the opportunities they provide for participants to help each other
understand the course material and debug programs through discus-
sion forums. Readers of these books have the same opportunity, via
the forums available at www.algorithmsilluminated.org.

Acknowledgments

These books would not exist without the passion and hunger supplied
by the hundreds of thousands of participants in my algorithms courses
over the years. I am particularly grateful to those who supplied
detailed feedback on an earlier draft of this book: Tonya Blust, Yuan
Cao, Carlos Guia, Jim Humelsine, Vladimir Kokshenev, Bayram
Kuliyev, and Daniel Zingaro.

I always appreciate suggestions and corrections from readers.
These are best communicated through the discussion forums men-
tioned above.

Tim Roughgarden
New York, NY
April 2019

Chapter 13

Introduction to Greedy Algorithms

Much of the beauty in the design and analysis of algorithms stems
from the interplay between general algorithm design principles and
the instantiation of these principles to solve concrete computational
problems. There’s no silver bullet in algorithm design—no universal
technique that can solve every computational problem you’ll encounter.
But there are several general design paradigms that can help you
solve problems from many different application domains. Teaching
you these paradigms and their most famous instantiations is one of
the major goals of this book series.

13.1 The Greedy Algorithm Design Paradigm

13.1.1 Algorithm Paradigms

What’s an “algorithm design paradigm?” Readers of Part 1 have
already seen a canonical example, the divide-and-conquer paradigm.
That paradigm went like this:

The Divide-and-Conquer Paradigm

1. Divide the input into smaller subproblems.

2. Conquer the subproblems recursively.

3. Combine the solutions for the subproblems into a
solution for the original problem.

In Part 1 we saw numerous instantiations of this paradigm: the
MergeSort and QuickSort algorithms, Karatsuba’s O(n1.59)-time al-
gorithm for multiplying two n-digit integers, Strassen’s O(n2.71)-time
algorithm for multiplying two n⇥ n matrices, and more.

2 Introduction to Greedy Algorithms

The first half of this book is about the greedy algorithm design
paradigm. What is a greedy algorithm, exactly? Much blood and ink
have been spilled over this question, so we’ll content ourselves with
an informal definition.1

The Greedy Paradigm

Construct a solution iteratively, via a sequence of myopic
decisions, and hope that everything works out in the end.

The best way to get a feel for greedy algorithms is through exam-
ples. We’ll see several over the next few chapters.2

13.1.2 Themes of the Greedy Paradigm

Here are a few themes to watch for in our examples. (You might want
to re-read this section after going through one or more examples, so
that it’s less abstract.) First, for many problems, it’s surprisingly
easy to come up with one or even multiple greedy algorithms that
might plausibly work. This is both a bug and a feature—greedy
algorithms can be a great cure for writer’s block when you’re stuck
on a problem, but it can be hard to assess which greedy approach
is the most promising. Second, the running time analysis is often a
one-liner. For example, many greedy algorithms boil down to sorting
plus a linear amount of extra processing, in which case the running
time of a good implementation would be O(n log n), where n is the
number of objects to be sorted.3 (Big-O notation suppresses constant

1To investigate formal definitions of greedy algorithms, start with the paper
“(Incremental) Priority Algorithms,” by Allan Borodin, Morten N. Nielsen, and
Charles Rackoff (Algorithmica, 2003).

2Readers of Part 2 have already seen a greedy algorithm, namely Dijkstra’s
shortest-path algorithm. That algorithm iteratively computes the shortest-path
distances from a starting vertex s to every other vertex of a graph. In each
iteration, the algorithm irrevocably and myopically commits to an estimate of the
shortest-path distance to one additional vertex, never revisiting the decision. In
graphs with only nonnegative edge lengths, everything works out in the end and
all the shortest-path distance estimates are correct.

3For example, two O(n log n)-time sorting algorithms are MergeSort (see
Chapter 1 in Part 1) and HeapSort (see Chapter 10 in Part 2). Alternatively,
randomized QuickSort (see Chapter 5 of Part 1) has an average running time of
O(n log n).

13.1 The Greedy Algorithm Design Paradigm 3

factors and different logarithmic functions differ by a constant factor,
so there is no need to specify the base of the logarithm.) Finally,
it’s often difficult to figure out whether a proposed greedy algorithm
actually returns the correct output for every possible input. The fear
is that one of the algorithm’s irrevocable myopic decisions will come
back to haunt you and, with full hindsight, be revealed as a terrible
idea. And even when a greedy algorithm is correct, proving it can be
difficult.4

Features and Bugs of the Greedy Paradigm

1. Easy to come up with one or more greedy algorithms.

2. Easy to analyze the running time.

3. Hard to establish correctness.

One of the reasons why it can be hard to prove the correctness
of greedy algorithms is that most such algorithms are not correct,
meaning there exist inputs for which the algorithm fails to produce
the desired output. If you remember only one thing about greedy
algorithms, it should be this.

Warning

Most greedy algorithms are not always correct.

This point is especially difficult to accept for clever greedy algorithms
that you invented yourself. You might believe, in your heart of hearts,
that your natural greedy algorithm must always solve the problem
correctly. More often than not, this belief is unfounded.5

4Veterans of Part 1 know that all three themes are a big contrast to the divide-
and-conquer paradigm. It’s often tricky to come up with a good divide-and-conquer
algorithm for a problem, and when you do, there’s usually a “Eureka!” moment
when you know that you’ve cracked the problem. Analyzing the running times of
divide-and-conquer algorithms can be difficult, due to the tug-of-war between the
forces of proliferating subproblems and shrinking work-per-subproblem. (All of
Chapter 4 of Part 1 is devoted to this topic.) Finally, proofs of correctness for
divide-and-conquer algorithms are usually straightforward inductions.

5A not-always-correct greedy algorithm can still serve as a super-fast heuristic
for a problem, a point we’ll return to in Part 4.

4 Introduction to Greedy Algorithms

Now that my conscience is clear, let’s look at some cherry-picked
examples of problems that can be solved correctly with a judiciously
designed greedy algorithm.

13.2 A Scheduling Problem

Our first case study concerns scheduling, in which the goal is to sched-
ule tasks on one or more shared resources to optimize some objective.
For example, a resource could represent a computer processor (with
tasks corresponding to jobs), a classroom (with tasks corresponding
to lectures), or your calendar for the day (with tasks corresponding
to meetings).

13.2.1 The Setup

In scheduling, the tasks to be completed are usually called jobs, and
jobs can have different characteristics. Suppose that each job j has a
known length `j , which is the amount of time required to process the
job (for example, the length of a lecture or meeting). Also, each job
has a weight wj , with higher weights corresponding to higher-priority
jobs.

13.2.2 Completion Times

A schedule specifies an order in which to process the jobs. In a problem
instance with n jobs, there are n! = n · (n�1) · (n�2) · · · 2 ·1 different
schedules. That’s a lot of schedules! Which one should we prefer?

Next, we need to define an objective function that assigns a nu-
merical score to every schedule and quantifies what we want. First, a
preliminary definition:

Completion Times

The completion time Cj(�) of a job j in a schedule � is the
sum of the lengths of the jobs preceding j in �, plus the
length of j itself.

In other words, a job’s completion time in a schedule is the total time
that elapses before the job has been fully processed.

13.2 A Scheduling Problem 5

Quiz 13.1

Consider a problem instance that has three jobs with `1 = 1,
`2 = 2, and `3 = 3, and suppose they are scheduled in this
order (with job 1 first). What are the completion times
of the three jobs in this schedule? (The job weights are
irrelevant for this question, so we have not specified them.)

a) 1, 2, and 3

b) 3, 5, and 6

c) 1, 3, and 6

d) 1, 4, and 6

(See Section 13.2.4 for the solution and discussion.)

13.2.3 Objective Function

What makes for a good schedule? We’d like jobs’ completion times to
be small, but trade-offs between jobs are inevitable—in any schedule,
jobs scheduled early will have short completion times while those
scheduled toward the end will have long completion times.

One way to make trade-offs between the jobs is to minimize the
sum of weighted completion times. In math, this objective function
translates to

min
�

nX

j=1

wjCj(�), (13.1)

where the minimization is over all n! possible schedules �, and Cj(�)
denotes job j’s completion time in the schedule �. This is equivalent
to minimizing the weighted average of the jobs’ completion times,
with the averaging weights proportional to the wj ’s.

For example, consider the three jobs in Quiz 13.1 and suppose
their weights are w1 = 3, w2 = 2, and w3 = 1. If we schedule the first
job first, the second job second, and the third job third, the sum of
the weighted completion times is

3 · 1|{z}
job #1

+ 2 · 3|{z}
job #2

+ 1 · 6|{z}
job #3

= 15.

6 Introduction to Greedy Algorithms

By checking all 3! = 6 possible schedules, you can verify that this is
the schedule that minimizes the sum of weighted completion times.
How can we solve this problem in general, given as input an arbitrary
set of job lengths and weights?

Problem: Minimizing the Sum of Weighted
Completion Times

Input: A set of n jobs with positive lengths `1, `2, . . . , `n
and positive weights w1, w2, . . . , wn.

Output: A job sequence that minimizes the sum of
weighted completion times (13.1).

With n! different schedules, computing the best one by exhaustive
search is out of the question for all but the tiniest instances. We need
a smarter algorithm.6

13.2.4 Solution to Quiz 13.1

Correct answer: (c). We can visualize a schedule by stacking the
jobs on top of one another, with time increasing from bottom to top
(Figure 13.1). The completion time of a job is the time corresponding
to its topmost edge. For the first job, its completion time is just
its length, which is 1. The second job must wait for the first job to
complete, so its completion time is the sum of the lengths of the first
two jobs, which is 3. The third job doesn’t even start until time 3,
and then it takes 3 more time units to complete, so its completion
time is 6.

13.3 Developing a Greedy Algorithm

Greedy algorithms seem like a good fit for the problem of scheduling
jobs to minimize the weighted sum of completion times. The output
has an iterative structure, with jobs processed one by one. Why not

6For example, n! is bigger than 3.6 million when n = 10, bigger than 2.4
quintillion when n = 20, and bigger than the estimated number of atoms in the
known universe when n � 60. Thus no conceivable improvement in computer
technology would transmute exhaustive search into a useful algorithm.

13.3 Developing a Greedy Algorithm 7

job #1

job #2

job #3

tim
e

0

1

3

6

Figure 13.1: The completion times of the three jobs are 1, 3, and 6.

use a greedy algorithm that iteratively decides which job should go
next?

The first step of our plan is to solve two special cases of the
general problem. Our solutions to these will suggest what a greedy
algorithm might look like in the general case. We’ll then narrow the
field to a single candidate algorithm and prove that this candidate
correctly solves the problem. The process by which we arrive at this
algorithm is more important to remember than the algorithm itself;
it’s a repeatable process that you can use in your own applications.

13.3.1 Two Special Cases

Let’s think positive and posit that there actually is a correct greedy
algorithm for the problem of minimizing the weighted sum of comple-
tion times. What would it look like? For starters, what if you knew
that all the jobs had the same length (but possibly different weights)?
What if they all had the same weight (but possibly different lengths)?

Quiz 13.2

(1) If all job lengths are identical, should we schedule
smaller- or larger-weight jobs earlier?

(2) If all job weights are identical, should we schedule
shorter or longer jobs earlier?

8 Introduction to Greedy Algorithms

a) larger/shorter

b) smaller/shorter

c) larger/longer

d) smaller/longer

(See Section 13.3.3 for the solution and discussion.)

13.3.2 Dueling Greedy Algorithms

In the general case, jobs can have different weights and different
lengths. Whenever our two rules-of-thumb—to prefer shorter jobs
and higher-weight jobs—luckily coincide for a pair of jobs, we know
which one to schedule first (the shorter, higher-weight one). But what
if the two rules give conflicting advice? What should we do with one
short low-weight job and one long high-weight job?

What’s the simplest greedy algorithm that might work? Each
job has two parameters, and the algorithm must look at both. The
best-case scenario would be to come up with a formula that compiles
each job’s length and weight into a single score, so that scheduling
jobs from highest to lowest score is guaranteed to minimize the sum of
weighted completion times. If such a formula exists, our two special
cases imply that it must have two properties: (i) holding the length
fixed, it should be increasing in the job’s weight; and (ii) holding the
weight fixed, it should be decreasing in the job’s length. (Remember,
higher scores are better.) Take a minute to brainstorm some formulas
that have both of these properties.

* * * * * * * * * * *

Perhaps the simplest function that is increasing in weight and
decreasing in length is the difference between the two:

proposal #1 for score of job j: wj � `j .

This score might be negative, but that poses no obstacle to sequencing
the jobs from highest to lowest score.

13.3 Developing a Greedy Algorithm 9

There are plenty of other options. For example, the ratio of the
two parameters is another candidate:

proposal #2 for score of job j:
wj

`j
.

These two scoring functions lead to two different greedy algo-
rithms.

GreedyDiff

Schedule the jobs in decreasing order of wj � `j
(breaking ties arbitrarily).

GreedyRatio

Schedule the jobs in decreasing order of wj

`j

(breaking ties arbitrarily).

Thus, already, our first case study illustrates the first theme of the
greedy paradigm (Section 13.1.2): It is often easy to propose multiple
competing greedy algorithms for a problem.

Which of the two algorithms, if any, is correct? A quick way to
rule out one of them is to find an instance in which the two algorithms
output different schedules, with different objective function values.
For whichever algorithm fares worse in this example, we can conclude
that it is not always optimal.

Both algorithms do the right thing in our two special cases, with
equal-weight or equal-length jobs. The simplest possible example for
ruling out one of them would be a problem instance with two jobs,
having different weights and lengths, such that the two algorithms
schedule the jobs in opposite orders. That is, we seek two jobs whose
ordering by difference is the opposite of their ordering by ratio. One
simple example is:

Job #1 Job #2
Length `1 = 5 `2 = 2
Weight w1 = 3 w2 = 1.

The first job has the larger ratio (35 vs. 1
2) but the smaller (more

negative) difference (�2 vs. �1). Thus the GreedyDiff algorithm
schedules the second job first, while GreedyRatio does the opposite.

10 Introduction to Greedy Algorithms

Quiz 13.3

What is the sum of weighted completion times in the sched-
ules output by the GreedyDiff and GreedyRatio algorithms,
respectively?

a) 22 and 23

b) 23 and 22

c) 17 and 17

d) 17 and 11

(See Section 13.3.3 for the solution and discussion.)

We’ve made progress by ruling out the GreedyDiff algorithm
from further consideration. However, the outcome of Quiz 13.3 does
not immediately imply that the GreedyRatio algorithm is always
optimal. For all we know, there are other cases in which the algorithm
outputs a suboptimal schedule. You should always be skeptical about
an algorithm that does not come with a proof of correctness, even
if the algorithm does the right thing in some toy examples, and
extra-skeptical of greedy algorithms.

In our case, the GreedyRatio algorithm is, in fact, guaranteed to
minimize the sum of weighted completion times.

Theorem 13.1 (Correctness of GreedyRatio) For every set of

positive job weights w1, w2, . . . , wn and positive job lengths

`1, `2, . . . , `n, the GreedyRatio algorithm outputs a schedule with the

minimum-possible sum of weighted completion times.

This assertion is not obvious and you should not trust it until I supply
you with a proof. Consistent with the third theme of the greedy
paradigm (Section 13.1.2), this proof occupies the entire next section.

On Lemmas, Theorems, and the Like

In mathematical writing, the most important tech-
nical statements are labeled theorems. A lemma is
a technical statement that assists with the proof of

13.3 Developing a Greedy Algorithm 11

a theorem (much as a subroutine assists with the
implementation of a larger program). A corollary is a
statement that follows immediately from an already-
proven result, such as a special case of a theorem.
We use the term proposition for stand-alone techni-
cal statements that are not particularly important in
their own right.

The remaining theme of the greedy paradigm is the ease of running
time analyses (Section 13.1.2). That’s certainly the case here. All the
GreedyRatio algorithm does is sort the jobs by ratio, which requires
O(n log n) time, where n is the number of jobs in the input (see
footnote 3).

13.3.3 Solutions to Quiz 13.2–13.3

Solution to Quiz 13.2

Correct answer: (a). First suppose that all n jobs have the same
length, say length 1. Then, every schedule has exactly the same
set of completion times—{1, 2, 3, . . . , n}—and the only question is
which job gets which completion time. Our semantics for job weights
certainly suggests that the higher-weight jobs should receive the
smaller completion times, and this is in fact the case. For example,
you wouldn’t want to schedule a job with weight 10 third (with
completion time 3) and one with weight 20 fifth (with completion
time 5); you’d be better off exchanging the positions of these two jobs,
which would decrease the sum of weighted completion times by 20 (as
you should check).

The second case, in which all jobs have equal weights, is a little
more subtle. Here, you want to favor shorter jobs. For example,
consider two unit-weight jobs with lengths 1 and 2. If you schedule
the shorter job first, the completion times are 1 and 3, for a total
of 4. In the opposite order, the completion times are 2 and 3, for
an inferior total of 5. In general, the job scheduled first contributes
to the completion times of all the jobs, as all jobs must wait for
the first one to finish. All else being equal, scheduling the shortest
job first minimizes this negative impact. The second job contributes

12 Introduction to Greedy Algorithms

to all the completion times other than that of the first job, so the
second-shortest job should be scheduled next, and so on.

Solution to Quiz 13.3

Correct answer: (b). The GreedyDiff algorithm schedules the
second job first. The completion time of this job is C2 = `2 = 2
while that of the other job is C1 = `2 + `1 = 7. The sum of weighted
completion times is then

w1 · C1 + w2 · C2 = 3 · 7 + 1 · 2 = 23.

The GreedyRatio algorithm schedules the first job first, resulting in
completion times C1 = `1 = 5 and C2 = `1 + `2 = 7 and a sum of
weighted completion times of

3 · 5 + 1 · 7 = 22.

We conclude that the GreedyDiff algorithm fails to compute an
optimal schedule for this example and therefore is not always correct.

13.4 Proof of Correctness

Divide-and-conquer algorithms usually have formulaic correctness
proofs, consisting of a straightforward induction. Not so with greedy
algorithms, for which correctness proofs are more art than science—be
prepared to throw in the kitchen sink. To the extent that there are
recurring themes in correctness proofs of greedy algorithms, we will
emphasize them as we go along.

The proof of Theorem 13.1 includes a vivid example of one such
theme: exchange arguments. The key idea is to prove that every
feasible solution can be improved by modifying it to look more like
the output of the greedy algorithm. We’ll see two variants in this
section. In the first, we’ll proceed by contradiction and use an exchange
argument to exhibit a “too-good-to-be-true” solution. In the second,
we’ll use an exchange argument to show that every feasible solution
can be iteratively massaged into the output of the greedy algorithm,

13.4 Proof of Correctness 13

while only improving the solution along the way.7

13.4.1 The No-Ties Case: High-Level Plan

We proceed to the proof of Theorem 13.1. Fix a set of jobs, with
positive weights w1, w2, . . . , wn and lengths `1, `2 . . . , `n. We must
show that the GreedyRatio algorithm produces a schedule that min-
imizes the sum of weighted completion times (13.1). We start with
two assumptions.

Two Assumptions

(1) The jobs are indexed in nonincreasing order of weight-
length ratio:

w1

`1
� w2

`2
� · · · � wn

`n
. (13.2)

(2) There are no ties between ratios: wi
`i

6= wj

`j
whenever

i 6= j.

The first assumption is without loss of generality, merely an agreement
among friends to minimize our notational burden. Reordering the
jobs in the input has no effect on the problem to be solved. We can
therefore always reorder and reindex the jobs so that (13.2) holds.
The second assumption imposes a non-trivial restriction on the input;
we will do some extra work to remove it in Section 13.4.4. Together,
the two assumptions imply that jobs are indexed in strictly decreasing
order of weight-length ratio.

The high-level plan is to proceed by contradiction. Recall that
in this type of proof, you assume the opposite of what you want to
prove, and then build on this assumption with a sequence of logically
correct steps that culminates in a patently false statement. Such a

7Exchange arguments are only one way among many to prove that a greedy
algorithm is correct. For example, in Chapter 9 of Part 2, our correctness
proof for Dijkstra’s algorithm used induction rather than an exchange argument.
Both induction and exchange arguments play a role in our correctness proofs for
Huffman’s greedy coding algorithm (Chapter 14) and for Prim’s and Kruskal’s
minimum spanning tree algorithms (Chapter 15).

14 Introduction to Greedy Algorithms

contradiction implies that the assumption can’t be true, which proves
the desired statement.

To begin, we assume that the GreedyRatio algorithm produces
a schedule � of the given jobs that is not optimal. Thus, there is
an optimal schedule �⇤ of these jobs with a strictly smaller sum of
weighted completion times. The inspired idea is to use the differences
between � and �⇤ to explicitly construct a schedule that is even better

than �⇤; this will contradict our assumption that �⇤ is an optimal
schedule.

13.4.2 Exchanging Jobs in a Consecutive Inversion

Suppose, for contradiction, that the GreedyRatio algorithm produces
the schedule � and that there is an optimal schedule �⇤ with a strictly
smaller sum of weighted completion times. By assumption (1), the
greedy schedule � schedules the jobs in order of index (with job 1
first, then job 2, all the way up to job n); see Figure 13.2.

job #1

job #2

job #3

tim
e

job #n

. .
 .

. .
 .

. .
 .

.

σ

Figure 13.2: The greedy schedule �, with jobs scheduled in order of
nonincreasing weight-length ratio.

Going from bottom to top in the greedy schedule, the indices
of the jobs always go up. This is not true for any other schedule.
To make this assertion precise, define a consecutive inversion in a

13.4 Proof of Correctness 15

schedule as a pair i, j of jobs such that i > j and job i is processed
immediately before job j. For example, in Figure 13.2, if jobs 2
and 3 were processed in the opposite order they would constitute a
consecutive inversion (with i = 3 and j = 2).

Lemma 13.2 (Non-Greedy Schedules Have Inversions)
Every schedule �̂ different from the greedy schedule � has at least one

consecutive inversion.

Proof: We prove the contrapositive.8 If �̂ has no consecutive inversions,
the index of each job is at least 1 larger than the job that came before
it. There are n jobs and the maximum-possible index is n, so there
cannot be any jumps of 2 or more between the indices of consecutive
jobs. This means that �̂ is the same as the schedule computed by the
greedy algorithm. QE D9

Returning to the proof of Theorem 13.1, we are assuming that
there is an optimal schedule �⇤ of the given jobs with a strictly
smaller sum of weighted completion times than the greedy schedule �.
Because �⇤ 6= �, Lemma 13.2 applies to �⇤, and there are consecutive
jobs i, j in �⇤ with i > j (Figure 13.3(a)). How can we use this fact
to exhibit another schedule �0 that is even better than �⇤, thereby
furnishing a contradiction?

The key idea is to perform an exchange. We define a new sched-
ule �0 that is identical to �⇤ except that the jobs i and j are processed
in the opposite order, with j now processed immediately before i.
The jobs before both i and j (“stuff” in Figure 13.3) are the same in
both �⇤ and �0 (and in the same order), and likewise for the jobs that
follow both i and j (“more stuff”).

13.4.3 Cost-Benefit Analysis

What are the ramifications of the exchange illustrated below in
Figure 13.3?

8The contrapositive of a statement “if A is true, then B is true” is the logically
equivalent statement “if B is not true, then A is not true.” For example, the
contrapositive of Lemma 13.2 is: If �̂ has no consecutive inversions, then �̂ is the
same as the greedy schedule �.

9“Q.e.d.” is an abbreviation for quod erat demonstrandum and means “that
which was to be demonstrated.” In mathematical writing, it is used at the end of
a proof to mark its completion.

16 Introduction to Greedy Algorithms

stuff

tim
e

σ*

more
stuff

i

j
exchange!

(a) Before exchange

stuff

tim
e

σ’

more
stuff

j

i

(b) After exchange

Figure 13.3: Obtaining the new schedule �0 from the allegedly optimal
schedule �⇤ by exchanging the jobs in a consecutive inversion (with i > j).

Quiz 13.4

What effect does the exchange have on the completion time
of: (i) a job other than i or j; (ii) the job i; and (iii) the
job j?

a) (i) Not enough information to answer; (ii) goes up;
(iii) goes down.

b) (i) Not enough information to answer; (ii) goes down;
(iii) goes up.

c) (i) Unaffected; (ii) goes up; (iii) goes down.

d) (i) Unaffected; (ii) goes down; (iii) goes up.

(See Section 13.4.5 for the solution and discussion.)

13.4 Proof of Correctness 17

Solving Quiz 13.4 puts us in a great position to finish the proof.
The cost of exchanging the jobs i and j in a consecutive inversion
is that i’s completion time Ci goes up by the length `j of job j,
which increases the objective function (13.1) by wi · `j . The benefit
is that j’s completion time Cj goes down by the length `i of job i,
which decreases the objective function (13.1) by wj · `i.

Summarizing,
nX

k=1

wkCk(�
0)

| {z }
objective fn value of �0

=
nX

k=1

wkCk(�
⇤)

| {z }
objective fn value of �⇤

+ wi`j � wj`i| {z }
effect of exchange

. (13.3)

Now is the time to use the fact that �⇤ scheduled i and j in the “wrong
order,” with i > j. Our standing assumptions (1) and (2) imply that
jobs are indexed in strictly decreasing order of weight-length ratio, so

wi

`i
<

wj

`j
.

After clearing denominators, this translates to

wi`j|{z}
cost of exchange

< wj`i|{z}
benefit of exchange

.

Because the benefit of the exchange exceeds the cost, equation (13.3)
tells us that

objective function value of �0 < objective function value of �⇤.

But this is nuts—�⇤ was supposed to be an optimal schedule, with the
smallest possible sum of weighted completion times! We’ve arrived at
the desired contradiction, which completes the proof of Theorem 13.1
for the case in which all the jobs have distinct weight-length ratios.

13.4.4 Handling Ties

With a little more work, we can prove the correctness of the
GreedyRatio algorithm (Theorem 13.1) even when there are ties
in jobs’ weight-length ratios. (We’ll keep the assumption (1) that
jobs are indexed in nonincreasing order of weight-length ratio, as it’s
without loss of generality.) The point of going through this more

18 Introduction to Greedy Algorithms

general correctness proof is to illustrate a neat twist on the exchange
argument from the previous section, which proceeds directly rather
than by contradiction.

We’ll reuse much of our previous work, but our high-level plan is
different. As before, let � = 1, 2, . . . , n denote the schedule computed
by the GreedyRatio algorithm. Consider an arbitrary competing
schedule �⇤, optimal or otherwise. We’ll show directly, by a sequence
of job exchanges, that �’s sum of weighted completion times is no
larger than that of �⇤. Having proved this for every schedule �⇤, we’ll
conclude that � is, in fact, an optimal schedule.

In more detail, assume that �⇤ 6= �. (There’s nothing to do
if �⇤ = �.) By Lemma 13.2, �⇤ has a consecutive inversion—two
jobs i and j such that i > j and j is scheduled immediately after i.
Obtain �0 from �⇤ by swapping the positions of i and j in the schedule
(Figure 13.3). As in our derivation of the equation (13.3), the cost and
benefit of this exchange are wi`j and wj`i, respectively. Because i > j
and jobs are indexed in nonincreasing order of weight-length ratio,

wi

`i
 wj

`j

and hence
wi`j|{z}

cost of exchange

 wj`i|{z}
benefit of exchange

. (13.4)

In other words, the swap cannot increase the sum of weighted com-
pletion times—the sum might decrease, or it might stay the same.10

Have we made any progress?

Quiz 13.5

An inversion in a schedule is a pair k,m of jobs with k < m
and m processed before k. (The jobs k and m need not
be consecutive—some jobs might be scheduled after m and
before k.) Suppose �1 is a schedule with a consecutive
inversion i, j with i > j, and obtain �2 from �1 by reversing
the order of i and j. How does the number of inversions
in �2 compare to that in �1?

10We no longer get an immediate contradiction in the case in which �
⇤ is an

optimal schedule, as �
0 could be a different, equally optimal, schedule.

13.4 Proof of Correctness 19

a) �2 has one fewer inversion than �1.

b) �2 has the same number of inversions as �1.

c) �2 has one more inversion than �1.

d) None of the other answers are correct.

(See Section 13.4.5 for the solution and discussion.)

To finish the proof, take the arbitrary competing schedule �⇤ and
repeatedly swap jobs to remove consecutive inversions.11 Because
the number of inversions decreases with every swap (Quiz 13.5), this
process eventually terminates. By Lemma 13.2, it can only terminate
at the greedy schedule �. The objective function value can only
decrease throughout this process (by (13.4)), so � is at least as good
as �⇤. This is true for every choice of �⇤, so � is indeed optimal.
QE D

13.4.5 Solution to Quizzes 13.4–13.5

Solution to Quiz 13.4

Correct answer: (c). First, jobs k other than i and j couldn’t care
less about i and j being swapped. This is easiest to see for a job k
processed before i and j in �⇤ (as part of the “stuff” in Figure 13.3).
Because the exchange occurs after k completes, it has no effect on k’s
completion time (the amount of time that elapses before k completes).
For a job k processed after i and j in �⇤ (as part of the “more stuff”
in Figure 13.3), the set of jobs completed before k is exactly the same
in �⇤ and in �0. The completion time of a job depends only on the
set of jobs preceding it (and not on their order), so job k is none the
wiser and completes at the same time in both schedules.

As for job i, its completion time goes up in �0. It must wait
for the same jobs as before (“stuff”), and now job j as well, so its
completion time increases by `j . Similarly, job j waits for the same
jobs to complete as before, except that in �0 it no longer waits for i.
Thus job j’s completion time decreases by `i.

11Readers familiar with the BubbleSort algorithm might recognize its use
here—though only in the analysis, not in the algorithm!

20 Introduction to Greedy Algorithms

Solution to Quiz 13.5

Correct answer: (a). If {k,m} = {i, j}, then k and m form an
inversion in �1 but not in �2 (because the swap un-inverts them). If at
least one of k or m is different from both i and j, and hence appears
either before both i and j or after both i and j in both schedules, the
swap has no effect on the relative order of k and m (see Figure 13.4).
We conclude that �2 has exactly the same inversions as �1, except
with the inversion of i and j removed.

tim
e

σ1

i

j
exchange!

k

m

...
..

...

...

...
...

...

(a) Before exchange

σ2

j

i relative order
unchanged!

k

m

...
..

...

...

...
...

...

(b) After exchange

Figure 13.4: Swapping jobs in a consecutive inversion decreases the total
number of inversions by 1. The five highlighted pairs of jobs in (b) are in
the same relative order in both schedules.

The Upshot

P Greedy algorithms construct solutions itera-
tively, via a sequence of myopic decisions, and
hope that everything works out in the end.

P It is often easy to propose one or more greedy
algorithms for a problem and to analyze their
running times.

P Most greedy algorithms are not always correct.

Problems 21

P Even when a greedy algorithm is always correct,
proving it can be difficult.

P Given tasks with lengths and weights, greedily
ordering them from highest to lowest weight-
length ratio minimizes the weighted sum of com-
pletion times.

P Exchange arguments are among the most com-
mon techniques used in correctness proofs for
greedy algorithms. The idea is to show that
every feasible solution can be improved by mod-
ifying it to look more like the output of the
greedy algorithm.

Test Your Understanding

Problem 13.1 (H) You are given as input n jobs, each with a
length `j and a deadline dj . Define the lateness �j(�) of a job j
in a schedule � as the difference Cj(�)� dj between the job’s com-
pletion time and deadline, or as 0 if Cj(�) dj . (See page 4 for
the definition of a job’s completion time in a schedule.) This prob-
lem considers the objective of minimizing the maximum lateness,
maxn

j=1 �j(�).
Which of the following greedy algorithms produces a schedule that

minimizes the maximum lateness? Feel free to assume that there are
no ties.

a) Schedule the jobs in increasing order of deadline dj .

b) Schedule the jobs in increasing order of processing time pj .

c) Schedule the jobs in increasing order of the product dj · pj .

d) None of the other answers are correct.

Problem 13.2 (H) Continuing Problem 13.1, consider instead the
objective of minimizing the total lateness,

P
n

j=1 �j(�).
Which of the following greedy algorithms produces a schedule that

minimizes the total lateness? Feel free to assume that there are no
ties.

22 Introduction to Greedy Algorithms

a) Schedule the jobs in increasing order of deadline dj .

b) Schedule the jobs in increasing order of processing time pj .

c) Schedule the jobs in increasing order of the product dj · pj .

d) None of the other answers are correct.

Problem 13.3 (H) You are given as input n jobs, each with a start
time sj and a finish time tj . Two jobs conflict if they overlap in
time—if one of them starts between the start and finish times of the
other. In this problem, the goal is to select a maximum-size subset of
jobs that have no conflicts. (For example, given three jobs consuming
the intervals [0, 3], [2, 5], and [4, 7], the optimal solution consists of
the first and third jobs.) The plan is to design an iterative greedy
algorithm that, in each iteration, irrevocably adds a new job j to the
solution-so-far and removes from future consideration all jobs that
conflict with j.

Which of the following greedy algorithms is guaranteed to compute
an optimal solution? Feel free to assume that there are no ties.

a) At each iteration, choose the remaining job with the earliest
finish time.

b) At each iteration, choose the remaining job with the earliest
start time.

c) At each iteration, choose the remaining job that requires the
least time (that is, with the smallest value of tj � sj).

d) At each iteration, choose the remaining job with the fewest
number of conflicts with other remaining jobs.

Programming Problems

Problem 13.4 Implement in your favorite programming language
the GreedyDiff and GreedyRatio algorithms from Section 13.3 for
minimizing the weighted sum of completion times. Run both algo-
rithms on several examples. How much better are the schedules com-
puted by the GreedyRatio algorithm than those by the GreedyDiff
algorithm? (See www.algorithmsilluminated.org for test cases and
challenge data sets.)

Chapter 14

Huffman Codes

Everybody loves compression. The number of photos you can store
on your smartphone? It depends on how much you can compress the
files with little or no loss. The time required to download a file? The
more you compress, the faster the download. Huffman coding is a
widely-used method for lossless compression. For example, every time
you import or export an MP3 audio file, your computer uses Huffman
codes. In this chapter, we’ll learn about the optimality of Huffman
codes, as well as a blazingly fast greedy algorithm for computing
them.

14.1 Codes

14.1.1 Fixed-Length Binary Codes

Let’s set the stage before we proceed to a problem definition or al-
gorithm. An alphabet ⌃ is a finite non-empty set of symbols. For
example, ⌃ might be a set of 64 symbols that includes all 26 letters
(both upper and lower case) plus punctuation and some special char-
acters. A binary code for an alphabet is a way of writing each of its
symbols as a distinct binary string (i.e., as a sequence of bits, meaning
0s and 1s).1 For example, with an alphabet of 64 symbols, a natural
encoding is to associate each symbol with one of the 26 = 64 length-6
binary strings, with each string used exactly once. This is an example
of a fixed-length binary code, which uses the same number of bits
to encode each symbol. This is roughly how ASCII codes work, for
instance.

Fixed-length codes are a natural solution, but we can’t get com-
placent. As always, it’s our duty to ask the question: Can we do

better?

1The abbreviation “i.e.” stands for id est, and means “that is.”

24 Huffman Codes

14.1.2 Variable-Length Codes

When some symbols of the alphabet occur much more frequently
than others, variable-length codes can be more efficient than fixed-
length ones. Allowing variable-length codes introduces a complication,
however, which we illustrate by example. Consider a four-symbol
alphabet, say ⌃ = {A,B,C,D}. One natural fixed-length code for
this alphabet is:

Symbol Encoding
A 00
B 01
C 10
D 11

Suppose we wanted to get away with fewer bits in our code by
using a 1-bit encoding for some of the symbols. For example, we could
try:

Symbol Encoding
A 0
B 01
C 10
D 1

This shorter code can only be better, right?

Quiz 14.1

With the variable-length binary code above, what is the
string “001” an encoding of?

a) AB

b) CD

c) AAD

d) Not enough information to answer

(See Section 14.1.6 for the solution and discussion.)

The point of Quiz 14.1 is that, with variable-length codes and no
further precautions, it can be unclear where one symbol starts and

14.1 Codes 25

the next one begins. This problem does not arise with fixed-length
codes. If every symbol is encoded using 6 bits, the second symbol
always starts with the 7th bit, the third symbol with the 13th bit,
and so on. With variable-length codes, we must impose a constraint
to prevent ambiguity.

14.1.3 Prefix-Free Codes

We can eliminate all ambiguity by insisting that a code be prefix-

free. This means that, for each pair of distinct symbols a, b 2 ⌃,
the encoding of a is not a prefix of that of b, and vice versa. Every
fixed-length code is automatically prefix-free. The variable-length
code in the preceding section is not: The encoding of “A” is a prefix
of that of “B,” and similarly with “D” and “C.”

With a prefix-free code, encodings are unambiguous and can be
decoded in the obvious way. If the first 5 bits of a sequence match
the encoding of a symbol a, then a was definitely the first symbol
encoded—because the code is prefix-free, there’s no way these 5 bits
could correspond to (a prefix of) the encoding of any other symbol. If
the next 7 bits match the encoding of b, then b was the second symbol
encoded, and so on.

Here’s an example of a prefix-free code for the alphabet ⌃ =
{A,B,C,D} that is not fixed-length:

Symbol Encoding
A 0
B 10
C 110
D 111

Because “0” is used to encode A, the encodings of the other three
symbols must start with a “1.” Because B is encoded as “10,” the
encodings of C and D begin with “11.”

14.1.4 The Benefits of Prefix-Free Codes

Variable-length prefix-free codes can be more efficient than fixed-length
codes when the symbols have very different frequencies. For example,
suppose we have the following statistics about symbol frequencies in
our application (perhaps from past experience or from preprocessing
the file to be encoded):

26 Huffman Codes

Symbol Frequency
A 60%
B 25%
C 10%
D 5%

Let’s compare the performance of our fixed-length and variable-length
prefix-free codes:

Symbol Fixed-length code Variable-length prefix-free code
A 00 0
B 01 10
C 10 110
D 11 111

By “performance,” we mean the average number of bits used to encode
a symbol, with symbols weighted according to their frequencies. The
fixed-length code always uses 2 bits, so this is also its average per-
symbol length. What about the variable-length code? We might hope
that it’s better, given that it uses only 1 bit most of the time (60%)
and resorts to 3 bits only in rare cases (15%).

Quiz 14.2

What is the average number of bits per symbol used by the
variable-length code above?

a) 1.5

b) 1.55

c) 2

d) 2.5

(See Section 14.1.6 for the solution and discussion.)

14.1.5 Problem Definition

The preceding example shows that the best binary code for the job
depends on the symbol frequencies. This means we have a super-cool
algorithmic problem on our hands, which is the subject of the rest of
this chapter.

14.1 Codes 27

Problem: Optimal Prefix-Free Codes

Input: A nonnegative frequency pa for each symbol a of
an alphabet ⌃ of size n � 2.

Output: The prefix-free binary code with minimum-
possible average encoding length:

X

a2⌃
pa · (number of bits used to encode a).

How would you know in advance how frequent different symbols are?
In some applications, there’s plenty of data or domain knowledge.
For example, any genomicist can tell you the typical frequency of
each nucleobase (As, Cs, Gs, and Ts) in human DNA. In the case
of encoding an MP3 file, the encoder computes symbol frequencies
explicitly when preparing an initial digital version of the file (perhaps
following an analog-to-digital conversion), and then uses an optimal
prefix-free code to compress the file further.

The problem of computing an optimal prefix-free code looks in-
timidating at first encounter. The number of possible codes grows
exponentially with n, so even for modest values of n there is no hope
of exhaustively searching through all of them.2 But surprisingly, the
problem can be solved efficiently using a slick greedy algorithm.

14.1.6 Solutions to Quizzes 14.1–14.2

Solution to Quiz 14.1

Correct answer: (d). The proposed variable-length code creates
ambiguity, and more than one sequence of symbols would lead to
the encoding “001.” One possibility is AB (encoded as “0” and “01,”
respectively), and another is AAD (encoded as “0,” “0,” and “1”).
Given only the encoding, there’s no way of knowing which meaning
was intended.

2For example, there are n! different prefix-free codes that encode one symbol
using one bit (“0”), another using two bits (“10”), another using three bits (“110”),
and so on.

28 Huffman Codes

Solution to Quiz 14.2

Correct answer: (b). Expanding out the weighted average, we have

average # of bits per symbol = 1 · .6|{z}
“A”

+2 · .25| {z }
“B”

+3 · (.1 + .05)| {z }
“C” and “D”

= 1.55.

For this set of symbol frequencies, the variable-length code uses 22.5%
fewer bits than the fixed-length code (on average)—a significant
savings.

14.2 Codes as Trees

The “prefix-free” constraint in the optimal prefix-free code problem
sounds a little scary. When putting together a code, how can we
ensure that it’s prefix-free? Crucial to reasoning about the problem
is a method of associating codes with labeled binary trees.3

14.2.1 Three Examples

The connection between codes and trees is easiest to explain through
examples. Our fixed-length code

Symbol Encoding
A 00
B 01
C 10
D 11

can be represented via a complete binary tree with four leaves:

0

0 0

1

1 1

A B C D
3Every node of a binary tree can have a left child, a right child, both, or

neither. A node with no children is called a leaf. A non-leaf is also called an
internal node. Both nodes and edges can be labeled. For some reason, computer
scientists seem to think that trees grow downward, and they draw their trees
accordingly.

