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Preface

This textbook is based on a lecture course the author has given to first-year physics
students at the University of Oxford and it profits from many years of tutoring physics
students at Balliol College Oxford. It is an attempt to provide a modern introduction
for students in the mathematical sciences into the classical subject of linear algebra.

Linear algebra is one of the basic disciplines of mathematics and it underlies many
branches of more advanced mathematics, such as analysis in several variables and
differential geometry. Put simply, linear structures are the building blocks for many
more advanced constructions in mathematics. Frequently, linear algebra is also the
first serious course in mathematics that undergraduate students have to face. It brings
about the first rigorous proofs, which mark a definite departure from the standard
high-school training of applying formulas and performing routine calculations. This
transition can be difficult.

At the same time, linear algebra has many important applications in practically all
areas of the mathematical sciences. The principle of linear superposition underlies a
large variety of physical laws. Linearity is the leading approximation to systems near
equilibrium so that even non-linear systems can often be described by linear counter-
parts. Methods of linear algebra also play an important role in computer and data
sciences. For example, linear algebra is an important ingredient of artificial neural
networks.

This ubiquity of linear algebra provides a unique opportunity for an introductory
course in the subject. It can be used as an introductory course in mathematics, a
case study in modern mathematics ideally suited to familiarize students with the ax-
iomatic set-up and the systematic development of mathematical theories, and, at the
same time, as a gateway into many areas of applied mathematics and science. The
main purpose of the present book is to do justice to both of these aspects of linear
algebra.

We hope such a dual approach will benefit both mathematicians and scientists. Par-
ticularly in the physical sciences, the widespread practice of teaching mathematics as
a series of 'recipes’, earmarked for certain applications, is highly unsatisfactory. The
increasing importance of quantitative methods and of advanced mathematics means
that beginning science students should develop an understanding of the structure
of mathematics as well as its applications, without confusing these two sides of the
subject. What is needed is a clear and coherent exposition of the overarching con-
cepts, an uncompromising attitude towards mathematical rigour, while avoiding over-
formalization, and a prompt connection to interesting, self-contained examples.

It came as a surprise to the author, while preparing a linear algebra lecture course,
that textbooks following such an approach are lacking. There are, of course, numer-
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ous high-quality linear algebra textbooks with mathematical orientation (for example
Blyth and Robertson 1975; Curtis 1996; Fischer 2010; Halmos 2017; Janich 1994; Lang
1996; Manin and Kostrikin 1989; Strang 1988). At the other end of the spectrum, there
are many 'how-to-do’ books available, which teach some practical aspects and appli-
cations of the subject but fail to present a logical exposition of the material.

The present book attempts to fill the gap between those extremes. It is aimed at begin-
ning (first year) students in mathematics or the mathematical sciences, in particular
in physics, engineering, and computer science. Few pre-requisites are required, other
than basic numeracy and familiarity with basic mathematics (for example at the level
of Lang 1998), as covered in the final years of most secondary schools. It presents
a logical, mathematically coherent exposition of the standard material, including all
relevant definitions and proofs, but avoids an overly formal approach. On the other
hand, many examples and techniques for calculation which are essential for practical
work with linear algebra have been included.

There are a number of starred chapters and sections (indicated by a *) which cover
more advanced material, such as the Jordan normal form, the singular value decompo-
sition, duality and tensors. These topics are covered for their mathematical or scientific
relevance but they can be omitted at first reading. Numerous applications of linear
algebra to problems in science are presented alongside, but clearly separated from the
main text. Their style of presentation is usually less formal, focused on ’getting on’
with the task at hand and arriving at an interesting result quickly and efficiently. They
can be read independently and, ideally, provide a short, self-contained window into a
topic in science, as well as an illustration of how linear algebra is applied. Throughout
the text, we have included problems and their solutions. The reader is invited to work
alongside the text, cover up solutions, and try for themselves — or to have a peek
if they get stuck. The exercises at the end of each chapter include routine problems,
somewhat more challenging problems marked with T and difficult and wide-ranging
problems marked with {7.

The book is organized into 27 chapters, each around 10—15 pages, and, depending on
the chapter, suitable for a 1- to 2-hour lecture slot. A short lecture course based on
this book, omitting starred chapters and including a minimal amount of examples and
applications, will take about 20 to 24 lectures. Depending on how many of the more
advanced topics, the examples and applications are included, this can be extended to
up to 36 lectures or more.

We hope that a student will gain from this book a good working knowledge of ’vectors
and matrices’ and its applications in science, as well as an appreciation of the structure
and beauty of the subject of linear algebra.

Andre Lukas
Oxford 2021
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1
Linearity — an informal introduction

Linearity is a ubiquitous structure in mathematics and mathematical descriptions of
natural phenomena. We begin this chapter by introducing the idea of linearity infor-
mally and by explaining, on an elementary level, the main reasons for its omnipresence.
In the second part, we will characterize linearity more formally by introducing linear
maps, an approach that is at the heart of the subject. Along the way, we illustrate
a number of other key features of linear algebra, including linear equations and the
relationship between linear maps and matrices.

1.1  Why linearity?

Summary 1.1 An elementary reason for the foundational nature of linear algebra
within mathematics is that, under suitable conditions, functions can be locally approx-
imated by linear functions. This fact, together with the tendency of natural systems to
reside near the minimum of their potential energy, explains the prevalence of linearity
in scientific phenomena.

For now, we will say informally that a situation exhibits linearity if we can identify a
numerical output and a numerical input such that the former is proportional to the
latter. The following is a well-known example of linearity:

Example 1.1 (Hooke’s law)

Hooke’s law states that the force exerted by a spring is proportional to its extension.
More precisely, if x (xg) is the length of the extended (unextended) spring and € =
T — g is the extension then the force is given by

F = —ke, (1.1)

where k is a positive constant, referred to as the spring constant. It is also quite useful
to consider the potential energy

v

1
= —ké2 F=—-—"—"—~=
1% 5 ke = e

—ke (1.2)
stored in the spring whose (negative) first derivative gives the force, as indicated above.

Eq. (1.1) is, of course, an idealization and ceases to be valid if € becomes too large
(the spring is over-stretched) or too small (the spring is too compressed). An important
lesson is that linearity in natural phenomena is usually only valid for a limited range of
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input values but broken outside this range. The many applications of Hooke’s law show
that, despite this limitation, the idea of linearity in natural phenomena is important
— but needs to be accompanied by an understanding of its validity.

We will see shortly that (approximate) linearity in natural phenomena for a suitable
range of input values is rather more general than the simple example of Hooke’s law
suggests. O

Mathematically, we can formulate linearity between a real-valued input and output by
a linear function or linear map f : R — R (where R denotes the set of real numbers)
given by

f(z) =ax, (1.3)
for some real constant a. This is a rather simple function, so why is linearity such an
important idea which underlies many areas of mathematics? The Taylor series for a
suitably well-behaved but otherwise general function f : R — R around zg reads

f(@) = f(zo) = f'(wo) e+ - (1.4)

where the prime denotes the derivative, € = x — g is the deviation away from xy and
the dots stand for terms with higher powers in e. Evidently, in a sufficiently small
neighbourhood of xg, the variation of the function away from its value f(zo) at xg is
well-described by a linear function. In other words, (sufficiently well-behaved) functions
are locally (approximately) linear. This simple observation is one of the main reasons
for the importance of linear algebra for many other fields of mathematics.

What about linearity in the natural sciences? The above discussion of the Taylor series
suggests that Hooke’s law in Example 1.1 might, in fact, not be as special as it seemed.
To make this more precise, consider a simple system described by a single real number
x and a potential energy function V(x). The Taylor series of this potential function
around xg, this time to second order in the deviation € = x — x(, reads

1
V(z) =V(xo) + V'(xo)e + §V//($0)62 4+ (1.5)
Taking the derivative gives the associated force
av
F= = Fy—ke+--- where Fy=—-V'(x9), k=V"(xg). (1.6)
€

This shows that the change F' — Fj in the force is (approximately) linear. At first, this
observation appears to be of little practical significance, since the constant force Fjy
will drive our system away from xg, thereby invalidating the expansion (1.5). However,
natural systems tend to evolve towards values xy with minimal potential energy V. At
such a minimum we have Fy = —V'(x9) = 0 and kK = V"(Xy) > 0 and, in this case,
the force (1.6) turns into a version of Hooke’s law

F=—ket | (1.7)

with k = V" (x) playing the role of the spring constant. In short, near points of min-
imal potential energy forces are (and remain) approximately linear and this accounts
for the importance of linearity in natural phenomena (see Exercise 1.1).
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1.2 Linearity, more abstractly

Summary 1.2 Linearity of functions is characterized in a more abstract way
and generalized to functions between wvectors with two components. For this two-
components case, we illustrate the relationship between linear functions and matrices.
We discuss simple examples of linear equations and their solution structure, as one
of the main motivations for developing linear algebra.

Now that we have established the importance of linearity as a basic mathematical
concept and as a widespread phenomenon in science, let us consider the idea from a
more abstract point of view.

1.2.1 Linear functions

In Eq. (1.3) we have already defined what we mean by a linear map f : R — R.
Evidently, such a function satisfies the basic rules

fle+i)=flx)+ f(@),  flax)=af(x), (1.8)

for any real numbers x, & and «. To see this explicitly from Eq. (1.3), for example for
the first of the above rules, is quite straightforward:
Fe+d) D a@+d) =ar+az "2 f@) + (7).

The conditions (1.8) really express the fact that linear maps are consistent with ad-
dition and multiplication of real numbers. Adding (or multiplying) first and then
applying the linear map gives the same answer as carrying this out in reverse order.
We can say that the two operations commute.

Conversely, any function which satisfies the rules (1.8) must be a linear function,
that is, a function of the form (1.3). To show this we start with a function f which
satisfies Eqs. (1.8) and define the number a by

a=f(1). (1.9)
By simply using the second condition (1.8), it follows that

f@) = fel) =2f(1) = az,

and, hence, that f is indeed of the form (1.3). We also see that the conditions (1.8) are
not independent and that the first one for addition can be deduced from the one for
multiplication (see Exercise 1.3). Nevertheless, consistency of functions with addition
and multiplication, as expressed by both Egs. (1.8) is an important idea which will be
used to define linearity more generally.

1.2.2 Linear equations

A common and extremely important class of problems is to find all solutions z to an
equation of the form f(x) = b, where f is a function and b is a given number. If f is a
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linear function, given by f(z) = ax, then such an equation is called a linear equation
and it is of the form
ar=b. (1.10)

Obviously, the solution to this equation is © = b/a, provided that a # 0. But what if
a = 07 Answers to this question from students can vary from ’x must be infinite’ to ’b
must be zero’, neither of which can possibly be correct (the former because infinity is
not a number, the latter since b is a priori given and may be non-zero). The point is
that, even for a simple equation such as the above, we have to distinguish cases.

(1) a# 0: There is a unique solution x = b/a.

(2a) @ =0 and b = 0: Any value of x solves the equation.

(2b) a = 0 and b # 0: There is no solution since Eq. (1.10) becomes 0 = b, which is
false.

The important lesson is that solutions to linear equations have a somewhat complicated
structure which depends on the values of the parameters (a and b in Eq. (1.10)).

1.2.3 Vectors with two components

So far, we have considered the simplest case of functions whose inputs and outputs
are real numbers. But natural phenomena are frequently characterized by more than
one variable. To describe such systems, we need to deal with lists of real numbers,
or vectors as they are commonly called, and functions between them. To keep things
simple for now, let us consider coordinate vectors v or w with two components, by

which we mean columns
v = (”1) . w= <w1> (1.11)
(%] w29

containing two real numbers vy, ve or wy,ws. (Vectors will be denoted by bold-face
letters.) The set of all such coordinate vectors with two components is denoted R2.
(Later, we will, of course, generalize to coordinate vectors with an arbitrary number
of components and, indeed, more abstract vectors which are not made up from com-
ponents.) The reader has probably already come across such vectors and how to add
them and multiply them with real numbers. The natural way to define these opera-
tions is to apply the rules for adding and multiplying real numbers component-wise,

that is,
V4 wi= (v1+w1> ) av = <ow1) . (1.12)
Vo + Wo Qv

These two operations are referred to as vector addition and scalar multiplication and
they are the key features of a wvector space, as we will see later. Their geometrical
interpretation is illustrated in Fig. 1.1.

1.2.4 Linearity for maps between vectors

What does it mean for functions f : R? — R? whose inputs and outputs are two-
coordinate vectors to be linear? This is where our re-formulation (1.8) of linearity
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av

Fig. 1.1 Geometry of vector addition and scalar multiplication (for o > 1) in R,

helps. Motivated by these conditions, we declare that a function f : R? — R? is called
a linear function or linear map if it satisfies

fv+w)=f(v)+fw),  flav)=af(v), (1.13)

for all vectors v and w in R? and all real numbers «. These conditions mean linear
maps are compatible with vector addition and scalar multiplication (see Exercise 1.4).
In general, functions which respect a certain algebraic structure are called morphisms
and defining such functions is an important step in any mathematical build-up. Using
this terminology, linear maps are the morphisms of vector spaces and, as we will see,
they are central objects in linear algebra.

1.2.5 Linear maps and matrices

We have seen that linear maps between real numbers can be written as in Eq. (1.3) and
that they are characterized by a single real number a. What do linear maps between
coordinate vectors look like? Recall from Eq. (1.9) that we were able to recover a by
applying the linear map to the number 1. For the two-component case, this suggests
that we should apply the linear map to specific vectors. Simple vectors can be built by
only using components 0 and 1 (the neutral elements of addition and multiplication)
and this leads to the standard unit vectors in R? defined as

. ((1)) . (‘1)) . (1.14)

Note that every vector v with components vy, v can be written in terms of e; and ey
as
vV =wvie; + vgey . (1.15)

This means the standard unit vectors are a particular example of a basis, an important
idea in the theory of vector spaces which we will develop later. Inspired by Eq. (1.9),
we consider the action f(e;) and f(e3) of the linear map on the standard unit vectors

and write the result as
<f) = fle1), (g) = fle2), (1.16)

where p, g, r, and s are real numbers. Now we require only a small calculation to work
out how the function f acts on an arbitrary vector v:
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(1.15) (1.13)

f(vier +voes) =" wif(er) +vaf(e2)

(1.16) D q\ (1.12) [ pvy + qug
=" (T)+U2(S) = (TU1—|—SU2> . (1.17)

The final expression shows that the linear map is fully determined once we know the
four numbers p, ¢, r, s. While a linear map between real numbers is specified by a single
number, as in Eq. (1.3), a linear map between coordinate vectors with two components
is specified by four real numbers. It is customary to arrange these four numbers into

a 2 X 2 matrix
_(Pg
A= (rs) , (1.18)

so that linear maps R? — R? are in one-to-one correspondence with such 2 x 2 matrices
with real entries. The action of the linear map f on a vector v is then symbolically

written as
F(v) = Av = (Pm *q”2> , (1.19)

f)

rv1 + SU2

where the expression Av is referred to as the multiplication of a matrix with a vector
and is defined by the right-hand side of Eq. (1.19). This definition means a matrix is
multiplied with a vector row by row, with corresponding vector and row components
multiplied and summed up.

The relationship between linear maps and matrices exemplified here is much more
general. It is one of the central themes of linear algebra which will be developed
systematically later. (For another example, see Exercise 1.5.)

1.2.6 Back to linear equations

With this understanding of coordinate vectors and linear maps between them, let us
come back to linear equations, that is, equations of the form f(x) = b, where b is a
given vector with components b; and by and f is a linear map between two-coordinate
vectors. We are interested in finding all vectors x with components x1 and x5 which
satisfy this equation. If we describe f by a 2 x 2 matrix A, as above, the linear equation
can also be written as Ax = b.

Suppose, for concreteness, we choose the following matrix A and vector b,

A= (2_1) . b= (i’) , (1.20)

where a and b are real numbers. (For another example, see Exercise 1.6.) Then, us-
ing the definition of matrix-vector multiplication from Eq. (1.19), the linear equation
becomes

Ax = b o {(E1)23$1+$2b}7

(E2): axy —xz9 =1 (1.21)

that is, it turns into a system of two simultaneous linear equations in two variables
1 and xo. We can solve this system in the usual way by adding suitable multiples
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of the equations to eliminate one of the variables. In the present case, we can simply
consider the sum of the two equations

(E1)+ (E2): (a+3)z1=b+1. (1.22)

This result shows that, just as in the earlier case (1.10), we have to consider various

cases:

(1) a # —3: There is a unique solution, 1 = (b+1)/(a+3) and 22 = (ab—3)/(a+3),
obtained by dividing Eq. (1.22) by a + 3, inserting the result for z; into one of
the Egs. (1.21) and solving for zs.

(2a) a = —3 and b = —1: In this case, Eq. (1.22) becomes trivial or, equivalently, the
two equations in (1.21) become the same. This means the solution consists of all
x1 and zo which satisfy zo = —3x; — 1. This represents a line in the x1-z5 plane.

(2b) @ = —3 and b # —1: There is no solution since Eq. (1.22) becomes 0 = b + 1,
which is false.

To summarize, the solution can be a single point, a line in the zi-z5 plane or there
can be no solution at all, depending on the values of the parameters a and b. Even this
simple example shows there is considerable structure in the solutions to linear equa-
tions. An important purpose of linear algebra is to understand this solution structure
and also to provide efficient methods for solving linear equations. This will be covered
in detail later on. We end this chapter with a real-world application of linear equations
which illustrates some of the problems linear algebra should address.

Application 1.1 Internet search algorithm
Modern internet search engines order search results by assigning a page rank to each website.
As we will see, finding the page rank can be formulated as a problem in linear algebra.

To explain the idea we start with a very simple network with four sites, labelled by k& =
1,2, 3,4, and links indicated by arrows in the following diagram.

Each of the four sites has a certain number of links to the other sites (outgoing arrows).
For example, site 1 links to sites 2 and 4 and, therefore, has n; = 2 links. Likewise, the
number of links for the other sites are ny = 2, ng = 3 and nq4 = 1. Site 4 is linked to by all
other sites and we express this mathematically by writing Ls = {1, 2, 3}. Similarly, we have
L, = {3}, Ly = {1,3}, and L3 = {2,4}.

We would like to assign real numbers x1, x2, 3, x4 to the sites which measure the
popularity of the page. How should these numbers be obtained? A natural idea is that
every incoming link should increase the popularity of a page by an amount proportional to
the popularity of the remote page from which the link originates. For example, page 2 is
linked to by pages 1 and 3, so 2 should be increased by amounts proportional to z; and
x3. More specifically, we could say that 2 = x1/2 + x3/3. Here, we have divided by 2 (3)
since site 1 (3) has two (three) outgoing links. The underlying idea is that a link from a
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site with a small number of outgoing links is worth more than a link from a site with many
outgoing links. Continuing along those lines with all four sites gives the equations

— Z3
xl_xg x z1 4
T2 =5+ 3 T2 6
ra = %4 = | ]=| 1 (1.23)
Ta=T 4%y e 9

This is indeed a system of four linear equations for z1, z2, 3, and x4. The solution is easily
obtained by adding suitable multiples of the four equations and it is shown in Eq. (1.23), on
the right (« is a real number). The conclusion is that site 3 is the highest-ranked, followed
by site 4.

The real internet has of course a very large number of sites, so we should formulate
the problem for an arbitrary number, n, of sites. We label these sites by £ = 1,...,n and
denote their popularity by xx. Site k£ has ny links to other sites and it is linked to by certain
sites whose labels we collect in a set L. With this notation the generalization of the linear

system (1.23) can be written as
zh= Y 2, (1.24)

JjE€L "

where k = 1,...,n. Note that the sum on the right-hand side runs over all pages j which link
to page k. Egs. (1.24) constitutes a system of n linear equations for the variables z1, ..., Zx.

Solving potentially large linear systems, such as the above, requires more refined methods
and a better understanding of their structure. Much of the course will be devoted to this
task. The present application also raises more theoretical questions. It is evident that the
system (1.24) always has the trivial solution where all 2 = 0, but of course this solution
is not useful for the purpose of ranking sites. Is it an accident that the example (1.23) has
non-trivial solutions or can this be guaranteed in general? We will return to this question
when we have developed a deeper understanding of the structure of linear algebra.

1.3 Plan of the book

In the following Part I we start with the mathematical foundations: the basic mathe-
matical language of sets and functions and the important algebraic structures of groups
and fields which are both closely connected to vector spaces. A reader familiar with
these basics, perhaps from their analysis course, can skip straight to Part II which
introduces the algebraic structure of vector spaces, which is the arena and the main
topic of linear algebra. Linear independence as well as basis and dimension of a vector
space are the key concepts introduced in this part.

Some topics whose proper mathematical place is at a much later stage in the develop-
ment of the subject are essential to a science student early in their course, for example
in the context of mechanics or electromagnetism. These include the dot, cross, and
triple product and simple geometric applications to lines and planes, as well as the
ability to perform calculations efficiently. These and related topics are covered, at an
elementary level, in Part III. As an added benefit, the material in this part also pro-
vides a source of examples for the remainder of the text.

The systematic development of the subject resumes in Part IV, where we introduce
and analyse the morphisms of vector spaces — the linear maps. The formal develop-
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ment culminates in the rank theorem, a pivotal statement about the structure of linear
maps. We will also explain the relation between linear maps and matrices, which we
have already alluded to in Section 1.2.5, in general.

The main computational tools in linear algebra are algorithms to manipulate matrices.
In Part V we develop some of these algorithms, related to row operations of matri-
ces. Perhaps the most important application of linear algebra is to systems of linear
equations. We will see how the results on the structure of linear maps allow us to
understand the solution structure of systems of linear equations and how they can
be solved in practice by using row operations of matrices. We also introduce deter-
minants, another important tool for calculations as well as more abstract arguments.
This concludes the basic development of the subject — the remainder of the book is
devoted to more advanced topics in linear algebra.

Linear maps and matrices are complicated objects. Part VI deals with the question of
how to cast linear maps and matrices into a simple, easy-to-handle form. Using the
key ideas of eigenvalues and eigenvectors we will see that linear maps and matrices can
often be diagonalized. Even when this is not possible a nearly diagonal form, called
the Jordan normal form, can always be achieved.

In Part VII we resume — and generalize — the geometrical discussion from Part ITI by
introducing scalar products on general vector spaces. Scalar products facilitate basic
geometric notions such as the length of vectors, angles between vectors and orthogo-
nality, and they generalize the dot product. Vector spaces with a scalar product, also
called inner product vector spaces, have many applications — in fact, most scientific
applications of linear algebra assume, explicitly or implicitly, the presence of a scalar
product. A scalar product also singles out certain classes of linear maps — the self-
adjoint and the unitary maps. They include the unitary and orthogonal matrices as
well as rotation matrices which have many important applications. With new structure
on vector spaces available it makes sense to re-visit the problem of diagonalizing linear
maps. We also briefly cover a generalization of scalar products — symmetric bi-linear
and Hermitian sesqui-linear forms — which make an appearance in certain scientific
applications, for example, in the theory of relativity.

Our final topic, duality and tensors, in Part VIII is probably the most abstract one
covered. However, dual and tensor vector spaces play an important role in more ad-
vanced mathematics as well as in many scientific applications and cannot be omitted.

Chapters and sections on more advanced topics which can be omitted at first reading
are indicated by a *. Throughout the book, scientific applications of aspects of linear
algebra have been included. They are clearly separated from the main development of
the subject and presented on a grey background, in order to avoid confusion between
mathematics and its scientific applications. They can be read separately from the main
text and illustrate the wide range of linear algebra applications. Ideally, they also serve
as a (small) window into an area of science.
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Exercises

1.1

1.2

1.3

1.4

1.5

Linearity near minima of potentials

A physical system is described by a sin-
gle real variable x and has potential en-
ergy V(z) = 32* —2”+1. Find the min-
ima xg of V. Show that for small devi-
ations € = x — x¢g from each of the min-
ima, the potential energy can be written
as V ~ %keQ + -+, with associated force
F = —ke, and determine the constant
k.

Is every function R — R whose graph is
a straight line a linear function?

Linear functions

Let f : R — R be a function which sat-
isfies f(zZ) = zf(Z) for all real z and
Z. Show that f also satisfies f(z 4+ Z) =
f(z) + f(Z) for all real z and Z.

Differential operators as linear maps

Consider the 'differential’ operator D =
% + % which maps (infinitely many
times differentiable) functions f to f” +
f'. Show that D satisfies the linearity
conditions D(f + g) = D(f) = D(g)
and D(af) = aD(f), where f and g are

functions and « is a real number.

Vectors with three components
Generalize the discussion of Sec-
tion 1.2.5 to linear maps f : R® — R®
between coordinate vectors with three
components. In particular, use the three
standard unit vectors

1.6

1.7

0
, €2 = 1

1 0
e = 0 , €3 = 0
0 1

0

to show that such a linear maps can be
described by 3 x 3 matrices.

Linear equations
Consider a linear equation of the form
Ax = b with

(3.

where x is a vector with components 1
and z2 and a and b are real numbers.
Identify the different cases for the solu-
tion structure, depending on the values
of a and b, and find the solution vectors
X in each case.

Internet search

Following the notation of Applica-
tion 1.1, consider a network with three
sites, specified by the data n; = 2, no =
17 ng =1 and L1 = {2}, Ly = {1,3},
L3 = {1}. Draw a graph for the network
and write down the linear system (1.24)
for this example. Show that its solution
is

T1 2
X2 =« 2 y
T3 1

where « is a real number.
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Preliminaries

Before we can delve into the main subject, some preparation is required. We need to
introduce the basic mathematical language of sets and functions, which is essential
for the formulation not just of linear algebra but of any area of mathematics. The
reader who is not yet familiar with these basics should go through this part carefully.
However, in the interest of getting to the main subject quickly, we keep the exposition
basic and concise.

In Chapter 2 we introduce sets, functions, and elements of logic — the basic language
of mathematics. Groups are discussed in Chapter 3. They play an important role as
one of the simplest algebraic structures in mathematics and they provide the mathe-
matical framework for what scientists frequently refer to as symmetries. Group theory
is a separate and vast topic in mathematics, but we will have to keep the discussion at
a basic level and focus on those aspects which play a direct role in linear algebra. In
particular, we will introduce the permutation groups and develop some of their proper-
ties. These results will be required for the definition of the determinant in Chapter 18.

Finally, in Chapter 4 we define fields, a pre-requisite for the definition of vector spaces,
and derive a few conclusions from the field axioms. Fields are the standard arena for
‘numerical’ calculations, with the rational, real, and complex numbers being the most
important examples. The field Q of rational numbers can be constructed from an
equivalence relation on Z2, essentially a formal way of introducing fractions. We will
indicate how this construction works and how it can be verified that Q does indeed
satisfy the field axioms. The real numbers R are constructed as a ’completion’ of Q,
obtained by augmenting the set with irrational numbers. This construction belongs
into the realm of analysis and will only be described briefly. However, we will spend
some time on setting up the complex numbers C, as the reader might not yet be suffi-
ciently familiar with them. This will become important whenever we work with vector
spaces over the complex numbers.






2
Sets and functions

Sets and functions between sets provide the basic language of mathematics. More
advanced topics, such as linear algebra, cannot be formulated properly without intro-
ducing this language first. This can be done in a strict, axiomatic manner, but here
we adopt a less rigorous style to avoid creating a hurdle of formality early on.

2.1 Sets

Summary 2.1 Sets are collections of objects called elements. There are three basic
set operations, namely set union, set intersection, and set complements. The first
two of these are associative, commutative and they satisfy distributive laws. The set
complement converts between union and intersection. The Cartesian product of two
sets is a set which contains all pairs of elements from the first and second set.

2.1.1 (Non-) definition of sets

Intuitively, by a set we mean a collection of objects which are called elements or
members of the set. A set can be specified by explicitly providing its elements and this
is done using a notation with curly brackets, {...} so that, for example, {1, 2,3} is the
set which contains 1, 2, and 3. For the purpose of this section, we use uppercase letters
A, B, ... to denote sets and lowercase letters a, b, ... to denote their elements. For the
empty set the symbol {} or () is used. By convention, all elements of a set are distinct so
that repetitions of elements can be deleted, for example, {1,2,1} = {1,2}. The order
of elements in a set is irrelevant, for example {1,3,2} = {1,2,3}. Sets can also be
elements of other sets; for example, we can consider the set {{0,2,4,6,8},{1,3,5,9}}
whose elements are the sets of even and odd numbers less than ten.

Example 2.1 (Natural numbers)

A foundational number set is given by the natural numbers N := {0,1,2,3,...}. We
will take this set for granted (although it can be defined by a set of axioms called
Peano’s axioms), and also take addition and multiplication of natural numbers as a
given. O

As opposed to sets, lists provide ordered collections of objects, with repetitions allowed.
We will need to use lists, for example, to describe vectors, and they are denoted by
round brackets, (- - - ). For example, (1,2, 1) is the list which consists of 1 and 2 with this
particular order and multiplicity and we have (1,2,1) # (1,2) and (1,2,1) # (1,1, 2).
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Lists can also be written as columns, rather than rows, of objects and this is the
convention we will adopt for vectors.

Coming back to sets, set membership is indicated by the notation a € A, read as
‘a is an element of A’, while non-membership is written as a ¢ A, read as ’a is not
an element of A’. We say that a set A is a subset of a set B, written as A C B,
if every a € A is also an element of B. Two sets A and B are equal, written as
A =B, if A C B and B C A. This means equality of two sets can be established
by showing that they are mutual subsets of each other, a technique frequently used
in proofs. Subsets of a given set A can also be specified by a conditional notation of
the form {a € A|a satisfies a condition}, read as ’the set of all a in A which satisfy
the condition’. For example, the set {n € N|n = m? for a m € N} contains all square
numbers.

2.1.2 Set operations

There are three main operations for sets, the union, the intersection and the comple-
ment, which are defined as follows (see also Fig. 2.1):

AUB={zecUl|x € Aor x € B} (union of A and B)
ANB={zeU|z € Aand z € B} (intersection of A and B) (2.1)
A\ B ={a€ Ala ¢ B} (complement of B within A)

For the complement it is assumed that B is a subset of A. When it is understood from
context what the set A is, the complement A\ B is sometimes simply denoted by B.
Two sets A and B are called disjoint if their intersection is empty, that is, if ANB = (.

The union and intersection are associative and commutative operations, that is, they

4 (2)

grey region: AU B grey region: AN B grey region: A\ B

Fig. 2.1 Union AU B and intersection A N B of two sets A and B and complement A \ B.

satisfy

AU(BUC)=(AUuB)UC AN(BNC)=(AnB)NC (associativity)
AUB=BUA ANB=BnNA (commutativity) .
These rules follow directly from the definitions of union and intersection. Somewhat

more involved are the following distributive laws which govern the relationship between
union and intersection.

Proposition 2.1 For any three sets A, B, and C, we have
AN(BUC)=(ANnB)U(ANC), AUu(BNC)=(AUB)N(AUC). (2.2)
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Proof We prove the first of these equalities by showing that the left-hand side is
a subset of the right-hand side and vice versa. We start with an arbitrary element
a € AN (BUC) and we want to show it is contained in (AN B) U (AN C). From
a€ AN(BUC), it follows that a« € A and a € BU C. The latter means that a € B
or a € C, so we have two cases. If a € A and a € B then a € AN B. On the other
hand, if a € A and a € C then a € ANC. In either case, a € (ANB)U(ANC) and it
follows that AN (BUC) C (ANB)U(ANC).

Conversely, if a € (ANB)U(ANC) thena € ANBora € ANC. In the first case,
a € Aand A€ Bsothat a € AN (BUC). In the second case, a € A and a € C' and
again it follows that a € AN (BUC). This shows that (ANB)U(ANC) C AN(BUC)
and completes the proof. We leave the proof of the second Eq. (2.2) as Exercise 2.1.
O

There are also rules for calculating with the complement.
Proposition 2.2 For sets A, B, U with A, B C U, the complement in U satisfies

A=A, AUB=AnB, ANB=AUB. (2.3)

Proof We prove the second of these relations by mutual inclusion. An element a €
AU B is neither in A nor in B, so it must be in A and B. It follows that a € AN B
and, hence, that a € AU B C AN B. Conversely, an element a € AN B is contained
in A and B and is, hence, neither in A nor in B. This means that a € AU B so that
AN B c AU B. We leave the proof of the other equations as Exercise 2.2. O

By the size or cardinality of a set A we mean its number of elements, denoted by |A|.
For example, the set A = {1, 3,7,9} has cardinality |A| = 4. If the set A has an infinite
number of elements, we write |[A| = oco.

2.1.3 New sets from old ones

There are a number of standard methods to construct new sets from given ones. The
power set, denoted by 24, of a set A contains as its elements all subsets of A. If A is
finite with cardinality |A| then the power set has cardinality 2141 which motivates the
notation. For example, for A = {1,2} we have

24 = {{}’ {1}3 {2}7 {172}} .

The Cartesian product of two sets A and B, written as A x B, consists of all pairs of
elements, so

AxB={(a,b)|ac Aandbe B} . (2.4)

For finite cardinalities |A| and | B| the cardinality of the Cartesian product is |Ax B| =
|A| |B|. For example,

{1,2} x {3,4} = {(1,3),(1,4),(2,3),(2,4)} .

The Cartesian product of a set A with itself is also denoted by A2 = A x A and its
elements are pairs of elements of A. More generally, we can take n Cartesian products
of A with itself which is written as A™ = Ax AXx---x A. The elements of A™ consist of
lists (a1, az,...,a,) of n elements of A. Such lists are also called n-tuples. For example,
the set N™ consists of n-tuples of natural numbers.
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2.2 Relations

Summary 2.2 A relation between two sets is a subset of their Cartesian product
which specifies which elements are considered to be related. An equivalence relation
on a set is a specific relation which is reflexive, symmetric, and transitive. A set with
an equivalence relation is partitioned into disjoint equivalence classes.

2.2.1 Basic definitions

So far we have considered sets without any further structure. A simple but important
way to introduce structure is by a relation.

Definition 2.1 (Relation) A relation between two sets A and B is a subset R of Ax B.
If (a,b) € R we write a ~ b and we say that a and b are related. If A = B we say that
R C A2 is a relation on A.

This definition is a somewhat formal way of stating that a relation between sets A
and B consists of pairs from the Cartesian product A x B which are 'declared’ to be
related. An important special class of relations are equivalence relations.

Definition 2.2 (Equivalence relation) A relation on a set A is called an equivalence
relation if it satisfies the following conditions for all a,b,c € A.

(i) a~a (reflexivity)
(i) a~bimpliesb~a (symmetry)
(i) a~b andb~ cimplies a ~ ¢ (transitivity)

For an equivalence relation every element is related to itself, relationship is symmetric
and being related is 'passed on’ (transitivity). The elements related to one another
under an equivalence relation are collected in sets called equivalence classes which are
defined as follows.

Definition 2.3 (Equivalence class) Let A be a set with an equivalence relation and
a € A. The equivalence class [a] is the subset of A which consists of all elements related
to a, so [a] ={b€ A|b~ a}. The set of all equivalence classes is called the quotient

of A by ~ and is denoted by A/ ~.
The following example illustrates equivalence relations and classes.

Example 2.2 (Equivalence relations and classes)
Consider the set N of natural numbers. On this set, we define a relation by saying
that two natural numbers n, m, are related, n ~ m, if n + m is even. To see that
this is an equivalence relation we have to check the three conditions in Def. 2.2. Since
n+n = 2n is always even we have n ~ n, meaning the relation is reflexive. Symmetry
follows immediately because n + m = m + n. For transitivity, consider three numbers
n, m,p with n ~ m and m ~ p. This means n + m and m + p are both even, so their
sum (n+m) + (m +p) = n+ p+ 2m is even. But since 2m is even, this implies n + p
is even so that n ~ p.

What are the equivalence classes? Each two even numbers are related since their
sum is even. The same is true for two odd numbers whose sum is also even. However,
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any even and any odd number are unrelated since their sum is odd. This shows that
there are two equivalence classes, consisting of all the even and all the odd natural
numbers, so that N/ ~={{0,2,4,...},{1,3,5,...}}. a

2.2.2 Properties of equivalence relations

In Example 2.2, the set partitioned into disjoint equivalence classes. This feature is,
in fact, general as shown in the following proposition:

Proposition 2.3 Two equivalence classes are either equal or disjoint.

Proof Consider a set A with an equivalence relation and two equivalence classes [a]
and [b]. If [a] N [b] = 0 the statement is true so we can assume that there exists a
¢ € [a]N[b]. We want to show that [a] C [b]. To do this, start with an arbitrary d € [a],
so that d ~ a. But since ¢ € [a] we also have a ~ ¢ and transitivity implies that d ~ c.
Further, from ¢ € [b] we have ¢ ~ b and transitivity gives d ~ b, which shows that
d € [b]. Altogether, this means that [a] C [b]. The same argument, with the roles of
[a] and [b] exchanged, can be repeated to show that [b] C [a]. It follows that [a] = [b].
O

This statement means that an equivalence relation partitions a set A ’cleanly’ into
disjoint equivalence classes, as indicated in Fig. 2.2. Conversely, a partition of a set

A—

Fig. 2.2 An equivalence relation on a set A partitions the set into disjoint equivalence classes.

can be used to define an equivalence relation (see Exercise 2.4).The quotient A/ ~ is
the set which consists of all these disjoint equivalence classes. Equivalence relations are
a very useful tool for mathematical constructions, as the following example illustrates.

Example 2.3 (Integers as equivalence classes)

We have earlier introduced the natural numbers, N, with addition and multiplication
taken for granted. What about the integers? It turns out they can be constructed by
introducing on the set N? of integer pairs the equivalence relation

(nl,ng) ~ (ml,mg) if ny+mo =my+ng . (25)

By verifying the three properties in Def. 2.2, it can be shown that this is an equivalence
relation (Exercise 2.3). What are the equivalence classes for this relation? For nq > no
we have (n1,n2) ~ (n1 —ns,0) and for ny < ny it follows that (nq,ng) ~ (0,79 — ny),
so in each equivalence class we have an element of the form (n,0) or (0,n). Two
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such classes for different n are clearly inequivalent so that equivalence classes can be
labelled by these elements. Intuitively, we identify the classes which contain (n,0) with
the natural numbers n and the classes which contain (0,n) with the negative natural
numbers, also written as —n. In summary, we can define the integers, Z, as Z = N?/ ~.

O

2.3  Functions

Summary 2.3 A function is a rule which assigns to each element of the domain
exactly one element of the co-domain. Carrying functions out one after the other
is referred to as function composition, which is an associative but not commutative
operation. A function is called injective if the pre-image of each co-domain element
contains at most one element. If the pre-image always contains at least one element
it is called surjective. Functions which are both injective and surjective are called
bijective. A function has an inverse function if and only if it is bijective.

2.3.1 Definition of functions

A relation between two sets X and Y is generally not deterministic: an element of
X may be related to more than one element of Y. In order to describe deterministic
situations we require specific relations where every element of X is related to only one,
unique element in Y. Such relations are described by functions.

Specifically, a function f from a set X to a set Y is a rule that assigns to every element
of the source set X a unique element from the target set Y. The set X is also called the
domain and the set Y the co-domain of the function. The input = € X of a function
is also called its argument which is assigned by the function to its value, denoted by
f(x). In formal notation, the information about a function is summarized as follows:

Yo (2.6)

fiX—> Y X
z = f(x)

x s f(z) o

I= 1=

The top line reads ' f is a function with domain X and co-domain Y, while the bottom
line means that the value of x under f is f(z). It is sometimes useful to generalize
the notation and allow a function f : X — Y to act on an entire subset Z7 C X
of the domain. This action is defined as f(Z) := {f(z)|x € Z} and it results in a
subset of the co-domain which contains all the values f takes on Z. Depending on
the context, a function may also be called a map and this term is normally used in
linear algebra, where linear functions are referred to as linear maps. Note that it is
important to distinguish the function f, which represents the rule of assignment, from
its value f(x) on a particular element € X. Two functions f,g : X — Y with the
same domain and co-domain are called equal, written as f = g, if f(z) = g(z) for
all x € X. The set of all values of a function f : X — Y is called the image of the
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Fig. 2.3 Illustration of a function f: X — Y.

function,

m(f) = f(X)={f(x)[z € X} CY, (2.7)
and this is a subset of the co-domain. For a given element y € Y of the co-domain the
pre-image or inverse image

i) ={reX|fx)=y}c X (2.8)

is the subset of all elements in the domain which are mapped to y. Some of these
features are illustrated in Fig. 2.3.

On every set X there is a function idx : X — X defined by idx (z) = «, which maps
every element to itself. This function is called the identity map or simply identity of
X.

The connection between relations and functions can be understood in terms of the
graph of a function f: X — Y, defined by

Gr(f) = {(z, f(z)) |z € X} C X x Y . (2.9)

Intuitively, the graph consists of all pairs of arguments and values that should be drawn
to visualize the function. It is a subset of the Cartesian product X x Y and, hence,
defines a relation between X and Y (see Def. 2.1). This relation is deterministic in the
sense discussed above, that is, every « € X is related to precisely one y = f(z) € Y.

A common operation for functions is the restriction of the domain to a subset. Suppose,
we start with a function f : X — Y and a subset X C X of the domain. Then we can
define a restricted function, denoted f|¢ : X — Y, by setting flg(x) = f(x) for all
z € X, so that the values of f and its restriction are identical on the subset X.

Example 2.4 (Functions)

One way to specify a function is by an equation. For example, a linear function f :

R — R is given by f(x) = az for a real number a. If a # 0, it follows that Im(f) = R

and otherwise, if a = 0, we have Im(f) = {0}. The graph of this function consists of

all points {(z,ax) |z € R}, which corresponds to a line through (0,0) with slope a.
The definition of a function can also involve case distinctions. For example,

x forx >0
g:R—=>R, g($>_{0forx<0 (2.10)

defines a piecewise linear function whose image is Im(g) = RZ° = {z € R|z > 0}.
The restriction g|g>o of g to positive numbers is given by g|g>o(z) = x.
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Of course, we can also define a function by simply providing its value for each
element of the domain. For example, we can specify a function h : {1,2,3} — {1,2, 3}
by h(1) =1, h(2) = 3 and h(3) = 3, so that its image is Im(h) = {1, 3}. a

2.3.2 Composition of functions

Functions can be carried out one after the other, provided the co-domain of the first
function is the same as the domain of the second function. This process is called
composition of functions. More precisely, consider three sets X, Y, Z and two functions
f: X =Y and g:Y — Z. The composition go f : X — Z is defined as (go f)(z) =
g(f(x)), that is, simply by evaluating the second function on the value of the first.
The various mappings are summarized in the following diagram.

x v 2, z

gof

Note how the notation forces a reversal in the ordering of the two functions. While f
acts first and g second, the fact that arguments are written to the right of the function
symbol means the composition should be g o f.

Example 2.5 (Composition of functions)

Consider the functions defined by f(z) = 22 and g(z) = 2z + 3, seen as functions
R — R. Then the composite function (go f)(z) = g(f(z)) = g(z?) = 222 + 3 is simply
obtained by ’inserting’ one function into the other. In this case, we can also compose
in the opposite order, (f o g)(z) = f(g9(x)) = f(2z + 3) = (22 + 3)3, which gives a
different result. Function composition does not commute! O

Composition of maps is associative which means for three functions f, g, and h we
have

folgoh)=(fog)oh. (2.11)
This property is easily verified using the definition of composition repeatedly.
(folgoh))(z)=f((goh)(z)) = flg(h(z))) = (f o g)(h(x)) = ((f o g) o h)(x)
The identity map acts as a neutral element of composition, in the sense that
foidx =f, idyof=Ff (2.12)

for every function f : X — Y. This follows from (f oidx)(z) = f(idx(z)) = f(z) and
similarly for the other equation. The properties (2.11) and (2.12) of composition are
quite important and, as we will see, are key ingredients in the definition of a group.

2.3.3 Properties of functions

There are a few important structural properties of functions which are summarized in
the following definition.
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Definition 2.4 Let f: X — Y be a function with domain X and co-domain Y .

(i) [ is called injective if f(x) = f(x') implies x = 2’ for all x,2’' € X.

(ii) f is called surjective provided for ally € Y there exists an x € X with y = f(x).
(iii) f is called bijective if it is injective and surjective.

An injective function (also called ’one-to-one’ function) maps no two different elements
of the domain to the same image or, in other words, the pre-image f~!(y) contains
at most one element for all y € Y. A surjective function (also called ’onto’ function)
'reaches’ every element of the domain, that is Im(f) = Y | or equivalently, the pre-
image f~!(y) consists of at least one element for all y € Y. A bijective function
combines these two properties, so that the pre-image f~!(y) consists of precisely one
element for all y € Y. These properties are illustrated in Fig. 2.4.

xhy xhy xhy xhy

injective surjective not surjective bijective
not surjective not injective not injective

Fig. 2.4 Tllustration of injective, surjective, and bijective functions f: X — Y.

Example 2.6 (Basic function properties)

The linear function f : R — R given by f(z) = ax is bijective for a # 0. (It is surjective
since Im(f) = R and it is injective since f(z) = f(2’) implies ax = az’ and, hence,
x =1'.) For a =0, every z € R is mapped to 0 so in this case f it is neither injective
nor surjective.

The piecewise linear function g : R — R in Eq. (2.10) is not injective (since all
negative numbers are mapped to 0) and it is not surjective (since negative numbers
are not images). However, if we modify g by restricting its co-domain, g : R — RZ9,
(but with its values still defined by Eq. (2.10)) then it is surjective, although still not
injective. ]

The next proposition asserts that the above properties of functions are preserved under
composition.

Proposition 2.4 For two injective (surjective) functions f : X - Y and g:Y — Z
the composition go f : X — Z is also injective (surjective). If f and g are bijective,
then so is go f.

Proof First suppose that f and g are injective. We would like to show that go f is
injective as well. Suppose that (go f)(z) = (go f)(z') for z,2" € X. From the definition
of function composition, this means that g(f(z)) = g(f(2’)). Since g is injective, it
follows that f(z) = f(2’) and injectivity of f then implies that x = z’. Hence g o f is
injective.
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Now suppose that f and g are surjective. We want to show that go f is surjective as
well. To do so, we start with a z € Z and try to construct an element in the pre-image
(go f)~'(z). Since g is surjective, there exists a y € Y such that z = g(y). But f is
also surjective, so we have an « € X with y = f(z). Combining these statements gives
z=g(y) = g(f(z)) = (go f)(x) and, hence, g o f is surjective.

If f and g are bijective, then they are both injective and surjective. Then, from
the previous statements, g o f is injective and surjective and, hence, bijective. O

Thanks to this proposition, we can say that the properties ’injective’, 'surjective’, and
"bijective’ are preserved under function composition. As we will see, linearity is another
such property which is preserved under composition (see Exercises 2.6).

We also note that the restriction f|g of an injective function f : X — Y to a subset
X C X of the domain is still injective. Indeed, if f(z) = f(2') implies z = 2’ for all
x,2’ € X, then this is also implied for all z,2’ € X. The analogous statement for
surjective functions is, of course, false. Restricting the domain can lead to a smaller
image, so that surjectivity can be lost.

Bijective maps allow us to be more precise about the notion of set cardinality. We
say that a set X has cardinality n, written as |X| = n, if there exists a bijective
map X — {1,2,...,n}. This means the elements of X can be indexed by integers
so that the set can be written as X = {z1,z2,...,z,}. Further, we say that the set
has countably infinite cardinality if there exists a bijective map X — N, so the set
can be written as X = {xg,x1,...}. If neither is the case, we say the cardinality is
non-countably infinite.

2.3.4 The inverse function

Can the effect of a function be undone by an inverse function? We should first define
what exactly we mean by this.

Definition 2.5 For a function f: X — Y an inverse function is a function g:Y —
X, which satisfies go f =idx and fog=1idy.

A function f : X — Y need not have an inverse. For example, if f is not injective
then there is a pre-image f~1(y) for some y € Y which contains at least two elements.
In this case, it is not clear which of these two elements to choose for the value of the
prospective inverse function with argument y. Likewise, if f is not surjective there
exists an empty pre-image f~!(y) so in this case there is no candidate for the value of
a prospective inverse function at y. Fortunately, being non-injective or non-surjective
are the only obstructions to the existence of an inverse.

Proposition 2.5 A function f : X — Y has an inverse if and only if f is bijective.
In this case, the inverse, denoted by f~1:Y — X, is unique and bijective.

Proof First assume that f : X — Y has an inverse g : Y — X, hence go f = idx
and f og = idy. We want to prove that f is bijective. To show that f is injective,
start with f(z) = f(2’) and apply g from the left, so that g(f(z)) = g(f(2’)). But
go f = idx, hence g(f(z)) = « and g(f(2’)) = 2/, which implies z = 2. To show
that f is surjective, observe that for every y € Y there exists an x = g(y) € X with
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f(z) = f(g9(y) = y. Hence f is bijective.

For the second part of the statement, assume that f is bijective. Define a map ¢ :
Y — X by g(y) = z, where x is the unique element in the pre-image f~!(y). Then g
satisfies (f o g)(y) = f(z) =y and (g o f)(z) = g(y) = x and, hence, it is an inverse
map for f.

Finally, to show uniqueness of the inverse map, consider two inverse maps g: Y — X
and g : Y — X. They satisfy go f(z) = x = go f(z) for all z € X. Since f is surjective,
any y € Y can be written as y = f(x) for some x € X and therefore g(y) = g(y) for all
y € Y. Hence, g = g and the inverse is unique. We leave the proof that f~! is bijective
as Exercise 3.1. ]

Note that, by a slight abuse of notation, we are using the same symbol, f~!, to denote
the inverse image and the inverse function. It should be clear from the context which
one is referred to. Since f ! is also bijective, it has an inverse as well and it is intuitively
clear that this inverse of the inverse must be the original function,

FH =1 (2.13)

Formally, this follows because both f and (f~!)~! satisfy the conditions in Def. 2.5
for an inverse function to f~! and uniqueness of the inverse function hence implies
Eq. (2.13).

Combining Prop. 2.4 and Prop. 2.5, it is clear that the composition of two invertible
functions is invertible. Moreover, the inverse of the composition can be worked out by
the rule

(gof) t=ftog™". (2.14)

Note the change of ordering in this formula which is indeed correct! For the proof note
that both (go f)~! and f~! o g~! are an inverse to g o f, in the sense of Def. 2.5.
Uniqueness of the inverse then leads to Eq. (2.14).

Example 2.7 (Inverse function)

The linear map f : R — R defined by f(z) = ax for a # 0 is bijective and, hence, has
a unique inverse. Clearly, the inverse function f~!: R — R is given by f~1(x) = z/a.
Frequently, a function can be made bijective by modifying its domain or co-domain.
For example, the quadratic function f(x) = z2, seen as a function f : R — R, is
neither injective (since f(x) = f(—=x)) nor surjective (since f(x) > 0). However, seen
as a function f: RZ9 — R0 it is bijective. Its unique inverse f~! : RZ% — RZ0 is the
square root function f(z) = v/x. O

The above example shows that linear maps on R may or may not be bijective and,
hence, may or may not have an inverse. Deciding whether a (more general) linear
function has an inverse and how to compute it is an important problem which we will
address in detail later.
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2.4 Rudiments of logic

Summary 2.4 Predicates are functions with co-domain {0,1}. New predicates can
be formed from given ones by the operations ’and’, ’or’ and the complement. These
operations are closely related to the union, intersection and the complement of sets.
Implications and quantifiers can be used to formulate conclusions and statements in
terms of predicates. The structure of basic methods of proofs, such as direct proof,
proof by contradiction, and proof by induction can be formulated in this language.

Logic is an important foundational area of mathematics, which we cannot possibly
do justice to in a short introduction. However, we need to develop our main subject
systematically, including proofs, so introducing some elements of logic is unavoidable.
We will keep the discussion short, focus on key ideas, explain notation and finish by
discussing the logical structure of basic types of proofs.

2.4.1 Predicates and Boolean operations

For a set X a Boolean function or predicate on X is a function P : X — {0,1}. The
idea is that elements z € X can be statements which are true if P(z) =1 and false if
P(x) = 0. Given two predicates, P and @, we can define new predicates

PvVQ, PAQ, (2.15)

read as P or ()’ and 'P and @Q’, respectively, whose values are defined in Table 2.1.
Note that the assignments in the table correspond to the ’intuitive’ meaning of 'and’

Table 2.1 Logical operations ’or’ and ’and’ for predicates P and @ on a set X.

| P@) | Q@) | (PAQ)@) [ (PVQ)(@) || (PVQ)() | (QVP)() |
0 0

0 0 1 1
0 1 0 1 0 1
1 0 0 1 1 0
1 1 1 1 1 1

and ’or’. Both operations are associative and commutative, that is:

PA(QAR)=(PAQ)AR PVv(QVR)=(PVQ)VR (associativity)
PAQ=QAP PVQ=QVP " (commutativity)

Commutativity is evident from Table 2.1 since the results in columns three and four do
not depend on the ordering of the first two columns. Associativity can also be verified
by a truth table, similar to Table 2.1 (Exercise 2.9). In addition to associativity and
distributivity, there are two distributive laws which connect the two operations.

Proposition 2.6 For three predicates P, @), and R, we have
PA(QVR)=(PAQ)V(PAR), PV(QAR)=(PVQ)AN(PVR). (2.16)
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Proof The proof can be accomplished by a truth table, going through all eight
combinations for the values of P, @, and R. As an example, suppose that P(x) =
Q(z) = 1 and R(xz) = 0. Then, from Table 2.1, we have P A (Q V R)(z) = 1 and
(PAQ)V (P AR)(x) =1 which proves the first Eq. (2.16) for this case. The proof is
completed by going through the other seven possibilities (Exercise 2.9). O

The reader has probably noticed the formal similarity between the above rules for how
to calculate with ’or’ and ’and’ and the rules for the union and intersection of sets, as
discussed in Sec. 2.1.2. These similarities are, of course, not an accident and have to do
with the fact that 'or’ and ’and’ have been used, then somewhat naively, to define the
union and intersection of sets. The relationship can be made more precise by noting
that there is a bijective correspondence between predicates on X and subsets of X.
Concretely, we can assign to a predicate P on X the subset Xp = {z € X | P(z) = 1}
of those elements in X, for which the predicate is true (also, see Exercise 2.8). Based
on this correspondence, we can now define the union and intersection of sets

XPUXQ:XP\/Q, )(pﬁ)(Q:)(p/\Q7 (217)

in terms of ’or’ and ’and’. With these definitions, it is easy to derive the rules for
calculating with sets from the above rules for predicates. For example, obtaining the
first distributive law (2.2) for sets works, as follows:

2.17 2.16) 2.17)
Xp N (XoUXr) "2 Xpvonm "= Xpaoyirar) = (Xp N Xg)U(XpN Xg) .

The complement P of a predicate P on X is defined as:

_ {Oif P(z)=1 (2.18)

PE) =1 p@)=0 -

The complement satisfies a number of important relations, also known as de Morgan’s
laws.

Proposition 2.7 (de Morgan’s laws) The complement of predicates on X satisfies

P=P, PvQ=PAQ, PAQ=PVQ. (2.19)

Proof The first law, P = P, is obvious from the Def. (2.18) of the complement. The
other two rules are verified by the truth table below:

P|QI|PVQ|PAQ| PAQ|PVQ
010 1 1 1 1
011 0 0 1 1
110 0 0 1 1
1|1 0 0 0 0
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The complement of predicates is closely related to the set complement, in much the
same way the ’or’ and ’and’ operations are related to the union and intersection of sets.
More precisely, we can now define the set complement in terms of the complement of
predicates as

Xp=Xp. (2.20)

With this definition, the rules for set complements in Prop. 2.2 immediately follow
from de Morgan’s laws (Exercise 2.10).

Finally, we need to introduce two simple pieces of terminology. A tautology is a predi-
cate on X which returns true for all z € X and Table 2.1 shows that, for example, PV P
is a tautology. A predicate which returns false for all z € X is called a contradiction
and an example is provided by P A P.

2.4.2 Implications

Given two predicates P and @) on X, the implication connective allows us to form a
new predicate, denoted by P = @, and read as 'P implies @’ or ’Q follows from P’.
It is defined by

(P=Q) =PVQ. (2.21)

Table 2.1 shows that P = @ is true in all cases, except when P is true and @ is false.
This makes sense, since an implication should only be called false if a true premise P
leads to a false conclusion (. An implication P = @ is called valid if it is a tautology,
that is, if (P = Q)(z) =1 for all z € X.

The predicate which tests mutual implication is written as P < @, read as 'P
equivalent to @’ and formally this can be defined by

(PoQ) ={P=QAQ=P). (2.22)

Table 2.1 shows (by taking a logical ’and’ between the last two columns) that (P <
Q)(z) is true iff P(x) = Q(z) and false otherwise. If P < @ is a tautology we also say
that P holds if and only if @ holds. The phrase ’if and only if’ in this context is often
abbreviated as "iff’.

A simple calculation based on the definition (2.21), commutativity, and the first de
Morgan law shows that:

(P=Q)=PVQ=QVP=(Q=P). (2.23)

This result underlies the method of indirect proof (discussed in more detail later) by
which the validity of P = @ follows from the validity of Q = P.

2.4.3 Quantifiers

Logical statements often involve quantifiers, such as the quantifier 'or all’, written as
V, the quantifier ’there exists’, written as 3 and the quantifier ’there exists a unique’
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written as 3!. Using this notation, most theorems can then be cast into one of the
following forms:

(Vz € X)(P(z)), (GzeX)(P(x), (zeX)(P()). (2.24)

From left to right, these statements should be read ’P(z) is true for all z € X’, ’there
exists an ¢ € X , such that P(z) is true’, and ’there exists a unique x € X such that
P(z) is true’.

As an aside, we remark that quantifiers are also often used in the definition of sets.
For example, the set

nZ:={ke€Z|3ImeZ:k=nm}

consists of all integers which are multiples of n. (The colon in this expression is read
as ’such that’.)

Sometimes, it is easier to prove that the negative of a statement is false rather than
proving the original statement directly. In such cases, it is important to understand how
to negate statements involving quantifiers. The general rule is that, under negation,
the universal quantifier, V, turns into the existential one, 3, and vice versa. More
concretely, we have

(Vo € X)(P(x)) = 3z € X)(P(2)) , (3z € X)(P(x)) = (Vo € X)(P(x)) .

2.4.4 Patterns of proofs

We finish this section by discussing the logical structure of some common patterns of
proof. A direct proof has the logical structure,

(PAN(P=Q)=Q. (2.25)

Using a truth table and the results from Table 2.1, it can be checked that this is
tautological (see Exercise 2.11). Note that this formal expression captures what one
would intuitively state as the structure of a direct proof: ’If P is true and if @) follows
from P then @ is true.’

The corresponding expression for an indirect proof is
QN(Q=P)=P. (2.26)
It follows immediately from Eq. (2.25) by the replacements P — @Q and Q — P.
The logical structure of a proof by contradiction is
(@=P)ANQ=P)=Q. (2.27)

and, again, this is tautological (Exercise 2.11). A proof by contraction starts by as-
suming that @ is false. If this can be shown to imply both P and P, a contradiction
has been encountered and @ follows.
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Example 2.8 (Proof by contradiction)

As an example of a proof by contradiction, we want to show that there are infinitely
many prime numbers. This is the statement @ in Eq. (2.27). Then, the statement Q is
that there are only finitely many prime numbers (p1, p2, ..., pn). It follows that every
prime number is contained in the list (p1,pa,...,pn) (the statement P). Consider the
product p = pips---p, and ¢ = p + 1. If ¢ is prime, then it is an additional prime
number not in the list and the statement P follows. If ¢ is not prime, then it contains a
prime factor r. If this prime factor is in the list (p1, p2, ..., pn), then it is also a prime
factor of p but p and ¢ cannot have a common prime factor since ¢ — p = 1. Hence,
r cannot be in the list and again the statement P follows. We have now shown that
Q = P and Q = P are both valid, so from Eq. (2.27) it follows that Q holds. o

Another common type of proof is proof by induction. This arises in the context of
predicates P on countably infinite sets X = {xg, z1,...}. If we write P, = P(x,,) its
logical structure is

(PoV ((Vn € N)(Py = Pos1)) = ((Vn € N)B,) . (2.28)

While this may seem complicated at first it captures a simple idea. If the statement
Py is true and every statement P, implies its successor P, then all statements P,
must be true.

Example 2.9 (Proof by induction)
We would like to prove a formula for the sum S, =0+ 1+ 2+ --- 4+ n and the claim
is that

Sp=n(n+1)/2. (2.29)

Clearly, this claim is true for n = 0 (the ’basis’ of the induction). Let us assume that
it is true for n (the ’induction assumption’), so that S,, = n(n+ 1)/2. To show that it
follows for n + 1, we carry out the calculation

1 1
Sp+1=0+1+---+n+(n+1)=S,+(n+1) = 5n(nJrl)Jr(nH) = §(n+1)(n+2) ,

where the induction assumption has been used in the third step. The left- and right-
hand sides of this equation are precisely the claim (2.29) with n replaced by n + 1.
Hence, this shows that the statement is true for n + 1 and completes the ’induction
step’. It follows that the statement holds for all n € N. O

Exercises

2.1 Prove the second Eq. (2.2) by showing 2.2 Prove the first and third Eq. (2.3) by
mutual inclusion of the left- and right- showing mutual inclusion of the left-
hand sides. and right-hand sides.



2.3

2.4

2.5

2.6

Show that the relation (2.5) is an
equivalence relation on N2

Equivalence relations from partitions
A set S is given as a union S = J, Si
of mutually disjoint subsets S;. Define
a relation on S by declaring s,5 € S
as related if they are contained in the
same subset S;. Show that this is an
equivalence relation, which partitions
S into the subsets S;.

Show that the inverse of a bijective
function is bijective.

Composition of linear functions.

(a) Let f,g : R — R be two linear func-
tions. Show that their composition is
also a linear function. Is there a differ-
ence between fog and go f?

(b) Consider the same problem in two
dimensions. Let f,g : R? — R? be
two linear functions. Show that their
compositions f o g and g o f are lin-
ear as well. Write these functions as
f(x) = Ax and g(x) = Ax, where
x € R? is a vector with entries T1, T2,

and
1 ab - ab
<cd) ’ (Eci)

are 2 X 2 matrices. Work out the two
matrices, which describe fog and go f.
Are these matrices in general equal?

2.7

2.8

2.9

2.10

2.11

2.12
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"Simplifying’ functions.

Let f: X — Y be a function.

a) Let g,h : Z — X be functions and
assume that f is injective. Show that
fog= foh implies that g = h.

b) Let g,h : Y — Z be functions and
assume that f is surjective. Show that
(go f =ho f) implies that g = h.

Boolean functions and the power set
Show that the number of Boolean func-
tions on a set X with n elements is
equal to 2". This is the same as the
cardinality of the power set 2%, defined
as the set of subsets of X. Explain why
this is not a coincidence.

Verify that the logical operations ’or’
and 'and’ are associative, using a truth
table. Do the same for the distributive
laws (2.16).

With the set operations defined as
in Egs. (2.17) and (2.20), show that
Prop. 2.2 follows from de Morgan’s
laws in Prop. 2.7.

Prove that the statements (2.25) for a
direct proof is tautological by complet-
ing the truth table in Table 2.1. Do the
same with Eq. (2.27).

Induction
By using induction, show that 14 2%+
3440 =nn+1)(2n+1)/6.
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Groups

So far, the only structures on sets we have considered are relations. One of the sim-
plest algebraic structures on a set is a group structure. Groups underly the definition
of fields and vector spaces and for this reason alone we need to introduce them. Group
theory is a large and diverse area of mathematics and we have to keep our discussion
short, focusing on basics and some more specific aspects, which will become relevant
later on. (For a dedicated introduction to group theory see, for example, Armstrong
2013.) Groups also provide the mathematical framework for symmetries which are
immensely important for many areas of science, particularly in physics (see, for exam-
ple, Cornwell 1997; Wybourne 1974). In the next section, we begin by defining groups,
sub-groups, and the maps consistent with the group structure, the group homomor-
phisms. A number of simple examples will be presented as we go along. Permutation
groups are required for the determinant (see Chapter 18) and will be examined in
Section 3.2.

3.1 Definition and basic properties

Summary 3.1 A group is a simple algebraic structure that consist of a set with
a multiplication that is associative, has a neutral element, and an inverse for each
group element. If the multiplication commutes the group is called Abelian. Examples
of groups are all the bijective maps on a set, permutations, the integers with respect
to addition, and the cyclic groups. Cartesian products of groups can be given a direct
product group structure by component-wise multiplication. Maps between groups which
are consistent with the group structure are called group homomorphisms.

3.1.1 Definition

In Section 2.3 we have seen that functions f : X — X have a number of interesting
properties. Their composition is associative, there exists a neutral element, the identity
map, under composition, and, for bijective functions, there always exists a unique
inverse. It makes sense to formalize these properties, and this leads to the definition
of a group.

Definition 3.1 (Group) A group (G,-) is a non-empty set G with an operation - :
GxG = G, (91,92) — g1-g2 (called ’group multiplication’), which satisfies the following
properties.
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(G1) g1-(92-93) =(91-92) 93 Vg1,92,93 € G (associativity)
(G2) JeeG:e-g=g Vgeq ((left) neutral element)
(G3) ¥YgeG JgeG: g-g=e ((left) inverse)

If, in addition, g1 - g2 = go - g1 for all g1, g2 € G, then the group is called Abelian.

Note that the term 'multiplication’ in this definition refers to any operation with the
stated properties, not just the usual multiplication of numbers. Groups can have a
finite or infinite number of elements, as we will see, and in the former case G is called
finite with order given by the cardinality |G| (also see Exercise 3.3).

The above definition has a curious asymmetry, in that the neutral element and the
inverse are postulated only when multiplied from the left. However, this is not a
problem, as the following proposition shows.

Proposition 3.1 For a group G, the left inverse is unique and is also a right inverse,
so g-g = e implies g - g = e. The left neutral element is unique and is also right
neutral, so that e- g =g for all g € G implies g-e = g.

Proof We begin by proving that every left inverse is also a right-inverse. For g € G
consider a left-inverse g so that g - g = e. The inverse g has its own left-inverse which
we call g, so that g - g = e. It follows that

9-§=e9-3=§-g-99=g-g=e,
~
—e
which completes the proof. We leave the other statements as Exercise 3.1. O

Since the inverse for a given g € G is unique it is usually denoted by g—'. The above
proposition leads to two basics rules for calculating with the inverse, which mirror the
rules (2.13) and (2.14) for the inverse of functions:

(G H =g, (1) =g 9. (3.1)

The first of these follows from the fact that both g and (g71)~! provide an inverse to
¢~ !. Hence, from the uniqueness of the inverse, they must be equal. Likewise, both
(g1-92)~ " and g;l ~gf1 are inverse to g1 - go and must be equal.

