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Preface

This book is the first of a four-part series based on my online algorithms
courses that have been running regularly since 2012, which in turn
are based on an undergraduate course that I’ve taught many times at
Stanford University.

What We’ll Cover

Algorithms Illuminated, Part 1 provides an introduction to and basic
literacy in the following four topics.

Asymptotic analysis and big-O notation. Asymptotic notation
provides the basic vocabulary for discussing the design and analysis
of algorithms. The key concept here is “big-O” notation, which is a
modeling choice about the granularity with which we measure the
running time of an algorithm. We’ll see that the sweet spot for clear
high-level thinking about algorithm design is to ignore constant factors
and lower-order terms, and to concentrate on how an algorithm’s
performance scales with the size of the input.

Divide-and-conquer algorithms and the master method.
There’s no silver bullet in algorithm design, no single problem-solving
method that cracks all computational problems. However, there are
a few general algorithm design techniques that find successful ap-
plication across a range of different domains. In this part of the
series, we’ll cover the “divide-and-conquer” technique. The idea is
to break a problem into smaller subproblems, solve the subproblems
recursively, and then quickly combine their solutions into one for the
original problem. We’ll see fast divide-and-conquer algorithms for
sorting, integer and matrix multiplication, and a basic problem in
computational geometry. We’ll also cover the master method, which is

vii



viii Preface

a powerful tool for analyzing the running time of divide-and-conquer
algorithms.

Randomized algorithms. A randomized algorithm “flips coins” as
it runs, and its behavior can depend on the outcomes of these coin
flips. Surprisingly often, randomization leads to simple, elegant, and
practical algorithms. The canonical example is randomized QuickSort,
and we’ll explain this algorithm and its running time analysis in detail.
We’ll see further applications of randomization in Part 2.

Sorting and selection. As a byproduct of studying the first three
topics, we’ll learn several famous algorithms for sorting and selection,
including MergeSort, QuickSort, and linear-time selection (both ran-
domized and deterministic). These computational primitives are so
blazingly fast that they do not take much more time than that needed
just to read the input. It’s important to cultivate a collection of such
“for-free primitives,” both to apply directly to data and to use as the
building blocks for solutions to more difficult problems.

For a more detailed look into the book’s contents, check out the
“Upshot” sections that conclude each chapter and highlight the most
important points.

Topics covered in the other three parts. Algorithms Illumi-

nated, Part 2 covers data structures (heaps, balanced search trees,
hash tables, bloom filters), graph primitives (breadth- and depth-first
search, connectivity, shortest paths), and their applications (rang-
ing from deduplication to social network analysis). Part 3 focuses
on greedy algorithms (scheduling, minimum spanning trees, cluster-
ing, Huffman codes) and dynamic programming (knapsack, sequence
alignment, shortest paths, optimal search trees). Part 4 is all about
NP -completeness, what it means for the algorithm designer, and
strategies for coping with computationally intractable problems, in-
cluding the analysis of heuristics and local search.

Skills You’ll Learn

Mastering algorithms takes time and effort. Why bother?

Become a better programmer. You’ll learn several blazingly fast
subroutines for processing data and several useful data structures for
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organizing data that can be deployed directly in your own programs.
Implementing and using these algorithms will stretch and improve
your programming skills. You’ll also learn general algorithm design
paradigms that are relevant for many different problems across differ-
ent domains, as well as tools for predicting the performance of such
algorithms. These “algorithmic design patterns” can help you come
up with new algorithms for problems that arise in your own work.

Sharpen your analytical skills. You’ll get lots of practice describ-
ing and reasoning about algorithms. Through mathematical analysis,
you’ll gain a deep understanding of the specific algorithms and data
structures covered in these books. You’ll acquire facility with sev-
eral mathematical techniques that are broadly useful for analyzing
algorithms.

Think algorithmically. After learning about algorithms it’s hard
not to see them everywhere, whether you’re riding an elevator, watch-
ing a flock of birds, managing your investment portfolio, or even
watching an infant learn. Algorithmic thinking is increasingly useful
and prevalent in disciplines outside of computer science, including
biology, statistics, and economics.

Literacy with computer science’s greatest hits. Studying al-
gorithms can feel like watching a highlight reel of many of the greatest
hits from the last sixty years of computer science. No longer will you
feel excluded at that computer science cocktail party when someone
cracks a joke about Dijkstra’s algorithm. After reading these books,
you’ll know exactly what they mean.

Ace your technical interviews. Over the years, countless stu-
dents have regaled me with stories about how mastering the concepts
in these books enabled them to ace every technical interview question
they were ever asked.

How These Books Are Different

This series of books has only one goal: to teach the basics of algorithms

in the most accessible way possible. Think of them as a transcript
of what an expert algorithms tutor would say to you over a series of
one-on-one lessons.
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There are a number of excellent more traditional and more encyclo-
pedic textbooks on algorithms, any of which usefully complement this
book series with additional details, problems, and topics. I encourage
you to explore and find your own favorites. There are also several
books that, unlike these books, cater to programmers looking for
ready-made algorithm implementations in a specific programming
language. Many such implementations are freely available on the Web
as well.

Who Are You?

The whole point of these books and the online courses they are based
on is to be as widely and easily accessible as possible. People of all
ages, backgrounds, and walks of life are well represented in my online
courses, and there are large numbers of students (high-school, college,
etc.), software engineers (both current and aspiring), scientists, and
professionals hailing from all corners of the world.

This book is not an introduction to programming, and ideally
you’ve acquired basic programming skills in a standard language (like
Java, Python, C, Scala, Haskell, etc.). For a litmus test, check out
Section 1.4—if it makes sense, you’ll be fine for the rest of the book.
If you need to beef up your programming skills, there are several
outstanding free online courses that teach basic programming.

We also use mathematical analysis as needed to understand
how and why algorithms really work. The freely available lecture
notes Mathematics for Computer Science, by Eric Lehman and Tom
Leighton, are an excellent and entertaining refresher on mathematical
notation (like

P
and 8), the basics of proofs (induction, contradiction,

etc.), discrete probability, and much more.1 Appendices A and B also
provide quick reviews of proofs by induction and discrete probability,
respectively. The starred sections are the most mathematically intense
ones. The math-phobic or time-constrained reader can skip these on
a first reading without loss of continuity.

Additional Resources

These books are based on online courses that are currently running
on the Coursera and Stanford Lagunita platforms. There are several

1http://www.boazbarak.org/cs121/LehmanLeighton.pdf.

http://www.boazbarak.org/cs121/LehmanLeighton.pdf
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resources available to help you replicate as much of the online course
experience as you like.

Videos. If you’re more in the mood to watch and listen than
to read, check out the YouTube video playlists available from
www.algorithmsilluminated.org. These videos cover all of the top-
ics of this book series. I hope they exude a contagious enthusiasm for
algorithms that, alas, is impossible to replicate fully on the printed
page.

Quizzes. How can you know if you’re truly absorbing the concepts
in this book? Quizzes with solutions and explanations are scattered
throughout the text; when you encounter one, I encourage you to
pause and think about the answer before reading on.

End-of-chapter problems. At the end of each chapter you’ll find
several relatively straightforward questions to test your understanding,
followed by harder and more open-ended challenge problems. Solutions
to these end-of-chapter problems are not included here, but readers
can interact with me and each other about them through the book’s
discussion forum (see below).

Programming problems. Many of the chapters conclude with
a suggested programming project, where the goal is to develop a
detailed understanding of an algorithm by creating your own working
implementation of it. Data sets, along with test cases and their
solutions, can be found at www.algorithmsilluminated.org.

Discussion forums. A big reason for the success of online courses
is the opportunities they provide for participants to help each other
understand the course material and debug programs through discus-
sion forums. Readers of these books have the same opportunity, via
the forums available from www.algorithmsilluminated.org.

Acknowledgments

These books would not exist without the passion and hunger supplied
by the thousands of participants in my algorithms courses over the
years, both on-campus at Stanford and on online platforms. I am par-
ticularly grateful to those who supplied detailed feedback on an earlier
draft of this book: Tonya Blust, Yuan Cao, Jim Humelsine, Bayram

www.algorithmsilluminated.org
www.algorithmsilluminated.org
www.algorithmsilluminated.org
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Kuliyev, Patrick Monkelban, Kyle Schiller, Nissanka Wickremasinghe,
and Daniel Zingaro.

I always appreciate suggestions and corrections from readers, which
are best communicated through the discussion forums mentioned
above.

Stanford University Tim Roughgarden
Stanford, California September 2017



Chapter 1

Introduction

The goal of this chapter is to get you excited about the study of
algorithms. We begin by discussing algorithms in general and why
they’re so important. Then we use the problem of multiplying two
integers to illustrate how algorithmic ingenuity can improve on more
straightforward or naive solutions. We then discuss the MergeSort

algorithm in detail, for several reasons: it’s a practical and famous
algorithm that you should know; it’s a good warm-up to get you ready
for more intricate algorithms; and it’s the canonical introduction to
the “divide-and-conquer” algorithm design paradigm. The chapter
concludes by describing several guiding principles for how we’ll analyze
algorithms throughout the rest of the book.

1.1 Why Study Algorithms?

Let me begin by justifying this book’s existence and giving you some
reasons why you should be highly motivated to learn about algorithms.
So what is an algorithm, anyway? It’s a set of well-defined rules—a
recipe, in effect—for solving some computational problem. Maybe
you have a bunch of numbers and you want to rearrange them so that
they’re in sorted order. Maybe you have a road map and you want
to compute the shortest path from some origin to some destination.
Maybe you need to complete several tasks before certain deadlines,
and you want to know in what order you should finish the tasks so
that you complete them all by their respective deadlines.

So why study algorithms?

Important for all other branches of computer science. First,
understanding the basics of algorithms and the closely related field
of data structures is essential for doing serious work in pretty much
any branch of computer science. For example, at Stanford University,

1



2 Introduction

every degree the computer science department offers (B.S., M.S., and
Ph.D.) requires an algorithms course. To name just a few examples:

1. Routing protocols in communication networks piggyback on
classical shortest path algorithms.

2. Public-key cryptography relies on efficient number-theoretic
algorithms.

3. Computer graphics requires the computational primitives sup-
plied by geometric algorithms.

4. Database indices rely on balanced search tree data structures.

5. Computational biology uses dynamic programming algorithms
to measure genome similarity.

And the list goes on.

Driver of technological innovation. Second, algorithms play a
key role in modern technological innovation. To give just one obvious
example, search engines use a tapestry of algorithms to efficiently
compute the relevance of various Web pages to a given search query.
The most famous such algorithm is the PageRank algorithm currently
in use by Google. Indeed, in a December 2010 report to the United
States White House, the President’s council of advisers on science
and technology wrote the following:

“Everyone knows Moore’s Law –– a prediction made in
1965 by Intel co-founder Gordon Moore that the density
of transistors in integrated circuits would continue to
double every 1 to 2 years. . . in many areas, performance
gains due to improvements in algorithms have vastly
exceeded even the dramatic performance gains due to
increased processor speed.”1

1Excerpt from Report to the President and Congress: Designing a Digital
Future, December 2010 (page 71).
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Lens on other sciences. Third, although this is beyond the scope
of this book, algorithms are increasingly used to provide a novel
“lens” on processes outside of computer science and technology. For
example, the study of quantum computation has provided a new
computational viewpoint on quantum mechanics. Price fluctuations
in economic markets can be fruitfully viewed as an algorithmic process.
Even evolution can be thought of as a surprisingly effective search
algorithm.

Good for the brain. Back when I was a student, my favorite classes
were always the challenging ones that, after I struggled through them,
left me feeling a few IQ points smarter than when I started. I hope
this material provides a similar experience for you.

Fun! Finally, I hope that by the end of the book you can see why
the design and analysis of algorithms is simply fun. It’s an endeavor
that requires a rare blend of precision and creativity. It can certainly
be frustrating at times, but it’s also highly addictive. And let’s not
forget that you’ve been learning about algorithms since you were a
little kid.

1.2 Integer Multiplication

1.2.1 Problems and Solutions

When you were in third grade or so, you probably learned an algorithm
for multiplying two numbers—a well-defined set of rules for trans-
forming an input (two numbers) into an output (their product). It’s
important to distinguish between two different things: the description
of the problem being solved, and that of the method of solution (that is,
the algorithm for the problem). In this book, we’ll repeatedly follow
the pattern of first introducing a computational problem (the inputs
and desired output), and then describing one or more algorithms that
solve the problem.

1.2.2 The Integer Multiplication Problem

In the integer multiplication problem, the input is two n-digit numbers,
which we’ll call x and y. The length n of x and y could be any positive
integer, but I encourage you to think of n as large, in the thousands or
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even more.2 (Perhaps you’re implementing a cryptographic application
that must manipulate very large numbers.) The desired output in the
integer multiplication problem is just the product x · y.

Problem: Integer Multiplication

Input: Two n-digit nonnegative integers, x and y.

Output: The product x · y.

1.2.3 The Grade-School Algorithm

Having defined the computational problem precisely, we describe an
algorithm that solves it—the same algorithm you learned in third
grade. We will assess the performance of this algorithm through the
number of “primitive operations” it performs, as a function of the
number of digits n in each input number. For now, let’s think of a
primitive operation as any of the following: (i) adding two single-digit
numbers; (ii) multiplying two single-digit numbers; or (iii) adding a
zero to the beginning or end of a number.

To jog your memory, consider the concrete example of multiplying
x = 5678 and y = 1234 (so n = 4). See also Figure 1.1. The algorithm
first computes the “partial product” of the first number and the last
digit of the second number 5678 · 4 = 22712. Computing this partial
product boils down to multiplying each of the digits of the first number
by 4, and adding in “carries” as necessary.3 When computing the next
partial product (5678 · 3 = 17034), we do the same thing, shifting the
result one digit to the left, effectively adding a “0” at the end. And so
on for the final two partial products. The final step is to add up all
the partial products.

Back in third grade, you probably accepted that this algorithm is
correct, meaning that no matter what numbers x and y you start with,
provided that all intermediate computations are done properly, it
eventually terminates with the product x · y of the two input numbers.

2If you want to multiply numbers with different lengths (like 1234 and 56),
a simple hack is to just add some zeros to the beginning of the smaller number
(for example, treat 56 as 0056). Alternatively, the algorithms we’ll discuss can be
modified to accommodate numbers with different lengths.

3
8 · 4 = 32, carry the 3, 7 · 4 = 28, plus 3 is 31, carry the 3, . . .
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5678 
× 1234 
22712 

17034 
11356 
5678 
7006652 

�2n operations  
(per row) 

n rows 

Figure 1.1: The grade-school integer multiplication algorithm.

That is, you’re never going to get a wrong answer, and the algorithm
can’t loop forever.

1.2.4 Analysis of the Number of Operations

Your third-grade teacher might not have discussed the number of
primitive operations needed to carry out this procedure to its con-
clusion. To compute the first partial product, we multiplied 4 times
each of the digits 5, 6, 7, 8 of the first number. This is 4 primitive
operations. We also performed a few additions because of the carries.
In general, computing a partial product involves n multiplications
(one per digit) and at most n additions (at most one per digit), for
a total of at most 2n primitive operations. There’s nothing special
about the first partial product: every partial product requires at most
2n operations. Since there are n partial products—one per digit of the
second number—computing all of them requires at most n · 2n = 2n2

primitive operations. We still have to add them all up to compute
the final answer, but this takes a comparable number of operations
(at most another 2n2). Summarizing:

total number of operations  constant| {z }
=4

·n2.

Thinking about how the amount of work the algorithm performs
scales as the input numbers grow bigger and bigger, we see that the
work required grows quadratically with the number of digits. If you
double the length of the input numbers, the work required jumps by
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a factor of 4. Quadruple their length and it jumps by a factor of 16,
and so on.

1.2.5 Can We Do Better?

Depending on what type of third-grader you were, you might well
have accepted this procedure as the unique or at least optimal way
to multiply two numbers. If you want to be a serious algorithm
designer, you’ll need to grow out of that kind of obedient timidity.
The classic algorithms book by Aho, Hopcroft, and Ullman, after
iterating through a number of algorithm design paradigms, has this
to say:

“Perhaps the most important principle for the good
algorithm designer is to refuse to be content.”4

Or as I like to put it, every algorithm designer should adopt the
mantra:

Can we do better?

This question is particularly apropos when you’re faced with a naive
or straightforward solution to a computational problem. In the third
grade, you might not have asked if one could do better than the
straightforward integer multiplication algorithm. Now is the time to
ask, and answer, this question.

1.3 Karatsuba Multiplication

The algorithm design space is surprisingly rich, and there are certainly
other interesting methods of multiplying two integers beyond what
you learned in the third grade. This section describes a method called
Karatsuba multiplication.5

4Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman, The Design and

Analysis of Computer Algorithms, Addison-Wesley, 1974, page 70.
5Discovered in 1960 by Anatoly Karatsuba, who at the time was a 23-year-old

student.



1.3 Karatsuba Multiplication 7

1.3.1 A Concrete Example

To get a feel for Karatsuba multiplication, let’s re-use our previous
example with x = 5678 and y = 1234. We’re going to execute a
sequence of steps, quite different from the grade-school algorithm,
culminating in the product x · y. The sequence of steps should strike
you as very mysterious, like pulling a rabbit out of a hat; later in
the section we’ll explain exactly what Karatsuba multiplication is
and why it works. The key point to appreciate now is that there’s
a dazzling array of options for solving computational problems like
integer multiplication.

First, to regard the first and second halves of x as numbers in their
own right, we give them the names a and b (so a = 56 and b = 78).
Similarly, c and d denote 12 and 34, respectively (Figure 1.2).

5678 
× 1234 

a b 

c d 

Figure 1.2: Thinking of 4-digit numbers as pairs of double-digit numbers.

Next we’ll perform a sequence of operations that involve only the
double-digit numbers a, b, c, and d, and finally collect all the terms
together in a magical way that results in the product of x and y.

Step 1: Compute a · c = 56 · 12, which is 672 (as you’re welcome to
check).

Step 2: Compute b · d = 78 · 34 = 2652.

The next two steps are still more inscrutable.

Step 3: Compute (a+ b) · (c+ d) = 134 · 46 = 6164.

Step 4: Subtract the results of the first two steps from the result
of the third step: 6164� 672� 2652 = 2840.
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Finally, we add up the results of steps 1, 2, and 4, but only after
adding four trailing zeroes to the answer in step 1 and 2 trailing zeroes
to the answer in step 4.

Step 5: Compute 10

4 · 672 + 10

2 · 2840 + 2652 =

6720000 + 284000 + 2652 = 70066552.

This is exactly the same (correct) result computed by the grade-
school algorithm in Section 1.2!

You should not have any intuition about what just happened.
Rather, I hope that you feel some mixture of bafflement and intrigue,
and appreciate the fact that there seem to be fundamentally different
algorithms for multiplying integers than the one you learned as a kid.
Once you realize how rich the space of algorithms is, you have to
wonder: can we do better than the third-grade algorithm? Does the
algorithm above already do better?

1.3.2 A Recursive Algorithm

Before tackling full-blown Karatsuba multiplication, let’s explore a
simpler recursive approach to integer multiplication.6 A recursive
algorithm for integer multiplication presumably involves multiplica-
tions of numbers with fewer digits (like 12, 34, 56, and 78 in the
computation above).

In general, a number x with an even number n of digits can be
expressed in terms of two n/2-digit numbers, its first half and second
half a and b:

x = 10

n/2 · a+ b.

Similarly, we can write

y = 10

n/2 · c+ d.

To compute the product of x and y, let’s use the two expressions
above and multiply out:

x · y = (10

n/2 · a+ b) · (10n/2 · c+ d)

= 10

n · (a · c) + 10

n/2 · (a · d+ b · c) + b · d. (1.1)

6I’m assuming you’ve heard of recursion as part of your programming back-
ground. A recursive procedure is one that invokes itself as a subroutine with a
smaller input, until a base case is reached.
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Note that all of the multiplications in (1.1) are either between pairs
of n/2-digit numbers or involve a power of 10.7

The expression (1.1) suggests a recursive approach to multiplying
two numbers. To compute the product x · y, we compute the expres-
sion (1.1). The four relevant products (a · c, a · d, b · c, and b · d) all
concern numbers with fewer than n digits, so we can compute each of
them recursively. Once our four recursive calls come back to us with
their answers, we can compute the expression (1.1) in the obvious way:
tack on n trailing zeroes to a · c, add a · d and b · c (using grade-school
addition) and tack on n/2 trailing zeroes to the result, and finally add
these two expressions to b · d.8 We summarize this algorithm, which
we’ll call RecIntMult, in the following pseudocode.9

RecIntMult

Input: two n-digit positive integers x and y.
Output: the product x · y.
Assumption: n is a power of 2.

if n = 1 then // base case

compute x · y in one step and return the result
else // recursive case

a, b := first and second halves of x
c, d := first and second halves of y
recursively compute ac := a · c, ad := a · d,
bc := b · c, and bd := b · d

compute 10

n · ac+ 10

n/2 · (ad+ bc) + bd using
grade-school addition and return the result

Is the RecIntMult algorithm faster or slower than the grade-school
7For simplicity, we are assuming that n is a power of 2. A simple hack for

enforcing this assumption is to add an appropriate number of leading zeroes to x
and y, which at most doubles their lengths. Alternatively, when n is odd, it’s also
fine to break x and y into two numbers with almost equal lengths.

8Recursive algorithms also need one or more base cases, so that they don’t
keep calling themselves until the rest of time. Here, the base case is: if x and y
are 1-digit numbers, just multiply them in one primitive operation and return the
result.

9In pseudocode, we use “=” to denote an equality test, and “ :=” to denote a
variable assignment.
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algorithm? You shouldn’t necessarily have any intuition about this
question, and the answer will have to wait until Chapter 4.

1.3.3 Karatsuba Multiplication

Karatsuba multiplication is an optimized version of the RecIntMult

algorithm. We again start from the expansion (1.1) of x · y in terms
of a, b, c, and d. The RecIntMult algorithm uses four recursive calls,
one for each of the products in (1.1) between n/2-digit numbers. But
we don’t really care about a · d or b · c, except inasmuch as we care
about their sum a · d+ b · c. With only three quantities that we care
about—a · c, a · d+ b · c, and b · d—can we get away with only three
recursive calls?

To see that we can, first use two recursive calls to compute a · c
and b · d, as before.

Step 1: Recursively compute a · c.

Step 2: Recursively compute b · d.

Instead of recursively computing a·d or b·c, we recursively compute
the product of a+ b and c+ d.10

Step 3: Compute a + b and c + d (using grade-school addition),
and recursively compute (a+ b) · (c+ d).

The key trick in Karatsuba multiplication goes back to the early
19th-century mathematician Carl Friedrich Gauss, who was thinking
about multiplying complex numbers. Subtracting the results of the
first two steps from the result of the third step gives exactly what we
want, the middle coefficient in (1.1) of a · d+ b · c:

(a+ b) · (c+ d)| {z }
=a·c+a·d+b·c+b·d

�a · c� b · d = a · d+ b · c.

Step 4: Subtract the results of the first two steps from the result
of the third step to obtain a · d+ b · c.

The final step computes (1.1), as in the RecIntMult algorithm.
10The numbers a+ b and c+ d might have as many as (n/2) + 1 digits, but

the algorithm still works fine.
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Step 5: Compute (1.1) by adding up the results of steps 1, 2, and
4, after adding 10

n trailing zeroes to the answer in step 1 and 10

n/2

trailing zeroes to the answer in step 4.

Karatsuba

Input: two n-digit positive integers x and y.
Output: the product x · y.
Assumption: n is a power of 2.

if n = 1 then // base case

compute x · y in one step and return the result
else // recursive case

a, b := first and second halves of x
c, d := first and second halves of y
compute p := a+ b and q := c+ d using
grade-school addition

recursively compute ac := a · c, bd := b · d, and
pq := p · q

compute adbc := pq � ac� bd using grade-school
addition

compute 10

n · ac+ 10

n/2 · adbc+ bd using
grade-school addition and return the result

Thus Karatsuba multiplication makes only three recursive calls! Sav-
ing a recursive call should save on the overall running time, but by
how much? Is the Karatsuba algorithm faster than the grade-school
multiplication algorithm? The answer is far from obvious, but it is an
easy application of the tools you’ll acquire in Chapter 4 for analyzing
the running time of such “divide-and-conquer” algorithms.

On Pseudocode

This book explains algorithms using a mixture of
high-level pseudocode and English (as in this section).
I’m assuming that you have the skills to translate
such high-level descriptions into working code in your
favorite programming language. Several other books
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and resources on the Web offer concrete implementa-
tions of various algorithms in specific programming
languages.

The first benefit of emphasizing high-level descrip-
tions over language-specific implementations is flexi-
bility: while I assume familiarity with some program-
ming language, I don’t care which one. Second, this
approach promotes the understanding of algorithms
at a deep and conceptual level, unencumbered by low-
level details. Seasoned programmers and computer
scientists generally think and communicate about al-
gorithms at a similarly high level.

Still, there is no substitute for the detailed under-
standing of an algorithm that comes from providing
your own working implementation of it. I strongly
encourage you to implement as many of the algo-
rithms in this book as you have time for. (It’s also a
great excuse to pick up a new programming language!)
For guidance, see the end-of-chapter Programming
Problems and supporting test cases.

1.4 MergeSort: The Algorithm

This section provides our first taste of analyzing the running time of
a non-trivial algorithm—the famous MergeSort algorithm.

1.4.1 Motivation

MergeSort is a relatively ancient algorithm, and was certainly known
to John von Neumann as early as 1945. Why begin a modern course
on algorithms with such an old example?

Oldie but a goodie. Despite being over 70 years old, MergeSort
is still one of the methods of choice for sorting. It’s used all the time
in practice, and is the standard sorting algorithm in a number of
programming libraries.
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Canonical divide-and-conquer algorithm. The “divide-and-
conquer” algorithm design paradigm is a general approach to solving
problems, with applications in many different domains. The basic
idea is to break your problem into smaller subproblems, solve the
subproblems recursively, and finally combine the solutions to the
subproblems into one for the original problem. MergeSort is an ideal
introduction to the divide-and-conquer paradigm, the benefits it offers,
and the analysis challenges it presents.

Calibrate your preparation. Our MergeSort discussion will give
you a good indication of whether your current skill set is a good match
for this book. My assumption is that you have the programming and
mathematical backgrounds to (with some work) translate the high-
level idea of MergeSort into a working program in your favorite
programming language and to follow our running time analysis of the
algorithm. If this and the next section make sense, then you are in
good shape for the rest of the book.

Motivates guiding principles for algorithm analysis. Our run-
ning time analysis of MergeSort exposes a number of more general
guiding principles, such as the quest for running time bounds that
hold for every input of a given size, and the importance of the rate
of growth of an algorithm’s running time (as a function of the input
size).

Warm-up for the master method. We’ll analyze MergeSort us-
ing the “recursion tree method,” which is a way of tallying up the
operations performed by a recursive algorithm. Chapter 4 builds on
these ideas and culminates with the “master method,” a powerful
and easy-to-use tool for bounding the running time of many differ-
ent divide-and-conquer algorithms, including the RecIntMult and
Karatsuba algorithms of Section 1.3.

1.4.2 Sorting

You probably already know the sorting problem and some algorithms
that solve it, but just so we’re all on the same page:
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Problem: Sorting

Input: An array of n numbers, in arbitrary order.

Output: An array of the same numbers, sorted from small-
est to largest.

For example, given the input array

5 4 1 8 7 2 6 3 

the desired output array is

1 2 3 4 5 6 7 8 

In the example above, the eight numbers in the input array are
distinct. Sorting isn’t really any harder when there are duplicates,
and it can even be easier. But to keep the discussion as simple as
possible, let’s assume—among friends—that the numbers in the input
array are always distinct. I strongly encourage you to think about
how our sorting algorithms need to be modified (if at all) to handle
duplicates.11

If you don’t care about optimizing the running time, it’s not
too difficult to come up with a correct sorting algorithm. Perhaps
the simplest approach is to first scan through the input array to
identify the minimum element and copy it over to the first element
of the output array; then do another scan to identify and copy over
the second-smallest element; and so on. This algorithm is called
SelectionSort. You may have heard of InsertionSort, which can
be viewed as a slicker implementation of the same idea of iteratively
growing a prefix of the sorted output array. You might also know
BubbleSort, in which you identify adjacent pairs of elements that

11In practice, there is often data (called the value) associated with each number
(which is called the key). For example, you might want to sort employee records
(with the name, salary, etc.), using social security numbers as keys. We focus on
sorting the keys, with the understanding that each key retains its associated data.
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are out of order, and perform repeated swaps until the entire array is
sorted. All of these algorithms have quadratic running times, meaning
that the number of operations performed on arrays of length n scales
with n2, the square of the input length. Can we do better? By using
the divide-and-conquer paradigm, the MergeSort algorithm improves
dramatically over these more straightforward sorting algorithms.12

1.4.3 An Example

The easiest way to understand MergeSort is through a picture of
a concrete example (Figure 1.3). We’ll use the input array from
Section 1.4.2.

1 2 3 4 5 6 7 8 

5 4 1 8 7 2 6 3 

5 4 1 8 7 2 6 3 

1 4 5 8 2 3 6 7 

divide 

. 

. 

. 

.  

. 

. 

. 

.  
recursive calls 

merge 

Figure 1.3: A bird’s-eye view of MergeSort on a concrete example.

As a recursive divide-and-conquer algorithm, MergeSort calls itself
on smaller arrays. The simplest way to decompose a sorting problem
into smaller sorting problems is to break the input array in half. The
first and second halves are each sorted recursively. For example, in

12While generally dominated by MergeSort, InsertionSort is still useful in
practice in certain cases, especially for small input sizes.
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Figure 1.3, the first and second halves of the input array are {5, 4, 1, 8}
and {7, 2, 6, 3}. By the magic of recursion (or induction, if you prefer),
the first recursive call correctly sorts the first half, returning the array
{1, 4, 5, 8}. The second recursive call returns the array {2, 3, 6, 7}.
The final “merge” step combines these two sorted arrays of length 4
into a single sorted array of all 8 numbers. Details of this step are
given below, but the idea is to walk indices down each of the sorted
subarrays, populating the output array from left to right in sorted
order.

1.4.4 Pseudocode

The picture in Figure 1.3 suggests the following pseudocode, with
two recursive calls and a merge step, for the general problem. As
usual, our description cannot necessarily be translated line by line
into working code (though it’s pretty close).

MergeSort

Input: array A of n distinct integers.
Output: array with the same integers, sorted from
smallest to largest.

// ignoring base cases

C := recursively sort first half of A
D := recursively sort second half of A
return Merge (C,D)

There are several omissions from the pseudocode that deserve
comment. As a recursive algorithm, there should also be one or
more base cases, where there is no further recursion and the answer
is returned directly. So if the input array A contains only 0 or 1
elements, MergeSort returns it (it is already sorted). The pseudocode
does not detail what “first half” and “second half” mean when n is
odd, but the obvious interpretation (with one “half” having one more
element than the other) works fine. Finally, the pseudocode ignores
the implementation details of how to actually pass the two subarrays
to their respective recursive calls. These details depend somewhat
on the programming language. The point of high-level pseudocode is
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to ignore such details and focus on the concepts that transcend any
particular programming language.

1.4.5 The Merge Subroutine

How should we implement the Merge step? At this point, the two
recursive calls have done their work and we have in our possession two
sorted subarrays C and D of length n/2. The idea is to traverse both
the sorted subarrays in order and populate the output array from left
to right in sorted order.13

Merge

Input: sorted arrays C and D (length n/2 each).
Output: sorted array B (length n).
Simplifying assumption: n is even.

1 i := 1

2 j := 1

3 for k := 1 to n do
4 if C[i] < D[j] then
5 B[k] := C[i] // populate output array

6 i := i+ 1 // increment i

7 else // D[j] < C[i]
8 B[k] := D[j]
9 j := j + 1

We traverse the output array using the index k, and the sorted
subarrays with the indices i and j. All three arrays are traversed
from left to right. The for loop in line 3 implements the pass over
the output array. In the first iteration, the subroutine identifies the
minimum element in either C or D and copies it over to the first
position of the output array B. The minimum element overall is either
in C (in which case it’s C[1], since C is sorted) or in D (in which case
it’s D[1], since D is sorted). Advancing the appropriate index (i or j)

13We number our array entries beginning with 1 (rather than 0), and use
the syntax “A[i]” for the ith entry of an array A. These details vary across
programming languages.
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effectively removes from further consideration the element just copied,
and the process is then repeated to identify the smallest element
remaining in C or D (the second-smallest overall). In general, the
smallest element not yet copied over to B is either C[i] or D[j]; the
subroutine explicitly checks to see which one is smaller and proceeds
accordingly. Since every iteration copies over the smallest element still
under consideration in C or D, the output array is indeed populated
in sorted order.

As usual, our pseudocode is intentionally a bit sloppy, to emphasize
the forest over the trees. A full implementation should also keep track
of when the traversal of C or D falls off the end, at which point
the remaining elements of the other array are copied into the final
entries of B (in order). Now is a good time to work through your own
implementation of the MergeSort algorithm.

1.5 MergeSort: The Analysis

What’s the running time of the MergeSort algorithm, as a function of
the length n of the input array? Is it faster than more straightforward
methods of sorting, such as SelectionSort, InsertionSort, and
BubbleSort? By “running time,” we mean the number of lines of code
executed in a concrete implementation of the algorithm. Think of
walking line by line through this implementation using a debugger,
one “primitive operation” at a time We’re interested in the number of
steps the debugger takes before the program completes.

1.5.1 Running Time of Merge

Analyzing the running time of the MergeSort algorithm is an intim-
idating task, as it’s a recursive algorithm that calls itself over and
over. So let’s warm up with the simpler task of understanding the
number of operations performed by a single invocation of the Merge

subroutine when called on two sorted arrays of length `/2 each. We
can do this directly, by inspecting the code in Section 1.4.5 (where n
corresponds to `). First, lines 1 and 2 each perform a initialization,
and we’ll count this as two operations. Then, we have a for loop that
executes a total of ` times. Each iteration of the loop performs a
comparison in line 4, an assignment in either line 5 or line 8, and
an increment in either line 6 or line 9. The loop index k also needs
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to get incremented each loop iteration. This means that 4 primitive
operations are performed for each of the ` iterations of the loop.14

Totaling up, we conclude that the Merge subroutine performs at most
4`+ 2 operations to merge two sorted arrays of length `/2 each. Let
me abuse our friendship further with a true but sloppy inequality that
will make our lives easier: for ` � 1, 4`+ 2  6`. That is, 6` is also
a valid upper bound on the number of operations performed by the
Merge subroutine.

Lemma 1.1 (Running Time of Merge) For every pair of sorted

input arrays C,D of length `/2, the Merge subroutine performs at

most 6` operations.

On Lemmas, Theorems, and the Like

In mathematical writing, the most important techni-
cal statements are labeled theorems. A lemma is a
technical statement that assists with the proof of a
theorem (much as Merge assists with the implementa-
tion of MergeSort). A corollary is a statement that
follows immediately from an already-proved result,
such as a special case of a theorem. We use the term
proposition for stand-alone technical statements that
are not particularly important in their own right.

1.5.2 Running Time of MergeSort

How can we go from the straightforward analysis of the Merge subrou-
tine to an analysis of MergeSort, a recursive algorithm that spawns
further invocations of itself? Especially terrifying is the rapid prolifera-
tion of recursive calls, the number of which is blowing up exponentially
with the depth of the recursion. The one thing we have going for us
is the fact that every recursive call is passed an input substantially
smaller than the one we started with. There’s a tension between two

14One could quibble with the choice of 4. Does comparing the loop index k to
its upper bound also count as an additional operation each iteration, for a total
of 5? Section 1.6 explains why such differences in accounting don’t really matter.
So let’s agree, among friends, that it’s 4 primitive operations per iteration.
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competing forces: on the one hand, the explosion of different sub-
problems that need to be solved; and on the other, the ever-shrinking
inputs for which these subproblems are responsible. Reconciling these
two forces will drive our analysis of MergeSort. In the end, we’ll
prove the following concrete and useful upper bound on the number
of operations performed by MergeSort (across all its recursive calls).

Theorem 1.2 (Running Time of MergeSort) For every input ar-

ray of length n � 1, the MergeSort algorithm performs at most

6n log

2

n+ 6n

operations, where log

2

denotes the base-2 logarithm.

On Logarithms

Some students are unnecessarily frightened by the
appearance of a logarithm, which is actually a very
down-to-earth concept. For a positive integer n, log

2

n
just means the following: type n into a calculator,
and count the number of times you need to divide it
by 2 before the result is 1 or less.a For example, it
takes five divide-by-twos to bring 32 down to 1, so
log

2

32 = 5. Ten divide-by-twos bring 1024 down to 1,
so log

2

1024 = 10. These examples make it intuitively
clear that log

2

n is much less than n (compare 10 vs.
1024), especially as n grows large. A plot confirms
this intuition (Figure 1.4).

aTo be pedantic, log
2

n is not an integer if n is not a power
of 2, and what we have described is really log

2

n rounded up
to the nearest integer. We can ignore this minor distinction.

Theorem 1.2 is a win for the MergeSort algorithm and showcases
the benefits of the divide-and-conquer algorithm design paradigm. We
mentioned that the running times of simpler sorting algorithms, like
SelectionSort, InsertionSort, and BubbleSort, depend quadrat-

ically on the input size n, meaning that the number of operations
required scales as a constant times n2. In Theorem 1.2, one of these
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Figure 1.4: The logarithm function grows much more slowly than the
identity function. The base of the logarithm is 2; other bases lead to
qualitatively similar pictures.

factors of n is replaced by log

2

n. As suggested by Figure 1.4, this
means that MergeSort typically runs much faster than the simpler
sorting algorithms, especially as n grows large.15

1.5.3 Proof of Theorem 1.2

We now do a full running time analysis of MergeSort, thereby substan-
tiating the claim that a recursive divide-and-conquer approach results
in a faster sorting algorithm than more straightforward methods. For
simplicity, we assume that the input array length n is a power of 2.
This assumption can be removed with minor additional work.

