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Preface

This textbook is based on a lecture course the author has given to first-year physics
students at the University of Oxford and it profits from many years of tutoring physics
students at Balliol College Oxford. It is an attempt to provide a modern introduction
for students in the mathematical sciences into the classical subject of linear algebra.

Linear algebra is one of the basic disciplines of mathematics and it underlies many
branches of more advanced mathematics, such as analysis in several variables and
differential geometry. Put simply, linear structures are the building blocks for many
more advanced constructions in mathematics. Frequently, linear algebra is also the
first serious course in mathematics that undergraduate students have to face. It brings
about the first rigorous proofs, which mark a definite departure from the standard
high-school training of applying formulas and performing routine calculations. This
transition can be difficult.

At the same time, linear algebra has many important applications in practically all
areas of the mathematical sciences. The principle of linear superposition underlies a
large variety of physical laws. Linearity is the leading approximation to systems near
equilibrium so that even non-linear systems can often be described by linear counter-
parts. Methods of linear algebra also play an important role in computer and data
sciences. For example, linear algebra is an important ingredient of artificial neural
networks.

This ubiquity of linear algebra provides a unique opportunity for an introductory
course in the subject. It can be used as an introductory course in mathematics, a
case study in modern mathematics ideally suited to familiarize students with the ax-
iomatic set-up and the systematic development of mathematical theories, and, at the
same time, as a gateway into many areas of applied mathematics and science. The
main purpose of the present book is to do justice to both of these aspects of linear
algebra.

We hope such a dual approach will benefit both mathematicians and scientists. Par-
ticularly in the physical sciences, the widespread practice of teaching mathematics as
a series of ’recipes’, earmarked for certain applications, is highly unsatisfactory. The
increasing importance of quantitative methods and of advanced mathematics means
that beginning science students should develop an understanding of the structure
of mathematics as well as its applications, without confusing these two sides of the
subject. What is needed is a clear and coherent exposition of the overarching con-
cepts, an uncompromising attitude towards mathematical rigour, while avoiding over-
formalization, and a prompt connection to interesting, self-contained examples.

It came as a surprise to the author, while preparing a linear algebra lecture course,
that textbooks following such an approach are lacking. There are, of course, numer-
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ous high-quality linear algebra textbooks with mathematical orientation (for example
Blyth and Robertson 1975; Curtis 1996; Fischer 2010; Halmos 2017; Janich 1994; Lang
1996; Manin and Kostrikin 1989; Strang 1988). At the other end of the spectrum, there
are many ’how-to-do’ books available, which teach some practical aspects and appli-
cations of the subject but fail to present a logical exposition of the material.

The present book attempts to fill the gap between those extremes. It is aimed at begin-
ning (first year) students in mathematics or the mathematical sciences, in particular
in physics, engineering, and computer science. Few pre-requisites are required, other
than basic numeracy and familiarity with basic mathematics (for example at the level
of Lang 1998), as covered in the final years of most secondary schools. It presents
a logical, mathematically coherent exposition of the standard material, including all
relevant definitions and proofs, but avoids an overly formal approach. On the other
hand, many examples and techniques for calculation which are essential for practical
work with linear algebra have been included.

There are a number of starred chapters and sections (indicated by a *) which cover
more advanced material, such as the Jordan normal form, the singular value decompo-
sition, duality and tensors. These topics are covered for their mathematical or scientific
relevance but they can be omitted at first reading. Numerous applications of linear
algebra to problems in science are presented alongside, but clearly separated from the
main text. Their style of presentation is usually less formal, focused on ’getting on’
with the task at hand and arriving at an interesting result quickly and efficiently. They
can be read independently and, ideally, provide a short, self-contained window into a
topic in science, as well as an illustration of how linear algebra is applied. Throughout
the text, we have included problems and their solutions. The reader is invited to work
alongside the text, cover up solutions, and try for themselves — or to have a peek
if they get stuck. The exercises at the end of each chapter include routine problems,
somewhat more challenging problems marked with † and difficult and wide-ranging
problems marked with ††.

The book is organized into 27 chapters, each around 10—15 pages, and, depending on
the chapter, suitable for a 1- to 2-hour lecture slot. A short lecture course based on
this book, omitting starred chapters and including a minimal amount of examples and
applications, will take about 20 to 24 lectures. Depending on how many of the more
advanced topics, the examples and applications are included, this can be extended to
up to 36 lectures or more.

We hope that a student will gain from this book a good working knowledge of ’vectors
and matrices’ and its applications in science, as well as an appreciation of the structure
and beauty of the subject of linear algebra.

Andre Lukas
Oxford 2021
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1

Linearity — an informal introduction

Linearity is a ubiquitous structure in mathematics and mathematical descriptions of
natural phenomena. We begin this chapter by introducing the idea of linearity infor-
mally and by explaining, on an elementary level, the main reasons for its omnipresence.
In the second part, we will characterize linearity more formally by introducing linear
maps, an approach that is at the heart of the subject. Along the way, we illustrate
a number of other key features of linear algebra, including linear equations and the
relationship between linear maps and matrices.

1.1 Why linearity?

Summary 1.1 An elementary reason for the foundational nature of linear algebra
within mathematics is that, under suitable conditions, functions can be locally approx-
imated by linear functions. This fact, together with the tendency of natural systems to
reside near the minimum of their potential energy, explains the prevalence of linearity
in scientific phenomena.

For now, we will say informally that a situation exhibits linearity if we can identify a
numerical output and a numerical input such that the former is proportional to the
latter. The following is a well-known example of linearity:

Example 1.1 (Hooke’s law)
Hooke’s law states that the force exerted by a spring is proportional to its extension.
More precisely, if x (x0) is the length of the extended (unextended) spring and ε =
x− x0 is the extension then the force is given by

F = −kε , (1.1)

where k is a positive constant, referred to as the spring constant. It is also quite useful
to consider the potential energy

V =
1

2
kε2 ⇒ F = −dV

dε
= −kε (1.2)

stored in the spring whose (negative) first derivative gives the force, as indicated above.
Eq. (1.1) is, of course, an idealization and ceases to be valid if ε becomes too large

(the spring is over-stretched) or too small (the spring is too compressed). An important
lesson is that linearity in natural phenomena is usually only valid for a limited range of
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input values but broken outside this range. The many applications of Hooke’s law show
that, despite this limitation, the idea of linearity in natural phenomena is important
— but needs to be accompanied by an understanding of its validity.