How does the group structure relate to the Cartesian product of sets? More concretely,
for two groups (G,-) and (G,-) with neutral elements e and é, can the Cartesian
product G x G be made into a group? The answer is ’yes’ providing the multiplication

on G x @ is defined component-wise as:

(91,91) - (92,92) = (91 92,91 - G2) - (3.2)

This leads to the direct product group (G x G, -) with neutral element (e, &) and inverse
(9,9)7r = (g7, g7 1). Associativity is clearly satisfied for the direct product group
since it holds for each of the constituent groups. Further, if both (G,-) and (G, -) are
Abelian groups, then so is the direct product group (G x G, -). This construction is
quite important and will re-appear in the context of fields and vector spaces later on.
Of course it can be generalized to multiple factors. For example, for a group (G, -) the
Cartesian product G™ can be made into a group by component-wise multiplication.
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3.1.2 Examples of groups

It is now time to discuss a few important examples of groups.

Example 3.1 (Bijective maps on a set)

From Section 2.3, we know that all bijective maps ¢ : X — X on a set X form
a group, denoted by Bij(X). The group multiplication is the composition of maps
(which is associative), idx is the neutral element, and the group inverse is the inverse
map np_l. O

Example 3.2 (Permutation groups)
This is a special case of the previous example, where we consider all bijective maps on
the set X = {1,2,...,n}. The resulting group is called the permutation group S,,. The

idea is that a map o € S,, corresponds to a permutation of {1,...,n} by permuting
every k € {1,...,n} to its image o(k). Permutation groups will be discussed in more
detail in Section 3.2. |

Example 3.3 (Integers)

The natural numbers do not form a group with respect to either addition or multi-
plication. For addition we are missing the negative numbers that would provide an
inverse, for multiplication there is no inverse because of the absence of fractions. On
the integers Z, constructed as a quotient of N? (see Example 2.3), we can also intro-
duce an addition and a multiplication, based on the corresponding operations on N,
by:

[(n1,m2)] + [(m1, m2)] = [(n1 + n2, m1 + ma)]

[(n1,mn2)] [(m1,m2)] = [(n1m1 + name, nyma + namy)] .

To see that this really corresponds to the familiar arithmetic on Z, let us consider
some examples. The sum of a positive number [(n,0)] and a negative number [(0,m)]
is [(n, m)] which is indeed interpreted as the difference n—m. A product of two negative
numbers [(0,n)], [(0,m)] gives [(nm,0)], which corresponds to a natural number.
The integers (Z, +) with the above addition do form an Abelian group, with neutral

element 0 = [(0,0)] and inverse —n = [(0,n)] for any n € Z. However, the integers
with multiplication do not form a group since the multiplicative inverse is still missing.
O

Example 3.4 (Z,)
The set Z, := {0,1,...,n — 1} can be made into a group (Z,,-) by defining the
‘multiplication’

k-k' = (k+k)modn, (3.3)

where k£ mod n denotes the remainder of the division of k by n. This forms an Abelian
group with neutral element 0 and inverse n — k for k € Z,, which is also referred to as
cyclic group of order n. One way to specify the group multiplication for a group with
a finite number of elements is by a multiplication table. For example, from Eq. (3.3),
the multiplication table for Zs = {0, 1,2} is:
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= O

T Neol | Nen)
S| D || =
= O N N

(See also Exercise 3.6.) a

3.1.3 Sub-groups

A standard step in the build-up of any algebraic structure is the introduction of the
sub-structure. In the case of groups, this leads to the notion of sub-groups, defined as
follows:

Definition 3.2 (Sub-group) A subset H C G of a group G is called a sub-group if it
forms a group by itself under the multiplication defined on G.

To check that a subset H C G is a sub-group it is enough to verify that H contains
the neutral element e, that is, contains the inverse h~! for all h € H and that it is
closed under group multiplication, so hi, he € H implies hy - hy € H.

Every group G contains two trivial sub-groups, namely the group {e} which consists
of the neutral element only and the whole group G. All other sub-groups are called
proper sub-groups.

Example 3.5 (Sub-groups)

Consider the group (Z4,-), the cyclic group of order four, as defined in Example 3.4.
Then H = {0,2} forms a sub-group, since it is closed under the group multiplica-
tion (3.3), contains the neutral element 0 and an inverse for each of its elements (as 2
is its own inverse). O

3.1.4 Group homomorphisms

The final step of the general set-up is to define the maps which are consistent with
the group structure, the group homomorphisms.

Definition 3.3 (Group homomorphism) A map f : G — G between two groups G
and G is called a group homomorphism if:

flg1-92) = f91) - f(g2) (3.4)
for all g1,92 € G.

Group homomorphisms are simply maps between groups which commute with the
group multiplication. In other words, group elements and their images under f multiply
in the same way. As we will see in Chapter 12, linear maps are group homomorphisms
with respect to vector addition.

As every map, group homomorphisms f : G — G have an image, Im(f) C G which
is a subset of the co-domain group. But there is another interesting set, the kernel,
which can be defined because of the existence of a special group element, the neutral
element.
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Definition 3.4 (Kernel of a group homomorphism) The kernel of a group homomor-
phism f : G — G is defined as Ker(f) = f~1(¢) = {g € G| f(g) = €} C G, where é is
the neutral element of G.

This means the kernel is a subset of the domain group which consists of all group
elements mapped to the co-domain neutral element. Injectivity and surjectivity of a
group homomorphism can be phrased in terms of its image and kernel as explained in
the following proposition:

Proposition 3.2 (Properties of group homomorphisms) A group homomorphism f :
G — G has the following properties:

(i) f(e) =€ so that e € Ker(f)

(i) f(g=") = f(g)~" forallge G

(iii) f surjective < Im(f) =G

(iv) f injective < Ker(f) = {e}

(v) Im(f) is a sub-group of G and Ker(f) is a sub-group of G.

Proof (i) f(e) = f(e-e) = f(e)- f(e) and multiplying both sides with f(e)~! implies
that f(e) = é.

(ii) Clearly, f(g)~! is an inverse for f(g) but so is f(g~1) since f(g~ 1) f(g) = f(g~*-
g) = f(e) = é. The claim then follows from the uniqueness of the inverse.

(iii) This is clear from the definitions of the image and surjectivity.

(iv) Let f be injective and g € Ker(f), so that f(g) = €. From part (i) it follows that
f(g) = € = f(e) and injectivity implies that g = e. Hence, the kernel only contains
the neutral element, that is, Ker(f) = {e}. Conversely, assume that Ker(f) = {e}. We
want to show that f is injective, so we start with g1, g2 € G satisfying f(g1) = f(g2).
Then é = f(g1)- f(92)™" = f(91)- f(95 ') = f(g1-95 ), s0 that g1 -g5 " is in the kernel.
Hence g; - g5 L' — ¢ or g1 = g2, which shows that f is injective.

(v) This is left as Exercise 3.2. a

A bijective group homomorphism f : G — G is also called a group isomorphism.
Isomorphisms are of great importance in mathematics and the isomorphisms of vector
spaces — the bijective linear maps — are a central theme of linear algebra, which we
will develop in more detail later on. Recall that we have earlier defined what it means
for two sets to be equal. Isomorphisms provide us with a different, structural notion of
set equality. The existence of a group isomorphism implies that domain and co-domain
groups are equal with respect to their group structures. This means that, by virtue of
Eq. (3.4), the elements of the domain group and their images in the co-domain multiply
’in the same way’. Two groups G and G connected by a group isomorphism are called
isomorphic, written as G = G. All these features, including image and kernel, as well
as the statements of Prop. 3.2 have their counterparts for linear maps, as we will see
in Chapter 12.

Example 3.6 (Group homomorphisms)
Consider the map f : Z — Z,, defined by f(k) = k mod n. This is a group homomor-
phism, since:

flk+k)=(k+k)modn = [(kmodn)+ (k' mod n)] modn = f(k)+ f(k).
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Its image is the entire co-domain, Im(f) = Z,, so the map is surjective. The kernel,
Ker(f) = nZ, consists of all multiples of n. Hence, f is not injective. |

Example 3.7 (Group isomorphism)

The set G = {1, —1} forms a group under regular multiplication of integers. The map
f : Zy — G defined by f(k) = (—1)* is a group isomorphism, which shows that
G =7, 0

3.2 Permutation groups

Summary 3.2 The permutation group S, consists of all bijective maps on the set
{1,...,n}, with multiplication given by map composition. Transpositions are permu-
tation which swap two numbers while leaving all others unchanged. Every permutation
can be written as a product of transpositions. If the number of transpositions required
is even, then the transposition is called even and the sign of the permutation is +1.
Otherwise, the permutation is called odd and its sign is —1. The sign map is a group
homomorphism from S, to the cyclic group {£1}.

Permutation groups S,, and some of their properties will be required later, in the
context of determinants. Here, we prepare the ground for these applications and also
illustrate some of the general ideas around groups.

3.2.1 Calculating with permutations

The permutation groups S, have already been defined in Example 3.2. Permutations
o € S, are sometimes written as

1 2 - n
o(1)o(2) - - o(n)

indicating a permutation which permutes the numbers in the top row to the corre-
sponding numbers in the bottom row. Group multiplication is composition of maps,
the group identity is the identity map (the trivial permutation which leaves everything
unchanged) and the inverse of o € S, is the inverse permutation ¢~! which 'undoes’
the effect of the original permutation.

The simplest non-trivial example is the group S of permutations of the set {1,2}
which consists of two elements (see also Exercise 3.5):

s fe=[12]e=[22]) o9

Clearly, this group is Abelian. What about the higher permutation groups? Consider
the two permutations
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123 123
Tl_{132-~-]’ 72_[321..}’
in S,, which swap (1,2) and (2, 3), respectively, while leaving all other numbers un-
changed. Such simple permutations which only swap two numbers are called transpo-
sitions. Note that transpositions 7 are their own inverse since 7 o7 = e.
A quick calculation,

123 123-.}, (3.6)

ToT= {231...] F Mo = {312...

shows that S,, is not Abelian for n > 2. The calculation underlying Eq. (3.6) is
perhaps somewhat unfamiliar. To see, for example, that 7 o 7y maps 3 to 2 first note
that 7(3) = 2 and 72(2) = 2. Combining these two statements gives (12 0 71)(3) =
m2(11(3)) = 72(2) = 2.

3.2.2 Permutations in terms of transpositions

It is intuitively clear that S,, has n! elements and that every permutation can be writ-
ten as a composition of transpositions. These statements are proved in the following
proposition.

Proposition 3.3 The permutation group S, has n! := 1-2---n elements. Every
permutation in S, can be written as a composition of transpositions.

Proof We can prove these statements by induction in n. Both statements are clearly
true for S, as Eq. (3.5) shows. Now assume that they are true for S,,. Next consider
the permutations Ay := {0 € Sy11|0(n+1) =k} C Sp41, which map n+ 1 to k& and
also the transposition 7 € S, 11 which swaps n+1 with k. Then, the permutations oo,
where o € A leave n 4+ 1 unchanged and can, hence, be identified with permutations
in S,. Then by the induction assumption, 7 o ¢ can then be written in terms of
transpositions, Too = 7, 0--- 07, so that ¢ = 7 o7y o --- 7. This completes the
induction for the statement about transpositions.

Further, by the induction assumption we have |A;| = n!forall k =1,...,n+1 and
since Sp+1 = A1 U---U A, 41 is the disjoint union it follows that |S, 1| = (n+1)n! =
(n+ 1)L |

The number of transpositions required to build up a certain permutation ¢ is not
unique. For example, if ¢ = 7y 0 - - o7, can be written in terms of the k transpositions
T; it is equally well given by a composition of the k + 2 transpositions ¢ = 71 o

-oTg oTorT, with 7 any transposition. (To see this, recall that 72 = e for any
transposition 7.) However, while the number of transpositions required to generate a
certain permutation is not unique, it is always either even or odd, as we will now show.

3.2.3 The sign of permutations

It is important to distinguish between even and odd permutations and the formal way
to do this is by introducing the sign of a permutation.
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Definition 3.5 The sign of a permutation o € S, is defined as

sgn(o) = H oli) = olj) , (3.7)

P
i>j J

where the product runs over all i,j € {1,...,n} with i > j. A permutation o is called
even if sgn(o) =1 and it is called odd if sgn(o) = —1.

The formula (3.7) might be somewhat confusing at first but it is, in fact, easy to
understand intuitively. First note that the products of numerators and the products
of denominators in Eq. (3.7) consist of the same factors, up to signs and, therefore the
value of the sign functions is indeed +1. The number of —1 factors in the product (3.7)
corresponds to the number of pairs (4,j) with ¢ > j for which o(¢) < o(j), so where
the 'natural’ order of a pair (i,j) is changed by the permutation. If this number is
even the permutation is called even, and odd otherwise. The sign satisfies the following
important property:

Theorem 3.1 sgn(o o p) = sgn(o)sgu(p) for all o,p € S,.
Proof

sgn(o o p) =

I a(p(7) —alp() _ H 0(p(z)

) = o(p(i) 77 PU) = p(i)
J) = 11

(4) j—i

B

i>7

=2 () = sen(c) sen)

0O

In fact, this proposition says that the sign function sgn : S, — {1} = Z, defines a
group homomorphism. The kernel of this homomorphism, which consists of all even
permutations, forms a sub-group of S,, (see Prop. 3.2), which is called the alternating
group A,,. Also, since 1 = sgn(e) = sgn(o oo~!) =sgn(c)sgn(c—!), we conclude that

sgn(o™!) =sgn(o)™!, (3.8)

so a permutation and its inverse always have the same sign. Also note that the sign of
a transposition is always negative, since Eq. (3.7) has precisely one negative factor in
this case.

Suppose a permutation o € S, can be written in terms of k transpositions 7; as
o =110 07k Then, from Theorem (3.1), the sign of the permutation is given by

sgn(o) = (=1)" . (3.9)

This means the number of transpositions required to build up the permutation ¢ must
always be even for an even permutation and odd otherwise, as advertised earlier.
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Problem 3.1 (Even and odd permutations in Ss3)

Write down the elements of the permutation group S3, and determine the even and odd
permutations and the alternating group As.

Solution: The permutation group Ss of the set {1,2,3} has 3! = 6 elements, which consist
of the identity e, three transpositions 7; and two further permutations, ¢ and &, given by

S ) R FE ) DR ) R ) IR 1 et

The three transpositions are of course odd permutations. Comparison with Eq. (3.6) shows
that 0 = 71 o2 and 6 = 72 o 71. Hence, 0 and & are both even permutations and the
alternating group As C S3 of even permutations is Az = {e,0,6}. (See also Exercise 3.7.)

Exercises
(t=challenging, t7=difficult, wide-ranging) 10 01
f(e) =\lo1)~ f(T) =\10

3.1 Prove the statements in Prop. 3.1. . .
satisfies the group homomorphism prop-

3.2 Prove the statement (v) in Prop. 3.2, by erty (3.4). Also show that f(7) per-
showing that Im(f) and Ker(f) contain mutes the standard unit vectors, that is,
the neutral element, the inverse, and are f(r)(e1) = ez and f(7)(e2) = ei.
closed under group multiplication. (b)T Attempt an analogous construction

by starting with the permutation group

3.3 Ord b-
rder of sub-groups S3 and using 3 X 3 matrices.

Consider a finite group G with sub-
group H C G. We can define a rela- 3.6 Classification of finite groups.

tion on G by saying that g, g are related (a) How many different group struc-
if g7'g € H. Show that this defines tures modulo group isomorphisms are
an equivalence relation whose equiva- out there? This depends on the number
lence classes can be written as gH = of elements of the group. If the group
{gh|h € H}. Why do all these equiva- G has only one element, then G = {e},
lence classes have the same number of el- so the group consists of the unit only.
ements? Show that the order of H must If the group has two elements, say G =
divide the order of G. {e,a}, show that the multiplication law
3.4 The group of linear functions. }Esall)lf; 1.que1y determined by the following

Consider the set of all linear functions

f + R — R that have an inverse. Show
that this set together with the group [l elal

multiplication defined as function com- e i
position forms a group. ajjaje

3.5 Permutation matrices Show that this group is isomorphic to
(a) Consider the group S2 = {e, 7} of Z3 and to So.
permutations of the set {1,2}, as given (b)! Find all possible group structures
in Eq. (3.5). Show that the map f de- for a group G = {e, a, b} with three dif-

fined by ferent elements.
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3.7 Sub-groups of St G/ ~ with the equivalence relation ~
Find all proper sub-groups of Ss. Show from Exercise 3.3 can be given a group
that, apart from the alternating group structure if H is a normal sub-group.
As, there are three sub-groups of order (b) Show that the kernel of a group ho-
two which are all isomorphic to Ss. momorphism f : G — G is a normal

3.8 Normal sub-groups't sub-group of G. )

A sub-group H C G is called normal if (f) For a group homomorphism f : G —
gH = Hg for all g € G. G show that G/Ker(f) is isomorphic to

(a) Show that the quotient G/H := Im(f).
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Fields

Fields are a much more complicated algebraic structures than groups. They consist
of a set with two Abelian group structures, one referred to as addition, the other
as multiplication, plus a compatibility requirement, called distributive law, between
them. The well-known rules for calculating with numbers are, in fact, the rules for
calculating in a field. Here we are putting these rules on axiomatic ground and also
prepare for the definition of vector spaces, which relies on the one for fields.

We begin by defining fields — since we have introduced groups already, this is rather
easy — and derive some of the implications from this definition. Examples of fields, in-
cluding the important cases of rational numbers Q and real numbers R, are introduced
next. We devote a bit more space to the field C of complex numbers, which is perhaps
less familiar to the reader. Finally, we present a few basic facts about polynomials,
which will be required for the discussion of eigenvalues and eigenvectors in Part VI.

4.1 Fields and their properties

Summary 4.1 Fields are algebraic structures with two operations, referred to as
addition and multiplication, which both form an Abelian group and are connected by
a distributive law. An order on a field provides a notion of ’less’ and ’greater’ which
is consistent with addition and multiplication.

4.1.1 Definition
Definition 4.1 (Field) A field (F,+,-) is a non-empty set with two operations

+:FxF— F i FxF— F
(a,b) —a+b (a,b) — ab,

called ’addition’ and 'multiplication’, which satisfy the following for all a,b,c € F.

(F1) (F,+) is an Abelian group with neutral element 0 and inverse —a.
(F2) (F\ {0},-) is an Abelian group with neutral element 1 and inverse a=!.
(F3)1+0.

(F4) The distributive law a(b + ¢) = ab + ac holds.

In short, a field combines two Abelian groups, which are linked by a distributive law.
All the 'standard’ rules for calculating which the reader is probably familiar with can
be derived from the above axioms.
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4.1.2 Some conclusions from the field axioms
Let us consider a few examples of simple conclusions from the field axioms.
Claim 0a =0 for all a € F.

Proof 0a = (0+ 0)a ) 04 + 0a and adding —(0a) to both sides leads to the claim.

This property implies that we cannot find any element in the field whose product with
0 gives 1. Hence, 0 has no multiplicative inverse and this explains why 0 has been
removed in the definition of the multiplicative group. It is also the explanation for
axiom (F3). If 1 = 0, then it follows that « = 1a = 0a = 0, so that the field only
consists of a single element, 0 = 1. The purpose of axiom (F3) is to exclude this trivial
possibility.

Claim If ab=0thena=0o0r b =0.

Proof If a = 0 we are done. If a # 0 we can multiply ab = 0 with the inverse a~! to

obtain b = a0 = 0, where the last step follows from the previous claim.

This statement provides the basis for saying that a vanishing product implies the
vanishing of (at least) one of its factors. It also implies that two non-zero elements in
a field can never multiply to zero.

Claim (—a)b = —(ab) for all a,b € F.

Proof 0= 00 = (a + (—a))b = ab + (—a)b = (—a)b= —(ab)

Also note that the sum a + (—b) is often written as a — b, so subtraction is defined in
terms of addition and the additive inverse. In the same spirit, division is defined by
a+b:=ab~ !, for b # 0. Many more simple and well-known relations of this kind follow
from the field axioms (see Exercises 4.1 and 4.2) and they will be taken for granted
from now on.

It is often convenient to write multiple sums and products in terms of the more concise
summation and product notation.

n n
a1+a2+---+an:2ai, a1a2-~an:Hai. (4.1)
i=1 i=1

Using the summation notation, the distributive law can be generalized to (see Exer-
cise 4.3):

4.1.3 Order on fields
It is often necessary to have a notion of ’'less’ or 'greater’ on a field and this is defined
by an order.

Definition 4.2 (Order on fields) A field (F,+,-) is called ordered with respect to an
order > if
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(O1) For all a € F precisely one of a >0, a =0 and —a > 0 is true.

(02) a >0 and b > 0 implies a +b > 0.

(03) a >0 and b > 0 implies ab > 0.

We say that a > b, read as ’a is greater than b’, if a — b > 0. This is also written as

b < a, which reads ’b is less than a’. Further a > b (b < a) means that a >b ora=1">
and is read as ‘a greater or equal b’ (b less or equal a’).

Perhaps surprisingly, not all fields admit an order. For example, the complex numbers
cannot be ordered, as we will see. For fields with an order (such as the rational and
real numbers), all the 'usual’ rules for working with inequalities can be derived from
the above axioms (see Exercise 4.4) and we will take these rules for granted from now
on. Here is a simple example of a conclusion from the order axioms.

Claim For a # 0 we have a® > 0.
Proof From Exercise 4.1 we know that (—a)? = a?. Since a # 0, (O1) implies that
either ¢ > 0 or —a > 0 so that the statement follows from (O3).

An immediate consequence is that 1 =12 > 0

The ordering axiom (O1) in Def. 4.2 facilitates introduction of the absolute value or

modulus |a| of a number a € F by
a if a>0ora=0
ol := { —a if —a>0 (4.3)

An order on a field F also allows us to define intervals, for example
[a,b] :={ze€Fla<z<Db}, [a,b) :={z e€Fla<z<b}.

Note that a square bracket indicates that the boundary is part of the interval, while
a round bracket indicates the boundary is excluded.

4.2 Examples of fields

Summary 4.2 Important examples of ordered fields are the rational numbers Q and
the real numbers R. There are also fields with a finite number of elements but they
cannot be ordered.

Example 4.1 (Rational numbers)

We can introduce the rational numbers as a quotient Q = Z x Z79/ ~, where the
equivalence relation ~ is defined by (p1,q1) ~ (p2,¢2) if p1g2 = paq1. Intuitively, if
P1g2 = paqa then p1/q1 = pa/qa so this equivalence relation identifies two pairs (p1,¢1)
and (p2, g2) if they represent the same fraction. Correspondingly, an equivalence class
[(p, ¢)] under this relation is also written as a fraction p/q, where (p,q) € [(p, q)] is any
pair of integers in the class. Addition and multiplication on Q are defined by

[(P1,q1)] + (P2, @2)] = [(P1G2 +P2q1, 102)],  [(P1, @1)] [(P2, 42)] = [(P1P2, 1G2)] , (4.4)

where the components are added and multiplied according to the rules in Z. It is a
straightforward, although somewhat tedious exercise (see Exercise 4.5) to show that
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these definitions satisfy all the field axioms in Def. 4.1. The neutral element of addition
is [(0,1)] and the additive inverse of [(p, ¢)] is [(—p, ¢)]. For multiplication the neutral
element is [(1,1)] and the inverse of [(p, q)] is [(¢, p)]-

Although Egs. (4.4) might seem unusual at first, they do formalize the well-known
rules for how to add and multiply fractions. The first Eq. (4.4) instructs us to bring
the two fractions to the same denominator (¢1¢2) and then add the numerators. The
second Eq. (4.4) simply says that fractions are multiplied by multiplying numerators
and denominators.

To define an order on @Q, we note that we would call a fraction positive if both
numerator and denominator have the same sign. This motivates the definition

[(p.q)) >0 < pgeN*, (4.5)

which can indeed be shown to satisfy the order axioms in Def. 4.2 (see Exercise 4.6).
O

Example 4.2 (Real numbers)

The real numbers R can be constructed as limits of sequences of rational numbers. This
is really a topic in analysis and will not be discussed explicitly here (see Exercise 4.18).
Intuitively, R is obtained from @Q by 'filling in the gaps’ with irrational numbers. This
construction implies that all real numbers can be approximated by rational numbers
to arbitrary accuracy. This allows extending the definitions (4.4) of addition and mul-
tiplication on @Q to R. It can then be shown that (R,+,-) is a field. In a similar way,
the order (4.5) can be extended to R. In the following, we will take this field and its
order structure for granted (see Exercise 4.18). |

Example 4.3 (Finite fields)

There exist 'unusual’ fields with a finite number of elements which satisfy all the re-
quirements in Def. 4.1. Consider the sets F, = Z, = {0,1, ..., p—1} with (prospective)
addition and multiplication defined by:

a+b:=(a+b)modp, a-b:=(ab) modp. (4.6)

We already know from Example 3.4 that (Fp,+) is an Abelian group. What about
multiplication? Consider Fy where 2 -2 = (22) mod 4 = 0. We know that in a field
two non-zero elements can never multiply to zero, so F4 with the above addition and
multiplication cannot be a field. We can avoid this problem by demanding that p be
a prime number and it turns out that (IF,,+,-) for p prime is indeed a field.

The fields IF, do not have an order. In an ordered field we always have 1 > 0 and,
hence, p—1=1+1+---1>0. But (p —1) +1 = 0 in contradiction to axiom (02)
in Def. 4.2.

The simplest example of such a finite field is (Fo = {0,1},+,-). Since every field
must contain the neutral elements 0 and 1, this is indeed the smallest field. From the
definitions (4.6) its addition and multiplication tables are:
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(+[o[1] [-[o[1]
0J0]1 0]0]0
T [1]0 101

Note that, taking into account the mod 2 operation, in this field we have 14+1 = 0. Since
the elements of Fy can be viewed as the two states of a bit, this field has important
applications in computer science and in coding theory. (See also Exercise 4.7 and
Application 14.1.) ]

4.3 The complex numbers

Summary 4.3 Complex numbers C are of the form z = a+ib, where a,b € R and i
is the imaginary unit. As a set, they can be identified with the two-dimensional coor-
dinate vectors R2. The complex numbers form a field with component-wise addition
and complex multiplication defined by i> = —1. Complex conjugation z = a + ib
Z = a — ib is a field automorphism which is used to write down the multiplicative
inverse and to define the length of a complex number. Component vectors R™ with
n > 2 and component-wise addition cannot be given a field structure. This motivates
the introduction of vector spaces.

In Section 3.1 we have introduced the direct product of groups, whereby the Cartesian
product of two groups can be given a group structure by component-wise multiplica-
tion. Is there a similar construction for fields? For concreteness, we will address this
question for the Cartesian product R?.

4.3.1 Construction of complex numbers

We have seen in Eq. (1.15) that elements of R? can be written in terms of the standard
unit vectors e; and es, so that a vector with components a and b can be written as
aei + bey. Alternatively, we can write such a pair of real numbers as a formal sum
a—+1b, where, for the time being, i is merely a symbol, called the imaginary unit. These
formal sums form the set of complex numbers

C:={a+ib|a,be R}, (4.7)

which are identified with vectors in R? via the bijective map a 4 ib — ae; + bey. For
now, this is just a different way of writing R?. But can C be turned into a field? From
the construction of the direct product group, we know that C can be turned into an
Abelian group (C,+) by component-wise addition

(a+1b)+ (c+id):=(a+c)+i(b+d), (4.8)

with neutral element 0 and the inverse of a + ib given by —a — ib.

At first it seems we can follow the same idea for multiplication, but there is a problem.
For the multiplicative group (R \ {0}, ) of a field, we have to remove 0 (see Def. 4.1).
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Hence, the direct product group construction leads to a group structure on (R\ {0})?,
with component-wise multiplication. However, elements of the form (a,0) and (0, b)
are not contained in (R \ {0})2, so proceeding in this way does not tell us how we
should multiply such elements. Worse, extending component-wise multiplication to
such elements gives (a,0)(0,b) = (0,0), so two non-zero numbers multiply to zero, a
feature which is excluded for a field. The direct product construction is not the right
way forward for the multiplicative group.

The key to defining multiplication on C is to impose the relation 2 = —1. Then, the
distributive law enforces

(a +b)(c +id) = ac — bd + i(ad + bc) . (4.9)

The neutral element for this multiplication is 1 and it is easy to check that an inverse
is given by

a—1b
a?+b"’
The remaining axioms in Def. 4.1 can be checked as well (see Exercise 4.8). We conclude
that (C,+,-) with addition and multiplication defined as in Eqgs. (4.8) and (4.9) is a
field.

(a+ib)~' = (4.10)

We recall that, in an ordered field, we have a? > 0 for all a # 0. Since, i2 = —1, we
see that (C,+,-) cannot be ordered.

O I
12 ' S(2)

Fig. 4.1 The complex plane C, a complex number z, its complex conjugate z, its real- and
imaginary parts R(z), S(z), and its length |z|.

4.3.2 Complex conjugation

For a complex number z = a+ib € C, a is called the real part of z, written as a = R(z),
while b is called the imaginary part and is written as b = §(z). The complex conjugate,
z, and the length or complex modulus, |z|, are defined by (see Fig. 4.1)

F=R(:)—iS(2). | =veE= VRE)Z+S(2)2. (4.11)

One way to motivate these definitions is from the formula (4.10) for the inverse, where
the complex conjugate and the length (square) appear in the numerator and denomi-
nator, respectively. In fact, the multiplicative inverse (4.10) can be written as
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_1 z

2T = 4.12
EE (4.12)
Complex conjugation satisfies the following important properties.
Proposition 4.1 For any two numbers z,w € C we have
zfw=%:4+w, ZFw=Z0. Z=2 (4.13)

Proof Write z = a + b and w = ¢+ id.

ztw=(a+c)+ilb+d)=(a+c)—i(b+b)=a—ib+c—id=Z+w
zw = (ac — bd) 4+ i(ad + bc) = (ac — bd) — i(ad + bc) = (a — ib)(c — id) = zZw
z

=a—tb=a+1b==z.

O

The content of the first two equations (4.13) can be stated by saying that complex
conjugation is a field homomorphism (see Exercise 4.11). In fact, complex conjugation
is bijective, so it is a field automorphism. It turns out that the complex numbers only
have two (continuous) field automorphisms, the identity and complex conjugation (see
Exercise 4.11), and this fact can be viewed as a motivation for introducing complex
conjugation.

Two immediate conclusions (Exercise 4.12) from the above proposition are
2w = [z] lw|, |z = 2] (4.14)

In other words, lengths of complex numbers multiply and a complex number and its
conjugate have the same length.

Problem 4.1 (Calculating with complex numbers)

For the complex number z = 2 + 4i, work out R(z), I(2), |2|* and z~*. With w = 3 — 54,
compute z + w and zw and express each in the standard form a + ¢b. Finally, write { =
(1+4)/(2 —1) in standard form a + b and, hence, find its real and imaginary parts.

Solution: The real and imaginary parts, length, and inverse of z = 2 + 44 are given by

z 2—4 1
-9 S(z) =4 2921429 -1 2 - _
R(z) , S(z) , |z] + 0, z EE 20 10

O] .

For its sum and product with w = 3 — 5¢, we have
z+w=(024+4)+B-5)=5—1, zw = (2+4:)(3—5i) =26+ 27 .

Finally, to find the standard form of ¢ = (1+1)/(2—1), all we have to do is multiply numerator
and denominator by the complex conjugate, 2 + i, of the denominator. We get

140 (142440 143

1
= i T G—hE+ i) 5 5

+ 2
5 )

so that R(¢) = 1/5 and (¢) = 3/5. (See also Exercise 4.13.)
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Problem 4.2 (Polar decomposition for complex numbers)

Show that every non-zero complex number z € C can be uniquely written as z = r(, where
r is real positive and ¢ € C has length one.

Solution: We can certainly write any complex number in this form by setting r = Jz| and
¢ = z/|z|. Conversely, if z = v with » > 0 and [¢| = 1 it follows that |z|? = r?|¢|* = 2.
Hence, r = |z| is the unique solution for r and this uniquely determines ¢ = z/r = z/|z|.

If we take some properties of trigonometric functions and the exponential function for granted
(proving these is really a task in analysis) we know that every complex number ¢ with || =1
can be written as ¢ = cos(d) + isin(f) = e for a unique § € [0,27). Hence, the polar
decomposition of a complex number can also be cast into the form

z=re' | (4.15)

where r = |z| > 0 is the length of z and 6 = arg(z) € [0, 2n) is called the argument of z.

4.3.3 Beyond R?

Given that R? can be turned into a field, it is natural to ask if the same can be
accomplished for R™, when n > 2. We can certainly turn R™ into an Abelian group by
component-wise addition. However, having made this choice, it is then impossible to
define a generalization of the multiplication (4.9) which satisfies all the field axioms.

This break-down of the field structure for R™ with n > 2 is one of the main motivations
for introducing vector spaces. They can be viewed as the 'next best thing’ when the
field structure is not available. Vector spaces will be defined in the next section.

4.4 Basics of polynomials

Summary 4.4 Polynomial division is an important algorithm for calculating with
polynomials. If a polynomial p has a zero at x = a, polynomial division can be used
to show that p(x) = (x — a)s(z). A zero a of p is said to have multiplicity m if
p(x) = (x —a)™s(x) with s(a) # 0. A polynomial fully factorizes if the multiplicities
of all zeros add up to the degree of the polynomial. Polynomials over the real numbers
may or may not fully factorize, depending on the example. The fundamental theorem
of algebra states that every non-constant polynomial over C has a zero and this implies
that all polynomials over C fully factorize.

4.4.1 Basics and polynomial division

Understanding the structure of polynomials is one of the tasks of algebra (see, for
example, Lang 2000), and lies outside the realm of linear algebra. However, we will
see in Part VI that the characteristic polynomial of a linear map is a central object in
the theory of eigenvalues and eigenvectors. For this reason we collect a few basic facts
on polynomials as required for our discussion later on.
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By a polynomial over a field F, we mean a function p : F — F of the form
p(x) = cpa”™ + cno1z™ N+ az + o (4.16)

where ¢; € F. The set of all such polynomials is also denoted by P(F). If ¢,, # 0, then
we say that p has degree deg(p) = n and if ¢,, = 1 then p is called a monic polynomial.
A monomial is a special polynomial of the form z*. The polynomial p is called reducible
if it can be written as a product p = ¢r of two polynomials p,r € P(F) with positive
degree and is otherwise called irreducible. Whether a polynomial is reducible depends
on the field F. For example, p(x) = 22 + 1 is irreducible as a polynomial over R but it
is reducible over C since p(z) = (x +1)(x — ). An important algorithm for calculation
with polynomials is polynomial division.

Theorem 4.1 (Polynomial division) Let p,q be polynomials over the field F. Then,
there exist unique polynomials r, s with deg(r) < deg(q) such that p = sq+ r.

Proof This follows from the standard algorithm for polynomial division as, for ex-
ample, explained in Lang 2000; Lang 1998. O

4.4.2 Zeros and multiplicity

We call a € F a zero of the polynomial p € P(F) if p(a) = 0. In this case, the polynomial
division theorem with ¢(x) = = — a implies that

p(z) = (x — a)s(z) + r(x) . (4.17)

Since deg(r) < deg(q) = 1, we conclude that r must be a degree 0 polynomial, that is,
a constant. Inserting 2 = 0 into the equation (4.17) then immediately leads to r = 0,
so that

p(x) = (x — a)s(x) . (4.18)

Here, s must be a polynomial of degree n — 1 (or else p would not be of degree n).
If s(a) # 0 then a is called a simple zero of p, otherwise, if s(a) = 0, we can split a
further factor x — a off from s and repeat this process until the remaining polynomial
is non-zero at * = a. The maximal number of factor £ — a obtained in this way is
called the multiplicity of the zero a and it is formally defined as follows:

Definition 4.3 (Multiplicity of a polynomial zero) A polynomial p is said to have a
zero with multiplicity m at © = a if p(x) = (x — a)™s(x), where s is a polynomial with
s(a) # 0.

4.4.3 Factorization

Suppose, for a degree n polynomial p, we have a complete list of pairwise different

Zeros ay, ..., ar with multiplicities mq, ..., mg. By iterating the above arguments, it
is then easy to see that p can be written as
p(z) = (z—a)™ - (x — ap) ™ s(x) (4.19)

where deg(s) = n—ZfZl m,;. We say that p fully factorizes if s is a constant polynomial
or, equivalently, if Zle m; = n, that is, if the multiplicities of all pairwise different
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zeros add up to the degree. A fully factorizing degree n polynomials p can, hence, be
written as

k
p(z) = c(z —a)™ - (x — ap)™ where Zmz =n, (4.20)
i=1

and ¢ € F. This is a very convenient form for p but whether it can always be achieved
depends on the choice of field F.

Over R, it is easy to write down polynomials which have no (real) zeros at all,
for example p(z) = x? + 1. There are also polynomials over R with zeros which still
do not fully factorize. For example, p(z) = 2® — 22 + x — 1 has a zero at z = 1
and can be written as p(xz) = (z — 1)(2? 4+ 1) which shows that there are no further
zeros over R. Hence, it does not fully factorize. On the other hand, the polynomial
p(x) = 2% — 3x — 2 has zeros at 2 and —1 with multiplicities 1 and 2, respectively
and, hence, fully factorizes as p(z) = (z — 2)(z + 1)%. The main message is that for
polynomials over R the situation very much depends on the specific example.

Fortunately, things are much clearer for polynomials over C. The main statement is
the famous fundamental theorem of algebra, originally due to Gauf.

Theorem 4.2 FEvery non-constant polynomial over C has a zero.

Proof The most straightforward proofs can be found in the context of complex anal-
ysis (see, for example, Lang 2013). O

This means every polynomial over C can be written in the form (4.18) and if the
polynomial s in this equation is non-constant we can apply the theorem again and
split off another factor. Iterating this shows that all polynomials over C fully factorize.

An interesting special case is a polynomial p over C, as in Eq. (4.16), with real
coeflicients ¢;. If a is a zero of such a polynomial then complex conjugating and using
Prop. 4.1 shows that p(a) = 0. The conclusion is that for such polynomials with real
coeflicients zeros are either real or they come in complex conjugate pairs.

l

Exercises
(f=challenging, tT=difficult, wide-ranging) % —a=-b=ab"}.
4.1 Some conclusions from field axioms
Let (F,+.-) be a field. Show that the usual rules for adding
(a) Show that —a = (—1)a for all and multiplying fractions follow from
a € F, where —1 is the additive inverse the field axioms.
of 1. 4.3 For afield (F, +.-) show that a(by+b2+
(b) Show that (—a)(—b) = ab for all <+ 4by) = abi+aba+- - - aby, for exam-
a,beF. ple by induction in n. Use this result to
4.2 Fractions prove Eq. (4.2).

For a field (F,+.-),a € Fand b € F\{0} 4.4 For a field (F, +, -) with an order, show
define a fraction by that @ > 0 implies a=* > 0 for all



50 Exercises

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

4.14

a € F. Also show that a > b and ¢ > 0
implies ac > bc.

Show that (Q,+,) with addition and
multiplication defined as in Eq. (4.4) is
a field.

Show that Eq. (4.5) defines an ordering
on the field (Q, +,-).

The field F,

Find the addition and multiplication
table of the field (Fs, +, ). For Fo show
that (a+b)? = a* 4 b* and for F3 show
that (a+b)® = a® +b*. Generalize this
and show that, for the field F,,, we have
(a + b)? = a? 4+ bP. (The equation you
always, secretly, wanted to be true.)
Show that C with addition (4.8) and
multiplication (4.9) forms a field.

In C, show that the equation z? = —1
has precisely the solutions z = +4i.

Find the solutions z € C to the equa-
tion 2" = 1, where n = 1,2,.... (Hint:
Use the polar decomposition of com-
plex numbers.)

Field automorphisms'

A bijection f : F — F on a field
(F,+, ) is called a field automorphism
if f(a+b) = f(a) + f(b) and f(ab) =
f(a)f(b) for all a,b e F.

(a) Show that f(0) = 0, f(1) = 1,
f(a) = —f(a) and f(a~") = f(a)""
for all @ € F.

(b) Show that the only field automor-
phism on the rational numbers Q is the
identity. (This means the identity is the
only continuous field automorphism on
R.)

(c) Show that the only (continuous)
field automorphisms on C are the iden-
tity and complex conjugation.

Derive the properties (4.14) of the
length of a complex number from
Prop. 4.1.

Calculating with complex numbers
Find the complex conjugate, the length
and the inverse of the complex num-
bers 1+i, 2—3i, —2—2¢ and 4—3i. Con-
vert the complex number 1/7, 2/(1+1)
and (1 —i)/(1 + 7) into standard form
a + b.

Complex linear maps
Show that the map f : C — C defined

4.15

4.16

4.17

4.18

4.19

by f(z) = wz (for a fixed w € C) is
linear, that is, it satisfies Egs. (1.8) but
with complex instead of real numbers.
Write z = x1 + ix2 and find the 2 x 2
matrix which describes the action of f
on the vector with components x1 and
xr2.

The group U(1)

Show that theset U(1) = {z € C||z| =
1} of complex numbers with length one
forms a group, with complex multipli-
cation as the group multiplication.

Polynomial zeros
Let p € P(F) be a fully factorizing de-
gree n polynomial

p(x) = cna" +en12" - arzteo

whose zeros a; have multiplicities m;,
where i = 1, ..., k. Derive formulae for

the sum ZLI m;a; and the product

[1F_, a* of the zeros in terms of the
coefficients ¢; of p.

Sign of polynomial zeros

Let p(z) = 2+ Cn_12™ 4 terztco
be a fully factorizing polynomial over
R. Show that all zeros of p are negative
iff all coefficients ¢; are positive. (Hint:
Find formulae for the coefficients ¢; in
terms of the zeros a;.)

Construction of the real numbers'’

If you do not know already, find out
what a Cauchy series is and consider
Cauchy series in Q.

(a) Define a relation on Cauchy series
in Q by which two series (a;) and (b;)
are related if (a; — b;) is a Cauchy se-
ries. Show that this is an equivalence
relation.

(b) Use the equivalence relation from
(a) to define R as the set of equivalence
classes of Cauchy series.

(c) Show that R defined in this way
forms a field.

Arithmetics in F,'T

For the finite fields F, from Exam-
ple 4.3, write code in your favourite
programming language which imple-
ments the addition and multiplication
in Eq. (4.6). Keep p fixed but arbitrary.
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Vector spaces

We are now ready to begin the systematic build-up of linear algebra, by introducing
vector spaces, the arena within which linear algebra takes place. For the beginning
student, the development of linear algebra often represents the first encounter with
modern mathematics and the formality of the approach can come as a shock.

In order to ease into the subject, we begin with coordinate vectors in F”, that is,
vectors which contain an arbitrary number, n, of elements of a field F. They generalize
the coordinate vectors with two real entries we have already briefly encountered in the
introduction. We will introduce addition and scalar multiplication of such coordinate
vectors, discuss their structural properties and some of the practical aspects of calcu-
lation.

Motivated by the properties of coordinate vectors, we present the general definition
of vector spaces in Chapter 6, along with many examples to illustrate its scope. Of
course these include coordinate vectors, but also more surprising examples, such as
spaces made up from certain classes of functions. Many of these seemingly exotic vec-
tor spaces have scientific applications. Following the standard route, we also define the
sub-structure for vector spaces, the vector subspaces, and the associated morphisms
which are called linear maps.

A central notion in linear algebra is that of linear independence. It leads up to the
ideas of basis and dimension of a vector space which we discuss in Chapter 7. A basis
of a vector space is a list of linearly independent vectors which ’spans’ the entire vector
space. Given a basis, every vector can be represented in terms of coordinates. We will
also see that, for a given vector space, the number of vectors in a basis is unique. This
number is called the dimension of the vector space. In scientific applications, selecting
a basis is sometimes referred to as a choice of ’coordinate system’ and it is frequently
one of the first steps towards setting up a mathematical model. The notion of basis
is, therefore, crucial for the theoretical development of linear algebra and for many of
its applications.






5
Coordinate vectors

In this chapter we introduce coordinate vectors with an arbitrary number of compo-
nents from a general field F, along with their addition and scalar multiplication. These
are mathematically well-motivated generalizations of the two-coordinate vectors dis-
cussed in the introduction and they provide us with the intuition for how to define
general vector spaces. In Chapter 7 we will see that such general vector spaces can
always be described by coordinate vectors once a basis has been chosen.

But do we really need to care about vectors with an arbitrary number of components in
an arbitrary field when it comes to scientific applications? After all, such applications
are often tied to physical space whose description requires only three real components.
The answer is an emphatic 'yes’ — the scope of linear algebra applications is much
wider than it might initially appear.

For example, describing the motion of n point masses in space requires vectors with
3n components. In relativity, space and time are combined and described by vectors
with four components. In Application 1.1 we have seen that internet search requires
vectors with a large number of real components. Also, the choice of field is not al-
ways confined to the real numbers. Quantum mechanics requires vectors with complex
components (see Applications 26.1, 26.2, 26.4). Even vectors based on the seemingly
exotic finite fields from Example 4.3 have applications, for example, in coding theory
(see Application 14.1).

5.1 Basic definitions

Summary 5.1 Coordinate vectors with n components are elements of F™, where F
is a field. The two basic operations, vector addition and scalar multiplication, for
such vectors are defined component-wise. We list the rules for calculating with these
operations.

5.1.1 Definition of coordinate vectors

In Section 1.2.3 we have already introduced coordinate vectors with two real com-
ponents as well as their addition and scalar multiplication. These definitions can be
readily generalized to vectors with n components, taken from a general field F. The
reader still uncomfortable with this level of abstraction may well replace F by the real
numbers R (or the complex numbers C) throughout.

In mathematical parlance, coordinate vectors are elements of the Cartesian product
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F™ that is, they are n-tuples of numbers from the field F. They are denoted by low-
ercase bold-face letters and explicitly written as column vectors, for example:

V1 w1
v=| : , w= | : . (5.1)

Here vy,...,v, € F and wq,...,w, € F are called the components of v and w, respec-
tively. We will often use index notation to refer to a vector and write the components
of a vector v collectively as v;, where the index 7 takes the values ¢ = 1,...,n. Ele-
ments of the underlying field F are also referred to as scalars.

We adhere to the common convention of writing coordinate vectors as columns but
note that they could also be written as rows. In fact, it is useful to introduce the op-
eration of transposition of a vector which converts a column vector into a row vector
and vice versa. It is denoted by a superscript T attached to a vector so that, for a
column vector v, the vector v is a row vector with the same components. Using this
notation, we will occasionally write column vectors v in Eq. (5.1) as v = (vq,...,v,)7,

in order to save space.

5.1.2 Addition and scalar multiplication

In Eq. (1.12) we have defined component-wise addition and scalar multiplication of
vector in R? and these definitions straightforwardly generalize to F™. Specifically, we
define vector addition + : (F",F") — F™ and scalar multiplication (F,F") — F™ for
the vectors in Eq. (5.1) and a scalar a € F by

U1 + w1y QU1
(V,w) = v+4+w:= : , (o, v) = av = : . (5.2)

Up, + Wp QU

Addition and multiplication of the components are of course those defined in the
field F. The intuitive interpretation of these operations has already been indicated in
Fig. 1.1.

It is sometimes useful and efficient to express the above definitions in index nota-
tion, where they take the form

(V + W)z = v; +w; ; (OéV)i = Qu; . (53)

Here, the subscript ¢ on the left-hand side indicates the i*® component of the vector
enclosed in brackets.

Problem 5.1 Vector addition and scalar multiplication in R®

Work out the vector sum of the R® vectors v = (1,-2,5)7 and w = (—4,1,—3) and the
scalar multiple of v by a = 3.
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Solution: The sum and the scalar multiple are given by
1 —4 -3 1 3
v+w=|-2]+ 11=1-1], av=3|-2]=|-6]. (5.4)
5 -3 2 5 15

The coordinate vector with all components equal to 0 (where 0 is the neutral element
of addition in the field ) is called the zero vector and it is denoted by the bold-face

symbol
0

o=1|:], (5.5)
0

in order to distinguish it from the number 0.

5.1.3 Calculating with coordinate vectors

In Section 3.1 we have explained how the Cartesian product G™ of a group G can be
made into a group by component-wise multiplication. If we apply this construction to
the Abelian group (F,+) of addition in the field F, it leads to a group structure on F™
whose 'multiplication’ is evidently given by vector addition. Hence, we already know
that (F™,4) forms an Abelian group. Its neutral element is the zero vector 0, since
v+ 0 =v for all v € F". Further, from v + (—v) = 0 it follows that —v is the inverse
of a vector v € F". There are a few further rules for how to calculate with coordinate
vectors, related to scalar multiplication, which are listed in the following proposition.

Proposition 5.1 For any coordinate vectors v,w € F"™ and any scalars o, € F
vector addition and scalar multiplication on F™ satisfy the following rules:

(Vo) (F,+) is an Abelian group with (Abelian group)
neutral element 0 and inverse —v.
(V1) a(v+w)=av+aw (distributivity 1)
(V2) (a+p)v=av+pv (distributivity II)
(V3) (af)v=a(Bv) (multiplicative associativity)
(V4) lv=v (multiplicative neutral element)

Proof We already know from the general construction of direct product groups in
Section 3.1 that (F™,+) is an Abelian group, so (V0) holds. The other rules fol-
low directly by combining the axioms in Def. 4.1 for calculating in a field with the
component-wise definition (5.2) of vector addition and scalar multiplication. For ex-
ample, (V2) can be shown by

(a+ B)u avy + Py vy Bur
: I EES

: — : = : + : =" av+pv.
(0[ + B)vn vy + ﬂvn QUp 51)77,

(5.2)

(a+p8)v

Using index notation and Eqs. (5.3) the same proof can also be written, somewhat
more concisely, as
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(a+ B8)v): Z (a + B)vs = av; + Bui 2 (av + Bv); .

As a further example, the proof of (V3), using index notation, reads

5.3) 5.3)

( (5.3) (
((aB)v)i =" (aB)vi = a(fvi) =" a(Bv); =" (a(Bv)); .
The proofs of the remaining rules are analogous and are left as Exercise 5.1. O

The above rules for calculating with coordinate vectors motivate the general definition
of vector spaces which will be introduced in the next chapter.

5.2 Standard unit vectors

Summary 5.2 The existence of two special elements in a field F, the neutral ele-
ments of addition and multiplication, facilitates the definition of the standard unit
vectors e;, where i = 1,...,n, in F™. All vectors in F™ can be written in terms of
standard unit vectors. Standard unit vectors can also be used to carry out vector
addition and scalar multiplication.

5.2.1 Definition of standard unit vectors

Recall that a field has two special elements, the neutral elements 0 and 1 of addition
and multiplication, respectively. This fact allows us to define a special set of vectors in
F™ by using only these two neutral elements as components. These vectors are called

the standard unit vectors, denoted e; € F", where i = 1,...,n, and they are defined
as
0
0
e := | 1] « i'" position . (5.6)
0
0

Note that these are n vectors and the i** component of e; is equal to 1 while all other
components are equal to 0. Every vector v € F" with components v; can be written
in terms of the standard unit vectors as

n
vV=uvi€e;+- - +v,e, = Zviei . (57)
i=1

Problem 5.2 Vectors in terms of standard unit vectors

Write the vectors (—3,4)7, (=7,0,3)7 and (1,2, —1,3)7 in terms of standard unit vectors.
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Solution:
S -7 )
( 4)2—3e1+462, 0| =—-Te1 + 3es, ) —=e; + 2e; —e3 + 3es .
3
3

5.2.2 Calculating with standard unit vectors

Vector additions and scalar multiplications can also be carried out in terms of standard
unit vectors. With two vectors v =", v;e; and w = >_"" | w;e;, we have

n n

n n n
vV+w= E vie; + E w;e; = E (vi +w;)e; , ov =« E vie; = E (av;)e; .
i=1 i=1 i=1

i=1 i=1

To write these expressions in their final form, we have used the general rules from
Prop. 5.1, notably associativity and commutativity from (V0), as well as (V2) and
(V3).

In scientific applications, the case n = 3 is important for the description of physical
space and in this context the three standard unit vectors are sometime denoted by i,
j, and k, so that

1 0 0
i:= €] = 0 ) j =€ = 1 ) k:= €3 = 0 . (58)
0 0 1

Problem 5.3 Calculating in terms of standard unit vectors

Add the vectors v = (1,-2,5)7 =i - 2j+ 5k, w = (—4,1,-3)7 = —4i + j — 3k and work
out the scalar multiple of v with @ = 3 in standard unit vector notation.

Solution:

v4+w=(i—2j+5k)+ (—4i+j—3k)=—3i—j+2k.
av = 3(i — 2j + 5k) = 3i — 6j + 15k .

See Exercise 5.3 for further examples.
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Exercises

(f=challenging)

5.1

5.2

5.3

Rules for coordinate vectors

Proof (V1), (V3), and (V4) from
Prop. 5.1 by using the definition (5.2)
of vector addition and scalar multipli-
cation, together with the axioms for a
field. Also, carry out the same proofs
using the definitions (5.3) and index no-
tation.

Standard unit vectors

Write the R? vectors v = (1, 2,3, —5)7
and w = (0,—1,1,-3)T in terms of
standard unit vectors.

Calculating with standard unit vectors

Carry out all mutual sums of the vec-
tors v=5i+2j—3k,u=i—-4j—k

5.4

5.5

and w = —2i+7j in R3. Scalar multiply
these vectors with a = —3.

Complex vectors

Write the C* vectors v = (1 + i, 5i,3)7
and w = (2—3i,1—14,2i)7 in terms if the
standard unit vectors i, j, and k. Work
out the sum v+ w and the scalar multi-
plications a v and o w, where o = 2 — 1.

Vector space F 1

Consider the vector space Fy, based on
the finite field F> introduced in Exam-
ple 4.3. How many elements does Fy
have? Show that there is a bijective
map between predicates on {1,...,n}
and F5. Express vector addition in Fg
in terms of ’and’ and ’or’ operations for
the corresponding predicates.
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Vector spaces

At this point it might seem that we have gone far enough in abstraction, having
introduced coordinate vectors with an arbitrary number of components and from an
arbitrary field. What else could be needed, particularly in scientific applications of
linear algebra?

It turns out that there are sets of objects, quite unlike coordinate vectors, which
nevertheless follow the same algebraic rules as coordinate vectors. Moreover, many of
these have important scientific applications. For example, on the set of all real-valued
functions [a,b] — R on an interval [a,b] addition and scalar multiplication can be
defined in a way that follows the rules for coordinate vectors in Prop. 5.1. Function
spaces of this kind are important in quantum mechanics. It makes sense to define a
general algebraic structure that captures all examples similar to coordinate vectors:
the vector space.

6.1 Basic definitions

Summary 6.1 Abstract vector spaces (V,F,+,-) are introduced, where V is a set
of vectors and F is a field. There are two operations, vector addition, +, and scalar
multiplication, -, which are subject to a list of axioms. Vector subspaces are non-
empty subsets of wvector spaces which are closed under vector addition and scalar
multiplication and they form vector spaces in their own right. Linear maps are the
morphism of vector spaces, that is, they are the maps consistent with the vector space
structure.

6.1.1 Vector space axioms

In the previous chapter we have studied coordinate vectors in F™ and their properties.
While these coordinate vectors play an important role in linear algebra, the modern
approach to the subject is more general. Rather than defining vectors by 'what they
are’, they are defined by the properties they should satisfy. This means we are looking
for an axiomatic definition of vector spaces, in analogy with the definitions of groups
and fields in Chapters 3 and 4. The structure of this definition is very much inspired
by what we have found for coordinate vectors. A vector space consists of a pair (V,F),
where V' is a set whose elements are called vectors and F is a field, with elements
called scalars. There are two operations, vector addition and scalar multiplication,
which are required to satisfy a list of axioms. These axioms are, in fact, precisely the
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rules for calculations with column vectors listed in Prop. 5.1. Putting all this together,
the formal definition of vector spaces is as follows:

Definition 6.1 A wvector space (V,F,+,-) consists of a set V (with elements called
vectors), a field F (with elements called scalars) and the two operations
vector addition: +:VxV - V, (viw) — v4+w
scalar multiplication: 2 (FV) =V, (,v) = av
For all v,w € V and for oall o, € F, these operations satisfy the following rules:
(V0) (V,+) is an Abelian group with (Abelian group)
neutral element 0 and inverse —v

(V1) a(v+w) =av+aw (distributivity I)

(V2) (a+p)v=av+pv (distributivity II)

(V3) (af)v = a(pv) (multiplicative associativity)
(V4) lv=v (multiplicative neutral element)

The neutral element O of vector addition is called the zero vector.

Note that this definition does not specify the nature of vectors. In particular, it is not
assumed that they are made up from components. The expression —v does not imply
any particular operation, such as multiplication by —1 — it is merely the symbol used
for the additive inverse of a vector v. In Prop. 6.1 we will see that the additive inverse
—v is, in fact, obtained by multiplying v with —1 but this needs to be proved. The
choice of field F is an important part of the definition of a vector space — it determines
from which set the scalars are taken. Instead of using the somewhat cumbersome
notation (V,F, +, ) we will frequently just talk about a vector space V over (the field)
F.

6.1.2 Implications of vector space axioms

There are a few simple rules for calculating with vectors which are obvious for com-
pontent vectors (there they follow immediately from the component-wise definitions
of vector addition and scalar multiplication (5.2)) but in the present abstract case
they have to be derived from the above axioms. A few such rules are covered in the
following proposition.

Proposition 6.1 For a vector space V' over F, the following rules hold for all v € V :
(i) —(—v)=v
(i) 0v=0
(iti)) «0=0 foralla €F
(iv) (-1)v=-v

(v) av=0= a=0o0rv=0

Proof (i) This follows from the fact that (V,+) is a group and the first rule (3.1) for

the group inverse.
(ii) Since 0v = (04 0)v
(iii) a0 2 a(00) 2

(iv) Since 0 & 0v = (1 + (~1))

() O0v+0vand Ov=0v+0, it follows that 0v = 0.
(@00 =002 0.

v VYD (—=1)v and 0 = v + (—v), it follows
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that (—=1)v = —v.

(iv) If o = 0 we are done. If o # 0, then multiplying with a=! gives 0 (&) a”l0 =
a Hav) () (e ta)v =1v Wy, a
We can also generalize the distributive laws (V1) and (V2) to an arbitrary number of
summands. Specifically, for vectors v,vy,..., v, € V and scalars o, a1, ...,a, € F we
have (see Exercise 6.1):

azn:vi:zn:avi, (i:%)v:zn:aiv. (6.1)
i=1 i=1 i=1 i=1

6.1.3 Vector subspaces

The first step after setting up a new algebraic structure is to introduce the correspond-
ing ’sub-structure’. In the case of groups we have introduced the notion of sub-groups
and for vector spaces we would like to define vector subspaces. These are subsets of
vector spaces which form vector spaces in their own right. The formal definition is as
follows:

Definition 6.2 A non-empty subset W C V' of a vector space V' is a vector subspace
provided it satisfies the following conditions.

(S1) For all wi,wy € W we have w1 + wy € W.
(S2) For allw €V and a € F we have aw € W.

In other words, a vector subspace is a non-empty subset of a vector space which is
closed under vector addition and scalar multiplication.

This definition does imply immediately that a vector subspace W C V is a vector
space (over the same field F that underlies V') in its own right, with vector addition
and scalar multiplication defined by restriction from V to W.

To verify this, we first note that vector addition and scalar multiplication are closed
operations on W from Def. 6.2. Further, all vector space axioms in Def. 6.1 which are
merely rules for calculation are satisfied on W, simply because they are satisfied on V.
We only have to be careful about the existence of the neutral element and the inverse.
While these are certainly present in V' it is not immediately clear they are contained
in W. However, for any w € W we know, combining Prop. 6.1 (ii) and Def. 6.2 (52),
that 0 = 0w € W and, hence, the zero vector is contained in W. Further, for w € W,
we have from Prop. 6.1 (iii) and Def. 6.2 (S2), that —w = (=1)w € W so, from (S2),
the inverse vector is contained in W.

Every vector space V has two trivial vector subspaces: the vector space {0}, which
consists of the zero vector, and the whole space V. All other vector subspaces are
called proper and we will consider examples soon.

6.1.4 Linear Maps

The next step in the general build-up of the theory is to introduce the morphisms of
vector spaces which are also called linear maps. Linear maps are to vector spaces what
group homomorphisms are to groups. In the same way that group homomorphism are
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defined by being compatible with the group multiplication (see Eq. (3.4)), linear maps
are those maps which are consistent with vector addition and scalar multiplication.
In fact, the analogy is even closer since a vector space forms an Abelian group with
respect to addition. Therefore, an obvious requirement for a map to be linear is that it
is a group homomorphism relative to this additive group structure. A second require-
ment arises from consistency with scalar multiplication and this leads to the following
definition.

Definition 6.3 A map f : V — W between two vector spaces V and W over the same
field F is called linear if

(L1) f(vi+v2) = f(v1) + f(v2)
(L2) f(av) = af(v)

for all v,vi,ve € V and for all « € TF.

Note that the addition on the left-hand side of (L1) is carried out in V', while the one
on the right-hand side is carried out in W. Likewise, the scalar multiplication with «
in (L2) is in V on the left and in W on the right. For this to make sense V' and W have
to be vector spaces over the same field, as we have indeed required. It is sometimes
useful to combine (L1) and (L2) into the single, equivalent linearity condition

flaavi + aava) = a1 f(vi) + aa f(va) , (6.2)

for all vi,vy € V and all a1, as € F.
For now we are content having introduced the general idea of linearity of a map.
Linear maps and their relation to matrices will be systematically discussed in Part IV.

6.1.5 Algebras

As we will see, some of the vector spaces we will come across carry an additional
multiplication between vectors. Such vector spaces with multiplication are also called
an algebra, a structure formally defined as follows:

Definition 6.4 An algebra (V,F,+,- %) is a vector space (V,F,+,-) with a multipli-
cation x : V. x V. — V which satisfies the following properties, for all vi,vo,w € V
and all oy, a9 € F.

(i) (a1vi+agve)*w=a1(vy*w)+az(vaxw)  (linear in first argument)
(i) wx(a1vy + agvy) = a1 (wWxvy) + as(wxvy)  (linear in second argument)
If there is a e € V withexv =vxe=v for all v €V the algebra is called an algebra

with unit. If the product x is associative, the algebra is called an associative algebra.

In short, an algebra is a vector space with a multiplication which is bi-linear. We
will not investigate algebras systematically but, occasionally, it will be useful to point
to the above definition when we come across examples of algebras. One simple such
example is the vector space R3 with the cross product as multiplication, which we
discuss in Section 10.
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6.2 Examples of vector spaces

Summary 6.2 Standard examples of wvector spaces are the coordinate wvectors
(F™,F,+,-). There are also less conventional coordinate vectors, such as (C*, R, +,-),
where the vector components and the scalars are taken from different fields. The ma-
trices My, m (F) of size n x m with entries in a field F form o vector space. The set of
all functions X — V from a set X into a vector space V' can be given a vector space
structure. Many interesting function vector spaces arise as special cases or vector
subspaces from this construction.

6.2.1 Coordinate vector spaces

Coordinate vectors have motivated the Definition 6.1 so it should not come as a surprise
that they provide examples of vector spaces.

Example 6.1 (F" as a vector space over F)

Coordinate vectors with n components taken from a field F form a vector space
(F™,F, +,-), with vector addition and scalar multiplication defined component-wise,
as in Eq. (5.2). This follows immediately by comparing the rules for calculating with
coordinate vectors listed in Prop. 5.1 with the vector space axioms in Def. 6.1. The
most commonly used fields are F = Q,R,C, but the finite fields F, introduced in
Example 4.3, can also be relevant. Also note that the field F forms a vector space (of
vectors with one component) over itself. a

Example 6.2 (Unusual coordinate vector spaces)

While the coordinate vector spaces from Example 6.1 are the most commonly used
ones, there are more exotic constructions where the vector components and the scalars
are taken from different fields. For example, instead of the vector space (C",C,+,-)
with complex vector components and complex scalars, we can also consider the space
(C™,R,+,-) with complex vector components but real scalars. Indeed, scalar multi-
plication of complex coordinate vectors with real numbers, defined component-wise,
makes perfect sense and satisfies the required axioms (V1)-(V4) in Def. 6.1. The two
vector spaces (C™,C, +,-) and (C™, R, +, -) are quite different despite the vectors being
taken from the same set. In the following, unless otherwise stated, we will think of F"
as a vector space over the field F. O

6.2.2 Matrices and matrix vector spaces

Coordinate vector spaces are based on defining vector addition and scalar multiplica-
tion component-wise but it should be clear that it is not essential for the components
to be arranged in a column. They might be arranged in a row, in a rectangle, or even
in a triangle for that matter. As long as we decide that addition works by adding
components in the same position and scalar multiplication by multiplying every com-
ponent with same the scalar, such objects can be given a vector space structure.
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Rectangular arrangements of numbers from a field F, with n rows and m columns, are
called n x m matrices (with entries in F) and they are written as

All Alm Bi1 ... B
. oB=| s ] (6.3)

A= : :
Al ... Anm Bn1 ... Bum

The numbers A;;, B;; € F are called the components or entries of the matrix. It is
convenient (although slightly abusing notation) to denote the entire matrix and its
entries by the same letter, as we have done above. Just like vectors, matrices can be
written in index notation as the collection, A;;, of their entries which are now labelled
by two indices, i = 1,...,n and j = 1,...,m. The set of all n X m matrices with
entries in F is denoted by M,, ,,(F). Note that n x 1 matrices in M,, 1(FF) are column
vectors while 1 X n matrices in M ,,(F) are row vectors, each with n components in
F.

Example 6.3 (Matrix vector spaces)

The set M, ,,(F) can be made into a vector space over F by defining addition and
scalar multiplication of matrices component-wise as

All +Bll Alm +Blm OzAll OéAlm
A+ B:= : : , A= : : . (6.4)
Api+ By o Ay + B alpy ... adApy,

In index notation, the same definitions can be written as
(A + B)” = Aij + Bij s (aA)ij = OlAij s (65)

where the subscript on the left-hand side indicates that the entry (ij) is extracted
from the matrix in the bracket. Of course, these definitions satisfy all the basic rules
of vector addition and scalar multiplication listed in Def. 6.1, for exactly the same
reasons coordinate vectors do. The zero 'vector’ is the matrix with all entries equal to
zero. m|

We can pursue the analogy between coordinate vectors and matrices even further by
introducing the analogue of the standard unit vectors. These are the standard unit
matrices

0---000---0
0---000---0
Eujy=10---010---0 | « i*" row,
0---000---0 (6.6)
0---000---0
/l\

5t column
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wherei=1,...,nand j =1,...,m and the ’1’ appears in the i*" row and j* column
with all other entries zero. (Note that here the indices 7,j label the nm different
matrices, rather than entries of a matrix. To emphasize this fact, they have been
enclosed in brackets.) Every n x m matrix A can be written in terms of the standard

unit matrices as oo
A=D) AiEG) (6.7)
i=1 j=1
and addition and scalar multiplication can be expressed as
A+ B= Z(A” + B”)E(”) , aA = Z aAijE(ij) , (68)
ij ig

in complete analogy with Egs. (5.8) for coordinate vectors.

Problem 6.1 (Addition and scalar multiplication of matrices)

Add the 2 x 2 matrices
1-2 05
a=(ah) - m=(3)

and work out the scalar multiple of A with @ = 3. Write A and B in terms of standard unit
matrices and work out A + B and aA using this notation.