14.2 Codes as Trees 29

Every edge connecting a node to its left or right child is labeled with
a “0” or “1,” respectively. The leaves of the tree are labeled with the
four symbols of the alphabet. Every path from the root to a labeled
node traverses two edges. We can interpret the labels of these two
edges as an encoding of the leaf’s symbol. For example, because the
path from the root to the node labeled “B” traverses a left child edge
(“0”) followed by a right child edge (“1”), we can interpret the path
as encoding the symbol B by 01. This matches B’s encoding in our
fixed-length code. The same is true for the other three symbols, as
you should check.

Next, recall our first (non-prefix-free) variable-length code:

Symbol Encoding
A 0
B 01
C 10
D 1

This code can be represented using a different labeled binary tree:

0

0

1

1

A

B C

D

Once again there are four nodes labeled with the symbols of the
alphabet—the two leaves and their parents. This tree defines an
encoding for each symbol via the sequence of edge labels on the path
from the root to the node labeled with that symbol. For example,
going from the root to the node labeled “A” requires traversing only
one left child edge, corresponding to the encoding “0.” The encodings
defined by this tree match those in the table above, as you should
verify.

Finally, we can represent our prefix-free variable-length code

30 Huffman Codes

Symbol Encoding
A 0
B 10
C 110
D 111

with the tree

0

0

0

1

1

1

C D

B

A

More generally, every binary code can be represented as a binary
tree with left and right child edges labeled with “0” and “1,” respec-
tively, and with each symbol of the alphabet used as the label for
exactly one node.4 Conversely, every such tree defines a binary code,
with the edge labels on the paths from the root to the labeled nodes
providing the symbol encodings. The number of edges in a path equals
the number of bits used to encode the corresponding symbol, so we
have the following proposition.

Proposition 14.1 (Encoding Length and Tree Depth) For ev-

ery binary code, the encoding length in bits of a symbol a 2 ⌃ equals

the depth of the node with label a in the corresponding tree.

For example, in the prefix-free code above, the level-1 leaf corre-
sponds to the symbol with a 1-bit encoding (A), the level-2 leaf to
the symbol with a 2-bit encoding (B), and the level-3 leaves to the
two symbols with 3-bit encodings (C and D).

4Suppose the largest number of bits used to encode a symbol is `. Form a
complete binary tree of depth `. The encoding of each symbol a defines a path
through the tree starting from the root, and the final node of this path should be
labeled with a. Finally, repeatedly prune unlabeled leaves until none remain.

14.2 Codes as Trees 31

14.2.2 Which Trees Represent Prefix-Free Codes?

We’ve seen that binary trees can represent all binary codes, prefix-free
or not. There’s a dead giveaway when the code corresponding to a
tree is not prefix-free.

For a clue, look at our three examples. The first and third trees,
corresponding to the two prefix-free codes, look quite different from
one another. But both share one property: Only the leaves are labeled
with alphabet symbols. By contrast, two non-leaves are labeled in the
second tree.

In general, the encoding of a symbol a is a prefix of that of another
symbol b if and only if the node labeled a is an ancestor of the node
labeled b. A labeled internal node is an ancestor of the (labeled) leaves
in its subtree and leads to a violation of the prefix-free constraint.5
Conversely, because no leaf can be the ancestor of another, a tree
with labels only at the leaves defines a prefix-free code. Decoding a
sequence of bits reduces to following your nose: Traverse the tree from
top to bottom, taking a left or right turn whenever the next input bit
is a 0 or 1, respectively. When a leaf is reached, its label indicates
the next symbol in the sequence and the process restarts from the
root with the remaining input bits. For example, with our third
code, decoding the input “010111” results in three root-leaf traversals,
terminating in A, then B, and finally D (Figure 14.1).

14.2.3 Problem Definition (Rephrased)

We can now restate the optimal prefix-free code problem in a partic-
ularly crisp form. By a ⌃-tree, we mean a binary tree with leaves
labeled in one-to-one correspondence with the symbols of ⌃. As we’ve
seen, prefix-free binary codes for an alphabet ⌃ correspond to ⌃-trees.

For a ⌃-tree T and symbol frequencies p = {pa}a2⌃, we denote
by L(T,p) the average depth of a leaf in T , with the contribution of
each leaf weighted according to the frequency of its label:

L(T,p) =
X

a2⌃
pa · (depth of the leaf labeled a in T). (14.1)

Proposition 14.1 implies that L(T,p) is exactly the average encoding
length of the code that corresponds to T , which is what we want to

5We can assume that every leaf of the tree has a label, as removing unlabeled
leaves does not change the code defined by the tree.

32 Huffman Codes

0

0

0

1

1

1

C D

B

A

(a) Traversal #1 (“A”)

0

0

0

1

1

1

C D

B

A

(b) Traversal #2 (“B”)

0

0

0

1

1

1

C D

B

A

(c) Traversal #3 (“D”)

Figure 14.1: Decoding the string “010111” to “ABD” by repeated root-leaf
traversals.

minimize. We can therefore rephrase the optimal prefix-free code
problem as a problem purely about binary trees.

Problem: Optimal Prefix-Free Codes (Rephrased)

Input: A nonnegative frequency pa for each symbol a of
an alphabet ⌃ of size n � 2.

Output: A ⌃-tree with minimum-possible average leaf
depth (14.1).

14.3 Huffman’s Greedy Algorithm

14.3.1 Building Trees Through Successive Mergers

Huffman’s big idea back in 1951 was to tackle the optimal prefix-free
code problem using a bottom-up approach.6 “Bottom-up” means
starting with n nodes (where n is the size of the alphabet ⌃), each
labeled with a different symbol of ⌃, and building up a tree through
successive mergers. For example, if ⌃ = {A,B,C,D}, we start with
what will be the leaves of the tree:

6This was for David A. Huffman’s term paper in a class, believe it or not,
and it superseded the (suboptimal) divide-and-conquer-esque top-down algorithm
previously invented by Huffman’s graduate advisor, Robert M. Fano.

14.3 Huffman’s Greedy Algorithm 33

A B C D

next pair
to merge

Our first merger might be of the nodes labeled “C” and “D,” imple-
mented by introducing one new unlabeled internal node with left and
right children corresponding to C and D, respectively:

A B C D

next pair
to merge

In effect, this merger commits to a tree in which the leaves labeled
“C” and “D” are siblings (i.e., have a common parent).

Next we might do the same thing with A and B, committing
further to a tree in which the leaves labeled “A” and “B” are siblings:

A B C D

next pair
to merge

At this point, only two groups are left to merge. Merging them
produces a full-blown binary tree:

A B C D

34 Huffman Codes

This binary tree is the same one used to represent the fixed-length
code in Section 14.2.1.

Alternatively, in the second iteration we could merge the node
labeled “B” with the tree containing “C” and “D”:

C D

B

A

The final merge is again forced on us and produces the binary tree
used to represent the variable-length prefix-free code in Section 14.2.1:

C D

B

A

In general, Huffman’s greedy algorithm maintains a forest, which
is a collection of one or more binary trees. The leaves of the trees are
in one-to-one correspondence with the symbols of ⌃. Each iteration
of the algorithm chooses two of the trees in the current forest and
merges them by making their roots the left and right children of a
new unlabeled internal node. The algorithm halts when only one tree
remains.

Quiz 14.3

How many mergers will Huffman’s greedy algorithm per-
form before halting? (Let n = |⌃| denote the number of

14.3 Huffman’s Greedy Algorithm 35

symbols.7)

a) n� 1

b) n

c) (n+1)n
2

d) Not enough information to answer

(See Section 14.3.7 for the solution and discussion.)

14.3.2 Huffman’s Greedy Criterion

For a given set of symbol frequencies {pa}a2⌃, which pair of trees
should we merge in each iteration? Each merger increments the
depths of all the leaves in the two participating trees and, hence, the
encoding lengths of the corresponding symbols. For example, in the
penultimate merge above, the depth of the nodes labeled “C” and “D”
increases from 1 to 2, and the depth of the node labeled “B” increases
from 0 to 1. Every merger thus increases the objective function that
we want to minimize: the average leaf depth (14.1). Every iteration
of Huffman’s greedy algorithm myopically performs the merge that
least increases this objective function.

Huffman’s Greedy Criterion

Merge the pair of trees that causes the minimum-possible
increase in the average leaf depth.

By how much does a merger increase the average leaf depth? For
every symbol a in one of the two participating trees, the depth of
the corresponding leaf goes up by 1 and so the contribution of the
corresponding term in the sum (14.1) goes up by pa. Thus, merging
two trees T1 and T2 increases the average leaf depth by the sum of
the frequencies of the participating symbols:

X

a2T1

pa +
X

a2T2

pa, (14.2)

7For a finite set S, |S| denotes the number of elements in S.

36 Huffman Codes

where the summations are over all the alphabet symbols for which the
corresponding leaf belongs to T1 or T2, respectively. Huffman’s greedy
criterion then dictates that we merge the pair of trees for which the
sum (14.2) is as small as possible.

14.3.3 Pseudocode

As advertised, Huffman’s algorithm builds a ⌃-tree bottom-up, and
in every iteration it merges the two trees that have the smallest sums
of corresponding symbol frequencies.

Huffman

Input: a nonnegative frequency pa for each symbol a of
an alphabet ⌃.

Output: the ⌃-tree with minimum average leaf depth,
representing the prefix-free binary code with minimum
average encoding length.

// Initialization
for each a 2 ⌃ do

Ta := tree containing one node, labeled “a”
P (Ta) := pa

F := {Ta}a2⌃ // invariant: 8T 2 F , P (T)=
P
a2T

pa

// Main loop
while F contains at least two trees do

T1 := argminT2F P (T) // min frequency sum
T2 := argminT2F ,T 6=T1

P (T) // second-smallest
remove T1 and T2 from F
// roots of T1, T2 become left, right

children of a new internal node
T3 := merger of T1 and T2

P (T3) := P (T1) + P (T2) // maintains invariant
add T3 to F

return the unique tree in F

14.3 Huffman’s Greedy Algorithm 37

On Pseudocode

This book series explains algorithms using a mixture
of high-level pseudocode and English (as above). I’m
assuming that you have the skills to translate such
high-level descriptions into working code in your fa-
vorite programming language. Several other books
and resources on the Web offer concrete implementa-
tions of various algorithms in specific programming
languages.

The first benefit of emphasizing high-level descrip-
tions over language-specific implementations is flexi-
bility. While I assume familiarity with some program-
ming language, I don’t care which one. Second, this
approach promotes the understanding of algorithms
at a deep and conceptual level, unencumbered by low-
level details. Seasoned programmers and computer
scientists generally think and communicate about al-
gorithms at a similarly high level.

Still, there is no substitute for the detailed under-
standing of an algorithm that comes from providing
your own working implementation of it. I strongly
encourage you to implement as many of the algo-
rithms in this book as you have time for. (It’s also a
great excuse to pick up a new programming language!)
For guidance, see the end-of-chapter Programming
Problems and supporting test cases.

14.3.4 Example

For example, let’s return to our four-symbol alphabet with the follow-
ing frequencies:

Symbol Frequency
A .60
B .25
C .10
D .05

38 Huffman Codes

Initially, the Huffman algorithm creates a forest of four trees,
TA, TB, TC , TD, each containing one node labeled with a different al-
phabet symbol. The first iteration of the algorithm merges the nodes
that correspond to the two symbols with the smallest frequencies—in
this case, “C” and “D.” After this iteration, the algorithm’s forest
contains only three trees, with the following sums of symbol frequen-
cies:

Symbol Sum of Symbol Frequencies
tree containing A .60
tree containing B .25

tree containing C and D .05 + .10 = .15

The second two trees have the smallest sums of symbol frequencies,
so these are the trees merged in the second iteration. In the third
iteration, the forest F contains only two trees; they are merged to
produce the final output, which is exactly the tree used to represent
the variable-length prefix-free code in Section 14.2.1:

C D

B

A
C D

B

A

A B C D
A B C D

.6 .25 .10 .05

.6 .25

.15

.6

.4

14.3.5 A Larger Example

To ensure that Huffman’s greedy algorithm is crystal clear, let’s see
how the final tree takes shape in a larger example:

Symbol Frequency
A 3
B 2
C 6
D 8
E 2
F 6

If it bothers you that the symbol frequencies don’t add up to 1, feel
free to divide each of them by 27; it doesn’t change the problem.

As usual, the first step merges the two symbols with the smallest
frequencies, namely “B” and “E”:

14.3 Huffman’s Greedy Algorithm 39

A B C D E F
A C D F B E

3 2 6 8 2 6
3 6 8 6

4

The five trees left in the forest are

Symbol Sum of Symbol Frequencies
tree containing A 3
tree containing C 6
tree containing D 8
tree containing F 6

tree containing B and E 2 + 2 = 4

and the algorithm next merges the first and last of these:

A C D F B E

3 6 8 6

4

C D F A B E

6 8 6

7

The four remaining trees are

Symbol Sum of Symbol Frequencies
tree containing C 6
tree containing D 8
tree containing F 6

tree containing A, B and E 4 + 3 = 7

Next the algorithm merges the nodes labeled “C” and “F ”:

D C F

8

12

C D F A B E

6 8 6

7

A B E

7

and three trees remain:

Symbol Sum of Symbol Frequencies
tree containing D 8

tree containing C and F 6 + 6 = 12
tree containing A, B and E 7

The penultimate merge is of the first and third trees:

40 Huffman Codes

D

C F

12

A B E

15

D C F

8

12

A B E

7

and the final merge produces the output of the algorithm:

D
C F

A B E

0 1

0 1

0
1

0 1

0 1

This tree corresponds to the following prefix-free code:

Symbol Encoding
A 000
B 0010
C 10
D 01
E 0011
F 11

14.3.6 Running Time

A straightforward implementation of the Huffman algorithm runs in
O(n2) time, where n is the number of symbols. As noted in Quiz 14.3,
each merge decreases the number of trees in F by 1, resulting in n� 1
iterations of the main loop. Each iteration is responsible for identifying
the two current trees with the smallest sums of symbol frequencies;
this can be done by exhaustive search over the O(n) trees of F . The
rest of the work—initialization, updating F , rewiring pointers when
merging two trees—contributes only O(n) operations to the overall
running time bound, for a total of O(n2).

Readers familiar with the heap data structure (covered in Chap-
ter 10 of Part 2 and reviewed in Section 15.3) should spot an oppor-
tunity to do better. The raison d’être of the heap data structure is to
speed up repeated minimum computations so that each computation

*14.4 Proof of Correctness 41

takes logarithmic rather than linear time. The work performed in
each iteration of the main loop in the Huffman algorithm is dominated
by two minimum computations, so a light bulb should go off in your
head: This algorithm calls out for a heap! Using a heap to speed up
these minimum computations decreases the running time from O(n2)
to O(n log n), which qualifies as a blazingly fast implementation.8

We can do even better. The Huffman algorithm can be imple-
mented by sorting the symbols in order of increasing frequency and
then performing a linear amount of additional processing. This imple-
mentation eschews heaps in favor of an even simpler data structure:
a queue (actually, two queues). See Problem 14.5 for more details.
The n symbols can be sorted by frequency in O(n log n) time (see
footnote 3 of Chapter 13), so the running time of this implementa-
tion is O(n log n). Moreover, in the special cases in which sorting is
possible in linear time, this implementation of the Huffman algorithm
also runs in linear time.9

14.3.7 Solution to Quiz 14.3

Correct answer: (a). The initial forest has n trees, where n is the
number of alphabet symbols. Each merge replaces a pair of trees with
a single tree and, hence, decreases the number of trees by 1. The
algorithm halts once one tree remains, which is after n� 1 mergers.

*14.4 Proof of Correctness

The Huffman algorithm correctly solves the optimal prefix-free code
problem.10

8The objects in the heap correspond to the trees of F . The key associated
with an object is the sum of the frequencies of the symbols that correspond to the
tree’s leaves. In each iteration, the trees T1 and T2 can be removed from the heap
using two successive ExtractMin operations, and the merged tree T3 added with
one Insert operation (with T3’s key set to the sum of the keys of T1 and T2).

9The best-possible running time of a “general-purpose” sorting algorithm,
which makes no assumptions about the data to be sorted, is O(n log n). With
additional assumptions, however, specialized sorting algorithms can do better. For
example, if every element to be sorted is an integer with magnitude at most n

10

(say), the RadixSort algorithm can be used to sort them in O(n) time. See
Section 5.6 of Part 1 for a full discussion.

10Starred sections like this one are the more difficult sections; they can be
skipped on a first reading.

42 Huffman Codes

Theorem 14.2 (Correctness of Huffman) For every alphabet ⌃
and nonnegative symbol frequencies {pa}a2⌃, the Huffman algorithm

outputs a prefix-free code with the minimum-possible average encoding

length.

Equivalently, the algorithm outputs a ⌃-tree with the minimum-
possible average leaf depth (14.1).

14.4.1 High-Level Plan

The proof of Theorem 14.2 blends two common strategies for cor-
rectness proofs of greedy algorithms, both mentioned in Section 13.4:
induction and exchange arguments.

We’ll proceed by induction on the size of the alphabet, with two
ideas required to implement the inductive step. Fix from now on an
input, with alphabet ⌃ and symbol frequencies p, and let a and b
denote the symbols with the smallest and second-smallest frequencies,
respectively. Consider the first iteration of the Huffman algorithm,
in which it merges the leaves that correspond to a and b. The
algorithm has then effectively committed to a ⌃-tree in which (the
leaves corresponding to) a and b are siblings. The first main idea is
to prove that, among all such trees, the Huffman algorithm outputs
the best one.

Main Idea #1

Prove that the output of the Huffman algorithm minimizes
the average leaf depth over all ⌃-trees in which a and b are
siblings.

This step boils down to showing that the problem of computing
the best ⌃-tree in which a and b are siblings is equivalent to that of
computing the best ⌃0-tree, where ⌃0 is the same as ⌃ except with a
and b fused into a single symbol. Because ⌃0 is a smaller alphabet
than ⌃, we can complete the proof using induction.

This first idea is not enough. If every ⌃-tree with a and b as
siblings is suboptimal, it does us no good to optimize over them.
The second main idea resolves this worry and proves that it’s always
safe to commit to a tree in which the two lowest-frequency symbols
correspond to sibling leaves.

*14.4 Proof of Correctness 43

Main Idea #2

Prove that there is an optimal ⌃-tree in which a and b are
siblings.

The idea here is to show that every ⌃-tree can be massaged into
an equally good or better ⌃-tree in which a and b are siblings, by
exchanging the labels a and b with the labels x and y of two leaves
in the tree’s deepest level. Intuitively, it’s a net win to demote the
smaller-frequency symbols a and b to the deepest level of the tree
while promoting the higher-frequency symbols x and y closer to the
root.

If both main ideas can be implemented, the inductive step and
Theorem 14.2 follow easily. The first idea implies that the Huffman
algorithm solves the problem optimally over a restricted family of
⌃-trees, those in which a and b are siblings. The second guarantees
that an optimal tree of this restricted type is, in fact, optimal for the
original problem.

14.4.2 The Details

Induction Review

For the formal proof, we turn to our old friend (or is it nemesis?),
induction.11 Recall that proofs by induction follow a fairly rigid
template, with the goal of establishing that an assertion P (k) holds
for arbitrarily large positive integers k. In the proof of Theorem 14.2,
we take P (k) as the statement:

“the Huffman algorithm correctly solves the optimal prefix-
free code problem whenever the alphabet size is at most k.”

Analogous to a recursive algorithm, a proof by induction has two
parts: a base case and an inductive step. For us, the natural base
case is the statement P (2). (The optimal prefix-free code problem
is uninteresting with a one-symbol alphabet.) In the inductive step,
we assume that k > 2. We also assume that P (2), P (3), . . . , P (k � 1)
are all true—this is called the inductive hypothesis—and use this

11For an induction refresher, see Appendix A of Part 1 or the book Mathematics

for Computer Science mentioned in the Preface.

44 Huffman Codes

assumption to prove that P (k) is consequently true as well. If we
prove both the base case and the inductive step, then P (k) is indeed
true for every positive integer k � 2: P (2) is true by the base case
and, like falling dominoes, applying the inductive step over and over
again shows that P (k) is true for arbitrarily large values of k.

The Huffman algorithm is optimal for two-symbol alphabets: The
algorithm uses 1 bit to encode each symbol (0 for one symbol and 1
for the other), which is the minimum possible. This proves the base
case.

For the inductive step, assume that k > 2 and fix an alphabet ⌃
of size k and nonnegative symbol frequencies p = {px}x2⌃. For the
rest of the proof, we denote by a and b the two symbols of ⌃ with
the smallest and second-smallest frequencies, respectively. (Break ties
arbitrarily.)

The First Main Idea, Restated

To implement the first and more difficult main idea from Section 14.4.1,
define

Tab =
⇢

⌃-trees in which a and b are the left and right
children of a common parent, respectively

�
.

The Huffman algorithm outputs a tree of Tab, and we want to prove
that it is the best such tree:

(*) among all trees in Tab, the Huffman algorithm outputs one with
the minimum-possible average leaf depth.

As a reminder, the average leaf depth of a ⌃-tree T with respect to
the symbol frequencies p is

L(T,p) =
X

x2⌃
px · (depth of the leaf labeled x in T).

This quantity is the same as the average encoding length of the
corresponding prefix-free code.

Applying the Inductive Hypothesis to a Residual Problem

The inductive hypothesis applies only to alphabets with less than k
symbols. So derive ⌃0 from ⌃ by fusing the symbols a and b—the

*14.4 Proof of Correctness 45

symbols with the smallest and second-smallest frequencies—into a sin-
gle “meta-symbol” ab. There is a one-to-one correspondence between
⌃0-trees and the restricted set Tab of ⌃-trees (Figure 14.2). Every
⌃0-tree T 0 can be transformed into a ⌃-tree T 2 Tab by replacing the
leaf labeled “ab” with an unlabeled node that has children labeled “a”
and “b.” We denote this mapping T 0 7! T by �(T 0). Conversely, every
tree T 2 Tab can be turned into a ⌃0-tree T 0 by sucking the leaves
labeled a and b into their (common) parent and labeling the resulting
“meta-node” with “ab.” We denote this inverse mapping T 7! T 0

by ↵(T).

ab

a b

the mapping α

the mapping β

Σ-tree T Σ’-tree T’

Figure 14.2: There is a one-to-one correspondence between ⌃0-trees and
the ⌃-trees in which a and b are the left and right children of a common
parent.

The frequencies p0 = {p0x}x2⌃0 we assign to the symbols of ⌃0

match those of ⌃, except with the frequency p0
ab

of the new symbol ab
defined as the sum pa + pb of the frequencies of the two symbols it
represents.

The first iteration of the Huffman algorithm merges the leaves
labeled “a” and “b” and thereafter treats them as an indivisible unit
with total frequency pa + pb. This means the final output of the
algorithm is the same as if it had been restarted from scratch with
the input ⌃0 and p0, with the resulting ⌃0-tree translated by the
mapping � back to a ⌃-tree of Tab.

46 Huffman Codes

Proposition 14.3 (Preservation of Behavior of Huffman) The

output of the Huffman algorithm with input ⌃ and p is �(T 0),
where T 0

is the output of the Huffman algorithm with input ⌃0
and p0

.

Additional Properties of the Correspondence

The correspondence between ⌃0-trees and the ⌃-trees in Tab given by
the mappings ↵ and � (Figure 14.2) also preserves the average leaf
depth, up to a constant that is independent of the choice of tree.

Proposition 14.4 (Preservation of Average Leaf Depth) For

every ⌃-tree T of Tab with symbol frequencies p and corresponding

⌃0
-tree T 0 = ↵(T) and symbol frequencies p0

,

L(T,p) = L(T 0,p0) + pa + pb| {z }
independent of T

.

Proof: Leaves of T not labeled a or b occupy the same position in T 0.
Their symbols have the same frequencies in p and p0, so these leaves
contribute the same amount to the average leaf depth of both trees.
The total frequency of a and b in p is the same as that of ab in p0,
but the depth of the corresponding leaves is one larger. Thus, the
contribution of a and b to the average leaf depth of T is pa + pb larger
than the contribution of ab to the average leaf depth of T 0. QE D

Because the correspondence between ⌃0-trees and the ⌃-trees
in Tab preserves the average leaf depth (up to the tree-independent
constant pa + pb), it associates the optimal ⌃0-tree with the optimal
⌃-tree in Tab:

best ⌃-tree in Tab
↵⌦
�

best ⌃0-tree

second-best ⌃-tree in Tab
↵⌦
�

second-best ⌃0-tree

...

worst ⌃-tree in Tab
↵⌦
�

worst ⌃0-tree.

*14.4 Proof of Correctness 47

Corollary 14.5 (Preservation of Optimal Solutions)
A ⌃0

-tree T ⇤
minimizes L(T 0,p0) over all ⌃0

-trees T 0
if and only if

the corresponding ⌃-tree �(T ⇤) minimizes L(T,p) over all ⌃-trees T
in Tab.

Implementing the First Main Idea

We now have all our ducks in a row for proving the statement (*),
that among all trees of Tab, the Huffman algorithm outputs one with
the minimum-possible average leaf depth:

1. By Proposition 14.3, the output of the Huffman algorithm with
input ⌃ and p is �(T 0), where T 0 is the output of the Huffman
algorithm with input ⌃0 and p0.

2. Because |⌃0| < k, the inductive hypothesis implies that the
output T 0 of the Huffman algorithm with input ⌃0 and p0 is
optimal.

3. By Corollary 14.5, the ⌃-tree �(T 0) is optimal for the original
problem with input ⌃ and p.

Implementing the Second Main Idea

The second part of the inductive step is easier and based on an ex-
change argument. Here, we want to prove that the Huffman algorithm
did not make a mistake by committing to a tree in which the two
smallest-frequency symbols are siblings:

(†) There is a tree of Tab that minimizes the average leaf depth
L(T,p) over all ⌃-trees T .

To prove (†), consider an arbitrary ⌃-tree T . We can complete the
proof by exhibiting a tree T ⇤ 2 Tab in which a and b are siblings such
that L(T ⇤,p) L(T,p). Without loss of generality, each node of T
either is a leaf or has two children.12 Thus, there are two leaves with
a common parent that inhabit the deepest level of T , say with left
child x and right child y.13 Obtain the ⌃-tree T ⇤ 2 Tab by exchanging

12An internal node with only one child can be spliced out to give another ⌃-tree
with smaller average leaf depth.

13For simplicity, you can think of x and y as distinct from a and b, but the
proof works fine even when {x, y} and {a, b} overlap (as you should check).

48 Huffman Codes

the labels of the leaves labeled “a” and “x,” and the labels of the
leaves labeled “b” and “y”:

y x

b

a b a

y

x

How does the average leaf depth change? Expanding the defini-
tion (14.1) and canceling the terms that correspond to leaves other
than a, b, x, y, we have

L(T)� L(T ⇤) =
X

z2{a,b,x,y}

pz · (depth of z in T � depth of z in T ⇤) .

Depths in T ⇤ can be rewritten in terms of depths in T . For example,
the depth of a in T ⇤ is the same as the depth of x in T , the depth
of y in T ⇤ is the same as the depth of b in T , and so on. We can
therefore sneakily rearrange terms to obtain

L(T)� L(T ⇤) = (px � pa)| {z }
�0

· (depth of x in T � depth of a in T)| {z }
�0

+ (py � pb)| {z }
�0

· (depth of y in T � depth of b in T)| {z }
�0

� 0.

The rearrangement makes it obvious that the difference on the left-
hand side is nonnegative: px�pa and py�pb are nonnegative because a
and b were chosen as the symbols with the smallest frequencies, and
the other two terms on the right-hand side are nonnegative because x
and y were chosen from the deepest level of T . We conclude that the
average leaf depth of T ⇤ 2 Tab is at most that of T . Because every
⌃-tree is equaled or bettered by a tree of Tab, Tab contains a tree that
is optimal among all ⌃-trees. This wraps up the proof of (†).

To recap, the statement (*) implies that, with the input ⌃ and p,
the Huffman algorithm outputs the best-possible tree from the re-
stricted set Tab. By (†), this tree must be optimal for the original
problem. This completes the proof of the inductive step and of
Theorem 14.2. QE D

Problems 49

The Upshot

P Prefix-free variable-length binary codes can have
smaller average encoding lengths than fixed-
length codes when different alphabet symbols
have different frequencies.

P Prefix-free codes can be visualized as binary
trees in which the leaves are in one-to-one cor-
respondence with the alphabet symbols. En-
codings correspond to root-leaf paths, with left
and right child edges interpreted as 0s and 1s,
respectively, while the average encoding length
corresponds to the average leaf depth.

P Huffman’s greedy algorithm maintains a forest,
with leaves in correspondence to alphabet sym-
bols, and in each iteration greedily merges the
pair of trees that causes the minimum-possible
increase in the average leaf depth.

P Huffman’s algorithm is guaranteed to compute
a prefix-free code with the minimum-possible
average encoding length.

P Huffman’s algorithm can be implemented
in O(n log n) time, where n is the number of
symbols.

P The proof of correctness uses an exchange ar-
gument to show the existence of an optimal
solution in which the two smallest-frequency
symbols are siblings, and induction to show
that the algorithm computes such a solution.

Test Your Understanding

Problem 14.1 (S) Consider the following symbol frequencies for a
five-symbol alphabet:

50 Huffman Codes

Symbol Frequency
A .32
B .25
C .2
D .18
E .05

What is the average encoding length of an optimal prefix-free code?

a) 2.23

b) 2.4

c) 3

d) 3.45

Problem 14.2 (S) Consider the following symbol frequencies for a
five-symbol alphabet:

Symbol Frequency
A .16
B .08
C .35
D .07
E .34

What is the average encoding length of an optimal prefix-free code?

a) 2.11

b) 2.31

c) 2.49

d) 2.5

Problem 14.3 (H) What is the maximum number of bits that Huff-
man’s greedy algorithm might use to encode a single symbol? (As
usual, n = |⌃| denotes the alphabet size.)

a) log2 n

b) lnn

c) n� 1

Problems 51

d) n

Problem 14.4 (H) Which of the following statements about Huff-
man’s greedy algorithm are true? Assume that the symbol frequencies
sum to 1. (Choose all that apply.)

a) A letter with frequency at least 0.4 will never be encoded with
two or more bits.

b) A letter with frequency at least 0.5 will never be encoded with
two or more bits.

c) If all symbol frequencies are less than 0.33, all symbols will be
encoded with at least two bits.

d) If all symbol frequencies are less than 0.5, all symbols will be
encoded with at least two bits.

Challenge Problems

Problem 14.5 (S) Give an implementation of Huffman’s greedy
algorithm that uses a single invocation of a sorting subroutine, followed
by a linear amount of additional work.

Programming Problems

Problem 14.6 Implement in your favorite programming language
the Huffman algorithm from Section 14.3 for the optimal prefix-free
code problem. How much faster is the heap-based implementation (out-
lined in footnote 8) than the straightforward quadratic-time implemen-
tation?14 How much faster is the implementation in Problem 14.5 than
the heap-based implementation? (See www.algorithmsilluminated.
org for test cases and challenge data sets.)

14Don’t forget to check if the heap data structure is built in to your favorite
programming language, such as the PriorityQueue class in Java.

Chapter 15

Minimum Spanning Trees

This chapter applies the greedy algorithm design paradigm to a fa-
mous graph problem, the minimum spanning tree (MST) problem.
The MST problem is a uniquely great playground for the study of
greedy algorithms, in which almost any greedy algorithm that you
can think of turns out to be correct. After reviewing graphs and
defining the problem formally (Section 15.1), we’ll discuss the two
best-known MST algorithms—Prim’s algorithm (Section 15.2) and
Kruskal’s algorithm (Section 15.5). Both algorithms admit blazingly
fast implementations, using the heap and union-find data structures,
respectively. Section 15.8 outlines an application of Kruskal’s algo-
rithm in machine learning, to single-link clustering.

15.1 Problem Definition

The minimum spanning tree problem is about connecting a bunch
of objects as cheaply as possible. The objects and connections could
represent something physical, like computer servers and communica-
tion links between them. Or maybe each object is a representation of
a document (say, as a vector of word frequencies), with connections
corresponding to pairs of “similar” documents. The problem arises nat-
urally in several application domains, including computer networking
(try a Web search for “spanning tree protocol”) and machine learning
(see Section 15.8).

15.1.1 Graphs

Objects and connections between them are most naturally modeled
with graphs. A graph G = (V,E) has two ingredients: a set V of
vertices and a set E of edges (Figure 15.1). This chapter considers only
undirected graphs, in which each edge e is an unordered pair {v, w}

15.1 Problem Definition 53

of vertices (written as e = (v, w) or e = (w, v)), which are called the
endpoints of the edge.1 The numbers |V | and |E| of vertices and edges
are usually denoted by n and m, respectively.

Figure 15.1: An undirected graph with five vertices and eight edges.

Graphs can be encoded in different ways for use in an algorithm.
This chapter assumes that the input graph is represented using adja-
cency lists, with an array of vertices, an array of edges, pointers from
each edge to its two endpoints, and pointers from each vertex to its
incident edges.2

15.1.2 Spanning Trees

The input in the minimum spanning tree problem is an undirected
graph G = (V,E) in which each edge e has a real-valued cost ce.
(For example, ce could indicate the cost of connecting two computer
servers.) The goal is to compute a spanning tree of the graph with
the minimum-possible sum of edge costs. By a spanning tree of G, we
mean a subset T ✓ E of edges that satisfies two properties. First, T
should not contain a cycle (this is the “tree” part).3 Second, for every
pair v, w 2 V of vertices, T should include a path between v and w
(this is the “spanning” part).4

1There is an analog of the MST problem for directed graphs, which is known as
both the minimum-cost arborescence problem and the optimum branching problem.
There are also fast algorithms for this problem, but they lie a bit beyond the
scope of this book series.

2For more details on graphs and their representations, see Chapter 7 of Part 2.
3A cycle in a graph G = (V,E) is a path that loops back to where it began—an

edge sequence e1 = (v0, v1), e2 = (v1, v2), . . . , ek = (vk�1, vk) with vk = v0.
4For convenience, we typically allow a path (v0, v1), (v1, v2), . . . , (vk�1, vk) in

a graph to include repeated vertices or, equivalently, to contain one or more cycles.
Don’t let this bother you: You can always convert such a path into a cycle-free
path with the same endpoints v0 and vk by repeatedly splicing out subpaths
between different visits to the same vertex (see Figure 15.2 below).

54 Minimum Spanning Trees

5 4 1 2 3 2 2 6 7 3 6 7 8

splice out

1 2 7 3 6 7 8

splice out

1 2 7 8

Figure 15.2: A path with repeated vertices can be converted into a path
with no repeated vertices and the same endpoints.

Quiz 15.1

What is the minimum sum of edge costs of a spanning tree
of the following graph? (Each edge is labeled with its cost.)

1

2 3 4

5

a b

c d

a) 6

b) 7

c) 8

d) 9

(See Section 15.1.3 for the solution and discussion.)

It makes sense only to talk about spanning trees of connected

graphs G = (V,E), in which it’s possible to travel from any vertex
v 2 V to any other vertex w 2 V using a path of edges in E.5 (If there

5For example, the graph in Figure 15.1 is connected, while the graph in
Figure 15.3 is not.

15.1 Problem Definition 55

is no path in E between the vertices v and w, there certainly isn’t one
in any subset T ✓ E of edges, either.) For this reason, throughout
this chapter we assume that the input graph is a connected graph.

Figure 15.3: A graph that is not connected.

MST Assumption

The input graph G = (V,E) is connected, with at least one
path between each pair of vertices.

It’s easy enough to compute the minimum spanning tree of a
four-vertex graph like the one in Quiz 15.1; what about in general?

Problem: Minimum Spanning Tree (MST)

Input: A connected undirected graph G = (V,E) and a
real-valued cost ce for each edge e 2 E.

Output: A spanning tree T ✓ E of G with the minimum-
possible sum

P
e2T ce of edge costs.6

We can assume that the input graph has at most one edge between
each pair of vertices; all but the cheapest of a set of parallel edges can
be thrown out without changing the problem.

6For graphs that are not connected, we could instead consider the minimum
spanning forest problem, in which the goal is to find a maximal acyclic subgraph
with the minimum-possible sum of edge costs. This problem can be solved by
first computing the connected components of the input graph in linear time using
breadth- or depth-first search (see Chapter 8 of Part 2), and then applying an
algorithm for the MST problem to each component separately.

56 Minimum Spanning Trees

Like minimizing the sum of weighted completion times (Chapter 13)
or the optimal prefix-free code problem (Chapter 14), the number of
possible solutions can be exponential in the size of the problem.7 Could
there be an algorithm that magically homes in on the minimum-cost
needle in the haystack of spanning trees?

15.1.3 Solution to Quiz 15.1

Correct answer: (b). The minimum spanning tree comprises the
edges (a, b), (b, d), and (a, c):

1

2 4

a b

c d

The sum of the edges’ costs is 7. The edges do not include a cycle,
and they can be used to travel from any vertex to any other vertex.

Here are two spanning trees with an inferior total cost of 8:
1

3 4

a b

c d

1

2

5

a b

c d

The three edges (a, b), (b, d), and (a, d) have a smaller total cost of 6:
1

2 3

a b

c d

but these edges do not form a spanning tree. In fact, they fail on
both counts: They form a cycle and there is no way to use them to
travel from c to any other vertex.

7For example, Cayley’s formula is a famous result from combinatorics stating
that the n-vertex complete graph (in which all the

�
n
2

�
possible edges are present)

has exactly n
n�2 different spanning trees. This is bigger than the estimated

number of atoms in the known universe when n � 50.

15.2 Prim’s Algorithm 57

15.2 Prim’s Algorithm

Our first algorithm for the minimum spanning tree problem is Prim’s

algorithm, which is named after Robert C. Prim, who discovered the
algorithm in 1957. The algorithm closely resembles Dijkstra’s shortest-
path algorithm (covered in Chapter 9 of Part 2), so it shouldn’t
surprise you that Edsger W. Dijkstra independently arrived at the
same algorithm shortly thereafter, in 1959. Only later was it realized
that the algorithm had been discovered over 25 years earlier, by
Vojtěch Jarník in 1930. For this reason, the algorithm is also called
Jarník’s algorithm and the Prim-Jarník algorithm.8

15.2.1 Example

Next we’ll step through Prim’s algorithm on a concrete example, the
same one from Quiz 15.1:

1

2 3 4

5

a b

c d

It might seem weird to go through an example of an algorithm before
you’ve seen its code, but trust me: After you understand the example,
the pseudocode will practically write itself.9

Prim’s algorithm begins by choosing an arbitrary vertex—let’s
say vertex b in our example. (In the end, it won’t matter which
one we pick.) The plan is to construct a tree one edge at a time,
starting from b and growing like a mold until the tree spans the entire
vertex set. In each iteration, we’ll greedily add the cheapest edge that
extends the reach of the tree-so-far.

8History buffs should check out the paper “On the History of the Minimum
Spanning Tree Problem,” by Ronald L. Graham and Pavol Hell (Annals of the

History of Computing, 1985).
9Readers of Part 2 should recognize strong similarities to Dijkstra’s shortest-

path algorithm.

58 Minimum Spanning Trees

The algorithm’s initial (empty) tree spans only the starting ver-
tex b. There are two options for expanding its reach: the edge (a, b)
and the edge (b, d).

1

2 3 4

5

a b

c d

vertices
spanned

so far

The former is cheaper, so the algorithm chooses it. The tree-so-far
spans the vertices a and b.

In the second iteration, three edges would expand the tree’s reach:
(a, c), (a, d), and (b, d).

1

2 3 4

5

a b

c d

vertices
spanned

so far

The cheapest of these is (b, d). After its addition, the tree-so-far
spans a, b, and d. Both endpoints of the edge (a, d) have been sucked
into the set of vertices spanned so far; adding this edge in the future
would create a cycle, so the algorithm does not consider it further.

In the final iteration, there are two options for expanding the
tree’s reach to c, the edges (a, c) and (c, d):

1

2 3 4

5

a b

c d

vertices
spanned

so far

15.2 Prim’s Algorithm 59

Prim’s algorithm chooses the cheaper edge (a, c), resulting in the same
minimum spanning tree identified in Quiz 15.1:

1

2 3 4

5

a b

c d

15.2.2 Pseudocode

In general, Prim’s algorithm grows a spanning tree from a starting
vertex one edge at a time, with each iteration extending the reach of
the tree-so-far by one additional vertex. As a greedy algorithm, the
algorithm always chooses the cheapest edge that does the job.

Prim

Input: connected undirected graph G = (V,E) in
adjacency-list representation and a cost ce for each
edge e 2 E.

Output: the edges of a minimum spanning tree of G.