We will see shortly that (approximate) linearity in natural phenomena for a suitable
range of input values is rather more general than the simple example of Hooke’s law
suggests. 2

Mathematically, we can formulate linearity between a real-valued input and output by
a linear function or linear map f : R → R (where R denotes the set of real numbers)
given by

f(x) = ax , (1.3)

for some real constant a. This is a rather simple function, so why is linearity such an
important idea which underlies many areas of mathematics? The Taylor series for a
suitably well-behaved but otherwise general function f : R→ R around x0 reads

f(x)− f(x0) = f ′(x0) ε+ · · · (1.4)

where the prime denotes the derivative, ε = x− x0 is the deviation away from x0 and
the dots stand for terms with higher powers in ε. Evidently, in a sufficiently small
neighbourhood of x0, the variation of the function away from its value f(x0) at x0 is
well-described by a linear function. In other words, (sufficiently well-behaved) functions
are locally (approximately) linear. This simple observation is one of the main reasons
for the importance of linear algebra for many other fields of mathematics.

What about linearity in the natural sciences? The above discussion of the Taylor series
suggests that Hooke’s law in Example 1.1 might, in fact, not be as special as it seemed.
To make this more precise, consider a simple system described by a single real number
x and a potential energy function V (x). The Taylor series of this potential function
around x0, this time to second order in the deviation ε = x− x0, reads

V (x) = V (x0) + V ′(x0)ε+
1

2
V ′′(x0)ε2 + · · · . (1.5)

Taking the derivative gives the associated force

F = −dV
dε

= F0 − kε+ · · · where F0 = −V ′(x0) , k = V ′′(x0) . (1.6)

This shows that the change F −F0 in the force is (approximately) linear. At first, this
observation appears to be of little practical significance, since the constant force F0

will drive our system away from x0, thereby invalidating the expansion (1.5). However,
natural systems tend to evolve towards values x0 with minimal potential energy V . At
such a minimum we have F0 = −V ′(x0) = 0 and k = V ′′(X0) > 0 and, in this case,
the force (1.6) turns into a version of Hooke’s law

F = −kε+ · · · , (1.7)

with k = V ′′(x0) playing the role of the spring constant. In short, near points of min-
imal potential energy forces are (and remain) approximately linear and this accounts
for the importance of linearity in natural phenomena (see Exercise 1.1).
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1.2 Linearity, more abstractly

Summary 1.2 Linearity of functions is characterized in a more abstract way
and generalized to functions between vectors with two components. For this two-
components case, we illustrate the relationship between linear functions and matrices.
We discuss simple examples of linear equations and their solution structure, as one
of the main motivations for developing linear algebra.

Now that we have established the importance of linearity as a basic mathematical
concept and as a widespread phenomenon in science, let us consider the idea from a
more abstract point of view.

1.2.1 Linear functions

In Eq. (1.3) we have already defined what we mean by a linear map f : R → R.
Evidently, such a function satisfies the basic rules

f(x+ x̃) = f(x) + f(x̃) , f(αx) = αf(x) , (1.8)

for any real numbers x, x̃ and α. To see this explicitly from Eq. (1.3), for example for
the first of the above rules, is quite straightforward:

f(x+ x̃)
(1.3)
= a(x+ x̃) = ax+ ax̃

(1.3)
= f(x) + f(x̃) .

The conditions (1.8) really express the fact that linear maps are consistent with ad-
dition and multiplication of real numbers. Adding (or multiplying) first and then
applying the linear map gives the same answer as carrying this out in reverse order.
We can say that the two operations commute.

Conversely, any function which satisfies the rules (1.8) must be a linear function,
that is, a function of the form (1.3). To show this we start with a function f which
satisfies Eqs. (1.8) and define the number a by

a = f(1) . (1.9)

By simply using the second condition (1.8), it follows that

f(x) = f(x 1) = xf(1) = ax ,

and, hence, that f is indeed of the form (1.3). We also see that the conditions (1.8) are
not independent and that the first one for addition can be deduced from the one for
multiplication (see Exercise 1.3). Nevertheless, consistency of functions with addition
and multiplication, as expressed by both Eqs. (1.8) is an important idea which will be
used to define linearity more generally.

1.2.2 Linear equations

A common and extremely important class of problems is to find all solutions x to an
equation of the form f(x) = b, where f is a function and b is a given number. If f is a
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linear function, given by f(x) = ax, then such an equation is called a linear equation
and it is of the form

ax = b . (1.10)

Obviously, the solution to this equation is x = b/a, provided that a 6= 0. But what if
a = 0? Answers to this question from students can vary from ’x must be infinite’ to ’b
must be zero’, neither of which can possibly be correct (the former because infinity is
not a number, the latter since b is a priori given and may be non-zero). The point is
that, even for a simple equation such as the above, we have to distinguish cases.

(1) a 6= 0: There is a unique solution x = b/a.

(2a) a = 0 and b = 0: Any value of x solves the equation.

(2b) a = 0 and b 6= 0: There is no solution since Eq. (1.10) becomes 0 = b, which is
false.

The important lesson is that solutions to linear equations have a somewhat complicated
structure which depends on the values of the parameters (a and b in Eq. (1.10)).

1.2.3 Vectors with two components

So far, we have considered the simplest case of functions whose inputs and outputs
are real numbers. But natural phenomena are frequently characterized by more than
one variable. To describe such systems, we need to deal with lists of real numbers,
or vectors as they are commonly called, and functions between them. To keep things
simple for now, let us consider coordinate vectors v or w with two components, by
which we mean columns

v =

(
v1

v2

)
, w =

(
w1

w2

)
(1.11)

containing two real numbers v1, v2 or w1, w2. (Vectors will be denoted by bold-face
letters.) The set of all such coordinate vectors with two components is denoted R2.
(Later, we will, of course, generalize to coordinate vectors with an arbitrary number
of components and, indeed, more abstract vectors which are not made up from com-
ponents.) The reader has probably already come across such vectors and how to add
them and multiply them with real numbers. The natural way to define these opera-
tions is to apply the rules for adding and multiplying real numbers component-wise,
that is,

v + w :=

(
v1 + w1

v2 + w2

)
, αv :=

(
αv1

αv2

)
. (1.12)

These two operations are referred to as vector addition and scalar multiplication and
they are the key features of a vector space, as we will see later. Their geometrical
interpretation is illustrated in Fig. 1.1.

1.2.4 Linearity for maps between vectors

What does it mean for functions f : R2 → R2 whose inputs and outputs are two-
coordinate vectors to be linear? This is where our re-formulation (1.8) of linearity
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0

v

w

v + w

0

v

αv

Fig. 1.1 Geometry of vector addition and scalar multiplication (for α > 1) in R2.

helps. Motivated by these conditions, we declare that a function f : R2 → R2 is called
a linear function or linear map if it satisfies

f(v + w) = f(v) + f(w) , f(αv) = αf(v) , (1.13)

for all vectors v and w in R2 and all real numbers α. These conditions mean linear
maps are compatible with vector addition and scalar multiplication (see Exercise 1.4).
In general, functions which respect a certain algebraic structure are called morphisms
and defining such functions is an important step in any mathematical build-up. Using
this terminology, linear maps are the morphisms of vector spaces and, as we will see,
they are central objects in linear algebra.