Solution: Using matrix notation, the sum and the scalar multiple are given by

o= (1) (1) (1) (i) -(3)
In terms of the standard unit matrices, A and B can be written as

A=Eq1) —2Eq2) +3E@1) —4E@22), B =5E312) — E@1) +8E(2) -
In this language, their sum and the scalar multiple of A with a = 3 are given by

A + B = E(ll) + 3E<12> + 2E<21) + 4E(22) 3 OCA = 3E<11) - 6E(12) + 9E(21) - 12E(22) .

6.2.3 Vector spaces of functions

We begin by describing a very general construction of function vector spaces. Start
with an arbitrary set X as well as a vector space V over the field F and define the set
of all functions F(X,V) :={g: X — V} from X to V. On this set, we can introduce
an addition and a scalar multiplication by

(9 +h)(2) = g(x) + h(z),  (ag)(z) = ag(z), (6.9)

where g,h € F(X,V) are functions, « € F and 2 € X. Note that the right-hand
sides of these expressions are simply vector additions and scalar multiplications on
the given vector space V, so they are well-defined. Moreover, Egs. (6.9) satisfy all the
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vector space axioms in Def. 6.1 simply because these axioms are satisfied in V. The
null vector’ is the function whose value is the zero vector for all x € X.

In conclusion, for a vector space V over F, the function space F(X,V) with vector
addition and scalar multiplication defined ’point-wise’, as in Eq. (6.9), is a vector
space over the same field F. Many interesting function vector spaces can be obtained
from this construction, by choosing specific sets X or specific vector spaces V or by
restricting to certain vector subspaces. The following examples illustrate the range of
possibilities.

Example 6.4 (Coordinate vectors as functions)

Coordinate vectors can be obtained from the above construction. To see this, choose
the set X = {1,2,...,n} and the vector space V =TF. Functions g : {1,2,...,n} = F
are specified by the n-tuples (g(1),9(2),...,g(n)) of all their values and can, hence,
be identified with vectors in F™. |

Example 6.5 (Functions on a real interval)

Choose the set X = [a,b] C R to be an interval on the real line and V = F. The
resulting space of functions, F([a,b],F), consists of all F-valued functions, that is,
typically real- or complex-valued functions, on the interval [a, b]. Vector addition and
scalar multiplication, as defined in Eq. (6.9), really just amount to 'naive’ addition
and scalar multiplication of functions. Consider, for example, the two functions g, h €
F([a,b],F) defined by g(r) = 222+ 32 — 1 and h(x) = —2x + 4. Their vector sum and
the scalar multiple of g by a = 4 are given by

(g+h)(z)= (202 +3x — 1)+ (-22+4) =22 + 2+ 3
(ag)(z) = 4(22° + 32 — 1) = 82* + 122 — 4 .

The vector space F([a, b], F) has many interesting vector subspaces, some of which we
now discuss. a

Example 6.6 (Continuous and differentiable functions)

Let us focus on the space F([a,b],F) with F = R or F = C, so on real- or complex-
valued functions on the interval [a,b]. From Def. 6.2, any property of such real- or
complex-valued functions which is preserved under the addition and scalar multipli-
cation (6.9) can be used to obtain a vector subspace of F([a,b],F). For example, the
sum of two continuous functions and the scalar multiple of a continuous function are
both continuous, so the space C([a,b],F) of continuous F-valued functions on the in-
terval [a, b] is a vector subspace of F([a, b], F). The same goes for the space C*([a.b], F)
of k times continuously differentiable functions. (See, for example, Lang 1997 for the
relevant proofs.)

Example 6.7 (Polynomials)

The set P(IF) of polynomials is a vector space over F, a vector subspace of F(F,TF).
Indeed, the sum of two polynomials and the scalar multiple of a polynomial are again
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polynomials. We can restrict further to the set Py (F) of all polynomials with degree
less equal k. Since addition and scalar multiplication of such polynomials does not
increase the degree beyond k, this set forms a vector subspace of P(F). O

Example 6.8 (Solutions to differential equations)

Many scientific problems involve solving differential equations of the form

2
P2 4 g(@) L 4 () =0, (6.10)
where p,q,7 € C([a,b],R) are fixed functions. The task is to find all functions g €
C?%([a,b],R) which satisfy this equation. Eq. (6.10) is referred to as a second order,
linear, homogeneous differential equation. Here, the term ’second order’ indicates that
the highest derivative of g which appears is the second, ’linear’ means there are no
terms of quadratic or higher order in g and ’homogeneous’ means there is no term
independent of g. These properties immediately imply that for two solutions g, h €
C%([a, b], R) to this equation, also the sum g+ h and scalar multiples g, where o € R,
are solutions. This means the solutions to the differential equation (6.10) form a vector
subspace of C?([a, b], R).
A simple example is the differential equation
d2
d—wg +g=0, (6.11)
which is obviously solved by g(z) = cos(z) and g(x) = sin(x). Since the solution space
forms a vector space, we know that the functions acos(x) + Ssin(z) for arbitrary
a, € R also solve the equation. Of course, this can also be checked explicitly by
inserting g(x) = a.cos(x) + Bsin(z) into Eq. (6.11). a

This list of examples hopefully illustrates the strength of the general approach. Much
of what follows will only be based on the general Definition 6.1 of a vector space and,
hence, will apply to all of the above examples and many more.

l

Exercises
6.1 Vector space rules ing x =y = 2z.
Show that Egs. (6.1) follow from the (b) All vectors (z,y)” € R? satisfying
vector space axioms, for example, by 22+t =1
induction in n.
6.2 Coordinate vector subspaces 6.3 Adding and multiplying 2 X 2 matrices
Which of the following sets constitute What is the sum of the matrices

vector subspaces of the given vector
space? Provide reasoning in each case. A— 1-2 B— 0-5
(a) All vectors (z,,2)T € R® satisfy- “\3-1)" “\2-8
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6.4

6.5

6.6

6.7

6.8

and their scalar multiple with o = —37

Adding and multiplying larger matrices
Add the matrices

1 0-24 0-5 3 0
-1-3 08, 1 7 0-5
-4 4 22 1 2-3 0

and scalar multiply them with o = 2.

Matrices with complex entries
Add the matrices

2[1—i 4—2i|—i
AZ(z‘ 4i ) ’ B:<—2—i—i) '

and scalar multiply them with a =
2 — 3i.

Matriz vector spaces

Consider the vector space My, (F) of
n X n matrices A with entries in F. Are
the following subsets vector subspaces?
Provide reasoning in each case.

(b) All A with A1 = 1.

(c) All A satisfying >.7"._, A;; = 0.

i,j=1
(Anti-) symmetric 2 X 2 matrices
A 2 x 2 matrix A € M (F) given by

ab
= (e0)
is called symmetric if ¢ b. It is
called anti-symmetric if ¢ = —b and
a = d = 0. Show that the symmetric

(anti-symmetric) 2 X 2 matrices form a
vector subspace of Ma o(F).

Function vector subspaces

Which of the following sets constitute
vector subspaces of the vector space of
real-valued functions f : R — R? Pro-
vide reasoning in each case.

6.9

6.10

6.11

6.12

6.13

(a) Even functions, that is, functions
satisfying f(z) = f(—z) for all z € R.
(b) Odd functions, that is, functions
satisfying f(z) = —f(—=x) for all z €
R.

(c) Functions satisfying f(0) =
(d) Functions satisfying f(0) =
Polynomial vector spaces
Which of the following sets are vector
subspaces of the vector space P2(R) of
at most quadratic polynomials in z?
Provide reasoning in each case.

(a) All polynomials of the form ax + b.
(b) All polynomials of the form (z+b)?.

Linear maps

Consider a vector space V over F, a
scalar a € F, and a non-zero vector
uecV.

(a) Show that the map f:V — V de-
fined by f(v) = av is linear.

(b) Show that the map f : V — V
defined by f(v) = u+ v is not linear.

0.
1.

Linear maps for functions

Consider the vector space C*([a,b])
of infinitely many times differentiable
functions and p € C*([a, b]).

(a) Show that the map F' : C*°([a, b] —
C*([a,b] defined by multiplication
with p, so F(g)(z) = p(z)g(z), is lin-
ear.

(b) Show that the map D : C*°([a, b] —
C*([a, b] defined by differentiation, so
D(g)(z) = ¢'(x), is linear.

Let f: V — W be a linear map.

(a) Show that f maps the zero vector
of V' to the zero vector of W.

(b) Show that f(—v) is the additive in-
verse of f(v).

More function vector spaces

Use the construction of Section 6.2.3 to
find at least three further vector spaces
of functions.



7
Elementary vector space properties

Now that we have set up vector spaces in general, we can start to develop the subject
systematically. For the remainder of Part IT we will be working with a general vector
space V over a field F, except in some of the examples or if stated otherwise.

The first important concept we introduce is that of linear independence of a (finite)
list of vectors. Roughly speaking, a list of vectors is called linearly independent if none
of the vectors can be expressed in terms of the others. Linear independence allows
us to introduce the notion of a basis of a vector space: a list of linearly independent
vectors which ’spans” the vector space.

Bases are absolutely crucial for both the theory of vector spaces and their applications.
As we will see, the number of vectors in a basis of a given vector space is fixed and this
number is called the dimension of the vector space. It turns out that every vector space
(V,F,+,-) of dimension n is isomorphic to the coordinate vector space (F",F,+, "), so
that every vector in V' can be described by a unique vector in F”, whose components
are the coordinates relative to a chosen basis of V. Apart from the theoretical insight,
this also provides a practical way of computing with abstract vector spaces by using
coordinates relative to a basis.

7.1 Linear independence

Summary 7.1 The most general algebraic expressions in a vector space are referred
to as linear combinations. The set of all linear combinations of a given list of vectors
1s called the span of these vectors and it forms a vector subspace. A finite number of
vectors is called linearly independent if none of their linear combinations, except the
trivial one, gives the zero vector. Otherwise, the vectors are called linearly dependent.
A set of vectors is linearly dependent if and only if one of them can be written as a
linear combination of the others.

7.1.1 Linear combinations and span

We are working with a general vector space V' over the field F. Given that we have two
operations, vector addition and scalar multiplication, at our disposal the most general
algebraic expression is of the form

k

Q1Vy + -+ apvg = Zaivi ) (7.1)
i=1
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where vi,...,vy € V and aq,...,a; € F are k vector and scalars, respectively. An
expression of the form (7.1) is called a linear combination of the vectors vi, ..., vg.
The set of all linear combinations of given vectors vy, ..., vy is called the span of these
vectors, and it is written as

k
Span(vy,...,vg) = {Z v | a; € F} . (7.2)
i=1

Proposition 7.1 For any vectors vi,...,vi € V, the span, Span(vy,...,Vg), is a
vector subspace of V.

Proof All we need to do is to verify that the span satisfies the conditions in Def. 6.2.
Consider two vectors u,w € Span(vy,...,Vvg) in the span. By definition of the span,
this means they can be written as linear combinations

k k
u:E A W:E Bivi ,
i=1 =1

for suitable scalars «;, 3; € F. Their sum and the scalar multiple of u with o € F are
then given by

k k
ut+w= Z(ai +Bi)vi, au= Z(aai)vi (7.3)
i=1

i=1

and are, hence, both contained in the span. This shows that the conditions (S1) and
(S2) of Def. 6.2 are indeed satisfied. a

This result means that the span provides us with a way of generating vector subspaces.
The span has a straightforward geometric interpretation, at least for coordinate vectors
with real entries. The span of a single vector v € R™ consists of all scalar multiples of
this vector and, hence, can be thought of as the line through 0 which contains v. The
span of two vectors u,v € R™ (which are not multiples of each other) represents the
plane through 0 which contains both vectors. More generally, spans of column vectors
are lines, planes and their higher-dimensional analogues through the ’origin’ 0. We
will be more precise about this later but for now just present an example.

Example 7.1 (The span of vectors)

(a) Here is an example for the span of a single vector in R? (see Fig. 7.1):

v = (g) = Span(v):{av|a€R}:{<gg) |aeR} .

(b) For a simple example in R? consider the span of the first two standard unit vectors
Span(e;, es) = {xe; + yes |,y € R} which, of course, corresponds to the z—y plane.

(c) For a more complicated example in R3, define the two vectors v = (—1,2,1)7 and
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]RQ R3
Lo -
v - w_-~
e -1 Span(v, w)
Span(v)

Fig. 7.1 The span of a single vector in R? (left) and the span of two vectors in R? (right).

w = (2,1,0)T. Their span is given by

—a+ 20
Span(v,w) = {av + fw|a,f € R} = 2a+8 | |o,BeR
e
which describes a plane through 0 (see Fig. 7.1). ad
7.1.2 Linear independence
Two different sets of vectors can lead to the same span. Consider vectors vi,..., vy

and a linear combination w = Zle a;v;. It should be intuitively clear (and will be
shown below) that

Span(vy,..., Vg, w) = Span(vy,...,Vvg), (7.4)

so removing w leaves the span unchanged. How can we decide whether a given set of
vectors is minimal, in the sense that no vector can be removed without changing the
span? This question leads to the concept of linear independence which is central to
the subject. Formally, it is defined as follows:

Definition 7.1 Let V be a vector space over a field F and o; € F scalars. The vectors
Vi,...,VE €V are called linearly independent if the equation

k
i=1
implies that all a; = 0. Otherwise, the vectors are called linearly dependent.

Recall from Prop. 6.1 (iii) that « 0 = 0 for all & € F. This means any list of vectors
which contains the zero vector allows for a non-trivial solution to Eq. (7.5) and is,
hence, linearly dependent.
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7.1.3 Properties of linearly independent vectors

It may not be immediately obvious how the definition of linear independence relates
to our problem of finding a minimal set of vectors for a given span. The connection is
made by the following statement.

Proposition 7.2 The vectors vy, ..., vy are linearly dependent iff one vector v; can
be written as a linear combination of the others.

Proof The proof is rather simple but note that there are two directions to show.

=7 Assume that the vectors vy, ..., vy are linearly dependent so that the equation
Zle a;v; = 0 has a solution with at least one a; # 0. Say, oy # 0, for simplicity.
Then we can solve for vi to get

1
:f—g Vi, 7.6
vy o - ;v (7.6)

and, hence, we have expressed v; as a linear combination of the other vectors.

'«<=": Now assume one vector, say vi, can be written as a linear combination of the
others so that vi = . ; B;v;. Then it follows that Zz;l a;v; =0 with o =1#0
and a; = —f; for ¢ > 1. Hence, the vectors are linearly dependent. O

So for a linearly dependent set of vectors we can write (at least) one vector as a
linear combination of the others. Removing this vector from the list leaves the span
unchanged, as in Eq. (7.4). A linearly independent set is one which cannot be further
reduced in this way, so is 'minimal’ in this sense. The following proposition states this
more formally.

Proposition 7.3 For vectors vi,...,vi € V the following statements are equivalent.
(i) vi,...,vi are linearly dependent.
(ii) One vector from vi,..., vy can be removed without changing the span.
Proof (i) = (ii)’: If the vectors vy,..., vy are linearly dependent then one of the
vectors, say vi, can be written as a linear combination vy = Zi:ll B;v; of the others.
A vector v € Span(vy,...,vg) can then be written as
k k-1 k—1
v = Z%‘Vz‘ = Z Vi + apvy = Z(ai + apBi)vi -
i=1 i=1 i=1

This shows that v € Span(vy,...,vk_1), so Span(vy,...,vg) C Span(vy,...,Vi_1).
The reverse inclusion, Span(vy,...,vg_1) C Span(vy,...,Vy), holds trivially since it
is always possible to set the scalar in front of v, to zero. Hence, equality of the two
sets and (ii) follows.

’(ii) = (i): Say that vy is the vector which can be removed without changing the

span, so that Span(vy,...,vg) = Span(vy,...,vg_1). Then v; € Span(vy,...,vi_1)
so that v, = Zf;ll ;v; for some scalars ;. This means vy can be written as a linear
combination of the other vectors and it follows from Prop. 7.2 that vi,..., vy are

linearly dependent. d
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7.1.4 Examples for linear independence

Let us illustrate the idea of linear independence with a number of examples and exer-
cises.

Example 7.2 (Linear independence of standard unit vectors)

Consider the standard unit vectors eq, ..., e, € F". Eq. (7.5) for this case reads
n aq
!
Z oe; = =0.
i=1 o

This is only solved if all a; = 0 and this means the standard unit vectors are linearly
independent. O

Problem 7.1 (Linear independence in R?)

Show that the R® vectors vi = (0,1,1)7, vo = (0,1,2)” and v3 = (1,1,—1)7 are linearly
independent.

Solution: Again, using Eq. (7.5), we have

ag
|
a1V] + 1V + a3V = a1+ o2 +as =0.
a1 + 202 — a3

The first entry leads to as = 0 and combining the other two entries (setting as = 0) implies
a1 = az = 0. Therefore the three vectors are linearly independent.

Problem 7.2 (Linear dependence in R?)

Show that the three R® vectors vi = (—2,0,1)7, vo = (1,1,1)7 and vs = (0,2,3)7 are
linearly dependent.
Solution: Forming a general linear combination gives

—201 + a2
a1V + a1ve + azvsy = ag + 203 =0.
a1 + a2 + 3as
This set of equations clearly has non-trivial solutions, for example a1 = 1, a2 = 2, ag = —1,

so that the vectors are linearly dependent. Alternatively, this could have been inferred from
Prop 7.2 by noting that vs = vi + 2va.

Example 7.3 (Linear independence for up to three vectors)

Let us discuss linear dependence for systems of one, two, and three vectors. To un-
derstand linear independence for a single vector v € V', we have to consider solutions
a € T to the equation v = 0. We know from Prop. 6.1 (iii) that «0 = 0 for all
« € F. This means that the zero vector is linearly dependent. On the other hand, for
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v # 0 the equation av = 0 is only solved by a = 0, as Prop. 6.1 (v) asserts. Any
non-zero vector is, therefore, linearly independent.

Next, consider two (non-zero) linearly dependent vectors u, v. From Prop. 7.2 this
means that one can be written as a linear combination of the other, for example
u = av. Hence, two linearly dependent vectors are scalar multiples of each other, that
is, they belong to the same line through 0.

Analogously, for three linearly dependent vectors u, v, w, one can be expressed as
a linear combination of the other two, for example, u = av + fw. This means that
u € Span(v,w) . O

Problem 7.3 (Linear independence for polynomials)

Consider the space P(F) of polynomials (see Example 6.6) with F = R or F = C. Show that
the monomials 1,z, 2%, ..., 2" € P(F) are linearly independent.

Solution: For linear independence we have to show that the equation

> ' =0. (7.7)

only has the trivial solution a; = 0 for all s = 1,..., k. To do this we should recall that the
'zero vector’ is the function identical to zero so we are looking for the solutions «; which
solve Eq. (7.7) for all z € R. This means if Eq. (7.7) is satisfied for certain «;, then so are
derivatives of Eq. (7.7). Taking the i*® derivative and then setting # = 0 immediately implies
that a; = 0. Hence, Eq. (7.7) only has the trivial solution and we conclude that the monomials
are linearly independent.

Problem 7.4 (Solutions to differential equations)

In Example 6.8 we have explained that the solutions to homogeneous, linear second order
differential equations form a vector space. A simple example of such a differential equation is

d2
x

Show that the solutions g(z) = sin(z) and g(x) = cos(z) to this differential equation are

linearly independent.

Solution: Using Eq. (7.5) we should start with asin(x) 4+ S cos(z) = 0. We are looking for
pairs («, 8) which solve this equation for all z. (Recall that the zero vector in a function
vector space is the zero function.) Hence, we can constrain the allowed values for o and 8
by choosing particular x values. Setting x = 0 we learn that 8 = 0 and setting © = 7/2 it
follows that @ = 0. Hence, sin and cos are linearly independent.
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7.2 Basis and dimension

Summary 7.2 A basis of a vector space is a list of vectors which are linearly in-
dependent and which span the entire vector space. Fvery vector can be written as a
unique linear combination of the vectors in a basis. The coefficients in such a linear
combination are called the coordinates of the vector relative to the basis. The dimen-
sion of a vector space is the number of vectors in a basis. Fvery finitely spanned
vector space has a basis and, hence, a well-defined dimension.

7.2.1 Basis and coordinates

For a vector space V, it is useful to have a 'minimal’ number of vectors which still span
the entire space. Such vectors are called a basis and this important notion is formally
defined as follows:

Definition 7.2 For a vector space V, a list (v1,...,vy) of vectors v; € V is called a
basis of V if

(B1) v1,...,v, are linearly independent

(B2) V = Span(vy,...,vy,).

Tt is clear from condition (B2) that every vector in V can be written as a linear
combination of the basis vectors but, what is more, for a given vector this linear
combination is unique.

Proposition 7.4 The vectors (v1,...,vy) form a basis of V if and only if every vector
v €V can be written as a unique linear combination

v = i ;v . (7.8)
i=1

Proof ’=’ Assume that (vy,...,v,) is a basis of V. From (B2) this means every vec-
tor v can be written as a linear combination of the v;. It remains to show uniqueness.
To do this, we write v as two linear combinations

n

n n
v = Z%Vi = Zﬁivi = Z(Ozi - /Bi)vi =0,
=1 i=1

=1

with coefficients «; and (; and show that the coefficients must be equal. Indeed,
taking the difference leads to the equations on the right-hand side and, from linear
independence of the basis, it follows that all a; — 8; = 0, so that «; = §; for all
1=1,...,n.

'«<=’ Now assume every vector v can be written as a unique linear combination of
Vi,...,Vn. This means that vq,...,v, span V and (B2) follows. We still need to show
condition (B1), that is linear independence. To do this, we note that, just as any other
vector, the zero vector can be written as a linear combination 0 = >, a;v,. This
equation is satisfied if all &; = 0 and from uniqueness this must be the only possibility.
Hence, the vectors vy, ..., v, are indeed linearly independent. O
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The scalars «; in Eq. (7.8) are called the coordinates of v relative to the basis
(v1,...,vn). They can be organized into a vector a € F" with entries «;, called
the coordinate vector for v.

7.2.2 Examples of bases and coordinates

Prop. 7.4 is the mathematical basis for a process routinely used in science and often
referred to as 'choosing a coordinate system’. What is really meant by this is choosing
a basis of the vector space and representing vectors by their coordinates relative to
this basis. Let us illustrate this with a few examples.

Example 7.4 (Standard unit vectors as a basis)

The standard unit vectors ey, ..., e, € F" form a basis of F". Indeed, from Example 7.2
we already know they are linearly independent. Moreover, every vector v € F™ can be
written as a linear combination

U1

n
v=| : | = E Vi€ ,
i=1

Un

so that the standard unit vectors span F". The coordinates of a vector v relative to
the standard unit vector basis are identical to the components of v. O

Problem 7.5 (A basis in R?)

Show that the R® vectors vi = (0,1,1)7, vo = (0,1,2)7, and v3 = (1,1, -1)7 form a basis
of R®. Find the coordinates of an arbitrary vector v = (z,y,2)” relative to this basis.
Solution: In Exercise 7.1 we have shown that vi, va, v3 are linearly independent. We can

attempt to express a general vector v = (z,v, z)T € R? as a linear combination of the vectors
v; by writing

a3
!
v=| Yy | =a1vi+ a2v2 +azvz = a1 + a2 + az
z a1 + 200 — a3

Equating the entries implies * = a3, y = a1 + a2 + a3, 2 = a1 + 2a2 — a3 and solving these
equations for «; leads to

ar=-3x+2y—z2z, aw=2r—y+z, az=c.

This result has several implications. Firstly, it shows that every vector v can indeed be written
as a linear combination of the vectors v; and, hence, that (vi,vs,vs) forms a basis of R3.
Secondly, we have explicit formulae for how to compute the coordinates a; relative to the
basis (v1, vz, Vv3) in terms of the components z, y, and z of the vector v. Finally, we see that
both (v1,Vva,vs) and the standard unit vectors (e;, ez, e3) form a basis of R3, so the basis of
a vector space is by no means unique.
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7.2.3 Dimension of a vector space

How should the dimension of a vector space be defined? Intuitively, we would say that
the vector space F™ over F which consists of vector with n components should be
assigned dimension n. Note that n is also the number of standard unit vectors which,
as we have seen above, form a basis of F™ over F. This observation suggests that, more
generally, the dimension should be defined as the number of vectors in a basis.
However, for a given vector space, there are different choices of bases. Do they all
have the same number of vectors? Intuitively, it seems this has to be the case but the
formal proof is more difficult than expected. It comes down to the following Lemma:

Lemma 7.1 (Exchange Lemma) Let (v1,...,vy) be a basis of V and wq, ... ,.wp, € V
are arbitrary vectors. If m > n then w1, ..., Wy, are linearly dependent.
Proof If the vectors wy, ..., wy are linearly dependent we are done, so assume they

are not. In particular, w; # 0. Since the vectors v; form a basis, we can write

n
w1 = g Q;V;
i=1

with at least one «; (say «y) non-zero (or else w; would be zero). We can, therefore,
solve this equation for v; so that

1 n
V] = ;1 (Wl — ZCVZ'VZ'> .

=2

This shows that we can ’exchange’ vy for wy such that V' = Span(wy,vs,...,v,).
This exchange process can be repeated. Suppose we have already exchanged k < n
vectors in this way so that V' = Span(w1,..., Wk, Vgy1,...,Vy). Then we can write

k n
Wit = E ;W + E ;v .
i=1

i=k+1

If all o; for ¢ > k are zero in this equation then wq,..., w1 are linearly dependent
and we are finished. Otherwise, we can solve the equation for one of the v; with i > k,
say Vi41, and this justifies the next step vi41 — wy1 of the replacement process. We
can continue in this way until all v; are replaced by w; and V = Span(wy,...,wp).
Since m > n, there is at least one vector, w,, 1, ’left over’ which can be written as a
linear combination:

n
Wntl = Z Biw; .
i=1
This shows that the vectors wy, ..., w,, are linearly dependent. O

Theorem 7.1 If (v1,...,vy,) and (W1,...,Wy,) are bases of a vector space V' then
n=m.
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Proof Consider the basis (vi,...,v,). Since the vectors (wy,...,w,,) also form a
basis they are, in particular, linearly independent. Hence, we can apply the Exchange
Lemma which implies that m < n. Repeating the argument with the roles of the two
bases exchanged gives n < m and, hence, n = m. a

While a vector space usually allows many choices of bases the number of basis vectors
is always the same. This facilitates the definition of dimension.

Definition 7.3 If (v1,...,Vy) is a basis of the vector space V over F we call dimp (V') :=
n the dimension of V' over F. The trivial vector space {0} has an empty basis and is
assigned the dimension 0.

From what we have just seen, it does not matter which basis we use to determine the
dimension. Every choice leads to the same result. Let us apply this to compute the
dimension for some examples.

Example 7.5 (Coordinate vector spaces)

We have already established that the standard unit vectors (eq,...,e,) form a basis
of F™ seen as a vector space over the field F, so

dimp(F") = dimg(R") = dimc(C") =n .

However, C™ seen as a vector space over R has a basis (eq,...,e,,ier,...,ie,) and,
therefore, dimg(C") = 2n. a

Example 7.6 (Matrix vector spaces)

We have seen in Example 6.3 that the space M, ,,(F) of n x m matrices with entries
in F forms a vector space over IF. The standard unit matrices E;;) defined in Eq. (6.6),
where i = 1,...,n and j = 1,...,m, clearly form a basis of this vector space. Since
there are nm such matrices we have dimp(M,, ,,(F)) = nm. O

Example 7.7 (Polynomial vector spaces)

What is the dimension of the vector space P (F) (where F = R or F = C) of polynomial
with degree at most k7 We have already seen in Exercise 7.3 that the monomials

1,z,2%, ..., 2" are linearly independent. Clearly, every polynomial with degree less or
equal than k can be written as a linear combination of these monomials so they span
the space. This means, (1,z,22,...,2%) is a basis and dimp(Py(F)) = &k + 1. O

Example 7.8 (Dimension of solution space to differential equations)

Following up from Problem 7.4, we would like to determine the dimension of the

solution vector space (of real-valued functions) for the differential equation
?g
dz? 9

The general solution is given by g(z) = asin(z) + 8 cos(z) with arbitrary real coeffi-
cients o and 3, so the solution vector space is spanned by sin and cos. We have already
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seen in Problem 7.4 that sin and cos are linearly independent. Hence, (sin, cos) is a
basis of the solution space and its dimension equals 2. m]

7.2.4 Existence of a basis

So far, we have discussed the properties and implications of a finite basis but we have
not worried about its existence.

Theorem 7.2 Let V be a vector space spanned by vectors vi,...,Vy,.

(i) 'V has a basis and, hence, a well-defined dimension.
(ii)  Any linearly independent vectors wy,...,wy € V can be completed to a basis.
(i) If n = dimp(V), linearly independent vectors wy,...,w, €V form a basis.

Proof (i) By assumption, V is spanned by the vectors vy,...,v,,. If these vectors
are linearly independent, we have found a basis. If not, we know from Prop. 7.3 that
one of the vectors, say v,,, can be removed without changing the span, so that V =
Span(vi,...,vy,—1). This process can be continued until the remaining set of vectors
is linearly independent and, hence, forms a basis.

(ii) If the linearly independent vectors wy, . .., wy, already span V we are finished. If not
there exists a vector w11 ¢ Span(wy, ..., wy) and the vectors wy, ..., Wy, W11 must
be linearly independent (see Exercise 7.9). We can continue this process of adding new
vectors for as long as the span does not equal V. It terminates when we have collected
n = dimg(V') vectors as finding n + 1 linearly independent vectors would contradict
the Exchange Lemma 7.1.

(iii) If dimp(V) = n and the linearly independent set wiy,...,w, did not span V
then, for the same reason as in the proof of (ii), we could find a vector w, 41 ¢

Span(wq,...,w,) so that wy,...,w,, w,41 are linearly independent. However, this
contradicts the exchange lemma. Hence, the vectors wy,...,w, must span the space
and they form a basis. m]

The main conclusion from this theorem is that every vector space which is spanned
by a finite number of vectors has a basis and, hence, a well-defined dimension. Such
vector spaces are also called finite-dimensional. All other vector spaces, which cannot
be spanned by a finite number of vectors, are called infinite dimensional.

In this book, we will primarily be concerned with finite-dimensional vector spaces,
although we present the occasional example which involves an infinite-dimensional
space. For instance, the space of all polynomials is infinite dimensional. Indeed, any
finite list of polynomials has a maximal degree and any polynomial with a degree
larger than this maximum cannot be in the span. Likewise, the spaces F([a,b],F) of
F-valued functions on the interval [a,b] (as well as its sub-spaces of continuous and
differentiable functions) are infinite-dimensional. The systematic discussion of such
infinite dimensional spaces leads into another area of mathematics, called functional
analysis, which is beyond the scope of this text (see, for example, Rynne and Youngson
2008).
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7.2.5 Properties of finite-dimensional vector spaces

What can we say about vector subspaces of finite-dimensional vector spaces? Intu-
itively, it seems their dimension should be bounded by the dimension of the ambient
vector space, so let us proof this.

Corollary 7.1 A wvector subspace W C V of a finite-dimensional vector space is
finite-dimensional and dimp(W) < dimp(V'). Equality, W =V, holds iff dimp(W) =

Proof Set n = dimp(V). The subspace W cannot contain more than n linearly
independent vectors or else there would be a contradiction with the Exchange Lemma.
This shows that W is finite-dimensional and that dimy(W) < dimg(V).

For the second part of the statement, clearly if W =V then dimp(W) = dimp(V).
Conversely, if dimp(W) = dimp(V'), then a basis (w1, ..., wy) of W must, from The-
orem 7.2 (iii), also be a basis of V. Hence, W = Span(wy,...,wy) = V. a

This result combined with Theorem 7.2 means that every vector subspace of a finite-
dimensional vector space has a basis and a dimension. We have shown earlier that
every span is a vector subspace. Now we see that the opposite is also true. Every
vector subspace can be written as a span, for example, as the span of its basis.

Earlier, we have mentioned the intuitive interpretation of spans as lines, planes etc.
through 0. Now, we can introduce a more precise terminology which captures this
intuition. We call a k-dimensional vector subspace W C V a k-plane through 0, or
k-plane for short. A 0-plane is simple the trivial vector space {0}, a 1-plane is also
called a line, a 2-plane is called a plane and an (n — 1)-plane in an n-dimensional
vector space V is also called a hyperplane. An n-dimensional vector space V' contains
k-planes through 0 for every k = 0, 1, ..., n. To see this, start with a basis (vi,...,vy)
of V and note that Span(vy,...,vy) is a k-plane through 0.

Application 7.1 Vector spaces and magic squares

An entertaining application of vector spaces is to magic squares. Magic squares are 3x 3 (say)
quadratic arrays of (rational) numbers such that all rows, all columns and both diagonals
sum up to the same total. To make contact with our discussion of vector spaces, we can think
of magic squares as matrices in the vector space M3 3(Q) of 3 x 3 matrices with rational
entries (seen as a vector space over the field Q). A simple example of a magic square is

9
M=|35 (7.9)
1

0 W
[S2NEN [ \V]

where every row, column, and diagonal sums up to 15. Magic squares have long held a
certain fascination and an obvious problem is to find all magic squares.

In our context, the important observation is that magic squares form a vector subspace of
M3 3(Q). Let us agree that we add and scalar multiply magic squares in the same way as
matrices (see Example 6.3), that is, entry by entry. Then, clearly, the sum of two magic
squares is again a magic square, as is the scalar multiple of a magic square. Hence, from
Def. 6.2, the 3 x 3 magic squares form a vector subspace of M3 3(Q). The problem of
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finding all magic squares can now be phrased in the language of vector spaces. What is the
dimension of the vector (sub)space of magic squares and can we write down a basis for this
space?

It is relative easy to find the following three elementary examples of magic squares:

111 0 1-1 -1 1 0
My=[111], My=|-1 0 1|, My=| 1 0-1]. (7.10)
111 1-1 0 0-1 1

It is also easy to show that these three matrices are linearly independent, using Eq. (7.5).
Setting a general linear combination to zero,

o —a3 o1 F+aztaz a1 — o .
a1t M1 +asMs +a3+Ms=| a1 —az +as (e %1 ar+ar—as3 | =0,
o] +oa2 a1 —oa2—Qa3 Q1+ o3

immediately leads to a1 = as = as = 0. Hence, M;, Ms, Ms are linearly independent and
Span(Mi, Mz, M3) C M3,3(Q) (7.11)

is a three-dimensional vector space of magic squares. Therefore, the dimension of the magic
square space is at least three. Indeed, our example (7.9) is contained in Span(Mi, Ma, M3)
since M = 5M; + 3M> + Ms. As we will see later (see Application 16.2), this is not an
accident. We will show that the dimension of the magic square space equals three and,
hence, that (M1, M2, M3) is a basis.

Exercises
(t=challenging) (b) The R? vectors vi = (0,1,1)7, vo =
7.1 Span of a subset (1,1,1)" a;nd v =(0,0,1)". -
Let S C V be an arbitrary subset of a (c) heTR vectors vi = (1,0,1)", vo =
vector space V' and define Span(S) as (2,3,1)" and vs = (1,6, —1).
the set of all finite linear combinations (d) The R* vectors vi = (1,2,0,-3)7,
of vectors in S. Show that ve = (2,1,1,-4)7 and v =
(a) Span(S) is a vector subspace. -3,6,—4,1)7.
(b) If U C S is a vector subspace, then
dimg(U) < dimg(Span(S)). 7.3 Linear independence of functions
(c) § = Span(S) if and only if S is a (a) Show that the functions sin(zx),
vector subspace. sin(2z), and sin(3z) are linearly inde-
pendent.

7.2 Linear dependence and independence
Which of the following sets of vectors
are linearly independent? For each lin-
early dependent set, identify a maximal 7.4 Basis for polynomial vector spaces

(b) Are the functions sin(z), sin(2z) and
sin(z) cos(x) linearly independent?

subset of linearly independent vectors. Consider the vector space V = P3(F) of
Provide detailed reasoning in each case. at most cubic polynomials in x.
(a) The R* standard unit vectors (a) Show that the monomials

e, ez, e;s. (1,z,2% 2*) form a basis of V.
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7.5

7.6

7.7

(b) Show that (1,z, (32% — 1)/2, (52> —
3x)/2) is another basis of V.

(¢) Find the coordinates of a general
cubic p(z) = asx® + as2® + a1z + ao
relative the bases in (a) and (b).

Basis and coordinates

Show that the vectors vi = (1, —1,0)7,
va = (0,1,—-1)" and vz = (2,0,1)"
form a basis of R®. Write a general vec-
tor v.= (x,9,2)7 € R® as a linear
combination of this basis. What are the
coordinates of v relative to the basis
(V1,V2’V3)?

Basis for matriz vector spaces

Consider the vector space Ma(F) of
2 X 2 matrices with entries in F.

(a) Show explicitly that the standard
unit matrices E(;;y, where 7,7 = 1,2,
form a basis of M2 2(F) and, hence, that
its dimension is four.

(b) The symmetric 2 X 2 matrices form
a vector subspace of M 2(F) (see Ex-
ercise 6.7). Show that E(1), E(22), and
E(12) 4+ E(21) form a basis of this vector
subspace and, hence, that its dimension
is three.

(c) Carry out a similar analysis for the
vector subspace of anti-symmetric 2 x 2
matrices.

Solutions to differential equation’
Consider the differential equation

7.8

7.9

for real-valued functions y € C2((0, 00)).
(a) Why does the set of solutions form
a vector subspace?

(b) Find a basis for this solution space,
assuming that its dimension is two.
(Hint: Try functions of the form y = z?,
for p e R.)

2 X 2 semi-magic squaresT

Consider 2 x 2 semi-magic squares, that
is, 2x 2 matrices in M3 2(Q) whose rows
and columns sum up to the same total.
(a) Show that the 2 x 2 semi-magic
squares form a vector subspace of
M2,2(Q).

(b) Show that E(1,1>+E(2’2) and E(lyg)+
E(3,1) are semi-magic squares.

(c) Show that the matrices from (b)
form a basis of the 2 X 2 semi-magic
squares.

Linear independence’

Let vi,...,vi € V be linearly indepen-
dent vectors and v ¢ Span(vi,...,vg).
(a) Show that any subset of {v1,..., vy}
is also linearly independent.

(b) Show that the vectors vi,..., vy, Vv
are linearly independent.

(c) Show that the vectors vi +

V,..., Vi + v are linearly independent.
Is this statement still true if we drop the
condition v ¢ Span(vy,...,vi)?
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Vector subspaces

In the previous chapter, we have seen that vector subspaces of an n-dimensional vector
space V are also finite-dimensional vector spaces with dimension & < n. To capture
the geometrical intuition, we have called such k-dimensional vector subspace k-planes
through 0, with 1-planes also referred to as lines and 2-planes as planes.

It is natural to ask how vector subspaces relate to basic operations and structures on
sets such as set unions, set intersections or equivalence relations. Are these consistent
with the vector space structure and can they be used to create new vector subspaces
from given ones? If so what happens to the dimension? The results of this chapter
provide geometrical insight but will also be useful for the systematic development of
the subject, in particular for the understanding of linear maps.

8.1 Intersection and sum

Summary 8.1 For two vector subspaces U, W of a vector space V', the intersection
UNW and the sum U + W are both vector subspaces. A simple formula relates the
dimensions of these spaces. The two subspaces form a direct sum, U & W, if they
intersect trivially. In this case, the dimension of U & W is simply the sum of the
dimensions of U and W'.

8.1.1 Intersection of vector subspaces

We are working with an n-dimensional vector space V over F. An obvious question is:
What happens to vector subspaces under simple set-theoretical operations? Start with
two vector subspaces U, W C V and consider their intersection U N W. By verifying
the conditions in Def. 6.2, it is quite easy to show that the intersection is also a vector
subspace. First, 0 € U N W, so the intersection is not empty. Consider two vectors
vi,ve € UNW in the intersection. This means both vectors must be in U and in W
and since either is a vector subspace, we conclude that vi +ve € U and vy +vo € W.
But this means that vi +vo € UNW. A similar argument shows that U N W is closed
under scalar multiplication.

8.1.2 TUnion and sum

Things are not so straightforward for the union U U W of two vector subspaces. By
thinking about simple examples, it should be immediately clear that the union is
usually not a vector subspace. For example, consider the two subspaces U = Span(e;)
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and W = Span(ez) of R?, that is, the two coordinate axes. Their union is merely both
coordinate axis while linear combinations of e; and e; lead to every vector in R2.
This example already points to a possible fix. Instead of the set-theoretical union, we
should form the sum

U+W:={u+wluelU, we W}, (8.1)

which consists of all vectors u+w, where u € U and w € W. It is easy to see that this
is a vector subspace. Consider two vectors vyi,ve € U + W. By definition of U + W
they can be written as vi = u; + wy; and vo = us + wo, where uj,us € U and
w1, ws € W. Hence, vi + vy = (ug + u2) + (wy + wo) € U + W which shows that
U + W is closed under vector addition. Similarly, it follows that U 4+ W is closed under
scalar multiplication. We summarize these results in the following Lemma:

Lemma 8.1 For two vector subspaces W, U C V' of a vector space V', both the inter-
section W NU and the sum W + U are vector subspaces of V.

Proof This follows from the arguments above. o

8.1.3 Dimension of vector space sums

What is the dimension of the sum U + W of two vector subspaces W and U? The
naive guess is that dimensions simply add up but this ignores a possible non-trivial
intersection U N W. The correct dimension formula is stated in the following theorem.

Theorem 8.1 For two vector subspaces U, W of a finite-dimensional vector space V
over F we have

dimF(U + W) = dlm]F(U) + dlmF(W) - dlmF(U N W) . (82)

Proof Set p = dimp(U N W), n = dimp(U), and m = dimp(W) and start with

a basis Bynw = (v1,...,vp) of U N W. This basis can be completed to a basis
By = (Vi,...,Vp,Upt1,...,u,) of U and a to basis By = (V1,...,Vp, Wpii,..., W)
of W. The expectation is that B = (V1,...,Vp, Upt1,..., Uy, Wpi1,..., Wy,) is then a

basis of U + W. This can be shown as follows. The set B contains as subsets the bases
By and By, so clearly B spans U + W. To show linear independence of B we start

with , . .
Z%‘Vi + Z Biu; + Z Ve WE L0 (8.3)
i=1

Jj=p+1 k=p+1

and define the vector v as the first two terms in the sum on the left-hand side, so
p m
v i= Zaivi + Z giu;, = v=-— Z VW - (8.4)
=1 Jj=p+1 k=p+1

The definition of v means that v € U and the second relation above that v € W, so
v € UNW. This means it can be written as some linear combination
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P
o /
v = oV
i=1

of vector in Bynw . Comparing this with the first Eq. (8.4), it follows from the unique-
ness of linear combinations relative to the basis By that all §; = 0 (and that all
a; = o). Inserting 8; = 0 into Eq. (8.3) linear independence of the basis By then
implies that all a; = v, = 0. Hence, B is linearly independent and indeed a basis. The
dimension of U + W equals the number of basis elements in B. Counting these gives

dimg(U + W) = |B| = p+ (n —p) + (m - p)
=n+m—p=dimp(U) + dimp(W) — dimp(U N W) .
O
The dimension formula (8.2) has a simple interpretation. When summing up dimg(U)

and dimp(W), the intersection U N W is counted twice so its dimension has to be
subtracted once for the correct overall dimension of U + W.

Example 8.1 (Sum of vector subspaces)

In R3, consider two-dimensional vector subspaces U and W which intersect in a line
unw.

RS

-unw

Clearly, U + W = R3, so that dimg(U + W) = 3. This is matched by dimg(U) +
dimg (W) — dimg(UNW) =2+ 2 —1 = 3, in accordance with Eq. (8.2). a

From Eq. (8.2) the dimension of the sum is always bounded from above by the sum of
the dimensions,

dimp(U + W) < dimp(U) + dimg (W) , (8.5)

with equality if and only if the intersection U N W is trivial. The dimension of U N W
can be constrained in two ways, using Cor. 7.1. First, U N W is a vector subspace of
both U and W, so its dimension must be less equal than the dimensions of U and W.
Secondly, since U + W C V it follows that dimp(U 4+ W) < dimp(V). Combining these
statements with the dimension formula (8.2) leads to

min(dimg (U), dimp(W)) > dimp(U N W) > dimp(U) 4 dimp(W) — dimp(V) . (8.6)
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This result implies that two vector subspaces of sufficiently large dimension, relative to
the dimension of the total space, must intersect non-trivially. For example, two planes
in a three-dimensional space must at least intersect in a line and two three-dimensional
vector subspaces in a four-dimensional vector space must at least intersect in a plane.

8.1.4 Direct sums

If two vector subspaces U, W C V intersect trivially, that is, if U N W = {0}, then
the sum U 4+ W is called a direct sum and is written as U @ W. A direct sum has
considerably nicer properties than merely a sum of two vector subspaces. For one,
dimensions simply add up,

dimg(U @ W) = dimg(U) + dimg(W) , (8.7)

as follows immediately from Eq. (8.2). We also have the following proposition:

Proposition 8.1 For two vector subspace U,W C V the following statements are
equivalent:

(i) The sum U + W is direct.
(ii) Every v € U+ W can be written uniquely as v.=u+w, whereu € U andw € W.

Proof (i) = (ii): Assume that the sum U + W is direct, so U N W = {0}. It is
clear that every vector v.€ U @ W can be written as in (ii) but we have to show
uniqueness. Start with two decompositions v = u; + w; = us + wo where ug,us € U
and wi,wy € W. It follows that u; — up, = wy — w; and the left-hand side of this
equation is an element of U while the right-hand side is an element of W. This means
that uy — ug, wo — wy; € UNW but since U NW = {0} it follows that u; = us and
Wi = Wa.

(if) = (i): Now assume that (ii) holds and consider a vector v € U N W. The zero
vector 0 € U + W can then be written as a sum of vectors in U and W in two ways,
namely 0 = 040 and 0 = v + (—v). This is only consistent with uniqueness if v = 0.
This shows that U N W = {0}, so that the sum is direct. O

It is now easy to argue that a direct sum U & W has an ’adapted’ basis obtained by
merging the vectors from the bases of U and W.

Corollary 8.1 Let UW C V be two subspaces which form a direct sum, with bases
(u1,...,uy,) and (w1, ..., wy), respectively, Then, (uy, ..., Wy, W1,...,Wk) is a basis
ofUdW.

Proof Any vector v.€ U@ W can be written as v =u+w, whereue U and w € W
are unique. Further, u and w each have a unique expansion in terms of the bases on
U and W. Combining these two steps, we see that every v € U & W can be written
as a unique linear combination of (uy, ..., Wm, W1, ..., w). From Cor. 7.4 this means
that (uy,...,Wm, W1,...,Wg) is a basis of U @ W. m]

Direct sums are a very useful tool for linear algebra constructions and proofs, as
they can be used to break up the vector space into smaller, often more manageable
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subspaces. For example, the diagonalization of linear maps and the Jordan normal
form are based on direct sum decompositions, as we will see in Part VI.

8.1.5 Direct sums of vector spaces

We have studied (direct) sums U @& W for vector spaces U and W which are both
vector subspaces of an ’ambient’ vector space V. But can we make sense of the sum
U®W if U and W are not, a priori, contained in some larger vector space but are
merely two abstract vector spaces over the same field F?

In this case, we can proceed by constructing an ambient vector space which contains
U and W. To do this, we observe that the Cartesian product U x W can be made into
a vector space by defining vector addition and scalar multiplication as

(u,w)+ (0, w) :=(u+a,w+w), a(u,w) = (au,aw) , (8.8)

where (u,w), (@,w) € U x W, and a € F. This vector space has two obvious vector
subspaces, U = {(u,0)|u € U} and W = {(0,w)|w € W}, which can be identified
with U and W, respectively. It is also clear that U x W = U + W and that U N W =
{(0,0)}, so we have, in fact, a direct sum U x W = U @ W. Given the identifications
U>Uand W = W this dlrect sum is, by slight abuse of notation, also written as
U@ W. Everything we have said about direct sums of vector subspaces in Section 8.1.4
can now be applied to this construction. In particular, the dimension formula (8.7)
remains valid and we can construct a basis of U & W by combining bases for U and
W, as stated in Cor. 8.1.

8.2 Quotient spaces*

Summary 8.2 A vector subspace W C V' can be used to define an equivalence re-
lation on V. The associated equivalence classes are called cosets or affine k-planes.
The quotient V/W forms a vector space with dimension dimg (V') — dimg(W).

Quotient vector spaces are a very useful way of 'course-graining’ a vector space by
dividing out a vector subspace. The elements of the quotient vector space V/W are
equivalence classes of vectors under an equivalence relation which declares two vectors
as related if their difference is contained in the vector subspace W. The construction
leads to an elegant proof of the isomorphism and rank theorems, as will be discussed
in Section 14.3. However, it may seem somewhat abstract to the beginner and can be
omitted at first reading.

8.2.1 Equivalence relation and cosets

Consider a vector space V and a vector subspace W C V' with dimension k& = dimg(W).
We say that two vectors in V are related if their difference is a vector in W, so

Vi~ Vg S vi—ve WL (89)

It is not hard to show that this defines an equivalence relation (Exercise 8.3). The
associated equivalence classes are called cosets or affine k-planes, and their explicit
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form is v+ W = {v+ w|w € W}, where v € V. Cosets are typically not vector
subspaces as, for example, they do not need to contain the zero vector. They are
obtained by ’shifting’ the subspace W by vectors v, as indicated in Fig. 8.1. The set

\4 v+ W

Fig. 8.1 The relationship between k-planes W and affine k-planes v + W.

of all cosets
VW :={v+W]|veV}, (8.10)

is called the quotient V/W of V by W.

Example 8.2 (Vector space quotient in R?)

In R?, consider a non-zero vector w and the one-dimensional vector subspace W :=
Span(w). The equivalence classes under the relation (8.9) are then the lines parallel
to W and the quotient R? /W consists of all these lines. In the figure below, we have
indicated some of these lines, given by kv + W, where v is a fixed vector and k =
~2,-1,0,1,2.

2v+ W

R2 v+ W
vi W = Span(w)
P
A v+ W
4N wW
v
—2v+ W
Vo _

Note that the two vectors vi and v indicated in the figure are related since vi —vg €
W and are, hence, both contained in the same equivalence class, in this case the line
v+ W. O
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8.2.2 Quotient vector space

Can the quotient space V/W be given the structure of a vector space and, if so, how
should we define addition and scalar multiplication? It seems intuitive that addition of
two affine k-planes should involve addition of all vectors of the first plane to all vectors
of the second one. Likewise, for scalar multiplication all vectors in an affine k-plane
should be multiplied by the scalar. In other words, addition and scalar multiplication
on V/W should be defined as

(Vi+W)+ (va+W):i=(vi+ve)+ W, av+W):=(av)+ W, (8.11)

where a € F and vy,vs,v € V. These definitions simply rely on the vector space
structure on V' and, therefore, trivially satisfy all the vector space axioms in Def. 6.1.
The zero vector in V/W is simply the vector subspace W.

Theorem 8.2 Let V' be a vector space over F and W C V' a vector subspace. Then
the quotient space V/W is also a vector space over F with vector addition and scalar
multiplication as defined in Eq. (8.11). Its dimension is

dims(V/W) = dimg (V) — dimg (W) . (8.12)

Proof What remains to be done is to proof the dimension formula. We set n :=
dimp(V) and & := dimp(W) and start by introducing a basis By = (wq,...,wy) of
W. This basis can be completed to a basis By = (w1,...,Wg,V1,...,V,_g) of V|
using Theorem 7.2 (ii). We claim that B := (vi + W,...,v,,_x + W) is a basis of the
quotient V/W.

First, we show that B spans the quotient V/W. Start with an arbitrary vector
v+ W € V/W and write v as a linear combination

k n—k
v = E ;Wi + E Bivi
i=1 i=1

of the basis By . Then we have

k n—k n—k n—k
V+W=Zaiwi+25ivi+wz Zﬂivi+W= Zﬁi(vi‘f'w) .
i=1 i=1 i=1 i=1
which shows that B spans V/W.
For linear independence start with

_ n—k
Z (vi+W)=0 = ZavZEW

i=1 i=1

where the second statement follows because the zero 'vector’ in V/W is really the
entire vector subspace W. We need to show that all a; = 0. Since Byy is a basis of W
this means we can find scalars [3; such that

n—k k
E Q;V; = — E Biw;
i=1 i=1

and linear independence of By then implies that all a; = 0.
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In conclusion, B is a basis of V/W and

dimp(V/W) = |B| = n — k = dimp(V) — dimgp(W) .

O

Note that the dimension formula (8.12) is in line with the intuitive idea of dividing by
a vector subspace W. Taking the quotient 'removes’ W (the entirety of W becomes
the zero vector of V/W) and, hence, in passing from V to V/W, the dimension reduces
by dimp(W).

Exercises

(t=challenging)

8.1

8.2

8.3

8.4

8.5

Dimension formula for an example

For V = R? the vector subspace U is
spanned by u; = i+ 2j, uz = k and
the vector subspace W is spanned by
w1 = j+ k, wo = —i+ 2j. Explicitly
verify the dimension formula (8.2) for
this example.

Intersections
Consider two 3-planes in R*. What are
the possible dimensions for their inter-
sections? Provide an explicit example
for each case.

Show that Eq. (8.9) defines an equiv-
alence relation and find the associated
equivalence classes.

Quotients

In V = R? consider the vector subspace
W spanned by i and j ("the z—y plane’).
What are the cosets in V/W and what
is the dimension of V/W?

Quotients in polynomial vector spaces

Consider the polynomial vector space
V = P3(R) and its vector subspace
W = {az + b|a,b € R} C V. Work
out the dimensions of V, W, and V/W

8.6

8.7

and use the result to verify the dimen-
sion formula (8.12). Describe the cosets
in V/W.

General sums of vector spaces

Let Wi,...,W, C V be vector sub-
spaces and define the sum W := W; +
oW = {wit AW W € WG, 0=
1,...,k}. Show that

(a) W = Span(W7r U...UWy). (See Ex-
ercise 7.1.)

(b) W is a vector subspace.

(c) dims(W) < S°F | dimp(W5).

Generalizing directs sums'

Vector subspaces Wi,..., W, C V are
said to form a direct sum W = Wi @
P Wk if

HW=Wi+- -+ W

(ii) wi + -+ - + wi, = 0 for w; € W, im-
plies that all w; = 0.
IEW=W; &- @ Wy show that

(a) every w € W can be uniquely writ-
ten as w = wi + - - - + Wg, where w; €
W;.

(b) combining bases of W1, ..., W}, into
a single list gives a basis for W.

(c) dims(W) = 3°F | dimp(W;).
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Basic geometry

In this part, we pause the systematic development of the subject, and turn to a num-
ber of more practical topics, related to elementary geometry. One of the dilemmas of
presenting a linear algebra course for scientists is that some of the practical methods
needed early on in science, such as dot and cross products, only appear relatively late
in the systematic mathematical development of the subject. The present part intends
to address this problem. We focus on coordinate vector in R™ (and, for some parts,
in R3) and introduce the dot and cross products in a somewhat informal manner,
focusing on techniques for calculation and applications to the geometry of lines and
planes.

This is done for a number of reasons. For one, the reader has a chance to engage with
some of the practical methods used in science early on. The material developed in this
part is also a good source of examples to illustrate some of the more abstract ideas
which follow. Learning about new structures, such as the scalar product, in a special
and more familiar setting first may help getting to grips with the axiomatic approach
taken later on. As we go along, we will present powerful methods for calculation with
indices. These techniques are extremely useful for calculations but are rarely covered
in linear algebra textbooks.

School mathematics sometimes talks about vectors as objects with "length and direc-
tion’. Such a statement lacks the rigour required for a mathematical definition but,
worse, it is also seriously misleading. Vector spaces and vectors have been defined in
Def. 6.1 and the words ’length’ and ’direction’ have not even been mentioned. Vectors
are elements of vector spaces, objects which can be added and scalar multiplied, sub-
ject to a number of rules. Length and direction play no role at this level. Of course, we
can still talk about length and direction of vectors but we do need more structure —
in addition to the vector space structure — to do this. The required structure is that
of a scalar product on a vector space. Its simplest incarnation, the dot product on R™,
will be introduced in the next chapter. It allows us to introduce the length and the
direction of vectors as well as angles between vectors and the notion of orthogonality.

In Chapter 10 we introduce the cross product in R3. From a mathematical point of
view, the cross product is a somewhat exotic operation whose natural home is in ad-
vanced (multi-) linear algebra, and we will return to the subject in our discussion of
tensors in Chapter 27. However, the cross product is widely used in scientific applica-
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tions and should be discussed early on. On a geometrical level, the cross product is a
method to obtain orthogonal vectors and it will be introduced with this motivation in
mind. Combining the dot and cross products leads to the triple product on R? which
is, in fact, the same as the determinant in three dimensions. This provides an oppor-
tunity to develop some properties of the determinant in a special case, before general
determinants are introduced in Chapter 18.

In the final Chapter 11 of this part, we apply some of the new tools to elementary
geometry, mainly the geometry of lines and planes in R? and R3.



9
The dot product

Geometry often requires the notion of a length of a vector and an angle between
vectors. As we have emphasized above, a vector space by itself does not provide for
these notions, so we require additional structure.

9.1 Basic properties

Summary 9.1 The dot product - : R™ x R™ — R"™ s a bi-linear, symmetric, and
positive map. For two vectors v,w € R™ it is defined by v -w = viwy + - - - + vpwy,.

What should we require for a structure on R™ which can provide us with an angle
between two vectors? Above all, since the angle is a scalar quantity, we require a map
-: R™ x R™ — R which assigns to a pair of vectors (v, w) a scalar, which we denote by
v - w. The angle should not depend on the ordering of the two vectors so we should
demand that v -w = w - v. Since linearity is a key feature of vector spaces it also
makes sense to demand that the map (v, w) — v - w is linear, in the same sense as a
linear map (see Def. 6.3), in each of its two arguments. Finally, for a notion of length
we need to impose a positivity condition.

9.1.1 Definition of dot product

It turns out that these simple requirements are satisfied by the dot product on R™
which is defined as

R*xR" - R &
(v, w) >—>V-W} V~w:v1w1+~~~+vnwn:Zviwi. (9.1)
’ i=1

It is customary to omit the sum symbol in this definition and simply write
VW = vw; (9.2)

adopting the convention that an index which appears twice in a given term (such as
the index ¢ in the present case) is summed over. This is also referred to as the Finstein
summation convention. This convention is routinely used in Einstein’s general theory of
relativity which suffers from a proliferation of indices but it also facilitates a simplified
notation and more effective computations in many other contexts. We will soon see
explicit examples.
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Problem 9.1 (Dot product)

Work out the dot product of the R® vectors v = (1,3,-2)7, w = (5,2,4)7, and of the R*
vectors r = (1,3,2,-1)7, s = (0, —4,7,5)".

Solution:

1 5

VoW = 3112 =1-54+3-24(-2)-4=3
—2 4
1 0
3 —4

r-s = 9 7 =1-04+3-(-49)+2-7+(-1)-5=-3
-1 5

9.1.2 Properties of the dot product

The following proposition shows that the dot product does indeed satisfy the require-
ments of linearity, symmetry, and positivity, discussed above.

Proposition 9.1 The dot product on R"™ satisfies the following properties for all
v,w,u € R" and all a € R.

(D) v-(wH+u)=v-w+v-uandv-(aw) =a(v -w) (linearity)
(D2)v-w=w-v (symmetry)
(D3) v-v >0 forallv#0 (positivity)

Proof This is our first opportunity to compute with indices, using the Einstein sum-
mation convention 9.2.

(Dl) V- (w+u) :UZ'(W+11)Z' :vi(wz+u1) =V;W; +V;U; =V -W+V-u

v (aw) = v;(aw); = av,w; = a(v - w)

(D2) v -wW=vw, =wv;, =W-V

(D3)  (v,v)=>,v}>0for v#O0.
Note that the components v;, w;, u; are just numbers, not vectors, so all the rules for
calculating in a field can be applied. This feature is one of the strengths of index cal-
culations (which comes at the price of having to deal with indexed objects). This is
the reason we are allowed to use the distributive law in the proof for (D1) or reverse
the order, v;w; = w;v;, in the proof for (D2). O

The condition (D1) is indeed a linearity condition, similar to the one for linear maps
in Def. 6.3, on the second argument of the dot product. Since the dot product is
symmetric, linearity in the second argument immediately translates into linearity in
the first argument.
D2 D1 D2
(W—I—u)-v(:)v-(w—i—u) Dy wivu@Pwoviuv

(aw) - v S (a
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Hence, the dot product is bi-linear and this can be applied to arbitrary linear combi-
nations, so that

(Z ai"i) . Zﬁjwj = Zazﬂj(vi "W). (9.3)

The properties in Prop. 9.1 will be used later to define general scalar products axiomat-
ically, much as the rules for calculating with coordinate vectors inspire the general
definition of vector spaces.

9.2 Length and angle

Summary 9.2 The Euklidean norm |- | : R™ — R0 is defined in terms of the dot
product. It is positive, it scales under scalar multiplication and, as a result of the
Cauchy-Schwarz inequality, it satisfied the triangle inequality. The Cauchy—-Schwarz
iequality also facilitates the definition of an angle between two vectors, in terms of
the dot product and the Euklidean norm.

Our original motivation for introducing the dot product was to facilitate the notions
of length and angle. We begin by explaining how the dot product can be used to define
length.

9.2.1 Definition of length
The (Euklidean) length (or norm) on R™ is defined as

v = |

| | R R>O n 1/2
. : % -
} [vl]=+vv-v= (Z Uf) . (9.4)
i=1
The square root in this definition makes sense because of the positivity property (D3)

of the dot product. The length is strictly positive, except for the zero vector which has
length zero.

But this by itself is not enough to convince us that the above is a sensible notion
of length. For example, what happens to the length under scalar multiplication of a
vector?

lav| = \/(av) (av) = Va2v-v= lalv/v v =|al|v]. (9.5)

Evidently, if a vector is multiplied with a scalar « its length scales with the modulus
|| 1. This certainly makes intuitive sense and explains why the square root has been
included in Eq. (9.4). (Otherwise, the length would scale with the square of the scalar.)

IThe notation |- | indicates the length of a vector whenever the argument is vectorial and the (real
or complex) modulus whenever the argument is a scalar.
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The property (9.5) allows us to define, for any non-zero vector v € R™, an associated
vector n with unit length given by
9.5
n=p[v = = (v S v =1 (9.6)
We can think about this vector n as the direction of v. Vectors with unit length are
also called unit vectors for short.
Problem 9.2 (Euklidean length)

Work out the length of the vectors v = (3,4)”, w = (-1,1,2)7, and u = (-3,2,-1,1)".
What is the unit vector associated to v?

Solution:

Vi=VEr2=5, |w=V(C)Pr2+22=16
luf = /(=32 + 22 + (-1)> + 1> = V15

The unit vector associated to v is n = v/|v| = (3,4)7 /5.

9.2.2 The Cauchy—Schwarz inequality

The remaining geometrical notion we still need to define is the angle between two
vectors. To this end, we need to prove an important and famous inequality which
relates the dot product and the length.

Theorem 9.1 (Cauchy—Schwarz inequality) For any two vectors v,w € R"™ we have
vw] < v ] . (9.7)
Equality holds if and only if v and w are multiples of each other.

Proof The proof is a bit tricky. We start by considering two unit length vectors
a,b € R", so |a] = |b| = 1. A quick calculation shows that

00 (9.3)

0<l|a+b)? atb)-(a+b) = |a*+2a-b+|b*=2(14+a-b), (9.8)

and, hence, that |a-b| < 1. Now consider arbitrary vectors v and w. If one of these
vector is zero then (9.7) is satisfied since both sides equal zero. We can therefore
assume that both v and w are non-zero. In this case we can introduce the unit vectors
a:= |[v|7!'v and b := |w| " 'w. The earlier result |(a,b)| < 1 translates into
(9.3)
v-wl=[(lv|]a) - (jw|b)| "="|v[|w|[|a-b] < [v]|w],

which proves the Cauchy—Schwarz inequality.

It remains to prove the second statement about equality. If v and w are multiples
of each other, for example w = av, then

vew=v-(av) Zav.v v = vi(alv]) E [v]av] = [v||w],

so that (9.7) is indeed satisfied with an equality.
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Conversely, assume that |v - w| = |v||w| and we want to show that v and w are
multiples of each other. If one of the vectors is zero the statement holds trivially (as
the zero vector is a multiple of any vector with 0), so we can again assume both v and
w are non-zero. Their directions a = |v|~'v and b = |w|~!w then satisfy |a-b| = 1
which shows that the right-hand side of Eq. (9.8) vanishes for one choice of sign.
Therefore, |a + b| = 0 and, from (D3), b = Fa for one of the signs. It follows that
w = |w|b = F|wl|a = F|w||v| v and, hence, that w is a multiple of v. O

9.2.3 Properties of the length

The Cauchy—Schwarz inequality implies another important inequality for the length,
the triangle inequality |v + w| < |v| + |w|. (For its geometrical interpretation see
Fig. 9.1.) It follows from the short calculation

v+ wl|? (2 (v 4+ w)? (22 V2 w2 +2v-w < [vi+ w2 +2]v-w
(9.7)
< VP WP 2|y [wl = (v] + w2 (9-9)

The following proposition summarizes the properties of the Euklidean length on R™.

vV+w

Fig. 9.1 Geometrical interpretation of the triangle inequality. The length |v 4+ w/| of one side
of the triangle is always less equal than the sum |v| + |w| for the other two sides.

Proposition 9.2 The Euklidean length (norm) |-|: R™ — R2% defined in Eq. (9.4)
has the following properties, for all v,w € R™ and all o € R.

(N1) |v|>0 forv#0 (positivity)

(N2) |av| =|a||v] (scaling)

(N3) |v+w|<|v|+|w] (triangle inequality)

Proof (N1) is immediately evident from the definition (9.4). (N2) and (N3) have
been shown in Egs. (9.5) and (9.9), respectively. O

The properties in this proposition are what one would intuitively require from a sen-
sible notion of length and they justify the definition in Eq. 9.4. Later, in Chapter 22,
we will use these properties to define the general notion of norms on vector spaces
axiomatically.

9.2.4 The angle between vectors

The Cauchy—Schwarz inequality (9.7) implies for any two non-zero vectors v,w € R"
that
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V-w

1< <1. (9.10)

vl Iwl

This means there is a unique 6 € [0, 7] such that

cos(0) (9.11)

vlfwl

This quantity 6 is called the angle between the two vectors v and w and is also denoted
by <(v,w). By rearranging Eq. (9.11), we can write the dot product as

v-w = |v||w]| cos(<(v,w)) , (9.12)

and this equation suggests the geometrical interpretation of the dot product indicated
in Fig. 9.2.

[
|w| cos(6) v

~

Fig. 9.2 Geometrical interpretation of the dot product which is obtained by multiplying |v|
with |w|cos(@), the length of the projection of w into the direction of v.

Problem 9.3 (Angle between vectors)

Is the above definition of the angle between two vectors sensible and does it match our
geometrical intuition? Find arguments that this is indeed the case.

