
Algorithms Illuminated
Part 2: Graph Algorithms and Data

Structures

Tim Roughgarden

c� 2018 by Tim Roughgarden

All rights reserved. No portion of this book may be reproduced in any form
without permission from the publisher, except as permitted by U. S. copyright
law.

First Edition

Cover image: Untitled, by Nick Terry

ISBN: 978-0-9992829-2-2 (Paperback)
ISBN: 978-0-9992829-3-9 (ebook)

Library of Congress Control Number: 2017914282

Soundlikeyourself Publishing, LLC
San Francisco, CA
soundlikeyourselfpublishing@gmail.com

www.algorithmsilluminated.org

www.algorithmsilluminated.org

In memory of James Wesley Shean

(1921–2010)

Contents

Preface vii

7 Graphs: The Basics 1
7.1 Some Vocabulary 1
7.2 A Few Applications 2
7.3 Measuring the Size of a Graph 3
7.4 Representing a Graph 7
Problems 13

8 Graph Search and Its Applications 15
8.1 Overview 15
8.2 Breadth-First Search and Shortest Paths 25
8.3 Computing Connected Components 34
8.4 Depth-First Search 40
8.5 Topological Sort 45

*8.6 Computing Strongly Connected Components 54
8.7 The Structure of the Web 66
Problems 71

9 Dijkstra’s Shortest-Path Algorithm 76
9.1 The Single-Source Shortest Path Problem 76
9.2 Dijkstra’s Algorithm 80

*9.3 Why Is Dijkstra’s Algorithm Correct? 83
9.4 Implementation and Running Time 89
Problems 91

10 The Heap Data Structure 95
10.1 Data Structures: An Overview 95
10.2 Supported Operations 98
10.3 Applications 101

v

vi Contents

10.4 Speeding Up Dijkstra’s Algorithm 106
*10.5 Implementation Details 112
Problems 123

11 Search Trees 126
11.1 Sorted Arrays 126
11.2 Search Trees: Supported Operations 129

*11.3 Implementation Details 131
*11.4 Balanced Search Trees 145
Problems 149

12 Hash Tables and Bloom Filters 151
12.1 Supported Operations 151
12.2 Applications 154

*12.3 Implementation: High-Level Ideas 159
*12.4 Further Implementation Details 173
12.5 Bloom Filters: The Basics 178

*12.6 Bloom Filters: Heuristic Analysis 184
Problems 190

C Quick Review of Asymptotic Notation 193
C.1 The Gist 193
C.2 Big-O Notation 194
C.3 Examples 195
C.4 Big-Omega and Big-Theta Notation 197

Solutions to Selected Problems 200

Index 203

Preface

This book is the second of a four-part series based on my online
algorithms courses that have been running regularly since 2012, which
in turn are based on an undergraduate course that I’ve taught many
times at Stanford University. The first part of the series is not a
prerequisite for this one, and this book should be accessible to any
reader who has the background described in the “Who Are You?”
section below and is familiar with asymptotic notation (which is
reviewed in Appendix C).

What We’ll Cover

Algorithms Illuminated, Part 2 provides an introduction to and basic
literacy in the following three topics.

Graph search and applications. Graphs model many different
types of networks, including road networks, communication networks,
social networks, and networks of dependencies between tasks. Graphs
can get complex, but there are several blazingly fast primitives for
reasoning about graph structure. We begin with linear-time algorithms
for searching a graph, with applications ranging from network analysis
to task sequencing.

Shortest paths. In the shortest-path problem, the goal is to com-
pute the best route in a network from point A to point B. The problem
has obvious applications, like computing driving directions, and also
shows up in disguise in many more general planning problems. We’ll
generalize one of our graph search algorithms and arrive at Dijkstra’s
famous shortest-path algorithm.

Data structures. This book will make you an educated client of
several different data structures for maintaining an evolving set of
objects with keys. The primary goal is to develop your intuition

vii

viii Preface

about which data structure is the right one for your application. The
optional advanced sections provide guidance in how to implement
these data structures from scratch.

We first discuss heaps, which can quickly identify the stored
object with the smallest key and are useful for sorting, implementing
a priority queue, and implementing Dijkstra’s algorithm in near-linear
time. Search trees maintain a total ordering over the keys of the stored
objects and support an even richer array of operations. Hash tables
are optimized for super-fast lookups and are ubiquitous in modern
programs. We’ll also cover the bloom filter, a close cousin of the hash
table that uses less space at the expense of occasional errors.

For a more detailed look into the book’s contents, check out the
“Upshot” sections that conclude each chapter and highlight the most
important points. The starred sections of the book are the most
advanced ones. The time-constrained reader can skip these on a first
reading without loss of continuity.

Topics covered in the other three parts. Algorithms Illumi-
nated, Part 1 covers asymptotic notation (big-O notation and its
close cousins), divide-and-conquer algorithms and the master method,
randomized QuickSort and its analysis, and linear-time selection algo-
rithms. Part 3 focuses on greedy algorithms (scheduling, minimum
spanning trees, clustering, Huffman codes) and dynamic programming
(knapsack, sequence alignment, shortest paths, optimal search trees).
Part 4 is all about NP -completeness, what it means for the algorithm
designer, and strategies for coping with computationally intractable
problems, including the analysis of heuristics and local search.

Skills You’ll Learn

Mastering algorithms takes time and effort. Why bother?

Become a better programmer. You’ll learn several blazingly
fast subroutines for processing data as well as several useful data
structures for organizing data that you can deploy directly in your own
programs. Implementing and using these algorithms will stretch and
improve your programming skills. You’ll also learn general algorithm
design paradigms that are relevant for many different problems across
different domains, as well as tools for predicting the performance of

Preface ix

such algorithms. These “algorithmic design patterns” can help you
come up with new algorithms for problems that arise in your own
work.

Sharpen your analytical skills. You’ll get lots of practice describ-
ing and reasoning about algorithms. Through mathematical analysis,
you’ll gain a deep understanding of the specific algorithms and data
structures covered in these books. You’ll acquire facility with sev-
eral mathematical techniques that are broadly useful for analyzing
algorithms.

Think algorithmically. After you learn about algorithms, it’s
hard to not see them everywhere, whether you’re riding an elevator,
watching a flock of birds, managing your investment portfolio, or even
watching an infant learn. Algorithmic thinking is increasingly useful
and prevalent in disciplines outside of computer science, including
biology, statistics, and economics.

Literacy with computer science’s greatest hits. Studying al-
gorithms can feel like watching a highlight reel of many of the greatest
hits from the last sixty years of computer science. No longer will you
feel excluded at that computer science cocktail party when someone
cracks a joke about Dijkstra’s algorithm. After reading these books,
you’ll know exactly what they mean.

Ace your technical interviews. Over the years, countless stu-
dents have regaled me with stories about how mastering the concepts
in these books enabled them to ace every technical interview question
they were ever asked.

How These Books Are Different

This series of books has only one goal: to teach the basics of algorithms
in the most accessible way possible. Think of them as a transcript
of what an expert algorithms tutor would say to you over a series of
one-on-one lessons.

There are a number of excellent more traditional and encyclopedic
textbooks on algorithms, any of which usefully complement this book
series with additional details, problems, and topics. I encourage you
to explore and find your own favorites. There are also several books
that, unlike these books, cater to programmers looking for ready-made

x Preface

algorithm implementations in a specific programming language. Many
such implementations are freely available on the Web as well.

Who Are You?

The whole point of these books and the online courses upon which
they are based is to be as widely and easily accessible as possible.
People of all ages, backgrounds, and walks of life are well represented
in my online courses, and there are large numbers of students (high-
school, college, etc.), software engineers (both current and aspiring),
scientists, and professionals hailing from all corners of the world.

This book is not an introduction to programming, and ideally
you’ve acquired basic programming skills in a standard language (like
Java, Python, C, Scala, Haskell, etc.). For a litmus test, check out
Section 8.2—if it makes sense, you’ll be fine for the rest of the book.
If you need to beef up your programming skills, there are several
outstanding free online courses that teach basic programming.

We also use mathematical analysis as needed to understand how
and why algorithms really work. The freely available book Mathe-
matics for Computer Science, by Eric Lehman, F. Thomson Leighton,
and Albert R. Meyer is an excellent and entertaining refresher on
mathematical notation (like

P
and 8), the basics of proofs (induction,

contradiction, etc.), discrete probability, and much more.

Additional Resources

These books are based on online courses that are currently running
on the Coursera and Stanford Lagunita platforms. I’ve made several
resources available to help you replicate as much of the online course
experience as you like.

Videos. If you’re more in the mood to watch and listen than
to read, check out the YouTube video playlists available from
www.algorithmsilluminated.org. These videos cover all of the top-
ics of this book series, as well as additional advanced topics. I hope
they exude a contagious enthusiasm for algorithms that, alas, is
impossible to replicate fully on the printed page.

Quizzes. How can you know if you’re truly absorbing the concepts
in this book? Quizzes with solutions and explanations are scattered

www.algorithmsilluminated.org

Preface xi

throughout the text; when you encounter one, I encourage you to
pause and think about the answer before reading on.

End-of-chapter problems. At the end of each chapter you’ll find
several relatively straightforward questions for testing your under-
standing, followed by harder and more open-ended challenge problems.
Solutions to problems that are marked with an “(S)” appear at the
end of the book. Readers can interact with me and each other about
the remaining end-of-chapter problems through the book’s discussion
forum (see below).

Programming problems. Most of the chapters conclude with a
suggested programming project, whose goal is to help you develop a
detailed understanding of an algorithm by creating your own working
implementation of it. Data sets, along with test cases and their
solutions, can be found at www.algorithmsilluminated.org.

Discussion forums. A big reason for the success of online courses
is the opportunities they provide for participants to help each other
understand the course material and debug programs through discus-
sion forums. Readers of these books have the same opportunity, via
the forums available at www.algorithmsilluminated.org.

Acknowledgments

These books would not exist without the passion and hunger supplied
by the hundreds of thousands of participants in my algorithms courses
over the years, both on campus at Stanford and on online platforms.
I am particularly grateful to those who supplied detailed feedback on
an earlier draft of this book: Tonya Blust, Yuan Cao, Jim Humelsine,
Vladimir Kokshenev, Bayram Kuliyev, Patrick Monkelban, and Daniel
Zingaro.

I always appreciate suggestions and corrections from readers.
These are best communicated through the discussion forums men-
tioned above.

Tim Roughgarden
London, United Kingdom
July 2018

www.algorithmsilluminated.org
www.algorithmsilluminated.org

Chapter 7

Graphs: The Basics

This short chapter explains what graphs are, what they are good
for, and the most common ways to represent them in a computer
program. The next two chapters cover a number of famous and useful
algorithms for reasoning about graphs.

7.1 Some Vocabulary

When you hear the word “graph,” you probably think about an x-axis,
a y-axis, and so on (Figure 7.1(a)). To an algorithms person, a graph
can also mean a representation of the relationships between pairs of
objects (Figure 7.1(b)).

n
0 5 10 15 20 25 30 35 40

f(n
)

0

5

10

15

20

25

30

35

40
f(n)=n
f(n)=log n

(a) A graph (to most of the world) (b) A graph (in algorithms)

Figure 7.1: In algorithms, a graph is a representation of a set of objects
(such as people) and the pairwise relationships between them (such as
friendships).

The second type of graph has two ingredients—the objects being
represented, and their pairwise relationships. The former are called

1

2 Graphs: The Basics

the vertices (singular: vertex) or the nodes of the graph.1 The pairwise
relationships translate to the edges of the graph. We usually denote
the vertex and edge sets of a graph by V and E, respectively, and
sometimes write G = (V,E) to mean the graph G with vertices V
and edges E.

There are two flavors of graphs, directed and undirected. Both
types are important and ubiquitous in applications, so you should know
about both of them. In an undirected graph, each edge corresponds to
an unordered pair {v, w} of vertices, which are called the endpoints of
the edge (Figure 7.2(a)). In an undirected graph, there is no difference
between an edge (v, w) and an edge (w, v). In a directed graph, each
edge (v, w) is an ordered pair, with the edge traveling from the first
vertex v (called the tail) to the second w (the head); see Figure 7.2(b).2

s

v

w

t

(a) An undirected graph

s

v

w

t

(b) A directed graph

Figure 7.2: Graphs with four vertices and five edges. The edges of
undirected and directed graphs are unordered and ordered vertex pairs,
respectively.

7.2 A Few Applications

Graphs are a fundamental concept, and they show up all the time in
computer science, biology, sociology, economics, and so on. Here are
a few of the countless examples.

1Having two names for the same thing can be annoying, but both terms are
in widespread use and you should be familiar with them. For the most part, we’ll
stick with “vertices” throughout this book series.

2Directed edges are sometimes called arcs, but we won’t use this terminology
in this book series.

7.3 Measuring the Size of a Graph 3

Road networks. When your smartphone’s software computes driv-
ing directions, it searches through a graph that represents the road
network, with vertices corresponding to intersections and edges corre-
sponding to individual road segments.

The World Wide Web. The Web can be modeled as a directed
graph, with the vertices corresponding to individual Web pages, and
the edges corresponding to hyperlinks, directed from the page con-
taining the hyperlink to the destination page.

Social networks. A social network can be represented as a graph
whose vertices correspond to individuals and edges to some type
of relationship. For example, an edge could indicate a friendship
between its endpoints, or that one of its endpoints is a follower of the
other. Among the currently popular social networks, which ones are
most naturally modeled as an undirected graph, and which ones as a
directed graph? (There are interesting examples of both.)

Precedence constraints. Graphs are also useful in problems that
lack an obvious network structure. For example, imagine that you
have to complete a bunch of tasks, subject to precedence constraints—
perhaps you’re a first-year university student, planning which courses
to take and in which order. One way to tackle this problem is to
apply the topological sorting algorithm described in Section 8.5 to
the following directed graph: there is one vertex for each course that
your major requires, with an edge directed from course A to course B
whenever A is a prerequisite for B.

7.3 Measuring the Size of a Graph

In this book, like in Part 1, we’ll analyze the running time of different
algorithms as a function of the input size. When the input is a single
array, as for a sorting algorithm, there is an obvious way to define the
“input size,” as the array’s length. When the input involves a graph,
we must specify exactly how the graph is represented and what we
mean by its “size.”

7.3.1 The Number of Edges in a Graph

Two parameters control a graph’s size—the number of vertices and
the number of edges. Here is the most common notation for these

4 Graphs: The Basics

quantities.

Notation for Graphs

For a graph G = (V,E) with vertex set V and edge set E:

• n = |V | denotes the number of vertices.

• m = |E| denotes the number of edges.3

The next quiz asks you to think about how the number m of edges
in an undirected graph can depend on the number n of vertices. For
this question, we’ll assume that there’s at most one undirected edge
between each pair of vertices—no “parallel edges” are allowed. We’ll
also assume that the graph is “connected.” We’ll define this concept
formally in Section 8.3; intuitively, it means that the graph is “in
one piece,” with no way to break it into two parts without any edges
crossing between the parts. The graphs in Figures 7.1(b) and 7.2(a)
are connected, while the graph in Figure 7.3 is not.

Figure 7.3: An undirected graph that is not connected.

Quiz 7.1

Consider an undirected graph with n vertices and no parallel
edges. Assume that the graph is connected, meaning “in
one piece.” What are the minimum and maximum numbers
of edges, respectively, that the graph could have?

3For a finite set S, |S| denotes the number of elements in S.

7.3 Measuring the Size of a Graph 5

a) n� 1 and n(n�1)
2

b) n� 1 and n2

c) n and 2n

d) n and nn

(See Section 7.3.3 for the solution and discussion.)

7.3.2 Sparse vs. Dense Graphs

Now that Quiz 7.1 has you thinking about how the number of edges
of a graph can vary with the number of vertices, we can discuss
the distinction between sparse and dense graphs. The difference is
important because some data structures and algorithms are better
suited for sparse graphs, and others for dense graphs.

Let’s translate the solution to Quiz 7.1 into asymptotic notation.4
First, if an undirected graph with n vertices is connected, the number
of edges m is at least linear in n (that is, m = ⌦(n)).5 Second, if
the graph has no parallel edges, then m = O(n2).6 We conclude that
the number of edges in a connected undirected graph with no parallel
edges is somewhere between linear and quadratic in the number of
vertices.

Informally, a graph is sparse if the number of edges is relatively
close to linear in the number of vertices, and dense if this number is
closer to quadratic in the number of vertices. For example, graphs
with n vertices and O(n log n) edges are usually considered sparse,
while those with ⌦(n2/ log n) edges are considered dense. “Partially
dense” graphs, like those with ⇡ n3/2 edges, may be considered either
sparse or dense, depending on the specific application.

7.3.3 Solution to Quiz 7.1

Correct answer: (a). In a connected undirected graph with n
vertices and no parallel edges, the number m of edges is at least n� 1

4See Appendix C for a review of big-O, big-Omega, and big-Theta notation.
5If the graph need not be connected, there could be as few as zero edges.
6If parallel edges are allowed, a graph with at least two vertices can have an

arbitrarily large number of edges.

6 Graphs: The Basics

and at most n(n � 1)/2. To see why the lower bound is correct,
consider a graph G = (V,E). As a thought experiment, imagine
building up G one edge at a time, starting from the graph with
vertices V and no edges. Initially, before any edges are added, each
of the n vertices is completely isolated, so the graph trivially has n
distinct “pieces.” Adding an edge (v, w) has the effect of fusing the
piece containing v with the piece containing w (Figure 7.4). Thus,
each edge addition decreases the number of pieces by at most 1.7 To
get down to a single piece from n pieces, you need to add at least n�1
edges. There are plenty of connected graphs that have n vertices and
only n� 1 edges—these are called trees (Figure 7.5).

newly added edge

Figure 7.4: Adding a new edge fuses the pieces containing its endpoints
into a single piece. In this example, the number of different pieces drops
from three to two.

(a) A path on four vertices (b) A star on four vertices

Figure 7.5: Two connected undirected graphs with four vertices and three
edges.

The maximum number of edges in a graph with no parallel edges
is achieved by the complete graph, with every possible edge present.

7If both endpoints of the edge are already in the same piece, the number of
pieces doesn’t decrease at all.

7.4 Representing a Graph 7

Because there are
�n
2

�
= n(n�1)

2 pairs of vertices in an n-vertex graph,
this is also the maximum number of edges. For example, when n = 4,
the maximum number of edges is

�4
2

�
= 6 (Figure 7.6).8

Figure 7.6: The complete graph on four vertices has
�4
2

�
= 6 edges.

7.4 Representing a Graph

There is more than one way to encode a graph for use in an algorithm.
In this book series, we’ll work primarily with the “adjacency list”
representation of a graph (Section 7.4.1), but you should also be
aware of the “adjacency matrix” representation (Section 7.4.2).

7.4.1 Adjacency Lists

The adjacency list representation of graphs is the dominant one that
we’ll use in this book series.

Ingredients for Adjacency Lists

1. An array containing the graph’s vertices.

2. An array containing the graph’s edges.

3. For each edge, a pointer to each of its two endpoints.

4. For each vertex, a pointer to each of the incident edges.

8�n
2

�
is pronounced “n choose 2,” and is also sometimes referred to as a

“binomial coefficient.” To see why the number of ways to choose an unordered pair
of distinct objects from a set of n objects is n(n�1)

2 , think about choosing the first
object (from the n options) and then a second, distinct object (from the n � 1
remaining options). The n(n� 1) resulting outcomes produce each pair (x, y) of
objects twice (once with x first and y second, once with y first and x second), so
there must be n(n�1)

2 pairs in all.

8 Graphs: The Basics

The adjacency list representation boils down to two arrays (or
linked lists, if you prefer): one for keeping track of the vertices, and
one for the edges. These two arrays cross-reference each other in the
natural way, with each edge associated with pointers to its endpoints
and each vertex with pointers to the edges for which it is an endpoint.

For a directed graph, each edge keeps track of which endpoint is
the tail and which endpoint is the head. Each vertex v maintains two
arrays of pointers, one for the outgoing edges (for which v is the tail)
and one for the incoming edges (for which v is the head).

What are the memory requirements of the adjacency list represen-
tation?

Quiz 7.2

How much space does the adjacency list representation of a
graph require, as a function of the number n of vertices and
the number m of edges?

a) ⇥(n)

b) ⇥(m)

c) ⇥(m + n)

d) ⇥(n2)

(See Section 7.4.4 for the solution and discussion.)

7.4.2 The Adjacency Matrix

Consider an undirected graph G = (V,E) with n vertices and no
parallel edges, and label its vertices 1, 2, 3, . . . , n. The adjacency
matrix representation of G is a square n⇥ n matrix A—equivalently,
a two-dimensional array—with only zeroes and ones as entries. Each
entry Aij is defined as

Aij =

⇢
1 if edge (i, j) belongs to E
0 otherwise.

Thus, an adjacency matrix maintains one bit for each pair of vertices,
which keeps track of whether or not the edge is present (Figure 7.7).

7.4 Representing a Graph 9

2

1

3 4

(a) A graph. . .

1 2 3 40

BBB@

1

CCCA

1 0 1 0 0
2 1 0 1 1
3 0 1 0 1
4 0 1 1 0

(b) . . . and its adjacency matrix

Figure 7.7: The adjacency matrix of a graph maintains one bit for each
vertex pair, indicating whether or not there is an edge connecting the two
vertices.

It’s easy to add bells and whistles to the adjacency matrix repre-
sentation of a graph:

• Parallel edges. If a graph can have multiple edges with the same
pair of endpoints, then Aij can be defined as the number of
edges with endpoints i and j.

• Weighted graphs. Similarly, if each edge (i, j) has a weight wij—
perhaps representing a cost or a distance—then each entry Aij

stores wij .

• Directed graphs. For a directed graph G, each entry Aij of the
adjacency matrix is defined as

Aij =

⇢
1 if edge (i, j) belongs to E
0 otherwise,

where “edge (i, j)” now refers to the edge directed from i to j.
Every undirected graph has a symmetric adjacency matrix, while
a directed graph usually has an asymmetric adjacency matrix.

What are the memory requirements of an adjacency matrix?

10 Graphs: The Basics

Quiz 7.3

How much space does the adjacency matrix of a graph
require, as a function of the number n of vertices and the
number m of edges?

a) ⇥(n)

b) ⇥(m)

c) ⇥(m + n)

d) ⇥(n2)

(See Section 7.4.4 for the solution and discussion.)

7.4.3 Comparing the Representations

Confronted with two different ways to represent a graph, you’re
probably wondering: Which is better? The answer, as it so often is
with such questions, is “it depends.” First, it depends on the density of
your graph—on how the number m of edges compares to the number n
of vertices. The moral of Quizzes 7.2 and 7.3 is that the adjacency
matrix is an efficient way to encode a dense graph but is wasteful for
a sparse graph. Second, it depends on which operations you want to
support. On both counts, adjacency lists make more sense for the
algorithms and applications described in this book series.

Most of our graph algorithms will involve exploring a graph. Ad-
jacency lists are perfect for graph exploration—you arrive at a vertex,
and the adjacency list immediately indicates your options for the next
step.9 Adjacency matrices do have their applications, but we won’t
see them in this book series.10

Much of the modern-day interest in fast graph primitives is moti-
vated by massive sparse networks. Consider, for example, the Web
graph (Section 7.2), where vertices correspond to Web pages and
directed edges to hyperlinks. It’s hard to get an exact measurement of

9If you had access to only the adjacency matrix of a graph, how long would it
take you to figure out which edges are incident to a given vertex?

10For example, you can count the number of common neighbors of each pair of
vertices in one fell swoop by squaring the graph’s adjacency matrix.

7.4 Representing a Graph 11

the size of this graph, but a conservative lower bound on the number
of vertices is 10 billion, or 1010. Storing and reading through an array
of this length already requires significant computational resources,
but it is well within the limits of what modern computers can do. The
size of the adjacency matrix of this graph, however, is proportional
to 100 quintillion (1020). This is way too big to store or process with
today’s technology. But the Web graph is sparse—the average num-
ber of outgoing edges from a vertex is well under 100. The memory
requirements of the adjacency list representation of the Web graph
are therefore proportional to 1012 (a trillion). This may be too big
for your laptop, but it’s within the capabilities of state-of-the-art
data-processing systems.11

7.4.4 Solutions to Quizzes 7.2–7.3

Solution to Quiz 7.2

Correct answer: (c). The adjacency list representation requires
space linear in the size of the graph (meaning the number of vertices
plus the number of edges), which is ideal.12 Seeing this is a little
tricky. Let’s step through the four ingredients one by one. The vertex
and edge arrays have lengths n and m, respectively, and so require
⇥(n) and ⇥(m) space. The third ingredient associates two pointers
with each edge (one for each endpoint). These 2m pointers contribute
an additional ⇥(m) to the space requirement.

The fourth ingredient might make you nervous. After all, each
of the n vertices can participate in as many as n� 1 edges—one per
other vertex—seemingly leading to a bound of ⇥(n2). This quadratic
bound would be accurate in a very dense graph, but is overkill in
sparser graphs. The key insight is: For every vertex!edge pointer in
the fourth ingredient, there is a corresponding edge!vertex pointer in
the third ingredient. If the edge e is incident to the vertex v, then e
has a pointer to its endpoint v, and, conversely, v has a pointer to the
incident edge e. We conclude that the pointers in the third and fourth
ingredients are in one-to-one correspondence, and so they require

11For example, the essence of Google’s original PageRank algorithm for mea-
suring Web page importance relied on efficient search in the Web graph.

12Caveat: The leading constant factor here is larger than that for the adjacency
matrix by an order of magnitude.

12 Graphs: The Basics

exactly the same amount of space, namely ⇥(m). The final scorecard
is:

vertex array ⇥(n)
edge array ⇥(m)
pointers from edges to endpoints ⇥(m)

+ pointers from vertices to incident edges ⇥(m)
total ⇥(m + n).

The bound of ⇥(m+n) applies whether or not the graph is connected,
and whether or not it has parallel edges.13

Solution to Quiz 7.3

Correct answer: (d). The straightforward way to store an adjacency
matrix is as an n⇥ n two-dimensional array of bits. This uses ⇥(n2)
space, albeit with a small hidden constant. For a dense graph, in which
the number of edges is itself close to quadratic in n, the adjacency
matrix requires space close to linear in the size of the graph. For
sparse graphs, however, in which the number of edges is closer to
linear in n, the adjacency matrix representation is highly wasteful.14

The Upshot

P A graph is a representation of the pairwise rela-
tionships between objects, such as friendships
in a social network, hyperlinks between Web
pages, or dependencies between tasks.

P A graph comprises a set of vertices and a set
of edges. Edges are unordered in undirected
graphs and ordered in directed graphs.

P A graph is sparse if the number of edges m is
close to linear in the number of vertices n, and
dense if m is close to quadratic in n.

13If the graph is connected, then m � n � 1 (by Quiz 7.1), and we could
write ⇥(m) in place of ⇥(m+ n).

14This waste can be reduced by using tricks for storing and manipulating sparse
matrices, meaning matrices with lots of zeroes. For instance, Matlab and Python’s
SciPy package both support sparse matrix representations.

Problems 13

P The adjacency list representation of a graph
maintains vertex and edge arrays, cross-
referencing each other in the natural way, and
requires space linear in the total number of ver-
tices and edges.

P The adjacency matrix representation of a graph
maintains one bit per pair of vertices to keep
track of which edges are present, and requires
space quadratic in the number of vertices.

P The adjacency list representation is the pre-
ferred one for sparse graphs, and for applications
that involve graph exploration.

Test Your Understanding

Problem 7.1 (S) Let G = (V,E) be an undirected graph. By the
degree of a vertex v 2 V , we mean the number of edges in E that
are incident to v (i.e., that have v as an endpoint).15 For each of the
following conditions on the graph G, is the condition satisfied only
by dense graphs, only by sparse graphs, or by both some sparse and
some dense graphs? As usual, n = |V | denotes the number of vertices.
Assume that n is large (say, at least 10,000).

a) At least one vertex of G has degree at most 10.

b) Every vertex of G has degree at most 10.

c) At least one vertex of G has degree n� 1.

d) Every vertex of G has degree n� 1.

Problem 7.2 (S) Consider an undirected graph G = (V,E) that is
represented as an adjacency matrix. Given a vertex v 2 V , how many
operations are required to identify the edges incident to v? (Let k
denote the number of such edges. As usual, n and m denote the
number of vertices and edges, respectively.)

15The abbreviation “i.e.” stands for id est, and means “that is.”

14 Graphs: The Basics

a) ⇥(1)

b) ⇥(k)

c) ⇥(n)

d) ⇥(m)

Problem 7.3 Consider a directed graph G = (V,E) represented
with adjacency lists, with each vertex storing an array of its outgoing
edges (but not its incoming edges). Given a vertex v 2 V , how many
operations are required to identify the incoming edges of v? (Let k
denote the number of such edges. As usual, n and m denote the
number of vertices and edges, respectively).

a) ⇥(1)

b) ⇥(k)

c) ⇥(n)

d) ⇥(m)

Chapter 8

Graph Search and Its Applications

This chapter is all about fundamental primitives for graph search and
their applications. One very cool aspect of this material is that all the
algorithms that we’ll cover are blazingly fast (linear time with small
constants), and it can be quite tricky to understand why they work!
The culmination of this chapter—computing the strongly connected
components of a directed graph with only two passes of depth-first
search (Section 8.6)—vividly illustrates how fast algorithms often
require deep insight into the problem structure.

We begin with an overview section (Section 8.1), which covers some
reasons why you should care about graph search, a general strategy for
searching a graph without doing any redundant work, and a high-level
introduction to the two most important search strategies, breadth-
first search (BFS) and depth-first search (DFS). Sections 8.2 and 8.3
describe BFS in more detail, including applications to computing
shortest paths and the connected components of an undirected graph.
Sections 8.4 and 8.5 drill down on DFS and how to use it to compute
a topological ordering of a directed acyclic graph (equivalently, to
sequence tasks while respecting precedence constraints). Section 8.6
uses DFS to compute the strongly connected components of a directed
graph in linear time. Section 8.7 explains how this fast graph primitive
can be used to explore the structure of the Web.

8.1 Overview

This section provides a bird’s-eye view of algorithms for graph search
and their applications.

8.1.1 Some Applications

Why would we want to search a graph, or to figure out if a graph
contains a path from point A to point B? Here are a few of the many,

15

16 Graph Search and Its Applications

many reasons.

Checking connectivity. In a physical network, such as a road
network or a network of computers, an important sanity check is that
you can get anywhere from anywhere else. That is, for every choice
of a point A and a point B, there should be a path in the network
from the former to the latter.

Connectivity can also be important in abstract (non-physical)
graphs that represent pairwise relationships between objects. One
network that’s fun to play with is the movie network, where vertices
correspond to movie actors, and two actors are connected by an
undirected edge whenever they appeared in the same movie.1 For
example, how many “degrees of separation” are there between different
actors? The most famous statistic of this type is the Bacon number,
which is the minimum number of hops through the movie network
needed to reach the fairly ubiquitous actor Kevin Bacon.2 So, Kevin
Bacon himself has a Bacon number of 0, every actor who has appeared
in a movie with Kevin Bacon has a Bacon number of 1, every actor
who has appeared with an actor whose Bacon number is 1 but who is
not Kevin Bacon himself has a Bacon number of 2, and so on. For
example, Jon Hamm—perhaps best known as Don Draper from the
cable television series Mad Men—has a Bacon number of 2. Hamm
never appeared in a movie with Bacon, but he did have a bit part in
the Colin Firth vehicle A Single Man, and Firth and Bacon co-starred
in Atom Egoyan’s Where the Truth Lies (Figure 8.1).3

Jon
Hamm

Colin
Firth

Kevin
Bacon

A Single Man Where the

Truth Lies

Figure 8.1: A snippet of the movie network, showing that Jon Hamm’s
Bacon number is at most 2.

1
https://oracleofbacon.org/

2The Bacon number is a riff on the older concept of the Erdös number, named
after the famous mathematician Paul Erdös, which measures the number of degrees
of separation from Erdös in the co-authorship graph (where vertices are researchers,
and there is an edge between each pair of researchers who have co-authored a
paper).

3There are also lots of other two-hop paths between Bacon and Hamm.

https://oracleofbacon.org/

8.1 Overview 17

Shortest paths. The Bacon number concerns the shortest path
between two vertices of the movie network, meaning the path using
the fewest number of edges. We’ll see in Section 8.2 that a graph
search strategy known as breadth-first search naturally computes
shortest paths. Plenty of other problems boil down to a shortest-
path computation, where the definition of “short” depends on the
application (minimizing time for driving directions, or money for
airline tickets, and so on). Dijkstra’s shortest-path algorithm, the
subject of Chapter 9, builds on breadth-first search to solve more
general shortest-path problems.

Planning. A path in a graph need not represent a physical path
through a physical network. More abstractly, a path is a sequence
of decisions taking you from one state to another. Graph search
algorithms can be applied to such abstract graphs to compute a plan
for reaching a goal state from an initial state. For example, imagine
you want to use an algorithm to solve a Sudoku puzzle. Think of
the graph where vertices correspond to partially completed Sudoku
puzzles (with some of the 81 squares blank, but no rules of Sudoku
violated), and directed edges correspond to filling in one new entry of
the puzzle (subject to the rules of Sudoku). The problem of computing
a solution to the puzzle is exactly the problem of computing a directed
path from the vertex corresponding to the initial state of the puzzle
to the vertex corresponding to the completed puzzle.4 For another
example, using a robotic hand to grasp a coffee mug is essentially a
planning problem. In the associated graph, vertices correspond to the
possible configurations of the hand, and edges correspond to small
and realizable changes in the configuration.

Connected components. We’ll also see algorithms that build on
graph search to compute the connected components (the “pieces”)
of a graph. Defining and computing the connected components of
an undirected graph is relatively easy (Section 8.3). For directed
graphs, even defining what a “connected component” should mean
is a little subtle. Section 8.6 defines them and shows how to use
depth-first search (Section 8.4) to compute them efficiently. We’ll also

4Because this graph is too big to write down explicitly, practical Sudoku
solvers incorporate some additional ideas.

18 Graph Search and Its Applications

see applications of depth-first search to sequencing tasks (Section 8.5)
and to understanding the structure of the Web graph (Section 8.7).

8.1.2 For-Free Graph Primitives

The examples in Section 8.1.1 demonstrate that graph search is a
fundamental and widely applicable primitive. I’m happy to report
that, in this chapter, all our algorithms will be blazingly fast, running
in just O(m + n) time, where m and n denote the number of edges
and vertices of the graph.5 That’s just a constant factor larger than
the amount of time required to read the input!6 We conclude that
these algorithms are “for-free primitives”—whenever you have graph
data, you should feel free to apply any of these primitives to glean
information about what it looks like.7

For-Free Primitives

We can think of an algorithm with linear or near-linear
running time as a primitive that we can use essentially
“for free” because the amount of computation used is
barely more than the amount required just to read
the input. When you have a primitive relevant to
your problem that is so blazingly fast, why not use it?
For example, you can always compute the connected
components of your graph data in a preprocessing step,
even if you’re not quite sure how it will help later.
One of the goals of this book series is to stock your
algorithmic toolbox with as many for-free primitives
as possible, ready to be applied at will.

8.1.3 Generic Graph Search

The point of a graph search algorithm is to solve the following prob-
lem.

5Also, the constants hidden in the big-O notation are reasonably small.
6In graph search and connectivity problems, there is no reason to expect that

the input graph is connected. In the disconnected case, where m might be much
smaller than n, the size of a graph is ⇥(m+ n) but not necessarily ⇥(m).

7Can we do better? No, up to the hidden constant factor: every correct
algorithm must at least read the entire input in some cases.

8.1 Overview 19

Problem: Graph Search

Input: An undirected or directed graph G = (V,E), and
a starting vertex s 2 V .

Goal: Identify the vertices of V reachable from s in G.

By a vertex v being “reachable,” we mean that there is a sequence of
edges in G that travels from s to v. If G is a directed graph, all the
path’s edges should be traversed in the forward (outgoing) direction.
For example, in Figure 8.2(a), the set of reachable vertices (from s)
is {s, u, v, w}. In the directed version of the graph in Figure 8.2(b),
there is no directed path from s to w, and only the vertices s, u, and v
are reachable from s via a directed path.8

s

u

v

w

x

z

y

(a) An undirected graph

s

u

v

w

x

z

y

(b) A directed version

Figure 8.2: In (a), the set of vertices reachable from s is {s, u, v, w}. In (b),
it is {s, u, v}.

The two graph search strategies that we’ll focus on—breadth-first
search and depth-first search—are different ways of instantiating a
generic graph search algorithm. The generic algorithm systematically
finds all the reachable vertices, taking care to avoid exploring anything
twice. It maintains an extra variable with each vertex that keeps
track of whether or not it has already been explored, planting a flag
the first time that vertex is reached. The main loop’s responsibility is
to reach a new unexplored vertex in each iteration.

8In general, most of the algorithms and arguments in this chapter apply
equally well to undirected and directed graphs. The big exception is computing
connected components, which is a trickier problem in directed graphs than in
undirected graphs.

20 Graph Search and Its Applications

GenericSearch

Input: graph G = (V,E) and a vertex s 2 V .
Postcondition: a vertex is reachable from s if and
only if it is marked as “explored.”

mark s as explored, all other vertices as unexplored
while there is an edge (v, w) 2 E with v explored and
w unexplored do

choose some such edge (v, w) // underspecified

mark w as explored

The algorithm is essentially the same for both directed and undirected
graphs. In the directed case, the edge (v, w) chosen in an iteration
of the while loop should be directed from an explored vertex v to an
unexplored vertex w.

On Pseudocode

This book series explains algorithms using a mixture
of high-level pseudocode and English (as above). I’m
assuming that you have the skills to translate such
high-level descriptions into working code in your fa-
vorite programming language. Several other books
and resources on the Web offer concrete implementa-
tions of various algorithms in specific programming
languages.

The first benefit of emphasizing high-level descrip-
tions over language-specific implementations is flexi-
bility. While I assume familiarity with some program-
ming language, I don’t care which one. Second, this
approach promotes the understanding of algorithms
at a deep and conceptual level, unencumbered by low-
level details. Seasoned programmers and computer
scientists generally think and communicate about al-
gorithms at a similarly high level.

Still, there is no substitute for the detailed under-
standing of an algorithm that comes from providing

8.1 Overview 21

your own working implementation of it. I strongly
encourage you to implement as many of the algo-
rithms in this book as you have time for. (It’s also a
great excuse to pick up a new programming language!)
For guidance, see the end-of-chapter Programming
Problems and supporting test cases.