1.2.5 Linear maps and matrices

We have seen that linear maps between real numbers can be written as in Eq. (1.3) and
that they are characterized by a single real number a. What do linear maps between
coordinate vectors look like? Recall from Eq. (1.9) that we were able to recover a by
applying the linear map to the number 1. For the two-component case, this suggests
that we should apply the linear map to specific vectors. Simple vectors can be built by
only using components 0 and 1 (the neutral elements of addition and multiplication)
and this leads to the standard unit vectors in R2 defined as

e1 =

(
1
0

)
, e2 =

(
0
1

)
. (1.14)

Note that every vector v with components v1, v2 can be written in terms of e1 and e2

as
v = v1e1 + v2e2 . (1.15)

This means the standard unit vectors are a particular example of a basis, an important
idea in the theory of vector spaces which we will develop later. Inspired by Eq. (1.9),
we consider the action f(e1) and f(e2) of the linear map on the standard unit vectors
and write the result as (

p
r

)
= f(e1) ,

(
q
s

)
= f(e2) , (1.16)

where p, q, r, and s are real numbers. Now we require only a small calculation to work
out how the function f acts on an arbitrary vector v:
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f(v)
(1.15)

= f(v1e1 + v2e2)
(1.13)

= v1f(e1) + v2f(e2)

(1.16)
= v1

(
p
r

)
+ v2

(
q
s

)
(1.12)

=

(
pv1 + qv2

rv1 + sv2

)
. (1.17)

The final expression shows that the linear map is fully determined once we know the
four numbers p, q, r, s. While a linear map between real numbers is specified by a single
number, as in Eq. (1.3), a linear map between coordinate vectors with two components
is specified by four real numbers. It is customary to arrange these four numbers into
a 2× 2 matrix

A =

(
p q
r s

)
, (1.18)

so that linear maps R2 → R2 are in one-to-one correspondence with such 2×2 matrices
with real entries. The action of the linear map f on a vector v is then symbolically
written as

f(v) = Av :=

(
pv1 + qv2

rv1 + sv2

)
, (1.19)

where the expression Av is referred to as the multiplication of a matrix with a vector
and is defined by the right-hand side of Eq. (1.19). This definition means a matrix is
multiplied with a vector row by row, with corresponding vector and row components
multiplied and summed up.

The relationship between linear maps and matrices exemplified here is much more
general. It is one of the central themes of linear algebra which will be developed
systematically later. (For another example, see Exercise 1.5.)

1.2.6 Back to linear equations

With this understanding of coordinate vectors and linear maps between them, let us
come back to linear equations, that is, equations of the form f(x) = b, where b is a
given vector with components b1 and b2 and f is a linear map between two-coordinate
vectors. We are interested in finding all vectors x with components x1 and x2 which
satisfy this equation. If we describe f by a 2×2 matrix A, as above, the linear equation
can also be written as Ax = b.

Suppose, for concreteness, we choose the following matrix A and vector b,

A =

(
3 1
a −1

)
, b =

(
b
1

)
, (1.20)

where a and b are real numbers. (For another example, see Exercise 1.6.) Then, us-
ing the definition of matrix-vector multiplication from Eq. (1.19), the linear equation
becomes

Ax = b ⇔
{

(E1) : 3x1 + x2 = b
(E2) : ax1 − x2 = 1

}
, (1.21)

that is, it turns into a system of two simultaneous linear equations in two variables
x1 and x2. We can solve this system in the usual way by adding suitable multiples
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of the equations to eliminate one of the variables. In the present case, we can simply
consider the sum of the two equations

(E1) + (E2) : (a+ 3)x1 = b+ 1 . (1.22)

This result shows that, just as in the earlier case (1.10), we have to consider various
cases:

(1) a 6= −3: There is a unique solution, x1 = (b+1)/(a+3) and x2 = (ab−3)/(a+3),
obtained by dividing Eq. (1.22) by a + 3, inserting the result for x1 into one of
the Eqs. (1.21) and solving for x2.

(2a) a = −3 and b = −1: In this case, Eq. (1.22) becomes trivial or, equivalently, the
two equations in (1.21) become the same. This means the solution consists of all
x1 and x2 which satisfy x2 = −3x1 − 1. This represents a line in the x1-x2 plane.

(2b) a = −3 and b 6= −1: There is no solution since Eq. (1.22) becomes 0 = b + 1,
which is false.

To summarize, the solution can be a single point, a line in the x1-x2 plane or there
can be no solution at all, depending on the values of the parameters a and b. Even this
simple example shows there is considerable structure in the solutions to linear equa-
tions. An important purpose of linear algebra is to understand this solution structure
and also to provide efficient methods for solving linear equations. This will be covered
in detail later on. We end this chapter with a real-world application of linear equations
which illustrates some of the problems linear algebra should address.

Application 1.1 Internet search algorithm

Modern internet search engines order search results by assigning a page rank to each website.
As we will see, finding the page rank can be formulated as a problem in linear algebra.

To explain the idea we start with a very simple network with four sites, labelled by k =
1, 2, 3, 4, and links indicated by arrows in the following diagram.

1 2

3 4

Each of the four sites has a certain number of links to the other sites (outgoing arrows).
For example, site 1 links to sites 2 and 4 and, therefore, has n1 = 2 links. Likewise, the
number of links for the other sites are n2 = 2, n3 = 3 and n4 = 1. Site 4 is linked to by all
other sites and we express this mathematically by writing L4 = {1, 2, 3}. Similarly, we have
L1 = {3}, L2 = {1, 3}, and L3 = {2, 4}.

We would like to assign real numbers x1, x2, x3, x4 to the sites which measure the
popularity of the page. How should these numbers be obtained? A natural idea is that
every incoming link should increase the popularity of a page by an amount proportional to
the popularity of the remote page from which the link originates. For example, page 2 is
linked to by pages 1 and 3, so x2 should be increased by amounts proportional to x1 and
x3. More specifically, we could say that x2 = x1/2 + x3/3. Here, we have divided by 2 (3)
since site 1 (3) has two (three) outgoing links. The underlying idea is that a link from a
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site with a small number of outgoing links is worth more than a link from a site with many
outgoing links. Continuing along those lines with all four sites gives the equations

x1 = x3
3

x2 = x1
2

+ x3
3

x3 = x2
2

+ x4
1

x4 = x1
2

+ x2
2

+ x3
3

 =⇒

x1

x2

x3

x4

 = α

 4
6

12
9

 . (1.23)

This is indeed a system of four linear equations for x1, x2, x3, and x4. The solution is easily
obtained by adding suitable multiples of the four equations and it is shown in Eq. (1.23), on
the right (α is a real number). The conclusion is that site 3 is the highest-ranked, followed
by site 4.