Solution: A non-zero vector v should form an angle 0 with itself. Since cos<(v,v) = v -
v/|v|? = 1 this is indeed the case (and can be seen as the motivation for using the cos, rather
than the sin, in the definition). We also have cos <(v, —v) = (v - (=v))/|v|* = —1, so that
<(v,—v) = 7, the expected result for the angle between a vector and its negative.

We can also check that the definition of the angle is consistent with the geometrical
definition of the cosine function. Think of Fig. 9.2 in R? with the vector v = |v|e; along the
r-axis and w = (wl,wg)T. Then, the geometrical definition of the cosine function says that
cos(0) = wi/|w|. On the other hand, the angle from Eq. (9.11) is

v-w _ |v](er-w)  wn

cos(0) =

Cviwl vl wl

which does indeed give the same result.

Problem 9.4 (Calculating the angle)

Calculate the angle <((v,w) between the vectors v = (2,4, —2)T and w = (2,1,1). Do the
same for the vectors r = (1,0,1,1)” and s = (2,1,0,1)7.
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Solution: With v - w = 6, |v| = 2/6, and |w| = v/6, we have from Eq. (9.11)

cos (v w)—L—1 = (v W)—z
) 2\/6\/6 2 ) 3
From r-s = 3, |r| = v/3, and s = V/6, it follows that
cos (r s)—i—L = «(r s)—I
7 V3-v6 V2 ’ 4

Note that this last example in four dimensions is difficult to visualize. Yet, there is no problem
computing the angle — having a precise definition pays off!

9.3 Orthogonality

Summary 9.3 Two vectors in R™ are defined to be orthogonal if their dot product
vanishes. Two non-zero vectors are orthogonality iff they form an angle /2. The dot
product can be expressed in terms of the Kronecker delta symbol, which is a useful
tool for calculating with indices. A basis of R™ is called orthonormal if it consists of
pairwise orthogonal unit vectors.

9.3.1 Definition of orthogonality

Two vectors v,w € R™ are called orthogonal or perpendicular, also written as v 1 w,
if v-w = 0. This definition means that every vector is orthogonal to the zero vector
but, more importantly, for two non-zero vectors v,w € R" the angle formula (9.12)
for the dot product implies that
m

viw & <(v,w) = 5 (9.13)
Our definition makes sense: two non-zero vectors are orthogonal if and only if they
form an angle /2.

Problem 9.5 (Orthogonality)

Are the vectors v = (1,3,—-1,2)T and w = (0,1/2,1,—1/4)T orthogonal? Find a vector
orthogonal to r = (3,2)%.
Solution: Since v-w =1-0+4+3-(1/2) + (-1) -1+ 2-(—1/4) = 0 the vectors are indeed
orthogonal.

A vector perpendicular to r can be obtained by exchanging its two components and

multiplying one of them with —1, leading, for example, to s = (—2,3). Indeed, r - s =
3-(-2)+2-3=0.

The notion of orthogonality is a very useful tool for geometry, as the following example
illustrates.
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Example 9.1 (Projections along a vector)

Consider a unit vector n € R™ and define a map py, : R” — R"™ by py(w) = (n- w)n.
Comparison with Fig. 9.2 (setting v = n in the figure) shows that p,(w) should be
thought of as the projection of w in the direction of n. It is clear that p, is a linear
map, due to the linearity of the scalar product. Moreover, using linearly of p, and
n-n =1, it follows that

Pu(pn(W)) = pn((n-w)n) = (n- w)pa(n) = (n-w) (n-njn = (n-w)n = py(w) .

This means that p, o p, = pn, a property characteristic for projectors: applying the
projection a second time does not have an effect. Using the above projection we can

wh =

|

|

|

:

|

nwl = (n-w)n

Fig. 9.3 Decomposing a vector w into a component wl along a unit vector n and a compo-
nent wt orthogonal to n.

show that every vector w € R™ can be written as a unique sum w = wll + w,
where wl is a multiple of the vector n and w is orthogonal to n. Indeed, if we write

wll = an, then the scalar « is determined by

n-w=n-(an+wh)=a,

and, hence, wl = (n-w)n = py(w) is uniquely fixed. This fixes w' uniquely to
wo =w — wl and since
n-wt :n~(w—w”):n-w—(n~w)(n-n):0

it is indeed orthogonal to wl. In summary, for every vector w € R" we have the unique
decomposition

1

Lowlh=paw)=m-win, wt=w-wl=w—(n-w)n (9.14)

w:w“—|—w

into a component wl along the unit vector n and a component w orthogonal to n.
This is illustrated in Fig. 9.3. O

9.3.2 The Kronecker delta symbol

The vector space R™ has a canonical basis of standard unit vectors (eq,...,e,). Recall,
that the i*" component of e; equals one, while all other components are zero. This
implies that all standard unit vectors have length one, |e;] = 1, and that they are
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mutually orthogonal, e;-e; = 0 for ¢ # j. These two properties are often written more
concisely as
1fori=j

ei-ej:(iij where 5ij:{0f01‘i7éj

(9.15)
The symbol 6;; is called the Kronecker delta symbol. Its value depends on the value
of its two indices and is equal to 1 if the indices are equal and 0 if they are not.

The Kronecker delta is a very useful tool for calculations with indices. At the most
basic level it acts as an ’index replacer’, meaning that

6ij'Uj = V; (916)

for a vector v with components v;. In Eq. (9.16) we have used the Einstein summation
convention: the index j appears twice in the term on the left and is, hence, summed over
(a ’summation index’) while the index i labels different components of the equation (a
'free index’). Given these conventions it is easy to argue that Eq. (9.16) is correct. The
only term from the sum over j which contributes is the one for j = ¢ (since ¢;; = 0 for
i # j), giving v;.

Another useful property of the Kronecker delta is

6ii =n. (917)

Here, the index ¢ appears twice so it is summed over. It runs over the values i =
1,...,n, each of which contributes 1 to the sum, for a total of n.
The dot product can also be expressed in terms of the Kronecker delta as

V- -W = 0;W; = (5ijviwj y (918)
where the second equality follows from Eq. (9.16).

9.3.3 Orthonormal basis
Orthogonality and linear independence relate in an interesting way.

Proposition 9.3 Non-zero vectors vy, ..., v € R™ which are pairwise orthogonal, so
vi-v; =0 for all i # j, are linearly independent.

Proof Consider the equation ;v =0. For linear independence, we need to show
that it is only solved if all a; = 0. If we take the dot product of this equation with
v; we find, given that v; -v; = 0 for j # i, that |v;|*>; = 0. Dividing this by |v;|?
(which is non-zero since the vectors v; are non-zero) we have a; = 0. This holds for
all i =1,...,n, so linear independence follows. O

This result can be paraphrased by saying that 'orthogonality implies linear indepen-
dence’ and it motivates defining the concept of a basis consisting of mutually orthog-
onal (unit) vectors.

Definition 9.1 A basis (€1, ..., €,) of R" is called an orthonormal basis if €;-€; = &;;
foralli,j=1,...,n.
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Orthonormal bases have considerably nicer properties than general bases. For example,
it is easy to compute the coordinates of a vector relative to an orthonormal basis since

v:Zajej &S ;=€ V. (9.19)
j=1

This follows simply by taking the dot product of the equation on the left with €; which
gives

n n
€, -V = E Q; € - €5 = E ajéij:ai.
j=1 j=1

By virtue of Eq. (9.15) the standard unit vectors form an ortho-normal basis of R™
and the coordinates of a vector v relative to this basis are the components e; - v = v;.
But there are other, less simple orthonormal bases, as the following exercise shows.

Problem 9.6 (Orthonormal basis)

Find an orthonormal basis (1, €2) of R? which is different from the standard unit vector
basis. Find the coordinates of a vector v = (vl,vg)T relative to this basis, first by explicitly
solving the equations, similar to Exercise 7.5, and then by using Eq. (22.15).

Solution: A possible choice for an orthonormal basis (€1, €2) on R? is

5 e

Indeed, |e1]| = |e2] =1 and €1 - €2 = 0.
We start with the pedestrian way to find the coordinates. Writing an arbitrary vector as
v = (v, vg)T = a1€1 + az€2 and inserting (€1, €2) from above gives

U1\ L a1 + a2

V2 - \/Q a1 — Qg '
Splitting up into the two components, v1 = (a1 + ag)/ﬁ and v = (a1 — ag)\/i, and solving
for ; then leads to the desired result, a1 = (v1 + v2)/v2 and a2 = (v1 — v2)/+/2, for the

coordinates.
On the other hand, we can use Eq. (22.15) to find the same result

wmene (1) ()= Lo
e (1) () - e

somewhat more directly and efficiently.

Orthonormal bases are of great importance for vector spaces with scalar products and
we will return to the subject in Chapter 22.
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Application 9.1 (Projections and graphical representation)

In Example 9.1 we have seen how to project a vector v € R® into the direction of a unit
vector n € R®. We would like to use this method to graphically represent three-dimensional
objects, defined by a set of vectors in R3. One way to tackle this problem is to define a
linear map P : R® — R? whose images provide the points which need to be plotted in two
dimensions.

We start by introducing spherical polar coordinates (r,0,¢), where r € [0,00), 6 € [0, 7]
and ¢ € [0,27), such that any vector x € R can be written as

x = r(sin 6 cos ¢, sin 0 cos @, cos 0) . (9.20)
Associated to these coordinates we introduce the three vectors

e, = (sinf cos , sin 0 cos @, cos 0)
ey = (cos 0 cos @, cos O sin @, —sin )T (9.21)
e, = (—sing,cos p,0)T

which are easily checked to form an ortho-normal basis of R? for any value of # and . The
geometrical interpretation of these vectors and of the angles 6 and ¢ is indicated in the
figure below.

e, W

€9

The angle 6 = <(xw, e3) is the angle x forms with the z-axis and the angle p = <(w,e1) is
the angle between the x-axis and the projection w of x onto the x—y plane.

For our purposes we would like to think of e, as the ’direction of viewing’ which can be
adjusted by changing the angles 0 and ¢. To obtain two-dimensional vectors we use the
coordinates of a vector v in the directions ey and e,, so we define the map P as

Po,(v)=(v-esv-e,)" . (9.22)
Let us apply this to the simple example of a tetrahedron with the four vertices
vi=(L11)", vo=(1,-1,-1)", vs=(-1,1,-1)", vi=(-1,-1,1)",
and edges l;; connecting v; and v; given by l;; = {v; + t(v; — vi) | ,1]}. The result

telo
of drawing the line segments Py ,(l;;) for values (0,¢) = (7/9,7/6) + k(m,7)/18, where
k=0,...,5, is shown in the figure below.

QLI
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Exercises

(f=challenging)

9.1

9.2

9.3

9.4

9.5
9.6

9.7

9.8

Length, dot product, and angle

Find the lengths of the following vec-

tors and the dot products and the

(cosines of the) angles between them.

(a’) v = (17_1)T7 u = (251)T7 w o=
T

(_37 1)

(b) v. = (1,0,1)T, u = (1,2,-1)
w=(3,1,-2)T

c)v=(1,1,1,1)", u=(1,-1,1,-1),

For vectors v = (1,—1,2)" and u =
(1,1,1)7 find the scalar multiple cu for
which the ’distance’ |v — ou| is mini-
mal.

Find a vector of the form w =
(1,a,8)F, where o, 3 € R, which is
orthogonal to v = (1,3,0)” and u =
(=1,2,—1).

For two non-zero vectors v,w € R",
show that <(v,w) = = if and only if
w = av for a < 0.

For z,¢ € C, show that R(2¢) < |z|[¢].

Triangle inequality’

(a) For vectors v,w € R" show that
v —w|>|lv]—|wl]].

(b) For vectors vi,...,vy € R", show
that [vi+ -+ vi| < |vi|+ -+ Vil
Index notation

(a) Convert the expressions v - w, |v|?,
(v-w)(u-x), and (v-w)u — v into
index notation.

(b) Convert the expressions §;;v;wj,
ViWiu; U T, and v;0;50 5wy into vector
notation.

Orthonormal basis

(a) Show that (e1,€2,€3) with €1 =

(1,1,007 /v/2, €2 = (1,-1,1)" //2 and

9.9

9.10

9.11

es = (1,-1, —2 V6 is an ortho-
normal bas1s of R Find the coor-
dinates of the vector v = (5,—4,2)7
relative to this basis.

(b) Show the R? vectors
e = (1,1,1,D7T/2 and e =
(1,1,-1,-1)T/2 are ortho-normal.

Find two further vectors es,es such
that (e1, €2, €3€4) is an ortho-normal
basis of R*. Find the coordinates of a
general vector v = (1}1,1}2,1}3,1}4)T S
R* relative to this basis.

Projectors from ortho-normal vectors
Let vi,...,vi € R™ be a set of ortho-
normal vectors. Show that the map
p : R® — R" defined by p(v) =
SF L (v-vi)v; is linear and that it sat-
isfies the projector condition pop = p.

Polar coordinates'

In R? with vectors x = ze; + yes in-
troduce polar coordinates r € [0, 00)
and ¢ € [0,27) by ¢ = rcosp and
y = rsinp.

(a) With e, := (cosy,sing)” and
e, = (—sing,cosp)”, show that
(er,e,) is an ortho-normal basis of R.
Write the vector x as a linear combi-
nation of this basis.

(b) Assume that z, y, r, and ¢ are func-
tions of ¢ and work out the ¢ derivatives
of e, e,, and x.

(c) Solve the simultaneous differential
equations £ = —by, y = bz, (where the
dot denotes the ¢ derivative) using po-
lar coordinates. Interpret the resulting
solution.

Projections and graphics'
Apply the discussion in Application 9.1
to a cube in R”.
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Vector and triple product

We have seen that two vectors in R™ are, by definition, orthogonal if their dot product
vanishes. Orthogonality is easy to check for any given two vectors since the dot product
can be readily carried out. But how can we find a vector orthogonal to another, given
vector or to a list of vectors? Trying to answer this question in three dimensions leads
to the vector or cross product in R3.

Before we tackle the three-dimensional case, we start with vectors in R2. In this case,
finding a vector perpendicular to a given one is rather simple but the discussion will
provide guidance for how to deal with the three-dimensional case. In three dimensions,
the cross product allows us to compute a vector which is perpendicular to two given
vectors. We will see how the cross product can be elegantly expressed in index notation,
using the Levi-Civita symbol, and how vector identities with cross and dot product
can be efficiently derived with index techniques.

The triple product in R? is formed by combining the cross and dot products. It is, in
fact, nothing but the three-dimensional determinant, so this is a good opportunity to
get used to determinants, before we develop their general theory in Chapter 18.

10.1 The cross product

Summary 10.1 The cross product x : R? x R? — R3 is an anti-symmetric, bi-
linear map which produces orthogonal vectors. The cross product can be expressed
in term of the Levi-Civita symbol which is an efficient tool for index calculations.
Geometrically, the cross product gives a vector orthogonal to both of its arguments
whose length equals the area of the parallelogram defined by the arguments.

10.1.1 Orthogonality in two dimensions

Suppose we would like to construct a linear map R? — R? which maps vectors v
into orthogonal vectors v* with the same length. Since the standard unit vectors are
mutually orthogonal a reasonable starting point is to demand that e} = —es and
e, = ej. These conditions together with linearity already fix the map. To see this
consider an arbitrary vector v = v1e; + vgses and use linearity.

X
V>< = (U181+U262)X = UleT —f—?}ge; = —1}162+U2€1 = <U1> = < v2> (101)
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(We have already encountered this method to generate an orthogonal vector in Exer-
cise 9.5.) We can verify that v* is indeed orthogonal to v by calculating

Vv = (vieg +vzeg) - (—vi€p +v2€1) = vivg —v1v2 =0,

where we have used bi-linearity of the dot product and Eq. (9.15). It is also easily
checked that all vectors orthogonal to v are multiples of v*, that the map x preserves
the length, so |[v*| = |v|, and that (v*)* = —v (see Exercise 10.7).

From Section 1.2.4 we know that a linear map between two-dimensional coordinate
vector can be described by a 2 x 2 matrix which we can find by acting on the stan-
dard unit vectors. Since e; = —ey and e, = e; comparison with the results from
Section 1.2.4 shows that this matrix is given by

o Lfor (1,§) = (1.2)
€= ( ) = ;=< —1for(i,j) =(2,1) . (10.2)
~10 ;
0 otherwise

With this notation, the perpendicular vector can be computed from
(VX)Z’ = €i;Vj , (103)

where a sum over j is implied by the Einstein convention. The two-index object €;; is
called the Levi-Civita symbol in two dimensions (also see Exercise 10.6).

10.1.2 Definition of cross product in R3

In three dimensions it makes sense to ask for a (bi-) linear map which assigns to two
vectors a third which is orthogonal to either. This map x : R? x R3 — R3 is called the
cross product or vector product and is written as (v, w) — v X w. Apart from linearity
in each of its two arguments we would like the cross product to be anti-symmetric,
that is, v X w = —w X v, so that the orthogonal vector points into the opposite
direction when the order of the arguments is changed. Finally, given that the standard
unit vectors are mutually orthogonal it makes sense to demand that the cross product
of two standard unit vectors gives the third. Altogether this motivates the following
definition.

Definition 10.1 (Cross product) A map x : R2 xR3 — R3 is called a cross product if
is satisfied the following conditions for all vectors v, w,u € R? and all scalars o, B € R.

(C1) vw=—-wXV (anti-symmetry)
(C2) vx(wWH+u)=vxw+vxu (linearity)

v X (aw) = a(v x W)
(C3) e xey=e3, e Xe3=eq, €3 X e =e (orthogonality)

While (C2) demands linearity in the second argument it is clear, by combining (C2)
with (C1), that the cross product is also linear in the first argument and, hence, that
it is bi-linear. This means that R?® with the cross product forms an algebra, in the
sense of Def. 6.4. Anti-symmetry implies that v x v. = —v X v, so the cross product
of any vector with itself vanishes, that is,

vxv=0 foralveR?. (10.4)
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10.1.3 Existence and uniqueness of the cross product

Def. 10.1 fixes the cross product uniquely. To see this, we start with two vectors
v = E?:1 vie; and w = Z?:1 wje; and use bi-linearity of the cross product to get

V X W

3 3 3
Z Z (C2) Z
vie; | X w;e; = viw;e; X €;
i=1 j=1

ij=1

= (Ugwg — U3w2>el + (’Ug’LUl — ’U1w3)62 + (U1w2 — Ug’wl)e?, (105)

In the last step, we have removed the terms proportional to e; X e;, as they vanish from
Eq. (10.4), and have worked out the remaining terms proportional to e; x e; using
the rules (C3) together with anti-symmetry (C1) (so that, for example, e; X es = e3
and e; X €1 = —ej3). To summarize, the unique expression for the cross product which
follows from Def. 10.1 is given by

U1 1 VW3 — V3Wa2
VXW= | Uz 2 | = | vsw1 —viws | . (10.6)
U3 3 V1W2 — V2w

It is not hard to verify that this expression does indeed satisfy all the axioms in
Def. 10.1 and that the vector product is orthogonal to its two arguments. We defer
this for now and will come back to it in a moment once we have introduced more
efficient notation.

The formula (10.6) is easy to remember. The third component of the cross product is
computed by ignoring the third entries of v and w and by multiplying the remaining
entries as indicated by the thick lines. The first and second component are obtained
analogously, with multiplications indicated by the thin lines.

Problem 10.1 (Cross product)
Work out the cross product of the vectors v = (2,4,3)” and w = (—2,1,5).

Solution: Using Eq. (10.6), and multiplying as indicated by the lines in this equation, the
cross product is

2 -2 4.5-3-1 17
vxw=|4]|x 1]1=(3-(-2)—-2-5|=1|-16
3 5 2.1-14-(-2) 10

10.1.4 The Levi-Civita symbol in R?

While Eq. (10.6) is convenient for working out the cross product of explicit numerical
vectors, as in the previous problem, it becomes quite cumbersome when the vectors
contain symbolic entries and when multiple products are involved. A more efficient
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way of writing the cross product is facilitated by the Levi-Cicita symbol €;;;, in three
dimensions, a generalization of the two-dimensional Levi-Civita symbol (10.2). It is
defined by

+1if (4,7, k) = (1,2,3),(2,3,1),(3,1,2) (cyclic permutations)
ek = —1if (4,5,k) =(2,1,3),(3,2,1),(1,3,2) (anti-cyclic permutations) (10.7)
0 otherwise (two same indices)

Using this symbol, the cross product can be written as
(V X W)z = €KV W (108)

generalizing the two-dimensional formula (10.3). We recall that the summation con-
vention is assumed and implies a summation over the indices j and k on the right-hand
side of Eq. (10.8). To check that this expression is correct work out its first component

(V X W)1 = €1230V2W3 + €132V3W92 = VW3 — V3W2 , (109)

and note that this does indeed coincide with the first entry in Eq. (10.6). Similarly, one
can verify that the second and third components are correctly reproduced. A low-key
way of thinking about the Levi-Civita symbol is as a convenient short-hand for the
factors of +1 and 0 which appear in the cross product. To work with the Levi-Civita
symbol efficiently we need to understand its properties, which are collected in the
following proposition.

Proposition 10.1 The Levi-Civita symbol (10.7) has the following properties:

(LC1) It remains unchanged under cyclic index permutation, for example €k = €jk;.
(LC2) It changes sign under anti-cyclic index permutation, for example €, = —€;k;.
(LC8) It vanishes if two indices coincide, for example €;5; = 0.

(LCY) €ijk€itm = 0i0km — OjmOki-

(LC5) €ijk€ijm = 26km'

(LCﬁ) €ijk€ijk = 6.

(LC7) €ijrvjvp = 0 for any vector v € R3.

Proof (LC1), (LC2), (LC3) These properties follow directly from the definition of
the Levi-Civita symbol.

(LC4) This can be reasoned out as follows. If the index pair (j, k) is different from
(I,m) (in any order) then clearly both sides of (LC4) are zero. On the other hand,
if the two index pairs equal each other they can do so in the same or the opposite
ordering and these two possibilities correspond to the two terms on the right-hand
side of (LC4).

(LC5) If we multiply (LC4) by d,;, using the index replacing property (9.16) of the
Kronecker delta, we obtain

€ijk€ijm = (010km — OjmOk1)0ji = 30km — Okm = 20km

and this is the desired result.
(LC6) Further, multiplying (LC5) with dk,, we have
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€ijk€ijk = 20kmOkm = 20k, =6 .

(LC7) From (LC2) we have €;,v;Ux = —€5;VkV; = —€;j,V;Vk, Where the summation
indices j and k£ have been swapped in the last step, and, hence, 2¢;;,v;v, = 0. O

10.1.5 Properties of the cross product

With these techniques available it is now quite easy to verify that the cross product,
as defined by Eq. (10.1) or Eq. (10.8), does indeed satisfy the axioms in Def. 10.1. The
property (C3) is easily checked by explicit computation, applying the formula (10.6)
to the standard unit vectors. Axioms (C1) and (C2) are verified by

(LC2) (108) (

(10.8)
(V X W)l = € jkVjWE = €jjpkWEV; =  —€ikjWEV; w X V)i

(10.8)
(vx (wWHu) = €;r0j(W+u)p = €10 (Wi + k) = €550 Wk + €55V Uk

(10.8) (vxw)+ (vxu)

(v X (aw)) (128 €ijkV; (W), = @ €5,V Wk 129 v xw

Note that all the quantities in indexed expressions are numbers so we can calculate
using the standard rules in a field. The cross product is indeed orthogonal to its two
arguments since

v (vXw) = v (V X W); (129 €5LViV; W SEEiN) , (10.10)

and similarly for w- (v x w). There are a few more complicated relations which involve
double cross products and combinations of cross and dot products, which can be very
useful for explicit computations.

Proposition 10.2 The dot and cross product in R? satisfy the following relations for
all vectors a,b,c,d € R3.

(a) ax (bxc)=(a-c)b—(a-b)c
(b) (axb)-(cxd)=(a-c)(b-d)—(a-d)(b-c) (Lagrange identity)
(c)laxb*=la’|b|* —(a-b)’
Proof Some of these proofs are very tedious when carried out in vector notation,
using Eq. (10.6) to evaluate the cross product. Index notation is much more efficient.
(a) Using the symmetry properties of the Levi-Civita symbol, in particular (LC1), and
the identity (LC4), we have
(a X (b X C))z = €ijkQ; (b X C)k = Eijkamnajmen = ekijekmnajbmcn
= (5”,75]” — 5in,5jm)ajbmcn = ajcjbi — ajbjc,;
=a-cb,—a-beg=(a-c)b—(a-b)c);.
(b) Proving the Lagrange identity from (LC4) is even easier.
(a X b) . (C X d) = eijkeimnajbkcmdn = (5jm6kn — 5jn5km)ajbkcmdn
=(a-c)(b-d)—(a-d)(b-c)
(¢) This identity follows by setting ¢ = a and d = b in the Lagrange identity. a
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The cross product of any vector with itself vanishes (Eq. (10.4)) and the following
Corollary is a generalization of this statement.

Corollary 10.1 Vectorsv,w € R3 are multiples of each other if and only if vxw = 0.

Proof ’=’: This is the easier direction. Assume that v and w are multiples of each
other, for example w = av. Then v x w = v x (av) = av x v = 0, where we have
used linearity of the cross product and, in the final step, Eq. (10.4).

"<’ Now assume that v x w = 0. Using Prop. 10.2 (c) this implies 0 = |v x w|? =
|v]?|w|? — (v-w)? and, hence, that v and w satisfy Cauchy—Schwarz with an equality.
From Theorem 9.7 this means that v and w are multiples of each other. O

We can now show that we can always construct an R? basis of mutually orthogonal
vectors, starting from a given non-zero vector.

Corollary 10.2 For any non-zero vector wi € R3 there exists a basis (W1, Wa, W3)
of R? of mutually orthogonal vectors.

Proof We need to construct two further vectors which are orthogonal to w; (and to
each other). Since w; is non-zero it has at least one non-zero component, say wi; # 0.
Hence, w; and eg are not multiples of each other, so from Cor. 10.1, wy := W1 X e3
is non-zero. If we further define ws = w; x wa then the vectors (wi,ws, ws) are
mutually orthogonal and, hence, from Prop. 9.3 they are linearly independent. Since
we are in a three-dimensional space, they must form a basis. O

Of course we can normalize the vectors w; in the above corollary to unit length to
obtain an orthonormal basis.

10.1.6 Geometrical interpretation of the cross product

For a geometrical interpretation we first recall that the cross product is orthogonal to
both its arguments. In order to find an interpretation for its length we use Prop. 10.2
(c¢) which leads to

el = (i — v = vl (1 (G )
= Iv| [w] sin(<(v, w)) (10.11)

This formula together with Fig. 10.1 implies that the length |v x w| of the cross
product equals the area of the parallelogram, that is
Par(v,w) :={av + fw|q, 8 € [0,1]}, Area(Par(v,w)) = |[vxw|. (10.12)

While this statement is intuitively clear, a formal proof requires defining the notion
of area first. This is really part of another subject, called measure theory, which will
not be covered here. However, we can sharpen the argument somewhat if we accept
two plausible properties of the area:

(i) Area(Par(v,w)) =|v||w| ifv L w;
(ii) Area(Par(v,w)) = Area(Par(v,w + av)) Vv,wcR3 VacR.

The first statement is simply the formula for the area of a rectangle, the second one
says that the area is invariant under a shear. (An example of this is the parallelogram
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Fig. 10.1 Geometrical interpretation of the length of the cross product |v x w| which equals
the area of the parallelogram defined by v and w.

and the dashed rectangle in Fig. 10.1 which are related by a shear and have the same
area.) For v,w € R3, we can define w = w + av with a = —(v - w)/|v|?, so that
w’ L v. Then the area formula (10.12) can be shown as follows:

(1
|

vxw|=|vx(w —av 24 v x w/|

D 1) jw| © Area(Par(v, w')) © Area(Par(v, w)) .

Problem 10.2 (Parallelogram area from the cross product)

Work out the cross product of a = (1,-2,0)T and b = (3,0, —1)7. Verify that a x b is
perpendicular to a and b and calculate the area of the parallelogram Par(a, b).

Solution: From Eq. (10.6), the cross product is:

1 3 2
ci=axb=|[ -2 | x o]l=(1]. (10.13)
0 -1 6

It follows immediately that c-a=1-24(—2)-1=0and c-b=2-3+4(—1)-6 =0, so that
the cross product a x b is indeed perpendicular to a and b. Using Eq. (10.12), the area of the
parallelogram defined by a and b is given by Par(a,b) = |axb| = /22 + 12 + 62 = v/41. The
area of the triangle defined by a and b is half the area of the parallelogram, that is v/41/2
for the example.

Application 10.1 Kinetic energy of a rotating rigid body

We would like to discuss an application of some of the above identities and index techniques
in the context of classical mechanics. Specifically, the task is to work out a formula for the
kinetic energy of a rigid body which rotates around the origin O, as in the figure below.

To avoid having to carry out integrals we will think of the rigid body as consisting of (a
possibly large number of) mass points, labelled by an index «, each with mass m., position
vector r, and velocity v,. The total kinetic energy of this body is of course obtained by
summing over the kinetic energy of all mass points, that is, Fxin = % Za mavi.



112 Vector and triple product

Since the body is rigid, the velocities of the mass points are not independent but are related
to their positions by vo = w X rq, where w is the angular velocity of the body. (The length
|w| is the angular speed and the direction of w indicates the axis of rotation.) The kinetic
energy of the rotating body can then be written as

1 1 1
Evin = gza:mavi = Eza:ma | w X ra \2: iza:maﬂ w |2| ra \2 —(w-ra)g)

1 1
5 D Ma(wiw;di; | ra [* —wiraiwsra;) = Swi > ma(l ta [? 6ij — rairas) | wi ,
«@

@

=:I;;

where we have used Prop. (10.2) (c) in the third step.

The object in the square bracket, denoted by I;;, is called the moment of inertia tensor, a
characteristic quantity of the rigid body. It plays a role in rotational motion analogous to
that of regular mass in linear motion. In terms of the moment of inertia tensor, the total
kinetic energy of the rigid body can be written as

ll'jwiwj 5 (10.14)

Ekin = 2 7

This relation is of fundamental importance for the mechanics of rigid bodies, in particular
the motion of tops. (For more on the mechanics of rigid bodies see, for example, Goldstein
2013; Landau and Lifshitz 1982.)

10.2 The triple product

Summary 10.2 The triple product is a map R3xR3xR3 — R obtained by combining
the cross and dot products. It is identical to the three-dimensional determinant. Three
vectors in R® form a basis if and only if their triple product is non-vanishing. The
absolute value of the triple product equals the volume of the parallelepiped defined by
its arguments.

10.2.1 Definition of triple product

The dot and cross products in R3 can be combined to a new product, the triple product
or determinant, a map det : R? x R? x R3 — R defined by
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det(a,b,c) :=a- (b x ¢) = €;ra;bjcy . (10.15)

The index expression on the right-hand side follows from a - (b x ¢) = a;(b X ¢); =
€;kaibjck. The determinant of a 3 x 3 matrix A = (a, b, c) with columns a, b and
c is defined as det(A) = det(a,b,c). The basic properties of the determinant are
summarized in the following proposition.

Proposition 10.3 The determinant (10.15) satisfies the following properties.

(T1) 1t is linear in each of its three arguments, for example det(ca + fb,c,d) =
adet(a,c,d) + S det(b,c,d) and analogously for the second and third argument.

(T2) Exchanging two arguments flips the sign, for example det(a, b, c) = —det(b, a, c).
(T3) det(er,ea,e3) = 1.
Proof (T1) This property follows directly from Eq. (10.15) and the bi-linearity of

the dot and cross product. We can also proceed more explicitly and use the index
version expression in Eq. (10.15):

det(aa+ fb, c,d) = €, (aa; + Bb;)c;d, = aejraic;bi + Beijrbicidy
= adet(a,c,d) + S det(b,c,d) .

The proofs for the second and third argument work complete analogously.

(T2) This is a direct consequence of the symmetry properties (LC1) and (LC2) of the
Levi-Civita symbol in Lemma 10.1. For example,

det(a, b, c) = €;ra;bjcy = —€jibjac = —det(b, a, c) .
(T3) From Def. 10.1 (C3) and Eq. (10.15) we have
det(ej,ez,e3) =€ -(e2 Xxe3) =e;-e; =1.

O

This proposition can be summarized by saying that the determinant is multi-linear
(T1), that is it totally anti-symmetric (T2) and that it is normalized to one (T3). We
note that (T2) implies that any determinant with two same arguments vanishes, for
example

det(a,a,b) =0. (10.16)

In Chapter 18 we will discuss the determinant more generally and in arbitrary dimen-
sions and we will use precisely those properties for its axiomatic definition. For now,
we focus on the three-dimensions case.

10.2.2 Calculation of the determinant

One way to calculate three-dimensional determinants is to carry out the cross and dot
product from definition (10.15). Alternatively, we can write out the six terms which
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appear on the right-hand side of Eq. (10.15) explicitly by using the definition (10.7)
of the Levi-Civita symbol. This leads to
) /b/;/-l
l; _ | +aibacs + asbzer + azbico
5 =

—a1b302 - a2b103 — a3b201

det(a, b, c) = det

(10.17)
We have arranged the components of the three vectors into a 3 x 3 matrix and have
repeated the first and second column after the vertical bar on the right in order to
simplify notation. The components encircled by solid lines are each multiplied together
to form the first three terms with a positive sign in Eq. (10.17) while the components
encircled by dashed lines lead to the last three terms, with a negative sign.

Problem 10.3 (Calculating the three-dimensional determinant)

Calculate the determinant det(a,b,c) = a- (b x c) for the three vectors a = (—1,2, —3)7,
b=(-2,51)7, and c = (4,—6,3)".

Solution: One method is to first work out the cross product between b and ¢ and then dot
the result with a:

(9 () -(4 () (8)
bxc=| 5|x|[-6]=[10] = a(bxe=| 2| [ 10]=23.
1 3 -8 -3 -8

Alternatively and equivalently, we can use the rule (10.17) which gives

det(a, b, c) = det

W N =
= Ot N

4
=6 | =(-1)+5:3+4 (-2)-(=6) - (-
3)  — (-1 (-6)-1-(-2)-2-

=—-15-36+8—-6+4+12460=23.

3)4+4-2-1
3—4.5.(=3)

The determinant has many more properties and applications which we will explore in
more depth later. For now, we prove the following criterion for a basis of R3.

Theorem 10.1 (vy,va,Vv3) is a basis of R? iff det(vy,va,v3) # 0.

Proof ’'=': If (vi,vga,v3) is a basis of R? then the standard unit vectors can be
written as e; = a;;v; (sum over j implied) for some a;; € R. Using linearity of the
determinant we find

1 =det(e1, e2,e3) = det (a1;V;, @ap Vi, az1Vy) = ajagpas det(vy, v, vi) ,  (10.18)

where sums over j,k,l are implied. If any two of the indices (i,7,k) are the same
then det(v;, vk, v;) = 0. Hence, only terms with {j, k,{} = {1,2,3} contribute to the
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sum on the right. Due to the anti-symmetry of the determinant each of these terms is
proportional to det(vy, ve, v3), so if this determinant is zero then so is the right-hand
side of Eq. (10.18). This is of course a contradiction and, hence, det(vy, va, vs) # 0.

'«<=": We proof this indirectly so assume that (vi,va,v3) is not a basis. This means the
vector are not linearly independent and one of them, say vs, can be written as a linear
combination of the other two, vz = a3 vi + asvs. From linearity of the determinant it
follows that

det(Vl,V27V3) = det(Vl,Vg, a1vy + O[QVQ)
= aydet(vy, va, vi) + asdet(vy, va, va) 12.4) 0.
O

The above theorem allows us to derive an explicit formula for the coordinates relative
to a basis (v1, va,v3) of R3. Write an arbitrary vector v € R? as a linear combination
VvV = a1V] + asvy + azvs. Forming the dot product of this expression with the cross
product vo x vz (and remembering that both vo and vz are orthogonal to the cross
product) gives the formula det(v, va, v3) = a; det(vy, va, v3). Since det(vy, va, v3) # 0
from the theorem we can divide and obtain a formula for a;;. The other two coordinates
are obtained analogously (by dotting with vs x vy for as and v; X vs for as). As a
result, a vector v = a1vi + asvy + a3vs has the coordinates

_det(v,va,v3) _det(vy,v,v3) _det(vy,va, V)

= = = 10.19
det(vl,VQ,Vg) ’ 2 det(vl,Vg,Vg) ’ 3 det(Vl,V27V3) ’ ( )

aq
relative to the basis (vq,va, v3).

Problem 10.4 (Coordinates relative to a basis in R?)

Find the coordinates of a general vector v = (2, v, z)” relative to the basis (v1, vz, v3), where
vi=(1,1,00", va = (1,0,—1)7, and v3 = (0,1,2)".

Solution: We can use the 'pedestrian’ methods and write down the equation

T a1 + a2
v=| Yy | =a1vi +a2vy + a3vy = a1 + a3
z —ag + 203

Splitting up into components and solving the resulting three equations, * = a1 + a2, y =
a1+ az and z = —a2 + 2as for x,y, z, gives the coordinates

ap=—z+2y—2z, ax=2r—-2y+z, az=r—y-+z.
Alternatively, we can use the formulae (10.19). First, since det(vi,va,v3) = —1, we can
conclude from Theorem 10.1 that (v1,vz2,v3) is indeed a basis of R3. For the determinants
in the numerators of (10.19) we find

det(v,ve,v3) =x —2y+2z, det(v,vs,vi)=—-2c+2y—z, det(v,vi,vo)=—-z+y—=z.

Dividing by det(v1,v2,v3) = —1 then leads to the same results for the coordinates.
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10.2.3 Interpretation of the triple product

We have argued earlier that the length of the cross product equals the area of the
parallelogram defined by its two arguments. We would expect the (absolute value of
the) triple product is equal to the volume of the parallelepiped (see Fig. 10.2)

3
Par(vy, vy, va) = {Z a;v; | oy €10, 1]} , (10.20)
i=1

that is,
Vol(Par(vy,va,vs)) = |det(vi, va, va)| . (10.21)

To see this we can use arguments similar to the ones we have used for the cross
product, based on invariance under shears. We assume (i) the volume formula of a

,,,,,,,,,,,,

vy = aef

Fig. 10.2 Cuboid with edges (a1e1, aze2, ases), sheared to a parallelepiped with the same
volume.

cuboid, so that, for mutually orthogonal vector v;, we have Vol(Par(vq,va,vs3)) =
[v1]|vz||vs| and (ii) the invariance of the volume under shear, so that, for example,
Vol(Par(vy,va,v3)) = Vol(Par(vy,va,vs + avy)) (and similar for the other argu-
ments). If we start with mutually orthogonal vectors v; = «e;, proportional to the
standard unit vectors, which form a cuboid we have

|det(vyi,va,v3)| = |a1] |as] as| = Vol(Par(vy, va, vs)) ,
where we have used multi-linearity of the determinant in the first step. The key ob-
servation is that the determinant is invariant under shears as well since, for example

18.1
det(vy, va, vy + avy) = det(vy, va, vs) + adet(vy, va, vy) (&1 det(vy,va,vs) .

Every parallelepiped can be obtained from a cuboid by shears. Given that the values of
the determinant and the volume agree for cuboids and both quantities are unchanged
under shears the argument is complete.

Problem 10.5 (Volume of a parallelepiped from the triple product)
Find the volume of the parallelepiped defined by the vectors vi = (1,1,0)7, va = (1,0, -1)7,
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and vz = (0,1,2)7.
Solution: A quick calculation shows that det(vi,va,v3) = —1, so Vol(Par(vi, va,vs)) = 1.
l
Exercises

(f=challenging)

10.1

10.2

10.3

10.4

10.5

(a) For a = (2,-3,1)T, b =
(1,0,-5)7, and ¢ = (—1,1,2)”, com-
pute the cross products a x b, a x ¢
and b x ¢ and the triple product
a- (b xc).

(b) Work out the determinants of the
matrices

10 -2 1 0-1

5 1 ¢

A=(03-1),B=| 3 7 1
1

22 -5 0-1-1

For vectors a, b, ¢ € R?, show the fol-

lowing:
(a) ax b =a—b implies that a =b;
(b) ¢ = Aa+ b implies that (a x b) -
c=0;
(¢c) (axb)x(cxb)=b[b-(axc)];
(d) If c = a+b then [axb| = |bxc| =
lc x al.

Show that the cross product is not as-
sociative.

Use index notation to re-write the fol-
lowing expressions in a simpler form.
(a) a-(bx (axc))

(b) ax (b x (c x a))

For two linearly independent vectors
u,w € R, define the lines U =
Span(u) and W = Span(w) and se-
lect non-zero vectors u’ € U and
w’ € W, such that u’ — w’ is a mul-
tiple of u — w.

10.6

10.7

10.8

10.9

10.10

(a) Show that [u'|/|u| = |w'|/|w].
(b) Show that [u' — w'|/|[u — w| =
|/ ful.

Two-dimensional Levi-Civita symbol
For the two-dimensional Levi-Civita
symbol €;; show the following identi-
ties:

(a) €15 = —€ji, € = 0;

(b) €ij€r = 0irdj1 — dadj;

(c) eijen = 15

(d) €ij€ij = 2.

For a,b € R? use index notation to
show that:

(a) (@) = —a;

(b) a* -b* =a-b;
(¢)a*-b=—a-b*.

For which values of a,b € R is
(V1,V2,V3), with vi = (1,

ve = (0,3,—1)7 and v3 = (1
not a basis of R3?

Reciprocal vectors'

Consider a basis (v1, va, v3) of R? and
the triple product V := vi - (va X v3).
Define the reciprocal vectors v by

Vi = V2 X v3, vh = £v3 X v1 and
v = %vl X va. Show that

(a) vi - vj = dij3

(b) (v, vh,v4) is a basis of R,

(c) the coordinates of w € R relative
to the basis (vi,va,vs) are given by
w - Vi

(d) V' =1/V, where V' := v} - (v§ x
v3);

(€) 15 Vh X Vi = V1, g7V X V] = Vo
and 7V} X V5 = V.

Reciprocal vectors and linear equa-
tions

(a) For a basis (vi,va,vs) of R? and
x € R? consider the equations

V1~X:b17 VQ-X:bQ7 V3'X:l737
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10.11

where b; € R. Show that these equa-
tions have a unique solution for x and
find this solution in terms of recipro-
cal vectors.

(b) Find the reciprocal vectors for
vi= (11,17, vo = (2,0,—-1)7, and
vy =(-2,1,1)T. For by =2, by = -3,
and b3 = 1, find the solution to the
system of equations in (a). Check your
results.

(a) For two linearly independent vec-
tors wi, w2 € R®, and ws = wi X wa

10.12

show that (w1, w2, ws) is a basis of
R3.

(b) For a two-dimensional vector sub-
space W C R® show that there
are precisely two unit length vectors
which are orthogonal to all vectors in
w.

Angular momentum of a rigid body'
Following the approach in Applica-
tion 10.1, compute the total angular
momentum of a rigid body in terms
of the moment of inertia tensor.



11
Lines and planes

In this chapter we discuss some aspects of elementary geometry in R™, focusing on
the dimensions n = 2,3. These topics are not really part of linear algebra but of a
related area of mathematics called affine geometry which we cannot possibly do justice
to in our brief account (see, for example, Bennett 2011). However, what we do cover
should be enough to appreciate the geometrical ideas underlying and motivating linear
algebra and help the reader as we move forward with the formal development of the
subject in the next part. Of course, geometrical applications of linear algebra are also
important in science and need to be covered for this reason alone.

Affine geometry usually starts by thinking about R™ in two roles, as a space of points —
the affine space — and as a vector space, with vectors acting on points by translation.
We will refrain from making this distinction as it would add little substance to our
discussion. Instead, we work with R™ as a vector space and think of vectors and points
as being identified. By the distance between two vectors v,w € R™, we simply mean
the length |v — w].

Our main objects of interest are affine k-planes in R™, that is, subsets p+W C R",
where p € R" is a vector and W is a k-dimensional vector subspace of R". In this
chapter, we will focus on the cases of lines (k = 1) and planes (k = 2) in two and three
dimensions. As we will see, the dot and cross products are very useful tools for dealing
with those objects. A more general discussion of affine k-planes is most easily carried
out once we have developed the theory of linear systems and is, hence, postponed until
Chapter 17.

In the next section, we begin with the simplest case of lines in R? and their properties.
They can be described in parametric or Cartesian form. In Section 11.2 we generalize
this discussion to lines and planes in R3.

11.1 Lines in R2

Summary 11.1 All lines in R? can be described in parametric and in Cartesian
form. The intersection of two lines in R? is described by a system of two linear
equations in two variables.

11.1.1 Parametric and Cartesian form

Lines in R? are subsets of the form L = p + W, where p € R and W is a one-
dimensional vector subspace of R2. They can be explicitly described in parametric or
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Cartesian form.

Theorem 11.1 The following sets are lines in R2.
(i) L,={p+tw|teR} withp,weR?, w+#0 (parametric form)
(ii)) Le={xe€R?’|n-x=0b} withneR?> beR, n#0 (Cartesian form)
Every line can be written in the form (i) or (i). Ifn L w andb=mn-p then L, = L..

Proof First, we show the equality, L, = L., under the stated conditions.

L, C L. Start with an element x = p + tw € L,. Multiply this equation with n
(keeping in mind that n- w = 0) leads to n- x = n - p = b which shows that x € L.

L. C Ly: Conversely, consider an element x € L. which, by definition, satisfies n-x = b.
Given that b = n - p, this equation can be re-written as n- (x — p) = 0. Every vector
x — p can be represented as a linear combination x — p = an + tw (since (n,w), as
two non-zero orthogonal vectors, form a basis of R?). From 0 = n - (x — p) = a/n|? we
conclude that o = 0 and, hence, x = p +tw € L,,.

It is clear that every line p + W can be written in parametric form by choosing a
non-zero vector w € R? such that W = Span(w). Conversely, every parametric form
defines a line by setting W = Span(w).

To complete the proof, we show that every line in parametric form can be converted
into Cartesian form and vice versa. To see the former, start with vectors p, w defining
a parametric line L,. Setting n = w* (so that n L w) and b = p - n defines a line in
Cartesian form with L, = L.. If we start with the Cartesian line L., specified by n
and b, then setting w = n* and choosing p to be any solution of n - p = b, we get a
parametric line L, with L, = L. O

The geometric interpretation of the various vectors which enter the parametric and
Cartesian form is indicated in Fig. 11.1. For the parametric form, x(t) = p + tw, the

R2

Fig. 11.1 Line in R? with parametric form x(t) = p + tw and Cartesian form n - x = b.

vector p is a vector ’to the line’ and the vector w a vector ’along the line’. For the
Cartesian form, n - x = b, the vector n is a vector orthogonal to the line while |b|/|n]|
is the minimal distance of the line from the origin. To verify the last statement, write
the parametric form of a line as

In| x| cos<t(n,x) =b. (11.1)

The value of |x| is minimal when | cos <((n, w)| takes its maximal value which is, of
course, |cos<((n,w)| = 1. It follows that the minimal value of |x| is indeed |b|/|n]|.
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We should stress that neither the parametric nor the Cartesian form of a line is unique,
that is, one and the same line can be described by different equations of this form.
For example, in the parametric form we can use instead of w any non-zero multiple
Bw or, instead of p any other vector p + aw to the line. For the Cartesian form,
using an and ab instead of n and b describes the same line. Theorem 11.1 indicates
a method to convert a line in parametric form to Cartesian form and vice versa. It is
worth practising this by looking at examples.

Problem 11.1 (Converting a line from parametric into Cartesian form)

- (1) (1)

of a line into Cartesian form. Find the minimal distance of the line from the origin.

Solution: With p = (1,2)7, w = (1,-3)7, and x = (z,y)” we have n = w* = (3,1)7 and
b= n-p = 5. Hence, the Cartesian form of the line is

Convert the parametric form

(?)-x=5 or 3x+y=>5.

It minimal distance from the origin is |b|/|n| = 5/v/32 + 12 = /5/2.

Problem 11.2 (Converting a line from Cartesian into parametric form)
A line in Cartesian form is given by 2x — 5y = 7. Find its parametric from.

Solution: We can write this equation as n-x = b with n = (2, -5)7, x = (z,y)", and b = 7.
A vector w along the line is found by w = n* = (5, 2)T. To find a vector p to the line we can
use any solution to the Cartesian equation, for example, p = (1,—1). Hence, a parametric

form of the line is
x(t) = (_i) +t (g) .

11.1.2 Intersection of two lines

The intersection of two lines in R? can be discussed using either parametric or Carte-
sian forms. We opt for the latter and write the equations for the two lines as

Li={xeR?|n; - x=0}, Ly={x€R?|ny x =b},
with intersection
LiNLy={xcR*In; - x=b Any-x=by}.
Evidently, the intersection Ly N Lo is determined by the solution to two simultaneous

linear equations in two variables. With n; = (n11,n12)7, ny = (n21,n92)7, and x =
(2,%)T these can also be written as
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nnT + Ny = by, N212 + Mooy = ba |

or, in matrix-vector form, as Nx = b, where NV is a 2 x 2 matrix with entries n;; and
b = (by,b2)T. This example illustrates how the geometry of lines (and planes, as we
will see) is related to systems of linear equations.

We already know from the introduction that there are several possibilities for the
solutions to a system of two linear equations in two variables. The solution can be
unique, but we can also have an entire line of solutions or there may be no solution at
all, depending on the coefficients in the linear equations. In geometrical terms, these
three cases correspond to the two lines intersecting in a point, being identical and
being parallel (see Fig. 11.2).

Yy Yy Yy
Ly Li=1L, Ly
@ @ T
Ly Ly

Fig. 11.2 Two lines in R? can intersect in a point, in a line or do not intersect at all.

Problem 11.3 (Intersection of two lines)

Find the intersection of the two lines in Cartesian form with equations

e (e

for all possible values of the parameters a,b € R.

Solution: For x = (z,y)” the linear system which corresponds to the intersection of these
two lines is

r+ay =1
2‘%73?;:,)} =  (2a+3)y=2-0b, (11.2)

where the result on the right follows by subtracting the second equation from twice the first.
We have to distinguish the following cases.
(1) a # —3/2: We can divide by 2a + 3 and find the unique solution

ab+ 3 2—b

T o%+3 YT out3e

This is the unique intersection point of the two lines.

(2a) a = —3/2 and b = 2: The equation on the right in (11.2) is trivial or, equivalently, the
two linear equations become multiples of each other. This means the two lines are identical
so that the intersection consists of the entire line with Cartesian form 2z — 3y = 2.

(2b) @ = —3/2 and b # 2: The equation on the right in (11.2) leads to a contradiction so
there is no solution. This corresponds to the two lines being parallel (but not identical).
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11.2 Lines and planes in R3

Summary 11.2 Line and planes in R? can be described in parametric or Cartesian
form. Formulae for minimal distances, such as between lines and points or planes and
points, can be derived using cross and dot products. The intersection of two (three)
planes is described by a system of two (three) linear equations in three variables.

Next, we discuss lines and planes in R3, their intersections and other related properties.

11.2.1 Parametric and Cartesian form for planes

Planes are sets of the form P = p+ W C R3, where p € R? and W C R3 is a
two-dimensional vector subspace.

Theorem 11.2 The following sets are planes in R3.
(i)  Pp={p+tiwi+tawa|t1,t2 ER}
with p € R3 and w1, wy € R3 linearly independent (parametric form)
(ii)) P.={x€R®|n-x=0b} withn € R> nonzero, b € R (Cartesian form)

Every plane can be written as in (i) or (i). If n L wi,wy and b= p-n then P, = P..

Proof Asin theorem 11.1, we begin by showing P, = P. under the stated conditions.

P, C P,: For a vector x = p+t;wy +tawy € P, take the dot product with n, keeping
in mind that n-w; =n-wy =0. Thisleads ton-x=mn-p =5, so that x € P..

P, C P,: Start with a vector x € P,, so that n-x = b or, equivalently, n-(x—p) = 0. To
solve this last equation we first note that (n, wy, ws) forms a basis of R®. This means
we can write every vector x—p as a linear combination x—p = an+t;w; +tsws. From
0=n-(x—p)=aln|? it follows that & = 0 and, hence, x = p + t1wy + taws € P,
Every plane p + W can be written in parametric form by choosing a basis (w1, wa)
of W. Conversely, a parametric form with wi, wy defines a plane by setting W =
Span(wy, wa).

Every plane in parametric form can be converted into Cartesian form. Start with
vectors p, Wi, Wa, specifying a parametric plane P,. Settingn = w; xwg and b=p-n
defines a Cartesian plane P, with P. = P,.

On the other hand, for a Cartesian plane P., specified by n and p, we can find, from
Cor. 10.2, mutually orthogonal vectors (n, w;,ws). Then, wi, wo together with any
solution of p of n-p = b defines a parametric plane P, with P, = F.. O

In the parametric form, p is a vector 'to the plane’ while w; and wy are vectors
"along the plane’. For the Cartesian form, n is a vector orthogonal to every vector in
the plane and |b|/|n| is the minimal distance of the plane from the origin. (The last
statement follows from Eq. (11.1) in the same way as for lines in R2.) The geometrical
interpretation of the various vectors is illustrated in Fig. 11.3. Just as for lines, the
parametric and Cartesian forms of planes are not unique — different choices of vectors
can describe the same plane. For example, in the parametric from we can choose any
basis (w1, ws) for the two-dimensional subspace W.
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n ]RB
p + Span(wq, ws)
W2
| 74%
18l
n[1/ P
O

Fig. 11.83 Plane with parametric form x(t1,t2) = p + t1w1 + tawz and Cartesian form
n-x==b.

The method for converting between the parametric and Cartesian form of a plane,
implicit in the proof of Theorem 11.2, is worth practising.

Problem 11.4 (Converting a plane from parametric to Cartesian form)

Convert the plane with parametric form

—1 2 1
X(tl,tg) = 2 +t 0]+t -2
-1 3 0

into Cartesian form. Find the minimal distance of the plane from the origin.

Solution: With p = (—1,2,—1)7, w1 = (2,0,3)7, and w2 = (1, -2,0)” we have

2 1 6
n=w; xwe=|0] x| -=2]= 3], b=n-p=4.
3 0 —4
Hence, with x = (z,v, 2)7, a Cartesian form of the pane is
6
3] -x=4 or 6r+3y—4z=4.
—4

The minimal distance from the origin is |b|/|n| = 4/4/62% + 32 + (—4)2 = 4//61.

Problem 11.5 (Converting a plane from Cartesian into parametric form)
Convert the plane with Cartesian form 2z — 3y 4+ z = 5 into parametric form.

Solution: With n = (2,-3,1)7, x = (z,y,2)7, and b = 5 the plane can be written in the
Cartesian standard form n - x = b. As a vector p ’to the plane’ we can use any vector which
satisfies n - p = b; for example, p = (1,—1,0)”. To get two vectors wi, wo ’in the plane’
we need two linearly independent solutions to n - x = 0; for example, w; = (3,2,0)T and
wa = (0,1,3)7. Hence, a parametric form of the plane is
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1 3 0
X(tl,tz) =p+tiwi + towa = -1 + t1 2 + to 1
0 0 3

11.2.2 Parametric and Cartesian form for lines

Lines in R3 are subsets of the form p + W, where p € R? and W C R? is a one-
dimensional vector subspace.

Theorem 11.3 A following sets are lines in R3.
(i) L,={p+tw|teR} withp,weR>andw #0 (parametric form)
(ii)) L.={x€R®|n;-x=by, ng-x=by}
with ny,ny linearly independent, by, by € R (Cartesian form)

All lines in R3 can be written in the form (i) and (i). If (w,n1, ng) is a basis of
mutually orthogonal vectors and by =ny - p, by =ny - p then L, = L..

Proof We begin by showing the equality of the two sets.

L, C L,: Start with x = p+tw € L,. Multiplying this equation with n; and ny gives
n;-x=mn; -p=>b; for i =1,2 and, therefore, x € L..

L. C L,: A vector x € L, satisfies n; - x = b; or, equivalently, n; - (x — p) = 0 for
i =1,2. We can write the vector x —p as a linear combination of the basis (w,n, ns),
S0 X—p = tw+ain; +asny. It follows that 0 = n; - (x—p) = n; - (tw+ayn; + asny) =
a;|n;|? and, hence, a; = 0 for i = 1,2. Therefore, x = p + tw € L,.

Clearly, every line p + W can be written in parametric form by choosing a vector w
with W = Span(w); conversely, every parametric form given a line with W = Span(w).

Given a parametric line L, specified by vectors p, w, Cor. 10.2 tells us we can find
mutually orthogonal vectors (w,n;, ny). Then nj,ny along with b = n; - p and
b = ny - p define a Cartesian line L. with L, = L,,.

Conversely, let L. be a Cartesian line specified by ni, ny and by, by. Define w = n; xns.
We can always find a solution p to the equations n; - p = b; and ns - p = by. Then w
and p define a parametric line L, with L, = L. O

The interpretation of the various vectors in the theorem is illustrated in Fig. 11.4.
The vector p is a vector ’to the line’, the vector w is ’along the line’ and n;, ny are
orthogonal to it. The two Cartesian equations for a line, nj - x = b; and ns - x = by,
can also be written as a linear system Nx = b with two equations and three variables,
where N is the matrix with entries n;; and b = (b, bg)T. From this point of view, the
line is the solution space of the linear system. This is another illustration of the close
relation between affine k-planes and linear systems.

Note that a plane in R3 requires two parameters for its parametric form and one
equation for its Cartesian form. For a line in R? this is reversed and we need one
parameter and two equations. This suggests that, more generally, an affine k-plane in
R™ needs k parameters for its parametric form and n — k equations for its Cartesian
form. We will show this in Section 17.3.
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RS

Fig. 11.4 Line in R?® with parametric form x(t) = p + tw and Cartesian form n; - x = b;,
i=1,2.

As before, we should practice converting between parametric and Cartesian form.

Problem 11.6 (Converting a line from parametric to Cartesian form)

Convert the line in parametric form given by

1 -2
x(t) = 0]+t 1
-1 -1

into Cartesian form.

Solution: With p = (1,0, —1)” and w = (2,1, —1)” we can construct the two orthogonal
vectors asm; = w x e3 = (1,2,0)7 and no = n; x w = (—2,1,5)7. Since by =n; -p =1 and

by = ny - p = —7 the two equations of the Cartesian form (using x = (z,y,2)") read
1 —2
21 -x=1, 1| x=-7 or r+2y=1, —2x+y+5dz=-T.
0 5

Problem 11.7 (Converting a line from Cartesian to parametric form)

Convert the line in Cartesian form specified by the equations t—y+3z =8 and 2z+y—2z = 2
into parametric form.

Solution: Since n; = (1, —1,3)7 and na = (2,1, —1)7 are the two vectors orthogonal to the
line, w = n1 X ny = (—2,7, S)T is ’along the line’. A vector p ’to the line’ is obtained by
finding a solution to the two equations, for example p = (2,0, 2)T. Hence, a parametric form

2 —2
xt)=p+tw=1|0 ]| +¢ 7
2 3

11.2.3 Minimal distances

As an application of some of the techniques based on dot and cross products let us
determine some minimal distances, starting with the minimal distance of a line in R?
from a given point.
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Proposition 11.1 Let L = {p +tw |t € R} C R? be a line in parametric form and
po € R3. The minimal distance of po from the line arises at tmi, = —d-w/|w|?, where
d = p — po. The minimal distance is given by dpin = |d X w|/|w].

Proof We simply work out the distance square d?(t) := |x(t) — po|? of an arbitrary
point x(t) = p + tw on the line from the point pg. This leads to

d-wl?
(0= 4+ owl? = WP+ 2(dw) e+ = [lwle+ S 4 al -
w
This is minimal when the expression inside the square bracket vanishes which happens
for t =ty = —d-w/|w|2. This proves the first part of the claim. For the second part
we simply compute the distance at t.,;, which gives

(d-w)?
wi?

1 (10.2)(c) |d x w/|?
B 1= i) = g (17w — (@ wy?) 210 [TXWE

min ‘W|2

Problem 11.8 (Minimal distance of a line from a point)

Find the minimal distance of the line x(t) = p+tw from the point po, where p = (2, —1,4)7,
w = (3,-5,2)T and po = (1,1,1)7.

Solution: Using the notation and results from the previous proposition we have

1 1 3 11
d=p-po=|-2|, dxw=|-2|x|-5]|=|T7]|. (11.3)
3 3 2 1
Hence, |d x w| = 3v/19 and |w| = /38 s0 that dmin = |d x W|/|w| = 3/v/2.

For the minimal distance of a plane from a point, we have the following statement:

Proposition 11.2 A plane is described in Cartesian form by n-x = b and in para-
metric form by x(t1,t2) = p + t1w1 + tawa. The minimal distance of the plane from
po € R3 is given by

g = |b=m-po| _ |d-(wix W)l

, d=p-—po- 11.4
n| [wi X Wy 0 (11.4)

Proof Start with the Cartesian form n-x = b and subtract n-py, so that n-(x—pg) =
b —n - pg or, equivalently
[n||x — po|cos<t(n,x —pg) =b—n-po .

The value of |x — pg| is maximal when the (absolute) value of the cosine is 1, so that
dmin = |b — n - po|/|n|. This proves the first part of Eq. (11.4). For the second part,
simple insert the relations n = w; X wo and b = p - n. O
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Problem 11.9 (Minimal distance of a point from a plane)
Find the minimal distance of the plane 2 — 2y + z = 4 from po = (1,0, 1)7.

Solution: The plane is given in Cartesian form, n-x = b, with n = (1,—-2,1) and b = 4.
Inserting n - po = 2, |n| = V6 and b = 4 into the formula (11.4) gives dmin = \/2/3.

11.2.4 Intersection of two planes
Consider two planes in Cartesian form
P={xcR®n; -x=0b}, Py ={xcR®| ny -x=by},
and their intersection
L=PNP={xcR®n -x=0b Any-x=0by}.

If the two vectors n; and ns are linearly independent then L is a line, written down
in Cartesian form, as comparison with Theorem 11.3 shows. If n; and ny are linearly
dependent, n, = an; for a non-zero a € R, then the equations for the two planes turn
into ny -x = by and ny - x = by /a. If by = b/« the two planes are identical and their
intersection is the entire plane, so L = P; = P5. On the other hand, if b; # by/a, then
the planes are parallel and the intersection is empty, L = {} (see Fig. 11.5).

P =P P Py

Py

Fig. 11.5 Two planes in R? can intersect in a line, in a plane or have an empty intersection.

Problem 11.10 (Intersection of two planes)

Find the intersection of the two planes —z — y + z = 2 and ax — 2y + 2z = b for all values of
the parameters a,b € R. If the intersection is a line find its parametric form.

Solution: We have n; = (—1,-1,1)", by =2 and ns = (a, —2,2), b2 = b.
(1) a # —2: In this case n; and ny are linearly independent and the intersection must be a

line. With w = n; xnz = (0,24a,2+a)” and a special solution p = (b—4, —b—2a,0)T /(2+a)
to the two equations the parametric form of the intersection line is

40 0
x(t) = 20+b | +t| 1
2+CL 0 1

(2a) a = —2 and b # 4: In this case the two planes are parallel so the intersection is empty.
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(2b) a = —2 and b = 4: The two planes are identical.

11.2.5 Intersection of line and plane

The intersection of a line and a plane in R? is easiest discussed with the line in
parametric and the plane in Cartesian form, that is

L={p+tw|teR}, P={xcR® n-x=0}.

By inserting the parametrization of the line into the equation for the plane we find for
the intersection
LNnP={p+tw|(n-w)t=b—n-p}.

If n-w # 0 then we can solve for ¢t =t = (b —n-p)/(n-w) and the intersection
consists of a single point, L N P = {p + tow}. On the other hand, if n - w = 0 and
b # n - p there is no solution for ¢, so the intersection is empty, L N P = {}. For
n-w=0and b=n-p every t € R is a solution so that L " P = L — the line is a
subset of the plane (see Fig. 11.6).

R3 R3 R3
P
L
L
L

Fig. 11.6 A line and a plane in R® can intersect in a point, in a line or have an empty

intersection.

Problem 11.11 (Intersection of line and plane)

Find the intersection of the plane with Cartesian equation 2x — 5y + z = 7 with the line in
parametric form given by

0 2
x(t)y=1 -2 | +¢ 1
3 —1

Solution: With x = (z,v, z)T, we can split the parametric form of the line into its compo-
nents, z(t) = 2t, y(t) = —2 4+ ¢ and 2(t) = 3 — ¢, and insert these into the equation for the
plane. This gives

4t —-5(-24+t)+3—-t=7 = t=3.

Hence, the intersection point is x(3) = (6,1,0)”. As a check, we note that this point does
indeed satisfy the equation for the plane.
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11.2.6 Intersection of three planes

Suppose that we are interested in the intersection P; N Py N Ps of the three planes in
R3 in Cartesian form:

Pi={xcR?|n;-x=0b}, where i=1,2,3.

This intersection is clearly the same as the solution to the system of the three linear
equations in three variables given by n; - x = b; for i = 1,2,3, another example of
the close relationship between the geometry of affine k-planes and linear systems. Of
course, the intersection can be found by solving the linear system explicitly. However,
the qualitatively different cases which can arise can be easily reasoned out from what
we have discussed so far.

Start by considering the intersection P; N Py of the first two planes. This intersection
may be a line, a plane or it may be empty. If L = P; N P, is a line then the triple
intersection P; N P, NP3 = L N P3 can be a point, a line or be empty. This already
covers all the cases but one, which is the case P, = P, = P3, so that the intersection
is a plane. These four cases are illustrated in Fig. 11.7.

Fig. 11.7 Three planes in R® can intersect in a point, a line, a plane or have an empty inter-
section.

Problem 11.12 (Intersection of three planes)

Find the intersection of the three planes with Cartesian equations x—y+3z = 5, 2e—2y+2 =0
and x 4+ 3y — 8z = 1.

Solution: Just add suitable multiples of the three equations to eliminate variables but do so
in an organized manner (labelling equations helps!).

(F1) | z—y+32=5

2(E1) — (E2) 10z = 5 z= 2
(F2) 2z —2y+2=0 a B _ B
(E3) o+ 3y —82 = 1 (E2) —2(E3) |-8y+ 172 = -2 y=19/2
Inserting the results for z and y into, say, the first equation gives x = 7/2, so that the

intersection point is (z,y,z) = (7/2,9/2,2).



Lines and planes in R® 131

Application 11.1 The perceptron — a simple artificial neural networks

Artificial neural networks are motivated by the structure of the human brain and they
play an important role in modern computing. Many of the operating principles of artificial
neural networks can be formulated and understood in terms of linear algebra. Here, we
would like to introduce one of the basic building blocks of artificial neural networks — the
perceptron.

The structure of the perceptron is schematically illustrated in the figure below.

