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Preface

→Design and analysis of algorithm is a difficult subject for
students as well as faculty members, especially for those who do
not have sound knowledge of mathematics. Students require a
simple, perfect explanation of the topic and algorithms. The
book covers all mathematical aspects related to the design of
algorithm. The text of the book is quite easy; every chapter
contains practice question, which is sufficient to clear the
concept of the chapter. The book, which we are presenting, is
based on our lectures on the subject, in which we explain almost
all the topics in a simple systematic manner but comprehensive.

This book contains all necessary mathematics background
and clears the concepts of the students.

The organizations of chapters are as follows:
Chapter 1: Basic knowledge of mathematics, relations,

recurrence relation and solution techniques, function and
growth of functions.

Chapter 2: Different sorting techniques and their analysis.
Chapter 3: Greedy approach, dynamic programming,

branch-and-bound techniques, backtracking and problems,
amortized analysis, and order statics.

Chapter 4: Graph algorithms, breadth-first search, depth-
first search, spanning tree, flow-maximization algorithms, and
shortest path algorithms.

Chapter 5: Binary search tree, red black tree, binomial heap,
B-tree, and Fibonacci heap.

Chapter 6: Approximation algorithms, sorting networks,
matrix operations, fast Fourier transformation, number-theoretic



algorithm, computational geometry randomized algorithms,
string matching, NP-hard, NP-complete, and Cook’s theorem.



Chapter 1  Introduction

1.1  Algorithm

An algorithm is a finite sequence of computational steps that produces the desired output when
applied on a certain problem with necessary input values. In algorithm, every step must be clear,
simple, definite, and unambiguous. →Figure 1.1 shows diagrammatic representation of algorithm.

Figure 1.1:  Algorithm.

1.2  Another definition

An algorithm is defined as an ultimate group of instructions to achieve a given set of goals to
fulfill the given criteria.

1. Input: Zero or more quantities must be passed externally as input to algorithm.
2. Output: Minimum one quantity must be formed as an output.
3. Finiteness: An algorithm must be well defined in a finite set of steps.
4. Definiteness: Each and every instruction of a given algorithm must be precise and

unambiguous.
5. Effectiveness: Every statement/instruction specifically contributes something in solution,

defined by an algorithm.

Example 1.1: We will discuss an example of a sorting algorithm.

Input: Set of elements (sequence)

{a1, a2 … … an}

where elements are in random fashion.

Output: Elements in ascending order, that is:

ai ≤ ai + 1, for i = 1 to n − 1.

1.3  Analyzing the performance of algorithms

Analysis of the algorithms allows us to take decisions about the value of one algorithm over
another. When an algorithm is executed in computer, it requires central processing unit (CPU, for
performing its operations) and memory (for storing program and data). There are two
parameters on which we can analyze the performance of an algorithm. These are time complexity



and space complexity. As compared to space analysis, the analysis of time requirements for an
algorithm is important, but whenever necessary, both the complexities are used.

The amount of memory required by a program to run to conclusion is known as space

complexity. Space is a kind of resource that is reusable, and we can easily increase the space
(memory) of the system. But time is a resource that is limited, not reusable, and nonpurchasable.

Time complexity completely relies on the size of the input. The sum of time of CPU needed by
the algorithm (program) to execute to conclusion is known as time complexity. It should be noted
that the same algorithm can take different time to run. There are three kinds of time complexity:
best, worst, and average case complexity of the algorithm. Best-case complexity is the minimum
amount of time taken by the algorithm for n-sized input. Average-case complexity is the time taken
by the algorithm having typical input data of size “n.” Worst-case complexity is the maximum
amount of time required by the algorithm for n-sized input. These terms will be discussed later in
this chapter.

1.4  Growth of the functions

The time complexity of an algorithm is generally a function of the input size “n.” Growth order of
a function indicates how fast a function grows with respect to change in input size “n.” Some
useful popular functions are:

Linear function: n

Square function: n2

Exponential function: 2n

Logarithmic function: log2n

→Figure 1.2 shows how various functions grow with the input size “n.” The graph is evidence for
how fast exponential function grows in comparison to other functions.



Figure 1.2:  Plotting function values.

1.5  Asymptotic notations

Whenever we learn about an algorithm, we are keen to depict them as per their preciseness and
efficiency. In other words, we are mainly concerned about the growth of the running time of an
algorithm (not in the exact running time). Scientifically, this phenomenon is called asymptotic

running time. There is an acute need to design a method to find out the rate of growth of
functions so that we can compare algorithms. Asymptotic notation is an innovative way to provide
the suitable methodology for categorizing functions according to the rate of growth of function.

1.5.1  The O (big oh) notation

Let f(n) and g(n) are two positive functions. A function f(n) is said to be in O(g(n)) signified by f(n) 
= O(g(n)). If f(n) is bounded above by some positive constant multiple of g(n) for large values of n,
i.e. there exists some positive constant c and some nonnegative whole number n0 (allude →Figure

1.3) with the end goal that

f (n) ≤ c g(n), when n ≥ n0



Figure 1.3:  Growth of the Function f(n) and g(n) for Big oh notation.

Example 1.2:

500 n + 1 = f(n) says

500 n + 1 ≤ 500 n + n {∀ n ≥ 1}

501 n ≤ 501 n2

500 n + 1 ≤ 501 n2, n ≥ 1

So c = 501, and n0 = 1

500 n + 1 ∈ O(n2)

1.5.2  The Ω notation

Let f(n) and g(n) are two positive functions. The function f(n) is said to be in Ω(g(n)) (Omega of
g(n)) meant by f(n) = Ω(g(n)); if function f(n) is lower bounded by some positive multiple of g(n)
for some large value of n, i.e. there exist a positive constant c and some nonnegative whole
number n0 (allude →Figure 1.4), with the end goal that

f (n) ≥ c g(n), when n ≥ n0



Figure 1.4:  Growth of the Function f(n) and g(n) for Omega notation.

Example 1.3:

f(n) = (n3)

g(n) = (n2)

n3 ≥ n2 v n ≥ 0

n3 ≥ 1.n2, where n0 ≥ 0

Hence, c = 1, n0 = 0, n3 ∈ Ω(n2)

1.5.3  The θ notation

Let f(n) and g(n) are two positive functions. A function f(n) is said to be in θ(g(n)) (Theta of g(n)),
which means f(n) = θ(g(n)). The function f(n) is limited above and below by some positive constant
multiple of g(n) for large value of n, i.e. there exist positive constants c1 and c2 and some

nonnegative whole number n0 (allude →Figure 1.5), with the end goal that

c1 g(n) ≤ f(n) ≤ c2g(n), when n ≥ no



Figure 1.5:  Growth of the Function f(n) and g(n) for Theta notation.

Example 1.4:

f(m) = 1
2 m(m − 1)

For upper bound:

1
2 m(m − 1) = m2

2 − m
2 ≤ m2

2 , where m ≥ 1

For lower bound:

So, we have

This implies that

⇒ 1
2 m(m − 1) ∈ θ(m2)

1
2 m(m − 1) = m2

2 − m
2 ≥ m2

2  −  m
2 . m

2 ,     where m ≥ 2

⇒ 1
2 m(m − 1) ≥ 1

4 m2

1.m
4

2
≤ 1

2 m(m − 1) ≤ 1
2 . m2, where c1 = 1

2 c2 = 1
4

where m ≥ 2



Theorem 1.1:

If f1(m) = O(g1(m))and f2(m) = O(g2(m)), then f1(m) +  f2(m) = O(max{g1(m), g2(m)})

Proof:

Theorem 1.2:

Proof: Proof is left for you.

Use of limit for comparing growth order of function
Let f(n) and g(n) be two positive functions

lim
n→∞

f(n)
g(n)  = {zero, means that f(n) has lesser order growth than g(n)

= b, means that f(n) has identical order of growth as g(n)
= infinite, means that f(n) has better order of growth than g(n)

Compare the order of growth of log2m and √m

Little o (oh) and little ω (omega) notation

f1(m) = O(g1(m))

⇒ f1(m) ≤ c1g1(m), wherem ≥ m1

and

f2(m) = O(g2(m))

⇒ f2(m) ≤ c2g2(m), where m3m2

takingc3 =max (c1, c2)

andm0 =max (m1, m2)

⇒ f1(m) + f2(m) ≤ c1g1(m)+c2g2(m)

≤ c3g1(m)+c3g2(m), wherem ≥ m0

//m ≥ m0 is common range where both inequalities are valid.

≤ c3[g1(m)+g2(m)]{condition(a1, b1), (a2, b2)

a1 ≤ b1anda2 ≤ b2

a1 + a2 ≤ 2max(b1, b2)}

⇒ f1(m) + f2(m) ≤ c32{max(g1(m), g2(m)}, wherem ≥ m0

f1(m) + f2(m) = O(max{g1(m), g2(m)})

If t1(m) ∈ 0 g1(m) and t2(m) ∈ 0 g2(m)

Then{t1(m). t2(m)} ∈ 0{(g1(m). g2(m)}

limm→∞ {log2m/ √m} =limm→∞ { 1
m log2 e/ 1

2√m

=limm→∞
2√m

mlog2e = 0

⇒ log2 m has lesser order of growth than √m



Big oh (O) is upper bound on complexity. It may or may not be asymptotically tight; the bound

2m2 ∈O(m2) is asymptotically tight but 2m ∈O(m2) is not, then we use o (little oh) notation to
indicate an upper bound that is not asymptotically tight

o(g (m)) = {f(m): for some positive constant c > 0, ∃ a value m0 > 0

So 0 ≤ f (m) < cg(m) ∀m ≥ m0

ω Notation: For lower bound, we use ω notation that is not asymptotically tight
ω(g(m)) = {f(m): for any c > 0, ∃ a constant m0 s.t.

0 ≤ cg (m) < f(m) ∀m ≥ m0

m2/2 ∈ ω(m) but m2/2 ∉ ω(m2)

If lim
m→∞

t(m)
g(m) = ∞ that is, t(m) belongs to Omega of g(n).

Theorem 1.3: If F(x) = bmxm + bm–1xm–1 + ------------- + b1x + b0 where b0, b1, ------------- bn are real

numbers, then f(x) ∈ O(xm) if x > 1.

Proof: We know that |x + y| ≤ |x| + |y| ∀ x, y ∈ z

     F(x) = bmxm + bm–1xm–1 + ------------- + b1x + b0

    |F(x)| = |bmxm + bm–1xm–1 + ------------- + b1x + b0|

        ≤ |bm|xm + |bm–1 |xm–1 + ------------- + |b1 |x + |b0|

        ≤ xm{|bm| + |bm–1 |/xm + ------------- + |b0|/xm}

    |F(x)| ≤ xm(|bm| + |bm–1 | + ------------- + |b0|)

        ⇒ |F(x)| ≤ c xm for x > 1

        ⇒ F(x) ∈ O(xm)

Question: Give big O estimation for function f(x) = 3nlogn! + (n2 + 5)logn

Solution:

First, 3nlogn! ∵ logn! ∈ O(nlogn)

3n ∈ O(n)

 ⇒3nlogn! ∈ O(n2logn)

Again (n2 + 5)logn, n2 + 5 ≤ 3 n2 where n ≥ 2

n2 + 5 ∈O(n2)

logn = O(log n)

 ⇒(n2 + 5)logn ∈ O(n2logn)

 ⇒And so, 3nlogn! + (n2 + 5)logn ∈ O(n2logn)

1.6  Recurrence relation



(1.1)

Consider a sequence S = {s0, s1, s2 … … … … .up to infinite}, a recurrence relation for S is an equation in

which the general term sn can be defined in terms of its previous terms s0, s1 … sn–1. In

Mathematics, a recurrence relation is a condition that recursively characterizes a succession. Each
term of the grouping is characterized as a component of the former terms.

Example 1.5:

(a) sn–csn–1 + dsn–2 = 3.2n (in homogenous linear recurrence relation with constant

coefficient),
(b) sn = c a(n/d) + f(n) (recurrence relation in divide and conquer (DAC) form),

(c) sn
2–c sn–1 + d sn–2 = 3.2n (nonlinear relation),

(d) Fn = Fn–1 + Fn–2 (Fibonacci relation).Solving a recurrence relation means to identify

the sequence for which the recurrence relation exists.

1.6.1  Linear recurrence relation

A recurrence relation in form

an + b1an−1 + b2an−2 + − − − − − − − + bkan−k = f(n), n ≥ k

where b1, b2, … …bk are all constants and f(n) is some function of n, known as linear recurrence

relation with constant coefficient. If f(n) = 0, then the relation is identified as homogenous
recurrence relation, otherwise nonhomogeneous recurrences relation. The degree of recurrence
relation (1.1) is k, an is (n + 1)th term of the sequence.

1.6.2  Solution of homogeneous recurrence relation

(a) Characteristic equation method
The characteristic equation method is developed from the generating function method. For

sequence {an} 0
∞

, the generating function is A(x), then we have

A(x)  =
n=∞

∑
n=0

anxn

Further, for a given recurrence relation, we can express A(x) as
A(x) = N(x)/D(x).
This D(x) is an important expression, for recurrence relation
an + b1an−1 + b2an−2 + ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ + bkan−k = 0 

D(x) will be (1 + b1x+b2x2 + ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ +  bkxk)

Then characteristic polynomial will be

C(t)  = tk. {D(1/t)}

The characteristic equation will be C (t) = 0.
That is,

tk + b1 tk–1 + b2 tk–2 + … … .. + bk = 0

There two cases will arise:



(1.2)

(1) When the roots are all distinct

Let the roots be α1, α2, α3, … .., αk, then solution of recurrence relation will be

an = A1α1
n+A2α2

n+A3α3
n + ....... + Anαk

n

(2) When the roots are not distinct

Let the roots be α1,α2,α3, . . . . . . . . . . . ,αn  with multiplicity
m1, m2, . . . . . . . . . . mi, . . . . , mn ,  m1 + m2 +. . . . . . . +mn = k.
Then the solution

an =. . . . . . . +(A0 + A1n + A2n2 +. . . . . +Ami−1nmi−1αn
i +. . . . . . , where mi is multiplicity

Example 1.6: Find the general solution of recurrence relation

an − 3an−1 + 2an−2 = 0 for n≥ 2, where a0 = 1 and a1 = 2.

Solution:

The characteristic equation is x2 − 3x + 2 = 0, solving this equation

The starting conditions are a0 = 1 and a1 = 2

By putting n = 0 and 1 in eq. (1.2) and solving the equations, we get

A1 = 1 and A2 = 0

As a result, the solution to the recurrence relation will be

An = 1.2n

Example 1.7: Find the solution of the following relation

an − 6an−1 − 9an−2 = 0 with a0  = 1 and a1 = 6.

Solution:

The characteristic equation will be

t2 − 6t − 9 =  0

Roots of the equation are 3 and 3.

Hence, the solution to the recurrence relation is

an  =  A1. 3n +  A2. n. 3n for some constants A1 and A2

To match the initial condition, we need

a0  = 1 =  A1

a1  = 6 =  A1 × 3 +  A2 × 3

x = 2, 1

an=A12n+A21n



Solving these equations yields A1 = 1 and A2 = 1.

Consequently, the overall solution is given by

an  =  3n + n. 3n = (1 + n). 3n

1.6.3  Solution to nonhomogeneous linear recurrence relation

A recurrence relation of the form
an + b1an−1 + b2an−2 + ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ + bkan−k = f(n), n ≥ k

where f(n) ≠ 0 is said to be a nonhomogeneous recurrence relation.

Consider the following relation:

where f(n) = n + 3.
LHS of the relation is the homogeneous part of the relation; so it is called the associated

linear homogeneous recurrence relation. RHS is the second member of relation. To solve such
relation, LHS is solved first and then RHS is solved to find a particular solution (PS). The results of
both the sections are combined to form a complete solution of relation.

Finding the PS
There is no universal process to find a PS of a recurrence relation. Though if RHS of the

relation takes a simple form, the method of inspection (or guessing) can be used. For example,

i. If f(n) = C, a constant. Then, we suppose that the PS is also a constant A.

an + C1an−1 + … … . . +Ckan−k = D. an

ii. If f(n) is in the exponential form, that is, an, then the trial solution for PS = A.an, if a is not the
root of a characteristic equation.

iii. If f(n) is in the exponential form, that is, an, then the trial solution for PS = A.nman, when a is
root of a characteristic equation with multiplicity “m.”

Example 1.10: Find the solution for the following nonhomogeneous recurrence relation,

an − 6an−1 − 9an−2 = 4. 2n.

Solution:

The roots of the equation t2 − 6t − 9  =  0 are 3 and 3.

Hence, the solution of associated homogenous part is

an
H  = (A1 +  A2. n). 3n , A1 and A2 are constants

To compute the PS, we have a = 2, and a is not the root of equation. Then according to case
(iii), the trial solution will be

an
p = A. 2n

To determine the value of A, we substitute an = A. 2n  in the given recurrence relation.

an − an−1 − an−2 = n + 3

LHS RHS



Example 1.11: What is the solution of the recurrence relation?

an – 7an–1 + 10 an–2 = 7.5n

Solution:

The roots of the equation t2 − 7t +  10  =  0 are 2 and 5.

Hence, the solution of the associated homogenous part is

an
H  = (A1. 2n +  A2. 5n), A1 and A2 are constants

To compute the PS, we have a = 5, where a is the root of equation with multiplicity 1.

Then according to case (ii), the trial solution will be

an
p = A. n5n

To determine the value of A, substitute an = A. n5n  in the given recurrence relation:

1.7  Divide and conquer relations

Assume that an algorithm divides a problem (contribution) of size n into subproblems, where
each subproblem is of size n/b. At that point, these subproblems are unraveled thusly, and the
answers for these subproblems are joined to get the arrangement of the first problems. Assume
that g(n) tasks are performed for such a division of a problem and join the subresults. At that
point, if f(n) speaks to the quantity of activities required to tackle the problems, it follows that the
function f fulfills the repeat connection

f(n) = c.f(n/b) + g(n).
This is called a DAC recurrence relation.

Example 1.12: The algorithm of binary search decreases the search for a component in a
hunt arrangement of size n to the twofold search for this component in a pursuit
arrangement of size n/2 (if n is even).

(i) For Binary Search,f(n) = f(n/2)+A

An5n − 7A(n − 1)5n−1 + 10A(n − 2)5n−2 = 7.5n

A5n−2{25n − 7(n − 1).5 + 10(n − 2)} = 7.52.5n−2

A{25n − 35n + 35 + 10n − 20} = 7.25

15A = 7 × 25

A = 7×5
3

A = 35
3

P. S = 35
3 . n. 5n

an= aH
n + PS

an = (A12n + A25n) + 35
3 n. 5n



(ii) The recurrence relation for merge sort, T(n) = 2T(n/2)+cn, when n>1 and A, when n=1 is a
DAC relation.

1.7.1  Solution to DAC recurrence relation

Example 1.13:

So recurrence relation is

The characteristic equation for recurrence relation will be

t − 3 = 0, so t = 3

The homogeneous solution will be, bH
k =A. 3k

Because a = 2 and 2 is not the root of characteristic equation, then according to case (ii), the

trial solution for PS will be B.2k, by substituting bk = B.2k in the recurrence relation.

We have

So, PS = B2k = –2.2k.

So solution will be

Let 3logn
2 = np

Taking log of both sides at base 2

f(n) = 3f(n/2) + n

taking

n = 2k, k = logn
2

let

f(n) = f(2k) = bk

f(n/2) = f(2k/2) = f(2k −1) = bk − 1

bk = 3bk−1 + 2k

bk − 3bk−1 = 2k

B2k − 3B2k−1 = 2k

(2k−1)(2B − 3B) = 2.2k−1

−B = 2, B = −2

bk = A3k + (−2)2k

bk = A. 3k − 2. 2k

bk = an ⇒ an = A. 3logn
2 − 2. n

an = A0nlog23 − 2n



1.7.2  The recursion tree method

Example 1.14: Let the recurrence relation be T(n) = 2T( n
2 ) + n

Figure 1.6:

Tree representation of function T(n) of example 1.14.

To find the value of T(n), we need to find the sum of tree nodes (see figure 1.6) level by level
(up to k levels). Let

So

Example 1.15: For relation T(n) = 3 T (n/4) + n obtain the asymptotic bound.

logn
2 log3

2 = p. logn
2

p = log3
2

( n
2k ) = 1,   so

n = 2k,  and k = log2n

T(n) = {n + 2 n
2 + 4 n

4 +. . . . . . . . . . . +n}k times+2kT(1)

T(n) = kn+2k . c

T(n) = nlog2n + n. c

⇒ T(n) ∈ O(nlog2n)



Solution: T(n) = 3 T (n/4) + n.

Figure 1.7:

Tree representation of function T(n) of example 1.15.

The subproblem size is n/4i at depth i. Thus, the subproblem size is 1 at last level (see figure

1.7), that is, n/4i = 1 when i = log4 n

Thus, the tree has (log4 n + 1) levels.

So we have

1.7.3  The substitution method

This technique is pertinent when we have floor or ceiling sign in the recurrence relation. The
fundamental strides of substitution technique are:

1. Guess the type of the solution.
2. Use scientific enlistment to discover the constants and show that the solution works.

Example 1.16: T(n) = 2T(⌊ n
2 ⌋) + n

Solution:

T (n) = n + (3/4)n + (3/4)2n + (3/4)log n−1
4 . n + 3log n

4 T (1)

= n{1 + (3/4) + (3/4)2 + ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ + (3/4)log n−1
4 }+ 3logn

4 T (1)

T (n) < n{1 + (3/4) + (3/4)2 + − − − − − − − − − −}+ 3log n
4 T (1)

T (n)< (1/ (1 − 3/4))n + nlog 3
4 T (1)

T (n) < 4n + nlog 3
4 T (1)

T (n) ∈ O (n)



We start by concentrating on discovering the upper limit for the arrangement. We realize that
floor and ceiling are generally deficient in tackling recurrence relation.

Therefore, we are creating recursion tree for the recurrence relation (see figure 1.8):

T(n) = 2T( n
2 ) + n

Figure 1.8:

Tree representation of function T(n) of example 1.16.

So



Recurrence relation is T(n) = 2T(⌊ n
2 ⌋) + n

So, base case of inductive proof fails to hold.

Taking advantage of the asymptotic notation that T(n) ≤ c n log2n whenever n ≥ n⌋

T(2) = 4, T(3) = 5, { for T(1) = 1}

Because assuming that T(n) ≤ c n log n holds for ⌊n/2⌋, that is

T (⌊n/2⌋ ≤ c (⌊n/2⌋ log (⌊n/2⌋)

Substitution method:

The base case for inductive proof fails to hold. When (n > 3), the recurrence does not depend on
T(1) directly. Hence, setting new base of the inductive proof

(n = 2 and n = 3)
taking c ≥ 2
T(2) ≤ c 2 log 2
T(3) ≤ c 3 log 3

T(n) = {n + 2 n
2 + 4 n

4 +. . . . . . . . . . . +n}i+2iT(1)

T(n) = in+2i . c

T(n) = nlog2n + n. c

⇒ T(n) ∈ O(nlogn)

Let T(1) = 1

we have, T(n) ≤ c n logn

then we have T(1) ≤ 0

T(n) = 2T(⌊ n
2 ⌋) + n, T(1) = 1

T(n) ≤ c n logn c ← guess

Let us assume, itis true for ⌊ n
2 ⌋

T ( n
2 ) ≤ c ⌊ n

2 ⌋ log ⌊ n
2 ⌋

T (n) ≤ 2(c⌊ n
2 ⌋ log ⌊ n

2 ⌋ + n

≤ c n log ⌊ n
2 ⌋ + n

= c nlogn − c nlog2 + n

= c nlogn − c n + n

= c nlogn − (c − 1)n

T(n) ≤ c n log n

for c ≥ 1

T(1) = 0 but T(1) = 1

–



With c ≥ 2, the solution works for n > 1.

1.7.4  Change of variable method

This method is applicable in some special cases. We will give an example.

Example 1.17:

1.8  Master’s theorem

Let T(n) be the nondecreasing function that fulfills the recurrence relation

Note: Similar result for O and Ω notations too.

Proof: We have the recurrence relation

T(2) = 4

T(3) = 5

T(4) = 10

= c 4 log2 4

= 8.c . ≥ 16

T(n) ≤ c n logn for c ≥ 1 Inductive proof for this

T(2) = 4, T(3) = 5

taking c large enough so

that T(2) ≤ 2c log22

T(3) ≤ 3 c log23

takingc ≥ 2.