For example, in the graph in Figure 8.2(a), initially only our home
base s is marked as explored. In the first iteration of the while loop, two
edges meet the loop condition: (s, u) and (s, v). The GenericSearch

algorithm chooses one of these edges—(s, u), say—and marks u as
explored. In the second iteration of the loop, there are again two
choices: (s, v) and (u,w). The algorithm might choose (u,w), in
which case w is marked as explored. With one more iteration (after
choosing either (s, v) or (w, v)), v is marked as explored. At this
point, the edge (x, y) has two unexplored endpoints and the other
edges have two explored endpoints, and the algorithm halts. As one
would hope, the vertices marked as explored—s, u, v, and w—are
precisely the vertices reachable from s.

This generic graph search algorithm is underspecified, as multiple
edges (v, w) can be eligible for selection in an iteration of the while
loop. Breadth-first search and depth-first search correspond to two
specific decisions about which edge to explore next. No matter how
this choice is made, the GenericSearch algorithm is guaranteed to
be correct (in both undirected and directed graphs).

Proposition 8.1 (Correctness of Generic Graph Search) At
the conclusion of the GenericSearch algorithm, a vertex v 2 V is
marked as explored if and only if there is a path from s to v in G.

Section 8.1.5 provides a formal proof of Proposition 8.1; feel free to
skip it if the proposition seems intuitively obvious.

On Lemmas, Theorems, and the Like

In mathematical writing, the most important tech-
nical statements are labeled theorems. A lemma is
a technical statement that assists with the proof of
a theorem (much as a subroutine assists with the

22 Graph Search and Its Applications

implementation of a larger program). A corollary is a
statement that follows immediately from an already-
proved result, such as a special case of a theorem.
We use the term proposition for stand-alone techni-
cal statements that are not particularly important in
their own right.

What about the running time of the GenericSearch algorithm?
The algorithm explores each edge at most once—after an edge (v, w)
has been explored for the first time, both v and w are marked as
explored and the edge will not be considered again. This suggests that
it should be possible to implement the algorithm in linear time, as
long as we can quickly identify an eligible edge (v, w) in each iteration
of the while loop. We’ll see how this works in detail for breadth-first
search and depth-first search in Sections 8.2 and 8.4, respectively.

8.1.4 Breadth-First and Depth-First Search

Every iteration of the GenericSearch algorithm chooses an edge that
is “on the frontier” of the explored part of the graph, with one endpoint
explored and the other unexplored (Figure 8.3). There can be many
such edges, and to specify the algorithm fully we need a method for
choosing one of them. We’ll focus on the two most important strategies:
breadth-first search and depth-first search. Both are excellent ways
to explore a graph, and each has its own set of applications.

Breadth-first search (BFS). The high-level idea of breadth-first
search—or BFS to its friends—is to explore the vertices of a graph
cautiously, in “layers.” Layer 0 consists only of the starting vertex s.
Layer 1 contains the vertices that neighbor s, meaning the vertices v
such that (s, v) is an edge of the graph (directed from s to v, in the
case that G is directed). Layer 2 comprises the neighbors of layer-1
vertices that do not already belong to layer 0 or 1, and so on. In
Sections 8.2 and 8.3, we’ll see:

• how to implement BFS in linear time using a queue (first-in
first-out) data structure;

• how to use BFS to compute (in linear time) the length of a
shortest path between one vertex and all other vertices, with the

8.1 Overview 23

the frontier

s

explored unexplored

Figure 8.3: Every iteration of the GenericSearch algorithm chooses an
edge “on the frontier,” with one endpoint explored and the other unexplored.

layer-i vertices being precisely the vertices at distance i from s;

• how to use BFS to compute (in linear time) the connected
components of an undirected graph.

Depth-first search (DFS). Depth-first search—DFS to its
friends—is perhaps even more important. DFS employs a more
aggressive strategy for exploring a graph, very much in the spirit
of how you might explore a maze, going as deeply as you can and
backtracking only when absolutely necessary. In Sections 8.4–8.7,
we’ll see:

• how to implement DFS in linear time using either recursion or
an explicit stack (last-in first-out) data structure;

• how to use DFS to compute (in linear time) a topological order-
ing of the vertices of a directed acyclic graph, a useful primitive
for task sequencing problems;

• how to use DFS to compute (in linear time) the “strongly con-
nected components” of a directed graph, with applications to
understanding the structure of the Web.

24 Graph Search and Its Applications

8.1.5 Correctness of the GenericSearch Algorithm

We now prove Proposition 8.1, which states that at the conclusion
of the GenericSearch algorithm with input graph G = (V,E) and
starting vertex s 2 V , a vertex v 2 V is marked as explored if and
only if there is a path from s to v in G. As usual, if G is a directed
graph, the s ; v path should also be directed, with all edges traversed
in the forward direction.

The “only if” direction of the proposition should be intuitively
clear: The only way that the GenericSearch algorithm discovers new
vertices is by following paths from s.9

The “if” direction asserts the less obvious fact that the
GenericSearch algorithm doesn’t miss anything—it finds every vertex
that it could conceivably discover. For this direction, we’ll use a proof
by contradiction. Recall that in this type of proof, you assume the
opposite of what you want to prove, and then build on this assumption
with a sequence of logically correct steps that culminates in a patently
false statement. Such a contradiction implies that the assumption
can’t be true, which proves the desired statement.

So, assume that there is a path from s to v in the graph G, but
the GenericSearch algorithm somehow misses it and concludes with
the vertex v marked as unexplored. Let S ✓ V denote the vertices
of G marked as explored by the algorithm. The vertex s belongs to S
(by the first line of the algorithm), and the vertex v does not (by
assumption). Because the s ; v path travels from a vertex inside S to
one outside S, at least one edge e of the path has one endpoint u in S
and the other w outside S (with e directed from u to w in the case
that G is directed); see Figure 8.4. But this, my friends, is impossible:
The edge e would be eligible for selection in the while loop of the
GenericSearch algorithm, and the algorithm would have explored at
least one more vertex, rather than giving up! There’s no way that the
GenericSearch algorithm could have halted at this point, so we’ve
reached a contradiction. This contradiction concludes the proof of
Proposition 8.1. QE D10

9If we wanted to be pedantic about it, we’d prove this direction by induction
on the number of loop iterations.

10“Q.e.d.” is an abbreviation for quod erat demonstrandum, and means “that
which was to be demonstrated.” In mathematical writing, it is used at the end of
a proof to mark its completion.

8.2 Breadth-First Search and Shortest Paths 25

s u

w v

S = explored vertices

eligible for exploration!

e

Figure 8.4: Proof of Proposition 8.1. As long as the GenericSearch

algorithm has not yet discovered all the reachable vertices, there is an
eligible edge along which it can explore further.

8.2 Breadth-First Search and Shortest Paths

Let’s drill down on our first specific graph search strategy, breadth-first
search.

8.2.1 High-Level Idea

Breadth-first search explores the vertices of a graph in layers, in order
of increasing distance from the starting vertex. Layer 0 contains the
starting vertex s and nothing else. Layer 1 is the set of vertices that
are one hop away from s—that is, s’s neighbors. These are the vertices
that are explored immediately after s in breadth-first search. For
example, in the graph in Figure 8.5, a and b are the neighbors of s
and constitute layer 1. In general, the vertices in a layer i are those
that neighbor a vertex in layer i� 1 and that do not already belong
to one of the layers 0, 1, 2, . . . , i � 1. Breadth-first search explores
all of layer-i vertices immediately after completing its exploration of
layer-(i� 1) vertices. (Vertices not reachable from s do not belong
to any layer.) For example, in Figure 8.5, the layer-2 vertices are c
and d, as they neighbor layer-1 vertices but do not themselves belong
to layer 0 or 1. (The vertex s is also a neighbor of a layer-1 vertex,
but it already belongs to layer 0.) The last layer of the graph in
Figure 8.5 comprises only the vertex e.

26 Graph Search and Its Applications

s

layer 0

layer 1
layer 2

layer 3 a

b

c

d

e

Figure 8.5: Breadth-first search discovers vertices in layers. The layer-i
vertices are the neighbors of the layer-(i� 1) vertices that do not appear in
any earlier layer.

Quiz 8.1

Consider an undirected graph with n � 2 vertices. What
are the minimum and maximum number of different layers
that the graph could have, respectively?

a) 1 and n� 1

b) 2 and n� 1

c) 1 and n

d) 2 and n

(See Section 8.2.6 for the solution and discussion.)

8.2.2 Pseudocode for BFS

Implementing breadth-first search in linear time requires a simple
“first-in first-out” data structure known as a queue. BFS uses a queue
to keep track of which vertices to explore next. If you’re unfamiliar
with queues, now is a good time to read up on them in your favorite
introductory programming book (or on Wikipedia). The gist is that

8.2 Breadth-First Search and Shortest Paths 27

a queue is a data structure for maintaining a list of objects, and you
can remove stuff from the front or add stuff to the back in constant
time.11

BFS

Input: graph G = (V,E) in adjacency-list
representation, and a vertex s 2 V .

Postcondition: a vertex is reachable from s if and
only if it is marked as “explored.”

1 mark s as explored, all other vertices as unexplored
2 Q := a queue data structure, initialized with s
3 while Q is not empty do
4 remove the vertex from the front of Q, call it v
5 for each edge (v, w) in v’s adjacency list do
6 if w is unexplored then
7 mark w as explored
8 add w to the end of Q

Each iteration of the while loop explores one new vertex. In
line 5, BFS iterates through all the edges incident to the vertex v
(if G is undirected) or through all the outgoing edges from v (if G is
directed).12 Unexplored neighbors of v are added to the end of the
queue and are marked as explored; they will eventually be processed
in later iterations of the algorithm.

8.2.3 An Example

Let’s see how our pseudocode works for the graph in Figure 8.5, num-
bering the vertices in order of insertion into the queue (equivalently,
in order of exploration). The starting vertex s is always the first to

11You may never need to implement a queue from scratch, as they are built in
to most modern programming languages. If you do, you can use a doubly linked
list. Or, if you have advance knowledge of the maximum number of objects that
you might have to store (which is |V |, in the case of BFS), you can get away with
a fixed-length array and a couple of indices (which keep track of the front and
back of the queue).

12This is the step where it’s so convenient to have the input graph represented
via adjacency lists.

28 Graph Search and Its Applications

be explored. The first iteration of the while loop extracts s from
the queue Q and the subsequent for loop examines the edges (s, a)
and (s, b), in whatever order these edges appear in s’s adjacency list.
Because neither a nor b is marked as explored, both get inserted into
the queue. Let’s say that edge (s, a) came first and so a is inserted
before b. The current state of the graph and the queue is now:

s

#1

state of the queue Q

a

b

c

d

e

#2

#3

the frontier

b a s

already removed front of queue

The next iteration of the while loop extracts the vertex a from the
front of the queue, and considers its incident edges (s, a) and (a, c). It
skips over the former after double-checking that s is already marked
as explored, and adds the (previously unexplored) vertex c to the
end of the queue. The third iteration extracts the vertex b from the
front of the queue and adds vertex d to the end (because s and c are
already marked as explored, they are skipped over). The new picture
is:

s

#1

state of the queue Q

a

b

c

d

e

#2

#3

the frontier

b a s

already removed front of queue
#4

#5

c d

In the fourth iteration, the vertex c is removed from the front of the
queue. Of its neighbors, the vertex e is the only one not encountered

8.2 Breadth-First Search and Shortest Paths 29

before, and it is added to the end of the queue. The final two
iterations extract d and then e from the queue, and verify that all
of their neighbors have already been explored. The queue is then
empty, and the algorithm halts. The vertices are explored in order
of the layers, with the layer-i vertices explored immediately after the
layer-(i� 1) vertices (Figure 8.6).

s

#1

a

b

c

d

e

#2

#3

#4

#5

#6

(a) Order of exploration

s

layer 0

layer 1
layer 2

layer 3 a

b

c

d

e

(b) Layers

Figure 8.6: In breadth-first search, the layer-i vertices are explored imme-
diately after the layer-(i� 1) vertices.

8.2.4 Correctness and Running Time

Breadth-first search discovers all the vertices reachable from the
starting vertex, and it runs in linear time. The more refined running
time bound in Theorem 8.2(c) below will come in handy for our
linear-time algorithm for computing connected components (described
in Section 8.3).

Theorem 8.2 (Properties of BFS) For every undirected or di-
rected graph G = (V,E) in adjacency-list representation and for every
starting vertex s 2 V :

(a) At the conclusion of BFS, a vertex v 2 V is marked as explored
if and only if there is a path from s to v in G.

(b) The running time of BFS is O(m + n), where m = |E| and
n = |V |.

30 Graph Search and Its Applications

(c) The running time of lines 2–8 of BFS is

O(ms + ns),

where ms and ns denote the number of edges and vertices, re-
spectively, reachable from s in G.

Proof: Part (a) follows from the guarantee in Proposition 8.1 for the
generic graph search algorithm GenericSearch, of which BFS is a
special case.13 Part (b) follows from part (c), as the overall running
time of BFS is just the running time of lines 2–8 plus the O(n) time
needed for the initialization in line 1.

We can prove part (c) by inspecting the pseudocode. The ini-
tialization in line 2 takes O(1) time. In the main while loop, the
algorithm only ever encounters the ns vertices that are reachable
from s. Because no vertex is explored twice, each such vertex is added
to the end of the queue and removed from the front of the queue
exactly once. Each of these operations takes O(1) time—this is the
whole point of the first-in first-out queue data structure—and so the
total amount of time spent in lines 3–4 and 7–8 is O(ns). Each of
the ms edges (v, w) reachable from s is processed in line 5 at most
twice—once when v is explored, and once when w is explored.14 Thus
the total amount of time spent in lines 5–6 is O(ms), and the overall
running time for lines 2–8 is O(ms + ns). QE D

8.2.5 Shortest Paths

The properties in Theorem 8.2 are not unique to breadth-first search—
for example, they also hold for depth-first search. What is unique
about BFS is that, with just a couple extra lines of code, it efficiently
computes shortest-path distances.

13Formally, BFS is equivalent to the version of GenericSearch where, in every
iteration of the latter’s while loop, the algorithm chooses the eligible edge (v, w)
for which v was discovered the earliest, breaking ties among v’s eligible edges
according to their order in v’s adjacency list. If that sounds too complicated, you
can alternatively check that the proof of Proposition 8.1 holds verbatim also for
breadth-first search. Intuitively, breadth-first search discovers vertices only by
exploring paths from s; as long as it hasn’t explored every vertex on a path, the
“next vertex” on the path is still in the queue awaiting future exploration.

14If G is a directed graph, each edge is processed at most once, when its tail
vertex is explored.

8.2 Breadth-First Search and Shortest Paths 31

Problem Definition

In a graph G, we use the notation dist(v, w) for the fewest number of
edges in a path from v to w (or +1, if G contains no path from v
to w).15

Problem: Shortest Paths (Unit Edge Lengths)

Input: An undirected or directed graph G = (V,E), and
a starting vertex s 2 V .

Output: dist(s, v) for every vertex v 2 V .16

For example, if G is the movie network and s is the vertex corre-
sponding to Kevin Bacon, the problem of computing shortest paths
is precisely the problem of computing everyone’s Bacon number (Sec-
tion 8.1.1). The basic graph search problem (Section 8.1.3) cor-
responds to the special case of identifying all the vertices v with
dist(s, v) 6= +1.

Pseudocode

To compute shortest paths, we add two lines to the basic BFS algorithm
(lines 2 and 9 below); these increase the algorithm’s running time by
a small constant factor. The first one initializes preliminary estimates
of vertices’ shortest-path distances—0 for s, and +1 for the other
vertices, which might not even be reachable from s. The second one
executes whenever a vertex w is discovered for the first time, and
computes w’s final shortest-path distance as one more than that of
the vertex v that triggered w’s discovery.

15As usual, if G is directed, all the edges of the path should be traversed in
the forward direction.

16The phrase “unit edge lengths” in the problem statement refers to the as-
sumption that each edge of G contributes 1 to the length of a path. Chapter 9
generalizes BFS to compute shortest paths in graphs in which each edge has its
own nonnegative length.

32 Graph Search and Its Applications

Augmented-BFS

Input: graph G = (V,E) in adjacency-list
representation, and a vertex s 2 V .

Postcondition: for every vertex v 2 V , the value l(v)
equals the true shortest-path distance dist(s, v).

1 mark s as explored, all other vertices as unexplored
2 l(s) := 0, l(v) := +1 for every v 6= s
3 Q := a queue data structure, initialized with s
4 while Q is not empty do
5 remove the vertex from the front of Q, call it v
6 for each edge (v, w) in v’s adjacency list do
7 if w is unexplored then
8 mark w as explored
9 l(w) := l(v) + 1

10 add w to the end of Q

Example and Analysis

In our running example (Figure 8.6), the first iteration of the while
loop discovers the vertices a and b. Because s triggered their discovery
and l(s) = 0, the algorithm reassigns l(a) and l(b) from +1 to 1:

s

l(s)=0

a

b

c

d

e

l(a)=1

l(b)=1

the frontier

state of the queue Q

b a s

already removed front of queue
l(c)=+∞

l(d)=+∞

l(e)=+∞

The second iteration of the while loop processes the vertex a, leading
to c’s discovery. The algorithm reassigns l(c) from +1 to l(a) + 1,
which is 2. Similarly, in the third iteration, l(d) is set to l(b) + 1,
which is also 2:

8.2 Breadth-First Search and Shortest Paths 33

s

state of the queue Q

a

b

c

d

e

the frontier

b a s

already removed front of queue

c d

l(s)=0

l(a)=1

l(b)=1

l(c)=2

l(d)=2

l(e)=+∞

The fourth iteration discovers the final vertex e via the vertex c, and
sets l(e) to l(c) + 1, which is 3. At this point, for every vertex v, l(v)
equals the true shortest-path distance dist(s, v), which also equals
the number of the layer that contains v (Figure 8.6). These properties
hold in general, and not just for this example.

Theorem 8.3 (Properties of Augmented-BFS) For every undi-
rected or directed graph G = (V,E) in adjacency-list representation
and for every starting vertex s 2 V :

(a) At the conclusion of Augmented-BFS, for every vertex v 2 V ,
the value of l(v) equals the length dist(s, v) of a shortest path
from s to v in G (or +1, if no such path exists).

(b) The running time of Augmented-BFS is O(m+n), where m = |E|
and n = |V |.

Because the asymptotic running time of the Augmented-BFS al-
gorithm is the same as that of BFS, part (b) of Theorem 8.3 follows
from the latter’s running time guarantee (Theorem 8.2(b)). Part (a)
follows from two observations. First, the vertices v with dist(s, v) = i
are precisely the vertices in the ith layer of the graph—this is why
we defined layers the way we did. Second, for every layer-i vertex w,
Augmented-BFS eventually sets l(w) = i (since w is discovered via a
layer-(i�1) vertex v with l(v) = i�1). For vertices not in any layer—
that is, not reachable from s—both dist(s, v) and l(v) are +1.17

17If you’re hungry for a more rigorous proof, then proceed—in the privacy of
your own home—by induction on the number of while loop iterations performed
by the Augmented-BFS algorithm. Alternatively, Theorem 8.3(a) is a special case
of the correctness of Dijkstra’s shortest-path algorithm, as proved in Section 9.3.

34 Graph Search and Its Applications

8.2.6 Solution to Quiz 8.1

Correct answer: (d). An undirected graph with n � 2 vertices has
at least two layers and at most n layers. When n � 2, there cannot be
fewer than two layers because s is the only vertex in layer 0. Complete
graphs have only two layers (Figure 8.7(a)). There cannot be more
than n layers, as layers are disjoint and contain at least one vertex
each. Path graphs have n layers (Figure 8.7(b)).

s

layer 0 layer 1

(a) A complete graph

s

layer 0 layer 1 layer 2 layer 3

(b) A path graph

Figure 8.7: An n-vertex graph can have anywhere from two to n different
layers.

8.3 Computing Connected Components

In this section, G = (V,E) will always denote an undirected graph. We
postpone the more difficult connectivity problems in directed graphs
until Section 8.6.

8.3.1 Connected Components

An undirected graph G = (V,E) naturally falls into “pieces,” which are
called connected components (Figure 8.8). More formally, a connected
component is a maximal subset S ✓ V of vertices such that there is a
path from any vertex in S to any other vertex in S.18 For example,

18Still more formally, the connected components of a graph can be defined as
the equivalence classes of a suitable equivalence relation. Equivalence relations
are usually covered in a first course on proofs or on discrete mathematics. A

8.3 Computing Connected Components 35

the connected components of the graph in Figure 8.8 are {1, 3, 5, 7, 9},
{2, 4}, and {6, 8, 10}.

9

1 3

5

7

2 4

10

6

8

Figure 8.8: A graph with vertex set {1, 2, 3, . . . , 10} and three connected
components.

The goal of this section is to use breadth-first search to compute
the connected components of a graph in linear time.19

Problem: Undirected Connected Components

Input: An undirected graph G = (V,E).

Goal: Identify the connected components of G.

Next, let’s double-check your understanding of the definition of
connected components.

relation on a set X of objects specifies, for each pair x, y 2 X of objects, whether
or not x and y are related. (If so, we write x ⇠ y.) For connected components,
the relevant relation (on the set V) is “v ⇠G w if and only if there is a path
between v and w in G.” An equivalence relation satisfies three properties. First,
it is reflexive, meaning that x ⇠ x for every x 2 X. (Satisfied by ⇠G, as the
empty path connects a vertex with itself.) Second, it is symmetric, with x ⇠ y if
and only if y ⇠ x. (Satisfied by ⇠G, as G is undirected.) Finally, it is transitive,
meaning that x ⇠ y and y ⇠ z implies that x ⇠ z. (Satisfied by ⇠G, as you can
paste together a path between vertices u and v with a path between vertices v

and w to get a path between u and w.) An equivalence relation partitions the set
of objects into equivalence classes, with each object related to all the objects in
its class, and only to these. The equivalence classes of the relation ⇠G are the
connected components of G.

19Other graph search algorithms, including depth-first search, can be used to
compute connected components in exactly the same way.

36 Graph Search and Its Applications

Quiz 8.2

Consider an undirected graph with n vertices and m edges.
What are the minimum and maximum number of connected
components that the graph could have, respectively?

a) 1 and n� 1

b) 1 and n

c) 1 and max{m,n}

d) 2 and max{m,n}

(See Section 8.3.6 for the solution and discussion.)

8.3.2 Applications

There are several reasons why you might be interested in the connected
components of a graph.

Detecting network failures. One obvious application is checking
whether or not a network, such as a road or communication network,
has become disconnected.

Data visualization. Another application is in graph visualization—
if you’re trying to draw or otherwise visualize a graph, presumably
you want to display the different components separately.

Clustering. Suppose you have a collection of objects that you care
about, with each pair annotated as either “similar” or “dissimilar.”
For example, the objects could be documents (like crawled Web pages
or news stories), with similar objects corresponding to near-duplicate
documents (perhaps differing only in a timestamp or a headline). Or
the objects could be genomes, with two genomes deemed similar if a
small number of mutations can transform one into the other.

Now form an undirected graph G = (V,E), with vertices corre-
sponding to objects and edges corresponding to pairs of similar objects.
Intuitively, each connected component of this graph represents a set
of objects that share much in common. For example, if the objects
are crawled news stories, one might expect the vertices of a connected
component to be variations on the same story reported on different

8.3 Computing Connected Components 37

Web sites. If the objects are genomes, a connected component might
correspond to different individuals belonging to the same species.

8.3.3 The UCC Algorithm

Computing the connected components of an undirected graph easily
reduces to breadth-first search (or other graph search algorithms, such
as depth-first search). The idea is to use an outer loop to make a
single pass over the vertices, invoking BFS as a subroutine whenever
the algorithm encounters a vertex that it has never seen before. This
outer loop ensures that the algorithm looks at every vertex at least
once. Vertices are initialized as unexplored before the outer loop, and
not inside a call to BFS. The algorithm also maintains a field cc(v) for
each vertex v, to remember which connected component contains it.
By identifying each vertex of V with its position in the vertex array,
we can assume that V = {1, 2, 3, . . . , n}.

UCC

Input: undirected graph G = (V,E) in adjacency-list
representation, with V = {1, 2, 3, . . . , n}.

Postcondition: for every u, v 2 V , cc(u) = cc(v) if
and only if u, v are in the same connected component.

mark all vertices as unexplored
numCC := 0
for i := 1 to n do // try all vertices

if i is unexplored then // avoid redundancy

numCC := numCC + 1 // new component

// call BFS starting at i (lines 2–8)

Q := a queue data structure, initialized with i
while Q is not empty do

remove the vertex from the front of Q, call it v
cc(v) := numCC
for each (v, w) in v’s adjacency list do

if w is unexplored then
mark w as explored
add w to the end of Q

38 Graph Search and Its Applications

8.3.4 An Example

Let’s trace the UCC algorithm’s execution on the graph in Figure 8.8.
The algorithm marks all vertices as unexplored and starts the outer
for loop with vertex 1. This vertex has not been seen before, so the
algorithm invokes BFS from it. Because BFS finds everything reachable
from its starting vertex (Theorem 8.2(a)), it discovers all the vertices
in {1, 3, 5, 7, 9}, and sets their cc-values to 1. One possible order of
exploration is:

9

1 3

5

7

2 4

10

6

8

#1 #2

#3

#4 #5

unexplored unexplored

unexplored

unexplored unexplored

connected component #1

Once this call to BFS completes, the algorithm’s outer for loop marches
on and considers vertex 2. This vertex was not discovered by the
first call to BFS, so BFS is invoked again, this time with vertex 2 as
the starting vertex. After discovering vertices 2 and 4 (and setting
their cc-values to 2), this call to BFS completes and the UCC algorithm
resumes its outer for loop. Has the algorithm seen vertex 3 before?
Yup, in the first BFS call. What about vertex 4? Yes again, this
time in the second BFS call. Vertex 5? Been there, done that in the
first BFS call. But what about vertex 6? Neither of the previous BFS
calls discovered this vertex, so BFS is called again with vertex 6 as
the starting vertex. This third call to BFS discovers the vertices in
{6, 8, 10}, and sets their cc-values to 3:

9

1 3

5

7

2 4

10

6

8

#1 #2

#3

#4 #5

connected component #1

#6 #7

connected
component #2

#8

#9 #10

connected component #3

8.3 Computing Connected Components 39

Finally, the algorithm verifies that the remaining vertices (7, 8, 9,
and 10) have already been explored and halts.

8.3.5 Correctness and Running Time

The UCC algorithm correctly computes the connected components of
an undirected graph, and does so in linear time.

Theorem 8.4 (Properties of UCC) For every undirected graph
G = (V,E) in adjacency-list representation:

(a) At the conclusion of UCC, for every pair u, v of vertices, cc(u) =
cc(v) if and only if u and v belong to the same connected com-
ponent of G.

(b) The running time of UCC is O(m + n), where m = |E| and
n = |V |.

Proof: For correctness, the first property of breadth-first search (The-
orem 8.2(a)) implies that each call to BFS with a starting vertex i will
discover the vertices in i’s connected component and nothing more.
The UCC algorithm gives these vertices a common cc-value. Because
no vertex is explored twice, each call to BFS identifies a new connected
component, with each component having a different cc-value. The
outer for loop ensures that every vertex is visited at least once, so the
algorithm will discover every connected component.

The running time bound follows from our refined running time
analysis of BFS (Theorem 8.2(c)). Each call to BFS from a vertex i
runs in O(mi + ni) time, where mi and ni denote the number of
edges and vertices, respectively, in i’s connected component. As BFS
is called only once for each connected component, and each vertex
or edge of G participates in exactly one component, the combined
running time of all the BFS calls is O(

P
imi+

P
i ni) = O(m+n). The

initialization and additional bookkeeping performed by the algorithm
requires only O(n) time, so the final running time is O(m+n). QE D

8.3.6 Solution to Quiz 8.2

Correct answer: (b). A graph with one connected component is
one in which you can get from anywhere to anywhere else. Path

40 Graph Search and Its Applications

graphs and complete graphs (Figure 8.7) are two examples. At the
other extreme, in a graph with no edges, each vertex is in its own
connected component, for a total of n. There cannot be more than n
connected components, as they are disjoint and each contains at least
one vertex.

8.4 Depth-First Search

Why do we need another graph search strategy? After all, breadth-first
search seems pretty awesome—it finds all the vertices reachable from
the starting vertex in linear time, and can even compute shortest-path
distances along the way.

There’s another linear-time graph search strategy, depth-first
search (DFS), which comes with its own impressive catalog of applica-
tions (not already covered by BFS). For example, we’ll see how to use
DFS to compute in linear time a topological ordering of the vertices
of a directed acyclic graph, as well as the connected components
(appropriately defined) of a directed graph.

8.4.1 An Example

If breadth-first search is the cautious and tentative exploration strat-
egy, depth-first search is its more aggressive cousin, always exploring
from the most recently discovered vertex and backtracking only when
necessary (like exploring a maze). Before we describe the full pseu-
docode for DFS, let’s illustrate how it works on the same running
example used in Section 8.2 (Figure 8.9).

s

a

b

c

d

e

Figure 8.9: Running example for depth-first search.

8.4 Depth-First Search 41

Like BFS, DFS marks a vertex as explored the first time it discovers
it. Because it begins its exploration at the starting vertex s, for the
graph in Figure 8.9, the first iteration of DFS examines the edges (s, a)
and (s, b), in whatever order these edges appear in s’s adjacency list.
Let’s say (s, a) comes first, leading DFS to discover the vertex a and
mark it as explored. The second iteration of DFS is where it diverges
from BFS—rather than considering next s’s other layer-1 neighbor b,
DFS immediately proceeds to exploring the neighbors of a. (It will
eventually get back to exploring (s, b).) Perhaps from a it checks s
first (which is already marked as explored) and then discovers the
vertex c, which is where it travels next:

s

#1

a

b

c

d

e

#2

#3

the frontier

Then DFS examines in some order the neighbors of c, the most
recently discovered vertex. To keep things interesting, let’s say that
DFS discovers d next, followed by e:

s

#1

a

b

c

d

e

#2

#3

the frontier

#5

#4

need to
backtrack
from here

From e, DFS has nowhere to go—both of e’s neighbors are already
marked as explored. DFS is forced to retreat to the previous vertex,
namely d, and resume exploring the rest of its neighbors. From d, DFS
will discover the final vertex b (perhaps after checking c and finding
it marked as explored). Once at b, the dominoes fall quickly. DFS

42 Graph Search and Its Applications

discovers that all of b’s neighbors have already been explored, and
must backtrack to the previously visited vertex, which is d. Similarly,
because all of d’s remaining neighbors are already marked as explored,
DFS must rewind further, to c. DFS then retreats further to a (after
checking that all of c’s remaining neighbors are marked as explored),
then to s. It finally stops once it checks s’s remaining neighbor (which
is b) and finds it marked as explored.

8.4.2 Pseudocode for DFS

Iterative Implementation

One way to think about and implement DFS is to start from the code
for BFS and make two changes: (i) swap in a stack data structure
(which is last-in first-out) for the queue (which is first-in first-out);
and (ii) postpone checking whether a vertex has already been explored
until after removing it from the data structure.20,21

DFS (Iterative Version)

Input: graph G = (V,E) in adjacency-list
representation, and a vertex s 2 V .

Postcondition: a vertex is reachable from s if and
only if it is marked as “explored.”

mark all vertices as unexplored
S := a stack data structure, initialized with s
while S is not empty do

remove (“pop”) the vertex v from the front of S
if v is unexplored then

mark v as explored
for each edge (v, w) in v’s adjacency list do

add (“push”) w to the front of S

20A stack is a “last-in first-out” data structure—like those stacks of upside-down
trays at a cafeteria—that is typically studied in a first programming course (along
with queues, see footnote 11). A stack maintains a list of objects, and you can add
an object to the beginning of the list (a “push”) or remove one from the beginning
of the list (a “pop”) in constant time.

21Would the algorithm behave the same if we made only the first change?

8.4 Depth-First Search 43

As usual, the edges processed in the for loop are the edges incident
to v (if G is an undirected graph) or the edges outgoing from v (if G
is a directed graph).

For example, in the graph in Figure 8.9, the first iteration of DFS’s
while loop pops the vertex s and pushes its two neighbors onto the
stack in some order, say, with b first and a second. Because a was the
last to be pushed, it is the first to be popped, in the second iteration
of the while loop. This causes s and c to be pushed onto the stack,
let’s say with c first. The vertex s is popped in the next iteration;
since it has already been marked as explored, the algorithm skips it.
Then c is popped, and all of its neighbors (a, b, d, and e) are pushed
onto the stack, joining the first occurrence of b. If d is pushed last,
and also b is pushed before e when d is popped in the next iteration,
then we recover the order of exploration from Section 8.4.1 (as you
should check).

Recursive Implementation

Depth-first search also has an elegant recursive implementation.22

DFS (Recursive Version)

Input: graph G = (V,E) in adjacency-list
representation, and a vertex s 2 V .

Postcondition: a vertex is reachable from s if and
only if it is marked as “explored.”

// all vertices unexplored before outer call

mark s as explored
for each edge (s, v) in s’s adjacency list do

if v is unexplored then
DFS (G, v)

In this implementation, all recursive calls to DFS have access to the
same set of global variables which track the vertices that have been
marked as explored (with all vertices initially unexplored). The aggres-
sive nature of DFS is perhaps more obvious in this implementation—the

22I’m assuming you’ve heard of recursion as part of your programming back-
ground. A recursive procedure is one that invokes itself as a subroutine.

44 Graph Search and Its Applications

algorithm immediately recurses on the first unexplored neighbor that
it finds, before considering the remaining neighbors.23 In effect, the
explicit stack data structure in the iterative implementation of DFS is
being simulated by the program stack of recursive calls in the recursive
implementation.24

8.4.3 Correctness and Running Time

Depth-first search is just as correct and just as blazingly fast as
breadth-first search, for the same reasons (cf., Theorem 8.2).25

Theorem 8.5 (Properties of DFS) For every undirected or di-
rected graph G = (V,E) in adjacency-list representation and for every
starting vertex s 2 V :

(a) At the conclusion of DFS, a vertex v 2 V is marked as explored
if and only if there is a path from s to v in G.

(b) The running time of DFS is O(m + n), where m = |E| and
n = |V |.

Part (a) holds because depth-first search is a special case of the generic
graph search algorithm GenericSearch (see Proposition 8.1).26

Part (b) holds because DFS examines each edge at most twice (once
from each endpoint) and, because the stack supports pushes and pops
in O(1) time, performs a constant number of operations per edge
examination (for O(m) total). The initialization requires O(n) time.27

23As stated, the two versions of DFS explore the edges in a vertex’s adjacency
list in opposite orders. (Do you see why?) If one of the versions is modified to
iterate backward through a vertex’s adjacency list, then the iterative and recursive
implementations explore the vertices in the same order.

24Pro tip: If your computer runs out of memory while executing the recursive
version of DFS on a big graph, you should either switch to the iterative version or
increase the program stack size in your programming environment.

25The abbreviation “cf.” stands for confer and means “compare to.”
26Formally, DFS is equivalent to the version of GenericSearch in which, in

every iteration of the latter’s while loop, the algorithm chooses the eligible edge
(v, w) for which v was discovered most recently. Ties among v’s eligible edges are
broken according to their order (for the recursive version) or their reverse order
(for the iterative version) in v’s adjacency list.

27The refined bound in Theorem 8.2(c) also holds for DFS (for the same reasons),
which means DFS can substitute for BFS in the linear-time UCC algorithm for
computing connected components in Section 8.3.

8.5 Topological Sort 45

8.5 Topological Sort

Depth-first search is perfectly suited for computing a topological
ordering of a directed acyclic graph. “What’s that and who cares,”
you say?

8.5.1 Topological Orderings

Imagine that you have a bunch of tasks to complete, and there are
precedence constraints, meaning that you cannot start some of the
tasks until you have completed others. Think, for example, about the
courses in a university degree program, some of which are prerequisites
for others. One application of topological orderings is to sequencing
tasks so that all precedence constraints are respected.

Topological Orderings

Let G = (V,E) be a directed graph. A topological ordering
of G is an assignment f(v) of every vertex v 2 V to a
different number such that:

for every (v, w) 2 E, f(v) < f(w).

The function f effectively orders the vertices, from the vertex with
the smallest f -value to the one with the largest. The condition asserts
that all of G’s (directed) edges should travel forward in the ordering,
with the label of the tail of an edge smaller than that of its head.

Quiz 8.3

How many different topological orderings does the following
graph have? Use only the labels {1, 2, 3, 4}.

s

v

w

t

46 Graph Search and Its Applications

a) 0

b) 1

c) 2

d) 3

(See Section 8.5.7 for the solution and discussion.)

You can visualize a topological ordering by plotting the vertices
in order of their f -values. In a topological ordering, all edges of the
graph are directed from left to right. Figure 8.10 plots the topological
orderings identified in the solution to Quiz 8.3.

s v w t

1 2 3 4

(a) One topological ordering. . .

s w v t

1 2 3 4

(b) . . . and another one

Figure 8.10: A topological ordering effectively plots the vertices of a graph
on a line, with all edges going from left to right.

When the vertices of a graph represent tasks and the directed edges
represent precedence constraints, topological orderings correspond
exactly to the different ways to sequence the tasks while respecting
the precedence constraints.

8.5.2 When Does a Topological Ordering Exist?

Does every graph have a topological ordering? No way. Think about
a graph consisting solely of a directed cycle (Figure 8.11(a)). No
matter what vertex ordering you choose, traversing the edges of the
cycle takes you back to the starting point, which is possible only if
some edges go backward in the ordering (Figure 8.11(b)).

More generally, it is impossible to topologically order the vertices
of a graph that contains a directed cycle. Equivalently, it is impossible
to sequence a set of tasks when their dependencies are circular.

Happily, directed cycles are the only obstruction to topological
orderings. A directed graph without any directed cycles is called—

8.5 Topological Sort 47

u

w

z

y

v x

(a) A directed cycle

u v w x

1 2 3 4
y z

5 6

(b) A non-topological ordering

Figure 8.11: Only a graph without directed cycles can have a topological
ordering.

wait for it—a directed acyclic graph, or simply a DAG. For example,
the graph in Figure 8.10 is directed acyclic; the graph in Figure 8.11
is not.

Theorem 8.6 (Every DAG Has a Topological Ordering)
Every directed acyclic graph has at least one topological ordering.

To prove this theorem, we’ll need the following lemma about
source vertices. A source vertex of a directed graph is a vertex with no
incoming edges. (Analogously, a sink vertex is one with no outgoing
edges.) For example, s is the unique source vertex in the graph in
Figure 8.10; the directed cycle in Figure 8.11 does not have any source
vertices.

Lemma 8.7 (Every DAG Has a Source) Every directed acyclic
graph has at least one source vertex.