The plan for proving the running time bound in Theorem 1.2 is to
use a recursion tree; see Figure 1.5.16 The idea of the recursion tree
method is to write out all the work done by a recursive algorithm in a
tree structure, with nodes of the tree corresponding to recursive calls,
and the children of a node corresponding to the recursive calls made

15See Section 1.6.3 for further discussion of this point.
16For some reason, computer scientists seem to think that trees grow downward.
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by that node. This tree structure provides us with a principled way to
tally up all the work done by MergeSort across all its recursive calls.

level 0 
(outermost call) 

. 

. 

. 

. 

level 1 
(first recursive 

calls) 

level 2 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

entire input 

left half right half 

. 

. 

. 

. 

leaves (single-element arrays) 

Figure 1.5: A recursion tree for MergeSort. Nodes correspond to recursive
calls. Level 0 corresponds to the outermost call to MergeSort, level 1 to its
recursive calls, and so on.

The root of the recursion tree corresponds to the outermost call
to MergeSort, where the input is the original input array. We’ll call
this level 0 of the tree. Since each invocation of MergeSort spawns
two recursive calls, the tree will be binary (that is, with two children
per node). Level 1 of the tree has two nodes, corresponding to the
two recursive calls made by the outermost call, one for the left half
of the input array and one for the right half. Each of the level-1
recursive calls will itself make two recursive calls, each operating on a
particular quarter of the original input array. This process continues
until eventually the recursion bottoms out with arrays of size 0 or 1
(the base cases).

Quiz 1.1

Roughly how many levels does this recursion tree have, as a
function of the length n of the input array?
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a) A constant number (independent of n)

b) log

2

n

c)
p
n

d) n

(See Section 1.5.4 for the solution and discussion.)

This recursion tree suggests a particularly convenient way to
account for the work done by MergeSort, which is level by level. To
implement this idea, we need to understand two things: the number
of distinct subproblems at a given recursion level j, and the length of
the input to each of these subproblems.

Quiz 1.2

What is the pattern? Fill in the blanks in the following
statement: at each level j = 0, 1, 2, . . . of the recursion tree,
there are [blank] subproblems, each operating on a subarray
of length [blank].

a) 2

j and 2

j , respectively

b) n/2j and n/2j , respectively

c) 2

j and n/2j , respectively

d) n/2j and 2

j , respectively

(See Section 1.5.4 for the solution and discussion.)

Let’s now put this pattern to use and tally all the operations that
MergeSort performs. We proceed level by level, so fix a level j of
the recursion tree. How much work is done by the level-j recursive
calls, not counting the work done by their recursive calls at later
levels? Inspecting the MergeSort code, we see that it does only three
things: make two recursive calls and invoke the Merge subroutine on
the results. Thus ignoring the work done by later recursive calls, the
work done by a level-j subproblem is just the work done by Merge.
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This we already understand from Lemma 1.1: at most 6` operations,
where ` is the length of the input array to this subproblem.

To put everything together, we can express the total work done
by level-j recursive calls (not counting later recursive calls) as

# of level-j subproblems| {z }
=2

j

⇥work per level-j subproblem| {z }
=6n/2j

.

Using the solution to Quiz 1.2, we know that the first term equals
2

j , and the input length to each such subproblem is n/2j . Taking
` = n/2j , Lemma 1.1 implies that each level-j subproblem performs
at most 6n/2j operations. We conclude that at most

2

j · 6n
2

j
= 6n

operations are performed across all the recursive calls at the jth
recursion level.

Remarkably, our bound on the work done at a given level j is
independent of j! That is, each level of the recursion tree contributes
the same number of operations to the analysis. The reason for this is
a perfect equilibrium between two competing forces—the number of
subproblems doubles every level, while the amount of work performed
per subproblem halves every level.

We’re interested in the number of operations performed across all

levels of the recursion tree. By the solution to Quiz 1.1, the recursion
tree has log

2

n + 1 levels (levels 0 through log

2

n, inclusive). Using
our bound of 6n operations per level, we can bound the total number
of operations by

number of levels| {z }
=log

2

n+1

⇥work per level| {z }
6n

 6n log

2

n+ 6n,

matching the bound claimed in Theorem 1.2. QE D17

17“Q.e.d.” is an abbreviation for quod erat demonstrandum, and means “that
which was to be demonstrated.” In mathematical writing, it is used at the end of
a proof to mark its completion.
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On Primitive Operations

We measure the running time of an algorithm like
MergeSort in terms of the number of “primitive oper-
ations” performed. Intuitively, a primitive operation
performs a simple task (like adding, comparing, or
copying) while touching a small number of simple
variables (like 32-bit integers).18 Warning: in some
high-level programming languages, a single line of
code can mask a large number of primitive operations.
For example, a line of code that touches every element
of a long array translates to a number of primitive
operations proportional to the array’s length.

1.5.4 Solutions to Quizzes 1.1–1.2

Solution to Quiz 1.1

Correct answer: (b). The correct answer is ⇡ log

2

n. The reason
is that the input size decreases by a factor of two with each level of
the recursion. If the input length in level 0 is n, the level-1 recursive
calls operate on arrays of length n/2, the level-2 recursive calls on
arrays of length n/4, and so on. The recursion bottoms out at the
base cases, with input arrays of length at most one, where there are
no more recursive calls. How many levels of recursion are required?
The number of times you need to divide n by 2 before obtaining a
number that is at most 1. For n a power of 2, this is precisely the
definition of log

2

n. (More generally, it is log

2

n rounded up to the
nearest integer.)

Solution to Quiz 1.2

Correct answer: (c). The correct answer is that there are 2j distinct
subproblems at recursion level j, and each operates on a subarray
of length n/2j . For the first point, start with level 0, where there is
one recursive call. There are two recursive calls as level 1, and more

18More precise definitions are possible, but we won’t need them.
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generally, since MergeSort calls itself twice, the number of recursive
calls at each level is double the number at the previous level. This
successive doubling implies that there are 2

j subproblems at each
level j of the recursion tree. Similarly, since every recursive call gets
only half the input of the previous one, after j levels of recursion the
input length has dropped to n/2j . Or for a different argument, we
already know that there are 2

j subproblems at level j, and the original
input array (of length n) is equally partitioned among these—exactly
n/2j elements per subproblem.

1.6 Guiding Principles for the Analysis of
Algorithms

With our first algorithm analysis under our belt (MergeSort, in The-
orem 1.2), it’s the right time to take a step back and make explicit
three assumptions that informed our running time analysis and in-
terpretation of it. We will adopt these three assumptions as guiding
principles for how to reason about algorithms, and use them to define
what we actually mean by a “fast algorithm.”

The goal of these principles is to identify a sweet spot for the
analysis of algorithms, one that balances accuracy with tractability.
Exact running time analysis is possible only for the simplest algorithms;
more generally, compromises are required. On the other hand, we
don’t want to throw out the baby with the bathwater—we still want
our mathematical analysis to have predictive power about whether
an algorithm will be fast or slow in practice. Once we find the right
balance, we’ll be able to prove good running time guarantees for
dozens of fundamental algorithms, and these guarantees will paint an
accurate picture of which algorithms tend to run faster than others.

1.6.1 Principle #1: Worst-Case Analysis

Our running time bound of 6n log

2

n+ 6n in Theorem 1.2 holds for
every input array of length n, no matter what its contents. We made
no assumptions about the input beyond its length n. Hypothetically,
if there was an adversary whose sole purpose in life was to concoct a
malevolent input designed to make MergeSort run as slow as possible,
the 6n log

2

n+ 6n bound would still apply. This type of analysis is
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called worst-case analysis, since it gives a running time bound that is
valid even for the “worst” inputs.

Given how naturally worst-case analysis fell out of our analysis
of MergeSort, you might well wonder what else we could do. One
alternative approach is “average-case analysis,” which analyzes the
average running time of an algorithm under some assumption about
the relative frequencies of different inputs. For example, in the sorting
problem, we could assume that all input arrays are equally likely and
then study the average running time of different sorting algorithms. A
second alternative is to look only at the performance of an algorithm
on a small collection of “benchmark instances” that are thought to be
representative of “typical” or “real-world” inputs.

Both average-case analysis and the analysis of benchmark instances
can be useful when you have domain knowledge about your problem,
and some understanding of which inputs are more representative
than others. Worst-case analysis, in which you make absolutely no
assumptions about the input, is particularly appropriate for general-
purpose subroutines designed to work well across a range of application
domains. To be useful to as many people as possible, these books focus
on such general-purpose subroutines and, accordingly, use worst-case
analysis to judge algorithm performance.

As a bonus, worst-case analysis is usually much more tractable
mathematically than its alternatives. This is one reason why worst-
case analysis naturally popped out of our MergeSort analysis, even
though we had no a priori focus on worst-case inputs.

1.6.2 Principle #2: Big-Picture Analysis

The second and third guiding principles are closely related. Let’s
call the second one big-picture analysis (warning: this is not a stan-
dard term). This principle states that we should not worry unduly
about small constant factors or lower-order terms in running time
bounds. We’ve already seen this philosophy at work in our analysis of
MergeSort: when analyzing the running time of the Merge subroutine
(Lemma 1.1), we first proved an upper bound of 4`+2 on the number
of operations (where ` is the length of the output array) and then
settled for the simpler upper bound of 6`, even though it suffers from
a larger constant factor. How do we justify being so fast and loose
with constant factors?
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Mathematical tractability. The first reason for big-picture anal-
ysis is that it’s way easier mathematically than the alternative of
pinning down precise constant factors or lower-order terms. This
point was already evident in our analysis of the running time of
MergeSort.

Constants depend on environment-specific factors. The sec-
ond justification is less obvious but extremely important. At the level
of granularity we’ll use to describe algorithms, as with the MergeSort

algorithm, it would be totally misguided to obsess over exactly what
the constant factors are. For example, during our analysis of the Merge
subroutine, there was ambiguity about exactly how many “primitive
operations” are performed each loop iteration (4, 5, or something
else?). Thus different interpretations of the same pseudocode can
lead to different constant factors. The ambiguity only increases once
pseudocode gets translated into a concrete implementation in some
high-level programming language, and then translated further into
machine code—the constant factors will inevitably depend on the pro-
gramming language used, the specific implementation, and the details
of the compiler and processor. Our goal is to focus on properties of
algorithms that transcend the details of the programming language
and machine architecture, and these properties should be independent
of small constant-factor changes in a running time bound.

Lose little predictive power. The third justification is simply
that we’re going to be able to get away with it. You might be
concerned that ignoring constant factors would lead us astray, tricking
us into thinking that an algorithm is fast when it is actually slow in
practice, or vice versa. Happily, this won’t happen for the algorithms
discussed in these books.19 Even though we won’t be keeping track
of lower-order terms and constant factors, the qualitative predictions
of our mathematical analysis will be highly accurate—when analysis
suggests that an algorithm should be fast, it will in fact be fast in
practice, and conversely. So while big-picture analysis does discard
some information, it preserves what we really care about: accurate
guidance about which algorithms tend to be faster than others.20

19With one possible exception, the deterministic linear-time selection algorithm
in the optional Section 6.3.

20It’s still useful to have a general sense of the relevant constant factors,
however. For example, in the highly tuned versions of MergeSort that you’ll
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1.6.3 Principle #3: Asymptotic Analysis

Our third and final guiding principle is to use asymptotic analysis

and focus on the rate of growth of an algorithm’s running time, as
the input size n grows large. This bias toward large inputs was
already evident when we interpreted our running time bound for
MergeSort (Theorem 1.2), of 6n log

2

n + 6n operations. We then
cavalierly declared that MergeSort is “better than” simpler sorting
methods with running time quadratic in the input size, such as
InsertionSort. But is this really true?

For concreteness, suppose we have a sorting algorithm that per-
forms at most 1

2

n2 operations when sorting an array of length n, and
consider the comparison

6n log

2

n+ 6n vs.
1

2

n2.

Looking at the behavior of these two functions in Figure 1.6(a), we
see that 1

2

n2 is the smaller expression when n is small (at most 90
or so), while 6n log

2

n + 6n is smaller for all larger n. So when we
say that MergeSort is faster than simpler sorting methods, what we
really mean is that it is faster on sufficiently large instances.

Why should we care more about large instances than small ones?
Because large problems are the only ones that require algorithmic
ingenuity. Almost any sorting method you can think of would sort an
array of length 1000 instantaneously on a modern computer—there’s
no need to learn about divide-and-conquer algorithms.

Given that computers are constantly getting faster, you might
wonder if all computational problems will eventually become trivial to
solve. In fact, the faster computers get, the more relevant asymptotic
analysis becomes. Our computational ambitions have always grown
with our computational power, so as time goes on, we will consider
larger and larger problem sizes. And the gulf in performance between
algorithms with different asymptotic running times only becomes
wider as inputs grow larger. For example, Figure 1.6(b) shows the
difference between the functions 6n log

2

n+6n and 1

2

n2 for larger (but
still modest) values of n, and by the time n = 1500 there is roughly a

find in many programming libraries, the algorithm switches from MergeSort over
to InsertionSort (for its better constant factor) once the input array length
becomes small (for example, at most seven elements).
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(b) Medium values of n

Figure 1.6: The function 1
2n

2 grows much more quickly than 6n log2 n+6n
as n grows large. The scales of the x- and y-axes in (b) are one and two
orders of magnitude, respectively, bigger than those in (a).

factor-10 difference between them. If we scaled n up by another factor
of 10, or 100, or 1000 to start reaching interesting problem sizes, the
difference between the two functions would be huge.

For a different way to think about asymptotic analysis, suppose
you have a fixed time budget, like an hour or a day. How does the
solvable problem size scale with additional computing power? With an
algorithm that runs in time proportional to the input size, a four-fold
increase in computing power lets you solve problems four times as
large as before. With an algorithm that runs in time proportional to
the square of the input size, you would be able to solve problems that
are only twice as large as before.

1.6.4 What Is a “Fast” Algorithm?

Our three guiding principles lead us to the following definition of a
“fast algorithm:”

A “fast algorithm” is an algorithm whose worst-case

running time grows slowly with the input size.

Our first guiding principle, that we want running time guarantees
that do not assume any domain knowledge, is the reason why we
focus on the worst-case running time of an algorithm. Our second
and third guiding principles, that constant factors are language- and
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machine-dependent and that large problems are the interesting ones,
are the reasons why we focus on the rate of growth of the running
time of an algorithm.

What do we mean that the running time of an algorithm “grows
slowly?” For almost all of problems we’ll discuss, the holy grail
is a linear-time algorithm, meaning an algorithm with running time
proportional to the input size. Linear time is even better than our
bound on the running time of MergeSort, which is proportional to
n log n and hence modestly super-linear. We will succeed in designing
linear-time algorithms for some problems but not for others. In any
case, it is the best-case scenario to which we will aspire.

For-Free Primitives

We can think of an algorithm with linear or near-
linear running time as a primitive that we can use
essentially “for free,” since the amount of computation
used is barely more than what is required just to read
the input. Sorting is a canonical example of a for-free
primitive, and we will also learn several others. When
you have a primitive relevant for your problem that
is so blazingly fast, why not use it? For example, you
can always sort your data in a preprocessing step,
even if you’re not quite sure how it’s going to be
helpful later. One of the goals of this book series is to
stock your algorithmic toolbox with as many for-free
primitives as possible, ready to be applied at will.

The Upshot

P An algorithm is a set of well-defined rules for
solving some computational problem.

P The number of primitive operations performed
by the algorithm you learned in grade school
to multiply two n-digit integers scales as a
quadratic function of the number n.
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P Karatsuba multiplication is a recursive algo-
rithm for integer multiplication, and it uses
Gauss’s trick to save one recursive call over a
more straightforward recursive algorithm.

P Seasoned programmers and computer scientists
generally think and communicate about algo-
rithms using high-level descriptions rather than
detailed implementations.

P The MergeSort algorithm is a “divide-and-
conquer” algorithm that splits the input array
into two halves, recursively sorts each half, and
combines the results using the Merge subrou-
tine.

P Ignoring constant factors and lower-order
terms, the number of operations performed by
MergeSort to sort n elements grows like the
function n log

2

n. The analysis uses a recursion
tree to conveniently organize the work done by
all the recursive calls.

P Because the function log

2

n grows slowly with n,
MergeSort is typically faster than simpler sort-
ing algorithms, which all require a quadratic
number of operations. For large n, the improve-
ment is dramatic.

P Three guiding principles for the analysis of algo-
rithms are: (i) worst-case analysis, to promote
general-purpose algorithms that work well with
no assumptions about the input; (ii) big-picture
analysis, which balances predictive power with
mathematical tractability by ignoring constant
factors and lower-order terms; and (iii) asymp-
totic analysis, which is a bias toward large in-
puts, which are the inputs that require algorith-
mic ingenuity.
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P A “fast algorithm” is an algorithm whose worst-
case running time grows slowly with the input
size.

P A “for-free primitive” is an algorithm that runs
in linear or near-linear time, barely more than
what is required to read the input.

Test Your Understanding

Problem 1.1 Suppose we run MergeSort on the following input
array:

5 3 8 9 1 7 0 2 6 4 

Fast forward to the moment after the two outermost recursive calls
complete, but before the final Merge step. Thinking of the two
5-element output arrays of the recursive calls as a glued-together
10-element array, which number is in the 7th position?

Problem 1.2 Consider the following modification to the MergeSort

algorithm: divide the input array into thirds (rather than halves),
recursively sort each third, and finally combine the results using
a three-way Merge subroutine. What is the running time of this
algorithm as a function of the length n of the input array, ignoring
constant factors and lower-order terms? [Hint: Note that the Merge

subroutine can still be implemented so that the number of operations
is only linear in the sum of the input array lengths.]

a) n

b) n log n

c) n(log n)2

d) n2

log n

Problem 1.3 Suppose you are given k sorted arrays, each with n
elements, and you want to combine them into a single array of kn



34 Introduction

elements. One approach is to use the Merge subroutine from Sec-
tion 1.4.5 repeatedly, first merging the first two arrays, then merging
the result with the third array, then with the fourth array, and so on
until you merge in the kth and final input array. What is the running
time taken by this successive merging algorithm, as a function of k
and n, ignoring constant factors and lower-order terms?

a) n log k

b) nk

c) nk log k

d) nk log n

e) nk2

f) n2k

Problem 1.4 Consider again the problem of merging k sorted length-
n arrays into a single sorted length-kn array. Consider the algorithm
that first divides the k arrays into k/2 pairs of arrays, and uses the
Merge subroutine to combine each pair, resulting in k/2 sorted length-
2n arrays. The algorithm repeats this step until there is only one
length-kn sorted array. What is the running time of this procedure,
as a function of k and n, ignoring constant factors and lower-order
terms?

a) n log k

b) nk

c) nk log k

d) nk log n

e) nk2

f) n2k
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Challenge Problems

Problem 1.5 You are given as input an unsorted array of n distinct
numbers, where n is a power of 2. Give an algorithm that identifies the
second-largest number in the array, and that uses at most n+log

2

n�2

comparisons. [Hint: What information do you have left over after
computing the largest number?]

Programming Problems

Problem 1.6 Implement Karatsuba’s integer multiplication algo-
rithm in your favorite programming language.21 To get the most out
of this problem, your program should invoke the language’s multipli-
cation operator only on pairs of single-digit numbers.

For a concrete challenge, what’s the product of the following two
64-digit numbers?22

3141592653589793238462643383279502884197169399375105820974944592

2718281828459045235360287471352662497757247093699959574966967627

21Food for thought: does it make your life easier if the number of digits of each
integer is a power of 2?

22If you need help or want to compare notes with other readers, visit the
discussion forums at www.algorithmsilluminated.org.

www.algorithmsilluminated.org


Chapter 2

Asymptotic Notation

This chapter develops the mathematical formalism that encodes our
guiding principles for the analysis of algorithms (Section 1.6). The
goal is to identify a sweet spot of granularity for reasoning about
algorithms—we want to suppress second-order details like constant
factors and lower-order terms, and focus on how the running time
of an algorithm scales as the input size grows. This is done formally
through big-O notation and its relatives—concepts that belong in the
vocabulary of every serious programmer and computer scientist.

2.1 The Gist

Before getting into the mathematical formalism of asymptotic notation,
let’s make sure the topic is well motivated, that you have a strong
sense of what it’s trying to accomplish, and that you’ve seen a couple
of simple and intuitive examples.

2.1.1 Motivation

Asymptotic notation provides the basic vocabulary for discussing the
design and analysis of algorithms. It’s important that you know what
programmers mean when they say that one piece of code runs in
“big-O of n time,” while another runs in “big-O of n-squared time.”

This vocabulary is so ubiquitous because it identifies the right
“sweet spot” for reasoning about algorithms. Asymptotic notation is
coarse enough to suppress all the details you want to ignore—details
that depend on the choice of architecture, the choice of programming
language, the choice of compiler, and so on. On the other hand, it’s
precise enough to make useful comparisons between different high-
level algorithmic approaches to solving a problem, especially on larger
inputs (the inputs that require algorithmic ingenuity). For example,

36
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asymptotic analysis helps us differentiate between better and worse
approaches to sorting, better and worse approaches to multiplying
two integers, and so on.

2.1.2 The High-Level Idea

If you ask a practicing programmer to explain the point of asymptotic
notation, he or she is likely to say something like the following:

Asymptotic Notation in Seven Words

suppress constant factors| {z }
too system-dependent

and lower-order terms| {z }
irrelevant for large inputs

We’ll see that there’s more to asymptotic notation than just these
seven words, but ten years from now, if you remember only seven
words about it, these are good ones.

When analyzing the running time of an algorithm, why would
we want to throw away information like constant factors and lower-
order terms? Lower-order terms, by definition, become increasingly
irrelevant as you focus on large inputs, which are the inputs that
require algorithmic ingenuity. Meanwhile, the constant factors are
generally highly dependent on the details of the environment. If we
don’t want to commit to a specific programming language, architecture,
or compiler when analyzing an algorithm, it makes sense to use a
formalism that does not focus on constant factors.

For example, remember when we analyzed MergeSort (Sec-
tion 1.4)? We gave an upper bound on its running time of

6n log

2

n+ 6n

primitive operations, where n is the length of the input array. The
lower-order term here is the 6n, as n grows more slowly than n log

2

n,
so it will be suppressed in asymptotic notation. The leading constant
factor of 6 also gets suppressed, leaving us with the much simpler
expression of n log n. We would then say that the running time of
MergeSort is “big-O of n log n,” written O(n log n), or that MergeSort
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is an “O(n log n)-time algorithm.”1 Intuitively, saying that something
is O(f(n)) for a function f(n) means that f(n) is what you’re left with
after suppressing constant factors and lower-order terms.2 This “big-O
notation” buckets algorithms into groups according to their asymptotic
worst-case running times—the linear (O(n))-time algorithms, the
O(n log n)-time algorithms, the quadratic (O(n2

))-time algorithms,
the constant (O(1))-time algorithms, and so on.

To be clear, I’m certainly not claiming that constant factors
never matter in algorithm design. Rather, when you want to make a
comparison between fundamentally different ways of solving a problem,
asymptotic analysis is often the right tool for understanding which
one is going to perform better, especially on reasonably large inputs.
Once you’ve figured out the best high-level algorithmic approach
to a problem, you might well want to work harder to improve the
leading constant factor, and perhaps even the lower-order terms. By
all means, if the future of your start-up depends on how efficiently
you implement a particular piece of code, have at it and make it as
fast as you can.

2.1.3 Four Examples

We conclude this section with four very simple examples. They are
so simple that, if you have any prior experience with big-O notation,
you should probably just skip straight to Section 2.2 to start learning
the mathematical formalism. But if these concepts are completely
new to you, these simple examples should get you properly oriented.

Consider first the problem of searching an array for a given integer t.
Let’s analyze the straightforward algorithm that performs a linear
scan through the array, checking each entry to see if it is the desired
integer t.

1When ignoring constant factors, we don’t even need to specify the base of
the logarithm (as different logarithmic functions differ only by a constant factor).
See Section 4.2.2 for further discussion.

2For example, even the function 10

100 · n is technically O(n). In these books,
we will only study running time bounds where the suppressed constant factor is
reasonably small.
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Searching One Array

Input: array A of n integers, and an integer t.
Output: Whether or not A contains t.

for i := 1 to n do
if A[i] = t then

return TRUE
return FALSE

This code just checks each array entry in turn. If it ever finds the
integer t it returns true, and if it falls off the end of the array without
finding t it returns false.

We haven’t formally defined what big-O notation means yet, but
from our intuitive discussion so far you might be able to guess the
asymptotic running time of the code above.

Quiz 2.1

What is the asymptotic running time of the code above for
searching one array, as a function of the array length n?

a) O(1)

b) O(log n)

c) O(n)

d) O(n2

)

(See Section 2.1.4 for the solution and discussion.)

Our last three examples concern different ways of combining two
loops. First, let’s think about one loop followed by another. Suppose
we’re now given two integer arrays A and B, both of length n, and
we want to know whether a target integer t is in either one. Let’s
again consider the straightforward algorithm, where we just search
through A, and if we fail to find t in A, we then search through B. If
we don’t find t in B either, we return false.
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Searching Two Arrays

Input: arrays A and B of n integers each, and an
integer t.
Output: Whether or not A or B contains t.

for i := 1 to n do
if A[i] = t then

return TRUE
for i := 1 to n do

if B[i] = t then
return TRUE

return FALSE

What, in big-O notation, is the running time of this longer piece of
code?

Quiz 2.2

What is the asymptotic running time of the code above for
searching two arrays, as a function of the array lengths n?

a) O(1)

b) O(log n)

c) O(n)

d) O(n2

)

(See Section 2.1.4 for the solution and discussion.)

Next let’s look at a more interesting example of two loops that are
nested, rather than in sequence. Suppose we want to check whether
or not two given arrays of length n have a number in common. The
simplest solution is to check all possibilities. That is, for each index i
into the array A and each index j into the array B, we check if A[i]
is the same number as B[j]. If it is, we return true. If we exhaust all
the possibilities without ever finding equal elements, we can safely
return false.
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Checking for a Common Element

Input: arrays A and B of n integers each.
Output: Whether or not there is an integer t contained
in both A and B.

for i := 1 to n do
for j := 1 to n do

if A[i] = B[j] then
return TRUE

return FALSE

The question is the usual one: in big-O notation, what is the running
time of this piece of code?

Quiz 2.3

What is the asymptotic running time of the code above for
checking for a common element, as a function of the array
lengths n?

a) O(1)

b) O(log n)

c) O(n)

d) O(n2

)

(See Section 2.1.4 for the solution and discussion.)

Our final example again involves nested loops, but this time
we’re looking for duplicate entries in a single array A, rather than
in two different arrays. Here’s the piece of code we’re going to
analyze.
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Checking for Duplicates

Input: array A of n integers.
Output: Whether or not A contains an integer more
than once.

for i := 1 to n do
for j := i+ 1 to n do

if A[i] = A[j] then
return TRUE

return FALSE

There are two small differences between this piece of code and the
previous one. The first and more obvious change is that we’re com-
paring the ith element of A to the jth element of A, rather than to
the jth element of some other array B. The second and more subtle
change is that the inner loop now begins at the index i+1 rather than
the index 1. Why not start at 1, like before? Because then it would
also return true in the very first iteration (since clearly A[1] = A[1]),
whether or not the array has any duplicate entries! Correctness could
be salvaged by skipping all the iterations where i and j are equal, but
this would still be wasteful: each pair of elements A[h] and A[k] of A
would be compared to each other twice (once when i = h and j = k
and once when i = k and j = h), while the code above compares
them only once.

The question is the usual one: in big-O notation, what is the
running time of this piece of code?

Quiz 2.4

What is the asymptotic running time of the code above for
checking for duplicates, as a function of the array length n?

a) O(1)

b) O(log n)

c) O(n)
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d) O(n2

)

(See Section 2.1.4 for the solution and discussion.)

These basic examples should have given you a strong intuitive sense
of how big-O notation is defined and what it is trying to accomplish.
Next we move on to both the mathematical development of asymptotic
notation and some more interesting algorithms.

2.1.4 Solutions to Quizzes 2.1–2.4

Solution to Quiz 2.1

Correct answer: (c). The correct answer is O(n). Equivalently, we
say that the algorithm has running time linear in n. Why is that
true? The exact number of operations performed depends on the
input—whether or not the target t is contained in the array A and,
if so, where in the array it lies. In the worst case, when t is not in
the array, the code will do an unsuccessful search, scanning through
the entire array (over n loop iterations) and returning false. The key
observation is that the code performs a constant number of operations
for each entry of the array (comparing A[i] with t, incrementing the
loop index i, etc.). Here “constant” means some number independent
of n, like 2 or 3. We could argue about exactly what this constant is
in the code above, but whatever it is, it is conveniently suppressed
in the big-O notation. Similarly, the code does a constant number
of operations before the loop begins and after it ends, and whatever
the exact constant may be, it constitutes a lower-order term that is
suppressed in the big-O notation. Since ignoring constant factors and
lower-order terms leaves us with a bound of n on the total number of
operations, the asymptotic running time of this code is O(n).

Solution to Quiz 2.2

Correct answer: (c). The answer is the same as before, O(n). The
reason is that the worst-case number of operations performed (in an
unsuccessful search) is twice that of the previous piece of code—first
we search the first array, and then the second array. This extra factor
of 2 contributes only to the leading constant in the running time
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bound and is therefore suppressed when we use big-O notation. So
this algorithm, like the previous one, is a linear-time algorithm.

Solution to Quiz 2.3

Correct answer: (d). This time, the answer has changed. For this
piece of code, the running time is not O(n), but is O(n2

). (“Big-O of
n squared,” also called a “quadratic-time algorithm.”) So with this
algorithm, if you multiply the lengths of the input arrays by 10, the
running time will go up by a factor of 100 (rather than a factor of 10
for a linear-time algorithm).

Why does this code have a running time of O(n2

)? The code
again does a constant number of operations for each loop iteration
(that is, for each choice of the indices i and j) and a constant number
of operations outside the loops. What’s different is that there’s now
a total of n2 iterations of this double for loop—one for each choice
of i 2 {1, 2, . . . , n} and j 2 {1, 2, . . . , n}. In our first example, there
were only n iterations of a single for loop. In our second example,
because the first for loop completed before the second one began, we
had only 2n iterations overall. Here, for each of the n iterations of the
outer for loop, the code performs n iterations of the inner for loop.
This gives n⇥ n = n2 iterations in all.

Solution to Quiz 2.4

Correct answer: (d). The answer to this question is the same as
the last one, O(n2

). The running time is again proportional to the
number of iterations of the double for loop (with a constant number
of operations per iteration). So how many iterations are there? The
answer is roughly n2

2

. One way to see this is to remember that this
piece of code does roughly half the work of the previous one (since
the inner for loop starts at j = i+ 1 rather than j = 1). A second
way is to observe that there is exactly one iteration for each subset
{i, j} of two distinct indices from {1, 2, . . . , n}, and there are precisely�
n
2

�
=

n(n�1)
2

such subsets.3

3�n
2

�
is pronounced “n choose 2,” and is also sometimes referred to as a

“binomial coefficient.” See also the solution to Quiz 3.1.
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2.2 Big-O Notation

This section presents the formal definition of big-O notation. We
begin with a definition in plain English, illustrate it pictorially, and
finally give the mathematical definition.

2.2.1 English Definition

Big-O notation concerns functions T (n) defined on the positive integers
n = 1, 2, . . .. For us, T (n) will almost always denote a bound on the
worst-case running time of an algorithm, as a function of the size n of
the input. What does it mean to say that T (n) = O(f(n)), for some
“canonical” function f(n), like n, n log n, or n2? Here’s the definition
in English.

Big-O Notation (English Version)

T (n) = O(f(n)) if and only if T (n) is eventually bounded
above by a constant multiple of f(n).

2.2.2 Pictorial Definition

See Figure 2.1 for a pictorial illustration of the definition of big-O
notation. The x-axis corresponds to the parameter n, the y-axis to
the value of a function. Let T (n) be the function corresponding to
the solid line, and f(n) the lower dashed line. T (n) is not bounded
above by f(n), but multiplying f(n) by 3 results in the upper dashed
line, which does lie above T (n) once we go far enough to the right
on the graph, after the “crossover point” at n

0

. Since f(n) is indeed
eventually bounded above by a constant multiple of f(n), we can say
that T (n) = O(f(n)).

2.2.3 Mathematical Definition

Here is the mathematical definition of big-O notation, the definition
you should use in formal proofs.
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n→∞

T (n)

f (n)

3⋅ f (n)

c

n0

Figure 2.1: A picture illustrating when T (n) = O(f(n)). The constant c
quantifies the “constant multiple” of f(n), and the constant n0 quantifies
“eventually.”

Big-O Notation (Mathematical Version)

T (n) = O(f(n)) if and only if there exist positive constants
c and n

0

such that

T (n)  c · f(n) (2.1)

for all n � n
0

.

This is a direct translation of the English definition in Section 2.2.1.
The inequality in (2.1) expresses that T (n) should be bounded above
by a multiple of f(n) (with the constant c specifying the multiple).
The “for all n � n

0

” expresses that the inequality only needs to hold
eventually, once n is sufficiently large (with the constant n

0

specifying
how large). For example, in Figure 2.1, the constant c corresponds
to 3, while n

0

corresponds to the crossover point between the functions
T (n) and c · f(n).

A game-theoretic view. If you want to prove that T (n) =

O(f(n)), for example to prove that the asymptotic running time
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of an algorithm is linear in the input size (corresponding to f(n) = n),
then your task is to choose the constants c and n

0

so that (2.1) holds
whenever n � n

0

. One way to think about this is game-theoretically,
as a contest between you and an opponent. You go first, and have to
commit to constants c and n

0

. Your opponent goes second and can
choose any integer n that is at least n

0

. You win if (2.1) holds, your
opponent wins if the opposite inequality T (n) > c · f(n) holds.

If T (n) = O(f(n)), then there are constants c and n
0

such
that (2.1) holds for all n � n

0

, and you have a winning strategy
in this game. Otherwise, no matter how you choose c and n

0

, your
opponent can choose a large enough n � n

0

to flip the inequality and
win the game.

A Word of Caution

When we say that c and n
0

are constants, we mean
they cannot depend on n. For example, in Figure 2.1,
c and n

0

were fixed numbers (like 3 or 1000), and we
then considered the inequality (2.1) as n grows arbi-
trarily large (looking rightward on the graph toward
infinity). If you ever find yourself saying “take n

0

= n”
or “take c = log

2

n” in an alleged big-O proof, you
need to start over with choices of c and n

0

that are
independent of n.

2.3 Two Basic Examples

Having slogged through the formal definition of big-O notation, let’s
look at a couple of examples. These examples won’t provide us with
any insights we don’t already have, but they serve as an important
sanity check that big-O notation is achieving its intended goal, of
suppressing constant factors and lower-order terms. They are also a
good warm-up for the less obvious examples we will encounter later.

2.3.1 Degree-k Polynomials are O(nk
)

Our first formal claim is that if T (n) is a polynomial with some
degree k, then T (n) = O(nk

).
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Proposition 2.1 Suppose

T (n) = akn
k
+ · · · a

1

n+ a
0

,

where k � 0 is a nonnegative integer and the ai’s are real numbers

(positive or negative). Then T (n) = O(nk
).

Proposition 2.1 says that with a polynomial, in big-O notation,
all you need to worry about is the highest degree that appears in
the polynomial. Thus, big-O notation really is suppressing constant
factors and lower-order terms.

Proof of Proposition 2.1: To prove this proposition, we need to use the
mathematical definition of big-O notation (Section 2.2.3). To satisfy
the definition, it’s our job to find a pair of positive constants c and
n
0

(each independent of n), with c quantifying the constant multiple
of nk and n

0

quantifying “sufficiently large n.” To keep things easy to
follow but admittedly mysterious, let’s pull values for these constants
out of a hat: n

0

= 1 and c equal to the sum of absolute values of the
coefficients:4

c = |ak|+ · · ·+ |a
1

|+ |a
0

|.

Both of these numbers are independent of n. We now need to show
that these choices of constants satisfy the definition, meaning that
T (n)  cṅk for all n � n

0

= 1.
To verify this inequality, fix an arbitrary positive integer n � n

0

=

1. We need a sequence of upper bounds on T (n), culminating in an
upper bound of c · nk. First let’s apply the definition of T (n):

T (n) = akn
k
+ · · ·+ a

1

n+ a
0

.

If we take the absolute value of each coefficient ai on the right-hand
side, the expression only becomes larger. (|ai| can only be bigger than
ai, and since ni is positive, |ai|ni can only be bigger than ain

i.) This
means that

T (n)  |ak|nk
+ · · ·+ |a

1

|n+ |a
0

|.

Why is this step useful? Now that the coefficients are nonnegative,
we can use a similar trick to turn the different powers of n into a

4Recall that the absolute value |x| of a real number x equals x when x � 0,
and �x when x  0. In particular, |x| is always nonnegative.
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common power of n. Since n � 1, nk is only bigger than ni for every
i 2 {0, 1, 2, . . . , k}. Since |ai| is nonnegative, |ai|nk is only bigger
than |ai|ni. This means that

T (n)  |ak|nk
+ · · ·+ |a

1

|nk
+ |a

0

|nk
= (|ak|+ · · ·+ |a

1

|+ |a
0

|)| {z }
=c

·nk.

This inequality holds for every n � n
0

= 1, which is exactly what we
wanted to prove. QE D

How do you know how to choose the constants c and n
0

? The usual
approach is to reverse engineer them. This involves going through a
derivation like the one above and figuring out on-the-fly the choices
of constants that let you push the proof through. We’ll see some
examples of this method in Section 2.5.

2.3.2 Degree-k Polynomials Are Not O(nk�1
)

Our second example is really a non-example: a degree-k polynomial
is O(nk

), but is not generally O(nk�1
).

Proposition 2.2 Let k � 1 be a positive integer and define T (n) =
nk

. Then T (n) is not O(nk�1
).

Proposition 2.2 implies that polynomials with distinct degrees
are distinct with respect to big-O notation. (If this weren’t true,
something would be wrong with our definition of big-O notation!)

Proof of Proposition 2.2: The best way to prove that one function
is not big-O of another is usually with a proof by contradiction. In
this type of proof, you assume the opposite of what you want to
prove, and then build on this assumption with a sequence of logically
correct steps that culminate in a patently false statement. Such a
contradiction implies that the assumption can’t be true, and this
proves the desired statement.