T(m) = 2T(⌊ √m ⌋) + log m

m = 2n, ⇒ √m = 2n/2 and log m = n

So we have T(m) = T(2n) = S(n)(let)

s(n) = 2 s(n/2) + n

s(n) ∈ O(n log n)

T(m) ∈ O(log m log(log m))

T(n) = aT( n
b ) + f(n) for n = bk k = 1, 2, 3. . . . . . . . . ,

T(1) = c and where a ≥ 1, b ≥ 2, c > 0

if f(n) = nd = θ(nd), where d ≥ 0. Then

T(n) ∈

⎧⎪⎨⎪⎩ θ(nd) if a < bd

θ(nd log n) if a = bd

θ(nlogb
a
) if a > bd



Applying backward substitution,

T(bk) = a T(bk–1) + f (bk)

  = a[a T(bk–2) + f (bk–1)] + f (bk)

  = a2 T(bk–2) + a f (bk–1) + f (bk)

  = a3 T(bk–3) + a2 f (bk–2) + a f (bk–1) + f (bk)
  = - - - - - - - -

  = ak T(1) + ak–1 f (b1) + ak–2 f (b2) + … + a° f (bk)

  = ak[T(1) +
k

∑
j=1

f(bj)/aj]

T(n) = nlog
ba[T(1) +

logn
b

∑
j=1
( bjd

aj )]

{

So, T(n) = nlogba[T(1) +
logn

b

∑
j=1
( bjd

aj )]

T(n) = nlogba[T(1) +
logn

b

∑
j=1
( bd

a )
j

]

∵

logn
b

∑
j=1
( bd

a )
j

= (bd/a)

Condition:

T(n) = nloga
bθ((bd/a)logb

n
)

T(n)=θ(bd logbn)

T(n) = aT( n
b ) + f(n), and T(1) = c

f(n) = nd, n = bk ⇒ k = logn
b

T(n) = aT( n
b ) + f(n)

⎧⎪⎨⎪⎩ k = logbn

ak = alogbn

= nlogbn

∵ f(n) = nd

f(bj) = bjd

⎧
⎨⎩

(bd/a){{(bd/a)logbn
− 1}/(bd/a − 1)} , if bd ≠ a

logn
b if bd = a

if a < bd

logn
b

∑
j = 1

(bd/a)j
= (bd/a)j { (bd/a)logn

b−1

(bd/a)−1 } ∈ θ((bd/a)logbn)



T(n) = θ(blogbnd
)

T(n) = θ(nd)

Condition:

Hence,

T(n) = nlogba[T(1) +
logn

b

∑
j = 1

(bd/a)j ] ∈ θ (nlogba )

Again if a = bd ⇒ bd/a = 1

Question: Solve T(n) = 2T(n/2 + f(n) f(n) = n2

Solution: a = 2, b = 2, f(n) = n2 = θn2

Question: Solve T(n) = 4T( n
2 ) + f(n) f(n) = n2

Solution: a = 4, b = 2, f(n) = n2 = θ(n2)

Problem set

1. What is an algorithm? What is the need to study algorithms?
2. Explain the algorithm design and analysis process with a neat diagram.

if a < bd then (bd/a) < 1. Therefore,

logn
b

∑
j = 1

(bd/a)j
= (bd/a){ (bd/a)logn

b−1

(bd/a)−1
} ∈ θ (1)

constant

T(n) = nlogba [T(1) +
logn

b

∑
j = 1

(bd/a)
j]

= nlogba [T(1)+logbn] {a=bd}

∈ θnlogba . logbn = θ{nlogbbd

logbn}

= θ (nd. logbn)

⇒ T (n) ∈ θ (nd)

⇒ T (n) ∈ θ (n2)

n = 2k ⇒ k = logn
2 2 bd = b2 = 22 = 4

4 > bd > a

f(n) = n2 = nd ⇒ d = 2               bd = 22 = 4

⇒ T(n) ∈ θ(ndlog n)  a = bd

⇒ T(h) ∈ θ(n2log n)



3. Define:
a) Time efficiency
b) Space efficiency

4. What is the order of growth?
5. What do you mean by time complexity? Explain various notations used to signify their

complexities.
6. Explain omega notation. What are the various terms involved in it? Explain with the help of

an example.
7. Describe the concept of time complexity of an algorithm when it is computed.
8. Explain with the help of an example the application that needs algorithmic content at the

application level and discuss the function of the algorithms involved.

9. Describe in detail about the function n3/500 – 50n2 – 10n + 9 in terms of Θ notation.
10. What is the process to amend in an algorithm so that a best-case running time can be

achieved?
11. Describe with the help of an appropriate mathematical induction to demonstrate that when

n is an exact power of 2, the solution of the recurrence

T(n) = {

is T(n) = nlogn.
12. Associate the order of growth of log2n and √n.

13. Demonstrate that the solution to T(n) = 2T(n/2 + 17) + n is O(n log n).

2 if n = 2

2T(n/2) + n if n = 2a, for a > 1



Chapter 2  Sorting techniques

2.1  Sorting

Sorting is a method to arrange a data in ascending or descending order of magnitude. Sorting has
great importance in the field of algorithms. There are several sorting algorithms available, which
can be categorized on the basis of their performance in terms of space and time requirement.
Some important sorting techniques are discussed in the following sections.

2.2  Insertion sort

Insertion sort depends on the decrease–and-conquer strategy. It is a straightforward arranging
technique that fabricates the last arranged cluster (or show) each thing in turn. It is substantially
less effective on enormous records than more advanced algorithms, for example, heap sort,
merge sort, or quick sort. Be that as it may, insertion sort gives a few preferences:

Implementation is easy.
Good for small number of elements.
More productive by and by than the greater part of the other straightforward quadratic (i.e.,

O(n2)) algorithms, for example, selection sort or bubble sort.
Adaptive, for example, effective for informational collections that are now considerably
arranged.
Stable, for example does not change the overall order of components having equivalent
keys or qualities.
In-place sorting.
Online, for example, can sort a rundown as it gets it.

At the point, when individuals physically sort something (for instance, a deck of playing a card
game), most utilize a technique that is like insertion sort.

Algorithm: Insertion Sort(Array, size)

 
For n: =1 to (size-1) do 
     { 
          ele: = Array[size]; 
          j : = (size-1); 
          While (j≥ 0) and Array[j] > ele) do 
          { 
          Array [j+1]: =Array [j]; 
          j: = j-1; 
          } 
          Array [j+1]: = ele; 
     } 

Example 2.1:



2.2.1  Analysis of insertion sort

The worst-case analysis: The nature of input drives the number of key comparisons performed
in execution. If elements of array are in decreasing order, than it is worst input, that is,

A[0] > A[1], A[1] > A[2] … … … . A[m − 2] > A[m − 1]

Thus number of key comparisons is,

cworst(m) = (m − 1) + (m − 2) + … . +3 + 2 + 1

= m(m−1)
2 ∈ θ(m2)

The best-case analysis: If elements of array are in increasing order, that is, already sorted in
ascending order, then this is the best input.

Only one comparison per iteration

Thus, Cbest(m) =
m−1

∑
i=1

1 = (m − 1) ∈ θ(m)

The average-case analysis: This is the case when array elements are randomly taken and
insertion sort algorithm is applied. In average case, we are inserting element A[i] in subarray A[0:i-
1], where average half of the element in subarray A[0:i-1] are less than A[i] and half of the element
are greater than A[i] as shown in →Figure 2.1.

Figure 2.1:  Partition about A[i].



On an average, we check half of the subarray A[0: i–1], so for ith iteration, number of comparisons

will be ci = i
2

Thus, total number of comparisons,

2.3  Quick sort

The fundamental variant of quick sort calculation was concocted by C. A. R. Hoare in 1960, which
he officially presented later in 1962. It depends on the rule of divide-and-conquer (DAC)
technique. It is an algorithm of decision and is large since it is not hard to execute. It is a decent
“broadly useful” arranging calculation and expends generally less assets during execution.

Quick sort works by apportioning a given cluster Ar[p . . r] into two nonvoid subarrays Ar[p . .
q–1] and Ar[q + 1 . . r] to such an extent that each key in Ar[p . . q–1] is not exactly or equivalent to
Ar[q], which thus not exactly or equivalent to each key in Ar[q + 1 . . r]. We call this component
(Ar[q]) “PIVOT.” At that point, the two subarrays are arranged by recursive calls to quick sort. The
specific situation of the segment relies upon the given array and index q is calculated as a piece of
the partitioning methodology.

It is a significant arranging method that is dependent on DAC approach. Not at all like merge
sort that separates the input as indicated by the situation in array; quick sort partitions them as
per their values explicitly. It revamps elements of a given exhibit Ar[1:n] to its parcel, a
circumstance where all the components before some segment s are smaller than or equivalent to
Ar[s], and all the component after segment are more noteworthy than or equivalent to Ar[s].
Clearly, after parcel about s has been accomplished, Ar[s] will be in its last situation in the
arranged array. And we can keep arranging the two subarrays of the components going before
and following Ar[s], autonomously by the equivalent method. First, we select an element as for
whose esteem we are going to partition the subarray. The most straightforward procedure of
selection the “PIVOT” is to set first element of subarray as PIVOT element. This arranging strategy
is considered as in place since it utilizes no other array.

2.3.1  DAC approach

Divide: Split array Ar [1: size] into Ar [1: d–1] and Ar [d + 1: size] where d is determined as
part of division.
Conquer: Sort Ar [1: d–1] and Ar [d + 1: size] recursively.
Combine: All this leaves sorted array in place.

Algorithm: Partition (Ar, d, p)

//This is partition of array Ar[d:p-1] about Ar[d].

 
{ 
             v: = Ar[d]; it: = d; j: = p; 

CAvg(m) =
m−1

∑
i=1

i
2 = 1

2 (
m(m−1)

2 )

= 1
4 (m2 − m)

≈ ( m2

4 ) ≈ θ(m2)



             repeat 
                          { 
                                 repeat{ 
                                              it : = it +1; 
                                              }until (Ar[it] ≥ v); 
                                       repeat { 
                                              j: = j-1; 
                                              }until (Ar[j] ≤ v); 
                                 if (it < j), then interchange(Ar, it, j); 
                          }until (it ≥j); 
             Ar[d]: = Ar[j]; Ar[j]: = v; 
             return j; 
}

Algorithm: Interchange (Ar, it, j)

// Interchange value Ar[it] and Ar[j] 
{ 
            temp:= Ar[it]; 
            Ar[it]: = Ar[j]; 
            Ar[j]: = temp; 
}

Algorithm: Quick Sort (m, n)

 
{ 
            If (m<n) then 
                    {                      // break the problem into sub problems 
                               index:= Partition(Ar, m, n); 
                               Quick Sort (m, index-1); 
                               Quick Sort (index+1, n); 
                    } 
}

Example 2.2:



Figure 2.2:

Example of Quick Sort.

2.3.2  Analysis of quick sort

The worst-case analysis: In most worst-case scenarios, one of the two subarrays will be
vacant while since of the other will be only one less than the size of subarray being
partitioned. This circumstance will happen when the given array is already arranged. In that
case, first element is taken as PIVOT element. The left to right output will stop on A[2] while
option to left sweep will go as far as possible and reach A[1], demonstrating the split at
position 1. So after (n + 1) comparisons, we will get this segment and exchanging the PIVOT
A[1] to itself. The algorithm will wind up with the carefully increasing array A[2: n] to sort.
This procedure of carefully increasing array of lessening size will proceed until the last one
A[n-1:n] needs to be prepared. So the total numbers of key comparisons made will be

Cworst = (n + 1) + n+(n − 1) + … … . . +3

The best-case analysis: If all the split happen in the middle of corresponding subarray, we
will still have the best case. The numbers of key comparisons will be:

= { (n+1)(n+2)
2 − 3}

⇒ Cworst(n) ∈ θ(n2)



(2.1)

(2.2)

(2.3)

(2.4)

(2.5)

Note: It is noted that partition is linear in size, that is, on each level, it is θ(n). Thus, we get

recurrence relation (2.1). For a split only number of comparison are ≤n (best case).

The average-case analysis: The input size is n and we assume that partition split can
happen at any position s (for 1 ≤ s ≤ n) with same probability (1/n). For the extreme case,
when split take place at first position, the number of element comparisons are (n + 1) then
we have

CA(n) = (n + 1) + 1
n {

n

∑
k=1

[CA(k − 1) + CA(n − k]}. . . . . . .

With condition CA(0) = 0 and CA(1) = 0. Equation (2.2) is a recurrence relation and for the first

partition only which may take place at any point (position) for different value of k. Multiplying
both side by n,

nCA(n) = n(n + 1) + 2[CA(0)+CA(1)+. . . . . . . CA(n − 1)]. . . . . . . . . . . .

Replacing n by (n–1) in (2.3), we have

(n − 1)CA(n − 1) = n(n − 1) + 2[CA(0)+. . . . . . . . +CA(n − 2)]. . . . . . . .

Subtracting (2.4) form (3), we have

Repeatedly using the equation for CA(n–1), CA(n–2), … ., we get

CA(n)
(n+1)   =  

CA(n−2)
(n−1) + 2

(n) + 2
(n+1)

=
CA(n−3)

(n−2) + 2
(n−1) + 2

(n) + 2
(n+1)

=
CA(1)

2 + 2
n+1

∑
k=3

(
1

k
){Q CA(1)=0}

⇒ CA(n) ≤ 2(n + 1)[loge (n + 1)− loge 2] {
n+1

∑
k=3

[( 1
k ) ≤

n+1

∫
2

1/x dx = [loge (n + 1)− loge 2

Cbest(n) = 2Cbest( n
2 ) + cn, for n > 1

Cbest( n) = 0, for n = 1

solving this by taking n = 2k, we get

Cbest(n) ∈ θ(nlog2n)

{

}

Expected value of a random variable

E(x) = p1x1 + p2x2+. . . . . . . . . . +pnxn

xi → value of random variate

pi → its probability

nCA(n) − (n − 1)CA(n − 1) = 2n + 2CA(n − 1)

or
CA(n)
(n + 1) =

CA(n−1)
(n) + 2

(n + 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .



⇒ CA(n) ≤ 2(n + 1)[loge (n + 1)− loge 2]

⇒ CA(n) ≤ O(n logen)

or CA(n) ∈ O(n log2n)

2.4  Merge sort

Merge sort is an O(n log n) correlation-based arranging algorithm. Most executions produce a
steady sort, implying that the usage protects the input order of equivalent elements in the
arranged array. It is based on DAC strategy. Merge sort was proposed by John von Neumann in
1945. It sorts a given array Ar[1:n] by dividing it two halves Ar[1:⌊n/2⌋] and Ar[⌊n/2⌋ + 1: n], sorts
every one of them recursively and afterward consolidates the two smaller sorted array into a
single sorted one.

Algorithm: Merge Sort (low, high)

 
{ 
If(low<high) Then 
     { 
     mid:=⌊(low+high)/2⌋ 
     MergeSort(low,mid); 
     MergeSort(mid+1 ,high); 
     Merge(low ,mid ,high); 
     } 
}

Algorithm: Merge (low, mid, high)

// AU[ ] is an auxiliary global array.

 
{ 
        h:=low; x:=low; y:=mid+1; 
        while (x ≤ mid) and (y ≤ high)do 
         { 
            if(Ar[x]≤ Ar[y] Then); 
             { 
                Au[h]: = Ar[x]; 
                x: = x+1; 
             } 
            else 
             { 
                Au[h]: = Ar[y]; 
                y: = y+1; 

n loge n = cn log2 n, where c is a specific constant

and 2n loge n ≈ 1.38n log2 n}



             } 
            h: = h+1; 
         } 
 if(x> mid) Then 
    { 
         for z: = y to high do 
          { 
            Au[h]: = Ar[z]; 
            h: = h+1; 
          } 
  else 
         for z: = x to mid do 
          } 
           Au[h]: = Ar[z]; 
           h: = h+1; 
  } 
        for z: = low to high do 
           Ar[z]: = Au[z]; 
      }    

Example 2.3: For example,



Figure 2.3:

Example of Merge Sort.

2.4.1  Analysis of merge sort

The running time of an algorithm can be described by recurrence relation when the algorithm

contains a recursive call to itself. For MergeSort(), we assume for simplicity that n = 2k. A
recurrence for DAC algorithm is based on three steps.

Divide: This step finds the middle of subarray, so taking a constant time only.
Conquer: Two n\2-sized subproblems are solved recursively, which adds 2T(n/2) to the
running time.
Combine: Merging process (on n element) takes time proportional to number of element,
that is, cn.



The complexity of merge sort is of O(nlog2n). Merge sort is not in place sorting method as it

requires an auxiliary array to support the sorting. Also, this algorithm is not space efficient since it
requires extra array space.

2.5  Heap sort

Heap sort is a sorting algorithm that is based on comparisons. Heap sort is considered to
be improved selection sort, and like selection sort, it isolates its input into a sorted and an
unsorted locale, and it iteratively recoils the unsorted locale with the aid of extricating the
littlest factor and transferring that to the sorted locale. The advancement accommodates of the
use of a heap structure in preference to a linear one so that the time to find the smallest is least. It
is an in-place but not stable algorithm. It was proposed by J.W.J. Williams in 1964
and became the beginning of the heap.

Complete binary tree: It is a binary tree for which the vertex level order indices of vertices
forms a complete interval 1, 2, 3, … ., n of integers (see →Figure 2.4).

Heap: A heap is a complete binary tree with the property that the value at each node is at
least as large as the values at its children (see →Figure 2.5). This property is called heap property
and this heap is called max heap. In contrast to this, in min heap, the value is as small as its
children.

Vertex level order index: If p is the root then index (p) = 1, and if lc is left child of vertex p,
then index (lc) = (index p)*2. If rc is right child of same vertex p, then index (rc) = 1 + (index p)*2.

Figure 2.4:  Complete and Incomplete Binary Tree.

So T(n) = {

where n = 2k

Solving by substitution method,

⇒ T(n) ∈ θ(n log2n)

1, n = 1

2T( n
2 ) + cn, n > 1



The minimum height of a binary tree on n nodes is⌈[log2(n + 1)]⌉.

Figure 2.5:  Example of Max Heap.

Adjust() is a function take three inputs; array Ar[], integer k, and m. It take Ar[1:m] as a complete
binary tree. If subtree rooted at 2k and 2k + 1 are already max heap, then adjust will rearrange
element of Ar[] such that the tree rooted at k is also max heap. For m element in Ar[1:m], we can
create heap by applying Adjust(), since the leaf nodes are already heaps. So, we can begin by
calling Adjust() for the parents of leaf nodes and then work up level by level until the root is
reached.

Algorithm: Adjust (Ar, k, m)

 
{ 
            i: = 2k; el: = Ar[k]; 
            While (i ≤ m) do 
                        { 
                                    If(i <m) and (Ar[i] < Ar[i+1]) then 
                                                i:= i+1; 
                                    If(el ≥ Ar[i]) then break; 
                                    Ar[⎿i/2⏌] : = Ar[i]; i: = 2i; 
                        } 
            Ar[i/2] : = el; 
}

The function Heapify (Ar,m) readjust the element in Ar[1:m] to form a heap.

Algorithm: Heapify (Ar, m )



{

for k = ⌊m/2⌋ to 1step-1 do

Adjust(Ar, k, m);

}

Example 2.4: The elements of an array to be sorted are

 Figure 2.6 shows sorting process of the array
elements.

Figure 2.6:

Process of Heap Sort.



2.5.1  Analysis of Heapify

For the worst case analysis of Heapify, let 2k–1 ≤ n < 2k. The levels of the n node complete binary
tree are numbered 1 to k. Number of iteration of Adjust, for level i, it is (k-i). Number of nodes at

level i are given by 2i–1. So, the total time for Heapify is proportional to

∑
1≤i≤k

2i−1(k − i) = ∑
1≤i≤k−1

i2k−i−1 ≤ n ∑
1≤i≤k−1

i

2i
≤ 2n = O(n)

So, Heapify takes a linear time to create the heap using Adjust function.

2.5.2  Heap sort

Algorithm: HeapSort()

 
{ 
     Heapify (Ar,m);                               // transforming array into max 
heap 
     for k:= m to 2 step -1 do 
     { 
          Temp:= Ar[k]; 
          Ar[k]: = Ar[1]; 
          Ar[1]: = Temp; 
          Adjust (Ar,1,k-1); 
     } 
}

2.5.3  Analysis of heap sort

Heapify requires O(n) operation, and Adjust possibly requires O(log2n), so the worst-case time

complexity for HeapSort is O(n log2n).

2.6  Sorting in linear time

There are some sorting algorithms that run quicker than O(n logn) time but they require unique
assumptions about the input collection to be sort. Here we present three linear time sorting
algorithms; counting type, radix sort, and bucket type. Bucket sort may be used for a lot of the
identical duties as counting kind, with a similar time analysis; however, compared to counting
type, bucket type calls for related lists, dynamic arrays, or a big quantity of reallocated memory to
hold the units of gadgets within each bucket, whereas counting type instead stores a single
number (the count of elements) per bucket.

2.7  Counting sort

Counting sort and its application to radix sorting was both invented by Harold H. Seward in 1954.
Counting sort is an algorithm for sorting a set of objects in step with keys which can be small



integers, that is, it is for an integer sorting set of rules. It operates by counting
the number of gadgets that have every wonderful key value
and using mathematics on those counts to decide the positions of each key value in the output
sequence. However, it is frequently used as a subroutine in another sorting algorithm,
radix type, that could cope with large keys more efficiently. Because counting kind uses key values
as indexes into an array, it is not a comparison type, and the Ω(n log
n) decrease certain for comparison sorting does not follow to it.

This sorting technique is based on frequency distribution. If values are integers between some
lower bound l and upper bound u, we compute frequency of these values and store them in array
F[0:u–l].

A =  15 12 15 16 19 36 15 15

l = 12, and u = 36
Value: 12, 15, 16, 19, 36
Σ fi = 8 = freq: 1, 4, 1, 1, 1

Cumulative freq: 1, 5, 6, 7, 8
In this algorithm, we copy elements into a new array s[0:n–1]. The elements of array A whose

values are equal to the lower possible value l are copied into the first F(0) elements of Š, that is,
position 0 to F[0]–1, and the elements of value just greater then l are copied to position from F(0)
to (F(0) + F(1)–1) and so on.

Algorithm: Counting-Sort (Ar[0:size-1])

 
{ 
     for g : =0 to (u-l) do 
          D[g]: = 0: 
     for j: = 0 to (size-1) do 
          D[Ar[j]]: = D[Ar[j]]+l: 
     for k: 1 to (u-l) do 
          D[k]: = D[k-1]+D[k]; 
     for i: = (size-1) down to 0 do 
          k:=Ar[i]-1 
          S[D[k]-1] = Ar[i]; 
          D[k] : = D[k]-1; 
     Return S; 
}

Counting sort is a stable sorting algorithm as it copies elements in the final array in that order in
which they are encountered in the unsorted array.

Example 2.5:

Input A =  6 9 7 6 4 5 6 7 9 5



l = 4, u = 9

u–l = 9−4 = 5,n = 10

Eement:4 5 6 7 8 9

Frequency: 1 2 3 2 0 2

J: = 1 to 5

Cumulative Frequency: 1 3 6 8 9 10

For i: (n-1) to 0 do         D[0] = 1

                     D[1] = 3

                     D[2] = 6:

                     D[5] = 10

i = n-1(1st iteration)

n = 10

j = 5–4 = 1 { A[9] = 5}

S[3–1]: = 5

S[2]: = 5

5 5

D[1]: = 2(Remaining)

Finally, we will get sorted array.

2.7.1  Analysis of counting sort

Counting sort algorithm makes use of most effective simple for loops without any complex
concept like recursion or subroutine calls, it is easy to analyze. The general time complexity of the
counting sort is

θ(k) + θ(n) + θ(k) + θ(n) = θ(n + k) = θ(n).  if k is a constant

2.8  Radix sort

Radix sort is applicable to the unit of n integers, and each integer has d digit. We start the sorting
repetitively. We start with lowest order digit and finish at the highest order. The sorting is stable.

Algorithm: RadixSort (Ar, dig)



{

for k = 1 to dig,

Perform stable sort to sort array Ar on the digit k.

}

2.8.1  Analysis of radix sort

Let us assume that the stable sort runs in O(n + b). Then the running time of Radix sort will be
O(dig(n + b)) = O(dig*n + dig*b). If dig is constant and b = O(n), the complexity is O(n).

Example 2.6: Input A = {677, 595, 295, 397}

677 59[5] 6[7]7 [2]95 295

595 ⇒ 29[5] ⇒5[7]5 ⇒[3]97 ⇒ 397

295 67[7] 2[9]5 [5]95 595

397 39[7] 3[9]7 [6]77 679

2.9  Bucket sort

Bucket sort is a linear time algorithm. Input is random and is distributed evenly in the interval [0,
1] the range is divided into n equal intervals. (see →Figure 2.7). These intervals are called buckets.
As the input is uniformly distributed, it is not expected that many numbers fall into one bucket. In
bucket sort, first all the buckets are sorted individually and then concatenate them to get sorted
array.

Figure 2.7:  Uniform distribution.

Algorithm: BucketSort(Ar)

 
{ 
     size: = length[Ar]; 



     for k: 1 to size do 
          insert Ar[k] into List Bu[⎿size Ar [k] ⏌]; 
     for k: = 0 to (size-1) do 
          sort bucket Bu[k] with insertion sort; 
     Combine Bu[0], Bu[1],……………Bu[size-1], in order. 
}

To see how BucketSort works, consider two elements Ar[p] and Ar[q]. If both the elements fall in
the same bucket, they follow comparative order in the sorted array because insertion sort
arranges the buckets. Let us assume that these elements fall into diverse buckets, Bu[p’] and
Bu[q’], respectively, and suppose without loss of generality that p’ < q’. When the buckets are
combined, Bu[p’] comes before Bu[q’], and therefore Ar[p] precedes Ar[q].