// Initialization
X := {s} // s is an arbitrarily chosen vertex
T := ; // invariant: the edges in T span X

// Main loop
while there is an edge (v, w) with v 2 X,w 62 X do

(v⇤, w⇤) := a minimum-cost such edge
add vertex w⇤ to X
add edge (v⇤, w⇤) to T

return T

The sets T and X keep track of the edges chosen and the vertices
spanned so far. The algorithm seeds X with an arbitrarily chosen
starting vertex s; as we’ll see, the algorithm is correct no matter

60 Minimum Spanning Trees

which vertex it chooses.10 Each iteration is responsible for adding
one new edge to T . To avoid redundant edges and ensure that the
edge addition extends the reach of T , the algorithm considers only
the edges that “cross the frontier,” with one endpoint in each of X
and V �X (Figure 15.4). If there are many such edges, the algorithm
greedily chooses the cheapest one. After n� 1 iterations (where n is
the number of vertices), X contains all the vertices and the algorithm
halts. Under our assumption that the input graph G is connected,
there’s no way for the algorithm to get stuck; if there were ever an
iteration with no edges of G crossing between X and V �X, we could
conclude that G is not connected (because it contains no path from
any vertex in X to any vertex in V �X).

the frontier

s

processed not-yet-processed

X

V-X
candidates
for (v*,w*)

Figure 15.4: Every iteration of Prim’s algorithm chooses one new edge
that crosses from X to V �X.

10The MST problem definition makes no reference to a starting vertex, so
it might seem weird to artificially introduce one here. One big benefit is that
a starting vertex allows us to closely mimic Dijkstra’s shortest-path algorithm
(which is saddled with a starting vertex by the problem it solves, the single-source
shortest path problem). And it doesn’t really change the problem: Connecting
every pair of vertices is the same thing as connecting some vertex s to every other
vertex. (To get a v-w path, paste together paths from v to s and from s to w.)

15.2 Prim’s Algorithm 61

The algorithm Prim computes the minimum spanning tree in
the four-vertex five-edge graph of Quiz 15.1, which means approxi-
mately. . . nothing. The fact that an algorithm works correctly on a
specific example does not imply that it is correct in general!11 You
should be initially skeptical of the Prim algorithm and demand a proof
of correctness.

Theorem 15.1 (Correctness of Prim) For every connected graph

G = (V,E) and real-valued edge costs, the Prim algorithm returns a

minimum spanning tree of G.

See Section 15.4 for a proof of Theorem 15.1.

15.2.3 Straightforward Implementation

As is typical of greedy algorithms, the running time analysis of Prim’s
algorithm (assuming a straightforward implementation) is far easier
than its correctness proof.

Quiz 15.2

Which of the following running times best describes a
straightforward implementation of Prim’s minimum span-
ning tree algorithm for graphs in adjacency-list representa-
tion? As usual, n and m denote the number of vertices and
edges, respectively, of the input graph.

a) O(m+ n)

b) O(m log n)

c) O(n2)

d) O(mn)

(See below for the solution and discussion.)

Correct answer: (d). A straightforward implementation keeps track
of which vertices are in X by associating a Boolean variable with each
vertex. In each iteration, it performs an exhaustive search through

11Even a broken analog clock is correct two times a day. . .

62 Minimum Spanning Trees

all the edges to identify the cheapest one with one endpoint in each
of X and V �X. After n � 1 iterations, the algorithm runs out of
new vertices to add to its set X and halts. Because the number of
iterations is O(n) and each takes O(m) time, the overall running time
is O(mn).

Proposition 15.2 (Prim Running Time (Straightforward))
For every graph G = (V,E) and real-valued edge costs, the straight-

forward implementation of Prim runs in O(mn) time, where m = |E|
and n = |V |.

*15.3 Speeding Up Prim’s Algorithm via Heaps

15.3.1 The Quest for Near-Linear Running Time

The running time of the straightforward implementation of Prim’s
algorithm (Proposition 15.2) is nothing to sneeze at—it’s a polynomial
function of the problem size, while exhaustive search through all of a
graph’s spanning trees can take an exponential amount of time (see
footnote 7). This implementation is fast enough to process medium-
size graphs (with thousands of vertices and edges) in a reasonable
amount of time, but not big graphs (with millions of vertices and
edges). Remember the mantra of any algorithm designer worth their
salt: Can we do better? The holy grail in algorithm design is a
linear-time algorithm (or close to it), and this is what we want for
the MST problem.

We don’t need a better algorithm to achieve a near-linear-time solu-
tion to the problem, just a better implementation of Prim’s algorithm.
The key observation is that the straightforward implementation per-
forms minimum computations, over and over, using exhaustive search.
Any method for computing repeated minimum computations faster
than exhaustive search would translate to a faster implementation of
Prim’s algorithm.

We mentioned briefly in Section 14.3.6 that there is, in fact, a
data structure whose raison d’être is fast minimum computations: the
heap data structure. Thus, a light bulb should go off in your head:
Prim’s algorithm calls out for a heap!

*15.3 Speeding Up Prim’s Algorithm via Heaps 63

15.3.2 The Heap Data Structure

A heap maintains an evolving set of objects with keys and supports
several fast operations, of which we’ll need three.

Heaps: Three Supported Operations

Insert: given a heap H and a new object x, add x to H.

ExtractMin: given a heap H , remove and return from H
an object with the smallest key (or a pointer to it).

Delete: given a heap H and a pointer to an object x in H ,
delete x from H.

For example, if you invoke Insert four times to add objects with
keys 12, 7, 29, and 15 to an empty heap, the ExtractMin operation
will return the object with key 7.

Standard implementations of heaps provide the following guaran-
tee.

Theorem 15.3 (Running Time of Three Heap Operations)
In a heap with n objects, the Insert, ExtractMin, and Delete
operations run in O(log n) time.

As a bonus, in typical implementations, the constant hidden by
the big-O notation and the amount of space overhead are relatively
small.12

15.3.3 How to Use Heaps in Prim’s Algorithm

Heaps enable a blazingly fast, near-linear-time implementation of
Prim’s algorithm.13

12For the goals of this section, it’s not important to know how heaps are imple-
mented and what they look like under the hood. We’ll simply be educated clients
of them, taking advantage of their logarithmic-time operations. For additional
operations and implementation details, see Chapter 10 of Part 2.

13For readers of Part 2, all the ideas in this section will be familiar from the
corresponding heap-based implementation of Dijkstra’s shortest-path algorithm
(Section 10.4).

64 Minimum Spanning Trees

Theorem 15.4 (Prim Running Time (Heap-Based)) For every

graph G = (V,E) and real-valued edge costs, the heap-based imple-

mentation of Prim runs in O((m+ n) log n) time, where m = |E| and

n = |V |.14

The running time bound in Theorem 15.4 is only a logarithmic
factor more than the time required to read the input. The minimum
spanning tree problem thus qualifies as a “for-free primitive,” joining
the likes of sorting, computing the connected components of a graph,
and the single-source shortest path problem.

For-Free Primitives

We can think of an algorithm with linear or near-linear
running time as a primitive that we can use essentially
“for free” because the amount of computation used
is barely more than the amount required simply to
read the input. When you have a primitive relevant
to your problem that is so blazingly fast, why not use
it? For example, you can always compute a minimum
spanning tree of your undirected graph data in a
preprocessing step, even if you’re not quite sure how
it will help later. One of the goals of this book series
is to stock your algorithmic toolbox with as many
for-free primitives as possible, ready to be applied at
will.

In the heap-based implementation of Prim’s algorithm, the objects
in the heap correspond to the as-yet-unprocessed vertices (V �X in the
Prim pseudocode).15,16 The key of a vertex w 2 V �X is defined as the
minimum cost of an incident crossing edge (Figure 15.5).

14Under our standing assumption that the input graph is connected, m is at
least n� 1 and we can therefore simplify O((m+ n) log n) to O(m log n) in the
running time bound.

15We refer to vertices of the input graph and the corresponding objects in the
heap interchangeably.

16Your first thought might be to store the edges of the input graph in a heap,
with an eye toward replacing the minimum computations (over edges) in the
straightforward implementation with calls to ExtractMin. This idea can be
made to work, but the slicker and quicker implementation stores vertices in a
heap.

*15.3 Speeding Up Prim’s Algorithm via Heaps 65

Invariant

The key of a vertex w 2 V �X is the minimum cost of an
edge (v, w) with v 2 X, or +1 if no such edge exists.

s

processed not-yet-processed

X
V-X

7 x

y

z

3

5

key(x) = 3

key(y)
= 5

key(z) = +∞

2
1

Figure 15.5: The key of a vertex w 2 V �X is defined as the minimum
cost of an edge (v, w) with v 2 X (or +1, if no such edge exists).

To interpret these keys, imagine using a two-round knockout
tournament to identify the minimum-cost edge (v, w) with v 2 X and
w /2 X. The first round comprises a local tournament for each vertex
w 2 V �X, where the participants are the edges (v, w) with v 2 X
and the first-round winner is the cheapest participant (or +1, if there
are no such edges). The first-round winners (at most one per vertex
w 2 V �X) proceed to the second round, and the final champion is the
cheapest first-round winner. Thus, the key of a vertex w 2 V �X is
exactly the winning edge cost in the local tournament at w. Extracting
the vertex with the minimum key then implements the second round
of the tournament and returns on a silver platter the next addition
to the solution-so-far. As long as we pay the piper and maintain the
invariant, keeping objects’ keys up to date, we can implement each
iteration of Prim’s algorithm with a single heap operation.

66 Minimum Spanning Trees

15.3.4 Pseudocode

The pseudocode then looks like this:

Prim (Heap-Based)

Input: connected undirected graph G = (V,E) in
adjacency-list representation and a cost ce for each
edge e 2 E.

Output: the edges of a minimum spanning tree of G.

// Initialization
1 X := {s}, T = ;, H := empty heap
2 for every v 6= s do
3 if there is an edge (s, v) 2 E then
4 key(v) := csv, winner(v) := (s, v)
5 else // v has no crossing incident edges
6 key(v) := +1, winner(v) := NULL
7 Insert v into H

// Main loop
8 while H is non-empty do
9 w⇤ := ExtractMin(H)

10 add w⇤ to X
11 add winner(w⇤) to T

// update keys to maintain invariant
12 for every edge (w⇤, y) with y 2 V �X do
13 if cw⇤y < key(y) then
14 Delete y from H
15 key(y) := cw⇤y, winner(y) := (w⇤, y)
16 Insert y into H

17 return T

Each not-yet-processed vertex w records in its winner and key
fields the identity and cost of the winner of its local tournament—the
cheapest edge incident to w that crosses the frontier (i.e., edges (v, w)
with v 2 X). Lines 2–7 initialize these values for all the vertices
other than s so that the invariant is satisfied and insert these vertices
into a heap. Lines 9–11 implement one iteration of the main loop
of Prim’s algorithm. The invariant ensures that the local winner of

*15.3 Speeding Up Prim’s Algorithm via Heaps 67

the extracted vertex is the cheapest edge crossing the frontier, which
is the correct edge to add next to the tree-so-far T . The next quiz
illustrates how an extraction can change the frontier, necessitating
updates to the keys of vertices still in V �X to maintain the invariant.

Quiz 15.3

In Figure 15.5, suppose the vertex x is extracted and moved
to the set X. What should be the new values of y and z’s
keys, respectively?

a) 1 and 2

b) 2 and 1

c) 5 and +1

d) +1 and +1

(See Section 15.3.6 for the solution and discussion.)

Lines 12–16 of the pseudocode pay the piper and perform the
necessary updates to the keys of the vertices remaining in V � X.
When w⇤ is moved from V �X to X, edges of the form (w⇤, y) with
y 2 V � X cross the frontier for the first time; these are the new
contestants in the local tournaments at the vertices of V �X. (We can
ignore the fact that edges of the form (u,w⇤) with u 2 X get sucked
into X and no longer cross the frontier, as we’re not responsible for
maintaining keys for vertices in X.) For a vertex y 2 V � X, the
new winner of its local tournament is either the old winner (stored in
winner(y)) or the new contestant (w⇤, y). Line 12 iterates through
the new contestants.17 Line 13 checks whether an edge (w⇤, y) is the
new winner in y’s local tournament; if it is, lines 14–16 update y’s
key and winner fields and the heap H accordingly.18

17This is the main step in which it’s so convenient to have the input graph
represented via adjacency lists—the edges of the form (w⇤

, y) can be accessed
directly via w

⇤’s array of incident edges.
18Some heap implementations export a DecreaseKey operation, in which

case lines 14–16 can be implemented with one heap operation rather than two.

68 Minimum Spanning Trees

15.3.5 Running Time Analysis

The initialization phase (lines 1–7) performs n� 1 heap operations
(one Insert per vertex other than s) and O(m) additional work,
where n and m denote the number of vertices and edges, respectively.
There are n � 1 iterations of the main while loop (lines 8–16), so
lines 9–11 contribute O(n) heap iterations and O(n) additional work
to the overall running time. Bounding the total time spent in lines 12–
16 is the tricky part; the key observation is that each edge of G is

examined in line 12 exactly once, in the iteration in which the first of
its endpoints gets sucked into X (i.e., plays the role of w⇤). When
an edge is examined, the algorithm performs two heap operations (in
lines 14 and 16) and O(1) additional work, so the total contribution
of lines 12–16 to the running time (over all while loop iterations) is
O(m) heap operations plus O(m) additional work. Tallying up, the
final scorecard reads

O(m+ n) heap operations +O(m+ n) additional work.

The heap never stores more than n�1 objects, so each heap operation
runs in O(log n) time (Theorem 15.3). The overall running time is
O((m+ n) log n), as promised by Theorem 15.4. QE D

15.3.6 Solution to Quiz 15.3

Correct answer: (b). After the vertex x is moved from V �X to X,
the new picture is:

x
7

s

processed not-yet-processed

X
V-X

y

z

3

5

2

1

Edges of the form (v, x) with v 2 X get sucked into X and no longer
cross the frontier (as with the edges with costs 3 and 7). The other

*15.4 Prim’s Algorithm: Proof of Correctness 69

edges incident to x, (x, y) and (x, z), get partially yanked out of V �X
and now cross the frontier. For both y and z, these new incident
crossing edges are cheaper than all their old ones. To maintain the
invariant, both of their keys must be updated accordingly: y’s key
from 5 to 2, and z’s key from +1 to 1.

*15.4 Prim’s Algorithm: Proof of Correctness

Proving the correctness of Prim’s algorithm (Theorem 15.1) is a bit
easier when all the edge costs are distinct. Among friends, let’s adopt
this assumption for this section. With a little more work, Theorem 15.1
can be proved in its full generality (see Problem 15.5).

The proof breaks down into two steps. The first step identifies a
property, called the “minimum bottleneck property,” possessed by the
output of Prim’s algorithm. The second step shows that, in a graph
with distinct edge costs, a spanning tree with this property must be a
minimum spanning tree.19

15.4.1 The Minimum Bottleneck Property

We can motivate the minimum bottleneck property by analogy with
Dijkstra’s shortest-path algorithm. The only major difference between
Prim’s and Dijkstra’s algorithms is the criterion used to choose a
crossing edge in each iteration. Dijkstra’s algorithm greedily chooses
the eligible edge that minimizes the distance (i.e., the sum of edge
lengths) from the starting vertex s and, for this reason, computes
shortest paths from s to every other vertex (provided edge lengths
are nonnegative). Prim’s algorithm, by always choosing the eligible
edge with minimum individual cost, is effectively striving to minimize
the maximum edge cost along every path.20

19A popular if more abstract approach to proving the correctness of Prim’s
(and Kruskal’s) algorithm is to use what’s known as the “Cut Property” of MSTs;
see Problem 15.7 for details.

20This observation is related to a mystery that might be troubling readers of
Part 2: Why is Dijkstra’s algorithm correct only with nonnegative edge lengths,
while Prim’s algorithm is correct with arbitrary (positive or negative) edge costs?
A key ingredient in the correctness proof for Dijkstra’s algorithm is “path mono-
tonicity,” meaning that tacking on additional edges at the end of a path can only
make it worse. Tacking a negative-length edge onto a path would decrease its
overall length, so nonnegative edge lengths are necessary for path monotonicity.

70 Minimum Spanning Trees

The minimum bottleneck property makes this idea precise. Given
a graph with real-valued edge costs, define the bottleneck of a path P
as the maximum cost maxe2P ce of one of its edges.

The Minimum Bottleneck Property (MBP)

For a graph G = (V,E) with real-valued edge costs, an edge
(v, w) 2 E satisfies the minimum bottleneck property (MBP)

if it is a minimum-bottleneck v-w path.

In other words, an edge (v, w) satisfies the MBP if and only if
there is no v-w path consisting solely of edges with cost less than cvw.
In our running example:

1

2 3 4

5

a b

c d

the edge (a, d) does not satisfy the MBP (every edge on the path
a ! b ! d is cheaper than (a, d)), nor does the edge (c, d) (every
edge on the path c ! a ! d is cheaper than (c, d)). The other three
edges do satisfy the MBP, as you should check.21

The next lemma implements the first step of our proof plan by
relating the output of Prim’s algorithm to the MBP.

Lemma 15.5 (Prim Achieves the MBP) For every connected

graph G = (V,E) and real-valued edge costs, every edge chosen by the

Prim algorithm satisfies the MBP.

Proof: Consider an edge (v⇤, w⇤) chosen in an iteration of the Prim
algorithm, with v⇤ 2 X and w⇤ 2 V �X. By the algorithm’s greedy

For Prim’s algorithm, the relevant measure is the maximum cost of an edge in a
path, and this measure cannot decrease as additional (positive- or negative-cost)
edges are tacked onto the path.

21As we’ll see, it’s no accident that the edges satisfying the MBP in this example
are precisely the edges in the minimum spanning tree.

*15.4 Prim’s Algorithm: Proof of Correctness 71

rule,
cv⇤w⇤ cxy (15.1)

for every edge (x, y) 2 E with x 2 X and y 2 V �X.
To prove that (v⇤, w⇤) satisfies the MBP, consider an arbitrary

v⇤-w⇤ path P . Because v⇤ 2 X and w⇤ /2 X, the path P crosses at
some point from X to V �X, say via the edge (x, y) with x 2 X and
y 2 V �X (Figure 15.6). The bottleneck of P is at least cxy, which
by inequality (15.1) is at least cv⇤w⇤ . Because P was arbitrary, the
edge (v⇤, w⇤) is a minimum-bottleneck v⇤-w⇤ path. QE D

the frontier

processed not-yet-processed

X

V-X

x y

v* w*

Figure 15.6: Every v⇤-w⇤ path crosses at least once from X to V � X.
The dotted lines represent one such path.

We set out to solve the minimum spanning tree problem, not
to achieve the minimum bottleneck property. But I’d never waste
your time; in graphs with distinct edge costs, the latter automatically
implies the former.22

Theorem 15.6 (MBP Implies MST) Let G = (V,E) be a graph

with distinct real-valued edge costs, and T a spanning tree of G. If

every edge of T satisfies the minimum bottleneck property, T is a

minimum spanning tree.

22The converse of Theorem 15.6 is also true, even with non-distinct edge costs:
Every edge of an MST satisfies the MBP (Problem 15.4).

72 Minimum Spanning Trees

The bad news is that the proof of Theorem 15.6 has several steps.
The good news is that we can reuse all of them to also establish the
correctness of another important MST algorithm, Kruskal’s algorithm
(Theorem 15.11 in Section 15.5).23

15.4.2 Fun Facts About Spanning Trees

To warm up for the proof of Theorem 15.6, we’ll prove some simple and
useful facts about undirected graphs and their spanning trees. First,
some terminology. A graph G = (V,E)—not necessarily connected—
naturally falls into “pieces” called the connected components of the
graph. More formally, a connected component is a maximal subset
S ✓ V of vertices such that there is a path in G from any vertex in S
to any other vertex in S. For example, the connected components of
the graph in Figure 15.7(a) are {1, 3, 5, 7, 9}, {2, 4}, and {6, 8, 10}. A
graph is connected, with a path between every pair of vertices, if and
only if it has a single connected component.24

9

1 3

5

7

2 4

10

6

8

(a) Three Components

9

1 3

5

7

2 4

10

6

8

(b) Component Fusion

9

1 3

5

7

2 4

10

6

8

(c) Cycle Creation

Figure 15.7: In (a), a graph with vertex set {1, 2, 3, . . . , 10} and three
connected components. In (b), adding the edge (4, 8) fuses two components
into one. In (c), adding the edge (7, 9) creates a new cycle.

Now imagine starting from an empty graph (with vertices but
no edges) and adding edges to it one by one. What changes when a
new edge is added? One possibility is that the new edge fuses two
connected components into one (Figure 15.7(b)). We call this a type-F

edge addition (‘F’ for “fusion”). Another possibility is that the new
edge closes a pre-existing path, creating a cycle (Figure 15.7(c)). We
call this a type-C edge addition (‘C’ for “cycle”). Our first lemma

23Theorem 15.6 does not hold as stated in graphs with non-distinct edge costs.
(For a counterexample, consider a triangle with one edge with cost 1 and two
edges with cost 2 each.) Nevertheless, Prim’s and Kruskal’s algorithms remain
correct with arbitrary real-valued edge costs (see Problem 15.5).

24For more on connected components, including an algorithm to compute them
in linear time, see Chapter 8 of Part 2.

*15.4 Prim’s Algorithm: Proof of Correctness 73

states that every edge addition (v, w) is either type C or type F (and
not both), depending on whether the graph already has a v-w path.
If this statement seems obvious to you, feel free to skip the proof and
move on.

Lemma 15.7 (Cycle Creation/Component Fusion) Let G =
(V,E) be an undirected graph and v, w 2 V two distinct vertices

such that (v, w) /2 E.

(a) (Type C) If v and w are in the same connected component of G,

adding the edge (v, w) to G creates at least one new cycle and

does not change the number of connected components.

(b) (Type F) If v and w are in different connected components of G,

adding the edge (v, w) to G does not create any new cycles and

decreases the number of connected components by 1.

Proof: For part (a), if v and w are in the same connected component
of G, there is a v-w path P in G. After the edge addition, P [
{(v, w)} forms a new cycle. The connected components remain exactly
the same, with the new edge (v, w) swallowed up by the connected
component that already contains both its endpoints.

For part (b), let S1 and S2 denote the (distinct) connected com-
ponents of G that contain v and w, respectively. First, after the
edge addition, the connected components S1 and S2 fuse into a single
component S1 [S2, decreasing the number of components by 1. (For
vertices x 2 S1 and y 2 S2, you can produce an x-y path in the
new graph by pasting together an x-v path in G, the edge (v, w),
and a w-y path in G.) Second, suppose for contradiction that the
edge addition did create a new cycle C. This cycle must include the
new edge (v, w). But then C � {(v, w)} would be a v-w path in G,
contradicting our assumption that v and w are in different connected
components. QE D

With Lemma 15.7 at our disposal, we can quickly deduce some
interesting facts about spanning trees.

Corollary 15.8 (Spanning Trees Have Exactly n� 1 Edges)
Every spanning tree of an n-vertex graph has n� 1 edges.

74 Minimum Spanning Trees

Proof: Let T be a spanning tree of a graph G = (V,E) with n vertices.
Start from the empty graph with vertex set V and add the edges
of T one by one. Because T has no cycles, every edge addition is
of type F and decreases the number of connected components by 1
(Lemma 15.7):

The process starts with n connected components (with each vertex in
its own component) and ends with 1 (because T is a spanning tree),
so the number of edge additions must be n� 1. QE D

There are two ways a subgraph can fail to be a spanning tree: by
containing a cycle or by failing to be connected. A subgraph with
n� 1 edges—a candidate for a spanning tree, by Corollary 15.8—fails
one of the conditions only if it fails both.

Corollary 15.9 (Connectedness and Acyclicity Go Together)
Let G = (V,E) be a graph and T ✓ E a subset of n� 1 edges, where

n = |V |. The graph (V, T) is connected if and only if it contains no

cycles.

Proof: Reprise the edge addition process from Corollary 15.8. If each
of the n� 1 edge additions has type F, then Lemma 15.7(b) implies
that the process concludes with a single connected component and no
cycles (i.e., a spanning tree).

Otherwise, there is a type-C edge addition, which by
Lemma 15.7(a) creates a cycle and also fails to decrease the number
of connected components:

In this case, the process starts with n connected components and the
n� 1 edge additions decrease the number of connected components
at most n� 2 times, leaving the final graph (V, T) with at least two
connected components. We conclude that (V, T) is neither connected
nor acyclic. QE D

*15.4 Prim’s Algorithm: Proof of Correctness 75

We can similarly argue that the output of Prim’s algorithm is a
spanning tree. (We’re not yet claiming that it’s a minimum spanning
tree.)

Corollary 15.10 (Prim Outputs a Spanning Tree) For every

connected input graph, the Prim algorithm outputs a spanning tree.

Proof: Throughout the algorithm, the vertices of X form one connected
component of (V, T) and each vertex of V �X is isolated in its own
connected component. Each of the n � 1 edge additions involves a
vertex w⇤ of V � X and hence has type F, so the final result is a
spanning tree. QE D

15.4.3 Proof of Theorem 15.6 (MBP Implies MST)

The proof of Theorem 15.6 is where we use our standing assumption
that edges’ costs are distinct.

Proof of Theorem 15.6: We proceed by contradiction. Let T be a
spanning tree in which every edge satisfies the MBP, and suppose
that a minimum spanning tree T ⇤ has a strictly smaller sum of edge
costs. Inspired by our proof of Theorem 13.1, the plan is to exchange
one edge for another to produce a spanning tree T 0 with total cost
even less than T ⇤, thereby contradicting the alleged optimality of T ⇤.

The trees T and T ⇤ must be different and each has n� 1 edges,
where n = |V | (by Corollary 15.8). Thus, T contains at least one edge
e1 = (v, w) that is not in T ⇤. Adding e1 to T ⇤ creates a cycle C that
contains e1 (Lemma 15.7(a)):

e1

v

w

x y
e2

As an edge of T , e1 satisfies the MBP, so there is at least one edge
e2 = (x, y) in the v-w path C � {e1} with cost at least cvw. Under

76 Minimum Spanning Trees

our assumption that edges’ costs are distinct, the cost of e2 must be
strictly larger: cxy > cvw.

Now derive T 0 from T ⇤ [{e1} by removing the edge e2:

v

w

x y

Because T ⇤ has n� 1 edges, so does T 0. Because T ⇤ is connected, so
is T 0. (Removing an edge from a cycle undoes a type-C edge addition,
which by Lemma 15.7(a) has no effect on the number of connected
components.) Corollary 15.9 then implies that T 0 is also acyclic and
hence a spanning tree. Because the cost of e2 is larger than that
of e1, T 0 has a lower total cost than T ⇤; this contradicts the supposed
optimality of T ⇤ and completes the proof. QE D

15.4.4 Putting It All Together

We now have the ingredients to immediately deduce the correctness
of Prim’s algorithm in graphs with distinct edge costs.

Proof of Theorem 15.1: Corollary 15.10 proves that the output of
Prim’s algorithm is a spanning tree. Lemma 15.5 implies that every
edge of this spanning tree satisfies the MBP. Theorem 15.6 guarantees
that this spanning tree is a minimum spanning tree. QE D

15.5 Kruskal’s Algorithm

This section describes a second algorithm for the minimum spanning
tree problem, Kruskal’s algorithm.25 With our blazingly fast heap-
based implementation of Prim’s algorithm, why should we care about

25Discovered by Joseph B. Kruskal in the mid-1950s—roughly the same time
that Prim and Dijkstra were rediscovering what is now called Prim’s algorithm.

15.5 Kruskal’s Algorithm 77

Kruskal’s algorithm? Three reasons. One, it’s a first-ballot hall-of-
fame algorithm, so every seasoned programmer and computer scientist
should know about it. Properly implemented, it is competitive with
Prim’s algorithm in both theory and practice. Two, it provides an
opportunity to study a new and useful data structure, the disjoint-

set or union-find data structure. Three, there are some very cool
connections between Kruskal’s algorithm and widely-used clustering
algorithms (see Section 15.8).

15.5.1 Example

As with Prim’s algorithm, it’s helpful to see an example of Kruskal’s
algorithm in action before proceeding to its pseudocode. Here’s the
input graph:

5

6

3

4

2

1

7

Kruskal’s algorithm, like Prim’s algorithm, greedily constructs a
spanning tree one edge at a time. But rather than growing a single
tree from a starting vertex, Kruskal’s algorithm can grow multiple
trees in parallel, content for them to coalesce into a single tree only at
the end of the algorithm. So, while Prim’s algorithm was constrained
to choose the cheapest edge crossing the current frontier, Kruskal’s
algorithm is free to choose the cheapest remaining edge in the entire
graph. Well, not quite: Cycles are a no-no, so it chooses the cheapest
edge that doesn’t create a cycle.

In our example, Kruskal’s algorithm starts with an empty edge
set T and, in its first iteration, greedily considers the cheapest edge
(the edge of cost 1) and adds it to T . The second iteration follows
suit with the next-cheapest edge (the edge of cost 2). At this point,
the solution-so-far T looks like:

78 Minimum Spanning Trees

5

6

3

4

2

1

7

The two edges chosen so far are disjoint, so the algorithm is effectively
growing two trees in parallel. The next iteration considers the edge
with cost 3. Its inclusion does not create a cycle and also happens to
fuse the two trees-so-far into one:

5

6

3

4

2

1

7

The algorithm next considers the edge of cost 4. Adding this edge
to T would create a cycle (with the edges of cost 2 and 3), so the
algorithm is forced to skip it. The next-best option is the edge of
cost 5; its inclusion does not create a cycle and, in fact, results in a
spanning tree:

5

6

3

4

2

1

7

The algorithm skips the edge of cost 6 (which would create a triangle
with the edges of cost 3 and 5) as well as the final edge, of cost 7
(which would create a triangle with the edges of cost 1 and 5). The
final output above is the minimum spanning tree of the graph (as you
should check).

15.5 Kruskal’s Algorithm 79

15.5.2 Pseudocode

With our intuition solidly in place, the following pseudocode won’t
surprise you.

Kruskal

Input: connected undirected graph G = (V,E) in
adjacency-list representation and a cost ce for each
edge e 2 E.

Output: the edges of a minimum spanning tree of G.

// Preprocessing
T := ;
sort edges of E by cost // e.g., using MergeSort26

// Main loop
for each e 2 E, in nondecreasing order of cost do

if T [{e} is acyclic then
T := T [{e}

return T

Kruskal’s algorithm considers the edges of the input graph one
by one, from cheapest to most expensive, so it makes sense to sort
them in nondecreasing order of cost in a preprocessing step (using
your favorite sorting algorithm; see footnote 3 in Chapter 13). Ties
between edges can be broken arbitrarily. The main loop zips through
the edges in this order, adding an edge to the solution-so-far provided
it doesn’t create a cycle.27

It’s not obvious that the Kruskal algorithm returns a spanning
tree, let alone a minimum one. But it does!

Theorem 15.11 (Correctness of Kruskal) For every connected

graph G = (V,E) and real-valued edge costs, the Kruskal algorithm

returns a minimum spanning tree of G.

26The abbreviation “e.g.” stands for exempli gratia and means “for example.”
27One easy optimization: You can stop the algorithm early once |V | � 1

edges have been added to T , as at this point T is already a spanning tree (by
Corollary 15.9).

80 Minimum Spanning Trees

We’ve already done most of the heavy lifting in our correctness
proof for Prim’s algorithm (Theorem 15.1). Section 15.7 supplies the
remaining details of the proof of Theorem 15.11.

15.5.3 Straightforward Implementation

How would you actually implement Kruskal’s algorithm and, in par-
ticular, the cycle-checking required in each iteration?

Quiz 15.4

Which of the following running times best describes a
straightforward implementation of Kruskal’s MST algorithm
for graphs in adjacency-list representation? As usual, n
and m denote the number of vertices and edges, respectively,
of the input graph.

a) O(m log n)

b) O(n2)

c) O(mn)

d) O(m2)

(See below for the solution and discussion.)

Correct answer: (c). In the preprocessing step, the algorithm sorts
the edge array of the input graph, which has m entries. With a good
sorting algorithm (like MergeSort), this step contributes O(m log n)
work to the overall running time.28 This work will be dominated by
that done by the main loop of the algorithm, which we analyze next.

The main loop has m iterations. Each iteration is responsible for
checking whether the edge e = (v, w) under examination can be added
to the solution-so-far T without creating a cycle. By Lemma 15.7,

28Why O(m log n) instead of O(m logm)? Because there’s no difference between
the two expressions. The number of edges of an n-vertex connected graph with
no parallel edges is at least n� 1 (achieved by a tree) and at most

�
n
2

�
= n(n�1)

2
(achieved by a complete graph). Thus logm lies between log(n� 1) and 2 log n
for every connected graph with no parallel edges, which justifies using logm and
log n interchangeably inside a big-O expression.

*15.6 Speeding Up Kruskal’s Algorithm via Union-Find 81

adding e to T creates a cycle if and only if T already contains a v-w
path. The latter condition can be checked in linear time using any
reasonable graph search algorithm, like breadth- or depth-first search
starting from v (see Chapter 8 of Part 2). And by “linear time,” we
mean linear in the size of the graph (V, T) which, as an acyclic graph
with n vertices, has at most n� 1 edges. The per-iteration running
time is therefore O(n), for an overall running time of O(mn).

Proposition 15.12 (Kruskal Run Time (Straightforward))
For every graph G = (V,E) and real-valued edge costs, the straightfor-

ward implementation of Kruskal runs in O(mn) time, where m = |E|
and n = |V |.

*15.6 Speeding Up Kruskal’s Algorithm via Union-Find

As with Prim’s algorithm, we can reduce the running time of Kruskal’s
algorithm from the reasonable polynomial bound of O(mn) (Propo-
sition 15.12) to the blazingly fast near-linear bound of O(m log n)
through the deft use of a data structure. None of the data structures
discussed previously in this book series are right for the job; we’ll
need a new one, called the union-find data structure.29

Theorem 15.13 (Kruskal Run Time (Union-Find-Based))
For every graph G = (V,E) and real-valued edge costs, the union-

find-based implementation of Kruskal runs in O((m+ n) log n) time,

where m = |E| and n = |V |.30

15.6.1 The Union-Find Data Structure

Whenever a program does a significant computation over and over
again, it’s a clarion call for a data structure to speed up those compu-
tations. Prim’s algorithm performs minimum computations in each
iteration of its main loop, so the heap data structure is an obvious
match. Each iteration of Kruskal’s algorithm performs a cycle check
or, equivalently, a path check. (Adding an edge (v, w) to the solution-
so-far T creates a cycle if and only if T already contains a v-w path.)

29Also known as the disjoint-set data structure.
30Again, under our standing assumption that the input graph is connected, we

can simplify the O((m+ n) log n) bound to O(m log n).

82 Minimum Spanning Trees

What kind of data structure would allow us to quickly identify whether
the solution-so-far contains a path between a given pair of vertices?

The raison d’être of the union-find data structure is to maintain
a partition of a static set of objects.31 In the initial partition, each
object is in its own set. These sets can merge over time, but they can
never split:

merge merge

merge merge

merge

In our application of speeding up Kruskal’s algorithm, the objects
will correspond to the vertices of the input graph and the sets in the
partition to the connected components of the solution-so-far T :

Checking whether T already contains a v-w path then boils down to
checking whether v and w belong to the same set of the partition (i.e.,
to the same connected component).

The union-find data structure supports two operations for access-
ing and modifying its partition, the—wait for it—Union and Find
operations.

Union-Find: Supported Operations

Initialize: given an array X of objects, create a union-find
data structure with each object x 2 X in its own set.

Find: given a union-find data structure and an object x in
it, return the name of the set that contains x.

Union: given a union-find data structure and two objects
x, y 2 X in it, merge the sets that contain x and y into a

31A partition of a set X of objects is a way of splitting them into one or more
groups. More formally, it is a collection S1, S2, . . . , Sp of non-empty subsets of X
such that each object x 2 X belongs to exactly one of the subsets.

*15.6 Speeding Up Kruskal’s Algorithm via Union-Find 83

single set.32

With a good implementation, the Union and Find operations
both take time logarithmic in the number of objects.33

Theorem 15.14 (Running Time of Union-Find Operations)
In a union-find data structure with n objects, the Initialize, Find,

and Union operations run in O(n), O(log n), and O(log n) time,

respectively.

Summarizing, here’s the scorecard:

Operation Running time
Initialize O(n)

Find O(log n)
Union O(log n)

Table 15.1: The union-find data structure: supported operations and their
running times, where n denotes the number of objects.

We first show how to implement Kruskal’s algorithm given a union-
find data structure with logarithmic-time operations, and then outline
an implementation of such a data structure.

15.6.2 Pseudocode

The main idea for speeding up Kruskal’s algorithm is to use a union-
find data structure to keep track of the connected components of the
solution-so-far. Each vertex is in its own connected component at
the beginning of the algorithm and, accordingly, a union-find data
structure is born with each object in a different set. Whenever a new
edge (v, w) is added to the solution-so-far, the connected components
of v and w fuse into one, and one Union operation suffices to update

32If x and y are already in the same set of the partition, this operation has no
effect.

33These bounds are for the quick-and-dirty implementation in Section 15.6.4.
There are better implementations but they are overkill for the present application.
See the bonus videos at www.algorithmsilluminated.org for an in-depth look at
state-of-the-art union-find data structures. (Highlights include “union-by-rank,”
“path compression,” and the “inverse Ackermann function.” It’s amazing stuff!)

84 Minimum Spanning Trees

the union-find data structure accordingly. Checking whether an edge
addition (v, w) would create a cycle is equivalent to checking whether v
and w are already in the same connected component. This reduces to
two Find operations.

Kruskal (Union-Find-Based)

Input: connected undirected graph G = (V,E) in
adjacency-list representation and a cost ce for each
edge e 2 E.

Output: the edges of a minimum spanning tree of G.

// Initialization
T := ;
U := Initialize(V) // union-find data structure
sort edges of E by cost // e.g., using MergeSort
// Main loop
for each (v, w) 2 E, in nondecreasing order of cost do

if Find(U, v) 6= Find(U,w) then
// no v-w path in T, so OK to add (v, w)
T := T [{(v, w)}
// update due to component fusion
Union(U, v, w)

return T

The algorithm maintains the invariant that, at the beginning of a
loop iteration, the sets of the union-find data structure U correspond to
the connected components of (V, T). Thus, the condition Find(U, v) 6=
Find(U,w) is met if and only if v and w are in different connected
components of (V, T), or equivalently, if and only if adding (v, w)
to T does not create a cycle. We conclude that the union-find-based
implementation of Kruskal is faithful to its original implementation,
with both versions producing the same output.

15.6.3 Running Time Analysis

The running time analysis of the union-find-based implementation
of Kruskal’s algorithm is straightforward. Initializing the union-find
data structure takes O(n) time. As in the original implementation,

*15.6 Speeding Up Kruskal’s Algorithm via Union-Find 85

the sorting step requires O(m log n) time (see Quiz 15.4). There are m
iterations of the main loop and each uses two Find operations (for
a total of 2m). There is one Union operation for each edge added
to the output which, as an acyclic graph, has at most n � 1 edges
(Corollary 15.8). Provided the Find and Union operations run in
O(log n) time, as assured by Theorem 15.14, the total running time
is:

preprocessing O(n) +O(m log n)
2m Find operations O(m log n)
n� 1 Union operations O(n log n)

+ remaining bookkeeping O(m)
total O((m+ n) log n).

This matches the running time bound promised in Theorem 15.13.
QE D

15.6.4 Quick-and-Dirty Implementation of Union-Find

The Parent Graph

Under the hood, a union-find data structure is implemented as an
array and can be visualized as a collection of directed trees. The
array has one position for each object x 2 X. Each array entry
has a parent field that stores the array index of some object y 2 X
(with y = x allowed). We can then picture the current state of the
data structure as a directed graph—the parent graph—with vertices
corresponding to (indices of) objects x 2 X and a directed edge (x, y),
called a parent edge, whenever parent(x) = y.34 For example, if X
has six objects and the current state of the data structure is:

Index of object x parent(x)
1 4
2 1
3 1
4 4
5 6
6 6

then the parent graph is a pair of disjoint trees, with each root pointing
back to itself:

34The parent graph exists only in our minds. Do not confuse it with the actual
(undirected) input graph in Kruskal’s algorithm.

86 Minimum Spanning Trees

4

1

2 3

6

5

In general, the sets in the partition maintained by the data struc-
ture will correspond to the trees in the parent graph, with each set
inheriting the name of its root object. The trees are not necessarily
binary, as there is no limit to the number of objects that can have
the same parent. In the example above, the first four objects belong
to a set named “4,” and the last two to a set named “6.”

Initialize and Find

The intended semantics of the parent graph already dictate how the
Initialize and Find operations should be implemented.

Initialize

1. For each i = 1, 2, . . . , n, initialize parent(i) to i.

The Initialize operation clearly runs in O(n) time. The initial parent
graph consists of isolated vertices with self-loops:

For the Find operation, we leap from parent to parent until we
arrive at a root object, which can be identified by its self-loop.

Find

1. Starting from x’s position in the array, repeatedly
traverse parent edges until reaching a position j with
parent(j) = j.

2. Return j.

*15.6 Speeding Up Kruskal’s Algorithm via Union-Find 87

If Find is invoked for the third object in our running example
(page 86), the operation checks position 3 (with parent(3) = 1),
then position 1 (with parent(1) = 4), and finally returns the position 4
(a root, as parent(4) = 4).

Define the depth of an object x as the number of parent edge
traversals performed by Find from x. In our running example, the
fourth and sixth objects have depth 0, the first and fifth objects
have depth 1, and the second and third objects have depth 2. The
Find operation performs O(1) work per parent edge traversal, so its
worst-case running time is proportional to the largest depth of any
object—equivalently, to the largest height of one of the trees in the
parent graph.