So, assume that nk is in fact O(nk�1
); we proceed to derive a

contradiction. What does it mean if nk
= O(nk�1

)? That nk is
eventually bounded by a constant multiple of nk�1. That is, there
are positive constants c and n

0

such that

nk  c · nk�1
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for all n � n
0

. Since n is a positive number, we can cancel nk�1 from
both sides of this inequality to derive

n  c

for all n � n
0

. This inequality asserts that the constant c is bigger than
every positive integer, a patently false statement (for a counterexample,
take c+ 1, rounded up to the nearest integer). This shows that our
original assumption that nk

= O(nk�1
) cannot be correct, and we

can conclude that nk is not O(nk�1
). QE D

2.4 Big-Omega and Big-Theta Notation

Big-O notation is by far the most important and ubiquitous concept
for discussing the asymptotic running time of algorithms. A couple
of its close relatives, the big-omega and big-theta notations, are also
worth knowing. If big-O is analogous to “less than or equal to (),”
then big-omega and big-theta are analogous to “greater than or equal
to (�),” and “equal to (=),” respectively. Let’s now treat them a little
more precisely.

2.4.1 Big-Omega Notation

The formal definition of big-omega notation parallels that of big-O
notation. In English, we say that one function T (n) is big-omega of
another function f(n) if and only if T (n) is eventually bounded below
by a constant multiple of f(n). In this case, we write T (n) = ⌦(f(n)).
As before, we use two constants c and n

0

to quantify “constant multiple”
and “eventually.”

Big-Omega Notation (Mathematical Version)

T (n) = ⌦(f(n)) if and only if there exist positive constants
c and n

0

such that

T (n) � c · f(n)

for all n � n
0

.

You can imagine what the corresponding picture looks like:
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n→∞

T (n)

1
4
⋅ f (n)

f (n)

c
n0

T (n) again corresponds to the function with the solid line. The
function f(n) is the upper dashed line. This function does not bound
T (n) from below, but if we multiply it by the constant c =

1

4

, the
result (the lower dashed line) does bound T (n) from below for all n
past the crossover point at n

0

. Thus T (n) = ⌦(f(n)).

2.4.2 Big-Theta Notation

Big-theta notation, or simply theta notation, is analogous to “equal to.”
Saying that T (n) = ⇥(f(n)) just means that both T (n) = ⌦(f(n))
and T (n) = O(f(n)). Equivalently, T (n) is eventually sandwiched
between two different constant multiples of f(n).5

Big-Theta Notation (Mathematical Version)

T (n) = ⇥(f(n)) if and only if there exist positive constants
c
1

, c
2

, and n
0

such that

c
1

· f(n)  T (n)  c
2

· f(n)

for all n � n
0

.

5Proving this equivalence amounts to showing that one version of the definition
is satisfied if and only if the other one is. If T (n) = ⇥(f(n)) according to the
second definition, then the constants c

2

and n
0

prove that T (n) = O(f(n)), while
the constants c

1

and n
0

prove that T (n) = ⌦(f(n)). In the other direction,
suppose you can prove that T (n) = O(f(n)) using the constants c

2

and n0
0

and
T (n) = ⌦(f(n)) using the constants c

1

and n00
0

. Then T (n) = ⇥(f(n)) in the sense
of the second definition, with constants c

1

, c
2

, and n
0

= max{n0
0

, n00
0

}.
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A Word of Caution

Algorithm designers often use big-O notation even
when big-theta notation would be more accurate. This
book will follow that tradition. For example, consider
a subroutine that scans an array of length n, perform-
ing a constant number of operations per entry (like
the Merge subroutine in Section 1.4.5). The running
time of such a subroutine is obviously ⇥(n), but it’s
common to only mention that it is O(n). This is
because, as algorithm designers, we generally focus
on upper bounds—guarantees about how long our
algorithms could possibly run.

The next quiz checks your understanding of big-O, big-omega, and
big-theta notation.

Quiz 2.5

Let T (n) = 1

2

n2

+ 3n. Which of the following statements
are true? (There might be more than one correct answer.)

a) T (n) = O(n)

b) T (n) = ⌦(n)

c) T (n) = ⇥(n2

)

d) T (n) = O(n3

)

(See Section 2.4.5 for the solution and discussion.)

2.4.3 Little-O Notation

There’s one final piece of asymptotic notation, “little-o notation,”
that you see from time to time. If big-O notation is analogous to
“less than or equal to,” little-o notation is analogous to “strictly less
than.”6

6Similarly, there is a “little-omega” notation that corresponds to “strictly
greater than,” but we won’t have occasion to use it. There is no “little-theta”
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Little-O Notation (Mathematical Version)

T (n) = o(f(n)) if and only if for every positive constant
c > 0, there exists a choice of n

0

such that

T (n)  c · f(n) (2.2)

for all n � n
0

.

Proving that one function is big-O of another requires only two
constants c and n

0

, chosen once and for all. To prove that one
function is little-o of another, we have to prove something stronger,
that for every constant c, no matter how small, T (n) is eventually
bounded above by the constant multiple c · f(n). Note that the
constant n

0

chosen to quantify “eventually” can depend on c (but not
n!), with smaller constants c generally requiring bigger constants n

0

.
For example, for every positive integer k, nk�1

= o(nk
).7

2.4.4 Where Does Notation Come From?

Asymptotic notation was not invented by computer scientists—it has
been used in number theory since around the turn of the 20th century.
Donald E. Knuth, the grandfather of the formal analysis of algorithms,
proposed using it as the standard language for discussing rates of
growth, and in particular for algorithm running times.

“On the basis of the issues discussed here, I propose
that members of SIGACT,8 and editors of computer
science and mathematics journals, adopt the O, ⌦, and
⇥ notations as defined above, unless a better alternative
can be found reasonably soon.”9

notation.
7Here’s the proof. Fix an arbitrary constant c > 0. In response, choose n

0

to
be 1

c , rounded up to the nearest integer. Then for all n � n
0

, n
0

· nk�1  nk and
hence nk�1  1

n0
· nk  c · nk, as required.

8SIGACT is the special interest group of the ACM (Association for Computing
Machinery) that concerns theoretical computer science, and in particular the
analysis of algorithms.

9Donald E. Knuth, “Big Omicron and Big Omega and Big Theta,” SIGACT

News, Apr.-June 1976, page 23. Reprinted in Selected Papers on Analysis of

Algorithms (Center for the Study of Language and Information, 2000).
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2.4.5 Solution to Quiz 2.5

Correct answers: (b),(c),(d). The final three responses are all
correct, and hopefully the intuition for why is clear. T (n) is a quadratic
function. The linear term 3n doesn’t matter for large n, so we should
expect that T (n) = ⇥(n2

) (answer (c)). This automatically implies
that T (n) = ⌦(n2

) and hence T (n) = ⌦(n) also (answer (b)). Note
that ⌦(n) is not a particularly impressive lower bound on T (n),
but it is a legitimate one nonetheless. Similarly, T (n) = ⇥(n2

)

implies that T (n) = O(n2

) and hence also T (n) = O(n3

) (answer (d)).
Proving these statements formally boils down to exhibiting appropriate
constants to satisfy the definitions. For example, taking n

0

= 1 and
c = 1

2

proves (b). Taking n
0

= 1 and c = 4 proves (d). Combining
these constants (n

0

= 1, c
1

=

1

2

, c
2

= 4) proves (c). The argument in
the proof of Proposition 2.2 can be used to prove formally that (a) is
not a correct answer.

2.5 Additional Examples

This section is for readers who want additional practice with asymp-
totic notation. Other readers can skip the three additional examples
here and proceed straight to Chapter 3.

2.5.1 Adding a Constant to an Exponent

First we have another example of a proof that one function is big-O
of another.

Proposition 2.3 If

T (n) = 2

n+10,

then T (n) = O(2

n
).

That is, adding a constant to the exponent of an exponential
function does not change its asymptotic rate of growth.

Proof of Proposition 2.3: To satisfy the mathematical definition of
big-O notation (Section 2.2.3), we just need to exhibit a suitable pair
of positive constants c and n

0

(each independent of n), such that T (n)
is at most c · 2n for all n � n

0

. In the proof of Proposition 2.1 we just
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pulled these two constants out of a hat; here, let’s reverse engineer
them.

We’re looking for a derivation that begins with T (n) on the left-
hand side, followed by a sequence of only-larger numbers, culminating
in a constant multiple of 2n. How would such a derivation begin? The
“10” in the exponent is annoying, so a natural first step is to separate
it out:

T (n) = 2

n+10

= 2

10 · 2n = 1024 · 2n.

Now we’re in good shape; the right-hand side is a constant multiple of
2

n, and the derivation suggests that we should take c = 1024. Given
this choice of c, we have T (n)  c · 2n for all n � 1, so we just take
n
0

= 1. This pair of constants certifies that T (n) is indeed O(2

n
).

QE D

2.5.2 Multiplying an Exponent by a Constant

Next is another non-example, showing that one function is not big-O
of another.

Proposition 2.4 If

T (n) = 2

10n,

then T (n) is not O(2

n
).

That is, multiplying the exponent of an exponential function by a
constant changes its asymptotic rate of growth.

Proof of Proposition 2.4: As with Proposition 2.2, the usual way to
prove that one function is not big-O of another is by contradiction.
So assume the opposite of the statement in the proposition, that T (n)
is in fact O(2

n
). By the definition of big-O notation, this means there

are positive constants c and n
0

such that

2

10n  c · 2n

for all n � n
0

. Since 2

n is a positive number, we can cancel it from
both sides of this inequality to derive

2

9n  c

for all n � n
0

. But this inequality is patently false: the right-hand
side is a fixed constant (independent of n), while the left-hand side
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goes to infinity as n grows large. This shows that our assumption
that T (n) = O(2

n
) cannot be correct, and we can conclude that 2

10n

is not O(2

n
). QE D

2.5.3 Maximum vs. Sum

Our final example uses big-theta notation (Section 2.4.2), the asymp-
totic version of “equal to.” This example shows that, asymptotically,
there’s no difference between taking the pointwise maximum of two
nonnegative functions and taking their sum.

Proposition 2.5 Let f and g denote functions from the positive

integers to the nonnegative real numbers, and define

T (n) = max{f(n), g(n)}

for each n � 1. Then T (n) = ⇥(f(n) + g(n)).

One consequence of Proposition 2.5 is that an algorithm that
performs a constant number (meaning independent of n) of O(f(n))-
time subroutines runs in O(f(n)) time.

Proof of Proposition 2.5: Recall that T (n) = ⇥(f(n)) means that T (n)
is eventually sandwiched between two different constant multiples of
f(n). To make this precise, we need to exhibit three constants: the
usual constant n

0

, and the constants c
1

and c
2

corresponding to the
smaller and larger multiples of f(n). Let’s reverse engineer values for
these constants.

Consider an arbitrary positive integer n. We have

max{f(n), g(n)}  f(n) + g(n),

since the right-hand side is just the left-hand side plus a nonnegative
number (f(n) or g(n), whichever is smaller). Similarly,

2 ·max{f(n), g(n)} � f(n) + g(n),

since the left-hand side is two copies of the larger of f(n), g(n) and
the right-hand side is one copy of each. Putting these two inequalities
together, we see that

1

2

(f(n) + g(n))  max{f(n), g(n)}  f(n) + g(n) (2.3)
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for every n � 1. Thus max{f(n), g(n)} is indeed wedged between two
different multiples of f(n) + g(n). Formally, choosing n

0

= 1, c
1

=

1

2

,
and c

2

= 1 shows (by (2.3)) that max{f(n), g(n)} = ⇥(f(n) + g(n)).
QE D

The Upshot

P The purpose of asymptotic notation is to sup-
press constant factors (which are too system-
dependent) and lower-order terms (which are
irrelevant for large inputs).

P A function T (n) is said to be “big-O of f(n),”
written “T (n) = O(f(n)),” if it is eventually
(for sufficiently n) bounded above by a constant
multiple of f(n). That is, there are positive
constants c and n

0

such that T (n)  c ·f(n) for
all n � n

0

.

P A function T (n) is “big-omega of f(n),” written
“T (n) = ⌦(f(n)),” if it is eventually bounded
below by a constant multiple of f(n).

P A function T (n) is “big-theta of f(n),” written
“T (n) = ⇥(f(n)),” if both T (n) = O(f(n)) and
T (n) = ⌦(f(n)).

P A big-O statement is analogous to “less than or
equal to,” big-omega to “greater than or equal
to,” and big-theta to “equal to.”

Test Your Understanding

Problem 2.1 Let f and g be non-decreasing real-valued functions
defined on the positive integers, with f(n) and g(n) at least 1 for all
n � 1. Assume that f(n) = O(g(n)), and let c be a positive constant.
Is f(n) · log

2

(f(n)c) = O(g(n) · log
2

(g(n)))?

a) Yes, for all such f , g, and c
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b) Never, no matter what f , g, and c are

c) Sometimes yes, sometimes no, depending on the constant c

d) Sometimes yes, sometimes no, depending on the functions f
and g

Problem 2.2 Assume again two positive non-decreasing functions
f and g such that f(n) = O(g(n)). Is 2

f(n)
= O(2

g(n)
) ? (Multiple

answers may be correct; choose all that apply.)

a) Yes, for all such f and g

b) Never, no matter what f and g are

c) Sometimes yes, sometimes no, depending on the functions f
and g

d) Yes whenever f(n)  g(n) for all sufficiently large n

Problem 2.3 Arrange the following functions in order of increasing
growth rate, with g(n) following f(n) in your list if and only if
f(n) = O(g(n)).

a)
p
n

b) 10

n

c) n1.5

d) 2

p
log

2

n

e) n5/3

Problem 2.4 Arrange the following functions in order of increasing
growth rate, with g(n) following f(n) in your list if and only if
f(n) = O(g(n)).

a) n2

log

2

n

b) 2

n

c) 2

2

n
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d) nlog

2

n

e) n2

Problem 2.5 Arrange the following functions in order of increasing
growth rate, with g(n) following f(n) in your list if and only if
f(n) = O(g(n)).

a) 2

log

2

n

b) 2

2

log

2

n

c) n5/2

d) 2

n2

e) n2

log

2

n



Chapter 3

Divide-and-Conquer Algorithms

This chapter provides practice with the divide-and-conquer algorithm
design paradigm through applications to three basic problems. Our
first example is an algorithm for counting the number of inversions
in an array (Section 3.2). This problem is related to measuring
similarity between two ranked lists, which is relevant for making
good recommendations to someone based on your knowledge of their
and others’ preferences (called “collaborative filtering”). Our second
divide-and-conquer algorithm is Strassen’s mind-blowing recursive
algorithm for matrix multiplication, which improves over the obvi-
ous iterative method (Section 3.3). The third algorithm, which is
advanced and optional material, is for a fundamental problem in
computational geometry: computing the closest pair of points in the
plane (Section 3.4).1

3.1 The Divide-and-Conquer Paradigm

You’ve seen the canonical example of a divide-and-conquer algorithm,
MergeSort (Section 1.4). More generally, the divide-and-conquer
algorithm design paradigm has three conceptual steps.

The Divide-and-Conquer Paradigm

1. Divide the input into smaller subproblems.

2. Conquer the subproblems recursively.

3. Combine the solutions for the subproblems into a
solution for the original problem.

1The presentation in Sections 3.2 and 3.4 draws inspiration from Chapter 5 of
Algorithm Design, by Jon Kleinberg and Éva Tardos (Pearson, 2005).

60
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For example, in MergeSort, the “divide” step splits the input array
into its left and right halves, the “conquer” step uses two recursive
calls to sort the left and right subarrays, and the “combine” step is
implemented by the Merge subroutine (Section 1.4.5). In MergeSort

and many other algorithms, it is the last step that requires the most
ingenuity. There are also divide-and-conquer algorithms in which the
cleverness is in the first step (see QuickSort in Chapter 5) or in the
specification of the recursive calls (see Section 3.2).

3.2 Counting Inversions in O(n log n) Time

3.2.1 The Problem

This section studies the problem of computing the number of inversions
in an array. An inversion of an array is a pair of elements that are
“out of order,” meaning that the element that occurs earlier in the
array is bigger than the one that occurs later.

Problem: Counting Inversions

Input: An array A of distinct integers.

Output: The number of inversions of A—the number of
pairs (i, j) of array indices with i < j and A[i] > A[j].

For example, an array A that is in sorted order has no inversions.
You should convince yourself that the converse is also true: every
array that is not in sorted order has at least one inversion.

3.2.2 An Example

Consider the following array of length 6:

1 3 5 2 4 6 

How many inversions does this array have? One that jumps out
is the 5 and 2 (corresponding to i = 3 and j = 4). There are exactly
two other out-of-order pairs: the 3 and the 2, and the 5 and the 4.
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Quiz 3.1

What is the largest-possible number of inversions a 6-element
array can have?

a) 15

b) 21

c) 36

d) 64

(See Section 3.2.13 for the solution and discussion.)

3.2.3 Collaborative Filtering

Why would you want to count the number of inversions in an ar-
ray? One reason is to compute a numerical similarity measure that
quantifies how close two ranked lists are to each other. For example,
suppose I ask you and a friend to rank, from favorite to least favorite,
ten movies that you have both seen. Are your tastes “similar” or
“different?” One way to answer this question quantitatively is through
the following 10-element array A: A[1] contains your friend’s ranking
of your favorite movie in their list, A[2] your friend’s personal ranking
of your second-favorite movie, . . . , and A[10] your friend’s personal
ranking of your least favorite movie. So if your favorite movie is Star

Wars but your friend has it only fifth in their list, then A[1] = 5.
If your rankings are identical, this array will be sorted and have no
inversions. The more inversions the array has, the more pairs of
movies on which you disagree about their relative merits, and the
more different your preferences.

One reason you might want a similarity measure between rankings
is to do collaborative filtering, a technique for generating recommen-
dations. How do Web sites come up with suggestions for products,
movies, songs, news stories, and so on? In collaborative filtering, the
idea is to identify other users who have similar preferences, and to
recommend to you things that have been popular with them. Thus
collaborative filtering algorithms require a formal notion of “similarity”
between users, and the problem of computing inversions captures
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some of the essence of this problem.

3.2.4 Brute-Force Search

How quickly can we compute the number of inversions in an ar-
ray? If we’re feeling unimaginative, there’s always brute-force
search.

Brute-Force Search for Counting Inversions

Input: array A of n distinct integers.
Output: the number of inversions of A.

numInv := 0

for i := 1 to n� 1 do
for j := i+ 1 to n do

if A[i] > A[j] then
numInv := numInv + 1

return numInv

This is certainly a correct algorithm. What about its running time?
From the solution to Quiz 3.1, we know that the number of loop
iterations grows quadratically with the length n of the input array.
Since the algorithm does a constant number of operations in each
loop iteration, its asymptotic running time is ⇥(n2

). Remember the
mantra of a seasoned algorithm designer: can we do better?

3.2.5 A Divide-and-Conquer Approach

The answer is yes, and the solution will be a divide-and-conquer
algorithm that runs in O(n log n) time, a big improvement over the
brute-force search algorithm. The “divide” step will be exactly as in
the MergeSort algorithm, with one recursive call for the left half of
the array and one for the right half. To understand the residual work
that needs to be done outside the two recursive calls, let’s classify the
inversions (i, j) of an array A of length n into one of three types:

1. left inversion: an inversion with i, j both in the first half of the
array (i.e., i, j  n

2

);2

2The abbreviation “i.e.” stands for id est, and means “that is.”
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2. right inversion: an inversion with i, j both in the second half of
the array (i.e., i, j > n

2

);

3. split inversion: an inversion with i in the left half and j in the
right half (i.e., i  n

2

< j).

For example, in the six-element array in Section 3.2.2, all three of the
inversions are split inversions.

The first recursive call, on the first half of the input array, re-
cursively counts all the left inversions (and nothing else). Similarly,
the second recursive call counts all the right inversions. The remain-
ing task is to count the inversions not counted by either recursive
call—the split inversions. This is the “combine” step of the algorithm,
and we will need to implement a special linear-time subroutine for it,
analogous to the Merge subroutine in the MergeSort algorithm.

3.2.6 High-Level Algorithm

Our divide-and-conquer approach translates to the following pseu-
docode; the subroutine CountSplitInv is, as of now, unimplemented.

CountInv

Input: array A of n distinct integers.
Output: the number of inversions of A.

if n = 0 or n = 1 then // base cases

return 0
else

leftInv := CountInv(first half of A)

rightInv := CountInv(second half of A)

splitInv := CountSplitInv(A)

return leftInv + rightInv + splitInv

The first and second recursive calls count the number of left and
right inversions. Provided the subroutine CountSplitInv correctly
computes the number of split inversions, CountInv correctly computes
the total number of inversions.
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3.2.7 Key Idea: Piggyback on MergeSort

Counting the number of split inversions of an array in linear time is an
ambitious goal. There can be a lot of split inversions: if A consists of
the numbers n

2

+1, . . . , n in order, followed by the numbers 1, 2, . . . , n
2

in order, there are n2/4 split inversions. How could we ever count a
quadratic number of things with only a linear amount of work?

The inspired idea is to design our recursive inversion-counting
algorithm so that it piggybacks on the MergeSort algorithm. This
involves demanding more from our recursive calls, in service of making
it easier to count the number of split inversions.3 Each recursive call
will be responsible not only for counting the number of inversions
in the array that it is given, but also for returning a sorted version
of the array. We already know (from Theorem 1.2) that sorting is a
for-free primitive (see page 31), running in O(n log n) time, so if we’re
shooting for a running time bound of O(n log n), there’s no reason not
to sort. And we’ll see that the task of merging two sorted subarrays
is tailor-made for uncovering all the split inversions of an array.

Here is the revised version of the pseudocode in Section 3.2.6,
which counts inversions while also sorting the input array.

Sort-and-CountInv

Input: array A of n distinct integers.
Output: sorted array B with the same integers, and
the number of inversions of A.

if n = 0 or n = 1 then // base cases

return (A, 0)
else

(C, leftInv) := Sort-and-CountInv(first half of A)

(D, rightInv) :=
Sort-and-CountInv(second half of A)

(B, splitInv) := Merge-and-CountSplitInv(C,D)

return (B, leftInv + rightInv + splitInv)

3Similarly, sometimes a proof by induction becomes easier to push through
after strengthening your inductive hypothesis.
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We still need to implement the Merge-and-CountSplitInv subroutine.
We know how to merge two sorted lists in linear time, but how can we
piggyback on this work to also count the number of split inversions?

3.2.8 Merge Revisited

To see why merging sorted subarrays naturally uncovers split inver-
sions, let’s revisit the pseudocode for the Merge subroutine.

Merge

Input: sorted arrays C and D (length n/2 each).
Output: sorted array B (length n).
Simplifying assumption: n is even.

i := 1, j := 1

for k := 1 to n do
if C[i] < D[j] then

B[k] := C[i], i := i+ 1

else // D[j] < C[i]
B[k] := D[j], j := j + 1

To review, the Merge subroutine walks one index down each of the
sorted subarrays in parallel (i for C and j for D), populating the
output array (B) from left to right in sorted order (using the index k).
At each iteration of the loop, the subroutine identifies the smallest
element that it hasn’t yet copied over to B. Since C and D are sorted,
and all the elements before C[i] and D[j] have already been copied
over to B, the only two candidates are C[i] and D[j]. The subroutine
determines which of the two is smaller and then copies it over to the
next position of the output array.

What does the Merge subroutine have to do with counting the
number of split inversions? Let’s start with the special case of an
array A that has no split inversions at all—every inversion of A is
either a left or a right inversion.

Quiz 3.2

Suppose the input array A has no split inversions. What is
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the relationship between the sorted subarrays C and D?

a) C has the smallest element of A, D the second-smallest,
C the third-smallest, and so on.

b) All elements of C are less than all elements of D.

c) All elements of C are greater than all elements of D.

d) There is not enough information to answer this ques-
tion.

(See Section 3.2.13 for the solution and discussion.)

After solving Quiz 3.2, you can see that Merge has an particularly
boring execution on an array with no split inversions. Since every
element of C is smaller than every element of D, the smallest remaining
element is always in C (until no elements of C remain). Thus the
Merge subroutine just concatenates C and D—it will first copy over all
of C, and then all of D. This suggests that, perhaps, split inversions
have something to do with the number of elements remaining in C
when an element of D is copied over to the output array.

3.2.9 Merge and Split Inversions

To build our intuition further, let’s think about running the MergeSort
algorithm on the six-element array A = {1, 3, 5, 2, 4, 6} from Sec-
tion 3.2.2; see also Figure 3.1. The left and right halves of this array
are already sorted, so there are no left inversions or right inversions,
and the two recursive calls return 0. In the first iteration of the Merge

subroutine, the first element of C (the 1) is copied over to B. This
tells us nothing about any split inversions, and indeed there are no
split inversions that involve this element. In the second iteration,
however, the 2 is copied over to the output array, even though C
still contains the elements 3 and 5. This exposes two of the split
inversions of A—the two such inversions that involve the 2. In the
third iteration, the 3 is copied over from C and there are no further
split inversions that involve this element. When the 4 is copied over
from D, the array C still contains a 5, and this copy exposes the third
and final split inversion of A (involving the 5 and the 2).
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1 2 3 4 5 6 

1 4 5 2 4 6 

k 

C D 

B 

j i 

Figure 3.1: The fourth iteration of the Merge subroutine given the sorted
subarrays {1, 3, 5} and {2, 4, 6}. Copying the 4 over from D, with the 5 still
in C, exposes the split inversion involving these two elements.

The following lemma states that the pattern in the example above
holds in general: the number of split inversions that involve an ele-
ment y of the second subarray D is precisely the number of elements
remaining in C in the iteration of the Merge subroutine in which y is
copied to the output array.

Lemma 3.1 Let A be an array, and C and D sorted versions of the

first and second halves of A. An element x from the first half of A
and y from the second half of A form a split inversion if and only

if, in the Merge subroutine with inputs C and D, y is copied to the

output array before x.

Proof: Since the output array is populated from left to right in sorted
order, the smaller of x or y is copied over first. Since x is in the first
half of A and y in the second half, x and y form a split inversion if
and only if x > y, and this is true if and only if y is copied over to
the output array before x. QE D

3.2.10 Merge-and-CountSplitInv

With the insight provided by Lemma 3.1, we can extend the implemen-
tation of Merge to an implementation of Merge-and-CountSplitInv.
We maintain a running count of the split inversions, and every time
an element is copied over from the second subarray D to the output
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array B, we increment the running count by the number of elements
remaining in the first subarray C.

Merge-and-CountSplitInv

Input: sorted arrays C and D (length n/2 each).
Output: sorted array B (length n) and the number of
split inversions.

Simplifying assumption: n is even.

i := 1, j := 1, splitInv := 0

for k := 1 to n do
if C[i] < D[j] then

B[k] := C[i], i := i+ 1

else // D[j] < C[i]
B[k] := D[j], j := j + 1

splitInv := splitInv + (

n
2

� i+ 1)

| {z }
# left in C

return (B, splitInv)

3.2.11 Correctness

Correctness of Merge-and-CountSplitInv follows from Lemma 3.1.
Every split inversion involves exactly one element y from the second
subarray, and this inversion is counted exactly once, when y is copied
over to the output array. Correctness of the entire Sort-and-CountInv
algorithm (Section 3.2.7) follows: the first recursive call correctly
computes the number of left inversions, the second recursive call
the number of right inversions, and Merge-and-CountSplitInv the
remaining (split) inversions.

3.2.12 Running Time

We can also analyze the running time of the Sort-and-CountInv

algorithm by piggybacking on the analysis we already did for the
MergeSort algorithm. First consider the running time of a single
invocation of the Merge-and-CountSplitInv subroutine, given two
subarrays of length `/2 each. Like the Merge subroutine, it does a
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constant number of operations per loop iteration, plus a constant
number of additional operations, for a running time of O(`).

Looking back at our running time analysis of the MergeSort

algorithm in Section 1.5, we can see that there were three important
properties of the algorithm that led to the running time bound of
O(n log n). First, each invocation of the algorithm makes two recursive
calls. Second, the length of the input is divided in half with each level
of recursion. Third, the amount of work done in a recursive call, not
counting work done by later recursive calls, is linear in the input size.
Since the Sort-and-CountInv algorithm shares these three properties,
the analysis in Section 1.5 carries over, again giving a running time
bound of O(n log n).

Theorem 3.2 (Counting Inversions) For every input array A of

length n � 1, the Sort-and-CountInv algorithm computes the number

of inversions of A and runs in O(n log n) time.

3.2.13 Solutions to Quizzes 3.1–3.2

Solution to Quiz 3.1

Correct answer: (a). The correct answer to this question is 15.
The maximum-possible number of inversions is at most the number
of ways of choosing i, j 2 {1, 2, . . . , 6} with i < j. The latter quantity
is denoted

�
6

2

�
, for “6 choose 2.” In general,

�
n
2

�
=

n(n�1)
2

, and so�
6

2

�
= 15.4 In a six-element array sorted in reverse order (6, 5, . . . , 1),

every pair of elements is out of order, and so this array achieves 15
inversions.

Solution to Quiz 3.2

Correct answer: (b). In an array with no split inversions, everything
in the first half is less than everything in the second half. If there was

an element A[i] in the first half (with i 2 {1, 2, . . . , n
2

}) that is greater
than an element A[j] in the second half (with j 2 {n

2

+1, n
2

+2, . . . , n}),
then (i, j) would constitute a split inversion.

4There are n(n� 1) ways to choose (i, j) so that i 6= j (n choices for i, then
n� 1 for j). By symmetry, i < j in exactly half of these.
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3.3 Strassen’s Matrix Multiplication Algorithm

This section applies the divide-and-conquer algorithm design paradigm
to the problem of multiplying matrices, culminating in Strassen’s amaz-
ing subcubic-time matrix multiplication algorithm. This algorithm
is a canonical example of the magic and power of clever algorithm
design—of how algorithmic ingenuity can improve over straightforward
solutions, even for extremely fundamental problems.

3.3.1 Matrix Multiplication

Suppose X and Y are n⇥ n matrices of integers—n2 entries in each.
In the product Z = X ·Y, the entry zij in the ith row and jth column
of Z is defined as the dot product of the ith row of X and the jth
column of Y (Figure 3.2).5 That is,

zij =
nX

k=1

xikykj . (3.1)

X Y ! = Z 

zij ith row 

jth
 c

ol
um

n 

Figure 3.2: The (i, j) entry of the matrix product X ·Y is the dot product
of the ith row of X and the jth column of Y.

3.3.2 Example (n = 2)

Let’s drill down on the n = 2 case. We can describe two 2⇥2 matrices
using eight parameters:

✓
a b
c d

◆

| {z }
X

and
✓

e f
g h

◆

| {z }
Y

.

5To compute the dot product of two length-n vectors a = (a
1

, . . . , an) and b =

(b
1

, . . . , bn), add up the results of multiplying componentwise: a · b =

Pn
i=1

aibi.



72 Divide-and-Conquer Algorithms

In the matrix product X ·Y, the upper-left entry is the dot product
of the first row of X and the first column of Y, or ae+ bg. In general,
for X and Y as above,

X ·Y =

✓
ae+ bg af + bh
ce+ dg cf + dh

◆
. (3.2)

3.3.3 The Straightforward Algorithm

Now let’s think about algorithms for computing the product of two
matrices.

Problem: Matrix Multiplication

Input: Two n⇥ n integer matrices, X and Y.6

Output: The matrix product X ·Y.

The input size is proportional to n2, the number of entries in each of
X and Y. Since we presumably have to read the input and write out
the output, the best we can hope for is an algorithm with running
time O(n2

)—linear in the input size, and quadratic in the dimension.
How close can we get to this best-case scenario?

There is a straightforward algorithm for matrix multiplication,
which just translates the mathematical definition into code.

Straightforward Matrix Multiplication

Input: n⇥ n integer matrices X and Y.
Output: Z = X ·Y.

for i := 1 to n do
for j := 1 to n do

Z[i][j] := 0

for k := 1 to n do
Z[i][j] := Z[i][j] +X[i][k] ·Y[k][j]

return Z

6The algorithms we discuss can also be extended to multiply non-square
matrices, but we’ll stick with the square case for simplicity.
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What is the running time of this algorithm?

Quiz 3.3

What is the asymptotic running time of the straightforward
algorithm for matrix multiplication, as a function of the
matrix dimension n? Assume that the addition or multipli-
cation of two matrix entries is a constant-time operation.

a) ⇥(n log n)

b) ⇥(n2

)

c) ⇥(n3

)

d) ⇥(n4

)

(See Section 3.3.7 for the solution and discussion.)

3.3.4 A Divide-and-Conquer Approach

The question is, as always, can we do better? Everyone’s first reaction
is that matrix multiplication should, essentially by definition, require
⌦(n3

) time. But perhaps we’re emboldened by the success of the
Karatsuba algorithm for integer multiplication (Section 1.3), where
a clever divide-and-conquer algorithm improves over the straightfor-
ward grade-school algorithm.7 Could a similar approach work for
multiplying matrices?

To apply the divide-and-conquer paradigm (Section 3.1), we need
to figure out how to divide the input into smaller subproblems and
how to combine the solutions of these subproblems into a solution
for the original problem. The simplest way to divide a square matrix
into smaller square submatrices is to slice it in half, both vertically
and horizontally. In other words, write

X =

✓
A B
C D

◆
and Y =

✓
E F
G H

◆
, (3.3)

where A,B, . . . ,H are all n
2

⇥ n
2

matrices.8
7We haven’t actually proved this yet, but we will in Section 4.3.
8As usual, we’re assuming that n is even for convenience. And as usual, it

doesn’t really matter.
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One cool thing about matrix multiplication is that equal-size
blocks behave just like individual entries. That is, for X and Y as
above, we have

X ·Y =

✓
A ·E+B ·G A · F+B ·H
C ·E+D ·G C · F+D ·H

◆
, (3.4)

completely analogous to the equation (3.2) for the n = 2 case.
(This follows from the definition of matrix multiplication, as you
should check.) In (3.4), adding two matrices just means adding them
entrywise—the (i, j) entry of K+ L is the sum of the (i, j) entries of
K and L. The decomposition and computation in (3.4) translates nat-
urally to a recursive algorithm for matrix multiplication, RecMatMult.

RecMatMult

Input: n⇥ n integer matrices X and Y.
Output: Z = X ·Y.
Assumption: n is a power of 2.

if n = 1 then // base case

return the 1⇥ 1 matrix with entry X[1][1] ·Y[1][1]

else // recursive case

A,B,C,D := submatrices of X as in (3.3)
E,F,G,H := submatrices of Y as in (3.3)
recursively compute the eight matrix products that
appear in (3.4)

return the result of the computation in (3.4)

The running time of the RecMatMult algorithm is not immediately
obvious. What is clear is that there are eight recursive calls, each on
an input of half the dimension. Other than making these recursive
calls, the only work required is the matrix additions in (3.4). Since an
n⇥ n matrix has n2 entries, and the number of operations needed to
add two matrices is proportional to the number of entries, a recursive
call on a pair of `⇥` matrices performs ⇥(`2) operations, not counting
the work done by its own recursive calls.

Disappointingly, this recursive algorithm turns out to have a
running time of ⇥(n3

), the same as the straightforward algorithm.
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(This follows from the “master method,” explained in the next chapter.)
Has all our work been for naught? Remember that in the integer
multiplication problem, the key to beating the grade-school algorithm
was Gauss’s trick, which reduced the number of recursive calls from
four to three (Section 1.3.3). Is there an analog of Gauss’s trick for
matrix multiplication, one that allows us to reduce the number of
recursive calls from eight to seven?

3.3.5 Saving a Recursive Call

The high-level plan of the Strassen algorithm is to save one recursive
call relative to the RecMatMult algorithm, in exchange for a constant
number of additional matrix additions and subtractions.

Strassen (Very High-Level Description)

Input: n⇥ n integer matrices X and Y.
Output: Z = X ·Y.
Assumption: n is a power of 2.

if n = 1 then // base case

return the 1⇥ 1 matrix with entry X[1][1] ·Y[1][1]

else // recursive case

A,B,C,D := submatrices of X as in (3.3)
E,F,G,H := submatrices of Y as in (3.3)
recursively compute seven (cleverly chosen) products
involving A,B, . . . ,H

return the appropriate (cleverly chosen) additions
and subtractions of the matrices computed in the
previous step

Saving one of the eight recursive calls is a big win. It doesn’t merely
reduce the running time of the algorithm by 12.5%. The recursive
call is saved over and over again, so the savings are compounded
and—spoiler alert!—this results in an asymptotically superior running
time. We’ll see the exact running time bound in Section 4.3, but for
now the important thing to know is that saving a recursive call yields
an algorithm with subcubic running time.
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This concludes all the high-level points you should know about
Strassen’s matrix multiplication algorithm. Are you in disbelief that
it’s possible to improve over the obvious algorithm? Or curious about
exactly how the products and additions are actually chosen? If so,
the next section is for you.

3.3.6 The Details

Let X and Y denote the two n ⇥ n input matrices, and define
A,B, . . . ,H as in (3.3). Here are the seven recursive matrix mul-
tiplications performed by Strassen’s algorithm:

P
1

= A · (F�H)

P
2

= (A+B) ·H
P

3

= (C+D) ·E
P

4

= D · (G�E)

P
5

= (A+D) · (E+H)

P
6

= (B�D) · (G+H)

P
7

= (A�C) · (E+ F).

After spending ⇥(n2

) time performing the necessary matrix additions
and subtractions, P

1

, . . . ,P
7

can be computed using seven recursive
calls on pairs of n

2

⇥ n
2

matrices. But is this really enough information
to reconstruct the matrix product of X and Y in ⇥(n2

) time? The
following amazing equation gives an affirmative answer:

X ·Y =

✓
A ·E+B ·G A · F+B ·H
C ·E+D ·G C · F+D ·H

◆

=

✓
P

5

+P
4

�P
2

+P
6

P
1

+P
2

P
3

+P
4

P
1

+P
5

�P
3

�P
7

◆
.