2.9.1  Analysis of bucket sort

If ni be the random variable, it denotes the number of elements placed in Bucket Bu[i]. Except the

sorting using insertion sort all instruction takes time of order θ(n) and there are n calls for
insertion sort, so time for BucketSort is

T(n) = θ(n)+
n−1

∑
i=0

O(n2
i )

In order to assess this summation, we have to find the distribution of each random variable n. We

have n elements and n buckets. The probability of falling an element in a ith bucket is 1/n. This
problem is the same as that of “Balls-and-Bin” problem. Hence, the probability follows the
binomial distribution, which has

Mean: E[ni] = np = 1
Variance: Var[ni] = np(1 − p) = 1 − 1

n
Taking expectations of both side

E[T(n)] = θ(n)+∑n−1
i=0 E[O(n2

i )] {ni → random variable, number of element in Bucket B[i]}

= θ(n)+
n−1

∑
i=0

O(2 − 1
n )

= θ(n) + n. O(2 − 1
n )

= O(n)

Therefore, the entire BucketSort algorithm runs in linear expected time.

Example 2.7: Sort the array A using bucket sort

A = {0.23, 0.37, 0.15, 0.18, 0.34, 0.88, 0.78, 0.38, 0–99, 0.92}

N = 10, the elements 0.34, 0.37, 0.38 mapped at i = 3



Figure 2.8:

Example of Bucket Sort.

2.9.2  Binomial distribution

E(ni
2) = Var(ni) + {E(ni)}2

= 1 − 1/n + 1 = 2 − 1/n

E(ni) = np = n.1/n = 1

Problem set

1. What is meant by sorting?
2. List two different types of sorting?
3. Give the use of radix sorting.
4. Discuss the complexity of quick sort.

Var(ni) = E(ni
2) − {[E(ni)}2

Var(xi) = npq = (1 − 1
n )



5. List and explain the sequence of steps required to sort numbers in the main memory using
merge sort.

6. Give the differences between the insertion sort and selection sort.
7. Write an algorithm for the procedure MIN-HEAPIFY (A,i), which performs the corresponding

manipulation on a min heap. How does the running time of MIN-HEAPIFY compare to that
of MAX-HEAPIFY?

8. Explain the quick sort calculation with a model and furthermore draw the tree structure of
the recursive calls made.

9. Analyze the productivity of quick sort calculation.
10. Explain the merge sort calculation with a model and furthermore draw the tree structure of

the recursive calls made.
11. Analyze the effectiveness of merge sort calculation.
12. Give the insertion sort calculation and break down the effectiveness.
13. What is heap? What are the various kinds of heaps?
14. Explain how would you develop heap?
15. Explain the heap sort calculation with a model.
16. Explain the Horspool’s calculation with a model.
17. Sort the following array

90, 194, 245, 44, 23, 19, 60, 39, 76, 14, 1, 8, 54
utilizing every one of the accompanying strategies:
i. Merge sort
ii. Quick sort
iii. Insertion sort
iv. Selection sort
v. Heap sort
Further, tally the quantity of activities by each arranging technique.

18. Write an algorithm for quick sort for isolating the variety of components which is to be
arranged and, furthermore, write the calculation for converging in the wake of arranging.



Chapter 3  Algorithm design techniques

This chapter presents techniques to design algorithms which are based on: greedy technique,
dynamic programming, backtracking approach, and branch-and-bound method. Amortized
analysis process is also discussed in this chapter.

3.1  Greedy approach

Greedy approach is perhaps the simplest of production techniques. This is usually used to solve
optimization issues, such as finding the shortest path through a network from one node to the
next and choosing the best order for s series of jobs to be performed on a computer. In greedy
approach, we make the option that looks better in the current situation. Greedy algorithm works
by choosing the most promising solution at any instant. It never reassesses this decision,
whatsoever condition may arise later. It follows the concept of the current best.

3.1.1  Traveling salesman problem

In Traveling Salesman Problem, a salesperson has to visit n places or cities, in such a manner that
all the cities must be visited only once and in the end, he returns to the city from where he starts,
with minimum cost. The greedy approach uses the concept of “Nearest neighbor” and selects the
city which is closest to the current city.

Example 3.1: The distance matrix for given complete graph G (refer figure 3.1).



Figure 3.1:

A Graph G and its Distance Matrix.

V1-V5-V2-V3-V4-V1

Tour cost: –12 + 14 + 15 + 16 + 16 = 73,

3.1.2  Fractional knapsack problem

We have to place n objects in a given knapsack. The knapsack capacity is W. Weight of the ith
object is wi, if a fraction xi (0 ≤ xi ≤ 1) of ith item is chosen to fill the knapsack then the profit earned
is vixi, where vi is the value earned by placing ith item. The aim is to fill up the knapsack so that the
profit will be maximum. Then linear programming problem (LPP) for above problem will be,

Algorithm: Greedy-Knapsack(W, n)

// v [1: n] is the value array, w [1: n] is the weight array and x[1:n] contains the fractional value of

objects placed in knapsack. The objects are sorted in increasing order s. t.

v[i]
w[i] ≥

v[i+1]
w[i+1]

 
{ 
     for k : = 1 to n do 
                   x[k]: = 0.0; 
     U: = W; 
     for k: = 1 to n do 

z =
n

∑
i=1

vixi

such that
n

∑
i=1

wixi ≤ W

and 0 ≤ xi ≤ 1,  1 ≤ i ≤ n



                   { 
                           if (w[k] > U) Then break; 
                           x[k]:=1.0; U: = U-w[k]; 
                   } 
     if(k ≤ n) Then x[k]: = U/w[k]; 
}

The time complexity of the algorithm is O(n).

Example 3.2: Solving the given fractional knapsack problem with greedy approach (see table
3.1). Capacity of knapsack W = 16, Number of items is 4, the value and weights are given in the
table.

Arranging items in order 
v[i]
w[i] ≥

v[i+1]
w[i+1]  (see table 3.2)

Table 3.1: List of items to be filled in knapsack.

Item (i) vi wi vi/wi

1 10 5 2

2 12 4 3

3 8 4 2

4 20 5 4

Table 3.2: Items arranged in order.

Item (i) vi wi vi/wi

1 20 5 4

2 12 4 3

3 10 5 2

4 8 4 2



Figure 3.2:  Solving the fractional knapsack problem with greedy approach.

Now, taking decision one by one.
For first item, w1 = 5 < U(= 16) so

x[1]  =  1.0

U = U−w1 = 16 − 5 = 11

Again selection w2 = 4 < U(= 11)

x[2]  =  1.0]

U = U − w2 = 11 − 4 = 7

Selecting w3 = 5 < U(= 7)

x[3]  =  1.0

U = U −  w3 = 7 − 5 = 2

Now for 4th item

W4 = 4, U = 2

W4 > U



So x[4] = U/w4 = 2
4 = 1

2 = 0.5
So solution vector is

X[1 : 4]  =  {1.0,  1.0,  1.0,  0.5}

Profit earnest is

Zmax = v1. x1 + v2. x2 + v3. x3 + v4. x4

=  20 ∗ 1  +  12 ∗ 1  +  10 ∗ 1  +  8 ∗ 0.5 =  46

Thus, the maximum profit earned is 46.

3.2  Backtracking

American mathematician D. H. Lehmer first proposed the term backtrack in the 1950s. The
language SNOBOL (1962) was the first to provide a built-in general backtracking service. This
approach is specially applied to NP-complete problems where no other choice of algorithm that
may give better solution exists. The key point of backtracking algorithm is binary choice Yes or No,
whenever backtracking has choice No, that means the algorithm has encountered a dead end.
And it backtracks one step and tries a different path for choice Yes. The solution for the problem
according to backtracking can be represented as implicit graph. In backtracking approach, we
form a state space tree. This approach is used for a number of NP-hard problems.

3.2.1  Hamiltonian cycle

Hamiltonian cycle of a graph is a circuit that passes just once through each vertex of the graph G 
= (V, E) excluding the terminating vertex.

or
Hamiltonian cycle is a graph G round trip path in which each vertex is visited exactly once and

returns to its starting point. Such graph is called Hamiltonian graph (see →figure 3.3).



Figure 3.3:  Graph G with Hamiltonian cycle (in dark lines).

Without lack of generality, we can conclude that there is a Hamiltonian loop and it begins to form
vertex “a” (→Figure 3.4(a)) and we make vertex “a” root of the space tree in body (→figure 3.4
(b)).







Figure 3.4:  (a) A Graph, (b) Space Tree for Hamiltonian Cycle, (c) Hamiltonian Cycle.

Let us use alphabetic order to break the tie between the vertices adjacent to a, we select the
vertex b, then c, then d, and then e and finally to f which proves to be a dead end. So backtrack
algorithm from f to e, and then to d and then c.

It offers the first alternatives for the algorithm to follow, moving c to e finally proves futile, so
the algorithm has to backtrack from e to c, then to b. From there it goes to the vertices f, e, c, and
d, from where the Hamiltonian circuit will regimentally return to yield: a, b, f, e, c, d, a (figure
3.4(c)).

Solution is a Hamiltonian cycle.

3.2.2  8-queen problem

The 8-queen problem is a problem in which 8 queens are to be placed on a 8 × 8 cross board so
that no two queens are in attacking position. Same row, same column, and same diagonal are
called the attacking positions. Backtracking algorithm is applicable to use wide range of problem
and it is simple method. The backtracking resembles a depth first search tree in a directed graph.



Table 3.3: 8 × 8 board for 8-queen problem.

Total block 8 × 8 = 64.



Figure 3.5:  Possible solution for 8-queen problem.

The problem can be computationally quite expensive as there are C64
8 , that is, 4,426,165,368

possible placements of the queens on board, out of which only 92 arrangements satisfy the
objective.

It is quite feasible to use shortcuts that reduce computational requirements or guidelines of
thumb that avoids brute-force computational strategies. As an instance, just by way of making use
of an easy rule that constrains every queen to an single column (or row), though nevertheless
considered brute force, it is possible to lessen the quantity of possibilities to simply 16,777,216
(that is, 88) viable combos. Generating diversifications in addition reduces the opportunities to just
40,320 (this is, 8!), which are then checked for diagonal attacks. However, by allowing one
placement of a queen on distinct row and column.

The number of ways are ë8 = 40,320 {8 Tuples}
Let us assure that ith queen is placed on row i so all the solution to 8-queen problem can

therefore be represented by 8 tuples (c1, c2,..,c8) where ci is the column on which ith queen is

placed. The size of sample space is 88. Out of 8 tuples, no ci’s can be same, this reduces the size of
sample space to ë8.

State space tree:



Backtracking algorithms decide problem solutions via systematically looking the answer space
for the given problem instance. This seek is aided using a tree agency for the answer space. We
start with an initial state node and organize a tree of solution space. Every node on this tree
defines a problem state. All paths from the root node to other nodes define the state space of the
problem. Solution states are those problem states for which the path from root to s defines a
tuple within the solution space. The tree organization is known as state space tree.

Live node: A node is a live node which has been generated and all of whose child nodes
have not yet been generated.
Dead node: This node is a generated node which is not to be more expanded on chess
board.
(R-L) “UPPER LEFT TO LOWER RIGHT”
Again (R-L) value
(5,1) = 6,(2,4) = 6,(3,3) = 6 “lower left to upper right” (sum of cell coordinate). Similarly upper
left to lower right (3, 1) = 2, (4, 2) = 2
Let us suppose two queens are placed at position (m,n) and (p,q)
Then they are on same diagonal

if m − n = p − q or m + n = p + q

n − q = m − p or n − q = p − m

Therefore, two queen lie on the same diagonal if

|n − q| = |m − p|

Algorithm: Place (p, m)

//This returns a Boolean value that is true if mth column is suitable for the pth queen.

 
{ 
     for n := 1 to (p-1) do 
     if ( (c [n] == m) // same column 
     or [Abs (c[n] – m) == Abs (n-p)]) //diagonally attacking position 
                                then return false; 
     return true ; 
}

Algorithm: Nqueen (p, N)

 
{ 
     for m: = 1 to N do 
     { 
          if place (p, m) then 
          { 
               c[p]: = m, 
               If (p = N) 
               Then write (c[1 : N]); 



          else Nqueen (p+1, N); 
          } 
     } 
}

All solution of the N-queens problem for n = 8 are 92.One of the possible solution of 8-queen
problem is:

{c1,c2,c3,c4,c5,c6,c7,c8} ≡ {4,6,7,8,2,7,1,3,5}

3.3  Dynamic programming

Dynamic programming is an innovative way for fixing complex problems by means of breaking
them into some small or tiny subproblems or subtasks. It is applicable for issues exhibiting the
residences of overlapping subproblems and top-quality substructure (described below). When
applied, the method takes far less time than naive methods that do not take gain of the
subproblem overlap (like depth-first search).

Dynamic programming is a method for fixing issues with overlapping subproblems. These
subissues rise up from a recurrence relating option to a given hassle with solution to its smaller
subproblems of the identical type. Rather than fixing overlapping subissues repeatedly. Dynamic
programming advises solving every smaller subproblem just once and storing the result in a table
from which we can obtain a solution to the original problem.

The Fibonacci relation: Fn = Fn−1 + Fn−2

F0 = F1 = 1 (initial conditions)

A recurrence relation, if we know Fn–1 and Fn–2, we can compute Fn easily.

3.3.1  0/1 knapsack problem

We have n items of weights w1, w2, … … … .wn and values v1, v2, … … vn, and W is the capacity of
knapsack. We need to fill the knapsack while gaining maximum profit. In 0/1 knapsack, we cannot
take portion of object, that is, either an object is selected for knapsack or not.

The 0/1 knapsack problem as LPP is:

We are to find a recurrence relation that expresses a strategy to an example in phrases of its small
subinstances. The time and space performance each for the set of rules is θ(nW).

Let us take the first i items (1 ≤ i ≤ n), and knapsack ability j < W. O[i, j] be the value of optimal
solution of these i items that suit the knapsack of capability j. This instance of i items is partitioned
into subsets of two categories,

First subset does not contain the ith item, O[i-1, j] is the value of this subset. If ith object is
not placed into the knapsack then the value will be same as of i–1 objects, so: O[i, j] = O[i–1 j]

Max z =
n

∑
i=1

xi. vi

such that
n

∑
i=1

xi. wi ≤ W

vi ≥ 0, wi ≥ 0 and xi ∈ {0, 1}



Second subset contains the ith item, therefore the value of such optimal subset is

vi + O[i − 1, j − wi]

Thus, the value of an optimal solution of the first i objects is the maximum of these two
categories’ values.

O[i, j] = max { O[i − 1, j], vi+ O[i − 1, j − wi] if(j − wi) ≥ 0

The initial conditions are:

O[0, j] = 0 for j ≥ 0 And O[i, 0] = 0 for i ≥ 0

The objective is to find O[n, W].

Example 3.3: We have the following information

Item Weight Value

1 2 RS 12 CAPACITY
W = 52 1 RS 10

3 3 RS 20

4 2 RS 15

Figure 3.6:

Knapsack problem.

O[0, J] = 0, J ≥ 0 and O[i, 0] = 0, i ≥ 0

O [4,5] > O [3,5], item 4 is included in knapsack . Again O[3,3] = O[2, 3], so item 3 is not
included in knapsack. Also O[2,3] > O[1, 3], so item 2 is included in knapsack. Again O[1, 2] > 



O[0, 2], thus item 1 is also included. Hence optimal solution is {1, 2, 4}. (see figure 3.6).

Optimal value is O [4, 5] = RS. 37

3.3.2  The traveling salesman problem

We have a weighted, undirected, and complete graph G = (V, E). Each edge (u, v) has positive
integer cost c(u,v). The travelling salesman problem is to start from source vertex and cover all the
vertices exactly and then return back to starting vertex and the cost of route must be minimum,
that is, we have to find out Hamiltonian cycle of G with minimal cost. The cost cij = ∞ if (i,j) ∉E, |V| 
= n where n > 1.

Let g(i, S) be the length of shortest path beginning at vertex i going via all vertices in S and
ending at vertex 1.The value g(1, V-{1} is the length of optional tour, so we have

g (1, V-{1})= min
2≤k≤n

{c1,k+g (k, V-{1, k})}

We have to obtain,

g(i, S) = minJ ∈ S{Cij + g(j, s−{j})

Clearly, g(i, ϕ) = ci1, 1 ≤ i ≤ n
When |S| < n − 1
The values of i and S for which g(i, S) is needed are such that i ≠ 1, 1∉S, i ∉ S.

g{1, V−{1}} = min2 ≤ k ≤ n{c1k + g{k, V−{1, k}

g{i, s} = minj ∈ S{cij + g{j, (S − j)}

Clearly g(i, ϕ) = ci1

Example 3.4: Solve the given TSP in Figure 3.7



Figure 3.7:

The traveling salesman problem.

Since g{i, ϕ} = ci1  so

g(B,, Φ) = cB,A, = 5

g(C,, Φ) = cC,A, = 8

g(D,, Φ) = cD,A, = 6

Now compute g(i, S) with |S| = 1,

g(B,, {C,}) = {cB,C, + g(C,, ϕ)} = 8 + 8 = 16

g(C,, {D,}) = {cC,D, + g(C,, ϕ)} = 13

g(D,, {C,}) = {cD,C, + g(C,, ϕ)} = 15

g(C,, {B,}) = {cC,B, + g(B,, ϕ)} = 13

g(B,, {D,}) = {cB,D, + g(D,, ϕ)} = 9 + 6 = 15

g(D,, {B,}) = {cD,B, + g(B,, ϕ)} = 9 + 5 = 14

When |S| = 2,



g(C,, {B,, D,}) = min[{cC,B, + g(B,, {D,}), {cC,D, + g(D,, {B,}] = 21

g(D,, {B,, C,}) = min[{cD,B, + g(B,, {C,}), {cD,C, + g(C,, {B,}] = 20

Finally,

So, the length of shortest tour is 26 and the optimal tour is A’-D’-C’-B’-A’.

3.3.3  Chain matrix multiplication

The chain matrix multiplication problem is important in the area of compiler design and database.
As we want to code optimization and query optimization. The problem statement is:

Given {A1, A2 … … ..An}, matrix Ai has dimension pi-1 x pi and we have to perform the matrix

multiplication and parenthesize the product A1 X A2 … … .. An in such a way so that the number of scalar

multiplications will be minimum.

Since matrix multiplication holds associativity property but not commutativity, we have to
follow above matrix order for multiplication but we are free to parenthesize the above
multiplication. Two matrices are compatible for multiplication if number of columns in first matrix
equals to rows in second.

C[i][j] =
q

∑
k=1

A[i][k] ∗ B[k][j]

The number of places in parenthesis in sequence of n matrices given by p(n). Then,

p(n) = 1 for n = 1

Let us insert split between matrices, subproduct may take place between mth and m + 1th
matrices. Thus, for any m = 1 to n–1, the recurrence relation will be,

p(n) =

Let Ai … j represent the product of Ai, Ai +1 … … ..Aj, where i ≤ j. If problem is nontrial, i > k then any
parenthesization of the product Ai, A2 … … ..Aj must split the product between Ak and Ak + 1 for
some integer k where i < = k < j. For some value of k, we first compute Ai … k and Ak + 1 … j and then
result is combined to get the final product Ai … .j. The cost of this process is therefore the sum of
computing cost of matrix Ai … k and Ak + 1 … j and cost of multiplying these two matrices together.
To compute the matrix Ai … j, suppose minimum N[i, j] number of scalar multiplication are
performed. N[i, j] can be defined as:

g(B,, {C,, D,}) = min[{cB,C, + g(C,, {D,}), {cB,D, + g(D,, {C,}]

= min[(8 + 13), (9 + 15)]

= min[21, 24]

= 21

g(D,, {B,, C,, D,}) = min[{cA,B, + g (B,, (C,, D,)}, {cA,B, + g(C,, {B,, D,})}, {cA,D, + g(D

= min {26, 29, 26} = 26

⎧⎪⎨⎪ 1,       if n = 1
n−1

∑
m=1

p(m). p(n − m) if n ≥ 2



N[i, j] = N[i, k] + N[(k + 1)j] + {pi−1xpkxpj}, where i ≤ k < j Clearly, N[i, i] == 0.

The orders of Ai is Pi–1 x Pi, so the order of Ai . . . .j is Pi−1 x Pj. We assume that the value of k is
already known, and there can be (j–i) possible values of k. So, the recursive equation which gives
minimum value is,

N[i, j] = {  

pi−1 x pk × pj  gives number of scalar multiplications required for the product of Ai… K and Ak+1

… j.

3.3.3.1  Optimal cost algorithm

Order of matrix Ai is pi-1 x pi, and the input is a sequence P = < p0,p1 … ..pn >, where length of the
sequence is n + 1.

Algorithm: Matrix-Chain-Order (P)

// Table S[1..n,1..n]is used to store at which index of k the optimal cost is achieved in computing

N[i .j].

 
{ 
            L : = length (P)-1; 
           for j := 1 to L do 
                                        N[j, j] : = 0; // Minimum cost for 
chain length 1// 
           for cl:= 2 to L do // cl is chain length 
                           { 
     for j := 1 to (L-cl+1) do 
                                          { 
                                                            i := (j + cl-1); 
                                                                 N[j, i]: = ∞; 
// Intial Value 
                                                       for k : = j to (i-1) do 
                                                                                 
{ 
                                                                                  
c : = N[j, k] + N[(k+1) i] + pj-1. pk.pi; 
                                                                                  
if c< N[j, i] 
                                                                                  
N[j, i]: = c; 
                                                                                  
S[j, i]: = k; 
                                                                                 
} 
                                                    } 

0,  if i = j

mini≤k<j {[N[i, k] + N[(k + 1), j] + (pi−1xpk × pj)} if i < j



                           } 
                           return N and S. 
}

The following recursive procedure computes the matrix chain product, the table S computed by
previous algorithm and the indices i and j. The initial call is Print-Optimal-Patterns (A, S, 1, n).

Algorithm: Print-Optimal-Patterns(A, S, p,q)

 
{ 
     if (p==q) 
Then print “Ap” 
     else print “(” 
          Print-Optimal-Patterns (A, S, p, S[p, q]); 
          Print-Optimal-Patterns (A, S, S[p, q]+1, q); 
          print “)” 
}

3.3.4  Optimal binary search tree

A binary search tree (BST) is a kind of binary tree which satisfies the following properties:

1. All the elements have distinct key values.
2. The keys (if exist) in left subtree are smaller than the key at the root.
3. The keys (if exist) in right subtree are large than the keys at the root.
4. The left and right subtrees are also binary search tree (see figure 3.8).



Figure 3.8:  A binary search tree.

The total number of BST with n keys is equal to the n-Catalon number,

C(n) = C2n
n ( 1

n+1 )

Let a1,a2, … … an be the distinct keys ordered from the smallest to largest, and let p1,p2, … … ..pn be
the probability of searching them. Let c[i,j] be the smallest average number of comparison made
for successful search in binary tree Ti

j. Made of keys ai, ai +1 … .aj where i and j are integer indices
and 1 ≤ i ≤ j ≤ n. We will find values of c[i,j] for all smaller instances of the problem although we are
interested just in c[1, n].

We need to consider all possible ways to choose a root ak among the keys ai, ai +1, … … .aj for

such a binary tree, the root contains key ak. The left subtree Tk−1
i contains keys ai, … ..ak-1

optimally arranged and the right subtree Tj
k+1  contains keys ak +1, –, aj also optimally arranged

(see figure 3.9). If we count tree level starting with 1 then we have,



Figure 3.9:  A binary tree.

Mathematical expression E(x) =
n

∑
i=1

pixi

i, j] =min i≤k≤j {c[i, k − 1] + c[k + 1, j]} +
j

∑
s=i

ps, where 1 ≤ i ≤ j ≤ n

In empty tree, c[i, i−1] = 0 for 1 ≤ i ≤ n + 1.
Number of comparison in a tree containing one element c[i, i] = pi for all1 ≤ i ≤ n.

c[i, j] =min i≤k≤j {Pk .1 +
k−1

∑
s=i

ps. {level of as in Tk−1
i + 1} +

j

∑
s=k+1

ps. {leve l of as in Tj
k+1 + 1

=min i≤k≤j [{
k−1

∑
s=i

ps. {level of as in Tk−1
i } +

j

∑
s=k+1

ps. {level of as in Tj
k+1} +

j

∑
s=i

ps]



A two-dimensional (2-D) table shows volumes needed for computing c[i, j] (see table 3.4).

Table 3.4: 2-D table.

In the table, entries in the main diagonal all are zero, and given probabilities pi,0 ≤ pi ≤ 1 right
above it and moving towards the upper right corner. The final computation is for c[1,n] gives the
average number of comparison for successful search in optimal binary tree. Also, to get optimal
tree, we need to maintain another 2-D table to record the values of k for which is key comparison
minimum, is achieved.

3.4  Branch-and-bound technique

The branch-and-bound technique like backtracking explores the implicit graph and deals with the
optimal solution to a given problem. In this technique, at each state, the bound is calculated for a
particular node and is checked whether this bound will be able to give the solution or not. That
means we calculate how far we are from the solution in the graph. At each stage, there is a lower
bound for minimization problems and an upper bound for maximization problems. For each
node, bound is calculated by means of partial solution (PS). The calculated bound for the node is
checked with previous best result and if found that new PS results lead to worse case, then bound
with the best solution so far, is selected and we leave this part without exploring it further.
Otherwise, the checking is done with the previous best result obtained so far for every PS while
exploring.