The real internet has of course a very large number of sites, so we should formulate
the problem for an arbitrary number, n, of sites. We label these sites by k = 1, . . . , n and
denote their popularity by xk. Site k has nk links to other sites and it is linked to by certain
sites whose labels we collect in a set Lk. With this notation the generalization of the linear
system (1.23) can be written as

xk =
∑
j∈Lk

xj
nj

, (1.24)

where k = 1, . . . , n. Note that the sum on the right-hand side runs over all pages j which link
to page k. Eqs. (1.24) constitutes a system of n linear equations for the variables x1, . . . , xn.

Solving potentially large linear systems, such as the above, requires more refined methods
and a better understanding of their structure. Much of the course will be devoted to this
task. The present application also raises more theoretical questions. It is evident that the
system (1.24) always has the trivial solution where all xk = 0, but of course this solution
is not useful for the purpose of ranking sites. Is it an accident that the example (1.23) has
non-trivial solutions or can this be guaranteed in general? We will return to this question
when we have developed a deeper understanding of the structure of linear algebra.

1.3 Plan of the book

In the following Part I we start with the mathematical foundations: the basic mathe-
matical language of sets and functions and the important algebraic structures of groups
and fields which are both closely connected to vector spaces. A reader familiar with
these basics, perhaps from their analysis course, can skip straight to Part II which
introduces the algebraic structure of vector spaces, which is the arena and the main
topic of linear algebra. Linear independence as well as basis and dimension of a vector
space are the key concepts introduced in this part.

Some topics whose proper mathematical place is at a much later stage in the develop-
ment of the subject are essential to a science student early in their course, for example
in the context of mechanics or electromagnetism. These include the dot, cross, and
triple product and simple geometric applications to lines and planes, as well as the
ability to perform calculations efficiently. These and related topics are covered, at an
elementary level, in Part III. As an added benefit, the material in this part also pro-
vides a source of examples for the remainder of the text.

The systematic development of the subject resumes in Part IV, where we introduce
and analyse the morphisms of vector spaces — the linear maps. The formal develop-
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ment culminates in the rank theorem, a pivotal statement about the structure of linear
maps. We will also explain the relation between linear maps and matrices, which we
have already alluded to in Section 1.2.5, in general.

The main computational tools in linear algebra are algorithms to manipulate matrices.
In Part V we develop some of these algorithms, related to row operations of matri-
ces. Perhaps the most important application of linear algebra is to systems of linear
equations. We will see how the results on the structure of linear maps allow us to
understand the solution structure of systems of linear equations and how they can
be solved in practice by using row operations of matrices. We also introduce deter-
minants, another important tool for calculations as well as more abstract arguments.
This concludes the basic development of the subject — the remainder of the book is
devoted to more advanced topics in linear algebra.

Linear maps and matrices are complicated objects. Part VI deals with the question of
how to cast linear maps and matrices into a simple, easy-to-handle form. Using the
key ideas of eigenvalues and eigenvectors we will see that linear maps and matrices can
often be diagonalized. Even when this is not possible a nearly diagonal form, called
the Jordan normal form, can always be achieved.

In Part VII we resume — and generalize — the geometrical discussion from Part III by
introducing scalar products on general vector spaces. Scalar products facilitate basic
geometric notions such as the length of vectors, angles between vectors and orthogo-
nality, and they generalize the dot product. Vector spaces with a scalar product, also
called inner product vector spaces, have many applications — in fact, most scientific
applications of linear algebra assume, explicitly or implicitly, the presence of a scalar
product. A scalar product also singles out certain classes of linear maps — the self-
adjoint and the unitary maps. They include the unitary and orthogonal matrices as
well as rotation matrices which have many important applications. With new structure
on vector spaces available it makes sense to re-visit the problem of diagonalizing linear
maps. We also briefly cover a generalization of scalar products — symmetric bi-linear
and Hermitian sesqui-linear forms — which make an appearance in certain scientific
applications, for example, in the theory of relativity.

Our final topic, duality and tensors, in Part VIII is probably the most abstract one
covered. However, dual and tensor vector spaces play an important role in more ad-
vanced mathematics as well as in many scientific applications and cannot be omitted.

Chapters and sections on more advanced topics which can be omitted at first reading
are indicated by a *. Throughout the book, scientific applications of aspects of linear
algebra have been included. They are clearly separated from the main development of
the subject and presented on a grey background, in order to avoid confusion between
mathematics and its scientific applications. They can be read separately from the main
text and illustrate the wide range of linear algebra applications. Ideally, they also serve
as a (small) window into an area of science.
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Exercises

1.1 Linearity near minima of potentials
A physical system is described by a sin-
gle real variable x and has potential en-
ergy V (x) = 1

2
x4−x2 +1. Find the min-

ima x0 of V . Show that for small devi-
ations ε = x− x0 from each of the min-
ima, the potential energy can be written
as V ' 1

2
kε2 + · · · , with associated force

F = −kε, and determine the constant
k.

1.2 Is every function R→ R whose graph is
a straight line a linear function?

1.3 Linear functions
Let f : R → R be a function which sat-
isfies f(xx̃) = xf(x̃) for all real x and
x̃. Show that f also satisfies f(x+ x̃) =
f(x) + f(x̃) for all real x and x̃.

1.4 Differential operators as linear maps
Consider the ’differential’ operator D =
d2

dx2
+ d

dx
which maps (infinitely many

times differentiable) functions f to f ′′+
f ′. Show that D satisfies the linearity
conditions D(f + g) = D(f) = D(g)
and D(αf) = αD(f), where f and g are
functions and α is a real number.

1.5 Vectors with three components
Generalize the discussion of Sec-
tion 1.2.5 to linear maps f : R3 → R3

between coordinate vectors with three
components. In particular, use the three
standard unit vectors

e1 =

 1
0
0

 , e2 =

 0
1
0

 , e3 =

 0
0
1


to show that such a linear maps can be
described by 3× 3 matrices.

1.6 Linear equations
Consider a linear equation of the form
Ax = b with

A =

(
a 1
−1 2

)
, b =

(
1
b

)
,

where x is a vector with components x1

and x2 and a and b are real numbers.
Identify the different cases for the solu-
tion structure, depending on the values
of a and b, and find the solution vectors
x in each case.