" z€eR
R'ox—3 2=w-x—b y=o0(z) >y ER

The perceptron receives an input vector x = (z1,... 7:Un)T € R™ which it converts into a
real output y € R in two steps. In the first step, it transforms x as

X—z=w-Xx—b, (11.5)

where w € R is called the weight vector of the perceptron and b € R is called the bias. The
weight vector and the bias represent the internal state of the perceptron and, for now, we
think of them as given quantities. In the second step, the output z from the first step is
transformed as

z—=y=o(z). (11.6)

Here, o is called the activation function and there are several possible choices for this
function. A common choice which we adopt here is called the logistic sigmoid function:

1

o(z) = Trep(=2) |

(11.7)

Its graph is shown in the figure below.

z

Clearly, the logistic sigmoid has two asymptotes, namely o(z) — 0 for z — —oo and
o(z) — 1 for z — oco. Its presence makes the overall action of the perceptron non-linear.

Given this set-up, the functioning of the perceptron can be phrased in geometrical terms.
To do this, consider the hyperplane in R™ (which is a line for n = 2 and a plane for n = 3)
in Cartesian form

w-x=5b, (11.8)

which is determined by the weight vector w and the bias b of the perceptron. If a point
x € R" is ’above’ this hyperplane, so that z = w - x — b > 0, then, from Egs. (11.5), (11.6)
and the asymptotic behaviour of the logistic sigmoid, the output of the perceptron is close
to 1. On the other hand, for a point x € R™ below this hyperplane, so that z = w-x—b < 0,
the perceptron’s output is close to 0. In other words, the purpose of the perceptron is to
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"decide’ whether a given input vector x is above or below the hyperplane (11.8).

So far this does not seem to hold much interest — all we have done is to re-formulate a
sequence of simple mathematical operations related to the Cartesian form of a (hyper)plane
in a different language. The point is that the internal state of the perceptron, that is the
choice of hyperplane specified by the weight vector w and the bias b, is not inserted ’by
hand’ but rather determined by a learning process. This works as follows. Imagine a certain
quantity, y, rapidly changes from 0 to 1 across a certain hyperplane in R" whose location is
not a priori known. Let us perform m measurements of y at locations x*, ..., x("™ ¢ R
resulting in measured values y(1>, . 7y(m> € {0,1}. These measurements can then be used
to train the perceptron. Starting from random values w® and b® of the weight vector and
the bias we can iteratively improve those values by carrying out the operations

wlotD = w® L@ —g)x@ | bt = p@ _ £y _y. (11.9)

Here, y is the output value produced by the perceptron given the input vector x(* and  is
a real value, typically chosen in the interval [0, 1], called the learning rate of the perceptron.
Evidently, if the value y produced by the perceptron differs from the true, measured value
y(®) | the weight vector and the bias of the perceptron are adjusted according to Egs. (11.9).
This training process continues until all measurements are used up and the final values
w = w(™D and b = (™D have been obtained. In this state the perceptron can then
be used to ’predict’ the value of y for new input vectors x. Essentially, the perceptron has
"learned’ about the location of the hyperplane via the training process and is now able to
decide whether a given point is located above or below.
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For a simple two-dimensional case, n = 2, this process is illustrated in the above figure. The
plot on the left shows the data points x(*), where filled dots have a value y‘® = 1 and open
dots y(*) = 0. After training the perceptron with this data set, using Eq. (11.9), the values
of weights and biases are w ~ (—2,1)” and b ~ 1/2. The resulting line, Eq. (11.8), is shown
in the plot on the right.

In the context of artificial neural networks, the perceptron corresponds to a single neuron.
More complicated neural networks can be constructed by combining several perceptrons
(and, frequently, other building blocks). The learning process for such larger networks is
similar to the one for the perceptron described above and it underlies many applications, for
example to pattern recognition. We will return to some aspects of this in Application 13.3.
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Exercises

Exercises

(f=challenging, tt=difficult, wide-ranging)

11.1

11.2

11.3

11.4

11.5

11.6

Consider two lines L; = {p; +tw; |t €
R} C R?, where i = 1,2, with p1 =
(1>b)T7 w1 = (_171)T7 P2 = (07_1)T
and we = (1,a)” and a,b € R. Find
the intersection L; N Lo for all values
of a,b.

In R3, write down the vector equation
of the line

(z—2)

-1 _(:-5)

4 3 2

and find the minimum distance of this
line from the origin.

For p1,p2 € R? or R® and p; # po
show that there is precisely one line L
with p1,p2 € L.

Show that two lines L; = {p;+tw; |t €
R} C R3, where ¢ = 1,2 and wi, ws
are linearly independent, have a non-
trivial intersection if and only if (p1 —
pz) . (Wl X WQ) =0.

Find the Cartesian equation for the
plane in R® which contains p; =
(277171)5 P2 = (372571)7 and pP3s =
(—1,3,2).

Find the Cartesian and parametric
form of the plane in R® which contains
p1 =3i+2j+k, p2=-i+3j—2k,
and ps = 2i + 2j + 2k.

11.7

11.8

11.9

In R3, find the intersection of the line
which contains 0 and p = (1,1,1)7
and the plane which contains p; =
(7171772)717 P2 = (1557 75)T7 and
P33 = (0, 2, —S)T.

Smallest distance of trajectories'

In R3, consider the equations xi(t) =
p1 + tw1 and x2(t) = p2 + twa, where
w1 and wg are linearly independent
and t € R.

(a) For which value of t is the distance
of x1(t) and x2(t) minimal and what is
this minimal distance?

(b) Consider two planes whose trajec-
tories are described by the above equa-
tions with p; = (10,10,0)7, wi =
(-1,-1,1)", p2 = (—10,-10,0)", and
wa = (1,1/2,1)T. For which time t are
the planes closest and what is their dis-
tance at this time? Do they collide?

The perceptron!’

Write code in your favourite program-
ming language which realizes the per-
ceptron in Application 11.1 and which
trains the perceptron from a given
data set using Eqgs. (11.9). For two-
dimensional cases, check that your re-
alization is capable of identifying the
separating line between the two sets of
points.






Part |V

Linear maps and matrices

After our interlude on geometry in the previous part, it is now time to come back to
the main narrative. We have already developed the main properties of vector spaces
— linear independence, basis, dimension — and now we need to have a closer look
at its morphisms, the linear maps. Analysing the morphisms of an algebraic structure
is often key to a deep understanding of a mathematical area and linear algebra is no
different in this regard.

In the next chapter, we cover the basics of linear maps: their existence and construc-
tion; the vector space Hom(V, W) of linear maps V' — W; composition of linear maps
and their inverse and the general linear group GL(V') of invertible linear maps V' — V.
We also present a number of interesting examples, including coordinate maps and dif-
ferential operators.

Earlier, we have encountered matrices in their role as constituents of vector spaces
(see Section 6.2.2). We also know from Section 1.2.4 that linear maps R? — R? can
be identified with 2 x 2 matrices with real entries. In Chapter 13 we will generalize
this statement and show that, thanks to the existence of the standard unit vector
basis, linear maps F™ — F™ can be identified with m x n matrices with entries in F.
This leaves us with an obvious task: the features of linear maps need to be translated
into the language of matrices. Indeed, this is how the main properties of matrices
emerge. As we will see, the action of a linear map on a vector turns into matrix-vector
multiplication, the composition of linear maps corresponds to matrix multiplication
and the map inverse becomes the matrix inverse. We will also introduce transposition
and Hermitian conjugation for matrices as well as the matrices invariant under these
operations, the symmetric and Hermitian matrices. These are basic and useful opera-
tions for matrices whose introduction cannot be deferred, although their mathematical
meaning will only become clear later, in the context of inner product vector spaces in
Chapter 23 and duality in Chapter 26.

In Chapter 14 we introduce and prove the central statement about the structure of
linear maps: the rank theorem'. There are two natural vector subspaces associated
to a linear map f : V. — W, namely the kernel, Ker(f) C V, which consists of all
vectors mapped to 0, and the image, Im(f) C W. The linear map’s domain is a vec-

n the literature this is often referred to as the rank-nullity theorem’. We will avoid this somewhat
cumbersome terminology.
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tor space with dimension dimg (V') but dimg(Ker(f)) dimensions are ’lost’ under the
action of f, since the entire kernel is mapped to the zero vector. This suggests that
dimp(V) — dimp(Ker(f)) dimensions are available for the image and this is precisely
the statement of the rank theorem.

Finally, in Chapter 15 we will see that all linear maps can be described by matrices,
just as all vectors can be described by coordinate vectors, once bases have been chosen.
Computing the matrix associated to a linear map is one of the key tasks in linear alge-
bra and it is of great importance in linear algebra applications. A prominent example
is the relation between Scrédinger’s formulation of quantum mechanics in terms of
differential operators and Heisenberg’s in terms of matrices (see Example 15.2). We
also need to understand how the matrix which describes a linear map changes under
a change of basis. In other words, we will derive the transformation law for matrices
under a change of the ’coordinate system’, another key aspect of linear algebra with
many applications.



12
Introduction to linear maps

This chapter begins with the theoretical foundations for the understanding of linear
maps. We show that linearity is a 'nice’ property in that is it preserved under basic
map operations, including addition and scalar multiplication of maps as well as map
composition and map inversion. This implies that the linear maps V. — W form a
vector space Hom(V, W), called the vector space of homomorphisms from V to W and
that the invertible linear maps V' — V form a group GL(V), called the general linear
group of V.

We finish the discussion with examples of linear maps. One of them are coordinate
maps which relate vectors to their coordinate vectors and are a very useful tool to
describe the relationship between linear maps and matrices. We also discuss linear
differential operators.

12.1 First properties of linear maps

Summary 12.1 Linear maps are the maps between wvector spaces which are con-
sistent with vector addition and scalar multiplication. Given a basis of the domain,
there exists a unique linear map for every choice of images for the basis vectors.
Addition and scalar multiplication of maps preserves linearity. This means that the
space Hom(V, W) of all linear maps V.— W forms a vector space of functions. Lin-
earity is preserved under map composition and under carrying out the inverse. As a
result, the set GL(V') of all invertible linear maps V. — V' forms a group, called the
general linear group of V. Invertible linear maps V. — W are called (vector space)
isomorphisms and two vector spaces related by an isomorphism are called isomorphic.

12.1.1 Reminder of definition

Let us recall from Def. 6.3 that linear maps f : V — W between two vector spaces V/
and W over the same field F are maps which are consistent with vector addition and
scalar multiplication, in the sense that

fvi+va) = f(vi) + f(v2) _
flav) = af(v) } & flaavi + aava) = af(vi) + aaf(ve) (12.1)

for all v,vi,vy € V and all a,a1,as € F. These linearity conditions can be combined
and generalized to arbitrary linear combinations, so that
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k k
f <Z am-) = aif(vi) (12.2)
=1 =1

for all v; € V and all a; € F. In other words, forming a linear combination and
applying a linear map are two operations which ’commute’.

Another simple but important property of linear maps is that they map the zero vector
of the domain vector space to the zero vector of the co-domain, so

f(0)=0. (12.3)

This is easily seen if we recall from Prop 6.1 (ii) that 0v = 0 for all v € V and, hence,
f(0) = f(00) = 0f(0) = 0.

We also note the simple fact that the restriction f|y of a linear map f: V — W
to a sub vector space U C V is also linear. Indeed, since f satisfies the linearity
conditions (12.1) for all vectors in V, they are also satisfied for vectors in U C V.

The identity map idy : V. — V (defined by idy(v) = v for all v € V) is a trivial
example of a linear map. Another, slightly more interesting example is the map f, :
V' — V which multiplies vectors with a fixed scalar a € F, so f,(v) = av. This map
is indeed linear (Exercise 12.1) but is still a rather special example of a linear maps.

12.1.2 Existence and construction of linear maps

The full scope of linear maps is described by the following theorem which also provides
us with a practical construction method.

Theorem 12.1 For two vector spaces V., W over the same field F, let (v1,...,vy) be
a basis of V. and w1, ..., w, € W arbitrary vectors. Then there exists a unique linear
map f:V — W with f(v;) =w,, fori=1,...,n.

Proof Existence: Since (v1,...,V,) is a basis of V every vector v € V can be written
as a linear combination v = Z?:l a;v; with unique coordinates «;. Let w; € W be
the intended images of the basis vector. Then we define the map f:V — W by

flv) = Z%’Wi for v= Z%‘Vz‘ . (12.4)
i=1 i=1
Clearly, f is well-defined and f(v;) = w;. It remains to be shown that f is linear. For

a second vector u= Y1, 3;v; we have

i=1 i=1

fv+u)=f (Z(ai + Bi)vz) = Z(ai +Bi)wi = Zaiwi +Zﬁivi = f(v)+ f(u)

which shows that the first Eq. (12.1) is satisfied. To check the second Eq. (12.1) we
start with a scalar oo € F and work out

flav)=f <z”: aaivi> = z”: QOLW; = azn:oziwi =af(v).
i=1 i=1 i=1

This completes the existence proof.
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Uniqueness: For a linear map f : V — W with f(v;) = w; and a linear combination
v =", a;v; it follows from generalized linearity (12.2) that

fv)=f (Z 04in'> = Zaif(vi) = Z%Wi .

Hence, f is already determined for all v € V' and is, therefore, unique. O

In short, we can construct a linear map by choosing a basis (vy, ..., Vv,) on the domain
vector space and by selecting an arbitrary image vector w; = f(v;) for each basis
vector. From Eq. (12.4), this fixes the linear map uniquely and clearly every linear
map (with a finite-dimensional domain vector space) can be obtained in this way. Let
us illustrate this result with a simple example.

Problem 12.1 (Constructing linear maps)
Construct the linear map f : R? — R? with f(e1) = wy and f(e2) = wa, where wi = (1, —2)7
and wo = (—3,6)7.

T

Solution: Simply write a general vector v = (v1,v2)” € R? as a linear combination v =

v1v1 + v2e2 and use linearity of f.

f(V) = f(mel + 1)262) = v1f(e1) =+ ’sz(ez) = V1W1 + VowWg = <—21'U1_—E%21)2) . (12.5)

12.1.3 Addition and scalar multiplication of linear maps

How does linearity relate to basic operations that can be performed with maps? We
begin with the addition and scalar multiplication of maps. We already know from
Section 6.2.3 that the space F(V, W) of all function f : V' — W between two vector
spaces V and W over F can be made into a vector space over the same field. Vector
addition and multiplication of functions are defined 'point-wise’,

(fHov)=f(v)+gw),  (af)(v)=af(v), (12.6)
where f,g € F(V,W), v € V and a € F (see Eq, (6.9)). Is the property of linearity
preserved under addition and scalar multiplication of functions?

Proposition 12.1 Let f,g: V — W be two linear maps between vector spaces V and
W over F and o € F a scalar. Then the sum f + g and the scalar multiple af, as
defined in Eq. (12.6), are linear.

Proof We need to check the linearity condition (12.1) for f + g and «f, given it is
satisfied for f and g.

12.6
(f +9)(a1vi + azvs) (120 flarvy + aova) + glaivy + azvs)

(2D 0 F(v1) + anf(va) + arg(vi) + ang(va)

= ai1(f(vi) +9(v1)) + az(f(va) + g(v2))
(12.6) ar(f +g)(vi) + a(f + g)(va)
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The proof for af works analogously and is left as Exercise 12.1. |

We can re-formulate this result more abstractly by saying that the set of linear maps f :
V — W forms a vector subspace of F(V, W) (see Def. 6.2). This vector space of linear
maps from V to W is also denoted by Hom(V, W), which stands for homomorphisms
from V to W. For the special case V = W, linear maps V — V are also called (vector
space) endomorphisms and the vector space of endomorphisms is denoted by End(V).

Theorem 12.2 The space Hom(V, W) of linear maps V. — W, with addition and
scalar multiplication as defined in Eq. (12.6), forms a vector spaces over the same field
as V and W. If V and W are finite-dimensional its dimension is given by

dimp(Hom(V, W)) = dimp(V) dimp(W) . (12.7)

Proof It remains to proof the dimension formula. We choose bases (v, ...,v,) and
(W1,...,Wy,) of V and W and define the linear maps f;; € Hom(V, W) fori=1,...,n
and j=1,...,m by
_Jwifork=1

fij(vi) = { 0 fork #i
We want to show that these linear maps form a basis of Hom(V, W). For linear indepen-
dence, start with the equation Zij Aijfij = 0 and act on the vector vy which results
in Zj Akjw; = 0. Since (w1,...,W,,) forms a basis, this implies that all A\x; = 0.
Hence, the f;; are linearly independent.

Next, consider the function f = 3_, . ai; fij, for a;; € F. Since f(vi) = >_; ar;jw;
and the w; are a basis, it follows that any image vectors f(vy) can be obtained for
suitable choices of the a;;. From Theorem 12.1 this means the f;; span Hom(V, W).
Since the number of these functions is nm, Eq. (12.7) follows. a

12.1.4 Map composition and inverse

Linearity is also preserved under map composition and inversion, as the following
proposition shows.

Proposition 12.2 Let f, f1,fo: V — W and g,91,92 : W — U be linear maps and
ay, a9 €T,

(i)  The composition go f : V — U is linear.

(i) go(arfi +azfa) =ai(go fi) +az(go f2).

(iti)  (a1g91 + asg) o f = ai(g1 o f) + az(gz 0 f).

(iv) If f=1: W — V exists it is linear.

Proof (i) All we need to do is check the linearity condition (12.1) for g o f given it
is satisfied for f and g.

(go f)lanvy + aova) = g(f(aavi + azva)) = glag f(vi) + az f(v2))
= a19(f(v1)) + a2g(f(va)) = a1 (go f)(v1) + az (go f)(v2) .

(ii) For v € V we have, from the definition of map composition and linearity, that
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(go(arfi +azf2))(v) = g((arfi + azf2)(v)) = glar f1(v) + aafa(V))
ai(go f1)(v) + az(go f2)(v) = (ai(g o f1) + az(g o f2))(v) .

(iii) This works exactly like the proof for part (ii).

(iv) Let f: V — W be an invertible linear maps with inverse f =% : W — V. Consider
two vectors w1, wy € W. Since f is surjective they can be written as wy = f(v1) and
wy = f(va) for two vectors vy, ve € V, so that vi = f~1(wy) and vo = f~1(wy). The
linearity condition (12.1) for =1 is verified by

S aawy 4+ aowa) = N (ea f(vi) + a2 f(va)) = f7H(fla1vi 4 a2va))

=Q1V] + Qavy = alf_l(wl) + 042f_1(W2) .
O

Not only does map composition preserve linearity, it is also a bi-linear operation, from
(ii) and (iii) of the proposition. In particular, this means that End(V') forms an algebra,
with map composition as multiplication, as comparison with Def. 6.4 shows. Since map
composition is associative and has a unit element, idy/, this is an associative algebra
with unit.

While map composition is associative it is, in general, not commutative. For two linear
maps f,g € End(V) we can introduce the commutator [f, g] := fog—go f, a linear
map in End(V') which vanishes (equals the zero map) if and only if f and g commute.
The commutator has a number of interesting properties. It is anti-symmetric, linear
in each of its arguments and it satisfies an equation referred to as Jacobi identity (see
Exercise 12.8).

12.1.5 Isomorphisms and general linear groups

Bijective linear maps are of particular importance since they can be used to identify
two vector spaces and this motivates introducing the following terminology.

Definition 12.1 A bijective linear map f :'V — W is called a vector space isomor-
phism, or isomorphism for short, from V to W. If such an isomorphism from 'V to W
exists then V- and W are called isomorphic, written as V=W,

Isomorphic vector spaces should be regarded as identical with regard to their vector
space structure. In other words, it does not matter in which of the two spaces cal-
culations are carried out — the isomorphism (and its inverse) can always be used
to translate to the other space in a way that is consistent with addition and scalar
multiplication.

Note that the notion of vector spaces being isomorphic is an equivalence relation. In-
deed, every vector space is isomorphic to itself, V' = V' (since the identity map idy is
linear and bijective), so the relation is reflexive. If V' = W then, by definition, there is
a bijective linear map f : V' — W and, from Prop. 12.2 (ii) we know that its inverse
f~': W — V is also linear. Therefore, V = W implies that W = V, so the relation
is symmetric. Finally, we need to show that it is also transitive. Consider three vector
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spaces V, W, U with V 2 W and W = U, so that there are bijective linear maps
f:V—>Wandg: W — U. Then, the map go f : V — U is linear from Prop. 12.2
(i) and bijective from Prop. 2.4, so that V 2 U. In conclusion, being isomorphic is an
equivalence relation. As a result, the vector spaces over a fixed field fall into disjoint
equivalence classes each of which consists of all vector spaces isomorphic to each other.
We will soon learn how to characterize these equivalence classes.

From Example 3.1 we know that the set of bijective maps V' — V on a vector space
V forms a group, Bij(V'). Recall that the group multiplication is composition of maps,
the group inverse is the inverse map and the group identity is the identity map. The
invertible linear maps V' — V are called (vector space) automorphisms and they form
a subset of Bij(V'), which is denoted by Aut(V). The interesting observation is that
Aut(V) forms a sub-group of Bij(V'), as can be verified by checking the conditions in
Def. 3.2. Indeed, Aut(V) contains the identity map and, from Prop. 12.2 it is closed
under map composition and under taking the map inverse. This sub-group is also
called the general linear group of V' and is sometimes denoted by GL(V') = Aut(V).

Theorem 12.3 The set Aut(V) = GL(V) of invertible linear maps V. — V forms a
group under map composition.

General linear groups are quite important. For example, they are a key ingredient in
the theory of linear group representations, a more advanced subject which studies the
interaction between groups and vector spaces (see, for example, Fulton and Harris
2013) and which has many applications in modern physics (see, for example, Cornwell
1997). General linear groups also have many interesting sub-groups some of which
arise and will be discussed in the context of scalar products (see Chapter 23).

12.2 Examples of linear maps

Summary 12.2 Coordinate maps F" — V map coordinate vectors relative to a basis
into the associated vectors. They are vector spaces isomorphisms which implies that
every n-dimensional vector space V' over F is isomorphic to F™. Linear differential
operators can be viewed as linear maps on suitable vector spaces of functions.

12.2.1 Coordinate maps

There is a simple but extremely useful way to formalize the relationship between
vectors and their coordinates relative to a basis. Consider a vector space V over F
with basis (v1,...,vy). From Theorem 12.1 we know there exists a unique linear map
@ F* =V with

ole;) =v; (12.8)

for all i = 1,...,n. It maps a coordinate vector & = (a, ..., ;)T € F" to

ola) = Z%‘Vi , (12.9)
i=1
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that is, to the associated vector. For this reason, ¢ is called a coordinate map. Since
the coordinates of a vector are unique, this map is injective and since (vq,...,v,)
spans V' it is surjective. Hence, coordinate maps are bijective. (This also follows from
Exercise 12.5.)

In conclusion, coordinate maps are vector space isomorphisms and their existence
shows that an n-dimensional vector space V over F is isomorphic to the coordinate
vector space F" over F, so V' 2 F". In this sense, we can think of any vector space with
a basis as a coordinate vector space. However, it is important to remember that this
identification of vectors with coordinate vectors is not ’canonical’ but depends on the
choice of basis. In other words, the same vector is represented by different coordinate
vectors for different choices of basis. Coordinate maps will be very useful later when
we examine the relationship between linear maps and matrices.

Problem 12.2 (Coordinate maps)

Find the coordinate map ¢ : R* — R? associated to the basis (vi,ve) of R? where vi =
(1,1)T and v = (1, -1)7.
Solution: We write an arbitrary vector w € R? as a linear combination w = a1v1 + asvs of

the basis. With a« = (a1, az2)T, the coordinate map associated to this basis is

(o %1 +Oé2)

pla) = arvs v = (02502

Problem 12.3 (Coordinate map for a polynomial vector space)

Show that (po, p1, pa,p3) with po(x) = 1, p1(z) = z, p2(z) = 32% — 1 and p3(z) = 52° — 3z is
a basis of P3(R) and find the coordinate map associated to this basis.

Solution: To show linear independence we consider the equation
3
0= Zaipi(x) = (a0 — a2) + (a1 — 3a3)x + 3a22” + Sazx®
i=0

Linear independence of the monomials (1, z, z2, :v3) implies that ap — a2 = 0, a1 — 3a3 =0,
3az = 0 and 5as = 0. It follows that all a; = 0 so the p; are linearly independent. Since
they are four polynomials in a four-dimensional space they must form a basis. The associated
coordinate map is

3
ola)(z) = Zaipi(x) = (ap — a2) + (a1 — 3a3)x + 3022” + 5aza®
i=0

12.2.2 Differential operators

We recall that C*°([a, b], R) is the vector space of (real-valued) infinitely many times dif-
ferentiable functions on the interval [a, b] C R. This is of course an infinite-dimensional
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vector space, so it is somewhat outside the main topic of this book. Nevertheless, lin-
ear maps on this and other function spaces are so important for many applications
that we have to mention them. An important class of such maps are linear differential
operators of order n which are of the form

k
L:Zmd% : € ([a, 8], R) = C*([a, ], R) (12.10)
k=0

where pi, € C*([a, b], R) are fixed functions. Differentiation is a linear operation since

dg dh

i(049+59)(96) = a— (@) + B () (12.11)

dx
for functions g, h € C*°([a, b], R) and all scalars «, 8 € R. Likewise, multiplication with
a fixed function p € C*([a, b],R) is linear since

(p(ag + Bh))(z) = ap(x)g(x) + Bp(x)h(x) = (a(pg) + B(ph))(x) - (12.12)

Since the differential operator L is built up from compositions and sums of differen-
tiations and multiplications with fixed functions we know from Props. 12.2 and 12.1
that it must be linear as well. Of course, we can also verify this explicitly.

" dkh
L(ag + Bh) = Zpkdkagwg—aZpkdkak - = aL(g) + BL(h)

All results for linear maps which do not assume finite dimensionality can be directly
applied to such linear differential operators.

Problem 12.4 (Playing with differential operators)

Define two linear maps D, X : C*([a,b]) — C*([a,b]) by D(g)(z) = ¢'(x) (single derivative
operator) and X (g)(z) = xg(g) (map which multiplies with z). Are these maps injective or
surjective? Do they commute?

Solution: The derivative operator D maps any constant function to the zero function so it
cannot be injective. On the other hand, every function h is an image h = Dg of a function g
(take g to be an indefinite integral of h) so that D is surjective.

As for X, Xg = Xh implies that xg(x) = zh(z) for all z € [a, b]. Dividing by x leads to g = h
so that X is injective. For surjectivity of X the discussion is a bit more subtle. We need to
check if, for every h € C*([a,b]) there exists a g € C*°([a,b]) with h = Xg or, equivalently,
h(z) = zg(z) for all z € [a, b]. The obvious (and only possible) choice is to take g(z) = h(z)/x
but this is only an element of C*°([a, b]) if 0 ¢ [a, b]. In conclusion, X is surjective if and only
if 0 ¢ [a, b].

For the final part, we work out the commutator [D, X]:

9 (2g(@) - 2d (@) = g(x) = id(g)(x) = [D,X]=id.

(D, X](9)(@) = -

Hence, D and X do not commute, a result which is of profound importance for quantum
mechanics.
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l

Exercises

(f=challenging)

12.1

12.2

12.3

12.4

12.5

For a linear map f : V — W and a
scalar a € F, show that the function
af, as defined in Eq. (12.6), is linear.

Find the linear map f : R? — R2 for
which f(e1) = (1,-2)7 and f(e2) =
(=1,1)7 and find the 2 x 2 matrix
which describes f.

Two maps f,g : R®> — R? are defined
by f(x) = (n-x)n and g(x) = v X x,
where n,v € R® are given non-zero
vectors.

(a) Show that f and g are linear.

(b) Show that f and g are neither sur-
jective nor injective.

(¢) Work out the composite maps fo f,
go fand gog.

Consider the vector space V = P2(R)
of quadratic polynomials with mono-
mial basis (1, z, z?).

(a) Find the unique linear map F :
V — V which maps the basis vec-
tors as F(1) = 1, F(z) = 2 + z, and
F(2?) = 22 + 22

(b) Show that the map from (a) can be
written as a linear differential operator
of the form (12.10).

(c) Can every linear map F : V — V
be expressed as a linear differential op-
erator?

For a vector space V with basis
(vi,...,vyn) and vectors wi,..., W, €
W,let f: V — W be the unique linear
map with f(v;) =w;, fori=1,...,n.
(a) Show that f is surjective iff the vec-
tors wi,...,w, span W.

(b) Show that f is injective iff the vec-

12.6

12.7

12.8

12.9

tors wi,...
dent.

(c) Show that f is an isomorphism iff
(W1,...,wy) is a basis of W.

(d) If f is an isomorphism, show that

, Wy are linearly indepen-

Bases and general linear group’
Use the results from Exercise 12.5 to
show that there is a bijective map be-
tween the bases of a vector space V' and
the general linear group GL(V).

For two vector spaces V', W and a vec-
tor subspace U C V, we have a linear
map f : U — W. Show that there ex-
ists a linear map F' : V — W with
Im(F) = Im(f).

Commutator properties

Let f,g,h: V — V Dbe linear maps.

(a) Show that the commutator is anti-
symmetric, so [f, g] = —[g, f]-

(b) Show that the commutator is bi-
linear, by verifying that [f, ag + Sh] =
alf, gl + Bf, h].

(c) Show that the commutator satisfies
cobi identity).

Calculating with commutators'

(a) For linear maps f,g,h : V — V
show that the commutator satisfies [fo
g, k] = folg,hl +[f hlog.

(b) For a vector space V of dif-
ferentiable function, use the formula
from (a) to work out the commuta-
tors [xD, z], [D?, z] and [D?, ], where
D = d/dz is the derivative operator
and x denotes the linear map which
multiplies functions by z.



13
Matrices

Probably the most important class of linear maps are linear maps between coordinate
vector spaces. As we will see, they can be identified with matrices. Under this identifi-
cation, basic map operations are turned into matrix operations: the action of a linear
map on a vector becomes matrix-vector multiplication, the composition of maps turns
into matrix multiplication and the map inverse corresponds to the matrix inverse. In
this way, matrix properties which may, at first, seem contrived become perfectly nat-
ural — they reflect elementary map operations.

We will also use the opportunity to introduce the basic matrix operations of transpo-
sition and Hermitian conjugation. The matrices invariant under these operations are
called symmetric and Hermitian matrices, respectively. The mathematical meaning of
transposition and Hermitian conjugation will become clear in Chapter 22.

13.1 Matrices as linear maps

Summary 13.1 Linear maps f : F* — F™ between coordinate vector spaces are
identified with m xn matrices with entries in F. Under this correspondence, the action
of linear maps on vectors turns into matriz-vector multiplication, map composition
becomes matrix multiplication and the inverse map is described by the inverse matrix.

In the introduction we have verified that linear maps between two-coordinate vectors
can be identified with 2 x 2 matrices. We are now ready to consider the generalization
of this statement to an arbitrary number of components.

13.1.1 Linear maps between coordinate vectors

Suppose, we are interested in a linear map f : F* — F™ from n-dimensional to m-
dimensional coordinate vectors. First, we introduce the standard unit vector bases

(e1,...e,) and (€y,...,€,) on F™ and F™, respectively’. We can write the images
f(e;) as a linear combination of the standard unit vectors €; of the co-domain, so
Alj m
fle)=1{ © | =D Ayé, (13.1)
A i=1

1Since n and m are allowed to be different the standard unit vectors on either space can have
different numbers of components and the tilde notation has been used to indicate this.
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for suitable numbers A;; € F. For general vectors v ="

j=105€; € F™, this implies

" (12.2) (13.1) o= 5
f(V) = f Zvjej = Zvjf(ej) = ZZAijUjei (13.2)
j=1 j=1 i=1 j=1

so that the i*" component of f(v) is given by
(F(V); =D Aiju; . (13.3)
j=1

This result shows the linear map is described by the numbers A;; and the action of the
linear map corresponds to carrying out the sum on the right-hand side of Eq. (13.3).

13.1.2 Matrix-vector multiplication

Given that the numbers A;; in Eq. (13.3) are labelled by two indices in the range

i1=1,...,mand j =1,...,n it is natural to arrange them into a m X n matrix
Ay o A
A= : : : (13.4)
Aml T Amn

We will frequently need to refer to the row vectors and column vectors of such a matrix
for which we introduce the following notation:

T ,
A= (A, Aw) AT = Ay, AT (13.5)
Hence, A, is an n-dimensional column vector which contains the entries in the i*" row

of A and A7 is an m-dimensional column vector which contains the entries in the ;"
column of A. In terms of its row and column vectors, we sometimes write a matrix as

A= o= (AN AT (13.6)

Having introduced the relevant notation we now get to the important point: matrix-
vector multiplication. The product of an m x n matrix A with an n-dimensional coor-
dinate vector v € F" it is defined by

(AV)Z. = ZAijUj . (137)
J=1

and it leads to an m-dimensional coordinate vector Av € F". Of course, this definition
is motivated by the action of a linear map in Eq. (13.3) and can, therefore, be seen as
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a natural consequence of linearity. Using the above notation for row vectors matrix-
vector multiplication can also be written as

A{ A1 -V
Lo v= : : (13.8)

Av = :
AT A, v

The dot on the right-hand side denotes the dot product between two vectors which,
as in Chapter 9, is defined as

VW= Zviwi , (13.9)
i=1

where v, w € F". In other words, we can say that a matrix and a vector are multiplied
by performing the dot product between the vector and the row vectors of the matrix.
Note that, for this process to make sense, the vector needs to have as many components
as the matrix has columns. A useful observation is that the action of a matrix on the
standard unit vectors gives the column vectors,

Ae; = A", (13.10)
as Eq. (13.8) shows. The above results can be summarized in the following theorem.

Theorem 13.1 For a linear map f : F* — F™ the mxn matriz A = (f(e1), ..., f(en)),
whose columns are the images of the standard unit vectors e;, satisfies f(v) = Av for
all v e F™.

Combining this statement with Theorem 12.1, we conclude that linear maps between
coordinate vectors can be identified with matrices. Moreover, the action of such linear
maps corresponds to matrix-vector multiplication. From now on we will take this
identification for granted and freely switch between linear maps f : F" — F™ and
their associated matrices A = (f(e1),..., f(e,)). This identification can be viewed as
‘canonical’ in the sense that it arises from a preferred basis — the standard unit vector
basis.

We will see later that linear maps between abstract vector spaces can also be
described by matrices. However, abstract vector spaces do not have a preferred ba-
sis, so the general relationship between linear maps and matrices will not be canonical.

Problem 13.1 (Multiplication of matrices and vectors)

Consider a linear map f : R® — R?, with f(v) = Av and the 4 x 3 matrix A given by

10-1
| 21 3
A=1_21 1
00 4

Work out the image of the vector v = (1, —2,3) under this linear map.
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Solution: The image of vectors v under f is found by computing the matrix-vector product
Av, which gives

10-1 1 -2
21 3 9

Av = 21 1 —§ =[{_1|=w-
00 4 12

Note that the image vector w € R* has been computed by carrying out the dot product
between the vector v and the rows of A.

Problem 13.2 (The matrix associated to a linear map between coordinate vectors)

Consider the linear map f : R? — R? defined by f(e1) = wi and f(e2) = wa, where
w1 = (2,3)7 and wo = (—2,4)7. Find the 2 x 2 matrix A which describes this linear map.

Solution: From Theorem 13.1 the columns of this matrix A are precisely the images w1, wa
of the standard unit vectors, so that

A= (wi,ws) = (§ ‘Z) :

It is easy to check that Ae; = w; and Aes = wa, as should be the case.

13.1.3 The two faces of matrices

Theorem 13.1 can be used to translate features of (linear) maps into features of ma-
trices. The most elementary example of this is linearity of the map itself which trans-
lates into linearity of matrix-vector multiplication. This means for every m x n matrix
A e My, o(F), vectors vi,ve € F™ and scalars o cp € F we have

A(alvl + OéQVQ) = alAvl + OéQAVQ . (1311)

Of course this can also be verified directly from the definition, Eq. (13.7), of matrix-
vector multiplication (Exercise 13.1).

In Prop. 12.1 we have seen that addition and scalar multiplication of maps preserves
linearity, so that the homomorphisms Hom(V, W) form a vector space. As we have
just seen, the homomorphisms Hom(F™ F™) can be identified with matrices, so that

Hom(F", F™) 2 My o(F),  End(F") 2 M, ,.(F) . (13.12)

These relations have a somewhat abstract flavour: they talk about a bijective lin-
ear map between linear maps and their associated matrices. In practice this is not
so hard to understand. The map which underlies the identifications (13.12) is the
map f — A which assigns to a linear map f € Hom(F",F™) the associated matrix
A= (f(e1),...f(en)), as in Theorem 13.1. This map is bijective, as follows from The-
orem 12.1. It is also linear. Indeed, if two maps f, g € Hom(F", F™) are identified with
matrices A, B € M, (F) then the linear map af + B¢ is identified with A + 8B
(Exercise 13.4). In this way, addition and scalar multiplication of linear maps between
coordinate vectors translate into addition and scalar multiplication of matrices. This
explains the dual role of matrices as elements of the matrix vector spaces M, ,,(F)
and as linear maps in Hom(F”, F™).
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13.1.4 Square and diagonal matrices

Under the identification (13.12), special properties of a linear map between coordinate
vectors translate into special properties of the associated matrix. An endomorphism
f € End(F™) is described by an n x n matrix A € M,, ,,(F) with as many rows as
columns. Such matrices are called square matrices. The entries A;; of a square matrix
A are called the diagonal entries and all other entries A;; with ¢ # j are called off-
diagonal entries.

The identity map idp» € End(F™) is associated to a square matrix called unit or
identity matrix and denoted by 1,,. Since idp~(e;) = €;, for i = 1,...,n, we know from
Theorem 13.1 that
1 0
1,=(e1,...,e,) = . (13.13)
0 1

It is clear that 1,,v = v for all v € F™ but this can also be explicitly verified from
matrix-vector multiplication. In fact, this is easy to do if we note that the entries of
the unit matrix, (1,);; = 0;;, are precisely given by the Kronecker delta symbol, so
that (1,v); = (1,)i;v; = 0;;v; = v;. (The last step is just using the index replacing
property of the Kronecker delta.)

Slightly generalizing from the identity map, another simple class of linear maps f €
End(F") are those which only scale the standard unit vectors, that is, f(e;) = \;e; for
some A\; € F. From Theorem 13.1, the matrices associated to such linear maps have
column vectors \;e; and are, hence, of the form

A1 0
D = (Me1,..., \pep) = =:diag(A1,...,An) . (13.14)
0 An
Such matrices are called diagonal and are also denoted by diag(A1,...,\,). General-

izing even further, it is sometimes convenient to talk about block-diagonal matrices

Ay 0
A= =: diag(A1,...,4,), (13.15)
0 A,

which are built up from square matrices A; (of possibly different sizes) arranged along
the diagonal.

13.2 Matrix multiplication

Suppose we have two matrices, each describing a linear map between coordinate vector
spaces. Since the composition of these maps is again linear (see Prop. 12.2) and it is
also a map between coordinate vector spaces, it must be described by a matrix as well.
It turns out this matrix is obtained by matrix multiplication, as we now explain.
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13.2.1 Matrix multiplication from map composition

Consider the following composition of linear maps.

AN LN,

gof

We know from Theorem 13.1 that f corresponds to an m X nm matrix A and g to a
k x m matrix B. But from Prop. 12.2 the composition g o f is also linear and, hence,
corresponds to a k x n matrix C'. How does this matrix C relate to A and B?

From Eq. (13.3), the matrix C satisfies ((go f)v)); = >_p_; Cirvx. On the other hand,
be applying f and g sequentially, we find

(g0 NV = (g (V)i = D By(Av); = 33" ByApeon (13.16)

j=1k=1

A comparison of these two results shows that
Cir = ZBijAjk , (13.17)
j=1

and this is the desired relationship. Eq. (13.17) defines matrix multiplication and is,
in matrix notation, also written as C' = BA. The sum over the adjacent index j in
Eq. (13.17) means that the product matrix C' is obtained by performing all possible
dot product between the rows of B and the columns of A. Using our notation for row
and column vectors this can also be written as

BlT B;-Al'...B;-A"

BA = : (Al,...,A”): : :
B{ B.-A'---B,-A"/ - (13.18)
kxm mXn — kxn

The size of the various matrices is indicated underneath. Note that matrix multipli-
cation only makes sense if the first matrix has as many columns as the second one
has rows — only then are the dot products well-defined. We emphasize that there
is nothing strange or unnatural about matrix multiplication. As we have seen, it is
simply the way composition of linear maps is carried out when they are represented
by matrices.

Problem 13.3 (Matrix multiplication)
Consider the 3 x 3 matrix A : R® — R3 and the 2 x 3 matrix B : R® — R? given by

0 11
B:(%g:é), A=[2 o1].
1-11

Compute all well-defined products of these matrices (including with themselves).
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Solution: We can compute the 2 x 3 product matrix BA : R®> — R? and the 3x product
matrix A? : R* — R? by performing the dot products between the column vectors the second
matrix and the row vectors of the first matrix. This leads to

0 11

10 -1 ~120
BA::( ) 2 01 :( )
23-2)\{ 1, 443

The products AB and B? do not make sense — the number of rows of the second matrix
does not match the number of columns of the first.

Application 13.1 Matrices in graph theory

Graphs are objects which consist of a certain number of vertices, Vi,...,V,, and links
connecting these vertices. A simple example with five vertices is shown below.

Here we focus on undirected graphs for which the links have no direction, but our consider-
ations can easily be generalized to directed graphs. Graphs can be related to linear algebra
via the adjacency matriz which is defined by

Moo — 1 if V; and V; are linked
71 0 otherwise

For example, for the above graph the adjacency matrix is given by

01010
10110
M=|01001 (13.19)
11001
00110

The following fact (which we will not try to prove here) makes the adjacency matrix a useful
object.

Fact: The number of possible walks from vertex V; to vertex V; over precisely n links in a
graph is given by (M");;, where M is the adjacency matrix of the graph.

To illustrate this, compute the low powers of the adjacency matrix M in Eq. (13.19).

21111 24242
13012 42561
M*=110220]|, M*=]25014
11230 46125
12002 21450
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For example, the number of possible walks from Vi to V3 over three links is given by
(M?)13 = 2. By inspecting the above figure it can be seen that these two walks correspond
toVi = Vi —=>Vs—=>Vzand Vi = V4 = Vo — Va.

13.2.2 Rules for matrix multiplication

The rules for matrix multiplication follow immediately from the rules for composition
of linear maps. We know that composition of maps is associative so the same must be
true for matrix multiplications. Hence, for three matrices A, B, and C (with suitable
size so that multiplication makes sense) we have

A(BC) = (AB)C'. (13.20)

This can also be verified using Eq. (13.17) and working with index notation (and the
Einstein summation convention).

(A(BC))y = Aij(BC)j1 = AijBjiCri = (AB)iCri = ((AB)C)y; -

The identity map acts as the neutral element of map composition, so the unit matrix
must be the neutral element of matrix multiplication. This means for an m x n matrix
A we have

Al, =1, A=A. (13.21)

Again this is easily verified explicitly using index notation, for example
9.16
(ALlyp)i = Aij (1) 6 = Aijdj €19 Air .

If A is a square matrix it can be multiplied with itself an arbitrary number of times
and this is also written as A¥ := AA---A for k € Z>°. It is also useful to define
AV =1,

The relation between matrix multiplication on the one hand and matrix addition
and scalar multiplication on the other hand is governed by simple distributive and
associative rules. Specifically, we have

(A+ B)C = AC + BC
C(A+B)=CA+CB ) (13.22)
A(aB) = (a¢A)B = a(AB)

where a € F and the sizes of A, B, and C should be such that all operations make
sense. These rules follow immediately from the corresponding ones for linear maps in
Prop. 12.2 but they can also be shown explicitly. For example, for the first of these
equations, simply perform the index computation

13.17 6.5
(A+B)C)y, "L > (A+ B)i;Ci =g > (Ai;Cji + Bi;Cjr)
J J
an (AC)ix + (BO)x, @D (AC + BC)y, -
Another way to state the rules in Eq. (13.22) is to say that matrix multiplication
bi-linear. In particular, this means that the vector space of square matrices M, ,, (IF)

R &
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End(F™) with matrix multiplication forms an algebra, in the sense of Def. 6.4. Since
matrix multiplication is associative and has a unit element, the unit matrix 1,,, this
is an associative algebra with a unit.

While matrix multiplication is associative it is, in general, not commutative, so, typi-
cally, AB # BA for two square matrices A and B. The ’degree of non-commutativity’
of two matrices is often measured by the commutator defined as

[A,B] := AB — BA. (13.23)

Evidently, the matrices A, B commute if and only if [A, B] = 0. The matrix commu-
tator has the same properties as the commutator of linear maps (see Exercise 12.8),
namely it is anti-symmetric, bi-linear, and it satisfies the Jacobi identity.

Problem 13.4 (Non-commutativity of matrix multiplication)

For the matrices

12 3 -1 ab cd
a=(aa0). m=(672) . e=(52) . p-(a).

where a, b, c,d € R, show that A and B do not commute and that [C, D] = 0.

Solution: By straightforward computation we have

we (UG- (30w () - (28

so that indeed AB # BA.
For the second part, we work out the commutator

= () (i8) - (06) (52) = (55)

This shows that matrices with a specific structure can still commute.

13.2.3 Matrix inverse and general linear group

A bijective linear map f € End(F") has a unique linear inverse f~! (see Prop. 12.2)
and, from Theorem 13.1, both f and f~! are described by an n x n matrix. If A is the
n X n matrix which describes f, then the matrix which corresponds to f~! is called
the inverse matrix of A, and it is denoted by A~!. Since map composition becomes
matrix multiplication, the defining relations fo f~! = f~' o f = id for the inverse
map translate into the defining relations

AA Y =A"tA=1, . (13.24)

for the inverse matrix. Conversely, a general n x n matrix A is called invertible if
it corresponds to an invertible linear map or, equivalently, if an n x n matrix A=!
satisfying Eq. (13.24) can be found. If an inverse does not exist, the matrix A is called
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singular.

Powers of an inverse matrix A~! are also written as A=% = (A~1)¥ for k € N.
Therefore, for invertible matrices A the powers A* are meaningful for all integers k
and we have A¥Al = A**! for all k.1 € Z.

In Section 12.1.5 we have introduced the general linear group GL(V') of invertible linear
maps V — V and this may have seemed a somewhat abstract object. For V = F"
we can be more concrete and state that the general linear group GL(F™) consists of
all invertible n x n matrices with entries in F. The group multiplication is matrix
multiplication (since it corresponds to map composition) and we have already seen
that this is associative. The group inverse is the matrix inverse and, from Eq. (13.21),
the identity matrix is the neutral element.

We recall from Prop. 3.1 that the left inverse in a group is always the right inverse as
well. Hence, once we know that a matrix A is invertible its inverse is already determined
by one of the relations (13.24). We will soon discuss systematic methods to calculate
the inverse matrix but for now we note that this can be done by solving Eq. (13.24).

Problem 13.5 (Matrix inverse the pedestrian way)
Using Eq. (13.24), compute the inverse of the matrix:

=(33).

Solution: We start with a general Ansatz for A™' and impose Eq. (13.24).

~1_fab 1 (1 2 ab) [(a+2cb+2d\ 1 (10
A _(cd) - A _(3—1)(cd)_(3a—c36—d)_(01)'

Splitting the last equation into components gives a linear system a + 2c = 1, b+ 2d = 0,
3a —c=0and 3b — d =1 of four equations in four variables. Its solution is easily found to
bea=1/7,b=2/7, ¢c=3/7 and d = —1/7. Inserting this into the Ansatz for A~! gives

11 2
A _?(3_1).

After such a computation it is always worth checking the result by verifying Eq. (13.24).

Application 13.2 Matrices in cryptography

Matrices can be used for encryption. Here is a basic example for how this works. Suppose
we would like to encrypt the text: 'linear algebra,,’. First, we translate this text into
numerical form using the simple code , — 0,a — 1,b — 2 --- and then we partition the
resulting list of numbers into sub-lists of the same size. Here we use sub-lists of size three
for definiteness. Next, we arrange these numbers into a matrix, with each sub-list forming
a column of the matrix. For our sample text this results in

12 5 0718 leygr
T = 9 1 15 1 for iaaea.
1418122 0 nrlb,
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So far, this is relatively easy to decode, even if we had decided to permute the assignment of
letters to numbers. As long as same letters are represented by same numbers, the code can
be deciphered by a frequency analysis, at least for a sufficiently long text. To do this, the
relative frequency of each number is determined and compared with the typical frequency
with which letters appear in the English language. Matching similar frequencies leads to
the key.

For a more sophisticated encryption, define a square ’encoding’ matrix whose size equals
the length of the sub-lists, so a 3 x 3 matrix for our case. Basically, the only other restriction
on this matrix is that it should be invertible. For our example, let us choose

-1-1 1
A= 2 0-1
-2 1 1

-1-1 1 12 5 0718 -7 12 11 —10 —19
Tenc = AT = 2 0-1 9115 1= 10-8-12 12 36
-2 1 1 1418122 0 -1 9 13 -7 -35

Note there is no longer an identification of numbers with letters in Ten.. For example, the
letter ’a’ appears three times and corresponds to the three 1’s in T'. However, there is no
corresponding repetition of numbers in Tenc. Without knowledge of the encoding matrix
A it is quite difficult to de-cypher Tenc, particularly for large block sizes. The legitimate
receiver of the text should be provided with the inverse A~! of the encoding matrix. For
our example, it is given by

A7l =

N O =
W = N
DO = =

as can be checked by verifying that A='A = 13. The receiver can then recover the message
by the simply matrix multiplication

T=ATo .

13.3 Transpose and Hermitian conjugate

Summary 13.2 For a matriz A the transpose AT is obtained by exchanging rows
and columns. Square matrices invariant under transposition are called symmetric. If
they change by an overall sign they are called anti-symmetric. The Hermitian conju-
gate AT of a matriz A with complex entries is a combination of complex conjugation
and transposition. Hermitian matrices are those that are invariant under Hermitian
conjugation, anti-Hermitian matrices change by a sign.

Transposition and Hermitian conjugation are basic matrix operations whose mathe-
matical meaning will only emerge later (see Chapter 22). However, since they are
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widely used in matrix calculations it makes sense to introduce them somewhat ahead
of their proper mathematical context.

13.3.1 The transpose of a matrix

For an n x m matrix A € M,, ,,(F) the transpose matrix AT € M,, ,,(F) is an m x n
matrix obtained by exchanging the rows and columns of A. Using index notation the
transpose can be defined by

(AT);5 = Ay . (13.25)

Problem 13.6 (Transposition)
Write down 2 X 2, 2 x 3 and 3 X 3 matrices with general entries together with their transpose.

Solution: Exchange rows and columns to obtain the transpose.

A ab A abc A gbc
=lca =ldey = Zf
g 7

d 2dg (13.26)
AT:<Z§) AT = | be AT = | beh
cf cfi

13.3.2 Symmetric and anti-symmetric matrices

Tt makes sense to single out matrices which remain unchanged (or nearly unchanged)
under transposition. Since transposition for non-square matrices changes the size of
the matrix (from n xm to mxn), this can of course only happen for square matrices. A
square matrix A € M,, ,(F) is called symmetric if it is unchanged under transposition,
soif A= AT In view of Eq. (13.25), this translates into the condition 4;; = Aj;; for all
i, =1,...n. On the diagonal (for ¢ = j) this condition becomes trivial, A;; = A;;, so
the diagonal entries of symmetric matrices are arbitrary. The entries above the diagonal
have to equal their counterparts below the diagonal. In particular, this means every
diagonal matrix is symmetric.

A square matrix A € M,, ,,(F) is called anti-symmetric if it changes the overall sign
under transposition, so if A = —A7T or, in index notation, if Aij = —Ay; for all
i,j =1,...,n. For the diagonal entries this implies A;; = —A;; so that (14+1)A;; = 0.
Soif 141 # 0in F (true unless the field is Fy) the diagonal entries of an anti-symmetric
matrix vanish. In addition, the entries above the diagonal have to be the negatives of
their counterparts below the diagonal.

Problem 13.7 (Symmetric and anti-symmetric matrices)

Write down the most general symmetric and anti-symmetric 2 x 2 and 3 x 3 matrices.
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Solution: This can be done by equating the entries of the matrices and their transpose in
Eq. (13.26). This leads to the general symmetric 2 x 2 and 3 x 3 matrices:

ab abc
Az( ), A=|bef | .
bd c;i

Equating the entries of A to the negatives of the entries of A” in Eq. (13.26) gives the most
general anti-symmetric 2 x 2 and 3 x 3 matrices:

0 be
0b
A:( >, A=|-b 0f | .
-b0 (—c—fO)

13.3.3 Properties of transposition

We should think about how transposition relates to addition, scalar multiplication and
multiplication of matrices.

Proposition 13.1 For matrices A, B of suitable sizes with entries in F and o € F
matriz transposition satisfies the following rules:

(i) (A+ B)T = AT + BT

(ii) (aA)T = aAT

(iii) (AB)T = BT AT

(iv) If A is invertible then so is AT and (AT)=! = (A=HT.

Proof The proofs are most easily carried out in index notation, using Eq. (13.25).
(i) (A+ B)T)yj = (A+ B)ji = Aji + Bji = (AT + BY)y;

(it) ((aA)T)ij = (@d)ji = adj; = (aAT);

(iti) ((AB)")ij = (AB)ji = AjxBri = BriAjx = (BT )in(AT)r; = (BT AT);;

(iv) Taking the transpose of AA~! = 1 and applying (iii) gives (A~1)T AT = 1. This
means that (A~17 is the inverse of AT, so (A7)~ = (A~HT. a

From property (iii), matrix multiplication and transposition relate in a well-defined
way but note the change of the order in the multiplication! Property (iv) is also
very useful: the operations of taking the inverse and the transpose commute! Finally,
properties (i) and (ii) mean that transposition is a linear map M,, ,, = My, . This
has immediate implications for symmetric and anti-symmetric matrices.

Example 13.1 (Vector spaces of symmetric and anti-symmetric matrices)

By S, (F) and A, (F) we denote the sets of symmetric and anti-symmetric nxn matrices
with entries in F # F5. These sets are closed under addition and scalar multiplication.
To see this, start with two (anti-) symmetric matrices A, B,so A = +A” and B = +B7
and use Prop (13.1).

(A + BB)T = aA” + BT = +(aA + BB)

This means that (anti-) symmetry is preserved under addition and scalar multiplication
of matrices and, hence, that S,,(IF) and A, (F) are vector subspaces of M,, ,,(F). What
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are the dimensions of these spaces? It is easy to construct bases by starting with the
elementary unit matrices E(;;) (see Eq. (6.6)). For the symmetric matrices, a basis
is given by the matrices F(;;) + F(;;), where 7,7 = 1,...,n and 7 < j. For the anti-
symmetric matrices, we have a basis E(;;) — E(j;), where 7,7 = 1,...,n and i < j. It
follows that

dimg (S, (F)) = %n(n +1),  dime(An(F)) = %n(n _1). (13.27)

For any matrix A € M, ,,(F) we can introduce its symmetric part Ay and anti-
symmetric part A_ by

Ai::%(AiAT) o A=A+ A (13.28)

Evidently, a matrix is the sum of its symmetric and anti-symmetric parts. Furthermore,
this decomposition is unique. Indeed, if Ay + A_ = A+ + A_ taking the transpose of
this equation gives A, —A_ = A, — A_. Adding and subtracting these two equations
immediately implies that A, = A,. More formally, the existence and uniqueness of
the decomposition (13.28) is expressed by the equation

M, (F) = Su(F) © A, (F) .

In other words, the vector space of n x n matrices is a direct sum of the subspaces of
symmetric and anti-symmetric matrices (see Prop. 8.1). O

Problem 13.8 (Basis for 2 x 2 symmetric and anti-symmetric matrices)

Write down a basis for the space S2(F) of symmetric 2 X 2 matrices and a basis for the space
A (F) of anti-symmetric 2 X 2 matrices.

Solution: We can specialize the bases constructed in Exercise 13.1 giving, for the symmetric
case, the basis (E11y, E(22), E12) + E(21)) and, for the anti-symmetric case, the basis (E(12) —
E(21)). More explicitly, these are

- (30)-(1).(1)) . 4= (( 1)

Problem 13.9 (Symmetric and anti-symmetric parts of a matrix)

Write the following matrix as a sum of its symmetric and anti-symmetric parts.

A=| -

NN =
== O
OO N

Solution: We use Eq. (13.28).



160 Matrices

1-22 1 1-10 1 0 1-2
AT=[ 0 14|, Ay =-(A+4") = -1 15],4. =-(4-AT)=|-1 0 1
—2 60 2 0 50 2 2-1 0

Note that A4 is symmetric and A_ is anti-symmetric. It is easy to verify that A = Ay + A_.

13.3.4 The Hermitian conjugate of a matrix

Another, somewhat ad-hoc but widely used matrix operation is Hermitian conjugation.
Tts mathematical interpretation will emerge in the context of scalar products (see
Chapter 22). For the purpose of this discussion, we will be working with matrices
A e M,, »(C) with complex entries. For such a matrix A, we can define the complex
conjugate matrix A whose entries (A4); ;= Tw are obtained from those of A by complex
conjugation.

The Hermitian conjugate of an n x m matrix A € M,, ,,(C) is an m X n matrix
denoted by AT € M, »,(C). It is obtained from A by combining complex conjugation
and transposition, so that A" = AT, or, using index notation

(A)i; = 4ji . (13.29)

Problem 13.10 (Hermitian conjugate)

Work out the Hermitian conjugate of the matrix
ab i 12—4
A= ( d) , B= 2 3 -3
¢ 1—i424i

Solution: In addition to transposition, carried out by exchanging rows and columns, all
entries are complex conjugated, so that

iz —i 2141
AT:<BJ), Bf=| 1 3 4
24i3i2—i

13.3.5 Hermitian and anti-Hermitian matrices

A square matrix A € M,, ,(C) is called Hermitian if it is invariant under Hermitian
conjugation, so if A = A' or, in index notation, if Ajj = Ay forall 4,7 =1,...,n.
The diagonal entries of a Hermitian matrix A satisfy A; = Ay, so they are real. The
entries above the diagonal are the complex conjugates of their counterparts below the
diagonal.

A square matrix A € M,, ,(C) is called anti-Hermitian if A = —A' or, in index
notation, if A;; = —Aj; for all 4,5 = 1,...,n. Anti-symmetric matrices have purely
imaginary diagonals and the entries above the diagonal are the negative complex
conjugates of their counterparts below the diagonal.
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Problem 13.11 (Hermitian and anti-Hermitian matrices)
Write down the most general Hermitian and anti-Hermitian 2 x 2 matrices.

Solution: By imposing A = £ A" on the matrices A and AT from Exercise 13.10, we find
A _(ab deR, beC
herm — bd 5 a, s

Aantifhcrm: (_ 2) ; (l7d€7:R, beC.

(SRS

13.3.6 Properties of Hermitian conjugation

Just as for transposition, we should think about how Hermitian conjugation relates to
matrix addition, scalar multiplication, and matrix multiplication.

Proposition 13.2 For matrices A, B of suitable sizes with entries in C and o € C
Hermitian conjugation satisfies the following rules.

(i) (A+ B)I = AT + BT

(ii) (aA)T = aAT

(iii) (AB)T = BT AT

(iv) If A is invertible then so is AT and (AT)~1 = (A=),

Proof These rules follow directly by including complex conjugating in the corre-
sponding proofs for transposition in Prop. 13.1. O

These rules are similar to those for transposition but there is one crucial difference:
in (ii) the scalar is extracted with a complex conjugation. This seemingly innocent
modification means that Hermitian conjugation is not a linear map on M,, ,,,(C) when
viewed as a vector space over C but only when it is viewed as a vector space over R.
Rule (ii) also implies that multiplication with 4 converts between Hermitian and
anti-Hermitian matrices, so if B = £iA then

A=At & B=-B'". (13.30)

Example 13.2 (Vector spaces of Hermitian and anti-Hermitian matrices)

Prop. (13.2) (i) implies that the sum of two (anti-) Hermitian matrices is again (anti-)
Hermitian. From Prop. (13.2) (ii) the same is true for scalar multiplication only if we
restrict to real scalars. The conclusion is that the sets H,, and A,, of Hermitian and
anti-Hermitian n x n matrices form a vector space over R (but not over C).

Every Hermitian matrix can be written as a sum of its real part, which is symmetric,
and its imaginary part, which is anti-symmetric. Hence, combining the basis E(;;) +
E(j;), where 4,5 = 1,...n and i < j for symmetric matrices and the basis i(E;;) —
Eji)), where 4,5 = 1,...,n and i < j for anti-symmetric matrices from Example 13.1
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gives a basis for H,,. From Eq. (13.30), multiplying all these basis matrices with i gives
a basis for A,,. As a result,

dimg (H,,) = dimg(A,) = %n(n +1) + %n(n —1)=n".

Every matrix A € M, ,(C) can be written as a sum A = A, + A_, where AL =
3(A £ AT) are the Hermitian and anti-Hermitian parts of A. As was the case for
transposition, this decomposition is unique, so we can write

Mn,n(c) =H,® -An ;

and this should be understood as a relationship between vector spaces over R. a

Problem 13.12 (Hermitian and anti-Hermitian 2 X 2 matrices)

Write down an explicit basis for the vector space Ha of 2 x 2 Hermitian matrices and a basis
for the vector space As of 2 X 2 anti-Hermitian matrices.

Solution: We can specialize the general construction in Example 13.2, keeping in mind that
we should only use real scalars to form linear combinations. For the Hermitian case a basis is
given by (E(11y, E(22), E12) + E(21), {(E@a2) — E(21))) or, taking some linear combinations, by

Ho = Span (12 = ((1)(1)) L0 1= ((1) é) , 09 1= ((Z _8) ,03 1= ((1) _(1))) . (13.31)

The matrices o; are called the Pauli matrices and they play an important role in quantum
mechanics. A basis for A, is obtained by multiplying with ¢, so (il2,401,i02,03).

Application 13.3 More on neural networks

In Application 11.1 we have introduced the simplest building block of neural networks,
the perceptron. Now we would like to take things further and set up a more complicated
neural network, built up from perceptrons. Recall that a single perceptron realizes a map
R"™ 5 x +— y € R, with

y=o(w-x+b) ~ R N w,b R 3

where w € R™ is the weight vector, b € R is the bias, and an example for the activation
function o has been given in Eq. (11.7).

As a first step towards a multi-layer perceptron we arrange k perceptrons in par-
allel. Their weight vectors wi,...,w; can be assembled into an k& X nm weight matrix
W = (wq,... 7wk)T and their biases b1, ...,br form a bias vector b = (b1, .. .,bk)T. The
network realizes a map R™ 3 x — y € R* defined by

y=0cWx+b) ~
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where it is understood that the activation function o acts on each component of its
argument vector. The final step is to arrange d such layers to act one after the other with
the output of one layer providing the input for the next one.

= x(©_R™ R™ | R™ (... Rnd*l\ER—nd) x(@ =
X=X — oV b e b e UGS e Y

For the dimensions of input and output to match from one layer to the next each weight
matrix W; must have size n;—1 X n; and each bias vector b; must have dimension n;. The
action of this multi-layer perceptron represents a complicated function, obtained by the
iteration

x(HD — O'(WiX(i) +b;) where i=0,...,d—1.

For ease of notation, we call this function py : R™® — R™4  where § = (W1,bq,..., Wq, bq)
denotes all the weighs and biases. To train the multi-layer perceptron we require a training
set {Xq,ya} of input values x, and ’desirable’ outputs y,. Training goal is to adjust the
weights and biases € such that the square deviation

> Ipo(xa) = yal®

of the network’s output from the desired values y, is minimized. This is usually accom-
plished by an algorithm referred to as stochastic gradient descent and which involves
formulae for the weight and bias adjustment similar to Eq. (11.9). Rather than going into
the details of this algorithm which is beyond our scope, we would like to conclude with an
explicit example which illustrates an application of the multi-layer perceptron. (For a more
comprehensive introduction to neural networks see, for example, da Silva 2017; Goodfellow
et al. 2016.)

Consider a relatively simple network with a two-dimensional input, a one-dimensional out-
put and two layers, the first with k perceptrons and the second one with a single perceptron.

D k — R
M g BN Y

The training set {(Xq,y.)} for this network is shown in the figure on the left-hand side
below.

(e}
1 g o ©© _1

The points indicate the coordinates x, € R? and the desired outcome is y, = 1 for a filled
circle and y, = 0 for an open circle. The idea is that the points marked with filled circles
trace out a certain region in R? which we would like the network to ’learn’.

After training the network for & = 4 perceptrons in the first layer, we can read out the
4 x 2 weight matrix W and the four-dimensional bias vector b from the first layer. These
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quantities correspond to four lines in R?, defined by the equations W - x + b; = 0, where
i =1,2,3,4 and W, are the row vectors of W. These four lines have been plotted in the
above figure on the right-hand side. Evidently, they form the boundary between filled and
open points. The first layer 'decides’ on which side of any of these lines a given input point
lies, the second layer effectively performs a logical and-operation. In this way, the trained
network can now decide if a given input point is inside or outside the region. An input point
x € R is judged to be inside if its output is y ~ 1 and outside if its output is y ~ 0.

Exercises

(t=challenging, tT=difficult, wide-ranging)

13.1

13.2

13.3

13.4

13.5

Show that matrix-vector multiplica-
tion is linear, starting with its defi-
nition, Eq. (13.7).

Two maps f : R® — R3 and ¢ :
R® — R? are defined by f(v) =
(v1 — v2,v2 + 2vs, —21}1)T and g(v) =
(1}1 =+ 2’1}2 — 1)3,1)3)T.

(a) Why are these maps linear?

(b) Find the matrices A and B which
describe f and g.

(c) Work out the map g o f, its asso-
ciated matrix C, and show explicitly
that C = BA.

A linear map f : F? — F? is de-
fined by f(e1) = (a,0)” and f(es) =
(1,-1)", where a € TF.

a) Find the matrix A which describes
f
(b) Find the matrices which describe
fofand fofof.

(c) Based on the results in (b), write
down a guess for the matrix which
represents f¥ = fo fo---o f and
prove this guess by induction.

Let f,g : F" — F™ be two linear maps
described by m x n matrices A and B.
Show that the linear maps af + 8g,
where o, 8 € F is represented by the
matrix aA + BB.

t Consider the linear maps M, M> :
R? — R? defined by the matrices

_ -10 _ 17TL2
= () 2= (00)

13.6

where mi,my are positive integers,
and M = M;M,. Show that

(a) M? = M3 = 15 and Mi, Mo do
not commute.

(b) the set which consist of 12 and all
'words’ - - M1 MoMiMs--- is a sub-
group G C GL(R?).

(c) the set H = {M*|k € Z} is a
sub-group of G which is isomorphic
to either a cyclic group Z, or to Z.
For mi = mo = 3 find all im-
ages g(P), where ¢ € G and P =
{(z,»)” € R?|z > 0Ny > 0} is
the positive quadrant. (The picture
on the title page originates from a
generalization of this structure to 4 x4
matrices. )

Block matrices

Consider the block matrices M, M e
M, (F) given by

AB - AB
w=(ep)- w=(25)
which are made up from the con-
stituent matrices A, A € My x(F),
D,D € Mnwnri(F), B,B €
M n—k(F) and C,C € My_p i (F).
Show that their matrix product is

given by

- (AA+BC AB+ BD
MM = <021+D(§ CB-l—DD)
This means multiplication of block

matrices follows the same pattern as
normal matrix multiplication, but the
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13.8

13.9

13.10

products of the entries are replaced by
matrix products of the blocks.