In branch-and-bound technique, we need a function whose value is computed for each node
of state space tree. This function helps in identifying the promising and nonpromising nodes in
state space tree and hence helps in reducing the size of the tree. Also, it accelerates the algorithm.
A good function is not easy to find and this function also should be easily computable.

3.4.1  Assignment problem

In assignment problem, “n” facilities are assigned “n” tasks. We have to find the minimum total
cost of assignment where each facility has exactly one task to perform. We are given a n x n cost
matrix C, where Cij refers to the minimum cost for person Pi to perform task Tj, 1 ≤ i ≤ n and 1 ≤ j ≤ 
n, then the problem is to assign facility to task so that the cost will be minimum.

Example 3.5:

Job



It is obvious that the cost of any solution, including optimal, cannot be smaller than the sum of
the smallest elements in each row of matrix, lower bound = 2 + 3 + 1 + 4 = 10

At each level of the state space tree (see figure 3.10), the node with the minimum cost is
selected for exploring. Root node signifies that no assignment is yet done. At next level, the
assignment a→2 corresponds to minimum cost so selected for exploring and so on. The best
solution a →2, b→1, c → 3 d →4. And the cost will be 13.

The minimum cost =13, optimal assignment is a–>2, b–1, c–>3, d–>4.

Figure 3.10:  State space tree of example 3.5.

3.4.2  Knapsack problem



We have to place n objects in a given knapsack. The knapsack capacity is W and vi is the value
earned by placing ith item. The aim is to find the most valuable subset of items that fit in the
knapsack. The objects are sorted in descending order by the value to weight ratios, that is,

v1

w1
≥ v2

w2
  ≥. . . . . . . . . vn

wn

The simple way to compute the upper bound (ub) is to add v of the item already selected, the
product of the remaining capacity of the knapsack, (W-w) and the best per unit pay of + amount
remaining items which

ub = v + (W − w)(Vi+1/wi+1)

Example 3.6: Solve knapsack problem given the item list as follows (in table 3.5)

Table 3.5: Knapsack problem.

Item Weight Value Value/weight

1 4 40 10

2 7 42 6

3 5 25 5

4 3 12 4

The knapsack capacity (W) is 10.
The root of the state space tree, no items have been selected yet as both total weight of the

items are already selected w and total value v are equal to 0.
The upper bound ub = 0 + 10 x 10 = 100

ub = v + (W − w)( vi+1

wi+1
)



Figure 3.11:  Solution space for knapsack problem.

Best solution of knapsack by branch and bound is subset of items {1,3}, Max value = 65 (see figure
3.11).

3.5  Amortized analysis

In amortized analysis, the time required to perform a sequence of data structure operations is
average of all operation performed. It is different from average case analysis since it such analysis
probability doesn’t involves. We computer an upper bound T(n) on total cost of a sequence of n
operations. Then the average cost per operation is T(n)/n. This average cost is taken as amortized
cost so that all operations have the same amortized cost.

3.5.1  Aggregate method



In aggregate analysis, a series of n operations consumes worst-case time T(n) in total. In worst
case, the average case or amortized cost per operation is T(n)/n.

3.5.2  The potential method

The potential method stands for prepaid efforts as potential that can be released to pay for future
operations. Assume that DS0 is the starting data structure on which n operations are carried out

and the result of applying the ith operation is the data structure DSi and ci be the actual cost of the
ith operation. A potential function maps each DSi to a real number ϕ(DSi) which is the potential
related with that data structure.

The amortized cost c\^
i  of ith operation can be defined as,

So the amortized cost of each operation is sum of actual cost and the increase in potential. The
total amortized cost will be (for n operations),

If  ϕ(DSi) − ϕ(DSi−1) > 0, then the amortized cost c
\^
i  represents an overcharge to the ith

operation and the potential of data structure increases. If potential difference is negative then the
amortized cost Ĉi* represents an undercharge of the ith operation and actual cost of the
operation is paid by the decrease in the potential.

Example 3.7: There are three stack operations, PUSH, POP, and MULTIPOP. PUSH simply
places an element on the top of the stack and POP operation deletes an element from the
stack. MULTIPOP operation deleted multiple elements at once. Define a potential function ϕ
on the stack to be the number object in the stack. For empty stack

Thus, the total amortized cost of n operation with respect to ϕ represents upper bound on the
actual cost. If the ith operation on the stack is PUSH, while stack contains p objects then the
potential difference will be,

ϕ(DSi) − ϕ(DSi−1)) = p + 1 − p = 1

c
\^
i = ci + Δϕi

Δϕi = ϕ (DSi) − ϕ(DSi−1)

n

∑
i=1

c
\^
i =

n

∑
i=1

(ci + ϕ(DSi) − ϕ(DSi−1))

=
n

∑
i=1

ci + ϕ(DSn) − ϕ(DS0))

if ϕ(DSn) ≥ ϕ(DS0) Then , total amortized

cost
n

∑
i=1

c
\^
i is an upper bound on the total actual cost

n

∑
i=1

ci

ϕ(DSo) = 0 ϕ(DSi) ≥ 0 The number of object in stock is never negative.

Since ϕ(DSo) = 0

⇒ ϕ(DSi) ≥ ϕ(DSo)



The amortized cost of PUSH operation is

Suppose the ith operation is MULTIPOP(p, k) and k′ = min(p, k) objects are popped off the
stack. The actual cost of the operation is k′potential difference,

ϕ(DSi) − ϕ(DSi−1) = −k′

Thus the amortized cost of MULTIPOP,

Similarly, the amortized cost of an ordinary POP operation is 0. The amortized cost of each
operation is O(1). So total amortized cost of n operations will be O(n).

3.6  Order statistics

Order set Š: The set in which elements are arranged in ascending order,

š = {2, 3, 4, 5, 6}

Let Š be an ordered set containing n elements, if n is odd, then (n + 1) is even.
Then, median is given by ⌈( n+1

2 )⌉
Again, if n is even, then median are given by n/2 and n/2 + 1,

or ⌊ n+1
2 )⌋ and ⌈− n+1

2 )⌉

Lower median Upper median

let š = {18, 13, 12, 14, 10}

order set š = {10, 12, 13, 14, 18}, n = 5

median = ⌈ n+1
2 )⌉ = ⌈ 5+1

2 )⌉ = ⌈3⌉ = 3

Again, if š = {1, 2, 3, 4, 5, 6}n = 6

Median are ⌊ n+1
2 )⌋ = ⌈3.5⌉ = 3, and⌈ n+1

2 )⌉ = ⌈3.5⌉ = 4

ith order statistics
If Š is an ordered set containing n elements, then ith order statistics for Š is the ith smallest

element of S.
If i = 1, the ith order statistics gives smallest element of the set and for i = n, we get max

element of the set.

Algorithm: Median (S)

c
\^
i = ci + ϕ(DSi) − ϕ(DSi−1)

c
\^
i = 1 + 1 = 2, 2 ∈ O(1)

ĉi = ci + ϕ(DSi) − ϕ(DSi−1)

ĉi = k′ − k′ = 0



{ // S is an ordered set containing “n” elements,

Set n: = length (S);

}

This algorithm completes in a constant time because every steps takes a constant amount of time
(O(1)). So, the complexity will be θ(1).

Algorithm: Selection (i)

{ // Selection of ith smallest element of set S, first changing S into order set.

S: = sort (S);

p := s[i]

return p; // p is the ith smallest element of set Š.

The complexity of this algorithm is based on the complexity of the sorting algorithm if sorting
algorithm is heap sort or merge sort. The complexity of algorithm is 0(nlog2n).

Algorithm: Min(S)

{ // finding the minimum element of a given set S containing p element.

minimum : = s[1] // setting first element as min element

for j:= 2 to p do

{

if(minimum>s[j]) Then

minimum: = s[j];

}

Return (minimum);

}

if ((n/2) = = 0) hen

i : = ⌊ n+1
2 )⌋, j := ⌈ n+1

2 )⌉;

returni, j;

else

k : = ⌈ n+1
2 )⌉;

return k;



The complexity of this algorithm depends on the basic operation comparisons, total comparison
are (n–1) so complexity is θ(n).

Item (i) Weight (Wi) Profit Vi

1 5 30

2 10 20

3 20 100

4 30 90

5 40 60

Problem set

1. Explain the concept of dynamic programming with an example.
2. Compare and contrast dynamic programming with divide-and-conquer (DAC)

programming?
3. Explain in detail the primary difference between the two techniques: DAC and dynamic

programming?
4. What are the fundamental features of dynamic programming?
5. Calculate the value of C(12,8) using dynamic programming.
6. Solve the fractional knapsack problem with the greedy algorithm. The knapsack capacity W 

= 60.
7. Explain the applications of backtracking.
8. Compare and contrast brute force approach and backtracking.
9. Write the control abstraction of backtracking.

10. Use Branch and Bound technique to solve the assignment problem:

F1 F2 F3 F4

J1 4 3 1 5

J2 6 2 9 8

J3 3 4 7 6

J4 2 8 4 9



Chapter 4  Advanced graph algorithm

This chapter introduces graph concept and algorithms based on graph.

4.1  Introduction

A graph is a collection of vertices and edges. These vertices are connected by edges.
A graph can be defined by two sets V and E, where V is the set of vertices of the
graph and E is the set edges. →Figure 4.1 shows two graphs: each one has five
vertices, graph A has six edges, and graph B has eight edges.

Figure 4.1:  Graph A (a) and graph B (b).

4.1.1  Terminology

Here are some terminologies used throughout this chapter:

i. Subgraph: As the name indicates it is also a graph. The subgraph H of a graph
can be denoted as H = (V’, E’) such that V’ ∈ V and E’ ∈ E.

ii. Spanning Subgraph: The spanning subgraph has all vertices of G but not
necessarily edges.

iii. Connected Graph: In connected graph, any of the two vertices have a path
joining them.

iv. Adjacent Vertices: Adjacent vertices are the end points of the same edge.
v. Neighbor Vertices: If two vertices are adjacent to one another, they are said to

be neighbor vertices.
vi. Isolated Vertex: If a vertex has no neighbor vertex it is said to be an isolated

vertex.
vii. Complete Graph: If every vertex of the n vertices of graph G is adjacent to the

other n–1 vertices of G (see →Figure 4.2).



Figure 4.2:  Complete graph.

i. Tree: A tree is a graph that is connected and has no cycles (see →Figure 4.3).

Figure 4.3:  Tree.

4.2  The graph search techniques



There are two techniques for performing search operation on graphs, namely
breadth first search (BFS) and depth first search (DFS).

4.2.1  Breadth first search

BFS starts with a vertex q and makes it as visited. This vertex q is currently said to be
unexplored. Exploring this vertex means all adjacent vertices of this vertex are
visited. Next step is to visit all adjacent vertices of vertex q and which are still
unexplored (see →Figure 4.4). When all adjacent vertices of q are visited then vertex
q is said to be explored. Unexplored vertices are maintained in a list. All these
vertices are then added to this list. Next vertex to be explored is the first node in this
list. This process of vertex exploration keeps on going until the list of unexplored is
not empty.



Figure 4.4:  Breadth first search.

Algorithm: Breadth-First-Search (G)

// Input: A Graph

// Output: All the vertices are marked with the integers depicting the order they

have been visited. Integer 0 indicates vertex p is not yet visited.



 { Mark each vertex in G with 0. // Not visited

   Visit_Order: =0; //global variable

   For all vertices p in V do

     If p has number 0 // not yet visited

     EXPLORE (p);

 }

Algorithm: EXPLORE (p)

 {

    Visit_Order := Visit_Order+1;

    Mark p with the value Visit_Order and initialize queue with p;

    While queue is not empty do

       For every vertex q in V adjacent to vertex p do

       If q in not yet visited // marked with 0

          Visit_Order := Visit_Order +1;

       Mark q with Visit_Order;

       Add q to the queue;

       Remove vertex p from the front of queue;

 }

Complexity of BFS: Queue space need is at most (n–1), if q is connected with (n–1)
remaining vertices, and then adjacent vertices of q are on the queue all at once
therefore,

S(n, e) = θ(n)

If Adjacency list is used for representation of graph G, then all adjacent vertices of p
can be determined in time equivalent to the degree of p, that is, d(p). If G is directed
graph, d(p) is the out degree of node p. The time for for loop in algorithm is of
θ(d(p)) since each vertex in G can be explored exactly once.



Example 4.1: Adjacency list representation →Figure 4.5,

Figure 4.5:

Graph and its adjacency list representation.

In Breadth-First-Search(G) algorithm, each vertex is enqueued and dequeued exactly
once and operation of enqueue and dequeue takes O(1) time. Therefore total time
for performing the operation enqueue is O(|V|) because the list is searched at most
once, for dequeue vertex. The time spent in adjacency list scanning process is O(|E|).



The initialization takes time O(|V|). Hence complexity of the algorithm is O(|V| 
+|E|), when the graph is represented by adjacency linked list. For adjacency matrix

representation, it is O(|V|2).

4.2.2  Depth first search

DFS starts with a vertex p in G, p is said to be current vertex. Any edge (p, q) incident
to the current vertex p is traversed by the algorithm. If this edge vertex q is already
visited, then search backtrack to the vertex p. Otherwise go to q and q becomes new
current vertex. This process is repeated until “deadend” is reached. Then
backtracking is performed. The process ends when backtracking leads back to the
starting vertex. DFS is a recursive algorithm (→figure 4.6).



Figure 4.6:  Depth first search.

Algorithm: Depth-First-Search (G)

// Input: A graph G

// Output: All the vertices are marked with the integers depicting the order they

have been visited. Integer 0 indicates vertex p is unvisited.

 { Mark each vertex in G with 0.



  Visit_Order: = 0;

  For each vetex p in V do

     If p is not yet visited

     DFS_VISIT (p);

}

Algorithm: DFS_VISIT (p)

 {

  Visit_Order: = Visit_Order +1; //global variable Visit_Order

  Mark p with Visit_Order.

  For each vertex q in V adjacent to p do

  If q is not yet visited

     DFS_VISIT (q);

}

Complexity of DFS: The complexity of algorithm will be O (|V|2) if graph is
represented by adjacency matrix. If the graph is represented by adjacency linked list
the complexity will be O (|V| +|E|).

Example 4.2: DFS traversal of the graph (→figure 4.7) given later.



Figure 4.7:

Graph and its DFS traversal.

4.3  Spanning tree

A spanning tree of an undirected and connected graph is a subgraph that is a tree
and contain all the vertices of G. There can be more than one spanning trees of a
graph. Weights can also be assigned to edges of the graph; this weight represents



edge cost or length. Such graphs are called weighted graph. A minimum spanning
tree (MST) is the spanning tree with minimum possible weight.

4.3.1  Kruskal’s algorithm

This algorithm is used to find MST using greedy approach.

Algorithm: Kruskals-MST (G)

// Input: A connected weighted graph G (V, E)

// Output: EMST: The set of edges creating a MST.

//Sort E: Arrange edge weights in increasing order

//w(ei1) ≤. . . . . . . . .≤ w(ei |E|), |E| Number of edges in G.

 {

  EMST⋮≡ Null(Φ);

  counter: = 0;

  j: =0;

  While (counter < (|v|-1)) //TOTAL (|v|-1) edges

     j: = j+1;

     If EMST U{eij} is not a cycle. //An edge which do not form cycle

when added

        EMST⋮≡ EMST U{eij};

        counter: =counter +1;

  RETURN EMST;

 }

Example 4.3: Find the MST using Kruskal’s algorithm for given graph (→figure 4.8).



Figure 4.8:  Graph.

The minimal spanning tree is given in →figure 4.9.



Figure 4.9:  MST using Kruskal’s algorithm.

Complexity of Kruskal’s Algorithm: Complexity of the algorithm is basically
depends on the sorting of edge weights of a given graph. Number of edges are |E|,
so the complexity with an efficient sorting algorithm will be O(|E|log2|E|).

4.3.2  Prim’s algorithm

The Prim’s algorithm to find MST is based on greedy approach. The input to Prim’s
algorithm is an edge-weighted connected graph (the digraph case is not relevant
here) on vertices which we suppose are numbered from 1 to n. At stage r we shall
have chosen a set S of r vertices and a spanning tree T on S, all of whose edges lie in
G. Initially S = {1} and T has no edges. For the rth stage we suppose inductively that S
of size r–1 and a spanning tree T on S have been found. We select vertices i ε S and j
∉ S so that the weight aij of the edge e from i to j is as small as possible, and adjoin j

to S and e to T. When stage n is complete, all vertices have been included, and we
have MST for G. MST for example 4.3 is given in →figure 4.10 solved using Prim’s a
algorithm.

Algorithm: Prim(G)



// Input: A connected weighted graph

//Output: EMST: The set of edges creating a MST.

 {

  VT : ≡ {v0};

  EMST≡ Φ;

  For k: = 1 to |V|-1 do // |V|= n

  Find minimum weight edge e*= (v*,u*), which does not form cycle when

include in EMST, among all the edges (v, u) s.t v is in VT and u is in (v-VT)

  VT: ≡ VTU {u*}

  EMST: ≡ EMST U{e*}

  Return EMST;

 }

Complexity of Prim: If adjacency list is used for graph representation and the
priority queue is implemented as a min heap, the complexity will be O(|E|log |V|).



Figure 4.10:  MST of Example 4.3 using Prim’s Algorithm.

4.4  Shortest path algorithm

This section includes algorithms to find shortest paths between all pair of vertices
and from one source to all other vertices in a graph.

4.4.1  Warhsall’s algorithm

Warshall’s algorithm finds matrices M0,M1,M2 … … Mn, where for each in the (r,s)th

entry Mm(r,s) of Mm is the least length of a path from vertex r to vertex s where all

intermediate vertices if any lie in { 1,2, … .,m}, again Mn is the desired matrix and this

time we may find the entries of Mm for m > 0 by recursive equation

Mm(r, s) = min{Mm−1(r, s), Mm−1(r, m) + Mm−1(m, s)}

Algorithm: Warshall ()

 {

  For p = 1 to |V| do

  M[p, p]: = 0;



  for p : 1 to |V| do

  {

    for q: = 1 to |V| do

    {

      for r: 1 to |V| do

      {

        M[q,r]: = Min(M[q,r], M[q,p] + M[p,r]);

      }

    }

  }

 }

Example 4.4:



Figure 4.11:

Graph.

The matrix will be





4.4.2  Floyd Warshall’s algorithm

In Floyd Warshall’s algorithm, a matrix called distance matrix Lnxn is used to store the

length of shortest path between vertices, where pqth cell denotes the shortest path
length between vertex vp to vq and 1 ≤ p, q ≤ n. One advantage of this algorithm is

that it can be applied to both directed and nondirected graph. The matrix L of a
weighted graph with n vertices is computed through a sequence of n x n matrices.

L(0), L(1), L(2) … … … L(r) … … . . L(n)

Matrix Lr (r = 0, 1, … … n) is equal to the length of the shortest path among all the
paths from the pth vertex to qth vertex with each intermediate vertex if any, number

not more than r. The time complexity of algorithm is O(n3) due to three nested for
loops.

Algorithm: Floyd-Warshall(W)

// Input: The weight matrix W

// Output: The distance matrix L of the shortest path lengths

 {

  L: = W //W = L(0)

  for r: =1 to |V| do

  {

    for p: =1 to |V| do

    {



      for q: =1 to |V| do

      {

        L[p,q]: =Min (L[p, q], L[p, r]+L[r, q]);

      }

    }

  }

  Return L;

 }

Complexity: The running time complexity of Floyd Warshall’s algorithm is O(n3).

Example 4.5:



4.4.3  Dijkstra algorithm

It is a single-source shortest path algorithm; we have to identify the shortest path
from a source vertex to all the remaining vertices of the graph. Dijkstra’s algorithm
follows greedy approach in that it always chooses the most obviously attractive next
step; This algorithm is applicable to graph with positive weights.

For ease, we suppose that the vertices of graph or digraph are numbered from 1
to n, where 1 is the vertex from which minimum distances to the other vertices are
required. There are n main steps, at the rth of which we have a set S of r vertices
such that the minimum distances from 1 to members of S are definitely known, and



the next step is adjoining one of the remaining vertices to S. After step n, we
definitely know the minimum distances from 1 to all other vertices, and the
algorithm terminates.

In this algorithm, a set S is used to store vertices for which ultimate sorted path
length from the source “A” have been found by now. Next the vertex u ∈ V–S is
selected with the minimum shortest path estimate, adds u to S and relaxes all edges
leaving u, this process goes on repetitively until we find shortest path to all the
vertices.

Algorithm: Dijkstra(G, A)

// Input: A graph G and source vertex A.

// Output: The length dv of a shortest path from A to v and its penultimate vertex

prv for every v in V

 
 { 
  for all v in V do 
   dv: == ∞: prv = Null; 
  Q=V; 
  dA: =0; 
  VT=Ф; 
  for i = 0 to n-1 do 
     c* := Min-Priority(Q); 
     VT = VT U{c*}; 
     For all c adjacent to c* do 
     If dc*+ w (c*,c)<dc 
     dc = dc*+w (c*,c) 
    prc : = c* //calculate priority 
 }

The time efficiency of Dijkstra’s algorithm depends on the data structure used for
implementing priority queue and for representing the graph itself. If graph is
represented by adjacency list and the priority queue implements as a min heap. Its
complexity will be O(|E|log2 |V|).

Example 4.6: Find the single-source shortest path of the following graph
(→figure 4.11).



Figure 4.12: Graph G.

S d1 d2 d3 d4 d5 d6 Array of previous vertices

1 2 3 4 5 6

{1} 0 2 ∞ ∞ ∞ 5 1 1

{1,2} 0 2 6 ∞ 5 4 1 2 2 2

{1,2,6} 0 2 6 ∞ 5 4 1 2 2 2

{1,2,5,6} 0 2 6 11 5 4 1 2 5 2 2

{1,2,3,5,6} 0 2 6 10 5 4 1 2 3 2 2

{1,2,3,4,5,6} 0 2 6 10 5 4 1 2 3 2 2

4.4.4  Bellman–Ford algorithm

The Bellman–Ford Algorithm solves single-source shortest path problem of a given
graph that can have negative length weight edges. The function wf is the weight
function that returns weight of edge from vertex v1 to v2. If there is negative-length

cycle, the algorithm signifies that no solution exists. If there is no such cycle, the
algorithm produces the shortest paths and their weights.

Example 4.7: Let us take an example, we have graph shown in →Figure 4.13. S is
the source vertex. We have to find shortest paths from S to all other vertices.

From S to B, we have only one path, that I s,

D(S, B) = wf(S, A) + wf(A, B) = 3+(−4) = −1

To compute path from S to C, we can see that a cycle is formed from S to C:

Length of cycle (C,D,C) = 6 + (−3) = 3 > 0.

So path length will be (S,C) with weight D (S, C) = 5.



Similarly shortest path from S to D is (S,C,D) with weight D(S, D) = 11.

Again from S to E, there is a cycle of length = 3 +(−6) = −3 < 0 (negative weight
cycle). So there is no shortest path for S to E. D(S, E) = −∞.

Similarly D(S,F) = −∞.

Because G is reachable from F, and so D(S, G) = −∞

Vertices H, I, and J are not reachable form S, so D(S, H) = D(S,I) = D(S, J) = ∞.



Figure 4.13:

Graph.

4.4.4.1  Relaxation

Relaxation is a technique that is used in single-source shortest paths algorithms. It is
a method that over and over again reduces the maximum value achieved by the
actual shortest path weight of each vertex until this maximum value and the shortest



path weight are not equal. A variable D(v) is maintained as maximum value of
shortest path from source S to v and it is called shortest path estimate. This attribute
is maintained by all the vertices of the graph. Shortest path estimates and
predecessors are initialized by the following procedure.

Algorithm: Initialize-Single-Source (G, S)

 
 { 
    for all vertices q∈V do 
             D[q] := ∞; 
             π[q] : = NIL; //Predecessor 
    D[S]:= 0; 
}

The process of relaxing is basically checking whether the shortest path q found so far
by going through p can be improved or not, and if so, updating D[q] and π[q].

Algorithm: Relax (p, q, w)

 
 { 
    if (D[q] > D[p]+ w[p,q]) 
             Then D[q]: = D[p]+ w[p,q]; 
             π [q]: = p; 
}

Example 4.8:

D[q] = 9, D[q] + w(p, q) = 7 < D[q]

so new D[q] = 7, π[q]: = p;



Algorithm: BELLMAN-FORD (G,W,S)

 
 { 
    Initialize-Single-Source(G,S) 
    for j: = 1 to |V|-1 
               do for every edge (p, q)∈E 
                        do RELAX (p, q, W); 
    for every edge (p, q)∈E 
              do if D[q] > D[p] + w (p, q) 
                        then return FALSE 
    return TRUE                          // no negative weight 
cycle 
 }

Complexity: The complexity of BELLMAN–FORD Algorithm is O(|V||E|).

Example 4.9: Find the shortest path to all node from node S.







Figure 4.14:

Shortest paths from S to remaining vertices.