Lemma 8.7 is true because if you keep following incoming edges
backward out of an arbitrary vertex of a directed acyclic graph, you’re
bound to eventually reach a source vertex. (Otherwise, you would
produce a cycle, which is impossible.) See also Figure 8.12.28

28More formally, pick a vertex v0 of a directed acyclic graph G; if it’s a source
vertex, we’re done. If not, it has at least one incoming edge (v1, v0). If v1 is
a source vertex, we’re done. Otherwise, there is an incoming edge of the form
(v2, v1) and we can iterate again. After iterating up to n times, where n is the
number of vertices, we either find a source vertex or produce a sequence of n edges
(vn, vn�1), (vn�1, vn�2), . . . , (v1, v0). Because there are only n vertices, there’s at

48 Graph Search and Its Applications

v5

v3

v6

v7

v4 v2

v1

v0

Figure 8.12: Tracing incoming edges back from a vertex fails to find a
source vertex only if the graph contains a directed cycle.

We can prove Theorem 8.6 by populating a topological ordering
from left to right with successively extracted source vertices.29

Proof of Theorem 8.6: Let G be a directed acyclic graph with n
vertices. The plan is to assign f -values to vertices in increasing order,
from 1 to n. Which vertex has earned the right to wear 1 as its f -
value? It had better be a source vertex—if a vertex with an incoming
edge was assigned the first position, the incoming edge would go
backward in the ordering. So, let v1 be a source vertex of G—one
exists by Lemma 8.7—and assign f(v1) = 1. If there are multiple
source vertices, pick one arbitrarily.

Next, obtain the graph G0 from G by removing v1 and all its edges.
Because G is directed acyclic, so is G0—deleting stuff can’t create new
cycles. We can therefore recursively compute a topological ordering
of G0, using the labels {2, 3, 4, . . . , n}, with every edge in G0 traveling
forward in the ordering. (Since each recursive call is on a smaller
graph, the recursion eventually stops.) The only edges in G that are
not also in G0 are the (outgoing) edges of v1; as f(v1) = 1, these also
travel forward in the ordering.30 QE D

least one repeat vertex in the sequence vn, vn�1, . . . , v0. But if vj = vi with j > i,
then the edges (vj , vj�1), . . . , (vi+1, vi) form a directed cycle, contradicting the
assumption that G is directed acyclic. (In Figure 8.12, i = 2 and j = 8.)

29Alternatively, following outgoing edges rather than incoming edges in the
proof of Lemma 8.7 shows that every DAG has at least one sink vertex, and we
can populate a topological ordering from right to left with successively extracted
sink vertices.

30If you prefer a formal proof of correctness, proceed in the privacy of your

8.5 Topological Sort 49

8.5.3 Computing a Topological Ordering

Theorem 8.6 implies that it makes sense to ask for a topological
ordering of a directed graph if and only if the graph is directed acyclic.

Problem: Topological Sort

Input: A directed acyclic graph G = (V,E).

Output: A topological ordering of the vertices of G.

The proofs of Lemma 8.7 and Theorem 8.6 naturally lead to an
algorithm. For an n-vertex directed acyclic graph in adjacency-list
representation, the former proof gives an O(n)-time subroutine for
finding a source vertex. The latter proof computes a topological
ordering with n invocations of this subroutine, plucking off a new
source vertex in each iteration.31 The running time of this algorithm
is O(n2), which is linear time for the densest graphs (with m = ⇥(n2)
edges) but not for sparser graphs (where n2 could be way bigger
than m). Next up: a slicker solution via depth-first search, resulting
in a linear-time (O(m + n)) algorithm.32

8.5.4 Topological Sort via DFS

The slick way to compute a topological ordering is to augment depth-
first search in two small ways. For simplicity, we’ll start from the
recursive implementation of DFS in Section 8.4. The first addition is
an outer loop that makes a single pass over the vertices, invoking DFS

as a subroutine whenever a previously unexplored vertex is discovered.
This ensures that every vertex is eventually discovered and assigned
a label. The global variable curLabel keeps track of where we are in
the topological ordering. Our algorithm will compute an ordering in
reverse order (from right to left), so curLabel counts down from the
number of vertices to 1.

own home by induction on the number of vertices.
31For the graph in Figure 8.10, this algorithm might compute either of the two

topological orderings, depending on which of v, w is chosen as the source vertex
in the second iteration, after s has been removed.

32With some cleverness, the algorithm implicit in the proofs of Lemma 8.7 and
Theorem 8.6 can also be implemented in linear time—do you see how to do it?

50 Graph Search and Its Applications

TopoSort

Input: directed acyclic graph G = (V,E) in
adjacency-list representation.

Postcondition: the f -values of vertices constitute a
topological ordering of G.

mark all vertices as unexplored
curLabel := |V | // keeps track of ordering

for every v 2 V do
if v is unexplored then // in a prior DFS

DFS-Topo (G, v)

Second, we must add a line of code to DFS that assigns an f -value
to a vertex. The right time to do this is immediately upon completion
of the DFS call initiated at v.

DFS-Topo

Input: graph G = (V,E) in adjacency-list
representation, and a vertex s 2 V .

Postcondition: every vertex reachable from s is
marked as “explored” and has an assigned f -value.

mark s as explored
for each edge (s, v) in s’s outgoing adjacency list do

if v is unexplored then
DFS-Topo (G, v)

f(s) := curLabel // s’s position in ordering

curLabel := curLabel � 1 // work right-to-left

8.5.5 An Example

Suppose the input graph is the graph in Quiz 8.3. The TopoSort

algorithm initializes the global variable curLabel to the number of
vertices, which is 4. The outer loop in TopoSort iterates through the
vertices in an arbitrary order; let’s assume this order is v, t, s, w. In
the first iteration, because v is not marked as explored, the algorithm

8.5 Topological Sort 51

invokes the DFS-Topo subroutine with starting vertex v. The only
outgoing edge from v is (v, t), and the next step is to recursively
call DFS-Topo with starting vertex t. This call returns immediately
(as t has no outgoing edges), at which point f(t) is set to 4 and
curLabel is decremented from 4 to 3. Next, the DFS-Topo call at v
completes (as v has no other outgoing edges), at which point f(v) is
set to 3 and curLabel is decremented from 3 to 2. At this point, the
TopoSort algorithm resumes its linear scan of the vertices in its outer
loop. The next vertex is t; because t has already been marked as
explored in the first call to DFS-Topo, the TopoSort algorithm skips
it. Because the next vertex (which is s) has not yet been explored, the
algorithm invokes DFS-Topo from s. From s, DFS-Topo skips v (which
is already marked as explored) and recursively calls DFS-Topo at the
newly discovered vertex w. The call at w completes immediately
(the only outgoing edge is to the previously explored vertex t), at
which point f(w) is set to 2 and curLabel is decremented from 2
to 1. Finally, the DFS-Topo call at vertex s completes, and f(s) is
set to 1. The resulting topological ordering is the same as that in
Figure 8.10(b).

Quiz 8.4

What happens when the TopoSort algorithm is run on a
graph with a directed cycle?

a) The algorithm might or might not loop forever.

b) The algorithm always loops forever.

c) The algorithm always halts, and may or may not
successfully compute a topological ordering.

d) The algorithm always halts, and never successfully
computes a topological ordering.

(See Section 8.5.7 for the solution and discussion.)

8.5.6 Correctness and Running Time

The TopoSort algorithm correctly computes a topological ordering of
a directed acyclic graph, and does so in linear time.

52 Graph Search and Its Applications

Theorem 8.8 (Properties of TopoSort) For every directed
acyclic graph G = (V,E) in adjacency-list representation:

(a) At the conclusion of TopoSort, every vertex v has been assigned
an f -value, and these f -values constitute a topological ordering
of G.

(b) The running time of TopoSort is O(m+n), where m = |E| and
n = |V |.

Proof: The TopoSort algorithm runs in linear time for the usual
reasons. It explores each edge only once (from its tail), and therefore
performs only a constant number of operations for each vertex or edge.
This implies an overall running time of O(m + n).

For correctness, first note that DFS-Topo will be called from each
vertex v 2 V exactly once, when v is encountered for the first time,
and that v is assigned a label when this call completes. Thus, every
vertex receives a label, and by decrementing the curLabel variable
with every label assignment, the algorithm ensures that each vertex v
gets a distinct label f(v) from the set {1, 2, . . . , |V |}. To see why
these labels constitute a topological ordering, consider an arbitrary
edge (v, w); we must argue that f(v) < f(w). There are two cases,
depending on which of v, w the algorithm discovers first.33

If v is discovered before w, then DFS-Topo is invoked with starting
vertex v before w has been marked as explored. As w is reachable
from v (via the edge (v, w)), this call to DFS-Topo eventually discov-
ers w and recursively calls DFS-Topo at w. By the last-in first-out
nature of recursive calls, the call to DFS-Topo at w completes be-
fore that at v. Because labels are assigned in decreasing order, w is
assigned a larger f -value than v, as required.

Second, suppose w is discovered by the TopoSort algorithm be-
fore v. Because G is a directed acyclic graph, there is no path from w
back to v; otherwise, combining such a path with the edge (v, w) would
produce a directed cycle (Figure 8.13). Thus, the call to DFS-Topo

starting at w cannot discover v and completes with v still unexplored.
Once again, the DFS-Topo call at w completes before that at v and
hence f(v) < f(w). QE D

33Both cases are possible, as we saw in Section 8.5.5.

*8.6 Computing Strongly Connected Components 53

v w

G

Figure 8.13: A directed acyclic graph cannot contain both an edge (v, w)
and a path from w back to v.

8.5.7 Solution to Quizzes 8.3–8.4

Solution to Quiz 8.3

Correct answer: (c). Figure 8.14 shows two different topological
orderings of the graph—you should check that these are the only ones.

s

v

w

t

f(s) = 1

f(v) = 2

f(w) = 3

f(t) = 4

(a) One topological ordering. . .

s

v

w

t

f(s) = 1

f(v) = 3

f(w) = 2

f(t) = 4

(b) . . . and another one

Figure 8.14: Two topological orderings of the graph in Quiz 8.3.

Solution to Quiz 8.4

Correct answer: (d). The algorithm always halts: There are
only |V | iterations of the outer loop, and each iteration either does
nothing or invokes depth-first search (with minor additional bookkeep-
ing). Depth-first search always halts, whether or not the input graph
is directed acyclic (Theorem 8.5), and so TopoSort does as well. Any
chance it halts with a topological ordering? No way—it is impossible
to topologically sort the vertices of any graph with a directed cycle
(recall Section 8.5.2).

54 Graph Search and Its Applications

*8.6 Computing Strongly Connected Components

Next we’ll learn an even more interesting application of depth-first
search: computing the strongly connected components of a directed
graph.34 Our algorithm will be just as blazingly fast as in the undi-
rected case (Section 8.3), although less straightforward. Computing
strongly connected components is a more challenging problem than
topological sorting, and one pass of depth-first search won’t be enough.
So, we’ll use two!35

8.6.1 Defining Strongly Connected Components

What do we even mean by a “connected component” of a directed
graph? For example, how many connected components does the graph
in Figure 8.15 have?

1

2

3

4

Figure 8.15: How many connected components?

It’s tempting to say that this graph has one connected component—
if it were a physical object, with the edges corresponding to strings
tying the vertices together, we could pick it up and it would hang
together in one piece. But remember how we defined connected
components in the undirected case (Section 8.3), as maximal regions
within which you can get from anywhere to anywhere else. There is
no way to “move to the left” in the graph in Figure 8.15, so it’s not
the case that you can get from anywhere to anywhere else.

34Starred sections like this one are the more difficult sections; they can be
skipped on a first reading.

35Actually, there is a somewhat tricky way to compute the strongly connected
components of a directed graph with only one pass of depth-first search; see the
paper “Depth-First Search and Linear Graph Algorithms,” by Robert E. Tarjan
(SIAM Journal on Computing, 1973).

*8.6 Computing Strongly Connected Components 55

A strongly connected component or SCC of a directed graph is
a maximal subset S ✓ V of vertices such that there is a directed
path from any vertex in S to any other vertex in S.36 For example,
the strongly connected components of the graph in Figure 8.16 are
{1, 3, 5}, {11}, {2, 4, 7, 9}, and {6, 8, 10}. Within each component, it’s
possible to get from anywhere to anywhere else (as you should check).
Each component is maximal subject to this property, as there’s no
way to “move to the left” from one SCC to another.

9

1 3

5

7

2

10

6

8

4

11

SCC#1 SCC#4

SCC#3

SCC#2

Figure 8.16: A graph with vertex set {1, 2, 3, . . . , 11} and four strongly
connected components.

The relationships between the four SCCs of the graph in Fig-
ure 8.16 mirror those between the four vertices in the graph in Fig-
ure 8.15. More generally, if you squint, every directed graph can be
viewed as a directed acyclic graph built up from its SCCs.

Proposition 8.9 (The SCC Meta-Graph Is Directed Acyclic)
Let G = (V,E) be a directed graph. Define the corresponding meta-
graph H = (X,F) with one meta-vertex x 2 X per SCC of G and a

36As with connected components in undirected graphs (footnote 18), the
strongly connected components of a directed graph G are precisely the equivalence
classes of an equivalence relation ⇠G, where v ⇠G w if and only if there are
directed paths from v to w and from w to v in G. The proof that ⇠G is an
equivalence relation mirrors that in the undirected case (footnote 18).

56 Graph Search and Its Applications

meta-edge (x, y) in F whenever there is an edge in G from a vertex
in the SCC corresponding to x to one in the SCC corresponding to y.
Then H is a directed acyclic graph.

For example, the directed acyclic graph in Figure 8.15 is the
meta-graph corresponding to the directed graph in Figure 8.16.

Proof of Proposition 8.9: If the meta-graph H had a directed cycle
with k � 2 vertices, the corresponding cycle of allegedly distinct SCCs
S1, S2, . . . , Sk in G would collapse to a single SCC: You can already
travel freely within each of the Si’s, and the cycle then permits travel
between any pair of the Si’s. QE D

Proposition 8.9 implies that every directed graph can be viewed at
two levels of granularity. Zooming out, you focus only on the (acyclic)
relationships among its SCCs; zooming in to a specific SCC reveals
its fine-grained structure.

Quiz 8.5

Consider a directed acyclic graph with n vertices and m
edges. What are the minimum and maximum number of
strongly connected components that the graph could have,
respectively?

a) 1 and 1

b) 1 and n

c) 1 and m

d) n and n

(See Section 8.6.7 for the solution and discussion.)

8.6.2 Why Depth-First Search?

To see why graph search might help in computing strongly connected
components, let’s return to the graph in Figure 8.16. Suppose we
invoke depth-first search (or breadth-first search, for that matter) from
the vertex 6. The algorithm will find everything reachable from 6

*8.6 Computing Strongly Connected Components 57

and nothing more, discovering {6, 8, 10}, which is exactly one of the
strongly connected components. The bad case is if we instead initiate
a graph search from vertex 1, in which case all the vertices (not only
{1, 3, 5}) are discovered and we learn nothing about the component
structure.

The take-away is that graph search can uncover strongly connected
components, provided you start from the right place. Intuitively, we
want to first discover a “sink SCC,” meaning an SCC with no outgoing
edges (like SCC#4 in Figure 8.16), and then work backward. In terms
of the meta-graph in Proposition 8.9, it seems we want to discover
the SCCs in reverse topological order, plucking off sink SCCs one by
one. We’ve already seen in Section 8.5 that topological orderings are
right in the wheelhouse of depth-first search, and this is the reason
why our algorithm will use two passes of depth-first search. The first
pass computes a magical ordering in which to process the vertices,
and the second follows this ordering to discover the SCCs one by one.
This two-pass strategy is known as Kosaraju’s algorithm.37

For shock value, here’s an advance warning of what Kosaraju’s
algorithm looks like from 30,000 feet:

Kosaraju (High-Level)

1. Let Grev denote the input graph G with the direction
of every edge reversed.

2. Call DFS from every vertex of Grev, processed in ar-
bitrary order, to compute a position f(v) for each
vertex v.

3. Call DFS from every vertex of G, processed from high-
est to lowest position, to compute the identity of each
vertex’s strongly connected component.

You might have at least a little intuition for the second and third
steps of Kosaraju’s algorithm. The second step presumably does

37The algorithm first appeared in an unpublished paper by S. Rao Kosaraju
in 1978. Micha Sharir also discovered the algorithm and published it in the paper
“A Strong-Connectivity Algorithm and Its Applications in Data Flow Analysis”
(Computers & Mathematics with Applications, 1981). The algorithm is also
sometimes called the Kosaraju-Sharir algorithm.

58 Graph Search and Its Applications

something similar to the TopoSort algorithm from Section 8.5, with
the goal of processing the SCCs of the input graph in the third step in
reverse topological order. (Caveat: We thought about the TopoSort

algorithm only in DAGs, and here we have a general directed graph.)
The third step is hopefully analogous to the UCC algorithm from
Section 8.3 for undirected graphs. (Caveat: In undirected graphs, the
order in which you process the vertices doesn’t matter; in directed
graphs, as we’ve seen, it does.) But what’s up with the first step?
Why does the first pass work with the reversal of the input graph?

8.6.3 Why the Reversed Graph?

Let’s first explore the more natural idea of invoking the TopoSort

algorithm from Section 8.5 on the original input graph G = (V,E).
Recall that this algorithm has an outer for loop that makes a pass
over the vertices of G in an arbitrary order; initiates depth-first
search whenever it encounters a not-yet-explored vertex; and assigns
a position f(v) to a vertex v when the depth-first search initiated at v
completes. The positions are assigned in decreasing order, from |V |
down to 1.

The TopoSort algorithm was originally motivated by the case of
a directed acyclic input graph, but it can be used to compute vertex
positions for an arbitrary directed graph (Quiz 8.4). We’re hoping
these vertex positions are somehow helpful for quickly identifying a
good starting vertex for our second depth-first search pass, ideally a
vertex in a sink SCC of G, with no outgoing edges. There’s reason
for optimism: With a directed acyclic graph G, the vertex positions
constitute a topological ordering (Theorem 8.8), and the vertex in
the last position must be a sink vertex of G, with no outgoing edges.
(Any such edges would travel backward in the ordering.) Perhaps
with a general directed graph G, the vertex in the last position always
belongs to a sink SCC?

An Example

Sadly, no. For example, suppose we run the TopoSort algorithm on
the graph in Figure 8.16. Suppose that we process the vertices in
increasing order, with vertex 1 considered first. (In this case, all
the vertices are discovered in the first iteration of the outer loop.)

*8.6 Computing Strongly Connected Components 59

Suppose further that depth-first search traverses edge (3, 5) before
(3, 11), (5, 7) before (5, 9), (9, 4) before (9, 2), and (9, 2) before (9, 8).
In this case, you should check that the vertex positions wind up being:

9

1 3

5

7

2

10

6

8

4

11
f(1)=1 f(3)=2

f(11)=3
f(6)=10

f(10)=8

f(2)=7

f(4)=11

f(8)=9

f(9)=6

f(7)=5

f(5)=4

Against our wishes, the vertex in the last position (vertex 4) does not
belong to the sink SCC. The one piece of good news is that the vertex
in the first position (vertex 1) belongs to a source SCC (meaning an
SCC with no incoming edges).

What if we instead process the vertices in descending order? If
depth-first search traverses edge (11, 6) before (11, 8) and edge (9, 2)
before (9, 4), then (as you should check) the vertex positions are:

9

1 3

5

7

2

10

6

8

4

11
f(1)=2 f(3)=3

f(11)=8
f(6)=9

f(10)=10

f(2)=5

f(4)=6

f(8)=11

f(9)=4

f(7)=7

f(5)=1

This time, the vertex in the last position is in the sink SCC, but we
know this doesn’t happen in general. More intriguingly, the vertex in
the first position belongs to the source SCC, albeit a different vertex
from this SCC than last time. Could this be true in general?

60 Graph Search and Its Applications

The First Vertex Resides in a Source SCC

In fact, something stronger is true: If we label each SCC of G with
the smallest position of one of its vertices, these labels constitute a
topological ordering of the meta-graph of SCCs defined in Proposi-
tion 8.9.

Theorem 8.10 (Topological Ordering of the SCCs) Let G be
a directed graph, with the vertices ordered arbitrarily, and for each ver-
tex v 2 V let f(v) denote the position of v computed by the TopoSort

algorithm. Let S1, S2 denote two SCCs of G, and suppose G has an
edge (v, w) with v 2 S1 and w 2 S2. Then,

min
x2S1

f(x) < min
y2S2

f(y).

Proof: The proof is similar to the correctness of the TopoSort al-
gorithm (Theorem 8.8, which is worth re-reading now). Let S1, S2

denote two SCCs of G, and consider two cases.38 First, suppose that
the TopoSort algorithm discovers and initiates depth-first search from
a vertex s of S1 before any vertex of S2. Because there is an edge
from a vertex v in S1 to a vertex w in S2 and S1 and S2 are SCCs,
every vertex of S2 is reachable from s—to reach some vertex y 2 S2,
paste together a s ; v path within S1, the edge (v, w), and a w ; y
path within S2. By the last-in first-out nature of recursive calls, the
depth-first search initiated at s will not complete until after all the
vertices of S2 have been fully explored. Because vertex positions are
assigned in decreasing order, v’s position will be smaller than that of
every vertex of S2.

For the second case, suppose the TopoSort algorithm discovers
a vertex s 2 S2 before any vertex of S1. Because G’s meta-graph is
directed acyclic (Proposition 8.9), there is no directed path from s
to any vertex of S1. (Such a path would collapse S1 and S2 into a
single SCC.) Thus, the depth-first search initiated at s completes after
discovering all the vertices of S2 (and possibly other stuff) and none
of the vertices of S1. In this case, every vertex of S1 is assigned a
position smaller than that of every vertex of S2. QE D

Theorem 8.10 implies that the vertex in the first position always
resides in a source SCC, just as we hoped. For consider the vertex v

38Both cases are possible, as we saw in the preceding example.

*8.6 Computing Strongly Connected Components 61

with f(v) = 1, inhabiting the SCC S. If S were not a source SCC,
with an incoming edge from a different SCC S0, then by Theorem 8.10
the smallest vertex position in S0 would be less than 1, which is
impossible.

Summarizing, after one pass of depth-first search, we can immedi-
ately identify a vertex in a source SCC. The only problem? We want
to identify a vertex in a sink SCC. The fix? Reverse the graph first.

Reversing the Graph

Quiz 8.6

Let G be a directed graph and Grev a copy of G with the
direction of every edge reversed. How are the SCCs of G
and Grev related? (Choose all that apply.)

a) In general, they are unrelated.

b) Every SCC of G is also an SCC of Grev, and conversely.

c) Every source SCC of G is also a source SCC of Grev.

d) Every sink SCC of G becomes a source SCC of Grev.

(See Section 8.6.7 for the solution and discussion.)

The following corollary rewrites Theorem 8.10 for the reversed
graph, using the solution to Quiz 8.6.

Corollary 8.11 Let G be a directed graph, with the vertices ordered
arbitrarily, and for each vertex v 2 V let f(v) denote the position
of v computed by the TopoSort algorithm on the reversed graph Grev.
Let S1, S2 denote two SCCs of G, and suppose G has an edge (v, w)
with v 2 S1 and w 2 S2. Then,

min
x2S1

f(x) > min
y2S2

f(y). (8.1)

In particular, the vertex in the first position resides in a sink SCC
of G, and is the perfect starting point for a second depth-first search
pass.

62 Graph Search and Its Applications

8.6.4 Pseudocode for Kosaraju

We now have all our ducks in a row: We run one pass of depth-
first search (via TopoSort) on the reversed graph, which computes a
magical ordering in which to visit the vertices, and a second pass (via
the DFS-Topo subroutine) to discover the SCCs in reverse topological
order, peeling them off one by one like the layers of an onion.

Kosaraju

Input: directed graph G = (V,E) in adjacency-list
representation, with V = {1, 2, 3, . . . , n}.

Postcondition: for every v, w 2 V , scc(v) = scc(w)
if and only if v, w are in the same SCC of G.

Grev := G with all edges reversed
mark all vertices of Grev as unexplored

// first pass of depth-first search

// (computes f(v)’s, the magical ordering)

TopoSort (Grev)

// second pass of depth-first search

// (finds SCCs in reverse topological order)

mark all vertices of G as unexplored
numSCC := 0 // global variable

for each v 2 V , in increasing order of f(v) do
if v is unexplored then

numSCC := numSCC + 1
// assign scc-values (details below)

DFS-SCC (G, v)

Three implementation details:39

1. The most obvious way to implement the algorithm is to literally
make a second copy of the input graph, with all edges reversed,
and feed it to the TopoSort subroutine. A smarter implementa-
tion runs the TopoSort algorithm backward in the original input

39To really appreciate these, it’s best to implement the algorithm yourself (see
Programming Problem 8.10).

*8.6 Computing Strongly Connected Components 63

graph, by replacing the clause “each edge (s, v) in s’s outgoing
adjacency list” in the DFS-Topo subroutine of Section 8.5 with
“each edge (v, s) in s’s incoming adjacency list.”

2. For best results, the first pass of depth-first search should export
an array that contains the vertices (or pointers to them) in order
of their positions, so that the second pass can process them with
a simple array scan. This adds only constant overhead to the
TopoSort subroutine (as you should check).

3. The DFS-SCC subroutine is the same as DFS, with one additional
line of bookkeeping:

DFS-SCC

Input: directed graph G = (V,E) in adjacency-list
representation, and a vertex s 2 V .

Postcondition: every vertex reachable from s is
marked as “explored” and has an assigned scc-value.

mark s as explored
scc(s) := numSCC // global variable above

for each edge (s, v) in s’s outgoing adjacency list do
if v is unexplored then

DFS-SCC (G, v)

8.6.5 An Example

Let’s verify on our running example that we get what we want—that
the second pass of depth-first search discovers the SCCs in reverse
topological order. Suppose the graph in Figure 8.16 is the reversal Grev

of the input graph. We computed in Section 8.6.3 two ways in which
the TopoSort algorithm might assign f -values to the vertices of this
graph; let’s use the first one. Here’s the (unreversed) input graph
with its vertices annotated with these vertex positions:

64 Graph Search and Its Applications

9

1 3

5

7

2

10

6

8

4

11
f(1)=1 f(3)=2

f(11)=3
f(6)=10

f(10)=8

f(2)=7

f(4)=11

f(8)=9

f(9)=6

f(7)=5

f(5)=4

The second pass iterates through the vertices in increasing order of
vertex position. Thus, the first call to DFS-SCC is initiated at the
vertex in the first position (which happens to be vertex 1); it discovers
the vertices 1, 3, and 5 and marks them as the vertices of the first
SCC. The algorithm proceeds to consider the vertex in the second
position (vertex 3); it was already explored by the first call to DFS-SCC

and is skipped. The vertex in the third position (vertex 11) has not
yet been discovered and is the next starting point for DFS-SCC. The
only outgoing edge of this vertex travels to an already-explored vertex
(vertex 3), so 11 is the only member of the second SCC. The algorithm
skips the vertex in the fourth position (vertex 5, already explored) and
next initiates DFS-SCC from vertex 7, the vertex in the fifth position.
This search discovers the vertices 2, 4, 7, and 9 (the other outgoing
edges are to the already-explored vertex 5) and classifies them as the
third SCC. The algorithm skips vertex 9 and then vertex 2, and finally
invokes DFS-SCC from vertex 10 to discover the final SCC (comprising
the vertices 6, 8, and 10).

8.6.6 Correctness and Running Time

The Kosaraju algorithm is correct and blazingly fast for every directed
graph, not merely for our running example.

Theorem 8.12 (Properties of Kosaraju) For every directed
graph G = (V,E) in adjacency-list representation:

*8.6 Computing Strongly Connected Components 65

(a) At the conclusion of Kosaraju, for every pair v, w of vertices,
scc(v) = scc(w) if and only if v and w belong to the same
strongly connected component of G.

(b) The running time of Kosaraju is O(m+n), where m = |E| and
n = |V |.

We’ve already discussed all the ingredients needed for the proof.
The algorithm can be implemented in O(m + n) time, with a small
hidden constant factor, for the usual reasons. Each of the two passes
of depth-first search does a constant number of operations per vertex
or edge, and the extra bookkeeping increases the running time by
only a constant factor.

The algorithm also correctly computes all the SCCs: Each time
it initiates a new call to DFS-SCC, the algorithm discovers exactly
one new SCC, which is a sink SCC relative to the graph of not-yet-
explored vertices (that is, an SCC in which all outgoing edges lead to
already-explored vertices).40

8.6.7 Solutions to Quizzes 8.5–8.6

Solution to Quiz 8.5

Correct answer: (d). In a directed acyclic graph G = (V,E),
every vertex is in its own strongly connected component (for a total
of n = |V | SCCs). To see this, fix a topological ordering of G
(Section 8.5.1), with each vertex v 2 V assigned a distinct label f(v).
(One exists, by Theorem 8.6.) Edges of G travel only from smaller to
larger f -values, so for every pair v, w 2 V of vertices, there is either
no v ; w path (if f(v) > f(w)) or no w ; v path (if f(w) > f(v))
in G. This precludes two vertices from inhabiting the same SCC.

40For a more formal proof, consider a call to the DFS-SCC subroutine with a
starting vertex v that belongs to an SCC S. Corollary 8.11 implies that directed
paths out of v can reach only SCCs containing at least one vertex assigned a
position earlier than v’s. Because the Kosaraju algorithm processes vertices in
order of position, all the vertices in SCCs reachable from v have already been
explored by the algorithm. (Remember that once the algorithm finds one vertex
from an SCC, it finds them all.) Thus, the edges going out of S reach only
already-explored vertices. This call to DFS-SCC discovers the vertices of S and
nothing more, as there are no available avenues for it to trespass on other SCCs.
As every call to DFS-SCC discovers a single SCC and every vertex is eventually
considered, the Kosaraju algorithm correctly identifies all the SCCs.

66 Graph Search and Its Applications

Solution to Quiz 8.6

Correct answers: (b),(d). Two vertices v, w of a directed graph are
in the same strongly connected component if and only if there is both
a directed path P1 from v to w and a directed path P2 from w to v.
This property holds for v and w in G if and only if it holds in Grev—in
the latter, using the reversed version of P1 to get from w to v and the
reversed version of P2 to get from v to w. We can conclude that the
SCCs of G and Grev are exactly the same. Source SCCs of G (with no
incoming edges) become sink SCCs of Grev (with no outgoing edges),
and sink SCCs become source SCCs. More generally, there is an edge
from a vertex in SCC S1 to a vertex SCC S2 in G if and only if there
is a corresponding edge from a vertex in S2 to a vertex in S1 in Grev

(Figure 8.17).41

9

1 3

5

7

2

10

6

8

4

11

SCC SCC

SCC

SCC

(a) Original graph

9

1 3

5

7

2

10

6

8

4

11

SCC SCC

SCC

SCC

(b) Reversed graph

Figure 8.17: A graph and its reversal have the same strongly connected
components.

8.7 The Structure of the Web

You now know a collection of for-free graph primitives. If you have
graph data, you can apply these blazingly fast algorithms even if you’re
not sure how you’ll use the results. For example, with a directed
graph, why not compute its strongly connected components to get a
sense of what it looks like? Next, we explore this idea in a huge and
hugely interesting directed graph, the Web graph.

41In other words, the meta-graph of G
rev (Proposition 8.9) is simply the

meta-graph of G with every edge reversed.

8.7 The Structure of the Web 67

8.7.1 The Web Graph

In the Web graph, vertices correspond to Web pages, and edges to
hyperlinks. This graph is directed, with an edge pointing from the
page that contains the link to the landing page for the link. For
example, my home page corresponds to a vertex in this graph, with
outgoing edges corresponding to links to pages that list my books,
my courses, and so on. There are also incoming edges corresponding
to links to my home page, perhaps from my co-authors or lists of
instructors of online courses (Figure 8.18).

online
course

list

Tim’s
home
page

Tim’s
books

Aquarius
Records
(R.I.P.)

Tim’s
courses a

co-author

Figure 8.18: A minuscule piece of the Web graph.

While the Web’s origins date back to roughly 1990, the Web really
started to explode about five years later. By 2000 (still the Stone
Age in Internet years), the Web graph was already so big as to defy
imagination, and researchers were keenly interested in understanding
its structure.42 This section describes a famous study from that
time that explored the structure of the Web graph by computing
its strongly connected components.43 The graph had more than 200

42Constructing this graph requires crawling (a big chunk of) the Web by
repeatedly following hyperlinks, and this is a significant engineering feat in its
own right.

43This study is described in the very readable paper “Graph Structure in the
Web,” by Andrei Broder, Ravi Kumar, Farzin Maghoul, Prabhakar Raghavan,
Sridhar Rajagopalan, Raymie Stata, Andrew Tomkins, and Janet Wiener (Com-

puter Networks, 2000). Google barely existed at this time, and the study used
data from Web crawls by the search engine Alta Vista (which is now long since
defunct).

68 Graph Search and Its Applications

million vertices and 1.5 billion edges, so linear-time algorithms were
absolutely essential!44

giant
SCC

IN OUT

tubes

tendrils islands

Figure 8.19: Visualizing the Web graph as a “bow tie.” Roughly the same
number of Web pages belong to the giant SCC, to IN, to OUT, and to the
rest of the graph.

8.7.2 The Bow Tie

The Broder et al. study computed the strongly connected components
of the Web graph, and explained its findings using the “bow tie”
depicted in Figure 8.19. The knot of the bow tie is the biggest
strongly connected component of the graph, comprising roughly 28%
of its vertices. The title “giant” is well earned by this SCC, as the
next-largest SCC was over two orders of magnitude smaller.45 The
giant SCC can be interpreted as the core of the Web, with every page
reachable from every other page by a sequence of hyperlinks.

The smaller SCCs can be placed into a few categories. From some,
it’s possible to reach the giant SCC (but not vice versa); this is the
left (“IN”) part of the bow tie. For example, a newly created Web page
with a link to some page in the giant SCC would appear in this part.
Symmetrically, the “OUT” part is all the SCCs reachable from the

44The study pre-dates modern massive data processing frameworks like MapRe-
duce and Hadoop, and this was an intimidating input size at the time.

45Remember that all it takes to collapse two SCCs into one is one edge in each
direction. Intuitively, it would be pretty weird if there were two massive SCCs,
with no edge going between them in at least one direction.

8.7 The Structure of the Web 69

giant SCC, but not vice versa. One example of an SCC in this part
is a corporate Web site for which the company policy dictates that
all hyperlinks from its pages stay within the site. There’s also some
other weird stuff: “tubes,” which travel from IN to OUT, bypassing
the giant SCC; “tendrils,” which are reachable from IN or which can
reach OUT (but not belonging to the giant SCC); and “islands” of
Web pages that cannot reach or be reached from almost any other
part of the Web.

8.7.3 Main Findings

Perhaps the most surprising finding of the study is that the giant
SCC, the IN part, the OUT part, and the weird stuff all have roughly
the same size (with ⇡ 24–28% of the vertices each). Before this study,
many people expected the giant SCC to be much bigger than just
28% of the Web. A second interesting finding is that the giant SCC is
internally richly connected: it has roughly 56 million Web pages, but
you typically need to follow fewer than 20 hyperlinks to get from one
to another.46 The rest of the Web graph is more poorly connected,
with long paths often necessary to get from one vertex to another.

You’d be right to wonder whether any of these findings are an
artifact of the now prehistoric snapshot of the Web graph that the
experiment used. While the exact numbers have changed over time as
the Web graph has grown and evolved, more recent follow-up studies
re-evaluating the structure of the Web graph suggest that Broder et
al.’s qualitative findings remain accurate.47

The Upshot

P Breadth-first search (BFS) explores a graph

46The presence of ubiquitous short paths is also known as the “small world
property,” which is closely related to the popular phrase “six degrees of separation.”

47There continues to be lots of cool research about the Web graph and other
information networks; for example, about how the Web graph evolves over time,
on the dynamics of how information spreads through such a graph, and on how to
identify “communities” or other meaningful fine-grained structure. Blazingly fast
graph primitives play a crucial role in much of this research. For an introduction to
these topics, check out the textbook Networks, Crowds, and Markets: Reasoning

About a Highly Connected World, by David Easley and Jon Kleinberg (Cambridge
University Press, 2010).

70 Graph Search and Its Applications

cautiously, in layers.

P BFS can be implemented in linear time using a
queue data structure.

P BFS can be used to compute the lengths of
shortest paths between a starting vertex and all
other vertices in linear time.

P A connected component of an undirected graph
is a maximal subset of vertices such that there
is a path between each pair of its vertices.

P An efficient graph search algorithm like BFS can
be used to compute the connected components
of an undirected graph in linear time.

P Depth-first search (DFS) explores a graph ag-
gressively, backtracking only when necessary.

P DFS can be implemented in linear time using a
stack data structure (or recursion).

P A topological ordering of a directed graph as-
signs distinct numbers to the vertices, with ev-
ery edge traveling from a smaller number to a
bigger one.

P A directed graph has a topological ordering if
and only if it is a directed acyclic graph.

P DFS can be used to compute a topological or-
dering of a directed acyclic graph in linear time.

P A strongly connected component of a directed
graph is a maximal subset of vertices such that
there is a directed path from any vertex in the
set to any other vertex in the set.

P DFS can be used to compute the strongly con-
nected components of a directed graph in linear
time.

Problems 71

P In the Web graph, a giant strongly connected
component contains roughly 28% of the vertices
and is internally richly connected.

Test Your Understanding

Problem 8.1 (S) Which of the following statements hold? As
usual, n and m denote the number of vertices and edges, respec-
tively, of a graph. (Choose all that apply.)

a) Breadth-first search can be used to compute the connected
components of an undirected graph in O(m + n) time.

b) Breadth-first search can be used to compute the lengths of
shortest paths from a starting vertex to every other vertex in
O(m+n) time, where “shortest” means having the fewest number
of edges.

c) Depth-first search can be used to compute the strongly connected
components of a directed graph in O(m + n) time.

d) Depth-first search can be used to compute a topological ordering
of a directed acyclic graph in O(m + n) time.

Problem 8.2 (S) What is the running time of depth-first search, as
a function of n and m (the number of vertices and edges), if the input
graph is represented by an adjacency matrix (and NOT adjacency
lists)? You may assume the graph does not have parallel edges.

a) ⇥(m + n)

b) ⇥(m + n log n)

c) ⇥(n2)

d) ⇥(m · n)

Problem 8.3 This problem explores the relationship between two
definitions concerning graph distances. In this problem, we consider
only graphs that are undirected and connected. The diameter of
a graph is the maximum, over all choices of vertices v and w, of

72 Graph Search and Its Applications

the shortest-path distance between v and w.48 Next, for a vertex v,
let l(v) denote the maximum, over all vertices w, of the shortest-path
distance between v and w. The radius of a graph is the minimum
value of l(v), over all choices of the vertex v.

Which of the following inequalities relating the radius r to the
diameter d hold in every undirected connected graph? (Choose all
that apply.)

a) r  d
2

b) r  d

c) r � d
2

d) r � d

Problem 8.4 When does a directed graph have a unique topological
ordering?

a) Whenever it is directed acyclic.

b) Whenever it has a unique cycle.

c) Whenever it contains a directed path that visits every vertex
exactly once.

d) None of the other options are correct.