The first equation is copied from (3.4). For the second equation, we
need to check that the equality holds in each of the four quadrants. To
quell your disbelief, check out the crazy cancellations in the upper-left
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quadrant:

P
5

+P
4

�P
2

+P
6

= (A+D) · (E+H) +D · (G�E)

� (A+B) ·H+ (B�D) · (G+H)

= A ·E+A ·H+D ·E+D ·H+D ·G
�D ·E�A ·H�B ·H+B ·G
+B ·H�D ·G�D ·H

= A ·E+B ·G.

The computation for the lower-right quadrant is similar, and equality
is easy to see in the other two quadrants. So the Strassen algorithm
really can multiply matrices with only seven recursive calls and ⇥(n2

)

additional work!9

3.3.7 Solution to Quiz 3.3

Correct answer: (c). The correct answer is ⇥(n3

). There are three
nested for loops. This results in n3 inner loop iterations (one for
each choice of i, j, k 2 {1, 2, . . . , n}), and the algorithm performs a
constant number of operations in each iteration (one multiplication
and one addition). Alternatively, for each of the n2 entries of Z, the
algorithm spends ⇥(n) time evaluating (3.1).

*3.4 An O(n log n)-Time Algorithm for the Closest Pair

Our final example of a divide-and-conquer algorithm is a very cool
algorithm for the closest pair problem, in which you’re given n points
in the plane and want to figure out the pair of points that are closest
to each other. This is our first taste of an application in computational
geometry, an area that studies algorithms for reasoning about and

9Of course, checking that the algorithm works is a lot easier than coming up
with it in the first place. And how did Volker Strassen ever come up with it, back
in 1969? Here’s what he said (in a personal communication, June 2017): “The way
I remember it, I had realized that a faster noncommutative algorithm for some
small case would give a better exponent. I tried to prove that the straightforward
algorithm is optimal for 2⇥ 2 matrices. To simplify matters I worked modulo 2,
and then discovered the faster algorithm combinatorially.”
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manipulating geometric objects, and that has applications in robotics,
computer vision, and computer graphics.10

3.4.1 The Problem

The closest pair problem concerns points (x, y) 2 R2 in the plane.
To measure the distance between two points p

1

= (x
1

, y
1

) and p
2

=

(x
2

, y
2

), we use the usual Euclidean (straight-line) distance:

d(p
1

, p
2

) =

p
(x

1

� x
2

)

2

+ (y
1

� y
2

)

2. (3.5)

Problem: Closest Pair

Input: n � 2 points p
1

= (x
1

, y
1

), . . . , pn = (xn, yn) in
the plane.

Output: The pair pi, pj of points with smallest Euclidean
distance d(pi, pj).

For convenience, we’ll assume that no two points have the same x-
coordinate or the same y-coordinate. You should think about how to
extend the algorithm from this section to accommodate ties.11

The closest pair problem can be solved in quadratic time using
brute-force search—just compute the distance between each of the
⇥(n2

) pairs of points one-by-one, and return the closest of them.
For the counting inversions problem (Section 3.2), we were able to
improve over the quadratic-time brute-force search algorithm with a
divide-and-conquer algorithm. Can we also do better here?

3.4.2 Warm-Up: The 1-D Case

Let’s first consider the simpler one-dimensional version of the problem:
given n points p

1

, . . . , pn 2 R in arbitrary order, identify a pair that
10Starred sections like this one are the more difficult sections, and they can be

skipped on a first reading.
11In a real-world implementation, a closest pair algorithm will not bother to

compute the square root in (3.5)—the pair of points with the smallest Euclidean
distance is the same as the one with the smallest squared Euclidean distance, and
the latter distance is easier to compute.
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minimizes the distance |pi � pj |. This special case is easy to solve
in O(n log n) time using the tools that are already in our toolbox.
The key observation is that, whatever the closest pair is, the two
points must appear consecutively in the sorted version of the point
set (Figure 3.3).

1-D Closest Pair

sort the points
use a linear scan through the sorted points to identify
the closest pair

The first and second steps of the algorithm can be implemented in
O(n log n) time (using MergeSort) and O(n) time (straightforwardly),
respectively, for an overall running time of O(n log n). Thus in the one-
dimensional case, there is indeed an algorithm better than brute-force
search.

closest pair 

Figure 3.3: In one dimension, the points in the closest pair appear consec-
utively in the sorted version of the point set.

3.4.3 Preprocessing

Can sorting help solve the two-dimensional version of the closest pair
problem in O(n log n) time? An immediate issue is that there are two
different coordinates you can use to sort the points. But since sorting
is a for-free primitive (see page 31), why not just do it (twice)? That
is, in a preprocessing step, our algorithm makes two copies of the
input point set: a copy Px with the points sorted by x-coordinate,
and a copy Py sorted by y-coordinate. This takes O(n log n) time,
which is within the time bound we’re shooting for.

How can we put the sorted versions Px and Py to use? Unfortu-
nately, the closest pair of points need not appear consecutively in
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either Px or Py (Figure 3.4). We will have to do something more
clever than a simple linear scan.

closest pair 

closest in x-coordinate 

closest in y-coordinate 

Figure 3.4: In two dimensions, the points in the closest pair need not
appear consecutively when the points are sorted by x- or y-coordinate.

3.4.4 A Divide-and-Conquer Approach

We can do better with a divide-and-conquer approach.12 How should
we divide the input into smaller subproblems, and how can we then
combine the solutions of these subproblems into one for the original
problem? For the first question, we use the first sorted array Px to
divide the input into its left and right halves. Call a pair of points a
left pair if both belong to the left half of the point set, a right pair if
both belong to the right half, and a split pair if the points belong to
different halves. For example, in the point set in Figure 3.4, the closest
pair is a split pair, and the pair of points closest in x-coordinate is a
left pair.

If the closest pair is a left pair or a right pair, it will be recursively
identified by one of the two recursive calls. We’ll need a special-
purpose subroutine for the remaining case, when the closest pair is a
split pair. This subroutine plays a similar role to the CountSplitInv

subroutine in Section 3.2.
The following pseudocode summarizes these ideas; the subroutine

ClosestSplitPair is, as of now, unimplemented.
12Thus the divide-and-conquer paradigm is used in both the preprocessing step,

to implement MergeSort, and again in the main algorithm.
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ClosestPair (Preliminary Version)

Input: two copies Px and Py of n � 2 points in the
plane, sorted by x- and y-coordinate, respectively.

Output: the pair pi, pj of distinct points with smallest
Euclidean distance between them.

// base case of <= 3 points omitted

1 Lx := first half of Px, sorted by x-coordinate
2 Ly := first half of Px, sorted by y-coordinate
3 Rx := second half of Px, sorted by x-coordinate
4 Ry := second half of Px, sorted by y-coordinate

5 (l
1

, l
2

) := ClosestPair(Lx, Ly) // best left pair

6 (r
1

, r
2

) := ClosestPair(Rx, Ry) // best right pair

7 (s
1

, s
2

) := ClosestSplitPair(Px, Py) // best split

pair

8 return best of (l
1

, l
2

), (r
1

, r
2

), (s
1

, s
2

)

In the omitted base case, when there are two or three input points,
the algorithm computes the closest pair directly in constant (O(1))
time. Deriving Lx and Rx from Px is easy (just split Px in half). To
compute Ly and Ry, the algorithm can perform a linear scan over Py,
putting each point at the end of either Ly or Ry, according to the
point’s x-coordinate. We conclude that lines 1–4 can be implemented
in O(n) time.

Provided we implement the ClosestSplitPair subroutine cor-
rectly, the algorithm is guaranteed to compute the closest pair of
points—the three subroutine calls in lines 5–7 cover all possibilities
for where the closest pair might be.

Quiz 3.4

Suppose that we correctly implement the ClosestSplitPair
subroutine in O(n) time. What will be the overall running
time of the ClosestPair algorithm? (Choose the smallest
upper bound that applies.)
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a) O(n)

b) O(n log n)

c) O(n(log n)2)

d) O(n2

)

(See Section 3.4.10 for the solution and discussion.)

3.4.5 A Subtle Tweak

The solution to Quiz 3.4 makes our goal clear: we want an O(n)-time
implementation of the ClosestSplitPair subroutine, leading to an
overall running time bound of O(n log n) and matching the running
time of our algorithm for the one-dimensional special case.

We’ll design a slightly weaker subroutine that is adequate for our
purposes. Here’s the key observation: we need the ClosestSplitPair

subroutine to identify the closest split pair only when it is the closest

pair overall. If the closest pair is a left or right pair, ClosestSplitPair
might as well return garbage—line 8 of the pseudocode in Section 3.4.4
will ignore its suggested point pair anyway, in favor of the actual closest
pair computed by one of the recursive calls. Our algorithm will make
crucial use of this relaxed correctness requirement.

To implement this idea, we’ll explicitly pass to the
ClosestSplitPair subroutine the distance � between the closest
pair that is a left or right pair; the subroutine then knows that it has
to worry only about split pairs with interpoint distance less than �.
In other words, we replace lines 7–8 of the pseudocode in Section 3.4.4
with the following.

ClosestPair (Addendum)

7 � := min{d(l
1

, l
2

), d(r
1

, r
2

)}
8 (s

1

, s
2

) := ClosestSplitPair(Px, Py, �)
9 return best of (l

1

, l
2

), (r
1

, r
2

), (s
1

, s
2

)
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3.4.6 ClosestSplitPair

We now provide an implementation of the ClosestSplitPair subrou-
tine that runs in linear time and correctly computes the closest pair
whenever it is a split pair. You may not believe that the following
pseudocode satisfies these requirements, but it does. The high-level
idea is to do brute-force search over a cleverly restricted set of point
pairs.

ClosestSplitPair

Input: two copies Px and Py of n � 2 points in the
plane, sorted by x- and y-coordinate, and a
parameter �.

Output: the closest pair, provided it is a split pair.

1 x̄ := largest x-coordinate in left half // median

x-coordinate
2 Sy := {points q

1

, q
2

, . . . , q` with x-coordinate
between x̄� � and x̄+ �, sorted by y-coordinate}

3 best := �
4 bestPair := NULL
5 for i := 1 to `� 1 do
6 for j := 1 to min{7, `� i} do
7 if d(qi, qi+j) < best then
8 best := d(qi, qi+j)

9 bestPair := (qi, qi+j)

10 return bestPair

The subroutine begins in line 1 by identifying the rightmost point
in the left half of the point set, which defines the “median x-coordinate”
x̄. A pair of points is a split pair if and only if one point has x-
coordinate at most x̄ and the other greater than x̄. Computing x̄
takes constant (O(1)) time because Px stores the points sorted by x-
coordinate (the median is the n

2

th array entry). In line 2 the subroutine
performs a filtering step, discarding all points except those lying in the
vertical strip of width 2� centered at x̄ (Figure 3.5). The set Sy can
be computed in linear time by scanning through Py and removing any



84 Divide-and-Conquer Algorithms

points with an x-coordinate outside the range of interest.13 Lines 5–9
perform brute-force search over the pairs of points of Sy that have at
most 6 points in between them (in the ordering of Sy by y-coordinates),
and computes the closest such pair of points.14 You can think of
this as an extension of our algorithm for the one-dimensional case,
in which we examine all “nearly consecutive” pairs of points. The
total number of loop iterations is less than 7`  7n = O(n), and the
algorithm performs a constant number of primitive operations in each
iteration. We conclude that the ClosestSplitPair subroutine runs
in O(n) time, as desired. But why on Earth should it ever find the
closest pair?

δ 

x

2δ 

Figure 3.5: The ClosestSplitPair subroutine. Sy is the set of points
enclosed by the vertical strip. � is the smallest distance between a left pair
or a right pair of points. The split point pairs have one point on either side
of the dotted line.

13This step is the reason why we sorted the point set by y-coordinate once
and for all in the initial preprocessing step. Since we’re shooting for a linear-time
subroutine, there’s no time to sort them now!

14If there is no such pair of points at distance less than �, then the subroutine
returns NULL. In this case, in ClosestPair, this NULL pair is ignored and the
final comparison is between only the point pairs returned by the two recursive
calls.
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3.4.7 Correctness

The ClosestSplitPair subroutine runs in linear time because, out
of the quadratic number of possible point pairs, it searches over only
a linear number of them. How do we know it didn’t miss out on
the true closest pair? The following lemma, which is a bit shocking,
guarantees that when the closest pair is a split pair, its points appear
nearly consecutively in the filtered set Sy.

Lemma 3.3 In the ClosestSplitPair subroutine, suppose (p, q) is

a split pair with d(p, q) < �, where � is the smallest distance between

a left pair or right pair of points. Then:

(a) p and q will be included in the set Sy;

(b) at most six points of Sy have a y-coordinate in between those of

p and q.

This lemma is far from obvious, and we prove it in the next section.
Lemma 3.3 implies that the ClosestSplitPair subroutine does

its job.

Corollary 3.4 When the closest pair is a split pair, the

ClosestSplitPair subroutine returns it.

Proof: Assume that the closest pair (p, q) is a split pair, and so
d(p, q) < �, where � is the minimum distance between a left or right
pair. Then, Lemma 3.3 ensures that both p and q belong to the set Sy

in the ClosestSplitPair subroutine, and that there are at most six
points of Sy between them in y-coordinate. Since ClosestSplitPair

exhaustively searches over all pairs of points that satisfy these two
properties, it will compute the closest such pair, which must be the
actual closest pair (p, q). QE D

Pending the proof of Lemma 3.3, we now have a correct and
blazingly fast algorithm for the closest pair problem.

Theorem 3.5 (Computing the Closest Pair) For every set P of

n � 2 points in the plane, the ClosestPair algorithm correctly com-

putes the closest pair of P and runs in O(n log n) time.
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Proof: We have already argued the running time bound: the algorithm
spends O(n log n) time in its preprocessing step, and the rest of the
algorithm has the same asymptotic running time as MergeSort (with
two recursive calls each on half the input, plus linear additional work),
which is also O(n log n).

For correctness, if the closest pair is a left pair, it is returned by
the first recursive call (line 5 in Section 3.4.4); if it is a right pair, it is
returned by the second recursive call (line 6). If it is a split pair, then
Corollary 3.4 guarantees that it is returned by the ClosestSplitPair
subroutine. In all cases, the closest pair is among the three candidates
examined by the algorithm (line 9 in Section 3.4.5), and will be
returned as the final answer. QE D

3.4.8 Proof of Lemma 3.3(a)

Part (a) of Lemma 3.3 is the easier part. Assume that there is a split
pair (p, q), with p in the left half of the point set and q in the right
half, such that d(p, q) < �, where � is the minimum distance between
a left or right pair. Write p = (x

1

, y
1

) and q = (x
2

, y
2

), and let x̄
denote the x-coordinate of the rightmost point of the left half. Since
p and q are in the left and right halves, respectively, we have

x
1

 x̄ < x
2

.

At the same time, x
1

and x
2

cannot be very different. Formally,
remembering the definition of Euclidean distance (3.5), we can write

� > d(p, q)

=

p
(x

1

� x
2

)

2

+ (y
1

� y
2

)

2

�
p
max{(x

1

� x
2

)

2, (y
1

� y
2

)

2}
= max{|x

1

� x
2

|, |y
1

� y
2

|}.

This means that p and q differ by less than � in both their x- and
y-coordinates:

|x
1

� x
2

|, |y
1

� y
2

| < �. (3.6)

Since x
1

 x̄ and x
2

is at most � larger than x
1

, we have x
2


x̄+ �.15 Since x

2

� x̄ and x
1

is at most � smaller than x
2

, x
1

� x̄� �.
15Imagine that p and q are people tied at the waist by a rope of length �. The

point p can travel only as far rightward as x̄, which limits q’s travels to x̄ + �
(Figure 3.6).
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In particular, p and q both have x-coordinates that are wedged in
between x̄� � and x̄+ �. All such points, including p and q, belong
to the set Sy.

≤ δ 

xx1 x2x −δ x +δ

Figure 3.6: Proof of Lemma 3.3(a). Both p and q have x-coordinates
between x̄� � and x̄+ �.

3.4.9 Proof of Lemma 3.3(b)

Recall our standing assumptions: there is a split pair (p, q), with
p = (x

1

, y
1

) in the left half of the point set and q = (x
2

, y
2

) in the
right half, such that d(p, q) < �, where � is the minimum distance
between a left or right pair. Lemma 3.3(b) asserts that p and q not
only appear in the set Sy (as proved in part (a)), but that they are
nearly consecutive, with at most six other points of Sy possessing
y-coordinates between y

1

and y
2

.
For the proof, we draw eight boxes in the plane in a 2⇥ 4 pattern,

where each box has side length �
2

(Figure 3.7). There are two columns
of boxes on either side of x̄, the median x-coordinate. The bottom
of the boxes is aligned with the lower of the points p and q, at the
y-coordinate min{y

1

, y
2

}.16

From part (a), we know that both p and q have x-coordinates
between x̄� � and x̄+ �. For concreteness, suppose q has the smaller
y-coordinate; the other case is analogous. Thus, q appears at the
bottom of some box on the bottom row (in the right half). Since p’s
y-coordinate can only be � larger than q’s (see (3.6)), p also appears
in one of the boxes (in the left half). Every point of Sy with y-
coordinate between p and q has x-coordinate between x̄� � and x̄+ �

16Don’t forget: these boxes are purely for the sake of reasoning about why
the ClosestPair algorithm is correct. The algorithm itself knows nothing about
these boxes, and remains just the pseudocode in Sections 3.4.4–3.4.6.
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δ/2 

x

q

x −δ x +δ

p
a

b

Figure 3.7: Proof of Lemma 3.3(b). The points p and q inhabit two of
these eight boxes, and there is at most one point in each box.

(the requirement for membership in Sy) and y-coordinate between y
2

and y
1

< y
2

+ �, and hence lies in one of the eight boxes.
The worry is that there are lots of points in these boxes that have

y-coordinate between y
1

and y
2

. To show that this can’t happen, let’s
prove that each box contains at most one point. Then, the eight boxes
contain at most eight points (including p and q), and there can only
be six points of Sy in between p and q in y-coordinate.17

Why does each box have at most one point? This is the part
of the argument that uses our observation in Section 3.4.5 and the
fact that � is the smallest distance between a left pair or a right pair.
To derive a contradiction, suppose that some box has two points, a
and b (one of which might be p or q). This point pair is either a
left pair (if the points are in the first two columns) or a right pair
(if they are in the last two). The farthest apart that a and b can be
is at opposite corners of the box (Figure 3.7), in which case, by the
Pythagorean theorem18, the distance between a and b is

p
2 · �

2

< �.
But this contradicts the assumption that there is no left or right pair
at a distance less than �! This contradiction implies that each of the
eight boxes in Figure 3.7 has at most one point; hence, at most six
points of Sy have a y-coordinate between those of p and q. QE D

17If a point has x-coordinate exactly x̄, count it toward the box to its left.
Other points on the boundary of multiple boxes can be assigned arbitrarily to one
of them.

18For a right triangle, the sum of the squares of the sides equals the square of
the hypotenuse.
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3.4.10 Solution to Quiz 3.4

Correct answer: (b). The correct answer is O(n log n). O(n) is not
correct because, among other reasons, the ClosestPair algorithm
already spends ⇥(n log n) time in its preprocessing step creating
the sorted lists Px and Py. The upper bound of O(n log n) follows
from the exact same argument as for MergeSort: the ClosestPair

algorithm makes two recursive calls, each on an input of half the
size, and performs O(n) work outside its recursive calls. (Recall
that lines 1–4 and 8 can be implemented in O(n) time, and for this
quiz we are assuming that ClosestSplitPair also runs in linear
time.) This pattern perfectly matches the one we already analyzed
for MergeSort in Section 1.5, so we know that the total number of
operations performed is O(n log n). Since the preprocessing step also
runs in O(n log n) time, the final running time bound is O(n log n).

The Upshot

P A divide-and-conquer algorithm divides the in-
put into smaller subproblems, conquers the sub-
problems recursively, and combines the subprob-
lem solutions into a solution for the original
problem.

P Computing the number of inversions in an array
is relevant for measuring similarity between two
ranked lists. The brute-force search algorithm
for the problem runs in ⇥(n2

) time for arrays
of length n.

P There is a divide-and-conquer algorithm that
piggybacks on MergeSort and computes the
number of inversions in O(n log n) time.

P Strassen’s subcubic-time divide-and-conquer al-
gorithm for matrix multiplication is a mind-
blowing example of how algorithmic ingenuity
can improve over straightforward solutions. The
key idea is to save a recursive call over a sim-
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pler divide-and-conquer algorithm, analogous
to Karatsuba multiplication.

P In the closest pair problem, the input is n points
in the plane, and the goal is to compute the
pair of points with smallest Euclidean distance
between them. The brute-force search algorithm
runs in ⇥(n2

) time.

P There is a sophisticated divide-and-conquer al-
gorithm that solves the closest pair problem in
O(n log n) time.

Test Your Understanding

Problem 3.1 Consider the following pseudocode for calculating ab,
where a and b are positive integers:19

FastPower

Input: positive integers a and b.
Output: ab.

if b = 1 then
return a

else
c := b · b
ans := FastPower(c, bb/2c)

if b is odd then
return a · ans

else
return ans

Assume for this problem that each multiplication and division can be
performed in constant time. What is the asymptotic running time of
this algorithm, as a function of b?

19The notation bxc denotes the “floor” function, which rounds its argument
down to the nearest integer.
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a) ⇥(log b)

b) ⇥(

p
b)

c) ⇥(b)

d) ⇥(b log b)

Challenge Problems

Problem 3.2 You are given a unimodal array of n distinct elements,
meaning that its entries are in increasing order up until its maximum
element, after which its elements are in decreasing order. Give an
algorithm to compute the maximum element of a unimodal array that
runs in O(log n) time.

Problem 3.3 You are given a sorted (from smallest to largest) array
A of n distinct integers which can be positive, negative, or zero. You
want to decide whether or not there is an index i such that A[i] = i.
Design the fastest algorithm you can for solving this problem.

Problem 3.4 (Difficult.) You are given an n-by-n grid of distinct
numbers. A number is a local minimum if it is smaller than all
its neighbors. (A neighbor of a number is one immediately above,
below, to the left, or to the right. Most numbers have four neighbors;
numbers on the side have three; the four corners have two.) Use the
divide-and-conquer algorithm design paradigm to compute a local
minimum with only O(n) comparisons between pairs of numbers.
(Note: since there are n2 numbers in the input, you cannot afford to
look at all of them.)

[Hint: Figure out how to recurse on an n
2

-by-n
2

grid after doing only
O(n) work.]

Programming Problems

Problem 3.5 Implement in your favorite programming language the
CountInv algorithm from Section 3.2 for counting the number of
inversions of an array. (See www.algorithmsilluminated.org for
test cases and challenge data sets.)

www.algorithmsilluminated.org


Chapter 4

The Master Method

This chapter presents a “black-box” method for determining the run-
ning time of recursive algorithms—plug in a few key characteristics
of the algorithm, and out pops an upper bound on the algorithm’s
running time. This “master method” applies to most of the divide-
and-conquer algorithms you’ll ever see, including Karatsuba’s integer
multiplication algorithm (Section 1.3) and Strassen’s matrix multipli-
cation algorithm (Section 3.3).1 This chapter also illustrates a more
general theme in the study of algorithms: properly evaluating novel
algorithmic ideas often requires non-obvious mathematical analysis.

After introducing recurrences in Section 4.1, we give a formal
statement of the master method (Section 4.2) and look at six example
applications (Section 4.3). Section 4.4 covers the proof of the master
method, with an emphasis on the meaning behind its famous three
cases. The proof builds nicely on our analysis of the MergeSort

algorithm in Section 1.5.

4.1 Integer Multiplication Revisited

To motivate the master method, let’s recall the main points of our
integer multiplication discussion (Sections 1.2–1.3). The problem
is to multiply two n-digit numbers, where the primitive operations
are the addition or multiplication of two single-digit numbers. The
iterative grade-school algorithm requires ⇥(n2

) operations to multiply
two n-digit numbers. Can we do better with a divide-and-conquer
approach?

1The master method is also called the “master theorem.”

92
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4.1.1 The RecIntMult Algorithm

The RecIntMult algorithm from Section 1.3 creates smaller subprob-
lems by breaking the given n-digit numbers x and y into their first
and second halves: x = 10

n/2 · a + b and y = 10

n/2 · c + d, where
a, b, c, d are n/2-digit numbers (assuming n is even, for simplicity).
For example, if x = 1234, then a = 12 and b = 34. Then

x · y = 10

n · (a · c) + 10

n/2 · (a · d+ b · c) + b · d, (4.1)

which shows that multiplying two n-digit numbers reduces to multi-
ply four pairs of n/2-digit numbers, plus O(n) additional work (for
appending zeroes appropriately and grade-school addition).

The way to describe this formally is by a recurrence. Let T (n)
denote the maximum number of operations used by this recursive
algorithm to multiply two n-digit numbers—this is the quantity we
want to bound from above. A recurrence expresses a running time
bound T (n) in terms of the number of operations performed by
recursive calls. The recurrence for the RecIntMult algorithm is

T (n)  4 · T
⇣n
2

⌘

| {z }
work done by recursive calls

+ O(n)| {z }
work done outside recursive calls

.

Like a recursive algorithm, a recurrence also needs a base case, which
states what T (n) is for values of n that are too small to trigger any
recursive calls. Here, the base case is when n = 1, and the algorithm
just performs a single multiplication, so T (1) = 1.

4.1.2 The Karatsuba Algorithm

Karatsuba’s recursive algorithm for integer multiplication uses a trick
due to Gauss to save one recursive call. The trick is to recursively
compute the products of a and c, b and d, and a+ b and c+ d, and
extract the middle coefficient a · d+ b · c via (a+ b)(c+ d)� ac� bd.
This is enough information to compute the right-hand side of (4.1)
with O(n) additional primitive operations.

Quiz 4.1

Which recurrence best describes the running time of the
Karatsuba algorithm for integer multiplication?



94 The Master Method

a) T (n)  2 · T
�
n
2

�
+O(n2

)

b) 3 · T
�
n
2

�
+O(n)

c) 3 · T
�
n
2

�
+O(n2

)

d) 4 · T
�
n
2

�
+O(n)

(See below for the solution and discussion.)

Correct answer: (b). The only change from the RecIntMult algo-
rithm is that the number of recursive calls has dropped by one. It’s
true that the amount of work done outside the recursive calls is larger
in the Karatsuba algorithm, but only by a constant factor that gets
suppressed in the big-O notation. The appropriate recurrence for the
Karatsuba algorithm is therefore

T (n)  3 · T
⇣n
2

⌘

| {z }
work done by recursive calls

+ O(n)| {z }
work done outside recursive calls

,

again with the base case T (1) = 1.2

4.1.3 Comparing the Recurrences

At the moment, we don’t know the running time of RecIntMult or
Karatsuba, but inspecting their recurrences suggests that the latter
can only be faster than the former. Another point of comparison is
the MergeSort algorithm, where our analysis in Section 1.5 leads to
the recurrence

T (n)  2 · T
⇣n
2

⌘

| {z }
work done by recursive calls

+ O(n)| {z }
work done outside recursive calls

,

where n is the length of the array to be sorted. This suggests that
our running time bounds for both the RecIntMult and Karatsuba

algorithms cannot be better than our bound for MergeSort, which
is O(n log n). Beyond these clues, we really have no idea what the
running time of either algorithm is. Enlightenment awaits with the
master method, discussed next.

2Technically, the recursive call on a+ b and c+ d might involve (

n
2

+ 1)-digit
numbers. Among friends, let’s ignore this—it doesn’t matter in the final analysis.
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4.2 Formal Statement

The master method is exactly what you’d want for analyzing recursive
algorithms. It takes as input the recurrence for the algorithm and—
boom—spits out as output an upper bound on the running time of
the algorithm.

4.2.1 Standard Recurrences

We’ll discuss a version of the master method that handles what we’ll
call “standard recurrences,” which have three free parameters and the
following form.3

Standard Recurrence Format

Base case: T (n) is at most a constant for all sufficiently
small n.4

General case: for larger values of n,

T (n)  a · T
⇣n
b

⌘
+O(nd

).

Parameters:

• a = number of recursive calls

• b = input size shrinkage factor

• d = exponent in running time of the “combine step”

The base case of a standard recurrence asserts that once the input
size is so small that no recursive calls are needed, the problem can
be solved in O(1) time. This will be the case for all the applications
we consider. The general case assumes that the algorithm makes
a recursive calls, each on a subproblem with size a b factor smaller
than its input, and does O(nd

) work outside these recursive calls. For
3This presentation of the master method draws inspiration from Chapter 2 of

Algorithms, by Sanjoy Dasgupta, Christos Papadimitriou, and Umesh Vazirani
(McGraw-Hill, 2006).

4Formally, there exist positive integers n
0

and c, independent of n, such that
T (n)  c for all n  n

0

.
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example, in the MergeSort algorithm, there are two recursive calls
(a = 2), each on an array of half the size of the input (b = 2), and
O(n) work is done outside the recursive calls (d = 1). In general, a
can be any positive integer, b can be any real number bigger than 1
(if b  1 then the algorithm won’t terminate), and d can be any
nonnegative real number, with d = 0 indicating only constant (O(1))
work beyond the recursive calls. As usual, we ignore the detail that
n
b might need to be rounded up or down to an integer—and as usual,
it doesn’t affect our final conclusions. Never forget that a, b, and
d should be constants—numbers that are independent of the input
size n.5 Typical values for these parameters are 1 (for a and d), 2,
3, and 4. If you ever find yourself saying something like “apply the
master method with a = n or b = n

n�1 ,” you’re using it incorrectly.
One restriction in standard recurrences is that every recursive

call is on a subproblem of the same size. For example, an algorithm
that recurses once on the first third of an input array and once on
the rest would lead to a non-standard recurrence. Most (but not all)
natural divide-and-conquer algorithms lead to standard recurrences.
For example, in the MergeSort algorithm, both recursive calls operate
on problems with size half that of the input array. In our recursive
integer multiplication algorithms, recursive calls are always given
numbers with half as many digits.6

4.2.2 Statement and Discussion of the Master Method

We can now state the master method, which provides an upper bound
on a standard recurrence as a function of the key parameters a, b,
and d.

Theorem 4.1 (Master Method) If T (n) is defined by a standard

recurrence, with parameters a � 1, b > 1, and d � 0, then

T (n) =

8
<

:

O(nd
log n) if a = bd [Case 1]

O(nd
) if a < bd [Case 2]

O(nlogb a
) if a > bd [Case 3].

(4.2)

5There are also the constants suppressed in the base case and in the “O(nd
)”

term, but the conclusion of the master method does not depend on their values.
6There are more general versions of the master method that accommodate a

wider family of recurrences, but the simple version here is sufficient for almost
any divide-and-conquer algorithm you’re likely to encounter.
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What’s up with the three cases, and why are the relative values
of a and bd so important? In the second case, could the running time
of the whole algorithm really be only O(nd

), when the outermost
recursive call already does O(nd

) work? And what’s the deal with the
exotic-looking running time bound in the third case? By the end of
this chapter we’ll learn satisfying answers to all of these questions, and
the statement of the master method will seem like the most natural
thing in the world.7

More On Logarithms

Another puzzling aspect of Theorem 4.1 concerns
the inconsistent use of logarithms. The third case
carefully states that the logarithm in question is base-
b—the number of times you can divide n by b before
the result is at most 1. Meanwhile, the first case
does not specify the base of the logarithm at all. The
reason is that any two logarithmic functions differ

only by a constant factor. For example, the base-
2 logarithm always exceeds the natural logarithm
(i.e., the base-e logarithm, where e = 2.718 . . .) by
a factor of 1/ ln 2 ⇡ 1.44. In the first case of the
master method, changing the base of the logarithm
only changes the constant factor that is conveniently
suppressed in the big-O notation. In the third case,
the logarithm appears in the exponent, where different
constant factors translate to very different running
time bounds (like n2 vs. n100)!

4.3 Six Examples

The master method (Theorem 4.1) is hard to get your head around
the first time you see it. Let’s instantiate it in six different examples.

7The bounds in Theorem 4.1 have the form O(f(n)) rather than ⇥(f(n))
because in our recurrence we only assume an upper bound on T (n). If we replace
“” with “=” and O(nd

) with ⇥(nd
) in the definition of a standard recurrence,

the bounds in Theorem 4.1 hold with O(·) replaced by ⇥(·). Verifying this is a
good way to check your understanding of the proof in Section 4.4.
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4.3.1 MergeSort Revisited

As a sanity check, let’s revisit an algorithm whose running time we
already know, MergeSort. To apply the master method, all we need
to do is identify the values of the three free parameters: a, the number
of recursive calls; b, the factor by which the input size shrinks prior to
the recursive calls; and d, the exponent in the bound on the amount
of work done outside the recursive calls.8 In MergeSort, there are
two recursive calls, so a = 2. Each recursive call receives half of the
input array, so b = 2 as well. The work done outside these recursive
calls is dominated by the Merge subroutine, which runs in linear time
(Section 1.5.1), and so d = 1. Thus

a = 2 = 2

1

= bd,

putting us in the first case of the master method. Plugging in the
parameters, Theorem 4.1 tells us that the running time of MergeSort
is O(nd

log n) = O(n log n), thereby replicating our analysis in Sec-
tion 1.5.

4.3.2 Binary Search

For our second example, we consider the problem of searching a sorted
array for a given element. Think, for example, of searching for your
own name in an alphabetical list in a large book.9 You could search
linearly starting from the beginning, but this would squander the
advantage that the list is in alphabetical order. A smarter approach
is to look in the middle of the book and recurse on either its first half
(if the name in the middle comes after your own) or its second half
(otherwise). This algorithm, translated to the problem of searching a
sorted array, is known as binary search.10

What’s the running time of binary search? This question is easy
to answer directly, but let’s see how the master method handles it.

8All of the recurrences we consider have a base case in the form required for
standard recurrences, and we won’t discuss them from here on out.

9Readers of at least a certain age should be reminded of a phone book.
10If you haven’t walked through the code of this algorithm before, look it up

in your favorite introductory programming book or tutorial.
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Quiz 4.2

What are the respective values of a, b, and d for the binary
search algorithm?

a) 1, 2, 0 [case 1]

b) 1, 2, 1 [case 2]

c) 2, 2, 0 [case 3]

d) 2, 2, 1 [case 1]

(See Section 4.3.7 for the solution and discussion.)

4.3.3 Recursive Integer Multiplication

Now we get to the good stuff, divide-and-conquer algorithms for
which we don’t yet know a running time bound. Let’s begin with
the RecIntMult algorithm for integer multiplication. We saw in
Section 4.1 that the appropriate recurrence for this algorithm is

T (n)  4 · T
⇣n
2

⌘
+O(n),

and so a = 4, b = 2, and d = 1. Thus

a = 4 > 2 = 2

1

= bd,

putting us in the third case of the master method. In this case, we
obtain the exotic-looking running time bound of O(nlogb a

). For our
parameter values, this is O(nlog

2

4

) = O(n2

). Thus the RecIntMult

algorithm matches but does not outperform the iterative grade-school
algorithm for integer multiplication (which uses ⇥(n2

) operations).

4.3.4 Karatsuba Multiplication

A divide-and-conquer approach to integer multiplication pays off only
once Gauss’s trick is used to save a recursive call. As we saw in
Section 4.1, the running time of the Karatsuba algorithm is governed
by the recurrence

T (n)  3 · T
⇣n
2

⌘
+O(n),



100 The Master Method

which differs from the previous recurrence only in that a has dropped
from 4 to 3 (b is still 2, d is still 1). We expect the running time
to be somewhere between O(n log n) (the bound when a = 2, as in
MergeSort) and O(n2

) (the bound when a = 4, as in RecIntMult). If
the suspense is killing you, the master method offers a quick resolution:
we have

a = 3 > 2 = 2

1

= bd,

and so we are still in the third case of the master method, but with
an improved running time bound: O(nlogb a

) = O(nlog

2

3

) = O(n1.59
).

Thus saving a recursive call leads to a fundamentally better running
time, and the integer multiplication algorithm that you learned in the
third grade is not the fastest possible!11

4.3.5 Matrix Multiplication

Section 3.3 considered the problem of multiplying two n⇥ n matri-
ces. As with integer multiplication, we discussed three algorithms—
a straightforward iterative algorithm, the straightforward recursive
RecMatMult algorithm, and the ingenious Strassen algorithm. The
iterative algorithm uses ⇥(n3

) operations (Quiz 3.3). The RecMatMult
algorithm breaks each of the two input matrices into four n

2

⇥ n
2

matri-
ces (one for each quadrant), performs the corresponding eight recur-
sive calls on smaller matrices, and combines the results appropriately
(using straightforward matrix addition). The Strassen algorithm
cleverly identifies seven pairs of n

2

⇥ n
2

matrices whose products suffice
to reconstruct the product of the original input matrices.

Quiz 4.3

What running time bounds does the master method provide
for the RecMatMult and Strassen algorithms, respectively?

a) O(n3

) and O(n2

)

b) O(n3

) and O(nlog

2

7

)

11Fun fact: in the Python programming language, the built-in subroutine for
multiplying integer objects uses the grade-school algorithm for integers with at
most 70 digits, and the Karatsuba algorithm otherwise.
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c) O(n3

) and O(n3

)

d) O(n3

log n) and O(n3

)

(See Section 4.3.7 for the solution and discussion.)

4.3.6 A Fictitious Recurrence

In our five examples thus far, two recurrences have fallen in the first
case of the master method, and the rest in the third case. There
are also naturally occurring recurrences that fall in the second case.
For example, suppose we have a divide-and-conquer algorithm that
operates like MergeSort, except that the algorithm works harder
outside the recursive calls, doing a quadratic rather than linear amount
of work. That is, consider the recurrence

T (n)  2 · T
⇣n
2

⌘
+O(n2

).