Inverse for block matrices
A matrix M € Myy1,n41(F) has the
block structure

_(abT
u=(6%)
where a € F is non-zero, b € F" and
A € My, (F) is invertible. Show that

M is invertible by finding an explicit
expression for M ! in terms of A7

Matriz commutators

Let A,B € My ,n(F) be two square
matrices.

(a) If A and B are invertible and com-
mute show that A~ and B~! also
commute.

(b) Under the assumptions in (a)
show that A® and B' commute for all
k,leZ.

(¢c) If A and B are symmetric show
that AB is symmetric iff [A, B] = 0.
Anti-symmetric matrices

Define the 3 x 3 matrices 11 = E(32) —
E@3), To = Eus) — E@zyy and T3 =
Ei21) — E12)-

(a) Show that (7%, T»,T3) is a basis of
the space of anti-symmetric matrices
As3(R).

(b) Show that [Ti, TJ] = €ijka-

(¢) For two matrices A, B € A3(R)
with A = a;7; and B = b;T; show
that [A, B] = (a x b);T;.

Adjacency matriz

Consider the following simple graph

®
oRe

13.11

13.12
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Exercises

with three vertices.

(a) Write down the adjacency matrix
M for this graph.

(b) Work out the matrix powers M?>
and M3 and interpret their entries in
terms of walks in the graph.

Encoding with matrices'
(a) Following Application 13.2, a text
has been encoded with the matrix

3-1
-(3%)
leading to the encoded matrix

T 528 —23 —-16 -5 —16
ene ™\ 847 —-46 —33 —10 —-33 ) -

Decipher the matrix and find the un-
derlying text.
(b) Another message is encoded in

4 35 30 53 28 59 17
—2 —25 —-22 —-34 —14 —40 —-14

but the encoding matrix is not known.
Try to decipher it.

(Multi-layer perceptron't)

Write code in your favourite program-
ming language which realizes a simple
two-layer perceptron such as the one
described in Application 13.3. Read
up on the training algorithm, imple-
ment it computationally, and apply
your code to simple examples, such
as the two-dimensional data sets de-
scribed in Application 13.3.



14
The structure of linear maps

With a basic understanding of linear maps under our belt and examples readily avail-
able we can now move the discussion to a more profound level. Central to this are
two vector subspaces associated to any linear map: the image and the kernel. The
dimension of the image is called the rank, an important characteristic of a linear map.
The rank theorem, which is one of the central results of linear algebra, states that
the rank of a linear map equals the dimension of the domain vector space minus the
dimension of the kernel. As we will see in the next part, the rank theorem is key to a
qualitative understanding of the solution structure for linear systems.

We have seen in the last chapter that linear maps between coordinate vectors can be
canonically identified with matrices. What about linear maps between abstract vec-
tor spaces? It turns out, such linear maps can be described by matrices, relative to
a choice of bases on the domain and co-domain. However, this relationship between
linear maps and matrices is not canonical — it depends on the choice of bases. In the
final part of this chapter, we explain this general correspondence between linear maps
and matrices and derive the formula for basis transformations of matrices.

14.1 Image and kernel

Summary 14.1 The image of a linear map is a vector subspace of the co-domain.
Another set associated to a linear map is the kernel which consists of all vectors in the
domain which are mapped to the zero vector. It is a vector subspace of the domain.
The dimension of the image is called the rank of the linear map. A linear map is
surjective iff its rank equals the dimension of the co-domain and it is injective iff the
dimension of its kernel is zero.

14.1.1 Definition of image and kernel

As for any map, we can consider the image of a linear map which is a subset of the
co-domain vector space. Since vector spaces have a special element, the zero vector,
there is another set, the kernel, which can be associated to a linear map. The kernel is
a subset of the domain vector space and consists of all vectors whose image is the zero
vector of the co-domain. For a linear map f : V' — W, these two spaces are formally
defined as

Im(f)=f(V)={f(v)|veV}IcW, Ke(f)={veV]|f(v)=0}CV. (14.1)
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Note that both sets are non-empty, the image trivially so, and the kernel since it
contains at least the zero vector of V| as a consequence of Eq. (12.3). If the kernel
only contains the zero vector it is called trivial, otherwise non-trivial.

Since both sets are associated to a morphism of vector spaces, it is natural to expect
that they carry more structure. In fact, it turns out they are vector subspaces as shown
in the following proposition:

Proposition 14.1 (Properties of kernel and image) Let f : V — W be a linear map
between two vector spaces V. and W over a field .

(i) The kernel of f is a sub vector space of V.
(ii) The image of [ is a sub vector space of W.

Proof (i) We need to check the conditions in Def. 6.2. Since 0 € Ker(f), the kernel
is not empty. If v, vo € Ker(f) then, by definition of the kernel, f(vi) = f(v2) = 0.
It follows that f(vi +v1) = f(v1) + f(va) = 0 so that vi + vo € Ker(f). Similarly, if
v € Ker(f), so that f(v) = 0 it follows that f(av) = af(v) =0, hence, av € Ker(f).
(if) The image is obviously not empty. To show closure under addition start with two
vectors wi, wo € Im(f). By definition of the image, there exist vectors vi, vy € V such
that wy = f(vy) and wo = f(va). It follows that wi+wo = f(vq)+f(ve) = f(vi+va)
and, hence, w1 +ws € Im(f). For closure under scalar multiplication, consider a vector
w € Im(f), which can be written as w = f(v) for a v € V. Then, for a scalar a € F,
we have aw = af(v) = f(av) and, hence, aw € Im(f). O

14.1.2 Rank of a linear map

Since both image and kernel of a linear map are vector subspaces, they can be assigned
dimensions. Clearly, these dimensions are characteristic properties of the underlying
linear map and, as we will see, they play an important role in analysing its structure.
The dimension of the image is of particular relevance and is given a special name.

Definition 14.1 The dimension of the image of a linear map f is called the rank of
f, in symbols rk(f) := dimp(Im(f)).

The image and the rank can be expressed more explicitly in terms of a basis (v1,...,v},)
of V. The image of a vector v =73, a;v; is f(v) = >, a; f(v;), so the image

Im(f) = {Z aif(vi)|ew € F} = Span(f(v1),..., f(va) (14.2)

is spanned by the images of the basis vectors. Therefore, the rank equals

maximal number of linearly

independent images f(v;) (14.3)

ok(f) = dimg(Span(f(va), .., f(va)) = {

Example 14.1 (The image and the rank of a matrix)
An m x n matrix A with entries in F defines a linear map A : F* — F™. We can,
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therefore, talk about the rank of a matrix. To determine the image of a matrix we can
apply Eq. (14.2) to the standard unit vector basis, remembering that the images of
the standard unit vectors, Ae; = A, are the columns of the matrix. Hence, the image

Im(A) = Span(A',...,A"),
of a matrix is spanned by its column vectors. For the rank of A, this implies

maximal number of linearly

independent column vectors (14.4)

k(A) = dimg(Span(Al, ..., A")) = {

All we need to do is look at the column vectors of the matrix and find out how many

of them are linearly independent — this number equals the rank of the matrix. To do
this we can use, for now, the standard methods for checking linear independence.

The rank of a matrix as defined above is also called the column rank. We can also

define the row rank of a matrix as the maximal number of linearly independent row

vectors. We will see later that these two ranks are, in fact, always equal! ]

Problem 14.1 (Image, rank, and kernel of a matrix ’by inspection’)

Find the images, kernels, and ranks of the matrices:

5 1 ~1 4 3
A:(l o)’ B=| 2-3-1]. (14.5)
3.2 5

Solution: The matrix A defines a linear map A : R> — R2. Since its two columns are linearly
independent (they are not multiples of each other) they form a basis of R? and, therefore,
Im(A) = R? and the rank is maximal, rk(A) = 2. In order to find the kernel we have to solve
the equation Av = 0 which, split up into components, reads 2v; —v2 = 0 and v; = 0. Clearly,
the only solution is v1 = v2 = 0 so that the kernel is trivial, Ker(A) = {0}.

The first two columns, B* and B2, of B are linearly independent (they are not each other’s
multiples) while the third column is the sum of the first two. Hence, the image, Im(B) =
Span(B*', B?), is two-dimensional and the rank, rk(B) = 2, is not maximal. To find the kernel
we have to solve

0= Bv=uvB' 4+ B2+ ;B> = (v1 + vg)B1 + (v2 + 113)B2 ,

where the last step follows from B® = B! + B2. Since B! and B? are linearly independent
the solution is v1 + vs = vz + v3 = 0. This leads to the one-dimensional kernel Ker(B) =

Span((1,1,-1)%).

Example 14.2 (Kernel of a differential operator)

In Eq. (12.10) we have introduced linear differential operators L : C*([a,b]) —
C>([a,b]). These differential operators define homogeneous, linear differential equa-
tions of the form Lg = 0. The simple but important observation is that the space of
solutions to such a differential equation is, in fact, the kernel, Ker(L) of the differential
operator. O
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Problem 14.2 (Kernel of a linear differential operators)

Find the kernel of the linear differential operator

L= 4l 5 eomr) S cc®)
dxz2 dx ’

and determine its dimension.

Solution: The kernel of L consists of all solutions to the homogeneous differential equation
L(g) = 0. This equation is solved by gi(xz) = exp(z) and g2(z) = exp(—5z) and the most
general solution is a linear combination of g1 and g2. Moreover, g1 and g2 are linearly inde-
pendent. Indeed, evaluating the equation a1g1 + a2g2 = 0 at = 0 gives a1 + a2 = 0 and
evaluating it at & = 1 gives ane+ ase > = 0. These two equations are only solved simultane-
ously for az = a2 = 0. In conclusion Ker(L) = Span(g1, g2) and the kernel is two-dimensional.

Problem 14.3 (Image, rank, and kernel of a differential operator)

The space C* (R) of infinitely many times differentiable functions is infinite-dimensional which
makes it difficult to discuss the image. For a simple example which gets around this problem,
we restrict to the vector space V' = P3(R) of at most cubic polynomials. On this space we
introduce the first-order differential operator

d
L=z—-1:V->V. 14.6
T (14.6)
Determine the image, the rank, and the kernel of this operator.

Solution: Recall that the monomials (1,z,z?, %) form a basis of V. A general cubic and its
image under L are given by

p(x) = azz® + asz”® + a1z + ao = L(p)(z) = 2a3z® + azax® — ao . (14.7)

It follows immediately that Im(L) = Span(l,z% %) and rk(L) = 3. On the other hand,
Eq. (14.7) shows that the polynomials p for which L(p) = 0 are precisely those of the form
p(z) = a1z. This means that Ker(L) = Span(z) and dimg(Ker(L)) = 1.

14.1.3 Injective and surjective linear maps

It might be difficult to check if a map is surjective or injective, using the definitions
of these properties (see Def. 2.4). For linear maps, simple criteria can be formulated
in terms of the image and the kernel and their dimensions.

Proposition 14.2 (Criteria for surjectivity and injectivity) For a linear map f : V —
W we have the following statements:

(i) f surjective < Im(f)=W < rk(f) = dimp(W)

(i) f injective <&  Ker(f)={0} <« dimp(Ker(f))=0 (kernel trivial)

(The dimension statements on the right apply to finite-dimensional V and W.)
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Proof (i) The first equivalence, f surjective < Im(f) = W, is clear by the definitions
of surjective and the image. Turning to the second equivalence, if Im(f) = W, then
both spaces have the same dimension. Conversely, from Lemma 7.2, two vector spaces
with the same dimension and one contained in the other (here Im(f) C W) must be
identical.

(ii) Suppose f is injective and consider a vector v € Ker(f). Then f(v) = 0 = f(0),
which implies that v = 0 from injectivity and, hence, Ker(f) = {0}. Conversely,
assume that Ker(f) = {0}. Then, from linearity, f(vi) = f(vz) implies that f(v; —
va) = 0 so that vi — vy € Ker(f) = {0}. Hence, vi — va = 0 and f is injective. This
proves the first equivalence. The second equivalence is evident as the trivial vector
space, {0}, is the only one with dimension zero. O

Problem 14.4 (Criteria for surjective and injective maps)

Determine if the linear maps defined by the matrices A and B in Eq. (14.5) and the matrix

C : R?* — R? with
20 -1
C:<03 1)

are injective or surjective. Are these matrices invertible? Is the differential operator in Eq. (14.6)
injective or surjective?

Solution: In Exercise 14.1 we have found that the rank of A is maximal, and its kernel is
trivial. From Prop. (14.2) this means that A is bijective and, hence, invertible.

For the 3 x 3 matrix B in Eq. (14.5) we know from Exercise 14.1 that rk(B) = 2 and
dimg (Ker(B)) = 1, so B is neither surjective nor injective and, hence, not invertible.

The first two columns of C are linearly independent so that Im(C) = R?, rk(C) = 2 and
C is surjective. On the other hand, it is easy to see that the vector v = (3, —2,6)" satisfies

Cv = 0. Hence, v € Ker(C) so that the kernel is non-trivial and C is neither injective nor
invertible.

From Exercise 14.3, the differential operator L in Eq. (14.6) has a non-maximal rank and a
non-trivial kernel, so it is neither surjective nor injective.

14.2 The rank theorem

Summary 14.2 The rank theorem states that the rank of a linear map equals the
difference of the domain dimension and the dimension of the kernel. It can be used
to show that two wvector spaces are isomorphic if and only if they have the same
dimension. In particular, invertible linear maps only exist between vector spaces of the
same dimension. A linear map between same-dimensional vector spaces is invertible
iff its kernel is trivial or iff its rank is maximal. The rank theorem is implied by the
isomorphism theorem which states that for any linear map f : V. — W the quotient
V/Ker(f) is isomorphic to Im(f).
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14.2.1 Motivation

To develop a better intuition we recall our interpretation of vector subspaces as lines,
planes, and their higher-dimensional analogues through 0. We should think of both
the kernel and the image of a linear map in this way, the former residing in the domain
vector space, the latter in the co-domain.

Consider a linear map f : V' — W. The entire kernel, Ker(f), is mapped to the
zero vector, so it does not at all contribute to creating a non-trivial image. What is
more, the image of an affine plane v + Ker(f) under f consists of a single vector. To
see this consider two vectors vi = v+ wy and vy = v + wy, where wi, wo € Ker(f).
Then, since f(wi) = f(wy) = 0, it follows

fvi) = f(v+wi) = F(v) + f(wi) = F(v) = f(v) + f(wa) = f(v + wa) = f(va) .

This suggest that the dimensions associated to the kernel are lost under the action of
the map and that the remaining dimp (V') — dimp(Ker(f)) dimensions are available to
form the image of f. This is precisely the content of the rank theorem.

14.2.2 The theorem

Theorem 14.1 For a linear map f : V. — W between (finite-dimensional) vector
space V. and W we have

dimp(Ker(f)) + rk(f) = dimp(V) . (14.8)

Proof To simplify notation, set k¥ = dimp(Ker(f)) and n = dimp(V'). Let (v, -, V)
be a basis of Ker(f) which we complete to a basis (v1,..., Vg, Vit1,...,vy) of V. (This
is indeed possible from Theorem 7.2 (ii).) We will show that f(viki1),..., f(vn) forms
a basis of Im(f). To do this we need to check the two conditions in Definition 7.2.

(B1) First we need to show that Im(f) is spanned by f(viki1),-..,f(vn). We begin
with an arbitrary vector w € Im(f). This vector must be the image of a v € V| so
that w = f(v). We can expand v as a linear combination

n
vV = E ;V;
i=1

of the basis in V. Acting on this equation with f and using linearity we find

n

w=f(v)=/f (Z aiW) = Zaif(vi) = Z i f(vi) ,
i=1 i=1

i=k+1

where the last step follows since the vectors v; for ¢ = 1,... k are in the kernel so
that f(v;) = 0. Hence, we have written w as a linear combination of the vectors
f(Vk+1),- .-, f(va) which, therefore, span the image of f.
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(B2) For the second step, we have to show that the vectors f(vii1),...,f(va) are
linearly independent. As usual, we start with the equation

i Ozif(Vi) =0 = f ( i OéiVZ‘> =0.
i=k+1 i=k+1

The second of these equations means that the vector y ., 41 @iv; is in the kernel of f

and, given that vi,..., vy form a basis of the kernel, there are coefficients aq, ..., ax
such that
n k n
Z OéiViZ—ZOéiVi = Zaivi:O.
i=k—+1 i=1 i=1
Since (v1,...,vy)is a basis of V it follows that all a; = 0 and, hence, f(vVit1),..., f(Vn)

are linearly independent.

In summary, (f(Viks1), -, f(vn)) forms a basis of Im(f). Hence, by counting the
number of basis elements, we have dimp(Im(f)) =n — k = dimp(V') — dimp(Ker(f)).
O

We emphasize again that this theorem has a simple and intuitive interpretation. We
have dimp(V') dimensions of the domain vector space available but the dimy(Ker(f))
dimensions of the kernel are removed since the entire kernel is mapped to zero. Hence,
the difference of these two dimensions is available to account for the dimension of the
image.

Example 14.3 (Structure of a linear map R — R?)

Consider a linear map f : R® — R? with a two-dimensional kernel, dimg (Ker(f)) = 2.
In this case the dimension formula (14.13) implies rk(f) = dimg (R3) —dimg (Ker(f)) =
3—2 =1, so the image of f is one-dimensional. In other words, f has removed the two
kernel dimensions by mapping them to the zero vector so that one dimension remains
available to create the image. This is schematically illustrated in the figure below.

T
RS v F Ker(f) TMEfv) R
Im(f)
Ker(f)
pR _-fo
e

The entire two-dimensional kernel Ker(f) is mapped to the zero vector, while any
affine plane v + Ker(f) is mapped to the single vector f(v). In this way, a one-
dimensional image, Im(f), is created, and the image becomes isomorphic to the set of
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all affine planes v + Ker(f), a statement that will be made more general and precise
in Theorem 14.3. |

Problem 14.5 (Checking the rank theorem)

Check the rank theorem for the matrices A and B in Eq. (14.5) and for the differential op-
erator L in Eq. (14.6).

Solution: From Exercise 14.1 the 2 x 2 matrix A : R? — R? has tk(A) = 2 and dimg (Ker(4)) =
0. Hence, we have dimg(Ker(A)) 4 rk(A4) = 0 + 2 = dimg (R?).

For the 3 x 3 matrix B : R®* — R® we have found in Exercise 14.1 that rk(B) = 2 and
dimg (Ker(B)) = 1 so that dimg(Ker(B)) + rk(B) = 1 + 2 = 3 = dimg(R?).

Finally, the operator L : V' — V on the space V of at most cubic polynomials in Eq. (14.6) has
rk(L) = 3 and dimgr(Ker(L)) = 1, as was shown in Exercise 14.3. This means dimg(Ker(L)) +
k(L) = 1+ 3 = 4 = dimg (V).

14.2.3 Easy conclusions from the rank theorem

We can use the rank theorem to derive an upper bound on the rank of a linear map
f:V — W. Since the image of f is a vector subspace of W it is clear that rk(f) <
dimp(W). On the other hand, the rank theorem implies that dimp(V) — rk(f) =
dimp(Ker(f)) > 0, so that rk(f) < dimg(V'). Together, this leads to

rk(f) < min (dimg(V'), dimp(W)) . (14.9)

If this bound is saturated the rank of f is called maximal. For an m X n matrix
A:F" — F™ Eq. (14.9) reads

rk(A) < min(n,m) , (14.10)
so the rank of a matrix cannot exceed the number of its rows and columns.

Another simple and useful conclusion from the rank theorem is that injective linear
maps preserve dimension.

Corollary 14.1 Let f : V — W be an injective linear map and U C V a (finite-
dimensional) vector subspace. Then dimp(U) = dimyp(f(U)).

Proof Define the restricted map g = f|u, so that f(U) = Im(g). Since f is injective,
so is its restriction g and from Prop. 14.2 (ii) this means that dimg(Ker(g)) = 0. Hence,
we have dimp(f(U)) = dimp(Im(g)) = rk(g) = dimp(U), where the rank formula (14.8)
applied to g has been used in the last step. O

14.2.4 Isomorphisms

Recall that a (vector space) isomorphism f : V — W is a bijective linear map and
that two vector spaces V and W are called isomorphic, denoted as V' = W, if an
isomorphism f: V — W exists. We have seen in Section 12.2.1 that an n-dimensional
vector space over [F is isomorphic to the coordinate vector space F". We can now
generalize this statement and use the rank theorem to obtain a simple criterion for
two vector spaces to be isomorphic.
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Theorem 14.2 Two (finite-dimensional) vector spaces are isomorphic if and only if
they have the same dimension.

Proof ’=’:1If the vector spaces V and W are isomorphic there exists an isomorphism
f:V — W. Since f is bijective it follows from Prop. 14.2 that rk(f) = dimg(W) and
dimp(Ker(f)) = 0. Inserting this into the rank formula (14.13) leads to dimg(V) =
'<’: Suppose the two vector spaces V and W have the same dimension n = dimg(V') =
dimp(W). First, choose bases (v1, ..., vy) for Vand (wy, ..., w,) for W. Theorem 12.1
tells us there exists a unique linear map f : V. — W with f(v;) = w; for i =
1,...,n. For a vector v.= >, a;v; we have, from linearity, that f(v) = >, a;w;
and since the w; form a basis of W this shows that f is surjective. Prop. 14.2 then
implies that rk(f) = dimp(W) = n. Inserting this into the rank formula (14.8) implies
dimg(Ker(f)) = 0, so, from Prop. 14.2; f is also injective. Hence, f is an isomorphism
and V and W are isomorphic. O

We have seen earlier that being isomorphic is an equivalence relation on the (finite-
dimensional) vector spaces over a given field F. The associated equivalence classes
consist of all vector spaces isomorphic to each other. We can now easily describe these
equivalence classes: they contain all vector spaces over F with the same dimension.

14.2.5 The inverse of a linear map

It is clear from Theorem 14.2 that a linear map f : V' — W can only have an inverse
if V' and W have the same dimension (or else we would have an isomorphism between
vector spaces of different dimensions which the theorem excludes). Of course a given
linear map between vector spaces with the same dimension does not have to be an
isomorphism but we can use the rank theorem to derive simple criteria for when this
is the case.

Corollary 14.2 Let f : V — W be a linear map between two (finite-dimensional)
vector spaces with the same dimension. Then the following statements are equivalent.

(i)  f is an isomorphism (has an inverse)
(i)  dimp(Ker(f)) =0 (kernel trivial)
(iii) tk(f) = dimp(V) (rank mazimal)

Proof Proving the equivalence of three statements seems a lot of work. A common
trick which simplifies matters is to show the ’cyclic’ implications (i) = (i) = (iii) =
(i) from which all the others follow.

(i) = (ii)”: If f is an isomorphism then it is injective and, hence, from Prop. 14.2 (ii),
we have dimp(Ker(f)) = 0.

'(ii) = (iii)’: If dim — F(Ker(f)) = 0 then the dimension formula (14.13) implies that
rk(f) = dimp (V).

(iii) = (1) If tk(f) = dimp(V) = dimp(W) then Prop. 14.2 (i) implies that f is
surjective. Further, inserting rk(f) = dimp(V) into the dimension formula (14.13)
leads to dimp(Ker(f)) = 0 which, from Prop. 14.2 (ii), means that f is injective.
O
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So, a linear map f : V — W between two vector spaces of the same dimension is an
isomorphism iff its kernel is trivial or iff its rank is maximal.

Applied to matrices, Theorem (14.2) means that only square matrices can have an
inverse. From Cor. 14.2; such a matrix is invertible iff its rank is maximal and this is
the case iff its column vectors are linearly independent.

Problem 14.6 (Checking if a matrix is invertible)

Are the following matrices invertible?

-3 2 0 1-3 9
A= 1-1-21, B=|-1 0-3
5-8 0 2 4-2
Solution: Since the equation
. —3a1 + 200
OiOqu—‘rOzQAQ—FOngg: a1 — g — 203 = ar=as =a3 =0
5@1 — 8@2

only has the trivial solution, a; = 0, the columns of A are linearly independent and the rank
is maximal, rk(A) = 3. Hence, A is invertible.

It is easy to see that B(—3,2,1)7 = 0, so the kernel of B is non-trivial and the rank non-
maximal. Therefore, B is not invertible.

14.3 Another proof of the rank theorem*

Our proof the rank theorem in Section 14.2.2 has been elementary. We have explicitly
constructed bases for the various vector spaces to determine dimensions in order to
verify the dimension formula. There is a slightly more abstract approach which provides
more insight into the structure of linear maps and which relies on the results for vector
subspaces and quotients in Chapter 8. The reader who has skipped this material at
first reading should move on to the next chapter.

Consider a linear map f : V — W with kernel Ker(f). We know that f maps the
entire kernel to the zero vector and also that the affine planes v + Ker(f) are each
mapped to the single vector f(v). This structure is reminiscent of the quotient vector
space construction we have discussed in Section 8.2. Recall that the quotient V/Ker(f)
consists precisely of the affine planes v + Ker(f) and on each these the map f only
has a single value. This means we can write down a well-defined map

f:V/Ker(f) = Im(f) , f(v+Ker(f)) == f(v), (14.11)

whose domain is the quotient V/Ker(f). Clearly, this map is linear as it inherits the
linearity properties from f. What is more, since we have divided by Ker(f), there is no
obstruction to injectivity. In fact, the kernel Ker(f) is the zero vector of the quotient
V/Ker(f). Moreover, since we have replaced the co-domain by Im(f) the map fis
surjective. It appears that f is an isomorphism and this is shown in the following
theorem.
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Theorem 14.3 (Isomorphism theorem) The map f defined in Eq. (14.11) is a vector
space isormorphism. Hence, for a linear map f :V — W, we have

V/Ker(f) = Im(f) . (14.12)

Proof The linearity of f in Eq. (14.11) follows directly from the linearity of f. It is
obviously surjective since the co-domain is Im(f). To show injectivity, set U = Ker(f)
and start with an element v+ U € Ker( f ) in the kernel. It follows from the definition,
Eq. (14.11), of f that 0 = f(v 4+ U) = f(v), which implies v € U. This means that
v+ U = U which is the zero vector in V/U. Hence, the kernel of f is trivial and, from
Prop. 14.2 (ii), this means f is injective. a

The rank theorem now follows very easily from this isomorphism statement and the
dimension formula for quotient spaces.

Theorem 14.4 For a linear map f : V. — W between (finite-dimensional) vector
spaces V. and W we have

dimp(Ker(f)) + rk(f) = dimp(V) . (14.13)

Proof From Theorem 14.2 we know that the isomorphism (14.12) implies equality
of dimensions, so that dimp(V/Ker(f)) = dimp(Im(f)) = rk(f). On the other hand,
Theorem 8.2 implies that dimp(V/Ker(f)) = dimp(V) — dimp(Ker(f)). Combining
these two equations gives the rank theorem. O

Application 14.1 Coding theory

Coding theory deals with the problem of errors in information such as they may arise when
information is transmitted in the presence of noise. Whenever information may be faulty,
methods are required for both error detection and error correction. A simple but potentially
inefficient method is to transmit the information repeatedly. Here, we would like to discuss
a more sophisticated method, referred to as Hamming code, which is based on some of the
linear algebra methods we have explored.

Information is conveniently described in binary form, that is, as a sequence of bits,
Bi,...,Bn € {0,1}. Mathematically, a bit can be seen as an element of the finite field
F, = {0,1} which we have introduced in Example 4.3 and information encoded by n bits
can be seen as an element of the n-dimensional vector space V = F5 over the field F2. In
other words, we can think of the above bit sequence as a column vector (81, ..., 8,)" € F3.
Through this simple re-interpretation all the tools of linear algebra are now available to deal
with information.

To be specific we focus on the case of four bits, 8 = (81, B2, 83, B1)", but the method can
be generalized to arbitrary dimensions. We begin by writing down the matrix

, (14.14)

Il
—
m»—t
g
N
Il
= oo
O = O
== O
SO =
_ o
O ==
==

whose columns consist of all non-zero vectors of Z3. Clearly, rk(H) = 3 (since H', H?, H*
are linearly independent) and, from Eq. (14.13), its kernel has dimension dimp, (Ker(H)) =
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7 —3 = 4. It is easy to see that this four-dimensional kernel has a basis consisting of the
vectors

k; = (1,0,0,0,0,1,1)" k. = (0,1,0,0,1,0,1)"
ks = (0,0,1,0,1,1,0)" ki =(0,0,0,1,1,1,1)T -
The key idea is now to encode the information stored in (i, ..., B4 by forming the linear

combination of these numbers with the above vectors k;. In other words, we encode the
information in the following seven-dimensional vector

4
vV = Z'szl o
1=1

Note that, given the choice of the vectors k;, the first four bits in v coincide with the actual
information fi, ..., Bs. By construction, the vector v is an element of Ker(H).

Now suppose that the transmission of v has resulted in a vector w which may have an error
in at most one bit. How do we detect whether such an error has occurred? We note that the
seven-dimensional standard unit vectors ei,...,e; are not in the kernel of H. Given that
v € Ker(H), it follows that none of the vectors w = v + e; is in Ker(H). This means the
transmitted information w is free of (one-bit) errors, if and only if w € Ker(H ), a condition
which can be easily tested.

Suppose w ¢ Ker(H) so that the information is faulty. How can the error be corrected?
If bit number ¢ has changed in w the correct original vector is v.= w —e;. Since v € Ker(H)
it follows that Hw = He; = H'. Consequently, if Hw equals column i of H then we should
flip bit number ¢ in w to correct for the error.

Let us carry all this out for an explicit example. Suppose that the transmitted message
isw=(1,1,0,0,0,1, l)T and that it contains at most one error. Then we work out

First, w is not in the kernel of H so an error has indeed occurred. Secondly, the vector Hw
corresponds to the second column vector of H so we should flip the second bit to correct
for the error. This means, v = (1,0,0,0,0,1,1)” and the original information (which is
contained in the first four entries of v) is 8 = (1,0,0,0)7.

By paying the price of enhancing the transmitted information from four bits (in 3) to seven
bits (in v) both a detection and correction of one-bit errors can be carried out with this
method. Compare this with the naive method of transmitting the information in B twice
which corresponds to an enhancement from four to eight bits. In this case, a one-bit error has
occurred if the two transmissions differ. However, without further information it is unclear
which transmission is the correct one, so there is no method for error correction.
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l

Exercises

(f=challenging)

14.1

14.2

14.3

14.4

Image, kernel, and rank of matrices
Find the images, kernels, and ranks of
the following matrices:

O =l
!
Il

7 N

seen as linear maps R" — R™. Verify
the rank theorem in each case.

Rank of 3 x 3 matrices

Consider matrices A € M3 3(R).

(a) Show that rk(A) < 3iff det(A) = 0.
(b) Work out for which values of a,b €
R the matrix

1-4 2
A=|-2 0-1]|, B=
3—4 a

N W

1
—4
b

—Q O

have maximal rank and are, hence, in-
vertible.

Image, kernel, and rank for differential
operators

Consider the space Px(R) of polynomi-
als with degree less equal k£ and D =
d/dz. Find the image, kernel, and rank
of the following maps:

(a) D : V3 — V2

(b) D : Vi — Vi—y for k € Z7°

(c) DP : Vi, — W for p,k € Z”°.

Are the maps injective or surjective?
Verify the rank theorem in each case.

Rank of matrices
Determine the rank of the matrices

12 10 b
AZ(al)’ BZ(aa—l)

for all a,b € R.

14.5

14.6

14.7

14.8

Some properties of matrix ranks

For matrices A, B of suitable size, show
that

(a) rk(AB) < min(rk(A), rk(B))

(b) rk(AB) > rk(A) +rk(B) —m where
m is the number of columns of A

(c) tk(AT A) = rk(A).

Direct sums and maps

For V.= U; @& Uz and linear maps
f1 ZU1 —>W, f22U2—>WShOWthe
following.

(a) There exists a unique linear map
f V. - W with fly, = fi and
f|U2 = fa.

(b) f(V) = f1(Ur) + f2(U2).

(c) tk(f) < rk(f1) 4 rk(f2) with equal-
ity iff f1(U1) N f2(U2) = {0}.

Coding theory

Use the Hamming code described in
Application 14.1 to decide whether the
information contained in the vectors

(1,1,1,1,1,1,1)
(1,1,1,0,1,1,1)
(1,1,1,0,0,1,1)

has one-bit errors and find the correct
original information in each case.

Sequences'
For vector spaces Vy, Vi, Vo we have
linear maps

T
T
T

O =

Wi =
Wo =
W3 =

LRt

o 8 8y By, & o)

which satisfy fi+1 0 fi = 0 for i =
0,...,2.

(a) Show that Im(f;) C Ker(fi+1) for
i=0,...,2.

(b) If Im(f;) = Ker(fit1) for ¢ =
0,...,2 show that f; is injective and
f2 is surjective.

(¢) Under the same assumptions as
in part (b), show that dimp(Vi) =
dlm]F(Vb) + dim]F(VQ).



15
Linear maps in terms of matrices

At this point, we have a full understanding of linear maps between coordinate vectors
which, as we have seen, can be identified with matrices. This is possible thanks to the
existence of a canonical basis, the standard unit vector basis. On the other hand, linear
maps between general vector spaces might still seem somewhat abstract. Can we find
a more "hands-on’ description of linear maps, in general? For general vector spaces no
preferred choice of basis is available. However, we can still, arbitrarily, choose a basis
on the domain and co-domain vector space. It turns out, relative to such a choice of
bases, a linear map between abstract vector spaces can be described by a matrix. We
will now discuss how this works.

15.1 Matrices representing linear maps

Summary 15.1 A linear map f : V. — W can be represented by a matriz, relative
to a choice of bases on V and W . This matriz maps coordinate vectors in the same
way as [ maps the associated vectors. It can be computed by working out the images
of the basis vectors for V under f.

15.1.1 Basis choice

Start with a linear map f : V — W between two (finite-dimensional) vector spaces
V and W over F. On each vector space we introduce a basis and a coordinate map,
as defined in Section 12.2.1. The resulting set-up is summarized in Table 15.1. The

Table 15.1 Set-up to represent a linear map f : V — W by a matrix.

’ Vector space \ Dimension \ Basis \ Coordinate map \ Coordinate vector
\%4 n (Vi,e ey Vi) p: "=V acF"
%% m (W1y.ooy W) Y F W BeF™

diagram below indicates the idea for how to assign a matrix A to the linear map f.
The m x n matrix A should act on coordinate vector ’in the same way’ as f acts on
the associated vectors.
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ola) €V d WS ()
4 P
Fn» F™ s 3
LT (15.1)

More precisely, if the coordinate vectors are related by 3 = Aca, then the correspond-
ing vectors ¥(3) and ¢(a) should be related by ¥(8) = f(¢(a)). In mathematical
parlance, this is expressed by saying that the above diagram commutes: the result does
not depend on the path chosen in the diagram. This means the desired matrix A can
be written as

A=y tofogp. (15.2)

This can be seen by going from F™ to F™ in the above diagram using the 'upper
path’, via V and W.

The matrix A in Eq. (15.2) is said to be the matrix which represents the linear map f
relative to the bases (vq,...,v,) of V and (wq,...,w,,) of W. An important special
case is the one of a linear map f : V — V with the same domain and co-domain
vector spaces and the ’in-basis’ and ’out-basis’ chosen to be the same, so w; = v;. In

this case, A is simply referred to as the representing matrix for f relative to the basis
(Vi,...,vp) of V.

15.1.2 Computing the representing matrix

How do we find the representing matrix A explicitly? The images f(v;) of the V basis
vectors can always be written as a linear combination of the basis vectors for W so we
have

\4 ) = Zaijwi (153)
i=1

for some coeflicients a;; € F. In fact, we know from Theorem 12.1 that the linear map
is uniquely characterized by these images. We denote the standard unit vectors on F”
by e; and the ones on F™ by €;. Their images under the coordinate maps

ple)=vi,  Y(&)=w; (15.4)

are precisely the basis vectors for V and W (see Eq. (12.8)). Following Eq. (13.1), we
find the entries of the matrix A by acting on the standard unit vectors.

(15.2)

VLo fople;) "E plo f(vy)
e (Z aigW ) =3yt wi) "2 Y age

Hence, the entries of A are the coeflicients a;; which appear in the expansion (15.3) of
the images of the basis vectors. We summarize this result in the following theorem.

Ae4
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Theorem 15.1 (Matriz describing a linear map) Let V' and W be vector spaces over
F with bases (v1,...,Vy) and (Wi,...,Wy,), respectively, and f : V — W be a linear
map. The entries A;; of the m x n matriz A : F* — F™ representing f relative to this
choice of bases can be read off from the images of the basis vectors via

f(vy) = ZAisz' . (15.5)

The ranks of f and its representing matriz A are equal, vk(f) = rk(A).

Proof It remains to show the final statement on the equality of ranks. From Eq. (15.2)
and Im(f) = f(V) we have

Im(A) =Im(y ™" o fop) =7 (f(o(EF))) = ¢~ (f(V)) = ¢~ (Im(f)) .

Cor. 14.1 applied to ¥~! and U = Im(f) then implies that dimp(»~'(Im(f)) =
dimp(Im(f)) = rk(f), which completes the proof. ad

While the above discussion might seem somewhat abstract it has led to a practical
method to extract the matrix A which describes a linear map f relative to a choice
of bases. Simply work out the images of the domain basis vectors and express them
as linear combinations of the co-domain basis, as in Eq. (15.5). The coefficients which
appear in this way are the entries of the desired matrix. More precisely, by careful
inspection of the indices in Eq. (15.5), it follows that the coefficients which appear in
the image of the ;' basis vector form the j* column of the matrix A. This simple
rule is one of the most useful ones in linear algebra. (See Exercises 15.6 and 15.7 for

more on the relationship between linear maps and matrices.)

15.1.3 Examples for matrices describing linear maps

Note that the above theorem is even relevant for linear maps between coordinate
vector spaces. In this case, we have a canonical identification between linear maps and
matrices by choosing the standard unit vector bases. However, other bases choices on
coordinate vector spaces are possible and we might like to know about the associated
representing matrix. This is illustrated in our first exercise.

Problem 15.1 (Matrix describing a linear map between coordinate vectors)

Consider the linear map B : R? — R? defined by the matrix

1 0
b (12).
For simplicity, choose the same basis for the domain and the co-domain, namely vi = w; =

(1,2)T and vo = we = (—1,1)T. Compute the matrix B’ which represents the linear map B
relative to this choice of basis. Discuss how the diagram (15.1) specializes for this example.
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Solution: The first step is to work out the images of the domain basis vector and write them
as linear combinations of the co-domain basis.

BV1Z<_}1>:—1V1—2V2, BV2:<:5):—1V1+0V2.

Arranging the coefficients from Bv; into the first column of a matrix and the coefficients
from Bvs into the second column we find

;[ —-1-1
o (371).
This is the matrix representing the linear map B relative to the basis (v1, va).
To see what exactly this means it is useful to think about the diagram (15.1). We start

by working out the coordinate map ¢ : R* — R? associated to the basis (vi,v2). For a
coordinate vector o = (a1, ag)T we have, using linearity,

. . (15.4) - a1 — Q2
ola) = p(aier + azez) = arp(er) + azp(e2) =" a1vi +azve = (2a1 4 az) .

The diagram below is the specialized version of diagram (15.1) and it captures the meaning
of the representing matrix B’. If B’ maps between two coordinate vectors then the original
linear map B maps between the corresponding vectors under the coordinate map ¢.

1 — a2 B 1 — 2
(s o) =ta) 20 = (o ) )
@ @

al | ) . [ o1 — Q2
(OQ)—a, = ,B-Ba-( “oay )

Said another way, starting with the vector a in the lower left corner of the diagram, both
the upper and the lower path lead to the same vector ¢(3) in the upper right corner.

In order to develop a better conceptual understanding it might be useful to discuss a
linear map which is not defined by a matrix.

Problem 15.2 (The matrix representing a differential operator)
Consider the vector space V' = P(R) of at most quadratic polynomials and the linear map
d
D=—:V->V,
dx

obtained by taking the first derivative. Write down the coordinate map ¢ : R® — V for the
basis (1, z, xz) of monomials and find the matrix A, which represents D relative to this basis.
Work out the first derivative of the polynomial p € V, where p(z) = 7 + 3z + 527, by using
the matrix A.

Solution: The coordinate map reads explicitly

pla) = a0+ a1z + oz’
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To find the matrix A which represents D we compute the first derivatives of the basis mono-
mials and write them as linear combinations of the same monomials.
(1)=0=0-14+0-z+0-2°
(2)=1=1-14+0-2+0-2°
H=22=0-142-2+0-2°

)
EN=Ne

Arranging the coefficients in each row into the columns of a matrix we arrive at

A=

SO O

1
0
0

o N O

This matrix generates the first derivative of quadratic polynomials relative to the standard
monomial basis.

To understand the meaning of this matrix, we consider the specific polynomial p(z) =
©0((7,3,5)T) = 7+ 3z 4 522 with first derivative p’(z) = ((3,10,0)T) = 3 + 10z. Since the
matrix A describes the first derivative map it must map the coordinate vector (7,3,5)” for p
into the coordinate vector (3,10, O)T for p’. This is easily checked.

7
Al3 ] =110
5 0

The correspondence between operators acting on functions and matrices acting on
coordinate vectors illustrated in the previous example is at the heart of quantum me-
chanics. Historically, Schrédinger’s formulation of quantum mechanics is in terms of
(wave) functions and operators, while Heisenberg’s formulation is in terms of vectors
and matrices. The relation between those two formulations is precisely as in the above
example.

The next two exercises, provide interesting applications of linear maps and their rep-
resenting matrices to geometry.

Problem 15.3 (The cross product as a linear map)

Define a map f : R® — R3 by f(v) = n x v, where n = (n1,n2,n3)7 € R® is a fixed
vector. Show that this map is linear and find its representing matrix A relative to the basis
of standard unit vectors. Assume that n is a unit vector and consider an ortho-normal basis
(n,u, uz) of R®, where uz = n x u;. Compute the matrix A" which represent f relative to
this basis.

Solution: The map is linear since the cross product is linear in its second argument. To find
the representing matrix A we work out the action of f on the standard unit vectors.

f(e1) =n X ey = nzez —n2e3
f(e2) = n x ea = —nze; +nie3

f(e3) =nXxXe3z=nze; —niez .
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Arranging the coefficients which appear in f(e;) into the 4 column we get the matrix

0 —Nn3 N2
A = ns 0 —nN2 . (156)
—nN2 N1 0

It follows that f(v) = n x v = Av for all vectors v € R®. The interesting conclusion is
that vector products with a fixed vector n can also be represented by multiplication with an
anti-symmetric matrix of the form (15.6). Everything is much more elegant in index notation
where

Aij = [f(ej)li = n x e;li = emmnilej]i = eimnd = emjnr , (15.7)
so that A;; = €;x;nk, in agreement with Eq. (15.6).

For the images of the ortho-normal basis (n, ui, uz) we find

f(n) =nxn=0=0n+0u; + Ous

flu) =nxu; =uz =0n+0u; + lup

fluz)=nxuz=nx(nxu)=(n-u)n—|n*u; =0n+ (—1)u; + Ous
——

=0

Filling the coefficients from each equation into the columns gives the representing matrix

Problem 15.4 (Reflections in R® as linear maps)

Define the map f : R® — R3 by
f(v)=v—-2(n-v)n, (15.8)

where n € R? is a unit vector. Show that f is linear and that it satisfies f o f = idgs. Find the
representing matrix A for f relative the standard unit vector basis (e1, ez, e3). Next consider
a basis (u1,uz,n) of R? with n-u; = n-us = 0 and determine the representing matrix B
for f relative to this basis. Interpret your results geometrically.

Solution: This map is linear due to linearity of the dot product. To show that it squares to
the identity we can carry out an explicit computation.

fofw)=fv-2n-vin)=v—-2n-vin—2n-(v-2n-v)n))n=v

Next, we determine the matrix A which represents f relative to the standard unit vector basis
(e1, ez, e2). Working out their images, f(e;) =e; —2(n-e;)n = e; —2n;n = (d;; — 2nin;)e;,
we find
1 —2n?|—2n1na|—2n1n3
Aij = 05 — 2niny , A= | —2nin2|1 — 2n2|—2nans
—271171,3 —2712713 1-— 277,%

Now consider the basis (u1, uz, n). What is the matrix B representing f relative to this basis?
Inserting these basis vectors into the definition, Eq. (15.8), of f and usingn-u; =n-uz =0
as well as |n| = 1 we find
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fla)=ur, f(u2)=u2, f(n)=-n,

so the representing matrix is

1
B=10
0

SO = O
= o O

This matrix makes the geometrical interpretation of f obvious. While the coordinates relative
to the vectors ui, uz remain unchanged, the coordinate relative to n is inverted. This means
that f describes a reflection on the plane perpendicular to n. Of course this explains why f
squares to the identity — performing two reflections successively leaves a vector unchanged.
The more complicated matrix A above describes the same reflection but relative to the basis
of standard unit vectors.

15.2 Change of basis

Summary 15.2 Two matrices A and A’ which describe a linear map f : V. — W
relative to different basis choices on V. and W are related by A’ = QAP~!. The
matrices P and Q are invertible and describe the change of bases. For a linear map
f:V =V this specializes to A’ = PAP™L.

As we have seen, a linear map can be described by a matrix which depends on a choice
of bases. We would like to understand how the representing matrix for a given linear
map changes if the bases are changed.

15.2.1 General case

As usual, we start with a linear map f : V. — W between two (finite-dimensional)
vector spaces V and W over the field F. The set-up for the choice of bases, coordinate
vectors and maps is summarized in Table 15.2.

Relative to the unprimed basis, f is represented by the m x n matrix A and relative
to the primed basis by the m x n matrix A’. Our goal is the work out the relationship
between those two matrices. From Eq. (15.2) they can be written as A =¢~1o fop

Table 15.2 Set-up to represent a linear map f: V — W by a matrix.

’ Vector space \ Dimension \ Basis \ Coordinate map \ Coordinate vector ‘
Vv n (V1,23 Vn) p:F" =V ac "
(Vi,...,v)) o Fr =V o e "
w m (Wi,..o s W) Y ™= W B eFm
(Wi, .., wl) O Fm S W B eF™

and A/ =’ o fo¢'. A short calculation gives
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A=y¢ " ofoyp =9 ooy lofopoplop
N—— N——

:idw :idV
= w'_l owow_l ofogpogo_l o<p/ = QAP_1 .
=:Q =A =pP-1

All we have done is to insert two identity maps in the second step and then combine
maps differently in the third step. The result

A =QAP™! (15.9)

describes the basis transformation of a matrix and is one of the key equations of linear
algebra.

What is the interpretation of the matrices Q = w’_l ot : F™ — F™ and P =
<p’_1 o : F* — F™ in this equation? Focusing on P for now, consider a vector v € V
with coordinate vectors o = o~ 1(v) and o’ = ¢'~'(v) relative to the two choices
of bases. Then, o’ = gp’_l(v) = <p’_1 o p(a) = Pa and a similar argument for Q
gives B = @B. In summary, the matrices P and @ can be viewed as coordinate
transformations, relating the coordinate vectors relative to the primed and unprimed

bases, that is
o =Pa, [ =08, (15.10)

provided that p(a) = ¢’ (') and ¥(B) = ¥'(3).

Given this interpretation of P and @ Eq. (15.9) can be understood intuitively. When
acting on a coordinate vector a’, the matrix P! on the right-hand side of Eq. (15.9)
first converts this coordinate vector into its unprimed counterpart «, on which the
matrix A can sensibly act. Finally, Q converts the result back into a coordinate vector
relative to the primed bases. Altogether, this reproduces the action of A’.

To compute the entries of P we can start with the equation Pe; = ). Pj;e;, apply
¢’ to both sides and use Eq. (15.4). This results in v; = >, P;;v; and, from a similar
argument, we have w; = > Q;;w;. In conclusion, the entries of P and @ are obtained
by expanding the unprimed basis vector in terms of the primed ones.

V= ZPZ‘J‘V; y W, = Zwai . (15.11)

The above results are summarized in the following theorem.

Theorem 15.2 (General basis change) Let V' and W be vector spaces over F and f :

V — W be a linear map. Suppose relative to bases (vi,...,vy,) of V and (wy ..., Wy,)
of W the map f is represented by a matriz A and relative to bases (Vi,...,v.) of V
and (Wi ...,wl ) of W by a matriz A’. Then the two matrices are related by

A =QAP™' where v;= ZPI-J-VQ and w; = ZQUWQ . (15.12)

Proof This follows from the above arguments. O
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15.2.2 Identical domain and co-domain

An important special case of our general discussion above arises when the vector spaces
V and W are equal and we choose the same bases on domain and co-domain, so that
v; = w; and v}, = w}. Then, Theorem 15.2 specializes to the following statement:

Corollary 15.1 (Basis change for identical domain and co-domain) Let V be a vector
space and f :V — V be a linear map. Suppose relative to a basis (vi,...,vy) of V
the map f is represented by a matriz A and relative to a basis (Vi,...,v.) of V it is
represented by A’. Then the two matrices are related by

A’ = PAP™' where v;= ZPMVQ . (15.13)

Proof This follows immediately from Theorem 15.2 by setting W =V, w; = v,,
w; =v} and Q = P. O
Eq. (15.13) is another key equation of linear algebra which describes the basis trans-

formation of a matrix for same bases changes on domain and co-domain.

For linear maps f : F* — F™ between coordinate vector spaces we can consider an
interesting special case. In this case, we can choose the unprimed basis to be the stan-
dard unit vector basis, (vi,...,v,) = (e1,...,€,), so that the representing matrix
A is the one canonically identified with f. Then, the second Eq. (15.13) turns into

vl =37,(P7")ije;. Hence, the matrix A identified with f is transformed to a matrix

A’ relative to a new basis (v,...,v)) by
A'=PAP™' where P'=(v},...,Vv)). (15.14)

The point is that, in this case, the basis transformation P! is easily written down
since its columns are the new basis vectors v..

Problem 15.5 (Basis transformation of a matrix)

Relative to the unprimed basis (vi = e1,v2 = e2) of standard unit vectors, a linear map
A :R? — R? is described by the matrix A = diag(1, —1). Find the representing matrix A’ for

this linear map relative to the basis v = (1, —1)/v/2, v4 = (1,1)/V2.

Solution: One way to proceed is as before, by applying Theorem 15.1, and compute the
images of the basis vectors in order to read off A’. This leads to

Av] = 0vi +1vs | Avh = 1v] + 0vy |
and arranging the coefficients on the right-hand sides into the column of a matrix gives
; (01
A= (1 O) .

Alternatively, we can determine A’ from Eq. (15.14). This leads to

1 _ s oy L 11 1 /141
rr=mn=g5 () = r=500)
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and applying this basis transformation gives

;L 1 {1-1\[1 0 11\ (01
w=rar =3 (1) (5-0) (1) = (16)

in accordance with the earlier result.

Problem 15.6 (Basis change for a differential operators)

In Exercise 15.2 we have considered the vector space V. = P2(R) of at most quadratic
polynomials and the derivative map D = % : V. — V. We have shown that, relative
to the monomial basis (vi = 1,ve = z,vs = 1:2) of V', the derivative D is represented

by the matrix A in Eq. (15.2). What is its representing matrix A’ relative to the basis
Vi=1l4z,vh=1—-2vi=1+2+z?)?

Solution: A direct computation from Theorem 15.1 leads to

D(vi) = 1= 1vi+ Ivh+0vh 1-1 3
/ 1./ 1.7/ / / 1

D(Vg) = -1 = ’—avl — §V2 +0V3 = A — 1—-1-1

D(v3) = 142z = §vi — 5V3 +0v; 000

On the other hand, by comparison with the second Eq. (15.13), expanding the primed basis
vectors in terms of the unprimed ones gives

Vi =Vi+ Ve 1 11 1 11-2
vh=vi—va = pPl'l=|1-11 = P=-(11-1
Vi = vi4+v2+vs 0 01 2\o0 2
Performing the basis transformation from Eq. (15.13) gives
1 11-2 010 1 11 1 1-1 3
A =PAP'=Z[11-1 002 1-11)==[1-1-1],
2\o0 2/ \ooo/ \o o1 210 0 o0

in agreement with the earlier result.

15.2.3 Conjugate matrices

We say that two matrices 4, A’ € M,, ,(F) are conjugate if they are related by a basis
transformation (15.13), so if there exists an invertible matrix P € GL(F™) such that
A = PAP !,

Proposition 15.1 Conjugacy of matrices is an equivalence relation.

Proof We need to show reflexivity, symmetry, and transitivity.

‘Reflexivity’: To see that every matrix is conjugate to itself simply choose P = 1,,.
‘Symmetry’: If A is conjugate to A’, so A’ = PAP~! then A = P 'A’P so A is
conjugate to A’.

"Transitivity’: If A is conjugate to B and B is conjugate to C, so that B = PAP~!
and C = QBQ™!, then C = (PQ)A(PQ)~!. This means A is conjugate to C. O
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This means that M,, ,(F) partitions into disjoint equivalence classes, also called con-
Jjugacy classes. Each conjugacy class contains all the matrices related by a basis trans-
formation, so all the matrices which describe the same linear map.

Many problems in linear algebra are motivated by understanding these conjugacy
classes better. For example, we would like to be able to decide whether two given
matrices belong to the same class or not. A useful tool for this are class functions
— functions of matrices which only depend on the conjugacy class but not on the
particular element within each class. As we will see in Chapter 18, the determinant is
an example of such a class function. Another important problem is to find the ’simplest’
matrix in each conjugacy class — this leads to normal forms and diagonalization of
matrices (see Part VI).

l

Exercises

(f=challenging) represents L relative to the standard
monomial basis (1, x,z?) of V.
(c) Find the kernel of the matrix A,
that is, the vectors v satisfying Av =
12 0. Which polynomials p correspond to
A= <0 1) these vectors?

(d) Show by explicitly applying L that

15.1 A linear map in R? is given by the ac-
tion of the matrix

(a) Work out the matrix A’ which rep- Fhe polynomials p found in part (c) sat-
resents this linear map relative to the isty L(p) = 0.
basis vi = (1,1)7 and vo = (0,1)7. 15.4 A linear map f : R* — R?* is repre-
(b) Find a 2 x 2 matrix P such that sented by a matrix
A =PAP™.
(¢) What is the interpretation of the -1 1-1-1
matrix P? A— 1 0 1 1
15.2 A linear map f : R* — R? is defined 32_§ 32 9
by f(v) = (n-v)n+ v, where n € R® T2 272 2

is a unit vector.

(a) Find the representing matrix A of
f relative to the standard unit vector
basis.

(b) Find the representing matrix A’
of f relative to an ortho-normal basis
(n,u1,uz) of R3.

relative to the basis of standard unit
vectors.

(a) Find the matrix A’ which rep-
resents [ relative to the basis
(v,17V/23V/37V§1)7 where

_ T
(c) What is the geometrical interpreta- Vil =(1,1,1, _1)T
tion of f? V/2 =(1,-1,1,1) ”
15.3 Consider the vector space V = P2(R) V,3 =(1,1,-1, _1T)
of at most quadratic polynomials and vy =(1,1,-1,1)

define themap L:V — V b
P Y Also find the matrix P with A’

d?p dp PAP™Y.
L(p) = Tz + (- m)% +2p. (b) Use the results from part (a) to find
the matrix Ay which represents f* for
(a) Why is this map linear? k € N relative to the basis of standard

(b) Work out the matrix, A, which unit vectors.
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15.5

15.6

Cross product as a linear map’

For n € R? define the linear map fn :
R?® — R® by fu(v) = n x v, as in Ex-
ercise 15.3.

(a) Write down the matrix A, which
represents fn relative to the basis of
standard unit vectors. Show that the
map n — A, defines an isomorphism
R® — A3(R) with An(v) =n x v.

(b) Show that the matrices Bj which
represents odd powers, f25*1 are anti-
symmetric. Find the vectors ni which
correspond to By under the isomor-
phism in (b).

Isomorphism between linear maps and
matrices’

Let V., W be vector spaces over I, each
with a fixed basis, relative to which we
consider all representing matrices.

(a) Linear maps f,g € Hom(V, W) are
described by matrices A and B. Show
that the linear map af 4+ (g, where
a,B € F, is described by the matrix

15.7

aA+ BB.

(b) Denote by Ay the matrix which de-
scribes f € Hom(V, W). Show that the
map ¢ : Hom(V,W) — Hom(F",F™)
defined by f — Ay is a vector space
isomorphism.

(c) Use the result from part (b) to
proof the dimension formula (12.7).

Relation between GL(V) and GL(F™)T
Let V, W and U be three vector spaces
over F, each with a fixed basis, relative
to which we consider all representing
matrices.

(a) Two linear maps f : V — W and
g : W — U are described by matrices
A and B. Show that the linear map go f
is described by the matrix BA.

(i) If f € GL(V) is described by a ma-
trix1 A, show that f~! is described by
AT

(iii) Denote by Ay the matrix which
describes f € End(V). Show that the
map 2 : GL(V) — GL(n) defined by
f — Ay is a group isomorphism.



Part V

Linear systems and algorithms

We have now covered the theoretical foundations of vector spaces and linear maps.
They have been illustrated with many examples, mostly in a small number of dimen-
sions. However, we still have to develop efficient and systematic methods for calculation
which will also work for higher-dimensional cases. The key question is how to com-
pute with linear maps. Linear maps can always be described by matrices, relative to
a choice of bases, so what we require is methods to calculate with matrices.

As we will see, the basic ingredient of these methods are row operations on matrices.
In Chapter 16, we set up algorithms based on row operations in order to calculate
the rank and the inverse of a matrix. Linear systems and systems of linear equation
are studied in Chapter 17. As we explain, the algorithm for solving systems of linear
equations is also based on row operations.

Determinants are another method for calculating with matrices. In Section 10.2 we
have already introduced the determinant for 3 x 3 matrices and Chapter 18 general-
izes this discussion to matrices with arbitrary size. Determinants can be used to decide
whether a matrix is invertible, to calculate the matrix inverse and to solve (certain)
systems of linear equations. But they are also of theoretical importance and play a key
role in the theory of eigenvalues and eigenvector which will be developed in Part VI.






16
Computing with matrices

How do we compute the rank of a matrix and the matrix inverse? The rank has been
determined by counting the number of linearly independent column vectors while the
inverse has been computed by inserting an Ansatz into the defining equation (13.24).
Either method is cumbersome for larger matrices. The key ingredients of systematic,
algorithmic methods are row operations on matrices. These will first be introduced
and then applied to the calculation of the matrix rank and inverse.

16.1 Row operations

Summary 16.1 There are three elementary row operations for matrices: exchange
of rows, adding a multiple of one row to another and multiplying a row with a non-zero
scalar. Elementary row operations leave the span of the matrixz row vectors unchanged.
They form the basic steps of an algorithm, called Gaussian elimination, which can be
used to bring any matriz into upper echelon form.

16.1.1 Definition of row operations

We are working with elements in M,, ,,,(F), so matrices of size n x m with entries in
a field F. At the heart of algorithmic methods for computing with such matrices are
elementary row operations which are defined as follows.

Definition 16.1 The following manipulations of a matriz are called elementary row
operations:

(R1) Exchange two rows.
(R2) Add a scalar multiple of one row to another.
(R3) Multiply a row with a non-zero scalar.

Elementary column operations are analogous but carried out on the columns.

In the following, we will focus on elementary row operations but most of our state-
ments have analogues for elementary column operations. At any rate, we can think of
elementary column operations as row operations carried out on the transpose of the
matrix.

The key property of the elementary row operations is that they leave the span,
Span(Aj,...,A,), of the row vectors of an n x m matrix A unchanged. This is im-
mediately clear for row operations (R1) and (R3). To check this for (R2) consider
changing the first row A; to A; + SA,, so by adding a multiple of the second row.
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Span(Al,Ag,. .. ,An) = {O¢1A1 + agAg + - -- |O¢i € F}
= {1 (A1 + BA2) + (a2 — Bar)As + - [a; € F}
= Span(Al + 5A27 A27 RS An)

By a similar argument column operations leave the span, Span(Al,... A"), of the
column vectors unchanged.

16.1.2 Upper echelon form

The main purpose of row operations is to bring a matrix to a simpler, more convenient
form where certain properties can be read off easily. One important such form is the
upper echelon form which is useful to compute the rank and the matrix inverse. A
matrix A is in upper echelon form if it has the following structure.

ce-layg, *

a2j,

a'l"jr ..

Here the entries a;;, are non-zero for all ¢ = 1,...,r, all other entries above the solid
line are arbitrary (indicated by the %) and all entries below the solid line are zero. To
be clear, we formulate this in a definition.

0

Definition 16.2 A matriz is said to be in upper echelon form if the following condi-
tions are satisfied:

(E1) All entirely zero rows appear at the bottom of the matriz.
(E2) For each non-zero row 1, its first non-zero entry (a;;, in the above matriz) ap-
pears strictly to the right of the first non-zero entry in row i — 1.

The left-most non-zero entry in a row (a;j, in the above matriz) is called a pivot.

An important feature of the upper echelon form is that the non-zero rows are, in fact,
linearly independent. To see this, consider the equation 22:1 a;A; = 0 where A; are
the non-zero row vectors of the above matrix in upper echelon form. The pivot in the
first row vector A is in component j; but no other row vector has a non-zero j; entry.
It follows immediately that c; = 0. We can then repeat this argument with the second
row and continue until we have concluded that all o; = 0.

16.1.3 Algorithm to bring a matrix into upper echelon form

Our next step is to show that every n x m matrix can be brought into upper echelon
form by a sequence of row operations, using an algorithm called Gaussian elimination
or row reduction.

Algorithm (Gaussian elimination) The algorithm proceeds row by row. Let us assume
that we have already dealt with the first i — 1 rows of the matrix. Then, for the i*"
row we should carry out three steps.
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(1) Find the left-most column j which has at least one non-zero entry in rows i, ..., n.

(2) If the (i, ) entry is zero exchange row i with one of the rows i+ 1,...,n (the one
which contains the non-zero entry identified in step 1) so that the new (i, j) entry
is non-zero.

(3) Subtract suitable multiples of row i from all rows i+ 1,...,n such that all entries
(i4+1,7),...,(n,j) in column j and below row i vanish.

Continue with the next row until no more non-zero entries can be found in step (1).

The procedure is probably best explained with an example.

Problem 16.1 (Bringing a matrix into upper echelon form)

Bring the 3 x 3 matrix

into upper echelon form by Gaussian elimination.

Solution:

(

We have indicated the row operation from one step to the next above the arrow, referring to
the i*" row by R;.

O NN
— o =
O O N

1 0\ rysRr3—Roy2 (|21 O
2-2| —— [ 02 -2
1 -1

00 O

NN O
W =
SN =

R1<+R3 0 Ray—Ra—R;
_ -2 —
—1

16.2 Rank of a matrix

Summary 16.2 The column rank and the row rank of a matriz are equal. The rank
can be determined by converting the matriz into upper echelon form, using Gaussian
elimination. In upper echelon form, the rank equals the number of non-zero rows.

16.2.1 Row and column rank

Our first application of row operations is to compute the rank of a matrix. For an
n x m matrix A € M, ,,(IF) we can define the row and column rank

rowrk(A) = dimp(Span(A4,..., A,)) (16.1)
colrk(A) = dimp(Span(A*, ..., A™)). (16.2)
The column rank is of course the rank of the linear map defined by A while the row

rank is the rank of the linear map associated to A”. Having two types of ranks available
for a matrix seems awkward but fortunately these two ranks are the same.

Theorem 16.1 Row and column rank are equal, so rk(A) = colrk(A) = rowrk(A),
for any matriz A.
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Proof Suppose one row, say A1, of a matrix A can be written as a linear combination
of the others. Then, by dropping A; from A we arrive at a matrix with one less row,
but its row rank unchanged from that of A. The key observation is that the column
rank also remains unchanged under this operation. This can be seen as follows. Write

A, = E OéjAj 5 o =
j=2 anp
with some coefficients as, ..., a, which we have arranged into the vector . Further,

let us write the column vectors of A as

that is, we split off the entries in the first row, denoted by a;, from the entries in the
remaining n — 1 rows which are contained in the vectors b;. It follows that a; = A1; =
(A1)i = g ajAj =377 5a;(A'); = a-b, so that the column vectors can also be

written as
i [a-b;
A _( N )

Hence, the entries in the first row are not relevant for the linear independence of the
column vectors A? — merely using the vectors b; will lead to the same conclusions
for linear independence. As a result we can drop a linearly dependent row without
changing the row and the column rank of the matrix. Clearly, an argument similar to
the above can be made if we drop a linearly dependent column vectors — again, both
the row and column rank remain unchanged.

In this way, we can continue dropping linearly dependent row and column vectors
from A until we arrive at a (generally smaller) matrix A" which has linearly indepen-
dent row and column vectors and the same row and column ranks as A. On purely
dimensional grounds, a matrix with all row vectors and all column vectors linearly
independent must be a square matrix (for example, consider a 3 x 2 matrix. Its three
2-dimensional row vectors cannot be linearly independent). Therefore, row and column
rank are the same for A’ and, hence, for A. ]

This theorem implies that the rank of an n x m matrix A cannot exceed the number
of its rows and columns, so that

rk(A) < min(n,m) . (16.3)

We have already obtained this bound in Eq. (14.10) from arguments based on the
structure of linear maps, but we have now re-derived it purely from matrix properties.

It is sometimes useful to talk about the ’generic’ rank of matrices. We will not attempt
to define this precisely, but loosely we mean the rank that 'most’ matrices in M,, ,, (F)
have. It should be intuitively clear that this generic rank is, in fact, the maximal rank,
rk(A) = min(n, m). Indeed, a smaller value requires linear dependencies between the
rows or columns of the matrix which amount to specific choices of entries.
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Application 16.1 More on internet search

In Application 1.1 we have described a network with n pages, labelled by an index k =
1,...,n, with the k'" page containing ny links to some of the other pages and being linked
to by the pages L C {1,...,n}. It was proposed that the page ranks xj, satisfy the equations

o=y 2 (16.4)

T
jeLy 7

where k = 1,...,n. These equations form a homogeneous linear system which can also be
written in matrix-vector form as Ax = 0, where x = (z1,... ,mn)T is a vector containing
the page ranks and the n X n matrix A has entries

1ifjeL;
Aij =05 —< .7
3= 0% {OJ if j# L;

The solutions to this linear system are given by the kernel, Ker(A). Of course, this always
contains the trivial solution, x = 0, but this is of no use for the purpose of ranking sites.
For the set-up to make sense, it is crucial that Ker(A4) # {0}. To see that this is, in fact,
always the case we note that the sum of the rows of A,

Xn:AU:i&j— > LI > 1=o0,
i=1 i=1 v i

ijeL; ijEL;

vanishes. This means the rows of A are linearly dependent so rk(A) < n. From the dimension
formula (14.13) we conclude that dimg Ker(A) = n —rk(A) > 0 and, hence, that the kernel
of A is indeed non-trivial. This property is part of the magic of the page rank formula (16.4)
— it guarantees the existence of a non-trivial solution which is crucial for ranking the pages
of the network.