4.5  Maximum flow

Some real life problems, like flow of liquid through channels, current through cables,
and information through communication channels, can be modeled using flow
networks. Following are some terminologies used in maximum network flow
problems:

Network: It is connected weighted graph in which the edges are the links and
every vertex is a station. Weights are assigned to every edge and are known as its
capacity.

Capacity: Capacity of an edge is the maximum rate at which the material flows
through that edge per unit of time.

Flow Network: A flow network is a directed graph G in which,

Each edge (p, q) belongs to E, has a nonnegative capacity C(p, q) ≥ 0.
The two special vertices are source(S) has in-degree 0 and sink (T) has out-
degree 0.
Also there exist a path from source to sink.



In other words, it is a directed graph in which a material flows through the network
from source to a sink. Source produces the material and sink consumes the same.

Flow: Let S be the source and T be the sink, then flow in G is a real valued
function F:Vxv → R that satisfies the following three properties (C is the capacity of
flow network):

Capacity constraint: The flow in an edge can not exceed the capacity of the
edge, that is

For all a, b belongs to V we have F(a, b) <= C(a, b)

Skew Symmetry: Flow from vertex a to vertex a is negative of the flow from
vertex b to vertex a, that is,

For all a, b belongs to V, we have F(a, b) = −F(b, a)

Flow conservation (flow in equals flow out): The rate at which material
enters a vertex must be equal to rate at which it leaves the vertex.

Feasible Flow: Total inward flow at intermediate vertex equals to total outward flow
at the vertex. A flow that assures the conservation property is called a Feasible Flow.
Let F’ be a feasible flow in a network G. The flow of the network, denoted by F(G) is
the sum of flows coming out of the source s.

Let F’ be a feasible flow in G. Edge (p, q) is said to be

a. saturated if F(p, q) = C(p, q) (see →figure 4.15),
b. free if F(p, q) = 0,
c. Positive if 0 < F(p, q) < C(p, q).

4.5.1  Maximum flow and minimum cut

Maximum flow of the network is the feasible flow in a network with capacity such
that the value of the flow is as large as possible.

The cut for a flow network G is a set which contains those edges of G, which on
deletion stops flow from source S to sink T. The capacity of a cut is equal to the sum
of capacities of edges present in the cut.



Figure 4.15:  Graph.

In max flow problem, we have to calculate the maximum rate at which the material
can be flowed from the source to the sink without violating any of the capacity
constraints. The three methods to solve max flow problem are as follows:

1. Max flow min cut theorem
2. Ford Fulkerson method
3. Push re-label Method

In a capacitated network, the value of a maximum flow is equal to the capacity of a
minimum cut. This is also known as max flow min cut theorem.

4.5.2  Ford Fulkerson method

This is method used for solving the max flow problem. It uses two concepts:

Residual network
Augmenting paths

Residual Network: Given a flow network G = (V, E), S is the source node and T
is the sink node T. Let f be the flow in G and suppose (p, q) is an edge in G, then
the amount of added flow that can be pushed form p to q without exceeding
the capacity c of the edge (p, q) is called the residual capacity of edge (see
→figure 4.16). The residual capacity (rc) of an edge can be defined as follows:
rc(p, q) = c(p, q) – f(p, q) when (p, q) is a forward edge,
and



rc(p, q) = f(p, q) when (p, q) is a backward edge.
Given a flow network G = (V,E) and flow f, the residual network of G induced by f
is Gf = V,Ef) where,

Ef = {(u, v)  ∈ vxv : cf(u, v) > 0}

Augmenting Path: Given a flow network G and a flow f, an augmenting path P
is a simple path from S to T in the residual network Gf, that, every edge (p,q) on

an augmenting path admits some additional positive flow from p to q without
relating the capacity constraints on the edge.
The residual capacity of augmenting path P is

RCf(p) = min{RCf(p, q} : (p, q)is in P}

Figure 4.16:  Forward and Backward Edge.

Algorithm: FORD-FULKERSON-ALGORITHM (G, S, T)

 
{ 
for each edge (p, q) of graph G 
do f[p, q] := 0 
f [q, p] : =0 
While there exist an augmenting path P from S to T in the residual 
network Gf 



//The excess flow capacity of an augmenting path equals the minimum of  

the capacities of each edge in the path. 
do RCf(P):= min {RCf (p, q) : (p, q ) is in P} 
for each edge (p, q) in path P 
do f[ p, q ] := f [p, q ] + RCf(P) 
f[ q, p ] := – f [ p, q ] // The while loop repeatedly finds an  

augmenting path P in Gf and augments flow f along P by residual  

capacity RCf(P) when no augmenting path exist, the flow f is maximum  

flow. // 
}

Example 4.10: Find maximum flow of the graph given in figure 4.17

Figure 4.17: Graph

Initially for each edge (p, q) belongs to E set f(p, q) and f(q, p) = 0

Augmenting Path: s →X → W → t.

Excess capacity of s → X → W →t = min (4,3,5) = 3.

Initially



Augmenting path: s – > X – > t

Excess capacity of s – > X – > t = m (1, 5) = 1

Augmenting path: s – > Z – > Y – > t

Excess capacity of s – > Z – > Y – > t = min (6, 4, 4) = 4

At this point, there are no remaining augmenting paths!

Therefore the flow is maximum = 8. Hence maximum flow of the network = 8



Problem set

1. What do you understand by spanning tree? What is the importance of finding
minimal spanning tree?

2. Find MST by applying Kruskal’s algorithm to the following graph.

3. Apply Prim’s algorithm to find a MST of the following graphs.

4. Show that prim’s algorithm can like Kruskal’s algorithm be implemented using
heaps.

5. Write pseudo code to determine whether or not a directed graph is singly
connected.

6. Use BFS to visit various vertices in the following graph given, taking C as
starting vertex.

7. Find maximum flow from source 1 to sink 6 in the given flow network.



Chapter 5  Number theory, classification
of problems, and random algorithms

5.1  Division theorem

Division theorem states that if x and y are integers, y ≠ 0. Two exceptional
integers a and b exist such that

x = y. a + b, where 0 ≤ b < y

The quotient is a = ⌊x/y⌋. The ultimate result b = x mod y is called the

principle remainder of the division. The remainder b is 0 if x is divisible by y.

5.1.1  Common divisor and greatest common divisor

As can be understood by the term common divisor, a number is called a
common divisor if it divides two numbers. Let S is the divisor of x and y
then it holds the following property:

S|x and S|y → S|(x + y) and S|(x − y)

In common terms, S|(xa + yb) for integers a and b.
The gcd is the largest common divisor of two integers x and y, not both

zero and is denoted by gcd (x, y).

Theorem 5.1: If there are two integers x and y s.t. x, y ≠ 0, then gcd of x

and y is the smallest positive number of the set {xa + yb: a, b ϵ Z}, where Z
is a set of integers.

Proof: Let us assume that G be an integer that is smallest positive such
that

G = xa + yb for some a, b ∈ Z.

Let q be the quotient and value of q is ⌊x/G⌋.



(i)

Hence x mod G is a linear combination of x and y also but as x mod G < G, so
we have that x mod G = 0 since G is the least positive such linear
combination and so G|x, and similarly G|y. Therefore G is a common
divisor of x and y and so

gcd(x, y)  ≥ G

Again gcd(x, y) divides both x and y and G is linear combination of x and y.
But gcd (x, y)|G and G > 0

⇒ gcd(x, y) ≤ G

Merging with eq (i) we get

gcd(x, y) = G.

5.2  Chinese remainder theorem

Sun-Tzu, a mathematician from China found answer to the problem of
identifying a set of integers x that give remainder 2 if divided by 3, give 3 if
divided by 5, and remainder 2 if divided by 7. This theorem proves a match
between a system of equations modulo a set of pair wise relatively prime
moduli and equation modulo their product.

Theorem: Let m1, m2, m3 …, mi , …, mk be relatively prime integers,

these are regularly known as moduli or divisors. Let the product of

these numbers up to kth number be M.

According to the theorem, if the mi are pairwise coprime, and a1, …, ak are

whole numbers, then p is the only integer, such that 0 ≤ p < M and the
remainder of the Euclidean division of p by mi is ai for every i.

The above statements may be formed as follows in term
of congruence:

x mod G = x − q. G

= x − q(xa + yb)

= x(1 − qa) + y(− qb)



and any two such p are congruent modulo M.

Proof: To establish this theorem, we need to show that a solution exists
and it is unique modulo M. First we will construct the solution and then
prove that yes it is the solution.

Let Mk′ = M
mk′

{M ′
k = m1.m2.m3 … mk′−1mk′+1. … …mk}, for k′ = 

1,2, … k that is M′k′ is the product of all mk′ except mk.

Clearly (Mk′,mk′) = 1

Also there exists an integer y′k′, inverse of M′k′ modulo mk such that

M ′
ky

′
k ≡ 1 mod(mk)

To construct the solution for the set of equations,

p = a1M1y1 + a2M2y2 + … … … … . +akMkyk

Now we will show that p is the solution of system of equations
Taking p mod(mk′), since

mJ = 0 mod(mk′) when J ≠ k′

Thus all terms produce remainder 0 when divided by mk′ except the

term akM
′
ky

′
k  So

Re( p

m′
k

) = ( akM
′
ky

′
k

mk′
) + 0

Again

= Re( ak′(S.mk′+1)
mk′

) = ak′

Which is the solution of k′ th equation.

p ≡ a1(mod m1)

p ≡ a2(mod m2).

.

.

p ≡ ak(mod mk),



Since

(Mk′ . yk′) ≡ 1 mod(mk)

Thus

(Mk′ . yk′ − 1)/mk′ = S (integer)

(Mk′ . yk′) = (S.mk′ +1)

Similarly, for other equations, thus we have p is the solution to the given
system of equations.

To get smallest such p, take p mod (M) and this will be the smallest
number which will satisfy the given system of equations.

Solution of Puzzle: Let p be the number of the things
p/3 has reminder 2, Thus p ≡ 2(mod 3)
p/5 has reminder 3, Thus p ≡ 3(mod 5)
p/7 has reminder 2, Thus p ≡ 2(mod 7)
OR

set of congrumentEqn

Taking N = n1n2n3 = 3.5.7 = 105

n1 = N/3 = 35

n2 = N/5 = 21

n3 = N/7 = 15

Again we see that 2 is inverse of 35 (modulo 3), Since

35 × 2 ≡ 1(mod 3).

Also 1 is the inverse of (21 mod 5),  so ∵ 1 x 21 ≡ 1(mod 5)

And 1 is inverse of 15(mod 7)

∵ 1X15 ≡ 1(mod 7)

As per the theorem, p = a1n1y1 + a2n2y2 + a3n3y3 = 2 . 35 . 2 + 3. 21 . 1 + 2 . 15 .

1 = 233

p ≡ 2 (mod 3)

p ≡ 3 (mod 5)

p ≡ 2 (mod 7)

⎫⎪⎬⎪



  Taking 233 mod(105)= 23

5.3  Matrix operations

5.3.1  Strassen’s matrix multiplication

The complexity of product of two matrix of order (nxn) by simple method is

O(n3). Strassen designed a way to compute product of two matrices with
only 7 multiplication and 18 addition and subtractions.

// STARSON MATRIX MULTIPLICATION //

X[n : n], Y[n : n] // each matrix of order n Xn

for a: = 1 to n do

for c : = 1 to n do

Z[a][c]: 0.0;

For b:=1 to n do

Z[a][c]: = Z[a][ c] + X[a][b] *Y[b][ c];

Return Z;

The complexity of multiplication is simply given by T(n) = cn3 (complexity
multiplication).

5.3.2  Divide and conquer for matrix multiplication

We have to perform multiplication of two matrices of dimension x*x. Let us
assume that x is a power of 2, that is, there exists a positive integer k s. t. x 

= 2 k

In case x is not power of two then enough rows and column of zero’s
can be added to both the matrices, so that resulting dimension are of
power of 2.

Let us assume that X and Y be each divided into four submatrices, each
sub matrix has dimension x/2 × x/2



Then 

If x > 2, matrix Z’s elements can be computed by multiplication and
addition operations applied to matrices of size x/2 × x/2. To perform

matrix multiplication of two matrices 8 multiplications and 4 additions of 
x/2 × x/2 matrices are performed.

Note: The complexity of addition of two matrices is given by O(x2).

Since two matrices of order x/2 × x/2 can be added in time cx2, where

c is a constant, and then earlier statement can be denoted by a relation
T(x), which is

T(x) = [

where, b and c are constant.
On simplification we get

T(x) ≈ O(x3)

These is no improvement over conventional multiplication method.

5.3.3  Strassen’s multiplication

Stranssen’s designed a way to compute product matrix Z using only of 7
multiplications and 18 additions and subtractions. This algorithm computes
seven x/2 × x/2 matrices Z1, Z2, Z3, Z4, Z5, Z6, and Z7. These matrices can

be calculated by performing 7 multiplications and 10 matrix additions or
subtractions. Values of these seven matrices are as follows:

[ ]

[ ] [ ] {8/sub/matrices}
X11X12

X21X22

Y11Y12

Y21Y22

Y11Y12

Y21Y22

Z11 = X11 ∗ Y11 + X12 ∗ Y21

Z12 = X11 ∗ Y12 + X12 ∗ Y22

Z21 = X21 ∗ Y11 + X22 ∗ Y21

Z22 = X21 ∗ Y12 + X22 ∗ Y22

b, x ≤ 2

8T(x/2) + cx2, x ≥ 2



Z1 = (X11 + X22) ∗ (Y11 + Y22)

Z2 = (X21 + X22) ∗ (Y11)

Z3 = X11 ∗ (Y12 − Y22)

Z4 = X22 ∗ (Y21 − Y11)

Z5 = (X11 + X12) ∗ Y22

Z6 = (X21 + X11) ∗ (Y11 + Y12)

Z7 = (X12 − X22) ∗ (Y21 + Y22)

And

Z11 = Z1 + Z4 − Z5 + Z7

Z12 = Z3 + Z5

Z21 = Z2 + Z4

Z22 = Z1 + Z3 − Z2 + Z6

So the recurrence relation is

T (x) = [

T(x) = ax2[1 + 7/4+(7/4)2 + … … … … . . (7/4)k−1] + 7kT(1)

= ax2( 7
4 )

log2x − ax2 + 7log2x. b

= a7log2x −  ax2 + xlog27. b = O(xlog27)

T(x) ≈ O(x2.81)

So, a small improvement has been observed.

5.4  Pattern matching

b, x ≤ 2

7T(x/2) + ax2, x > 2



Let Text[1:p] is a sequence of p elements and Pattern[1:q] is the pattern
array where q ≤ p. The elements of Pattern and Text are characters drawn
from the set of alphabet ∑. Set ∑* is the set of all finite length strings
formed using character z from ∑. The pattern Pattern exists with sift z in
text Text if 0 ≤ z ≤ (p–q) and Text[z + 1, z + q] = Pattern[1:q], that is Text[z + j] 
= Pattern[j] for 1 ≤ j ≤ q. If pattern Pattern exists with sift z in array Text, then
z is called a valid shift otherwise invalid. String matching problem is to find
all valid shifts.

The pattern occurs only once at shift z = 3 in the text.

5.4.1  The Naive algorithm

The worst case complexity of Naive algorithm is O(p−q + 1) m). This bound

is too tight (e.g., consider a text ap and a pattern aq). If the pattern is half

the length of the text (q = p/2), then the worst-case running time is Ω (p2).
Because information gained about the text while trying to match the
pattern with shift z is not utilized when one tries to match the pattern with
shift z + 1, the naive algorithm is inefficient. Naive algorithm identifies all
valid shifts using a loop that ensures the condition Pattern[1:q] = Text[z + 1:
z + q] for all (p−q + 1) possible values of z.

NAIVE-STRING–MATCHING–ALGORITHM (Text, Pattern)

 
1. p: = length[Text] 
2. q: = length[Pattern] 
3. for z: = 0 to (p-q) 
4.           if ({Pattern[1-q] = Text[z+1….,z+q]) 
5.                         then Print “ Pattern occurs with 
shift” z. 
This procedure takes time O(p-q+1)q.



5.4.2  The Rabin–Karp algorithm

The Rabin–Karp algorithm is a Monte-Carlo randomized algorithm for
matching two strings based on hashing. The idea is to compare hash
values rather than strings. Assume we have a hash function h on strings of
length m, and let h* = h(x) be hash of the pattern and hs = h (Ys +1 … .Ys +m)

the hash of the text at shift z. Check that h* = hs for all shift z.

Considerations for h:

Hash values can be compared quickly
Fast update: hs +1 can be computed quickly from hs

Probability of false matches (h(u) = h(v), but u ≠ v) is bounded

// THE HASH FUNCTION //

For simplicity, consider strings over alphabet Ʃ = {0,1). Given a prime p, the
hash of a bit string x is obtained by interpreting x as a binary number and
dividing by p

h(x) =
m

∑
i=1

xi.2
m−imod p

Working modulo p allows us to have strings of billions of bits into a few

words(e.g., take p ~ 264) and allows us to assume that hash values are
compared and updated to constant time. However it introduces the
possibility of false matches:

– For example, if p = 17 then h (0100101) = h(0010100)

// UPDATING THE HASH FUNCTION //

If we assume again that hs = h (ys +1… .ys +m), then

hs =
m

∑
i=1

ys+i. 2m−i mod p and

hs+1 =
m

∑
i=1

ys+i+1. 2m−imod p



Thus

hs+1 = 2(hs − 2m−1. ys+1) + ys+m+1mod p

= 2hs − 2m. ys+1 + ys+m+1mod p

Now if we recomputed the constant c = 2 m–1 mod p, we have a quick way of
updating hs +1:

hs+1=2 (hs − c. ys+1. ys+m+1)mod p

THE RABIN–KARP – MATCHER (Text, Pattern, d, q) // for decimal
numbers

n : = Length [Text];

m: = Length [Pattern]

h : d m-1 mod q ( h= 10m-1 mod q)

p:= 0;

t0:= O;

for i = 1 to m

do p =(dp+p[i]),mod q {Preprocessing θ(n2)time}

d0 := (dtp +T[i], mod q

for s: = 0 t0 (n-m)

do if p = ts { θ(n-m+1)m}

Then if p[1:-m] = T[s+1: S+m]

Then print “pattern occurs with shift’s;

If s < (n-m)

Then ts+1:= (d (t s-T[s+1]h)+T[s+m+1] mod q



Example 5.1: Change pattern into hash value. q is the prime
number.

d = 10, m = 3, q = 11

for i : = 1 to 3 do

i = 1, p: = (0 + 2) mod 11 = 2

i = 2, p : = ( 2 × 10 + 6) mod 11 = 4

                      { p = 265 mod 11

                      { p = 1 mod 11 = 1

i = 3, p: = (4 x 10 + 5) mod 11 = 45 mod 11 = 1

The matching time of the Rabin-Karp algorithm is O(n + m). Because m 

≤ n so the matching time will be O(n).

Example 5.2: For working modulo q = 11, search for the pattern p = 
26 in the text T = 3141592653589793. Find the number of spurious
hits.

Solution: The Given text T[1:16] is



Recursive equation for tz will be: ts +1 = d(tsz–T(s + 1)h) + T(s + 

m + 1])mod q

{ p = 26

p = (26) mod
11) = 4

t1 = (10(31 – – 3 × 10) + 4)mod 11 t0 = 31(mod 11)

 = 9

= 14 mod 11 = 3(mod11) = 3 d = |Σ| = 10

The mod form t1 = (10(9–3x10) + 4)mod 11 h = 10m–1 mod
11

 = 10 mod 11

(–210+213) mod 4 h = 10 }

= 3 mod 4 = 3

= –210 + 4 mod 11

= 14 mod 11 = 3 mod 11)

= 14 mod 11 = 3 (mod 11)

Using algorithm for loop, p=4 and t0=9.



Now possible values of shift z=0 to 14 (n–m=16–2=14)

Matching the values,

If(p==z)

Then if p[1:2]=T(z+1:z+2]

Then pattern exists otherwise not.

For, z=0, p=4, t0=9 i.e. p≠t0

z=1, p=4, t1=5 i.e. p≠t1

Similarly for different values of z up to 14, a total of 3 spurious hits
encountered and the pattern matches at z=6.

5.5  P and NP class problem

We can divide all the decision problems into two classes based on their
complexity: class P and class NP. Class P problems are the problems that
can be cracked in polynomial time by deterministic algorithm. These are
also called polynomial. However some problems cannot be cracked in
polynomial time, like Hamiltonian circuit traveling salesman problem,
knapsack problem, and graph coloring problem. Class NP problem are the
problems that can be cracked by nondeterministic polynomial algorithm.
This class of problem is called nondeterministic polynomial. All class P
problems are also class NP problems, so

P ⊆ NP

5.5.1  Reducibility

Reducibility is the property of a decision problem. The problem D1 is said to

be polynominally reducible to another decision problem D2 if there exists a

function f that transform instance s of D1 to instance of D2 such that

1. The function f makes all yes instances of D1 to yes instance of D2 and

all no instance of D1 into no instance of D2.



2. The function f can be calculated by the polynomial time algorithm.

5.5.2  NP complete problem

A decision problem D is said to be NP Complete if

1. It belongs to class NP.
2. Every problem in NP class is polynomial reducible to D.

The NP class of problems contains decision problems that are provable in
polynomial time. Any problem in P class is also in NP class as already
stated.

5.6  Approximation algorithms

In the event that an issue is NP Complete, we are probably not going to
locate a polynomial time calculation for solving it precisely. Approximation
algorithms don’t guarantee the best solution. The goal of an
approximation algorithm is to come as close as possible to the optimum
value in a reasonable amount of time which is at the most polynomial time.
An algorithm that returns close to optimal solution is called approximation
algorithm.

Let i be the instance of some optimization problem and this problem
has a large number of possible solutions and the cost of solution founded
by approximate algorithm is c(i) and the cost of optimal solution is c*(i). For
minimization problem, we are concerned to discover a solution, for which
value of the expression c(i)/c*(i) will be as small as possible. Conversely, for
maximization problem, the expression c*(i)/c(i) value will be as small as
possible.

We say that approximation algorithms satisfy following condition:

max(c(i)/c ∗ (i),  c ∗ (i)/c(i))  ≤  p(n)

Both minimization and maximization problems holds this definition.
Note that the condition p(n) ≥ 1 always holds.
If the solution generated by approximation algorithm is accurate and

optimal then undoubtedly

if, p(n)  =  1.



5.6.1  Relative error

The relative error of the approximate algorithm can be defined as follows:

modulus[(c(i) −∘ c∗(i))/c∗(i)], for any input size.

5.6.2  Approximation algorithm for TSP

The nearest neighbor algorithm (greedy approach) is an approximation
algorithm to solve traveling salesman problem (TSP) and to get optimal
solution of TSP, we can apply the dynamic programming approach.
Consider the example given in figure 5.1:

Figure 5.1:  A Graph to be solved for TSP.



The nearest neighbor approach, starting from city a,then the nearest
neighbor of a is b and nearest neighbor of b is c and then c to d and finally
return to vertex a.

a-------1-b------2-c------1-d------6-a
The path length of Hamiltonian cycle is 10
But if we apply the DPP, the length of the tour would be 8.
Thus the accuracy ration of this approximation is

V (Sa))= (c(i)/c* (i))=10/8=1. 25

That is, path Sa is 25% larger than the optimal path S*.

5.6.3  The vertex cover problem

The vertex cover problem comes under the class of NP complete problems.
G is an undirected graph with V as the collection of vertices and E as the
collection of edges. Vertex cover V’ of graph G is a subset of V and if (u, v) is
an edge of graph G then either u ∈ V’ or v ∈ V’ or both. Number of vertices
in V is called size of the vertex cover. The problem is to discover a minimum
sized vertex cover. This vertex cover will be optimal vertex cover of graph
G. It may not be an easy task to discover an optimal vertex cover, but it is
not too difficult to discover a vertex cover which is close to optimal.

APPROX-VERTEX- COVER (G)

1. V’: = Φ;

2. E’ : = E(G)

3. While E’ not Φ do

4.  Let take an arbitrary edge(u, v) from the set E’

5.  V’:= V’ U{u, v}

6. Remove all the edges that are incident on either u or v from the set
E’.

7. return V’.



Example 5.3: Find approximate vertex cover of the graph given in
figure 5.2.





Figure 5.3:

Approximate vertex cover of graph given in figure 5.2.

The optimal vertex cover. The optimal cover is given in figure 5.3. c*={b, d,
e} size(c*)=3.

The time complexity of the above algorithm is O(v + E) using adjacency
list to represent E’. This algorithm gives a vertex cover that is at most two
times the number of vertices in an optimal cover.

Figure 5.4:  The optimal vertex cover.

Theorem 5.6.4: APPROX-VERTEX-COVER is a polynomial time 2-
approximation algorithm.