Here, we have
a = 2 < 4 = 2

2

= bd,

putting us squarely in the second case of the master method, for a run-
ning time bound of O(nd

) = O(n2

). This might seem counterintuitive;
given that the MergeSort algorithm does linear work outside the two
recursive calls and has a running time of O(n log n), you might expect
that a quadratic-time combine step would lead to a running time of
O(n2

log n). The master method shows this to be an overestimate,
and provides the better upper bound of O(n2

). Remarkably, this
means that the total running time of the algorithm is dominated by
the work done in the outermost call—all subsequent recursive calls
only increase the total number of operations performed by a constant
factor.12

4.3.7 Solutions to Quizzes 4.2–4.3

Solution to Quiz 4.2

Correct answer: (a). Binary search recurses on either the left half
of the input array or the right half (never both), so there is only one

12We’ll see another example of case 2 of the master method when we discuss
linear-time selection in Chapter 6.
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recursive call (a = 1). This recursive call is on half of the input array,
so b is again equal to 2. Outside the recursive call, all binary search
does is a single comparison (between the middle element of the array
and the element being searched for) to determine whether to recurse
on the left or the right half of the array. This translates to O(1) work
outside the recursive call, so d = 0. Since a = 1 = 2

0

= bd, we are
again in the first case of the master method, and we get a running
time bound of O(nd

log n) = O(log n).

Solution to Quiz 4.3

Correct answer: (b). Let’s start with the RecMatMult algorithm
(Section 3.3.4). Let T (n) denote the maximum number of primitive
operations that the algorithm uses to multiply two n ⇥ n matrices.
The number a of recursive calls is 8. Each of these calls is on a pair of
n
2

⇥ n
2

matrices, so b = 2. The work done outside the recursive calls
involves a constant number of matrix additions, and these require
O(n2

) time (constant time for each of the n2 matrix entries). Thus
the recurrence is

T (n)  8 · T
⇣n
2

⌘
+O(n2

),

and since
a = 8 > 4 = 2

2

= bd,

we are in the third case of the master method, which gives a running
time bound of O(nlogb a

) = O(nlog

2

8

) = O(n3

).
The only difference between the recurrence for the Strassen algo-

rithm and the recurrence above is that the number a of recursive calls
drops from 8 to 7. It’s true that the Strassen algorithm does more
matrix additions than RecMatMult, but only by a constant factor, and
hence d is still equal to 2. Thus

a = 7 > 4 = 2

2

= bd.

We are still in the third case of the master method, but with an
improved running time bound: O(nlogb a

) = O(nlog

2

7

) = O(n2.81
).

Thus the Strassen algorithm really is asymptotically superior to the
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straightforward iterative algorithm!13

*4.4 Proof of the Master Method

This section proves the master method (Theorem 4.1): if T (n) is
governed by a standard recurrence, of the form

T (n)  a · T
⇣n
b

⌘
+O(nd

),

then

T (n) =

8
<

:

O(nd
log n) if a = bd [Case 1]

O(nd
) if a < bd [Case 2]

O(nlogb a
) if a > bd [Case 3].

It’s important to remember the meanings of the three free parameters:

Parameter Meaning
a number of recursive calls
b factor by which input size shrinks in recursive call
d exponent of work done outside recursive calls

4.4.1 Preamble

The proof of the master method is important not because we care about
formality for its own sake, but because it provides the fundamental
explanation for why things are the way they are—for example, why
the master method has three cases. With this in mind, you should
distinguish between two types of content in the proof. At a couple
points we will resort to algebraic computations to understand what’s
going on. These calculations are worth seeing once in your life, but
they are not particularly important to remember in the long term.
What is worth remembering is the conceptual meaning of the three
cases of the master method. The proof will use the recursion tree
approach that served us so well for analyzing the MergeSort algorithm
(Section 1.5), and the three cases correspond to three different types

13There is a long line of research papers that devise increasingly sophisticated
matrix multiplication algorithms with ever-better worst-case asymptotic running
times (albeit with large constant factors that preclude practical implementations).
The current world record is a running time bound of roughly O(n2.3729

), and for
all we know there could be an O(n2

)-time algorithm waiting to be discovered.
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of recursion trees. If you can remember the meaning of the three
cases, there is no need to memorize the running times in the master
method—you will be able to reverse engineer them as needed from
your conceptual understanding of it.

For the formal proof, we should explicitly write out all the constant
factors in the recurrence:

Base case: T (1)  c.

General case: for n > 1,

T (n)  a · T
⇣n
b

⌘
+ cnd. (4.3)

For simplicity we’re assuming that the constant n
0

specifying when
the base case kicks in is 1; the proof for a different constant n

0

is
pretty much the same. We can assume that the suppressed constants
in the base case and the O(nd

) term in the general case are equal to
the same number c; if they were different constants, we could just
work with the larger of the two. Finally, let’s focus on the case in
which n is a power of b. The proof for the general case is similar, with
no additional conceptual content, but is more tedious.

4.4.2 Recursion Trees Revisited

The high-level plan for the proof is as natural as could be: generalize
the recursion tree argument for MergeSort (Section 1.5) so that it
accommodates other values of the key parameters a, b, and d. Recall
that a recursion tree provides a principled way to keep track of all the
work done by a recursive algorithm, across all its recursive calls. Nodes
of the tree correspond to recursive calls, and the children of a node
correspond to the recursive calls made by that node (Figure 4.1). Thus
the root (level 0) of the recursion tree corresponds to the outermost
call to the algorithm, level 1 has a nodes corresponding to its recursive
calls, and so on. The leaves at the bottom of the tree correspond to
recursive calls where the base case is triggered.

As in our analysis of MergeSort, we’d like to account level-by-level
for the work performed by a recursive algorithm. This plan requires
understanding two things: the number of distinct subproblems at a
given recursion level j, and the length of the input to each of these
subproblems.
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level 0 
(outermost call) 
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level 1 
(first recursive 

calls) 
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original input 

subproblem 1 subproblem a 
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. 

level logb n: leaves (base cases) 

...... 

...... ...... 

branching factor = a 

Figure 4.1: The recursion tree corresponding to a standard recurrence.
Nodes correspond to recursive calls. Level 0 corresponds to the outermost
call, level 1 to its recursive calls, and so on.

Quiz 4.4

What is the pattern? Fill in the blanks in the following
statement: at each level j = 0, 1, 2, . . . of the recursion tree,
there are [blank] subproblems, each operating on a subarray
of length [blank].

a) aj and n/aj , respectively

b) aj and n/bj , respectively

c) bj and n/aj , respectively

d) bj and n/bj , respectively

(See Section 4.4.10 for the solution and discussion.)
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4.4.3 Work Performed at a Single Level

Inspired by our MergeSort analysis, the plan is to count the total
number of operations performed by the level-j subproblems in a divide-
and-conquer algorithm, and then add up over all the levels. So zoom
in on a recursion level j. By the solution to Quiz 4.4, there are aj

different subproblems at level j, each with an input with size n/bj .
We care only about the size of a subproblem inasmuch as it determines
the amount of work the recursive call performs. Our recurrence (4.3)
asserts that the work performed in a level-j subproblem, not counting
the work performed in its recursive calls, is at most a constant times
the input size raised to the d power: c(n/bj)d. Adding up over all aj
of the level-j subproblems gives an upper bound on the amount of
work performed at level j of the recursion tree:

work at level j  aj|{z}
# of subproblems

·

work per subproblemz }| {
c ·
h n
bj

i

|{z}
input

size

d .

Let’s simplify this expression by separating out the parts that depend
on the level j and the parts that don’t:

work at level j  cnd ·
h a
bd

ij
.

The right-hand side marks the grand entrance of the critical ratio
a/bd. Given that the value of a versus bd is exactly what dictates the
relevant case of the master method, we shouldn’t be surprised that
this ratio shows up explicitly in the analysis.

4.4.4 Summing over the Levels

How many levels are there? The input size is initially n and drops
by a factor of b with each level. Since we’re assuming that n is a
power of b and that the base case kicks in when the input size is 1, the
number of levels is exactly the number of times you need to divide n
by b to reach 1, also known as logb n. Summing over all the levels
j = 0, 1, 2, . . . , logb n we obtain the following inscrutable upper bound
on the running time (using that nd is independent of j): and can be
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yanked out front):

total work  cnd ·
logb nX

j=0

h a
bd

ij
. (4.4)

Believe it or not, we’ve reached an important milestone in the proof
of the master method. The right-hand side of (4.4) probably looks
like alphabet soup, but with the proper interpretation, it holds the
keys that unlock a deep understanding of the master method.

4.4.5 Good vs. Evil: The Need for Three Cases

Next we’ll attach some semantics to the running time bound in (4.4)
and develop some intuition about why the running time bounds in
the master method are what they are.

Why is the ratio of a vs. bd so important? Fundamentally, this
comparison represents a tug-of-war between the forces of good and
the forces of evil. Evil is represented by a, the rate of subproblem

proliferation (RSP)—with every level of recursion, the number of
subproblems explodes by an a factor, and this is a little scary. Good
takes the form of bd, the rate of work shrinkage (RWS)—the good
news is that with every level of recursion, the amount of work per
subproblem decreases by a factor of bd.14 The key question then is:
which side wins, the forces of good or the forces of evil? The three
cases of the master method correspond exactly to the three possible
outcomes of this tug-of-war: a draw (RSP = RWS), a victory for
good (RSP < RWS), or a victory for evil (RSP > RWS).

To understand this better, spend some time thinking about the
amount of work done at each level of a recursion tree (as in Figure 4.1).
When is the amount of work performed increasing with the recursion
tree level j? When is it decreasing? Is it ever the same at every level?

14Why bd instead of b? Because b is the rate at which the input size shrinks,
and we care about input size only inasmuch as it determines the amount of work
performed. For example, in a divide-and-conquer algorithm with a quadratic-time
combine step (d = 2), when the input size is cut in half (b = 2), only 25% as much
work is needed to solve each smaller subproblem (since bd = 4).
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Quiz 4.5

Which of the following statements are true? (Choose all
that apply.)

a) If RSP < RWS then the amount of work performed
is decreasing with the recursion level j.

b) If RSP > RWS then the amount of work performed
is increasing with the recursion level j.

c) No conclusions can be drawn about how the amount
of work varies with the recursion level j unless RSP =

RWS.

d) If RSP = RWS then the amount of work performed
is the same at every recursion level.

(See Section 4.4.10 for the solution and discussion.)

4.4.6 Forecasting the Running Time Bounds

We now understand why the master method has three cases. There are
three fundamentally different types of recursion trees—with the work-
per-level staying the same, decreasing, or increasing—and the relative
sizes of a (the RSP ) and bd (the RWS) determine the recursion tree
type of a divide-and-conquer algorithm.

Even better, we now have enough intuition to accurately forecast
the running time bounds that appear in the master method. Consider
the first case, when a = bd and the algorithm performs the same
amount of work at every level of its recursion tree. We certainly know
how much work is done at the root, in level 0—O(nd

), as explicitly
specified in the recurrence. With O(nd

) work per level, and with
1 + logb n = O(log n) levels, we should expect a running time bound
of O(nd

log n) in this case (cf., case 1 of Theorem 4.1).15

In the second case, a < bd and the forces of good are victorious—
the amount of work performed is decreasing with the level. Thus
more work is done at level 0 than at any other level. The simplest
and best outcome we could hope for is that the work done at the root

15The abbreviation “cf.” stands for confer and means “compare to.”
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dominates the running time of the algorithm. Since O(nd
) work is

done at the root, this best-case scenario would translate to an overall
running time of O(nd

) (cf., case 2 of Theorem 4.1).
In the third case, when subproblems proliferate even faster than

the work-per-subproblem shrinks, the amount of work performed is
increasing with the recursion level, with the most work being done
at the leaves of the tree. Again, the simplest- and best-case scenario
would be that the running time is dominated by the work done at
the leaves. A leaf corresponds to a recursive call where the base case
is triggered, so the algorithm performs only O(1) operations per leaf.
How many leaves are there? From the solution to Quiz 4.4, we know
that there are aj nodes at each level j. The leaves are at the last level
j = logb n, so there are alogb n leaves. Thus, the best-case scenario
translates to a running time bound of O(alogb n).

The remaining mystery is the connection between our forecasted
running time bound for the third case of the master method (O(alogb n))
and the actual bound that appears in Theorem 4.1 (O(nlogb a

)). The
connection is. . . they are exactly the same! The identity

alogb n| {z }
more intuitive

= nlogb a| {z }
easier to apply

probably looks like a rookie mistake made by a freshman algebra
student, but it’s actually true.16 Thus the running time bound of
O(nlogb a

) just says that the work performed at the leaves of the
recursion tree dominates the computation, with the bound stated in
a form convenient for plugging in parameters (as for the integer and
matrix multiplication algorithms analyzed in Section 4.3).

4.4.7 The Final Calculations: Case 1

We still need to check that our intuition in the previous section is
actually correct, and the way to do this is through a formal proof.
The culmination of our previous calculations was the following scary-
looking upper bound on the running time of a divide-and-conquer

16To verify it, just take the logarithm base-b of both sides: logb(a
logb n

) =

logb n · logb a = logb a · logb n = logb(n
logb a

). (And since logb is a strictly increasing
function, the only way logb x and logb y can be equal is if x and y are equal.)
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algorithm, as a function of the parameters a, b, and d:

total work  cnd ·
logb nX

j=0

h a
bd

ij
. (4.5)

We obtained this bound by zooming in on a particular level j of
the recursion tree (with its aj subproblems and c(n/bj)d work-per-
subproblem) and then summing up over the levels.

When the forces of good and evil are in perfect equilibrium (i.e.,
a = bd) and the algorithm performs the same amount of work at every
level, the right-hand side of (4.5) simplifies dramatically:

cnd ·
logb nX

j=0

2

64
a

bd|{z}
=1

3

75

j

| {z }
=1 for each j

= cnd · (1 + 1 + · · ·+ 1)| {z }
1 + logb n times

,

which is O(nd
log n).17

4.4.8 Detour: Geometric Series

Our hope is that for the second and third types of recursion trees
(decreasing- and increasing-work-per-level, respectively), the overall
running time is dominated by the work performed at the most difficult
level (the root and the leaves, respectively). Making this hope real
requires understanding geometric series, which are expressions of the
form 1 + r + r2 + · · ·+ rk for some real number r and nonnegative
integer k. (For us, r will be the critical ratio a/bd.) Whenever you
see a parameterized expression like this, it’s a good idea to keep a
couple of canonical parameter values in mind. For example, if r = 2,
it’s a sum of positive powers of 2: 1 + 2 + 4 + 8 + · · · + 2

k. When
r =

1

2

, it’s a sum of negative powers of 2: 1 +

1

2

+

1

4

+

1

8

+ · · ·+ 1

2

k .
When r 6= 1, there is a useful closed-form formula for a geometric

series:18

1 + r + r2 + · · ·+ rk =

1� rk+1

1� r
. (4.6)

17Remember that since different logarithmic functions differ by a constant
factor, there is no need to specify the base of the logarithm.

18To verify this identity, just multiply both sides by 1� r: (1� r)(1 + r + r2 +
· · ·+ rk) = 1� r + r � r2 + r2 � r3 + r3 � · · ·� rk+1

= 1� rk+1.
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Two consequences of this formula are important for us. First, when
r < 1,

1 + r + r2 + · · ·+ rk  1

1� r
= a constant (independent of k).

Thus every geometric series with r < 1 is dominated by its first term—
the first term is 1 and the sum is only O(1). For example, it doesn’t
matter how many powers of 1

2

you add up, the resulting sum is never
more than 2.

Second, when r > 1,

1 + r + r2 + · · ·+ rk =

rk+1 � 1

r � 1

 rk+1

r � 1

= rk · r

r � 1

.

Thus every geometric series with r > 1 is dominated by its last term—
the last term is rk while the sum is at most a constant factor (r/(r�1))
times this. For example, if you sum up the powers of 2 up to 1024,
the resulting sum is less than 2048.

4.4.9 The Final Calculations: Cases 2 and 3

Returning to our analysis of (4.5), suppose that a < bd. In this case,
the proliferation in subproblems is drowned out by the savings in
work-per-subproblem, and the number of operations performed is
decreasing with the recursion tree level. Set r = a/bd; since a, b, and
d are constants (independent of the input size n), so is r. Since r < 1,
the geometric series in (4.5) is at most the constant 1/(1 � r), and
the bound in (4.5) becomes

cnd ·
logb nX

j=0

rj

| {z }
=O(1)

= O(nd
),

where the big-O expression suppresses the constants c and 1/(1� r).
This confirms our hope that, with the second type of recursion tree,
the total amount of work performed is dominated by the work done
at the root.

For the final case, suppose that a > bd, with the proliferation of
subproblems outpacing the rate of work shrinkage per-subproblem.
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Set r = a/bd. Since r is now greater than 1, the last term of the
geometric series dominates and the bound in (4.5) becomes

cnd ·
logb nX

j=0

rj

| {z }
=O(rlogb n

)

= O(nd · rlogb n) = O
⇣
nd ·

�
a
bd

�
logb n

⌘
. (4.7)

This looks messy until we notice some remarkable cancellations. Since
exponentiation by b and the logarithm base-b are inverse operations,
we can write

(b�d)logb n = b�d logb n = (blogb n)�d = n�d.

Thus the (1/bd)logb n term in (4.7) cancels out the nd term, leaving
us with an upper bound of O(alogb n). This confirms our hope that
the total running time in this case is dominated by the work done at
the leaves of the recursion tree. Since alogb n is the same as nlogb a, we
have completed the proof of the master method. QE D

4.4.10 Solutions to Quizzes 4.4–4.5

Solution to Quiz 4.4

Correct answer: (b). First, by definition, the “branching factor” of
the recursion tree is a—every recursive call that doesn’t trigger the
base case makes a new recursive calls. This means the number of
distinct subproblems gets multiplied by a with each level. Since there
is 1 subproblem at level 0, there are aj subproblems at level j.

For the second part of the solution, again by definition, the sub-
problem size decreases by a factor of b with each level. Since the
problem size is n at level 0, all subproblems at level j have size n/bj .19

19Unlike in our MergeSort analysis, the fact that the number of subproblems at
level j is aj does not imply that the size of each subproblem is n/aj . In MergeSort,
the inputs to the level-j subproblems form a partition of the original input. This
is not the case in many of our other divide-and-conquer algorithms. For example,
in our recursive integer and matrix multiplication algorithms, parts of the original
input are reused across different recursive calls.
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Solution to Quiz 4.5

Correct answers: (a),(b),(d). First suppose that RSP < RWS,
and so the forces of good are more powerful than the forces of evil—the
shrinkage in work done per subproblem more than makes up for the
increase in the number of subproblems. In this case, the algorithm
does less work with each successive recursion level. Thus the first
statement is true (and the third statement is false). The second
statement is true for similar reasons—if subproblems grow so rapidly
that they outpace the savings-per-subproblem, then each recursion
level requires more work than the previous one. In the final statement,
when RSP = RWS, there is a perfect equilibrium between the forces
of good and evil. Subproblems are proliferating, but our savings in
work-per-subproblem are increasing at exactly the same rate. The
two forces cancel out, and the work done at each level of the recursion
tree remains the same.

The Upshot

P A recurrence expresses a running time bound
T (n) in terms of the number of operations per-
formed by recursive calls.

P A standard recurrence T (n)  aT (nb ) + O(nd
)

is defined by three parameters: the number a of
recursive calls, the input size shrinkage factor b,
and the exponent d in the running time of the
combine step.

P The master method provides an asymptotic up-
per bound for every standard recurrence, as a
function of a, b, and d: O(nd

log n) if a = bd,
O(nd

) if a < bd, and O(nlogb a
) if a > bd.

P Special cases include an O(n log n) time bound
for MergeSort, an O(n1.59

) time bound for
Karatsuba, and an O(n2.81

) time bound for
Strassen.

P The proof of the master method generalizes
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the recursion tree argument used to analyze
MergeSort.

P The quantities a and bd represent the forces of
evil (the rate of subproblem proliferation) and
the forces of good (the rate of work shrinkage).

P The three cases of the master method corre-
spond to three different types of recursion trees:
those with the per-level work performed the
same at each level (a tie between good and evil),
decreasing with the level (when good wins), and
increasing with the level (when evil wins).

P Properties of geometric series imply that the
work done at the root of the recursion tree
(which is O(nd

)) dominates the overall running
time in the second case, while the work done
at the leaves (which is O(alogb n) = O(nlogb a

))
dominates in the third case.

Test Your Understanding

Problem 4.1 Recall the master method (Theorem 4.1) and its three
parameters a, b, and d. Which of the following is the best interpreta-
tion of bd?

a) The rate at which the total work is growing (per level of recur-
sion).

b) The rate at which the number of subproblems is growing (per
level of recursion).

c) The rate at which the subproblem size is shrinking (per level of
recursion).

d) The rate at which the work-per-subproblem is shrinking (per
level of recursion).

Problem 4.2 This and the next two questions will give you further
practice with the master method. Suppose the running time T (n)
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of an algorithm is bounded by a standard recurrence with T (n) 
7 · T (n

3

) +O(n2

). Which of the following is the smallest correct upper
bound on the asymptotic running time of the algorithm?

a) O(n log n)

b) O(n2

)

c) O(n2

log n)

d) O(n2.81
)

Problem 4.3 Suppose the running time T (n) of an algorithm is
bounded by a standard recurrence with T (n)  9 · T (n

3

) + O(n2

).
Which of the following is the smallest correct upper bound on the
asymptotic running time of the algorithm?

a) O(n log n)

b) O(n2

)

c) O(n2

log n)

d) O(n3.17
)

Problem 4.4 Suppose the running time T (n) of an algorithm is
bounded by a standard recurrence with T (n)  5 · T (n

3

) + O(n).
Which of the following is the smallest correct upper bound on the
asymptotic running time of the algorithm?

a) O(nlog

5

3

)

b) O(n log n)

c) O(nlog

3

5

)

d) O(n5/3
)

e) O(n2

)

f) O(n2.59
)
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Challenge Problems

Problem 4.5 Suppose the running time T (n) of an algorithm is
bounded by the (non-standard!) recurrence with T (1) = 1 and
T (n)  T (b

p
nc) + 1 for n > 1.20 Which of the following is the

smallest correct upper bound on the asymptotic running time of the
algorithm? (Note that the master method does not apply!)

a) O(1)

b) O(log log n)

c) O(log n)

d) O(

p
n)

20Here bxc denotes the “floor” function, which rounds its argument down to
the nearest integer.



Chapter 5

QuickSort

This chapter covers QuickSort, a first-ballot hall-of-fame algorithm.
After giving a high-level overview of how the algorithm works (Sec-
tion 5.1), we discuss how to partition an array around a “pivot element”
in linear time (Section 5.2) and how to choose a good pivot element
(Section 5.3). Section 5.4 introduces randomized QuickSort, and Sec-
tion 5.5 proves that its asymptotic average running time is O(n log n)
for n-element arrays. Section 5.6 wraps up our sorting discussion with
a proof that no “comparison-based” sorting algorithm can be faster
than O(n log n).

5.1 Overview

Ask a professional computer scientist or programmer to list their
top 10 algorithms, and you’ll find QuickSort on many lists (including
mine). Why is this? We already know one blazingly fast sorting
algorithm (MergeSort)—why do we need another?

On the practical side, QuickSort is competitive with and often
superior to MergeSort, and for this reason is the default sorting
method in many programming libraries. The big win for QuickSort
over MergeSort is that it runs in place—it operates on the input array
only through repeated swaps of pairs of elements, and for this reason
needs to allocate only a minuscule amount of additional memory for
intermediate computations. On the aesthetic side, QuickSort is just
a remarkably beautiful algorithm, with an equally beautiful running
time analysis.

5.1.1 Sorting

The QuickSort algorithm solves the problem of sorting an array, the
same problem we tackled in Section 1.4.

117
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Problem: Sorting

Input: An array of n numbers, in arbitrary order.

Output: An array of the same numbers, sorted from small-
est to largest.

So if the input array is

3 8 2 5 1 4 7 6 

then the correct output array is

1 2 3 4 5 6 7 8 

As in our MergeSort discussion, for simplicity let’s assume that the
input array has distinct elements, with no duplicates.1

5.1.2 Partitioning Around a Pivot

QuickSort is built around a fast subroutine for “partial sorting,” whose
responsibility is to partition an array around a “pivot element.”

Step 1: Choose a pivot element. First, choose one element of
the array to act as a pivot element. Section 5.3 will obsess over
exactly how this should be done. For now, let’s be naive and just use
the first element of the array (above, the “3”).

Step 2: Rearrange the input array around the pivot. Given
the pivot element p, the next task is to arrange the elements of the
array so that everything before p in the array is less than p, and
everything after p is greater than p. For example, with the input
array above, here’s one legitimate way of rearranging the elements:

1In the unlikely event that you need to implement QuickSort yourself, be
warned that handling ties correctly and efficiently is a bit tricky, more so than
in MergeSort. For a detailed discussion, see Section 2.3 of Algorithms (Fourth

Edition), by Robert Sedgewick and Kevin Wayne (Addison-Wesley, 2011).
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3 8 2 5 1 4 7 6 2 1 3 6 7 4 5 8 

pivot element less than pivot greater than pivot 

This example makes clear that the elements before the pivot do
not need to be placed in the correct relative order (the “1” and “2”
are reversed), and similarly for the elements after the pivot. This
partitioning subroutine places the (non-pivot) elements of the array
into two buckets, one for the elements smaller than the pivot and the
other for those greater than the pivot.

Here are the two key facts about this partition subroutine.

Fast. The partition subroutine has a blazingly fast implementation,
running in linear (O(n)) time. Even better, and key to the practical
utility of QuickSort, the subroutine can be implemented in place,
with next to no memory beyond that occupied by the input array.2
Section 5.2 describes this implementation in detail.

Significant progress. Partitioning an array around a pivot element
makes progress toward sorting the array. First, the pivot element
winds up in its rightful position, meaning the same position as in the
sorted version of the input array (with all smaller elements before
it and all larger elements after it). Second, partitioning reduces the
sorting problem to two smaller sorting problems: sorting the elements
less than the pivot (which conveniently occupy their own subarray)
and the elements greater than the pivot (also in their own subarray).
After recursively sorting the elements in each of these two subarrays,
the algorithm is done!3

5.1.3 High-Level Description

In the following high-level description of the QuickSort algorithm,
the “first part” and “second part” of the array refer to the elements
less than and greater than the pivot element, respectively:

2This contrasts with MergeSort (Section 1.4), which repeatedly copies elements
over from one array to another.

3One of the subproblems might be empty, if the minimum or maximum element
is chosen as the pivot. In this case, the corresponding recursive call can be skipped.
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< p p > p 

first part second part 

QuickSort (High-Level Description)

Input: array A of n distinct integers.
Postcondition: elements of A are sorted from smallest
to largest.

if n  1 then // base case-already sorted

return
choose a pivot element p // to-be-implemented

partition A around p // to-be-implemented

recursively sort first part of A
recursively sort second part of A

While both MergeSort and QuickSort are divide-and-conquer
algorithms, the order of operations is different. In MergeSort, the
recursive calls are performed first, followed by the combine step, Merge.
In QuickSort, the recursive calls occur after partitioning, and their
results don’t need to be combined at all!4

5.1.4 Looking Ahead

Our remaining to-do list is:

1. (Section 5.2) How do we implement the partitioning subroutine?

2. (Section 5.3) How should we choose the pivot element?

3. (Sections 5.4 and 5.5) What’s the running time of QuickSort?

Another question is: “are we really sure that QuickSort always cor-
rectly sorts the input array?” I’ve been giving short shrift to formal

4QuickSort was invented by Tony Hoare, in 1959, when he was just 25 years
old. Hoare went on to make numerous fundamental contributions in programming
languages and was awarded the ACM Turing Award—the equivalent of the Nobel
Prize in computer science—in 1980.
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correctness arguments thus far because students generally have strong
and accurate intuition about why divide-and-conquer algorithms are
correct. (Compare this to understanding the running times of divide-
and-conquer algorithms, which are usually far from obvious!) If you
have any lingering concerns, it is straightforward to formally argue
the correctness of QuickSort using a proof by induction.5

5.2 Partitioning Around a Pivot Element

Next we fill in the details about how to partition an array around a
pivot element p, meaning rearranging the array so that it looks like
this:

< p p > p 

5.2.1 The Easy Way Out

It’s easy to come up with a linear-time partitioning subroutine if we
don’t care about allocating additional memory. One approach is to
do a single scan over the input array A and copy over its non-pivot
elements one by one into a new array B of the same length, populating
B both from its front (for elements less than p) and its back (for
elements bigger than p). The pivot element can be copied into the
remaining entry of B after all the non-pivot elements have been

5Following the template for induction proofs reviewed in Appendix A, let
P (n) denote the statement “for every input array of length n, QuickSort correctly
sorts it.” The base case (n = 1) is uninteresting: an array with 1 element is
necessarily sorted, and so QuickSort is automatically correct in this case. For the
inductive step, fix an arbitrary positive integer n � 2. We’re allowed to assume
the inductive hypothesis (i.e., P (k) is true for all k < n), meaning that QuickSort
correctly sorts every array with fewer than n elements.

After the partitioning step, the pivot element p is in the same position as it is in
the sorted version of the input array. The elements before p are exactly the same
as those before p in the sorted version of the input array (possibly in the wrong
relative order), and similarly for the elements after p. Thus the only remaining
tasks are to reorganize the elements before p in sorted order, and similarly for the
elements after p. Since both recursive calls are on subarrays of length at most
n� 1 (if nothing else, p is excluded), the inductive hypothesis implies that both
calls sort their subarrays correctly. This concludes the inductive step and the
formal proof of correctness for the QuickSort algorithm.
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processed. For our running example input array, here’s a snapshot
from the middle of this computation:

3 8 2 5 1 4 7 6 2 5 8 

pivot element less than pivot greater than pivot 

next element to copy next element < 3 next element > 3 

Since this subroutine does only O(1) work for each of the n elements
in the input array, its running time is O(n).

5.2.2 In-Place Implementation: The High-Level Plan

How do we partition an array around a pivot element while allocating
almost no additional memory? Our high-level approach will be to do
a single scan through the array, swapping pairs of elements as needed
so that the array is properly partitioned by the end of the pass.

Assume that the pivot element is the first element of the array;
this can always be enforced (in O(1) time) by swapping the pivot
element with the first element of the array in a preprocessing step.
As we scan and transform the input array, we will take care to ensure
that it has the following form:

< p p > p ? 

unpartitioned already partitioned 

That is, the subroutine maintains the following invariant:6 the first
element is the pivot element; next are the non-pivot elements that
have already been processed, with all such elements less than the
pivot preceding all such elements greater than the pivot; followed by
the not-yet-processed non-pivot elements, in arbitrary order.

If we succeed with this plan, then at the conclusion of the linear
scan we will have transformed the array so that it looks like this:

6An invariant of an algorithm is a property that is always true at prescribed
points of its execution (like at the end of every loop iteration).
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< p p > p 

To complete the partitioning, we can swap the pivot element with the
last element less than it:

< p p > p < p p > p 

swap 

5.2.3 Example

Next we’ll step through the in-place partitioning subroutine on a
concrete example. It may seem weird to go through an example of a
program before you’ve seen its code, but trust me: this is the shortest
path to understanding the subroutine.

Based on our high-level plan, we expect to keep track of two
boundaries: the boundary between the non-pivot elements we’ve
already looked at and those we haven’t, and within the first group,
the boundary between the elements less than the pivot and those
greater than the pivot. We’ll use the indices j and i, respectively, to
keep track of these two boundaries. Our desired invariant can then
be rephrased as:

Invariant: all elements between the pivot and i are less than the
pivot, and all elements between i and j are greater than the pivot.

Both i and j are initialized to the boundary between the pivot
element and the rest. There are then no elements between the pivot
and j, and the invariant holds vacuously:

3 8 2 5 1 4 7 6 

pivot 

i,j 

unpartitioned 
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Each iteration, the subroutine looks at one new element, and incre-
ments j. Additional work may or may not be required to maintain
the invariant. The first time we increment j in our example, we get:

3 8 2 5 1 4 7 6 

unpartitioned 

i j 

partitioned 

There are no elements between the pivot and i, and the only element
between i and j (the “8”) is greater than the pivot, so the invariant
still holds.

Now the plot thickens. After incrementing j a second time, there
is an element between i and j that is less than the pivot (the “2”), a
violation of the invariant. To restore the invariant, we swap the “8”
with the “2,” and also increment i, so that it is wedged between the
“2” and the “8” and again delineates the boundary between processed
elements less than and greater than the pivot:

3 8 2 5 1 4 7 6 

i 

unpartitioned 

j 

not partitioned 

swap 

3 2 8 5 1 4 7 6 

i 

unpartitioned 

j 

partitioned 

The third iteration is similar to the first. We process the next
element (the “5”) and increment j. Because the new element is greater
than the pivot, the invariant continues to hold and there is nothing
more to do:

3 2 8 5 1 4 7 6 

i 

unpartitioned 

j 

partitioned 
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The fourth iteration is similar to the second. Incrementing j
ushers in an element less than the pivot (the “1”) between i and
j, which violates the invariant. But restoring the invariant is easy
enough—just swap the “1” with the first element greater than the
pivot (the “8”), and increment i to reflect the new boundary between
processed elements less than and greater than the pivot:

3 2 8 5 1 4 7 6 

i 

unpartitioned 

j 

not partitioned 

swap 

3 2 1 5 8 4 7 6 

i j 

partitioned unpartitioned 

The last three iterations process elements that are larger than the
pivot, so nothing needs to be done beyond incrementing j. After all
the elements have been processed and everything after the pivot has
been partitioned, we conclude with the final swap of the pivot element
and the last element smaller than it:

3 2 1 5 8 4 7 6 

partitioned 

swap 

1 2 3 5 8 4 7 6 

partitioned 

j 

pivot 

i 

As required, in the final array, all the elements less than pivot come
before it, and all the elements greater than the pivot come after it. It
is a coincidence that the “1” and “2” are in sorted order. The elements
after the pivot are obviously not in sorted order.

5.2.4 Pseudocode for Partition

The pseudocode for the Partition subroutine is exactly what you’d
expect after the example.7

7If you look at other textbooks or on the Web, you’ll see a number of variants
of this subroutine that differ in the details. (There’s even a version performed by
Hungarian folk dancers! See https://www.youtube.com/watch?v=ywWBy6J5gz8.)
These variants are equally suitable for our purposes.

https://www.youtube.com/watch?v=ywWBy6J5gz8
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Partition

Input: array A of n distinct integers, left and right
endpoints `, r 2 {1, 2, . . . , n} with l  r.

Postcondition: elements of the subarray
A[`], A[`+ 1], . . . , A[r] are partitioned around A[`].

Output: final position of pivot element.

p := A[`]
i := `+ 1

for j := `+ 1 to r do
if A[j] < p then // if A[j] > p do nothing

swap A[j] and A[i]
i := i+ 1 // restores invariant

swap A[`] and A[i� 1] // place pivot correctly

return i� 1 // report final pivot position

The Partition subroutine takes as input an array A but operates
only on the subarray of elements A[`], . . . , A[r], where ` and r are
given parameters. Looking ahead, each recursive call to QuickSort

will be responsible for a specific contiguous subset of the original
input array, and the parameters ` and r specify the corresponding
endpoints.

As in the example, the index j keeps track of which elements have
been processed, while i keeps track of the boundary between processed
elements that are less than and greater than the pivot (with A[i] the
leftmost processed element greater than the pivot, if any). Each
iteration of the for loop processes a new element. Like in the example,
when the new element A[j] is greater than the pivot, the invariant holds
automatically and there’s nothing to do. Otherwise, the subroutine
restores the invariant by swapping A[j], the new element, and A[i],
the leftmost element greater than the pivot, and incrementing i to
update the boundary between elements less than and greater than
the pivot.8,9 The final step, as previously advertised, swaps the pivot

8No swap is necessary if no elements greater than the pivot have yet been
encountered—the subarray of processed elements is trivially partitioned. But
the extra swap is harmless (as you should verify), so we’ll stick with our simple
pseudocode.

9Why does this swap and increment always restore the invariant? The invariant
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element into its rightful position, displacing the rightmost element
less than it. The Partition subroutine concludes by reporting this
position back to the invocation of QuickSort that called it.

This implementation is blazingly fast. It performs only a constant
number of operations for each element A[`], . . . , A[r] of the relevant
subarray, and so runs in time linear in the length of this subarray.
Importantly, the subroutine operates on this subarray in place, without
allocating any additional memory beyond the O(1) amount needed to
keep track of variables like i and j.

5.2.5 Pseudocode for QuickSort

We now have a full description of the QuickSort algorithm, modulo
the subroutine ChoosePivot that chooses a pivot element.

QuickSort

Input: array A of n distinct integers, left and right
endpoints `, r 2 {1, 2, . . . , n}.

Postcondition: elements of the subarray
A[`], A[`+ 1], . . . , A[r] are sorted from smallest to
largest.

if ` � r then // 0- or 1-element subarray

return
i := ChoosePivot(A, `, r) // to-be-implemented

swap A[`] and A[i] // make pivot first

j := Partition(A, `, r) // j =new pivot position

QuickSort(A, `, j � 1) // recurse on first part

QuickSort(A, j + 1, r) // recurse on second part

held before the most recent increment of j (by induction, if you want to be formal
about it). This means that all the elements A[`+ 1], . . . , A[i� 1] are less than the
pivot and all the elements A[i], . . . , A[j � 1] are greater than the pivot. The only
problem is that A[j] is less than the pivot. After swapping A[i] with A[j], the
elements A[`+1], . . . , A[i] and A[i+1], . . . , A[j] are less than and greater than the
pivot, respectively. After incrementing i, A[`+ 1], . . . , A[i� 1] and A[i], . . . , A[j]
are less than and greater than the pivot, respectively, which restores the invariant.
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Sorting an n-element array A reduces to the function call
QuickSort(A, 1, n).10

5.3 The Importance of Good Pivots

Is QuickSort a fast algorithm? The bar is high: simple sorting
algorithms like InsertionSort run in quadratic (O(n2

)) time, and
we already know one sorting algorithm (MergeSort) that runs in
O(n log n) time. The answer to this question depends on how we
implement the ChoosePivot subroutine, which chooses one element
from a designated subarray. For QuickSort to be quick, it’s important
that “good” pivot elements are chosen, meaning pivot elements that
result in two subproblems of roughly the same size.

5.3.1 Naive Implementation of ChoosePivot

In our overview of QuickSort we mentioned a naive implementation,
which always picks the first element.

ChoosePivot (Naive Implementation)

Input: array A of n distinct integers, left and right
endpoints `, r 2 {1, 2, . . . , n}.