1.7 Internet search
Following the notation of Applica-
tion 1.1, consider a network with three
sites, specified by the data n1 = 2, n2 =
1, n3 = 1 and L1 = {2}, L2 = {1, 3},
L3 = {1}. Draw a graph for the network
and write down the linear system (1.24)
for this example. Show that its solution
is x1

x2

x3

 = α

 2
2
1

 ,

where α is a real number.



Part I

Preliminaries

Before we can delve into the main subject, some preparation is required. We need to
introduce the basic mathematical language of sets and functions, which is essential
for the formulation not just of linear algebra but of any area of mathematics. The
reader who is not yet familiar with these basics should go through this part carefully.
However, in the interest of getting to the main subject quickly, we keep the exposition
basic and concise.

In Chapter 2 we introduce sets, functions, and elements of logic — the basic language
of mathematics. Groups are discussed in Chapter 3. They play an important role as
one of the simplest algebraic structures in mathematics and they provide the mathe-
matical framework for what scientists frequently refer to as symmetries. Group theory
is a separate and vast topic in mathematics, but we will have to keep the discussion at
a basic level and focus on those aspects which play a direct role in linear algebra. In
particular, we will introduce the permutation groups and develop some of their proper-
ties. These results will be required for the definition of the determinant in Chapter 18.

Finally, in Chapter 4 we define fields, a pre-requisite for the definition of vector spaces,
and derive a few conclusions from the field axioms. Fields are the standard arena for
’numerical’ calculations, with the rational, real, and complex numbers being the most
important examples. The field Q of rational numbers can be constructed from an
equivalence relation on Z2, essentially a formal way of introducing fractions. We will
indicate how this construction works and how it can be verified that Q does indeed
satisfy the field axioms. The real numbers R are constructed as a ’completion’ of Q,
obtained by augmenting the set with irrational numbers. This construction belongs
into the realm of analysis and will only be described briefly. However, we will spend
some time on setting up the complex numbers C, as the reader might not yet be suffi-
ciently familiar with them. This will become important whenever we work with vector
spaces over the complex numbers.





2

Sets and functions

Sets and functions between sets provide the basic language of mathematics. More
advanced topics, such as linear algebra, cannot be formulated properly without intro-
ducing this language first. This can be done in a strict, axiomatic manner, but here
we adopt a less rigorous style to avoid creating a hurdle of formality early on.

2.1 Sets

Summary 2.1 Sets are collections of objects called elements. There are three basic
set operations, namely set union, set intersection, and set complements. The first
two of these are associative, commutative and they satisfy distributive laws. The set
complement converts between union and intersection. The Cartesian product of two
sets is a set which contains all pairs of elements from the first and second set.

2.1.1 (Non-) definition of sets

Intuitively, by a set we mean a collection of objects which are called elements or
members of the set. A set can be specified by explicitly providing its elements and this
is done using a notation with curly brackets, {. . .} so that, for example, {1, 2, 3} is the
set which contains 1, 2, and 3. For the purpose of this section, we use uppercase letters
A,B, . . . to denote sets and lowercase letters a, b, . . . to denote their elements. For the
empty set the symbol {} or ∅ is used. By convention, all elements of a set are distinct so
that repetitions of elements can be deleted, for example, {1, 2, 1} = {1, 2}. The order
of elements in a set is irrelevant, for example {1, 3, 2} = {1, 2, 3}. Sets can also be
elements of other sets; for example, we can consider the set {{0, 2, 4, 6, 8}, {1, 3, 5, 9}}
whose elements are the sets of even and odd numbers less than ten.

Example 2.1 (Natural numbers)
A foundational number set is given by the natural numbers N := {0, 1, 2, 3, . . .}. We
will take this set for granted (although it can be defined by a set of axioms called
Peano’s axioms), and also take addition and multiplication of natural numbers as a
given. 2

As opposed to sets, lists provide ordered collections of objects, with repetitions allowed.
We will need to use lists, for example, to describe vectors, and they are denoted by
round brackets, (· · · ). For example, (1, 2, 1) is the list which consists of 1 and 2 with this
particular order and multiplicity and we have (1, 2, 1) 6= (1, 2) and (1, 2, 1) 6= (1, 1, 2).
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Lists can also be written as columns, rather than rows, of objects and this is the
convention we will adopt for vectors.

Coming back to sets, set membership is indicated by the notation a ∈ A, read as
’a is an element of A’, while non-membership is written as a /∈ A, read as ’a is not
an element of A’. We say that a set A is a subset of a set B, written as A ⊂ B,
if every a ∈ A is also an element of B. Two sets A and B are equal, written as
A = B, if A ⊂ B and B ⊂ A. This means equality of two sets can be established
by showing that they are mutual subsets of each other, a technique frequently used
in proofs. Subsets of a given set A can also be specified by a conditional notation of
the form {a ∈ A | a satisfies a condition}, read as ’the set of all a in A which satisfy
the condition’. For example, the set {n ∈ N |n = m2 for a m ∈ N} contains all square
numbers.

2.1.2 Set operations

There are three main operations for sets, the union, the intersection and the comple-
ment, which are defined as follows (see also Fig. 2.1):

A ∪B = {x ∈ U |x ∈ A or x ∈ B} (union of A and B)
A ∩B = {x ∈ U |x ∈ A and x ∈ B} (intersection of A and B)
A \B = {a ∈ A | a /∈ B} (complement of B within A)

(2.1)

For the complement it is assumed that B is a subset of A. When it is understood from
context what the set A is, the complement A \B is sometimes simply denoted by B̄.
Two sets A and B are called disjoint if their intersection is empty, that is, if A∩B = ∅.

The union and intersection are associative and commutative operations, that is, they

A

B

grey region: A ∪B

A ∩B
A

B

grey region: A ∩B

BA

grey region: A \B

Fig. 2.1 Union A ∪B and intersection A ∩B of two sets A and B and complement A \B.

satisfy

A ∪ (B ∪ C) = (A ∪B) ∪ C A ∩ (B ∩ C) = (A ∩B) ∩ C (associativity)
A ∪B = B ∪A A ∩B = B ∩A (commutativity) .

These rules follow directly from the definitions of union and intersection. Somewhat
more involved are the following distributive laws which govern the relationship between
union and intersection.