Problem 8.5 Consider running the TopoSort algorithm (Section 8.5)
on a directed graph G that is not directed acyclic. The algorithm will
not compute a topological ordering (as none exist). Does it compute
an ordering that minimizes the number of edges that travel backward
(Figure 8.20)? (Choose all that apply.)

a) The TopoSort algorithm always computes an ordering of the
vertices that minimizes the number of backward edges.

b) The TopoSort algorithm never computes an ordering of the
vertices that minimizes the number of backward edges.

48Recall that the shortest-path distance between v and w is the fewest number
of edges in a v-w path.

Problems 73

c) There are examples in which the TopoSort algorithm computes
an ordering of the vertices that minimizes the number of back-
ward edges, and also examples in which it doesn’t.

d) The TopoSort algorithm computes an ordering of the vertices
that minimizes the number of backward edges if and only if the
input graph is a directed cycle.

s

v

w

t

Figure 8.20: A graph with no topological ordering. In the ordering s, v,
w, t, the only backward edge is (t, s).

Problem 8.6 If you add one new edge to a directed graph G, then
the number of strongly connected components. . . (Choose all that
apply.)

a) . . .might or might not remain the same (depending on G and
the new edge).

b) . . . cannot decrease.

c) . . . cannot increase.

d) . . . cannot decrease by more than 1.

Problem 8.7 (S) Recall the Kosaraju algorithm from Section 8.6,
which uses two passes of depth-first search to compute the strongly
connected components of a directed graph. Which of the following
statements are true? (Choose all that apply.)

a) The algorithm would remain correct if it used breadth-first
search instead of depth-first search in both its passes.

74 Graph Search and Its Applications

b) The algorithm would remain correct if we used breadth-first
search instead of depth-first search in its first pass.

c) The algorithm would remain correct if we used breadth-first
search instead of depth-first search in its second pass.

d) The algorithm is not correct unless it uses depth-first search in
both its passes.

Problem 8.8 (S) Recall that in the Kosaraju algorithm, the first
pass of depth-first search operates on the reversed version of the input
graph and the second on the original input graph. Which of the
following statements are true? (Choose all that apply.)

a) The algorithm would remain correct if in the first pass it assigned
vertex positions in increasing (rather than decreasing) order and
in the second pass considered the vertices in decreasing (rather
than increasing) order of vertex position.

b) The algorithm would remain correct if it used the original input
graph in its first pass and the reversed graph in its second pass.

c) The algorithm would remain correct if it used the original input
graph in both passes, provided in the first pass it assigned vertex
positions in increasing (rather than decreasing) order.

d) The algorithm would remain correct if it used the original input
graph in both passes, provided in the second pass it considered
the vertices in decreasing (rather than increasing) order of vertex
position.

Challenge Problems

Problem 8.9 In the 2SAT problem, you are given a set of clauses,
each of which is the disjunction (logical “or”) of two literals. (A literal
is a Boolean variable or the negation of a Boolean variable.) You
would like to assign a value “true” or “false” to each of the variables so
that all the clauses are satisfied, with at least one true literal in each
clause. For example, if the input contains the three clauses x1 _ x2,
¬x1 _ x3, and ¬x2 _ ¬x3, then one way to satisfy all of them is to

Problems 75

set x1 and x3 to “true” and x2 to “false.”49 Of the seven other possible
truth assignments, only one satisfies all three clauses.

Design an algorithm that determines whether or not a given 2SAT
instance has at least one satisfying assignment. (Your algorithm is
responsible only for deciding whether or not a satisfying assignment
exists; it need not exhibit such an assignment.) Your algorithm should
run in O(m + n) time, where m and n are the number of clauses and
variables, respectively.

[Hint: Show how to solve the problem by computing the strongly
connected components of a suitably defined directed graph.]

Programming Problems

Problem 8.10 Implement in your favorite programming language
the Kosaraju algorithm from Section 8.6, and use it to compute the
sizes of the five biggest strongly connected components of different
directed graphs. You can implement the iterative version of depth-first
search, the recursive version (though see footnote 24), or both. (See
www.algorithmsilluminated.org for test cases and challenge data
sets.)

49The symbol “_” stands for the logical “or” operation, while “¬” denotes the
negation of a Boolean variable.

www.algorithmsilluminated.org

Chapter 9

Dijkstra’s Shortest-Path Algorithm

We’ve arrived at another one of computer science’s greatest hits:
Dijkstra’s shortest-path algorithm.1 This algorithm works in any
directed graph with nonnegative edge lengths, and it computes the
lengths of shortest paths from a starting vertex to all other vertices.
After formally defining the problem (Section 9.1), we describe the
algorithm (Section 9.2), its proof of correctness (Section 9.3), and a
straightforward implementation (Section 9.4). In the next chapter,
we’ll see a blazingly fast implementation of the algorithm that takes
advantage of the heap data structure.

9.1 The Single-Source Shortest Path Problem

9.1.1 Problem Definition

Dijkstra’s algorithm solves the single-source shortest path problem.2

Problem: Single-Source Shortest Paths

Input: A directed graph G = (V,E), a starting vertex
s 2 V , and a nonnegative length `e for each edge e 2 E.

Output: dist(s, v) for every vertex v 2 V .

1Discovered by Edsger W. Dijkstra in 1956 (“in about twenty minutes,” he
said in an interview many years later). Several other researchers independently
discovered similar algorithms in the late 1950s.

2The term “source” in the name of the problem refers to the given starting
vertex. We’ve already used the term “source vertex” to mean a vertex of a
directed graph with no incoming edges (Section 8.5.2). To stay consistent with
our terminology in Chapter 8, we’ll stick with “starting vertex.”

76

9.1 The Single-Source Shortest Path Problem 77

Recall that the notation dist(s, v) denotes the length of a shortest
path from s to v. (If there is no path at all from s to v, then dist(s, v)
is +1.) By the length of a path, we mean the sum of the lengths of
its edges. For instance, in a graph in which every edge has length 1,
the length of a path is just the number of edges in it. A shortest path
from a vertex v to a vertex w is one with minimum length (among
all v-w paths).

For example, if the graph represents a road network and the
length of each edge represents the expected travel time from one end
to the other, the single-source shortest path problem is the problem
of computing driving times from an origin (the starting vertex) to all
possible destinations.

Quiz 9.1

Consider the following input to the single-source shortest
path problem, with starting vertex s and with each edge
labeled with its length:

s

v

w

t

1

2

3 4

6

What are the shortest-path distances to s, v, w, and t,
respectively?

a) 0, 1, 2, 3

b) 0, 1, 3, 6

c) 0, 1, 4, 6

d) 0, 1, 4, 7

(See Section 9.1.4 for the solution and discussion.)

78 Dijkstra’s Shortest-Path Algorithm

9.1.2 Some Assumptions

For concreteness, we assume throughout this chapter that the in-
put graph is directed. Dijkstra’s algorithm applies equally well to
undirected graphs after small cosmetic changes (as you should check).

Our other assumption is significant. The problem statement al-
ready spells it out: We assume that the length of every edge is nonneg-
ative. In many applications, like computing driving directions, edge
lengths are automatically nonnegative (barring a time machine) and
there’s nothing to worry about. But remember that paths in a graph
can represent abstract sequences of decisions. For example, perhaps
you want to compute a profitable sequence of financial transactions
that involves both buying and selling. This problem corresponds to
finding a shortest path in a graph with edge lengths that are both
positive and negative. You should not use Dijkstra’s algorithm in
applications with negative edge lengths; see also Section 9.3.1.3

9.1.3 Why Not Breadth-First Search?

We saw in Section 8.2 that one of the killer applications of breadth-first
search is computing shortest-path distances from a starting vertex.
Why do we need another shortest-path algorithm?

Remember that breadth-first search computes the minimum num-
ber of edges in a path from the starting vertex to every other vertex.
This is the special case of the single-source shortest path problem in
which every edge has length 1. We saw in Quiz 9.1 that, with general
nonnegative edge lengths, a shortest path need not be a path with the
fewest number of edges. Many applications of shortest paths, such as
computing driving directions or a sequence of financial transactions,
inevitably involve edges with different lengths.

But wait, you say; is the general problem really so different from
this special case? Can’t we just think of an edge with a longer length `
as a path of ` edges that each have length 1?:

w v
3

v 1 1
w

1

3In Part 3 we’ll learn about efficient algorithms for the more general single-
source shortest path problem in which negative edge lengths are allowed, including
the famous Bellman-Ford algorithm.

9.1 The Single-Source Shortest Path Problem 79

Indeed, there’s no fundamental difference between an edge with a
positive integral length ` and a path of ` length-1 edges. In principle,
you can solve the single-source shortest path problem by expanding
edges into paths of length-1 edges and applying breadth-first search
to the expanded graph.

This is an example of a reduction from one problem to another—in
this case, from the single-source shortest path problem with positive
integer edge lengths to the special case of the problem in which every
edge has length 1.

The major problem with this reduction is that it blows up the size
of the graph. The blowup is not too bad if all the edge lengths are
small integers, but this is not always the case in applications. The
length of an edge could even be much bigger than the number of
vertices and edges in the original graph! Breadth-first search would
run in time linear in the size of the expanded graph, but this is
not necessarily close to linear time in the size of the original graph.
Dijkstra’s algorithm can be viewed as a slick simulation of breadth-first
search on the expanded graph, while working only with the original
input graph and running in near-linear time.

On Reductions

A problem A reduces to a problem B if an algorithm
that solves B can be easily translated into one that
solves A. For example, the problem of computing the
median element of an array reduces to the problem of
sorting the array. Reductions are one of the most im-
portant concepts in the study of algorithms and their
limitations, and they can also have great practical
utility.

You should always be on the lookout for reductions.
Whenever you encounter a seemingly new problem,
always ask: Is the problem a disguised version of one
you already know how to solve? Alternatively, can
you reduce the general version of the problem to a
special case?

80 Dijkstra’s Shortest-Path Algorithm

9.1.4 Solution to Quiz 9.1

Correct answer: (b). No prizes for guessing that the shortest-path
distance from s to itself is 0 and from s to v is 1. Vertex w is
more interesting. One s-w path is the direct edge (s, w), which has
length 4. But using more edges can decrease the total length: The
path s ! v ! w has length only 1 + 2 = 3 and is the shortest s-w
path. Similarly, each of the two-hop paths from s to t has length 7,
while the zigzag path has length only 1 + 2 + 3 = 6.

9.2 Dijkstra’s Algorithm

9.2.1 Pseudocode

The high-level structure of Dijkstra’s algorithm resembles that of our
graph search algorithms.4 Each iteration of its main loop processes
one new vertex. The algorithm’s sophistication lies in its clever rule for
selecting which vertex to process next: the not-yet-processed vertex
that appears to be closest to the starting vertex. The following elegant
pseudocode makes this idea precise.

Dijkstra

Input: directed graph G = (V,E) in adjacency-list
representation, a vertex s 2 V , a length `e � 0 for
each e 2 E.

Postcondition: for every vertex v, the value len(v)
equals the true shortest-path distance dist(s, v).

// Initialization

1 X := {s}
2 len(s) := 0, len(v) := +1 for every v 6= s
// Main loop

3 while there is an edge (v, w) with v 2 X,w 62 X do
4 (v⇤, w⇤) := such an edge minimizing len(v) + `vw
5 add w⇤ to X
6 len(w⇤) := len(v⇤) + `v⇤w⇤

4When all the edges have length 1, it’s equivalent to breadth-first search (as
you should check).

9.2 Dijkstra’s Algorithm 81

The set X contains the vertices that the algorithm has already dealt
with. Initially, X contains only the starting vertex (and, of course,
len(s) = 0), and the set grows like a mold until it covers all the vertices
reachable from s. The algorithm assigns a finite value to the len-value
of a vertex at the same time it adds the vertex to X. Each iteration
of the main loop augments X by one new vertex, the head of some
edge (v, w) crossing from X to V �X (Figure 9.1). (If there is no such
edge, the algorithm halts, with len(v) = +1 for all v 62 X.) There
can be many such edges; the Dijkstra algorithm chooses one (v⇤, w⇤)
that minimizes the Dijkstra score, which is defined as

len(v) + `vw. (9.1)

Note that Dijkstra scores are defined on the edges—a vertex w /2 X
may be the head of many different edges crossing from X to V �X,
and these edges will typically have different Dijkstra scores.

the frontier

s

processed not-yet-processed

X

V-X
candidates
for (v*,w*)

Figure 9.1: Every iteration of Dijkstra’s algorithm processes one new
vertex, the head of an edge crossing from X to V �X.

You can associate the Dijkstra score for an edge (v, w) with v 2 X
and w /2 X with the hypothesis that the shortest path from s to w
consists of a shortest path from s to v (which hopefully has length
len(v)) with the edge (v, w) (which has length `vw) tacked on at
the end. Thus, the Dijkstra algorithm chooses to add the as-yet-
unprocessed vertex that appears closest to s, according to the already-
computed shortest-path distances and the lengths of the edges crossing

82 Dijkstra’s Shortest-Path Algorithm

from X to V � X. While adding w⇤ to X, the algorithm assigns
len(w⇤) to its hypothesized shortest-path distance from s, which is
the Dijkstra score len(v⇤) + `v⇤w⇤ of the edge (v⇤, w⇤). The magic of
Dijkstra’s algorithm, formalized in Theorem 9.1 below, is that this
hypothesis is guaranteed to be correct, even if the algorithm has thus
far looked at only a tiny fraction of the graph.5

9.2.2 An Example

Let’s try out the Dijkstra algorithm on the example from Quiz 9.1:

s

v

w

t

1

2

3 4

6

Initially, the set X contains only s, and len(s) = 0. In the first
iteration of the main loop, there are two edges crossing from X
to V�X (and hence eligible to play the role of (v⇤, w⇤)), the edges (s, v)
and (s, w). The Dijkstra scores (defined in (9.1)) for these two edges
are len(s)+ `sv = 0+1 = 1 and len(s)+ `sw = 0+4 = 4. Because the
former edge has the lower score, its head v is added to X, and len(v)
is assigned to the Dijkstra score of the edge (s, v), which is 1. In the
second iteration, with X = {s, v}, there are three edges to consider
for the role of (v⇤, w⇤): (s, w), (v, w), and (v, t). Their Dijkstra scores
are 0 + 4 = 4, 1 + 2 = 3, and 1 + 6 = 7. Because (v, w) has the
lowest Dijkstra score, w gets sucked into X and len(w) is assigned
the value 3 ((v, w)’s Dijkstra score). We already know which vertex
gets added to X in the final iteration (the only not-yet-processed
vertex t), but we still need to determine the edge that leads to its
addition (to compute len(t)). As (v, t) and (w, t) have Dijkstra scores

5To compute the shortest paths themselves (and not just their lengths),
associate a pointer predecessor(v) with each vertex v 2 V . When an edge (v⇤, w⇤)
is chosen in an iteration of the main while loop (lines 4–6), assign predecessor(w⇤)
to v

⇤, the vertex responsible for w
⇤’s selection. After the algorithm concludes, to

reconstruct a shortest path from s to a vertex v, follow the predecessor pointers
backward from v until you reach s.

*9.3 Why Is Dijkstra’s Algorithm Correct? 83

1 + 6 = 7 and 3 + 3 = 6, respectively, len(t) is set to the lower score
of 6. The set X now contains all the vertices, so no edges cross from X
to V �X and the algorithm halts. The values len(s) = 0, len(v) = 1,
len(w) = 3, and len(t) = 6 match the true shortest-path distances
that we identified in Quiz 9.1.

Of course, the fact that an algorithm works correctly on a spe-
cific example does not imply that it is correct in general!6 In fact,
the Dijkstra algorithm need not compute the correct shortest-path
distances when edges can have negative lengths (Section 9.3.1). You
should be initially skeptical of the Dijkstra algorithm and demand
a proof that, at least in graphs with nonnegative edge lengths, it
correctly solves the single-source shortest path problem.

*9.3 Why Is Dijkstra’s Algorithm Correct?

9.3.1 A Bogus Reduction

You might be wondering why it matters whether or not edges have
negative edge lengths. Can’t we just force all the edge lengths to be
nonnegative by adding a big number to every edge’s length?

This is a great question—you should always be on the lookout
for reductions to problems you already know how to solve. Alas, you
cannot reduce the single-source shortest path problem with general
edge lengths to the special case of nonnegative edge lengths in this
way. The problem is that different paths from one vertex to another
might not have the same number of edges. If we add some number
to the length of each edge, then the lengths of different paths can
increase by different amounts, and a shortest path in the new graph
might be different than in the original graph. Here’s a simple example:

s

v

t

1

-2

-5

There are two paths from s to t: the direct path (which has length �2)
and the two-hop path s ! v ! t (which has length 1 + (�5) = �4).

6Even a broken analog clock is correct two times a day. . .

84 Dijkstra’s Shortest-Path Algorithm

The latter has the smaller (that is, more negative) length, and is the
shortest s-t path.

To force the graph to have nonnegative edge lengths, we could
add 5 to every edge’s length:

s

v

t

6

3

0

The shortest path from s to t has switched, and is now the direct s-t
edge (which has length 3, better than the alternative of 6). Running a
shortest-path algorithm on the transformed graph would not produce
a correct answer for the original graph.

9.3.2 A Bad Example for the Dijkstra Algorithm

What happens if we try running the Dijkstra algorithm directly on
a graph with some negative edge lengths, like the graph above? As
always, initially X = {s} and len(s) = 0, all of which is fine. In the
first iteration of the main loop, however, the algorithm computes the
Dijkstra scores of the edges (s, v) and (s, t), which are len(s) + `sv =
0 + 1 = 1 and len(s) + `st = 0 + (�2) = �2. The latter edge has the
smaller score, and so the algorithm adds the vertex t to X and assigns
len(t) to the score -2. As we already noted, the actual shortest path
from s to t (the path s ! v ! t) has length �4. We conclude that
the Dijkstra algorithm need not compute the correct shortest-path
distances in the presence of negative edge lengths.

9.3.3 Correctness with Nonnegative Edge Lengths

Proofs of correctness can feel pretty pedantic. That’s why I often
gloss over them for the algorithms for which students tend to have
strong and accurate intuition. Dijkstra’s algorithm is different. First,
the fact that it doesn’t work on extremely simple graphs with negative
edge lengths (Section 9.3.1) should make you nervous. Second, the
Dijkstra score (9.1) might seem mysterious or even arbitrary—why
is it so important? Because of these doubts, and because it is such
a fundamental algorithm, we’ll take the time to carefully prove its
correctness (in graphs with nonnegative edge lengths).

*9.3 Why Is Dijkstra’s Algorithm Correct? 85

Theorem 9.1 (Correctness of Dijkstra) For every directed
graph G = (V,E), every starting vertex s, and every choice of nonneg-
ative edge lengths, at the conclusion of Dijkstra, len(v) = dist(s, v)
for every vertex v 2 V .

Induction Detour

The plan is to justify the shortest-path distances computed by the
Dijkstra algorithm one by one, by induction on the number of itera-
tions of its main loop. Recall that proofs by induction follow a fairly
rigid template, with the goal of establishing that an assertion P (k)
holds for every positive integer k. In the proof of Theorem 9.1, we
will define P (k) as the statement: “for the kth vertex v added to the
set X in Dijkstra, len(v) = dist(s, v).”

Analogous to a recursive algorithm, a proof by induction has
two parts: a base case and an inductive step. The base case
proves directly that P (1) is true. In the inductive step, you as-
sume that P (1), . . . , P (k� 1) are all true—this is called the inductive
hypothesis—and use this assumption to prove that P (k) is conse-
quently true as well. If you prove both the base case and the inductive
step, then P (k) is indeed true for every positive integer k. P (1) is
true by the base case, and applying the inductive step over and over
again shows that P (k) is true for arbitrarily large values of k.

On Reading Proofs

Mathematical arguments derive conclusions from as-
sumptions. When reading a proof, always make sure
you understand how each of the assumptions is used
in the argument, and why the argument would break
down in the absence of each assumption.

With this in mind, watch carefully for the role
played in the proof of Theorem 9.1 by the two key
assumptions: that edge lengths are nonnegative, and
that the algorithm always chooses the edge with the
smallest Dijkstra score. Any purported proof of The-
orem 9.1 that fails to use both assumptions is auto-
matically flawed.

86 Dijkstra’s Shortest-Path Algorithm

Proof of Theorem 9.1

We proceed by induction, with P (k) the assertion that the Dijkstra

algorithm correctly computes the shortest-path distance of the kth
vertex added to the set X. For the base case (k = 1), we know that
the first vertex added to X is the starting vertex s. The Dijkstra

algorithm assigns 0 to len(s). Because every edge has a nonnegative
length, the shortest path from s to itself is the empty path, with
length 0. Thus, len(s) = 0 = dist(s, s), which proves P (1).

For the inductive step, choose k > 1 and assume that
P (1), . . . , P (k � 1) are all true—that len(v) = dist(s, v) for the
first k� 1 vertices v added by Dijkstra to X. Let w⇤ denote the kth
vertex added to X, and let (v⇤, w⇤) denote the edge chosen in the
corresponding iteration (necessarily with v⇤ already in X). The al-
gorithm assigns len(w⇤) to the Dijkstra score of this edge, which is
len(v⇤) + `v⇤w⇤ . We’re hoping that this value is the same as the true
shortest-path distance dist(s, w⇤), but is it?

We argue in two parts that it is. First, let’s prove that the true
distance dist(s, w⇤) can only be less than the algorithm’s speculation
len(w⇤), with dist(s, w⇤)  len(w⇤). Because v⇤ was already in X
when the edge (v⇤, w⇤) was chosen, it was one of the first k�1 vertices
added to X. By the inductive hypothesis, the Dijkstra algorithm
correctly computed v⇤’s shortest-path distance: len(v⇤) = dist(s, v⇤).
In particular, there is a path P from s to v⇤ with length exactly len(v⇤).
Tacking the edge (v⇤, w⇤) on at the end of P produces a path P ⇤

from s to w⇤ with length len(v⇤) + `v⇤w⇤ = len(w⇤) (Figure 9.2). The
length of a shortest s-w⇤ path is no longer than that of the candidate
path P ⇤, so dist(s, w⇤) is at most len(w⇤).

s

v*

w*

shortest s-v* path P
(length len(v*))

lv*w*

s-w* path P* (length len(v*)+lv*w*)

Figure 9.2: Tacking the edge (v⇤, w⇤) on at the end of a shortest s-v⇤
path P produces an s-w⇤ path P ⇤ with length len(v) + `v⇤w⇤ .

*9.3 Why Is Dijkstra’s Algorithm Correct? 87

Now for the reverse inequality, stating that dist(s, w⇤) � len(w⇤)
(and so len(w⇤) = dist(s, w⇤), as desired). In other words, let’s show
that the path P ⇤ in Figure 9.2 really is a shortest s-w⇤ path—that
the length of every competing s-w⇤ path is at least len(w⇤).

Fix a competing s-w⇤ path P 0. We know very little about P 0.
However, we do know that it originates at s and ends at w⇤, and
that s but not w⇤ belonged to the set X at the beginning of this
iteration. Because it starts in X and ends outside X, the path P 0

crosses the frontier between X and V �X at least once (Figure 9.3);
let (y, z) denote the first edge of P 0 that crosses the frontier (with
y 2 X and z /2 X).7

the frontier

s

processed not-yet-processed

X

V-X

w*

y z

Figure 9.3: Every s-w⇤ path crosses at least once from X to V �X.

To argue that the length of P 0 is at least len(w⇤), we consider its
three pieces separately: the initial part of P 0 that travels from s to y,
the edge (y, z), and the final part that travels from z to w⇤. The first
part can’t be shorter than a shortest path from s to y, so its length is
at least dist(s, y). The length of the edge (y, z) is `yz. We don’t know
much about the final part of the path, which ambles among vertices
that the algorithm hasn’t looked at yet. But we do know—because all
edge lengths are nonnegative!—that its total length is at least zero:

7No worries if y = s or z = w
⇤—the argument works fine, as you should check.

88 Dijkstra’s Shortest-Path Algorithm

length = lyz
s

w*
y z

length ≥ 0
length ≥ dist(s,y) = len(y)

total length ≥ len(s,y) + lyz ≥ len(s,v*) + lv*w* = len(w*)

Combining our length lower bounds for the three parts of P 0, we have

length of P 0 � dist(s, y)| {z }
s-y subpath

+ `yz|{z}
edge (y, z)

+ 0|{z}
z-w⇤ subpath

. (9.2)

The last order of business is to connect our length lower bound
in (9.2) to the Dijkstra scores that guide the algorithm’s decisions.
Because y 2 X, it was one of the first k � 1 vertices added to X,
and the inductive hypothesis implies that the algorithm correctly
computed its shortest-path distance: dist(s, y) = len(y). Thus, the
inequality (9.2) translates to

length of P 0 � len(y) + `yz| {z }
Dijkstra score of edge (y, z)

. (9.3)

The right-hand side is exactly the Dijkstra score of the edge (y, z).
Because the algorithm always chooses the edge with the smallest
Dijkstra score, and because it chose (v⇤, w⇤) over (y, z) in this iteration,
the former has an even smaller Dijkstra score: len(v⇤) + `v⇤w⇤ 
len(y) + `yz. Plugging this inequality into (9.3) gives us what we
want:

length of P 0 � len(v⇤) + `v⇤w⇤
| {z }

Dijkstra score of edge (v⇤, w⇤)

= len(w⇤).

This completes the second part of the inductive step, and we conclude
that len(v) = dist(s, v) for every vertex v that ever gets added to the
set X.

For the final nail in the coffin, consider a vertex v that was never
added to X. When the algorithm finished, len(v) = +1 and no edges

9.4 Implementation and Running Time 89

crossed from X to V �X. This means no path exists from s to v in
the input graph—such a path would have to cross the frontier at some
point—and, hence, dist(s, v) = +1 as well. We conclude that the
algorithm halts with len(v) = dist(s, v) for every vertex v, whether
or not v was ever added to X. This completes the proof! QE D

9.4 Implementation and Running Time

Dijkstra’s shortest-path algorithm is reminiscent of our linear-time
graph search algorithms in Chapter 8. A key reason why breadth-
and depth-first search run in linear time (Theorems 8.2 and 8.5) is
that they spend only a constant amount of time deciding which vertex
to explore next (by removing the vertex from the front of a queue
or stack). Alarmingly, every iteration of Dijkstra’s algorithm must
identify the edge crossing the frontier with the smallest Dijkstra score.
Can we still implement the algorithm in linear time?

Quiz 9.2

Which of the following running times best describes a
straightforward implementation of Dijkstra’s algorithm for
graphs in adjacency-list representation? As usual, n and m
denote the number of vertices and edges, respectively, of the
input graph.

a) O(m + n)

b) O(m log n)

c) O(n2)

d) O(mn)

(See below for the solution and discussion.)

Correct answer: (d). A straightforward implementation keeps
track of which vertices are in X by associating a Boolean variable
with each vertex. Each iteration, it performs an exhaustive search
through all the edges, computes the Dijkstra score for each edge with
tail in X and head outside X (in constant time per edge), and returns
the crossing edge with the smallest score (or correctly identifies that

90 Dijkstra’s Shortest-Path Algorithm

no crossing edges exist). After at most n� 1 iterations, the Dijkstra

algorithm runs out of new vertices to add to its set X. Because the
number of iterations is O(n) and each takes time O(m), the overall
running time is O(mn).

Proposition 9.2 (Dijkstra Running Time (Straightforward))
For every directed graph G = (V,E), every starting vertex s, and every
choice of nonnegative edge lengths, the straightforward implementation
of Dijkstra runs in O(mn) time, where m = |E| and n = |V |.

The running time of the straightforward implementation is good
but not great. It would work fine for graphs in which the number
of vertices is in the hundreds or low thousands, but would choke
on significantly larger graphs. Can we do better? The holy grail
in algorithm design is a linear-time algorithm (or close to it), and
this is what we want for the single-source shortest path problem.
Such an algorithm could process graphs with millions of vertices on a
commodity laptop.

We don’t need a better algorithm to achieve a near-linear-time
solution to the problem, just a better implementation of Dijkstra’s
algorithm. Data structures (queues and stacks) played a crucial role
in our linear-time implementations of breadth- and depth-first search;
analogously, Dijkstra’s algorithm can be implemented in near-linear
time with the assistance of the right data structure to facilitate the
repeated minimum computations in its main loop. This data structure
is called a heap, and it is the subject of the next chapter.

The Upshot

P In the single-source shortest path problem, the
input consists of a graph, a starting vertex, and
a length for each edge. The goal is to compute
the length of a shortest path from the starting
vertex to every other vertex.

P Dijkstra’s algorithm processes vertices one by
one, always choosing the not-yet-processed ver-
tex that appears to be closest to the starting
vertex.

Problems 91

P An inductive argument proves that Dijkstra’s al-
gorithm correctly solves the single-source short-
est path problem whenever the input graph has
only nonnegative edge lengths.

P Dijkstra’s algorithm need not correctly solve the
single-source shortest path problem when some
edges of the input graph have negative lengths.

P A straightforward implementation of Dijkstra’s
algorithm runs in O(mn) time, where m and n
denote the number of edges and vertices of the
input graph, respectively.

Test Your Understanding

Problem 9.1 Consider a directed graph G with distinct and non-
negative edge lengths. Let s be a starting vertex and t a destination
vertex, and assume that G has at least one s-t path. Which of the
following statements are true? (Choose all that apply.)

a) The shortest (meaning minimum-length) s-t path might have
as many as n� 1 edges, where n is the number of vertices.

b) There is a shortest s-t path with no repeated vertices (that is,
with no loops).

c) The shortest s-t path must include the minimum-length edge
of G.

d) The shortest s-t path must exclude the maximum-length edge
of G.

Problem 9.2 (S) Consider a directed graph G with a starting ver-
tex s, a destination t, and nonnegative edge lengths. Under what
conditions is the shortest s-t path guaranteed to be unique?

a) When all edge lengths are distinct positive integers.

b) When all edge lengths are distinct powers of 2.

92 Dijkstra’s Shortest-Path Algorithm

c) When all edge lengths are distinct positive integers and the
graph G contains no directed cycles.

d) None of the other options are correct.

Problem 9.3 (S) Consider a directed graph G with nonnegative edge
lengths and two distinct vertices, s and t. Let P denote a shortest
path from s to t. If we add 10 to the length of every edge in the
graph, then: (Choose all that apply.)

a) P definitely remains a shortest s-t path.

b) P definitely does not remain a shortest s-t path.

c) P might or might not remain a shortest s-t path (depending on
the graph).

d) If P has only one edge, then P definitely remains a shortest s-t
path.

Problem 9.4 Consider a directed graph G and a starting vertex s
with the following properties: no edges enter the starting vertex s;
edges that leave s have arbitrary (possibly negative) lengths; and
all other edge lengths are nonnegative. Does Dijkstra’s algorithm
correctly solve the single-source shortest path problem in this case?
(Choose all that apply.)

a) Yes, for all such inputs.

b) Never, for no such inputs.

c) Maybe, maybe not (depending on the specific choice of G, s,
and edge lengths).

d) Only if we add the assumption that G contains no directed
cycles with negative total length.

Problem 9.5 Consider a directed graph G and a starting vertex s.
Suppose G has some negative edge lengths but no negative cycles,
meaning G does not have a directed cycle in which the sum of its
edge lengths is negative. Suppose you run Dijkstra’s algorithm on
this input. Which of the following statements are true? (Choose all
that apply.)

Problems 93

a) Dijkstra’s algorithm might loop forever.

b) It’s impossible to run Dijkstra’s algorithm on a graph with
negative edge lengths.

c) Dijkstra’s algorithm always halts, but in some cases the shortest-
path distances it computes will not all be correct.

d) Dijkstra’s algorithm always halts, and in some cases the shortest-
path distances it computes will all be correct.

Problem 9.6 Continuing the previous problem, suppose now that
the input graph G does contain a negative cycle, and also a path
from the starting vertex s to this cycle. Suppose you run Dijkstra’s
algorithm on this input. Which of the following statements are true?
(Choose all that apply.)

a) Dijkstra’s algorithm might loop forever.

b) It’s impossible to run Dijkstra’s algorithm on a graph with a
negative cycle.

c) Dijkstra’s algorithm always halts, but in some cases the shortest-
path distances it computes will not all be correct.

d) Dijkstra’s algorithm always halts, and in some cases the shortest-
path distances it computes will all be correct.

Challenge Problems

Problem 9.7 (S) Consider a directed graph G = (V,E) with non-
negative edge lengths and a starting vertex s. Define the bottleneck of
a path to be the maximum length of one of its edges (as opposed to
the sum of the lengths of its edges). Show how to modify Dijkstra’s
algorithm to compute, for each vertex v 2 V , the smallest bottleneck
of any s-v path. Your algorithm should run in O(mn) time, where m
and n denote the number of edges and vertices, respectively.

94 Dijkstra’s Shortest-Path Algorithm

Programming Problems

Problem 9.8 Implement in your favorite programming language the
Dijkstra algorithm from Section 9.2, and use it to solve the single-
source shortest path problem in different directed graphs. With
the straightforward implementation in this chapter, what’s the size
of the largest problem you can solve in five minutes or less? (See
www.algorithmsilluminated.org for test cases and challenge data
sets.)

www.algorithmsilluminated.org

Chapter 10

The Heap Data Structure

The remaining three chapters of this book are about three of the most
important and ubiquitous data structures out there—heaps, search
trees, and hash tables. The goals are to learn the operations that
these data structures support (along with their running times), to
develop through example applications your intuition about which data
structures are useful for which sorts of problems, and optionally, to
learn a bit about how they are implemented under the hood.1 We
begin with heaps, a data structure that facilitates fast minimum or
maximum computations.

10.1 Data Structures: An Overview

10.1.1 Choosing the Right Data Structure

Data structures are used in almost every major piece of software, so
knowing when and how to use them is an essential skill for the serious
programmer. The raison d’être of a data structure is to organize
data so you can access it quickly and usefully. You’ve already seen
a few examples. The queue data structure, used in our linear-time
implementation of breadth-first search (Section 8.2), sequentially
organizes data so that removing an object from the front or adding
an object to the back takes constant time. The stack data structure,
which was crucial in our iterative implementation of depth-first search
(Section 8.4), lets you remove an object from or add an object to the
front in constant time.

There are many more data structures out there—in this book series,
we’ll see heaps, binary search trees, hash tables, bloom filters, and (in

1Some programmers reserve the phrase data structure for a concrete imple-
mentation, and refer to the list of supported operations as an abstract data type.

95

96 The Heap Data Structure

Part 3) union-find. Why such a bewildering laundry list? Because
different data structures support different sets of operations, making
them well-suited for different types of programming tasks. For example,
breadth- and depth-first search have different needs, necessitating
two different data structures. Our fast implementation of Dijkstra’s
shortest-path algorithm (in Section 10.4) has still different needs,
requiring the more sophisticated heap data structure.

What are the pros and cons of different data structures, and how
should you choose which one to use in a program? In general, the
more operations a data structure supports, the slower the operations
and the greater the space overhead. The following quote, widely
attributed to Albert Einstein, is germane:

“Make things as simple as possible, but not simpler.”

When implementing a program, it’s important that you think carefully
about exactly which operations you’ll use over and over again. For
example, do you care only about tracking which objects are stored
in a data structure, or do you also want them ordered in a specific
way? Once you understand your program’s needs, you can follow the
principle of parsimony and choose a data structure that supports all
the desired operations and no superfluous ones.

Principle of Parsimony

Choose the simplest data structure that supports all the
operations required by your application.

10.1.2 Taking It to the Next Level

What are your current and desired levels of expertise in data struc-
tures?

Level 0: “What’s a data structure?”

Level 0 is total ignorance—someone who has never heard of a
data structure and is unaware that cleverly organizing your data can
dramatically improve a program’s running time.

10.2 Supported Operations 97

Level 1: “I hear good things about hash tables.”

Level 1 is cocktail party-level awareness—at this level, you could
at least have a conversation about basic data structures.2 You have
heard of several basic structures like search trees and hash tables, and
are perhaps aware of some of their supported operations, but would
be shaky trying to use them in a program or a technical interview.

Level 2: “This problem calls out for a heap.”

With level 2, we’re starting to get somewhere. This is someone
who has solid literacy about basic data structures, is comfortable
using them as a client in their own programs, and has a good sense of
which data structures are appropriate for which types of programming
tasks.

Level 3: “I use only data structures that I wrote myself.”

Level 3, the most advanced level, is for hardcore programmers
and computer scientists who are not content to merely use existing
data structure implementations as a client. At this level, you have
a detailed understanding of the guts of basic data structures, and
exactly how they are implemented.

The biggest marginal empowerment comes from reaching level 2.
Most programmers will, at some point, need to be educated clients of
basic data structures like heaps, search trees, and hash tables. The
primary goal of Chapters 10–12 is to bring you up to this level with
these data structures, with a focus on the operations they support
and their canonical applications. All these data structures are readily
available in the standard libraries of most modern programming
languages, waiting to be deftly deployed in your own programs.

Advanced programmers do sometimes need to implement a cus-
tomized version of one of these data structures from scratch. Each
of Chapters 10–12 includes at least one advanced section on typical
implementations of these data structures. These sections are for those
of you wanting to up your game to level 3.

2Speaking, as always, about sufficiently nerdy cocktail parties!

98 The Heap Data Structure

10.2 Supported Operations

A heap is a data structure that keeps track of an evolving set of
objects with keys and can quickly identify the object with the smallest
key.3 For example, objects might correspond to employee records,
with keys equal to their identification numbers. They might be the
edges of a graph, with keys corresponding to edge lengths. Or they
could correspond to events scheduled for the future, with each key
indicating the time at which the event will occur.4

10.2.1 Insert and Extract-Min

The most important things to remember about any data structure
are the operations it supports and the time required for each. The
two most important operations supported by heaps are the Insert
and ExtractMin operations.5

Heaps: Basic Operations

Insert: given a heap H and a new object x, add x to H.

ExtractMin: given a heap H , remove and return from H
an object with the smallest key (or a pointer to it).

For example, if you invoke Insert four times to add objects with
keys 12, 7, 29, and 15 to an empty heap, the ExtractMin operation
will return the object with key 7. Keys need not be distinct; if
there is more than one object in a heap with the smallest key, the
ExtractMin operation returns an arbitrary such object.

It would be easy to support only the Insert operation, by re-
peatedly tacking on new objects to the end of an array or linked list
(in constant time). The catch is that ExtractMin would require a
linear-time exhaustive search through all the objects. It’s also clear
how to support only ExtractMin—sort the initial set of n objects
by key once and for all up front (using O(n log n) preprocessing time),

3Not to be confused with heap memory, the part of a program’s memory
reserved for dynamic allocation.

4Keys are often numerical but can belong to any totally ordered set—what
matters is that for every pair of non-equal keys, one is less than the other.

5Data structures supporting these operations are also called priority queues.