Quiz 15.5

What’s the running time of the Find operation, as a function
of the number n of objects?

a) O(1)

b) O(log n)

c) O(n)

d) Not enough information to answer

(See Section 15.6.5 for the solution and discussion.)

Union

When the Union operation is invoked with objects x and y, the two
trees T1 and T2 of the parent graph containing them must be merged
into a single tree. The simplest solution is to demote the root of one
of the trees and promote that of the other. For example, if we choose
to demote T1’s root, it is installed as a child of an object in the other
tree T2, meaning its parent field is reassigned from its own array index
to that of an object in T2. The promoted root (from T2) continues to
serve as the root of the merged tree. There are several ways to fuse
the two trees in this way, such as:

88 Minimum Spanning Trees

6

5

4

1

2 3

+ =

4

1

2 3

6

5

6

5 6

5

4

1

2 3

4

1

2 3

or or

To complete the implementation, we must make two decisions:

1. Which of the two roots do we promote?

2. Under which object do we install the demoted root?

Suppose we install the root of a tree T1 under an object z of another
tree T2. What are the consequences for the running time of a Find
operation? For an object in T2, none: The operation traverses exactly
the same set of parent edges as before. For an object x that previously
inhabited T1, the Find operation traverses the same path as before
(from x to the old root r of T1), plus the new parent edge from r to z,
plus the parent edges from z to the root of T2:

r

x

z

FIND called here

old parent
edge traversal

new traversals

That is, the depth of every object in T1 increases by 1 (for the new
parent edge) plus the depth of z.

The answer to the second question is now clear: Install the demoted
root directly under the (depth-0) promoted root so that the occupants
of T1 suffer a depth increase of only 1.

Quiz 15.6

Suppose we arbitrarily choose which root to promote.
What’s the running time of the Find operation as a function
of the number n of objects?

*15.6 Speeding Up Kruskal’s Algorithm via Union-Find 89

a) O(1)

b) O(log n)

c) O(n)

d) Not enough information to answer

(See Section 15.6.5 for the solution and discussion.)

The solution to Quiz 15.6 demonstrates that, to achieve the desired
logarithmic running time, we need another idea. If we demote the root
of T1, then T1’s occupants are pushed one step further from the new
root; otherwise, T2’s occupants suffer the same fate. It seems only fair
to minimize the number of objects suffering a depth increase, which
means we should demote the root of the smaller tree (breaking ties
arbitrarily).35 To pull this off, we need easy access to the populations
of the two trees. So, along with the parent field, the data structure
stores with each array entry a size field, initialized to 1 in Initialize.
When two trees are merged, the size field of the promoted root is
updated accordingly, to the combined size of the two trees.36

Union

1. Invoke Find twice to locate the positions i and j of
the roots of the parent graph trees that contain x
and y, respectively. If i = j, return.

2. If size(i) � size(j), set parent(j) := i and size(i) :=
size(i) + size(j).

3. If size(i) < size(j), set parent(i) := j and size(j) :=
size(i) + size(j).

In our running example (page 86), this implementation of Union
promotes the root 4 and demotes the root 6, resulting in:

35This implementation choice goes by the name union-by-size. Another good
idea is union-by-rank, which demotes the root of the tree with the smaller height
(breaking ties arbitrarily). Union-by-rank is discussed at length in the bonus
videos at www.algorithmsilluminated.org.

36There is no need to keep the size field accurate after a root has been demoted
to a non-root.

90 Minimum Spanning Trees

6

5
+ =

4

1

2 3

4

1

2 3

6

5

promoted demoted

A Union operation performs two Find operations and O(1) ad-
ditional work, so its running time matches that of Find. Which
is. . . ?

Quiz 15.7

With the implementation of Union above, what’s the run-
ning time of the Find (and, hence, Union) operation, as a
function of the number n of objects?

a) O(1)

b) O(log n)

c) O(n)

d) Not enough information to answer

(See Section 15.6.5 for the solution and discussion.)

With the solution to Quiz 15.7, we conclude that our quick-and-
dirty implementation of a union-find data structure fulfills the running
time guarantees promised by Theorem 15.14 and Table 15.1.

15.6.5 Solutions to Quizzes 15.5–15.7

Solution to Quiz 15.5

Correct answer: (c or d). The worst-case running time of Find
is proportional to the biggest height of a tree of the parent graph.
How big can this be? The answer depends on how we implement
the Union operation; in this sense, answer (d) is correct. A poor
implementation can lead to a tree with height as large as n� 1:

*15.7 Kruskal’s Algorithm: Proof of Correctness 91

In this sense, answer (c) is also correct.

Solution to Quiz 15.6

Correct answer: (c). With arbitrary promotion and demotion
decisions, a sequence of n � 1 Union operations can produce the
height-(n � 1) tree shown in the solution to Quiz 15.5, with each
operation installing the tree-so-far underneath a previously isolated
object.

Solution to Quiz 15.7

Correct answer: (b). Every object x begins with depth 0. Only
one type of event can increment x’s depth: a Union operation in
which the root of x’s tree in the parent graph gets demoted. By our
promotion criterion, this happens only when x’s tree is merged with
another tree that is at least as big. In other words:

whenever x’s depth is incremented, the population of x’s
tree at least doubles.

Because the population cannot exceed the total number n of objects,
the depth of x cannot be incremented more than log2 n times. Because
the running time of Find is proportional to the depth of an object,
its worst-case running time is O(log n).

*15.7 Kruskal’s Algorithm: Proof of Correctness

This section proves the correctness of Kruskal’s algorithm (Theo-
rem 15.11) under the assumption that edges’ costs are distinct. Theo-
rem 15.11 can be proved in its full generality with a bit more work
(see Problem 15.5).

92 Minimum Spanning Trees

The first order of business is to show that the algorithm’s output
is connected (and, as it’s clearly acyclic, a spanning tree). To this
end, the next lemma shows that once an edge (v, w) is processed by
Kruskal, the solution-so-far (and, hence, the final output) necessarily
contains a v-w path.

Lemma 15.15 (Connecting Adjacent Vertices) Let T be the set

of edges chosen by Kruskal up to and including the iteration that

examines the edge e = (v, w). Then, v and w are in the same connected

component of the graph (V, T).

Proof: In the terminology of Lemma 15.7, adding e to the solution-
so-far is either a type-C or type-F edge addition. In the first case, v
and w already belong to the same connected component prior to e’s
examination. In the second case, the algorithm will add the edge (v, w)
to its solution-so-far (by Lemma 15.7(b), this doesn’t create a cycle),
directly connecting v and w and fusing their connected components
into one. QE D

The following corollary extends Lemma 15.15 from individual
edges to multi-hop paths.

Corollary 15.16 (From Edges to Paths) Let P be a v-w path

in G, and T the set of edges chosen by Kruskal up to and including

the last iteration that examines an edge of P . Then, v and w are in

the same connected component of the graph (V, T).

Proof: Denote the edges of P by (x0, x1), (x1, x2), . . . , (xp�1, xp),
where x0 is v and xp is w. By Lemma 15.15, immediately after
the iteration that processes the edge (xi�1, xi), xi�1 and xi lie in the
same connected component of the solution-so-far. This remains true
as more edges are included in subsequent iterations. After all the
edges of P have been processed, all its vertices—and, in particular,
its endpoints v and w—belong to the same connected component of
the solution-so-far (V, T). QE D

The next step argues that Kruskal outputs a spanning tree.

Lemma 15.17 (Kruskal Outputs a Spanning Tree) For every

connected input graph, the Kruskal algorithm outputs a spanning

tree.

15.8 Application: Single-Link Clustering 93

Proof: The algorithm explicitly ensures that its final output T is
acyclic. To prove that its output is also connected, we can argue that
all its vertices belong to the same connected component of (V, T).
Fix a pair v, w of vertices; because the input graph is connected,
it contains a v-w path P . By Corollary 15.16, once the Kruskal
algorithm has processed every edge of P , its endpoints v and w belong
to the same connected component of the solution-so-far (and, hence,
of the final output (V, T)). QE D

To apply Theorem 15.6, we must prove that every edge chosen
by the Kruskal algorithm satisfies the minimum bottleneck property
(MBP).37

Lemma 15.18 (Kruskal Achieves the MBP) For every con-

nected graph G = (V,E) and real-valued edge costs, every edge chosen

by the Kruskal algorithm satisfies the MBP.

Proof: We prove the contrapositive, that the output of Kruskal never
includes an edge that fails to satisfy the MBP. Let e = (v, w) be
such an edge, and P a v-w path in G in which every edge has cost
less than ce. Because Kruskal scans through the edges in order of
nondecreasing cost, the algorithm processes every edge of P before e.
Corollary 15.16 now implies that, by the time Kruskal reaches the
edge e, its endpoints v and w already belong to the same connected
component of the solution-so-far T . Adding e to T would create a
cycle (Lemma 15.7(a)), so Kruskal excludes the edge from its output.
QE D

Putting it all together proves Theorem 15.11 for graphs with
distinct edge costs:

Proof of Theorem 15.11: Lemma 15.17 proves that the output of
Kruskal’s algorithm is a spanning tree. Lemma 15.18 implies that
every edge of this spanning tree satisfies the MBP. Theorem 15.6
guarantees that this spanning tree is a minimum spanning tree. QE D

37Recall from Section 15.4 that an edge e = (v, w) in a graph G satisfies the
MBP if and only if every v-w path in G has an edge with cost at least ce.

94 Minimum Spanning Trees

15.8 Application: Single-Link Clustering

Unsupervised learning is a branch of machine learning and statistics
that strives to understand large collections of data points by finding
hidden patterns in them. Each data point could represent a person,
an image, a document, a genome sequence, and so on. For exam-
ple, a data point corresponding to a 100-by-100 pixel color image
might be a 30000-dimensional vector, with 3 coordinates per pixel
recording the intensities of red, green, and blue in that pixel.38 This
section highlights a connection between one of the most basic algo-
rithms in unsupervised learning and Kruskal’s minimum spanning
tree algorithm.

15.8.1 Clustering

One widely-used approach to unsupervised learning is clustering, in
which the goal is to partition the data points into “coherent groups”
(called clusters) of “similar points” (Figure 15.8). To make this more
precise, suppose we have a similarity function f that assigns a non-
negative real number to each pair of data points. We assume that f
is symmetric, meaning f(x, y) = f(y, x) for every pair x, y of data
points. We can then interpret points x, y with a small value of f(x, y)
as “similar,” and those with a large value as “dissimilar.”39 For exam-
ple, if the data points are vectors with a common dimension, like in
the image example above, f(x, y) could be defined as the Euclidean
(i.e., straight-line) distance between x and y.40 For another example,
Section 17.1 defines Needleman-Wunsch distance, which is a symmet-
ric similarity function designed for genome sequences. In an ideal
clustering, data points in the same cluster are relatively similar while
those in different clusters are relatively dissimilar.

Let k denote the number of clusters desired. Sensible values for k
range from 2 to a large number, depending on the application. For

38
Supervised learning focuses on prediction rather than pattern-finding per

se. Here, each data point also has a label (e.g., 1 if the image is of a cat and 0
otherwise), and the goal is to accurately predict the labels of as-yet-unseen data
points.

39With these semantics, it’s arguably more accurate to call f a dissimilarity

function.
40If x = (x1, x2, . . . , xd) and y = (y1, y2, . . . , yd) are d-dimensional vectors, the

precise formula is f(x, y) =
qPd

i=1(xi � yi)2.

15.8 Application: Single-Link Clustering 95

clusters

Figure 15.8: In an ideal clustering, data points in the same cluster are
relatively similar while those in different clusters are relatively dissimilar.

example, if the goal is to cluster blog posts about U.S. politics into
groups of “left-leaning” and “right-leaning” posts, it makes sense to
choose k = 2. If the goal is to cluster a diverse collection of images
according to their subject, a larger value of k should be used. When
unsure about the best value for k, you can try several different choices
and select your favorite among the resulting partitions.

15.8.2 Bottom-Up Clustering

The main idea in bottom-up or agglomerative clustering is to begin
with every data point in its own cluster, and then successively merge
pairs of clusters until exactly k remain.

Bottom-Up Clustering (Generic)

Input: a set X of data points, a symmetric similarity
function f , and a positive integer k 2 {1, 2, 3, . . . , |X|}.

Output: a partition of X into k non-empty sets.

C := ; // keeps track of current clusters
for each x 2 X do

add {x} to C // each point in own cluster
// Main loop
while C contains more than k clusters do

remove clusters S1, S2 from C // details TBA
add S1 [S2 to C // merge clusters

return C

96 Minimum Spanning Trees

Each iteration of the main loop decreases the number of clusters in C
by 1, so there are a total of |X|� k iterations (Figure 15.9).41

merge merge

merge merge

Figure 15.9: In bottom-up clustering, each point begins in its own cluster
and pairs of clusters are successively merged until only k clusters remain.

Our generic bottom-up clustering algorithm does not specify which
pair of clusters to merge in each iteration. Can we use a greedy
approach? If so, greedy with respect to what criterion?

The next step is to derive a similarity function F for pairs of
clusters from the given function f for pairs of data points. For
example, one of the simplest choices for F is the best-case similarity
between points in the different clusters:

F (S1, S2) = min
x2S1,y2S2

f(x, y). (15.2)

Other reasonable choices for F include the worst-case or average
similarity between points in the different clusters. In any case, once
the function F is chosen, the generic bottom-up clustering algorithm
can be specialized to greedily merge the “most similar” pair of clusters
in each iteration:

Bottom-Up Clustering (Greedy)

// Main loop
while C contains more than k clusters do

remove from C the clusters S1, S2 that minimize
F (S1, S2) // e.g., with F as in (15.2)

add S1 [S2 to C
return C

41Bottom-up clustering is only one of several common approaches to clustering.
For example, top-down algorithms begin with all the data points in a single cluster
and successively split clusters in two until there are exactly k clusters. Other
algorithms, like k-means clustering, maintain k clusters from beginning to end.

15.8 Application: Single-Link Clustering 97

Single-link clustering refers to greedy bottom-up clustering with
the best-case similarity function (15.2). Do you see any connections
between single-link clustering and Kruskal’s minimum spanning tree
algorithm (Section 15.5)? Take some time to think about it.

* * * * * * * * * * *

Kruskal’s algorithm begins with the empty edge set and each
vertex isolated in its own connected component, just as single-link
clustering begins with each data point in its own cluster. Each iteration
of Kruskal’s algorithm that adds a new edge fuses two connected
components into one, just as each iteration of single-link clustering
merges two clusters into one. Kruskal’s algorithm repeatedly adds the
cheapest new edge that does not create a cycle, fusing the components
containing its endpoints, just as single-link clustering repeatedly
merges the pair of clusters containing the most similar pair of data
points in different clusters. Thus, Kruskal’s algorithm corresponds
to single-link clustering, with vertices substituting for data points
and connected components for clusters. The one difference is that
single-link clustering stops once there are k clusters, while Kruskal’s
algorithm continues until only one connected component remains. We
conclude that single-link clustering is the same as Kruskal’s algorithm,

stopped early.

Single-Link Clustering via Kruskal’s Algorithm

1. Define a complete undirected graph G = (X,E) from
the data set X and similarity function f , with vertex
set X and one edge (x, y) 2 E with cost cxy = f(x, y)
for each vertex pair x, y 2 X.

2. Run Kruskal’s algorithm with the input graph G un-
til the solution-so-far T contains |X| � k edges or,
equivalently, until the graph (X,T) has k connected
components.

3. Compute the connected components of (X,T) and
return the corresponding partition of X.

98 Minimum Spanning Trees

The Upshot

P A spanning tree of a graph is an acyclic sub-
graph that contains a path between each pair
of vertices.

P In the minimum spanning tree (MST) problem,
the input is a connected undirected graph with
real-valued edge costs and the goal is to compute
a spanning tree with the minimum-possible sum
of edge costs.

P Prim’s algorithm constructs an MST one edge
at a time, starting from an arbitrary vertex and
growing like a mold until the entire vertex set is
spanned. In each iteration, it greedily chooses
the cheapest edge that expands the reach of the
solution-so-far.

P When implemented with a heap data struc-
ture, Prim’s algorithm runs in O(m log n) time,
where m and n denote the number of edges and
vertices of the input graph, respectively.

P Kruskal’s algorithm also constructs an MST one
edge at a time, greedily choosing the cheapest
edge whose addition does not create a cycle in
the solution-so-far.

P When implemented with a union-find data struc-
ture, Kruskal’s algorithm runs in O(m log n)
time.

P The first step in the proofs of correctness for
Prim’s and Kruskal’s algorithms is to show that
each algorithm chooses only edges satisfying the
minimum bottleneck property (MBP).

Problems 99

P The second step is to use an exchange argument
to prove that a spanning tree in which every
edge satisfies the MBP must be an MST.

P Single-link clustering is a greedy bottom-up clus-
tering method in unsupervised learning and it
corresponds to Kruskal’s algorithm, stopped
early.

Test Your Understanding

Problem 15.1 (H) Consider an undirected graph G = (V,E) in
which every edge e 2 E has a distinct and nonnegative cost. Let T
be an MST and P a shortest path from some vertex s to some other
vertex t. Now suppose the cost of every edge e of G is increased by 1
and becomes ce + 1. Call this new graph G0. Which of the following
is true about G0?

a) T must be an MST and P must be a shortest s-t path.

b) T must be an MST but P may not be a shortest s-t path.

c) T may not be an MST but P must be a shortest s-t path.

d) T may not be an MST and P may not be a shortest s-t path.

Problem 15.2 (H) Consider the following algorithm that attempts
to compute an MST of a connected undirected graph G = (V,E)
with distinct edge costs by running Kruskal’s algorithm “in re-
verse”:

Kruskal (Reverse Version)

T := E
sort edges of E in decreasing order of cost
for each e 2 E, in order do

if T � {e} is connected then
T := T � {e}

return T

100 Minimum Spanning Trees

Which of the following statements is true?

a) The output of the algorithm will never have a cycle, but it might
not be connected.

b) The output of the algorithm will always be connected, but it
might have cycles.

c) The algorithm always outputs a spanning tree, but it might not
be an MST.

d) The algorithm always outputs an MST.

Problem 15.3 (H) Which of the following problems reduce, in a
straightforward way, to the minimum spanning tree problem? (Choose
all that apply.)

a) The maximum-cost spanning tree problem. That is, among all
spanning trees T of a connected graph with edge costs, compute
one with the maximum-possible sum

P
e2T ce of edge costs.

b) The minimum-product spanning tree problem. That is, among
all spanning trees T of a connected graph with strictly posi-
tive edge costs, compute one with the minimum-possible prod-
uct

Q
e2T ce of edge costs.

c) The single-source shortest-path problem. In this problem, the
input comprises a connected undirected graph G = (V,E), a
nonnegative length `e for each edge e 2 E, and a designated
starting vertex s 2 V . The required output is, for every possible
destination v 2 V , the minimum total length of a path from s
to v.

d) Given a connected undirected graph G = (V,E) with positive
edge costs, compute a minimum-cost set F ✓ E of edges such
that the graph (V,E � F) is acyclic.

On Reductions

A problem A reduces to a problem B if an algorithm
that solves B can be easily translated into one that
solves A. For example, the problem of computing the

Problems 101

median element of an array reduces to the problem of
sorting the array. Reductions are one of the most im-
portant concepts in the study of algorithms and their
limitations, and they can also have great practical
utility.

You should always be on the lookout for reductions.
Whenever you encounter a seemingly new problem,
always ask: Is the problem a disguised version of one
you already know how to solve? Alternatively, can
you reduce the general version of the problem to a
special case?

Challenge Problems

Problem 15.4 (S) Prove the converse of Theorem 15.6: If T is an
MST of a graph with real-valued edge costs, every edge of T satisfies
the minimum bottleneck property.

Problem 15.5 (S) Prove the correctness of Prim’s and Kruskal’s
algorithms (Theorems 15.1 and 15.11) in full generality, for graphs in
which edges’ costs need not be distinct.

Problem 15.6 (H) Prove that in a connected undirected graph with
distinct edge costs, there is a unique MST.

Problem 15.7 (S) An alternative approach to proving the correct-
ness of Prim’s and Kruskal’s algorithms is to use what’s called the
Cut Property of MSTs. Assume throughout this problem that edges’
costs are distinct.

A cut of an undirected graph G = (V,E) is a partition of its vertex
set V into two non-empty sets, A and B.

crossing edges

A B

102 Minimum Spanning Trees

An edge of G crosses the cut (A,B) if it has one endpoint in each
of A and B.

The Cut Property

Let G = (V,E) be a connected undirected graph with dis-
tinct real-valued edge costs. If an edge e 2 E is the cheapest
edge crossing a cut (A,B), e belongs to every MST of G.42

In other words, one way to justify an algorithm’s inclusion of an edge e
in its solution is to produce a cut of G for which e is the cheapest
crossing edge.43

(a) Prove the Cut Property.

(b) Use the Cut Property to prove that Prim’s algorithm is correct.

(c) Repeat (b) for Kruskal’s algorithm.

Problem 15.8 (H) Consider a connected undirected graph with
distinct real-valued edge costs. A minimum bottleneck spanning tree

(MBST) is a spanning tree T with the minimum-possible bottleneck
(i.e., the minimum maximum edge cost maxe2T ce).

(a) (Difficult) Give a linear-time algorithm for computing the bot-
tleneck of an MBST.

(b) Does this imply a linear-time algorithm for computing the total
cost of an MST?

Programming Problems

Problem 15.9 Implement in your favorite programming language
the Prim and Kruskal algorithms. For bonus points, implement the
heap-based version of Prim (Section 15.3) and the union-find-based
version of Kruskal (Section 15.6). Does one of the algorithms seem
reliably faster than the other? (See www.algorithmsilluminated.
org for test cases and challenge data sets.)

42Readers who have solved Problem 15.6 might want to rephrase the conclusion
to “. . . then e belongs to the MST of G.”

43There’s also the Cycle Property, which asserts that if an edge e is the costliest
on some cycle C, every MST excludes e. You should check that the Cycle Property
is equivalent to the converse of Theorem 15.6, which is proved in Problem 15.4.

Chapter 16

Introduction to Dynamic Programming

There’s no silver bullet in algorithm design, and the two algorithm
design paradigms we’ve studied so far (divide-and-conquer and greedy
algorithms) do not cover all the computational problems you will
encounter. The second half of this book will teach you a third design
paradigm: the dynamic programming paradigm. Dynamic program-
ming is a particularly empowering technique to acquire, as it often
leads to efficient solutions beyond the reach of anyone other than
serious students of algorithms.

In my experience, most people initially find dynamic programming
difficult and counterintuitive. Even more than with other design
paradigms, dynamic programming takes practice to perfect. But
dynamic programming is relatively formulaic—certainly more so than
greedy algorithms—and can be mastered with sufficient practice. This
chapter and the next two provide this practice through a half-dozen
detailed case studies, including several algorithms belonging to the
greatest hits compilation. You’ll learn how these famous algorithms
work, but even better, you’ll add to your programmer toolbox a
general and flexible algorithm design technique that you can apply
to problems that come up in your own projects. Through these case
studies, the power and flexibility of dynamic programming will become
clear—it’s a technique you simply have to know.

Pep Talk

It is totally normal to feel confused the first time
you see dynamic programming. Confusion should not
discourage you. It does not represent an intellectual
failure on your part, only an opportunity to get even
smarter.

104 Introduction to Dynamic Programming

16.1 The Weighted Independent Set Problem

I’m not going to tell you what dynamic programming is just yet.
Instead, we’ll devise from scratch an algorithm for a tricky and
concrete computational problem, which will force us to develop a
number of new ideas. After we’ve solved the problem, we’ll zoom out
and identify the ingredients of our solution that exemplify the general
principles of dynamic programming. Then, armed with a template
for developing dynamic programming algorithms and an example
instantiation, we’ll tackle increasingly challenging applications of the
paradigm.

16.1.1 Problem Definition

To describe the problem, let G = (V,E) be an undirected graph. An
independent set of G is a subset S ✓ V of mutually non-adjacent
vertices: for every v, w 2 S, (v, w) /2 E. Equivalently, an independent
set does not contain both endpoints of any edge of G. For example, if
vertices represent people and edges pairs of people who dislike each
other, the independent sets correspond to groups of people who all
get along. Or, if the vertices represent classes you’re thinking about
taking and there is an edge between each pair of conflicting classes, the
independent sets correspond to feasible course schedules (assuming
you can’t be in two places at once).

Quiz 16.1

How many different independent sets does a complete graph
with 5 vertices have?

How about a cycle with 5 vertices?

16.1 The Weighted Independent Set Problem 105

a) 1 and 2 (respectively)

b) 5 and 10

c) 6 and 11

d) 6 and 16

(See Section 16.1.4 for the solution and discussion.)

We can now state the weighted independent set (WIS) prob-
lem:

Problem: Weighted Independent Set (WIS)

Input: An undirected graph G = (V,E) and a nonnegative
weight wv for each vertex v 2 V .

Output: An independent set S ✓ V of G with the
maximum-possible sum

P
v2S wv of vertex weights.

An optimal solution to the WIS problem is called a maximum-weight

independent set (MWIS). For example, if vertices represent courses,
vertex weights represent units, and edges represent conflicts between
courses, the MWIS corresponds to the feasible course schedule with
the heaviest load (in units).

The WIS problem is challenging even in the super-simple case of
path graphs. For example, an input to the problem might look like
this (with vertices labeled by their weights):

1 4 4 5

This graph has 8 independent sets: the empty set, the four singleton
sets, the first and third vertices, the first and fourth vertices, and the
second and fourth vertices. The last of these has the largest total
weight of 8. The number of independent sets of a path graph grows
exponentially with the number of vertices (do you see why?), so there
is no hope of solving the problem via exhaustive search, except in the
tiniest of instances.

106 Introduction to Dynamic Programming

16.1.2 The Natural Greedy Algorithm Fails

For many computational problems, greedy algorithms are a great place
to start brainstorming. Such algorithms are usually easy to come up
with, and even when one fails to solve the problem (as is often the
case), the manner in which it fails can help you better understand
the intricacies of the problem.

For the WIS problem, perhaps the most natural greedy algorithm
is an analog of Kruskal’s algorithm: Perform a single pass through
the vertices, from best (high-weighted) to worst (lowest-weighted),
adding a vertex to the solution-so-far as long as it doesn’t conflict
with a previously chosen vertex. Given an input graph G = (V,E)
with vertex weights, the pseudocode is:

WIS: A Greedy Approach

S := ;
sort vertices of V by weight
for each v 2 V , in nonincreasing order of weight do

if S [{v} is an independent set of G then
S := S [{v}

return S

Simple enough. But does it work?

Quiz 16.2

What is the total weight of the output of the greedy al-
gorithm when the input graph is the four-vertex path on
page 105? Is this the maximum possible?

a) 6; no

b) 6; yes

c) 8; no

d) 8; yes

(See Section 16.1.4 for the solution and discussion.)

16.1 The Weighted Independent Set Problem 107

Chapters 13–15 spoiled us with a plethora of cherry-picked correct
greedy algorithms, but don’t forget the warning back on page 3:
Greedy algorithms are usually not correct.

16.1.3 A Divide-and-Conquer Approach?

The divide-and-conquer algorithm design paradigm (Section 13.1.1)
is always worth a shot for problems in which there’s a natural way to
break the input into smaller subproblems. For the WIS problem with
an input path graph G = (V,E), the natural high-level approach is
(ignoring the base case):

WIS: A Divide-and-Conquer Approach

G1 := first half of G
G2 := second half of G
S1 := recursively solve the WIS problem on G1

S2 := recursively solve the WIS problem on G2

combine S1, S2 into a solution S for G
return S

The devil is in the details of the combine step. Returning to our
running example:

1 4 4 5

first half second half

the first and second recursive calls return the second and third vertices
as the optimal solutions to their respective subproblems. The union
of their solutions is not an independent set due to the conflict at the
boundary between the two solutions. It’s easy to see how to defuse a
border conflict when the input graph has only four vertices; when it
has hundreds or thousands of vertices, not so much.1

Can we do better than a greedy or divide-and-conquer algorithm?
1The problem can be solved in O(n2) time by a divide-and-conquer algorithm

that makes four recursive calls rather than two, where n is the number of vertices.
(Do you see how to do this?) Our dynamic programming algorithm for the problem
will run in O(n) time.

108 Introduction to Dynamic Programming

16.1.4 Solutions to Quizzes 16.1–16.2

Solution to Quiz 16.1

Correct answer: (c). The complete graph has no non-adjacent
vertices, so every independent set has at most one vertex. Thus, there
are six independent sets: the empty set and the five singleton sets.
The cycle has the same six independent sets that the complete graph
does, plus some independent sets of size 2. (Every subset of three
or more vertices has a pair of adjacent vertices.) It has five size-2
independent sets (as you should verify), for a total of eleven.

Solution to Quiz 16.2

Correct answer: (a). The first iteration of the greedy algorithm
commits to the maximum-weight vertex, which is the third vertex
(with weight 5). This eliminates the adjacent vertices (the second
and fourth ones, both with weight 4) from further consideration. The
algorithm is then stuck selecting the first vertex and it outputs an
independent set with total weight 6. This is not optimal, as the second
and fourth vertices constitute an independent set with total weight 8.

16.2 A Linear-Time Algorithm for WIS in Paths

16.2.1 Optimal Substructure and Recurrence

To quickly solve the WIS problem on path graphs, we’ll need to up
our game. Key to our approach is the following thought experiment:
Suppose someone handed us an optimal solution on a silver platter.
What must it look like? Ideally, this thought experiment would show
that an optimal solution must be constructed in a prescribed way
from optimal solutions to smaller subproblems, thereby narrowing
down the field of candidates to a manageable number.2

More concretely, let G = (V,E) denote the n-vertex path graph
with edges (v1, v2), (v2, v3), . . . , (vn�2, vn�1), (vn�1, vn) and a nonneg-
ative weight wi for each vertex vi 2 V . Assume that n � 2; otherwise,
the answer is obvious. Suppose we magically knew an MWIS S ✓ V

2There’s no circularity in performing a thought experiment about the very
object we’re trying to compute. As we’ll see, such thought experiments can light
up a trail that leads directly to an efficient algorithm.

16.2 A Linear-Time Algorithm for WIS in Paths 109

with total weight W . What can we say about it? Here’s a tautology: S
either contains the final vertex vn, or it doesn’t. Let’s examine these
cases in reverse order.

Case 1: vn /2 S. Suppose the optimal solution S happens to ex-
clude vn. Obtain the (n � 1)-vertex path graph Gn�1 from G by
plucking off the last vertex vn and the last edge (vn�1, vn). Because S
does not include the last vertex of G, it contains only vertices of Gn�1

and can be regarded as an independent set of Gn�1 (still with total
weight W)—and not just any old independent set of Gn�1, but a
maximum-weight such set. For if S⇤ were an independent set of Gn�1

with total weight W ⇤ > W , then S⇤ would also constitute an inde-
pendent set of total weight W ⇤ in the larger graph G. This would
contradict the supposed optimality of S.

In other words, once you know that an MWIS excludes the last
vertex, you know exactly what it looks like: It’s an MWIS of the
smaller graph Gn�1.

Case 2: vn 2 S. Suppose S includes the last vertex vn. As an
independent set, S cannot include two consecutive vertices from the
path, so it excludes the penultimate vertex: vn�1 /2 S. Obtain the
(n� 2)-vertex path graph Gn�2 from G by plucking off the last two
vertices and edges:3

1 4 4 5

Gn-2

v1 v2 v3 v4

included in S excluded from S

Because S contains vn and Gn�2 does not, we can’t regard S as
an independent set of Gn�2. But after removing the last vertex
from S, we can: S � {vn} contains neither vn�1 nor vn and hence
can be regarded as an independent set of the smaller graph Gn�2

(with total weight W � wn). Moreover, S � {vn} must be an MWIS
3When n = 2, we interpret G0 as the empty graph (with no vertices or edges).

The only independent set of G0 is the empty set, which has total weight 0.

110 Introduction to Dynamic Programming

of Gn�2. For suppose S⇤ were an independent set of Gn�2 with total
weight W ⇤ > W � wn. Because Gn�2 (and hence S⇤) excludes the
penultimate vertex vn�1, blithely adding the last vertex vn to S⇤ would
not create any conflicts, and so S⇤ [{vn} would be an independent
set of G with total weight W ⇤ + wn > (W � wn) + wn = W . This
would contradict the supposed optimality of S.

In other words, once you know that an MWIS includes the last ver-
tex, you know exactly what it looks like: It’s an MWIS of the smaller
graph Gn�2, supplemented with the final vertex vn. Summarizing,
two and only two candidates are vying to be an MWIS:

Lemma 16.1 (WIS Optimal Substructure) Let S be an MWIS

of a path graph G with at least 2 vertices. Let Gi denote the subgraph

of G comprising its first i vertices and i� 1 edges. Then, S is either:

(i) an MWIS of Gn�1; or

(ii) an MWIS of Gn�2, supplemented with G’s final vertex vn.

Lemma 16.1 singles out the only two possibilities for an MWIS, so
whichever option has larger total weight is an optimal solution. We
therefore have a recursive formula—a recurrence—for the total weight
of an MWIS:

Corollary 16.2 (WIS Recurrence) With the assumptions and no-

tation of Lemma 16.1, let Wi denote the total weight of an MWIS

of Gi. (When i = 0, interpret Wi as 0.) Then

Wn = max{Wn�1| {z }
Case 1

,Wn�2 + wn| {z }
Case 2

}.

More generally, for every i = 2, 3, . . . , n,

Wi = max{Wi�1,Wi�2 + wi}.

The more general statement in Corollary 16.2 follows by invoking the
first statement, for each i = 2, 3, . . . , n, with Gi playing the role of
the input graph G.

16.2 A Linear-Time Algorithm for WIS in Paths 111

16.2.2 A Naive Recursive Approach

Lemma 16.1 is good news—we’ve narrowed down the field to just two
candidates for the optimal solution! So, why not try both options and
return the better of the two? This leads to the following pseudocode,
in which the graphs Gn�1 and Gn�2 are defined as before:

A Recursive Algorithm for WIS

Input: a path graph G with vertex set {v1, v2, . . . , vn}
and a nonnegative weight wi for each vertex vi.

Output: a maximum-weight independent set of G.

1 if n = 0 then // base case #1
2 return the empty set
3 if n = 1 then // base case #2
4 return {v1}
// recursion when n � 2

5 S1 := recursively compute an MWIS of Gn�1

6 S2 := recursively compute an MWIS of Gn�2

7 return S1 or S2 [{vn}, whichever has higher weight

A straightforward proof by induction shows that this algorithm is
guaranteed to compute a maximum-weight independent set.4 What
about the running time?

Quiz 16.3

What is the asymptotic running time of the recursive WIS al-
gorithm, as a function of the number n of vertices? (Choose
the strongest correct statement.)

a) O(n)

b) O(n log n)

4The proof proceeds by induction on the number n of vertices. The base
cases (n = 0, 1) are clearly correct. For the inductive step (n � 2), the inductive
hypothesis guarantees that S1 and S2 are indeed MWISs of Gn�1 and Gn�2,
respectively. Lemma 16.1 implies that the better of S1 and S2 [{vn} is an MWIS
of G, and this is the output of the algorithm.

112 Introduction to Dynamic Programming

c) O(n2)

d) none of the above

(See Section 16.2.5 for the solution and discussion.)

16.2.3 Recursion with a Cache

Quiz 16.3 shows that our recursive WIS algorithm is no better than
exhaustive search. The next quiz contains the key to unlocking a
radical running time improvement. Think about it carefully before
reading the solution.

Quiz 16.4

Each of the (exponentially many) recursive calls of the
recursive WIS algorithm is responsible for computing an
MWIS of a specified input graph. Ranging over all of the
calls, how many distinct input graphs are ever considered?

a) ⇥(1)5

b) ⇥(n)

c) ⇥(n2)

d) 2⇥(n)

(See Section 16.2.5 for the solution and discussion.)

Quiz 16.4 implies that the exponential running time of our recursive
WIS algorithm stems solely from its absurd redundancy, solving the
same subproblems from scratch over, and over, and over, and over
again. Here’s an idea: The first time we solve a subproblem, why not
save the result in a cache once and for all? Then, if we encounter the

5If big-O notation is analogous to “less than or equal,” then big-theta notion is
analogous to “equal.” Formally, a function f(n) is ⇥(g(n)) if there are constants c1
and c2 such that f(n) is wedged between c1 · g(n) and c2 · g(n) for all sufficiently
large n.

16.2 A Linear-Time Algorithm for WIS in Paths 113

same subproblem later, we can look up its solution in the cache in
constant time.6

Blending caching into the pseudocode on page 111 is easy. The
results of past computations are stored in a globally visible length-
(n+1) array A, with A[i] storing an MWIS of Gi, where Gi comprises
the first i vertices and the first i� 1 edges of the original input graph
(and G0 is the empty graph). In line 6, the algorithm now first checks
whether the array A already contains the relevant solution S1; if
not, it computes S1 recursively as before and caches the result in A.
Similarly, the new version of line 7 either looks up or recursively
computes and caches S2, as needed.

Each of the n + 1 subproblems is now solved from scratch only
once. Caching surely speeds up the algorithm, but by how much?
Properly implemented, the running time drops from exponential to
linear. This dramatic speedup will be easier to see after we reformulate
our top-down recursive algorithm as a bottom-up iterative one—and
the latter is usually what you want to implement in practice, anyway.

16.2.4 An Iterative Bottom-Up Implementation

As part of figuring out how to incorporate caching into our recursive
WIS algorithm, we realized that there are exactly n + 1 relevant
subproblems, corresponding to all possible prefixes of the input graph
(Quiz 16.4).

WIS in Path Graphs: Subproblems

Compute Wi, the total weight of an MWIS of the prefix
graph Gi.

(For each i = 0, 1, 2, . . . , n.)

For now, we focus on computing the total weight of an MWIS for a
subproblem. Section 16.3 shows how to also identify the vertices of
an MWIS.

Now that we know which subproblems are the important ones,
why not cut to the chase and systematically solve them one by one?

6This technique of caching the result of a computation to avoid redoing it
later is sometimes called memoization.

114 Introduction to Dynamic Programming

The solution to a subproblem depends on the solutions to two smaller
subproblems. To ensure that these two solutions are readily available,
it makes sense to work bottom-up, starting with the base cases and
building up to ever-larger subproblems.

WIS

Input: a path graph G with vertex set {v1, v2, . . . , vn}
and a nonnegative weight wi for each vertex vi.

Output: the total weight of a maximum-weight
independent set of G.

A := length-(n+ 1) array // subproblem solutions
A[0] := 0 // base case #1
A[1] := w1 // base case #2
for i = 2 to n do

// use recurrence from Corollary 16.2
A[i] := max{A[i� 1]| {z }

Case 1

, A[i� 2] + wi| {z }
Case 2

}

return A[n] // solution to largest subproblem

The length-(n+ 1) array A is indexed from 0 to n. By the time an
iteration of the main loop must compute the subproblem solution A[i],
the values A[i�1] and A[i�2] of the two relevant smaller subproblems
have already been computed in previous iterations (or in the base
cases). Thus, each loop iteration takes O(1) time, for a blazingly fast
running time of O(n).

For example, for the input graph

3 2 6 1 5 4

you should check that the final array values are:

3 3 4 9 9 14 0

0 1 2 3 4 5 6

prefix length i

At the conclusion of the WIS algorithm, each array entry A[i]
stores the total weight of an MWIS of the graph Gi that comprises

16.2 A Linear-Time Algorithm for WIS in Paths 115

the first i vertices and i � 1 edges of the input graph. This follows
from an inductive argument similar to the one in footnote 4. The base
cases A[0] and A[1] are clearly correct. When computing A[i] with
i � 2, by induction, the values A[i� 1] and A[i� 2] are indeed the
total weights of MWISs of Gi�1 and Gi�2, respectively. Corollary 16.2
then implies that A[i] is computed correctly, as well. In the example
above, the total weight of an MWIS in the original input graph is the
value in the final array entry (14), corresponding to the independent
set consisting of the first, fourth, and sixth vertices.

Theorem 16.3 (Properties of WIS) For every path graph and non-

negative vertex weights, the WIS algorithm runs in linear time and

returns the total weight of a maximum-weight independent set.

16.2.5 Solutions to Quizzes 16.3–16.4

Solution to Quiz 16.3

Correct answer: (d). Superficially, the recursion pattern looks
similar to that of O(n log n)-time divide-and-conquer algorithms like
MergeSort, with two recursive calls followed by an easy combine step.
But there’s a big difference: The MergeSort algorithm throws away
half the input before recursing, while our recursive WIS algorithm
throws away only one or two vertices (perhaps out of thousands
or millions). Both algorithms have recursion trees with branching
factor 2.7 The former has roughly log2 n levels and, hence, only a
linear number of leaves. The latter has no leaves until levels n/2 and
later, which implies that it has at least 2n/2 leaves. We conclude
that the running time of the recursive algorithm grows exponentially
with n.

Solution to Quiz 16.4

Correct answer: (b). How does the input graph change upon
passage to a recursive call? Either one or two vertices and edges are

7Every recursive algorithm can be associated with a recursion tree, in which
the nodes of the tree correspond to all the algorithm’s recursive calls. The root of
the tree corresponds to the initial call to the algorithm (with the original input),
with one child at the next level for each of its recursive calls. The leaves at the
bottom of the tree correspond to the recursive calls that trigger a base case and
make no further recursive calls.