Output: an index i 2 {`, `+ 1, . . . , r}.

return `

Is this naive implementation already good enough?

Quiz 5.1

What is the running time of the QuickSort algorithm, with
the naive implementation of ChoosePivot, when the n-
element input array is already sorted?

a) ⇥(n)

10The array A is always passed by reference, meaning that all function calls
operate directly on the original copy of the input array.
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b) ⇥(n log n)

c) ⇥(n2

)

d) ⇥(n3

)

(See Section 5.3.3 for the solution and discussion.)

5.3.2 Overkill Implementation of ChoosePivot

Quiz 5.1 paints a worst-case picture of what can happen in QuickSort,
with only one element removed per recursive call. What would be
the best-case scenario? The most perfectly balanced split is achieved
by the median element of the array, meaning the element for which
the same number of other elements are less than it and greater than
it.11 So if we want to work really hard for our pivot element, we can
compute the median element of the given subarray.

ChoosePivot (Overkill Implementation)

Input: array A of n distinct integers, left and right
endpoints `, r 2 {1, 2, . . . , n}.

Output: an index i 2 {`, `+ 1, . . . , r}.

return position of the median element of {A[`], . . . , A[r]}

We’ll see in the next chapter that the median element of an array
can be computed in time linear in the array length; let’s take this
fact on faith for the following quiz.12 Is there any reward for working
hard to compute an ideal pivot element?

Quiz 5.2

What is the running time of the QuickSort algorithm, with

11For example, the median of an array containing {1, 2, 3, . . . , 9} would be 5.
For an even-length array, there are two legitimate choices for the median, and
either is fine for our purposes. So in an array that contains {1, 2, 3, . . . , 10}, either
5 or 6 can be considered the median element.

12You do at this point know an O(n log n)-time algorithm for computing the
median of an array. (Hint: Sort!)
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the overkill implementation of ChoosePivot, on an arbi-
trary n-element input array? Assume that the ChoosePivot
subroutine runs in ⇥(n) time.

a) Insufficient information to answer

b) ⇥(n)

c) ⇥(n log n)

d) ⇥(n2

)

(See Section 5.3.3 for the solution and discussion.)

5.3.3 Solutions to Quizzes 5.1–5.2

Solution to Quiz 5.1

Correct answer: (c). The combination of naively chosen pivots and
an already-sorted input array causes QuickSort to run in ⇥(n2

) time,
which is much worse than MergeSort and no better than simple algo-
rithms such as InsertionSort. What goes wrong? The Partition

subroutine in the outermost call to QuickSort, with the first (smallest)
element as the pivot, does nothing: it sweeps over the array, and since
it only encounters elements greater than the pivot, it never swaps any
pair of elements. After this call to Partition completes, the picture
is:

< p p > p 

empty n-1 elements 
(still sorted) 

recurse on these 

In the non-empty recursive call, the pattern recurs: the subarray is
already sorted, the first (smallest) element is chosen as the pivot, and
there is one empty recursive call and one recursive call that is passed
a subarray of n� 2 elements. And so on.

In the end, the Partition subroutine is invoked on subarrays
of length n, n � 1, n � 2, . . . , 2. Since the work done in one call to
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Partition is proportional to the length of the call’s subarray, the
total amount of work done by QuickSort in this case is proportional
to

n+ (n� 1) + (n� 2) + · · ·+ 1| {z }
=⇥(n2

)

and hence is quadratic in the input length n.13

Solution to Quiz 5.2

Correct answer: (c). In this best-case scenario, QuickSort runs in
⇥(n log n) time. The reason is that its running time is governed by the
exact same recurrence that governs the running time of MergeSort.
That is, if T (n) denotes the running time of this implementation of
QuickSort on arrays of length n, then

T (n) = 2 · T
⇣n
2

⌘

| {z }
since pivot = median

+ ⇥(n)| {z }
ChoosePivot & Partition

.

The primary work done by a call to QuickSort outside its recursive
calls occurs in its ChoosePivot and Partition subroutines. We’re
assuming that the former is ⇥(n), and Section 5.2 proves that the
latter is also ⇥(n). Since we’re using the median element as the pivot
element, we get a perfect split of the input array and each recursive
call gets a subarray with at most n

2

elements:

< p p > p 

� 50% of array � 50% of array 

Applying the master method (Theorem 4.1) with a = b = 2 and d = 1

then gives T (n) = ⇥(n log n).14

13A quick way to see that n+ (n� 1) + (n� 2) + · · ·+ 1 = ⇥(n2

) is to note
that it is at most n2 (each of the n terms is at most n) and at least n2/4 (each of
the first n/2 terms is at least n/2).

14Technically, we’re using here a variant of the master method that works with
⇥-notation rather than O-notation, but otherwise is the same as Theorem 4.1.
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5.4 Randomized QuickSort

Choosing the first element of a subarray as the pivot takes only O(1)

time but can cause QuickSort to run in ⇥(n2

) time. Choosing the
median element as the pivot guarantees an overall running time of
⇥(n log n) but is much more time-consuming (if still linear-time). Can
we have the best of both worlds? Is there a simple and lightweight way
to choose a pivot element that leads to a roughly balanced split of the
array? The answer is yes, and the key idea is to use randomization.

5.4.1 Randomized Implementation of ChoosePivot

A randomized algorithm is one that “flips coins” as it proceeds, and
can make decisions based on the outcomes of these coin flips. If you
run a randomized algorithm on the same input over and over, you
will see different behavior on different runs. All major programming
languages include libraries that make it easy to pick random numbers
at will, and randomization is a tool that should be in the toolbox of
every serious algorithm designer.

Why on earth would you want to inject randomness into your
algorithm? Aren’t algorithms just about the most deterministic thing
you can think of? As it turns out, there are hundreds of computational
problems for which randomized algorithms are faster, more effective,
or easier to code than their deterministic counterparts.15

The simplest way to incorporate randomness into QuickSort,
which turns out to be extremely effective, is to always choose pivot
elements uniformly at random.

ChoosePivot (Randomized Implementation)

Input: array A of n distinct integers, left and right
endpoints `, r 2 {1, 2, . . . , n}.

Output: an index i 2 {`, `+ 1, . . . , r}.

return an element of {`, `+ 1, . . . , r}, chosen uniformly
at random

15It took computer scientists a while to figure this out, with the floodgates
opening in the mid-1970s with fast randomized algorithms for testing whether or
not an integer is prime.
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For example, if ` = 41 and r = 50, then each of the 10 elements
A[41], . . . , A[50] has a 10% chance of being chosen as the pivot ele-
ment.16

5.4.2 Running Time of Randomized QuickSort

The running time of randomized QuickSort, with pivot elements
chosen at random, is not always the same. There is always some
chance, however remote, that the algorithm always picks the minimum
element of the remaining subarray as the pivot element, leading to
the ⇥(n2

) running time observed in Quiz 5.1.17 There’s a similarly
remote chance that the algorithm gets incredibly lucky and always
selects the median element of a subarray as the pivot, resulting in
the ⇥(n log n) running time seen in Quiz 5.2. So the algorithm’s
running time fluctuates between ⇥(n log n) and ⇥(n2

)—which occurs
more frequently, the best-case scenario or the worst-case scenario?
Amazingly, the performance of QuickSort is almost always close to
its best-case performance.

Theorem 5.1 (Running Time of Randomized QuickSort)
For every input array of length n � 1, the average running time of

randomized QuickSort is O(n log n).

The word “average” in the theorem statement refers to the randomness
in the QuickSort algorithm itself. Theorem 5.1 does not assume that
the input array is random. Randomized QuickSort is a general-
purpose algorithm (cf., Section 1.6.1): no matter what your input
array is, if you run the algorithm on it over and over again, the average
running time will be O(n log n), good enough to qualify as a for-free
primitive. In principle randomized QuickSort can run in ⇥(n2

) time,
but you will almost always observe a running time of O(n log n) in
practice. Two added bonuses: the constant hidden in the big-O
notation in Theorem 5.1 is reasonably small (like in MergeSort), and
the algorithm doesn’t spend time allocating and managing additional
memory (unlike MergeSort).

16Another equally useful way is to randomly shuffle the input array in a
preprocessing step and then run the naive implementation of QuickSort.

17For even modest values of n, there’s a bigger probability that you’ll be struck
by a meteor while reading this!
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5.4.3 Intuition: Why Are Random Pivots Good?

To understand deeply why QuickSort is so quick, there’s no substitute
for studying the proof of Theorem 5.1, which is explained in Section 5.5.
In preparation for that proof, and also as a consolation prize for the
reader who is too time-limited to absorb Section 5.5, we next develop
intuition about why Theorem 5.1 should be true.

The first insight is that, to achieve a running time of O(n log n)
as in the best-case scenario of Quiz 5.2, it’s overkill to use the median
element as the pivot element. Suppose we instead use an “approximate
median,” meaning some element that gives us a 25%-75% split or
better. Equivalently, this is an element that is greater than at least
25% of the other elements and also less than at least 25% of the other
elements. The picture after partitioning around such a pivot element
is:

< p p > p 

25-75% of array 25-75% of array 

approximate median 

If every recursive call chooses a pivot element that is an approxi-
mate median in this sense, the running time of QuickSort is still
O(n log n). We cannot derive this fact directly from the master method
(Theorem 4.1), because using a non-median results in subproblems
with different sizes. But it is not hard to generalize the analysis of
MergeSort (Section 1.5) so that it also applies here.18

18Draw out the recursion tree of the algorithm. Whenever QuickSort calls
itself recursively on two subproblems, the subproblems involve different elements
(those less than the pivot, and those greater than it). This means that, for every
recursion level j, there are no overlaps between the subarrays of different level-j
subproblems, and so the sum of subarray lengths of level-j subproblems is at
most n. The total work done at this level (by calls to Partition) is linear in
the sum of the subarray lengths. Thus, like MergeSort, the algorithm does O(n)
work per recursion level. How many levels are there? With pivot elements that
are approximate medians, at most 75% of the elements are passed to the same
recursive call, and so the subproblem size drops by at least a factor of 4/3 with
each level. This means there are at most log

4/3 n = O(log n) levels in the recursion
tree, and so O(n log n) work is done in all.
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The second insight is that while you’d have to get incredibly lucky
to choose the median element in randomized QuickSort (only a 1 in n
chance), you have to be only slightly lucky to choose an approximate
median. For example, consider an array that contains the elements
{1, 2, 3, . . . , 100}. Any number between 26 and 75, inclusive, is an
approximate median, with at least 25 elements less than it and 25
elements greater than it. This is 50% of the numbers in the array! So
QuickSort has a 50-50 chance of randomly choosing an approximate
median, as if it were trying to guess the outcome of a fair coin flip.
This means we expect roughly 50% of the calls to QuickSort to use
approximate medians, and we can hope that the O(n log n) running
time analysis in the previous paragraph continues to hold, perhaps
with twice as many levels as before.

Make no mistake: this is not a formal proof, just a heuristic argu-
ment that Theorem 5.1 might plausibly be true. If I were you, given
the central position of QuickSort in the design and analysis of algo-
rithms, I would demand an indisputable argument that Theorem 5.1
really is true.

*5.5 Analysis of Randomized QuickSort

Randomized QuickSort seems like a great idea, but how do we really
know it will work well? More generally, when you come up with
a new algorithm in your own work, how do you know whether it’s
brilliant or whether it stinks? One useful but ad hoc approach is
to code up the algorithm and try it on a bunch of different inputs.
Another approach is to develop intuition about why the algorithm
should work well, as in Section 5.4.3 for randomized QuickSort. But
thoroughly understanding what makes an algorithm good or bad often
requires mathematical analysis. This section will give you such an
understanding of why QuickSort is so quick.

This section assumes familiarity with the concepts from discrete
probability that are reviewed in Appendix B: sample spaces, events,
random variables, expectation, and linearity of expectation.

5.5.1 Preliminaries

Theorem 5.1 asserts that for every input array of length n � 1, the
average running time of randomized QuickSort (with pivot elements
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chosen uniformly at random) is O(n log n). Let’s begin by translating
this assertion into a formal statement in the language of discrete
probability.

Fix for the rest of the analysis an arbitrary input array A of
length n. Recall that a sample space is the set of all possible out-
comes of some random process. In randomized QuickSort, all the
randomness is in the random choices of pivot elements in the different
recursive calls. Thus we take the sample space ⌦ as the set of all
possible outcomes of random choices in QuickSort (i.e., all pivot
sequences).

Recall that a random variable is a numerical measurement of
the outcome of a random process—a real-valued function defined
on ⌦. The random variable we care about is the number RT of
primitive operations (i.e., lines of code) performed by randomized
QuickSort. This is a well-defined random variable because, when-
ever all the pivot element choices are pre-determined (i.e., ! 2 ⌦ is
fixed), QuickSort has some fixed running time RT (!). Ranging over
all possible choices !, RT (!) ranges from ⇥(n log n) to ⇥(n2

) (see
Section 5.3).

We can get away with analyzing a simpler random variable that
counts only comparisons and ignores the other types of primitive
operations performed. Let C denote the random variable equal to the
number of comparisons between pairs of input elements performed
by QuickSort with a given sequence of pivot choices. Looking back
over the pseudocode, we see that these comparisons occur in exactly
one place: the line “if A[j] < p” in the Partition subroutine (Sec-
tion 5.2.4), which compares the current pivot element to some other
element of the input subarray.

The following lemma shows that comparisons dominate the overall
running time of QuickSort, meaning that the latter is larger than the
former only by a constant factor. This implies that, to prove an upper
bound of O(n log n) on the expected running time of QuickSort, we
only need to prove an upper bound of O(n log n) on the expected
number of comparisons made.

Lemma 5.2 There is a constant a > 0 such that, for every input

array A of length at least 2 and every pivot sequence !, RT (!) 
a · C(!).
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We include the proof for the skeptics; skip it if you find Lemma 5.2
intuitively obvious.

Proof of Lemma 5.2: First, in every call to Partition, the pivot
element is compared exactly once to every other element in the given
subarray. Thus the number of comparisons in the call is linear in the
subarray length and, by inspection of the pseudocode in Section 5.2.4,
the total number of operations in the call is at most a constant times
this. By inspection of the pseudocode in Section 5.2.5, randomized
QuickSort performs only a constant number of operations in each
recursive call outside the Partition subroutine.19 There are at most
n recursive calls to QuickSort in all—each input array element can
be chosen as the pivot only once before being excluded from all future
recursive calls—and so the total work outside calls to Partition is
O(n). Summing over all the recursive calls, the total number RT (!)
of operations is at most a constant times the number C(!) of com-
parisons, plus O(n). Since C(!) is always at least proportional to n
(or to n log n, even), the additional O(n) work can be absorbed into
the constant factor a of the lemma statement, and this completes the
proof. QE D

The rest of this section concentrates on bounding the expected
number of comparisons.

Theorem 5.3 (Comparisons in Randomized QuickSort) For

every input array of length n � 1, the expected number of comparisons

between input array elements in randomized QuickSort is at most

2(n� 1) lnn = O(n log n).

By Lemma 5.2, Theorem 5.3 implies Theorem 5.1, with a different
constant factor hidden in the big-O notation.

5.5.2 A Decomposition Blueprint

The master method (Theorem 4.1) resolved the running time of every
divide-and-conquer algorithm we’ve studied up to this point, but

19This statement assumes that choosing a random pivot element counts as
one primitive operation. The proof remains valid even if choosing a random
pivot requires ⇥(log n) primitive operations (as you should check), and this covers
typical practical implementations of random number generators.
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there are two reasons why it doesn’t apply to randomized QuickSort.
First, the running time of the algorithm corresponds to a random
recurrence or a random recursion tree, and the master method works
with deterministic recurrences. Second, the two subproblems that are
solved recursively (elements less than the pivot and elements greater
than the pivot) do not generally have the same size. We need a new
idea.20

To prove Theorem 5.3, we’ll follow a decomposition blueprint
that is useful for analyzing the expectation of complicated random
variables. The first step is to identify the (possibly complicated)
random variable Y that you care about; for us, this is the number C
of comparisons between input array elements made by randomized
QuickSort, as in Theorem 5.3. The second step is to express Y as the
sum of simpler random variables, ideally indicator (i.e., 0-1) random
variables X

1

, . . . , Xm;

Y =

mX

`=1

X`.

We are now in the wheelhouse of linearity of expectation, which states
that the expectation of a sum of random variables equals the sum of
their expectations (Theorem B.1). The third step of the blueprint
uses this property to reduce the computation of the expectation of Y
to that of the simple random variables:

E[Y ] = E

"
mX

`=1

X`

#
=

mX

`=1

E[X`] .

When the X`’s are indicator random variables, their expectations are
particularly easy to compute via the definition (B.1):

E[X`] = 0 ·Pr[X` = 0]| {z }
=0

+1 ·Pr[X` = 1] = Pr[X` = 1] .

The final step computes the expectations of the simple random vari-
ables and adds up the results.21

20There are generalizations of the master method that address both these
issues, but they are somewhat complicated and outside the scope of this book.

21The randomized load-balancing analysis in Section B.6 is a simple example
of this blueprint in action. We’ll also reuse this blueprint when we talk about
hash tables in Part 2.
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A Decomposition Blueprint

1. Identify the random variable Y that you care about.

2. Express Y as a sum of indicator (i.e., 0-1) random
variables X

1

, . . . , Xm:

Y =

mX

`=1

X`.

3. Apply linearity of expectation:

E[Y ] =

mX

`=1

Pr[X` = 1] .

4. Compute each of the Pr[X` = 1]’s and add up the
results to obtain E[Y ].

5.5.3 Applying the Blueprint

To apply the decomposition blueprint to the analysis of randomized
QuickSort, we need to decompose the random variable C that we
really care about into simpler (ideally 0-1) random variables. The key
idea is to break down the total comparison count according to the
pair of input array elements getting compared.

To make this precise, let zi denote the ith-smallest element in the
input array, also known as the ith order statistic. For example, in the
array

6 8 9 2 

z
1

refers to the “2,” z
2

the “6,” z
3

the “8,” and z
4

the “9.” Note that zi
does not denote the element in the ith position of the (unsorted) input
array, but rather the element in this position of the sorted version of
the input array.

For every pair of array indices i, j 2 {1, 2, . . . , n} with i < j, we
define a random variable Xij as follows:
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for every fixed choice of pivots !, Xij(!) is the number of
times the elements zi and zj get compared in QuickSort

when the pivots are specified by !.

For the input array above, for example, X
1,3 is the number of times

the QuickSort algorithm compares the “2” with the “8.” We don’t
care about the Xij ’s per se, except inasmuch as they add up to the
random variable C that we do care about.

The point of this definition is to implement the second step of the
decomposition blueprint. Since each comparison involves exactly one
pair of input array elements,

C(!) =

n�1X

i=1

nX

j=i+1

Xij(!)

for every ! 2 ⌦. The fancy-looking double sum on the right-hand
side is just iterating over all pairs (i, j) with i < j, and this equation
just says that the Xij ’s account for all the comparisons made by the
QuickSort algorithm.

Quiz 5.3

Fix two different elements of the input array, say zi and zj .
How many times might zi and zj be compared with each
other during the execution of QuickSort?

a) exactly once

b) 0 or 1 times

c) 0, 1, or 2 times

d) any number between 0 and n� 1 is possible

(See Section 5.5.6 for the solution and discussion.)

The solution to Quiz 5.3 shows that all of the Xij ’s are indicator
random variables. We can therefore apply the third step of our
decomposition blueprint to obtain

E[C] =

n�1X

i=1

nX

j=i+1

E[Xij ] =

n�1X

i=1

nX

j=i+1

Pr[Xij = 1] . (5.1)
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To compute what we really care about, the expected number E[C] of
comparisons, all we need to do is understand the Pr[Xij = 1]’s! Each
of these numbers is the probability that some zi and zj are compared
to each other at some point in randomized QuickSort, and the next
order of business is to nail down these numbers.22

5.5.4 Computing Comparison Probabilities

There is a satisfying formula for the probability that two input array
elements get compared in randomized QuickSort.

Lemma 5.4 (Comparison Probability) If zi and zj denote the

ith and jth smallest elements of the input array, with i < j, then

Pr[zi, zj get compared in randomized QuickSort] =

2

j � i+ 1

.

For example, if zi and zj are the minimum and maximum elements
(i = 1 and j = n), then they are compared with probability only 2

n . If
there are no elements with value between zi and zj (j = i+ 1), then
zi and zj are always compared to each other.

Fix zi and zj with i < j, and consider the pivot zk chosen in the
first call to QuickSort. What are the different scenarios?

Four QuickSort Scenarios

1. The chosen pivot is smaller than both zi and zj (k < i).
Both zi and zj are passed to the second recursive call.

2. The chosen pivot is greater than both zi and zj (k > j).
Both zi and zj are passed to the first recursive call.

3. The chosen pivot is between zi and zj (i < k < j).
zi is passed to the first recursive call, and zj to the
second one.

22Section B.5 makes a big deal of the fact that linearity of expectation applies
even to random variables that are not independent (where knowledge of one
random variable tells you something about the others). This fact is crucial for us
here, since the Xij ’s are not independent. For example, if I tell you that X

1n = 1,
you know that either z

1

or zn was chosen as the pivot element in the outermost
call to QuickSort (why?), and this in turn makes it much more likely that a
random variable of the form X

1j or Xjn also equals 1.
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4. The chosen pivot is either zi or zj (k 2 {i, j}). The
pivot is excluded from both recursive calls; the other
element is passed to the first (if k = j) or second (if
k = i) recursive call.

We have two things going for us. First, remember that every
comparison involves the current pivot element. Thus zi and zj are
compared in the outermost call to QuickSort if and only if one of
them is chosen as the pivot element (scenario 4). Second, in scenario 3,
not only will zi and zj not be compared now, but they will never
again appear together in the same recursive call and so cannot be
compared in the future. For example, in the array

8 3 2 5 1 4 7 6 

with zi = 3 and zj = 7, if any of the elements {4, 5, 6} are chosen as
the pivot element, then zi and zj are sent to different recursive calls
and never get compared. For example, if the “6” is chosen, the picture
is:

3 8 2 5 1 4 7 6 2 3 5 4 1 6 8 7 

pivot element 1st recursive call 2nd recursive call 

split into different recursive calls 
zi zj 

Scenarios 1 and 2 are a holding pattern: zi and zj haven’t been
compared yet, but it’s still possible they will be compared in the
future. During this holding pattern, zi and zj , and all of the elements
zi+1

, . . . , zj�1 with values in between zi and zj , lead parallel lives
and keep getting passed to the same recursive call. Eventually, their
collective journey is interrupted by a recursive call to QuickSort in
which one of the elements zi, zi+1

, . . . , zj�1, zj is chosen as the pivot
element, triggering either scenario 3 or scenario 4.23

Fast forwarding to this recursive call, which is where the action
is, scenario 4 (and a comparison between zi and zj) is triggered if zi

23If nothing else, previous recursive calls eventually whittle the subarray down
to just the elements {zi, zi+1

, . . . , zj�1

, zj}.
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or zj is the chosen pivot, while scenario 3 (and no such comparison,
ever) is triggered if any one of zi+1

, . . . , zj�1 is chosen as the pivot.
So there are two bad cases (zi and zj) out of the j � i + 1 options
(zi, zi+1

, . . . , zj�1, zj). Because randomized QuickSort always chooses
pivot elements uniformly at random, by symmetry, each element of

{zi, zi+1

, . . . , zj�1, zj} is equally likely to be the first pivot element

chosen from the set. Putting everything together,

Pr[zi, zj get compared at some point in randomized QuickSort]

is the same as

Pr[zi or zj is chosen as a pivot before any of zi+1

, . . . , zj�1] ,

which is
number of bad cases

total number of options
=

2

j � i+ 1

.

This completes the proof of Lemma 5.4. QE D
Returning to our formula (5.1) for the expected number of compar-

isons made by randomized QuickSort, we obtain a shockingly exact
expression:

E[C] =

n�1X

i=1

nX

j=i+1

Pr[Xij = 1] =

n�1X

i=1

nX

j=i+1

2

j � i+ 1

. (5.2)

To prove Theorem 5.3, all that’s left to show is that the right-hand
side of (5.2) is in fact O(n log n).

5.5.5 Final Calculations

It’s easy to prove an upper bound of O(n2

) on the right-hand side
of (5.2): there are at most n2 terms in the double sum, and each of
these has value at most 1

2

(achieved when j = i+1). But we’re after a
much better upper bound of O(n log n), and we’ll have to be smarter
to get it, by exploiting the fact that most of the quadratically many
terms are much smaller than 1

2

.
Consider one of the inner sums in (5.2), for a fixed value of i:

nX

j=i+1

2

j � i+ 1

= 2 ·
✓
1

2

+

1

3

+ · · ·+ 1

n� i+ 1

◆

| {z }
n� i terms

.
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We can bound each of these sums from above by the largest such sum,
which occurs when i = 1:

n�1X

i=1

nX

j=i+1

2

j � i+ 1


n�1X

i=1

nX

j=2

2

j
| {z }

independent of i

= 2(n� 1) ·
nX

j=2

1

j
. (5.3)

How big is
Pn

j=2

1

j ? Let’s look at a picture.

1 2 3 4
0

1/4

1/3

1/2

1

area = ½ 
area = ⅓ 

area = ¼ 

f(x) = 1/x 

Figure 5.1: Each term of the sum
Pn

j=2 1/j can be identified with a
rectangle of width 1 (between x-coordinates j � 1 and j) and height 1/j
(between y-coordinates 0 and 1/j). The graph of the function f(x) = 1/x
kisses the northeastern corner of each of these rectangles, and so the area
under the curve (i.e., the integral) is an upper bound on the area of the
rectangles.

Viewing the terms of the sum
Pn

j=2

1

j as rectangles in the plane as
in Figure 5.1, we see that we can bound this sum from above by the
area under the curve f(x) = 1

x between the points 1 and n, also known
as the integral

R n
1

dx
x . If you remember a little bit of calculus, you’ll

recognize the solution to this integral as the natural logarithm lnx
(i.e., lnx is the function whose derivative is 1

x):
nX

j=2

1

j

Z n

1

1

x
dx = lnx

���
n

1

= lnn� ln 1|{z}
=0

= lnn. (5.4)
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Chaining together the equations and inequalities in (5.2)–(5.4), we
have

E[C] =

n�1X

i=1

nX

j=i+1

2

j � i+ 1

 2(n� 1) ·
nX

j=2

1

j
 2(n� 1) lnn.

Thus the expected number of comparisons made by randomized
QuickSort—and also its expected running time, by Lemma 5.2—
really is O(n log n)! QE D

5.5.6 Solution to Quiz 5.3

Correct answer: (b). If either zi or zj is chosen as the pivot element
in the outermost call to QuickSort, then zi and zj will get compared
in the first call to Partition. (Remember that the pivot element is
compared to every other element in the subarray.) If i and j differ by
more than 1, it is also possible that zi and zj never get compared at
all (see also Section 5.5.4). For example, the minimum and maximum
elements will not be compared to each other unless one of them is
chosen as the pivot element in the outermost recursive call (do you
see why?).

Finally, as one would expect from a good sorting algorithm, zi and
zj will never be compared to each other more than once (which would
be redundant). Every comparison involves the current pivot element,
so the first time zi and zj are compared in some call (if ever), one of
them must be the pivot element. Since the pivot element is excluded
from all future recursive calls, zi and zj never again appear together
in the same recursive call (let alone get compared to each other).

*5.6 Sorting Requires ⌦(n log n) Comparisons

Is there a sorting algorithm faster than MergeSort and QuickSort,
with running time better than ⇥(n log n)? It’s intuitively clear that
an algorithm has to look at every input element once, but this implies
only a linear lower bound of ⌦(n). This optional section shows that we
can’t do better for sorting—the MergeSort and QuickSort algorithms
achieve the best-possible asymptotic running time.
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5.6.1 Comparison-Based Sorting Algorithms

Here’s the formal statement of the ⌦(n log n) lower bound.

Theorem 5.5 (Lower Bound for Sorting) There is a constant

c > 0 such that, for every n � 1, every comparison-based sorting

algorithm performs at least c · n log

2

n operations on some length-n
input array.

By a “comparison-based sorting algorithm,” we mean an algorithm
that accesses the input array only via comparisons between pairs
of elements, and never directly accesses the value of an element.
Comparison-based sorting algorithms are general-purpose, and make
no assumptions about the input elements other than that they belong
to some totally ordered set. You can think of a comparison-based
sorting algorithm as interacting with the input array through an API
that supports only one operation: given two indices i and j (between 1
and the array length n), the operation returns 1 if the ith element is
smaller than the jth element and 0 otherwise.24

For example, the MergeSort algorithm is a comparison-based
sorting algorithm—it doesn’t care if it’s sorting integers or fruits
(assuming we agreed on a total ordering of all possible fruits, like
alphabetical).25 So are SelectionSort, InsertionSort, BubbleSort,
and QuickSort.

5.6.2 Faster Sorting Under Stronger Assumptions

The best way to understand comparison-based sorting is to look at
some non-examples. Here are three sorting algorithms that make
assumptions about the input but in exchange beat the ⌦(n log n)
lower bound in Theorem 5.5.26

24For example, the default sorting routine in the Unix operating system works
this way. The only requirement is a user-defined function for comparing pairs of
input array elements.

25For an analogy, compare Sudoku and KenKen puzzles. Sudoku puzzles need
only a notion of equality between different objects, and would make perfect sense
with the digits 1–9 replaced by nine different fruits. KenKen puzzles involve
arithmetic and hence need numbers—what would be the sum of a pluot and a
mangosteen?

26For a more thorough treatment see, for example, Introduction to Algorithms

(Third Edition), by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest,
and Clifford Stein (MIT Press, 2009).
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BucketSort. The BucketSort algorithm is useful in practice for
numerical data, especially when it is spread out uniformly over a
known range. For example, suppose the input array has n elements
between 0 and 1 that are roughly evenly spread out. In our minds,
we divide the interval [0, 1] into n “buckets,” the first reserved for
input elements between 0 and 1

n , the second for elements between 1

n
and 2

n , and so on. The first step of the BucketSort algorithm does a
single linear-time pass over the input array and places each element
in its bucket. This is not a comparison-based step—the BucketSort

algorithm looks at the actual value of an input element to identify
which bucket it belongs to. It matters whether the value of an input
element is .17 or .27, even if we hold the relative ordering of the
elements fixed.

If the elements are roughly evenly spread out, the population of ev-
ery bucket is small. The second step of the algorithm sorts the elements
inside each bucket separately (for example, using InsertionSort).
Provided there are few elements in every bucket, this step also runs
in linear time (with a constant number of operations performed per
bucket). Finally, the sorted lists of the different buckets are con-
catenated, from the first to the last. This step also runs in linear
time. We conclude that linear-time sorting is possible under a strong
assumption on the input data.

CountingSort. The CountingSort algorithm is a variation on the
same idea. Here, we assume that there are only k different possi-
ble values of each input element (known in advance), such as the
integers {1, 2, . . . , k}. The algorithm sets up k buckets, one for each
possible value, and in a single pass through the input array places
each element in the appropriate bucket. The output array is simply
the concatenation of these buckets (in order). CountingSort runs in
linear time when k = O(n), where n is the length of the input array.
Like BucketSort, it is not a comparison-based algorithm,

RadixSort. The RadixSort algorithm is an extension of
CountingSort that gracefully handles n-element integer input
arrays with reasonably large numbers represented in binary (a string
of 0s and 1s, or “bits”). The first step of RadixSort considers only
the block of the log

2

n least significant bits of the input numbers,
and sorts them accordingly. Because log

2

n bits can encode only
n different values—corresponding to the numbers 0, 1, 2, . . . , n � 1,
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written in binary—the CountingSort algorithm can be used to
implement this step in linear time. The RadixSort algorithm then
re-sorts all the elements using the block of the next-least significant
log

2

n bits, and so on until all the bits of the input have been
processed. For this algorithm to sort correctly, it’s important to
implement the CountingSort subroutine so that it is stable, meaning
that it preserves the relative order of different elements with the same
value.27 The RadixSort algorithm runs in linear time provided
the input array contains only integers between 0 and nk for some
constant k.

These three sorting algorithms demonstrate how additional as-
sumptions about the input data (like being not-too-large integers)
enable techniques beyond comparisons (like bucketing) and algorithms
that are faster than ⇥(n log n) time. Theorem 5.5 states that such
improvements are impossible for general-purpose comparison-based
sorting algorithms. Let’s see why.

5.6.3 Proof of Theorem 5.5

Fix an arbitrary deterministic comparison-based sorting algorithm.28

We can think of the output of the algorithm as a permutation (i.e.,
reordering) of the numbers 1, 2, . . . , n, with the ith element of the
output indicating the position of the ith-smallest element in the input
array. For example, if the input array is

6 8 9 2 

then the output of a correct sorting algorithm can be interpreted as
the array of indices

4 1 2 3 

27Not all sorting algorithms are stable. For example, QuickSort is not a stable
sorting algorithm (do you see why?).

28Similar arguments apply to randomized comparison-based sorting algorithms,
and no such algorithm has expected running time better than ⇥(n log n).
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There are n! = n · (n� 1) · · · 2 · 1 possibilities for the correct output
array.29 For every input array, there is a unique correct output array.

Lemma 5.6 If a comparison-based sorting algorithm never makes

more than k comparisons for any length-n input array, then it gener-

ates at most 2

k
distinct output arrays.

Proof: We can break the operations performed by the algorithm into
phases, where phase i comprises the work done by the algorithm after
its (i� 1)th comparison and up to and including its ith comparison.
(The algorithm can do whatever it wants in between comparisons—
bookkeeping, figuring out the next comparison to ask, etc.—as long as
it doesn’t access the input array.) The specific operations performed
in phase i can depend only on the results of the first i�1 comparisons,
since this is the only input-specific information possessed by the
algorithm. These operations do not, for example, depend on the
actual value of an element involved in one of these comparisons. The
output array at the end of the algorithm depends only on the results
of all the comparisons. If the algorithm never makes more than k
comparisons, then there are at most 2

k different executions of the
algorithm and hence at most 2

k different output arrays.30 QE D

A correct sorting algorithm must be capable of producing any
of the n! possible correct output arrays. By Lemma 5.6, if k is the
maximum number of comparisons made on n-element input arrays,
then

2

k � n!|{z}
n·(n�1)···2·1

�
⇣n
2

⌘n/2
,

where we have used the fact that the first n/2 terms of n·(n�1) · · · 2·1
are all at least n

2

. Taking the logarithm base-2 of both sides shows
that

k � n

2

log

2

⇣n
2

⌘
= ⌦(n log n).

This lower bound applies to arbitrary comparison-based sorting algo-
rithms, completing the proof of Theorem 5.5. QE D

29There are n choices for the position of the smallest element in the input array,
n� 1 remaining choices for the position of the second-smallest element, and so on.

30For the first comparison, there are two possible outcomes; whatever the result
and consequent second comparison, it also has two possible outcomes; and so on.
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The Upshot

P The famous QuickSort algorithm has three
high-level steps: first, it chooses one element p
of the input array to act as a “pivot element”;
second, its Partition subroutine rearranges the
array so that elements smaller than and greater
than p come before it and after it, respectively;
third, it recursively sorts the two subarrays on
either side of the pivot.

P The Partition subroutine can be implemented
to run in linear time and in place, meaning with
negligible additional memory. As a consequence,
QuickSort also runs in place.

P The correctness of the QuickSort algorithm
does not depend on how pivot elements are
chosen, but its running time does.

P The worst-case scenario is a running time of
⇥(n2

), where n is the length of the input array.
This occurs when the input array is already
sorted and the first element is always used as
the pivot element. The best-case scenario is a
running time of ⇥(n log n). This occurs when
the median element is always used as the pivot.

P In randomized QuickSort, the pivot element is
always chosen uniformly at random. Its running
time can be anywhere from ⇥(n log n) to ⇥(n2

),
depending on its random coin flips.

P The average running time of randomized
QuickSort is ⇥(n log n), only a small constant
factor worse than its best-case running time.

P Intuitively, choosing a random pivot is a good
idea because there’s a 50% chance of getting a
25%-75% or better split of the input array.
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P The formal analysis uses a decomposition
blueprint to express a complicated random vari-
able as a sum of 0-1 random variables and then
apply linearity of expectation.

P The key insight is that the ith- and jth-smallest
elements of the input array get compared in
QuickSort if and only if one of them is chosen
as a pivot before an element with value strictly
in between them is chosen as a pivot.

P A comparison-based sorting algorithm is a
general-purpose algorithm that accesses the in-
put array only by comparing pairs of elements,
and never directly uses the value of an element.

P No comparison-based sorting algorithm has a
worst-case asymptotic running time better than
O(n log n).

Test Your Understanding

Problem 5.1 Recall the Partition subroutine employed by
QuickSort (Section 5.2). You are told that the following array has
just been partitioned around some pivot element:

3 1 2 4 5 8 7 6 9 

Which of the elements could have been the pivot element? (List all
that apply; there could be more than one possibility.)

Problem 5.2 Let ↵ be some constant, independent of the input array
length n, strictly between 0 and 1

2

. What is the probability that, with
a randomly chosen pivot element, the Partition subroutine produces
a split in which the size of both the resulting subproblems is at least
↵ times the size of the original array?

a) ↵
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b) 1� ↵

c) 1� 2↵

d) 2� 2↵

Problem 5.3 Let ↵ be some constant, independent of the input
array length n, strictly between 0 and 1

2

. Assume you achieve the
approximately balanced splits from the preceding problem in every
recursive call—so whenever a recursive call is given an array of length k,
each of its two recursive calls is passed a subarray with length between
↵k and (1�↵)k. How many successive recursive calls can occur before
triggering the base case? Equivalently, which levels of the algorithm’s
recursion tree can contain leaves? Express your answer as a range of
possible numbers d, from the minimum to the maximum number of
recursive calls that might be needed. [Hint: The formula that relates
logarithmic functions with different bases is logb n =

lnn
ln b .]

a) 0  d  � lnn
ln↵

b) � lnn
ln↵  d  � lnn

ln(1�↵)

c) � lnn
ln(1�↵)  d  � lnn

ln↵

d) � lnn
ln(1�2↵)  d  � lnn

ln(1�↵)

Problem 5.4 Define the recursion depth of QuickSort as the max-
imum number of successive recursive calls it makes before hitting
the base case—equivalently, the largest level of its recursion tree.
In randomized QuickSort, the recursion depth is a random vari-
able, depending on the pivots chosen. What is the minimum- and
maximum-possible recursion depth of randomized QuickSort?

a) minimum: ⇥(1); maximum: ⇥(n)

b) minimum: ⇥(log n); maximum: ⇥(n)

c) minimum: ⇥(log n); maximum: ⇥(n log n)

d) minimum: ⇥(

p
n); maximum: ⇥(n)
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Challenge Problems

Problem 5.5 Extend the ⌦(n log n) lower bound in Section 5.6 to
apply also to the expected running time of randomized comparison-
based sorting algorithms.