10.2 Supported Operations 99

and then successive calls to ExtractMin peel off objects from the
beginning of the sorted list one by one (each in constant time). Here
the catch is that any straightforward implementation of Insert re-
quires linear time (as you should check). The trick is to design a data
structure that enables both operations to run super-quickly. This is
exactly the raison d’être of heaps.

Standard implementations of heaps, like the one outlined in Sec-
tion 10.5, provide the following guarantee.

Theorem 10.1 (Running Time of Basic Heap Operations)
In a heap with n objects, the Insert and ExtractMin operations
run in O(log n) time.

As a bonus, in typical implementations, the constant hidden by the
big-O notation is very small, and there is almost no extra space
overhead.

There’s also a heap variant that supports the Insert and Ex-
tractMax operations in O(log n) time, where n is the number of
objects. One way to implement this variant is to switch the direction
of all the inequalities in the implementation in Section 10.5. A second
way is to use a standard heap but negate the keys of objects before
inserting them (which effectively transforms ExtractMin into Ex-
tractMax). Neither variant of a heap supports both ExtractMin
and ExtractMax simultaneously in O(log n) time—you have to
pick which one you want.6

10.2.2 Additional Operations

Heaps can also support a number of less essential operations.

Heaps: Extra Operations

FindMin: given a heap H , return an object with the small-
est key (or a pointer to it).

Heapify: given objects x1, . . . , xn, create a heap containing
them.

6If you want both, you can use one heap of each type (see also Section 10.3.3),
or upgrade to a balanced binary search tree (see Chapter 11).

100 The Heap Data Structure

Delete: given a heap H and a pointer to an object x in H ,
delete x from H.

You could simulate a FindMin operation by invoking Extract-
Min and then applying Insert to the result (in O(log n) time, by
Theorem 10.1), but a typical heap implementation can avoid this
circuitous solution and support FindMin directly in O(1) time. You
could implement Heapify by inserting the n objects one by one
into an empty heap (in O(n log n) total time, by Theorem 10.1), but
there’s a slick way to add n objects to an empty heap in a batch in
total time O(n). Finally, heaps can also support deletions of arbitrary
objects—not just an object with the smallest key—in O(log n) time
(see also Programming Project 10.8).

Theorem 10.2 (Running Time of Extra Heap Operations)
In a heap with n objects, the FindMin, Heapify, and Delete
operations run in O(1), O(n), and O(log n) time, respectively.

Summarizing, here’s the final scorecard for heaps:

Operation Running time
Insert O(log n)

ExtractMin O(log n)
FindMin O(1)
Heapify O(n)
Delete O(log n)

Table 10.1: Heaps: supported operations and their running times, where n
denotes the current number of objects stored in the heap.

When to Use a Heap

If your application requires fast minimum (or maximum)
computations on a dynamically changing set of objects, the
heap is usually the data structure of choice.

10.3 Applications 101

10.3 Applications

The next order of business is to walk through several example appli-
cations and develop a feel for what heaps are good for. The common
theme of these applications is the replacement of minimum compu-
tations, naively implemented using (linear-time) exhaustive search,
with a sequence of (logarithmic-time) ExtractMin operations from
a heap. Whenever you see an algorithm or program with lots of
brute-force minimum or maximum computations, a light bulb should
go off in your head: This calls out for a heap!

10.3.1 Application: Sorting

For our first application, let’s return to the mother of all computational
problems, sorting.

Problem: Sorting

Input: An array of n numbers, in arbitrary order.

Output: An array of the same numbers, sorted from small-
est to largest.

For example, given the input array

5 4 1 8 7 2 6 3

the desired output array is

1 2 3 4 5 6 7 8

Perhaps the simplest sorting algorithm is SelectionSort. This
algorithm performs a linear scan through the input array to identify
the minimum element, swaps it with the first element in the array,
does a second scan over the remaining n� 1 elements to identify and
swap into the second position the second-smallest element, and so
on. Each scan takes time proportional to the number of remaining

102 The Heap Data Structure

elements, so the overall running time is ⇥(
Pn

i=1 i) = ⇥(n2).7 Because
each iteration of SelectionSort computes a minimum element using
exhaustive search, it calls out for a heap! The idea is simple: Insert all
the elements in the input array into a heap, and populate the output
array from left to right with successively extracted minimum elements.
The first extraction produces the smallest element; the second the
smallest remaining element (the second-smallest overall); and so on.

HeapSort

Input: array A of n distinct integers.
Output: array B with the same integers, sorted from
smallest to largest.

H := empty heap
for i = 1 to n do

Insert A[i] into H
for i = 1 to n do

B[i] := ExtractMin from H

Quiz 10.1

What’s the running time of HeapSort, as a function of the
length n of the input array?

a) O(n)

b) O(n log n)

c) O(n2)

d) O(n2 log n)

(See below for the solution and discussion.)

7The sum
Pn

i=1 i is at most n
2 (it has n terms, each at most n) and at least

n
2
/4 (it has n/2 terms that are all at least n/2).

10.3 Applications 103

Correct answer: (b). The work done by HeapSort boils down
to 2n operations on a heap containing at most n objects.8 Because
Theorem 10.1 guarantees that every heap operation requires O(log n)
time, the overall running time is O(n log n).

Theorem 10.3 (Running Time of HeapSort) For every input ar-
ray of length n � 1, the running time of HeapSort is O(n log n).

Let’s take a step back and appreciate what just happened. We
started with the least imaginative sorting algorithm possible, the
quadratic-time SelectionSort algorithm. We recognized the pat-
tern of repeated minimum computations, swapped in a heap data
structure, and—boom!—out popped an O(n log n)-time sorting algo-
rithm.9 This is a great running time for a sorting algorithm—it’s
even optimal, up to constant factors, among comparison-based sorting
algorithms.10 A neat byproduct of this observation is a proof that
there’s no comparison-based way to implement both the Insert and
ExtractMin operations in better-than-logarithmic time: such a
solution would yield a better-than-O(n log n)-time comparison-based
sorting algorithm, and we know this is impossible.

10.3.2 Application: Event Manager

Our second application, while a bit obvious, is both canonical and
practical. Imagine you’ve been tasked with writing software that
performs a simulation of the physical world. For example, perhaps
you’re contributing to a basketball video game. For the simulation,

8An even better implementation would replace the first loop with a single
Heapify operation, which runs in O(n) time. The second loop still requires
O(n log n) time, however.

9For clarity we described HeapSort using separate input and output arrays,
but it can be implemented in place, with almost no additional memory. This
in-place implementation is a super-practical algorithm, and is almost as fast as
QuickSort in most applications.

10Recall from Section 5.6 of Part 1 that a comparison-based sorting algo-
rithm accesses the input array only via comparisons between pairs of elements,
and never directly accesses the value of an element. “General-purpose” sorting
algorithms, which make no assumptions about the elements to be sorted, are
necessarily comparison-based. Examples include SelectionSort, InsertionSort,
HeapSort, and QuickSort. Non-examples include BucketSort, CountingSort,
and RadixSort. Theorem 5.5 from Part 1 shows that no comparison-based sorting
algorithm has a worst-case asymptotic running time better than ⇥(n log n).

104 The Heap Data Structure

you must keep track of different events and when they should occur—
the event that a player shoots the ball at a particular angle and
velocity, that the ball consequently hits the back of the rim, that two
players vie for the rebound at the same time, that one of these players
commits an over-the-back foul on the other, and so on.

A simulation must repeatedly identify what happens next. This
boils down to repeated minimum computations on the set of scheduled
event times, so a light bulb should go off in your head: The problem
calls out for a heap! If events are stored in a heap, with keys equal
to their scheduled times, the ExtractMin operation hands you the
next event on a silver platter, in logarithmic time. New events can be
inserted into the heap as they arise (again, in logarithmic time).

10.3.3 Application: Median Maintenance

For a less obvious application of heaps, let’s consider the median
maintenance problem. You are presented with a sequence of numbers,
one by one; assume for simplicity that they are distinct. Each time
you receive a new number, your responsibility is to reply with the
median element of all the numbers you’ve seen thus far.11 Thus, after
seeing the first 11 numbers, you should reply with the sixth-smallest
one you’ve seen; after 12, the sixth- or seventh-smallest; after 13, the
seventh-smallest; and so on.

One approach to the problem, which should seem like overkill, is
to recompute the median from scratch in every iteration. We saw
in Chapter 6 of Part 1 how to compute the median of a length-n
array in O(n) time, so this solution requires O(i) time in each round i.
Alternatively, we could keep the elements seen so far in a sorted array,
so that it’s easy to compute the median element in constant time.
The drawback is that updating the sorted array when a new number
arrives can require linear time. Can we do better?

Using heaps, we can solve the median maintenance problem in
just logarithmic time per round. I suggest putting the book down
at this point and spending several minutes thinking about how this
might be done.

11Recall that the median of a collection of numbers is its “middle element.” In
an array with odd length 2k � 1, the median is the kth order statistic (that is,
the kth-smallest element). In an array with even length 2k, both the kth and
(k + 1)th order statistics are considered median elements.

10.4 Speeding Up Dijkstra’s Algorithm 105

The key idea is to maintain two heaps H1 and H2 while satisfying
two invariants.12 The first invariant is that H1 and H2 are balanced,
meaning they each contain the same number of elements (after an even
round) or that one contains exactly one more element than the other
(after an odd round). The second invariant is that H1 and H2 are
ordered, meaning every element in H1 is smaller than every element
in H2. For example, if the numbers so far have been 1, 2, 3, 4, 5,
then H1 stores 1 and 2 and H2 stores 4 and 5; the median element 3 is
allowed to go in either one, as either the maximum element of H1 or
the minimum element of H2. If we’ve seen 1, 2, 3, 4, 5, 6, then the first
three numbers are in H1 and the second three are in H2; both the
maximum element of H1 and the minimum element of H2 are median
elements. One twist: H2 will be a standard heap, supporting Insert
and ExtractMin, while H1 will be the “max” variant described in
Section 10.2.1, supporting Insert and ExtractMax. This way, we
can extract the median element with one heap operation, whether it’s
in H1 or H2.

We still must explain how to update H1 and H2 each time a
new element arrives so that they remain balanced and ordered. To
figure out where to insert a new element x so that the heaps remain
ordered, it’s enough to compute the maximum element y in H1 and
the minimum element z in H2.13 If x is less than y, it has to go in H1;
if it’s more than z, it has to go in H2; if it’s in between, it can go
in either one. Do H1 and H2 stay balanced even after x is inserted?
Yes, except for one case: In an even round 2k, if x is inserted into the
bigger heap (with k elements), this heap will contain k + 1 elements
while the other contains only k�1 elements (Figure 10.1(a)). But this
imbalance is easy to fix: Extract the maximum or minimum element
from H1 or H2, respectively (whichever contains more elements), and
re-insert this element into the other heap (Figure 10.1(b)). The two
heaps stay ordered (as you should check) and are now balanced as
well. This solution uses a constant number of heap operations each
round, for a running time of O(log i) in round i.

12An invariant of an algorithm is a property that is always true at prescribed
points of its execution (like at the end of every loop iteration).

13This can be done in logarithmic time by extracting and re-inserting these
two elements. A better solution is to use the FindMin and FindMax operations,
which run in constant time (see Section 10.2.2).

106 The Heap Data Structure

heap H1 heap H2

1

2

3

4

6
insert

5

(a) Insertion can cause imbalance

heap H1 heap H2

1

2

3

4

6

rebalance

5
3

(b) Rebalancing

Figure 10.1: When inserting a new element causes the heap H2 to have
two more elements than H1, the smallest element in H2 is extracted and
re-inserted into H1 to restore balance.

10.4 Speeding Up Dijkstra’s Algorithm

Our final and most sophisticated application of heaps is a near linear-
time implementation of Dijkstra’s algorithm for the single-source
shortest path problem (Chapter 9). This application vividly illustrates
the beautiful interplay between the design of algorithms and the design
of data structures.

10.4.1 Why Heaps?

We saw in Proposition 9.2 that the straightforward implementation of
Dijkstra’s algorithm requires O(mn) time, where m is the number of
edges and n is the number of vertices. This is fast enough to process
medium-size graphs (with thousands of vertices and edges) but not
big graphs (with millions of vertices and edges). Can we do better?
Heaps enable a blazingly fast, near-linear-time implementation of
Dijkstra’s algorithm.

Theorem 10.4 (Dijkstra Running Time (Heap-Based)) For
every directed graph G = (V,E), every starting vertex s, and every
choice of nonnegative edge lengths, the heap-based implementation of
Dijkstra runs in O((m+n) log n) time, where m = |E| and n = |V |.

While not quite as fast as our linear-time graph search algorithms,
O((m + n) log n) is still a fantastic running time—comparable to our
best sorting algorithms, and good enough to qualify as a for-free
primitive.

Let’s remember how Dijkstra’s algorithm works (Section 9.2).
The algorithm maintains a subset X ✓ V of vertices to which it

10.4 Speeding Up Dijkstra’s Algorithm 107

has already computed shortest-path distances. In every iteration,
it identifies the edge crossing the frontier (with tail in X and head
in V � X) with the minimum Dijkstra score, where the Dijkstra
score of such an edge (v, w) is the (already computed) shortest-path
distance len(v) from the starting vertex to v plus the length `vw of
the edge. In other words, every iteration of the main loop does a
minimum computation, on the Dijkstra scores of the edges that cross
the frontier. The straightforward implementation uses exhaustive
search to perform these minimum computations. As speeding up
minimum computations from linear time to logarithmic time is the
raison d’être of heaps, at this point a light bulb should go off in your
head: Dijkstra’s algorithm calls out for a heap!

10.4.2 The Plan

What should we store in a heap, and what should their keys be? Your
first thought might be to store the edges of the input graph in a heap,
with an eye toward replacing the minimum computations (over edges)
in the straightforward implementation with calls to ExtractMin.
This idea can be made to work, but the slicker and quicker implemen-
tation stores vertices in a heap. This might surprise you, as Dijkstra
scores are defined for edges and not for vertices. On the flip side, we
cared about edges’ Dijkstra scores only inasmuch as they guided us
to the vertex to process next. Can we use a heap to cut to the chase
and directly compute this vertex?

The concrete plan is to store the as-yet-unprocessed vertices (V �
X in the Dijkstra pseudocode) in a heap, while maintaining the
following invariant.

Invariant

The key of a vertex w 2 V �X is the minimum Dijkstra
score of an edge with tail v 2 X and head w, or +1 if no
such edge exists.

That is, we want the equation

key(w) = min
(v,w)2E : v2X

len(v) + `vw| {z }
Dijkstra score

(10.1)

108 The Heap Data Structure

to hold at all times for every w 2 V �X, where len(v) denotes the
shortest-path distance of v computed in an earlier iteration of the
algorithm (Figure 10.2).

s

processed not-yet-processed

X
V-X

score = 7 v

w

z

score = 3

score = 5

key(v) = 3

key(w) = 5

key(z) = +∞

Figure 10.2: The key of a vertex w 2 V �X is defined as the minimum
Dijkstra score of an edge with head w and tail in X.

What’s going on? Imagine that we use a two-round knockout
tournament to identify the edge (v, w) with v 2 X and w /2 X
with the minimum Dijkstra score. The first round comprises a local
tournament for each vertex w 2 V �X, where the participants are the
edges (v, w) with v 2 X and head w, and the first-round winner is the
participant with the smallest Dijkstra score (if any). The first-round
winners (at most one per vertex w 2 V �X) proceed to the second
round, and the final champion is the first-round winner with the
lowest Dijkstra score. This champion is the same edge that would be
identified by exhaustive search.

The value of the key (10.1) of a vertex w 2 V �X is exactly the
winning Dijkstra score in the local tournament at w, so our invariant
effectively implements all the first-round competitions. Extracting
the vertex with the minimum key then implements the second round
of the tournament, and returns on a silver platter the next vertex
to process, namely the head of the crossing edge with the smallest
Dijkstra score. The point is, as long as we maintain our invariant,
we can implement each iteration of Dijkstra’s algorithm with a single
heap operation.

10.4 Speeding Up Dijkstra’s Algorithm 109

The pseudocode looks like this:14

Dijkstra (Heap-Based, Part 1)

Input: directed graph G = (V,E) in adjacency-list
representation, a vertex s 2 V , a length `e � 0 for
each e 2 E.

Postcondition: for every vertex v, the value len(v)
equals the true shortest-path distance dist(s, v).

// Initialization

1 X := empty set, H := empty heap
2 key(s) := 0
3 for every v 6= s do
4 key(v) := +1
5 for every v 2 V do
6 Insert v into H // or use Heapify

// Main loop

7 while H is non-empty do
8 w⇤ := ExtractMin(H)
9 add w⇤ to X

10 len(w⇤) := key(w⇤)
// update heap to maintain invariant

11 (to be announced)

But how much work is it to maintain the invariant?

10.4.3 Maintaining the Invariant

Now it’s time to pay the piper. We enjoyed the fruits of our invariant,
which reduces each minimum computation required by Dijkstra’s
algorithm to a single heap operation. In exchange, we must explain
how to maintain it without excessive work.

Each iteration of the algorithm moves one vertex v from V �X
to X, which changes the frontier (Figure 10.3). Edges from vertices

14Initializing the set X of processed vertices to the empty set rather than to the
starting vertex leads to cleaner pseudocode (cf., Section 9.2.1). The first iteration
of the main loop is guaranteed to extract the starting vertex (do you see why?),
which is then the first vertex added to X.

110 The Heap Data Structure

in X to v get sucked into X and no longer cross the frontier. More
problematically, edges from v to other vertices of V �X no longer
reside entirely in V �X and instead cross from X to V �X. Why is
this a problem? Because our invariant (10.1) insists that, for every
vertex w 2 V � X, w’s key equals the smallest Dijkstra score of a
crossing edge ending at w. New crossing edges mean new candidates
for the smallest Dijkstra score, so the right-hand side of (10.1) might
decrease for some vertices w. For example, the first time a vertex v
with (v, w) 2 E gets sucked into X, this expression drops from +1
to a finite number (namely, len(v) + `vw).

s

processed not-yet-processed

X
V-X

v

w

z

(a) Before

s

processed not-yet-processed

X
V-X

v

w

z

(b) After

Figure 10.3: When a new vertex v is moved from V � X to X, edges
going out of v can become crossing edges.

Every time we extract a vertex w⇤ from the heap, moving it
from V �X to X, we might need to decrease the key of some of the
vertices remaining in V �X to reflect the new crossing edges. Because
all the new crossing edges emanate from w⇤, we need only iterate
through w⇤’s list of outgoing edges and check the vertices y 2 V �X
with an edge (w⇤, y). For each such vertex y, there are two candidates
for the first-round winner in y’s local tournament: either it is the same
as before, or it is the new entrant (w⇤, y). Thus, the new value of y’s
key should be either its old value or the Dijkstra score len(w⇤) + `w⇤y

of the new crossing edge, whichever is smaller.
How can we decrease the key of an object in a heap? One easy way

is to remove it, using the Delete operation described in Section 10.2.2,
update its key, and use Insert to add it back into the heap.15 This

15Some heap implementations export a DecreaseKey operation, running in

10.4 Speeding Up Dijkstra’s Algorithm 111

completes the heap-based implementation of the Dijkstra algorithm.

Dijkstra (Heap-Based, Part 2)

// update heap to maintain invariant

12 for every edge (w⇤, y) do
13 Delete y from H
14 key(y) := min{key(y), len(w⇤) + `w⇤y}
15 Insert y into H

10.4.4 Running Time

Almost all the work performed by the heap-based implementation of
Dijkstra consists of heap operations (as you should check). Each
of these operations takes O(log n) time, where n is the number of
vertices. (The heap never contains more than n� 1 objects.)

How many heap operations does the algorithm perform? There
are n�1 operations in each of lines 6 and 8—one per vertex other than
the starting vertex s. What about in lines 13 and 15?

Quiz 10.2

How many times does Dijkstra execute lines 13 and 15?
Select the smallest bound that applies. (As usual, n and m
denote the number of vertices and edges, respectively.)

a) O(n)

b) O(m)

c) O(n2)

d) O(mn)

(See below for the solution and discussion.)

O(log n) time for an n-object heap. In this case, only one heap operation is needed.

112 The Heap Data Structure

Correct answer: (b). Lines 13 and 15 may look a little scary. In one
iteration of the main loop, these two lines might be performed as many
as n�1 times—once per outgoing edge of w⇤. There are n�1 iterations,
which seems to lead to a quadratic number of heap operations. This
bound is accurate for dense graphs, but in general, we can do better.
The reason? Let’s assign responsibility for these heap operations
to edges rather than vertices. Each edge (v, w) of the graph makes
at most one appearance in line 12—when v is first extracted from
the heap and moved from V �X to X.16 Thus, lines 13 and 15 are
each performed at most once per edge, for a total of 2m operations,
where m is the number of edges.

Quiz 10.2 shows that the heap-based implementation of Dijkstra
uses O(m+n) heap operations, each taking O(log n) time. The overall
running time is O((m+n) log n), as promised by Theorem 10.4. QE D

*10.5 Implementation Details

Let’s take your understanding of heaps to the next level by describing
how you would implement one from scratch. We’ll focus on the two
basic operations—Insert and ExtractMin—and how to ensure
that both run in logarithmic time.

10.5.1 Heaps as Trees

There are two ways to visualize objects in a heap, as a tree (better for
pictures and exposition) or as an array (better for an implementation).
Let’s start with trees.

A heap can be viewed as a rooted binary tree—where each node
has 0, 1, or 2 children—in which every level is as full as possible.
When the number of objects stored is one less than a power of 2,
every level is full (Figures 10.4(a) and 10.4(b)). When the number of
objects is between two such numbers, the only non-full layer is the
last one, which is populated from left to right (Figure 10.4(c)).17

A heap manages objects associated with keys so that the following
heap property holds.

16If w is extracted before v, the edge (v, w) never makes an appearance.
17For some reason, computer scientists seem to think that trees grow downward.

*10.5 Implementation Details 113

(a) (b) (c)

Figure 10.4: Full binary trees with 7, 15, and 9 nodes.

The Heap Property

For every object x, the key of x is less than or equal to the
keys of its children.

Duplicate keys are allowed. For example, here’s a valid heap containing
nine objects:18

4

4

4 9

11 13

9

8

12

For every parent-child pair, the parent’s key is at most that of the
child.19

There’s more than one way to arrange objects so that the heap
property holds. Here’s another heap, with the same set of keys:

18When we draw a heap, we show only the objects’ keys. Don’t forget that what
a heap really stores is objects (or pointers to objects). Each object is associated
with a key and possibly lots of other data.

19Applying the heap property iteratively to an object’s children, its children’s
children, and so on shows that the key of each object is less than or equal to
those of all of its direct descendants. The example above illustrates that the heap
property implies nothing about the relative order of keys in different subtrees—just
like in real family trees!

114 The Heap Data Structure

4

4

11 9

12 9

8

4

13

Both heaps have a “4” at the root, which is also (tied for) the
smallest of all the keys. This is not an accident: because keys only
decrease as you traverse a heap upward, the root’s key is as small as
it gets. This should sound encouraging, given that the raison d’être
of a heap is fast minimum computations.

10.5.2 Heaps as Arrays

In our minds we visualize a heap as a tree, but in an implementation
we use an array with length equal to the maximum number of objects
we expect to store. The first element of the array corresponds to the
tree’s root, the next two elements to the next level of the tree (in the
same order), and so on (Figure 10.5).

4

4

4 9

11 13

9

8

12

layer 0

layer 1

layer 2

layer 3

(a) Tree representation

4 4 8 9 4 12 9 11 13

layer 3 layer 2 layer 1 layer 0

(b) Array representation

Figure 10.5: Mapping the tree representation of a heap to its array
representation.

Parent-child relationships in the tree translate nicely to the array
(Table 10.2). Assuming the array positions are labeled 1, 2, . . . , n,
where n is the number of objects, the children of the object in position i

*10.5 Implementation Details 115

correspond to the objects in positions 2i and 2i + 1 (if any). For
example, in Figure 10.5, the children of the root (in position 1) are
the next two objects (in positions 2 and 3), the children of the 8 (in
position 3) are the objects in positions 6 and 7, and so on. Going
in reverse, for a non-root object (in position i � 2), i’s parent is the
object in position bi/2c.20 For example, in Figure 10.5, the parent of
the last object (in position 9) is the object in position b9/2c = 4.

Position of parent bi/2c (provided i � 2)
Position of left child 2i (provided 2i  n)
Position of right child 2i + 1 (provided 2i + 1  n)

Table 10.2: Relationships between the position i 2 {1, 2, 3, . . . , n} of an
object in a heap and the positions of its parent, left child, and right child,
where n denotes the number of objects in the heap.

There are such simple formulas to go from a child to its parent
and back because we use only full binary trees.21 There is no need
to explicitly store the tree; consequently, the heap data structure has
minimal space overhead.22

10.5.3 Implementing Insert in O(log n) Time

We’ll illustrate the implementation of both the Insert and Extract-
Min operations by example rather than by pseudocode.23 The chal-
lenge is to both keep the tree full and maintain the heap property
after an object is added or removed. We’ll follow the same blueprint
for both operations:

1. Keep the tree full in the most obvious way possible.

2. Play whack-a-mole to systematically squash any violations of
the heap property.

20The notation bxc denotes the “floor” function, which rounds its argument
down to the nearest integer.

21As a bonus, in low-level languages it’s possible to multiply or divide by 2
ridiculously quickly, using bit-shifting tricks.

22By contrast, search trees (Chapter 11) need not be full; they require additional
space to store explicit pointers from each node to its children.

23We’ll keep drawing heaps as trees, but don’t forget that they’re stored as
arrays. When we talk about going from a node to a child or its parent, we mean
by applying the simple index formulas in Table 10.2.

116 The Heap Data Structure

Specifically, recall the Insert operation:

given a heap H and a new object x, add x to H.

After x’s addition to H, H should still correspond to a full binary
tree (with one more node than before) that satisfies the heap property.
The operation should take O(log n) time, where n is the number of
objects in the heap.

Let’s start with our running example:

4

4

4 9

11 13

9

8

12

When a new object is inserted, the most obvious way to keep the tree
full is to tack the new object onto the end of the array, or equivalently
to the last level of the tree. (If the last level is already full, the object
becomes the first at a new level.) As long as the implementation
keeps track of the number n of objects (which is easy to do), this step
takes constant time. For example, if we insert an object with key 7
into our running example, we obtain:

4

4

4 9

11 13

9

8

12

7

We have a full binary tree, but does the heap property hold? There’s
only one place it might fail—the one new parent-child pair (the 4 and

*10.5 Implementation Details 117

the 7). In this case we got lucky, and the new pair doesn’t violate the
heap property. If our next insertion is an object with key 10, then
again we get lucky and immediately obtain a valid heap:

4

4

4 9

11 13

9

8

12

7 10

But suppose we now insert an object with key 5. After tacking it on
at the end, our tree is:

4

4

4 9

11 13

9

8

12

7 10 5

heap
violation!

Now we have a problem: The new parent-child pair (the 12 and the 5)
violates the heap property. What can we do about it? We can at least
fix the problem locally by swapping the two nodes in the violating
pair:

4

4

4 9

11 13

9

8

5

7 10 12

heap
violation!

118 The Heap Data Structure

This fixes the violating parent-child pair. We’re not out of the woods
yet, however, as the heap violation has migrated upward to the 8 and
the 5. So we do it again, and swap the nodes in the violating pair to
obtain:

4

4

4 9

11 13

9

5

8

7 10 12

This explicitly fixes the violating pair. We’ve seen that such a swap
has the potential to push the violation of the heap property upward,
but here it doesn’t happen—the 4 and 5 are already in the correct
order. You might worry that a swap could also push the violation
downward. But this also doesn’t happen—the 8 and 12 are already
in the correct order. With the heap property restored, the insertion
is complete.

In general, the Insert operation tacks the new object on to the
end of the heap, and repeatedly swaps the nodes of a violating pair.24

At all times, there is at most one violating parent-child pair—the pair
in which the new object is the child.25 Each swap pushes the violating
parent-child pair up one level in the tree. This process cannot go on
forever—if the new object makes it to the root, it has no parent and
there can be no violating parent-child pair.

24This swapping subroutine goes by a number of names, including Bubble-Up,
Sift-Up, Heapify-Up, and more.

25At no point are there any heap violations between the new object and its
children. It has no children initially, and after a swap its children comprise the
node it replaced (which has a larger key, as otherwise we wouldn’t have swapped)
and a previous child of that node (which, by the heap property, can have only a
still larger key). Every parent-child pair not involving the new object appeared
in the original heap, and hence does not violate the heap property. For instance,
after two swaps in our example, the 8 and 12 are once again in a parent-child
relationship, just like in the original heap.

*10.5 Implementation Details 119

Insert

1. Stick the new object at the end of the heap and incre-
ment the heap size.

2. Repeatedly swap the new object with its parent until
the heap property is restored.

Because a heap is a full binary tree, it has ⇡ log2 n levels, where n
is the number of objects in the heap. The number of swaps is at
most the number of levels, and only a constant amount of work is
required per swap. We conclude that the worst-case running time of
the Insert operation is O(log n), as desired.

10.5.4 Implementing ExtractMin in O(log n) Time

Recall the ExtractMin operation:

given a heap H , remove and return from H an object with
the smallest key.

The root of the heap is guaranteed to be such an object. The challenge
is to restore the full binary tree and heap properties after ripping out
a heap’s root.

We again keep the tree full in the most obvious way possible. Like
Insert in reverse, we know that the last node of the tree must go
elsewhere. But where should it go? Because we’re extracting the root
anyway, let’s overwrite the old root node with what used to be the
last node. For example, starting from the heap

4

4

4 9

11 13

9

8

12

120 The Heap Data Structure

the resulting tree looks like

heap
violations!

13

4

4 9

11

9

8

12

The good news is that we’ve restored the full binary tree property.
The bad news is that the massive promotion granted to the object
with key 13 has created two violating parent-child pairs (the 13 and 4
and the 13 and 8). Do we need two swaps to correct them?

The key idea is to swap the root node with the smaller of its two
children:

4

13

4 9

11

9

8

12
heap

violations!

There are no longer any heap violations involving the root—the new
root node is smaller than both the node it replaced (that’s why we
swapped) and its other child (as we swapped the smaller child).26

The heap violations migrate downward, again involving the object
with key 13 and its two (new) children. So we do it again, and swap
the 13 with its smaller child:

26Swapping the 13 with the 8 would fail to vaccinate the left subtree from heap
violations (with violating pair 8 and 4) while allowing the disease to spread to the
right subtree (with violating pairs 13 and 12, and 13 and 9).

*10.5 Implementation Details 121

4

4

13 9

11

9

8

12

The heap property is restored at last, and now the extraction is
complete.

In general, the ExtractMin operation moves the last object
of a heap to the root node (by overwriting the previous root), and
repeatedly swaps this object with its smaller child.27 At all times,
there are at most two violating parent-child pairs—the two pairs in
which the formerly-last object is the parent.28 Because each swap
pushes this object down one level in the tree, this process cannot go
on forever—it stops once the new object belongs to the last level, if
not earlier.

ExtractMin

1. Overwrite the root with the last object x in the heap,
and decrement the heap size.

2. Repeatedly swap x with its smaller child until the
heap property is restored.

The number of swaps is at most the number of levels, and only a
constant amount of work is required per swap. Because there are
⇡ log2 n levels, we conclude that the worst-case running time of the
ExtractMin operation is O(log n), where n is the number of objects
in the heap.

27This swapping subroutine is called, among other things, Bubble-Down.
28Every parent-child pair not involving this formerly-last object appeared in

the original heap, and hence does not violate the heap property. There is also
no violation involving this object and its parent—initially it had no parent, and
subsequently it is swapped downward with objects that have smaller keys.

122 The Heap Data Structure

The Upshot

P There are many different data structures, each
optimized for a different set of operations.

P The principle of parsimony recommends choos-
ing the simplest data structure that supports
all the operations required by your application.

P If your application requires fast minimum (or
maximum) computations on an evolving set of
objects, the heap is usually the data structure
of choice.

P The two most important heap operations, In-
sert and ExtractMin, run in O(log n) time,
where n is the number of objects.

P Heaps also support FindMin in O(1) time,
Delete in O(log n) time, and Heapify in O(n)
time.

P The HeapSort algorithm uses a heap to sort a
length-n array in O(n log n) time.

P Heaps can be used to implement Dijkstra’s
shortest-path algorithm in O((m + n) log n)
time, where m and n denote the number of
edges and vertices of the graph, respectively.

P Heaps can be visualized as full binary trees but
are implemented as arrays.

P The heap property states that the key of every
object is less than or equal to the keys of its
children.

P The Insert and ExtractMin operations are
implemented by keeping the tree full in the

Problems 123

most obvious way possible and systematically
squashing any violations of the heap property.

Test Your Understanding

Problem 10.1 (S) Which of the following patterns in a computer
program suggests that a heap data structure could provide a significant
speed-up? (Check all that apply.)

a) Repeated lookups.

b) Repeated minimum computations.

c) Repeated maximum computations.

d) None of the other options.

Problem 10.2 Suppose you implement the functionality of a priority
queue (that is, Insert and ExtractMin) using an array sorted from
largest to smallest. What is the worst-case running time of Insert
and ExtractMin, respectively? Assume you have a large enough
array to accommodate all your insertions.

a) ⇥(1) and ⇥(n)

b) ⇥(n) and ⇥(1)

c) ⇥(log n) and ⇥(1)

d) ⇥(n) and ⇥(n)

Problem 10.3 Suppose you implement the functionality of a priority
queue (that is, Insert and ExtractMin) using an unsorted array.
What is the worst-case running time of Insert and ExtractMin,
respectively? Assume you have a large enough array to accommodate
all your insertions.

a) ⇥(1) and ⇥(n)

b) ⇥(n) and ⇥(1)

c) ⇥(1) and ⇥(log n)

124 The Heap Data Structure

d) ⇥(n) and ⇥(n)

Problem 10.4 (S) You are given a heap with n objects. Which of the
following tasks can you solve using O(1) Insert and ExtractMin
operations and O(1) additional work? (Choose all that apply.)

a) Find the object stored in the heap with the fifth-smallest key.

b) Find the object stored in the heap with the maximum key.

c) Find the object stored in the heap with the median key.

d) None of the above.

Challenge Problems

Problem 10.5 (S) Continuing Problem 9.7, show how to modify
the heap-based implementation of Dijkstra’s algorithm to compute,
for each vertex v 2 V , the smallest bottleneck of an s-v path. Your
algorithm should run in O((m+n) log n) time, where m and n denote
the number of edges and vertices, respectively.

Problem 10.6 (Difficult.) We can do better. Suppose now the graph
is undirected. Give a linear-time (that is, O(m + n)-time) algorithm
to compute a minimum-bottleneck path between two given vertices.

[Hint: A linear-time algorithm from Part 1 will come in handy. In
the recursion, aim to cut the input size in half in linear time.]

Problem 10.7 (Difficult.) What if the graph is directed? Can you
compute a minimum-bottleneck path between two given vertices in
less than O((m + n) log n) time?29

29For a deep dive on this problem, see the paper “Algorithms for Two Bottleneck
Optimization Problems,” by Harold N. Gabow and Robert E. Tarjan (Journal of

Algorithms, 1988).

Problems 125

Programming Problems

Problem 10.8 Implement in your favorite programming language
the heap-based version of the Dijkstra algorithm from Section 10.4,
and use it to solve the single-source shortest path problem in different
directed graphs. With this heap-based implementation, what’s the
size of the largest problem you can solve in five minutes or less? (See
www.algorithmsilluminated.org for test cases and challenge data
sets.)

[Hint: This requires the Delete operation, which may force you
to implement a customized heap data structure from scratch. To
delete an object from a heap at a given position, follow the high-
level approach of Insert and ExtractMin, using Bubble-Up or
Bubble-Down as needed to squash violations of the heap property.
You will also need to keep track of which vertex is in which position
of your heap, perhaps by using a hash table (Chapter 12).]

www.algorithmsilluminated.org

Chapter 11

Search Trees

A search tree, like a heap, is a data structure for storing an evolving
set of objects associated with keys (and possibly lots of other data). It
maintains a total ordering over the stored objects, and can support a
richer set of operations than a heap, at the expense of increased space
and, for some operations, somewhat slower running times. We’ll start
with the “what” (that is, supported operations) before proceeding
to the “why” (applications) and the “how” (optional implementation
details).

11.1 Sorted Arrays

A good way to think about a search tree is as a dynamic version of a
sorted array—it can do everything a sorted array can do, while also
accommodating fast insertions and deletions.

11.1.1 Sorted Arrays: Supported Operations

You can do a lot of things with a sorted array.

Sorted Arrays: Supported Operations

Search: for a key k, return a pointer to an object in the
data structure with key k (or report that no such object
exists).

Min (Max): return a pointer to the object in the data
structure with the smallest (respectively, largest) key.

Predecessor (Successor): given a pointer to an object
in the data structure, return a pointer to the object with

126

11.1 Sorted Arrays 127

the next-smallest (respectively, next-largest) key. If the
given object has the minimum (respectively, maximum) key,
report “none.”

OutputSorted: output the objects in the data structure
one by one in order of their keys.

Select: given a number i, between 1 and the number of
objects, return a pointer to the object in the data structure
with the ith-smallest key.

Rank: given a key k, return the number of objects in the
data structure with key at most k.

Let’s review how to implement each of these operations, with the
following running example:

6 10 11 17 23 30 36 3

• The Search operation uses binary search: First check if the
object in the middle position of the array has the desired key.
If so, return it. If not, recurse either on the left half (if the
middle object’s key is too large) or on the right half (if it’s too
small).1 For example, to search the array above for the key 8,
binary search will: examine the fourth object (with key 11);
recurse on the left half (the objects with keys 3, 6, and 10);
check the second object (with key 6); recurse on the right half of
the remaining array (the object with key 10); conclude that the
rightful position for an object with key 8 would be between the
second and third objects; and report “none.” As each recursive
call cuts the array size by a factor of 2, there are at most log2 n
recursive calls, where n is the length of the array. Because each
recursive call does a constant amount of work, the operation
runs in O(log n) time.

1Readers of at least a certain age should be reminded of searching for a phone
number in a phone book. If you haven’t walked through the code of this algorithm
before, look it up in your favorite introductory programming book or tutorial.

128 Search Trees

• Min and Max are easy to implement in O(1) time: Return a
pointer to the first or last object in the array, respectively.

• To implement Predecessor or Successor, use the Search
operation to recover the position of the given object in the sorted
array, and return the object in the previous or next position,
respectively. These operations are as fast as Search—running
in O(log n) time, where n is the length of the array.

• The OutputSorted operation is trivial to implement in linear
time with a sorted array: Perform a single front-to-back pass
over the array, outputting each object in turn.

• Select is easy to implement in constant time: Given an index i,
return the object in the ith position of the array.