Proof: The APPROX-VERTEX-COVER runs ion polynomial time, to prove
that APPROX-VERTEX-COVER returns a vertex cover that is at most twice the



(i)

(ii)

proved

size of optimal cover.
Let A is the set of edges picked in algorithm APPROX-VERTEX-COVER in

order to cover the edges in A, any vertex cover, particular an optimal cover
C* must include at least one end point of each edge in A. No two edges in A
share an end point since once an edge is picked, all other edges that
incident on its end points are deleted from E, thus no two edges in A are
covered by any vertex C* of graph G. For C*, we have lower bound

|C ∗ | ≥ |A|

Each execution of line 4 of the algorithm, picks an edge for which neither of
its end points are already in C. One edge included in set A mean two
vertices included in set C, thus we have

C = {u, v}
A = {(u,v)…}

|C| = 2|A|

Combining equation (i) and (ii), we have

|C| = 2|A| ≤ 2|C∗|

|C|| ≤ 2|C∗|

5.7  Deterministic and randomized algorithm

A deterministic algorithm is one that consistently acts a similar way given a
similar input; the input totally decides the sequence of calculation
execution by the algorithm. Randomized algorithm puts together their
conduct with respect to the input as well as on a few arbitrary decisions
(see figure 5.5). The equivalent randomized algorithm given a similar input
on numerous occasions may perform diverse calculation in every
invocation. This implies, among other change that the running time of a
randomized algorithm on a given input is not, at this point fixed however
itself a random variable. At the point when we investigate randomized
algorithm, we are regularly keen on the most pessimistic scenario: worst
case running time.



Figure 5.5:  Deterministic and randomized algorithm.

5.7.1  The nut and bolt problem

Let us assume that we have n nuts and n bolts of diverse dimensions. Every
nut fits with just one bolt and vice versa. The nuts and bolts are all
approximately just of the equal size. We wish to discover the nut matches a
specific bolt. Then, (n–1) test in worst case whereas in average case, (n/2)
test are to be performed.

Let the number of comparisons to discover a match for a sole bolt out
of n nuts is denoted by T(n). Obviously when we have only one 1 nut then
number of comparisons will be 0 and in case of 2 nuts, the number of
comparisons will be one. If number of nuts is greater than 2, then T(n) have
value between 1 to (n–1). So expected value of T(n) would be:

E{T(n)} =
n−1

∑
k=1

k. Pr[T(n) = k].

Types of randomized algorithm:
(1) LAS VEGAS: A randomized algorithm that always return a correct

result but running time may vary between executions. Ex: randomized
quick sort.

(2) MONTE CARLO: A randomized algorithm that terminates in
polynomial time but might produce erroneous result. Ex: randomized min
cut algorithm.

5.8  Computational geometry

Computational geometry is a part of computer science given to the
investigation of algorithm which can be expressed as far as geometry.
Some absolutely geometrical issues emerge out of the investigation of



computational geometric algorithms, and such problems are additionally
viewed as a major aspect of computational geometry. The primary catalyst
for the advancement of computational geometry as a control was progress
in computer graphics and computer aided design and manufacturing, yet
numerous issues in computational geometry are old style in nature and
may originate from numerical perception.

Other significant utilizations of computational geometry incorporate
robotics, geographic data framework, (geometrical area and search, route
arranging), integrated circuit plan (IC geometry structure and
confirmation), and computer aided designing.

5.9  The convex hull

The convex hull of a collection Q of points is the least convex polygon P for
which each point in Q is either on the boundary of P or in its interior (see
figure 5.6). The convex hull of Q is denoted by CH (Q)

Q = {p0, p1, p2, … … … , p12}



Figure 5.6:  The convex hull.

Naturally, we assume that each point in Q is a nail sticking out from a
board. The convex hull is then the shape formed by a light rubber band
that surrounds all the nails.

GRAHAM-SCAN (Q)

1. Let P0 be the point in Q with least value of y of coordinate or the left

most such point in case of tie.
2. Let {P1, P2, … … Pm} be the rest of the points in Q sorted by polar

angle in counterclockwise fashion around P0. (if more than one point

has a same angle, remove all but the one that is at maximum
distance from P0.)

3. PUSH (P0, S)

4. PUSH (P1, S)

5. PUSH (P2, S)

6. for i = 3 to m



7. do while the angle formed by points NEXT TO TOP (S'),TOP (S'), and Pi

makes a nonleft turn.
8. POP(S)

 a. PUSH (Pi, S)

9. Return S

Figure 5.7:  Counterclockwise and clockwise Turn.

5.9.1  Counterclockwise and clockwise



Figure 5.8:  Condition for intersecting lines.

P0 = (x0, y0), P1 = (x1, y1), P2 = (x2, y2)

P1 − P0 = (x1 − x0)i+(y1 − y0)j

P2 − P0 = (x2 − x0)i+(y2 − y0)j

(P1 − P0)x(P2 − P0) = {(x1 − x0) (y2 − y0) − (x2 − x0) (y1 − y0) }k

If the earlier expression is positive at that point P0P1 is clockwise from P0P2

and if it is negative then it is counterclockwise.

5.9.2  Finding whether two line segments intersect

A line segment L1L2 intersects the other line segment if the end points L1,

L2 lie on opposite side of the other line. A border line scenario arises when

both the lines coincide with each other. The two conditions to check
whether two line segments intersect each other are as follows (see figure
5.8):

1. Each line segment straddles the line segment containing the other.



2. An end point of one segment lies on the other line segments.

Figure 5.9:  Segment intersection.

To check whether two segments are intersecting or not (see figure 5.8)
the algorithm is given below. SEGMENT INTERSECT (L1, L2, L3, L4)

1. c1<- direction(L3, L4, L1)

2. c2<- direction(L3, L4, L2)

3. c3<- direction(L1, L2, L3)

4. c4<- direction(L1, L2, L4)

5. if{(c1> 0) and (c2< 0)} or {c1<0 and c2> 0} and { c3> 0 and c4<0} or { c3<

0 and c4>0}



6. then return true

7. else if c1 =0 and on-segment (L3, L4,L1)

8. then return true.

9. else if c2 =0 and on-segment (L3, L4,L2)

10. then return true

11. else if c3 =0 and on-segment (L1, L2,L3)

12. then return true

13. else if c4 =0 and on-segment (L1, L2,L4)

14. then return true

15. else return false

Direction (Li, Lj, Lk)

1. return(Lk–Li)x (Lj–Li)

On-segment (Li, Lj, Lk)

1. if min(xi,xj)≤xk≤max(xi,xj) and min(yi,yj)≤yk≤max(yi,yj)

2. then return true

3. else return false



Figure 5.2:  Graph.

5.10  Class P problems

An algorithm shows a problem is in polynomial time if its worst-case time
efficiency belongs to O(p(n)), where p(n) is polynomial of n (input size).
These are easy problems since

log2n < n,  for n

So,  t(n) ∈ O(log2n)

Also give t(n) ∈ O(n)

The problems that can be solved in polynomial time are called tractable.
Problem that cannot be solved in polynomial time are called intractable.
Example: Sorting and searching problems are class P problems.

5.10.1  NP (nondeterministic Polynomial Time)
Problems



Class NP is the decision class problems that can be solved by
nondeterministic polynomial algorithm. Any problem for which the answer
is either “yes” or “no” (0 or 1) is called a decision problem. A problem is NP
if you can quickly (in polynomial time) test whether a solution is correct
(without worrying about how many rounds it might be to find a solution).
Problems in NP class are relatively easy. Example: Long simple path in a
graph.

Does there exists a simple path from S to t with at least k edges?
If we are given a path, we can quickly look at it and add up the length S,

checking that it really is a path with length at least k, this can be done in
linear (polynomial time).

5.10.2  Any problem in P is also in NP

Thus P⊆NP
Searching and sorting problems are P problems, so NP problems as

well.

5.10.3  NP Hard Problems

Let L1 and L2 are problems, and L1 is reduces to L2, if there exists a way to

solve L1 by deterministic polynomial time algorithm using a deterministic

algorithm that solves L2 in polynomial time.

Definition: A problem L is NP Hard if and only if satisfiability is reduced
to L (satisfiability α L).

5.10.4  NP Complete

A problem L is NP complete if and only if L is NP Hard and L∈NP. Example:
Vertex cover problem, travelling sales person problem, Hamiltonian cycle
problem, clique problem, etc.

5.10.5  Halting Problem for Deterministic Algorithms

A halting problem is to determine for an arbitrary deterministic algorithm A
with input I ever terminates (or enter in infinite loop). This problem is



decidable, and there exists no algorithms of any complexity to solve it, so
this problem is not in NP. To show

Satisfiability α Time Halting Problem

Construct a problem A whose input is a propositional formula X, if X has n

variables then A tries 2n possible truth assignments and verifies whether X
is satisfiable. If it is, A stops and if not then A enters infinite loop.

Hence A halts on input X if and only if X is satisfiable. IF we had a
polynomial time algorithm for halting problems then we could solve the
satisfiability problem in polynomial time using A, and X is input to
algorithm for halting problems. Hence, halting problem is NP hard that is
not an NP.

5.10.6  The satisfiability problem

Let the Boolean expression be

E ≡ a ∧ ¬(b ∨ c),E(T ) = 1 i. e. E is true.

E is true if a is true and ¬(b ∨ c) is true, when both b and c are false. The

expression E is said to be satisfiable if there exist at least one truth
assignment T that satisfies E (T) = 1.

E ≡ a ∧ ¬(b ∨ c) 

is satisfiable if

T(a) = 1, T(b) = 0, T(c) = 0

For these values, E(T) = 1.
Theorem 5.10.4: (Cook’s Theorem) This theorem states that

satisfiability problem is NP complete.

5.11  Clique

A graph G(V, E) is said to be complete graph if all vertices of graph G are
adjacent to each other. A clique C of a graph G is a collection of vertices
that form complete graph. Size of clique is the number of vertices in C. To



discover the largest clique is an NP-hard problem and is known as
maximum clique problem. The problem is closely related to vertex cover
problem and independent set problem.

Let the set E* be the complement of E (set of edges in G), S is a greatest
independent set in the complementary graph G* if S is a maximum clique
of G. It follows that V–S is a minimum vertex cover in G*. An example is
given in figure 5.11.

Figure 5.11:  Vertex 2-3-4-5 forms a clique of size 4.



Figure 5.10:  Relationship Between P, NP, NP hard and NP complete
problems.

5.11.1  Clique Decision Problem

The problem is to find a clique of a particular size (say k) in a given graph
G(V, E). It is generally called k-clique problem.

5.11.2  Non-Deterministic Algorithm for Clique
Decision Algorithm

This algorithm finds a set of k distinct vertices then check whether these
vertices form a complete graph G. The graph G is represented as adjacency
matrix and |V|=n.

Algorithm: DCK(G, n, k)

S=Φ 
i=1 to k do  
{ 
       q=choice(1, n) 
       if q∈S then failure() 



       S=SU{q}

 } // for all pairs (p, q) such that p∈S and q∈S and p≠q. 
If (p, q) is not an edge of G then failure() 
Else success().

Theorem: Prove that clique decision problem is NP Complete.
Proof: We will prove this in two steps:

i. Show that clique problem is in NP.
ii. 3CNF (3SAT) can be reduced to clique decision problem

Suppose we are given a clique then it is simple to check that whether it is
clique of size k, by counting the number of vertices in the clique and it
would take polynomial time thus k-clique decision is NP problem.

For second part, we will show that 3CNF (3SAT) can be reduced to clique
decision problem.

Consider a Boolean expression,

E = C1 ∧ C2 ∧ C3 ∧ … … … …Cr … … . ∧Ck

These are k clauses in E and each clause 
Cr = lr1 ∨ lr2 ∨ lr3, where l1, l2, l3  are literals. Then expression

E(T)=1, there exists a clique of size k in the corresponding graph G (V,
E).

Construction of Graph: For each clause Cr = lr1 ∨ lr2 ∨ lr3, we place

triple V1
r, V2

r, V3
r in V(G) and after this we will get V(G) containing 3k

vertices and for E(G) we will connect

i. Vi
r and Vj

s, (r≠s) {No connection in same triple}

ii. Also connect all the literals in different triples but not the literals with
negation of each other.
Now E = G(V, E)
Since E(T) = 1 and
E = C1 ∧ C2 ∧ C3 ∧ … … …Cr … … : ∧Ck

and

Cr = l1
r.l2

r.l3
r

Thus in each clause Cr, we have at least a literal with the value 1 for E(T)=1.



For each clause pick a vertex corresponding to literal having value 1.
And then we have a set of k vertices V’. From the construction of graph G(V,
E) all these vertices are connected with each other by one edge and thus V’
is a clique of size k.

Again graph G(V, E) has a clique V’ of size k by construction of graph
G(V, E). We know that no connection in same triple and the literals are not
connected with their negations. Since we have a clique of size k, thus we
have a vertex in clique corresponding to a clause. Map the literals in each
clause for which we have vertex in clique to 1. For each clause, we have one
literal which has truth value (i.e. 1) and thus E(T)=1, i.e. E is satisfied. It
means clique decision problem is NP Hard, since it is NP too. Therefore it is
NP complete problem.

Problem set

1. By taking a condition where all of the elements of a given pattern are
different, can we amend the original naive string matching
algorithm so that its results will be better for these types of patterns.
If we can, then what are the changes to original algorithm?

2. Write down randomized algorithm for quick sort.
3. Rewrite the quick sort algorithm so that it takes a comparison

function cmp: α × α → order and a sequence of type α seq, and only
uses the comparison once when comparing the pivot with each key.
The type order is the set {Less, Equal, Less}.

4. Solve and explain how 0/1 knapsack problem using approximation
algorithm.

5. Explain the satisfiability problem.
6. Explain the convex and concave regions.
7. Write a note on randomized algorithms.
8. Explain the computational geometry.
9. Explain Class P, NP NP hard and NP Complete with help of example.

10. What is clique, explain clique decision problem and max clique
problem.

11. Give a nondeterministic algorithm to clique decision problem.
12. State and prove Chinese Remainder Theorem.
13. With working modulo q=13 how many spurious hits does Rabin Karp

matcher encountered in text T=4 9 6 2 8 3 4 2 6 5 2 9, when looking for
p=6 2.



14. Write a short note on matrix multiplication.
15. Prove that vertex cover problem is NP Complete.



Chapter 6  Tree and heaps

6.1  Red–Black Tree

A Red–Black Tree (RBT) is a kind of binary search tree that holds
property of self-balancing. Each node in RBT has color as an extra
field; color may be red or black. A RBT (see figure 6.1) must satisfy
the following properties:

i. The root node always has a black color.
ii. A nil is considered to be black colored.
iii. The Rule of Black Children: The children of red node are

black.
iv. The Rule of Black Height: For each node in RBT, there is

black height which is an integer (bh(v)) such that each path
from node v to any of its descendant leaves containing
same number of black nodes. This is known as the black

height of node v. Black height of root is black height of the
tree.

v. Node Height: The number of edges in the longest route to a
descendant leaf node.

vi. A Node’s Black Height: The number of nodes that are black
(including NIL) on the route from the node itself to a leaf
node {node itself is not counted}.

Each node of the tree contains fields colour, key, left, right, and a
pointer p which indicates, if child or parent of a node doesn’t
exists then pointer field of the node contains value NIL.

In Red-Black tree, the key bearing nodes are known as
internal nodes.

Theorem 6.1.1: A Red-Black tree with n internal nodes has
height at most 2 log2(n+1).



Proof: To prove the theorem, first we show that subtree

rooted at any node x contains at least 2bh(x) ˗1 internal nodes. We
will prove this by mathematical induction on height of node x, if
height of node x is 0then node x must be a leaf node and subtree

rooted at node x contains at least 2bh(x)–1 {=20–1=0} internal
nodes. It means, for height 0, statement is valid.

Now consider a node x that has a positive height and is an
internal node with two children. Each child has black height either
bh(x) or bh(x)–1, depending on its colour is red or black
respectively. Since the height of child of node x is less than the
height of x itself, we can apply the inductive hypothesis to say that

each child has at least 2bh(x)–1–1 internal nodes. Thus a subtree

rooted at x contain at least (2bh(x)–1–1)+(2bh(x)–1–1)+1=2bh(x)–1
internal nodes. Thus, the statement is valid.

To prove the theorem, let h be the height of the tree then at
least half of the nodes on any path from the root to a leaf node
including root must be black. Thus, the black height of the root
must be at least h/2. So,

n ≥ 2h/2–1 (n is number of internal nodes in the tree)

n+1 ≥ 2h/2

log2(n+1) ≥ h/2

h ≤ 2 log2(n+1)   proved



Figure 6.1:  Red–Black Tree.

6.2  Operations on RBT

This section discusses two operations on RBT, insertion and
deletion of node. Operations left-rotate and right-rotate are used
in these operations.

6.2.1  Rotation

Rotation is a confined process in search tree. Let us assume that
we have to rotate about the node m and its right child n is not nil.
Node n will be the root of the tree. The tree rooted by m will be
left child of n and left child of n will be right child of m after
performing left rotation (see figure 6.2). The following algorithm
given is for left rotation. It is assumed that right[m] ≠ nil, and
parent of root node parent is nil.



Figure 6.2:  Left rotation.

Algorithm: Left-Rotate()

 
{ 
           n ←right[m]; 
           right[m] ← left[n]; 
           Parent[left[n]] ←m; 
           parent[n]<-parent[m]. 
           If Parent[m] = nil [Tree] 
                          Then root [Tree] ← n; 
           else if m = left {Parent[m]} 
                          Then Left Parent [m] ←n; 
           else right{Parent[m]} ←n; 
           left[n] ←m; 
           Parent[m] ←m; 
}

Time complexity of both the rotations left and right operations is
O(1) as only the pointers are changed.



6.2.2  Insertion

Time complexity of inserting a new node in RBT is O(logn) time.

Algorithm for insertion of a node in tree is given later. Suppose
we have to insert node c (for which key[c] = v, left [c] = NIL and
right [c] = NIL) in the tree Tree. RB-INSERT-FIXUP(Tree, c)procedure
is used to recolor nodes and perform rotations. A node c is passed
as a parameter to the procedure.

Algorithm: RB-INSERT(Tree, c)

 
{ 
     b ← NIL; 
     a ← root [Tree]; 
     while (a is not NIL) 
               do b ← a; 
               if (key[c] < key[a]) 
                    Then a ← left[a]. 
               else a ← right [a]; 
     p [c] ←b; 
     if b = Nil ; 
                    Then root[Tree] ← c;               
// Tree is empty 
               else if (key[c] < key[b]) 
                    Then left [b] ← c; 
          else right[b] ← c; 
     left[c] ←nil;     right[c] ←nil; 
    color[c] ←RED; 
    RB-INSERT-FIXUP (Tree, c); 
}



After this, if there is any color variation then the following RB-

COLOR-FIXUP(Tree,c) given fixes them:

Algorithm: RB-COLOR- FIXUP (Tree,c)

 
{ 
 While color[parent[c]] = RED 
  do if parent[c] = left[parent[parent[c]]] // Left 
of Parent of (Parent of c) 
   Then b ← right parent[parent[c]] 
    if (color[b] = RED) 
     Then color [parent[c]] ← BLACK  
     color[b] ←BLACK 
     color[parent[parent[c]] ← RED 
     c ← parent[parent[c]] 
    else if c = right[parent[c]] 
     Then c ← Parent[c] 
      Left-Rotate (Tree, c) 
     color[parent[c]] ← BLACK 
     color[parent[parent[c]]] ← RED 
     Right-Rotate (Tree,parent[parent[c]) 
    else (Same as then clause with “right” and 
left” exchanged) 
 Color [root[Tree]] ← BLACK 
}

Example 6.1: Insert the values 42, 39, 32, 13, 20, 9 into an
empty RBT.

(1) Insert 42



(2) Insert 39

(3) Insert 32

(4) Insert 13

(5) Insert 20

(6) Insert 9



Last one is the final tree.

6.2.3  Deletion

Like the other basic operations on a n-node RB Tree, deletion of a
node takes time O(log n).

Algorithm: RB-DELETE(T, c)

If left[c]=nil or right[c]=nil then

    b←c;

else

    b←tree-successor[c];

if left[b]≠nil then

    a←left[b];

else

    a←right[b];

parent[a]=parent[b];

if parent[b]=nil then



    root[tree] ←a;

else if b=left[parent[b]] then

    left[parent[y]] ←a;

  else

    right[parent[y]] ←a;

if b≠c then

    key[c] ←key[b]; {copy b data in c}

if color[b]=black then

    RB-DELETE-FIXUP(Tree, a)

Return b;

The call to RB-DELETE-FIXUP(Tree, a) is only if b is black. If b is red
the red black property still holds then y is spliced out for the
following reasons:

i. No black height in the tree has changed.
ii. No red node have been made adjacent and since b couldn’t

have been the root if it has red colour, the root remain
black.

RB-DELETE_FIXUP(Tree, a)

While a≠root[tree] and color[a]=black

    Do if a=left[Parent[a]] then



        w←right[Parent[a]];

    if color[w]=red then

        color[w] ←black;

        color[Parent[a]] ←red;

        LEFT-ROTATE(Tree, Parent[a]);

        w←right[Parent[a]];

    if color[left[w]]=black and color[right[w]]=black

        color[w] ←red;

        a←Parent[a];

    else if color[right[w]]=black then

        color[left[w]] ←black;

        color[w] ←red;

        RIGHT-ROTATE(Tree, w);

        w←right[Parent[a]];

        color[w] ←color[Parent[a]];

        color[P[a]] ←black;

        color[right[w]] ←black;

        LEFT-ROTATE(Tree, P[a]);

        a←root[Tree];



     else (Same as then clause with right and left
exchanged)

        color[a] ←black;

6.3  B-tree

B-trees are a type of balanced search trees. Concept of B-tree was
proposed by Rudolf Bayer and Ed. McCreight. The leaf nodes of B-
tree are at the same level. Number of child of internal nodes may
vary but within a fixed range. For example, in a 3–4 B-tree, an
internal node may have only 3 or 4 children. No frequent
rebalancing is required in B-trees because of the flexibility in
number of child nodes. Wastage of space is the disadvantage of
B-tree since it is not necessary that the nodes must be full.
Following are the properties of B-tree:

i. Each node a has three fields:
a. Number of currently stored keys in node a, that is, n[a].
b. These keys are in ascending order, that is,

key1[a] ≤ key2[a] ≤ −− ≤ keyn[a]

c. If it is a leaf node then the field Leaf[a] is TRUE
otherwise it is FALSE.

ii. n[a] + 1 pointers are also in each node. These pointer {c1[a],

c2[a], … .cn[a] +1[a]} points to child node of a. Since there is no

child node for leaf node, ci fields of leaf nodes are not

defined.
iii. The keys of node a {keyi[a]} split the ranges of keys saved in

each sub tree of node a. If ki is any key stored in the sub tree

with root ci[a] then



ki ≤ key1[a] ≤ k2 ≤ key2[a] ≤ … ≤ keyn[a][a] ≤ keyn[a]+1

iv. Each leaf node is at same depth like other leaf nodes and
this is called height (h) of the tree.

v. Minimum and maximum number of keys stored in a node is
bounded. A fixed integer t ≥ 2 is used to express these
bounds. This is called the maximum degree of B-tree.
a. Lower bound on the keys a node (other than root node)

is (t–1) keys. Each nonleaf node except root thus has a
minimum of t child nodes. In case of nonempty tree, the
root must have no less than one key.

b. Upper bound on the keys a node is (2 t–1) keys. So a
nonleaf node can have maximum 2 t child nodes. If a
node contains exactly (2 t–1) keys then the node is said
to be full.

The following figure Figure 6.3 shows the B-tree of height 2. All
the nodes contain 1,000 keys.



Figure 6.3:  B-tree of height 2.

6.3.1  Searching key k in B-tree

B-Tree-Search procedure computes the smallest i such that the ith

key is more than or equal to a. If the ith key is equal to a, then the
search is done, otherwise set z to the ith child.

Algorithm: B-Tree-Search (z, a)

 
{ 
           x = 1; 
           while (x ≤ n[z] and a > keyx[z]) 



                       do x = x + 1; 
           if (x ≤ n[z] and a = keyx[z]) 
                       then return (z, x); 
           if (leaf[z] = TRUE) 
                       then return NIL; 
           else Disk-Read(cx[z]); 
                       return B-Tree-Serach (cx[z], a); 
}

Example 6.2: Search the key k = 11 in the following B-tree
given in figure 6.4.

Figure 6.4:

B-tree.

Solution: n[x] = 3, key1 = 5, key2 = 9, key3 = 14, and k = 11.

For i = 1,

While (i ≤ n[x] and k > keyi[x])

That is, 1 ≤ 3 and 11 > key1[x] {TRUE}

So i = i + 1, that is, i = 2.



Again, 2 ≤ 3 and 11 > key2[x] {TRUE}

So, i = i + 1, that is, i = 3.

Now 3 ≤ 3 and 11 > key3[x] {FALSE}

Since condition for while loop is not correct, checking will be
performed at the left of 14. Hence Disk-Read(ci[x]), that is,.

Disk-Read(c3[x]) and return B-Tree-Search(C3[x], k).

For C3[x], we have n[x] = 3.

Again for i = 1,

While 1 ≤ 3 and 11 > key1[x] {TRUE}

So i = i + 1, that is, i = 2.

Again 2 ≤ 3 and 11 > key2[x] {FALSE}

Check if 3 ≤ 3 and 11 = 11 {TRUE}.

So return (x, i), that is, return (x, 2).