Programming Problems

Problem 5.6 Implement the QuickSort algorithm in your favorite
programming language. Experiment with the performance of different
ways of choosing the pivot element.

One approach is to keep track of the number of comparisons
between input array elements made by QuickSort.31 For several
different input arrays, determine the number of comparisons made
with the following implementations of the ChoosePivot subroutine:

1. Always use the first element as the pivot.

2. Always use the last element as the pivot.

3. Use a random element as the pivot. (In this case you should
run the algorithm 10 times on a given input array and average
the results.)

4. Use the median-of-three as the pivot element. The goal of this
rule is to do a little extra work to get much better performance
on input arrays that are nearly sorted or reverse sorted.

In more detail, this implementation of ChoosePivot considers
the first, middle, and final elements of the given array. (For an
array with even length 2k, use the kth element for the “middle”
one.) It then identifies which of these three elements is the
median (i.e., the one whose value is in between the other two),
and returns this as the pivot.32

For example, with the input array
31There’s no need to count the comparisons one by one. When there is a

recursive call on a subarray of length m, you can simply add m�1 to your running
total of comparisons. (Recall that the pivot element is compared to each of the
other m� 1 elements in the subarray in this recursive call.)

32A careful analysis would keep track of the comparisons made in identifying
the median of the three candidate elements, in addition to the comparisons made
in calls to Partition.
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8 3 2 5 1 4 7 6 

the subroutine would consider the first (8), middle (5), and last
(6) elements. It would return 6, the median of the set {5, 6, 8},
as the pivot element.

See www.algorithmsilluminated.org for test cases and challenge
data sets.

www.algorithmsilluminated.org


Chapter 6

Linear-Time Selection

This chapter studies the selection problem, where the goal is to iden-
tify the ith-smallest element of an unsorted array. It’s easy to solve
this problem in O(n log n) time using sorting, but we can do better.
Section 6.1 describes an extremely practical randomized algorithm,
very much in the spirit of randomized QuickSort, that runs in linear

time on average. Section 6.2 provides the elegant analysis of this
algorithm—there’s a cool way to think about the progress the algo-
rithm makes in terms of a simple coin-flipping experiment, and then
linearity of expectation (yes, it’s back. . . ) seals the deal.

Theoretically inclined readers might wonder whether the selection
problem can be solved in linear time without resorting to randomiza-
tion. Section 6.3 describes a famous deterministic algorithm for the
problem, one that has more Turing Award-winning authors than any
other algorithm I know of. It is deterministic (i.e., no randomization
allowed) and based on an ingenious “median-of-medians” idea for
guaranteeing good pivot choices. Section 6.4 proves the linear running
time bound, which is not so easy!

This chapter assumes that you remember the Partition subrou-
tine from Section 5.2 that partitions an array around a pivot element
in linear time, as well as the intuition for what makes a pivot element
good or bad (Section 5.3).

6.1 The RSelect Algorithm

6.1.1 The Selection Problem

In the selection problem, the input is the same as for the sort-
ing problem—an array of n numbers—along with an integer i 2
{1, 2, . . . , n}. The goal is to identify the ith order statistic—the
ith-smallest entry in the array.

155
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Problem: Selection

Input: An array of n numbers, in arbitrary order, and an
integer i 2 {1, 2, . . . , n}.

Output: The ith-smallest element of A.

As usual, we assume for simplicity that the input array has distinct
elements, with no duplicates.

For example, if the input array is

6 8 9 2 

and the value of i is 2, the correct output is 6. If i were 3, the correct
output would be 8, and so on.

When i = 1, the selection problem is just the problem of computing
the minimum element of an array. This is easy to do in linear time—
make one pass through the array and remember the smallest element
seen. Similarly, the case of finding the maximum element (i = n) is
easy. But what about for values of i in the middle? For example,
what if we want to compute the middle element—the median—of an
array?

To be precise, for an array with odd length n, the median is the
ith order statistic with i = (n+1)/2. For an array with even length n,
let’s agree to define the median as the smaller of the two possibilities,
which corresponds to i = n

2

.1

6.1.2 Reduction to Sorting

We already know a fast algorithm for the selection problem, which
piggybacks on our fast sorting algorithms.

1Why would you want to compute the median element of an array? After all,
the mean (i.e., average) is easy enough to compute in linear time—just sum up all
the array elements in a single pass and divide by n. One reason is to compute a
summary statistic of an array that is more robust than the mean. For example,
one badly corrupted element, such as a data entry error, can totally screw up the
mean of an array, but generally has little effect on the median.
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Reducing Selection to Sorting

Input: array A of n distinct numbers, and an integer
i 2 {1, 2, . . . , n}.

Output: the ith order statistic of A.

B := MergeSort(A)

return B[i]

After sorting the input array, we certainly know where to find the ith
smallest element—it’s hanging out in the ith position of the sorted
array. Because MergeSort runs in O(n log n) time (Theorem 1.2), so
does this two-step algorithm.2

But remember the mantra of any algorithm designer worth their
salt: can we do better? Can we design an algorithm for the selection
problem that is even faster than O(n log n) time? The best we can
hope for is linear time (O(n))—if we don’t even take the time to
look at each element in the array, there’s no hope of always cor-
rectly identifying, say, the minimum element. We also know from
Theorem 5.5 that any algorithm that uses a sorting subroutine is
stuck with a worst-case running time of ⌦(n log n).3 So if we can

get a running time better than O(n log n) for the selection problem,
we’ll have proved that selection is fundamentally easier than sorting.
Accomplishing this requires ingenuity—piggybacking on our sorting
algorithms won’t cut it.

6.1.3 A Divide-and-Conquer Approach

The randomized linear-time selection algorithm RSelect follows the
template that proved so successful in randomized QuickSort: choose
a random pivot element, partition the input array around the pivot,

2A computer scientist would call this a reduction from the selection problem
to the sorting problem. A reduction absolves you from developing a new algo-
rithm from scratch, and instead allows you to stand on the shoulders of existing
algorithms. In addition to their practical utility, reductions are an extremely
fundamental concept in computer science, and we will discuss them at length in
Part 4.

3Assuming that we restrict ourselves to comparison-based sorting algorithms,
as in Section 5.6.
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and recurse appropriately. The next order of business is to understand
the appropriate recursion for the selection problem.

Recall what the Partition subroutine in Section 5.2 does: given
an array and a choice of pivot element, it rearranges the elements
of the array so that everything less than and greater than the pivot
appears before and after the pivot, respectively.

3 8 2 5 1 4 7 6 2 1 3 6 7 4 5 8 

pivot element less than pivot greater than pivot 

Thus the pivot element ends up in its rightful position, after all the
elements less than it and before all the elements greater than it.

QuickSort recursively sorted the subarray of elements less than
the pivot element, and also the subarray of elements greater than the
pivot. What is the analog for the selection problem?

Quiz 6.1

Suppose we are looking for the 5th order statistic in an
input array of 10 elements. Suppose that after partitioning
the array, the pivot element ends up in the third position.
On which side of the pivot element should we recurse, and
what order statistic should we look for?

a) The 3rd order statistic on the left side of the pivot.

b) The 2nd order statistic on the right side of the pivot.

c) The 5th order statistic on the right side of the pivot.

d) We might need to recurse on both the left and the
right sides of the pivot.

(See Section 6.1.6 for the solution and discussion.)

6.1.4 Pseudocode for RSelect

Our pseudocode for the RSelect algorithm follows the high-level
description of QuickSort in Section 5.1, with two changes. First, we
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commit to using random pivot elements rather than having a generic
ChoosePivot subroutine. Second, RSelect makes only one recursive
call, while QuickSort makes two. This difference is the primary
reason to hope that RSelect might be even faster than randomized
QuickSort.

RSelect

Input: array A of n � 1 distinct numbers, and an
integer i 2 {1, 2, . . . , n}.

Output: the ith order statistic of A.

if n = 1 then // base case

return A[1]

choose pivot element p uniformly at random from A
partition A around p
j := p’s position in partitioned array
if j = i then // you got lucky!

return p
else if j > i then

return RSelect(first part of A, i)
else // j < i

return RSelect(second part of A, i� j)

Partitioning the input array around the pivot element p splits the array
into three pieces, leading to three cases in the RSelect algorithm:

< p p > p 

second part 
(n-j elements) 

first part 
(j-1 elements) 

jth position 

Because the pivot element p assumes its rightful position in the
partitioned array, if it’s in the jth position, it must be the jth order
statistic. If by dumb luck the algorithm was looking for the jth
order statistic (i.e., i = j), it’s done. If the algorithm is searching
for a smaller number (i.e., i < j), it must belong to the first part
of the partitioned array. In this case, recursing only throws out
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elements bigger than the jth (and hence the ith) order statistic, so
the algorithm is still looking for the ith-smallest element among those
in the first subarray. In the final case (i > j), the algorithm is looking
for a number larger than the pivot element, and the recursion mimics
the solution to Quiz 6.1. The algorithm recurses on the second part
of the partitioned array, throwing out the pivot element and the
j � 1 elements smaller than it from further consideration. Since the
algorithm was originally looking for the ith-smallest element, it’s now
looking for the (i� j)th-smallest element among those that remain.

6.1.5 Running Time of RSelect

Like randomized QuickSort, the running time of the RSelect algo-
rithm depends on the pivots it chooses. What’s the worst that could
happen?

Quiz 6.2

What is the running time of the RSelect algorithm if pivot
elements are always chosen in the worst possible way?

a) ⇥(n)

b) ⇥(n log n)

c) ⇥(n2

)

d) ⇥(2

n
)

(See Section 6.1.6 for the solution and discussion.)

We now know that the RSelect algorithm does not run in linear
time for all possible choices of pivot elements, but could it run in
linear time on average over its random choices of pivots? Let’s start
with a more modest goal: are there any choices of pivots for which
RSelect runs in linear time?

What makes a good pivot? The answer is the same as for
QuickSort (see Section 5.3): good pivots guarantee that recursive
calls receive significantly smaller subproblems. The worst-case sce-
nario is a pivot element that gives the most unbalanced split possible,
with one empty subarray and the other subarray having everything
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save for the pivot element (as in Quiz 6.2). This scenario occurs
when the minimum or maximum element is chosen as the pivot. The
best-case scenario is a pivot element that gives the most balanced split
possible, with two subarrays of equal length.4 This scenario occurs
when the median element is chosen as the pivot. It may seem circular
to explore this scenario, as we might well be trying to compute the
median in the first place! But it’s still a useful thought experiment
to understand the best-possible running time that RSelect can have
(which had better be linear!).

Let T (n) denote the running time of RSelect on arrays of length n.
If RSelect magically chooses the median element of the given subarray
in every recursive call, then every recursive call does work linear in
its subarray (mostly in the Partition subroutine) and makes one
recursive call on a subarray of half the size:

T (n)  T
⇣n
2

⌘

| {z }
since pivot = median

+ O(n)| {z }
Partition, etc.

.

This recurrence is right in the wheelhouse of the master method
(Theorem 4.1): since there is one recursive call (a = 1), the subproblem
size drops by a factor of 2 (b = 2), and linear work is done outside
the recursive call (d = 1), 1 = a < bd = 2 and the second case of
the master method tells us that T (n) = O(n). This is an important
sanity check: if RSelect gets sufficiently lucky, it runs in linear time.

So is the running time of RSelect typically closer to its best-case
performance of ⇥(n) or its worst-case performance of ⇥(n2

)? With
the success of randomized QuickSort under our belt, we might hope
that typical executions of RSelect have performance close to the
best-case scenario. And indeed, while in principle RSelect can run in
⇥(n2

) time, you will almost always observe a running time of O(n) in
practice.

Theorem 6.1 (Running Time of RSelect) For every input array

of length n � 1, the average running time of RSelect is O(n).

Section 6.2 provides the proof of Theorem 6.1.
4We’re ignoring the lucky case in which the chosen pivot is exactly the order

statistic being searched for—this is unlikely to happen before the last few recursive
calls of the algorithm.
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Amazingly, the average running time of RSelect is only a con-
stant factor larger than the time needed to read the input! Since
sorting requires ⌦(n log n) time (Section 5.6), Theorem 6.1 shows that
selection is fundamentally easier than sorting.

The same comments about the average running time of randomized
QuickSort (Theorem 5.1) apply here. The RSelect algorithm is
general-purpose in that the running time bound is for arbitrary inputs
and the “average” refers only to the random pivot elements chosen
by the algorithm. Like with QuickSort, the constant hidden in the
big-O notation in Theorem 6.1 is reasonably small, and the RSelect

algorithm can be implemented to work in place, without allocating
significant additional memory.5

6.1.6 Solution to Quizzes 6.1–6.2

Solution to Quiz 6.1

Correct answer: (b). After partitioning the array, we know that
the pivot element is in its rightful position, with all smaller numbers
before it and larger numbers after it. Since the pivot element wound
up in the third position of the array, it is the third-smallest element.
We’re looking for the fifth-smallest element, which is larger. We
can therefore be sure that the 5th order statistic is in the second
subarray, and we need to recurse only once. What order statistic are
we looking for in the recursive call? Originally we were looking for
the fifth-smallest, but now we’ve thrown out the pivot element and
the two elements smaller than it. Since 5� 3 = 2, we’re now looking
for the second-smallest element among those passed to the recursive
call.

Solution to Quiz 6.2

Correct answer: (c). The worst-case running time of RSelect is
the same as for randomized QuickSort. The bad example is the same
as in Quiz 5.1: suppose the input array is already sorted, and the
algorithm repeatedly picks the first element as the pivot. In every
recursive call, the first part of the subarray is empty while the second

5The in-place implementation uses left and right endpoints to keep track of
the current subarray, like in the pseudocode for QuickSort in Section 5.2.5. See
also Programming Problem 6.5.
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part has everything save for the current pivot. Thus the subarray
length of each recursive call is only one less than the previous one. The
work done in each recursive call (mostly by the Partition subroutine)
is linear in its subarray length. When computing the median element,
there are ⇡ n

2

recursive calls, each with a subarray of length at least
n
2

, and so the overall running time is ⌦(n2

).

*6.2 Analysis of RSelect

One way to prove the linear expected running time bound for the
RSelect algorithm (Theorem 6.1) is to follow the same decomposition
blueprint that worked so well for analyzing randomized QuickSort

(Section 5.5), with indicator random variables that track comparisons.
For RSelect, we can also get away with a simpler instantiation of
the decomposition blueprint that formalizes the intuition from Sec-
tion 5.4.3: (i) random pivots are likely to be pretty good; and (ii)
pretty good pivots make rapid progress.

6.2.1 Tracking Progress via Phases

We’ve already noted that a call to RSelect does O(n) work outside
of its recursive call, primarily in its call to Partition. That is, there
is a constant c > 0 such that

(*) for every input array of length n, RSelect performs
at most cn operations outside of its recursive call.

Because RSelect always makes only one recursive call, we can
track its progress by the length of the subarray that it is currently
working on, which only gets smaller over time. For simplicity, we’ll
use a coarser version of this progress measure.6 Suppose the outer
call to RSelect is given an array of length n. For an integer j � 0,
we say that a recursive call to RSelect is in phase j if the length of
its subarray is between

✓
3

4

◆j+1

· n and
✓
3

4

◆j

· n.

6A more refined analysis can be done and results in a better constant factor
in the running time bound.
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For example, the outermost call to RSelect is always in phase 0, as
are any subsequent recursive calls that operate on at least 75% of
the original input array. Recursive calls on subarrays that contain
between (

3

4

)

2 ⇡ 56% and 75% of the original elements belong to
phase 1, and so on. By phase j ⇡ log

4/3 n, the subarray has size at
most 1 and there are no further recursive calls.

For each integer j � 0, let Xj denote the random variable equal
to the number of phase-j recursive calls. Xj can be as small as 0,
since a phase might get skipped entirely, and certainly can’t be bigger
than n, the maximum number of recursive calls made by RSelect.
By (*), RSelect performs at most

c ·
✓
3

4

◆j

· n
| {z }

max subarray length

(phase j)

operations in each phase-j recursive call. We can then decompose the
running time of RSelect across the different phases:

running time of RSelect 
X

j�0
Xj|{z}

# calls

(phase j)

· c
✓
3

4

◆j

n

| {z }
work per call

(phase j)

= cn
X

j�0

✓
3

4

◆j

Xj .

This upper bound on the running time of RSelect is a complicated
random variable, but it is a weighted sum of simpler random variables
(the Xj ’s). Your automatic response at this point should be to apply
linearity of expectation (Theorem B.1), to reduce the computation of
the complicated random variable to those of the simpler ones:

E[running time of RSelect]  cn
X

j�0

✓
3

4

◆j

E[Xj ] . (6.1)

So what is E[Xj ]?

6.2.2 Reduction to Coin Flipping

We have two things going for us in bounding the expected num-
ber E[Xj ] of phase-j recursive calls. First, whenever we pick a pretty
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good pivot, we proceed to a later phase. As in Section 5.4.3, define an
approximate median of a subarray as an element that is greater than
at least 25% of the other elements in the subarray and also less than
at least 25% of the other elements. The picture after partitioning
around such a pivot element is:

< p p > p 

25-75% of array 25-75% of array 

approximate median 

No matter which case is triggered in RSelect, the recursive call gets
a subarray of length at most 3

4

times that of the previous call, and
therefore belongs to a later phase. This argument proves the following
proposition.

Proposition 6.2 (Approximate Medians Make Progress) If

a phase-j recursive call chooses an approximate median, then the next

recursive call belongs to phase j + 1 or later.

Second, as proved in Section 5.4.3, a recursive call has a decent
chance of picking an approximate median.

Proposition 6.3 (Approximate Medians Are Abundant) A

call to RSelect chooses an approximate median with probability at

least 50%.

For example, in an array that contains the elements {1, 2, . . . , 100},
each of the fifty elements between 26 and 75, inclusive, is an approxi-
mate median.

Propositions 6.2 and 6.3 let us substitute a simple coin-flipping
experiment for the number of phase-j recursive calls. Suppose you
have a fair coin, equally likely to be heads or tails. Flip the coin
repeatedly, stopping the first time you get “heads,” and let N be the
number of coin flips performed (including the last flip). Think of
“heads” as corresponding to choosing an approximate median (and
ending the experiment).
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Proposition 6.4 (Reduction to Coin Flipping) For each phase

j, E[Xj ]  E[N ].

Proof: All the differences between the definitions of Xj and N are
such that the expected value of the former can only be smaller:

1. There might be no phase-j recursive calls (if the phase is skipped
entirely), while there is always at least one coin flip (the first
one).

2. Each coin flip has exactly a 50% chance of prolonging the
experiment (if it comes up tails). Propositions 6.2 and 6.3 imply
that each phase-j recursive call has at most a 50% chance of
prolonging the phase—a necessary condition is that it fails to
pick an approximate median.

QE D

The random variable N is a geometric random variable with pa-

rameter

1

2

. Looking up its expectation in a textbook or on the Web,
we find that E[N ] = 2. Alternatively, a sneaky way to see this is to
write the expected value of N in terms of itself. The key idea is to
exploit the fact that the random experiment is memoryless: if the
first coin flip comes up “tails,” the rest of the experiment is a copy of
the original one. In math, whatever the expected value of N might
be, it must satisfy the relationship

E[N ] = 1|{z}
first flip

+

1

2|{z}
Pr[tails]

· E[N ]| {z }
further coin flips

.

The unique value for E[N ] that satisfies this equation is 2.7

Proposition 6.4 implies that this value is an upper bound on what
we care about, the expected number of phase-j recursive calls.

Corollary 6.5 (Two Calls Per Phase) For every j, E[Xj ]  2.

7Strictly speaking, we should also rule out the possibility that E[N ] = +1
(which is not hard to do).
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6.2.3 Putting It All Together

We can now use the upper bound in Corollary 6.5 on the E[Xj ]’s
to simplify our upper bound (6.1) on the expected running time of
RSelect:

E[running time of RSelect]  cn
X

j�0

✓
3

4

◆j

E[Xj ]  2cn
X

j�0

✓
3

4

◆j

.

The sum
P

j�0
�
3

4

�j looks messy, but it’s a beast we’ve already tamed.
When proving the master method (Section 4.4), we took a detour
to discuss geometric series (Section 4.4.8), and derived the exact
formula (4.6):

1 + r + r2 + · · ·+ rk =

1� rk+1

1� r

for every real number r 6= 1 and nonnegative integer k. When r < 1,
this quantity is at most 1

1�r , no matter how big k is. Plugging in
r =

3

4

, we have
X

j�0

✓
3

4

◆j

 1

1� 3

4

= 4,

and so
E[running time of RSelect]  8cn = O(n).

This completes the analysis of RSelect and the proof of Theorem 6.1.
QE D

*6.3 The DSelect Algorithm

The RSelect algorithm runs in expected linear time for every input,
where the expectation is over the random choices made by the al-
gorithm. Is randomization required for linear-time selection?8 This
section and the next resolve this question with a deterministic linear-
time algorithm for the selection problem.

For the sorting problem, the O(n log n) average running time
of randomized QuickSort is matched by that of the deterministic

8Understanding the power of randomness in computation more generally is a
deep question and continues to be a topic of active research in theoretical computer
science.
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MergeSort algorithm, and both QuickSort and MergeSort are useful
algorithms in practice. In contrast, while the deterministic linear-time
selection algorithm described in this section works OK in practice,
it is not competitive with the RSelect algorithm. The two reasons
for this are larger constant factors in the running time and the work
performed by DSelect allocating and managing additional memory.
Still, the ideas in the algorithm are so cool that I can’t help but tell
you about them.

6.3.1 The Big Idea: Median-of-Medians

The RSelect algorithm is fast because random pivots are likely to be
pretty good, yielding a roughly balanced split of the input array after
partitioning, and pretty good pivots make rapid progress. If we’re
not allowed to use randomization, how can we compute a pretty good
pivot without doing too much work?

The big idea in deterministic linear-time selection is to use the
“median-of-medians” as a proxy for the true median. The algorithm
treats the input array elements like sports teams and runs a two-round
knockout tournament, the champion of which is the pivot element;
see also Figure 6.1.

11 6 10 2 15 9 12 4 5 13 8 1 7 14 3 

group #1 group #2 group #3 

input array  
(contestants) 

10 7 9 group medians 
(round 1 winners) 

9 median-of-medians 
(champion) 

Figure 6.1: Computing a pivot element with a two-round knockout tour-
nament. In this example, the chosen pivot is not the median of the input
array, but it is pretty close.
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The first round is the group stage, with the elements in positions 1–
5 of the input array the first group, the elements in positions 6–10
the second group, and so on. The first-round winner of a group of 5
is defined as the median element (i.e., the third-smallest). Since there
are ⇡ n

5

groups of 5, there are ⇡ n
5

first-round winners. (As usual,
we ignore fractions for simplicity.) The tournament champion is then
defined as the median of the first-round winners.

6.3.2 Pseudocode for DSelect

How do we actually compute the median-of-medians? Implementing
the first stage of the knockout tournament is easy, since each median
computation involves only 5 elements. For example, each such com-
putation can be done by brute force, (for each of the 5 possibilities,
explicitly check if it’s the middle element), or by using our reduction
to sorting (Section 6.1.2). To implement the second stage, we compute
the median of the ⇡ n

5

first-round winners recursively.

DSelect

Input: array A of n � 1 distinct numbers, and an
integer i 2 {1, 2, . . . , n}.

Output: the ith order statistic of A.

1 if n = 1 then // base case

2 return A[1]

3 for h := 1 to n
5

do // first-round winners

4 C[h] := middle element from the hth group of 5
5 p := DSelect(C, n

10

) // median-of-medians

6 partition A around p
7 j := p’s position in partitioned array
8 if j = i then // you got lucky!

9 return p

10 else if j > i then
11 return DSelect(first part of A, i)
12 else // j < i
13 return DSelect(second part of A, i� j)
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Lines 1–2 and 6–13 are identical to RSelect. Lines 3–5 are the only
new part of the algorithm; they compute the median-of-medians of
the input array, replacing the line in RSelect that chooses a pivot
element at random.

Lines 3 and 4 compute the first-round winners of the knockout
tournament, with the middle element of each group of 5 computed
using brute force or a sorting algorithm, and copy these winners over
into a new array C.9 Line 5 computes the tournament champion by
recursively computing the median of C; since C has length (roughly) n

5

,
this is the n

10

th order statistic of C. No randomization is used in any
step of the algorithm.

6.3.3 Understanding DSelect

It may seem dangerously circular to recursively call DSelect while
computing the pivot element. To understand what’s going on, let’s
first be clear on the total number of recursive calls.

Quiz 6.3

How many recursive calls does a single call to DSelect

typically make?

a) 0

b) 1

c) 2

d) 3

(See below for the solution and discussion.)

Correct answer: (c). Putting aside the base case and the lucky case
in which the pivot element happens to be the desired order statistic,
the DSelect algorithm makes two recursive calls. To see why, don’t
overthink it; just inspect the pseudocode for DSelect line by line.
There is one recursive call on line 5, and one more on either line 11
or 13.

9This auxiliary array is why DSelect, unlike RSelect, fails to run in place.
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There are two common points of confusion about these two re-
cursive calls. First, isn’t the fact that the RSelect algorithm makes
only one recursive call the reason it runs faster than our sorting al-
gorithms? Isn’t the DSelect algorithm giving up this improvement
by making two recursive calls? Section 6.4 shows that, because the
extra recursive call in line 5 needs to solve only a relatively small
subproblem (with 20% of the elements of the original array), we can
still rescue the linear-time analysis.

Second, the two recursive calls play fundamentally different roles.
The goal of the recursive call in line 5 is to identify a good pivot
element for the current recursive call. The goal of the recursive
call in line 11 or 13 is the usual one, to recursively solve a smaller
residual problem left by the current recursive call. Nevertheless, the
recursive structure in DSelect is squarely in the tradition of all the
other divide-and-conquer algorithms we’ve studied: each recursive
call makes a small number of further recursive calls on strictly smaller
subproblems, and does some amount of additional work. If we weren’t
worried about an algorithm like MergeSort or QuickSort running
forever, we shouldn’t be worried about DSelect either.

6.3.4 Running Time of DSelect

The DSelect algorithm is not just a well-defined program that com-
pletes in a finite amount of time—it runs in linear time, performing
only a constant factor more work than necessary to read the input.

Theorem 6.6 (Running Time of DSelect) For every input array

of length n � 1, the running time of DSelect is O(n).

Unlike the running time of RSelect, which can in principle be as
bad as ⇥(n2

), the running time of DSelect is always O(n). Still, you
should prefer RSelect to DSelect in practice, because the former runs
in place and the constant hidden in the “O(n)” average running time
in Theorem 6.1 is smaller than the constant hidden in Theorem 6.6.

A Computer Science Superteam

One of the goals of this book series is to make famous
algorithms seem so simple (at least in hindsight) that
you feel like you could have come up with them your-
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self, had you been in the right place at the right time.
Almost nobody feels this way about the DSelect al-
gorithm, which was devised by a computer science
superteam of five researchers, four of whom have been
recognized with the ACM Turing Award (all for dif-
ferent things!), the equivalent of the Nobel Prize for
computer science.10 So don’t despair if it’s hard to
imagine coming up with the DSelect algorithm, even
on your most creative days—it’s also hard to imagine
beating Roger Federer (let alone five of him) on the
tennis court!

*6.4 Analysis of DSelect

Could the DSelect algorithm really run in linear time? It seems to do
an extravagant amount of work, with two recursive calls and significant
extra work outside the recursive calls. Every other algorithm we’ve
seen with two or more recursive calls has running time ⇥(n log n) or
worse.

6.4.1 Work Outside Recursive Calls

Let’s start by understanding the number of operations performed by a
call to DSelect outside its recursive calls. The two steps that require
significant work are computing the first-round winners (lines 3–4) and
partitioning the input array around the median-of-medians (line 6).

10The algorithm and its analysis were published in the paper “Times Bounds
for Selection,” by Manuel Blum, Robert W. Floyd, Vaughan Pratt, Ronald L.
Rivest, and Robert E. Tarjan (Journal of Computer and System Sciences, 1973).
(It was very unusual to see papers with five authors back then.) In chronological
order: Floyd won the Turing Award in 1978 for contributions to algorithms and
also programming languages and compilers; Tarjan was recognized in 1986 (along
with John E. Hopcroft) for his work on algorithms and data structures, which
we’ll discuss further in later parts of Algorithms Illuminated; Blum was awarded
it in 1995, largely for his contributions to cryptography; and Rivest, whom you
may know as the “R” in the RSA cryptosystem, won it in 2002 (with Leonard
Adleman and Adi Shamir) for his work on public-key cryptography. Meanwhile,
Pratt is famous for accomplishments that run the gamut from primality testing
algorithms to the co-founding of Sun Microsystems!
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As in QuickSort or RSelect, the second step runs in linear time.
What about the first step?

Focus on a particular group of 5 elements. Because this is only a
constant number of elements (independent of the input array length n),
computing the median takes constant time. For example, suppose
we do this computation by reducing to sorting (Section 6.1.2), say
using MergeSort. We understand well the amount of work done by
MergeSort (Theorem 1.2): at most

6m(log

2

m+ 1)

operations to sort an array of length m. You might be worried about
the fact that the MergeSort algorithm does not run in linear time.
But we’re invoking it only for constant-size subarrays (m = 5), and
as a result it performs a constant number of operations (at most
6 · 5 · (log

2

5 + 1)  120) per subarray. Summing over the n
5

groups
of 5 that need to be sorted, this is at most 120 · n

5

= 24n = O(n)
operations in all. We conclude that, outside its recursive calls, the
DSelect algorithm does only linear work.

6.4.2 A Rough Recurrence

In Chapter 4 we analyzed divide-and-conquer algorithms using re-
currences, which express a running time bound T (n) in terms of the
number of operations performed by recursive calls. Let’s try the
same approach here, letting T (n) denote the maximum number of
operations that the DSelect algorithm performs on an input array of
length n. When n = 1 the DSelect algorithm just returns the sole ar-
ray element, so T (1) = 1. For larger n, the DSelect algorithm makes
one recursive call in line 5, another recursive call in line 11 or 13, and
performs O(n) additional work (for partitioning, and computing and
copying over the first-round winners). This translates to a recurrence
of the form

T (n)  T (size of subproblem #1| {z }
=n/5

) + T (size of subproblem #2| {z }
=?

) +O(n).

To evaluate the running time of DSelect, we need to understand the
sizes of the subproblems solved by its two recursive calls. The size of
the first subproblem (line 5) is n

5

, the number of first-round winners.
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We don’t know the size of the second subproblem—it depends on which
element ends up being the pivot, and on whether the order statistic
sought is less than or greater than this pivot. This indeterminacy
in subproblem size is why we didn’t use recurrences to analyze the
QuickSort and RSelect algorithms.

In the special case in which the true median element of the input
array is chosen as the pivot, the second subproblem is guaranteed to
comprise at most n

2

elements. The median-of-medians is generally
not the true median (Figure 6.1). Is it close enough to guarantee
an approximately balanced split of the input array, and hence a
not-too-big subproblem in line 11 or 13?

6.4.3 The 30-70 Lemma

The heart of the analysis of DSelect is the following lemma, which
quantifies the payoff of the hard work done to compute the median-of-
medians: this pivot element guarantees a split of 30%-70% or better
of the input array.

Lemma 6.7 (30-70 Lemma) For every input array of length n � 2,

the subarray passed to the recursive call in line 11 or 13 of DSelect

has length at most

7

10

n.

11

The 30-70 Lemma lets us substitute “ 7

10

n” for “?” in the rough
recurrence above: for every n � 2,

T (n)  T

✓
1

5

· n
◆
+ T

✓
7

10

· n
◆
+O(n). (6.2)

We first prove the 30-70 Lemma, and then prove that the recur-
rence (6.2) implies that DSelect is a linear-time algorithm.

Proof of Lemma 6.7: Let k =

n
5

denote the number of groups of 5,
and hence the number of first-round winners. Define xi as the ith-
smallest of the first-round winners. Equivalently, x

1

, . . . , xk are the
11Strictly speaking, because one of the “groups of 5” could have fewer than

five elements (if n is not a multiple of 5), the 7

10

n should be 7

10

n + 2, rounded
up to the nearest integer. We’ll ignore the “+2” for the same reason we ignore
fractions—it is a detail that complicates the analysis in an uninteresting way and
has no real effect on the bottom line.
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first-round winners listed in sorted order. The tournament champion,
the median-of-medians, is xk/2 (or xdk/2e, if k is odd).12

The plan is to argue that xk/2 is no smaller than at least 60% of
the elements in at least 50% of the groups of 5, and is no larger than
at least 60% of the elements in at least 50% of the groups. Then at
least 60% · 50% = 30% of the input array elements would be no larger
than the median-of-medians, and at least 30% would be no smaller:

< p p > p 

30-70% of array 30-70% of array 

median-of-medians 

To implement this plan, consider the following thought experiment.
In our minds (not in the actual algorithm!), we lay out all the input
array elements in a two-dimensional grid format. There are five rows,
and each of the n

5

columns corresponds to one of the groups of 5.
Within each column, we lay out the 5 elements in sorted order from
bottom to top. Finally, we lay out the columns so that the first-round
winners (i.e., the elements in the middle row) are in sorted order from
left to right. For example, if the input array is

11 6 10 2 15 9 12 4 5 13 8 1 7 14 3 

then the corresponding grid is

11 

6 

10 

2 

15 

9 

12 

4 

5 

13 

8 

1 

7 

14 

3 

< < 

� 

� 

� 

� 

� 

� 

� 

� 

� 

� 

� 

� 

pivot 

12The notation dxe denotes the “ceiling” function, which rounds its argument
up to the nearest integer.



176 Linear-Time Selection

with the pivot element, the median-of-medians, in the center posi-
tion.

Key Observation

Because the middle row is sorted from left to right, and each
column is sorted from bottom to top, all the elements to the

left and down from the pivot are less than the pivot, and all

the elements to the right and up from the pivot are greater

than the pivot.13

In our example, the pivot is the “9,” the elements to the left and
down are {1, 3, 4, 5, 7}, and the elements to the right and up are
{10, 11, 12, 13, 15}. Thus at least 6 elements will be excluded from
the subarray passed to the next recursive call—the pivot element 9
and either {10, 11, 12, 13, 15} (in line 11) or {1, 3, 4, 5, 7} (in line 13).
Either way, the next recursive call receives at most 9 elements, and 9
is less than 70% of 15.

The argument for the general case is the same. Figure 6.2 depicts
what the grid looks like for an arbitrary input array. Because the
pivot element is the median of the elements in the middle row, at least
50% of the columns are to the left of the one that contains the pivot
(counting also the pivot’s own column). In each of these columns, at
least 60% of the elements (the three smallest of the 5) are no larger
than the column’s median and hence no larger than the pivot element.
Thus at least 30% of the input array elements are no larger than the
pivot element, and all of these would be excluded from the recursive
call in line 13. Similarly, at least 30% of the elements are no smaller
than the pivot, and these would be excluded from the recursive call
in line 11. This completes the proof of the 30-70 lemma. QE D

6.4.4 Solving the Recurrence

The 30-70 Lemma implies that the input size shrinks by a constant
factor with every recursive call of DSelect, and this bodes well for
a linear running time. But is it a Pyrrhic victory? Does the cost

13Elements to the left and up or to the right and down could be either less
than or greater than the pivot.
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xk/2 x2 < < 

� 

� 

� 

� 

� 

� 

� 

� 

pivot 

x1 < 

� 

� 

� 

� 

x3 ......... 

� 

� 

� 

� 

......... 

......... 

......... 

......... 

< < ......... 

......... 

......... 

......... 

......... 

< xk 

� 

� 

� 

� 

no larger than pivot 

no smaller than pivot 

60% of 
rows 

60% of 
rows 

� 50% of columns 

� 50% of columns 

Figure 6.2: Proof of the 30-70 Lemma. Imagine the input array elements
laid out in a grid format. Each column corresponds to a group of 5, sorted
from bottom to top. Columns are sorted in order of their middle elements.
The picture assumes that k is even; for k odd, the “xk/2” is instead “xdk/2e.”
Elements to the southwest of the median-of-medians can only be less than
it; those to the northeast can only be greater than it. As a result, at least
60% · 50% = 30% of the elements are excluded from each of the two possible
recursive calls.

of computing the median-of-medians outweigh the benefits of par-
titioning around a pretty good pivot? Answering these questions,
and completing the proof of Theorem 6.6, requires figuring out the
solution to the recurrence in (6.2).

Since the DSelect algorithm does O(n) work outside its recursive
calls (computing first-round winners, partitioning the array, etc.),
there is a constant c > 0 such that, for every n � 2,

T (n)  T

✓
1

5

· n
◆
+ T

✓
7

10

· n
◆
+ cn, (6.3)

where T (n) is an upper bound on the running time of DSelect on
length-n arrays. We can assume that c � 1 (as increasing c cannot
invalidate the inequality (6.3)). Also, T (1) = 1. As we’ll see, the
crucial property of this recurrence is that 1

5

+

7

10

< 1.
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We leaned on the master method (Chapter 4) to evaluate all
the recurrences we’ve encountered so far—for MergeSort, Karatsuba,
Strassen, and more, we just plugged in the three relevant parameters
(a, b, and d) and out popped an upper bound on the algorithm’s
running time. Unfortunately, the two recursive calls in DSelect have
different input sizes, and this rules out applying Theorem 4.1. It is
possible to generalize the recursion tree argument in Theorem 4.1 to
accommodate the recurrence in (6.3).14 For variety’s sake, and to
add another tool to your toolbox, we proceed instead with a different
method.