116 Introduction to Dynamic Programming

plucked off the end of the graph. Thus, an invariant throughout the
recursion is that every recursive call is given some prefix Gi as its
input graph, where Gi denotes the first i vertices and i� 1 edges of
the original input graph (and G0 denotes the empty graph):

G2

v1 v2 v3 v4

G4

G1
G3

There are only n+1 such graphs (G0, G1, G2, . . . , Gn), where n is the
number of vertices in the input graph. Therefore, only n+ 1 distinct
subproblems ever get solved across the exponential number of different
recursive calls.

16.3 A Reconstruction Algorithm

The WIS algorithm in Section 16.2.4 computes only the weight pos-
sessed by an MWIS of a path graph, not an MWIS itself. A simple
hack is to modify the WIS algorithm so that each array entry A[i]
records both the total weight of an MWIS of the ith subproblem Gi

and the vertices of an MWIS of Gi that realizes this value.
A better approach, which saves both time and space, is to use

a postprocessing step to reconstruct an MWIS from the tracks in
the mud left by the WIS algorithm in its subproblem array A. For
starters, how do we know whether the last vertex vn of the input
graph G belongs to an MWIS? The key is again Lemma 16.1, which
states that two and only two candidates are vying to be an MWIS
of G: an MWIS of the graph Gn�1, and an MWIS of the graph Gn�2,
supplemented with vn. Which one is it? The one with larger total
weight. How do we know which one that is? Just look at the clues
left in the array A! The final values of A[n� 1] and A[n� 2] record
the total weights of MWISs of Gn�1 and Gn�2, respectively. So:

1. If A[n� 1] � A[n� 2]+wn, an MWIS of Gn�1 is also an MWIS
of Gn.

16.3 A Reconstruction Algorithm 117

2. If A[n� 2] + wn � A[n� 1], supplementing an MWIS of Gn�2

with vn yields an MWIS of Gn.

In the first case, we know to exclude vn from our solution and can
continue the reconstruction process from vn�1. In the second case, we
know to include vn in our solution, which forces us to exclude vn�1.
The reconstruction process then resumes from vn�2.8

WIS Reconstruction

Input: the array A computed by the WIS algorithm for
a path graph G with vertex set {v1, v2, . . . , vn} and a
nonnegative weight wi for each vertex vi.

Output: a maximum-weight independent set of G.

S := ; // vertices in an MWIS
i := n
while i � 2 do

if A[i� 1] � A[i� 2] + wi then // Case 1 wins
i := i� 1 // exclude vi

else // Case 2 wins
S := S [{vi} // include vi
i := i� 2 // exclude vi�1

if i = 1 then // base case #2
S := S [{v1}

return S

WIS Reconstruction does a single backward pass over the array A
and spends O(1) time per loop iteration, so it runs in O(n) time. The
inductive proof of correctness is similar to that for the WIS algorithm
(Theorem 16.3).9

For example, for the input graph
8If there is a tie (A[n� 2] + wn = A[n� 1]), both options lead to an optimal

solution.
9The keen reader might complain that it’s wasteful to recompute comparisons

of the form A[i � 1] vs. A[i � 2] + wi, which have already been made by the
WIS algorithm. If that algorithm is modified to cache the comparison results
(in effect, remembering which case of the recurrence was used to fill in each
array entry), these results can be looked up rather than recomputed in the WIS

Reconstruction algorithm. This idea will be particularly important for some of
the harder problems studied in Chapters 17 and 18.

118 Introduction to Dynamic Programming

3 2 6 1 5 4

the WIS Reconstruction algorithm includes v6 (forcing v5’s exclu-
sion), includes v4 (forcing v3’s exclusion), excludes v2, and includes v1:

3 3 4 9 9 14

include v6
exclude v5

include v4
exclude v3

exclude v2

0

include v1

0 1 2 3 4 5 6

prefix length i

16.4 The Principles of Dynamic Programming

16.4.1 A Three-Step Recipe

Guess what? With WIS, we just designed our first dynamic program-
ming algorithm! The general dynamic programming paradigm can
be summarized by a three-step recipe. It is best understood through
examples; we have only one so far, so I encourage you to revisit this
section after we finish a few more case studies.

The Dynamic Programming Paradigm

1. Identify a relatively small collection of subproblems.

2. Show how to quickly and correctly solve “larger” sub-
problems given the solutions to “smaller” ones.

3. Show how to quickly and correctly infer the final solu-
tion from the solutions to all of the subproblems.

After these three steps are implemented, the corresponding dynamic
programming algorithm writes itself: Systematically solve all the
subproblems one by one, working from “smallest” to “largest,” and
extract the final solution from those of the subproblems.

In our solution to the WIS problem in n-vertex path graphs,
we implemented the first step by identifying a collection of n + 1
subproblems. For i = 0, 1, 2, . . . , n, the ith subproblem is to compute
the total weight of an MWIS of the graph Gi consisting of the first i

16.4 The Principles of Dynamic Programming 119

vertices and i � 1 edges of the input graph (where G0 denotes the
empty graph). There is an obvious way to order the subproblems from
“smallest” to “largest,” namely G0, G1, G2, . . . , Gn. The recurrence
in Corollary 16.2 is a formula that implements the second step by
showing how to compute the solution to the ith subproblem in O(1)
time from the solutions to the (i� 2)th and (i� 1)th subproblems.
The third step is easy: Return the solution to the largest subproblem,
which is the same as the original problem.

16.4.2 Desirable Subproblem Properties

The key that unlocks the potential of dynamic programming for solving
a problem is the identification of the right collection of subproblems.
What properties do we want them to satisfy? Assuming we perform
at least a constant amount of work solving each subproblem, the
number of subproblems is a lower bound on the running time of our
algorithm. Thus, we’d like the number of subproblems to be as low as
possible—our WIS solution used only a linear number of subproblems,
which is usually the best-case scenario. Similarly, the time required to
solve a subproblem (given solutions to smaller subproblems) and to
infer the final solution will factor into the algorithm’s overall running
time.

For example, suppose an algorithm solves at most f(n) different
subproblems (working systematically from “smallest” to “largest”),
using at most g(n) time for each, and performs at most h(n) postpro-
cessing work to extract the final solution (where n denotes the input
size). The algorithm’s running time is then at most

f(n)|{z}
subproblems

⇥ g(n)|{z}
time per subproblem

(given previous solutions)

+ h(n)|{z}
postprocessing

. (16.1)

The three steps of the recipe call for keeping f(n), g(n), and h(n),
respectively, as small as possible. In the basic WIS algorithm, without
the WIS Reconstruction postprocessing step, we have f(n) = O(n),
g(n) = O(1), and h(n) = O(1), for an overall running time of O(n).
If we include the reconstruction step, the h(n) term jumps to O(n),
but the overall running time O(n) ⇥ O(1) + O(n) = O(n) remains
linear.

120 Introduction to Dynamic Programming

16.4.3 A Repeatable Thought Process

When devising your own dynamic programming algorithms, the heart
of the matter is figuring out the magical collection of subproblems.
After that, everything else falls into place in a fairly formulaic way.
But how would you ever come up with them? If you have a black belt
in dynamic programming, you might be able to just stare at a problem
and intuitively know what the subproblems should be. White belts,
however, still have a lot of training to do. In our case studies, rather
than plucking subproblems from the sky, we’ll carry out a thought
process that naturally leads to a collection of subproblems (as we did
for the WIS problem). This process is repeatable and you can mimic
it when you apply the dynamic programming paradigm to problems
that arise in your own projects.

The main idea is to reason about the structure of an optimal
solution, identifying the different ways it might be constructed from
optimal solutions to smaller subproblems. This thought experiment
can lead to both the identification of the relevant subproblems and a
recurrence (analogous to Corollary 16.2) that expresses the solution
of a subproblem as a function of the solutions of smaller subproblems.
A dynamic programming algorithm can then fill in an array with
subproblem solutions, proceeding from smaller to larger subproblems
and using the recurrence to compute each array entry.

16.4.4 Dynamic Programming vs. Divide-and-Conquer

Readers familiar with the divide-and-conquer algorithm design
paradigm (Section 13.1.1) might recognize some similarities to dynamic
programming, especially the latter’s top-down recursive formulation
(Sections 16.2.2–16.2.3). Both paradigms recursively solve smaller
subproblems and combine the results into a solution to the original
problem. Here are six differences between typical uses of the two
paradigms:

1. Each recursive call of a typical divide-and-conquer algorithm
commits to a single way of dividing the input into smaller
subproblems.10 Each recursive call of a dynamic programming

10For example, in the MergeSort algorithm, every recursive call divides its
input array into its left and right halves. The QuickSort algorithm invokes a

16.4 The Principles of Dynamic Programming 121

algorithm keeps its options open, considering multiple ways of
defining smaller subproblems and choosing the best of them.11

2. Because each recursive call of a dynamic programming algorithm
tries out multiple choices of smaller subproblems, subproblems
generally recur across different recursive calls; caching sub-
problem solutions is then a no-brainer optimization. In most
divide-and-conquer algorithms, all the subproblems are distinct
and there’s no point in caching their solutions.12

3. Most of the canonical applications of the divide-and-conquer
paradigm replace a straightforward polynomial-time algorithm
for a task with a faster divide-and-conquer version.13 The
killer applications of dynamic programming are polynomial-time
algorithms for optimization problems for which straightforward
solutions (like exhaustive search) require an exponential amount
of time.

4. In a divide-and-conquer algorithm, subproblems are chosen
primarily to optimize the running time; correctness often takes
care of itself.14 In dynamic programming, subproblems are
usually chosen with correctness in mind, come what may with
the running time.15

5. Relatedly, a divide-and-conquer algorithm generally recurses on
subproblems with size at most a constant fraction (like 50%)
of the input. Dynamic programming has no qualms about

partitioning subroutine to choose how to split the input array in two, and then
commits to this division for the remainder of its execution.

11For example, in the WIS algorithm, each recursive call chooses between a
subproblem with one fewer vertex and one with two fewer vertices.

12For example, in the MergeSort and QuickSort algorithms, every subproblem
corresponds to a different subarray of the input array.

13For example, the MergeSort algorithm brings the running time of sorting a
length-n array down from the straightforward bound of O(n2) to O(n log n). Other
examples include Karatsuba’s algorithm (which improves the running time of
multiplying two n-digit numbers from O(n2) to O(n1.59)) and Strassen’s algorithm
(for multiplying two n⇥ n matrices in O(n2.81) rather than O(n3) time).

14For example, the QuickSort algorithm always correctly sorts the input array,
no matter how good or bad its chosen pivot elements are.

15Our dynamic programming algorithm for the knapsack problem in Section 16.5
is a good example.

122 Introduction to Dynamic Programming

recursing on subproblems that are barely smaller than the input
(like in the WIS algorithm), if necessary for correctness.

6. The divide-and-conquer paradigm can be viewed as a special case
of dynamic programming, in which each recursive call chooses
a fixed collection of subproblems to solve recursively. As the
more sophisticated paradigm, dynamic programming applies to
a wider range of problems than divide-and-conquer, but it is
also more technically demanding to apply (at least until you’ve
had sufficient practice).

Confronted with a new problem, which paradigm should you use? If
you see a divide-and-conquer solution, by all means use it. If all your
divide-and-conquer attempts fail—and especially if they fail because
the combine step always seems to require redoing a lot of computation
from scratch—it’s time to try dynamic programming.

16.4.5 Why “Dynamic Programming?”

You might be wondering where the weird moniker “dynamic program-
ming” came from; the answer is no clearer now that we know how the
paradigm works than it was before.

The first point of confusion is the anachronistic use of the word
“programming.” In modern times it refers to coding, but back in the
1950s “programming” usually meant “planning.” (For example, it has
this meaning in the phrase “television programming.”) What about
“dynamic?” For the full story, I refer you to the father of dynamic
programming himself, Richard E. Bellman, writing about his time
working at the RAND Corporation:

The 1950’s were not good years for mathematical research.
We had a very interesting gentleman in Washington named
Wilson. He was Secretary of Defense, and he actually had
a pathological fear and hatred of the word, research. I’m
not using the term lightly; I’m using it precisely. His face
with suffuse, he would turn red, and he would get violent
if people used the term, research, in his presence. You can
imagine how he felt, then, about the term, mathematical.
The RAND Corporation was employed by the Air Force,
and the Air Force had Wilson as its boss, essentially.

16.5 The Knapsack Problem 123

Hence, I felt I had to do something to shield Wilson and the
Air Force from the fact that I was really doing mathematics
inside the RAND Corporation. What title, what name,
could I choose? In the first place I was interested in
planning, in decision making, in thinking. But planning,
is not a good word for various reasons. I decided therefore
to use the word, “programming.” . . . [“Dynamic”] has a
very interesting property as an adjective, and that is it’s
impossible to use the word, dynamic, in the pejorative
sense. Try thinking of some combination that will possibly
give it a pejorative meaning. It’s impossible. Thus, I
thought dynamic programming was a good name. It was
something not even a Congressman could object to. So I
used it as an umbrella for my activities.16

16.5 The Knapsack Problem

Our second case study concerns the well-known knapsack problem.
Following the same thought process we used to develop the WIS algo-
rithm in Section 16.2, we’ll arrive at the famous dynamic programming
solution to the problem.

16.5.1 Problem Definition

An instance of the knapsack problem is specified by 2n+ 1 positive
integers, where n is the number of “items” (which are labeled arbitrarily
from 1 to n): a value vi and a size si for each item i, and a knapsack
capacity C.17 The responsibility of an algorithm is to select a subset
of the items. The total value of the items should be as large as possible
while still fitting in the knapsack, meaning their total size should be
at most C.

16Richard E. Bellman, Eye of the Hurricane: An Autobiography, World Scien-
tific, 1984, page 159.

17It’s actually not important that the item values are integers (as opposed to
arbitrary positive real numbers). It is important that the item sizes are integers,
as we’ll see in due time.

124 Introduction to Dynamic Programming

Problem: Knapsack

Input: Item values v1, v2, . . . , vn, item sizes s1, s2, . . . , sn,
and a knapsack capacity C. (All positive integers.)

Output: A subset S ✓ {1, 2, . . . , n} of items with the
maximum-possible sum

P
i2S vi of values, subject to having

total size
P

i2S si at most C.

Quiz 16.5

Consider an instance of the knapsack problem with knapsack
capacity C = 6 and four items:

Item Value Size
1 3 4
2 2 3
3 4 2
4 4 3

What is the total value of an optimal solution?

a) 6

b) 7

c) 8

d) 10

(See Section 16.5.7 for the solution and discussion.)

I could tell you a cheesy story about a knapsack-wielding burglar
who breaks into a house and wants to make off quickly with the best
pile of loot possible, but this would do a disservice to the problem,
which is actually quite fundamental. Whenever you have a scarce
resource that you want to use in the smartest way possible, you’re talk-
ing about a knapsack problem. On which goods and services should
you spend your paycheck to get the most value? Given an operating
budget and a set of job candidates with differing productivities and
requested salaries, whom should you hire? These are examples of
knapsack problems.

16.5 The Knapsack Problem 125

16.5.2 Optimal Substructure and Recurrence

To apply the dynamic programming paradigm to the knapsack prob-
lem, we must figure out the right collection of subproblems. As
with the WIS problem, we’ll arrive at them by reasoning about the
structure of optimal solutions and identifying the different ways they
can be constructed from optimal solutions to smaller subproblems.
Another deliverable of this exercise will be a recurrence for quickly
computing the solution to a subproblem from those of two smaller
subproblems.

Consider an instance of the knapsack problem with item values
v1, v2, . . . , vn, item sizes s1, s2, . . . , sn, and knapsack capacity C, and
suppose someone handed us on a silver platter an optimal solution S ✓
{1, 2, . . . , n} with total value V =

P
i2S vi. What must it look like?

As with the WIS problem, we start with a tautology: S either contains
the last item (item n) or it doesn’t.18

Case 1: n /2 S. Because the optimal solution S excludes the last
item, it can be regarded as a feasible solution (still with total value V
and total size at most C) to the smaller problem consisting of only
the first n� 1 items (and knapsack capacity C). Moreover, S must
be an optimal solution to the smaller subproblem: If there were a
solution S⇤ ✓ {1, 2, . . . , n � 1} with total size at most C and total
value greater than V , it would also constitute such a solution in the
original instance. This would contradict the supposed optimality of S.

Case 2: n 2 S. The trickier case is when the optimal solution S
makes use of the last item n. This case can occur only when sn C.
We can’t regard S as a feasible solution to a smaller problem with only
the first n� 1 items, but we can after removing item n. Is S � {n}
an optimal solution to a smaller subproblem?

18The WIS problem on path graphs is inherently sequential, with the vertices
ordered along the path. This naturally led to subproblems that correspond to
prefixes of the input. The items in the knapsack problem are not inherently
ordered, but to identify the right collection of subproblems, it’s helpful to mimic
our previous approach and pretend they’re ordered in some arbitrary way. A
“prefix” of the items then corresponds to the first i items in our arbitrary ordering
(for some i 2 {0, 1, 2, . . . , n}). Many other dynamic programming algorithms use
this same trick.

126 Introduction to Dynamic Programming

Quiz 16.6

Which of the following statements hold for the set S � {n}?
(Choose all that apply.)

a) It is an optimal solution to the subproblem consisting
of the first n� 1 items and knapsack capacity C.

b) It is an optimal solution to the subproblem consisting
of the first n� 1 items and knapsack capacity C � vn.

c) It is an optimal solution to the subproblem consisting
of the first n� 1 items and knapsack capacity C � sn.

d) It might not be feasible if the knapsack capacity is
only C � sn.

(See Section 16.5.7 for the solution and discussion.)

This case analysis shows that two and only two candidates are
vying to be an optimal knapsack solution:

Lemma 16.4 (Knapsack Optimal Substructure) Let S be an

optimal solution to a knapsack problem with n � 1 items, item val-

ues v1, v2, . . . , vn, item sizes s1, s2, . . . , sn, and knapsack capacity C.

Then, S is either:

(i) an optimal solution for the first n � 1 items with knapsack

capacity C; or

(ii) an optimal solution for the first n � 1 items with knapsack

capacity C � sn, supplemented with the last item n.

The solution in (i) is always an option for the optimal solution.
The solution in (ii) is an option if and only if sn C; in this case, sn
units of capacity are effectively reserved in advance for item n.19 The
option with the larger total value is an optimal solution, leading to
the following recurrence:

19This is analogous to, in the WIS problem on path graphs, excluding the
penultimate vertex of the graph to reserve space for the final vertex.

16.5 The Knapsack Problem 127

Corollary 16.5 (Knapsack Recurrence) With the assumptions

and notation of Lemma 16.4, let Vi,c denote the maximum total value

of a subset of the first i items with total size at most c. (When i = 0,
interpret Vi,c as 0.) For every i = 1, 2, . . . , n and c = 0, 1, 2, . . . , C,

Vi,c =

8
>>>><

>>>>:

Vi�1,c| {z }
Case 1

if si > c

max{Vi�1,c| {z }
Case 1

, Vi�1,c�si + vi| {z }
Case 2

} if si c.

Because both c and items’ sizes are integers, the residual capacity c�si
in the second case is also an integer.

16.5.3 The Subproblems

The next step is to define the collection of relevant subproblems and
solve them systematically using the recurrence identified in Corol-
lary 16.5. For now, we focus on computing the total value of an
optimal solution for each subproblem. As in the WIS problem on path
graphs, we’ll be able to reconstruct the items in an optimal solution
to the original problem from this information.

Back in the WIS problem on path graphs, we used only one param-
eter i to index subproblems, where i was the length of the prefix of the
input graph. For the knapsack problem, we can see from Lemma 16.4
and Corollary 16.5 that subproblems should be parameterized by two

indices: the length i of the prefix of available items and the available
knapsack capacity c.20 Ranging over all relevant values of the two
parameters, we obtain our subproblems:

Knapsack: Subproblems

Compute Vi,c, the total value of an optimal knapsack solution
with the first i items and knapsack capacity c.

(For each i = 0, 1, 2, . . . , n and c = 0, 1, 2, . . . , C.)

20In the WIS problem on path graphs, there’s only one dimension in which a
subproblem can get smaller (by having fewer vertices). In the knapsack problem,
there are two (by having fewer items, or less knapsack capacity).

128 Introduction to Dynamic Programming

The largest subproblem (with i = n and c = C) is exactly the same
as the original problem. Because all item sizes and the knapsack
capacity C are positive integers, and because capacity is always
reduced by the size of some item (to reserve space for it), the only
residual capacities that can ever come up are the integers between 0
and C.21

16.5.4 A Dynamic Programming Algorithm

Given the subproblems and recurrence, a dynamic programming algo-
rithm for the knapsack problem practically writes itself.

Knapsack

Input: item values v1, . . . , vn, item sizes s1, . . . , sn, and
a knapsack capacity C (all positive integers).

Output: the maximum total value of a subset
S ✓ {1, 2, . . . , n} with

P
i2S si C.

// subproblem solutions (indexed from 0)
A := (n+ 1)⇥ (C + 1) two-dimensional array
// base case (i = 0)
for c = 0 to C do

A[0][c] = 0

// systematically solve all subproblems
for i = 1 to n do

for c = 0 to C do
// use recurrence from Corollary 16.5
if si > c then

A[i][c] := A[i� 1][c]
else

A[i][c] :=
max{A[i� 1][c]| {z }

Case 1

, A[i� 1][c� si] + vi| {z }
Case 2

}

return A[n][C] // solution to largest subproblem

21Or, thinking recursively, each recursive call removes the last item and an
integer number of units of capacity. The only subproblems that can arise in this
way involve some prefix of the items and some integer residual capacity.

16.5 The Knapsack Problem 129

The array A is now two-dimensional to reflect the two indices i and c
used to parameterize the subproblems. By the time an iteration of
the double for loop must compute the subproblem solution A[i][c],
the values A[i� 1][c] and A[i� 1][c� si] of the two relevant smaller
subproblems have already been computed in the previous iteration
of the outer loop (or in the base case). We conclude that the algo-
rithm spends O(1) time solving each of the (n+ 1)(C + 1) = O(nC)
subproblems, for an overall running time of O(nC).22,23

Finally, as with WIS, the correctness of Knapsack follows by in-
duction on the number of items, with the recurrence in Corollary 16.5
used to justify the inductive step.

Theorem 16.6 (Properties of Knapsack) For every instance of

the knapsack problem, the Knapsack algorithm returns the total value

of an optimal solution and runs in O(nC) time, where n is the number

of items and C is the knapsack capacity.

16.5.5 Example

Recall the four-item example from Quiz 16.5, with C = 6:

Item Value Size
1 3 4
2 2 3
3 4 2
4 4 3

Because n = 4 and C = 6, the array A in the Knapsack algorithm
can be visualized as a table with 5 columns (corresponding to i =
0, 1, . . . , 4) and 7 rows (corresponding to c = 0, 1, . . . , 6). The final
array values are:

22In the notation of (16.1), f(n) = O(nC), g(n) = O(1), and h(n) = O(1).
23The running time bound of O(nC) is impressive only if C is small, for

example, if C = O(n) or ideally even smaller. In Part 4 we’ll see the reason for the
not-so-blazingly fast running time—there is a precise sense in which the knapsack
problem is a difficult problem.

130 Introduction to Dynamic Programming

3 3 7 8 0

3 3 6 8 0

3 3 4 4 0

0 2 4 4 0

0 0 4 4 0

0 0 0 0 0

0 0 0 0 0

0 1 2 3 4

0

1

2

3

4

5

6

prefix length i

re
si

du
al

 c
ap

ac
ity

 c

Knapsack computes these entries column by column (working left to
right), and within a column from bottom to top. To fill in an entry
of the ith column, the algorithm compares the entry immediately to
the left (corresponding to case 1) to vi plus the entry one column to
the left and si rows down (case 2). For example, for A[2][5] the better
option is to skip the second item and inherit the “3” immediately to
the left, while for A[3][5] the better option is to include the third item
and achieve 4 (for v3) plus the 2 in the entry A[2][3].

16.5.6 Reconstruction

The Knapsack algorithm computes only the total value of an optimal
solution, not the optimal solution itself. As with the WIS algorithm,
we can reconstruct an optimal solution by tracing back through the
filled-in array A. Starting from the largest subproblem in the upper-
right corner, the reconstruction algorithm checks which case of the
recurrence was used to compute A[n][C]. If it was case 1, the algorithm
omits item n and resumes reconstruction from the entry A[n� 1][C].
If it was case 2, the algorithm includes item n in its solution and
resumes reconstruction from the entry A[n� 1][C � sn].

16.5 The Knapsack Problem 131

Knapsack Reconstruction

Input: the array A computed by the Knapsack
algorithm with item values v1, v2, . . . , vn, item sizes
s1, s2, . . . , sn, and knapsack capacity C.

Output: an optimal knapsack solution.

S := ; // items in an optimal solution
c := C // remaining capacity
for i = n downto 1 do

if si c and A[i� 1][c� si] + vi � A[i� 1][c] then
S := S [{i} // Case 2 wins, include i
c := c� si // reserve space for it

// else skip i, capacity stays the same
return S

The Knapsack Reconstruction postprocessing step runs in O(n)
time (with O(1) work per iteration of the main loop), which is much
faster than the O(nC) time used to fill in the array in the Knapsack
algorithm.24

For instance, tracing back through the array from the example on
page 130 yields the optimal solution {3, 4}:

3 3 7 8 0

3 3 6 8 0

3 3 4 4 0

0 2 4 4 0

0 0 4 4 0

0 0 0 0 0

0 0 0 0 0

0 1 2 3 4

0

1

2

3

4

5

6

include include exclude exclude

prefix length i

re
si

du
al

 c
ap

ac
ity

 c

24In the notation of (16.1), postprocessing with the Knapsack Reconstruction

algorithm increases the h(n) term to O(n). The overall running time O(nC)⇥
O(1) +O(n) = O(nC) remains the same.

132 Introduction to Dynamic Programming

16.5.7 Solutions to Quizzes 16.5–16.6

Solution to Quiz 16.5

Correct answer: (c). Because the knapsack capacity is 6, there is
no room to choose more than two items. The most valuable pair of
items is the third and fourth ones (with total value 8), and these fit
in the knapsack (with total size 5).

Solution to Quiz 16.6

Correct answer: (c). The most obviously false statement is (b),
which doesn’t even typecheck (C is in units of size, vn in units of
value). For example, vn could be bigger than C, in which case C � vn
is negative and meaningless. For (d), because S is feasible for the
original problem, its total size is at most C; after n is removed from S,
the total size drops to at most C � sn and, hence, S � {n} is feasible
for the reduced capacity. Answer (a) is a natural guess but is also
incorrect.25

In (c), we are effectively reserving sn units of capacity for item n’s
inclusion, which leaves a residual capacity of C � sn. S � {n} is a
feasible solution to the smaller subproblem (with knapsack capac-
ity C � sn) with total value V � vn. If there were a better solution
S⇤ ✓ {1, 2, . . . , n � 1}, with total value V ⇤ > V � vn and total size
at most C � sn, then S⇤ [{n} would have total size at most C and
total value V ⇤ + vn > (V � vn) + vn = V . This would contradict the
supposed optimality of S for the original problem.

The Upshot

P Dynamic programming follows a three-step
recipe: (i) identify a relatively small collec-
tion of subproblems; (ii) show how to quickly
solve “larger” subproblems given the solutions
to “smaller” ones; and (iii) show how to quickly
infer the final solution from the solutions to all

25For example, suppose C = 2 and consider two items, with v1 = s1 = 1 and
v2 = s2 = 2. The optimal solution S is {2}. S � {2} is the empty set, but the
only optimal solution to the subproblem consisting of the first item and knapsack
capacity 2 is {1}.

Problems 133

the subproblems.

P A dynamic programming algorithm that solves
at most f(n) different subproblems, using at
most g(n) time for each, and performs at
most h(n) postprocessing work to extract the
final solution runs in O(f(n) ·g(n)+h(n)) time,
where n denotes the input size.

P The right collection of subproblems and a re-
currence for systematically solving them can be
identified by reasoning about the structure of
an optimal solution and the different ways it
might be constructed from optimal solutions to
smaller subproblems.

P Typical dynamic programming algorithms fill in
an array with the values of subproblems’ solu-
tions, and then trace back through the filled-in
array to reconstruct the solution itself.

P An independent set of an undirected graph is a
subset of mutually non-adjacent vertices.

P In n-vertex path graphs, a maximum-weight
independent set can be computed using dynamic
programming in O(n) time.

P In the knapsack problem, given n items with
values and sizes and a knapsack capacity C
(all positive integers), the goal is to select the
maximum-value subset of items with total size
at most C.

P The knapsack problem can be solved using dy-
namic programming in O(nC) time.

Test Your Understanding

Problem 16.1 (S) Consider the input graph

134 Introduction to Dynamic Programming

3 1 2 7 6 4 5

where vertices are labeled with their weights. What are the final array
entries of the WIS algorithm from Section 16.2, and which vertices
belong to the MWIS?

Problem 16.2 (H) Which of the following statements hold? (Choose
all that apply.)

a) The WIS and WIS Reconstruction algorithms of Sections 16.2
and 16.3 always return a solution that includes a maximum-
weight vertex.

b) When vertices’ weights are distinct, the WIS and WIS
Reconstruction algorithms never return a solution that in-
cludes a minimum-weight vertex.

c) If a vertex v does not belong to an MWIS of the prefix Gi

comprising the first i vertices and i� 1 edges of the input graph,
it does not belong to any MWIS of Gi+1, Gi+2, . . . , Gn either.

d) If a vertex v does not belong to an MWIS of Gi�1 or Gi, it does
not belong to any MWIS of Gi+1, Gi+2, . . . , Gn either.

Problem 16.3 (H) This problem outlines an approach to solving
the WIS problem in graphs more complicated than paths. Consider
an arbitrary undirected graph G = (V,E) with nonnegative vertex
weights, and an arbitrary vertex v 2 V with weight wv. Obtain H
from G by removing v and its incident edges from G. Obtain K
from H by removing v’s neighbors and their incident edges:

v

G H K

Let WG, WH , and WK denote the total weight of an MWIS in G, H ,
and K, respectively, and consider the formula

WG = max{WH ,WK + wv}.

Which of the following statements are true? (Choose all that apply.)

Problems 135

a) The formula is not always correct in path graphs.

b) The formula is always correct in path graphs but not always
correct in trees.

c) The formula is always correct in trees but not always correct in
arbitrary graphs.

d) The formula is always correct in arbitrary graphs.

e) The formula leads to a linear-time algorithm for the WIS prob-
lem in trees.

f) The formula leads to a linear-time algorithm for the WIS prob-
lem in arbitrary graphs.

Problem 16.4 (S) Consider an instance of the knapsack problem
with five items:

Item Value Size
1 1 1
2 2 3
3 3 2
4 4 5
5 5 4

and knapsack capacity C = 9. What are the final array entries of the
Knapsack algorithm from Section 16.5, and which items belong to the
optimal solution?

Challenge Problems

Problem 16.5 (H) This problem describes four generalizations of
the knapsack problem. In each, the input consists of item values
v1, v2, . . . , vn, item sizes s1, s2, . . . , sn, and additional problem-specific
data (all positive integers). Which of these generalizations can be
solved by dynamic programming in time polynomial in the number n
of items and the largest number M that appears in the input? (Choose
all that apply.)

a) Given a positive integer capacity C, compute a subset of items
with the maximum-possible total value subject to having total
size exactly C. (If no such set exists, the algorithm should
correctly detect that fact.)

136 Introduction to Dynamic Programming

b) Given a positive integer capacity C and an item budget k 2
{1, 2, . . . , n}, compute a subset of items with the maximum-
possible total value subject to having total size at most C and

at most k items.

c) Given capacities C1 and C2 of two knapsacks, compute dis-
joint subsets S1, S2 of items with the maximum-possible total
value

P
i2S1

vi +
P

i2S2
vi, subject to the knapsack capacities:P

i2S1
si C1 and

P
i2S2

si C2.

d) Given capacities C1, C2, . . . , Cm of m knapsacks, where m could
be as large as n, compute disjoint subsets S1, S2, . . . , Sm of items
with the maximum-possible total value

P
i2S1

vi+
P

i2S2
vi+· · ·+P

i2Sm
vi, subject to the knapsack capacities:

P
i2S1

si C1,P
i2S2

si C2, . . . , and
P

i2Sm
si Cm.

Programming Problems

Problem 16.6 Implement in your favorite programming lan-
guage the WIS and WIS Reconstruction algorithms. (See www.
algorithmsilluminated.org for test cases and challenge data sets.)

Problem 16.7 Implement in your favorite programming language
the Knapsack and Knapsack Reconstruction algorithms. (See www.
algorithmsilluminated.org for test cases and challenge data sets.)

Chapter 17

Advanced Dynamic Programming

This chapter continues the dynamic programming boot camp with
two more case studies: the sequence alignment problem (Section 17.1)
and the problem of computing a binary search tree with the minimum-
possible average search time (Section 17.2). In both cases, the struc-
ture of optimal solutions is more complex than in last chapter’s case
studies, with a subproblem solution depending on those from more
than two smaller subproblems. After finishing this chapter, ask your-
self: Could you have ever solved either problem without first studying
dynamic programming?

17.1 Sequence Alignment

17.1.1 Motivation

If you take a course in computational genomics, the first few lectures
will likely be devoted to the sequence alignment problem.1 In this
problem, the input consists of two strings that represent portions of
one or more genomes, over the alphabet—no prizes for guessing!—
{A,C,G, T}. The strings need not have the same length. For example,
the input might be the strings AGGGCT and AGGCA. Informally,
the problem is to determine how similar the two strings are; we’ll
make this precise in the next section.

Why would you want to solve this problem? Here are two reasons
among many. First, suppose you’re trying to figure out the function of
a region of a complex genome, like the human genome. One approach
is to look for a similar region in a better-understood genome, like
the mouse genome, and conjecture that the similar regions play the
same or similar roles. A totally different application of the problem is

1The presentation in this section draws inspiration from Section 6.6 of Algo-

rithm Design, by Jon Kleinberg and Éva Tardos (Pearson, 2005).

138 Advanced Dynamic Programming

to make inferences about a phylogenetic tree—which species evolved
from which, and when. For example, you might be wondering if
species B evolved from species A and then species C from B, or if B
and C evolved independently from A. Genome similarity can be used
as a proxy for proximity in a phylogenetic tree.

17.1.2 Problem Definition

Our example strings AGGGCT and AGGCA are obviously not iden-
tical, but they still intuitively feel more similar than not. How can we
formalize this intuition? One idea is to notice that these two strings
can be “nicely aligned”:

A G G G C T
A G G � C A

where the “�” indicates a gap inserted between two letters of the
second string, which seems to be missing a ‘G’. The two strings agree
in four of the six columns; the only flaws in the alignment are the gap
and the mismatch between the A and T in the final column.

In general, an alignment is a way of inserting gaps into one or
both input strings so that they have equal length:

X + gaps
Y + gaps| {z }

common length `

We can then define the similarity of two strings according to the
quality of their nicest alignment. But what makes an alignment
“nice?” Is it better to have one gap and one mismatch, or three gaps
and no mismatches?

Let’s assume that such questions have already been answered
experimentally, in the form of known penalties for gaps and mismatches
that are provided as part of the input (along with the two strings).
These specify the penalties an alignment incurs in each of its columns;
the total penalty of an alignment is the sum of its columns’ penalties.
For example, the alignment of AGGGCT and AGGCA above would
suffer a penalty of ↵gap (the provided cost of a gap) plus a penalty
of ↵AT (the provided cost of an A-T mismatch). The sequence
alignment problem is, then, to compute an alignment that minimizes
the total penalty.

17.1 Sequence Alignment 139

Problem: Sequence Alignment

Input: Two strings X,Y over the alphabet ⌃ =
{A,C,G, T}, a penalty ↵xy for each symbol pair x, y 2 ⌃,
and a nonnegative gap penalty ↵gap � 0.2

Output: An alignment of X and Y with the minimum-
possible total penalty.

One way to interpret the minimum-penalty alignment is as the “most
plausible explanation” of how one of the strings might have evolved
into the other. We can think of a gap as undoing a deletion that
occurred sometime in the past, and a mismatch as undoing a mutation.

The minimum penalty of an alignment of two strings is a famous
enough concept to have its own name: the Needleman-Wunsch or NW

score of the strings.3 Two strings are then deemed “similar” if and
only if their NW score is relatively small.

Quiz 17.1

Suppose there is a penalty of 1 for each gap and a penalty
of 2 for matching two different symbols in a column. What
is the NW score of the strings AGTACG and ACATAG?

a) 3

b) 4

c) 5

d) 6

(See Section 17.1.8 for the solution and discussion.)

2While it’s natural to assume that all penalties are nonnegative with ↵xx = 0
for all x 2 ⌃ and ↵xy = ↵yx for all x, y 2 ⌃, our dynamic programming algorithm
requires only that the gap penalty is nonnegative. (Do you see why a negative
gap penalty—that is, a reward for gaps—would make the problem completely
uninteresting?)

3Named after its inventors, Saul B. Needleman and Christian D. Wunsch, and
published in the paper “A general method applicable to the search for similarities
in the amino acid sequence of two proteins” (Journal of Molecular Biology, 1970).

140 Advanced Dynamic Programming

The NW score would be useless to genomicists without an effi-
cient procedure for calculating it. The number of alignments of two
strings grows exponentially with their combined length, so outside of
uninterestingly small instances, exhaustive search won’t complete in
our lifetimes. Dynamic programming will save the day; by repeating
the same type of thought experiment we used for the WIS problem
on path graphs and the knapsack problem, we’ll arrive at an efficient
algorithm for computing the NW score.4

17.1.3 Optimal Substructure

Rather than be unduly intimidated by how fundamental the sequence
alignment problem is, let’s follow our usual dynamic programming
recipe and see what happens. If you’ve already reached black-belt
status in dynamic programming, you might be able to guess the right
collection of subproblems; of course, I don’t expect you to be at that
level after only two case studies.

Suppose someone handed us on a silver platter a minimum-penalty
alignment of two strings. What must it look like? In how many
different ways could it have been built up from optimal solutions to
smaller subproblems? In the WIS problem on path graphs and the
knapsack problem, we zoomed in on a solution’s last decision—does
the last vertex of the path or the last item of a knapsack instance
belong to the solution? To continue the pattern, it would seem that
we should zoom in on the last column of the alignment:

A G G G C T
A G G � C| {z }

rest of alignment

A|{z}
last

column

In our first two case studies, the final vertex or item was either in
or out of the solution—two different possibilities. In the sequence
alignment problem, how many relevant possibilities are there for the
contents of the final column?

4Algorithms have shaped the development of computational genomics as a field.
If there wasn’t an efficient algorithm for computing the NW score, Needleman and
Wunsch surely would have proposed a different and more tractable definition of
genome similarity!

17.1 Sequence Alignment 141

Quiz 17.2

Let X = x1, x2, . . . , xm and Y = y1, y2, . . . , yn be two input
strings, with each symbol xi or yj in {A,C,G, T}. How
many relevant possibilities are there for the contents of the
final column of an optimal alignment?

a) 2

b) 3

c) 4

d) mn

(See Section 17.1.8 for the solution and discussion.)

Following our first two case studies, the next step shows, by a
case analysis, that there are only three candidates for an optimal
alignment—one candidate for each of the possibilities for the contents
of the last column. This will lead to a recurrence, which can be com-
puted by exhaustive search over the three possibilities, and a dynamic
programming algorithm that uses this recurrence to systematically
solve all the relevant subproblems.

Consider an optimal alignment of two non-empty strings X =
x1, x2, . . . , xm and Y = y1, y2, . . . , yn. Let X 0 = x1, x2, . . . , xm�1 and
Y 0 = y1, y2, . . . , yn�1 denote X and Y , respectively, with the last
symbol plucked off.

Case 1: xm and yn matched in last column of alignment.
Suppose an optimal alignment does not use a gap in its final column,
preferring to match the final symbols xm and yn of the input strings.
Let P denote the total penalty incurred by this alignment. We can
view the rest of the alignment (excluding the final column) as an
alignment of the remaining symbols—an alignment of the shorter
strings X 0 and Y 0:

X 0 + gaps xm
Y 0 + gaps| {z }

rest of alignment

yn

142 Advanced Dynamic Programming

This alignment of X 0 and Y 0 has total penalty P minus the
penalty ↵xmyn that was previously paid in the last column. And
it’s not just any old alignment of X 0 and Y 0—it’s an optimal such
alignment. For if some other alignment of X 0 and Y 0 had smaller total
penalty P ⇤ < P �↵xmyn , appending to it a final column matching xm
and yn would produce an alignment of X and Y with total penalty
P ⇤+↵xmyn < (P �↵xmyn)+↵xmyn = P , contradicting the optimality
of the original alignment of X and Y .

In other words, once you know that an optimal alignment of X
and Y matches xm and yn in its last column, you know exactly what
the rest of it looks like: an optimal alignment of X 0 and Y 0.

Case 2: xm matched with a gap in last column of alignment.
In this case, because yn does not appear in the last column, the
induced alignment is of X 0 and the original second string Y :

X 0 + gaps xm
Y + gaps| {z }

rest of alignment

[gap].

Moreover, the induced alignment is an optimal alignment of X 0 and Y ;
the argument is analogous to that in case 1 (as you should verify).

Case 3: yn matched with a gap in last column of alignment.
Symmetrically, in this case, the induced alignment is of X and Y 0:

X + gaps [gap]
Y 0 + gaps| {z }

rest of alignment

yn.