• The Rank operation, which is like an inverse of Select, can be
implemented along the same lines as Search: If binary search
finds an object with key k in the ith position of the array, or if
it discovers that k is in between the keys of the objects in the
ith and (i + 1)th positions, the correct answer is i.2

Summarizing, here’s the final scorecard for sorted arrays:

Operation Running time
Search O(log n)

Min O(1)
Max O(1)

Predecessor O(log n)
Successor O(log n)

OutputSorted O(n)
Select O(1)
Rank O(log n)

Table 11.1: Sorted arrays: supported operations and their running times,
where n denotes the current number of objects stored in the array.

2This description assumes, for simplicity, that there are no duplicate keys.
What changes are necessary to accommodate multiple objects with the same key?

11.2 Search Trees: Supported Operations 129

11.1.2 Unsupported Operations

Could you really ask for anything more? With a static data set that
does not change over time, this is an impressive list of supported
operations. Many real-world applications are dynamic, however, with
the set of relevant objects evolving over time. For example, employees
come and go, and the data structure that stores their records should
stay up to date. For this reason, we also care about insertions and
deletions.

Sorted Arrays: Unsupported Operations

Insert: given a new object x, add x to the data structure.

Delete: for a key k, delete an object with key k from the
data structure, if one exists.3

These two operations aren’t impossible to implement with a sorted
array, but they’re painfully slow—inserting or deleting an element
while maintaining the sorted array property requires linear time in the
worst case. Is there an alternative data structure that replicates all the
functionality of a sorted array, while matching the logarithmic-time
performance of a heap for the Insert and Delete operations?

11.2 Search Trees: Supported Operations

The raison d’être of a search tree is to support all the operations
that a sorted array supports, plus insertions and deletions. All the
operations except OutputSorted run in O(log n) time, where n
is the number of objects in the search tree. The OutputSorted
operation runs in O(n) time, and this is as good as it gets (since it
must output n objects).

Here’s the scorecard for search trees, with a comparison to sorted
arrays:

3The eagle-eyed reader may have noticed that this specification of the Delete

operation (which takes a key as input) is different from the one for heaps (which
takes a pointer to an object as input). This is because heaps do not support fast
search. In a sorted array (as well as in search trees and hash tables), it’s easy to
recover a pointer to an object given its key (via Search).

130 Search Trees

Operation Sorted Array Balanced Search Tree
Search O(log n) O(log n)

Min O(1) O(log n)
Max O(1) O(log n)

Predecessor O(log n) O(log n)
Successor O(log n) O(log n)

OutputSorted O(n) O(n)
Select O(1) O(log n)
Rank O(log n) O(log n)
Insert O(n) O(log n)
Delete O(n) O(log n)

Table 11.2: Balanced search trees vs. sorted arrays: supported operations
and their running times, where n denotes the current number of objects
stored in the data structure.

An important caveat: The running times in Table 11.2 are achieved
by a balanced search tree, which is a more sophisticated version of the
standard binary search tree described in Section 11.3. These running
times are not guaranteed by an unbalanced search tree.4

When to Use a Balanced Search Tree

If your application requires maintaining an ordered represen-
tation of a dynamically changing set of objects, the balanced
search tree (or a data structure based on one5) is usually
the data structure of choice.6

4A preview of Sections 11.3 and 11.4: In general, search tree operations run
in time proportional to the height of the tree, meaning the longest path from the
tree’s root to one of its leaves. In a binary tree with n nodes, the height can be
anywhere from ⇡ log2 n (if the tree is perfectly balanced) to n� 1 (if the nodes
form a single chain). Balanced search trees do a modest amount of extra work to
ensure that the height is always O(log n); this height guarantee then leads to the
running time bounds in Table 11.2.

5For example, the TreeMap class in Java and the map class template in the
C++ Standard Template Library are built on top of balanced search trees.

6One good place to see balanced search trees in the wild is in the Linux kernel.
For example, they are used to manage the scheduling of processes, and to keep
track of the virtual memory footprint of each process.

*11.3 Implementation Details 131

Remember the principle of parsimony: Choose the simplest data
structure that supports all the operations required by your application.
If you need to maintain only an ordered representation of a static
data set (with no insertions or deletions), use a sorted array instead
of a balanced search tree; the latter would be overkill. If your data
set is dynamic but you care only about fast minimum (or maximum)
operations, use a heap instead of a balanced search tree. These simpler
data structures do less than a balanced search tree, but what they
do, they do better—faster (by a constant or logarithmic factor) and
with less space (by a constant factor).7

*11.3 Implementation Details

This section provides a high-level description of a typical implementa-
tion of a (not necessarily balanced) binary search tree. Section 11.4
touches on some of the extra ideas needed for balanced search trees.

11.3.1 The Search Tree Property

In a binary search tree, every node corresponds to an object (with a
key) and has three pointers associated with it: a parent pointer, a left
child pointer, and a right child pointer. Any of these pointers can be
null, indicating the absence of a parent or child. The left subtree of a
node x comprises the nodes reachable from x via its left child pointer,
and similarly for the right subtree. The defining search tree property
is:8

The Search Tree Property

1. For every object x, objects in x’s left subtree have
keys smaller than that of x.

2. For every object x, objects in x’s right subtree have
keys larger than that of x.9

7Chapter 12 covers hash tables, which do still less; but what they do, they do
even better (constant time, for all practical purposes).

8We refer to nodes and the corresponding objects interchangeably.
9This assumes no two objects have the same key. To accommodate duplicate

keys, change the “smaller than” in the first condition to “smaller than or equal to.”

132 Search Trees

The search tree property imposes a requirement for every node of
a search tree, not just for the root:

x

toward the root

all keys
< x

all keys
> x

For example, here’s a search tree containing objects with the keys
{1, 2, 3, 4, 5}, and a table listing the destinations of the three pointers
at each node:

3

1

2

5

4

root

leaves

(a) Search tree

Node Parent Left Right
1 3 null 2
2 1 null null
3 null 1 5
4 5 null null
5 3 4 null

1

(b) Pointers

Figure 11.1: A search tree and its corresponding parent and child pointers.

Binary search trees and heaps differ in several ways. Heaps can
be thought of as trees, but they are implemented as arrays, with no
explicit pointers between objects. A search tree explicitly stores three
pointers per object, and hence uses more space (by a constant factor).
Heaps don’t need explicit pointers because they always correspond
to full binary trees, while binary search trees can have an arbitrary
structure.

Search trees have a different purpose than heaps. For this reason,
the search tree property is incomparable to the heap property. Heaps

*11.3 Implementation Details 133

are optimized for fast minimum computations, and the heap property—
that a child’s key is only bigger than its parent’s key—makes the
minimum-key object easy to find (it’s the root). Search trees are
optimized for—wait for it—search, and the search tree property is
defined accordingly. For example, if you are searching for an object
with the key 23 in a search tree and the root’s key is 17, you know
that the object can reside only in the root’s right subtree, and can
discard the objects in the left subtree from further consideration. This
should remind you of binary search, as befits a data structure whose
raison d’être is to simulate a dynamically changing sorted array.

11.3.2 The Height of a Search Tree

Many different search trees exist for a given set of keys. Here’s a
second search tree containing objects with the keys {1, 2, 3, 4, 5}:

5

4

3

2

1

Both conditions in the search tree property hold, the second one
vacuously (as there are no non-empty right subtrees).

The height of a tree is defined as the length of a longest path from
its root to a leaf.10 Different search trees containing identical sets of
objects can have different heights, as in our first two examples (which
have heights 2 and 4, respectively). In general, a binary search tree
containing n objects can have a height anywhere from

⇡ log2 n| {z }
perfectly balanced binary tree

(best-case scenario)

to n� 1.| {z }
chain, as above

(worst-case scenario)

The rest of this section outlines how to implement all the operations
of a binary search tree in time proportional to the tree’s height (save

10Also known as the depth of the tree.

134 Search Trees

OutputSorted, which runs in time linear in n). For the refinements
of binary search trees that are guaranteed to have height O(log n) (see
Section 11.4), this leads to the logarithmic running times reported in
the scorecard in Table 11.2.

11.3.3 Implementing Search in O(height) Time

Let’s begin with the Search operation:

for a key k, return a pointer to an object in the data
structure with key k (or report that no such object exists).

The search tree property tells you exactly where to look for an object
with key k. If k is less than (respectively, greater than) the root’s key,
such an object must reside in the root’s left subtree (respectively, right
tree). To search, follow your nose: Start at the root and repeatedly
go left or right (as appropriate) until you find the desired object (a
successful search) or encounter a null pointer (an unsuccessful search).

For example, suppose we search for an object with key 2 in our
first binary search tree:

3

1

2

5

4

Because the root’s key (3) is too big, the first step traverses the left
child pointer. Because the next node’s key is too small (1), the second
step traverses the right child pointer, arriving at the desired object.
If we search for an object with key 6, the search traverses the root’s
right child pointer (as the root’s key is too small). Because the next
node’s key (5) is also too small, the search tries to follow another
right child pointer, encounters a null pointer, and halts the search
(unsuccessfully).

*11.3 Implementation Details 135

Search

1. Start at the root node.

2. Repeatedly traverse left and right child pointers, as
appropriate (left if k is less than the current node’s
key, right if k is bigger).

3. Return a pointer to an object with key k (if found) or
“none” (upon reaching a null pointer).

The running time is proportional to the number of pointers followed,
which is at most the height of the search tree (plus 1, if you count
the final null pointer of an unsuccessful search).

11.3.4 Implementing Min and Max in O(height) Time

The search tree property makes it easy to implement the Min and
Max operations.

Min (Max): return a pointer to the object in the data
structure with the smallest (respectively, largest) key.

Keys in the left subtree of the root can only be smaller than the
root’s key, and keys in the right subtree can only be larger. If the
left subtree is empty, the root must be the minimum. Otherwise, the
minimum of the left subtree is also the minimum of the entire tree.
This suggests following the root’s left child pointer and repeating the
process.

For example, in the search trees we considered earlier:

3

1

2

5

4
minimum

5

4

3

2

1 minimum

repeatedly following left child pointers leads to the object with the
minimum key.

136 Search Trees

Min (Max)

1. Start at the root node.

2. Traverse left child pointers (right child pointers) as
long as possible, until encountering a null pointer.

3. Return a pointer to the last object visited.

The running time is proportional to the number of pointers followed,
which is O(height).

11.3.5 Implementing Predecessor in O(height) Time

Next is the Predecessor operation; the implementation of the
Successor operation is analogous.

Predecessor: given a pointer to an object in the data
structure, return a pointer to the object with the next-
smallest key. (If the object has the minimum key, report
“none.”)

Given an object x, where could x’s predecessor reside? Not in x’s
right subtree, where all the keys are larger than x’s key (by the search
tree property). Our running example

3

1

2

5

4

illustrates two cases. The predecessor might appear in the left subtree
(as for the nodes with keys 3 and 5), or it could be an ancestor farther
up in the tree (as for the nodes with keys 2 and 4).

*11.3 Implementation Details 137

The general pattern is: If an object x’s left subtree is non-empty,
this subtree’s maximum element is x’s predecessor11; otherwise, x’s
predecessor is the closest ancestor of x that has a smaller key than x.
Equivalently, tracing parent pointers upward from x, it is the desti-
nation of the first left turn.12 For example, in the search tree above,
tracing parent pointers upward from the node with key 4 first takes a
right turn (leading to a node with the bigger key 5) and then takes a
left turn, arriving at the correct predecessor (3). If x has an empty
left subtree and no left turns above it, then it is the minimum in the
search tree and has no predecessor (like the node with key 1 in the
search tree above).

Predecessor

1. If x’s left subtree is non-empty, return the result of
Max applied to this subtree.

2. Otherwise, traverse parent pointers upward toward
the root. If the traversal visits consecutive nodes y
and z with y a right child of z, return a pointer to z.

3. Otherwise, report “none.”

The running time is proportional to the number of pointers followed,
which in all cases is O(height).

11.3.6 Implementing OutputSorted in O(n) Time

Recall the OutputSorted operation:

OutputSorted: output the objects in the data structure
one by one in order of their keys.

A lazy way to implement this operation is to first use the Min opera-
tion to output the object with the minimum key, and then repeatedly

11Among the keys less than x’s, the ones in x’s left subtree are the closest to x

(as you should check). Among the keys in this subtree, the maximum is the closest
to x.

12Right turns can lead only to nodes with larger keys, which cannot be x’s
predecessor. The search tree property also implies that neither more distant
ancestors nor non-ancestors can be x’s predecessor (as you should check).

138 Search Trees

invoke the Successor operation to output the rest of the objects in
order. A better method is to use what’s called an in-order traversal
of the search tree, which recursively processes the root’s left subtree,
then the root, and then the root’s right subtree. This idea meshes
perfectly with the search tree property, which implies that Output-
Sorted should first output the objects in the root’s left subtree in
order, followed by the object at the root, followed by the objects in
the root’s right subtree in order.

OutputSorted

1. Recursively call OutputSorted on the root’s left
subtree.

2. Output the object at the root.

3. Recursively call OutputSorted on the root’s right
subtree.

For a tree containing n objects, the operation performs n recursive
calls (one initiated at each node) and does a constant amount of work
in each, for a total running time of O(n).

11.3.7 Implementing Insert in O(height) Time

None of the operations discussed so far modify the given search tree,
so they run no risk of screwing up the crucial search tree property.
Our next two operations—Insert and Delete—make changes to
the tree, and must take care to preserve the search tree property.

Insert: given a new object x, add x to the data structure.

The Insert operation piggybacks on Search. An unsuccessful search
for an object with key k locates where such an object would have
appeared. This is the appropriate place to stick a new object with
key k (rewiring the old null pointer). In our running example, the
correct location for a new object with key 6 is the spot where our
unsuccessful search concluded:

*11.3 Implementation Details 139

3

1

2

5

4 6

3

1

2

5

4

What if there is already an object with key k in the tree? If you want
to avoid duplicate keys, the insertion can be ignored. Otherwise, the
search follows the left child of the existing object with key k, pushing
onward until a null pointer is encountered.

Insert

1. Start at the root node.

2. Repeatedly traverse left and right child pointers, as
appropriate (left if k is at most the current node’s key,
right if it’s bigger), until a null pointer is encountered.

3. Replace the null pointer with one to the new object.
Set the new node’s parent pointer to its parent, and
its child pointers to null.

The operation preserves the search tree property because it places
the new object where it should have been.13 The running time is the
same as for Search, which is O(height).

11.3.8 Implementing Delete in O(height) Time

In most data structures, the Delete operation is the toughest one
to get right. Search trees are no exception.

Delete: for a key k, delete an object with key k from
the search tree, if one exists.

13More formally, let x denote the newly inserted object and consider an existing
object y. If x is not a member of the subtree rooted at y, then it cannot interfere
with the search tree property at y. If it is a member of the subtree rooted at y,
then y was one of the nodes visited during the unsuccessful search for x. The
keys of x and y were explicitly compared in this search, with x placed in y’s left
subtree if and only if its key is no larger than y’s.

140 Search Trees

The main challenge is to repair a tree after a node removal so that
the search tree property is restored.

The first step is to invoke Search to locate an object x with
key k. (If there is no such object, Delete has nothing to do.) There
are three cases, depending on whether x has 0, 1, or 2 children. If x
is a leaf, it can be deleted without harm. For example, if we delete
the node with key 2 from our favorite search tree:

3

1 5

4

3

1

2

5

4 delete

For every remaining node y, the nodes in y’s subtrees are the same
as before, except possibly with x removed; the search tree property
continues to hold.

When x has one child y, we can splice it out. Deleting x leaves y
without a parent and x’s old parent z without one of its children. The
obvious fix is to let y assume x’s previous position (as z’s child).14

For example, if we delete the node with key 5 from our favorite search
tree:

3

1 4

3

1

2

5

4

delete

2

By the same reasoning as in the first case, the search property is
preserved.

The hard case is when x has two children. Deleting x leaves two
nodes without a parent, and it’s not clear where to put them. In our
running example, it’s not obvious how to repair the tree after deleting
its root.

14Insert your favorite nerdy Shakespeare joke here. . .

*11.3 Implementation Details 141

The key trick is to reduce the hard case to one of the easy ones.
First, use the Predecessor operation to compute the predecessor y
of x.15 Because x has two children, its predecessor is the object in its
(non-empty!) left subtree with the maximum key (see Section 11.3.5).
Since the maximum is computed by following right child pointers as
long as possible (see Section 11.3.4), y cannot have a right child; it
might or might not have a left child.

Here’s a crazy idea: Swap x and y! In our running example, with
the root node acting as x:

2

1 5

3

1

2

5

4

delete

3 predecessor 4

This crazy idea looks like a bad one, as we’ve now violated the search
tree property (with the node with key 3 in the left subtree of the
node with key 2). But every violation of the search tree property
involves the node x, which we’re going to delete anyway.16 Because x
now occupies y’s previous position, it no longer has a right child.
Deleting x from its new position falls into one of the two easy cases:
We delete it if it also has no left child, and splice it out if it does have
a left child. Either way, with x out of the picture, the search tree
property is restored. Back to our running example:

2

1 5

2

1

3

5

4 delete 4

15The successor also works fine, if you prefer.
16For every node z other than y, the only possible new node in z’s subtree

is x. Meanwhile y, as x’s immediate predecessor in the sorted ordering of all keys,
has a key larger than those in x’s old left subtree and greater than those in x’s
old right subtree. Thus, the search tree condition holds for y in its new position,
except with respect to x.

142 Search Trees

Delete

1. Use Search to locate an object x with key k. (If no
such object exists, halt.)

2. If x has no children, delete x by setting the appropriate
child pointer of x’s parent to null. (If x was the root,
the new tree is empty.)

3. If x has one child, splice x out by rewiring the appro-
priate child pointer of x’s parent to x’s child, and the
parent pointer of x’s child to x’s parent. (If x was the
root, its child becomes the new root.)

4. Otherwise, swap x with the object in its left subtree
that has the biggest key, and delete x from its new
position (where it has at most one child).

The operation performs a constant amount of work in addition to one
Search and one Predecessor operation, so it runs in O(height)
time.

11.3.9 Augmented Search Trees for Select

Finally, the Select operation:

Select: given a number i, between 1 and the number of
objects, return a pointer to the object in the data structure
with the ith-smallest key.

To get Select to run quickly, we’ll augment the search tree by having
each node keep track of information about the structure of the tree
itself, and not just about an object.17 Search trees can be augmented
in many ways; here, we’ll store at each node x an integer size(x)
indicating the number of nodes in the subtree rooted at x (including x
itself). In our running example

17This idea can also be used to implement the Rank operation in O(height)
time (as you should check).

*11.3 Implementation Details 143

3

1

2

5

4

size(3)=5

size(1)=2 size(5)=2

size(2)=1 size(4)=1

we have size(1) = 2, size(2) = 1, size(3) = 5, size(4) = 1, and
size(5) = 2.

Quiz 11.1

Suppose the node x in a search tree has children y and z.
What is the relationship between size(x), size(y), and
size(z)?

a) size(x) = max{size(y), size(z)} + 1

b) size(x) = size(y) + size(z)

c) size(x) = size(y) + size(z) + 1

d) There is no general relationship.

(See Section 11.3.10 for the solution and discussion.)

How is this additional information helpful? Imagine you’re looking
for the object with the 17th-smallest key (i.e., i = 17) in a search tree
with 100 objects. Starting at the root, you can compute in constant
time the sizes of its left and right subtrees. By the search tree property,
every key in the left subtree is less than those at the root and in the
right subtree. If the population of the left subtree is 25, these are
the 25 smallest keys in the tree, including the 17th-smallest key. If
its population is only 12, the right subtree contains all but the 13
smallest keys, and the 17th-smallest key is the 4th-smallest among
its 87 keys. Either way, we can call Select recursively to locate the
desired object.

144 Search Trees

Select

1. Start at the root and let j be the size of its left subtree.
(If it has no left child pointer, then j = 0.)

2. If i = j + 1, return a pointer to the root.

3. If i < j + 1, recursively compute the ith-smallest key
in the left subtree.

4. If i > j + 1, recursively compute the (i � j � 1)th
smallest key in the right subtree.18

Because each node of the search tree stores the size of its subtree,
each recursive call performs only a constant amount of work. Each
recursive call proceeds further downward in the tree, so the total
amount of work is O(height).

Paying the piper. We still have to pay the piper. We’ve added
and exploited metadata to the search tree, and every operation that
modifies the tree must take care to keep this information up to date,
in addition to preserving the search tree property. You should think
through how to re-implement the Insert and Delete operations,
still running in O(height) time, so that all the subtree sizes remain
accurate.19

11.3.10 Solution to Quiz 11.1

Correct answer: (c). Every node in the subtree rooted at x is
either x itself, or a node in x’s left subtree, or a node in x’s right
subtree. We therefore have

size(x) = size(y)| {z }
nodes in left subtree

+ size(z)| {z }
nodes in right subtree

+ 1|{z}
x

.

18The structure of the recursion might remind you of our selection algorithms
in Chapter 6 of Part 1, with the root node playing the role of the pivot element.

19For example, for the Insert operation, increment the subtree size for every
node on the path between the root and the newly inserted object.

*11.4 Balanced Search Trees 145

*11.4 Balanced Search Trees

11.4.1 Working Harder for Better Balance

The running time of every binary search tree operation (save Out-
putSorted) is proportional to the tree’s height, which can range
anywhere from the best-case scenario of ⇡ log2 n (for a perfectly bal-
anced tree) to the worst-case scenario of n� 1 (for a chain), where n
is the number of objects in the tree. Badly unbalanced search trees
really can occur, for example when objects are inserted in sorted or
reverse sorted order:

5

4

3

2

1

The difference between a logarithmic and a linear running time is
huge, so it’s a win to work a little harder in Insert and Delete—still
O(height) time, but with a larger constant factor—to guarantee that
the tree’s height is always O(log n).

Several different types of balanced search trees guarantee O(log n)
height and, hence, achieve the operation running times stated in the
scorecard in Table 11.2.20 The devil is in the implementation details,
and they can get pretty tricky for balanced search trees. Happily,
implementations are readily available and it’s unlikely that you’ll ever
need to code up your own version from scratch. I encourage readers
interested in what’s under the hood of a balanced search tree to check
out a textbook treatment or explore the open-source implementations
and visualization demos that are freely available online.21 To whet

20Popular ones include red-black trees, 2-3 trees, AVL trees, splay trees, and B
and B+ trees.

21Standard textbook treatments include Chapter 13 of Introduction to Algo-

rithms (Third Edition), by Thomas H. Cormen, Charles E. Leiserson, Ronald
L. Rivest, and Clifford Stein (MIT Press, 2009); and Section 3.3 of Algorithms

(Fourth Edition), by Robert Sedgewick and Kevin Wayne (Addison-Wesley, 2011).

146 Search Trees

your appetite for further study, let’s conclude the chapter with one of
the most ubiquitous ideas in balanced search tree implementations.

11.4.2 Rotations

All the most common implementations of balanced search trees use
rotations, a constant-time operation that performs a modest amount
of local rebalancing while preserving the search tree property. For
example, we could imagine transforming the chain of five objects above
into a more civilized search tree by composing two local rebalancing
operations:

5

4

3

2

1

5

4

3

2

1

5

4

3

2

1

rotate rotate

A rotation takes a parent-child pair and reverses their relationship
(Figure 11.2). A right rotation applies when the child y is the left
child of its parent x (and so y has a smaller key than x); after the
rotation, x is the right child of y. When y is the right child of x, a
left rotation makes x the left child of y.

The search tree property dictates the remaining details. For
example, consider a left rotation, with y the right child of x. The
search tree property implies that x’s key is less than y’s; that all the
keys in x’s left subtree (“A” in Figure 11.2) are less than that of x
(and y); that all the keys in y’s right subtree (“C” in Figure 11.2) are
greater than that of y (and x); and that all the keys in y’s left subtree
(“B” in Figure 11.2) are between those of x and y. After the rotation, y
inherits x’s old parent and has x as its new left child. There’s a unique
way to put all the pieces back together while preserving the search
tree property, so let’s just follow our nose.

There are three free slots for the subtrees A, B, and C: y’s right
child pointer and both child pointers of x. The search tree property

See also the bonus videos at www.algorithmsilluminated.org for the basics of
red-black trees.

www.algorithmsilluminated.org

*11.4 Balanced Search Trees 147

x

toward the root

all keys
< x

all keys
> y

y

all keys
between x and y

A

B C

(a) Before rotation

y

toward the root

x

C

A B

(b) After rotation

Figure 11.2: A left rotation in action.

forces us to stick the smallest subtree (A) as x’s left child, and the
largest subtree (C) as y’s right child. This leaves one slot for subtree B
(x’s right child pointer), and fortunately the search tree property works
out: All the subtree’s keys are wedged between those of x and y, and
the subtree winds up in y’s left subtree (where it needs to be) and x’s
right subtree (ditto).

A right rotation is then a left rotation in reverse (Figure 11.3).

x

toward the root

y

C

A B
all keys

< y

all keys
> x

all keys
between y and x

(a) Before rotation

y

toward the root

x

A

B C

(b) After rotation

Figure 11.3: A right rotation in action.

Because a rotation merely rewires a few pointers, it can be imple-
mented with a constant number of operations. By construction, it
preserves the search tree property.

The operations that modify the search tree—Insert and Delete—

148 Search Trees

are the ones that must employ rotations. Without rotations, such
an operation might render the tree a little more unbalanced. Since a
single insertion or deletion can wreak only so much havoc, it should
be plausible that a small—constant or perhaps logarithmic—number
of rotations can correct any newly created imbalance. This is ex-
actly what the aforementioned balanced search tree implementations
do. The extra work from rotations adds O(log n) overhead to the
Insert and Delete operations, leaving their overall running times
at O(log n).

The Upshot

P If your application requires maintaining a to-
tally ordered representation of an evolving set
of objects, the balanced search tree is usually
the data structure of choice.

P Balanced search trees support the operations
Search, Min, Max, Predecessor, Succes-
sor, Select, Rank, Insert, and Delete in
O(log n) time, where n is the number of objects.

P A binary search tree has one node per object,
each with a parent pointer, a left child pointer,
and a right child pointer.

P The search tree property states that, at every
node x of the tree, the keys in x’s left subtree
are smaller than x’s key, and the keys in x’s
right subtree are larger than x’s key.

P The height of a search tree is the length of a
longest path from its root to a leaf. A binary
search tree with n objects can have height any-
where from ⇡ log2 n to n� 1.

P In a basic binary search tree, all the sup-
ported operations above can be implemented in
O(height) time. (For Select and Rank, after

Problems 149

augmenting the tree to maintain subtree sizes
at each node.)

P Balanced binary search trees do extra work
in the Insert and Delete operations—still
O(height) time, but with a larger constant
factor—to guarantee that the tree’s height is
always O(log n).

Test Your Understanding

Problem 11.1 (S) Which of the following statements are true?
(Check all that apply.)

a) The height of a binary search tree with n nodes cannot be
smaller than ⇥(log n).

b) All the operations supported by a binary search tree (except
OutputSorted) run in O(log n) time.

c) The heap property is a special case of the search tree property.

d) Balanced binary search trees are always preferable to sorted
arrays.

Problem 11.2 You are given a binary tree with n nodes (via a
pointer to its root). Each node of the tree has a size field, as in
Section 11.3.9, but these fields have not been filled in yet. How much
time is necessary and sufficient to compute the correct value for all
the size fields?

a) ⇥(height)

b) ⇥(n)

c) ⇥(n log n)

d) ⇥(n2)

150 Search Trees

Programming Problems

Problem 11.3 This problem uses the median maintenance problem
from Section 10.3.3 to explore the relative performance of heaps and
search trees.

a) Implement in your favorite programming language the heap-
based solution in Section 10.3.3 to the median maintenance
problem.

b) Implement a solution to the problem that uses a single search
tree and its Insert and Select operations.

Which implementation is faster?
You can use existing implementations of heaps and search

trees, or you can implement your own from scratch. (See www.

algorithmsilluminated.org for test cases and challenge data sets.)

www.algorithmsilluminated.org
www.algorithmsilluminated.org

Chapter 12

Hash Tables and Bloom Filters

We conclude with an incredibly useful and ubiquitous data structure
known as a hash table (or hash map). Hash tables, like heaps and
search trees, maintain an evolving set of objects associated with keys
(and possibly lots of other data). Unlike heaps and search trees,
they maintain no ordering information whatsoever. The raison d’être
of a hash table is to facilitate super-fast searches, which are also
called lookups in this context. A hash table can tell you what’s
there and what’s not, and can do it really, really quickly (much
faster than a heap or search tree). As usual, we’ll start with the
supported operations (Section 12.1) before proceeding to applications
(Section 12.2) and some optional implementation details (Sections 12.3
and 12.4). Sections 12.5 and 12.6 cover bloom filters, close cousins of
hash tables that use less space at the expense of occasional errors.

12.1 Supported Operations

The raison d’être of a hash table is to keep track of an evolving set
of objects with keys while supporting fast lookups (by key), so that
it’s easy to check what’s there and what’s not. For example, if your
company manages an ecommerce site, you might use one hash table
to keep track of employees (perhaps with names as keys), another one
to store past transactions (with transaction IDs as keys), and a third
to remember the visitors to your site (with IP addresses as keys).

Conceptually, you can think of a hash table as an array. One thing
that arrays are good for is immediate random access. Wondering
what’s in position number 17 of an array? Just access that position
directly, in constant time. Want to change the contents in position 23?
Again, easy in constant time.

Suppose you want a data structure for remembering your friends’
phone numbers. If you’re lucky, all your friends had unusually unimag-

151

152 Hash Tables and Bloom Filters

inative parents who named their kids after positive integers, say be-
tween 1 and 10000. In this case, you can store phone numbers in
a length-10000 array (which is not that big). If your best friend is
named 173, store their phone number in position 173 of the array.
To forget about your ex-friend 548, overwrite position 548 with a
default value. This array-based solution works well, even if your
friends change over time—the space requirements are modest and
insertions, deletions, and lookups run in constant time.

Probably your friends have more interesting but less convenient
names, like Alice, Bob, Carol, and so on. Can we still use an array-
based solution? In principle, you could maintain an array with entries
indexed by every possible name you might ever see (with at most,
say, 25 letters). To look up Alice’s phone number, you can then look
in the “Alice” position of the array (Figure 12.1).

“A
aa

a”

“B
ob

”

“A
lic

e”

“A
lic

f”
+1

-4
15

-5
55

-5
55

5

+1
-2

12
-9

99
-9

99
9

nu
ll

nu
ll

Figure 12.1: In principle, you could store your friends’ phone numbers in
an array indexed by strings with at most 25 characters.

Quiz 12.1

How many length-25 character strings are there? (Choose
the strongest true statement.)

a) More than the number of hairs on your head.

b) More than the number of Web pages in existence.

c) More than the total amount of storage available on
Earth (in bits).

12.1 Supported Operations 153

d) More than the number of atoms in the universe.

(See Section 12.1.1 for the solution and discussion.)

The point of Quiz 12.1 is that the array needed for this solution is WAY
TOO BIG. Is there an alternative data structure that replicates all
the functionality of an array, with constant-time insertions, deletions,
and lookups, and that also uses space proportional to the number of
objects stored? A hash table is exactly such a data structure.

Hash Tables: Supported Operations

Lookup (a.k.a. Search): for a key k, return a pointer to
an object in the hash table with key k (or report that no
such object exists).

Insert: given a new object x, add x to the hash table.

Delete: for a key k, delete an object with key k from the
hash table, if one exists.

In a hash table, all these operations typically run in constant
time—matching the naive array-based solution—under a couple of
assumptions that generally hold in practice (described in Section 12.3).
A hash table uses space linear in the number of objects stored. This is
radically less than the space required by the naive array-based solution,
which is proportional to the number of all-imaginable objects that
might ever need to be stored. The scorecard reads:

Operation Typical running time
Lookup O(1)⇤

Insert O(1)
Delete O(1)⇤

Table 12.1: Hash tables: supported operations and their typical running
times. The asterisk (*) indicates that the running time bound holds if
and only if the hash table is implemented properly (with a good hash
function and an appropriate table size) and the data is non-pathological;
see Section 12.3 for details.

154 Hash Tables and Bloom Filters

Summarizing, hash tables don’t support many operations, but
what they do, they do really, really well. Whenever lookups constitute
a significant amount of your program’s work, a light bulb should go
off in your head—the program calls out for a hash table!

When to Use a Hash Table

If your application requires fast lookups with a dynamically
changing set of objects, the hash table is usually the data
structure of choice.

12.1.1 Solution to Quiz 12.1

Correct answer: (c). The point of this quiz is to have fun thinking
about some really big numbers, rather than to identify the correct
answer per se. Let’s assume that there are 26 choices for a character—
ignoring punctuation, upper vs. lower case, etc. Then, there are 2625

25-letter strings, which has order of magnitude roughly 1035. (There
are also the strings with 24 letters or less, but these are dwarfed by
the length-25 strings.) The number of hairs on a person’s head is
typically around 105. The indexed Web has several billion pages,
but the actual number of Web pages is probably around one trillion
(1012). The total amount of storage on Earth is hard to estimate but,
at least in 2018, is surely no more than a yottabyte (1024 bytes, or
roughly 1025 bits). Meanwhile, the number of atoms in the known
universe is estimated to be around 1080.

12.2 Applications

It’s pretty amazing how many different applications boil down to
repeated lookups and hence call out for a hash table. Back in the
1950s, researchers building the first compilers needed a symbol table,
meaning a good data structure for keeping track of a program’s
variable and function names. Hash tables were invented for exactly
this type of application. For a more modern example, imagine that a
network router is tasked with blocking data packets from certain IP
addresses, perhaps belonging to spammers. Every time a new data
packet arrives, the router must look up whether the source IP address
is in the blacklist. If so, it drops the packet; otherwise, it forwards

12.2 Applications 155

the packet toward its destination. Again, these repeated lookups are
right in the wheelhouse of hash tables.

12.2.1 Application: De-duplication

De-duplication is a canonical application of hash tables. Suppose
you’re processing a massive amount of data that’s arriving one piece
at a time, as a stream. For example:

• You’re making a single pass over a huge file stored on disk, like
all the transactions of a major retail company from the past
year.

• You’re crawling the Web and processing billions of Web pages.

• You’re tracking data packets passing through a network router
at a torrential rate.

• You’re watching the visitors to your Web site.

In the de-duplication problem, your responsibility is to ignore du-
plicates and keep track only of the distinct keys seen so far. For
example, you may be interested in the number of distinct IP addresses
that have accessed your Web site, in addition to the total number of
visits. Hash tables provide a simple solution to the de-duplication
problem.

De-duplication with a Hash Table

When a new object x with key k arrives:

1. Use Lookup to check if the hash table already con-
tains an object with key k.

2. If not, use Insert to put x in the hash table.

After processing the data, the hash table contains exactly one object
per key represented in the data stream.1

1With most hash table implementations, it’s possible to iterate through the
stored objects, in some arbitrary order, in linear time. This enables further
processing of the objects after the duplicates have been removed.

156 Hash Tables and Bloom Filters

12.2.2 Application: The 2-SUM Problem

Our next example is more academic, but it illustrates how repeated
lookups can show up in surprising places. The example is about the
2-SUM problem.

Problem: 2-SUM

Input: An unsorted array A of n integers, and a target
integer t.

Goal: Determine whether or not there are two numbers x, y
in A satisfying x + y = t.2

The 2-SUM problem can be solved by brute-force search—by
trying all possibilities for x and y and checking if any of them work.
Because there are n choices for each of x and y, this is a quadratic-time
(⇥(n2)) algorithm.

We can do better. The first key observation is that, for each choice
of x, only one choice for y could possibly work (namely, t � x). So
why not look specifically for this y?

2-SUM (Attempt #1)

Input: array A of n integers and a target integer t.
Output: “yes” if A[i] + A[j] = t for some
i, j 2 {1, 2, 3, . . . , n}, “no” otherwise.

for i = 1 to n do
y := t�A[i]
if A contains y then // linear search

return “yes”
return “no”

Does this help? The for loop has n iterations and it takes linear time
to search for an integer in an unsorted array, so this would seem to be

2There are two slightly different versions of the problem, depending on whether
or not x and y are required to be distinct. We’ll allow x = y; the other case is
similar (as you should check).

12.2 Applications 157

another quadratic-time algorithm. But remember, sorting is a for-free
primitive. Why not use it, so that all the searches can take advantage
of a sorted array?

2-SUM (Sorted Array Solution)

Input: array A of n integers and a target integer t.
Output: “yes” if A[i] + A[j] = t for some
i, j 2 {1, 2, 3, . . . , n}, “no” otherwise.

sort A // using a sorting subroutine

for i = 1 to n do
y := t�A[i]
if A contains y then // binary search

return “yes”
return “no”

Quiz 12.2

What’s the running time of an educated implementation of
the sorted array-based algorithm for the 2-SUM problem?

a) ⇥(n)

b) ⇥(n log n)

c) ⇥(n1.5)

d) ⇥(n2)

(See Section 12.2.4 for the solution and discussion.)

The sorted array-based solution to 2-SUM is a big improvement
over brute-force search, and it showcases the elegant power of the
algorithmic tools from Part 1. But we can do even better. The final
insight is that this algorithm needed a sorted array only inasmuch as
it needed to search it quickly. Because most of the work boils down
to repeated lookups, a light bulb should go off in your head: A sorted
array is overkill, and what this algorithm really calls out for is a hash
table!

158 Hash Tables and Bloom Filters

2-SUM (Hash Table Solution)

Input: array A of n integers and a target integer t.
Output: “yes” if A[i] + A[j] = t for some
i, j 2 {1, 2, 3, . . . , n}, “no” otherwise.

H := empty hash table
for i = 1 to n do

Insert A[i] into H
for i = 1 to n do

y := t�A[i]
if H contains y then // using Lookup

return “yes”
return “no”

Assuming a good hash table implementation and non-pathological
data, the Insert and Lookup operations typically run in constant
time. In this case, the hash table-based solution to the 2-SUM problem
runs in linear time. Because any correct algorithm must look at every
number in A at least once, this is the best-possible running time (up
to constant factors).

12.2.3 Application: Searching Huge State Spaces

Hash tables are all about speeding up search. One application domain
in which search is ubiquitous is game-playing, and more generally in
planning problems. Think, for example, of a chess-playing program
exploring the ramifications of different moves. Sequences of moves can
be viewed as paths in a huge directed graph, where vertices correspond
to states of the game (positions of all the pieces and whose turn it is),
and edges correspond to moves (from one state to another). The size
of this graph is astronomical (more than 10100 vertices), so there’s
no hope of writing it down explicitly and applying any of our graph
search algorithms from Chapter 8. A more tractable alternative is to
run a graph search algorithm like breadth-first search, starting from
the current state, and explore the short-term consequences of different
moves until reaching a time limit. To learn as much as possible, it’s
important to avoid exploring a vertex more than once, and so the
search algorithm must keep track of which vertices it has already

*12.3 Implementation: High-Level Ideas 159

visited. As in our de-duplication application, this task is ready-made
for a hash table. When the search algorithm reaches a vertex, it looks
it up in a hash table. If the vertex is already there, the algorithm
skips it and backtracks; otherwise, it inserts the vertex into the hash
table and proceeds with its exploration.3,4

12.2.4 Solution to Quiz 12.2

Correct answer: (b). The first step can be implemented in
O(n log n) time using MergeSort (described in Part 1) or HeapSort
(Section 10.3.1).5 Each of the n for loop iterations can be implemented
in O(log n) time via binary search. Adding everything up gives the
final running time bound of O(n log n).