16.2.2 Computing the rank

Another important conclusion from Theorem 16.1 is that we can focus on the rows or
the columns of a matrix to compute its rank. Since we want to work with elementary
row operations we opt for rows. We have seen that elementary row operations leave the
span of the row vectors and, therefore, the rank unchanged. Moreover, the non-zero
rows of a matrix in upper echelon form are linearly independent, so

A in upper echelon form = rk(A) = number of non-zero rows .

Altogether, this implies the following algorithm to compute the rank of a matrix.

Algorithm (Computing the rank of a matrix)
To compute the rank of a matrix A, carry out the following steps:

(1) Bring A to upper echelon form using row reduction.
(2) Read off the number of non-zero rows. This number equals the rank.

For example, the matrix A in Exercise 16.1 has rank 2.
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Problem 16.2 (Computing the matrix rank)
Compute the rank of the following matrix:

O =N O
A O
wl‘\‘le
N = O

Solution: We first bring A to upper echelon form.

0 2 1-1 2 1 30 2 1 3 0\ Rs—Rs+Rs
2 1 30 R R, 0 2 1-1| BsoRs2R [ 2 11| Fa—FRadzio
4 0-2 1] |4 0-2 1) "lo-2-8 1| 7
0-4 3 2 0-4 3 2 0-4 3 2

21 3 0 21 3 0

02 1—1| PFazBatSR/T (G102 1 1

00-7 0 > lo00]-7 o

00 5 0 00 0 0

The last matrix is in upper echelon form and it has three non-zero rows. Hence, rk(A) = 3.

Application 16.2 Back to magic squares

We now return to our discussion of magic squares. We have seen in Application 7.1 that
all 3 x 3 magic squares form a vector space, and we have shown that the three specific
magic squares Mi, My, M3 in Eq. (7.10) are linearly independent. It remains to be shown
that these matrices form a basis of the magic square vector space as asserted earlier. To do

this it suffices to show that the dimension of the magic square vector space is three (see
Theorem 7.2 (iii)).

We begin with an arbitrary 3 x 3 matrix

c
S = f
)

Q Q.
>0 o

Recall that, for S to be a magic square, its rows, columns and both diagonals have to sum
up to the same total. These conditions can be cast into the seven linear equations,

d+e+f=a+b+c —a—b—c+d+e+g=0
g+h+i=a+b+c —a—b—c+g+h+i=0
a+d+g=a+b+c —b—c+d+g=0
b+e+h=a+b+c & —a—c+e+h=0
ct+f+i=a+b+ec —a—-b+f+i=0
at+et+i=a+b+c —b—c+e+i=0
c+te+g=a+b+c —a—b+e+g=0

In matrix form, this system of equations can be written as follows:
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a
~1-1-1111000\ (b 0
—1-1-1000111 ]| ¢ 0
0-1-1100100 || d 0
—1 0-1010010||e|=]0],
~1-1 0001001 || s 0
0-1-1010001 || g 0
~1-1 0010100/ | A 0
A 0

or, in short, Ax = 0. The magic squares are precisely the solutions to this homogeneous
linear system which shows that the magic square vector space is the kernel, Ker(A), of
the matrix A. By Gaussian elimination and with a bit of calculation, the matrix A can
be brought into upper echelon form and the rank can be read off as rk(A) = 6. Then, the
dimension formula (14.13) leads to dimg(Ker(A)) = 9—rk(A) = 3 and, hence, the dimension
of the magic square vector space is indeed three.

In summary, the three matrices M1, M, M3 in Eq. (7.10) form a basis of the magic square
vector space and every magic square is given as a (unique) linear combination of these three
matrices.

16.3 Matrix inverse

Summary 16.3 Elementary row operations can be generated by multiplying with
certain elementary matrices from the left. This leads to an algorithm for computing
the matriz inverse. Using elementary row operations, the matriz is first converted
into upper echelon form and then into the unit matriz. Carrying out the same row
operations on the unit matriz produces the matrix inverse.

Row operations can be used to calculate the matrix inverse. To see how this works it
is useful to re-formulate row operations in terms of matrix multiplication.

16.3.1 The elementary matrices

At first sight, the elementary row operations look somewhat artificial. But it turns out
they are well-adapted to the structure of matrices, in that they can be generated by
multiplying with certain, specific matrices from the left. In other words, to perform a
certain row operation on a matrix A, we can find a suitable matrix P such that the
row operation is generated by A — PA. As a simple example, consider 2 X 2 matrices.

_(ab (1A (1A [ab) [(a+Ab+ A
a=(ta)or=(on) = amra=(on) (20) = ("70)

Evidently, multiplication with the matrix P from the left has generated the elementary
row operation Ry — R; + AR5 on the arbitrary 2 x 2 matrix A. This works in general
and the appropriate matrices, generating the three types of elementary row operations
in Def. 16.1, are given by
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Pr,osr; =1 — E@yy — Egjj) + Eqj) + Egi
Pr,—ri+ar; = 1+ AE(ij) (16.5)
Prioar, =1+ (A= 1)Ey) .

To see that these matrices do indeed produce the desired result, we first note that
E(;j)A is a matrix with all rows zero except the i one which contains the j™ row
of A. Using this rule and the distributive laws (13.22) it is easy to reason out what
happens when one of the above matrices multiplies a matrix A from the left. For ex-
ample, Pr, g, +ar; A = A+ AE(;;) A and the second matrix, AE;;) A, is zero except for
its i*" row which contains AA ;. Adding this matrix to A produces the desired effect,
R, - R; + )\Rj.

It is intuitively clear that the elementary matrices are invertible since the row op-
erations they generate can be undone by another row operation. Again, focusing on
PR, Rr;+AR;, we would expect Pr, g, g, to be its inverse. Noting that E(;;) E;;) =0
for i # j, this can be easily verified:

PR, R 2R, Pri»Ri—2Rr; = (1 + AE5))(1 — AE(;;)) = 1.
16.3.2 Algorithm to calculate the matrix inverse

Our next task is to devise an algorithm to compute the inverse of an n x n matrix
A, using elementary row operations. (Recall that only square matrices can have an
inverse.) To do this we attempt to convert the matrix into the unit matrix using row
operations. Schematically, this works as follows:

ahy * ahy 0
row red. (L’22 (R1), (R2) al22 (R3)
a4 . I . | =1,.

/ /
0 o, 0 o,

In the first step, we bring A into upper echelon form, by the algorithm already dis-
cussed, and we read off its rank. In rk(A4) < n then, from Cor. 14.2, the matrix is
not invertible and we can stop. Otherwise, if tk(A) = n, all pivots must be along the
diagonal so that af; # 0 for all « = 1,...,n. This means we can apply further row
operations to set the entries above the diagonal to zero. We start with the last column
and subtract suitable multiples of the last row from the others until all entries in the
last column except a,,, are zero. We proceed in a similar way, column by column from
the right to the left, using row operations of type (R1) and (R2). In this way we arrive
at a diagonal matrix, with diagonal entries af;, # 0 which, in the final step, can be
converted into the unit matrix by row operations of type (R3).

This discussion implies we can find elementary matrices Pi,..., P, as defined in
Eq. (16.5), generating elementary row operations, such that
1,=P,---PLA = Al=P...P1,. (16.6)
A-1

These equations imply an explicit algorithm to compute the inverse of a square matrix.
We convert A into the unit matrix 1,, using elementary row operations as described
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above, and then simply carry out the same operations on 1,, in parallel. When we are
done the unit matrix will have been converted into A=".

Algorithm (Computing the matrix inverse)

To find the inverse of an n X n matrix A, carry out the following steps:

(1) Bring A to upper echelon form and read off the rank. If tk(A) < n then A is not
invertible so there is nothing more to do.

(2) Otherwise, if tk(A) = n, use row operations (R2) to set the entries above the
diagonal to zero, starting with the last column and proceeding from right to left.
The result is a diagonal matrix.

(3) Use row operations (R3) to convert the diagonal matrix into a unit matrix.

(4) Carry out, in the same order, all above row operations on the unit matrix 1,,.
This converts 1,, into A1,

Problem 16.3 (Computing the matrix inverse with row operations)

Using row operations, compute the inverse of the matrix below.

1 0-2
A=(0 3-2
1-4 0

Solutions: We follow the above algorithm and carry all row operation out on A and 13 in

parallel.
1 0-2 100
A=|0 3-2 1s=(010
1-4 0 001
1 0-2 100
Rs -+ Rs— Ry : 0 3-2 010
0-4 2 -101
4 10 —2 100
Rs = R3+ ;R : 0[3 =2 | <~ rk(A4) =3 010
3 00]-2 141
10 —2 1 0 0
Ro — Ro — 3R3 : 03 g 3_513,_3
00-2 -1 %1
10 0 4 -4 -3
Ry — R1 —3R3 : 03 0 3 -3 -3
00-2 -1 3 1
R 10 0 4 -4 -3
R2—>72: 01 O 1 -1 -1
3 002 -1 41
3 100 4 -4 -3
R3 — —=Rs3: 010 ] =13 1-1-1}=4""
2 001 393

As a final check we show that

1 0-2\ [4-4-3 100
AAT =0 3-2 1-1-1]=[010] =13 v
1-4 0/ \3-2-2 001
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and thus confirm that we have correctly computed the inverse of A.

Exercises

(f=challenging, t=difficult, wide-ranging)

16.1

16.2

16.3

16.4

Computing the rank of a 3 X 3 matriz
Use row operations to compute the
rank of the matrix

A=

DN DN
== O
QN W

for all @ € R. (Hint: Keep in mind that
the rank of A may depend on the value
of a so a case distinction may be re-
quired.)

Computing the rank of a 4 X 4 matrixz
Use row operation to work out the rank
of the matrix

where a € R.

Matrices for column operations

(a) Explicitly verify for 2 x 2 matrices
that the matrices in Eq. (16.5) generate
row operations by multiplication from
the left.

(b) Suppose a row operation is gener-
ated by multiplying from the left with
one of the matrices P in Eq. (16.5).
Show that the corresponding column
operation is generated by multiplying
with PT from the right.

(c) Verify the statement from part (b)
explicitly for 2 x 2 matrices.

Computing the matriz inverse
Use row operations to find the inverse
of the matrix

A=

— N
w = o
|
O N =

Check your result!

16.5

16.6

Semi-magic squares — againT

A 33 semi-magic square is a 3 x 3 ma-
trix of such that all rows and columns
sum up to the same total.

(a) Verify that

A=

=N W
NN
W N =

is a semi-magic square.

(b) Why do the semi-magic squares
form a vector space?

(c) Show that the matrices

111
My= [111
111
1-10
My=|-1 10
0 00
0 1-1
M;=[0-1 1
0 0 0
0 00
Mi=| 1-10
1 10
0 0 0
Ms=[0 1-1
0-1 1

form a basis of the semi-magic squares.
Write the semi-magic square from part
(a) as a linear combination of this ba-
sis.

Code for matriz rank'’

Write a programme in your favourite
programming language which com-
putes the rank of a matrix. To avoid
numerical problems work with matri-
ces in My, m (Fp).



17
Linear systems

17.1 Abstract linear systems

Summary 17.1 For a linear map f : V. — W and b € W an inhomogeneous
linear system is defined by the equation f(x) =b. The solutions set of the associated
homogeneous system, f(x) =0, is given by Ker(f), with dimension k = dimg(V') —
rk(f). The inhomogeneous system has a solution Xq if and only if b € Im(f). In this
case, the solution set to the inhomogeneous system is the affine k-plane xo + Ker(f).

17.1.1 Definition of linear systems

Linear systems are the fundamental equations which arise and need to be solved in the
context, of vector spaces. They are determined by a linear map f : V — W between
two vector spaces V and W and a vector b € W. Given this data, a linear system and
its solution space are defined by

f(x)=b, Sol(f,b) ={x e V| f(x)=b}. (17.1)

If b = 0 the linear system is called homogeneous otherwise it is called inhomogeneous
with imhomogeneity b. For an inhomogeneous linear system it is instructive to consider
the associated homogeneous linear system

fx)=0, Sol(f,0) ={x e V| f(x)=0}, (17.2)

obtained by setting b = 0 in Eq. (17.1).

The solution space of a homogeneous linear system is non-empty. It always contains
the zero vector, 0 € Sol(f,0), since f(0) = O for any linear map. The zero vector
is often referred to as the ’trivial solution’ of the homogeneous linear system and all
other solutions as 'non-trivial’.

17.1.2 Structure of solution space

The following theorem provides useful information about the existence of non-trivial
solutions for a homogeneous linear system.
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Theorem 17.1 Let f : V — W be a linear map. The solution space to the homoge-
neous linear system f(x) = 0 is the vector subspace Sol(f,0) = Ker(f) of V. If V and
W are finite-dimensional then

dimg(Sol(f,0)) = dimp(V) — rk(f) . (17.3)

Proof The equality Sol(f,0) = Ker(f) follows trivially from the definition of the ker-
nel of a linear map and we know from Lemma 14.1 that the kernel is a vector subspace.
The formula (17.3) for the dimension of the solution space is a direct consequence of
the rank formula (14.13) for linear maps. a

In other words, the solution space of a homogeneous linear system is a vector space,
the kernel of the linear map. Its dimension is an important piece of information which
can be computed from the rank using Eq. (17.3). In particular, if rk(f) = dimp(V)
then the solution space is zero-dimensional, and the only solution is the trivial one
(the zero vector). Otherwise, if rk(f) < dimg(V'), there are non-trivial solutions.

The solution space of an inhomogeneous linear system is closely related to the one for
the associated homogeneous system.

Theorem 17.2 Let f : V. — W be a linear map and b € W. The linear system
f(x) = b has a solution, X, if and only if b € Im(f). In this case, the solution sets
of the inhomogeneous and the associated homogeneous linear systems are related by

Sol(f,b) = xo + Sol(f,0) . (17.4)

If V and W are finite-dimensional, this represents an affine k-plane in V with k =
dimp (V) — rk(f).

Proof If xq is a solution of the inhomogeneous equation, then f(xq) = b which shows
that b € Im(f). On the other hand, if b € Im(f), then, by definition of the image,
there exists an xo € V with f(x¢) = b.

To show the equality (17.4), assume the existence of a solution x¢ € V with f(x¢) = b.

x €S0l(A,b) & f(x)=b=f(x)) < flx—x%x0)=0
& x—xp € Ker(f) & x €xg+ Sol(f,0)

Finally, provided we are in the finite-dimensional case, it is clear that Eq. (17.4) is an
affine k-plane, since Sol(f, 0) is a vector subspace. The dimension k of this affine plane
is defined to be the dimension of Sol(f,0) which, from Eq. (17.3), is indeed given by
dimp(V) — rk(f). O

The content of the previous theorem is often paraphrased by saying that the ’general
solution to the inhomogeneous system’ is obtained by adding to a ’special solution of
the inhomogeneous system’ all solution of the homogeneous system. We will see this
more concretely in the next section when we discuss systems of linear equations. But
the structure of linear systems outlined above is also instructive in other contexts, as
the next example shows.
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Example 17.1 (Solution to inhomogenous linear differential equation)

The previous theorems have a prominent application to inhomogeneous, linear (sec-
ond order, say) differential equations. Introduce the linear second-order differential
operator L : C*([a,b],R) — C*([a,b],R) by

d? d
+q7+7’7

L:=p—
pdm2 dx

where where p, ¢, € C*([a, b], R) are fixed functions. For a function b € C*°([a, b], R)
an inhomogeneous linear system and its homogeneous counterpart are defined by

The solution space of the homogeneous system is given by Sol(L,0) = Ker(L). Provided
we can find a solution yg to the inhomogeneous system, so L(yp) = b, then the set
of solutions to the inhomogeneous system is given by Sol(L,b) = yo + Ker(L), from
Eq. (17.4).

To make this more concrete, consider the specific differential operator L = % +1
and a function b(x) = = which lead to an inhomogeneous differential equation and
associated homogeneous equation

d?y d%y

2 Y= dx?

dx? +y=0.

It is easy to see that the inhomogeneous equation is solved by yo(x) = x while the
solution to the homogeneous equation is given by Sol(L,0) = Ker(L) = Span(sin, cos).
Hence, the general solution to the inhomogeneous equation is

y(x) = x + asin(x) + beos(x) ,

for a,b € R arbitrary. |

17.2 Systems of linear equations

Summary 17.2 A system Ax = b of m linear equations in n variables has a solution
if and only if b € Im(A). If a solution xq exists the solution set is the affine k-plane
Sol(A,b) = xg + Ker(A), where k = n —1k(A). The solution of a system of linear
equations can be computed by an algorithm based on elementary row operations.

17.2.1 Definition

Every linear system f(&) = 3, where f: V — W and B8 € W (for finite-dimensional
vector spaces V and W over F) can be converted into a system of linear equations,
relative to a choice of bases (vi,...,v,) and (wy,...,wy,) for V and W. To see this,
write £ = 37 2;v;, B =312, byw; and recall that the m x n matrix A with entries
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a;; which represents f relative to this basis choice is obtained by f(v;) = >1", a;;w;.
Then, the left- and right-hand sides of the linear system can be written as

FO=F D avi| =D wif(vi) =D aijajwi, B=) biwi,
Jj=1 7j=1 i, [

and matching the coordinates of w; shows that the equation f(£) = B is equivalent
to Ax = b. In other words, every linear system (for finite-dimensional vector spaces)
can be converted into a system of linear equations of the form

Ax=b Sol(4,b) = {x € F" | Ax = b} (inhomogeneous)

Ax =0 Sol(4,0) = {x € F" | Ax = 0} (homogeneous) . (17.5)

Writing out the entries of the matrix A and the components of x and b explicitly

apy --- aip Ty by
A = . . 3 X = . , b = . 5
Gml " OGmn T bm

the Egs. (17.5) can be cast into the form

(inhomogeneous) (homogeneous)
a;1ry + -+ ATy = by a1j1xy + -+ appTy, =0
] (17.6)
: : : : : : : S
Am1%1 + -+ GmnTn = bm Am1%1 + -+ ApTn = 0
of m linear equations in n variables z1, ..., z,.

17.2.2 Solutions of homogeneous system

Everything we have said in Theorems 17.1 about the solution structure of homogeneous
linear systems directly applies to systems of linear equations. To recap, for the solution
space of the homogeneous system Ax = 0 of m equations in n variables we have

Sol(A4,0) = Ker(A4) , dimp(Sol(A4,0)) = n —rk(A4) . (17.7)

To determine the dimension of the solution space — the number of free parameters
required to describe the solution — all we need is the rank of A.

Problem 17.1 (Homogeneous linear system in R?)

Find the solution of the simple homogeneous linear system

(El) : X1 — T2 = 0
(F2) : ar1 +3z3 =0

of two equations in two variables for all values of the parameter a € R.
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Solution: We can write this system in matrix vector form, Ax = 0, with

_ 1-1 _ X1
=(a) =)
The rank of A depends on the value of the parameter a. For the generic choice a # —3 the
two columns of A are linearly independent so that rk(A) = 2. From Eq. (17.7) this means the

solution space is zero-dimensional so the zero vector is the only solution. On the other hand,
if @ = —3 the rank decreases to rk(A) = 1, so that the solution space is one-dimensional.

To see this more explicitly combine the two equations in order to eliminate xs.
3(E1) + (E2) : (B3+a)r1=0. (17.8)

For a # —3 we can divide by 3 + a so that 1 = 0 and, by inserting this into (E1), we find
that x2 = 0. This is precisely the case when rk(A) = 2 and the system only has the trivial
solution, Sol(A, 0) = {0}.

If a = 3 then Eq. (17.8) becomes trivial or, equivalently, (E1) and (E2) are multiples of each
other. In this case, the solution consists of all x = (z1, xg)T with 1 = x2, so that the solution
space Sol(4,0) = Span((1,1)7) is one-dimensional, as expected.

The geometry of the solution spaces for these two cases is illustrated in the figure below.

Sol(A, 0)
R? a=-3

17.2.3 Solution of inhomogeneous system

Let us discuss the solution structure of an inhomogeneous linear system Ax = b
of m equations in n variables, so A : F* — F™, x € F" and b € F™, following
Theorem 17.2. Much can be said about the qualitative solution structure based on the
three dimensions n, m and rk(A).

It is worth stressing that linear systems do not need to have a solution at all. A solution
exists if and only if b € Im(A). If rk(A) = m then, from Prop. (14.2), A is surjective
and, hence, a solution exists whatever the inhomogeneity b. On the other hand, if
rk(A) < m then the image, Im(A), is a proper vector subspace of the co-domain F™.
Typical choices for b will not be in this subspace and in this case a solution does
not exist. For example, if m = 3 and rk(A) = 2 then the image of A is a plane in a
three-dimensional space and we need to choose b to lie in this plane for a solution to
exist. Clearly this corresponds to a very special choice of b.
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If a solution xg to the inhomogeneous system of linear equations exists then the solution
set is the affine k-plane

Sol(A,b) = x¢ + Ker(A) (17.9)
with dimension k = n — rk(A). This is just the solution Sol(4,0) = Ker(A) of the
associated homogeneous system ’shifted’ by xo (see Fig. 17.1). The solution is unique

(that is, the solution set is zero-dimensional) iff the associated homogeneous system
only has the trivial solution or, equivalently, iff rk(A) = n. In summary, we can classify

Sol(A, b)
R3

X0 Sol(A, 0)

Fig. 17.1 The relation Sol(A4, b) = x¢+Sol(A, 0) between the solution set of an inhomogeneous
and associated homogeneous system of linear equations.

the solution structure as follows:

(1) tk(A) =m
In this case there exists a solution, Xg, for any choice of b and the general solution
is given by the affine k-plane x¢ + Ker(A). Its dimension (the number of free
parameters in this solution) equals k = n — m.

(2) tk(A) <m
(a) b € Im(A) (this requires special choices for b)
There exists a solution xq. The solution set is the affine k-plane xo + Ker(A)
with dimension k = n — rk(A).
(b) b ¢ Im(A) (true for generic choices of b)
There is no solution.

A common special situation is that of a system of n linear equations in n variables, so
that n = m. In this case, the above classification becomes slightly more specific.

(1) tk(A)=n
A solution exists for any choice of b and there are no free parameters since
dimp(Ker(A)) = n — n = 0. Hence, the solution is unique. Indeed, in this case,
the matrix A is invertible (see Cor. 14.2) and the unique solution is given by
x = A7 'b. Hence, the solution can be found by computing the inverse matrix
AL

(2) tk(A) <n
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(a) b € Im(A) (this requires special choices for b)
There exists a solution xq. The solution set is the affine k-plane xo + Ker(A)
with dimension k = n — rk(A).

(b) b ¢ Im(A) (true for generic choices of b)
There is no solution.

17.2.4 Examples with explicit calculation

We should illustrate the above structure with a few examples. For now, we follow a
'pedestrian’ approach, solving the systems of linear equations by adding multiples of
the equations in order to eliminate variables. This is what we have done so far and
it is often the most efficient method in a small number of dimensions. A systematic
method, based on row operations, will be introduced afterwards.

Problem 17.2 (Inhomogeneous linear system in R?)

Find the (real) solutions of the inhomogeneous linear system of equations

(El) : X1 — T2 = 3
(F2): axi+3z3 =050

for all values of the paramters a,b € R.

Solution: The system can be written in matrix vector form, Ax = b with

() (@) )

Note that the associated homogeneous system has already been solved in Exercise 17.1.
Without much calculation, we can already make qualitative statements about the solution
following the above classification.

(1) a # 3: In this case, rk(A) = 2, so there is a unique solution.
(2a) a = —3, b special so that b € Im(A): Now rk(A) = 1, so the solution is an affine line.
(2b) a = —3, b generic so that b ¢ Im(A): There is no solution.

To verify these expectations by explicit calculation we first eliminate x2.
3(E1)+ (E2): (B+a)r1=9+b, (17.10)

This equation already reveals the expected case distinction.
(1) @ # —3: We can divide Eq. (17.10) by 3 4 a to find z; and then insert into (E2) to find

2.

b+9 - 7b+9_37b—3a
a+3’ T a+3 T a+3
Hence, the solution is unique and exists for all choices of b, as predicted.

Sol(A,b) = {(z1,22)"} where x; =

(2a) a = —3, b = —9: For this choice of parameters, Eq. (17.10) becomes trivial or, equiva-
lently, (E1) and (E2) are multiples of each other. Every x with 1 = z2 + 3 is a solution in
this case, so we can write

Sol(A,b):{(th?’) |teR}:xo+Sol(A,O), Xo = (g) ,

where xo = (3,0)7 is a solution of the inhomogeneous system and Sol(A,0) = Span((1,1)7)
is the solution set of the associated homogeneous system from Exercise 17.1. As predicted,
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the solution is an affine line.

(2b) a = =3, b # —9: Inserting these parameter choices into Eq. (17.10) leads to a contradic-
tion, so the linear system has no solution, Sol(A4,b) = {}.

The solution structure for these case is illustrated in the figure below.

5 Sol(A4,0)  Sol(A,b)
R a=-3 a=-3b=9

Sol(A4, 0)
a# -3 \

X

N

X0

Problem 17.3 (An inhomogeneous linear system in R?)

Find the real solutions of the linear system

(El) : 2r1 + 3x2 —x3 = —1
(EQ) : —x1 — 212 +x3 =3
(E3) : ar1 +x2 — 223 =0

for all values of the parameters a,b € R.

Solution: We can write this system in vector matrix form, Ax = b, with

2 3-1 T -1
A=|-1-2 1], x=1|x2 |, b= 3
a 1-2 T3 b

As usual, we begin by predicting the qualitative solution structure. The columns A2, A% of
A are clearly linearly independent so the rank of A is at least two. For a specific value of
a = ap (to be determined shortly) we expect A* to be in the plane spanned by A2 A3 and
in this case rk(A) = 2. Generically, we have a # ag so that rk(A) = 3.

(1) a # ao: We have rk(A) = 3 so there is a unique solution for every value of b.
(2a) a = ao, b special so that b € Im(A): The solution is an affine line.
(2b) a = ao, b generic so that b ¢ Im(A): There is no solution.

To confirm these expectations we start by eliminating x3 from two combinations of the three
equations.

(E1) = (E1) + (E2) : 1+ a2 =2

(E3') = (E3) +2(E2) : (@a=2)x1 —3z2 =b+6 "~

(While these are simple calculations in principle mistakes can easily slip in. It is, therefore,
important to keep the calculation organized and keep track of the steps performed.) Finally,
we combine the above two equations to eliminate x2.

3(E1) + (E3') : (a+1)z1=b+12. (17.11)

Case distinctions come into such calculations when divisions by (parameter-dependent) quan-
tities which may be zero have to be carried out. It is helpful to avoid such divisions for as long
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as possible. This is the reason why we have eliminated x2 and z3 first. The case distinction
can now be read off from Eq. (17.11).

(1) @ # —1: We can divide Eq. (17.11) by a + 1 to obtain z1, insert this result into (E1’) to
obtain x2 and, finally, use (E1) to get x3. This leads to

b1z 2a-b-10 _Ta-b-5
YT a1 2= a+1 ’ ST Ta¥1

and, hence, we have a unique solution for every a # —1 and every b € R. We know that the
solution to the associated homogeneous system in this case must be trivial.

(2a) @ = —1,b = —12: For this choice of parameters, Eq. (17.11) becomes trivial which
indicates that we have only two independent equations. We can solve the equations (E1’) and
(E1) for z1 and z3 in terms of zz which leads to 1 = 2 — z2 and z3 = 5+ x2. Setting t = xa,
the solutions space is the affine line

2—-1 2 -1
Sol(A,b) = t [teRp»=|{0] +Span 1 . (17.12)
S5+t 5 1

The above span is the solution space of the associated homogeneous system.

(2b) a = —1,b # —12: Inserting these values into Eq. (17.11) leads to a contradiction so there
is no solution, Sol(A4,b) = {}.

17.2.5 Row operations for linear equations

A good strategy for solving systems of linear equations is the successive elimination
of variables by adding multiples of equations. So far we have carried this out in a
somewhat ad-hoc fashion which is efficient and works well for low dimensions. But for
larger systems it is worth developing an algorithm and this is where row reduction
comes into play.

As before, we start with a linear system Ax = b with n variables and m equations,
sox € F", b € F™ and A € M,, »,(F). Suppose we multiply both sides of the linear
system with an invertible m x m matrix P € GL(F™), so we arrive at the new linear
system PAx = Pb. This operation can be undone by multiplying with the inverse,
P! so the solution spaces of the two linear systems must be equal,

Sol(PA, Pb) = Sol(4, b) . (17.13)

Now recall that elementary row operations can be generated by multiplying with the
elementary matrices in Eq. (16.5) and that these matrices are invertible. If we take P
to be one of these matrices then the operation

Ax=b — PAx=PFPb (17.14)

corresponds to a row operation simultaneously carried out on A and b and, from
Eq. (17.13), this does not change the solutions space of the linear system. Note that
such row operation on a linear system are really just a formal restatement of the steps
involved in adding up multiples of equations. Row operations of type (R1) in Def. 16.1
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exchange two columns of A (as well as the two corresponding entries of b) and simply
amount to exchanging two equations. Row operations of type (R2) correspond to
adding a multiple of one equation to another and row operations of type (R3) multiple
an equation with a non-zero number. The idea is now to simplify the linear system by
a suitable sequence of such row operations until the solution set can be easily read off.

This is facilitated by introducing the augmented matrix
A= (Alb) , (17.15)

an m X (n+ 1) matrix which consists of the matrix A and one additional, final column
given by the vector b. The augmented matrix is really just an efficient way to collect the
data which determines the linear system into a single matrix. Row operations (17.14)
on the linear system then translate into row operations A’ — PA’ on the augmented
matrix.

Before we formulate an explicitly algorithm, we note a useful criterion in terms of
the augmented matrix which helps us to decide whether or not the linear system has
solutions.

Proposition 17.1 b € Im(A) < rk(4) = rk(4)

Proof ’'=’:If b € Im(A) it is a linear combination of the column vectors of A and
adding it to the matrix does not increase the rank.

< If rk(A) = rk(A’) the rank does not increase when b is added to the matrix.
Therefore, b € Span(Al,..., A") = Im(A). a

This means a solution exists iff the matrix A and the augmented matrix A’ have the
same rank!

17.2.6 Algorithm for solving linear equations

We are now ready to describe the solution algorithm for linear systems.

Algorithm (Solving systems of linear equation by row reduction)

(1) First we perform row operations on the augmented matrix A’ in order to bring
A into upper echelon form. This works exactly as described in Section 16.1.3 and
converts the augmented matrix into the following form

laigy * | by
a2joy .
A ' '
— ) ,
- arj. 0| by
0 b1
b,

where the pivots a;;, are non-zero for i = 1,...r and the star indicates arbitrary
entries. Recall that the number of non-zero rows r = rk(A) equals the rank of
A. If any of the entries b, with i > r is non-zero, then rk(A’) > rk(A) and,
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from Prop. 17.1, we conclude that there is no solution. This can also be seen
much more directly by converting the above matrix back into a system of linear
equations. Any of the rows i@ > r correspond to an equation 0 = b}, which is a
contradiction unless b; = 0. We only need to carry on if b, = 0 for all i > r, so
that tk(A’) = rk(A) and the linear system has a solution.

(2) To proceed, we assume that b, = 0 for all i > r. For ease of notation we also
permute the columns of A (this corresponds to a permutation of the variables
that we will have to keep track of) so that the columns with pivots become the
first r of the matrix. The resulting matrix has the following structure.

aijy bll

a2j2 * * :

/ . .
AT 0 |arj. | |
0

0l:

0

(3) By further row operations we can convert the r X r matrix in the upper left corner
of the previous matrix into a unit matrix 1, using the same steps we have used
in the algorithm to calculate the inverse of a matrix.. Schematically, the result is

1,|Blc
fin = < oo 0) (17.16)

where B is an r X (n — r) matrix and c is an r-dimensional vector.

(4) We are now ready to convert the augmented matrix Af  back into a system of
linear equations. To do this it is useful to split the vector x which contains the n
variables x; up into an r dimensional vector £ and an (n — r)-dimensional vector
t, in accordance with the structure of the matrix Af . Hence, writing

x = (f) (17.17)

the linear system associated to Af,, takes the simple form
E+Bt=c. (17.18)

Note that this is a system of r linear equations in n variables. It follows that
every linear system of m equations in n variables can be reduced to an equivalent
system with v = rk(A) < m equations in n variables. More importantly, the
system (17.18) can be easily solved for € in terms of t, giving € = ¢ — Bt, and
this was really the point of the exercise. Hence, the solution space is

Sol(4,b) = {(C ‘tBt) Ite ]F”_’“} - (3) + Ker(A) (17.19)

Ker(A) = Span ((‘31) (_e]ii;» (17.20)
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where B’ are the columns of the matrix B and e; are the standard unit vectors
in F*~". Note that the solution (17.19) does indeed represent an affine k =n —r
plane of the general form (17.9).

Problem 17.4 Solving a linear system with row reduction

Use row reduction to solve the following linear system

xr1 + T2 — 2x3 1
21’1 —l’2+3l’3 =0
—x1 —4x2 +923 = b
in R3, for all values of the parameter b € R.

Solution: The augmented matrix for the above system reads

1 1-2)1
A = 2 -1 30,
-1 -4 9b

We proceed in the four steps outlined above.

(1) First we perform row operations on A’ to bring A into upper echelon form.

1 1-2
A |0-3 7
000

We conclude that the rank of A is r = rk(A4) = 2. If b # —3 we have rk(A’) = 3 > 2 = rk(A)
so in this case there is no solutions.

(2) Setting b = —3 we have the matrix

1 1-—
A [ 0-=3
0 0

o NN
\
o

As it happens, we do not have to permute columns since the pivots are contained in the first
two columns.

(3) By further elementary row operations we convert the 2 x 2 matrix in the upper left corner
into a unit matrix.

10 L1
00 00

(4) We split x up into an r = 2 dimensional vector & with components z1,z2 and an n—r =
3 — 2 =1 dimensional vector t with a single component ¢ as

T1
X = i)
t

Converting A%, into a linear system in those variables results in
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n 1t 1 7t 2

T+ —t== To— —t = = .

tT3T T3 *73 73

This can be easily solved for x1, z2 in terms of ¢ which was the point of the exercise. This
leads to the solution space

(1-1)/3 1/3 -1/3
Sol(A,b) =< | 2+7t)/3 | |[teRp = 2/3| +Span 7/3
t 1 1

Hence, the solution is an affine line.

Application 17.1 Linear algebra and circuits

Electrical circuits with batteries and resistors, such as the circuit below, can be described
using methods from linear algebra.

ll IB:Y
A ’

To do this, first assume that the circuit contains n loops and assign (mesh’) currents I,
where ¢ = 1,...,n, to each loop. Then, applying Ohm’s law and Kirchhoff’s voltage low
("The voltages along a closed loop must sum to zero’) to each loop leads to the linear system

R+ -+ Rinln = V1
: Do (17.21)

where R;; describe the various resistors and V; correspond to the voltages of the batteries.
If we introduce the n x n matrix R with entries R;;, the current vector I = (I1,...,I,)"
and the voltage vector V = (V4,..., Vn)T this system can also be written in the form of a
generalized Ohm’s law as

RI=V. (17.22)

This is an n X n linear system, where we think of the resistors and battery voltages as given,
while the currents I1,..., I, are a priori unknown and can be determined by solving the
system. Of course any of the methods previously discussed can be used to solve this linear
system and determine the currents I;.

For example, consider the above circuit. To its three loops we assign the currents I, I2, I3
as indicated in the figure. Kirchhoff’s voltage law applied to the three loops then leads to

Rili + Ro(Ih — I2) + Rs(I1 — I3) = V (Ri+ Re+ R3)[1 — Rolo — R3l3 =V
R2(12—11)+R412+R6(12—13) =0 < —R211+(R2+R4+R6)I2_R613 =0
R3(Is — 1)+ Re(Is — I2) + Rs13 =0 —R3I1 — Relo + (R3 + Rs + Re)I3 = 0.

With the current and voltage vectors I = (I, I, I3)” and V = (V,0,0)7 the matrix R in
Eq. (17.22) is then given by
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Ri+ R2+ R3 —Ry —R3
R= —Rs Ry + Ry + Rs —Rsg
—R3 —Rs R34+ Rs + Rs

For example, for resistors (Ri,...,Rs) = (3,10,4,2,5,1) (in units of Ohm) we have the
resistance matrix

17 —10 —4
R=1|-10 13 -1
-4 -1 10

For a battery voltage V = 12 (in units of volt) we can write down the augmented matrix

17 —10 —4|12
R =|-10 13-1|0] ,
-4 -1 10| 0

and solve the linear system by row reduction. This leads to the solution

1 1548
I=— [ 1248
905 \ 744

for the currents (in units of Ampere).

17.3 Applications to geometry

Summary 17.3 Solution sets to systems of linear equations are affine k-planes and,
conversely, every affine k-plane can be described as a solution to a system of linear
equations. An affine ki-plane and an affine ko-plane in F™ either have zero intersec-
tion or they intersect in an affine k-plane. For generic affine planes the dimension
of their intersection is k = ki + ko — n.

In Chapter 11, we have looked at lines and planes in R? and R3, their parametric and
Cartesian forms and some of their geometry properties, such as intersections. Perhaps
somewhat frivolously, we have earlier used methods such as the dot and cross product
to do this. We will now study the generalization to arbitrary dimensions, so to affine
k-planes in F™, using only the results for systems of linear equations.

17.3.1 Parametric and Cartesian form

We have seen that the non-empty solution sets to systems of linear equations are, in
fact, affine k-planes. An obvious question is if, conversely, every affine k-plane can be
obtained as the solution set of a system of linear equations. The following theorem
shows that the answer is ’yes’ and that this amounts to what we have called the
Cartesian form.

Theorem 17.3 An affine k-plane P = p + W C F", where p € F" and W is a k-
dimensional vector subspace of F™, can be described as follows.
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(i) P= {p + Zle tiw; |t; € ]F} (parametric form)
where (W1, ..., W) is a basis of W
(ii)) P={xeF"|Nx= Np}=_Sol(N,Np) (Cartesian form)

where N is a (n — k) x n matriz with Ker(N) = W.

Proof The existence of the parametric form is immediate — all we need to do is
choose a basis (wyq,...,wy) of W.

The Cartesian form is a little less obvious. Let us first assume that a matrix N with the
stated properties exists. Then the system of n—k linear equations in n variables defined
by Nx = Np is solved by x = p and the solution of the associated homogeneous
system, Nx = 0, is Ker(N) = W. Hence, Sol(N, Np) = p + W = P, as required.

We still need to show that a matrix N with the stated properties exists. A basis
(W1,...wg) of W can be completed to a basis (w1, ... Wi, W1, ..., W,) of F". Define
a linear map N : F" — Fn=F by

Nw, — 0 fori=1,...,k
Wi = e,_pfori=k+1,...,n

We know from Theorem (12.1) that such a map does indeed exist. We clearly have
W C Ker(N) and since Im(N) = F"~* it follows that rk(N) = n — k. Hence, the rank
formula (14.13) implies that dimp(Ker(N)) =n— (n—k) = k. As a result Ker(N) has
the same dimension, k, as W and since the latter is included in the former, they must
be equal. O

The parametric form of an affine k-plane requires k parameters. For this reason it is
usually more practical for small k. For example, the parametric form of an affine line
is L = {p+tw|t € F} C F". On the other hand, the Cartesian form of an affine
k-plane amounts to a linear system with n — k equations (since N is an (n — k) X n
matrix). Therefore, affine k-planes with a large dimensions k or, equivalently, a small
co-dimensions n — k, are easier described in Cartesian form. For example, an affine
hyperplane (k = n — 1) is described by a single equation, Nx = Np, where N is a
1 x n matrix, that is, a row vector.

17.3.2 Intersection of affine k-planes

The intersection of two affine k-planes can be easily described in Cartesian form. All
we need to do is combine the linear equations of each Cartesian form into a single
linear system. Specifically, consider the two affine k;-planes

P=p;+W;={xe€F"|Nx=N;p;} where i=1,2,

and N; are matrices of size (n — k;) x n with Ker(N;) = W;. Then the intersection

" Nl N1p1>
PNP,={xeF"|Nx=p} wh N = , = ,
1 2 { | } ere (NQ) P <N2p2

equals the solution set of the linear system Nx = p of 2n — k; — k2 equations in
n variables, obtained by combining the linear systems for P; and P,. Of course, if
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p ¢ Im(NN) this intersection is empty. Otherwise, Theorem 17.2 tells us that it is an
affine k-plane, where k& = n — rk(N). To summarize, we have found that P; and P»
either do not intersect or intersect in another affine k-plane.

Can we say more about the dimension, k, of the intersection? We know that rk(N;) =
n — k1 and rk(Na) = n — ko so it is certainly clear that

rk(N) > max(n — ky1,n — ko) . (17.23)

(The number of linearly independent row vectors cannot decrease when we combine
N7 and Ns.) On the other hand, given that N is a matrix of size (2n — k1 — ka,n),
Eq. (16.3) implies that

rk(N) < min(2n — k1 — ka,n) . (17.24)
Combining Eqs. (17.23) and (17.24) with rk(N) =n — k gives
max(k; + ko —n,0) < k < min(ky, k2) , (17.25)

and this is the desired constraint on the dimension of the intersection. We summarize
these results in the following theorem.

Theorem 17.4 Let P, = {x € F"| N;x = N;p;} be affine k;-planes, where i = 1,2.
Then the intersection Py N Py is either empty or it is the affine k-plane which is the
solution of the combined system of linear equations, Nx = p, where

Ny Nip1 )
N = = .
(N2> P <N2P2
The dimension of the intersection is k = n —rk(IN) and this dimension is constrained
by max(k; + ko —n,0) < k < min(kq, k2).

The dimension of the intersection P; N P, can vary, depending on the specific affine
planes, as indicated in the theorem, but there is a ’generic’ value which holds for 'most”
affine planes of given dimensions k; and k5. This arises when the matrix N has its
generic (that is maximal) rank which, from Eq. (17.24), is rk(N) = min(2n—k; —k2,n).
Hence there are two possibilities for the value of rk(N). If n < 2n — k; — kg or,
equivalently, k1 + k2 —n < 0 then N is not surjective, so the linear system Nx = p has
no solution for generic p. Hence, this case cannot correspond to the generic situation.
In the opposite case, when tk(N) = 2n — k1 — ko, the map N is surjective so that a
solution, an affine k-plane with k& = dimp(Ker(N)) =n— (2n—ky —ka) = k1 + ko — n,
always exists. In summary, the generic dimension of the intersection is

kgen =ki+ka—n 5 (1726)

and if this number is negative the intersection is generically empty.
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Problem 17.5 (Intersection of affine k-planes)

Find the possible and generic dimensions of (i) the intersection of two affine planes in R3 and
(i) the intersection of an affine plane and an affine hyperplane in R?.

Solution: (i) The answer in this case is clear from geometrical intuition but let us follow
Theorem 17.4 and Eq. (17.26) to convince ourselves that these statements make sense. For
two planes in R* we have k1 = k2 = 2 and n = 3. From Theorem (17.26) the intersection
is either empty or an affine k-plane with 1 < k£ < 2. The generic intersection dimension is
kgen = 2+2—3 = 1. Of course all this fits with geometrical intuition. Two "typical’ planes in
R” intersect in a line (k = 1) but, if they are identical, they can intersect in a plane (k = 2)
or not intersect at all, if they are parallel.

(ii) Geometrical intuition is not particularly helpful in this four-dimensional case. We have
k1 = 2 for a plane, k2 = 3 for a hyperplane and n = 4. If the intersection in not empty then,
from Theorem 17.4, it is an affine k-plane with 1 < k < 3 and, generically, kgen = 2+3—-4 =1
from Eq. (17.26). So a plane and a hyperplane in R* generically intersect in a line.

17.3.3 Intersections and linear systems

The geometry of affine k-planes leads to a geometrical interpretation of systems of
linear equations. Consider such a system, Ax = b of m equation in n variables. We
can break this up into m equations as

Al-XZbl
Ax=b & : Do

If any of the row vectors A; of A is zero and b; = 0 then this equation is trivial and
can be dropped. On the other hand, if A; = 0 and b; # 0 for any i then the system
of linear equations does not have a solution. If we discard these two cases and assume
that A; # 0 for all + = 1,...,m then each equation on the right defines an affine
hyperplane in F”. This means the solution set of a system of m linear equations in
n variables is the intersection of m affine hyperplanes in F". This provides us with a
geometrical way to think about the solutions to a system of linear equations.

Problem 17.6 Solutions to linear systems as hyperplane intersection

Using geometrical arguments, discuss the various qualitative possibilities for the solutions of
a system of linear equations with (i) two equations and two variables, (ii) two equations and
three variables, (iii) three equations and three variables.

Solution: (i) A system of two equations in two variables corresponds to two hyperplanes,
that is lines, in F®. Such two lines can intersection in a point (generic case), a line or have
an empty intersection. This corresponds to the system of linear equations having a unique
solution, a solution line or no solution at all (see Fig. 11.2).

(ii) A system of two equations in three variables corresponds to two hyperplanes, that is two
planes in F%. Two such planes can intersect in a line (generic case), in a plane or have an
empty intersection. Correspondingly, the system of linear equations can have a solution line,
a solution plane or have no solution at all (see Fig. 11.5).

(iii) A system of three equations in three variables corresponds to three planes in F®. From
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Fig. 11.7 they can intersect in a point (generic case), a line, a plane or have an empty inter-
section. This corresponds to the possible solution structure of the system of linear equations.

Exercises

17.1

17.2

17.3

For functions y € C?*(R), consider the
linear inhomogeneous differential equa-
tion
d*y
dx?
(a) Find a solution to this differential
equation. (Hint: Try a quadratic poly-
nomial.)
(b) Find the general solution to
the associated homogeneous differen-
tial equation.
(c) Write down the general solution to
the inhomogeneous equation.

+4y:8x2.

Consider the linear system of equations

2-Nz+y+2z2=0
4+ MA4-Ny—2z=0
2 —y+(2-XN)z=0,

where x,y, z € R are the variables and
A € R is a parameter.

(a) What is the rank of the associated
coefficient matrix, A, depending on the
value of A7

(b) Based on the result in (a) what
is the expectation for the qualitative
structure of the solution.

(c) Confirm this expectation by an ex-
plicit calculation.

The linear system

x+y+z =1 (E1)
z+2y+4z =n (E2)
T+ 4y + 10z = n? (E3)

with variables x,y,2z € R depends on
the real parameter 7.

(a) Show that the rank of the coeffi-
cient matrix is two. What does this im-
ply for the qualitative structure of the
solution?

(b) Explicitly solve the system for the
cases where a solution exists.

17.4

17.5

17.6

17.7

17.8

Solve the linear system
r4+2y+3z=2
ay+z=p
204+2y =1,

with variables z,y, z € R for all values
of the parameters o, 5 € R.

Solve the linear system
3z+2y—2=10
Sx —y—4z =17

r+5y+az=0,

with variables z,y, z € R for all values
of the parameters «, 8 € R, using row
reduction.

Solve the linear system

x1+%x273x3 =1
2xo — 4x3 + %2174 =2
r1 + %372 —x3 =0
xr1 — %x27x3+aa:4 =b
with variables x1, 2, 3,24 € R for all
values of the parameters a,b € R, using
row reduction.

Following Application 17.1, write down
the linear system for the circuit below.

— & ]
T -

Solve this system for the currents
1, I> for general values of the resistors
Ri1, R2, R3, and the voltage V.

What are the possible and generic di-
mensions for the intersections of the
following affine k-planes.

<
1




(a) Two hyperplanes in four dimen-
sions.

(b) Three hyperplanes in four dimen-
sions.

(¢) A plane and a hyperplane in five
dimensions.

(d) Two hyperplanes in five dimen-
sions.
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17.9 (a) What are the possible and generic

intersection dimensions of k hyper-
planes in n dimensions.

(b) Use the result from (a) to predict
the possible dimensions of the solution
space for a linear system with k equa-
tions and n variables.



18
Determinants

In Section 10.2 we have introduced the three-dimensional determinant as the triple
product of three vectors. We have observed that it is multi-linear and anti-symmetric
and we will now use these properties to define the determinant axiomatically and in all
dimensions. The determinant is quite a complicated object, compared to linear maps
which are linear in only a single argument. From this point of view, it is appropriate
for the determinant to appear quite late in a build-up of linear algebra. On the other
hand, it is a very useful tool and it plays a crucial role in the computation of eigen-
values, as we will see in Part VI.

In the next section we show that multi-linearity and anti-symmetry, together with a
normalization condition, fixes the determinant uniquely. More advanced properties of
the determinant, such as its behaviour under matrix transposition and matrix mul-
tiplication, will be covered in Section 18.2. A crucial conclusion from these results is
that the determinant is invariant under basis transformations (15.13) and this allows
introducing the determinant of a linear map.

In Section 18.3 we study various computational aspect of determinants. To facilitate
calculating determinants we introduce Laplace’s rule as well as a method based on
elementary row operations. The determinant can also be used to compute the inverse
of a matrix and to solve certain systems of linear equations.

18.1 Existence and uniqueness

Summary 18.1 The determinant in n dimensions maps n vectors in F" to a num-
ber. It is multi-linear, anti-symmetric, and evaluates to one on the standard unit
vectors. These properties define the determinant uniquely. The explicit formula for
the n-dimensional determinant involves a sum over the n! permutations in the per-
mutation group S,. Alternatively, this formula can also be written in terms of the
generalized Levi-Civita symbol in n dimensions.

18.1.1 Definition of determinant

In Prop. 10.3 we have shown that the three-dimensional determinant is linear in each
argument, that it changes sign under the exchange of any two arguments and that it
evaluates to one on the basis of standard unit vectors. Now we revert the logic and
use these properties to define the determinant axiomatically.
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Definition 18.1 A map det : F™" x --- X F" — F with (ay,...,a,) — det(a,...,a,)
is called a determinant if it satisfies the following properties for all a,b € F"* and all
a,pel.

(D1) det(--- ,aca+ pb,---) = «adet(---,a,---) (multi-linearity)

+ﬁdet(... ’b’...)

(D2) det(---,a,---,b,---) = —det(--- ,b,---,a,---) (anti-symmetry)

(D3) det(eq,...,e,) =1 (normalization)
The dots in (D1) and (D2) stand for arguments which remain unchanged. The deter-
minant of an n x n matriv A € M, ,(F) is defined as the determinant of its column
vectors, so det(A) := det(Al, ..., A").

An easy but important conclusion from (D2) is that a determinant with two same
arguments must vanish, so

det(---,a,---,a,---)=0. (18.1)

We know that an object with the above properties exists for n = 3 but not yet in other
dimensions.

To address this problem we need to use some facts about permutations from Sec-
tion 3.2. Recall that the group S,, of permutations of n objects consists of bijective
maps {1,...,n} — {1,...,n}. A permutation is called a transposition if it only swaps
two integers and leaves all others unchanged. We have seen that any permutation
o € S,, can be written as a composition ¢ = 7; o - - - o 7, of transpositions 7; and that
the sign of the permutation is given by sgn(c) = (—1)¥. Permutations with sgn(c) = 1
(sgn(o) = —1) are called even (odd).

The reason permutations are relevant for the discussion of determinants is the anti-
symmetry property (D2) in Def. 18.1. We can ask how the value of the determinant
det(aj,as,...,a,) changes when we permute the arguments by a permutation o, so
if we consider det(ay(1),as(2),---;80(n)). If 0 is a transposition, then, from (D2), the
two determinants are related by a factor of —1. Hence, for an arbitrary permutation
o € S,, written as a product of transpositions, ¢ = 71 0 --- o 73, the determinant
changes by (—1)*¥ = sgn(0), so that

det(ay(1),a5(2), - - -»Ax(n)) = sgn(o) det(ar,as,...,a,), (18.2)
for all 0 € S,,.

18.1.2 The general formula for the determinant

To show uniqueness, we start with an nxn matrix A € M,, ,,(F) whose column vectors
we expand as

Ai = ZAjiej s (183)
J

in terms of standard unit vectors. The remainder of the argument really just involves
inserting this expansion into the determinant and applying the axioms (D1), (D2),
and (D3). But the proliferation of indices in multi-linear objects takes getting used to.
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det(A) "= det | 3 Ajies. 0 Y Ajney,

ji=1 Jn=1

ST Ay Ay det(es,, - ey,)
j17"‘7jn

18.1

(18.1) S Ay Avn det(eoy,  €o(m)
O'Esn

1 > sen(0) Ay - Aggmn det(er, -+, e,)
o€Sn

(D3)

= Z sgn (o) Ay (1)1 Ao(n)n
ocESy

In the second line, only terms with all indices j; different contribute to the sum due
to Eq. (18.1). This means that the sum over j, ..., j, effectively runs over all permu-
tations of {1,...,n} and can be replaced by a sum over all o € S,,. This can be done
by setting j; = o (i), as has been done in the third line.

Theorem 18.1 The determinant defined in Def. 18.1 exists, it is unique and given
by the expression

det(A) = det(A',--- A" = Z sgn(o)Agy1 - Ao(nyn - (18.4)
oES,

Proof Uniqueness is shown by the above calculation. To verify existence we have
to show that the formula in Eq. (18.4) does indeed satisfy the three conditions in
Def. 18.1.

(D1) This is apparent since the right-hand side of Eq. (18.4) depends linearly on the
entries A;; of each column j.

(D2) We verify the equivalent statement (18.2):

det(AU(l)a ey Ao(n)) = Z Sgn(p)Aa(l)p(l) te Ao’(n)p(n)

PESnH
=Y sen(p)As(p-1 1 Ao(p 1 (m)n
PESH
T=cop~ ! _
:p Z SgD(T ! © G)AT(I)l e A‘r(n)n
TESK

Thm. 3.1 sgn(o) det(Al, LA™

(D3) Insert A® = e; in Eq. (18.4). Since the components of the standard unit vectors
satisfy e;,(;) = 0 unless o(i) = i, we see that only the trivial permutation, o = id, can
contribute to the sum. Hence

det(e1,...,e,) =sgn(id)e1; - epn =1.
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Note that the sum on the right-hand side of Eq. (18.4) runs over all permutations in
S, and, therefore, has n! terms. A useful way to think about this sum is as follows.
From the n x n matrix A, choose n entries such that no two of these appear in the
same column or in the same row. A term in Eq. (18.4) consists of the product of these
n entries (times the sign of the permutation) and the sum amounts to all possible ways
of choosing them.

18.1.3 The Levi-Civita symbol

In Eq. (10.7) we have introduced the three-dimensional Levi-Civita symbol €, and we
have seen that both the vector product and the three-dimensional determinant can be
written concisely in terms of this symbol. In order to write the general determinant in
a similar way we introduce the n-dimensional generalization of the Levi-Civita symbol
by

+1if 43 = o0(1),...,4, = o(n) with an even permutation o
€iyi, = —L1ifi; =0(1),...,4, = o(n) with an odd permutation & .  (18.5)
0 otherwise

Essentially, the Levi-Civita tensor plays the same role as the sign of the permuta-
tion but, in addition, it vanishes if it has an index appearing twice, in which case
(i1,...,1n) is not actually a permutation of (1,...,n) . Then, the formula (18.4) for
the determinant can alternatively be written as

det(A) = €44 Aill s Ainn 5 (186)

n

with sums over the n indices i1, ..., 7, implied. This formulate for the determinant is
frequently used in a physics context.

18.1.4 The determinant in low dimensions

The determinant of a 1 x 1 matrix A = (a) is obviously given by its single entry, so
det(A) = a.

For the two-dimensional case we find from Eq. (18.6) that

det (Zl 21) = eijaibj = 612a1b2 + 621@21)1 = a1b2 - a2b1 . (187)
2 U2

The two terms on the right-hand side correspond to the two permutations of {1,2}.
In three dimensions we find
aq b1 C1

det a9 b2 Co = eijkaibjck = a1b203 + (LngCl + a3b162 — a2b1C3 — (LngCl — a1b302
as by c3

=a-(bxc) (18.8)

The six terms which arise correspond to the six permutations of {1, 2, 3}. In particular,
we see explicitly that the three-dimensional version of the determinant coincides with
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our earlier definition in Section 10.2. (This was already clear from uniqueness.)

The expression for the n-dimensional determinant consists of n! terms. For n = 4 this
leads to 4! = 24 terms which is already rather impractical to write down. Clearly, to
work with higher-dimensional determinants we require more sophisticated methods.

18.1.5 Determinants for triangular matrices

An interesting special class of matrices for which the determinant is simple consists
of upper triangular matrices, that is, matrices with all entries below the diagonal
vanishing. In this case

ay *

det =ai---an, (189)
0 an

so the determinant is simply the product of the diagonal elements. (An analogous state-
ment holds for lower triangular matrices, of course.) This can be seen from Eq. (18.4).
We should consider all ways of choosing one entry per column such that no two entries
appear in the same row. For an upper triangular matrix, the only non-zero choice in the
first column is the first entry, so that the first row is ’occupied’. In the second column
the only available non-trivial choice is, therefore, the entry in the second row etc. In
conclusion, from the n! terms in Eq. (18.4) only the term for the identity permutation,
o = id, which corresponds to the product of the diagonal elements is non-zero.

Problem 18.1 (Computing determinants)

Compute the determinants of the matrices
1
1-2 0
A:(ng), B=[3 2-1], C= 8
4 2 5
0
Solution: From Eq. (18.7), the determinant of A is

det(A) = det (4 :5) =3-(=5)—(-2)-4=-7.

For the determinant of B, Eq. (18.8) gives

det(B) = det

= =

-2 0

21| =+41-2-5+(=2)-(=1)-4+40-3-2

2 5/ —0.2.4—(=2)-3-5—1-(=1)-2
=10+8+30+2=50.

Finally, C is an upper diagonal matrix so from Eq. (18.9) its determinant is the product of
the diagonal entries.

det(C) = det =1-2-(—4)-(-1)=8.

OO O
S o NN
OHLHO
HP—‘CL?U"
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18.2 Properties of the determinant

Summary 18.2 The determinant is unchanged under transposition of matrices and
the determinant of a matrix product equals the product of the two determinants. Since
the determinant is invariant under basis transformation it is a class function. This
fact facilitates defining the determinant of a linear map. A linear map is invertible
iff its determinant is non-zero.

The explicit expression for the determinant becomes complicated quickly as the di-
mension increases. To be able to work with determinants we need to explore some of
their more sophisticated properties.

18.2.1 Determinant and transposition
We begin by showing that a matrix and its transpose have the same determinant.

Proposition 18.1 For any n x n matriz A € My, ,(F) we have det(A) = det(AT).

Proof By setting j, = o(a), for a permutation o € S,, we can re-write a term in
the sum (18.4) for the determinant as Ag(1)1 - Agyn = Ajio-101) " Ajno—1(jn) =
Aig-1(1) "+ Apo—1(n), Where the last equality follows simply be re-ordering the factors,
given that ji,...,J, is a permutation of 1,...,n. From this observation the determi-
nant (18.4) can be written as

(3.8 _
det(A) = Z Sgn(U)Ala_l(l) T Ana_l(n) :) Z sgn(o 1)AIO'_l(l) T Ana_l(n)
oESy o—1es,
PZ ) Ssen(p)(AT) 1 (A7) pnyn = det(AT)

PESH
O

Recall that the determinant sums all products of n entries of the matrix, chosen such
that no two of these n entries appear in the same row or column. This statement
treats rows and columns on equal footing, so it should not come as a surprise that
transposition does not change the determinant.

18.2.2 Determinant and matrix multiplication

Another obvious question is about the relation between the determinant and matrix
multiplication. Fortunately, there is a simply and beautiful answer.

Theorem 18.2 For two n x n matrices A, B € M,, ,,(F) we have

det(AB) = det(A) det(B) . (18.10)
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Proof We begin by writing the j* column (AB)? of the matrix product AB in a
suitable way.

(AB)ij = ZAikBkj = (AB)j = ZBijk .
k k

Inserting these expressions into the determinant and using multi-linearity gives

det(AB) = det((AB)*,--- , (AB)") = det (Z Bp 1AM ,ZB,WLA’“">
k?l kn

ST Biyi- Bindet(AF - AR

k1, kn
koa=0(a) o o(n
2 Z By(1)1+*+ Bo(nyn det(A W . A ))
oeS,
(12:2) Z sgn(0)Bo(1y1 - Bo(nn det(A', -+ A™) = det(A) det(B) .
N——
o€Sy

det(A)

det(B)
O

This simple multiplication rule for determinants of matrix products has a number of
profound consequences. First, we can prove a criterion for invertibility of a matrix,
based on the determinant, a generalization of Theorem 10.1.

Theorem 18.3 An n x n matrizc A € M,, ,(F) has the following properties.

(i) A is invertible if and only if det(A) # 0.
(ii) If A is invertible then det(A~!) = (det(A))~!.

Proof (i) '=: If A is bijective it has an inverse A~! and 1 = det(1,,) = det(AA~!) =
det(A) det(A~1). This implies that det(A) # 0 and that det(A~!) = (det(A))~! which
also proves (ii).

(i) ’<’: We prove this indirectly, so we start by assuming that A is not bijective. From
Corollary 14.2 this means that rk(A) < n, so the rank of A is less than maximal. Hence,
at least one of the column vectors of A, say A' for definiteness, can be expressed as
a linear combination of the others, so that Al = Yo, a; A for some coefficients ;.
For the determinant of A this means

det(A) = det(A', A2, ... A") = det (Z A A2 ,A”)
1=2
203" det(A? A2, A 2D g
=2
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Problem 18.2 (Using the determinant to check if a matrix is invertible)

Find the values of the parameter a € R for which the following matrix is invertible.

-1
A=

N O =

o Q
|

—_w e

Solution: Computing the determinant is straightforward and leads to det(A) = 2a® 4 a — 6.
This vanishes precisely when a = —2 or a = 3/2. Hence, for these values of a the matrix A
is singular and rk(A) < 3. In fact, the first two column of A are always linearly independent
so rk(A) = 2. For all other values, a # —2 and a # 3/2, it is invertible and rk(A) = 3. Note
that the rank reduces only for specific values of a, so maximal rank is the generic case.

18.2.3 Determinant and basis transformation

In Section 15.2.2 we have derived the formula, Eq. (15.13), for the transformation of a
matrix under a change of basis. What happens to the determinant under such a basis
change?

Corollary 18.1 The determinant is invariant under basis change, so
det(PAP™Y) = det(A) , (18.11)

for all matrices A € My, (F) and P € GL(F™).

Proof This follows easily from Eq. (18.2) and Theorem 18.3 (ii).
det(PAP™') = det(P) det(A) det(P~1) = det(P) det(A) (det(P))™! = det(A) .
O

This statement is of immense significance and is one of the ’magical’ properties of
the determinant. Recall that matrices related by a basis transformation are called
conjugate and that conjugation is an equivalence relation. The associated equivalence
classes, called conjugacy classes, contain all matrices related by basis transformation.
The invariance (18.11) means that the determinant is a class function: it only depends
on the conjugacy class but not the specific matrix within each class. This property
allows us to define the determinant of linear maps.

Definition 18.2 For a linear maps f : V — V, the determinant, det(f), is defined
to be the determinant of any of the matrices describing f relative to a choice of basis.

This definition makes sense since the determinant is a class function, so that the value
of det(f) is the same for whichever representing matrix is chosen. In this way, many of
the properties of the matrix determinant straightforwardly transfer to the determinant
for linear maps.



230 Determinants

Proposition 18.2 For f,g € End(V), the determinant has the following properties.

(i) det(f og) = det(f)det(g).
(i)  f is invertible iff det(f) # 0.
(iii)  If f is invertible then det(f~1) = det(f)~*.

Proof Let A and B be matrices which described f and g relative to a basis of V'
(i) Since f o g is represented by AB we have

det(f o g) = det(AB) "% £ det(4) det(B) = det(f) det(g) -

(if)
Thm 15.1 Thm 18.3

f invertible — A invertible <~ det(A) =det(f) #£0.

(iii) This follows directly from (i), by setting ¢ = f~! and using that det(idy) =
det(1,) = 1. a

Problem 18.3 (Determinant and basis transformations)

=3 = (33)

cannot be related by a basis transformation.

Show that the two matrices

Solution: One approach is to show that no invertible matrix P with B = PAP~! exists but
this would entail an awkward calculation. Instead, work out the two determinants det(A) =
1-1—(—3)-2="7and det(B) = (—1)-2—4-(—2) = 6. Since they are different (18.11) implies
that A and B cannot be related by a basis transformation.

18.2.4 Orientation

Orientation or handedness is an important property of a coordinate system which
plays a role in many applications. As we will now see, this notion follows naturally
from the properties of linear maps, bases and determinants.

The first observation is that Prop. 18.2 provides us with a way of characterizing the
general linear group GL(V') of a vector space V. It consists of all endomorphisms with
non-zero determinant, so

GL(V) = {f € End(V) | det(f) # 0} . (18.12)

For the remainder of this subsection we assume V' is a vector space over an ordered
field F, for example F = R. Then the general linear group splits into two disjoint
subsets of positive and negative determinant.

GL(V) = GLy(V)UGL_(V), GLL(V)={f € GL(V)| £det(f) > 0}. (18.13)

Tt is easy to check (using Prop. 18.2 and the criteria in Section 3.1.3) that GL4 (V) is
a sub-group of GL(V) (see Exercise 18.7). We call a linear map f € GL(V) orientation
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5\ 4

Fig. 18.1 The elephant in quadrant 1 has been mapped to quadrants 1 and 4 by the orien-
tation reversing maps x — Ax, with A = diag(+1,F1), and to quadrant 3 by the orientation
preserving map x — —x, where x = (z,y)7.

preserving if f € GL (V) and orientation reversing otherwise (see Fig. 18.1).

Suppose we have two bases (vi,...,v,) and (v{,...,v}) of V. Then, from Theo-
rem 12.1 there exists a unique linear map f € GL(V) with f(v;) = v} fori=1,...,n.
We say the two bases (vy,...,v,) and (v],...,v)) have the same orientation if the

so-defined linear map f is orientation preserving, that is, if det(f) > 0.

Theorem 18.4 Having the same orientation defines an equivalence relation on the
set of all bases on a vector space V' over an ordered field F. There are precisely two
equivalence classes.

Proof Any basis of V is related to itself since det(idy) = 1 > 0, so the relation is
reflexive. If amap f € GL, (V) relates two bases via v; = f(v;), then v; = f~1(v/) and
det(f~1) = det(f)~! > 0. This shows the relation is symmetric. Finally, transitivity
follows since det(f) > 0 and det(g) > 0 imply that det(f o g) = det(f)det(g) > 0.

If we fix a basis (v, ...,vy,) of V then the two equivalence classes are
By (V) ={(w1,...,wy) basis of V' |w; = f(v;) and +det(f) > 0} (18.14)

It is clear from Theorem (12.1) that B4 (V) UB_ (V') contains all bases on V. It is also
easy to show that any two bases in B4 (V) (B_(V)) are related, while any basis in
B (V) is unrelated to any basis in B_(V). a

The two equivalence classes in Eq. (18.14) are referred to as orientations since they
each contain all the bases with the same orientation. At this point neither of the two
orientations is preferred.