Proposition 2.1 For any three sets A, B, and C, we have

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C) , A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C) . (2.2)
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Proof We prove the first of these equalities by showing that the left-hand side is
a subset of the right-hand side and vice versa. We start with an arbitrary element
a ∈ A ∩ (B ∪ C) and we want to show it is contained in (A ∩ B) ∪ (A ∩ C). From
a ∈ A ∩ (B ∪ C), it follows that a ∈ A and a ∈ B ∪ C. The latter means that a ∈ B
or a ∈ C, so we have two cases. If a ∈ A and a ∈ B then a ∈ A ∩ B. On the other
hand, if a ∈ A and a ∈ C then a ∈ A∩C. In either case, a ∈ (A∩B)∪ (A∩C) and it
follows that A ∩ (B ∪ C) ⊂ (A ∩B) ∪ (A ∩ C).

Conversely, if a ∈ (A∩B)∪ (A∩C) then a ∈ A∩B or a ∈ A∩C. In the first case,
a ∈ A and A ∈ B so that a ∈ A ∩ (B ∪ C). In the second case, a ∈ A and a ∈ C and
again it follows that a ∈ A∩ (B∪C). This shows that (A∩B)∪ (A∩C) ⊂ A∩ (B∪C)
and completes the proof. We leave the proof of the second Eq. (2.2) as Exercise 2.1.
2

There are also rules for calculating with the complement.

Proposition 2.2 For sets A, B, U with A,B ⊂ U , the complement in U satisfies

¯̄A = A , A ∪B = Ā ∩ B̄ , A ∩B = Ā ∪ B̄ . (2.3)

Proof We prove the second of these relations by mutual inclusion. An element a ∈
A ∪B is neither in A nor in B, so it must be in Ā and B̄. It follows that a ∈ Ā ∩ B̄
and, hence, that a ∈ A ∪B ⊂ Ā ∩ B̄. Conversely, an element a ∈ Ā ∩ B̄ is contained
in Ā and B̄ and is, hence, neither in A nor in B. This means that a ∈ A ∪B so that
Ā ∩ B̄ ⊂ A ∪B. We leave the proof of the other equations as Exercise 2.2. 2

By the size or cardinality of a set A we mean its number of elements, denoted by |A|.
For example, the set A = {1, 3, 7, 9} has cardinality |A| = 4. If the set A has an infinite
number of elements, we write |A| =∞.

2.1.3 New sets from old ones

There are a number of standard methods to construct new sets from given ones. The
power set, denoted by 2A, of a set A contains as its elements all subsets of A. If A is
finite with cardinality |A| then the power set has cardinality 2|A|, which motivates the
notation. For example, for A = {1, 2} we have

2A = {{}, {1}, {2}, {1, 2}} .

The Cartesian product of two sets A and B, written as A×B, consists of all pairs of
elements, so

A×B = {(a, b) | a ∈ A and b ∈ B} . (2.4)

For finite cardinalities |A| and |B| the cardinality of the Cartesian product is |A×B| =
|A| |B|. For example,

{1, 2} × {3, 4} = {(1, 3), (1, 4), (2, 3), (2, 4)} .

The Cartesian product of a set A with itself is also denoted by A2 = A × A and its
elements are pairs of elements of A. More generally, we can take n Cartesian products
of A with itself which is written as An = A×A×· · ·×A. The elements of An consist of
lists (a1, a2, . . . , an) of n elements of A. Such lists are also called n-tuples. For example,
the set Nn consists of n-tuples of natural numbers.
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2.2 Relations

Summary 2.2 A relation between two sets is a subset of their Cartesian product
which specifies which elements are considered to be related. An equivalence relation
on a set is a specific relation which is reflexive, symmetric, and transitive. A set with
an equivalence relation is partitioned into disjoint equivalence classes.

2.2.1 Basic definitions

So far we have considered sets without any further structure. A simple but important
way to introduce structure is by a relation.

Definition 2.1 (Relation) A relation between two sets A and B is a subset R of A×B.
If (a, b) ∈ R we write a ∼ b and we say that a and b are related. If A = B we say that
R ⊂ A2 is a relation on A.

This definition is a somewhat formal way of stating that a relation between sets A
and B consists of pairs from the Cartesian product A× B which are ’declared’ to be
related. An important special class of relations are equivalence relations.

Definition 2.2 (Equivalence relation) A relation on a set A is called an equivalence
relation if it satisfies the following conditions for all a, b, c ∈ A.

(i) a ∼ a (reflexivity)
(ii) a ∼ b implies b ∼ a (symmetry)
(iii) a ∼ b and b ∼ c implies a ∼ c (transitivity)

For an equivalence relation every element is related to itself, relationship is symmetric
and being related is ’passed on’ (transitivity). The elements related to one another
under an equivalence relation are collected in sets called equivalence classes which are
defined as follows.

Definition 2.3 (Equivalence class) Let A be a set with an equivalence relation and
a ∈ A. The equivalence class [a] is the subset of A which consists of all elements related
to a, so [a] = {b ∈ A | b ∼ a}. The set of all equivalence classes is called the quotient
of A by ∼ and is denoted by A/ ∼.

The following example illustrates equivalence relations and classes.

Example 2.2 (Equivalence relations and classes)
Consider the set N of natural numbers. On this set, we define a relation by saying
that two natural numbers n, m, are related, n ∼ m, if n + m is even. To see that
this is an equivalence relation we have to check the three conditions in Def. 2.2. Since
n+n = 2n is always even we have n ∼ n, meaning the relation is reflexive. Symmetry
follows immediately because n+m = m+ n. For transitivity, consider three numbers
n,m, p with n ∼ m and m ∼ p. This means n+m and m+ p are both even, so their
sum (n+m) + (m+ p) = n+ p+ 2m is even. But since 2m is even, this implies n+ p
is even so that n ∼ p.

What are the equivalence classes? Each two even numbers are related since their
sum is even. The same is true for two odd numbers whose sum is also even. However,
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any even and any odd number are unrelated since their sum is odd. This shows that
there are two equivalence classes, consisting of all the even and all the odd natural
numbers, so that N/ ∼= {{0, 2, 4, . . .}, {1, 3, 5, . . .}}. 2

2.2.2 Properties of equivalence relations

In Example 2.2, the set partitioned into disjoint equivalence classes. This feature is,
in fact, general as shown in the following proposition:

Proposition 2.3 Two equivalence classes are either equal or disjoint.

Proof Consider a set A with an equivalence relation and two equivalence classes [a]
and [b]. If [a] ∩ [b] = ∅ the statement is true so we can assume that there exists a
c ∈ [a]∩ [b]. We want to show that [a] ⊂ [b]. To do this, start with an arbitrary d ∈ [a],
so that d ∼ a. But since c ∈ [a] we also have a ∼ c and transitivity implies that d ∼ c.
Further, from c ∈ [b] we have c ∼ b and transitivity gives d ∼ b, which shows that
d ∈ [b]. Altogether, this means that [a] ⊂ [b]. The same argument, with the roles of
[a] and [b] exchanged, can be repeated to show that [b] ⊂ [a]. It follows that [a] = [b].
2

This statement means that an equivalence relation partitions a set A ’cleanly’ into
disjoint equivalence classes, as indicated in Fig. 2.2. Conversely, a partition of a set

A

[a]
[b]

[c]

. . .