Moreover, as in the first two cases, it is an optimal such alignment
(as you should verify).

The point of this case analysis is to narrow down the possibilities
for an optimal solution to three and only three candidates.

Lemma 17.1 (Sequence Alignment Optimal Substructure)
An optimal alignment of two non-empty strings X = x1, x2, . . . , xm
and Y = y1, y2, . . . , yn is either:

(i) an optimal alignment of X 0
and Y 0

, supplemented with a match

of xm and yn in the final column;

17.1 Sequence Alignment 143

(ii) an optimal alignment of X 0
and Y , supplemented with a match

of xm and a gap in the final column;

(iii) an optimal alignment of X and Y 0
, supplemented with a match

of a gap and yn in the final column,

where X 0
and Y 0

denote X and Y , respectively, with the final sym-

bols xm and yn removed.

What if X or Y is the empty string?

Quiz 17.3

Suppose one of the two input strings (Y , say) is empty.
What is the NW score of X and Y ?

a) 0

b) ↵gap · (length of X)

c) +1

d) undefined

(See Section 17.1.8 for the solution and discussion.)

17.1.4 Recurrence

Quiz 17.3 handles the base case of an empty input string. For non-
empty input strings, of the three options in Lemma 17.1, the one with
the smallest total penalty is an optimal solution. These observations
lead to the following recurrence, which computes the best of the three
options by exhaustive search:

Corollary 17.2 (Sequence Alignment Recurrence) With the

assumptions and notation of Lemma 17.1, let Pi,j denote the total

penalty of an optimal alignment of Xi = x1, x2, . . . , xi, the first i
symbols of X, and Yj = y1, y2, . . . , yj, the first j symbols of Y . (If

j = 0 or i = 0, interpret Pi,j as i ·↵gap or j ·↵gap, respectively.) Then

Pm,n = min{Pm�1,n�1 + ↵xmyn| {z }
Case 1

, Pm�1,n + ↵gap| {z }
Case 2

, Pm,n�1 + ↵gap| {z }
Case 3

}.

144 Advanced Dynamic Programming

More generally, for every i = 1, 2, . . . ,m and j = 1, 2, . . . , n,

Pi,j = min{Pi�1,j�1 + ↵xiyj| {z }
Case 1

, Pi�1,j + ↵gap| {z }
Case 2

, Pi,j�1 + ↵gap| {z }
Case 3

}.

The more general statement in Corollary 17.2 follows by invoking the
first statement, for each i = 1, 2, . . . ,m and j = 1, 2, . . . , n, with Xi

and Yj playing the role of the input strings X and Y .

17.1.5 The Subproblems

As in the knapsack problem, the subproblems in the recurrence (Corol-
lary 17.2) are indexed by two different parameters, i and j. Knapsack
subproblems can shrink in two different senses (by removing an item or
removing knapsack capacity), and so it goes with sequence alignment
subproblems (by removing a symbol from the first or the second input
string). Ranging over all relevant values of the two parameters, we
obtain our collection of subproblems:5

Sequence Alignment: Subproblems

Compute Pi,j , the minimum total penalty of an alignment
of the first i symbols of X and the first j symbols of Y .

(For each i = 0, 1, 2, . . . ,m and j = 0, 1, 2, . . . , n.)

The largest subproblem (with i = m and j = n) is exactly the same
as the original problem.

17.1.6 A Dynamic Programming Algorithm

All the hard work is done. We have our subproblems. We have
our recurrence for solving a subproblem given solutions to smaller
subproblems. Nothing can stop us from using it to solve all the
subproblems systematically, beginning with the base cases and working
up to the original problem.

5Or, thinking recursively, each recursive call plucks off the last symbol from
the first input string, the last symbol from the second input string, or both. The
only subproblems that can arise in this way are for prefixes of the original input
strings.

17.1 Sequence Alignment 145

NW

Input: strings X = x1, x2, . . . , xm and
Y = y1, y2, . . . , yn over the alphabet ⌃ = {A,C,G, T},
a penalty ↵xy for each x, y 2 ⌃, and a gap penalty
↵gap � 0.

Output: the NW score of X and Y .

// subproblem solutions (indexed from 0)
A := (m+ 1)⇥ (n+ 1) two-dimensional array
// base case #1 (j = 0)
for i = 0 to m do

A[i][0] = i · ↵gap

// base case #2 (i = 0)
for j = 0 to n do

A[0][j] = j · ↵gap

// systematically solve all subproblems
for i = 1 to m do

for j = 1 to n do
// use recurrence from Corollary 17.2
A[i][j] :=

min

8
<

:

A[i�1][j�1] + ↵xiyj (Case 1)
A[i�1][j] + ↵gap (Case 2)
A[i][j�1] + ↵gap (Case 3)

9
=

;

return A[m][n] // solution to largest subproblem

As in the knapsack problem, because subproblems are indexed by two
different parameters, the algorithm uses a two-dimensional array to
store subproblem solutions and a double for loop to populate it. By the
time a loop iteration must compute the subproblem solution A[i][j],
the values A[i � 1][j � 1], A[i � 1][j], and A[i][j � 1] of the three
relevant smaller subproblems have already been computed and are
ready and waiting to be looked up in constant time. This means the
algorithm spends O(1) time solving each of the (m+1)(n+1) = O(mn)
subproblems, for an overall running time of O(mn).6 Like our previous
dynamic programming algorithms, correctness of the NW algorithm

6In the notation of (16.1), f(n) = O(mn), g(n) = O(1), and h(n) = O(1).

146 Advanced Dynamic Programming

can be proved by induction; the induction is on the value of i+ j (the
subproblem size), with the recurrence in Corollary 17.2 justifying the
inductive step.

Theorem 17.3 (Properties of NW) For every instance of the se-

quence alignment problem, the NW algorithm returns the correct NW

score and runs in O(mn) time, where m and n are the lengths of the

two input strings.

For an example of the NW algorithm in action, check out
Problem 17.1.7

17.1.7 Reconstruction

There are no surprises in reconstructing an optimal alignment from
the array values that the NW algorithm computes. Working backward,
the algorithm first checks which case of the recurrence was used to fill
in the array entry A[m][n] corresponding to the largest subproblem
(resolving ties arbitrarily).8 If it was case 1, the last column of the
optimal alignment matches xm and yn and reconstruction resumes
from the entry A[m� 1][n� 1]. If it was case 2 or 3, the last column
of the alignment matches either xm (in case 2) or yn (in case 3) with
a gap and the process resumes from the entry A[m� 1][n] (in case 2)
or A[m][n� 1] (in case 3). When the reconstruction algorithm hits a
base case, it completes the alignment by prepending the appropriate
number of gaps to the string that has run out of symbols. Because
the algorithm performs O(1) work per iteration and each iteration
decreases the sum of the lengths of the remaining prefixes, its running
time is O(m+ n). We leave the detailed pseudocode to the interested
reader.

7Can we do better? In special cases, yes (see Problem 17.6). For the general
problem, cutting-edge research suggests that the answer might be “no.” Intrepid
readers should check out the paper “Edit Distance Cannot Be Computed in
Strongly Subquadratic Time (unless SETH is false),” by Arturs Backurs and Piotr
Indyk (SIAM Journal on Computing, 2018).

8Depending on the implementation details, this information may have been
cached by the NW algorithm, in which case it can be looked up. (See also footnote 9
of Chapter 16.) If not, the reconstruction algorithm can recompute the answer
from scratch in O(1) time.

17.1 Sequence Alignment 147

17.1.8 Solution to Quizzes 17.1–17.3

Solution to Quiz 17.1

Correct answer: (b). Here’s one alignment with two gaps and one
mismatch, for a total penalty of 4:

A - G T A C G
A C A T A - G

Here’s one with four gaps and no mismatches, also with a total penalty
of 4:

A - - G T A C G
A C A - T A - G

No alignment has total penalty 3 or less. Why not? Because the
input strings have the same length, every alignment inserts the same
number of gaps in each, and so the total number of gaps is even. An
alignment with four or more gaps has total penalty at least 4. The
alignment with zero gaps has four mismatches and a total penalty
of 8. Every alignment that inserts only one gap in each string results
in at least one mismatch, for a total penalty of at least 4.

Solution to Quiz 17.2

Correct answer: (b). Consider an optimal alignment of the
strings X and Y :

X + gaps
Y + gaps| {z }

common length `

What could reside in the upper-right corner, in the last column of
the first row? It could be a gap, or it could be a symbol. If it’s a
symbol, it must be from X (because it’s the top row) and it must
be X’s last symbol xm (because it’s in the last column). Similarly,
the lower-right corner must be either a gap or the last symbol yn of
the second string Y .

With two choices for each of the two entries in the last column,
there would seem to be four possible scenarios. But one of them
is irrelevant! It’s pointless to have two gaps in the same column—
there’s a nonnegative penalty per gap, so removing them produces

148 Advanced Dynamic Programming

a new alignment that can only be better. This leaves us with three
relevant possibilities for the contents of the last column of an optimal
alignment: (i) xm and yn are matched; (ii) xm is matched with a gap;
or (iii) yn is matched with a gap.

Solution to Quiz 17.3

Correct answer: (b). If Y is empty, the optimal alignment inserts
enough gaps into Y so that it has the same length as X. This incurs
a penalty of ↵gap per gap, for a total penalty of ↵gap times the length
of X.

*17.2 Optimal Binary Search Trees

In Chapter 11 of Part 2 we studied binary search trees, which maintain
a total ordering over an evolving set of objects and support a rich
set of fast operations. In Chapter 14 we defined prefix-free codes
and designed a greedy algorithm for computing the best-on-average
code for a given set of symbol frequencies. Next we consider the
analogous problem for search trees—computing the best-on-average
search tree given statistics about the frequencies of different searches.
This problem is more challenging than the optimal prefix-free code
problem, but it is no match for the power of the dynamic programming
paradigm.

17.2.1 Binary Search Tree Review

A binary search tree is a data structure that acts like a dynamic
version of a sorted array—searching for an object is as easy as in a
sorted array, but it also accommodates fast insertions and deletions.
The data structure stores objects associated with keys (and possibly
lots of other data), with one object for each node of the tree.9 Every
node has left and right child pointers, either of which can be null. The
left subtree of a node x is defined as the nodes reachable from x via
its left child pointer, and similarly for the right subtree. The defining
search tree property is:

9We refer to nodes of the tree and the corresponding objects interchangeably.

*17.2 Optimal Binary Search Trees 149

The Search Tree Property

For every object x:

1. Objects in x’s left subtree have keys smaller than that
of x.

2. Objects in x’s right subtree have keys larger than that
of x.

Throughout this section, we assume, for simplicity, that no two objects
have the same key.

The search tree property imposes a requirement for every node of
a search tree, not just for the root:

x

toward the root

all keys
< x

all keys
> x

For example, here’s a search tree containing objects with the keys
{1, 2, 3, 4, 5}:

3

1

2

5

4

root

leaves

The point of the search tree property is to reduce searching for an
object with a given key to following your nose, reminiscent of binary
search in a sorted array. For example, suppose you’re looking for
an object with key 17. If the object at the root of the tree has the
key 23, you know that the object you’re looking for is in the root’s

150 Advanced Dynamic Programming

left subtree. If the root’s key is 12, you know to recursively search for
the object in the right subtree.

17.2.2 Average Search Time

The search time for a key k in a binary search tree T is the number of
nodes visited while searching for the node with key k (including that
node itself). In the tree above, the key “3” has a search time of 1, the
keys “1” and “5” have search times of 2, and the keys “2” and “4” have
search times of 3.10

Different search trees for the same set of objects result in different
search times. For example, here’s a second search tree containing
objects with the keys {1, 2, 3, 4, 5}:

5

4

3

2

1

where the “1” now has a search time of 5.
Of all the search trees for a given set of objects, which is the “best?”

We asked this question in Chapter 11 of Part 2, and the answer there
was a perfectly balanced tree:

The rationale? A perfectly balanced tree minimizes the length of the
longest root-leaf path (⇡ log2 n for n objects) or, equivalently, the
maximum search time. Balanced binary search tree data structures,

10Equivalently, the search time is one plus the depth of the corresponding node
in the tree.

*17.2 Optimal Binary Search Trees 151

such as red-black trees, are explicitly designed to keep the search tree
close to perfectly balanced (see Section 11.4 of Part 2).

Minimizing the maximum search time makes sense when you
don’t have advance knowledge about which searches are more likely
than others. But what if you have statistics about the frequencies of
different searches?11

Quiz 17.4

Consider the following two search trees that store objects
with keys 1, 2, and 3:

3

2

1 3

2

1

and

and the search frequencies:

Key Search Frequency
1 .8
2 .1
3 .1

What are the average search times in the two trees, respec-
tively?

a) 1.9 and 1.2

b) 1.9 and 1.3

c) 2 and 1

d) 2 and 3

(See Section 17.2.9 for the solution and discussion.)

11For example, imagine you implement a spell checker as a binary search tree
that stores all the correctly spelled words. Spell-checking a document reduces to
looking up each of its words in turn, with unsuccessful searches corresponding
to misspelled words. You can estimate the frequencies of different searches
by counting the number of occurrences of different words (both correctly and
incorrectly spelled) in a sufficiently large set of representative documents.

152 Advanced Dynamic Programming

17.2.3 Problem Definition

Quiz 17.4 shows that the best binary search tree for the job depends
on the search frequencies, with unbalanced trees potentially superior
to balanced trees when the search frequencies are not uniform. This
observation suggests a cool opportunity for algorithm design: Given
the search frequencies for a set of keys, what’s the best binary search
tree?

Problem: Optimal Binary Search Trees

Input: A sorted list of keys k1, k2, . . . , kn and a nonnega-
tive frequency pi for each key ki.

Output: The binary search tree T containing the keys
{k1, k2, . . . , kn} with minimum-possible weighted search
time:

nX

i=1

pi · (search time for ki in T| {z }
=(ki’s depth in T)+1

). (17.1)

Three comments. First, the names of the keys are not important, so
among friends let’s just call them {1, 2, . . . , n}. Second, the problem
formulation does not assume that the pi’s sum to 1 (hence the phrasing
“weighted” search time instead of “average” search time). If this bothers
you, feel free to normalize the frequencies by dividing each of them
by their sum

P
n

j=1 pj—this doesn’t change the problem. Third, the
problem as stated is unconcerned with unsuccessful searches, meaning
searches for a key other than one in the given set {k1, k2, . . . , kn}.
You should check that our dynamic programming solution extends to
the case in which unsuccessful search times are also counted, provided
the input specifies the frequencies of such searches.

The optimal binary search tree problem bears some resemblance to
the optimal prefix-free code problem (Chapter 14). In both problems,
the input specifies a set of frequencies over symbols or keys, the output
is a binary tree, and the objective function is related to minimizing
the average depth. The difference lies in the constraint that the binary
tree must satisfy. In the optimal prefix-free code problem, the sole
restriction is that symbols appear only at the leaves. A solution to the
optimal binary search tree problem must satisfy the more challenging

*17.2 Optimal Binary Search Trees 153

search tree property (page 149). This is why greedy algorithms aren’t
good enough for the latter problem; we’ll need to up our game and
apply the dynamic programming paradigm.

17.2.4 Optimal Substructure

The first step, as always with dynamic programming, is to understand
the ways in which an optimal solution might be built up from optimal
solutions to smaller subproblems. As a warm-up, suppose we took a
(doomed-to-fail) divide-and-conquer approach to the optimal binary
search tree problem. Every recursive call of a divide-and-conquer
algorithm commits to a single split of its problem into one or more
smaller subproblems. Which split should we use? A first thought
might be to install the object with the median key at the root, and then
recursively compute the left and right subtrees. With non-uniform
search frequencies, however, there’s no reason to expect the median to
be a good choice for the root (see Quiz 17.4). The choice of root has
unpredictable repercussions further down the tree, so how could we
know in advance the right way to split the problem into two smaller
subproblems? If only we had clairvoyance and knew which key should
appear at the root, we might then be able to compute the rest of the
tree recursively.

If only we knew the root. This is starting to sound familiar.
In the WIS problem on path graphs (Section 16.2.1), if only you
knew whether the last vertex belonged to an optimal solution, you
would know what the rest of it looked like. In the knapsack problem
(Section 16.5.2), if only you knew whether the last item belonged
to an optimal solution, you would know what the rest of it looked
like. In the sequence alignment problem (Section 17.1.3), if only you
knew the contents of the final column of an optimal alignment, you
would know what the rest of it looked like. How did we overcome
our ignorance? By trying all the possibilities—two possibilities in the
WIS and knapsack problems, and three in the sequence alignment
problem. Reasoning by analogy, perhaps our solution to the optimal
binary search tree problem should try all the possible roots.

With this in mind, the next quiz asks you to guess what type of
optimal substructure lemma might be true for the optimal binary
search tree problem.

154 Advanced Dynamic Programming

Quiz 17.5

Suppose an optimal binary search tree for the keys
{1, 2, . . . , n} and frequencies p1, p2, . . . , pn has the key r
at its root, with left subtree T1 and right subtree T2:

r root

T1 T2

Of the following four statements, choose the strongest one
that you suspect is true.

a) Neither T1 nor T2 need be optimal for the keys it
contains.

b) At least one of T1, T2 is optimal for the keys it contains.

c) Each of T1, T2 is optimal for the keys it contains.

d) T1 is an optimal binary search tree for the keys
{1, 2, . . . , r � 1}, and similarly T2 for the keys {r +
1, r + 2, . . . , n}.

(See Section 17.2.9 for the solution and discussion.)

As usual, formalizing the optimal substructure boils down to a
case analysis, with one case for each possibility of what an optimal
solution might look like. Consider an optimal binary search tree T
with keys {1, 2, . . . , n} and frequencies p1, p2, . . . , pn. Any of the n
keys might appear at the root of an optimal solution, so there are n
different cases. We can reason about all of them in one fell swoop.

Case r: The root of T has key r. Let T1 and T2 denote the left
and right subtrees of the root. The search tree property implies that

*17.2 Optimal Binary Search Trees 155

the residents of T1 are the keys {1, 2, . . . , r � 1}, and similarly for T2

and {r + 1, r + 2, . . . , n}. Moreover, T1 and T2 are both valid search
trees for their sets of keys (i.e., both T1 and T2 satisfy the search tree
property). We next show that both are optimal binary search trees
for their respective subproblems, with the frequencies p1, p2, . . . , pr�1

and pr+1, pr+2, . . . , pn inherited from the original problem.12

Suppose, for contradiction, that at least one of the subtrees—T1,
say—is not an optimal solution to its corresponding subproblem. This
means there is a different search tree T ⇤

1 with keys {1, 2, . . . , r � 1}
and with strictly smaller weighted search time:

r�1X

k=1

pk · (k’s search time in T ⇤
1) <

r�1X

k=1

pk · (k’s search time in T1). (17.2)

From our previous case studies, we know what we must do next: Use
the inequality (17.2) to exhibit a search tree for the original problem
superior to T , thereby contradicting the purported optimality of T .
We can obtain such a tree T ⇤ by performing surgery on T , cutting
out its left subtree T1 and pasting T ⇤

1 in its place:

T1 T2

r

T1 T2 *

T T

keys {1,2,...,r-1} keys {r+1,r+2,...,n} keys {1,2,...,r-1} keys {r+1,r+2,...,n}

*	

r

The final step is to compare the weighted search times in T ⇤ and T .
Splitting the sum in (17.1) into two parts, the keys {1, 2, . . . , r � 1}
and the keys {r, r + 1, . . . , n}, we can write these search times as

r�1X

k=1

pk · (k’s search time in T ⇤
| {z }
=1+(search time in T⇤

1)

) +
nX

k=r

pk · (k’s search time in T ⇤)

12No worries if r = 1 or r = n; in that case, one of the two subtrees is empty,
and the empty tree is trivially optimal for the empty set of keys.

156 Advanced Dynamic Programming

and
r�1X

k=1

pk · (k’s search time in T| {z }
=1+(search time in T1)

) +
nX

k=r

pk · (k’s search time in T| {z }
same as in T⇤ (as k � r)

),

respectively. Because the trees T ⇤ and T have the same root r and
the same right subtree T2, the search times for the keys r, r+1, . . . , n
are the same in both trees. A search for a key in {1, 2, . . . , r� 1} first
visits the root r and then recursively searches the left subtree. Thus,
the search time for such a key is one more in T ⇤ than in T ⇤

1 , and one
more in T than in T1. This means the weighted search times in T ⇤

and T can be written as
r�1X

k=1

pk · (k’s search time in T ⇤
1)

| {z }
left-hand side of (17.2)

+
r�1X

k=1

pk +
nX

k=r

pk · (k’s search time in T ⇤)

and
r�1X

k=1

pk · (k’s search time in T1)

| {z }
right-hand side of (17.2)

+
r�1X

k=1

pk +
nX

k=r

pk · (k’s search time in T ⇤),

respectively. The second and third terms are the same in both ex-
pressions. Our assumption (17.2) is that the first term is smaller
in the first expression than in the second, which implies that the
weighted search time in T ⇤ is smaller than that in T . This furnishes
the promised contradiction and completes the proof of the key claim
that T1 and T2 are optimal binary search trees for their respective
subproblems.

Lemma 17.4 (Optimal BST Optimal Substructure) If T is

an optimal binary search tree with keys {1, 2, . . . , n}, frequencies

p1, p2, . . . , pn, root r, left subtree T1, and right subtree T2, then:

(a) T1 is an optimal binary search tree for the keys {1, 2, . . . , r� 1}
and frequencies p1, p2, . . . , pr�1; and

(b) T2 is an optimal binary search tree for the keys {r + 1, r +
2, . . . , n} and frequencies pr+1, pr+2, . . . , pn.

In other words, once you know the root of an optimal binary search
tree, you know exactly what its left and right subtrees look like.

*17.2 Optimal Binary Search Trees 157

17.2.5 Recurrence

Lemma 17.4 narrows down the possibilities for an optimal binary
search tree to n and only n candidates, where n is the number of keys
in the input (i.e., the number of options for the root). The best of
these n candidates must be an optimal solution.

Corollary 17.5 (Optimal BST Recurrence) With the assump-

tions and notation of Lemma 17.4, let Wi,j denote the weighted search

time of an optimal binary search tree with the keys {i, i + 1, . . . , j}
and frequencies pi, pi+1, . . . , pj. (If i > j, interpret Wi,j as 0.) Then

W1,n =
nX

k=1

pk + min
r2{1,2,...,n}

{W1,r�1 +Wr+1,n| {z }
Case r

}. (17.3)

More generally, for every i, j 2 {1, 2, . . . , n} with i j,

Wi,j =
jX

k=i

pk + min
r2{i,i+1,...,j}

{Wi,r�1 +Wr+1,j| {z }
Case r

}.

The more general statement in Corollary 17.5 follows by invoking the
first statement, for each i, j 2 {1, 2, . . . , n} with i j, with the keys
{i, i+ 1, . . . , j} and their frequencies playing the role of the original
input.

The “min” in the recurrence (17.3) implements the exhaustive
search through the n different candidates for an optimal solution. The
term

P
n

k=1 pk is necessary because installing the optimal subtrees
under a new root adds 1 to all their keys’ search times.13 As a sanity
check, note that this extra term is needed for the recurrence to be
correct even when there is only one key (and the weighted search time
is the frequency of that key).

13In more detail, consider a tree T with root r and left and right subtrees T1

and T2. The search times for the keys {1, 2, . . . , r � 1} in T are one more
than in T1, and those for the keys {r + 1, r + 2, . . . , n} in T are one more than
in T2. Thus, the weighted search time (17.1) can be written as

Pr�1
k=1 pk · (1 +

k’s search time in T1)+pr ·1+
Pn

k=r+1 pk ·(1+k’s search time in T2), which cleans
up to

Pn
k=1 pk + (weighted search time in T1) + (weighted search time in T2).

158 Advanced Dynamic Programming

17.2.6 The Subproblems

In the knapsack problem (Section 16.5.3), subproblems were in-
dexed by two parameters because the “size” of a subproblem was
two-dimensional (with one parameter tracking the prefix of items
and the other tracking the remaining knapsack capacity). Similarly,
in the sequence alignment problem (Section 17.1.5), there was one
parameter tracking the prefix of each of the two input strings. Eye-
balling the recurrence in Corollary 17.5, we see that subproblems are
again indexed by two parameters (i and j), but this time for different
reasons. Subproblems of the form W1,r�1 in the recurrence (17.3) are
defined by prefixes of the set of keys (as usual), but subproblems of
the form Wr+1,n are defined by suffixes of the keys. To be prepared
for both cases, we must keep track of both the first (smallest) and
last (largest) keys that belong to a subproblem.14 We therefore end
up with a two-dimensional set of subproblems, despite the seemingly
one-dimensional input.

Ranging over all relevant values of the two parameters, we obtain
our collection of subproblems.

Optimal BST: Subproblems

Compute Wi,j , the minimum weighted search time of a
binary search tree with keys {i, i + 1, . . . , j} and frequen-
cies pi, pi+1, . . . , pj .

(For each i, j 2 {1, 2, . . . , n} with i j.)

The largest subproblem (with i = 1 and j = n) is exactly the same as
the original problem.

14Or, thinking recursively, each recursive call throws away either one or more
of the smallest keys, or one or more of the largest keys. The subproblems that
can arise in this way correspond to the contiguous subsets of the original set of
keys—sets of the form {i, i+ 1, . . . , j} for some i, j 2 {1, 2, . . . , n} with i j. For
example, a recursive call might be given a prefix of the original input {1, 2, . . . , 100},
such as {1, 2, . . . , 22}, but some of its own recursive calls will be on suffixes of its
input, such as {18, 19, 20, 21, 22}.

*17.2 Optimal Binary Search Trees 159

17.2.7 A Dynamic Programming Algorithm

With the subproblems and recurrence in hand, you should expect the
dynamic programming algorithm to write itself. The one detail to get
right is the order in which to solve the subproblems. The simplest
way to define “subproblem size” is as the number of keys in the input.
Therefore, it makes sense to first solve all the subproblems with a
single-key input, then the subproblems with two keys in the input,
and so on. In the following pseudocode, the variable s controls the
current subproblem size.15

OptBST

Input: keys {1, 2, . . . , n} with nonnegative frequencies
p1, p2, . . . , pn.

Output: the minimum weighted search time (17.1) of a
binary search tree with the keys {1, 2, . . . , n}.

// subproblems (i indexed from 1, j from 0)
A := (n+ 1)⇥ (n+ 1) two-dimensional array
// base cases (i = j + 1)
for i = 1 to n+ 1 do

A[i][i� 1] := 0

// systematically solve all subproblems (i j)
for s = 0 to n� 1 do // s=subproblem size-1

for i = 1 to n� s do // i+ s plays role of j
// use recurrence from Corollary 17.5
A[i][i+ s] :=P

i+s

k=i
pk+mini+s

r=i
{A[i][r�1] +A[r+1][i+s]}| {z }

Case r

}

return A[1][n] // solution to largest subproblem

In the loop iteration responsible for computing the subproblem solution
A[i][i + s], all the terms of the form A[i][r � 1] and A[r + 1][i + s]
correspond to solutions of smaller subproblems computed in earlier
iterations of the outer for loop (or in the base cases). These values
are ready and waiting to be looked up in constant time.

15For an example of the algorithm in action, see Problem 17.4.

160 Advanced Dynamic Programming

Pictorially, we can visualize the array A in the OptBST algorithm
as a two-dimensional table, with each iteration of the outer for loop
corresponding to a diagonal and with the inner for loop filling in the
diagonal’s entries from “southwest” to “northeast”:

0

0

0

0

0

1 2 3 4 5

0

1

2

3

4

5

6 0

0

6 7
base cases

s = 0

s = 1

s = n-1

. . .
. . .

. . .
. . .

index i of smallest key

in
de

x
j o

f l
ar

ge
st

 k
ey

During the computation of an array entry A[i][i+ s], all the relevant
terms of the form A[i][r � 1] and A[r + 1][i + s] lie on (previously
computed) lower diagonals.

As with all our dynamic programming algorithms, the correctness
of the OptBST algorithm follows by induction (on the subproblem size),
with the recurrence in Corollary 17.5 justifying the inductive step.

What about the running time? Don’t be fooled into thinking that
the line of pseudocode performed in each loop iteration translates into
a constant number of primitive computer operations. Computing the
sum

P
i+s

k=i
pk and exhaustively searching through the s+ 1 cases of

the recurrence takes O(s) = O(n) time.16 There are O(n2) iterations
(one per subproblem), for an overall running time of O(n3).17

16Can you think of an optimization that avoids computing the sum
Pi+s

k=i pk

from scratch for each of the subproblems?
17In the notation of (16.1), f(n) = O(n2), g(n) = O(n), and h(n) = O(1).

This is our first case study in which the per-subproblem work g(n) is not bounded
by a constant.

*17.2 Optimal Binary Search Trees 161

Theorem 17.6 (Properties of OptBST) For every set {1, 2, . . . , n}
of keys and nonnegative frequencies p1, p2, . . . , pn, the OptBST algo-

rithm runs in O(n3) time and returns the minimum weighted search

time of a binary search tree with keys {1, 2, . . . , n}.

Analogous to our other case studies, an optimal binary search tree can
be reconstructed by tracing back through the final array A computed
by the OptBST algorithm.18

17.2.8 Improving the Running Time

The cubic running time of the OptBST algorithm certainly does not
qualify as blazingly fast. The first piece of good news is that the
algorithm is way faster than exhaustively searching through all (ex-
ponentially many) binary search trees. The algorithm is fast enough
to solve problems with n in the hundreds in a reasonable amount of
time, but not problems with n in the thousands. The second piece of
good news is that a slight tweak to the algorithm brings its running
time down to O(n2).19 This is fast enough to solve problems with n

18If the OptBST algorithm is modified to cache the roots that determine the
recurrence values for each subproblem (i.e., the value of r such that A[i][i+ s] =
A[i][r � 1] +A[r + 1][i+ s]), the reconstruction algorithm runs in O(n) time (as
you should verify). Otherwise, it must recompute these roots and runs in O(n2)
time.

19Here’s the idea. First, compute in advance all sums of the form
Pj

k=i pk;
this can be done in O(n2) time (do you see how?). Then, along with each
subproblem solution A[i][j], store the choice of the root r(i, j) that minimizes
A[i][r � 1] +A[r + 1][j] or, equivalently, the root of an optimal search tree for the
subproblem. (If there are multiple such roots, use the smallest one.)

The key lemma is an easy-to-believe (but tricky-to-prove) monotonicity property:
Adding a new maximum (respectively, minimum) element to a subproblem can only
make the root of an optimal search tree larger (respectively, smaller). Intuitively,
any change in the root should be in service of rebalancing the total frequency of
keys between its left and right subtrees.

Assuming this lemma, for every subproblem with i < j, the optimal root r(i, j)
is at least r(i, j � 1) and at most r(i + 1, j). (If i = j, then r(i, j) must be i.)
Thus, there’s no point in exhaustively searching all the roots between i and j—the
roots between r(i, j � 1) and r(i+ 1, j) suffice. In the worst case, there could be
as many as n such roots. In aggregate over all ⇥(n2) subproblems, however, the
number of roots examined is

Pn�1
i=1

Pn
j=i+1(r(i + 1, j) � r(i, j � 1) + 1), which

after cancellations is only O(n2) (as you should check). For further details, see the
paper “Optimum Binary Search Trees,” by Donald E. Knuth (Acta Informatica,
1971).

162 Advanced Dynamic Programming

in the thousands and perhaps even tens of thousands in a reasonable
amount of time.

17.2.9 Solution to Quizzes 17.4–17.5

Solution to Quiz 17.4

Correct answer: (b). For the first search tree, the “1” contributes
.8 ⇥ 2 = 1.6 to the average search time (because its frequency is .8
and its search time is 2), the “2” contributes .1⇥ 1 = .1, and the “3”
contributes .1⇥ 2 = .2, for a total of 1.6 + .1 + .2 = 1.9.

The second search tree has a larger maximum search time (3
instead of 2), but the lucky case of a search for the root is now much
more likely. The “1” now contributes .8⇥ 1 = .8 to the average search
time, the “2” contributes .1⇥2 = .2, and the “3” contributes .1⇥3 = .3,
for a total of .8 + .2 + .3 = 1.3.

Solution to Quiz 17.5

Correct answer: (d). Our vision is of a dynamic programming
algorithm that tries all possibilities for the root, recursively computing
or looking up the optimal left and right subtrees for each possibility.
This strategy would be hopeless unless the left and right subtrees of
an optimal binary search tree were guaranteed to be optimal in their
own right for the corresponding subproblems. Thus, for our approach
to succeed, the answer should be either (c) or (d). Moreover, by the
search tree property, given the root r we know the demographics of
its two subtrees—the keys less than r belong to the root’s left subtree,
and those greater than r to its right subtree.

The Upshot

P In the sequence alignment problem, the input
comprises two strings and penalties for gaps
and mismatches, and the goal is to compute an
alignment of the two strings with the minimum-
possible total penalty.

P The sequence alignment problem can be solved
using dynamic programming in O(mn) time,

Problems 163

where m and n are the lengths of the input
strings.

P Subproblems correspond to prefixes of the two
input strings. There are three different ways in
which an optimal solution can be built from opti-
mal solutions to smaller subproblems, resulting
in a recurrence with three cases.

P In the optimal binary search tree problem, the
input is a set of n keys and nonnegative fre-
quencies for them, and the goal is to compute
a binary search tree containing these keys with
the minimum-possible weighted search time.

P The optimal binary search tree problem can be
solved using dynamic programming in O(n3)
time, where n is the number of keys. A slight
tweak to the algorithm reduces the running time
to O(n2).

P Subproblems correspond to contiguous subsets
of the input keys. There are n different ways in
which an optimal solution can be built from opti-
mal solutions to smaller subproblems, resulting
in a recurrence with n cases.

Test Your Understanding

Problem 17.1 (S) For the sequence alignment input in Quiz 17.1,
what are the final array entries of the NW algorithm from Section 17.1?

Problem 17.2 (H) The Knapsack algorithm from Section 16.5 and
the NW algorithm from Section 17.1 both fill in a two-dimensional
array using a double for loop. Suppose we reverse the order of the
for loops—literally cutting and pasting the second loop in front of
the first, without changing the pseudocode in any other way. Are the
resulting algorithms well defined and correct?

164 Advanced Dynamic Programming

a) Neither algorithm remains well defined and correct after revers-
ing the order of the for loops.

b) Both algorithms remain well defined and correct after reversing
the order of the for loops.

c) The Knapsack algorithm remains well defined and correct after
reversing the order of the for loops, but the NW algorithm does
not.

d) The NW algorithm remains well defined and correct after reversing
the order of the for loops, but the Knapsack algorithm does not.

Problem 17.3 (S) The following problems all take as input two
strings X and Y , with lengths m and n, over some alphabet ⌃.
Which of them can be solved in O(mn) time? (Choose all that apply.)

a) Consider the variation of sequence alignment in which, instead of
a single gap penalty ↵gap, you are given two positive numbers a
and b. The penalty for inserting k gaps in a row is now defined
as ak+b, rather than k ·↵gap. The other penalties (for matching
two symbols) are defined as before. The goal is to compute the
minimum-possible penalty of an alignment under this new cost
model.

b) Compute the length of a longest common subsequence of X
and Y . (A subsequence need not comprise consecutive symbols.
For example, the longest common subsequence of “abcdef” and
“afebcd” is “abcd.”)20

c) Assume that X and Y have the same length n. Deter-
mine whether there exists a permutation f , mapping each
i 2 {1, 2, . . . , n} to a distinct value f(i) 2 {1, 2, . . . , n}, such
that Xi = Yf(i) for every i = 1, 2, . . . , n.

d) Compute the length of a longest common substring of X and Y .
(A substring is a subsequence comprising consecutive symbols.
For example, “bcd” is a substring of “abcdef,” while “bdf” is
not.)

20A dynamic programming algorithm for the longest common subsequence
problem underlies the diff command familiar to users of Unix and Git.

Problems 165

Problem 17.4 (S) Consider an instance of the optimal binary search
tree problem with keys {1, 2, . . . , 7} and the following frequencies:

Symbol Frequency
1 20
2 5
3 17
4 10
5 20
6 3
7 25

What are the final array entries of the OptBST algorithm from Sec-
tion 17.2?

Problem 17.5 (H) Recall the WIS algorithm (Section 16.2), the NW
algorithm (Section 17.1), and the OptBST algorithm (Section 17.2).
The space requirements of these algorithms are proportional to the
number of subproblems: ⇥(n), where n is the number of vertices;
⇥(mn), where m and n are the lengths of the input strings; and
⇥(n2), where n is the number of keys, respectively.

Suppose we only want to compute the value of an optimal solution
and don’t care about reconstruction. How much space do you then
really need to run each of the three algorithms, respectively?

a) ⇥(1), ⇥(1), and ⇥(n)

b) ⇥(1), ⇥(n), and ⇥(n)

c) ⇥(1), ⇥(n), and ⇥(n2)

d) ⇥(n), ⇥(n), and ⇥(n2)

Challenge Problems

Problem 17.6 (H) In the sequence alignment problem, suppose you
knew that the input strings were relatively similar, in the sense that
there is an optimal alignment that uses at most k gaps, where k is
much smaller than the lengths m and n of the strings. Show how to
compute the NW score in O((m+ n)k) time.

166 Advanced Dynamic Programming

Problem 17.7 (H) There are seven kinds of Tetris pieces.21 Design
a dynamic programming algorithm that, given x1, x2, . . . , x7 copies
of each respective piece, determines whether you can tile a 10-by-n
board with exactly those pieces (placing them however and wherever
you want—not necessarily in Tetris order). The running time of your
algorithm should be polynomial in n.

Programming Problems

Problem 17.8 Implement in your favorite programming language
the NW and OptBST algorithms, along with their reconstruction al-
gorithms. (See www.algorithmsilluminated.org for test cases and
challenge data sets.)

21See https://www.tetrisfriends.com/help/tips_beginner.php.

Chapter 18

Shortest Paths Revisited

This chapter centers around two famous dynamic programming algo-
rithms for computing shortest paths in a graph. Both are slower but
more general than Dijkstra’s shortest-path algorithm (covered in Chap-
ter 9 of Part 2, and similar to Prim’s algorithm in Sections 15.2–15.4).
The Bellman-Ford algorithm (Section 18.2) solves the single-source
shortest path problem with negative edge lengths; it also has the
benefit of being “more distributed” than Dijkstra’s algorithm and, for
this reason, has deeply influenced the way in which traffic is routed
in the Internet. The Floyd-Warshall algorithm (Section 18.4) also
accommodates negative edge lengths and computes shortest-path
distances from every origin to every destination.

18.1 Shortest Paths with Negative Edge Lengths

18.1.1 The Single-Source Shortest-Path Problem

In the single-source shortest path problem, the input consists of a
directed graph G = (V,E) with a real-valued length `e for each edge
e 2 E and a designated origin s 2 V , which is called the source vertex

or starting vertex. The length of a path is the sum of the lengths of
its edges. The responsibility of an algorithm is to compute, for every
possible destination v, the minimum length dist(s, v) of a directed
path in G from s to v. (If no such path exists, dist(s, v) is defined as
+1.) For example, the shortest-path distances from s in the graph

s

v

w

t

1

2

3 4

6

168 Shortest Paths Revisited

are dist(s, s) = 0, dist(s, v) = 1, dist(s, w) = 3, and dist(s, t) = 6.

Problem: Single-Source Shortest Paths
(Preliminary Version)

Input: A directed graph G = (V,E), a source vertex
s 2 V , and a real-valued length `e for each edge e 2 E.1

Output: the shortest-path distance dist(s, v) for every
vertex v 2 V .

For example, if every edge e has unit length `e = 1, a shortest path
minimizes the hop count (i.e., number of edges) between its origin
and destination.2 Or, if the graph represents a road network and
the length of each edge the expected travel time from one end to
the other, the single-source shortest path problem is the problem of
computing driving times from an origin (the source vertex) to all
possible destinations.

Readers of Part 2 learned a blazingly fast algorithm, Dijkstra’s
algorithm, for the special case of the single-source shortest path
problem in which every edge length `e is nonnegative.3 Dijkstra’s
algorithm, great as it is, is not always correct in graphs with negative
edge lengths. It fails even in a trivial example like:

s

v

t

1

-2

-5

1As with the minimum spanning tree problem, we can assume that the input
graph has no parallel edges. If there are multiple edges with the same beginning
and end, we can throw away all but the shortest one without changing the problem.

2This special case of the single-source shortest path problem can be solved in
linear time using breadth-first search; see Section 8.2 of Part 2.

3Analogous to Prim’s algorithm (Section 15.3), a heap-based implementation
of Dijkstra’s algorithm runs in O((m+ n) log n) time, where m and n denote the
number of edges and vertices of the input graph, respectively.

18.1 Shortest Paths with Negative Edge Lengths 169

If we want to accommodate negative edge lengths, we’ll need a new
shortest-path algorithm.4

18.1.2 Negative Cycles

Who cares about negative edge lengths? In many applications, like
computing driving directions, edge lengths are automatically nonneg-
ative (barring a time machine) and there’s nothing to worry about.
But remember that paths in a graph can represent abstract sequences
of decisions. For example, perhaps you want to compute a profitable
sequence of financial transactions that involves both buying and sell-
ing. This problem corresponds to finding a shortest path in a graph
with edge lengths that are both positive and negative.