However, on coordinate vector spaces F™ (over an ordered field ), we have a preferred
basis of standard unit vectors (ey,...,e,) and we can be more explicit. Any other
basis can be obtained from the standard unit vectors by the action of a linear map A €
GL(F") via (Aey,...,Ae,) = (Al,..., A™). Such a basis has the same orientation as
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(e1,...,e,) if det(A) = det(Al,..., A™) > 0 and the opposite orientation if det(A) =
det(Al,..., A™) < 0. This means the two orientations are

By (F™) = {(v1,...,vy) basis of F" | £ det(vy,...,v,) >0}, (18.15)

and we can refer to the bases in B4 (F") which have the same orientation as the
standard unit vector basis as positively oriented or right-handed and to the others in
B_(F™) as negatively oriented or left-handed.

Problem 18.4 Orientation of a basis

What is the orientation of the R® bases (e1, ez, e3), (—e1, ez, e3), (€2, e1,es) and (vi,vi,v3),
where vi = (=2,0,1)7, vo = (1,1,0)” and vs = (0,0,—1)T? Do the bases (1,z,2?) and
(1 —x,1+x,2— ) on P2(R) have the same or different orientation?

Solution: Since det(ei,e2,e3) = 1 the basis (e1, ez, e3) is right-handed. (The three vec-
tors correspond to the first three fingers of your right hand, hence the term right-handed.)
However, det(—e1,e2,e3) = —1, so (—e1, ez, e3) is left-handed. (These vectors correspond to
the first three fingers of your left hand.) The basis (e2,e1,e3) is left-handed as well, since
det(ez, e1,e3) = —1. Finally, from

det(v1,va,vs) = det

= O N
O ==
e ]
I
[\

it follows that (v1,va,vs) is right-handed.

To compare the two bases of Pz(]Rg we consider the map f : P2(R) — P2(R) defined by
f()=1—=, f(x) =1+2 and f(2?) =  — 2. The representing matrix B of f, relative to
the monomial basis (1, z,z?), is

11 0
B=|-11 1] = det(f)=det(B)=-2.
00 -1

Since det(f) < 0, the map f is an orientation-reversing map and it follows that (1, z,z*) and
(1 — 2,14 x,z — 2?) have opposite orientations.

18.3 Computing with determinants

Summary 18.3 The Laplace expansion can be used to express the determinant in
terms of determinants of sub-matrices. Alternatively, determinants can be calculated
by an algorithm based on row operations. The determinant also provides a formula
for the matrix inverse in terms of the co-factor matrixz and a formula for the solution
of certain systems of linear equations.

18.3.1 The co-factor matrix

Our next goal is to find a recursive method to calculate the determinant, essentially
by writing the determinant of a matrix in terms of determinants of sub-matrices. To
this end, we define for an n x n matrix A, the associated n x n matrices
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0
7A1 : ’A7
- 0
Aijy=10--010-0 [ < ith row.
0 (18.16)
7A7 : 7A7
0
T

jth column
They are obtained from A by setting the (4,j) entry to 1, the other entries in row i
and column j to zero and keeping the rest of the matrix unchanged. Note that the
subscripts (7, ) indicate the row and column which have been changed rather than
specific entries of the matrix (hence the bracket notation). We can now define the
co-factor matrix.

Definition 18.3 (Co-factor matriz) For an n x n matric A € M, ,(F), the n x n
matriz C' with entires ~

and the matrices fl(ij) defined in Eq. (18.16), is called the co-factor matriz of A.

To find a more elegant expression for the co-factor matrix, we also introduce the
(n—1) x (n—1) matrices A;;) which are obtained from A by simply removing the i*"
row and the j*® column. It takes i — 1 swaps of neighbouring rows in (18.16) to move
row i to the first row (without changing the order of any other rows) and a further
j — 1 swaps to move column j to the first column. After these swaps the matrix fl(ij)

becomes
10 --- 0
0

By = (18.18)

b Agy)
0

From Def. 18.1 (D2) and Lemma 18.1 it is clear that det([l(ij)) = (—1)"" det(Bj)),
since we need a total of ¢+ j — 2 swaps of rows and columns to convert one matrix into
the other. Further, the explicit form of the determinant (18.4) implies that det(B;;)) =
det(A(i;)), as the only non-trivial choice of entry in the first column of B;;) is the
1 in the first row (see also Exercise 18.9). Combining these observations we get the
following formula for the co-factor matrix.

Lemma 18.1 (Formula for co-factor matriz) For an n x n matric A € M,, ,(F), the
entries of the co-factor matriz C are given by

Cij = (—1)" det(Agj)) (18.19)

where the (n — 1) x (n — 1) matrices A ;) are obtained from A by removing the i*™
row and the j** column.

Proof This follows from the arguments above. O
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Hence, the co-factor matrix contains, up to signs, the determinants of the (n — 1) x
(n — 1) sub-matrices of A, obtained by deleting one row and one column from A. As
we will see, for explicit calculations, it is useful to note that the signs in Eq. (18.19)
follow a ’chess board pattern’, that is, the matrix with entries (—1)*™/ has the form

P (18.20)

The crucial statement which makes the co-factor matrix a useful object is the following
lemma.

Lemma 18.2 For an n X n matriz A with associated co-factor matriz C, as given in
Eq. (18.19), we have
CTA = det(A)1,, . (18.21)

Proof This follows from the definition of the co-factor matrix, more or less by direct
calculation.

18 17
(CT A, :Z(c YirArj = ZA,WCM )ZAk] det(A i)

ZA,W det(Al, .- A7 e, AT LA™

(Dl) d t < o aAi_l’ZAkjekvAiJrla” : 7An>
k

= det(AL, -, AL AT AT A UEY 5 det(4)

18.3.2 Laplace expansion of determinant

The first main conclusion from Eq. (18.21) is the desired recursive formula for the
determinant.

Theorem 18.5 (Laplace expansion of determinant) For annxn matriz A € M,, ,(F)
we have

n n
det(A) =Y (=1)" A;j det(Ay) = > (=) Ag det(Ag) (18.22)
i=1 1=1
for any j,k = 1,...,n. The sub-matrices A(;;) are obtained by deleting row i and

column j from A.
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Proof To prove the first equality in (18.22), we focus on the diagonal (jj) entry of
Eq. (18.21).

det(4) = (CTA)j; =D (CT)jidy =Y CijAiy = Y (—1)"" 4y det(Agy)).

The second equality (18.21) follows from the first by using the invariance of the de-
terminant under transposition. m]

Eq. (18.22) is referred to as Laplace expansion of the determinant. It realizes our goal
of expressing the determinant of A in terms of determinants of the sub-matrices A; ;).
More specifically, in the first part of Eq. (18.22) we can choose any column j and
compute the determinant of A by summing over the entries ¢ in this column times
the determinants of the corresponding sub-matrices A(;; (taking into account the
sign). This is also referred to as expanding the determinant ’along the j*' column’.
The second part of Eq. (18.22) says that we can carry out an analogous process by
expanding ’along the k" row’. To see how this works in practice we consider the
following exercise.

Problem 18.5 (Laplace expansion of determinant)

Compute the determinant of the matrix

by a Laplace expansion along its 15° column.

Solution: From Eq. (18.22), taking into account the signs as indicated in (18.20), we find

det(A) A1 det(A(1 1) Aoy det A(g 1)) + Az det(A(3 1))

) =
:2Adet( ) 1- det( )+O-det(—;_g>

=2.14—1-(-4)+0-2=

Note that the efficiency of the calculation can be improved by expanding along the row or
column with the most zeros.

18.3.3 Matrix inverse from co-factors

The second important result from Eq. (18.21) is a new method to compute the matrix
inverse.

Theorem 18.6 For an invertible n x n matriz A € M, ,(F) the inverse is given by

1

= Jot(A) ct, (18.23)

where C' is the co-factor matriz of A.
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Proof Since A is invertible we know that det(A4) # 0 from Theorem 18.3. We can,
hence, divide Eq. (18.21) by det(A) and obtain

]‘ T —1 ]‘ T
A=1, A = .
T = dot(A) ¢

Problem 18.6 (Inverse of a 2 X 2 matrix using the co-factor method)

Using the co-factor methods, find the inverse of a general 2 X 2 matrix

ab
A= ( d) .
Solution: The co-factor matrix of A is easily obtained by switching around the diagonal and
non-diagonal entries and inverting the signs of the latter:

d —c
C— (_b a) , (18.24)
With det(A) = ad — ¢b (which should be different from zero for the inverse to exist) we have
for the inverse
_ 1 1 d—b
AT = 7= . 18.2
det(A)C ad — cb (—C a> (18.25)

Note that this provides a rule for inverting 2 x 2 matrices which is relatively easy to remember:
Exchange the diagonal elements, invert the signs of the off-diagonal elements and divide by
the determinant.

Problem 18.7 (Inverse of a 3 X 3 matrix using the co-factor method)
Using the co-factor method, find the inverse of the matrix A from Exercise 18.5.
Solution: Applying Eq. (18.19) gives the associated co-factor matrix

1
C =

RN
S 00
|
UToy W

For example, the (1,1) entry of C' is computed from A1), the 2 X 2 matrix obtained from A
by dropping the first row and first column.

2 -2
A(ll) - (3 4) 5 Cll = det(A(ll)) =14.

The other entries of C' are computed analogously. With det(A) = 32 and Eq. (18.23) the
inverse is given by

. 1 - 1 14 42
= C ' =—1-4 84
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18.3.4 Determinant and row operations

Despite our improved methods, the calculation of determinants for large matrices
remains a problem, essentially because of the aforementioned n! growth of the number
of terms in Eq. (18.4). Using a Laplace expansion will improve matters only if the
matrix in question has many zeros. How can we compute the determinants of large
matrices? The key is to understand the relationship between determinants and row
operations.

Proposition 18.3 Under row operations, Def. 16.1, on an n X n matriz A the deter-
minant of A behaves as follows:

(R1) Adding a multiple of one row to another does not change the determinant.
(R2) Exchanging two rows changes the determinant by a factor —1.
(R3) Multiplying a row with a number o # 0 changes the determinant by a factor a.

Proof Since the determinant does not change under transposition we can proof the
analogues of the above statements for columns.
(R1) Linearity of the determinant and Eq. (18.1) implies that

(D1)
) =

det(... S, 7aj+aai’... det(... R PR 7aj7...)_~_adet(... S, 7ai’...)

18.1
(:)det( 7ai’... ’aj’...) .
(R2) This is the anti-symmetry property of the determinant, Def. 18.1 (D2).
D1

(R3)det(~--,aa,n-)(:)adet(---7a,---) O
Suppose we use row operations of type (R1) and (R2) to bring an n x n matrix A
into upper echelon form, by applying the algorithm described in Section 16.1.3. From
the previous lemma this process changes the value of the determinant only by a factor
(—1)%, where k is the number of row swaps (R2) used. A square matrix in upper
echelon form is also an upper triangular matrix and, from Eq. (18.9), its determinant
is simply the product of its diagonal entries. In summary, the value of the determinant
is given by

det(A) = (-1)*a;---a, , (18.26)
where ay,...,a, are the diagonal entries in the upper echelon form of A and k is the
number of rows swaps used to reach the upper echelon form. Computing the upper
echelon form for an n x n matrix needs ~ n> algebraic operations so for large matrices
this method is much more efficient than using the formula (18.4) which involves n!
terms. (Even on a modern computers, working out n! terms is impossible even for
moderately large n while n3 operations are still feasible.)

Problem 18.8 (Computing determinants via row operations)
Compute the determinant of the matrix

(3

by bringing it to upper triangular form, using elementary row operations.

S W =
(G108 VN \)
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Solution: Bringing A to upper echelon form with row operations gives

01 2\ piory, [(—13-2\ prymrytort [ 13 -2\ rympry—ere2 [ —13 —2
A=|-13-2| —— 01 2| — | 01 2| — | 01 2
20 5 20 5 06 1 00—11

The matrix on the right is in upper echelon and upper triangular form with diagonal entries
(a1,a2,a3) = (—1,1,—11) and we can now compute the determinant from Eq. (18.26). We
note that we have used one row exchange, so k = 1. Then, det(A) = (—=1)*aja2a3 = (—1) -
(=1)-1-(—11) = —11. Using the explicit formula (18.8) for the determinant of course leads
to the same answer.

For practical reasons we have illustrated this method with a small matrix. However,
its main relevance is for computer calculations of large determinants where the basic for-
mula (18.4) or a Laplace expansion is inefficient.

Example 18.1 (Vandermonde determinant)

The Vandermonde determinant (of order n) is the determinant of the n x n matrix

1 1 ... 1
al a2 DY an
A,=| af a3 - ap || (18.27)
a;z—l a;—l L. aﬁ—l
where aq,...,a, € F. The claim is that this determinant is explicitly given by
det(A4n) = [ (a;—ai) (18.28)
1<i<j<n

This can be shown in a number of ways but we opt for a proof based on induction
in n. The basis of the induction, for n = 2, is certainly true since det(A4s) = as — a;.
The induction assumption is that the formula (18.28) is true for n — 1. To make the
induction step, we add multiplies of the first n — 1 rows of A,, to the last row to get

1 1 - 1
al a9 e (07 n—1
A, = ai a3 - a2 with p(x) = H (r —a;),
S =
pla1) plaz) -+ plan)

where the specified polynomial p can be achieved by adding suitable row multiples. Of
course, these row operations have not changed the determinant. In addition we know
that p(a;) = 0 for all i < n, so the only non-zero entry in the bottom row of A, is
the last one. This suggest we should try a Laplace expansion along the last row of A,
which gives

n—1
det(An) = p(an)det(4y—1) = H(an — a;) H (aj —ai) = H (aj —ai),
i=1 1<i<j<n—1 1<i<j<n

where the induction assumption has been used for the second equality. This completes
the argument.
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Note that the Vandermonde determinant is non-zero iff the numbers aq,...,a, are
pairwise different. O

18.3.5 Minors

We have seen how to use row operations to compute the rank of a matrix but can de-
terminants be used for the same purpose? The determinant does provide some limited
information about the rank of an n x n matrix A. From Theorem 18.3 det(A) # 0
implies that rk(A) = n. On the other hand, for det(A) = 0 we know that the rank of A
is less than maximal, rk(A) < n, but we have no further information about its value.
Of course the determinant is only defined for square matrices so even these limited
statements cannot be directly applied to non-square matrices.

To extract more information we need to consider the square sub-matrices which can
be extracted from a given matrix A € M,, ,,,(F) as well as their determinants. Suppose
by a sequence of row and column swaps A can be brought into the form

kK m—k
row,col. swaps A B A’ B k s (1829)
o C D n—k

where the size of the blocks has been indicated on top and to the right. The determinant
det(A’) of the k x k block in the upper left is called a minor of order k of A.

Theorem 18.7 The maximal order of non-zero minors of a matriz A equals its rank.

Proof We begin by showing that any non-zero minor of order k satisfies k& < rk(A).
To this end, assume that det(A’) # 0 for the k x k matrix A’ in Eq. (18.29). Then
rowrk(A’) = k and, hence,

B / /
rk(A) =1k(A) > rk (é) = rowrk (g) > rowrk(A') =k .
It remains to be shows that A has a non-zero minor of rank k = rk(A). Clearly, A
has rk(A) linearly independent column vectors which can be swapped into the first &
columns of A. Suppose this has been done in Eq. (18.29) so that

rk(A) = rk(A) = colrk (g) = rowrk (‘g ) .

The rk(A) linearly independent rows in the matrix on the right can be brought to the
top by suitable row swaps and in this way we obtain a rk(A) x rk(A4) matrix A” which
leads to a non-zero minor, det(A”) # 0, of order rk(A). O

This theorem can be used to determine the rank of any matrix by computing its
minors.



240 Determinants

Problem 18.9 Matrix rank from minors

Using minors, determine the rank of the matrix A € M3 3(R) given by

b
A= — 1
b

NN
w o

for all a,b € R.
Solution: We have det(A) = 2ab + 2a — b*> + 6b 4 3 and for all pairs (a, b) for which this is
non-zero we have rk(A) = 3. On the other hand, the determinant vanishes for all b # —1 and

b2 —6b—3

o241

In this case, rk(A) < 3. However, one minor of order two is obtained from the second and
third row and column,

A= (_gé) = det(A) =2 +3,

and since this never vanishes we have rk(A) = 2 whenever rk(A) < 3.

18.3.6 Cramer’s rule

For a system of n linear equations in n variables with a unique solution a formula for
the solution can be written down in terms of determinants. This formula is known as
Cramer’s rule.

Theorem 18.8 (Cramer’s rule) Let A € M,, ,,(IF) be invertible and b € F"*. Then,
the unique solution of the linear system Ax = b is given by

det(B;) 1 i—1 ;
= ——2L wh By = (AL, - J AT b, AT L AN 18.30
X det(A) wnere ( ) ( 9 ) s My 9 9 ) ( )
Proof The linear system Ax = b can also be written as
> Al =b, (18.31)
J

where AJ are the columns of A. A short calculation shows that
det(B(i)) = det(Al, AT p AL L ,A™)

TEY der(AL o ALY 0 AT AL AT
J

(Dzl) ij det(Al,"' ’Aifl’Aj’AH*l,... ’An)
J
UEY pidet(AY, - AT AL AP AT = 2 det(4)

Since A is invertible Theorem 18.3 implies that det(A) # 0. Dividing by det(A) then
gives the desired result. ]
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Problem 18.10 (Cramer’s rule)

Using Cramer’s rule find the solution of the linear system Ax = b with

2-1 0 1
A=[1 2-2], b=|2
0 3 4 0

Solution: The three matrices B(;) in Cramer’s rule (18.30) are obtained by replacing the ith
column of A with the vector b.

1-1 0 21 0 2-11
By=|2 2-2|, Bg=(12-2|, Bag=|1 22
0 3 4 00 4

By straightforward computation, for example using a Laplace expansion, it follows that
det(A) = 32, det(B(1)) = 22, det(B(2)) = 12 and det(B(3)) = —9. From Eq. (18.30) this
leads to the solution

22
X = 1 12
\
Exercises
(t=challenging) 1-2 0 3
18.1 Calculate the determinants of the ma- A= (2) _11 _(1) :1))
trices 5 4 1-2
A 0 _é [ using the co-factor method.
- _; i 5 18.4 Solve the system of linear equations
V3 —v2 —/3 r+2y+32z =2
B:i 1 \/6 1. 3x+4y+ 5z =4

by (a) the matrix inverse, (b)
Cramer’s method and (c) row reduc-
tion.

(d) If you had to write a computer

18.2 For which values of the parameters
a,b € R is the matrix

al a program solving systems of linear
A= (1) bl -1 equations (of arbitrary and possibly
-1 a

large size) which of the above meth-
ods would you base it on?
not invertible? Determine the rank of 18.5 Rank of non-square matrices

Aforalla,b€R. (a) For a 2 x 3 matrix A show
18.3 Invert the matrix that A has non-maximal rank iff
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18.6

18.7

18.8

det(A', A% =
det(A*, A%) =0.
(b) Formulate and proof the analo-
gous statement for 2 X n matrices,
where n > 3.

(c) Determine the rank of the matrix

la -2
A= (b 3 —a)
for all values of a,b € R, using the
criterion from part (a).

det(A% A3) =

Determinant of linear map

On the vector space V = P3(R) of
polynomials with degree less equal
three consider the linear map L : V' —
V defined by

d
L=—+1.
der

(a) Compute det(L). Why is L invert-
ible even though L(y) = 0 must have
a solution?

(b) Find L™'.

(c) Use the result from part (b) to find
a solution y to L(y)(z) = z°.
Subgroups of GL(V)

(a) For a vector space V over R, show
that the set GL (V') of all linear maps
f € GL(V) with det(f) > 0 forms a
subgroup of GL(V).

(b) Let V be a vector space over F
and F* = F \ {0} is the multiplica-
tive group of the field F. Show that
det : GL(V) — F* is a group homo-
morphism.

(c) Show that the set SL(V') of all lin-
ear maps f € GL(V) with det(f) =1
forms a subgroup of GL(V). (This
group is called the special linear
group.)

Orientation
(a) For two linearly independent vec-

18.9

18.10

18.11

tors vi,v2 € R® show that (vi x
Va,V1,V2) is a positively oriented ba-
sis.

(b) For a permutation o € Sy,
show that the bases (v1,...,v,) and
(Vo(1),--->Vo(n)) of V have the same
orientation iff sgn(o) = 1.
Determinant of block-diagonal matri-
ces

Matrixes A € M, n(F) and B €
Mp,m(F) are arranged into the
block-diagonal matrix

A0

= (35)
with size (n+m) x (n+m). Show that
det(C) = det(A) det(B).
Generalization of cross product
For linearly independent vectors
Vi,...,Vn—1 € R" define the vec-
tor w € R"™ with components w; =
det(vi,...,vn_1,€;). Show that
(a) w is orthogonal with respect to
the dot product to all vectors v,.
(b) (vi,...,Vn—1,w) is a basis of R".
(c) [w|* = det(vi,..., Va1, W).
(d) for v, = e, we have w = e,,.
(e) for n = 3 the vector w can be
written in terms of a cross product.

Determinant formulae!

For two matrices A,B € My m(R)

show the following;:

(a) det(ABT) =0 if n > m.

(b) det(ABT) = S det(A, ..., A™).
det(B*,...,B%")

if n < m, where the sum runs over all

a1y...,an With 1 < a1 < -+ < ap <

m. (Hint: Write the determinants in

terms of Levi-Civita tensors and go

wild with indices.)

(c) det(AAT) = S det(A,..., A%)?

if n < m and with the sum over the

ay as in part (b).



Part VI

Eigenvalues and eigenvectors

In Chapter 15, we have seen that an endomorphism f € End(V) can be represented by
a square matrix A, relative to a choice of basis on V. For a different basis, the same lin-
ear map is represented by another matrix A’, related to A by the basis transformation
A’ = PAP~! as in Eq. (15.13). Two matrices related by such a basis transformation
are called conjugate and we have seen that conjugation is an equivalence relation.
Its equivalence classes, the conjugacy classes, consist of all matrices which represent
the same linear map, relative to different basis choices. This structure suggests a set
of questions. How can we find a basis for which the representing matrix of a linear
map is particularly simply, for example diagonal? Does such a diagonal matrix exist
in each conjugacy class? If not, what is the simplest possible choice? As we will see,
eigenvectors and eigenvalues are the key to answering these questions.

Bringing matrices into a simple form by a basis transformation can be immensely help-
ful for solving or simplifying a wide range of problems. For this reason, eigenvectors
and eigenvalues are of great practical importance and have numerous applications. For
example, eigenvectors and eigenvalues are at the heart of quantum mechanics. We will
encounter a number of these applications as we go along.

As a simple motivational example for why diagonalizing or otherwise simplifying matri-
ces can be useful consider a sequence Xg, X1, ... € F" of vectors which are determined
recursively, by an equation x511 = Mxy, where M € M, ,(F) is a fixed matrix.
This might describe a discrete process, such as the evolution of a population, where
the index k labels the time step, x; describes a distribution of certain characteristics
within the population at time k£ and the evolution to the next time step is accom-
plished by multiplying with M. Once we fix the initial vector xg, the entire sequence
is determined by the equation

xp = MFx, . (18.32)

Therefore, if we want to understand how the system evolves, we have to work out
powers, M¥, of the matrix M. Matrix multiplication is generally a complicated oper-
ation and repeating it many times may well be very difficult, even for small matrices
M. However, for a diagonal M = diag(\1,...,\,) the calculation is easy and leads to
M* = diag(A\¥, ..., \F). If we can somehow bring Eq. (18.32) into an equivalent form
where M becomes diagonal the problem can be solved. Eigenvector and eigenvalues
will help to do this, as we will see.
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In the next chapter, we begin by developing the basics of eigenvalues and eigenvectors,
their definition, structure and computation. In particular, the characteristic polyno-
mial, a central object in the theory of eigenvalues, is introduced. We finish with the
theorem of Cayley—Hamilton which states that every endomorphism inserted into its
own characteristic polynomial gives the zero map.

In Chapter 20, we derive criteria for when endomorphisms can be diagonalized and
show how eigenvalues and eigenvectors can be used to compute the diagonal form.
While this can be achieved frequently we will also see that there are some conjugacy
classes which do not contain a diagonal matrix.

For such cases, the strategy is to find a basis in which the representing matrix is
as close to diagonal as possible. The resulting structure is called the Jordan normal
form which leads to matrices with zeros everywhere except possibly along the diagonal
and the entries just above the diagonal. The Jordan normal form will be derived in
Chapter 21.
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Basics of eigenvalues

Eigenvectors and eigenvalues play a role in many areas of pure and applied mathe-
matics. In this chapter, we develop the basics, define eigenvalues and eigenvectors and
explain how to compute them. Every endomorphism f : V' — V has an associated
polynomial x, called the characteristic polynomial. The eigenvalues of f are precisely
the zeros of xy. As a by-product, we obtain new class functions for matrices which
follow from the invariance of the characteristic polynomial under basis transforma-
tions. We discuss in detail the most important one of those, the trace of a matrix
which is given by the sum of its diagonal entries. We end the chapter by proving the
Cayley—Hamilton theorem.

19.1 Eigenvalues and eigenspaces

Summary 19.1 For a linear map f : V — V, an eigenvector v € V is a non-zero
vector which scales under f, so that f(v) = Av. The scalar \ is the associated eigen-
value. The eigenvectors for each eigenvalue A are collected in the eigenspace Eigf()\)
which consists of all solutions to the homogeneous linear system (f — Aidy)v = 0.
The dimension of the eigenspace is called the degeneracy of the eigenvalue.

19.1.1 Definition of eigenvalues and eigenvectors

Recall from Theorem 15.1 that the matrix A which represents a linear map f:V — V

relative to a basis (vy,...,Vy,) of V is determined by
f(Vj) = ZAijVi . (19.1)
i=1
Suppose we had somehow succeeded in choosing the basis (v, ..., v,) such that A =

diag(aq,...,a,) is diagonal. In this case, Eq. (19.1) turns into
f(vi) =a;vi . (19.2)

Hence, a diagonal representing matrix requires basis vectors which are multiplied by
a scalar under the action of f. Vectors with such a scaling behaviour are called eigen-
vectors and the scalars a; multiplying them are called eigenvalues. Formally, they are
defined as follows.
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Definition 19.1 Let f: V — V be a linear map on a vector space V over F. A scalar
A € F is called an eigenvalue of f if there exists a non-zero vector v € V such that

f(v)=Av. (19.3)
Such a vector v is called an eigenvector of f with eigenvalue .

Note that, while A = 0 is a perfectly acceptable eigenvalue, eigenvectors are always
non-zero. This requirement is, in fact, crucial. If the zero vector was allowed as an
eigenvector, then the eigenvalue equation (19.3) would be satisfied for every scalar A,
since f(0) =0 = AO.

19.1.2 Degeneracy and eigenspaces

For a given eigenvalue A, the eigenvector is not unique. For example, for an eigenvector
v, every multiple av, where a # 0, is also an eigenvector, since f(v) = Av implies that
flav) = af(v) = A(av). For this reason it makes sense to collect all eigenvectors for
a given eigenvalue into a set, called the eigenspace. Since Eq. (19.3) can be re-written
as (f — Aidy)v = 0 the eigenspace for a scalar A € F is defined as

Eig,()\) := Ker(f — Aidy) - (19.4)

As a kernel of a linear map, the eigenspace is a vector subspace of V. Note that
the eigenspace for eigenvalue 0 is the kernel of the linear map, so Eig f(O) = Ker(f).
From Def. 19.1, the scalar \ is an eigenvalue if and only if the eigenspace Eig,()) is
non-trivial, so we have

A eigenvalue of f < Eig;(A\) #{0} <« dimp(Eig;(A\)) >0. (19.5)

The dimension of the eigenspace is an important property of the eigenvalue for which
we introduce the following terminology.

Definition 19.2 An eigenvalue A € F for a linear map f € End(V) is called non-
degenerate if dimp(Eigs()\)) = 1 and, otherwise, if dimp(Eig;(\)) > 1, it is called
degenerate. The dimension dimF(Eigf()\)) is called the degeneracy of the eigenvalue .

What is the intersection of the eigenspaces for two different eigenvalues A and \'?
Suppose we have a vector v € Eig;(A\) NEig;(\’). Then the eigenvalue equation (19.3)
implies that f(v) = Av = Xv and, hence, since A\ # X, that v = 0. In conclu-
sions, eigenspaces for different eigenvalues intersect trivially so their sum is direct (see
Section 8.1.4).

19.2 The characteristic polynomial

Summary 19.2 The characteristic polynomial x¢ of a linear map f : V — V s
a polynomial of degree dimp(V') whose zeros are the eigenvalues of f. The charac-
teristic polynomial of a matriz is invariant under basis transformations, so that all
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coefficients in xy are class functions. In particular this shows that the trace of a
matriz is a class function. The degeneracy of an eigenvalue X\ is bounded from above
by the multiplicity of X\ in the characteristic polynomial.

19.2.1 Definition of characteristic polynomial

How do we compute eigenvalues and eigenvectors for a given linear map? The key
observation comes from the equivalence (19.5). It says that A is an eigenvalue iff
Ker(f — Aidy) is non-trivial. This is the case iff f — Aidy is not invertible which is
equivalent to det(f—Aidy) = 0. This last condition is crucial since it gives an equation
for the eigenvalues and it motivates the following definition.

Definition 19.3 For a linear map f:V — V the map x5 : F — F defined by
Xf(A) :==det(f — Nidy) (19.6)
is called the characteristic polynomial of f.

As suggested by the above discussion, the eigenvalues are the zeros of the characteristic
polynomial.

Theorem 19.1 Let f € End(V) be a linear map on a vector space V' over F with
characteristic polynomial x¢ : F — F. The scalar A € F is an eigenvalue of f if and

only if xf(A) =0.

Proof

A eigenvalue of f By dimp(Ker(f — Aidy)) >0 Coply? f — Aidy not invertible

THEL33 qet(f — Aidy) = 0

19.2.2 Properties of the characteristic polynomial

To get a handle on eigenvalues we should understand the characteristic polynomial
better, including why it actually is a polynomial.

Proposition 19.1 For a linear map f:V — V, where V is an n-dimensional vector
space over F, and any representing matric A € My, ,(F) of f the characteristic poly-
nomial x ¢ has the following properties.

(i) Xf=xa

(i1) Xy is a polynomial of degree n

(ii)  Xpap-1 = xa for any matriz P € GI(F")

(iv)  If we write the characteristic polynomial as

XA = A" F e I AT A (19.7)

then the coefficients c; are invariant under basis transformations.
(v)  For the coefficients we have
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n

o= (1", = (D)"Y Ay, oo =det(A). (19.8)

i=1

Proof (i) This follows from Def. 18.2 which defined the determinant of a linear map
as the determinant of any of its representing matrices.

(ii) To find the characteristic polynomial, we need to compute the determinant

A= A - Aiaa A
A1 Asp— A Asna Agp,
Xf(A) = det : S : : : (19.9)
Anfl,l An71,2 o Anfl,nfl - A Anfl,n
Anl An2 o An,n—l Ann - A

The general expression (18.4) for the determinant of an n x n matrix is a degree n
polynomial in the entries. Since the entries of the matrix in Eq. (19.9) are at most
linear in A is follows that x () is a polynomial in A of degree n or less. Result (v)
shows that the coefficient of \" is, in fact, always non-zero so the degree equals n.

(iii) This follows from (i) since the characteristic polynomial is the same for any rep-
resenting matrix of f but it can also be checked explicitly.

Xpap1 () "L det(PAP~Y — A1,) = det(PAP~! — AP1,P )

(18.11)
= xA(A)

(iv) This follows from (iii). If the entire characteristic polynomial is invariant under
basis transformations then so are its coefficients.

(19.6)

=det(P(A - \1,)P™1) det(A — \1,,)

(v) The formula for ¢o follows easily from co = x¢(0) = det(f). Powers A" and A"~*
in the determinant (19.9) can only arise from the product of the diagonal elements, so

n

xa() = [J(Ai = 2) +0("2) = (=1)"\" 4 (~1)" (Z Ai,) AT O(A"2)

i=1
Reading off the factors in front of A” and A\"~! gives the desired results. ]

19.2.3 Examples

Combining the above results leads to an algorithm for computing eigenvalues and
eigenvectors which can be summarized as follows.

Algorithm (Computing eigenvalues and eigenvectors)
(1) Compute the characteristic polynomial x §(\) = det(f — Xidy) of f.
(2) Find the zeros, A, of xs. They are the eigenvalues of f.

3) For each eigenvalue A compute the eigenspace Eig () = Ker(f—Aidy) by finding
f
all vectors v which solve the homogeneous linear system

(f =Aidv)(v) =0. (19.10)
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Things are simple for diagonal matrices A = diag(aq, ..., a,) since their characteristic
polynomial equals x 4(A) = (a1 —M) - - - (@, —A). Hence, the eigenvalues are precisely the
diagonal entries a; and, provided they are pairwise different, they are non-degenerate
with eigenspaces Eig 4(a;) = Span(e;). (If some of the a; are the same then there is
degeneracy and the eigenspaces enhance to the span of the unit vectors in those direc-
tions.) In general, finding eigenvalues and eigenvectors is not as simple and requires a
calculation.

Problem 19.1 Computing eigenvalues and eigenvectors

Compute the eigenvalues, eigenvectors (and eigenspaces) of the linear map A : R® — R?
defined by

1-1 0
A=|-1 2-1] . (19.11)
0-1 1

Solution: The characteristic polynomial is

1-Xx -1 0
ya) =det [ -1 2—=x -1 | = x0-1)(A-3),
0 -1 1-2A

so we have three eigenvalues, A1 = 0, A2 = 1 and A3 = 3. Writing v = (z,y, z)T, we compute
the eigenvectors for each of these eigenvalues in turn.

1-1 0 T ] \

AM=0: A-0)v=| -1 2-1 y|l=|-2z+2y—2|=0 & z=y=z
0-1 1 z —y+z
0-1 0 T —y '

A=1: (A-11)v=| -1 1-1 yl=|-2z+y—2|=0 & y=0,z=-z2
0-1 0 z —y
-2-1 0 T —2zr—vy '

A3=3: A-3l)v=| -1-1-1 yl=|-z—-y—2|=0 & y=-2z,z==2
0-1-2 z —y—2z

Hence, the eigenspaces are given by Eig 4(A;) = Span(v;) with

1 -1 1
V1 = 1 s Vo = 0 s V3 = -2
1 1 1

They are one-dimensional so all eigenvalues are non-degenerate.

Counting in the previous exercise is rather suggestive: we have three dimensions and
three non-degenerate eigenvalues. Unfortunately, things are not always so straightfor-
ward as the following exercise shows.

Problem 19.2 (Eigenvalues and eigenvectors — more examples)
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Find the eigenvalues and eigenvectors (eigenspaces) for the linear maps R? — R? defined by

11 01 21
T N O 1 R (1) e

Solution: For the characteristic polynomials we find
1-X 0 1-X 1
0 1-X

1-A
2—X 1

0 = (1 -))? xa(A) = det
21 .
xB(A) = det -1 ) =2+1 xc(A) = det 1 9 =2-))*-1

X1, (A) = det = (1 -\

—-A

The map 12 has only one eigenvalue, A = 1, with a two-dimensional eigenspace Eigy, 1) = R2.

The map A has the same characteristic polynomial as 13, so also has only one eigenvalue,
A = 1. To find the eigenvectors we work out

(A—ng)v=<8é)<3)éo e  y=0.

Hence, unlike for the previous case, the eigenspace Eig,(1) = Span(e;) is one-dimensional
and the eigenvalue is non-degenerate.

The characteristic polynomial for B has no zeros over R, so there are no eigenvalues. However,
if we view B as a map C? — C? then we have the two eigenvalues A+ = +i and the associated
eigenvectors are determined by

. . Fi 1 T Fix + ! .
)\i::I:z:(B¥11L)v:<_1:|:l.)(y)z(_mZFiZ)zo & y=Zix

This shows both eigenvalues are non-degenerated with eigenspaces Eig(44) = Span((1,44)7).

Finally, for C' we have two eigenvalues A1 = 1 and A2 = 3 with eigenvalues determined by

)\1:1:(C—ﬂ)v:<}i)(f}>:<iig>$0 s y=-z

/\2:3:(C—Sﬂ)v:(*}_i)(i):(ﬁ:z)éo & y==

Both eigenvalues are non-degenerate with eigenspaces Eig,(1) = Span((1, —1)7) and Eig(3) =
Span((1,1)™).

19.2.4 Degeneracy and multiplicity

In Section 4.4 we have introduced various basic features of polynomials. It will help
our discussion of eigenvalues and eigenvectors to consider these for the characteristic
polynomial. First, recall that the existence of zeros and factorization of polynomials
depends on the choice of the underlying field F. That is why we have to be careful about
the field F when we discuss eigenvalues and eigenvectors, as Problem 19.2 illustrates.
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We have also seen that different values for the degeneracy of eigenvalues are possible.
However, the degeneracy can never exceed the multiplicity of the eigenvalue in the
characteristic polynomial, as we now prove.

Proposition 19.2 Let f : V — V be a linear map on a (finite-dimensional) vector
space V over F. If Ao is a degeneracy d eigenvalue of f whose multiplicity in xy is m
then1 <d<m.

Proof The eigenvalue Ao has an associated eigenvector so it is clear that 1 < d.

To proof the upper bound choose a basis (v1,...,vq4) of Eigs()o) and complete to a
basis (Vi,...,Vd, Vay1,...,Vn) of V. Then f(v;) = Agv; for j=1...d and

d n
f(vj) = Z Bijv; + Z Cijvi
i=1

i=d+1

for j = d+1,...,n and suitable matrices B and C'. This means the representing matrix
A for f relative to the chosen basis has the form

Xoly B
A= ( . c) = xr(\) =det(A - A1,) = (A= Ao)xc(N) .
The above result for y r means the degeneracy of g is at least d, so d > m leads to a
contradiction (see Def. 4.3). It follows that d < m. O

19.2.5 Class functions

In Section 18.2.3 we have seen that the determinant is a class function — it takes the
same value on any two matrices in the same conjugacy class. It is, therefore, a property
of the underlying linear map and we have used this fact to define the determinant for
linear maps. Class functions are very important since they can tell us about properties
of matrices which are independent of the choice of basis. We should, therefore, take
note that Prop. 19.1 tells use about the existence of a whole range of class functions:
the coefficients ¢; in the characteristic polynomial (19.7) for f. In fact, the coefficient
co = det(A) is the determinant and ¢, = (—1)" is trivial but all other ¢; are new.

Of particular interest is the coeflicient ¢,—; in Eq. (19.7) which is proportional to
the sum of all diagonal entries. This sum is called the trace of a matrix and for
A e M, o (F) it is defined by

n

tr(A) =) Aji . (19.13)

Proposition 19.3 (Properties of the trace) For matrices A,B € M, ,(F) and P €
GL(F™) and scalars o, 8 € F, the trace has the following properties.
(i) tr(aA+ BB)=atr(A)+ Str(B) (linearity)
(ii) tr(AB) = tr(BA) (commutativity)
(iii) tr((PAP~ 1)) = tr(AF) for k=1,2,... (class function)
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Proof (i) tr(aA+5B) =) ,(a¢A+6B)i =a) A+ 5>, Bii = atr(A)+ [tr(B)
(i) tr(AB) = 32, ; AijBji = 2., ; Bjidij = tr(BA)
(iii) For k = 1 this follows from Prop. 19.1 (iv). The general case follows from direct
calculation.
1,
—~
tr(PAP™Y)¥) = tr(PAP'PAP™ ... PAP™!) = tr(PA*P™1)
@ (PLPAF) = tr(AY)
0O

Since the trace is a class function, we can define the trace of a linear map as the trace of
any of its representing matrices, in analogy with what we did for the determinant. Of
course the linearity and commutativity properties of the matrix trace from Prop. 19.3
directly transfer to the trace for linear maps. The trace is of particular importance
since it is a class function which is linear and it plays a role in many other areas
of mathematics. Also note that we have obtained an entire sequence tr(A*), where
k=1,2,..., of class functions.

Problem 19.3 (Basis independence of determinant and trace)

(). e ().

related by a basis transformation?

Are the matrices

Solution: The two matrices have the same determinant, det(4) = det(B) = —1, which is
inconclusive. However, their traces tr(A) = 1—3 = —2 and tr(B) = —1—2 = —3 are different
so the matrices are not related by a basis transformation.

19.3 The theorem of Cayley—Hamilton*

Summary 19.3 Endomorphisms f € End(V) can be inserted into polynomials p
which results in endomorphisms p(f) € End(V). The Cayley—Hamilton theorem
states that any endomorphism f inserted into its own characteristic polynomial x ¢
gives the zero map, so xs(f) = 0.

The Cayley-Hamilton theorem establishes a profound relationship between an endo-
morphism and its characteristic polynomial. It is, admittedly, of limited use in applica-
tions of linear algebra but needs to be covered nevertheless because of its mathematical
importance. We require a bit of preparation to formulate the statement.

19.3.1 Polyomials of endomorphisms

We start with an endomorphism f € End(V) on a vector space V over F and a
polynomial p with coefficients in F. Our goal is to make sense of the expressions p(f),
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obtained by ’inserting’ f into the polynomial. From Section 12.1.4 we know that powers
f¥=fo--of€End(V) are again endomorphisms. We also recall that End(V) is a
vector space (see Section 12.1.3) so endomorphisms can be added and scalar multiplied.
This is really all that is required to see that the formal replacement

> f

k
p(x):ZCixi SN p(f):Zcifi (19.14)

of the polynomial’s argument x by an endomorphism f makes sense, and leads to a
new endomorphisms p(f) € End(V).

In particular, we can insert square matrices A € End(F™) into a polynomial. A useful
observation is that this process commutes with basis transformations, that is,

p(P~*AP) = P 1p(A)P. (19.15)
This follows from
& k times
-1y _ ) -1 -1, -1
p(PAP™!) = ; ¢ PA Pfﬂ P AP PAP
k ) k .
=> PAP =P (Z ciAZ> Pl =PpA)PL.
1=0 =0

19.3.2 The minimal polynomial

For a given endomorphism f € End(V) it is natural to consider the set

Iy :=={p € P(F)[p(f) = 0} (19.16)

of polynomials for which p(f) is the zero map. It is easy to see that this set contains
non-zero polynomials. Consider the n? + 1 linear maps f°, 1, f2,..., f"z, where n =
dimg (V). Since dimp(End(V)) = n? we know that these must be linearly dependent,
so there are a; € F with at least one a; # 0 such that

> aiff=0. (19.17)
1=0

This means the polynomial ), o,z is contained in I - Since Iy is closed under addition
and scalar multiplication of polynomials it is, in fact, a vector subspace of P(F). What
is more, if p(x) € Iy, then g(z)p(z) € Iy for any polynomial ¢(x) and this property
makes [y into what is called an ideal (see, for example, Lang 2000). At first sight, I;
appears to be a complicated object but it is, in fact, easily described.

Proposition 19.4 There is a unique monic polynomial iy € Iy such that everyp € I¢
can be written as p = q p15, where ¢ € P(F).
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Proof There is a minimal non-zero degree m which arises in /. Choose a monic
polynomial p with this degree. By polynomial division, every other polynomial p € I
can be written as p = g p+7, where det(r) < m (see Theorem 4.1). But r = p—qp € Iy
which contradicts degree minimality of u, unless r = 0. Hence, every p € Iy can be
written as p = q p.

For uniqueness consider another monic polynomial ji € I with degree m. From
the earlier statement it must be a multiple it = a u, where a € F, but since both z
and p are monic it follows that a = 1. a

The polynomial py from this proposition is called the minimal polynomial of the
endomorphism f. The set I is now easily described as all the polynomial multiples of
the minimal polynomial iy, so

Iy ={quslq e P(F)}.
19.3.3 The theorem

We have expressed the set Iy for f € End(V) in terms of a minimal polynomial but
we do not yet know what its degree is. Eq. (19.17) shows it is certainly less equal than
n?, where n = dimp(V'). The Cayley-Hamilton theorem states that the characteristic
polynomial of f is in I, so this tightens the upper bound on the degree of the minimal
polynomial to n.

Theorem 19.2 (Cayley—-Hamilton) For f € End(V), we have xs(f) = 0.

Proof We represent f by a matrix A € M,, ,(F) relative to some basis of V' and
we want to proof that x4(A4) = 0. To do this define the matrix M (\) = (4 — AL,)7T,
so that det(M (X)) = xa(A). Its entries are polynomials in A, linear on the diagonal,
constant otherwise. If we evaluate each of these polynomials on the matrix A, that is
replace A by A (and constants by 1,), we get the n? x n? matrix:

Apl, — A Axl, Apl,
M(A) = : : : :
Aln]ln A2n]1n o Ann]ln —-A
This matrix has the remarkable property
e Aper — Aey + Ayjep + - Apre, 0
V= s M(A)V = = 5
€n Alnel + A2ne2 + - Annen - Aen 0

of vanishing on the above vector v. Denote by C()) the co-factor matrix of M()\) so
that, from Eq. (18.21)

CNTM(N) = det(M\)1,, = xa(M1,, .
If we replace A by A in this equation and let it act on v, using M(A)v = 0, we get

0 xa(4) -0 xa(A)er
N =coomow={ 0 fv=|
0 0 o xa(A) xa(Ae,
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This means x4(A)e; = 0 for all i = 1,...,n, so xa(A) vanishes on a basis. This is
only possible if y4(A) = 0. a

An immediate conclusion form the Cayley—Hamilton theorem and Prop. 19.4 is that
the characteristic polynomial must be a multiple of the minimal polynomial, so

X = any (19.18)

for ¢ € P(F). This means zeros of the minimal polynomial are zeros of the characteristic
polynomial and, hence, eigenvalues of f. More concretely, if these polynomials fully
factorize (as is always the case if F = C) then

(@) = =)™ Qe )™ pple) = (@ = A) (- M), (19.19)

where A1, ..., A\; are the pairwise different eigenvalues of f with multiplicities m; and
s; < m;. In many cases, the minimal and characteristic polynomials are equal (up to a
possible factor —1), but, as the following problem shows, this is not always the case.

Problem 19.4 (Minimal and characteristic polynomials)

Check the Cayley—Hamilton theorem for the matrices A = diag(0,1, —1) and B = diag(—1,1,1)
and compare their characteristic and minimal polynomials.

Solution: We have xa(z) = z(1 — z)(1 + z), so clearly xa(A) = 0. There is no factor which
can be dropped from x 4 while preserving the vanishing on A so in this case pa(z) = —xa(x).

For the matrix B we have x5(z) = —(z+1)(z —1)? and x5(B) = 0 is immediate. But in this
case one factor of x — 1 can be dropped, so up(z) = (z+1)(z — 1) is the minimal polynomial
since pp(B) = 0. This shows the minimal polynomial can indeed have a lower degree than
the characteristic polynomial.

We will be able to be more precise about the multiplicities s; in the minimal polynomial
— and under which circumstances it differs from the characteristic polynomial — when
we discuss the Jordan normal form in Chapter 21.
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l

Exercises

19.1

19.2

19.3

19.4

Eigenvalues for 2 X 2 matrices
Find the eigenvalues, eigenspaces and
degeneracies for the matrices

12 —50
= (1) 2= ()
1-2 01
o= (1) 2= (5)
where A,B € Ma22(R) and C,D €
M22(C).
Figenvalues for real 3 X 3 matrices
Find the eigenvalues, eigenspaces and

degeneracies for the linear map A :
R® — R? given by

b
I
|
w © K~

[M[VESTEN NJ[VY)

SIS NIe NI

Eigenvalues for complex 3 x 3 matri-
ces

Find the eigenvalues, eigenspaces, and
degeneracies for the linear map A :
C3 — C3 given by

1+4 241 144
B=|-14+i —1" —1+i
R

Figenvalues of a differential operator
Consider the space Vi = Prp(R) of
polynomials with degree less equal k
and the linear maps Vi — Vi given
by

d

’
X

D

L=zD+1.

(a) For k = 2, find the eigenvalues
and eigenvectors of D by solving the
eigenvalue equation.

(b) For k = 2, find the representing
matrix for D relative to the monomial

19.5

19.6

19.7

19.8

19.9

19.10

basis (1,2,2%) and use this to work
out the eigenvalues and eigenvectors.
(c) Carry out the analogous tasks for
the map L.

(d) Work out eigenvalues and eigen-
vectors for D and L for arbitrary k.

Determinant in terms of traces

(a) Find a formula for the determi-
nant of matrices A € My o(F) in
terms of tr(A) and tr(A?).

(b) Find the analogous formula for
matrices A € M3 3(F).

(a) Show that the characteristic poly-
nomial of a matrix A € M »(F) can
be written as

xa(A) = A% — tr(A)A + det(A) .
(b) Do the same for a matrix A €
M3.3(F) and show that

xa(A) = =A% +tr(A)A?
—2(tr(A)? — tr(A%)A
+det(A) .

Show that the matrices in Exer-
cise 19.1 are pairwise non-conjugate.

For the matrices B and D in Exer-
cise 19.1 explicitly verify the Cayley—
Hamilton theorem.

For a linear map f : V — V show
that, provided f is invertible,

(a) all eigenvalues of f are non-zero.

(b) if A is an eigenvalue for f then A™!
is an eigenvalue for f1.

(c) Big;(A) = Eig;-1 (A71).

For a linear map f : V — V prove the
following statements.

(a) If X is an eigenvalue of f then AF
is an eigenvalue of f*.

(b) Big,(\) C Eigpr (A¥).

(¢) Give an example to show that
Eig¢x (\F) can be larger than Eig,(A).



20
Diagonalizing linear maps

Probably the most important application of eigenvalues and eigenvectors is to the
diagonalization of linear maps. Unfortunately, not all linear maps can be diagonalized
so the first task is to spell out criteria for when this is possible. When it is we can
formulate an algorithm for how to carry this out and in Section 20.2 this algorithm
will be applied to a number of examples. Projectors are a class of endomorphisms with
a range of interesting applications and, as we will see in Section 20.3, they can always
be diagonalized. Sometimes, problems involve two or more linear maps and it may be
desirable to diagonalize them simultaneously. This point will be addressed in the final
section of this chapter.

20.1 Diagonalization

Summary 20.1 We say a linear map f : V. — V can be diagonalized if there is
a basis of V relative to which f is described by a diagonal matriz. Not all linear
maps [ :V — V can be diagonalized. This is the case if and only if there is a basis
(Vi,...,Vn) of V which consists of eigenvectors of f, so that f(v;) = A\ivi. Then,
the diagonal matriz which describes f relative to this basis s A= diag(jq, e j\n)

To be precise we start by defining what exactly we mean by saying that a linear map
or a matrix can be diagonalized.

Definition 20.1 (i) We say a linear map f : V — V can be diagonalized if there exist
a basis of V' relative to which f is described by a diagonal matriz.

(it) We say a matric A € My, ,(F) can be diagonalized if there exists a matriz P €
GL(F") such that the basis-transformed matriz P~Y AP is diagonal.

20.1.1 Basic criteria

Here is a set of criteria to decide whether a linear map can be diagonalized.

Theorem 20.1 Let f:V — V be a linear map on an n-dimensional vector space V.
The degeneracies of the pairwise different eigenvalues \; of f are denoted by d; and
their multiplicity in x ¢ by m;, where ¢ = 1,..., k. Then the following statements are
equivalent.
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(i) f can be diagonalized.
(i) There exists a basis of V' which consists of eigenvectors of f.
(ii)  The degeneracies sum to the total dimensions, 25:1 d; =n.
(iv) Zle m; =n (xs fully factorizes) and d; = m; fori=1,... k.
(v) @, Big;(\) =V

Proof (i) '= (ii): Assume that f can be diagonalized. From Def. 20.1 there ex-
ists a basis (vq,...,v,) relative to which f is described by a diagonal matrix A =
diag(A1, ..., \n). Given the general relationship (19.1) between a linear map and a
representing matrix this implies f(v;) = >"" | Aijvi = vaj. Hence, the v; are eigen-
vectors of f with eigenvalues \; and (Vi,...,Vp) is a basis of eigenvectors.

(ii) '= (iii)’: Assume (v1,...,V,) is a basis of V consisting of eigenvectors of f, so
that f(v;) = Aivi. Group the eigenvalues \; into pairwise distinct ones, Aq,..., Ag,
each of which arises §; times in the list (;\1, e ;\,L) and, hence, come with d; linearly
independent eigenvectors. The span of these eigenvectors forms a §;-dimensional vec-
tor subspace of Eig;(A;) so it follows that &; < d; = dimgp(Eig;(\:)) and Zle d; >
Zle 0; = n. But since the sum of eigenspaces for different eigenvalues is direct we
also have Zle d; < m. Combining these inequalities we get the desired statement
S°¥ d; =n (and indeed §; = d; for all i = 1,..., k).

(iii) = (iv)’: Assume that Zle d; = n. Certainly, Zle m; < n, but since m; > d;
from Prop. 19.2, it also follows that Zle m; > Zle d; = n. Hence, Zle m; = mn, so
the characteristic polynomial fully factorizes. Given that d; < m;, if any d; < m,; then
Zle d; < m, so we must have d; =m; foralli=1,... k.

(iv) = (v)’: Since the sum of eigenspaces for different eigenvalues is direct the condi-
tion Y21, d; = n implies @} _, Eig,(\;) = V (see Cor. 7.1 and Eq. (8.7)).

(v) '= (i): Given that @le Eig;(\i) = V, choose a basis for each eigenspace and
combine these into a basis (vq,...,vy,) of V with f(v;) = A\jv; for i = 1,...,n. (As
above, the \; are the same as the eigenvalues \; but with repetitions to account for
the degeneracies.) From Eq. (19.1) the representing matrix for f relative to this basis
is the diagonal matrix A = diag(j\l, ce, 5\n) so f can indeed be diagonalized. o

In particular, the theorem tells us that a linear map f : V' — V on an n-dimensional
vector space V can be diagonalized if it has n pairwise distinct eigenvalues. Indeed,
in this case we have m; = d; = 1 for ¢ = 1,...,n so that criterion (iv) is satisfied.
But also note that finding less than n distinct eigenvalues does not imply that the
linear map cannot be diagonalized — degeneracies might save the day. If multiplicities
sum to less than the dimension, so Zle m; < n, we can definitely say from (iv) that
the map cannot be diagonalized. On the other hand, if Zle m; = n, the map may
still not be diagonalizable since it may happen that d; < m; for some i. In essence,
Theorem 20.1 says that, special cases apart, the number of eigenvalues is not the right
quantity to decide whether a map can be diagonalized but what matters is the number
of linearly independent eigenvectors.
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20.1.2 The diagonal matrix

If a map can be diagonalized we should spell out exactly what this implies.

Corollary 20.1 Relative to a basis (vi,...,Vy,) of ergenvectors, a map f € End(V)
with eigenvalues M, ..y A is described by the matrix A= dlag()\l, ceysAn). If f s
identified with a matriz A € End(F™) it is diagonalized by

A= diag(jq, el 5\”) = P 'AP where P= (Vi,.. 3 V) . (20.1)

Proof Since f(v;) = \ivs, Eq. (19.1) implies that A= diag(jxl, cee S\H) represents f
relative to the basis (vy,...,Vvy). For a matrix A, the formula (20.1) follows from the
result for basis transformations, Eq. (15.14). |

Note that the diagonal matrix which describes f has the eigenvalues as its diagonal en-
tries. Also, Eq. (20.1) is quite convenient for diagonalizing matrices. It tells us that the
diagonalizing basis transformation P is the matrix whose columns are the eigenvectors.

20.1.3 Diagonalizing and class functions

Suppose an endomorphism f € End( ) can be diagonalized with diagonal matrix A =
dlag()\l, e )\n) and eigenvalues Ai. Any class function from Section 19.2.5 evaluates
to the same value in any basis, including the diagonalizing one. This implies

det(f) =[x, t(H=D X, t(ff)=>D_AF, (20.2)
=1 i=1 i=1

so the determinant is the product and the trace is the sum of the eigenvalues (in-
cluded with degeneracies). These formulae can be useful for explicit calculations (see
Exercise 20.3).

20.2 Examples

Summary 20.2 We practice diagonalizing linear maps, including 2 X 2, 3 X 3 and
4 x 4 matrices and a linear differential operator.

Before we tackle explicit examples we summarize the results be setting up an algorithm
for diagonalizing linear maps.

Algorithm (Diagonalizing linear maps) To diagonalize a linear map f : V — V where

V' is an n-dimensional vector space, proceed as follows:

(1) Find the pairwise different eigenvalues A1, ..., A\, of f and compute the eigenspace
Eig;(\;) for each.
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(2) Define the degeneracies d; = dimg(Eig;(\;)). If Zle d; < n the map f cannot
be diagonalized and there is nothing more to do. Otherwise, if Zle d; = n holds,
f can be diagonalized.

(3) Choose a basis for each eigenspace Eig;(\;) and combine these bases into a basis
(Vi,...,vpn) of V with f(v;) = \iv;. Relative to this basis f is described by the

matrix A = diag(;\l, ceey An).
(4) If V =TF" and f is a matrix A, then A = P7YAP, where P = (v1,...,V,).

Problem 20.1 (Diagonalizing 2 x 2 matrices)

Check if the 2 x 2 matrices from Exericse 19.2, seen as linear maps on R? or C2, can be
diagonalized and, if so, find the diagonalizing basis transformation and the diagonal matrix.

Solution: The matrix 15 is already diagonal so, clearly, it can be diagonalized.

The matrix A in Eq. (19.12) has only one eigenvalue, A\ = 1 with multiplicity 2, which is
non-degenerate. Hence, from Theorem 20.1 (iii) it cannot be diagonalized.

The matrix B in Eq. (19.12) has no eigenvalues over R so cannot be diagonalized in this case.
Over C it has two non-degenerate eigenvalues, A+ = =i with eigenvalues v+ = (1,+4)7, so
in this case it can be diagonalized. We already know that the diagonalized matrix must have

the eigenvalues along the diagonal, so A= diag (i, —i). This can also be checked explicitly by
carrying out the basis transformation (20.1):

1 1 - 11— 01 1 1 . . i
P:(V‘“V_):<i7i>’ P 1BP:§(1 ;) <710><i7i>:d1ag(z,—z):A.

Finally, the matrix C' in Eq. (19.12) has two eigenvalues A1 = 1, A2 = 3 with eigenvalues
vi = (1,-1)7 and v» = (1,1)”. Hence, it can be diagonalized and the diagonal matrix is
A= diag(1, 3). This can be verified by

11 - 1/1-1 21 11 . i
P:(Vl,VQ):(_11>, P 1C‘P:§(1 1) <12) (_11):d1ag(1,3):A.

Problem 20.2 (Diagonalizing a 3 X 3 matrix)

Show that the matrix A € End(R®) from Exercise 19.1 can be diagonalized. Find the diago-
nalizing basis transformation and the diagonal matrix.

Solution: The matrix A in Eq. (19.11) has eigenvalues A1 = 0, A2 = 1 and A3 = 3 with
eigenvectors vi = (1,1,1)7, vo = (=1,0,1)7 and vs3 = (1,—-2,1)7. Since there are three dif-
ferent eigenvalues in three dimensions the matrix can be diagonalized. The diagonal matrix
is A= diag(0, 1, 3) and this is confirmed by a basis transformation.

1-1 1 L 2 22
P=(vi,va,va)=[1 02|, P'==(-3 03 = P 'AP =diag(0,1,3) .
11 1 6\ 121
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Problem 20.3 (Diagonalizing a 4 x 4 matrix)
For the 4 x 4 matrix A € End(R*) defined by

—9-28 7-2
5 24 -7 2
A= 5 28 —11 2
-18-24 6 8

find the eigenvalues and eigenspaces. Check if A can be diagonalized and if so, find the
diagonalizing basis transformation and the diagonal matrix.

Solution: The characteristic polynomial for A is
xa(A) = det(A — Ag) = (A +4)°(A—8) (A —12) ,

so we have three eigenvalues A1 = —4, A2 = 8 and A3 = 12. This is fewer eigenvalues than
the dimension of the space so to check whether A can be diagonalized we have to compute
the eigenspaces and degeneracies. Writing v = (z,, z,u)” we have

—8 —28 7 -2 T

AM=—4: (A-—XMlyv = g gg—_l(?) g Z 10 o r=u,z—u—4y =0
—18 —24 6 9 u
—11 —28 7 -2 T

A=8: (A-—XMily)v= g gg_}; g Zz/ Lo & 2r=-2y=-2z=u
—18 —24 6 6 U
—12 —28 7 -2 T

Az3=12: (A—Mly)v = g ;éf_lz 3 Zz/ 10 & r=-y=—-2z,u=0
—18 —24 6 5 U

For A1 we have only two conditions on the vector v so the eigenspace is two-dimensional
while the other two eigenspaces are one-dimensional. If we write

Eigy(—4) = Span(v1,va) , Big,(8) = Span(vs) , Eig,(12) = Span(va)

the vectors v; can be taken as

4 0 1 —1

-1 1 —1 1

Vi = 0 , V2 = 4 , V3= 1 ) V4 = 1
4 0 2 0

These vectors form a basis of R* (or, equivalently, the degeneracies of the eigenvalues sum
up to four) so the matrix A can be diagonalized. A diagonalizing matrix is

10 1-1 3 4-10
111 1 L1 -1-4 30
P=ivavavi)=| o4 1|> P=g|_6-s 24
10 2 0 2 §-24

and it can be checked that indeed P~'AP = diag(—4, —4,8,12) = A. Note that, instead of
(v1,v2), we could have chosen any other basis of the two-dimensional eigenspace Eig , (—4).
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Problem 20.4 (Diagonalizing a differential operator)

It is worth discussing eigenvalues and eigenvectors for a linear map which is not defined by a
matrix. To this end, consider the vector space V = P2(R) of at most quadratic polynomials
and the differential operator
d
L7(1+x)d:c VoV,
Find the eigenvalues and eigenvectors of L, check if it can be diagonalized and if so find its
diagonal representing matrix.

Solution: The first step is to work out the characteristic polynomial x . To do this we have
to remember that the determinant of a linear map is defined to be the determinant of any of
its representing matrices. So we choose the simple monomial basis (1, z,z?) for V and work
out the representing matrix A for L, relative to this basis:

L(1) =0 010
Lz) =1+=x = A=|012 =  xz(A) =det(A-X13) = —A(A-1)(A-2) .
L(z?) = 2z + 222 002

Hence, we have three eigenvalues, A = 0,1, 2, and it follows that L can be diagonalized. To
work out the eigenspaces, we first write out a general quadratic polynomial p(z) = a¢ +
a1z + azz? and compute L(p)(z) = a1 + (a1 + 2a2)z + 2a2x2. Then, the eigenvalue equation
L(p) = Ap for the three eigenvalues reads

0 A=0 a1 =a2=0
L(p) =a1+ (a1 +2az)x+2a2m2 =< ag + a1z + asx? A=1 = ao=ai, a2 =0
2a0 + 2a1x + 2a272 |\ = 2 2a0 = a1 = 2a2

This means, the three eigenspaces are
Eig, (0) = Span(1), Eig; (1) = Span(1 +z), FEig,(2) = Span(1 + 2z + z°) ,

and, relative to the basis (1,1 +z,1+ 2z + IQ), the operator L is diagonalized and described
by the matrix A = diag(0, 1, 2).

Example 20.1 (Discrete linear process)

Our motivational example at the beginning of the chapter was about a discrete process,
with the state x; € R™ of a system at time k = 0,1, ... given recursively by xj+1 =
Mxy,, where M € M,, ,(R) is a matrix. As we have mentioned, we can write down a
formal solution

x, = M"x (20.3)
but this is of little practical use unless we can evaluate the matrix powers M*. Eigen-
values and eigenvectors can help us to do this. First, we need to assume that the matrix
M can be diagonalized, so that P~'MP = M = diag(\1, ..., A,) with eigenvalues \;
and a suitable basis transformation P. The key point is that the same matrix P also
diagonalizes all matrix powers M*. To see this note that

PIM*P =P 'MPP ' M... PP MP = M* = diag(\¥,... . \F),  (20.4)
=1, =1,

where the unit matrix in the form PP~! has been inserted between the factors of M
in the second step. This result also implies that the eigenvalues of M* are ¥ (see
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Exercise 19.10). Now introduce the vectors y, = P~!x; and multiply Eq. (20.3) with
P~ from the left.

yir =P 'x;, = P'M*xy = P"'M*PP'xy = MFy, .

This manoeuvre has diagonalized the equation and the components y;, ; of the vector y;,
can now easily be computed from vy, ; = Meyo ;. If an eigenvalue \; satisfies |A;| < 1 then
the corresponding component yy, ; will go to zero for large k. For A\; = 1, the component

Yk,; remains constant and for |5\Z| > 1 it grows unbounded. With y; determined, the
original variable x; can be re-covered from x; = Pyy. O

Problem 20.5 (A specific discrete linear process)

The fractions with which two features occur in a populations are described by the components
of x;, € R?, were k =0, 1,... is discrete time. Evolution is according to X1 = Mx}, where

_1(52
M=3 (1 4) )
and, initially, only the first feature exists, so xo = (1, O)T. Find xj, for large k.

Solution: The characteristic polynomial for M is xar(A) = det(M — Al2) = (A—1/2)(A—1)
so we have eigenvalues A1 = 1/2 and A2 = 1. Associated eigenvectors are easily found to be
vi=(1,—-1)T and vo = (2,1)7, so that

12 _ 1 (1-2)\ (52 12 . -
P:(vth):(_ll), P 1MP:1—8<1 1) (14> (_11):d1ag(1/2,1):M.

The power M* = diag((1/2)*,1) becomes M, = diag(0,1) in the large k limit. Hence,

o 1(22 _(2/3
Moo = PMo P _§<11) = Mooxo—(l/g).

For large k the fraction of the population with the first (second) feature is 2/3 (1/3).

Application 20.1 Newton’s equation with linear forces

A common problem in classical mechanics is the motion under linear forces. Suppose, the
system is described by n coordinates q(t) = (q1(t), ..., qn(t))" € R™ which are functions of
time ¢ € R and evolve according to the differential equation

q:_Mq7

where M € M, »(R) is an n x n matrix, and the dot indicates a time-derivative d/dt.
Solving this differential equation is complicated by the presence of the matrix M which
may be non-diagonal and may ’couple’ the n components of the equation.

We can make significant progress if we assume that M can be diagonalized, so that there is
an invertible n x n matrix P such that P~*MP = M := diag(ma, . .., m,) and, for simplicy,
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that the eigenvalues m; € R are real. (These assumption have to be checked for a given
example, but as we will see in Chapter 24 they are automatic for symmetric matrices.) If
we introduce new coordinates s = P~'q and multiply the differential equation with P~!
we find
§=—-PTMPs & § =-mys; for i=1,...,n.
H/A—/
=M

By diagonalizing M and re-writing the system in terms of the new coordinates s we have
decoupled the n components of the equation. Each component can now be solved separately
and this leads to

a; sin(w;t) + b; cos(w;t) for m; >