Theorem 6.3.2: If n>=1 then for any n key B tree of hight h

and minimum degree t>=2 h ≤ logt(
(n+1)

2 )

Proof: If a B tree has height h, the root contains at least one
key and all other nodes contain at least (t–1) keys, thus there
are at least 2 nodes at depth 1, at least 2t nodes at depth 2, at

least 2t2 nodes at depth 3, and so on at depth h there are at

least 2th–1 nodes.

Then n ≥ 1 + (t − 1)∑h
i=1 2ti−1



= 1 + 2(th − 1)

n ≥ 2th − 1

n + 1 ≥ 2th

n+1
2 ≥ th

h ≤ logt( n+1
2 )

6.4  Binomial heap

It is a data structure similar to binary heap but it also supports
merge operation of two heaps. Binomial heap is a set of binomial
trees. A binomial tree is a recursively defined ordered tree:

i. The binomial tree of order 0 has only one node.
ii. Binomial tree of order greater than 1 (i.e., k ≥ 1), the

binomial tree of order k (Bk) is formed by linking two

binomial trees of order k–1 (Bk–1). The root of one tree is the

leftmost child of the root of the other tree (see figure 6.5).

Figure 6.5:  Binomial tree.



Following are the features of binomial tree:

i. There are 2 k nodes in the tree and k is height of tree.

ii. There are just kCi nodes at depth i, where i = 0, 1, 2 … k.

iii. Degree of the root node is k which is more than degree of
any other node; besides this the children of the root are
binomial tree with order k–1, k–2, … … … .0 from left to right.

Proof: We will proof it by induction method on k.

For k = 0, each property holds for binomial tree of order 0.

Inductive Step: Let us assume that it holds for k–1 order tree.

i. Two trees of degree k–1 are linked to form tree with

degree k and number of nodes in Bk–1 is 2 k–1, so the

tree with degree k has 2 k–1 + 2 k–1 = 2 k nodes.
ii. The height of Bk is one greater than the height of Bk–1.

So, (k–1) + 1 = k.
iii. Let number of nodes at depth i is N (k, i) of tree Bk.

Since number of nodes at depth i in Bk is the number of

nodes at depth i in Bk–1 plus number of nodes at depth

i–1 in Bk–1.

iv. Root of Bk is the only node that has greater degree than

Bk–1. It has one extra child than in Bk–1. Degree of root

in Bk–1 is degree k–1 that of Bk is k. By inductive

hypothesis, the children of the root of Bk–1 are roots of

Bk–2, Bk–3, … B0 is linked to Bk–1, therefore, the children

of the resulting root are roots of Bk–1, Bk–2, … B0.

N(k, i) = N(k − 1, i) + N(k − 1, i − 1)

=k−1 Ci +k−1 Ci−1 =k Ci



6.4.1  Binomial heap

A Binomial Heap is a sequence of binomial trees that satisfies the
following min-heap property:

1. Each tree is minimum heap ordered i.e. the key values of the
parent is at least as large as or smaller than its children.

2. For any non-negative order k there exists at least on
binomial tree whose root has degree k.

For any n node binomial heap:

1. Minimum key contained in the root B0, B1.......Bk.

2. It contains at most upper bound of log2n+1 binomial trees.

3. Height is less than or equal to upper bound of log n (see
figure 6.6).

Each node of binomial heap contains:

i. A key

ii. A degree for the number of children
iii. A pointer child, that points to leftmost child
iv. A pointer sib, that points to the right sibling
v. Pointer p, that points to the parent

A binomial heap has a root list. A field head[H] is used to access
the binomial heap. This pointer points to the initial root of the
root list of H. If head[H] = nil, it means H has no element.

6.4.1.1  Creating binomial heap

MAKE-BINOMIAL-HEAP procedure allocate and return an object H,
where Head[H] = NIL. The running time is O(1).



6.4.1.2  Finding minimum key

Aim of this procedure is to find the node with minimum key in an
n node binomial heap. There is no key with value ∞. Since a
binomial heap is a min-heap ordered, a minimum key must reside
in the root node. The Binomial-Heap-Min() procedure check all
roots which are at most upper bound of (log n)+1, so its running
time is O (log2n).

Algorithm: Binomial-Heap-Min (H)

 
{ 
  b←NIL; 
  a←head[H]; 
  min←∞; 
  while (a is not NIL) 
    do if (key[a] < min) 
     then min←key[a]; 
      b←a; 
    a←sib[a]; 
  return b (min); 
}

6.4.1.3  Union of two heaps

The procedure for union repeatedly links binomial tree whose
roots have same degrees. Let the two trees be rooted at b and c.
Node c will become the root of the final tree.

Algorithm: Binomial-Link (b, c)



 
{ 
  p[b]←c; 
  sib[b]←child[c]; 
  child[c]←b; 
  degree[c]←degree[c] + 1; 
}

The following procedure unites two heaps T1 and T2. Procedure

uses Binomial-Link and Binomial-Heap-Merge as auxiliary
procedures. Binomial-Heap-Merge merges root list of both the
trees into a single and sorted linked list.

Algorithm: Binomial-Heap-Union (T1, T2)

 
{ 
  T ← Make-Binomial-Heap ( ); 
  head [T] ← Binomial-Heap-Merge(T1, T2); 
  free object T1 and T2 but not the list they point 
to; 
  If head [T] = NIL 
    Then return T; 
  prev- > a← NIL; 
  a← head [T]; 
  next- > a←sib[a]; 
  While (next- > a is not NIL) 
    do if (deg[a] 1deg[next- > a] or 
    (sib [next- > a] 1 NIL and deg[sib[next- > a]] 
= degree[a]) 
      Then prev- > a ← a;    // CASE 1 & 2 
a←next- > a; 



    else if (key[a] ≤ key[next- > a]) 
      then sib[a] ← sib[next- > a]; 
      Bionomial-Link (Next- > a, a);  // CASE 3 
      else if (prev- > a = NIL) 
      Then head [T] ←next- > a; 
      else sib [Prev- > a] ← next- > a;           
// Case 4 
      Bionomial-Link (a, next- > a); // CASE-4 
      a← next – > a; 
  next- > a←sib[a]; 
  Return T; 
}

Binomial-Heap-Merge: This procedure merges root list of T1 and

T2 into a single linked list that is sorted by degree in ascending

order.

Algorithm: Binomial-Heap-Merge(T1, T2)

 
{ 
  x←head[T1]; 
  y←head[T2]; 
  head[T1]← Min-Degree(x,y); 
  if head[T1] = NIL 
    return; 
  if head[T1] = y 
    then y←x; 
  x←head[T1]; 
  while (y ≠ NIL) 
    do if sib[x] = NIL 
      then sib[x]←y; 



        return; 
    elseif (degree[sib[x]] < degree[y]) 
      then x←sib[x]; 
      else z←sib[y]; 
      sib[y] ←sib[x]; 
      x←sib[x]; 
      y←z; 
}

The time complexity of union operation is O(lg n), where n is the
number of nodes in heaps T1 and T2.

6.4.1.4  Insertion of a node in binomial heap

Algorithm: Binomial-Heap-Insert (T, x)

 
{ 
  T’←Make-Binomial-Heap(); 
  P[x]←NIL; 
  child[x]←NIL; 
  sib[x]←NIL; 
  deg[x]←0; 
  head[T’]←x; 
  T←Binomial-Heap-Union(T, T’); 
}

This algorithm runs in O(log n) time. The binomial heap T’ is
created in O(1) time and union of T’ and n node binomial heap in
time O(log n).

6.4.1.5  Decrement of a key with a specific value



Following algorithm decreases the key of a node a to a new key d.
It displays an error message if d is greater than a’s current key.

Algorithm: BH-Decrease-Key (T, a, d)

 
{ 
  If d > key[a] 
    Then display message ‘decrement not possible’; 
  key[a]←d; 
  b←a; 
  c←p[b]; 
  while c ≠ NIL and key[b] < key[c] 
      do exchange key[b]↔key[c]; 
  b←c; 
  c←p[b]; 
}

This procedure takes O(log2n) time, since maximum depth of a is

[logn] { n = 2 k, k = log2n}.

6.4.1.6  Deletion

This procedure deletes x’s key from binomial heap T, we assume
that no key has value -∞.

Binomial-Heap-Delete(T, x)BH-Decrease-Key(T, x,-∞) .

Binomial-Heap-Min(T).

The running time of this procedure is O(log n).



6.5  Fibonacci heap

Fibonacci heaps are an arrangement of min heap ordered trees. It
is not necessary that the trees must be binomial tree. In Fibonacci
heap, trees are rooted but unordered. Each node x contains a
pointer parent[x] to its parents and a pointer child[x], points to
any one of its children. Circular doubly linked list is used to link
together the children of x. This list is called child list of x.

Figure 6.6:  Binomial Heap.

The two advantages of using circular doubly linked list are as
follows:

i. A node can be removed from this list in O(1) time.
ii. Two circular doubly linked lists can be concatenated into

one list in O(1) time.



A pointer min[H[ is used to access the heap H. This pointer points
to the root of the tree with minimum key; this is the smallest node
of the heap (see figure 6.7). The heap is empty if this pointer is
NIL.

6.5.1  Operation on Fibonacci heap

6.5.1.1  New Fibonacci heap: MAKE_FIB_HEAP

This procedure allocates and return Fibonacci heap object H,
where n[H]=0, min[H]=NIL. The time requirement of this
procedure is O(1).

6.5.1.2  Inserting a node

Insert a node a into Fibonacci heap H, let us assume that the node
has already been allocated and that key[a] has already been filled
in.

Algorithm: Fibo-Heap-Insert (H, a)

 
{ 
  deg[a]←0; 
  parent[a]←NIL; 
  child[a]←NIL; 
  left[a]←a; 
  right[a]←a; 
  mark[a]←FALSE; 
  concatenate the root list containing a with root 
list H 
  if min[H] = NIL or key[a] < key[min[H]] 
    then min[H]←a; 



  n[H]←n[H] + 1 
}

6.5.1.3  Finding the minimum node

The pointer min[H] points to root of the minimum node of heap,
which is also minimum node of heap. It can be directly accessed
in O(1) time.

Figure 6.7:  A Fibonacci heap.



Figure 6.8:  Finding the minimum node.

6.5.1.4  Decreasing a Key

This operation assigns a new key k to the key of x such that the
new key is less than or equal to current key.

Algorithm: DECREASE_KEY(H, x, k)

//This procedure uses CUT and CASCADE-CUT procedures
to maintain properties.

If (k>key[x]) then

    Print “New key is greater than current key”

Else



    Key[x] ←k;

    y←Parent[x];

    if(y≠NIL and key[x]<key[y]) then

        CUT(H, x, y);

        CASCADE-CUT(H, y);

    If (key[x]<key[min[H]]) then

        Min[H] ←x;

Return;

Algorithm: CUT(H, x, y)

//This procedure cut off the link between x and parent of x
i.e. y, making x a root.

Remove x from the child list of y.

deg[y] ←deg[y]‒1;

add x to the root list of H.

Parent[x] ←NIL.

Mark[x] ←False.

Return x.

Algorithm: CASCADE-CUT(H, y)

z←Parent[y];



If(z≠NIL) then

      If(mark[y]=False) then

           Mark[y] ←True;

      Else

           CUT(H, y, z);

      CASCADE-CUT(H, z);

Return;

Problem set

1. Differentiate between RBT and AVL tree.
2. What is the maximum height of a RBT with 14 nodes?
3. Explain the areas of application of RBT.
4. Show the resulting tree of inserting a value 40 into the

following RBT given:

5. Write pseudo code for B-TREE-DELETE.
6. Discuss the properties of Binomial trees.
7. Compare the Binomial heap and Fibonacci heap; draw the

figure of each separately.



8. Explain with help of an example how to insert a node in a
binomial heap.

9. Create a Fibonacci Heap for the list: P=<20, 11, 5, 31, 76, 50,
15, 46, 30, 32>



Chapter 7  Lab session

Appendices

The programming examples for students:

//1. Program for Comparison of growth of functions\\

 
#include <graphics.h> 
#include <stdlib.h> 
#include <stdio.h> 
#include <conio.h> 
#include <math.h> 
#include <dos.h> 
int f(int x) 
{ 
  return(x); 
} 
int f2(int x) 
{ 
  return(x*x); 
} 
double flog(double x) 
{ 
  If(x==0) 
          return (999); 
  else 
          return (log(x)); 
} 
void main(void) 



{ 
   /* request auto detection */ 
   int gdriver = DETECT, gmode, errorcode; 
   int midx, midy, i,j,k; 
   double lg; 
   int mx,my,x,y; 
   static int l; 
   int m; 
   int n = 12345; 
   char s[25]; 
   /* initialize graphics, local variables*/ 
   initgraph(&gdriver, &gmode, ""); 
     mx = getmaxx(); 
     my = getmaxy(); 
   errorcode = graphresult(); 
   if (errorcode != grOk) 
   { 
     printf("Graphics error: %  s\n",    
grapherrormsg(errorcode)); 
     printf("Press any key to halt:"); 
     getch(); 
     exit(1); 
   } 
   setbkcolor(6); 
   setcolor(2); 
       x=10; 
       y=my-10;//470; 
       l=0; 
//Print Result\\ 
printf("\n\tEnter the limit : "); 
scanf("%d",&m); 
  printf("\n\tX\tf(X)\tf(X*X)\tf(log(x))"); 
   for (i=0; i<=m; i=i+1) 



    { 
     j=f(i); 
     k=f2(i); 
     lg=flog(i); 
     if(lg==999) 
     { 
       printf("\n\t%d\t%d\t%d\tINFINITE",i,j,k); 
     } 
     else 
     { 
       printf("\n\t%d\t%d\t%d\t%lf",i,j,k,lg); 
     } 
     delay(400); 
    } 
   printf("\n\n\tPlease Enter any key to show Graph 
representation……….."); 
   getch(); 
//Graph Representation\\ 
    clrscr(); 
    setbkcolor(6); 
    setcolor(2); 
   line(10, my-10, mx-10,my-10); 
   line(10, 10, 10, my-10); 
   x=10; 
   y=my-10;//470; 
   l=0; 
   for (i=0; i<=m; i=i+1) 
   { 
     j=f(i); 
     putpixel(x+j,y-j,1 ); 
     k=f2(i); 
      for(;l<=k;l++) 
     putpixel(x+i,y-l,4 ); 



     lg=flog(i); 
     if(lg==999) 
     { 
       outtextxy(530,450, "log0=Infinite"); 
     } 
     else 
     { 
     putpixel(x+i,y-lg,6 ); 
     } 
   delay(20); 
   } 
   //to show the final value 
   itoa(j, s, 10); 
   outtextxy(x+j+5, y-j-5, "f(x)="); 
outtextxy(x+j+50, y-j-5, s); 
   itoa(k, s, 10); 
   outtextxy(x+i+5, y-k-5, "f(x*x)="); 
outtextxy(x+j+65, y-k-5, s); 
   itoa(lg, s, 10); 
   outtextxy(x+j+5, y-lg-5, 
"f(logx)=");outtextxy(x+j+70, y-lg-5, s); 
     getch(); 
     clrscr(); 
   if(j>k&&j>lg) 
       outtextxy(200, 200, "f(x) functiom has high 
order groth"); 
   else if(k>j&&k>lg) 
         outtextxy(200, 200, "f(x * x) functiom has 
high order groth"); 
   else 
        outtextxy(200, 200, "f(log(x)) functiom has 
high order groth"); 
   getch(); 



   closegraph(); 
} 

//2. Program for sorting an array using bubble sort\\

 
//BUBBLE SORTING 
#include <stdio.h> 
#include <conio.h> 
void buuble_sort(int *arr,int n); 
int main(void) 
{ 
 int *arr,n; 
 clrscr(); 
 printf("\n\t\tBUBBLE SORTING \n"); 
 printf("\nEnter the Limit : "); 
 scanf("%d",&n); 
arr=(int *)malloc(n*sizeof(int)); //allocate memory 
allocation 
  for(i=0;i<n;i++)    //input elements 
    scanf("%d",&arr[i]); 
  bubble_sort(a,n); 
  for(i=0;i<n;i++)   //print sorted array\\ 
  { 
    printf("\t%d",arr[i]); 
  } 
  getch(); 
   return 0; 
} 
//function for bubble sort\\ 
void buuble_sort(int *arr,int n) 
{ 
  int *arr,k,j,temp,n; 



  for(i=0;i<n;i++) 
  { 
    for(j=0;j<n-k-1;j++) 
    { 
      if(arr[j]>arr[j+1])   //comparision of 
elements\\ 
      { 
        temp=arr[j]; 
        arr[j]=arr[j+1]; 
        arr[j+1]=temp; 
      } 
    } 
  } 
} 

//3. Program for Heap sort \\

 
#include<stdio.h> 
#include<conio.h> 
void reheap(int *a,int p,int s); 
void heapsort(int a[],int s); 
void main() 
{ 
int *a,i,l; 
printf("\nEnter the limit :"); 
scanf("%d",&l); 
a=(int *)malloc(l*sizeof(int)); 
printf("\nEnter the numbers :"); 
for(i=0;i<l;i++) 
{ 
scanf("%d",(a+i)); 
} 



heapsort(a,l); 
for(i=0;i<l;i++) 
{ 
printf("\n%d",*(a+i)); 
} 
getch(); 
} 
void heapsort(int a[],int s) 
{ 
  int i,t; 
  for(i=s/2;i>=1;i--) 
           reheap(a,i,s); 
  for(i=s-1;i>=1;i--) 
  { 
    t=a[i]; 
    a[i]=a[0]; 
    a[0]=t; 
    reheap(a,1,i); 
  } 
} 
void reheap(int *a,int p,int s) 
{ 
  int t=a[p-1]; 
  int c=2*p; 
 while(c<=s) 
{ 
  if(c<s && a[c-1]<a[c]) 
  { 
    c=c+1; 
  } 
  if(t>a[c-1]) 
          break; 
  a[c/2-1]=a[c-1]; 



  c=2*c; 
} 
  a[c/2-1]=t; 
} 

//4. Program for merge sort \\

 
#include<stdio.h> 
#include<conio.h> 
void mergesort(int a[],int,int); 
void main() 
{ 
  int *arr; 
  int i,n; 
  clrscr(); 
  printf("\nEnter the Limit "); 
  scanf("%d",&n); 
  arr=(int *)malloc(n*sizeof(int)); 
  for(i=0;i<n;i++) 
  scanf("%d",(arr+i)); 
  for(i=0;i<n;i++) 
  printf("\n%d",arr[i]); 
  printf("\nAfter sorting:\n"); 
  mergesort(arr,0,n-1); 
  for(i=0;i<n;i++) 
  printf("\n%d",arr[i]); 
  getch(); 
} 
void mergesort(int a[],int low,int high) 
{ 
  int mid,i,j,p,*t; 
  if(low>=high) 



  { 
    return; 
  } 
  else 
 { 
     mid=(int)(low+high)/2; 
     mergesort(a,low,mid); 
     mergesort(a,mid+1,high); 
     i=low; 
     j=mid+1; 
     p=0; 
     t=(int*)malloc((high-low+1)*sizeof(int)); 
     while((i<=mid)&&(j<=high)) 
     { 
                 if(a[i]<a[j]) 
                 { 
                             t[p]=a[i]; 
                             p++; 
                             i++; 
      } 
                 else 
                 { 
                             t[p]=a[j]; 
                             p++; 
                             j++; 
      } 
     } 
     while(i<=mid) 
     { 
        t[p]=a[i]; 
        p++; 
        i++; 
     } 



     while(j<=high) 
     { 
       t[p]=a[j]; 
       p++; 
       j++; 
     } 
     for(i=low;i<=high;i++) 
     { 
       a[i]=t[i-low]; 
     } 
    } 
  } 

//5. Program for quick sort \\

 
#include<stdio.h> 
#include<conio.h> 
void quick(int a[],int l,int h); 
void main() 
{ 
  int i,*a,n; 
  clrscr(); 
  printf("\nEnter the Limit"); 
  scanf("%d",&n); 
  a=(int *)malloc(n*sizeof(int)); 
  printf("\nEnter the Numbers "); 
  for(i=0;i<n;i++) 
    scanf("%d",(a+i)); 
  for(i=0;i<n;i++) 
    printf("\n%d",*(a+i)); 
  printf("\nAfter \n"); 
  quick(a,0,n-1); 



  for(i=0;i<n;i++) 
    printf("\n%d",*(a+i)); 
  getch(); 
} 
void quick(int a[],int l,int h) 
{ 
  int i,j,t,p; 
  if(l<h) 
  { 
    i=l+1; 
    j=h; 
    p=a[l]; 
    while(1) 
    { 
      while(a[i]<p) 
              i++; 
      while(a[j]>p) 
               j--; 
      if(i<j) 
      { 
        t=a[i]; 
        a[i]=a[j]; 
        a[j]=t; 
        i++; 
        j--; 
      } 
      else 
      { 
        break; 
      } 
    } 
    a[l]=a[j]; 
    a[j]=p; 



    quick(a,l,j-1); 
    quick(a,j+1,h); 
  } 
} 

//6. Program for radix sort \\

 
#define NUM 100 
# include<stdio.h> 
#include<conio.h> 
#include<dos.h> 
#include<math.h> 
#include<graphics.h> 
void radixsort(int a[],int,int); 
void main() 
{ 
 int n,a[20],i,max,d,t; 
 clrscr(); 
 printf("enter the number :"); 
 scanf("%d",&n); 
 printf(" ENTER THE DATA -"); 
 for(i=0;i<n;i++) 
  { 
   printf("%d. ",i+1); 
   scanf("%d",&a[i]); 
  } 
  //to find max\\ 
  max=a[0]; 
  for(i=0;i<n;i++) 
  { 
   if(a[i]>=max) 
                  max=a[i]; 



  } 
  d=0; 
  t=max; 
  while(max!=0) 
  {  ++d; 
         max=max/10; 
  } 
  printf("\nMax = %d\tdigit = %d",t,d); 
  radixsort(a,n,d); 
  getch(); 
  } 
  void radixsort(int a[],int n,int d) 
  { 
  int rear[10],front[10],first,p,q,exp,k,i,y,j; 
  struct 
  { 
  int info; 
  int next; 
  }node[NUM]; 
  for(i=0;i<n-1;i++) 
  { 
  node[i].info=a[i]; 
  node[i].next=i+1; 
  } 
  node[n-1].info=a[n-1]; 
  node[n-1].next=-1; 
  first=0; 
  for(k=1;k<=d;k++)   //consider d digit number 
  { 
  for(i=0;i<10;i++) 
   { 
   front[i]=-1; 
   rear[i]=-1; 



   } 
  while(first!=-1) 
   { 
   p=first; 
   first=node[first].next; 
   y=node[p].info; 
   exp=pow(10,k-1); 
   j=(y/exp)%10; 
   q=rear[j]; 
   if(q==-1) 
    front[j]=p; 
   else 
    node[q].next=p; 
   rear[j]=p; 
   } 
   for(j=0;j<10&&front[j]==-1;j++); 
   first=front[j]; 
   while(j<=9) 
   { 
    for(i=j+1;i<10&&front[i]==-1;i++); 
    if(i<=9) 
    { 
     p=i; 
     node[rear[j]].next=front[i]; 
    } 
    j=i; 
   } 
    node[rear[p]].next=-1; 
 } 
//copy into original array 
for(i=0;i<n;i++) 
 { 
  a[i]=node[first].info; 



  first=node[first].next; 
 } 
 for(i=0;i<n;i++) 
 printf("\n%d . %d",i+1,a[i]); 
} 

//7. PROGRAM FOR CHAIN MATRIX MULTIPLACTION\\

 
#include<stdio.h> 
#include<conio.h> 
void cmm(int m[10][10],int s[10][10],int p[10],int 
n); 
int ops(int s[10][10],int i,int j); 
void display(int m[10][10],int n); 
void main() 
{ 
  int m[10][10]={0},s[10][10]={0}; 
  int p[10]={0},i,n; 
  clrscr(); 
  printf("\nEnter Total number of matrices :"); 
  scanf("%d",&n); 
  printf("\nEnter the dimensions for matrices :"); 
  for(i=0;i<=n;i++) 
            scanf("%d",&p[i]); 
  cmm(m,s,p,n); 
  printf("\n\nThe cost of optimal solution matrix 
\n"); 
  display(m,n); 
  printf("\n\nThe value of split the product \n"); 
  display(s,n); 
  printf("\n\nThe Optimal Parenthesization is 
\n\n"); 



  ops(s,1,n); 
  getch(); 
} 
//claculate minimum number of scalar multiplaction 
matrix\\ 
void cmm(int m[10][10],int s[10][10],int p[10],int 
n) 
{ 
  int i,j,k,q,l; 
  for(i=1;i<=n;i++) 
  { 
    m[i][i]=0; 
  } 
  for(l=2;l<=n;l++) 
  { 
    for(i=1;i<=n-l+1;i++) 
    { 
      j=i+l-1; 
      m[i][j]=999999; 
      for(k=i;k<=j-1;k++) 
      { 
        q=m[i][k]+m[k+1][j]+(p[i-1]*p[k]*p[j]); 
        if(q<m[i][j]) 
        { 
          m[i][j]=q; 
          s[i][j]=k; 
        } 
      } 
    } 
  } 
  printf("\nthe number of scalar multiplaction = 
%d",m[1][n]); 
} 