*12.3 Implementation: High-Level Ideas

This section covers the most important high-level ideas in a hash table
implementation: hash functions (which map keys to positions in an
array), collisions (different keys that map to the same position), and
the most common collision-resolution strategies. Section 12.4 offers
more detailed advice about implementing a hash table.

12.3.1 Two Straightforward Solutions

A hash table stores a set S of keys (and associated data), drawn from
a universe U of all possible keys. For example, U might be all 232

possible IPv4 addresses, all possible strings of length at most 25, all
possible chess board states, and so on. The set S could be the IP
addresses that actually visited a Web page in the last 24 hours, the
actual names of your friends, or the chess board states that your

3In game-playing applications, the most popular graph search algorithm is
called A

⇤
(“A star”) search. The A⇤ search algorithm is a goal-oriented general-

ization of Dijkstra’s algorithm (Chapter 9), which adds to the Dijkstra score (9.1)
of an edge (v, w) a heuristic estimate of the cost required to travel from w to a
“goal vertex.” For example, if you’re computing driving directions from a given
origin to a given destination t, the heuristic estimate could be the straight-line
distance from w to t.

4Take a moment to think about modern technology and speculate where else
hash tables are used. It shouldn’t take long to come up with some good guesses!

5No faster implementation is possible, at least with a comparison-based sorting
algorithm (see footnote 10 in Chapter 10).

160 Hash Tables and Bloom Filters

program explored in the last five seconds. In most applications of
hash tables, the size of U is astronomical but the size of the subset S
is manageable.

One conceptually straightforward way to implement the Lookup,
Insert, and Delete operations is to keep track of objects in a
big array, with one entry for every possible key in U . If U is a
small set like all three-character strings (to keep track of airports
by their three-letter codes, say), this array-based solution is a good
one, with all operations running in constant time. In the many
applications in which U is extremely large, this solution is absurd and
unimplementable; we can realistically consider only data structures
requiring space proportional to |S| (rather than to |U |).

A second straightforward solution is to store objects in a linked
list. The good news is that the space this solution uses is proportional
to |S|. The bad news is that the running times of Lookup and
Delete also scale linearly with |S|—far worse than the constant-time
operations that the array-based solution supports. The point of a
hash table is to achieve the best of both worlds—space proportional
to |S| and constant-time operations (Table 12.2).

Data Structure Space Typical Running Time of Lookup
Array ⇥(|U |) ⇥(1)
Linked List ⇥(|S|) ⇥(|S|)
Hash Table ⇥(|S|) ⇥(1)⇤

Table 12.2: Hash tables combine the best features of arrays and linked
lists, with space linear in the number of objects stored and constant-time
operations. The asterisk (*) indicates that the running time bound holds
if and only if the hash table is implemented properly and the data is
non-pathological.

12.3.2 Hash Functions

To achieve the best of both worlds, a hash table mimics the straight-
forward array-based solution, but with the array length n proportional
to |S| rather than |U |.6 For now, you can think of n as roughly 2|S|.

6But wait; isn’t the set S changing over time? Yes it is, but it’s not hard to
periodically resize the array so that its length remains proportional to the current
size of S; see also Section 12.4.2.

*12.3 Implementation: High-Level Ideas 161

A hash function performs the translation from what we really
care about—our friends’ names, chess board states, etc.—to positions
in the hash table. Formally, a hash function is a function from the
set U of all possible keys to the set of array positions (Figure 12.2).
Positions are usually numbered from 0 in a hash table, so the set of
array positions is {0, 1, 2, . . . , n� 1}.

Hash Functions

A hash function h : U ! {0, 1, 2, . . . , n � 1} assigns every
key from the universe U to a position in an array of length n.

U

0
1

.

.

.

.

.

n-1

h

Figure 12.2: A hash function maps every possible key in the universe U
to a position in {0, 1, 2, . . . , n� 1}. When |U | > n, two different keys must
be mapped to the same position.

A hash function tells you where to start searching for an object.
If you choose a hash function h with h("Alice") = 17—in which case,
we say that the string “Alice” hashes to 17—then position 17 of the
array is the place to start looking for Alice’s phone number. Similarly,
position 17 is the first place to try inserting Alice’s phone number
into the hash table.

162 Hash Tables and Bloom Filters

12.3.3 Collisions Are Inevitable

You may have noticed a serious issue: What if two different keys
(like “Alice” and “Bob”) hash to the same position (like 23)? If you’re
looking for Alice’s phone number but find Bob’s in position 23 of
the array, how do you know whether or not Alice’s number is also in
the hash table? If you’re trying to insert Alice’s phone number into
position 23 but the position is already occupied, where do you put it?

When a hash function h maps two different keys k1 and k2 to
the same position (that is, when h(k1) = h(k2)), it’s called a colli-
sion.

Collisions

Two keys k1 and k2 from U collide under the hash function h
if h(k1) = h(k2).

Collisions cause confusion about where an object resides in the
hash table, and we’d like to minimize them as much as possible. Why
not design a super-smart hash function with no collisions whatsoever?
Because collisions are inevitable. The reason is the Pigeonhole Prin-
ciple, the intuitively obvious fact that, for every positive integer n,
no matter how you stuff n + 1 pigeons into n holes, there will be
a hole with at least two pigeons. Thus whenever the number n of
array positions (the holes) is less than the size of the universe U (the
pigeons), every hash function (assignment of pigeons to holes)—no
matter how clever—suffers from at least one collision (Figure 12.2). In
most applications of hash tables, including those in Section 12.2, |U |
is much, much bigger than n.

Collisions are even more inevitable than the Pigeonhole Principle
argument suggests. The reason is the birthday paradox, the subject of
the next quiz.

Quiz 12.3

Consider n people with random birthdays, with each of the
366 days of the year equally likely. (Assume all n people
were born in a leap year.) How large does n need to be
before there is at least a 50% chance that two people have
the same birthday?

*12.3 Implementation: High-Level Ideas 163

a) 23

b) 57

c) 184

d) 367

(See Section 12.3.7 for the solution and discussion.)

What does the birthday paradox have to do with hashing? Imagine
a hash function that assigns each key independently and uniformly at
random to a position in {0, 1, 2, . . . , n� 1}. This is not a practically
viable hash function (see Quiz 12.5), but such random functions are
the gold standard to which we compare practical hash functions (see
Section 12.3.6). The birthday paradox implies that, even for the
gold standard, we’re likely to start seeing collisions in a hash table
of size n once a small constant times

p
n objects have been inserted.

For example, when n = 10, 000, the insertion of 200 objects is likely
to cause at least one collision—even though at least 98% of the array
positions are completely unused!

12.3.4 Collision Resolution: Chaining

With collisions an inevitable fact of life, a hash table needs some
method for resolving them. This section and the next describe the
two dominant approaches, separate chaining (or simply chaining) and
open addressing. Both approaches lead to implementations in which
insertions and lookups typically run in constant time, assuming the
hash table size and hash function are chosen appropriately and the
data is non-pathological (cf., Table 12.1).

Buckets and Lists

Chaining is easy to implement and think about. The key idea is to
default to the linked-list-based solution (Section 12.3.1) to handle
multiple objects mapped to the same array position (Figure 12.3).
With chaining, the positions of the array are often called buckets, as
each can contain multiple objects. The Lookup, Insert, and Delete
operations then reduce to one hash function evaluation (to determine
the correct bucket) and the corresponding linked list operation.

164 Hash Tables and Bloom Filters

“Alice”

“Carol”

null

“Bob” “Daniel”

0

1

2

3

Figure 12.3: A hash table with collisions resolved by chaining, with four
buckets and four objects. The strings “Bob” and “Daniel” collide in the third
bucket (bucket 2). Only the keys are shown, and not the associated data
(like phone numbers).

Chaining

1. Keep a linked list in each bucket of the hash table.

2. To Lookup/Insert/Delete an object with key k,
perform Lookup/Insert Delete on the linked list in
the bucket A[h(k)], where h denotes the hash function
and A the hash table’s array.

Performance of Chaining

Provided h can be evaluated in constant time, the Insert operation
also takes constant time—the new object can be inserted immediately
at the front of the list. Lookup and Delete must search through the
list stored in A[h(k)], which takes time proportional to the list’s length.
To achieve constant-time lookups in a hash table with chaining, the
buckets’ lists must stay short—ideally, with length at most a small
constant.

List lengths (and lookup times) degrade if the hash table becomes
heavily populated. For example, if 100n objects are stored in a

*12.3 Implementation: High-Level Ideas 165

hash table with array length n, a typical bucket has 100 objects to
sift through. Lookup times can also degrade with a poorly chosen
hash function that causes lots of collisions. For example, in the
extreme case in which all the objects collide and wind up in the same
bucket, lookups can take time linear in the data set size. Section 12.4
elaborates on how to manage the size of a hash table and choose an
appropriate hash function to achieve the running time bounds stated
in Table 12.1.

12.3.5 Collision Resolution: Open Addressing

The second popular method for resolving collisions is open addressing.
Open addressing is much easier to implement and understand when
the hash table must support only Insert and Lookup (and not
Delete); we’ll focus on this case.7

With open addressing, each position of the array stores 0 or 1
objects, rather than a list. (For this to make sense, the size |S| of
the data set cannot exceed the size n of the hash table.) Collisions
create an immediate quandary for the Insert operation: Where do
we put an object with key k if a different object is already stored in
the position A[h(k)]?

Probe Sequences

The idea is to associate each key k with a probe sequence of positions,
not just a single position. The first number of the sequence indicates
the position to consider first; the second the next position to con-
sider when the first is already occupied; and so on. The object is
stored in the first unoccupied position of its key’s probe sequence (see
Figure 12.4).

Open Addressing

1. Insert: Given an object with key k, iterate through
the probe sequence associated with k, storing the
object in the first empty position found.

7Plenty of hash table applications don’t require the Delete operation, includ-
ing the three applications in Section 12.2.

166 Hash Tables and Bloom Filters

“Alice”

“Carol”

null

“Bob”

null

null

null

null

“Daniel”

Figure 12.4: An insertion into a hash table with collisions resolved by open
addressing. The first entry of the probe sequence for “Daniel” collides with
“Alice,” and the second with “Bob,” but the third entry is an unoccupied
position.

2. Lookup: Given a key k, iterate through the probe
sequence associated with k until encountering the de-
sired object (in which case, return it) or an empty
position (in which case, report “none”).8

Linear Probing

There are several ways to use one or more hash functions to define a
probe sequence. The simplest is linear probing. This method uses one
hash function h, and defines the probe sequence for a key k as h(k),
followed by h(k)+1, followed by h(k)+2, and so on (wrapping around
to the beginning upon reaching the last position). That is, the hash

8If you encounter an empty position i, you can be confident that no object
with key k is in the hash table. Such an object would have been stored either at
position i or at an earlier position in k’s probe sequence.

*12.3 Implementation: High-Level Ideas 167

function indicates the starting position for an insertion or lookup, and
the operation scans to the right until it finds the desired object or an
empty position.

Double Hashing

A more sophisticated method is double hashing, which uses two hash
functions.9 The first tells you the first position of the probe sequence,
and the second indicates the offset for subsequent positions. For
example, if h1(k) = 17 and h2(k) = 23, the first place to look for
an object with key k is position 17; failing that, position 40; failing
that, position 63; failing that, position 86; and so on. For a different
key k0, the probe sequence could look quite different. For example, if
h1(k0) = 42 and h2(k0) = 27, the probe sequence would be 42, followed
by 69, followed by 96, followed by 123, and so on.

Performance of Open Addressing

With chaining, the running time of a lookup is governed by the
lengths of buckets’ lists; with open addressing, it’s the typical number
of probes required to find either an empty slot or the sought-after
object. It’s harder to understand hash table performance with open
addressing than with chaining, but it should be intuitively clear that
performance suffers as the hash table gets increasingly full—if very
few slots are empty, it will usually take a probe sequence a long time
to find one—or when a poor choice of hash function causes lots of
collisions (see also Quiz 12.4). With an appropriate hash table size
and hash function, open addressing achieves the running time bounds
stated in Table 12.1 for the Insert and Lookup operations; see
Section 12.4 for additional details.

12.3.6 What Makes for a Good Hash Function?

No matter which collision-resolution strategy we employ, hash table
performance degrades with the number of collisions. How can we
choose a hash function so that there aren’t too many collisions?

9There are several quick-and-dirty ways to define two hash functions from a
single hash function h. For example, if keys are nonnegative integers represented
in binary, define h1 and h2 from h by tacking on a new digit (either ‘0’ or ‘1’) to
the end of the given key k: h1(k) = h(2k) and h2(k) = h(2k + 1).

168 Hash Tables and Bloom Filters

Bad Hash Functions

There are a zillion different ways to define a hash function, and the
choice matters. For example, what happens to hash table performance
with a dumbest-possible choice of a hash function?

Quiz 12.4

Consider a hash table with length n � 1, and let h be the
hash function with h(k) = 0 for every key k 2 U . Suppose
a data set S is inserted into the hash table, with |S|  n.
What is the typical running time of subsequent Lookup
operations?

a) ⇥(1) with chaining, ⇥(1) with open addressing.

b) ⇥(1) with chaining, ⇥(|S|) with open addressing.

c) ⇥(|S|) with chaining, ⇥(1) with open addressing.

d) ⇥(|S|) with chaining, ⇥(|S|) with open addressing.

(See Section 12.3.7 for the solution and discussion.)

Pathological Data Sets and Hash Function Kryptonite

None of us would ever implement the dumb hash function in Quiz 12.4.
Instead, we’d work hard to design a smart hash function guaranteed
to cause few collisions, or better yet to look up such a function in a
book like this one. Unfortunately, I can’t tell you such a function. My
excuse? Every hash function, no matter how smart, has its own kryp-
tonite, in the form of a huge data set for which all objects collide and
with hash table performance deteriorating as in Quiz 12.4.

Pathological Data Sets

For every hash function h : U ! {0, 1, 2, . . . , n� 1}, there
exists a set S of keys of size |U |/n such that h(k1) = h(k2)
for every k1, k2 2 S.10

*12.3 Implementation: High-Level Ideas 169

This may sound crazy, but it’s just a generalization of our Pigeonhole
Principle argument from Section 12.3.3. Fix an arbitrarily smart
hash function h. If h perfectly partitions the keys in U among the n
positions, then each position would have exactly |U |/n keys assigned
to it; otherwise, even more than |U |/n keys are assigned to the same
position. (For example, if |U | = 200 and n = 25, then h must assign
at least eight different keys to the same position.) In any case, there
is a position i 2 {0, 1, 2, . . . , n� 1} to which h assigns at least |U |/n
distinct keys. If the keys in a data set S happen to be all those
assigned to this position i, then all the objects in the data set collide.

The data set S above is “pathological” in that it was constructed
with the sole purpose of foiling the chosen hash function. Why should
we care about such an artificial data set? The main reason is that
it explains the asterisks in our running time bounds for hash table
operations in Tables 12.1 and 12.2. Unlike most of the algorithms
and data structures we’ve seen so far, there is no hope for a running
time guarantee that holds with absolutely no assumptions about the
input. The best we can hope for is a guarantee that applies to all
“non-pathological” data sets, meaning data sets defined independently
of the chosen hash function.11

The good news is that, with a well-crafted hash function, there’s
usually no need to worry about pathological data sets in practice.
Security applications constitute an important exception to this rule,
however.12

Random Hash Functions

Pathological data sets show that no one hash function is guaranteed
to have a small number of collisions for every data set. The best

10In most applications of hash tables, |U | is way bigger than n, in which case a
data set of size |U |/n is huge!

11It is also possible to consider randomized solutions, in the spirit of the
randomized QuickSort algorithm in Chapter 5 of Part 1. This approach, called
universal hashing, guarantees that for every data set, a random choice of a hash
function from a small class of functions typically causes few collisions. For details
and examples, see the bonus videos at www.algorithmsilluminated.org.

12An interesting case study is described in the paper “Denial of Service via
Algorithmic Complexity Attacks,” by Scott A. Crosby and Dan S. Wallach (Pro-

ceedings of the 12th USENIX Security Symposium, 2003). Crosby and Wallach
showed how to bring a hash table-based network intrusion system to its knees
through the clever construction of a pathological data set.

www.algorithmsilluminated.org

170 Hash Tables and Bloom Filters

we can hope for is a hash function that has few collisions for all
“non-pathological” data sets.13

An extreme approach to decorrelating the choice of hash function
and the data set is to choose a random function, meaning a function h
where, for each key k 2 U , the value of h(k) is chosen independently
and uniformly at random from the array positions {0, 1, 2, . . . , n� 1}.
The function h is chosen once and for all when the hash table is
initially created. Intuitively, we’d expect such a random function to
typically spread out the objects of a data set S roughly evenly across
the n positions, provided S is defined independently of h. As long
as n is roughly equal to |S|, this would result in a manageable number
of collisions.

Quiz 12.5

Why is it impractical to use a completely random choice of
a hash function? (Choose all that apply.)

a) Actually, it is practical.

b) It is not deterministic.

c) It would take too much space to store.

d) It would take too much time to evaluate.

(See Section 12.3.7 for the solution and discussion.)

Good Hash Functions

A “good” hash function is one that enjoys the benefits of a random
function without suffering from either of its drawbacks.

Hash Function Desiderata

1. Cheap to evaluate, ideally in O(1) time.

2. Easy to store, ideally with O(1) memory.

13The dumb hash function in Quiz 12.4 leads to terrible performance for every

data set, pathological or otherwise.

*12.3 Implementation: High-Level Ideas 171

3. Mimics a random function by spreading non-
pathological data sets roughly evenly across the posi-
tions of the hash table.

What Does a Good Hash Function Look Like?

While a detailed description of state-of-the-art hash functions is out-
side the scope of this book, you might be hungry for something more
concrete than the desiderata above.

For example, consider keys that are integers between 0 and some
large number M .14 A natural first stab at a hash function is to take
a key’s value modulo the number n of buckets:

h(k) = k mod n,

where k mod n is the result of repeatedly subtracting n from k until
the result is an integer between 0 and n� 1.

The good news is that this function is cheap to evaluate and
requires no storage (beyond remembering n).15 The bad news is that
many real-world sets of keys are not uniformly distributed in their
least significant bits. For example, if n = 1000 and all the keys have
the same last three digits (base 10)—perhaps salaries at a company
that are all multiples of 1000, or prices of cars that all end in “999”—
then all the keys are hashed to the same position. Using only the
most significant bits can cause similar problems—think, for example,
about the country and area codes of phone numbers.

The next idea is to scramble a key before applying the modulus
operation:

h(k) = (ak + b) mod n,

where a and b are integers in {1, 2, . . . , n� 1}. This function is again
cheap to compute and easy to store (just remember a, b, and n). For
well-chosen a, b, and n, this function is probably good enough to use
in a quick-and-dirty prototype. For mission-critical code, however,
it’s often essential to use more sophisticated hash functions, which
are discussed further in Section 12.4.3.

14To apply this idea to non-numerical data like strings, it’s necessary to
first convert the data to integers. For example, in Java, the hashCode method
implements such a conversion.

15There are much faster ways to compute k mod n than repeated subtraction!

172 Hash Tables and Bloom Filters

To conclude, the two most important things to know about hash
function design are:

Take-Aways

1. Experts have invented hash functions that are cheap
to evaluate and easy to store, and that behave like
random functions for all practical purposes.

2. Designing such a hash function is extremely tricky;
you should leave it to experts if at all possible.

12.3.7 Solutions to Quizzes 12.3—12.5

Solution to Quiz 12.3

Correct answer: (a). Believe it or not, all you need is 23 people in
a room before it’s as likely to have two with the same birthday as
not.16 You can do (or look up) the appropriate probability calculation,
or convince yourself of this with some simple simulations.

With 367 people, there would be a 100% chance of two people with
the same birthday (by the Pigeonhole Principle). But already with 57
people, the probability is roughly 99%. And with 184? 99.99. . .%,
with a large number of nines.

Most people find the answer counterintuitive; this is why the
example is known as the “birthday paradox.”17 More generally, on
a planet with k days each year, the chance of duplicate birthdays
hits 50% with ⇥(

p
k) people.18

16A good party trick at not-so-nerdy cocktail parties with at least, say, 35
people.

17“Paradox” is a misnomer here; there’s no logical inconsistency, just another
illustration of how most people’s brains are not wired to have good intuition about
probability.

18The reason is that n people represent not just n opportunities for duplicate
birthdays, but

�
n
2

�
⇡ n2

2 different opportunities (one for each pair of people).
Two people have the same birthday with probability 1

k , and you expect to start
seeing collisions once the number of collision opportunities is roughly k (when
n = ⇥(

p
k)).

*12.4 Further Implementation Details 173

Solution to Quiz 12.4

Correct answer: (d). If collisions are resolved with chaining, the
hash function h hashes every object in S to the same bucket: bucket 0.
The hash table devolves into the simple linked-list solution, with
⇥(|S|) time required for Lookup.

For the case of open addressing, assume that the hash table uses
linear probing. (The story is the same for more complicated strategies
like double hashing.) The lucky first object of |S| will be assigned to
position 0 of the array, the next object to position 1, and so on. The
Lookup operation devolves to a linear search through the first |S|
positions of an unsorted array, which requires ⇥(|S|) time.

Solution to Quiz 12.5

Correct answers: (c),(d). A random function from U to
{0, 1, 2, . . . , n � 1} is effectively a lookup table of length |U | with
log2 n bits per entry. When the universe is large (as in most appli-
cations), writing down or evaluating such a function is out of the
question.

We could try defining the hash function on a need-to-know basis,
assigning a random value to h(k) the first time the key k is encountered.
But then evaluating h(k) requires first checking whether it has already
been defined. This boils down to a lookup for k, which is the problem
we’re supposed to be solving!

*12.4 Further Implementation Details

This section is for readers who want to implement a custom hash
table from scratch. There’s no silver bullet in hash table design, so
I can only offer high-level guidance. The most important lessons
are: (i) manage your hash table’s load; (ii) use a well-tested modern
hash function; and (iii) test several competing implementations to
determine the best one for your particular application.

12.4.1 Load vs. Performance

The performance of a hash table degrades as its population increases:
with chaining, buckets’ lists grow longer; with open addressing, it gets
harder to locate an empty slot.

174 Hash Tables and Bloom Filters

The Load of a Hash Table

We measure the population of a hash table via its load:

load of a hash table =
number of objects stored

array length n
. (12.1)

For example, in a hash table with chaining, the load is the average
population in one of the table’s buckets.

Quiz 12.6

Which hash table strategy is feasible for loads larger than 1?

a) Both chaining and open addressing.

b) Neither chaining nor open addressing.

c) Only chaining.

d) Only open addressing.

(See Section 12.4.5 for the solution and discussion.)

Idealized Performance with Chaining

In a hash table with chaining, the running time of a Lookup or
Delete operation scales with the lengths of buckets’ lists. In the
best-case scenario, the hash function spreads the objects perfectly
evenly across the buckets. With a load of ↵, this idealized scenario re-
sults in at most d↵e objects per bucket.19 The Lookup and Delete
operations then take only O(d↵e) time, and so are constant-time op-
erations provided ↵ = O(1).20 Since good hash functions spread most
data sets roughly evenly across buckets, this best-case performance
is approximately matched by practical chaining-based hash table im-

19The notation dxe denotes the “ceiling” function, which rounds its argument
up to the nearest integer.

20We bother to write O(d↵e) instead of O(↵) only to handle the case where ↵

is close to 0. The running time of every operation is always ⌦(1), no matter how
small ↵ is—if nothing else, there is one hash function evaluation to be accounted
for. Alternatively, we could write O(1 + ↵) in place of O(d↵e).

*12.4 Further Implementation Details 175

plementations (with a good hash function and with non-pathological
data).21

Idealized Performance with Open Addressing

In a hash table with open addressing, the running time of a Lookup
or Insert operation scales with the number of probes required to
locate an empty slot (or the sought-after object). When the hash
table’s load is ↵, an ↵ fraction of its slots are full and the remaining
1 � ↵ fraction are empty. In the best-case scenario, each probe is
uncorrelated with the hash table’s contents and has a 1� ↵ chance of
locating an empty slot. In this idealized scenario, the expected number
of probes required is 1

1�↵ .22 If ↵ is bounded away from 1—like 70%,
for example—the idealized running time of all operations is O(1). This
best-case performance is approximately matched by practical hash
tables implemented with double hashing or other sophisticated probe
sequences. With linear probing, objects tend to clump together in
consecutive slots, resulting in slower operation times: roughly 1

(1�↵)2 ,
even in the idealized case.23 This is still O(1) time provided ↵ is
significantly less than 100%.

21Here’s a more mathematical argument for readers who remember basic
probability. A good hash function mimics a random function, so let’s go ahead
and assume that the hash function h independently assigns each key to one of
the n buckets uniformly at random. (See Section 12.6.1 for further discussion
of this heuristic assumption.) Suppose that all objects’ keys are distinct, and
that the key k is mapped to position i by h. Under our assumption, for every
other key k

0 represented in the hash table, the probability that h also maps k
0 to

the position i is 1/n. In total over the |S| keys in the data set S, the expected
number of keys that share k’s bucket is |S|/n, a quantity known also as the load ↵.
(Technically, this follows from linearity of expectation and the “decomposition
blueprint” described in Section 5.5 of Part 1.) The expected running time of a
Lookup for an object with key k is therefore O(d↵e).

22This is like a coin-flipping experiment: if a coin has probability p of coming
up “heads,” what is the average number of flips required to see your first “heads?”
(For us, p = 1� ↵.) As discussed in Section 6.2 of Part 1—or search Wikipedia
for “geometric random variable”—the answer is 1

p .
23This highly non-obvious result was first derived by Donald E. Knuth, the

father of the analysis of algorithms. It made quite an impression on him: “I first
formulated the following derivation in 1962. . . Ever since that day, the analysis of
algorithms has in fact been one of the major themes in my life.” (Donald E. Knuth,
The Art of Computer Programming, Volume 3 (2nd edition), Addison-Wesley, 1998,
page 536.)

176 Hash Tables and Bloom Filters

Collision-Resolution Strategy Idealized Running Time of Lookup
Chaining O (d↵e)

Double hashing O
⇣

1
1�↵

⌘

Linear probing O
⇣

1
(1�↵)2

⌘

Table 12.3: Idealized performance of a hash table as a function of its
load ↵ and its collision-resolution strategy.24

12.4.2 Managing the Load of Your Hash Table

Insertions and deletions change the numerator in (12.1), and a hash
table implementation should update the denominator to keep pace. A
good rule of thumb is to periodically resize the hash table’s array so
that the table’s load stays below 70% (or perhaps even less, depending
on the application and your collision-resolution strategy). Then, with
a well-chosen hash function and non-pathological data, all of the most
common collision-resolution strategies typically lead to constant-time
hash table operations.

The simplest way to implement array resizing is to keep track of
the table’s load and, whenever it reaches 70%, to double the number n
of buckets. All the objects are then rehashed into the new, larger
hash table (which now has load 35%). Optionally, if a sequence of
deletions brings the load down far enough, the array can be downsized
accordingly to save space (with all remaining objects rehashed into
the smaller table). Such resizes can be time-consuming, but in most
applications they are infrequent.

12.4.3 Choosing Your Hash Function

Designing good hash functions is a difficult and dark art. It’s easy to
propose reasonable-looking hash functions that end up being subtly
flawed, leading to poor hash table performance. For this reason,
I advise against designing your own hash functions from scratch.
Fortunately, a number of clever programmers have devised an array

24For more details on how the performance of different collision-resolution
strategies varies with the hash table load, see the bonus videos at www.

algorithmsilluminated.org.

www.algorithmsilluminated.org
www.algorithmsilluminated.org

*12.4 Further Implementation Details 177

of well-tested and publicly available hash functions that you can use
in your own work.

Which hash function should you use? Ask ten programmers this
question, and you’ll get at least eleven different answers. Because
different hash functions fare better on different data distributions,
you should compare the performance of several state-of-the-art hash
functions in your particular application and runtime environment. As
of this writing (in 2018), hash functions that are good starting points
for further exploration include FarmHash, MurmurHash3, SpookyHash
and MD5. These are all non-cryptographic hash functions, and are not
designed to protect against adversarial attacks like that of Crosby
and Wallach (see footnote 12).25 Cryptographic hash functions are
more complicated and slower to evaluate than their non-cryptographic
counterparts, but they do protect against such attacks.26 A good
starting point here is the hash function SHA-1 and its newer relatives
like SHA-256.

12.4.4 Choosing Your Collision-Resolution Strategy

For collision resolution, is it better to use chaining or open addressing?
With open addressing, is it better to use linear probing, double hashing,
or something else? As usual, when I present you with multiple
solutions to a problem, the answer is “it depends.” For example,
chaining takes more space than open addressing (to store the pointers
in the linked lists), so the latter might be preferable when space
is a first-order concern. Deletions are more complicated with open
addressing than with chaining, so chaining might be preferable in
applications with lots of deletions.

Comparing linear probing with more complicated open addressing
implementations like double hashing is also tricky. Linear probing
results in bigger clumps of consecutive objects in the hash table and
therefore more probes than more sophisticated approaches; however,
this cost can be offset by its friendly interactions with the runtime

25
MD5 was originally designed to be a cryptographic hash function, but it is no

longer considered secure.
26All hash functions, even cryptographic ones, have pathological data sets

(Section 12.3.6). Cryptographic hash functions have the special property that it’s
computationally infeasible to reverse engineer a pathological data set, in the same
sense that it’s computationally infeasible to factor large integers and break the
RSA public-key cryptosystem.

178 Hash Tables and Bloom Filters

environment’s memory hierarchy. As with the choice of a hash function,
for mission-critical code, there’s no substitute for coding up multiple
competing implementations and seeing which works best for your
application.

12.4.5 Solution to Quiz 12.6

Correct answer: (c). Because hash tables with open addressing
store at most one object per array position, they can never have a
load larger than 1. Once the load is 1, it’s not possible to insert any
more objects.

An arbitrary number of objects can be inserted into a hash table
with chaining, although performance degrades as more are inserted.
For example, if the load is 100, the average length of a bucket’s list is
also 100.

12.5 Bloom Filters: The Basics

Bloom filters are close cousins of hash tables.27 They are ridiculously
space-efficient but, in exchange, they occasionally make errors. This
section covers what bloom filters are good for and how they are
implemented, while Section 12.6 maps out the trade-off curve between
a filter’s space usage and its frequency of errors.

12.5.1 Supported Operations

The raison d’être of a bloom filter is essentially the same as that of a
hash table: super-fast insertions and lookups, so that you can quickly
remember what you’ve seen and what you haven’t. Why should we
bother with another data structure with the same set of operations?
Because bloom filters are preferable to hash tables in applications
in which space is at a premium and the occasional error is not a
dealbreaker.

Like hash tables with open addressing, bloom filters are much
easier to implement and understand when they support only Insert
and Lookup (and no Delete). We’ll focus on this case.

27Named after their inventor; see the paper “Space/Time Trade-offs in Hash
Coding with Allowable Errors,” by Burton H. Bloom (Communications of the

ACM, 1970).

12.5 Bloom Filters: The Basics 179

Bloom Filters: Supported Operations

Lookup: for a key k, return “yes” if k has been previously
inserted into the bloom filter and “no” otherwise.

Insert: add a new key k to the bloom filter.

Bloom filters are very space-efficient; in a typical use case, they might
require only 8 bits per insertion. This is pretty incredible, as 8 bits
are nowhere near enough to remember even a 32-bit key or a pointer
to an object! This is the reason why the Lookup operation in a
bloom filter returns only a “yes”/”no” answer, whereas in a hash table
the operation returns a pointer to the sought-after object (if found).
This is also why the Insert operation now takes only a key, rather
than (a pointer to) an object.

Bloom filters can make mistakes, in contrast to all the other data
structures we’ve studied. There are two different kinds of mistakes:
false negatives, in which Lookup returns “false” even though the
queried key was inserted previously; and false positives, in which
Lookup returns “true” even though the queried key was never in-
serted in the past. We’ll see in Section 12.5.3 that basic bloom filters
never suffer from false negatives, but they can have “phantom ele-
ments” in the form of false positives. Section 12.6 shows that the
frequency of false positives can be controlled by tuning the space
usage appropriately. A typical bloom filter implementation might
have an error rate of around 1% or 0.1%.

The running times of both the Insert and Lookup operations
are as fast as those in a hash table. Even better, these operations are
guaranteed to run in constant time, independent of the bloom filter
implementation and the data set.28 The implementation and data set
do affect the filter’s error rate, however.

Summarizing the advantages and disadvantages of bloom filters
over hash tables:

Bloom Filters Vs. Hash Tables

1. Pro: More space efficient.

28Provided hash function evaluations take constant time and that a constant
number of bits is used per inserted key.

180 Hash Tables and Bloom Filters

2. Pro: Guaranteed constant-time operations for every
data set.

3. Con: Can’t store pointers to objects.

4. Con: Deletions are complicated, relative to a hash
table with chaining.

5. Con: Non-zero false positive probability.

The scorecard for the basic bloom filter reads:

Operation Running time
Lookup O(1)†

Insert O(1)

Table 12.4: Basic bloom filters: supported operations and their running
times. The dagger (†) indicates that the Lookup operation suffers from a
controllable but non-zero probability of false positives.

Bloom filters should be used in place of hash tables in applications
in which their advantages matter and their disadvantages are not
dealbreakers.

When to Use a Bloom Filter

If your application requires fast lookups with a dynamically
changing set of objects, space is at a premium, and a small
number of false positives can be tolerated, the bloom filter
is usually the data structure of choice.

12.5.2 Applications

Next are three applications with repeated lookups where it can be
important to save space and where false positives are not a dealbreaker.

Spell checkers. Back in the 1970s, bloom filters were used to
implement spell checkers. In a preprocessing step, every word in a
dictionary was inserted into a bloom filter. Spell-checking a document
boiled down to one Lookup operation per word in the document,
flagging any words for which the operation returned “no.”

12.5 Bloom Filters: The Basics 181

In this application, a false positive corresponds to an illegal word
that the spell checker inadvertently accepts. Such errors are not ideal.
Space was at a premium in the early 1970s, however, so at that time
it was a win to use bloom filters.

Forbidden passwords. An old application that remains relevant
today is keeping track of forbidden passwords—passwords that are
too common or too easy to guess. Initially, all forbidden passwords
are inserted into a bloom filter; additional forbidden passwords can
be inserted later, as needed. When a user tries to set or reset their
password, the system looks up the proposed password in the bloom
filter. If the Lookup returns “yes,” the user is asked to try again
with a different password. Here, a false positive translates to a strong
password that the system rejects. Provided the error rate is not too
large, say at most 1% or 0.1%, this is not a big deal. Once in a while,
some user will need one extra attempt to find a password acceptable
to the system.

Internet routers. Many of today’s killer applications of bloom
filters take place in the core of the Internet, where data packets pass
through routers at a torrential rate. There are many reasons why a
router might want to quickly recall what it has seen in the past. For
example, the router might want to look up the source IP address of a
packet in a list of blocked IP addresses, keep track of the contents of
a cache to avoid spurious cache lookups, or maintain statistics helpful
for identifying a denial-of-service attack. The rate of packet arrivals
demands super-fast lookups, and limited router memory puts space
at a premium. These applications are right in the wheelhouse of a
bloom filter.

12.5.3 Implementation

Looking under the hood of a bloom filter reveals an elegant implemen-
tation. The data structure maintains an n-bit string, or equivalently
a length-n array A in which each entry is either 0 or 1. (All en-
tries are initialized to 0.) The structure also uses m hash functions
h1, h2, . . . , hm, each mapping the universe U of all possible keys to
the set {0, 1, 2, . . . , n � 1} of array positions. The parameter m is
proportional to the number of bits that the bloom filter uses per

182 Hash Tables and Bloom Filters

insertion, and is typically a small constant (like 5).29

Every time a key is inserted into a bloom filter, each of the m
hash functions plants a flag by setting the corresponding bit of the
array A to 1.

Bloom Filter: Insert (given key k)

for i = 1 to m do
A[hi(k)] := 1

For example, if m = 3 and h1(k) = 23, h2(k) = 17, and h3(k) = 5,
inserting k causes the 5th, 17th, and 23rd bits of the array to be set
to 1 (Figure 12.5).

k
h1(k)

h2(k)

h3(k)

1

1

1

Figure 12.5: Inserting a new key k into a bloom filter sets the bits in
positions h1(k), . . . , hm(k) to 1.

29Sections 12.3.6 and 12.4.3 provide guidance for choosing one hash function.
Footnote 9 describes a quick-and-dirty way of deriving two hash functions from
one; the same idea can be used to derive m hash functions from one. An alternative
approach, inspired by double hashing, is to use two hash functions h and h

0 to
define h1, h2, . . . , hm via the formula hi(k) = (h(k) + (i� 1) · h0(k)) mod n.

*12.6 Bloom Filters: Heuristic Analysis 183

In the Lookup operation, a bloom filter looks for the footprint
that would have been left by k’s insertion.

Bloom Filter: Lookup (given key k)

for i = 1 to m do
if A[hi(k)] = 0 then

return “no”
return “yes”

We can now see why bloom filters can’t suffer from false negatives.
When a key k is inserted, the relevant m bits are set to 1. Over
the bloom filter’s lifetime, bits can change from 0 to 1 but never the
reverse. Thus, these m bits remain 1 forevermore. Every subsequent
Lookup for k is guaranteed to return the correct answer “yes.”

We can also see how false positives arise. Suppose that m = 3 and
the four keys k1, k2, k3, k4 have the following hash values:

Key Value of h1 Value of h2 Value of h3
k1 23 17 5
k2 5 48 12
k3 37 8 17
k4 32 23 2

Suppose we insert k2, k3, and k4 into the bloom filter (Figure 12.6).
These three insertions cause a total of nine bits to be set to 1, including
the three bits in k1’s footprint (5, 17, and 23). At this point, the
bloom filter can no longer distinguish whether or not k1 has been
inserted. Even if k1 was never inserted into the filter, a Lookup for
it will return “yes,” which is a false positive.

Intuitively, as we make the bloom filter size n bigger, the number
of overlaps between the footprints of different keys should decrease,
in turn leading to fewer false positives. But the first-order goal of a
bloom filter is to save on space. Is there a sweet spot where both n and
the frequency of false positives are small simultaneously? The answer
is not obvious and requires some mathematical analysis, undertaken
in the next section.30

30Spoiler alert: The answer is yes. For example, using 8 bits per key typically
leads to a false positive probability of roughly 2% (assuming well-crafted hash
functions and a non-pathological data set).