Fig. 2.2 An equivalence relation on a set A partitions the set into disjoint equivalence classes.

can be used to define an equivalence relation (see Exercise 2.4).The quotient A/ ∼ is
the set which consists of all these disjoint equivalence classes. Equivalence relations are
a very useful tool for mathematical constructions, as the following example illustrates.

Example 2.3 (Integers as equivalence classes)
We have earlier introduced the natural numbers, N, with addition and multiplication
taken for granted. What about the integers? It turns out they can be constructed by
introducing on the set N2 of integer pairs the equivalence relation

(n1, n2) ∼ (m1,m2) if n1 +m2 = m1 + n2 . (2.5)

By verifying the three properties in Def. 2.2, it can be shown that this is an equivalence
relation (Exercise 2.3). What are the equivalence classes for this relation? For n1 ≥ n2

we have (n1, n2) ∼ (n1 − n2, 0) and for n1 < n2 it follows that (n1, n2) ∼ (0, n2 − n1),
so in each equivalence class we have an element of the form (n, 0) or (0, n). Two
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such classes for different n are clearly inequivalent so that equivalence classes can be
labelled by these elements. Intuitively, we identify the classes which contain (n, 0) with
the natural numbers n and the classes which contain (0, n) with the negative natural
numbers, also written as −n. In summary, we can define the integers, Z, as Z = N2/ ∼.

2

2.3 Functions

Summary 2.3 A function is a rule which assigns to each element of the domain
exactly one element of the co-domain. Carrying functions out one after the other
is referred to as function composition, which is an associative but not commutative
operation. A function is called injective if the pre-image of each co-domain element
contains at most one element. If the pre-image always contains at least one element
it is called surjective. Functions which are both injective and surjective are called
bijective. A function has an inverse function if and only if it is bijective.

2.3.1 Definition of functions

A relation between two sets X and Y is generally not deterministic: an element of
X may be related to more than one element of Y . In order to describe deterministic
situations we require specific relations where every element of X is related to only one,
unique element in Y . Such relations are described by functions.

Specifically, a function f from a set X to a set Y is a rule that assigns to every element
of the source set X a unique element from the target set Y . The set X is also called the
domain and the set Y the co-domain of the function. The input x ∈ X of a function
is also called its argument which is assigned by the function to its value, denoted by
f(x). In formal notation, the information about a function is summarized as follows:

f : X → Y
x 7→ f(x)

or
X

f→ Y

x
f7→ f(x)

. (2.6)

The top line reads ’f is a function with domain X and co-domain Y ’, while the bottom
line means that the value of x under f is f(x). It is sometimes useful to generalize
the notation and allow a function f : X → Y to act on an entire subset Z ⊂ X
of the domain. This action is defined as f(Z) := {f(x) |x ∈ Z} and it results in a
subset of the co-domain which contains all the values f takes on Z. Depending on
the context, a function may also be called a map and this term is normally used in
linear algebra, where linear functions are referred to as linear maps. Note that it is
important to distinguish the function f , which represents the rule of assignment, from
its value f(x) on a particular element x ∈ X. Two functions f, g : X → Y with the
same domain and co-domain are called equal, written as f = g, if f(x) = g(x) for
all x ∈ X. The set of all values of a function f : X → Y is called the image of the
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X Y Im(f)
f(x)x

f

Fig. 2.3 Illustration of a function f : X → Y .

function,
Im(f) := f(X) = {f(x) |x ∈ X} ⊂ Y , (2.7)

and this is a subset of the co-domain. For a given element y ∈ Y of the co-domain the
pre-image or inverse image

f−1(y) := {x ∈ X | f(x) = y} ⊂ X (2.8)

is the subset of all elements in the domain which are mapped to y. Some of these
features are illustrated in Fig. 2.3.

On every set X there is a function idX : X → X defined by idX(x) = x, which maps
every element to itself. This function is called the identity map or simply identity of
X.

The connection between relations and functions can be understood in terms of the
graph of a function f : X → Y , defined by

Gr(f) := {(x, f(x)) |x ∈ X} ⊂ X × Y . (2.9)

Intuitively, the graph consists of all pairs of arguments and values that should be drawn
to visualize the function. It is a subset of the Cartesian product X × Y and, hence,
defines a relation between X and Y (see Def. 2.1). This relation is deterministic in the
sense discussed above, that is, every x ∈ X is related to precisely one y = f(x) ∈ Y .

A common operation for functions is the restriction of the domain to a subset. Suppose,
we start with a function f : X → Y and a subset X̃ ⊂ X of the domain. Then we can
define a restricted function, denoted f |X̃ : X̃ → Y , by setting f |X̃(x) = f(x) for all

x ∈ X̃, so that the values of f and its restriction are identical on the subset X̃.

Example 2.4 (Functions)
One way to specify a function is by an equation. For example, a linear function f :
R→ R is given by f(x) = ax for a real number a. If a 6= 0, it follows that Im(f) = R
and otherwise, if a = 0, we have Im(f) = {0}. The graph of this function consists of
all points {(x, ax) |x ∈ R}, which corresponds to a line through (0, 0) with slope a.

The definition of a function can also involve case distinctions. For example,

g : R→ R , g(x) =

{
x for x ≥ 0
0 for x < 0

(2.10)

defines a piecewise linear function whose image is Im(g) = R≥0 = {x ∈ R |x ≥ 0}.
The restriction g|R≥0 of g to positive numbers is given by g|R≥0(x) = x.
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Of course, we can also define a function by simply providing its value for each
element of the domain. For example, we can specify a function h : {1, 2, 3} → {1, 2, 3}
by h(1) = 1, h(2) = 3 and h(3) = 3, so that its image is Im(h) = {1, 3}. 2

2.3.2 Composition of functions

Functions can be carried out one after the other, provided the co-domain of the first
function is the same as the domain of the second function. This process is called
composition of functions. More precisely, consider three sets X, Y , Z and two functions
f : X → Y and g : Y → Z. The composition g ◦ f : X → Z is defined as (g ◦ f)(x) =
g(f(x)), that is, simply by evaluating the second function on the value of the first.
The various mappings are summarized in the following diagram.

X
f

Y Z
g

g ◦ f

Note how the notation forces a reversal in the ordering of the two functions. While f
acts first and g second, the fact that arguments are written to the right of the function
symbol means the composition should be g ◦ f .