With negative edge lengths, we must be careful about what we even
mean by “shortest-path distance.” It’s clear enough in the three-vertex
example above, with dist(s, s) = 0, dist(s, v) = 1, and dist(s, t) = �4.
What about in a graph like the following?

s

v

u

10
-4

w

x

3

4 -5

The issue is that this graph has a negative cycle, meaning a directed
cycle in which the sum of its edges’ lengths is negative. What might
we mean by a “shortest s-v path?”

Option #1: Allow cycles. The first option is to allow s-v paths
that include one or more cycles. But then, in the presence of a
negative cycle, a “shortest path” need not even exist! For example, in
the graph above, there is a one-hop s-v path with length 10. Tacking
a cycle traversal at the end produces a five-hop s-v path with total
length 8. Adding a second traversal increases the number of hops
to 9 but decreases the overall length to 6. . . and so on, ad infinitum.

4You cannot reduce the single-source shortest path problem with general edge
lengths to the special case of nonnegative edge lengths by adding a large positive
constant to the length of every edge. In the three-vertex example above, adding 5
to every edge length would change the shortest path from s ! v ! t to s ! t.

170 Shortest Paths Revisited

Thus, there is no shortest s-v path, and the only sensible definition of
dist(s, v) is �1.

Option #2: Forbid cycles. What if we consider only paths with-
out cycles? With no repeat vertices allowed, we have only a finite
number of paths to worry about. The “shortest s-v path” would
then be whichever one has the smallest length. This definition makes
perfect sense, but there’s a more subtle problem: In the presence
of a negative cycle, this version of the single-source shortest path
problem is what’s called an “NP -hard problem.” Part 4 discusses such
problems at length; for now, all you need to know is that NP -hard
problems, unlike almost all the problems we’ve studied so far in this
book series, do not seem to admit any algorithm that is guaranteed
to be correct and to run in polynomial time.5

Both options are disasters, so should we give up? Never! Even
if we concede that negative cycles are problematic, we can aspire to
solve the single-source shortest path problem in instances that have
no negative cycles, such as the three-vertex example on page 168.
This brings us to the revised version of the single-source shortest path
problem.

Problem: Single-Source Shortest Paths
(Revised Version)

Input: A directed graph G = (V,E), a source vertex
s 2 V , and a real-valued length `e for each edge e 2 E.

Output: One of the following:

(i) the shortest-path distance dist(s, v) for every vertex
v 2 V ; or

(ii) a declaration that G contains a negative cycle.

Thus, we’re after an algorithm that either computes the correct
shortest-path distances or offers a compelling excuse for its failure (in

5More precisely, any polynomial-time algorithm for any NP -hard problem
would disprove the famous “P 6= NP ” conjecture and resolve what is arguably
the most important open question in all of computer science. See Part 4 for the
full story.

18.1 Shortest Paths with Negative Edge Lengths 171

the form of a negative cycle). Any such algorithm returns the correct
shortest-path distances in input graphs without negative cycles.6

Suppose a graph has no negative cycles. What does that buy us?

Quiz 18.1

Consider an instance of the single-source shortest path prob-
lem with n vertices, m edges, a source vertex s, and no
negative cycles. Which of the following is true? (Choose
the strongest true statement.)

a) For every vertex v reachable from the source s, there
is a shortest s-v path with at most n� 1 edges.

b) For every vertex v reachable from the source s, there
is a shortest s-v path with at most n edges.

c) For every vertex v reachable from the source s, there
is a shortest s-v path with at most m edges.

d) There is no finite upper bound (as a function of n
and m) on the fewest number of edges in a shortest
s-v path.

(See Section 18.1.3 for the solution and discussion.)

18.1.3 Solution to Quiz 18.1

Correct answer: (a). If you give me a path P between the source
vertex s and some destination vertex v containing at least n edges, I
can give you back another s-v path P 0 with fewer edges than P and
length no longer than that of P . This assertion implies that any s-v
path can be converted into an s-v path with at most n� 1 edges that
is only shorter; hence, there is a shortest s-v path with at most n� 1
edges.

6For example, suppose the edges of the input graph and their lengths represent
financial transactions and their costs, with vertices corresponding to different
asset portfolios. Then, a negative cycle corresponds to an arbitrage opportunity.
In many cases there will be no such opportunities; if there is one, you’d be very
happy to identify it!

172 Shortest Paths Revisited

To see why this assertion is true, observe that a path P with at
least n edges visits at least n+1 vertices and thus makes a repeat visit
to some vertex w.7 Splicing out the cyclic subpath between successive
visits to w produces a path P 0 with the same endpoints as P but fewer
edges; see also Figure 15.2 and footnote 4 in Chapter 15. The length
of P 0 is the same as that of P , less the sum of the edge lengths in the
spliced-out cycle. Because the input graph has no negative cycles, this
sum is nonnegative and the length of P 0 is less than or equal to that
of P .

18.2 The Bellman-Ford Algorithm

The Bellman-Ford algorithm solves the single-source shortest path
problem in graphs with negative edge lengths in the sense that it either
computes the correct shortest-path distances or correctly determines
that the input graph has a negative cycle.8 This algorithm will follow
naturally from the design pattern that we used in our other dynamic
programming case studies.

18.2.1 The Subproblems

As always with dynamic programming, the most important step is to
understand the different ways that an optimal solution might be built
up from optimal solutions to smaller subproblems. Formulating the
right measure of subproblem size can be tricky for graph problems.
Your first guess might be that subproblems should correspond to
subgraphs of the original input graph, with subproblem size equal to
the number of vertices or edges in the subgraph. This idea worked
well in the WIS problem on path graphs (Section 16.2), in which
the vertices were inherently ordered and it was relatively clear which
subgraphs to focus on (prefixes of the input graph). With a general
graph, however, there is no intrinsic ordering of the vertices or edges,
and few clues about which subgraphs are the relevant ones.

7This is equivalent to the Pigeonhole Principle: No matter how you stuff n+1
pigeons into n holes, there will be a hole with at least two pigeons.

8This algorithm was discovered independently by many different people in the
mid-to-late 1950s, including Richard E. Bellman and Lester R. Ford, Jr., though
ironically Alfonso Shimbel appears to have been the first. History buffs should
check out the paper “On the History of the Shortest Path Problem,” by Alexander
Schrijver (Documenta Mathematica, 2012).

18.2 The Bellman-Ford Algorithm 173

The Bellman-Ford algorithm takes a different tack, one inspired
by the inherently sequential nature of the output of the single-source
shortest path problem (i.e., of paths). Intuitively, you might expect
that a prefix P 0 of a shortest path P would itself be a shortest path,
albeit to a different destination:

s

w

v

P’ = (shortest?) s-w path

lwv

P = shortest s-v path

Yet even assuming that this is true (which it is, as we’ll see), in what
sense is the prefix P 0 solving a “smaller” subproblem than the original
path P? With negative edge lengths, the length of P 0 might even be
larger than that of P . What we do know is that P 0 contains fewer edges

than P , which motivates the inspired idea behind the Bellman-Ford
algorithm: Introduce a hop count parameter i that artificially restricts
the number of edges allowed in a path, with “bigger” subproblems
having larger edge budgets i. Then, a path prefix can indeed be
viewed as a solution to a smaller subproblem.

For example, consider the graph

s

1

t

2 2

1

1

v

u w

and, for the destination t, the subproblems corresponding to successive
values of the edge budget i. When i is 0 or 1, there are no s-t paths
with i edges or less, and no solutions to the corresponding subproblems.
The shortest-path distance subject to the hop count constraint is
effectively +1. When i is 2, there is a unique s-t path with at most i
edges (s ! v ! t), and the value of the subproblem is 4. If we bump
up i to 3 (or more), the path s ! u ! w ! t becomes eligible and
lowers the shortest-path distance from 4 to 3.

174 Shortest Paths Revisited

Bellman-Ford Algorithm: Subproblems

Compute Li,v, the length of a shortest path with at most i
edges from s to v in G, with cycles allowed. (If no such path
exists, define Li,v as +1.)

(For each i 2 {0, 1, 2, . . .} and v 2 V .)

Paths with cycles are allowed as solutions to a subproblem. If a path
uses an edge multiple times, each use counts against its hop count
budget. An optimal solution might well traverse a negative cycle over
and over, but eventually it will exhaust its (finite) edge budget. For
a fixed destination v, the set of allowable paths grows with i, and
so Li,v can only decrease as i increases.

Unlike our previous dynamic programming case studies, every
subproblem works with the full input (rather than a prefix or subset
of it); the genius of these subproblems lies in how they control the
allowable size of the output.

As stated, the parameter i could be an arbitrarily large positive
integer and there is an infinite number of subproblems. The solution
to Quiz 18.1 hints that perhaps not all of them are important. Shortly,
we’ll see that there’s no reason to bother with subproblems in which i
is greater than n, the number of vertices, which implies that there
are O(n2) relevant subproblems.9

18.2.2 Optimal Substructure

With our clever choice of subproblems in hand, we can study how
optimal solutions must be built up from optimal solutions to smaller
subproblems. Consider an input graph G = (V,E) with source vertex
s 2 V , and fix a subproblem, which is defined by a destination
vertex v 2 V and a hop count constraint i 2 {1, 2, 3, . . .}. Suppose P
is an s-v path with at most i edges, and moreover is a shortest such
path. What must it look like? If P doesn’t even bother to use up its
edge budget, the answer is easy.

9If this seems like a lot of subproblems, don’t forget that the single-source
shortest path problem is really n different problems in one (with one problem per
destination vertex). There’s only a linear number of subproblems per value in
the output, which is as good or better than all our other dynamic programming
algorithms.

18.2 The Bellman-Ford Algorithm 175

Case 1: P has i� 1 or fewer edges. In this case, the path P can
immediately be interpreted as a solution to the smaller subproblem
with edge budget i� 1 (still with destination v). The path P must
be an optimal solution to this smaller subproblem, as any shorter s-v
path with at most i� 1 edges would also be a superior solution to the
original subproblem, contradicting the purported optimality of P .

If the path P uses its full edge budget, we follow the pattern of
several previous case studies and pluck off the last edge of P to obtain
a solution to a smaller subproblem.

Case 2: P has i edges. Let L denote the length of P . Let P 0

denote the first i� 1 edges of P , and (w, v) its final hop:

s

w

v

P’ = s-w path (i-1 edges, length L - lwv)

lwv

P = s-v path (i edges, length L)

The prefix P 0 is an s-w path with at most i � 1 edges and length
L� `wv.10 There cannot be a shorter such path: If P ⇤ were an s-w
path with at most i�1 edges and length L⇤ < L� `wv, appending the
edge (w, v) to P ⇤ would produce an s-v path with at most i edges and
length L⇤ + `wv < (L� `wv) + `wv = L, contradicting the optimality
of P for the original subproblem.11

This case analysis narrows down the possibilities for an optimal
solution to a subproblem to a small number of candidates.

Lemma 18.1 (Bellman-Ford Optimal Substructure) Let G =
(V,E) be a directed graph with real-valued edge lengths and source

vertex s 2 V . Suppose i � 1 and v 2 V , and let P be a shortest s-v
path in G with at most i edges, with cycles allowed. Then, P is either:

10The path P
0 has exactly i � 1 edges. However, we want to establish its

superiority to all competing s-w paths with i� 1 edges or fewer.
11If P ⇤ already includes the vertex v, adding the edge (w, v) to it creates a

cycle; this is not an issue for the proof, as our subproblem definition permits paths
with cycles.

176 Shortest Paths Revisited

(i) a shortest s-v path with at most i� 1 edges; or

(ii) for some w 2 V , a shortest s-w path with at most i� 1 edges,

supplemented with the edge (w, v) 2 E.

How many candidates, exactly?

Quiz 18.2

How many candidates are there for an optimal solution to
a subproblem with the destination v? (Let n denote the
number of vertices in the input graph. The in- and out-
degree of a vertex is the number of incoming and outgoing
edges, respectively.)

a) 2

b) 1 + the in-degree of v

c) 1 + the out-degree of v

d) n

(See Section 18.2.9 for the solution and discussion.)

18.2.3 Recurrence

As usual, the next step is to compile our understanding of optimal
substructure into a recurrence that implements exhaustive search
over the possible candidates for an optimal solution. The best of the
candidates identified in Lemma 18.1 must be an optimal solution.

Corollary 18.2 (Bellman-Ford Recurrence) With the assump-

tions and notation of Lemma 18.1, let Li,v denote the minimum length

of an s-v path with at most i edges, with cycles allowed. (If there are

no such paths, then Li,v = +1.) For every i � 1 and v 2 V ,

Li,v = min

⇢
Li�1,v (Case 1)

min(w,v)2E{Li�1,w + `wv} (Case 2)

�
. (18.1)

The outer “min” in the recurrence implements the exhaustive search
over Case 1 and Case 2. The inner “min” implements the exhaustive

18.2 The Bellman-Ford Algorithm 177

search inside Case 2 over all possible choices for the final hop of a
shortest path. If Li�1,v and all the relevant Li�1,w’s are +1, then v is
unreachable from s in i or fewer hops, and we interpret the recurrence
as computing Li,v = +1.

18.2.4 When Should We Stop?

With so much dynamic programming experience now under your belt,
your Pavlovian response to the recurrence in Corollary 18.2 might
be to write down a dynamic programming algorithm that uses it
repeatedly to systematically solve every subproblem. Presumably,
the algorithm would start by solving the smallest subproblems (with
edge budget i = 0), followed by the next-smallest subproblems (with
i = 1), and so on. One little issue: In the subproblems defined in
Section 18.2.1, the edge budget i can be an arbitrarily large positive
integer, which means there’s an infinite number of subproblems. How
do we know when to stop?

A good stopping criterion follows from the observation that the
solutions to a given batch of subproblems, with a fixed edge budget i
and v ranging over all possible destinations, depend only on the
solutions to the previous batch of subproblems (with edge budget i�1).
Thus, if one batch of subproblems ever has exactly the same optimal
solutions as the previous one (with Case 1 of the recurrence winning
for every destination), these optimal solutions will remain the same
forevermore.

Lemma 18.3 (Bellman-Ford Stopping Criterion) Under the

assumptions and notation of Corollary 18.2, if for some k � 0

Lk+1,v = Lk,v for every destination v,

then:

(a) Li,v = Lk,v for every i � k and destination v; and

(b) for every destination v, Lk,v is the correct shortest-path distance

dist(s, v) from s to v in G.

Proof: By assumption, the input to the recurrence in (18.1) in the
(k + 2)th batch of subproblems (i.e., the Lk+1,v’s) is the same as it
was for the (k + 1)th batch (i.e., the Lk,v’s). Thus, the output of

178 Shortest Paths Revisited

the recurrence (the Lk+2,v’s) will also be the same as it was for the
previous batch (the Lk+1,v’s). Repeating this argument as many times
as necessary shows that the Li,v’s remain the same for all batches
i � k. This proves part (a).

For part (b), suppose for contradiction that Lk,v 6= dist(s, v) for
some destination v. Because Lk,v is the minimum length of an s-v
path with at most k hops, there must be an s-v path with i > k hops
and length smaller than Lk,v. But then Li,v < Lk,v, contradicting
part (a) of the lemma. QE D

Lemma 18.3 promises that it’s safe to stop as soon as subproblem
solutions stabilize, with Lk+1,v = Lk,v for some k � 0 and all v 2 V .
But will this ever happen? In general, no. If the input graph has

no negative cycles, however, subproblem solutions are guaranteed to
stabilize by the time i reaches n, the number of vertices.

Lemma 18.4 (Bellman-Ford with No Negative Cycles)
Under the assumptions and notation of Corollary 18.2, and also

assuming that the input graph G has no negative cycles,

Ln,v = Ln�1,v for every destination v,

where n is the number of vertices in the input graph.

Proof: The solution to Quiz 18.1 implies that, for every destination v,
there is a shortest s-v path with at most n� 1 edges. In other words,
increasing the edge budget i from n�1 to n (or to any bigger number)
has no effect on the minimum length of an s-v path. QE D

Lemma 18.4 shows that if the input graph does not have a neg-
ative cycle, subproblem solutions stabilize by the nth batch. Or in
contrapositive form: If subproblem solutions fail to stabilize by the
nth batch, the input graph does have a negative cycle.

In tandem, Lemmas 18.3 and 18.4 tell us the last batch of sub-
problems that we need to bother with: the batch with i = n. If
subproblem solutions stabilize (with Ln,v = Ln�1,v for all v 2 V),
Lemma 18.3 implies that the Ln�1,v’s are the correct shortest-path
distances. If subproblem solutions don’t stabilize (with Ln,v 6= Ln�1,v

for some v 2 V), the contrapositive of Lemma 18.4 implies that the
input graph G contains a negative cycle, in which case the algorithm is
absolved from computing shortest-path distances. (Recall the problem
definition in Section 18.1.2.)

18.2 The Bellman-Ford Algorithm 179

18.2.5 Pseudocode

The justifiably famous Bellman-Ford algorithm now writes itself:
Use the recurrence in Corollary 18.2 to systematically solve all the
subproblems, up to an edge budget of i = n.

Bellman-Ford

Input: directed graph G = (V,E) in adjacency-list
representation, a source vertex s 2 V , and a
real-valued length `e for each e 2 E.

Output: dist(s, v) for every vertex v 2 V , or a
declaration that G contains a negative cycle.

// subproblems (i indexed from 0, v indexes V)
A := (n+ 1)⇥ n two-dimensional array
// base cases (i = 0)
A[0][s] := 0
for each v 6= s do

A[0][v] := +1
// systematically solve all subproblems
for i = 1 to n do // subproblem size

stable := TRUE // for early stopping
for v 2 V do

// use recurrence from Corollary 18.2
A[i][v] :=
min{A[i� 1][v]| {z }

Case 1

, min
(w,v)2E

{A[i� 1][w] + `wv}
| {z }

Case 2

}

if A[i][v] 6= A[i� 1][v] then
stable := FALSE

if stable = TRUE then // done by Lemma 18.3
return {A[i� 1][v]}v2V

// failed to stabilize in n iterations
return “negative cycle” // correct by Lemma 18.4

The double for loop reflects the two parameters used to define sub-
problems, the edge budget i and the destination vertex v. By the
time a loop iteration must compute the subproblem solution A[i][v],
all values of the form A[i � 1][v] or A[i � 1][w] have already been

180 Shortest Paths Revisited

computed in the previous iteration of the outer for loop (or in the
base cases) and are ready and waiting to be looked up in constant
time.

Induction (on i) shows that the Bellman-Ford algorithm solves
every subproblem correctly, with A[i][v] assigned the correct value Li,v;
the recurrence in Corollary 18.2 justifies the inductive step. If subprob-
lem solutions stabilize, the algorithm returns the correct shortest-path
distances (by Lemma 18.3). If not, the algorithm correctly declares
that the input graph contains a negative cycle (by Lemma 18.4).

18.2.6 Example

For an example of the Bellman-Ford algorithm in action, consider
the following input graph:

u

s

2

t

4 4

2

v

w
2

-1 A[0][s]=0

A[0][u]=+∞ A[0][w]=+∞

A[0][t]=+∞

A[0][v]=+∞

The vertices are labeled with the solutions to the first batch of sub-
problems (with i = 0).

Each iteration of the algorithm evaluates the recurrence (18.1)
at each vertex, using the values computed in the previous iteration.
In the first iteration, the recurrence evaluates to 0 at s (s has no
incoming edges, so Case 2 of the recurrence is vacuous); to 2 at u
(because A[0][s] + `su = 2); to 4 at v (because A[0][s] + `sv = 4); and
to +1 at w and t (because A[0][u] and A[0][v] are both +1):

u

s

2

t

4 4

2

v

w
2

-1
A[1][s]=0
A[0][s]=0

A[1][u]=2
A[0][u]=+∞

A[1][t]=+∞
A[0][t]=+∞

A[1][v]=4
A[0][v]=+∞

A[1][w]=+∞
A[0][w]=+∞

18.2 The Bellman-Ford Algorithm 181

In the next iteration, both s and u inherit solutions from the previous
iteration. The value at v drops from 4 (corresponding to the one-hop
path s ! v) to 1 (corresponding to the two-hop path s ! u ! v).
The new values at w and t are 4 (because A[1][u] + `uw = 4) and 8
(because A[1][v] + `vt = 8):

u

s

2

t

4 4

2

v

w
2

-1
A[2][s]=0
A[1][s]=0
A[0][s]=0

A[2][u]=2
A[1][u]=2
A[0][u]=+∞

A[2][t]=8
A[1][t]=+∞
A[0][t]=+∞

A[2][v]=1
A[1][v]=4
A[0][v]=+∞

A[2][w]=4
A[1][w]=+∞
A[0][w]=+∞

Note that the decrease in shortest-path distance to v in this iteration
does not propagate to t immediately, only in the next iteration.

In the third iteration, the value at t drops to 5 (because A[2][v] +
`vt = 5, which is better than both A[2][t] = 8 and A[2][w] + `wt = 6)
and the other four vertices inherit solutions from the previous iteration:

u

s

2

t

4 4

2

v

w
2

-1

A[3][s]=0
A[2][s]=0
A[1][s]=0
A[0][s]=0

A[3][u]=2
A[2][u]=2
A[1][u]=2
A[0][u]=+∞

A[3][t]=5
A[2][t]=8
A[1][t]=+∞
A[0][t]=+∞

A[3][v]=1
A[2][v]=1
A[1][v]=4
A[0][v]=+∞

A[3][w]=4
A[2][w]=4
A[1][w]=+∞
A[0][w]=+∞

Nothing changes in the fourth iteration:

182 Shortest Paths Revisited

u

s

2

t

4 4

2

v

w
2

-1

A[4][s]=0
A[3][s]=0
A[2][s]=0
A[1][s]=0
A[0][s]=0

A[4][u]=2
A[3][u]=2
A[2][u]=2
A[1][u]=2
A[0][u]=+∞

A[4][t]=5
A[3][t]=5
A[2][t]=8
A[1][t]=+∞
A[0][t]=+∞

A[4][v]=1
A[3][v]=1
A[2][v]=1
A[1][v]=4
A[0][v]=+∞

A[4][w]=4
A[3][w]=4
A[2][w]=4
A[1][w]=+∞
A[0][w]=+∞

and at this point the algorithm halts with the correct shortest-path
distances.12

18.2.7 Running Time

The running time analysis of the Bellman-Ford algorithm is more
interesting than those of our other dynamic programming algorithms.

Quiz 18.3

What’s the running time of the Bellman-Ford algorithm,
as a function of m (the number of edges) and n (the number
of vertices)? (Choose the strongest true statement.)

a) O(n2)

b) O(mn)

c) O(n3)

d) O(mn2)

(See Section 18.2.9 for the solution and discussion.)

Summarizing everything we now know about the Bellman-Ford
algorithm:

12For an example of the algorithm in action on an input graph with a negative
cycle, see Problem 18.1.

18.2 The Bellman-Ford Algorithm 183

Theorem 18.5 (Properties of Bellman-Ford) For every input

graph G = (V,E) with n vertices, m edges, real-valued edge lengths,

and a source vertex s, the Bellman-Ford algorithm runs in O(mn)
time and either:

(i) returns the shortest-path distance from s to every destination

v 2 V ; or

(ii) detects that G contains a negative cycle.

As usual, shortest paths can be reconstructed by tracing back through
the final array A computed by the Bellman-Ford algorithm.13

18.2.8 Internet Routing

The Bellman-Ford algorithm solves a more general problem than
Dijkstra’s algorithm (because it accommodates negative edge lengths).
Its second advantage is that it is more “distributed” than Dijkstra’s
algorithm, and for this reason has played the more prominent role
in the evolution of Internet routing protocols.14 Evaluating the re-
currence (18.1) at a vertex v requires information only about vertices
directly connected to v: the vertices w with an edge (w, v). This
suggests that the Bellman-Ford algorithm might be implementable
even at an Internet scale, with each machine communicating only
with its immediate neighbors and performing only local computa-
tions, blissfully unaware of what’s going on in the rest of the network.
Indeed, the Bellman-Ford algorithm directly inspired the early Inter-

13For reconstruction purposes, it’s a good idea to add one line of code that
caches with each vertex v the most recent predecessor w that triggered a Case 2-
update of the form A[i][v] := A[i�1][w]+`wv. (For example, with the input graph
in Section 18.2.6, the vertex v’s predecessor would be initialized to null, reset to s

after the first iteration, and reset again to u after the second iteration.) You can
then reconstruct a shortest s-v path backward in O(n) time using the final batch
of predecessors by starting from v and following the predecessor trail back to s.
As a bonus, because each batch of subproblem solutions and predecessors depends
only on those from the previous batch, both the forward and reconstruction passes
require only O(n) space (analogous to Problem 17.5). See the bonus video at
www.algorithmsilluminated.org for more details.

14The Bellman-Ford algorithm was discovered long before the Internet was
a gleam in anyone’s eye—over 10 years before the ARPANET, which was the
earliest precursor to the Internet.

184 Shortest Paths Revisited

net routing protocols RIP and RIP2—yet another example of how
algorithms shape the world as we know it.15

18.2.9 Solutions to Quizzes 18.2–18.3

Solution to Quiz 18.2

Correct answer: (b). The optimal substructure lemma
(Lemma 18.1) is stated as if there were two candidates for an op-
timal solution, but Case 2 comprises several subcases, one for each
possible final hop (w, v) of an s-v path. The possible final hops are
the incoming edges at v. Thus, Case 1 contributes one candidate
and Case 2 a number of candidates equal to the in-degree of v. This
in-degree could be as large as n � 1 in a directed graph (with no
parallel edges), but is generally much smaller, especially in sparse
graphs.

Solution to Quiz 18.3

Correct answer: (b). The Bellman-Ford algorithm solves (n+1) ·
n = O(n2) different subproblems, where n is the number of vertices.
If the algorithm performed only a constant amount of work per
subproblem (like in all our previous dynamic programming algorithms
aside from OptBST), the running time of the algorithm would also
be O(n2). But solving a subproblem for a destination v boils down
to computing the recurrence in Corollary 18.2 which, by Quiz 18.2,
involves exhaustive search through 1 + in-deg(v) candidates, where
in-deg(v) is the number of incoming edges at v.16 Because the in-
degree of a vertex could be as large as n� 1, this would seem to give
a running time bound of O(n) per-subproblem, for an overall running
time bound of O(n3).

15“RIP” stands for “Routing Information Protocol.” If you’re looking to nerd
out, the nitty-gritty details of the RIP and RIP2 protocols are described in
RFCs 1058 and 2453, respectively. (“RFC” stands for “request for comments” and
is the primary mechanism by which changes to Internet standards are vetted
and communicated.) Bonus videos at www.algorithmsilluminated.org describe
some of the engineering challenges involved.

16Assuming the input graph is represented using adjacency lists (in particular
that an array of incoming edges is associated with each vertex), this exhaustive
search can be implemented in time linear in 1 + in-deg(v).

18.3 The All-Pairs Shortest Path Problem 185

We can do better. Zoom in on a fixed iteration of the outer for
loop of the algorithm, with some fixed value of i. The total work
performed over all iterations of the inner for loop is proportional to

X

v2V
(1 + in-deg(v)) = n+

X

v2V
in-deg(v)

| {z }
=m

.

The sum of the in-degrees also goes by a simpler name: m, the number
of edges. To see this, imagine removing all the edges from the input
graph and adding them back in, one by one. Each new edge adds 1
to the overall edge count, and also adds 1 to the in-degree of exactly
one vertex (the head of that edge).

Thus, the total work performed in each of the outer for loop
iterations is O(m+n) = O(m).17 There are at most n such iterations
and O(n) work is performed outside the double for loop, leading to
an overall running time bound of O(mn). In sparse graphs, where m
is linear or near-linear in n, this time bound is much better than the
more naive bound of O(n3).

18.3 The All-Pairs Shortest Path Problem

18.3.1 Problem Definition

Why be content computing shortest-path distances from only a single
source vertex? For example, an algorithm for computing driving
directions should accommodate any possible origin; this corresponds
to the all-pairs shortest path problem. We continue to allow negative
edge lengths and negative cycles in the input graph.

Problem: All-Pairs Shortest Paths

Input: A directed graph G = (V,E) with n vertices and m
edges, and a real-valued length `e for each edge e 2 E.

Output: One of the following:

17Technically, this assumes that m is at least a constant times n, as would be
the case if, for example, every vertex v was reachable from the source vertex s. Do
you see how to tweak the algorithm to obtain a per-iteration time bound of O(m)
without this assumption?

186 Shortest Paths Revisited

(i) the shortest-path distance dist(v, w) for every ordered
vertex pair v, w 2 V ; or

(ii) a declaration that G contains a negative cycle.

There is no source vertex in the all-pairs shortest path problem. In
case (i), the algorithm is responsible for outputting n2 numbers.18

18.3.2 Reduction to Single-Source Shortest Paths

If you’re on the lookout for reductions (as you should be; see page 100),
you might already see how to apply your ever-growing algorithmic
toolbox to the all-pairs shortest path problem. One natural approach
is to make repeated use of a subroutine that solves the single-source
shortest path problem (like the Bellman-Ford algorithm).

Quiz 18.4

How many invocations of a single-source shortest path sub-
routine are needed to solve the all-pairs shortest path prob-
lem? (As usual, n denotes the number of vertices.)

a) 1

b) n� 1

c) n

d) n2

(See Section 18.3.3 for the solution and discussion.)

Plugging in the Bellman-Ford algorithm (Theorem 18.5) for the
single-source shortest path subroutine in Quiz 18.4 gives an O(mn2)-
time algorithm for the all-pairs shortest path problem.19

18One important application of algorithms for the all-pairs shortest path
problem is to computing the transitive closure of a binary relation. The latter
problem is equivalent to the all-pairs reachability problem: Given a directed graph,
identify all vertex pairs v, w for which the graph contains at least one v-w path
(i.e., for which the hop-count shortest-path distance is finite).

19Dijkstra’s algorithm can substitute for the Bellman-Ford algorithm if edges’
lengths are nonnegative, in which case the running time improves to O(mn log n).

18.4 The Floyd-Warshall Algorithm 187

Can we do better? The running time bound of O(mn2) is particu-
larly problematic in dense graphs. For example, if m = ⇥(n2), the
running time is quartic in n—a running time we haven’t seen before
and, hopefully, will never see again!

18.3.3 Solution to Quiz 18.4

Correct answer: (c). One invocation of the single-source shortest
path subroutine will compute shortest-path distances from a single
vertex s to every vertex of the graph (n numbers in all, out of the n2

required). Invoking the subroutine once for each of the n choices
for s computes shortest-path distances for every possible origin and
destination.20

18.4 The Floyd-Warshall Algorithm

This section solves the all-pairs shortest path problem from scratch and
presents our final case study of the dynamic programming algorithm
design paradigm. The end result is another selection from the greatest
hits compilation, the Floyd-Warshall algorithm.21

18.4.1 The Subproblems

Graphs are complex objects. Coming up with the right set of sub-
problems for a dynamic programming solution to a graph problem
can be tricky. The ingenious idea behind the subproblems in the
Bellman-Ford algorithm for the single-source shortest path problem
(Section 18.2.1) is to always work with the original input graph and
impose an artificial constraint on the number of edges allowed in the
solution to a subproblem. The edge budget then serves as a measure of
subproblem size, and a prefix of an optimal solution to a subproblem
can be interpreted as a solution to a smaller subproblem (with the
same origin but a different destination).

In sparse graphs (with m = O(n) or close to it), this approaches the best we could
hope for (as merely writing down the output already requires quadratic time).

20If the input graph has a negative cycle, it will be detected by one of the
invocations of the single-source shortest path subroutine.

21Named after Robert W. Floyd and Stephen Warshall, but also discovered
independently by a number of other researchers in the late 1950s and early 1960s.

188 Shortest Paths Revisited

The big idea in the Floyd-Warshall algorithm is to go one step
further and artificially restrict the identities of the vertices that are
allowed to appear in a solution. To define the subproblems, consider
an input graph G = (V,E) and arbitrarily assign its vertices the
names 1, 2, . . . , n (where n = |V |). Subproblems are then indexed by
prefixes {1, 2, . . . , k} of the vertices, with k serving as the measure of
subproblem size, as well as an origin v and destination w.

Floyd-Warshall Algorithm: Subproblems

Compute Lk,v,w, the minimum length of a path in the input
graph G that:

(i) begins at v;

(ii) ends at w;

(iii) uses only vertices from {1, 2, . . . , k} as internal
vertices22; and

(iv) does not contain a directed cycle.

(If no such path exists, define Lk,v,w as +1.)

(For each k 2 {0, 1, 2, . . . , n} and v, w 2 V .)

There are (n + 1) · n · n = O(n3) subproblems, which is a linear
number for each of the n2 values in the output. The batch of largest
subproblems (with k = n) corresponds to the original problem. For
a fixed origin v and destination w, the set of allowable paths grows
with k, and so Lk,v,w can only decrease as k increases.

For example, consider the graph

1

2

5

-10 -10

-4

5

4

2 3

22Every vertex of a path other than its endpoints is an internal vertex.

18.4 The Floyd-Warshall Algorithm 189

and, for the origin 1 and the destination 5, the subproblems corre-
sponding to successive values of the prefix length k. When k is 0, 1,
or 2, there are no paths from 1 to 5 such that every internal vertex
belongs to the prefix {1, 2, . . . , k}, and the subproblem’s solution
is +1. When k = 3, the path 1 ! 2 ! 3 ! 5 becomes the unique
eligible path; it has length 2 + (�4) + 5 = 3. (The two-hop path is
disqualified because it includes vertex 4 as an internal vertex. The
three-hop path qualifies even though the vertex 5 does not belong
to the prefix {1, 2, 3}; as the destination, that vertex is granted an
exemption.) When k = 4 (or larger), the subproblem solution is the
length of the true shortest path 1 ! 4 ! 5, which is �20.

In the next section, we’ll see that the payoff of defining subproblems
in this way is that there are only two candidates for the optimal
solution to a subproblem, depending on whether it makes use of the last
allowable vertex k.23 This leads to a dynamic programming algorithm
that performs only O(1) work per subproblem and is therefore faster
than n invocations of the Bellman-Ford algorithm (with running
time O(n3) rather than O(mn2)).24

18.4.2 Optimal Substructure

Consider an input graph G = (V,E) with vertices labeled 1 to n, and
fix a subproblem, defined by an origin vertex v, a destination vertex w,
and a prefix length k 2 {1, 2, . . . , n}. Suppose P is a v-w path with
no cycles and all internal vertices in {1, 2, . . . , k}, and moreover is a
shortest such path. What must it look like? A tautology: The last
allowable vertex k either appears as an internal vertex of P , or it
doesn’t.

Case 1: Vertex k is not an internal vertex of P . In this
case, the path P can immediately be interpreted as a solution to
a smaller subproblem with prefix length k � 1, still with origin v
and destination w. The path P must be an optimal solution to the
smaller subproblem; any superior solution would also be superior for
the original subproblem, a contradiction.

23By contrast, the number of candidate solutions to a subproblem in the
Bellman-Ford algorithm depends on the in-degree of the destination (Quiz 18.2).

24Ignore the uninteresting case in which m is much smaller than n; see also
footnote 17.

190 Shortest Paths Revisited

Case 2: Vertex k is an internal vertex of P . In this case, the
path P can be interpreted as the amalgamation of two solutions to
smaller subproblems: the prefix P1 of P that travels from v to k, and
the suffix P2 of P that travels from k to w.

v

k

w

P1 = v-k path (cycle-free, length L1)
(all internal vertices in {1,2,...,k-1})

P = v-w path (cycle-free, length L, all internal vertices in {1,2,...,k})

P2 = k-w path (cycle-free, length L2)
(all internal vertices in {1,2,...,k-1})

The vertex k appears in P only once (because P has no cycles) and
therefore is not an internal vertex of P1 or P2. Thus, we can view P1

and P2 as solutions to smaller subproblems, with origins v and k and
destinations k and w, respectively, and with all internal vertices in
{1, 2, . . . , k � 1}.25,26

You can guess the next step: We want to prove that P1 and P2

are, in fact, optimal solutions to these smaller subproblems. Let L, L1,
and L2 denote the lengths of P , P1, and P2, respectively. Because P
is the union of P1 and P2, L = L1 + L2.

Suppose, for contradiction, that P1 is not an optimal solution to its
subproblem; the argument for P2 is analogous. Then, there is a cycle-
free path P ⇤

1 from v to k with internal vertices in {1, 2, . . . , k � 1}
and length L⇤

1 < L1. But then the concatenation of P ⇤
1 and P2

would be a cycle-free path P ⇤ from v to w with internal vertices in
{1, 2, . . . , k} and length L⇤

1 + L2 < L1 + L2 = L, contradicting the
assumed optimality of P .

Quiz 18.5

Do you see any bugs in the argument above? (Choose all
that apply.)

25This argument explains why the Floyd-Warshall subproblems, in contrast to
the Bellman-Ford subproblems, impose the cycle-free condition (iv).

26This approach would not work well for the single-source shortest path problem,
as the suffix path P2 would have the wrong origin vertex.

18.4 The Floyd-Warshall Algorithm 191

a) The concatenation P ⇤ of P ⇤
1 and P2 need not have

origin v.

b) P ⇤ need not have destination w.

c) P ⇤ need not have internal vertices only in {1, 2, . . . , k}.

d) P ⇤ need not be cycle-free.

e) P ⇤ need not have length less than L.

f) Nope, no bugs.

(See Section 18.4.6 for the solution and discussion.)

Is the bug fatal, or do we just need to work a little harder? Suppose
the concatenation P ⇤ of P ⇤

1 and P2 contains a cycle. By repeatedly
splicing out cycles (as in Figure 15.2 and footnote 4 in Chapter 15),
we can extract from P ⇤ a cycle-free path bP with the same origin (v)
and destination (w), and with only fewer internal vertices. The length
of bP equals the length L⇤ of P ⇤, less the sum of the lengths of the
edges in the spliced-out cycles.

If the input graph has no negative cycles, cycle-splicing can only
shorten a path, in which case the length of bP is at most L⇤. In this case,
we’ve salvaged the proof: bP is a cycle-free v-w path with all internal
vertices in {1, 2, . . . , k} and length at most L⇤ < L, contradicting the
assumed optimality of the original path P . We can then conclude that
the vertex k does, indeed, split the optimal solution P into optimal
solutions P1 and P2 to their respective smaller subproblems.

We’re not responsible for computing shortest-path distances for
input graphs with a negative cycle. (Recall the problem definition
in Section 18.3.) Let’s declare victory with the following optimal
substructure lemma.

Lemma 18.6 (Floyd-Warshall Optimal Substructure)
Let G = (V,E) be a directed graph with real-valued edge lengths and

no negative cycles, with V = {1, 2, . . . , n}. Suppose k 2 {1, 2, . . . , n}
and v, w 2 V , and let P be a minimum-length cycle-free v-w path

in G with all internal vertices in {1, 2, . . . , k}. Then, P is either:

(i) a minimum-length cycle-free v-w path with all internal vertices

in {1, 2, . . . , k � 1}; or

192 Shortest Paths Revisited

(ii) the concatenation of a minimum-length cycle-free v-k path with

all internal vertices in {1, 2, . . . , k � 1} and a minimum-length

cycle-free k-w path with all internal vertices in {1, 2, . . . , k � 1}.

Or, in recurrence form:

Corollary 18.7 (Floyd-Warshall Recurrence) With the as-

sumptions and notation of Lemma 18.6, let Lk,v,w denote the

minimum length of a cycle-free v-w path with all internal vertices

in {1, 2, . . . , k}. (If there are no such paths, then Lk,v,w = +1.) For

every k 2 {1, 2, . . . , n} and v, w 2 V ,

Lk,v,w = min

⇢
Lk�1,v,w (Case 1)

Lk�1,v,k + Lk�1,k,w (Case 2)

�
. (18.2)

18.4.3 Pseudocode

Suppose we know that the input graph has no negative cycles, in
which case Lemma 18.6 and Corollary 18.7 apply. We can use the
recurrence to systematically solve all the subproblems, from smallest
to largest. To get started, what are the solutions to the base cases
(with k = 0 and no internal vertices are allowed)?

Quiz 18.6

Let G = (V,E) be an input graph. What is L0,v,w in the
case where: (i) v = w; (ii) (v, w) is an edge of G; and (iii)
v 6= w and (v, w) is not an edge of G?

a) 0, 0, and +1

b) 0, `vw, and `vw

c) 0, `vw, and +1

d) +1, `vw, and +1

(See Section 18.4.6 for the solution and discussion.)

The Floyd-Warshall algorithm computes the base cases using
the solution to Quiz 18.6 and the rest of the subproblems using the
recurrence in Corollary 18.7. The final for loop in the pseudocode

18.4 The Floyd-Warshall Algorithm 193

checks whether the input graph contains a negative cycle and is
explained in Section 18.4.4. See Problems 18.4 and 18.5 for examples
of the algorithm in action.

Floyd-Warshall

Input: directed graph G = (V,E) in adjacency-list or
adjacency-matrix representation, and a real-valued
length `e for each edge e 2 E.