184 Hash Tables and Bloom Filters

k1
h1(k1)

h2(k1)

h3(k1)

k2

k3

k4

h1(k2)

h2(k3)

h1(k4)

h2(k2)

h3(k2)

h1(k3)

h3(k3)

h2(k4)

h3(k4) 1
1

1

1

1

1

1

1

1

Figure 12.6: False positives: A bloom filter can contain the footprint of a
key k1 even if k1 was never inserted.

*12.6 Bloom Filters: Heuristic Analysis

The goal of this section is to understand the quantitative trade-off
between the space consumption and the frequency of false positives
of a bloom filter. That is, how rapidly does the frequency of false
positives of a bloom filter decrease as a function of its array length?

If a bloom filter uses a length-n bit array and stores (the footprints
of) a set S of keys, the per-key storage in bits is

b =
n

|S| .

We’re interested in the case in which b is smaller than the number of
bits needed to explicitly store a key or a pointer to an object (which
is typically 32 or more). For example, b could be 8 or 16.

12.6.1 Heuristic Assumptions

The relationship between the per-key storage b and the frequency
of false positives is not easy to guess, and working it out requires

*12.6 Bloom Filters: Heuristic Analysis 185

some probability calculations. To understand them, all you need to
remember from probability theory is:

The probability that two independent events both occur
equals the product of their individual probabilities.

For example, the probability that two independent tosses of a fair
6-sided die are “4” followed by an odd number is 1

6 · 3
6 = 1

12 .
31

To greatly simplify the calculations, we’ll make two unjustified
assumptions—the same ones we used in passing in our heuristic
analyses of hash table performance (Section 12.4.1).

Unjustified Assumptions

1. For every key k 2 U in the data set and hash func-
tion hi of the bloom filter, hi(k) is uniformly dis-
tributed, with each of the n array positions equally
likely.

2. All of the hi(k)’s, ranging over all keys k 2 U and
hash functions h1, h2, . . . , hm, are independent random
variables.

The first assumption says that, for each key k, each hash function hi,
and each array position q 2 {0, 1, 2, . . . , n� 1}, the probability that
hi(k) = q is exactly 1

n . The second assumption implies that the
probability that hi(k1) = q and also hj(k2) = r is the product of the
individual probabilities, also known as 1

n2 .
Both assumptions would be legitimate if we randomly chose each

of the bloom filter’s hash functions independently from the set of all
possible hash functions, as in Section 12.3.6. Completely random
hash functions are unimplementable (recall Quiz 12.5), so in practice
a fixed, “random-like” function is used. This means that in reality,
our heuristic assumptions are false. With fixed hash functions, every
value hi(k) is completely determined, with no randomness whatsoever.
This is why we call the analysis “heuristic.”

31For more background on probability theory, see Appendix B of Part 1 or
the Wikibook on discrete probability (https://en.wikibooks.org/wiki/High_
School_Mathematics_Extensions/Discrete_Probability).

https://en.wikibooks.org/wiki/High_School_Mathematics_Extensions/Discrete_Probability
https://en.wikibooks.org/wiki/High_School_Mathematics_Extensions/Discrete_Probability

186 Hash Tables and Bloom Filters

On Heuristic Analyses

What possible use is a mathematical analysis based
on false premises? Ideally, the conclusion of the anal-
ysis remains valid in practical situations even though
the heuristic assumptions are not satisfied. For bloom
filters, the hope is that, provided the data is non-
pathological and well-crafted “random-like” hash func-
tions are used, the frequency of false positives behaves
as if the hash functions were completely random.

You should always be suspicious of a heuristic
analysis, and be sure to test its conclusions with a
concrete implementation. Happily, empirical studies
demonstrate that the frequency of false positives in
bloom filters in practice is comparable to the predic-
tion of our heuristic analysis.

12.6.2 The Fraction of Bits Set to 1

We begin with a preliminary calculation.

Quiz 12.7

Suppose a data set S is inserted into a bloom filter that
uses m hash functions and a length-n bit array. Under
our heuristic assumptions, what is the probability that the
array’s first bit is set to 1?

a)
�
1
n

�|S|

b)
�
1 � 1

n

�|S|

c)
�
1 � 1

n

�m|S|

d) 1 �
�
1 � 1

n

�m|S|

(See Section 12.6.5 for the solution and discussion.)

*12.6 Bloom Filters: Heuristic Analysis 187

There is nothing special about the first bit of the bloom filter. By
symmetry, the answer to Quiz 12.7 is also the probability that the
7th, or the 23rd, or the 42nd bit is set to 1.

12.6.3 The False Positive Probability

The solution to Quiz 12.7 is messy. To clean it up, we can use the
fact that ex is a good approximation of 1 + x when x is close to 0,
where e ⇡ 2.718 . . . is the base of the natural logarithm. This fact is
evident from a plot of the two functions:

For us, the relevant value of x is x = � 1
n , which is close to 0 (ignoring

the uninteresting case of tiny n). Thus, among friends, we can use
the quantity

1 � (e�1/n)m|S| as a proxy for 1 �
�
1 � 1

n

�m|S|
.

We can further simplify the left-hand side to

1 � e�m|S|/n = 1 � e�m/b
| {z }

estimate of probability that a given bit is 1

,

where b = n
|S| denotes the number of bits used per insertion.

Fine, but what about the frequency of false positives? A false pos-
itive occurs for a key k not in S when all the m bits h1(k), . . . , hm(k)
in its footprint are set to 1 by the keys in S.32 Because the probability

32For simplicity, we’re assuming that each of the m hash functions hashes k to
a different position (as is usually the case).

188 Hash Tables and Bloom Filters

that a given bit is 1 is approximately 1 � e�m/b, the probability that
all m of these bits are set to 1 is approximately

⇣
1 � e�

m
b

⌘m

| {z }
estimate of false positive frequency

. (12.2)

We can sanity check this estimate by investigating extreme values
of b. As the bloom filter grows arbitrarily large (with b ! 1) and is
increasingly empty, the estimate (12.2) goes to 0, as we would hope
(because e�x goes to 1 as x goes to 0). Conversely, when b is very
small, the estimate of the chance of a false positive is large (⇡ 63.2%
when b = m = 1, for example).33

12.6.4 The Punchline

We can use our precise estimate (12.2) of the false positive rate to
understand the trade-off between space and accuracy. In addition to
the per-key space b, the estimate in (12.2) depends on m, the number
of hash functions that the bloom filter uses. The value of m is under
complete control of the bloom filter designer, so why not set it to
minimize the estimated frequency of errors? That is, holding b fixed,
we can choose m to minimize (12.2). Calculus can identify the best
choice of m, by setting the derivative of (12.2) with respect to m to 0
and solving for m. You can do the calculations in the privacy of your
own home, with the end result being that (ln 2) · b ⇡ 0.693 · b is the
optimal choice for m. This is not an integer, so round it up or down
to get the ideal number of hash functions. For example, when b = 8,
the number of hash functions m should be either 5 or 6.

We can now specialize the error estimate in (12.2) with the optimal
choice of m = (ln 2) · b to get the estimate

⇣
1 � e� ln 2

⌘(ln 2)·b
=

✓
1

2

◆(ln 2)·b
.

33In addition to our two heuristic assumptions, this analysis cheated twice.
First, e�1/n isn’t exactly equal to 1 � 1

n , but it’s close. Second, even with our
heuristic assumptions, the values of two different bits of a bloom filter are not
independent—knowing that one bit is 1 makes it slightly more likely that a
different bit is 0—but they are close. Both cheats are close approximations of
reality (given the heuristic assumptions), and it can be verified both mathematically
and empirically that they lead to an accurate conclusion.

*12.6 Bloom Filters: Heuristic Analysis 189

This is exactly what we wanted all along—a formula that spits out the
expected frequency of false positives as a function of the amount of
space we’re willing to use.34 The formula is decreasing exponentially
with the per-key space b, which is why there is a sweet spot where
both the bloom filter size and its frequency of false positives are
small simultaneously. For example, with only 8 bits per key stored
(b = 8), this estimate is slightly over 2%. What if we take b = 16 (see
Problem 12.3)?

12.6.5 Solution to Quiz 12.7

Correct answer: (d). We can visualize the insertion of the keys in S
into the bloom filter as the throwing of darts at a dartboard with n
regions, with each dart equally likely to land in each region. Because
the bloom filter uses m hash functions, each insertion corresponds
to the throwing of m darts, for a total of m|S| darts overall. A dart
hitting the ith region corresponds to setting the ith bit of the bloom
filter to 1.

By the first heuristic assumption, for every k 2 S and i 2
{1, 2, . . . ,m}, the probability that a dart hits the first region (that
is, that hi(k) = 0) is 1

n . Thus, the dart misses the first region (that
is, hi(k) is not 0) with the remaining probability 1 � 1

n . By the sec-
ond heuristic assumption, different darts are independent. Thus, the
probability that every dart misses the first region—that hi(k) 6= 0 for
every k 2 S and i 2 {1, 2, . . . ,m}—is (1� 1

n)m|S|. With the remaining
1 � (1 � 1

n)m|S| probability, some dart hits the first region (that is,
the first bit of the bloom filter is set to 1).

The Upshot

P If your application requires fast lookups on an
evolving set of objects, the hash table is usually
the data structure of choice.

P Hash tables support the Insert and Lookup
operations, and in some cases the Delete oper-

34Equivalently, if you have a target false positive rate of ✏, you should take the
per-key space to be at least b ⇡ 1.44 log2

1
✏ . As expected, the smaller the target

error rate ✏, the larger the space requirements.

190 Hash Tables and Bloom Filters

ation. With a well-implemented hash table and
non-pathological data, all operations typically
run in O(1) time.

P A hash table uses a hash function to translate
from objects’ keys to positions in an array.

P Two keys k1, k2 collide under a hash function h
if h(k1) = h(k2). Collisions are inevitable, and
a hash table needs a method for resolving them,
such as chaining or open addressing.

P A good hash function is cheap to evaluate and
easy to store, and mimics a random function
by spreading non-pathological data sets roughly
evenly across the positions of the hash table’s
array.

P Experts have published good hash functions
that you can use in your own work.

P A hash table should be resized periodically to
keep its load small (for example, less than 70%).

P For mission-critical code, there’s no substitute
for trying out multiple competing hash table
implementations.

P Bloom filters also support the Insert and
Lookup operations in constant time, and are
preferable to hash tables in applications in which
space is at a premium and the occasional false
positive is not a dealbreaker.

Test Your Understanding

Problem 12.1 (S) Which of the following is not a property you
would expect a well-designed hash function to have?

a) The hash function should spread out every data set roughly
evenly across its range.

Problems 191

b) The hash function should be easy to compute (constant time or
close to it).

c) The hash function should be easy to store (constant space or
close to it).

d) The hash function should spread out most data sets roughly
evenly across its range.

Problem 12.2 (S) A good hash function mimics the gold standard
of a random function for all practical purposes, so it’s interesting to
investigate collisions with a random function. If the locations of two
different keys k1, k2 2 U are chosen independently and uniformly at
random across n array positions (with all possibilities equally likely),
what is the probability that k1 and k2 will collide?

a) 0

b) 1
n

c) 2
n(n�1)

d) 1
n2

Problem 12.3 We interpreted our heuristic analysis of bloom filters
in Section 12.6 by specializing it to the case of 8 bits of space per
key inserted into the filter. Suppose we were willing to use twice
as much space (16 bits per insertion). What can you say about the
corresponding false positive rate, according to our heuristic analysis,
assuming that the number m of hash tables is set optimally? (Choose
the strongest true statement.)

a) The false positive rate would be less than 1%.

b) The false positive rate would be less than 0.1%.

c) The false positive rate would be less than 0.01%.

d) The false positive rate would be less than 0.001%.

192 Hash Tables and Bloom Filters

Programming Problems

Problem 12.4 Implement in your favorite programming language
the hash table-based solution to the 2-SUM problem in Section 12.2.2.
For example, you could generate a list S of one million random integers
between �1011 and 1011, and count the number of targets t between
�10000 and 10000 for which there are distinct x, y 2 S with x+y = t.

You can use existing implementations of hash tables, or you can
implement your own from scratch. In the latter case, compare your
performance under different collision-resolution strategies, such as
chaining vs. linear probing. (See www.algorithmsilluminated.org

for test cases and challenge data sets.)

www.algorithmsilluminated.org

Appendix C

Quick Review of Asymptotic Notation

This appendix reviews asymptotic notation, especially big-O nota-
tion. If you’re seeing this material for the first time, you proba-
bly want to supplement this appendix with a more thorough treat-
ment, such as Chapter 2 of Part 1 or the corresponding videos at
www.algorithmsilluminated.org. If you have seen it before, don’t
feel compelled to read this appendix from front to back—dip in as
needed wherever you need a refresher.

C.1 The Gist

Asymptotic notation identifies a sweet spot of granularity for reasoning
about algorithms and data structures. It is coarse enough to suppress
all the details you want to ignore—details that depend on the choice
of architecture, the choice of programming language, the choice of
compiler, and so on. On the other hand, it’s precise enough to make
useful comparisons between different high-level algorithmic approaches
to solving a problem, especially on larger inputs (the inputs that
require algorithmic ingenuity).

A good seven-word summary of asymptotic notation is:

Asymptotic Notation in Seven Words

suppress constant factors| {z }
too system-dependent

and lower-order terms| {z }
irrelevant for large inputs

The most important concept in asymptotic notation is big-O nota-
tion. Intuitively, saying that something is O(f(n)) for a function f(n)
means that f(n) is what you’re left with after suppressing constant
factors and lower-order terms. For example, if g(n) = 6n log2 n + 6n,

193

www.algorithmsilluminated.org

194 Quick Review of Asymptotic Notation

then g(n) = O(n log n).1 Big-O notation buckets algorithms and data
structure operations into groups according to their asymptotic worst-
case running times, such as linear-time (O(n)) or logarithmic-time
(O(log n)) algorithms and operations.

C.2 Big-O Notation

Big-O notation concerns functions T (n) defined on the positive integers
n = 1, 2, For us, T (n) will almost always denote a bound on the
worst-case running time of an algorithm or data structure operation,
as a function of the size n of the input.

Big-O Notation (English Version)

T (n) = O(f(n)) if and only if T (n) is eventually bounded
above by a constant multiple of f(n).

Here is the corresponding mathematical definition of big-O nota-
tion, the definition you should use in formal proofs.

Big-O Notation (Mathematical Version)

T (n) = O(f(n)) if and only if there exist positive constants c
and n0 such that

T (n)  c · f(n) (C.1)

for all n � n0.

The constant c quantifies the “constant multiple” and the constant n0

quantifies “eventually.” For example, in Figure C.1, the constant c
corresponds to 3, while n0 corresponds to the crossover point between
the functions T (n) and c · f(n).

A Word of Caution

When we say that c and n0 are constants, we
mean they cannot depend on n. For example, in

1When ignoring constant factors, we don’t need to specify the base of the
logarithm. (Different logarithmic functions differ only by a constant factor.)

C.3 Examples 195

n→∞

T (n)

f (n)

3⋅ f (n)

c

n0

Figure C.1: A picture illustrating when T (n) = O(f(n)). The constant c
quantifies the “constant multiple” of f(n), and the constant n0 quantifies
“eventually.”

Figure C.1, c and n0 were fixed numbers (like 3
or 1000), and we then considered the inequality (C.1)
as n grows arbitrarily large (looking rightward on the
graph toward infinity). If you ever find yourself saying
“take n0 = n” or “take c = log2 n” in an alleged big-O
proof, you need to start over with choices of c and n0

that are independent of n.

C.3 Examples

We claim that if T (n) is a polynomial with some degree k, then
T (n) = O(nk). Thus, big-O notation really is suppressing constant
factors and lower-order terms.

Proposition C.1 Suppose

T (n) = akn
k + · · · a1n + a0,

where k � 0 is a nonnegative integer and the ai’s are real numbers
(positive or negative). Then T (n) = O(nk).

196 Quick Review of Asymptotic Notation

Proof: Proving a big-O statement boils down to reverse engineering
appropriate values for the constants c and n0. Here, to keep things
easy to follow, we’ll pull values for these constants out of a hat: n0 = 1
and c equal to the sum of absolute values of the coefficients:2

c = |ak| + · · · + |a1| + |a0|.

Both these numbers are independent of n. We now must show that
these choices of constants satisfy the definition, meaning that T (n) 
c · nk for all n � n0 = 1.

To verify this inequality, fix a positive integer n � n0 = 1. We
need a sequence of upper bounds on T (n), culminating in an upper
bound of c · nk. First let’s apply the definition of T (n):

T (n) = akn
k + · · · + a1n + a0.

If we take the absolute value of each coefficient ai on the right-hand
side, the expression only becomes larger. (|ai| can only be bigger
than ai, and because ni is positive, |ai|ni can only be bigger than aini.)
This means that

T (n)  |ak|nk + · · · + |a1|n + |a0|.

Now that the coefficients are nonnegative, we can use a similar trick to
turn the different powers of n into a common power of n. As n � 1, nk

is only bigger than ni for every i 2 {0, 1, 2, . . . , k}. Because |ai| is
nonnegative, |ai|nk is only bigger than |ai|ni. This means that

T (n)  |ak|nk + · · · + |a1|nk + |a0|nk = (|ak| + · · · + |a1| + |a0|)| {z }
=c

·nk.

This inequality holds for every n � n0 = 1, which is exactly what we
wanted to prove. QE D

We can also use the definition of big-O notation to argue that one
function is not big-O of another function.

Proposition C.2 If T (n) = 210n, then T (n) is not O(2n).
2Recall that the absolute value |x| of a real number x equals x when x � 0,

and �x when x  0. In particular, |x| is always nonnegative.

C.4 Big-Omega and Big-Theta Notation 197

Proof: The usual way to prove that one function is not big-O of
another is by contradiction. So, assume the opposite of the statement
in the proposition, that T (n) is, in fact, O(2n). By the definition of
big-O notation, there are positive constants c and n0 such that

210n  c · 2n

for all n � n0. As 2n is a positive number, we can cancel it from both
sides of this inequality to derive

29n  c

for all n � n0. But this inequality is patently false: The right-hand
side is a fixed constant (independent of n), while the left-hand side
goes to infinity as n grows large. This shows that our assumption
that T (n) = O(2n) cannot be correct, and we can conclude that 210n

is not O(2n). QE D

C.4 Big-Omega and Big-Theta Notation

Big-O notation is by far the most important and ubiquitous concept
for discussing the asymptotic running times of algorithms and data
structure operations. A couple of its close relatives, the big-omega and
big-theta notations, are also worth knowing. If big-O is analogous to
“less than or equal to (),” then big-omega and big-theta are analogous
to “greater than or equal to (�),” and “equal to (=),” respectively.

The formal definition of big-omega notation parallels that of big-O
notation. In English, we say that one function T (n) is big-omega of
another function f(n) if and only if T (n) is eventually bounded below
by a constant multiple of f(n). In this case, we write T (n) = ⌦(f(n)).
As before, we use two constants c and n0 to quantify “constant multiple”
and “eventually.”

Big-Omega Notation

T (n) = ⌦(f(n)) if and only if there exist positive constants c
and n0 such that

T (n) � c · f(n)

for all n � n0.

198 Quick Review of Asymptotic Notation

Big-theta notation, or simply theta notation, is analogous to “equal
to.” Saying that T (n) = ⇥(f(n)) simply means that both T (n) =
⌦(f(n)) and T (n) = O(f(n)). Equivalently, T (n) is eventually sand-
wiched between two different constant multiples of f(n).

Big-Theta Notation

T (n) = ⇥(f(n)) if and only if there exist positive constants
c1, c2, and n0 such that

c1 · f(n)  T (n)  c2 · f(n)

for all n � n0.

A Word of Caution

Because algorithm designers are so focused on running
time guarantees (which are upper bounds), they tend
to use big-O notation even when big-theta notation
would be more accurate; for example, stating the
running time of an algorithm as O(n) even when it’s
clearly ⇥(n).

The next quiz checks your understanding of big-O, big-omega, and
big-theta notation.

Quiz C.1

Let T (n) = 1
2n

2 + 3n. Which of the following statements
are true? (Choose all that apply.)

a) T (n) = O(n)

b) T (n) = ⌦(n)

c) T (n) = ⇥(n2)

d) T (n) = O(n3)

C.4 Big-Omega and Big-Theta Notation 199

(See below for the solution and discussion.)

Correct answers: (b),(c),(d). The final three responses are all
correct, and hopefully the intuition for why is clear. T (n) is a quadratic
function. The linear term 3n doesn’t matter for large n, so we
should expect that T (n) = ⇥(n2) (answer (c)). This automatically
implies that T (n) = ⌦(n2) and hence T (n) = ⌦(n) also (answer (b)).
Similarly, T (n) = ⇥(n2) implies that T (n) = O(n2) and hence also
T (n) = O(n3) (answer (d)). Proving these statements formally boils
down to exhibiting appropriate constants to satisfy the definitions.
For example, taking n0 = 1 and c = 1

2 proves (b). Taking n0 = 1 and
c = 4 proves (d). Combining these constants (n0 = 1, c1 = 1

2 , c2 = 4)
proves (c). A proof by contradiction, in the spirit of Proposition C.2,
shows that (a) is not a correct answer.

Solutions to Selected Problems

Problem 7.1: Conditions (a) and (c) are satisfied by some sparse
graphs (such as a star graph) and some dense graphs (such as a
complete graph with one extra edge glued on). Condition (b) is
satisfied only by sparse graphs, and condition (d) only by dense
graphs.

Problem 7.2: (c). Scan through the row corresponding to v in the
adjacency matrix.

Problem 8.1: All four statements hold: (a) by the UCC algorithm in
Section 8.3; (b) by the Augmented-BFS algorithm in Section 8.2; (c)
by the Kosaraju algorithm in Section 8.6; and (d) by the TopoSort

algorithm in Section 8.5.

Problem 8.2: (c). ⌦(n2) time is required because, in the worst
case, a correct algorithm must look at each of the n2 entries of the
adjacency matrix at least once. O(n2) time is achievable, for example
by constructing the adjacency list representation of the input graph
with a single pass over the adjacency matrix (in O(n2) time) and then
running DFS with the new representation in O(m + n) = O(n2) time.

Problem 8.7: (c). Computing the “magical ordering” in the first pass
of the Kosaraju algorithm requires depth-first search. (See the proof
of Theorem 8.10.) In the second pass, given the magical ordering of the
vertices, any instantiation of the GenericSearch algorithm (including
BFS) will successfully discover the SCCs in reverse topological order.

Problem 8.8: (a),(b). The modification in (a) does not change the
order in which the algorithm considers vertices in its second pass, and
so it remains correct. The modification in (b) is equivalent to running
the Kosaraju algorithm on the reversal of the input graph. Because
a graph and its reversal have exactly the same SCCs (Quiz 8.6),

200

Solutions to Selected Problems 201

the algorithm remains correct. The modifications in (c) and (d) are
equivalent, as in the argument for (a) above, and do not result in a
correct algorithm. For a counterexample, revisit our running example
(and especially the discussion on page 59).

Problem 9.2: (b). Two sums of distinct powers of 2 cannot be the
same. (Imagine the numbers are written in binary.) For (a) and (c),
there are counterexamples with three vertices and three edges.

Problem 9.3: (c),(d). Statement (d) holds because, when P has
only one edge, every path goes up in length by at least as much as P
does. This also shows that (b) is false. An example similar to the one
in Section 9.3.1 shows that (a) is false, and it follows that (c) is true.

Problem 9.7: In lines 4 and 6 of the Dijkstra algorithm (page 80),
respectively, replace len(v)+ `vw with max{len(v), `vw} and len(v⇤)+
`v⇤w⇤ with max{len(v⇤), `v⇤w⇤}.

Problem 10.1: (b),(c). The raison d’être of a heap is to support
fast minimum computations, with HeapSort (Section 10.3.1) being
a canonical application. Negating the key of every object turns a
heap into a data structure that supports fast maximum computations.
Heaps do not generally support fast lookups unless you happen to be
looking for the object with the minimum key.

Problem 10.4: (a). Only the object with the smallest key can
be extracted with one heap operation. Calling ExtractMin five
successive times returns the object in the heap with the fifth-smallest
key. Extracting the object with the median or maximum key would
require a linear number of heap operations.

Problem 10.5: In line 14 of the heap-based implementation of
Dijkstra (page 111), replace len(w⇤)+`w⇤y with max{len(w⇤), `w⇤y}.

Problem 11.1: (a). Statement (a) holds because there are at most 2i

nodes in the ith level of a binary tree, and hence at most 1 + 2 + 4 +
·+ 2i  2i+1 nodes in levels 0 through i combined. Accommodating n
nodes requires 2h+1 � n, where h is the tree height, so h = ⌦(log n).
Statement (b) holds for balanced binary search trees but is generally
false for unbalanced binary search trees (see footnote 4 in Chapter 11).

202 Solutions to Selected Problems

Statement (c) is false because the heap and search tree properties are
incomparable (see page 132). Statement (d) is false, as a sorted array
is preferable to a balanced binary search tree when the set of objects
to be stored is static, with no insertions or deletions (see page 131).

Problem 12.1: (a). Pathological data sets show that property (a) is
impossible and so cannot be expected (see Section 12.3.6). The other
three properties are satisfied by state-of-the-art hash functions.

Problem 12.2: (b). There are n possibilities for k1’s location and n
possibilities for k2’s location, for a total of n2 outcomes. Of these, k1
and k2 collide in exactly n of them—the outcome in which both are
assigned the first position, the outcome in which both are assigned the
second position, and so on. Because every outcome is equally likely
(with probability 1

n2 each), the probability of a collision is n · 1
n2 = 1

n .

Index

|x | (absolute value), 196�n
2

�
(binomial coefficient), 7

dxe (ceiling), 174
bxc (floor), 115
|S | (set size), 4

abstract data type, 95
acknowledgments, xi
adjacency lists, 7–8

in graph search, 27
input size, 11
vs. adjacency matrix, 10

adjacency matrix, 8–10
applications, 10
input size, 12
sparse representation, 12
vs. adjacency lists, 10

arc, see edge (of a graph), directed
asymptotic notation, 5, 193–199

as a sweet spot, 193
big-O notation, 194–195
big-omega notation, 197
big-theta notation, 198
in seven words, 193

Augmented-BFS, 31

Bacon number, 16, 31
Bacon, Kevin, 16
base case, 85
BFS, see breadth-first search
BFS, 27
big-O notation, 194–195

examples, 195–197
big-omega notation, 197
big-theta notation, 198

binary search, 127, 133
birthday paradox, 162, 172
blazingly fast, vii, viii, 18
bloom filter

Insert, 179, 182
Lookup, 179, 183
applications, 180–181
has false positives, 179, 183
has no false negatives, 183
heuristic analysis, 185–189
heuristic assumptions, 185
in network routers, 181
operation running times, 179
raison d’être, 178
scorecard, 180
space-accuracy trade-off, 179,

183, 188–189, 191
supported operations, 178–

179
vs. hash tables, 178–180
when to use, 180

Bloom, Burton H., 178
bow tie, see Web graph
breadth-first search, 22, 24–30

correctness, 30
example, 27–29
for computing connected

components, 34–37
for computing shortest paths,

31–33
layers, 25, 34
pseudocode, 27
running time analysis, 30

Broder, Andrei, 67

203

204 Index

broken clock, 83

C++, 130
can we do better?, 90
cf., 44
chess, 158
clustering, 36
cocktail party, ix, 97, 172
coin flipping, 175
collision, see hash function, colli-

sion
connected components

applications, 36–37
definition, 34
example, 38
in directed graphs, see

strongly connected
components

linear-time computation, 37–
39

number of, 40
Cormen, Thomas H., 145
corollary, 21
Coursera, x
Crosby, Scott A., 169
cryptography, 177

DAG, see directed acyclic graph
data structure

bloom filter, see bloom filter
expertise levels, 96
hash table, see hash table
heap, see heap
principle of parsimony, 96
queue, 26, 95
raison d’être, 95
scorecards, see scorecards
search tree, see search tree
stack, 42, 95
vs. abstract data type, 95

de-duplication, 155
decomposition blueprint, 175
degree (of a vertex), 13
depth-first search, 23, 40–44

correctness, 44
example, 40
for computing connected

components, 44
for computing strongly con-

nected components, 56
for topological sorting, 49–52
iterative implementation, 42
recursive implementation, 43
running time analysis, 44

design patterns, ix
DFS, see depth-first search
DFS (Iterative Version), 42
DFS (Recursive Version), 43
DFS-SCC, 63
DFS-Topo, 50
dictionary, see hash table
Dijkstra, 80
Dijkstra (heap-based), 108, 111
Dijkstra’s shortest-path algorithm

correctness, 86–89
Dijkstra score, 81
example, 82
for computing minimum bot-

tleneck paths, 93, 124
greedy selection rule, 81
heap-based implementation,

105–112
in undirected graphs, 78
pseudocode, 80
pseudocode (heap-based),

108, 111
reconstructing shortest paths,

82
running time analysis, 89
running time analysis (heap-

based), 111
straightforward implementa-

tion, 89
with negative edge lengths,

84
Dijkstra, Edsger W., 76
directed acyclic graph, 47

has a source vertex, 47

Index 205

has a topological ordering, 47–
49

discussion forum, xi
dist, see shortest paths, distance
distance, see shortest paths, dis-

tance
Draper, Don, 16

Easley, David, 69
edge (of a graph), 2

directed, 2
length, 76
parallel, 4, 9
undirected, 2
weighted, 9

Egoyan, Atom, 16
Einstein, Albert, 96
endpoints (of an edge), 2
equivalence class, 35
equivalence relation, 35
Erdös number, 16
Erdös, Paul, 16

Firth, Colin, 16
for-free primitive, 18

Gabow, Harold N., 124
GenericSearch, 19
Google, 11
googol, 158
graph, 1

adjacency lists, 7–8, 11
adjacency matrix, 8–10, 12
applications, 2–3
co-authorship, 16
complete, 6, 34
connected, 4
connected components, see

connected components
cycle, 46
dense, 5
diameter, 71
directed, 2
directed acyclic, see directed

acyclic graph

input size, 3
notation, 2, 4
path, 6, 19, 34
radius, 72
representations, 7–11
sparse, 5
tree, 6
undirected, 2
Web, see Web graph

graph search
A⇤, 159
applications, 15–18
breadth-first search, see

breadth-first search
depth-first search, see depth-

first search
for planning, 17
generic algorithm, 19–24
in game playing, 159
problem definition, 18

greatest hits, ix

Hamm, Jon, 16
hash function

and the birthday paradox,
163

bad, 168
collision, 162
collisions are inevitable, 162,

168
cryptographic, 177
definition, 160
desiderata, 170
don’t design your own, 176
example, 171
good, 170
how to choose, 176
kryptonite, 168
multiple, 167, 182
pathological data set, 168–

169
random, 170, 185
state-of-the-art, 176–177
universal, 169

206 Index

hash map, see hash table
hash table

Delete, 153, 164
Insert, 153, 164, 166
Lookup, 153, 164, 166
advice, 173
applications, 154–159
as an array, 151, 160
bucket, 163
collision-resolution strategies,

177–178
for de-duplication, 155
for searching a huge state

space, 158
for the 2-SUM problem, 156–

158
hash function, see hash func-

tion
heuristic analysis, 175
in compilers, 154
in network routers, 154
in security applications, 169
iteration, 155
load, 174
load vs. performance, 176
non-pathological data set,

169
operation running times, 153
performance of chaining, 164–

165, 174–175
performance of open address-

ing, 167, 175
probe sequence, 165
raison d’être, 151
resizing to manage load, 176
scorecard, 153, 160, 175
space usage, 153
supported operations, 153
vs. arrays, 160
vs. bloom filters, 178
vs. linked lists, 160
when to use, 154
with chaining, 163–165, 177
with double hashing, 167, 175

with linear probing, 166–167,
175, 177

with open addressing, 165–
167, 177

head (of an edge), 2
heap (data structure)

DecreaseKey, 111
Delete, 100, 125
ExtractMax, 99
ExtractMin, 98, 119
FindMin, 99
Heapify, 99
Insert, 98, 115
applications, 101–105
as a tree, 112
as an array, 114
bubble/heapify/sift (up or

down), 118, 121, 125
for an event manager, 103
for median maintenance, 104,

150
for sorting, 102
for speeding up Dijkstra’s al-

gorithm, 105–112
heap property, 112
keys, 98
operation running times, 99,

100
parent-child formulas, 115
raison d’être, 99
scorecard, 100
supported operations, 98–100
vs. search trees, 131–133
when to use, 100

heap (memory), 98
HeapSort, 102–103

i.e., 13
independence (in probability), 185
induction, see proofs, by induc-

tion
inductive hypothesis, 85
inductive step, 85
interview questions, ix

Index 207

invariant, 105

Java, 130, 171

key, 98
Kleinberg, Jon, 69
Knuth, Donald E., 175
Kosaraju, 62
Kosaraju’s algorithm

correctness, 65
example, 63
from 30,000 feet, 57
implementation, 62, 75
pseudocode, 62
running time analysis, 65
why the reversed graph?, 58–

61
Kosaraju, S. Rao, 57
Kumar, Ravi, 67

Lehman, Eric, x
Leighton, F. Thomson, x
Leiserson, Charles E., 145
lemma, 21
length

of a path, 77
of an edge, 76

linearity of expectation, 175
Linux kernel, 130

Maghoul, Farzin, 67
mathematical background, x
median, 104
Meyer, Albert R., x

network
movie, 16
physical, 16
road, 2
social, 3

node, see vertex (of a graph)
null pointer, 131

pathological data set, 168–169
paying the piper, 109, 144

Pigeonhole Principle, 162, 169
planning (as graph search), 17
principle of parsimony, 96
priority queue, see heap
probability, 175
programming, x, 20
programming problems, xi
proofs, x

by contradiction, 24
by induction, 85
on reading, 85

proposition, 21
pseudocode, 20

QE D (q.e.d.), 24
queue, 26, 95
quizzes, x

Raghavan, Prabhakar, 67
Rajagopalan, Sridhar, 67
recursion, 43
reduction, 79, 83
Rivest, Ronald L., 145

SCC, see strongly connected com-
ponents

scorecards, 12, 100, 128, 129, 153,
160, 175, 180

search tree
Delete, 129, 139, 144
Insert, 129, 138, 144
Max, 126, 135
Min, 126, 135
OutputSorted, 127, 137
Predecessor, 127, 136
Rank, 127, 142
Search, 126, 134
Select, 127, 142–144
Successor, 127, 136
2-3, 145
applications, 130
augmented, 142, 144
AVL, 145
B, 145

208 Index

balanced, 130, 144–148
height, 133
in-order traversal, 138
operation running times, 130
pointers, 131
raison d’être, 129
red-black, 145, 146
rotation, 146–148
scorecard, 129
search tree property, 131
splay, 145
supported operations, 129
vs. heaps, 131–133
vs. sorted arrays, 126, 131
when to use, 130

Sedgewick, Robert, 146
SelectionSort, 101
separate chaining, see hash table,

with chaining
Sharir, Micha, 57
shortest paths

and Bacon numbers, 17
bottleneck, 93, 124
distance, 30, 77
nonnegative edge lengths, 78
problem definition, 31, 76
via breadth-first search, 31–

33, 78
via Dijkstra’s algorithm, see

Dijkstra’s shortest-path
algorithm

with negative edge lengths,
78, 83

with unit edge lengths, 31, 79
single-source shortest path prob-

lem, 76
six degrees of separation, 69
small world property, 69
solutions, xi, 200–202
sorted array

scorecard, 128
supported operations, 126
unsupported operations, 129
vs. search trees, 131

sorting, 101–103
stack (data structure), 42, 95

pop, 42
push, 42

stack (memory), 44
Stanford Lagunita, x
starred sections, viii, 54
Stata, Raymie, 67
Stein, Clifford, 145
strongly connected components

and the 2SAT problem, 74
definition, 54
giant, 68
in a reversed graph, 61, 66
linear-time computation, see

Kosaraju’s algorithm
meta-graph of, 55
sink, 58
source, 59
topological ordering of, 55, 60
via depth-first search, 54, 56

Sudoku, 17

tail (of an edge), 2
Tarjan, Robert E., 54, 124
task scheduling, 3, 45, 46
test cases, xi
theorem, 21
Tomkins, Andrew, 67
topological ordering

definition, 45
existence in directed acyclic

graphs, 47–49
non-existence, 46

topological sorting, 44–52
example, 50
linear-time computation, 51
problem definition, 49
pseudocode, 49

TopoSort, 49
correctness, 52
in non-acyclic graphs, 53, 58
run backward, 63
running time analysis, 52

Index 209

tree, 6
binary, 112
chain, 133
depth, 133
full, 112
height, 130, 133
root, 112
search, see search tree

2SAT, 74
2-SUM, 156–158, 192

UCC, 37
correctness, 39
running time analysis, 39

upshot, viii

vertex (of a graph), 1
degree, 13
reachable, 19
sink, 47
source, 47, 76
starting, 76

videos, x
bonus, 146, 169, 176

Wallach, Dan S., 169
Wayne, Kevin, 146
Web graph, 3, 66–69

as a sparse graph, 10
bow tie, 68
connectivity, 69
giant component, 68
size, 10, 68, 154

whack-a-mole, 115
why bother?, viii
Wiener, Janet, 67
World Wide Web, see Web graph

yottabyte, 154
YouTube, x

	Preface
	Graphs: The Basics
	Some Vocabulary
	A Few Applications
	Measuring the Size of a Graph
	Representing a Graph
	Problems

	Graph Search and Its Applications
	Overview
	Breadth-First Search and Shortest Paths
	Computing Connected Components
	Depth-First Search
	Topological Sort
	Computing Strongly Connected Components
	The Structure of the Web
	Problems

	Dijkstra's Shortest-Path Algorithm
	The Single-Source Shortest Path Problem
	Dijkstra's Algorithm
	Why Is Dijkstra's Algorithm Correct?
	Implementation and Running Time
	Problems

	The Heap Data Structure
	Data Structures: An Overview
	Supported Operations
	Applications
	Speeding Up Dijkstra's Algorithm
	Implementation Details
	Problems

	Search Trees
	Sorted Arrays
	Search Trees: Supported Operations
	Implementation Details
	Balanced Search Trees
	Problems

	Hash Tables and Bloom Filters
	Supported Operations
	Applications
	Implementation: High-Level Ideas
	Further Implementation Details
	Bloom Filters: The Basics
	Bloom Filters: Heuristic Analysis
	Problems

	Quick Review of Asymptotic Notation
	The Gist
	Big-O Notation
	Examples
	Big-Omega and Big-Theta Notation

	Solutions to Selected Problems
	Index

		2018-08-08T10:48:55+0000
	Preflight Ticket Signature