//To Solve Optimal Parenthesize Scheme\\ 
int ops(int s[10][10],int i,int j) 
{ 
  if(i==j) 
  { 
    printf(" A%d ",i); 
    return(0); 
  } 
  else 
  { 
    printf("("); 
    ops(s,i,s[i][j]); 
    ops(s,s[i][j]+1,j); 
    printf(")"); 
  } 
  return(0); 
} 
//To display the matrix\\ 
void display(int m[10][10],int n) 
{ 
  int i,j; 
  for(i=1;i<=n;i++) 
  { 
    for(j=1;j<=n;j++) 
    { 
      printf("\t%d",m[i][j]); 
    } 
    printf("\n"); 
  } 
} 

//8. Program for FRACTIONAL KNAPSACK PROBLEM\\



 
#include<stdio.h> 
#include<conio.h> 
void main() 
{ 
  int n,i,j; 
  float v,t,wgt,w,a,b,max=0; 
  float m[10][3],x[10]; 
  clrscr(); 
  printf("\nEnter the number of Items " ); 
  scanf("%d",&n); 
  printf("\nEnter Weight and Profit ::"); 
  for(i=0;i<=n-1;i++) 
  { 
    scanf("%f%f",&m[i][0],&m[i][1]); 
  } 
  printf("\nEnter the Knapsack capacity "); 
  scanf("%f",&wgt); 
  clrscr(); 
  printf("\n\tItem\tWeight\t\tProfit\n"); 
  for(i=0;i<=n-1;i++) 
  { 
    printf("\n\t%d\t%f\t%f",i+1,m[i][0],m[i][1]); 
  } 
  for(i=0;i<n;i++) 
  { 
    m[i][2]=m[i][1]/m[i][0]; 
  } 
  printf("\n\n\t---------Calculating Per Unit of 
Weight----------"); 
  printf("\n\n\tItem\tWi\t\tPi\t\t(Pi/Wi)\n"); 
  for(i=0;i<=n-1;i++) 
  { 



    printf("\n\t%d\t%f\t%f\t%f",i+1,m[i][0],m[i]
[1],m[i][2]); 
  } 
  printf("\n\n\t----Decreasing order of Profit Per 
Unit of Weight------"); 
  for(i=0;i<n;i++) 
  { 
    for(j=0;j<n;j++) 
    { 
      if(m[i][2]>m[j][2]) 
      { 
           v=m[i][0]; w=m[i][1]; t=m[i][2]; 
           m[i][0]=m[j][0]; m[i][1]=m[j][1]; m[i]
[2]=m[j][2]; 
           m[j][0]=v; m[j][1]=w; m[j][2]=t; 
      } 
    } 
  } 
  printf("\n\tItem\tWi\t\tPi\t\t(Pi/Wi)\n"); 
  for(i=0;i<=n-1;i++) 
  { 
    printf("\n\t%d\t%f\t%f\t%f",i+1,m[i][0],m[i]
[1],m[i][2]); 
  } 
  //fractional logic\\ 
  for(i=0;i<n;i++) 
             x[i]=0; 
             v=wgt; 
  for(i=0;i<n;i++) 
  { 
    if(m[i][0]>v) 
        break; 
    x[i]=1; 



    v=v-m[i][0]; 
  } 
  if(i<=n) 
    x[i]=v/m[i][0]; 
  printf("\n\n\t----------- Solution Vector -------
--------------\n\n"); 
  for(i=0;i<n;i++) 
             printf("\t%f",x[i]); 
    //Max Profit 
    max=0; 
  for(i=0;i<n;i++) 
  { 
    max=max+m[i][1]*x[i]; 
  } 
  printf("\n\n\n\n\tMaximum profit = %f",max); 
  getch(); 
} 

//9. PROGRAM FOR 0/1 KNAPSACK PROBLEM\\

 
#include<stdio.h> 
#include<conio.h> 
void main() 
{ 
  int wgt,n,i,j,w,a,b,max=0; 
  int m[10][2],km[10][10]; 
  clrscr(); 
  printf("\nEnter the number of Items " ); 
  scanf("%d",&n); 
  printf("\nEnter values of Input matrix"); 
  for(i=0;i<=n-1;i++) 
  { 



    scanf("%d%d",&m[i][0],&m[i][1]); 
  } 
  printf("\nEnter the Knapsack capacity "); 
  scanf("%d",&wgt); 
  clrscr(); 
  printf("\nthe input matrix"); 
  printf("\n\titem\tweight\tvalue\n"); 
  for(i=0;i<=n-1;i++) 
  { 
    printf("\n\t%d\t%d\t%d",i+1,m[i][0],m[i][1]); 
  } 
  for(i=0;i<=n;i++) 
  { 
    for(j=0;j<=wgt;j++) 
    { 
      if(i==0 && j>=0) 
        km[i][j]=0; 
      else if(i>=0 && j==0) 
        km[i][j]=0; 
      else if((j-m[i-1][0])<0) 
        km[i][j]=km[i-1][j]; 
      else if((j-m[i-1][0])>=0) 
      { 
        a=km[i-1][j]; 
        b=m[i-1][1]+km[i-1][(j-m[i-1][0])]; 
        if(a>b) 
          km[i][j]=a; 
        else 
          km[i][j]=b; 
      } 
    } 
  } 
  printf("\n\nKnapsack matrix\n"); 



  for(i=0;i<=n;i++) 
  { 
    for(j=0;j<=wgt;j++) 
    { 
      printf("\t%d",km[i][j]); 
    } 
    printf("\n"); 
  } 
  i=n;j=wgt;w=0;max=0; 
  printf("\noptimum solution\n"); 
  printf("\n\n\tinput\tweight\tvalue"); 
  while(wgt-w>0) 
  { 
    if(km[i][j]!=km[i-1][j]) 
    { 
      printf("\n\t%d\t%d\t%d",i,m[i-1][0],m[i-1]
[1]); 
      max=max+m[i-1][1]; 
      w=w+m[i-1][0]; 
      j=wgt-w; 
    } 
    i--; 
  } 
  printf("\n\n\tMaximum value in the knapsack : 
%d",max); 
  getch(); 
} 

//10. Pattern Matching for numbers\\

 
#include<stdio.h> 
#include<conio.h> 



void main() 
{ 
  int T[50],P[50],M[50]; 
  int i,n,m,s,j,q,p,f,x,TN,PN,PM,nf,line; 
  clrscr(); 
  printf("\nEnter the length of T[1:n] "); 
  scanf("%d",&n); 
  printf("\nEnter the length of P[1:n] "); 
  scanf("%d",&m); 
  printf("\nEnter the value of q(modulo)"); 
  scanf("%d",&q); 
  printf("\nEnter the values of T[1:n] : "); 
  for(i=0;i<n;i++) 
            scanf("%d",&T[i]); 
  printf("\nEnter the values of P[1:n] : "); 
  for(i=0;i<m;i++) 
            scanf("%d",&P[i]); 
  i=0; 
  while(i<=n-2) 
  { 
    TN=Todec(T,i,(i+m-1)); 
    M[i]=TN%q; 
    i++; 
  } 
  PN=Todec(P,0,(m-1)); 
  PM=PN%q; 
  clrscr(); 
  printf("\n\nPattern Matching Algorithm\n\n"); 
  printf("\nString T[1:n] : "); 
  for(i=0;i<n;i++) 
    printf("%d ",T[i]); 
  printf("\n\nString P[1:n] : "); 
  for(i=0;i<m;i++) 



    printf("%d ",P[i]); 
  printf("\nModulo String : "); 
  for(i=0;i<n-1;i++) 
    printf("%d ",M[i]); 
  nf=1,line=1; 
  for(i=0;i<=n-2;i++) 
  { 
    f=0; 
    if(PM==M[i]) 
    { 
      f=1,x=0; 
      for(j=i;j<(i+(m-1));j++) 
      { 
        if(T[j]!=P[x]) 
        { 
          f=0; 
          break; 
        } 
        x++; 
      } 
      if(f==1) 
      { 
        printf("\n\n%d Pattern Matched at a shift 
of %d",line,i); 
        nf=0; 
        line++; 
      } 
    } 
  } 
  if(nf==1) 
    printf("\n\nPattern not Matched "); 
  getch(); 
} 



int Todec(int a[],int l,int u) 
{ 
  int s=0; 
  while(l<=u) 
  { 
    s=s*10+a[l]; 
    l++; 
  } 
  return(s); 
} 

//11. Pattern Matching for string\\

 
#include<stdio.h> 
#include<conio.h> 
void main() 
{ 
  char *T,*P; 
  int *M; 
  int i,n,m,s,j,q,p,f,x,TN,PN,PM,nf,line; 
  clrscr(); 
  printf("\nEnter the length of T[1:n] "); 
  scanf("%d",&n); 
  printf("\nEnter the length of P[1:n] "); 
  scanf("%d",&m); 
  printf("\nEnter the value of q(modulo)"); 
  scanf("%d",&q); 
  T=(char *)malloc(n*sizeof(char)); 
  P=(char *)malloc(m*sizeof(char)); 
  M=(int *)malloc(q*sizeof(int)); 
  printf("\nEnter the values of T[1:n] : "); 
  scanf("%s",T); 



  fflush(stdin); 
  printf("\nEnter the values of P[1:n] : "); 
  scanf("%s",P); 
  i=0; 
  while(i<=n-2) 
  { 
    TN=Todec(T,i,(i+m-1)); 
    M[i]=TN%q; 
    i++; 
  } 
  PN=Todec(P,0,(m-1)); 
  PM=PN%q; 
  printf("\n\nPattern Matching Algorithm\n\n"); 
  printf("\nString T[1:n] : "); 
  printf("%s ",T); 
  printf("\n\nString P[1:n] : "); 
  printf("%s ",P); 
  printf("\nModulo String : "); 
  for(i=0;i<n-1;i++) 
             printf("%d ",M[i]); 
  nf=1,line=1; 
  for(i=0;i<=n-2;i++) 
  { 
    f=0; 
    if(PM==M[i]) 
    { 
      f=1,x=0; 
      for(j=i;j<(i+(m-1));j++) 
      { 
        if(T[j]!=P[x]) 
        { 
                f=0; 
                break; 



        } 
        x++; 
      } 
      if(f==1) 
      { 
        printf("\n\n%d Pattern Matched at a shift 
of %d",line,i); 
        nf=0; 
        line++; 
      } 
    } 
  } 
  if(nf==1) 
    printf("\n\nPattern not Matched "); 
  getch(); 
} 
int Todec(char a[],int l,int u) 
{ 
  int s=0; 
  while(l<=u) 
  { 
    s=s*10+a[l]; 
    l++; 
  } 
  return(s); 
} 

//12. Program for TSM problem\\

 
#include<stdio.h> 
#include<conio.h> 
#include<alloc.h> 



void tsm(int a[10][10],int n); 
void main() 
{ 
  int a[10][10],n,i,j,k; 
  clrscr(); 
  printf("\nEnter the total number of city : "); 
  scanf("%d",&n); 
  printf("\nEnter the distance of cities\n"); 
  for(i=0;i<n;i++) 
  { 
    for(j=i;j<n;j++) 
    { 
      if(i==j) 
      { 
        a[i][j]=0; 
      } 
      else 
      { 
        printf("\nEnter the distance %d --> %d 
",i,j); 
        scanf("%d",&a[i][j]); 
        a[j][i]=a[i][j]; 
      } 
    } 
  } 
  printf("\nGraph is\n\n"); 
  for(i=0;i<n;i++) 
  { 
    for(j=0;j<n;j++) 
    { 
      printf("\t%d",a[i][j]); 
    } 
    printf("\n\n"); 



  } 
  tsm(a,n); 
  getch(); 
} 
void tsm(int a[10][10],int n) 
{ 
  int *v,c,i,j,k,min,sum=0; 
  v=(int *)malloc(n*sizeof(int)); 
  for(c=0;c<n;c++) 
  { 
    v[c]=0; 
  } 
  v[0]=1; 
  min=a[0][1]; 
  c=0; 
  for(i=0;i<n-1;i++) 
  { 
    printf("\n\t%d",c); 
    for(j=0;j<n;j++) 
    { 
      if((c!=j)&&v[j]!=1) 
      { 
        if(a[c][j]<=min) 
        { 
          min=a[c][j]; 
          k=j; 
        } 
      } 
    } 
    c=k; 
    v[c]=1; 
    sum=sum+min; 
    printf(" ---> %d = %d\t\tSum = %d",c,min,sum); 



    if(c==n-1) 
             min=a[c][c-1]; 
    else 
             min=a[c][c+1]; 
  } 
  min=a[c][0]; 
  sum=sum+min; 
  printf(" \n\t%d ---> 0 = %d\t\tSum = 
%d",c,min,sum); 
  printf("\n\nTotal Distance by Salesman : 
%d",sum); 
} 

//13. Program for Kruskal's Algorithm \\

 
#include<stdio.h> 
#include<conio.h> 
int parent [10]; 
void kruskals(int cost[][10],int n); 
void main() 
{ 
  int a,b,u,v,i,j,n; 
  int visited[10],min,cost[10][10]; 
  clrscr(); 
  //noofedges=1; 
  //mincost=0; 
  printf("enter the no. of vertix\n"); 
  scanf("%d",&n); 
  printf("enter the adjacency matrix\n"); 
  for(i=1;i<=n;i++) 
  { 
    for(j=1;j<=n;j++) 



    { 
      scanf("%d",&cost[i][j]); 
      if(cost[i][j]==0) 
                     cost[i][j]=999; 
    } 
  } 
  kruskals(cost,n); 
  getch(); 
} 
void kruskals(int cost[][10],int n) 
{ 
  int a,b,u,v,i,j; 
  int mincost=0,noofedges=1,min; 
  printf("the minimum cost edges are\n"); 
  while(noofedges<n) 
  { 
    min=999; 
    for(i=1;i<=n;i++) 
    { 
      for(j=1;j<=n;j++) 
      { 
        if(cost[i][j]<min) 
        { 
          min=cost[i][j]; 
          a=u=i; 
          b=v=j; 
        } 
      } 
    } 
    while(parent[u]) 
              u=parent[u]; 
    while(parent[v]) 
              v=parent[v]; 



    if(u!=v) 
    { 
      noofedges++; 
      printf("\nedge( %d --> %d )",a,min); 
      mincost+=min; 
      parent[v]=u; 
    } 
    cost[a][b]=cost[b][a]=999; 
  } 
  printf("\nminimum cost= %d",mincost); 
} 

//14. Program for Optimal Binary Search Tree\\

 
#include<stdio.h> 
#include<conio.h> 
void main() 
{ 
  int *P; 
  int i,n,PN; 
  clrscr(); 
  printf("\nEnter the limit "); 
  scanf("%d",&n); 
  P=(int *)malloc(n*sizeof(int)); 
  printf("\nEnter the keys : "); 
  for(i=0;i<n;i++) 
            scanf("%d",P[i]); 
  PN=opbst(P,n); 
  printf("\n\nPN = %d",PN); 
  printf("\n\nBST is :"); 
  for(i=0;i<n-1;i++) 
             printf("%d ",P[i]); 



  getch(); 
} 
int opbst(int P[],int n) 
{ 
  int s=0,i,j,k,kmin,min,d,sum=0; 
  int c[10][10],r[10][10]; 
  for(i=1;i<n;i++) 
  { 
    c[i][i-1]=0; 
    c[i][i]=P[i]; 
    r[i][i]=i; 
    c[n+1][n]=0; 
  } 
  for(d=1;d<n-1;d++) 
  { 
    for(i=1;i<n-d;i++) 
    { 
      j=i+d; 
      min=9999; 
      for(k=i;k<j;k++) 
      { 
        if(c[i][k-1]+c[k+1][j]<min) 
        { 
          min=c[i][k-1]+c[k+1][j]; 
          kmin=k; 
          r[i][j]=kmin; 
          sum=P[i]; 
        } 
      } 
    } 
  } 
  for(s=i+1;s<j;s++) 
  { 



    sum=sum+P[s]; 
    c[i][j]=min+sum; 
  } 
  return(c[1][n]); 
} 

Further reading

Aho, A. V., & Hopcroft, J. E. (1974). The design and analysis of

computer algorithms. Pearson Education India. →

Ahuja, R. K., Magnanti, T. L., & Orlin, J. B. (1993). Network flows:
theory, algorithms, and applications. 

Baase, S. (2009). Computer algorithms: introduction to design and

analysis. Pearson Education India. 

Baase, S. (2009). Computer algorithms: introduction to design and

analysis. Pearson Education India. 

Baudet, G. M. (1978). The Design and Analysis of Algorithms for

Asynchronous Multiprocessors (No. CMU-CS-78-116). Carnegie-
Mellon Univ Pittsburgh PA Dept Of Computer Science. 

Bhasin, H., & Gupta, N. (2012). Randomized algorithm approach
for solving PCP. International Journal on Computer Science and

Engineering, 4(1), 106. 

Biswas, S. S., Alam, B., & Doja, M. N. (2013). Generalisation of
Dijkstra’s algorithm for extraction of shortest paths in directed
multigraphs. Journal of Computer Science, 9(3), 377–382. 

Cormen, T. H. (2009). Introduction to algorithms. MIT press. 

Dave, P. H. (2009). Design and analysis of algorithms. Pearson
Education India. 



EDIIIQN, I. (2007). Introduction to the design & analysis of
algorithms. 

Fiat, A. (1998). Online Algorithms: The State of the Art (Lecture
Notes in Computer Science). 

Kingston, J. H., & Kingston, J. H. (1990). Algorithms and data

structures: design, correctness, analysis. Sydney: Addison-Wesley. 

Kiwi, M., & Soto, J. A. (2015). Longest increasing subsequences of
randomly chosen multi-row arrays. Combinatorics, Probability and

Computing, 24(1), 254–293. 

Kozen, D. C. (2012). The design and analysis of algorithms.
Springer Science & Business Media. 

Kumar, V., Grama, A., Gupta, A., & Karypis, G. (1994). Introduction

to parallel computing: design and analysis of algorithms (Vol. 400).
Redwood City: Benjamin/Cummings. 

Levitin, A., & Mukherjee, S. (2003). Introduction to the design &

analysis of algorithms (p. 576). Reading, MA: Addison-Wesley. 

Mansi, R. (2010). A New Algorithm for Sorting Small Integers.
International Arab Journal of Information Technology, 7(2). 

Panneerselvam, R. (2007). Design and analysis of Algorithms. PHI
Learning Pvt. Ltd. 

Wang, J. (2011). Fast Algorithm of the Traveltime Calculation
Based on Binomial Heap Sorts. In Advanced Materials Research

(Vol. 267, pp. 857–861). Trans Tech Publications. 

→www.docslide.us 

→www.edutechlearners.com 

→www.learningace.com 

http://www.docslide.us/
http://www.edutechlearners.com/
http://www.learningace.com/


Index

Adjacency list
Aggregate analysis
Algorithm
Amortized cost
Approximation algorithm

Assignment problem
Augmenting path
Average-case complexity

Backtracking approach
Bellman–Ford Algorithm
Best-case complexity

Binary heap
Binary search tree
Binomial tree
Black height

Branch-and-bound technique
Breadth first search
B-tree
Bucket sort

Chain matrix multiplication
Characteristic equation method
Class NP problem
Class P problems
Clique
Common divisor
Complete binary tree

Computational geometry
Convex hull



Counting sort

DAC recurrence relation

Depth first search
Deterministic algorithm
Dijkstra’s algorithm
Division theorem
Dynamic programming

Euclidean division

Fibonacci heaps
Flow network

Greedy approach

Hamiltonian cycle
Heap

Heap sort

Insertion sort

Knapsack problem
Kruskal’s algorithm

Linear programming problem

Max flow min cut theorem

Maximization problems
Maximum network flow
Merge sort
Minimization problems
Minimum cut

Minimum spanning tree



Naive algorithm
NP-hard problems

O (big oh) notation
Optimal solution

Polynomial time algorithm
Potential method
Prim’s algorithm

8-queen problem
Quick sort

Rabin–Karp algorithm
Radix sort
Recurrence relation

Red–Black Tree
Reducibility
Relative error
Relaxation
Residual network
Rotation

Satisfiable
Single-source shortest path algorithm
Sorting
Space complexity

STARSON MATRIX MULTIPLICATION
State space tree
String matching problem
Substitution technique

The θ notation
The Ω notation



Time complexity

Travelling salesman problem

Vertex cover problem

Warshall's algorithm
Weighted graph

Worst-case complexity


	Preface
	Chapter 1 Introduction
	1.1 Algorithm
	1.2 Another definition
	1.3 Analyzing the performance of algorithms
	1.4 Growth of the functions
	1.5 Asymptotic notations
	1.5.1 The O (big oh) notation
	1.5.2 The Ω notation
	1.5.3 The θ notation

	1.6 Recurrence relation
	1.6.1 Linear recurrence relation
	1.6.2 Solution of homogeneous recurrence relation
	1.6.3 Solution to nonhomogeneous linear recurrence relation

	1.7 Divide and conquer relations
	1.7.1 Solution to DAC recurrence relation
	1.7.2 The recursion tree method
	1.7.3 The substitution method
	1.7.4 Change of variable method

	1.8 Master’s theorem
	Problem set

	Chapter 2 Sorting techniques
	2.1 Sorting
	2.2 Insertion sort
	2.2.1 Analysis of insertion sort

	2.3 Quick sort
	2.3.1 DAC approach
	2.3.2 Analysis of quick sort

	2.4 Merge sort
	2.4.1 Analysis of merge sort

	2.5 Heap sort
	2.5.1 Analysis of Heapify
	2.5.2 Heap sort
	2.5.3 Analysis of heap sort

	2.6 Sorting in linear time
	2.7 Counting sort
	2.7.1 Analysis of counting sort

	2.8 Radix sort
	2.8.1 Analysis of radix sort

	2.9 Bucket sort
	2.9.1 Analysis of bucket sort
	2.9.2 Binomial distribution

	Problem set

	Chapter 3 Algorithm design techniques
	3.1 Greedy approach
	3.1.1 Traveling salesman problem
	3.1.2 Fractional knapsack problem

	3.2 Backtracking
	3.2.1 Hamiltonian cycle
	3.2.2 8-queen problem

	3.3 Dynamic programming
	3.3.1 0/1 knapsack problem
	3.3.2 The traveling salesman problem
	3.3.3 Chain matrix multiplication
	3.3.4 Optimal binary search tree

	3.4 Branch-and-bound technique
	3.4.1 Assignment problem
	3.4.2 Knapsack problem

	3.5 Amortized analysis
	3.5.1 Aggregate method
	3.5.2 The potential method

	3.6 Order statistics
	Problem set

	Chapter 4 Advanced graph algorithm
	4.1 Introduction
	4.1.1 Terminology

	4.2 The graph search techniques
	4.2.1 Breadth first search
	4.2.2 Depth first search

	4.3 Spanning tree
	4.3.1 Kruskal’s algorithm
	4.3.2 Prim’s algorithm

	4.4 Shortest path algorithm
	4.4.1 Warhsall’s algorithm
	4.4.2 Floyd Warshall’s algorithm
	4.4.3 Dijkstra algorithm
	4.4.4 Bellman–Ford algorithm

	4.5 Maximum flow
	4.5.1 Maximum flow and minimum cut
	4.5.2 Ford Fulkerson method

	Problem set

	Chapter 5 Number theory, classification of problems, and random algorithms
	5.1 Division theorem
	5.1.1 Common divisor and greatest common divisor

	5.2 Chinese remainder theorem
	5.3 Matrix operations
	5.3.1 Strassen’s matrix multiplication
	5.3.2 Divide and conquer for matrix multiplication
	5.3.3 Strassen’s multiplication

	5.4 Pattern matching
	5.4.1 The Naive algorithm
	5.4.2 The Rabin–Karp algorithm

	5.5 P and NP class problem
	5.5.1 Reducibility
	5.5.2 NP complete problem

	5.6 Approximation algorithms
	5.6.1 Relative error
	5.6.2 Approximation algorithm for TSP
	5.6.3 The vertex cover problem

	5.7 Deterministic and randomized algorithm
	5.7.1 The nut and bolt problem

	5.8 Computational geometry
	5.9 The convex hull
	5.9.1 Counterclockwise and clockwise
	5.9.2 Finding whether two line segments intersect

	5.10 Class P problems
	5.10.1 NP (nondeterministic Polynomial Time) Problems
	5.10.2 Any problem in P is also in NP
	5.10.3 NP Hard Problems
	5.10.4 NP Complete
	5.10.5 Halting Problem for Deterministic Algorithms
	5.10.6 The satisfiability problem

	5.11 Clique
	5.11.1 Clique Decision Problem
	5.11.2 Non-Deterministic Algorithm for Clique Decision Algorithm
	Problem set

	Chapter 6 Tree and heaps
	6.1 Red–Black Tree
	6.2 Operations on RBT
	6.2.1 Rotation
	6.2.2 Insertion

	6.2.3 Deletion
	6.3 B-tree
	6.3.1 Searching key k in B-tree

	6.4 Binomial heap
	6.4.1 Binomial heap

	6.5 Fibonacci heap
	6.5.1 Operation on Fibonacci heap


	Chapter 7 Lab session
	Appendices

	Further reading
	Index