Output: dist(v, w) for every vertex pair v, w 2 V , or a
declaration that G contains a negative cycle.

label the vertices V = {1, 2, . . . , n} arbitrarily
// subproblems (k indexed from 0, v, w from 1)
A := (n+ 1)⇥ n⇥ n three-dimensional array
// base cases (k = 0)
for v = 1 to n do

for w = 1 to n do
if v = w then

A[0][v][w] := 0
else if (v, w) is an edge of G then

A[0][v][w] := `vw
else

A[0][v][w] := +1
// systematically solve all subproblems
for k = 1 to n do // subproblem size

for v = 1 to n do // origin
for w = 1 to n do // destination

// use recurrence from Corollary 18.7
A[k][v][w] :=
min{A[k�1][v][w]| {z }

Case 1

, A[k�1][v][k] +A[k�1][k][w]| {z }
Case 2

}

// check for a negative cycle
for v = 1 to n do

if A[n][v][v] < 0 then
return “negative cycle” // see Lemma 18.8

return {A[n][v][w]}v,w2V

194 Shortest Paths Revisited

The algorithm uses a three-dimensional array of subproblems and
a corresponding triple for loop because subproblems are indexed by
three parameters (an origin, a destination, and a prefix of vertices).
It’s important that the outer loop is indexed by the subproblem
size k, so that all of the relevant terms A[k� 1][v][w] are available for
constant-time look up in each inner loop iteration. (The relative order
of the second and third for loops doesn’t matter.) There are O(n3)
subproblems and the algorithm performs O(1) work for each one (in
addition to O(n2) work outside the triple for loop), so its running time
is O(n3).27,28 Induction (on k) and the correctness of the recurrence
(Corollary 18.7) imply that, when the input graph has no negative
cycle, the algorithm correctly computes the shortest-path distances
between each pair of vertices.29

18.4.4 Detecting a Negative Cycle

What about when the input graph has a negative cycle? How do
we know whether we can trust the solutions to the final batch of
subproblems? The “diagonal” entries of the subproblem array are the
tell.30

Lemma 18.8 (Detecting a Negative Cycle) The input graph

G = (V,E) has a negative cycle if and only if, at the conclusion

of the Floyd-Warshall algorithm, A[n][v][v] < 0 for some vertex

v 2 V .

Proof: If the input graph does not have a negative cycle, then: (i)
Floyd-Warshall correctly computes all shortest-path distances; and

27Unlike most of our graph algorithms, the Floyd-Warshall algorithm is equally
fast and easy-to-implement for graphs represented with an adjacency matrix (where
the (v, w) entry of the matrix is `vw if (v, w) 2 E and +1 otherwise) as for graphs
represented with adjacency lists.

28Because the solutions to a batch of subproblems depend only on those from the
previous batch, the algorithm can be implemented using O(n2) space (analogous
to Problem 17.5).

29Had I shown you the Floyd-Warshall algorithm before your boot camp in
dynamic programming, your response might have been: “That’s an impressively
elegant algorithm, but how could I ever have come up with it myself?” Now that
you’ve achieved a black-belt (or at least brown-belt) level of skill in the art of
dynamic programming, I hope your reaction is: “How could I not have come up
with this algorithm myself?”

30For a different approach, see Problem 18.6.

18.4 The Floyd-Warshall Algorithm 195

(ii) there is no path from a vertex v to itself shorter than the empty
path (which has length 0). Thus A[n][v][v] = 0 for all v 2 V at the
end of the algorithm.

To prove the converse, assume that G has a negative cycle. This
implies that G has a negative cycle with no repeated vertices other
than its start and end. (Do you see why?) Let C denote an arbitrary
such cycle. The Floyd-Warshall algorithm need not compute the
correct shortest-path distances, but it is still the case that A[k][v][w]
is at most the minimum length of a cycle-free v-w path with internal
vertices restricted to {1, 2, . . . , k} (as you should check, by induction
on k).

Suppose the vertex k of C has the largest label. Let v 6= k be
some other vertex of C:

v k

P1

P2

The two sides P1 and P2 of the cycle are cycle-free v-k and k-v paths
with internal vertices restricted to {1, 2, . . . , k � 1}, so A[k � 1][v][k]
and A[k�1][k][v] are at most their respective lengths. Thus A[k][v][v],
which is at most A[k � 1][v][k] +A[k � 1][k][v], is at most the length
of the cycle C, which is less than zero. The final value A[n][v][v] can
only be smaller. QE D

18.4.5 Summary and Open Questions

Summarizing everything we now know about the Floyd-Warshall
algorithm:

Theorem 18.9 (Properties of Floyd-Warshall) For every input

graph G = (V,E) with n vertices and real-valued edge lengths, the

Floyd-Warshall algorithm runs in O(n3) time and either:

196 Shortest Paths Revisited

(i) returns the shortest-path distances between each pair v, w 2 V
of vertices; or

(ii) detects that G contains a negative cycle.

As usual, shortest paths can be reconstructed by tracing back through
the final array A computed by the Floyd-Warshall algorithm.31

How should we feel about the cubic running time of the Floyd-
Warshall algorithm? We can’t expect a running time better than
quadratic (with a quadratic number of values to report), but there’s
a big gap between cubic and quadratic running times. Can we do
better? Nobody knows! One of the biggest open questions in the
field of algorithms is whether there is an algorithm for the all-pairs
shortest path problem on n-vertex graphs that runs in, say, O(n2.99)
time.32

18.4.6 Solutions to Quizzes 18.5–18.6

Solution to Quiz 18.5

Correct answer: (d). The concatenation P ⇤ of P ⇤
1 and P2 definitely

starts at v (because P ⇤
1 does) and ends at w (because P2 does). The

internal vertices of P ⇤ are the same as those of P ⇤
1 and of P2, plus the

new internal vertex k. Because all of the internal vertices of P ⇤
1 and P2

belong to {1, 2, . . . , k � 1}, all of the internal vertices of P ⇤ belong
to {1, 2, . . . , k}. The length of the concatenation of two paths is the
sum of their lengths, so P ⇤ does indeed have length L⇤

1 + L2 < L.

31Analogous to the Bellman-Ford algorithm (footnote 13), it’s a good idea
to maintain with each vertex pair v, w the last hop of a minimum-length cycle-
free v-w path with internal vertices restricted to {1, 2, . . . , k}. (If Case 1 of the
recurrence wins for the vertex pair v, w in the kth batch of subproblems, the
last hop for the pair remains the same. If Case 2 wins, the last hop for v, w is
reassigned to the most recent last hop for k, w.) Reconstruction for a given vertex
pair then requires only O(n) time.

32We can do better than the Floyd-Warshall algorithm for graphs that are
not very dense. For example, a clever trick reduces the all-pairs shortest path
problem (with negative edge lengths) to one invocation of the Bellman-Ford
algorithm followed by n� 1 invocations of Dijkstra’s algorithm. This reduction,
which is called Johnson’s algorithm and described in the bonus videos at www.

algorithmsilluminated.org, runs in O(mn)+(n�1) ·O(m log n) = O(mn log n)
time. This is subcubic in n except when m is very close to quadratic in n.

18.4 The Floyd-Warshall Algorithm 197

The issue is that the concatenation of two cycle-free paths need
not be cycle-free. For example, in the graph

2 5 1

4

3

concatenating the path 1 ! 2 ! 5 with the path 5 ! 3 ! 2 ! 4
produces a path that contains the directed cycle 2 ! 5 ! 3 ! 2.

Solution to Quiz 18.6

Correct answer: (c). If v = w, the only v-w path with no internal
vertices is the empty path (with length 0). If (v, w) 2 E, the only
such path is the one-hop path v ! w (with length `vw). If v 6= w
and (v, w) /2 E, there are no v-w paths with no internal vertices and
L0,v,w = +1.

The Upshot

P It is not obvious how to define shortest-path
distances in a graph with a negative cycle.

P In the single-source shortest path problem, the
input consists of a directed graph with edge
lengths and a source vertex. The goal is either
to compute the length of a shortest path from
the source vertex to every other vertex or to
detect that the graph has a negative cycle.

P The Bellman-Ford algorithm is a dynamic pro-
gramming algorithm that solves the single-
source shortest path problem in O(mn) time,
where m and n are the number of edges and
vertices of the input graph, respectively.

P The key idea in the Bellman-Ford algorithm is to

198 Shortest Paths Revisited

parameterize subproblems by an edge budget i
(in addition to a destination) and consider only
paths with i or fewer edges.

P The Bellman-Ford algorithm has played a promi-
nent role in the evolution of Internet routing
protocols.

P In the all-pairs shortest path problem, the input
consists of a directed graph with edge lengths.
The goal is to either compute the length of a
shortest path from every vertex to every other
vertex, or detect that the graph has a negative
cycle.

P The Floyd-Warshall algorithm is a dynamic pro-
gramming algorithm that solves the all-pairs
shortest path problem in O(n3) time, where n
is the number of vertices of the input graph.

P The key idea in the Floyd-Warshall algorithm
is to parameterize subproblems by a prefix of k
vertices (in addition to an origin and a destina-
tion) and consider only cycle-free paths with all
internal vertices in {1, 2, . . . , k}.

Test Your Understanding

Problem 18.1 (S) For the input graph

u v s

x

w

-2

-3 -1

4

1

what are the final array entries of the Bellman-Ford algorithm from
Section 18.2?

Problems 199

Problem 18.2 (S) Lemma 18.3 shows that once the subproblem
solutions stabilize in the Bellman-Ford algorithm (with Lk+1,v = Lk,v

for every destination v), they remain the same forevermore (with
Li,v = Lk,v for all i � k and v 2 V). Is this also true on a per-vertex
basis? That is, is it true that, whenever Lk+1,v = Lk,v for some k � 0
and destination v, Li,v = Lk,v for all i � k? Provide either a proof or
a counterexample.

Problem 18.3 (H) Consider a directed graph G = (V,E) with n
vertices, m edges, a source vertex s 2 V , real-valued edge lengths, and
no negative cycles. Suppose you know that every shortest path in G
from s to another vertex has at most k edges. How quickly can you
solve the single-source shortest path problem? (Choose the strongest
statement that is guaranteed to be true.)

a) O(m+ n)

b) O(kn)

c) O(km)

d) O(mn)

Problem 18.4 (S) For the input graph

4

3

1

2

2 3 5

4

1

what are the final array entries of the Floyd-Warshall algorithm
from Section 18.4?

Problem 18.5 (S) For the input graph

4

3

1

2

2 -3 5

-4

1

what are the final array entries of the Floyd-Warshall algorithm?

200 Shortest Paths Revisited

Challenge Problems

Problem 18.6 (S) The Floyd-Warshall algorithm runs in O(n3)
time on graphs with n vertices and m edges, whether or not the input
graph contains a negative cycle. Modify the algorithm so that it solves
the all-pairs shortest path problem in O(mn) time for input graphs
with a negative cycle and O(n3) time otherwise.

Problem 18.7 (H) Which of the following problems can be solved
in O(n3) time, where n is the number of vertices in the input graph?

a) Given a directed graph G = (V,E) with nonnegative edge
lengths, compute the maximum length of a shortest path be-
tween any pair of vertices (that is, maxv,w2V dist(v, w)).

b) Given a directed acyclic graph with real-valued edge lengths,
compute the length of a longest path between any pair of vertices.

c) Given a directed graph with nonnegative edge lengths, compute
the length of a longest cycle-free path between any pair of
vertices.

d) Given a directed graph with real-valued edge lengths, compute
the length of a longest cycle-free path between any pair of
vertices.

Programming Problems

Problem 18.8 Implement in your favorite programming language
the Bellman-Ford and Floyd-Warshall algorithms. For the all-pairs
shortest path problem, how much faster is the Floyd-Warshall al-
gorithm than n invocations of the Bellman-Ford algorithm? For
bonus points, implement the space optimizations and linear-time re-
construction algorithms outlined in footnotes 13, 28, and 31. (See
www.algorithmsilluminated.org for test cases and challenge data
sets.)

Epilogue: A Field Guide to Algorithm Design

With three parts of the Algorithms Illuminated series under your belt,
you now possess a rich algorithmic toolbox suitable for tackling a
wide range of computational problems. When putting it into practice,
you might find the sheer number of algorithms, data structures, and
design paradigms daunting. When confronted with a new problem,
what’s the most effective way to put your tools to work? To give you
a starting point, I’ll tell you the typical recipe I use when I need to
understand a new computational problem. I encourage you to develop
your own recipe based on your personal experience.

1. Can you avoid solving the problem from scratch? Is it a disguised
version, variant, or special case of a problem that you already
know how to solve? For example, can it be reduced to sorting,
graph search, or a shortest-path computation?33 If so, use the
fastest algorithm sufficient for solving the problem.

2. Can you simplify the problem by processing the input using
a for-free primitive, such as sorting or computing connected
components?

3. If you must design a new algorithm from scratch, get calibrated
by identifying the line in the sand drawn by the “obvious” so-
lution (such as exhaustive search). Is the running time of the
obvious solution already good enough?

4. If the obvious solution is inadequate, brainstorm as many natural
greedy algorithms as you can and test them on small examples.

33If you go on to a deeper study of algorithms, beyond the scope of this book
series, you can learn several more problems that show up in disguise all the time. A
few examples include the fast Fourier transform, the maximum flow and minimum
cut problems, bipartite matching, and linear and convex programming.

202 Epilogue: A Field Guide to Algorithm Design

Most likely, all will fail. But the ways in which they fail will
help you better understand the problem.

5. If there is a natural way to break down the problem into smaller
subproblems, how easy would it be to combine their solutions
into one for the original problem? If you see how to do it
efficiently, proceed with the divide-and-conquer paradigm.

6. Try dynamic programming. Can you argue that a solution must
be built up from solutions to smaller subproblems in one of
a small number of ways? Can you formulate a recurrence to
quickly solve a subproblem given solutions to a modest number
of smaller subproblems?

7. In the happy case that you devise a good algorithm for the
problem, can you make it even better by deploying the right
data structures? Look for significant computations that your al-
gorithm performs over and over again (like lookups or minimum
computations). Remember the principle of parsimony: Choose
the simplest data structure that supports all the operations
required by your algorithm.

8. Can you make your algorithm simpler or faster using random-
ization? For example, if your algorithm must choose one object
among many, what happens when it chooses randomly?

9. (To be covered in Part 4.) If all preceding steps end in failure,
contemplate the unfortunate but common possibility that there
is no efficient algorithm for your problem. Can you prove that
your problem is computationally intractable by reducing a known
NP -hard problem to it?

10. (To be covered in Part 4.) Iterate over the algorithm design
paradigms again, this time looking for opportunities for fast
heuristics (especially with greedy algorithms) and better-than-
exhaustive-search exact algorithms (especially with dynamic
programming).

Hints and Solutions to Selected Problems

Hint for Problem 13.1: One of the greedy algorithms can be proved
correct using an exchange argument, similar to the one in Section 13.4.

Hint for Problem 13.2: For each of the incorrect algorithms, there
is a counterexample with only two jobs.

Hint for Problem 13.3: Let Si denote the set of jobs with the i ear-
liest finish times. Prove by induction on i that your greedy algorithm
of choice selects the maximum-possible number of non-conflicting jobs
from Si.

Solution to Problem 14.1: (a). Achieved, for example, by the
code

Symbol Encoding
A 00
B 01
C 10
D 110
E 111

Solution to Problem 14.2: (a). Achieved, for example, by the
code

Symbol Encoding
A 110
B 1110
C 0
D 1111
E 10

Hint for Problem 14.3: For a lower bound, consider symbol fre-
quencies that are powers of 2.

204 Hints and Solutions to Selected Problems

Hint for Problem 14.4: For (c), prove that a letter with frequency
less than 0.33 participates in at least one merge prior to the final
iteration. For (d), see Problem 14.2.

Solution to Problem 14.5: Sort the symbols by frequency and
insert them in increasing order into a queue Q1.34 Initialize an empty
queue Q2. Maintain the following invariants: (i) the elements of Q1

correspond to single-node trees in the current forest F , stored in
increasing order of frequency; (ii) the elements of Q2 correspond to
the multi-node trees of F , stored in increasing order of sum of symbol
frequencies. In each iteration of the algorithm, the trees T1 and T2

with the smallest sums of symbol frequencies can be identified and
removed using a constant number of operations at the fronts of Q1

and Q2. The merger T3 of T1 and T2 is inserted at the back of Q2.
(Exercise: why does invariant (ii) continue to hold?) Every queue
operation (removing from the front or adding to the back) runs in O(1)
time, so the total running time of the n � 1 iterations of the main
loop is O(n).

Hint for Problem 15.1: To reason about T , use Corollary 15.8
or the minimum bottleneck property (page 70). To reason about P ,
think about two s-t paths with different numbers of edges.

Hint for Problem 15.2: Use Lemma 15.7 to prove that the output
is a spanning tree. Prove that every edge that fails to satisfy the
minimum bottleneck property (page 70) is excluded from the final
output and use Theorem 15.6.

Hint for Problem 15.3: Three of the four problems reduce easily
to the MST problem. For one of them, use the fact that ln(x · y) =
lnx+ ln y for x, y > 0.

Solution to Problem 15.4: Suppose an edge e = (v, w) of an
MST T of a graph G does not satisfy the minimum bottleneck property
and let P denote a v-w path in G in which every edge has cost less

34If you’re unfamiliar with queues, now is a good time to read up on them
in your favorite introductory programming book (or on Wikipedia). The gist is
that a queue is a data structure for maintaining a list of objects, and you can
remove stuff from its front or add stuff to its back in constant time. One way to
implement a queue is with a doubly-linked list.

Hints and Solutions to Selected Problems 205

than ce. Removing e from T creates two connected components, S1

(containing v) and S2 (containing w). The v-w path P includes
an edge e0 = (x, y) with x 2 S1 and y 2 S2. The edge set T 0 =
T � {e} [{e0} is a spanning tree with total cost less than that of T ,
contradicting the assumption that T is an MST.

Solution to Problem 15.5: We outline the argument for Kruskal’s
algorithm; the argument for Prim’s algorithm is similar. Let G =
(V,E) be a connected undirected graph with real-valued edge costs
that need not be distinct. We can assume that not all edges have the
same cost, and more generally that not all spanning trees have the
same total cost (why?). Let �1 denote the smallest strictly positive
difference between two edges’ costs. Let M⇤ denote the cost of an
MST of G, and M the minimum cost of a suboptimal spanning
tree of G. Define �2 as M � M⇤ and � = min{�1, �2} > 0. Let ei
denote the ith edge of G considered by the Kruskal algorithm (after
arbitrarily breaking ties in its sorting preprocessing step). Obtain a
new graph G0 from G by increasing the cost of each edge ei from cei
to c0ei = cei + �/2(m�i+1), where m is the number of edges. The cost
of each spanning tree can only increase, and can increase by at most
� ·

P
m

i=1 2
(m�i+1) = � ·

P
m

i=1 2
�i < �. Because � �2, an MST T

of G0 must also be one of G. Because � �1, the edges of G0 have
distinct costs, with edge ei the ith-cheapest edge of G0. The Kruskal
algorithm examines the edges of G and G0 in the same order, and
hence outputs the same spanning tree T ⇤ in both cases. From our
proof of correctness of the Kruskal algorithm for graphs with distinct
edge costs, we know that T ⇤ is an MST of G0, and hence of G as well.

Hint for Problem 15.6: Follow the proof of Theorem 15.6.

Solution to Problem 15.7: For (a), suppose for contradiction that
there is an MST T that excludes e = (v, w). As a spanning tree, T
contains a v-w path P . Because v and w are on different sides of the
cut (A,B), P includes an edge e0 that crosses (A,B). By assumption,
the cost of e0 exceeds that of e. Thus T 0 = T [{e} � {e0} is a
spanning tree with cost less than that of T , a contradiction. For (b),
every iteration of Prim’s algorithm chooses the cheapest edge e that
crosses the cut (X,V �X), where X is the set of vertices spanned by
the solution-so-far. The Cut Property then implies that every MST
contains every edge of the algorithm’s final spanning tree T , and so T

206 Hints and Solutions to Selected Problems

is the unique MST. For (c), similarly, every edge chosen by Kruskal’s
algorithm is justified by the Cut Property. Each edge e = (v, w)
added by the algorithm is the cheapest one with endpoints in distinct
connected components of the solution-so-far (as these are precisely
the edges whose addition will not create a cycle). In particular, e
is the cheapest edge crossing the cut (A,B), where A is v’s current
connected component and B = V �A is everything else.

Hint for Problem 15.8: For (a), the high-level idea is to perform
a binary search for the bottleneck of an MBST. Compute the median
edge cost in the input graph G. (How do you do this in linear time?
See Chapter 6 of Part 1.) Obtain G0 from G by throwing out all the
edges with cost higher than the median. Proceed by recursing on
a graph with half as many edges as G. (The easy case is when G0

is connected; how do you recurse if G0 is not connected?) For the
running time analysis, use induction or case 2 of the master method
(described in Chapter 4 of Part 1).

For (b), the answer appears to be no. (Every MST is an MBST but
not conversely, as you should check.) The question of whether there is a
deterministic linear-time algorithm for the MST problem remains open
to this day; see the bonus video at www.algorithmsilluminated.org
for the full story.

Solution to Problem 16.1:

0 5 5 6 12 12 16 18

and the first, fourth, and seventh vertices.

Hint for Problem 16.2: For (a) and (c), revisit the four-vertex
example on page 105. For (d), use induction and Lemma 16.1.

Hint for Problem 16.3: If G is a tree, root it at an arbitrary vertex
and define one subproblem for each subtree. For an arbitrary graph G,
what would your subproblems be?

Solution to Problem 16.4: With columns indexed by i and rows
by c:

Hints and Solutions to Selected Problems 207

9 0 1 3 6 8 10
8 0 1 3 6 8 9
7 0 1 3 6 7 9
6 0 1 3 6 6 8
5 0 1 3 5 5 6
4 0 1 3 4 4 5
3 0 1 2 4 4 4
2 0 1 1 3 3 3
1 0 1 1 1 1 1
0 0 0 0 0 0 0

0 1 2 3 4 5

and the second, third, and fifth items.

Hint for Problem 16.5: For (b) and (c), add a third parameter to
the dynamic programming solution to the original knapsack problem
in Section 16.5. For (d), how does the generalization of your solution
to (c) scale with the number m of knapsacks?

Solution to Problem 17.1: With columns indexed by i and rows
by j:

6 6 5 4 5 4 5 4
5 5 4 5 4 3 4 5
4 4 3 4 3 4 5 6
3 3 2 3 4 3 4 5
2 2 1 2 3 4 3 4
1 1 0 1 2 3 4 5
0 0 1 2 3 4 5 6

0 1 2 3 4 5 6

Hint for Problem 17.2: In each loop iteration, have the necessary
subproblem solutions already been computed in previous iterations
(or as a base case)?

Solution to Problem 17.3: The problems in (b) and (d) can be
solved using algorithms similar to NW, with one subproblem for each
pair Xi, Yj of input string prefixes. Alternatively, the problem in (b)
reduces to the sequence alignment problem by setting the gap penalty

208 Hints and Solutions to Selected Problems

to 1 and the penalty of matching two different symbols to a very large
number.

The problem in (a) can be solved by a generalization of the NW
algorithm that keeps track of whether an inserted gap is the first in a
sequence of gaps (in which case it carries a penalty of a+ b) or not
(in which case the additional penalty is a). For each pair of prefixes
of the input strings, compute the total penalty of three alignments:
the best one with no gaps in the final column, the best one with a
gap in the upper row of the final column, and the best one with a
gap in the lower row of the final column. The number of subproblems
and the work-per-subproblem each blow up by a constant factor.

The problem in (c) can be solved efficiently without using dynamic
programming; simply count the frequency of each symbol in each string.
The permutation f exists if and only if every symbol occurs exactly
the same number of times in each string. (Do you see why?)

Solution to Problem 17.4: With columns indexed by i and rows
by j = i+ s:

7 223 158 143 99 74 31 25 0
6 151 105 90 46 26 3 0
5 142 97 84 40 20 0
4 92 47 37 10 0
3 69 27 17 0
2 30 5 0
1 20 0
0 0

1 2 3 4 5 6 7 8

Hint for Problem 17.5: The idea is to reuse space once a subprob-
lem solution is rendered irrelevant for future computations. To carry
out its entire computation, the WIS algorithm must remember only
the two most recent subproblems. The NW algorithm must remember
subproblem solutions for the current and preceding values of i, and
for all values of j (why?). What about the OptBST algorithm?

Hint for Problem 17.6: Don’t bother solving subproblems for
prefixes Xi and Yj with |i� j| > k.

Hints and Solutions to Selected Problems 209

Hint for Problem 17.7: The running time of your algorithm should
be bounded by a polynomial function of n—a really, really big poly-
nomial!

Solution to Problem 18.1: With columns indexed by i and rows
by vertices:

x +1 +1 5 5 5 -1
w +1 +1 +1 -4 -4 -4
v +1 +1 -1 -1 -1 -7
u +1 1 1 1 -5 -5
s 0 0 0 0 0 0

0 1 2 3 4 5

Solution to Problem 18.2: No. For a counterexample, see the
previous problem.

Hint for Problem 18.3: Consider stopping a shortest-path algo-
rithm early.

Solution to Problem 18.4: With columns indexed by k and rows
by vertex pairs:

(1, 1) 0 0 0 0 0
(1, 2) 2 2 2 2 2
(1, 3) 5 5 3 3 3
(1, 4) +1 +1 +1 6 6
(2, 1) +1 +1 +1 +1 8
(2, 2) 0 0 0 0 0
(2, 3) 1 1 1 1 1
(2, 4) +1 +1 +1 4 4
(3, 1) +1 +1 +1 +1 7
(3, 2) +1 +1 +1 +1 9
(3, 3) 0 0 0 0 0
(3, 4) 3 3 3 3 3
(4, 1) 4 4 4 4 4
(4, 2) +1 6 6 6 6
(4, 3) +1 9 7 7 7
(4, 4) 0 0 0 0 0

0 1 2 3 4

210 Hints and Solutions to Selected Problems

Solution to Problem 18.5: With columns indexed by k and rows
by vertex pairs:

(1, 1) 0 0 0 0 -4
(1, 2) 2 2 2 2 -2
(1, 3) 5 5 3 3 -1
(1, 4) +1 +1 +1 0 -4
(2, 1) +1 +1 +1 +1 -6
(2, 2) 0 0 0 0 -4
(2, 3) 1 1 1 1 -3
(2, 4) +1 +1 +1 -2 -6
(3, 1) +1 +1 +1 +1 -7
(3, 2) +1 +1 +1 +1 -5
(3, 3) 0 0 0 0 -4
(3, 4) -3 -3 -3 -3 -7
(4, 1) -4 -4 -4 -4 -8
(4, 2) +1 -2 -2 -2 -6
(4, 3) +1 1 -1 -1 -5
(4, 4) 0 0 0 -4 -8

0 1 2 3 4

Solution to Problem 18.6: Modify the input graph G = (V,E) by
adding a new source vertex s and a new zero-length edge from s to
each vertex v 2 V . The new graph G0 has a negative cycle reachable
from s if and only if G has a negative cycle. Run the Bellman-Ford
algorithm on G0 with source vertex s to check whether G contains a
negative cycle. If not, run the Floyd-Warshall algorithm on G.

Hint for Problem 18.7: Longest-path problems can be reframed
as shortest-path problems after multiplying all edge lengths by �1.
Recall from page 170 the problem of computing shortest cycle-free
paths in graphs with negative cycles and the fact that it appears
to admit no polynomial-time algorithm. Does this fact have any
implications for any of the four stated problems?

Index

n! (factorial), 4
|S | (set size), 35

acknowledgments, xi
algorithm design paradigm, 1

divide-and-conquer, see
divide-and-conquer
algorithms

dynamic programming, see
dynamic programming

greedy algorithms, see greedy
algorithms

algorithm field guide, 201–202
all-pairs shortest path problem,

see shortest paths, all-
pairs

alphabet, see code, alphabet
among friends, 13, 69, 152

Backurs, Arturs, 146
Bellman, Richard E., 122, 172
Bellman-Ford algorithm, 172–185

and Internet routing, 183
correctness, 178, 180
example, 180–182
optimal substructure, 174–

176
pseudocode, 179
reconstruction, 183
recurrence, 176
running time, 182, 184–185
space usage, 183
stopping criterion, 177
subproblems, 172–174

big-O notation, 3

big-theta notation, 112
binary search tree, 148

optimal, see optimal binary
search trees

raison d’être, 149
search tree property, 148

bit, 23
blazingly fast, viii, 64
Borodin, Allan, 2
breadth-first search, 55, 81
broken clock, 61
BubbleSort, 19

cache, 112
can we do better?, 23, 62
Cayley’s formula, 56
clustering, 94–97

k-means, 96
and Kruskal’s algorithm, 97
choosing the number of clus-

ters, 94
greedy criterion, 96
informal goal, 94
similarity function, 94
single-link, 97

cocktail party, ix
code

⌃-tree, 31
alphabet, 23
as a tree, 28–31
average leaf depth, 31
average encoding length, 26
binary, 23
encodings as root-leaf paths,

30

212 Index

fixed-length, 23
Huffman, see Huffman’s algo-

rithm
optimal prefix-free, 26, 32
prefix-free, 25, 31
symbol frequencies, 25, 27
variable-length, 24

compression, 23
computational genomics, see se-

quence alignment
connected component (of a graph),

72
corollary, 10
Coursera, x
cut (of a graph), 101
cycle (of a graph), 53

negative, 169

data structure
binary search tree, 148
disjoint-set, see union-find
heap, see heap
principle of parsimony, 202
queue, 41
union-find, see union-find
when to use, 202

depth-first search, 55, 81
design patterns, viii
diff, 164
Dijkstra’s shortest-path algorithm

as a greedy algorithm, 2
inductive correctness proof,

13
resembles Prim’s algorithm,

57
with negative edge lengths,

168
Dijkstra, Edsger W., 57
discussion forum, xi
distance, see shortest paths, dis-

tance
divide-and-conquer algorithms, 1–

3

vs. dynamic programming,
115, 120–122

when to use, 202
dynamic programming, vii

as recursion with a cache, 112
bottom-up, 113
for all-pairs shortest paths,

see Floyd-Warshall algo-
rithm

for graph problems, 172
for optimal binary search

trees, 148–162
for single-source shortest

paths, see Bellman-Ford
algorithm

for the knapsack problem,
123–132

for the sequence alignment
problem, 137–146

for weighted independent set
in path graphs, 108–118

history, 122
memoization, 113
optimal substructure, 120
ordering the input, 125
principles, 118–119
recurrence, 120
running time, 119
saving space, 165, 208
subproblems, 119–120
takes practice, 103
top-down, 112
vs. divide-and-conquer, 115,

120–122
when to use, 202

e.g., 79
edge (of a graph), 52

length, 168
parallel, 55

exchange argument, 12
for minimum spanning trees,

75
in Huffman’s algorithm, 43

Index 213

in scheduling, 15
exhaustive search, 6, 27, 62, 105,

140, 161, 201

Fano, Robert M., 32
field guide (to algorithm design),

201–202
Floyd, Robert W., 187
Floyd-Warshall algorithm, 187–

196
detecting a negative cycle,

194–195
optimal substructure, 189–

192
pseudocode, 193
reconstruction, 196
recurrence, 192
running time, 194
space usage, 194
subproblems, 187–189

for-free primitive, 64, 201
Ford Jr., Lester R., 172
forest (of trees), 34

Git, 164
graph, 52

adjacency-list representation,
53

adjacency-matrix representa-
tion, 194

connected, 54
connected component, 72
cut, 101
cycle, 53
dense, 187
edge, 52
independent set, 104
notation, 53
number of edges, 80
path, 53, 105
search, 55, 81
spanning tree, 53
sparse, 185
undirected, 52

vertex, 52
greatest hits, ix
greedy algorithm, vii, 1–3

and brainstorming, 106, 201
as a heuristic, 3, 202
exchange argument, see ex-

change argument
for clustering, 96
for optimal prefix-free codes,

see Huffman’s algorithm
for scheduling, 6–10
induction, 13
informal definition, 2
Kruskal’s algorithm, see

Kruskal’s algorithm
Prim’s algorithm, see Prim’s

algorithm
proof of correctness, 13
themes, 2
usually not correct, 3, 107

GreedyRatio, see scheduling,
GreedyRatio

heap, 62–63
DecreaseKey, 67
Delete, 63
ExtractMin, 63
Insert, 63
implementation, 63
in Huffman’s algorithm, 40
operation running times, 63
raison d’être, 62
speeds up Prim’s algorithm,

63–68
HeapSort, 2
heuristic, 3, 202
hints, x, 203–210
Huffman’s algorithm, 32–36

⌃-tree, 31
average leaf depth, 31, 44
examples, 37–40
greedy criterion, 35
implemented with a heap, 40

214 Index

implemented with two
queues, 41, 51, 204

proof of correctness, 41
pseudocode, 36
running time, 40

Huffman, David A., 32

i.e., 23
independent set (of a graph), 104
induction, 43

base case, 43
in greedy algorithms, 13
inductive hypothesis, 44
inductive step, 43

Indyk, Piotr, 146
interview questions, ix
inversion, 18

consecutive, 15

Jarník’s algorithm, see Prim’s al-
gorithm

Jarník, Vojtěch, 57
Java, 51
job, see scheduling

Karatsuba’s algorithm, 1
Kleinberg, Jon, 137
knapsack problem, 123–132

applications, 124
correctness, 129
definition, 123
dynamic programming algo-

rithm (Knapsack), 128
example, 129–130
generalizations, 135
optimal substructure, 125
reconstruction, 130–132
recurrence, 126
running time, 129
subproblems, 127

Knuth, Donald E., 161
Kruskal’s algorithm

achieves the minimum bottle-
neck property, 93

and clustering, 97
cycle-checking, 81, 84
example, 77
in reverse, 99
outputs a spanning tree, 92
proof of correctness, 91–93,

102
pseudocode (straightfor-

ward), 79
pseudocode (union-find-

based), 84
reasons to care, 77
running time (straightfor-

ward), 80–81
running time (union-find-

based), 81
stopping early, 79
vs. Prim’s algorithm, 77

Kruskal, Joseph B., 76

Lehman, Eric, x
Leighton, F. Thomson, x
lemma, 10
length (of an edge), 168
longest common subsequence, 164
longest common substring, 164

machine learning
supervised learning, 94
unsupervised learning, see

clustering
mathematical background, x
MBP, see minimum spanning

tree, minimum bottle-
neck property

memoization (in dynamic pro-
gramming), 113

MergeSort, 1, 2
Meyer, Albert R., x
minimum bottleneck property,

see minimum spanning
tree, minimum bottle-
neck property

minimum spanning tree

Index 215

Cut Property, 69, 101, 205
Cycle Property, 102, 204
exchange argument, 75
history, 57
in directed graphs, 53
in disconnected graphs, 55
in linear time?, 206
Kruskal’s algorithm, see

Kruskal’s algorithm
minimum bottleneck prop-

erty, 69–71, 75, 101
Prim’s algorithm, see Prim’s

algorithm
reductions to, 100
uniqueness, 101
with distinct edge costs, 69,

75
with non-distinct edge costs,

72, 91, 101, 205
with parallel edges, 55

minimum-bottleneck spanning
tree, 102, 206

MP3, 23, 27
MST, see minimum spanning tree
MWIS, see weighted independent

set

Needleman, Saul B., 139
Needleman-Wunsch (NW) score,

see sequence alignment
Nielsen, Morten N., 2
NP -hard problem, 170, 202

optimal binary search trees, 148–
162

correctness, 160
dynamic programming algo-

rithm (OptBST), 159
Knuth’s optimization, 161
optimal substructure, 153–

156
problem definition, 152
reconstruction, 161
recurrence, 157

running time, 160
subproblems, 158
vs. balanced binary search

trees, 151
vs. optimal prefix-free codes,

152
weighted search time, 152
with unsuccessful searches,

152

path (of a graph), 53
bottleneck, 70
cycle-free, 53

path graph, 105
pay the piper, 67
pep talk, 103
Pigeonhole Principle, 172
prefix-free code, see code, prefix-

free
Prim’s algorithm

achieves the minimum bottle-
neck property, 70

example, 57
greedy criterion, 59
outputs a spanning tree, 75
proof of correctness, 69–76,

102
pseudocode, 59
pseudocode (heap-based), 66
resembles Dijkstra’s shortest-

path algorithm, 57
running time (heap-based),

63, 68
running time (heap-based)(,

68
running time (straightfor-

ward), 61
starting vertex, 60
straightforward implementa-

tion, 61
vs. Dijkstra’s shortest-path

algorithm, 60, 69, 70
vs. Kruskal’s algorithm, 77

Prim, Robert C., 57

216 Index

principle of parsimony, 202
programming, x, 37
programming problems, xi
proof, x

by contradiction, 13
by contraposition, 15
by induction, 43
of correctness, 10

proposition, 10
pseudocode, 37

QE D (q.e.d.), 15
queue (data structure), 41
QuickSort, 1, 2
quizzes, x

Rackoff, Charles, 2
RadixSort, 41
randomized algorithm, 202
recurrence, 110
recursion tree, 115
reduction, 100, 201

scheduling, 4
GreedyDiff, 9
GreedyRatio, 9
completion time, 4
correctness of GreedyRatio,

13–19
exchange argument, 15
greedy algorithms, 6–10
running time, 11
sum of weighted completion

times, 5
with ties, 18

Schrijver, Alexander, 172
search tree, see binary search tree
sequence alignment, 137–146

alignment, 138
applications, 137
correctness, 146
dynamic programming algo-

rithm (NW), 144
gap, 138

Needleman-Wunsch (NW)
score, 139

optimal substructure, 140
penalties, 138
problem definition, 138
reconstruction, 146
recurrence, 143
running time, 145
subproblems, 144
variations, 164

Shimbel, Alfonso, 172
shortest paths

all-pairs, 185
all-pairs (dense graphs), 196
all-pairs (sparse graphs), 187,

196
and Internet routing, 183
and transitive closure, 186
Bellman-Ford algorithm, see

Bellman-Ford algorithm
distance, 168
Floyd-Warshall algorithm,

see Floyd-Warshall
algorithm

history, 172
Johnson’s algorithm, 196
problem definition (all-pairs),

185
problem definition (single-

source), 170
reduction from all-pairs to

single-source, 186, 187
single-source, 168
with negative cycles, 169, 171
with negative edge lengths,

169
with no negative cycles, 172
with parallel edges, 168

single-source shortest path prob-
lem, see shortest paths,
single-source

solutions, x, 203–210
sorting, 2

in linear time, 41

Index 217

lower bound for general-
purpose algorithms, 41

spanning tree (of a graph), 53
component fusion, 72
cycle creation, 72
minimum, see minimum

spanning tree
number of, 56
number of edges, 73
type-C vs. type-F edge addi-

tion, 72
Stanford Lagunita, x
starred sections, viii, 41
Strassen’s algorithm, 1

Tardos, Éva, 137
test cases, xi
Tetris, 166
theorem, 10
transitive closure (of a binary re-

lation), 186
tree

binary, 28
binary search, 148
forest, 34
internal node, 28
leaf, 28
optimal binary search, see op-

timal binary search trees
recursion, 115

union-find
Find, 82, 86
Initialize, 82, 86
Union, 83, 87, 89
inverse Ackermann function,

83
operation running times, 83,

90
parent graph, 85
path compression, 83
quick-and-dirty implementa-

tion, 85–90
raison d’être, 82

scorecard, 83
speeds up Kruskal’s algo-

rithm, 83–85
state-of-the-art implementa-

tions, 83
supported operations, 82–83
union-by-rank, 83, 89
union-by-size, 89

Unix, 164
upshot, viii

vertex (of a graph), 52
in-degree, 176
out-degree, 176

videos, x

Warshall, Stephen, 187
weighted independent set

in general graphs, 134
problem definition, 105

weighted independent set (in path
graphs), 105

correctness, 115
dynamic programming algo-

rithm (WIS), 114
failure of divide-and-conquer

algorithms, 107
failure of greedy algorithms,

106, 108
optimal substructure, 108–

110
reconstruction, 116–118
recurrence, 110
recursive algorithm, 111
running time, 114
subproblems, 113

why bother?, viii
WIS, see weighted independent

set
Wunsch, Christian D., 139

YouTube, x

	Contents
	Preface
	Intro to Greedy Algorithms
	Greedy Algorithm Design Paradigm
	Scheduling Problem
	Developing Greedy Algorithm
	Proof of Correctness

	Huffman Codes
	Codes
	Codes as Trees
	Huffman Greedy Algorithm
	Proof of Correctness

	Minimum Spanning Trees
	Problem Deﬁnition
	Prim Algorithm
	Speeding up Prim Algorithm via Heaps
	Prim Algorithm - Proof of Correctness
	Kruskal Algorithm
	Speeding up Kruskal Algorithm via Union-Find
	Kruskal Algorithm - Proof of Correctness
	Application - Single-Link Clustering

	Intro to Dynamic Programming
	Weighted Independent Set Problem
	Linear-Time Algorithm for WIS in Paths
	Reconstruction Algorithm
	Principles of Dynamic Programming
	Knapsack Problem

	Advanced Dynamic Programming
	Sequence Alignment
	Optimal Binary Search Trees

	Shortest Paths revisited
	Shortest Paths with Negative Edge Lengths
	Bellman-Ford Algorithm
	All-Pairs Shortest Path Problem
	Floyd-Warshall Algorithm

	Epilogue - Field Guide to Algorithm Design
	Hints & Solutions
	Index

		2019-05-01T21:10:48+0000
	Preflight Ticket Signature