6.4.5 The Guess-and-Check Method

The guess-and-check method for evaluating recurrences is just as
ad hoc as it sounds, but it’s also extremely flexible and applies to
arbitrarily crazy recurrences.

Step 1: Guess. Guess a function f(n) which you suspect satisfies
T (n) = O(f(n)).

Step 2: Check. Prove by induction on n that T (n) really is
O(f(n)).

In general, the guessing step is a bit of a dark art. In our case,
since we’re trying to prove a linear running time bound, we’ll guess
that T (n) = O(n).15 That is, we guess that there is a constant ` > 0

(independent of n) such that

T (n)  ` · n (6.4)

for every positive integer n. If true, since ` is a constant, this would
imply our hope that T (n) = O(n).

14For a heuristic argument, think about the first pair of recursive calls to
DSelect—the two nodes in level 1 of the algorithm’s recursion tree. One has 20%
of the input array elements, the other at most 70%, and the work done at this level
is linear in the sum of the two subproblem sizes. Thus the amount of work done
at level 1 is at most 90% of that done at level 0, and so on at subsequent levels.
This resembles the second case of the master method, in which the work-per-level
drops by a constant factor each level. This analogy suggests that the O(n) work
performed at the root should dominate the running time (cf., Section 4.4.6).

15“Hope and check” might be a more apt description for us!
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When verifying (6.4), we are free to choose ` however we want, as
long as it is independent of n. Similar to asymptotic notation proofs,
the usual way to figure out the appropriate constant is to reverse
engineer it (cf., Section 2.5). Here, we’ll take ` = 10c, where c is the
constant factor in the recurrence (6.3). (Since c is a constant, so is `.)
Where did this number come from? It’s the smallest constant for
which the inequality (6.5) below is valid.

We prove (6.4) by induction. In the language of Appendix A, P (n)
is the assertion that T (n)  ` · n = 10c · n. For the base case, we
need to prove directly that P (1) is true, meaning that T (1)  10c.
The recurrence explicitly says that T (1) = 1 and c � 1, so certainly
T (1)  10c.

For the inductive step, fix an arbitrary positive integer n � 2.
We need to prove that T (n)  ` · n. The inductive hypothesis states
that P (1), . . . , P (n� 1) are all true, meaning that T (k)  ` · k for all
k < n. To prove P (n), let’s just follow our noses.

First, the recurrence (6.3) decomposes T (n) into three terms:

T (n)  T

✓
1

5

· n
◆

| {z }
`·n

5

(ind. hyp.)

+T

✓
7

10

· n
◆

| {z }
`·7n

10

(ind. hyp.)

+cn.

We can’t directly manipulate any of these terms, but we can apply
the inductive hypothesis, once with k =

n
5

and once with k =

7n
10

:

T (n)  ` · n
5

+ ` · 7n
10

+ cn.

Grouping terms,

T (n)  n

✓
9

10

`+ c

◆

| {z }
=`

(as `=10c)

= ` · n. (6.5)

This proves the inductive step, which verifies that T (n)  ` ·n = O(n)
and completes the proof that the ingenious DSelect algorithm runs
in linear time (Theorem 6.6). QE D
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The Upshot

P The goal in the selection problem is to compute
the ith-smallest element of an unsorted array.

P The selection problem can be solved in
O(n log n) time, where n is the length of the
input array, by sorting the array and then re-
turning the ith element.

P The problem can also be solved by partitioning
the input array around a pivot element, as in
QuickSort, and recursing once on the relevant
side. The RSelect algorithm always chooses
the pivot element uniformly at random.

P The running time of RSelect varies from ⇥(n)
to ⇥(n2

), depending on the pivots chosen.

P The average running time of RSelect is ⇥(n).
The proof uses a reduction to a coin-flipping
experiment.

P The big idea in the deterministic DSelect algo-
rithm is to use the “median-of-medians” as the
pivot element: break the input array into groups
of 5, directly compute the median of each group,
and recursively compute the median of these n

5

first-round winners.

P The 30-70 Lemma shows that the median-of-
medians guarantees a 30%-70% or better split
of the input array.

P The analysis of DSelect shows that the work
spent in the recursive call to compute the
median-of-medians is outweighed by the benefit
of a 30%-70% split, resulting in a linear running
time.
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Test Your Understanding

Problem 6.1 Let ↵ be some constant, independent of the input
array length n, strictly between 1

2

and 1. Suppose you are using
the RSelect algorithm to compute the median element of a length-n
array. What is the probability that the first recursive call is passed a
subarray of length at most ↵ · n?

a) 1� ↵

b) ↵� 1

2

c) 1� ↵
2

d) 2↵� 1

Problem 6.2 Let ↵ be some constant, independent of the input array
length n, strictly between 1

2

and 1. Assume that every recursive call
to RSelect makes progress as in the preceding problem—so whenever
a recursive call is given an array of length k, its recursive call is passed
a subarray with length at most ↵k. What is the maximum number
of successive recursive calls that can occur before triggering the base
case?

a) � lnn
ln↵

b) � lnn
↵

c) � lnn
ln(1�↵)

d) � lnn

ln(

1

2

+↵)

Challenge Problems

Problem 6.3 In this problem, the input is an unsorted array of n
distinct elements x

1

, x
2

, . . . , xn with positive weights w
1

, w
2

, . . . , wn.
Let W denote the sum

Pn
i=1

wi of the weights. Define a weighted

median as an element xk for which the total weight of all elements with
value less than xk (i.e.,

P
xi<xk

wi) is at most W/2, and also the total
weight of elements with value larger than xk (i.e.,

P
xi>xk

wi) is at
most W/2. Observe that there are at most two weighted medians. Give
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a deterministic linear-time algorithm for computing all the weighted
medians in the input array. [Hint: Use DSelect as a subroutine.]

Problem 6.4 Suppose we modify the DSelect algorithm by breaking
the elements into groups of 7, rather than groups of 5. (Use the median-
of-medians as the pivot element, as before.) Does this modified
algorithm also run in O(n) time? What if we use groups of 3?16

Programming Problems

Problem 6.5 Implement in your favorite programming language the
RSelect algorithm from Section 6.1. Your implementation should
operate in place, using an in-place implementation of Partition

(which you might have implemented for Problem 5.6) and passing
indices through the recursion to keep track of the still-relevant portion
of the original input array. (See www.algorithmsilluminated.org

for test cases and challenge data sets.)

16For a deep dive on this question, see the paper “Select with Groups of 3 or 4
Takes Linear Time,” by Ke Chen and Adrian Dumitrescu (arXiv:1409.3600, 2014).

www.algorithmsilluminated.org


Appendix A

Quick Review of Proofs By Induction

Proofs by induction come up all the time in computer science. For
example, in Section 5.1, we use a proof by induction to argue that
the QuickSort algorithm always correctly sorts its input array. In
Section 6.4, we use induction to prove that the DSelect algorithm
runs in linear time.

Proofs by induction can be unintuitive, at least at first sight. The
good news is that they follow a fairly rigid template, and become
nearly automatic with a little practice. This appendix explains the
template and provides two short examples. If you’ve never seen
proofs by induction before, you should supplement this appendix with
another source that has many more examples.1

A.1 A Template for Proofs by Induction

For our purposes, a proof by induction establishes an assertion P (n)
for every positive integer n. For example, when proving the correctness
of the QuickSort algorithm in Section 5.1, we can define P (n) as the
statement: “for every input array of length n, QuickSort correctly
sorts it.” When analyzing the running time of the DSelect algorithm
in Section 6.4, we can define P (n) as “for every input array of length n,
DSelect halts after performing at most 100n operations.” Induction
allows us to prove a property of an algorithm, like correctness or
a running time bound, by establishing the property for each input
length in turn.

Analogous to a recursive algorithm, a proof by induction has two
parts: a base case and an inductive step. The base case proves
that P (n) is true for all sufficiently small values of n (typically just

1For instance, see Chapter 2 of the freely available lecture notes by Eric Lehman
and Tom Leighton (http://www.boazbarak.org/cs121/LehmanLeighton.pdf).
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n = 1). In the inductive step, you assume that P (1), . . . , P (n � 1)

are all true and prove that P (n) is consequently true as well.

Base case: Prove directly that P (1) is true.

Inductive step: Prove that, for every integer n � 2,

if P (1), P (2), . . . , P (n� 1) are true| {z }
inductive hypothesis

then P (n) is true.

In the inductive step, you get to assume that P (k) has already been es-
tablished for all values of k smaller than n—this is called the inductive

hypothesis—and should use this assumption to establish P (n).
If you prove both the base case and the inductive step, then P (n)

is indeed true for every positive integer n. P (1) is true by the base
case, and applying the inductive step over and over again shows that
P (n) is true for arbitrarily large values of n.

A.2 Example: A Closed-Form Formula

We can use induction to derive a closed-form formula for the sum of
the first n positive integers. Let P (n) denote the assertion that

1 + 2 + 3 + · · ·+ n =

(n+ 1)n

2

.

When n = 1, the left-hand side is 1 and the right-hand side is 2·1
2

= 1.
This shows that P (1) is true and completes the base case. For the
inductive step, we pick an arbitrary integer n � 2 and assume that
P (1), P (2), . . . , P (n� 1) are all true. In particular, we can assume
P (n� 1), which is the assertion

1 + 2 + 3 + · · ·+ (n� 1) =

n(n� 1)

2

.

Now we can add n to both sides to derive

1 + 2 + 3 + · · ·+ n =

n(n� 1)

2

+ n =

n2 � n+ 2n

2

=

(n+ 1)n

2

,

which proves P (n). Since we’ve established both the base case and the
inductive step, we can conclude that P (n) is true for every positive
integer n.
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A.3 Example: The Size of a Complete Binary Tree

Next, let’s count the number of nodes in a complete binary tree with n
levels. In Figure A.1, we see that with n = 4 levels, the number of
nodes is 15 = 2

4 � 1. Could this pattern be true in general?

Figure A.1: A complete binary tree with 4 levels and 2

4 � 1 = 15 nodes.

For each positive integer n, let P (n) be the statement “a complete
binary tree with n levels has 2

n � 1 nodes.” For the base case, note
that a complete binary tree with 1 level has exactly one node. Since
2

1 � 1 = 1, this proves that P (1) is true. For the inductive step, fix a
positive integer n � 2 and assume that P (1),. . . ,P (n� 1) are all true.
The nodes of the complete binary tree with n levels can be divided
into three groups: (i) the root; (ii) the nodes in the left subtree of
the root; and (iii) the nodes in the right subtree of the root. The left
and right subtrees of the root are themselves complete binary trees,
each with n� 1 levels. Since we are assuming that P (n� 1) is true,
there are exactly 2

n�1 � 1 nodes in each of the left and right subtrees.
Adding up the nodes in the three groups, we get a total of

1|{z}
root

+ 2

n�1 � 1| {z }
left subtree

+ 2

n�1 � 1| {z }
right subtree

= 2

n � 1

nodes in the tree. This proves the statement P (n) and, since n � 2

was arbitrary, completes the inductive step. We conclude that P (n)
is true for every positive integer n.



Appendix B

Quick Review of Discrete Probability

This appendix reviews the concepts from discrete probability that are
necessary for our analysis of randomized QuickSort (Theorem 5.1 and
Section 5.5): sample spaces, events, random variables, expectation,
and linearity of expectation. Section B.6 concludes with a load-
balancing example that ties all these concepts together. We will also
use these concepts in future parts of this book series, in the contexts
of data structures, graph algorithms, and local search algorithms. If
you’re seeing this material for the first time, you probably want to
supplement this appendix with a more thorough treatment.1 If you
have seen it before, don’t feel compelled to read this appendix from
front to back—dip in as needed wherever you need a refresher.

B.1 Sample Spaces

We’re interested in random processes, in which any number of different
things might happen. The sample space is the set ⌦ of all the different
things that could happen—the universe in which we’re going to assign
probabilities, take average values, and so on. For example, if our
random process is the throw of a six-sided die, then ⌦ = {1, 2, 3, 4, 5, 6}.
Happily, in the analysis of randomized algorithms, we can almost
always take ⌦ to be a finite set and work only with discrete probability,
which is much more elementary than general probability theory.

Each element i of a sample space ⌦ comes with a nonnegative
probability p(i), which can be thought of as the frequency with which
the outcome of the random process is i. For example, if a six-sided
die is fair, then p(i) is 1

6

for each i = 1, 2, 3, 4, 5, 6. In general, since ⌦

is supposed to be everything that could be possibly happen, the
1In addition to the Lehman-Leighton lecture notes mentioned in Appendix A,

there is a free Wikibook on discrete probability (https://en.wikibooks.org/
wiki/High_School_Mathematics_Extensions/Discrete_Probability).
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probabilities should sum to 1:
X

i2⌦
p(i) = 1.

A common special case is when every element of ⌦ is equally likely—
known as the uniform distribution—in which case p(i) = 1

|⌦| for every
i 2 ⌦.2 This may seem like a pretty abstract concept, so let’s introduce
two running examples. In the first example, the random process is a
throw of two standard (six-sided) dice. The sample space is the set of
36 different things that could happen:

⌦ = {(1, 1), (2, 1), (3, 1), . . . , (5, 6), (6, 6)}| {z }
36 ordered pairs

.

Assuming the dice are fair, each of these outcomes is equally likely:
p(i) = 1

36

for every i 2 ⌦.
The second example, more germane to algorithms, is the choice

of the pivot element in the outermost call to randomized QuickSort

(Section 5.4). Any element of the input array can be chosen as the
pivot, so

⌦ = {1, 2, 3, . . . , n}| {z }
possible positions of pivot element

,

where n is the length of the input array. By definition, in randomized
QuickSort each element is equally likely to be chosen as the pivot
element, and so p(i) = 1

n for every i 2 ⌦.

B.2 Events

An event is a subset S ✓ ⌦ of the sample space—a collection of
possible outcomes of a random process. The probability Pr[S] of an
event S is defined as you would expect, as the probability that one of
the outcomes of S occurs:

Pr[S] =
X

i2S
p(i).

Let’s get some practice with this concept using our two running
examples.

2For a finite set S, |S| denotes the number of elements in S.
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Quiz B.1

Let S denote the set of outcomes for which the sum of
two standard dice equals 7. What is the probability of the
event S?3

a) 1

36

b) 1

12

c) 1

6

d) 1

2

(See Section B.2.1 for the solution and discussion.)

The second quiz concerns the choice of the random pivot element
in the outermost call to QuickSort. We say that a pivot element is
an “approximate median” if at least 25% of the array elements are
less than the pivot, and at least 25% of the elements are greater than
the pivot.

Quiz B.2

Let S denote the event that the chosen pivot element in
the outermost call to QuickSort is an approximate median.
What is the probability of the event S?

a) 1

n , where n is the length of the array

b) 1

4

c) 1

2

d) 3

4

(See Section B.2.2 for the solution and discussion.)

3A useful fact to know when playing the dice game craps. . .
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B.2.1 Solution to Quiz B.1

Correct answer: (c). There are six outcomes in which the sum of
the two dice equals 7:

S = {(6, 1), (5, 2), (4, 3), (3, 4), (2, 5), (1, 6)}.

Since every outcome of ⌦ is equally likely, p(i) = 1

36

for every i 2 S
and so

Pr[S] = |S| · 1

36

=

6

36

=

1

6

.

B.2.2 Solution to Quiz B.2

Correct answer: (c). As a thought experiment, imagine dividing
the elements in the input array into four groups: the smallest n

4

elements, the next-smallest n
4

elements, the next-smallest n
4

elements,
and finally the largest n

4

elements. (As usual, we’re ignoring fractions
for simplicity.) Every element of the second and third groups is an
approximate median: all the n

4

elements from the first and last groups
are less than and greater than the pivot, respectively. Conversely, if
the algorithm picks a pivot element from either the first or the last
group, either the elements less than the pivot comprise only a strict
subset of the first group, or the elements greater than the pivot are
only a strict subset of the last group. In this case, the pivot element is
not an approximate median. Thus the event S corresponds to the n

2

elements in the second and third groups; since each element is equally
likely to be chosen as the pivot element,

Pr[S] = |S| · 1

n =

n
2

· 1

n =

1

2

.

B.3 Random Variables

A random variable is a numerical measurement of the outcome of a
random process. Formally, it is a real-valued function X : ⌦ ! R
defined on the sample space ⌦—the input i 2 ⌦ to X is an outcome
of the random process, and the output X(i) is a numerical value.

In our first running example, we can define a random variable
that is the sum of the two dice. This random variable maps outcomes
(pairs (i, j) with i, j 2 {1, 2, . . . , 6}) to real numbers according to the
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map (i, j) 7! i+ j. In our second running example, we can define a
random variable that is the length of the subarray passed to the first
recursive call to QuickSort. This random variable maps each outcome
(that is, each choice of a pivot element) to an integer between 0 (if the
chosen pivot is the minimum element) and n�1, where n is the length
of the input array (if the chosen pivot is the maximum element).

Section 5.5 studies the random variable X that is the running
time of randomized QuickSort on a given input array. Here, the
state space ⌦ is all possible sequences of pivot elements the algorithm
might choose, and X(i) is the number of operations performed by the
algorithm for a particular sequence i 2 ⌦ of pivot choices.4

B.4 Expectation

The expectation or expected value E[X] of a random variable X is
its average value over everything that could happen, weighted appro-
priately with the probabilities of different outcomes. Intuitively, if a
random process is repeated over and over again, E[X] is the long-run
average value of the random variable X. For example, if X is the
value of a fair six-sided die, then E[X] = 3.5.

In math, if X : ⌦ ! R is a random variable and p(i) denotes the
probability of outcome i 2 ⌦,

E[X] =

X

i2⌦
p(i) ·X(i). (B.1)

The next two quizzes ask you to compute the expectation of the two
random variables defined in the preceding section.

Quiz B.3

What is the expectation of the sum of two dice?

a) 6.5

b) 7

c) 7.5

4Since the only randomness in randomized QuickSort is in the choice of pivot
elements, once we fix these choices, QuickSort has some well-defined running
time.
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d) 8

(See Section B.4.1 for the solution and discussion.)

Returning to randomized QuickSort, how big, on average, is the
length of the subarray passed to the first recursive call? Equivalently,
how many elements are less than a randomly chosen pivot on average?

Quiz B.4

Which of the following is closest to the expectation of the
size of the subarray passed to the first recursive call in
QuickSort?

a) n
4

b) n
3

c) n
2

d) 3n
4

(See Section B.4.2 for the solution and discussion.)

B.4.1 Solution to Quiz B.3

Correct answer: (b). There are several ways to see why the expec-
tation is 7. The first way is to compute it by brute force, using the
defining equation (B.1). With 36 possible outcomes, this is doable
but tedious. A slicker way is to pair up the possible values of the sum
and use symmetry. The sum is equally likely to be 2 or 12, equally
likely to be 3 or 11, and so on. In each of these pairs the average
value is 7, so this is also the average value overall. The third and best
way is to use linearity of expectation, as covered in the next section.

B.4.2 Solution to Quiz B.4

Correct answer: (c). The exact value of the expectation is (n�1)/2.
There is a 1/n chance that the subarray has length 0 (if the pivot
element is the smallest element), a 1/n chance that it has length 1
(if the pivot element is the second-smallest element), and so on, up
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to a 1/n chance that it has length n� 1 (if the pivot element is the
largest element). By the definition (B.1) of expectation, and recalling
the identity

Pn�1
i=1

i = n(n�1)
2

,5 we have

E[X] =

1

n
· 0 + 1

n
· 1 + · · ·+ 1

n
· (n� 1) =

1

n
· (1 + 2 + · · ·+ (n� 1))| {z }

=

n(n�1)
2

=

n� 1

2

.

B.5 Linearity of Expectation

B.5.1 Formal Statement and Use Cases

Our final concept is a mathematical property, not a definition. Lin-

earity of expectation is the property that the expectation of a sum of
random variables is equal to the sum of their individual expectations.
It is incredibly useful for computing the expectation of a complex
random variable, like the running time of randomized QuickSort,
when the random variable can be expressed as a weighted sum of
simpler random variables.

Theorem B.1 (Linearity of Expectation) Let X
1

, . . . , Xn be

random variables defined on the same sample space ⌦, and let

a
1

, . . . , an be real numbers. Then

E

2

4
nX

j=1

aj ·Xj

3

5
=

nX

j=1

aj ·E[Xj ] . (B.2)

That is, you can take the sum and the expectation in either order
and get the same thing. The common use case is when

Pn
j=1

ajXj

is a complex random variable (like the running time of randomized
5One way to see that 1 + 2 + · · ·+ (n� 1) =

n(n�1)

2

is to use induction on n
(see Section A.2). For a sneakier proof, take two copies of the left-hand side and
pair up the “1” from the first copy with the “n� 1” from the second copy, the “2”
from the first copy with the “n� 2” from the second copy, and so on. This gives
n� 1 pairs with value n each. Since double the sum equals n(n� 1), the original
sum equals n(n�1)

2

.
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QuickSort) and the Xj ’s are simple random variables (like 0-1 random
variables).6

For example, let X be the sum of two standard dice. We can write
X as the sum of two random variables X

1

and X
2

, which are the values
of the first and second die, respectively. The expectation of X

1

or X
2

is
easy to compute using the definition (B.1) as 1

6

(1+2+3+4+5+6) = 3.5.
Linearity of expectation then gives

E[X] = E[X
1

] +E[X
2

] = 3.5 + 3.5 = 7,

replicating our answer in Section B.4.1 with less work.
An extremely important point is that linearity of expectation holds

even for random variables that are not independent. We won’t need
to formally define independence in this book, but you probably have
good intuition about what it means: knowing something about the
value of one random variable doesn’t tell you anything new about
the values of the others. For example, the random variables X

1

and
X

2

above are independent because the two dice are assumed to be
thrown independently.

For an example of dependent random variables, consider a pair
of magnetically linked dice, where the second die always comes up
with value one larger than that of the first (or 1, if the first die comes
up 6). Now, knowing the value of either die tells you exactly what
the value of the other die is. But we can still write the sum X of the
two dice as X

1

+X
2

, where X
1

and X
2

are the values of the two dice.
It is still the case that X

1

, viewed in isolation, is equally likely to be
each of {1, 2, 3, 4, 5, 6}, and the same is true for X

2

. Thus we still
have E[X

1

] = E[X
2

] = 3.5 and by linearity of expectation we still
have E[X] = 7.

Why should you be surprised? Superficially, the identity in (B.2)
might look like a tautology. But if we switch from sums to products

of random variables, the analog of Theorem B.1 no longer holds for
dependent random variables.7 So linearity of expectation really is a
special property about sums of random variables.

6In the Stanford version of this course, over ten weeks of blackboard lectures,
I draw a box around exactly one mathematical identity—linearity of expectation.

7The magnetically linked dice provide one counterexample. For an even
simpler counterexample, suppose X

1

and X
2

are either equal to 0 and 1, or to
1 and 0, with each outcome having 50% probability. Then E[X

1

·X
2

] = 0 while
E[X

1

] ·E[X
2

] =

1

4

.
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B.5.2 The Proof

The utility of linearity of expectation is matched only by the simplicity
of its proof.8

Proof of Theorem B.1: Starting with the right-hand side of (B.2) and
expanding using the definition (B.1) of expectation gives

nX

j=1

aj ·E[Xj ] =

nX

j=1

aj ·
 
X

i2⌦
p(i) ·Xj(i)

!

=

nX

j=1

 
X

i2⌦
aj · p(i) ·Xj(i)

!
.

Reversing the order of summation, we have

nX

j=1

 
X

i2⌦
aj · p(i) ·Xj(i)

!
=

X

i2⌦

0

@
nX

j=1

aj · p(i) ·Xj(i)

1

A . (B.3)

Since p(i) is independent of j = 1, 2, . . . , n, we can pull it out of the
inner sum:

X

i2⌦

0

@
nX

j=1

aj · p(i) ·Xj(i)

1

A
=

X

i2⌦
p(i) ·

0

@
nX

j=1

aj ·Xj(i)

1

A .

Finally, using again the definition (B.1) of expectation, we obtain the
left-hand side of (B.2):

X

i2⌦
p(i) ·

0

@
nX

j=1

aj ·Xj(i)

1

A
= E

2

4
nX

j=1

aj ·Xj

3

5 .

QE D

That’s it! Linearity of expectation is really just a reversal of a
double summation.

Speaking of double summations, equation (B.3) might seem opaque
if you’re rusty on these kinds of algebraic manipulations. For a down-
to-earth way to think about it, arrange the ajp(i)Xj(i)’s in a grid,

8The first time you read this proof, you should assume for simplicity that
a
1

= a
2

= · · · = an = 1.
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with rows indexed by i 2 ⌦, columns indexed by j 2 {1, 2, . . . , n},
and the number aj · p(i) · Xj(i) in the cell in the ith row and jth
column:

"
i
#

8
>>>>>>>><

>>>>>>>>:

. . .
. . .

... . .
.

. .
.

. . .
. . .

... . .
.

. .
.

· · · · · · ajp(i)Xj(i) · · · · · ·

. .
.

. .
. ...

. . .
. . .

. .
.

. .
. ...

. . .
. . .

| {z }
 �j�!

The left-hand side of (B.3) first sums up each of the columns, and
then adds up these column sums. The right-hand side first sums up
the rows and then sums up these row sums. Either way, you get the
sum of all the entries in the grid.

B.6 Example: Load Balancing

To tie together all the preceding concepts, let’s study an example
about load balancing. Suppose we need an algorithm that assigns
processes to servers, but we’re feeling super-lazy. One easy solution
is to just assign each process to a random server, with each server
equally likely. How well does this work?9

For concreteness, assume there are n processes and also n servers,
where n is some positive integer. First, let’s be clear on the sample
space: the set ⌦ is all nn possible ways of assigning the processes
to the servers, with n choices for each of the n processes. By the
definition of our lazy algorithm, each of these nn outcomes is equally
likely.

Now that we have a sample space, we’re in a position to define
random variables. One interesting quantity is server load, so let’s
define Y as the random variable equal to the number of processes
that get assigned to the first server. (The story is the same for all the
servers by symmetry, so we may as well focus on the first one.) What
is the expectation of Y ?

In principle, we can compute E[Y ] by brute-force evaluation of
the defining equation (B.1), but this is impractical for all but the

9This example is also relevant to our discussion of hashing in Part 2.
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smallest values of n. Fortunately, since Y can be expressed as a sum
of simple random variables, linearity of expectation can save the day.
Formally, for j = 1, 2, . . . , n, define

Xj =

⇢
1 if the jth process gets assigned to the first server
0 otherwise.

Random variables that only take on the values 0 and 1 are often called
indicator random variables because they indicate whether some event
occurs (like the event that process j gets assigned to the first server).

From the definitions, we can express Y as the sum of the Xj ’s:

Y =

nX

j=1

Xj .

By linearity of expectation (Theorem B.1), the expectation of Y is
then the sum of the expectations of the Xj ’s:

E[Y ] = E

2

4
nX

j=1

Xj

3

5
=

nX

j=1

E[Xj ] .

Because each random variable Xj is so simple, it’s easy to compute
its expectation directly:

E[Xj ] = 0 ·Pr[Xj = 0]

| {z }
=0

+1 ·Pr[Xj = 1] = Pr[Xj = 1] .

Since the jth process is equally likely to be assigned to each of the n
servers, Pr[Xj = 1] =

1

n . Putting it all together, we have

E[Y ] =

nX

j=1

E[Xj ] = n · 1
n
= 1.

So if we care only about average server loads, our super-lazy algo-
rithm works just fine! This example and randomized QuickSort are
characteristic of the role that randomization plays in algorithm design:
we can often get away with really simple heuristics if we make random
choices along the way.
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Quiz B.5

Consider a group of k people. Assume that each person’s
birthday is drawn uniformly at random from the 365 pos-
sibilities. (And ignore leap years.) What is the smallest
value of k such that the expected number of pairs of distinct
people with the same birthday is at least one? [Hint: Define
an indicator random variable for each pair of people. Use
linearity of expectation.]

a) 20

b) 23

c) 27

d) 28

e) 366

(See below for the solution and discussion.)

Correct answer: (d). Fix a positive integer k, and denote the set
of people by {1, 2, . . . , k}. Let Y denote the number of pairs of people
with the same birthday. As suggested by the hint, define one random
variable Xij for every choice i, j 2 {1, 2, . . . , k} of people with i < j.
Define Xij as 1 if i and j have the same birthday and 0 otherwise.
Thus, the Xij ’s are indicator random variables, and

Y =

k�1X

i=1

kX

j=i+1

Xij .

By linearity of expectation (Theorem B.1),

E[Y ] = E

2

4
k�1X

i=1

kX

j=i+1

Xij

3

5
=

k�1X

i=1

kX

j=i+1

E[Xij ] . (B.4)

Since Xij is an indicator random variable, E[Xij ] = Pr[Xij = 1].
There are (365)

2 possibilities for the birthdays of the people i and j,
and in 365 of these possibilities i and j have the same birthday.



198 Quick Review of Discrete Probability

Assuming that all birthday combinations are equally likely,

Pr[Xij = 1] =

365

(365)

2

=

1

365

.

Plugging this in to (B.4), we have

E[Y ] =

k�1X

i=1

kX

j=i+1

1

365

=

1

365

·
✓
k

2

◆
=

k(k � 1)

730

,

where
�
k
2

�
denotes the binomial coefficient “k choose 2” (as in the

solution to Quiz 3.1). The smallest value of k for which k(k�1)/730 �
1 is 28.
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n
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dxe (ceiling), 175
n! (factorial), 149
bxc (floor), 90
|S | (set size), 187
= vs. :=, 9

ACM, 53
Adleman, Leonard, 172
algorithm, 1

constant-time, 38
fast, 30
linear-time, 31
mind-blowing, 60
quadratic-time, 38

among friends, 14, 19, 94
applications, 2
asymptotic analysis, 29, 57
asymptotic notation, 36

as a sweet spot, 36
big-O notation, see big-O

notation
big-O vs. big-theta nota-

tion, 52
big-omega notation, 50
big-theta notation, 51
history, 53
in seven words, 37

little-o notation, 52
average-case analysis, 27

base case (induction), 183
base case (recursion), 8
big-O notation, 45–47

as a game, 47
English definition, 45
high-level idea, 38
mathematical definition,

45
pictorial definition, 45

big-omega notation, 50
big-picture analysis, 27
big-theta notation, 51
binary search, 98
birthday paradox, 196
bit, 147
blazingly fast, viii, 31, 85, 117,

119, 127
Blum, Manuel, 172
brute-force search

for closest pair, 78
for counting inversions, 63

BubbleSort, 14, 146
BucketSort, 146

can we do better?, 6
cf., 108
Chen, Ke, 182
ChoosePivot
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median-of-three implemen-
tation, 153

naive implementation, 128,
130

overkill implementation,
129, 131

randomized implementa-
tion, 132

closest pair
brute-force search, 78
correctness, 86–88
left vs. right vs. split, 80
one-dimensional case, 78
problem definition, 78
pseudocode, 80, 82, 83
running time, 81

cocktail party, ix
coin flipping, 165
collaborative filtering, 62–63
computational geometry, 77
computational lens, 2
constant, 47, 96

reverse engineering, 49,
179

constant factors, 28, 37, 38
Cormen, Thomas H., 146
corollary, 19
counting inversions

correctness, 64, 69
implementation, 91
problem definition, 61
pseudocode, 64, 65
running time, 69
split inversions, 68

CountingSort, 147
stable implementation, 148

Coursera, x

Dasgupta, Sanjoy, 95

decomposition blueprint, 137,
164

design patterns, ix
discussion forum, xi
divide-and-conquer, 11, 12, 60–

61
for closest pair, 80
for counting inversions, 63
for matrix multiplication,

73
for sorting, 61
proofs of correctness, 121

double summation, 194
DSelect

30-70 Lemma, 174–176
as a knockout tournament,

169
does not run in place, 170
heuristic analysis, 178
history, 171
pseudocode, 169
running time, 171
running time analysis, 172–

179
vs. RSelect, 168, 171
with groups of 3 or 7, 182

Dumitrescu, Adrian, 182

Euclidean distance, 78
event, 187
exhaustive search, see brute-

force search
expectation, 190

linearity of, 192
expected value, 190

fast algorithm, 30
Federer, Roger, 172
Floyd, Robert W., 172
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for-free primitive, viii, 31, 79,
133

Gauss’s trick, 10, 75
Gauss, Carl Friedrich, 10
geometric series, 110–111, 167
good vs. evil, 107
Google, 2
googol, 38
greatest hits, ix
guess-and-check method, 178
guiding principles, 26–31

hall of fame, 117
Hoare, Tony, 120
Hopcroft, John E., 172

i.e., 63
in-place algorithm, 117
induction, see proofs, by induc-

tion
inductive hypothesis, 184
inductive step, 183
InsertionSort, 14, 28, 146
integer multiplication, 3–11, 92–

94
grade-school algorithm, 4
Karatsuba’s algorithm, 11
simple recursive algorithm,

9
interview questions, ix
invariant, 122
inversion, 61

left vs. right vs. split, 63
IQ points, 3

Karatsuba, 11
implementation, 35
recurrence, 93
running time, 99

Karatsuba multiplication, 6–11
in Python, 100

Karatsuba, Anatoly, 6
key-value pair, 14
Kleinberg, Jon, 60
Knuth, Donald E., 53

Lehman, Eric, x, 183
Leighton, Tom, x, 183
Leiserson, Charles E., 146
lemma, 19
linear-time algorithm, 31
linearity of expectation, 192

doesn’t need independence,
141, 193

little-o notation, 52
lnx, 97
logarithms, 20, 97
lower-order terms, 37

mangosteen, 146
mantra, 6
master method

a, b, and d, 95, 103
applied to RecIntMult, 99
applied to Karatsuba, 99
applied to MergeSort, 98
applied to Strassen, 100,

102
applied to binary search,

98, 101
big-theta vs. big-O, 97
does not apply, 134, 138,

178
formal statement, 96
meaning of the three cases,

107–109
more general versions, 96
proof, 104–112
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master theorem, see master
method

mathematical background, x,
182–196

matrix multiplication
definition, 71
exponent, 103
iterative algorithm, 72
simple recursive algorithm,

74
Strassen’s algorithm, 75–

77
the 2⇥ 2 case, 71

median, 129, 156
approximate, 134, 165, 188
vs. mean, 156
weighted, 181

median-of-medians, see

DSelect

Merge, 17–18
for counting inversions, 66
running time, 18–19

MergeSort, 12–26
analysis, 21–24
as a divide-and-conquer al-

gorithm, 61
implementation, 91
is comparison-based, 146
motivation, 12
pseudocode, 16
recurrence, 94
running time, 20, 98

QuickSort

does not run in place, 117
Moore’s Law, 2, 29

n log n vs. n2, 21, 29
Nobel Prize, see Turing Award

O(f(n)), see big-O notation
o(f(n)), see little-o notation
⌦(f(n)), see big-omega nota-

tion
order statistic, 139, 155

Papadimitriou, Christos, 95
Partition, 125

proof of correctness, 126
runs in place, 127

pivot element, 118
Pratt, Vaughan, 172
prime number, 132
primitive operation, 4, 18, 24,

28
probability, 186

of an event, 187
problems vs. solutions, 3
programming, x, 11
programming problems, xi
proofs, x

by contradiction, 49
by induction, 65, 121, 179,

183–184
of correctness, 121

proposition, 19
pseudocode, 11, 16
Pyrrhic victory, 176
Pythagorean theorem, 88

QE D (q.e.d.), 24
QuickSort

best-case scenario, 129
handling ties, 118
high-level description, 120
history, 120
implementation, 153
is comparison-based, 146
is not stable, 148
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median-of-three, 153
partitioning around a

pivot, 118, 121–127
pivot element, 118
proof of correctness, 121
pseudocode, 127
random shuffle, 133
randomized, 132
running time, 133
running time (intuition),

134–135
running time (proof), 135–

145
runs in place, 117
worst-case scenario, 128

quizzes, xi

RadixSort, 147
random variable, 189

geometric, 166
independent, 193
indicator, 196

randomized algorithms, 132,
167, 196

rate of growth, see asymptotic
analysis

RecIntMult, 9
recurrence, 93
running time, 99

RecMatMult, 74
recommendation system, 62–63
recurrence, 93

standard, 95
recursion, 8
recursion tree, 21, 104
reduction, 157
Rivest, Ronald L., 146, 172
rookie mistake, 109
RSelect

best-case scenario, 161
expected running time, 161
implementation, 182
pseudocode, 159
running time analysis, 163–

167
runs in place, 162
worst-case scenario, 160

RSP (rate of subproblem pro-
liferation), see master
method, meaning of
the three cases

running time, 18, 24, 38
RWS (rate of work shrinkage),

see master method,
meaning of the three
cases

sample space, 186
Sedgewick, Robert, 118
selection

DSelect, see DSelect

RSelect, see RSelect

problem definition, 155
reduces to sorting, 156

SelectionSort, 14, 146
Shamir, Adi, 172
SIGACT, 53
solutions, xi
sorting

MergeSort, see MergeSort

MergeSort vs. QuickSort,
117

QuickSort, see QuickSort

associated data, 14
by key, 14
comparison-based, 146
in place, 117
in Unix, 146
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lower bound, 146, 148
non-comparison-based,

146–148
problem definition, 13
randomized, 132, 148
simple algorithms, 14–15
stable, 148
with duplicates, 14
with folk dancers, 125

Stanford Lagunita, x
starred sections, x, 78
Stein, Clifford, 146
Strassen, 75–77

running time, 100, 102
Strassen, Volker, 77
Sudoku vs. KenKen, 146
superteam, 171

Tardos, Éva, 60
Tarjan, Robert E., 172
test cases, xi
theorem, 19
⇥(f(n)), see big-theta notation
theta notation, see big-theta

notation
tug-of-war, 107
Turing Award, 120, 172

uniform distribution, 187
upshot, viii

Vazirani, Umesh, 95
videos, xi
von Neumann, John, 12

Wayne, Kevin, 118
why bother?, viii, 1
work, see running time
worst-case analysis, 26

YouTube, xi
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