Example 2.5 (Composition of functions)
Consider the functions defined by f(x) = x2 and g(x) = 2x + 3, seen as functions
R→ R. Then the composite function (g ◦ f)(x) = g(f(x)) = g(x2) = 2x2 + 3 is simply
obtained by ’inserting’ one function into the other. In this case, we can also compose
in the opposite order, (f ◦ g)(x) = f(g(x)) = f(2x + 3) = (2x + 3)3, which gives a
different result. Function composition does not commute! 2

Composition of maps is associative which means for three functions f , g, and h we
have

f ◦ (g ◦ h) = (f ◦ g) ◦ h . (2.11)

This property is easily verified using the definition of composition repeatedly.

(f ◦ (g ◦ h))(x) = f((g ◦ h)(x)) = f(g(h(x))) = (f ◦ g)(h(x)) = ((f ◦ g) ◦ h)(x)

The identity map acts as a neutral element of composition, in the sense that

f ◦ idX = f , idY ◦ f = f (2.12)

for every function f : X → Y . This follows from (f ◦ idX)(x) = f(idX(x)) = f(x) and
similarly for the other equation. The properties (2.11) and (2.12) of composition are
quite important and, as we will see, are key ingredients in the definition of a group.

2.3.3 Properties of functions

There are a few important structural properties of functions which are summarized in
the following definition.
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Definition 2.4 Let f : X → Y be a function with domain X and co-domain Y .

(i) f is called injective if f(x) = f(x′) implies x = x′ for all x, x′ ∈ X.
(ii) f is called surjective provided for all y ∈ Y there exists an x ∈ X with y = f(x).
(iii) f is called bijective if it is injective and surjective.

An injective function (also called ’one-to-one’ function) maps no two different elements
of the domain to the same image or, in other words, the pre-image f−1(y) contains
at most one element for all y ∈ Y . A surjective function (also called ’onto’ function)
’reaches’ every element of the domain, that is Im(f) = Y , or equivalently, the pre-
image f−1(y) consists of at least one element for all y ∈ Y . A bijective function
combines these two properties, so that the pre-image f−1(y) consists of precisely one
element for all y ∈ Y . These properties are illustrated in Fig. 2.4.

X
f→ Y

injective
not surjective

X
f→ Y

surjective
not injective

X
f→ Y

not surjective
not injective

X
f→ Y

bijective

Fig. 2.4 Illustration of injective, surjective, and bijective functions f : X → Y .

Example 2.6 (Basic function properties)
The linear function f : R→ R given by f(x) = ax is bijective for a 6= 0. (It is surjective
since Im(f) = R and it is injective since f(x) = f(x′) implies ax = ax′ and, hence,
x = x′.) For a = 0, every x ∈ R is mapped to 0 so in this case f it is neither injective
nor surjective.

The piecewise linear function g : R → R in Eq. (2.10) is not injective (since all
negative numbers are mapped to 0) and it is not surjective (since negative numbers
are not images). However, if we modify g by restricting its co-domain, g : R → R≥0,
(but with its values still defined by Eq. (2.10)) then it is surjective, although still not
injective. 2

The next proposition asserts that the above properties of functions are preserved under
composition.

Proposition 2.4 For two injective (surjective) functions f : X → Y and g : Y → Z
the composition g ◦ f : X → Z is also injective (surjective). If f and g are bijective,
then so is g ◦ f .

Proof First suppose that f and g are injective. We would like to show that g ◦ f is
injective as well. Suppose that (g◦f)(x) = (g◦f)(x′) for x, x′ ∈ X. From the definition
of function composition, this means that g(f(x)) = g(f(x′)). Since g is injective, it
follows that f(x) = f(x′) and injectivity of f then implies that x = x′. Hence g ◦ f is
injective.
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Now suppose that f and g are surjective. We want to show that g◦f is surjective as
well. To do so, we start with a z ∈ Z and try to construct an element in the pre-image
(g ◦ f)−1(z). Since g is surjective, there exists a y ∈ Y such that z = g(y). But f is
also surjective, so we have an x ∈ X with y = f(x). Combining these statements gives
z = g(y) = g(f(x)) = (g ◦ f)(x) and, hence, g ◦ f is surjective.

If f and g are bijective, then they are both injective and surjective. Then, from
the previous statements, g ◦ f is injective and surjective and, hence, bijective. 2

Thanks to this proposition, we can say that the properties ’injective’, ’surjective’, and
’bijective’ are preserved under function composition. As we will see, linearity is another
such property which is preserved under composition (see Exercises 2.6).

We also note that the restriction f |X̄ of an injective function f : X → Y to a subset
X̄ ⊂ X of the domain is still injective. Indeed, if f(x) = f(x′) implies x = x′ for all
x, x′ ∈ X, then this is also implied for all x, x′ ∈ X̄. The analogous statement for
surjective functions is, of course, false. Restricting the domain can lead to a smaller
image, so that surjectivity can be lost.

Bijective maps allow us to be more precise about the notion of set cardinality. We
say that a set X has cardinality n, written as |X| = n, if there exists a bijective
map X → {1, 2, . . . , n}. This means the elements of X can be indexed by integers
so that the set can be written as X = {x1, x2, . . . , xn}. Further, we say that the set
has countably infinite cardinality if there exists a bijective map X → N, so the set
can be written as X = {x0, x1, . . .}. If neither is the case, we say the cardinality is
non-countably infinite.

2.3.4 The inverse function

Can the effect of a function be undone by an inverse function? We should first define
what exactly we mean by this.

Definition 2.5 For a function f : X → Y an inverse function is a function g : Y →
X, which satisfies g ◦ f = idX and f ◦ g = idY .

A function f : X → Y need not have an inverse. For example, if f is not injective
then there is a pre-image f−1(y) for some y ∈ Y which contains at least two elements.
In this case, it is not clear which of these two elements to choose for the value of the
prospective inverse function with argument y. Likewise, if f is not surjective there
exists an empty pre-image f−1(y) so in this case there is no candidate for the value of
a prospective inverse function at y. Fortunately, being non-injective or non-surjective
are the only obstructions to the existence of an inverse.

Proposition 2.5 A function f : X → Y has an inverse if and only if f is bijective.
In this case, the inverse, denoted by f−1 : Y → X, is unique and bijective.

Proof First assume that f : X → Y has an inverse g : Y → X, hence g ◦ f = idX
and f ◦ g = idY . We want to prove that f is bijective. To show that f is injective,
start with f(x) = f(x′) and apply g from the left, so that g(f(x)) = g(f(x′)). But
g ◦ f = idX , hence g(f(x)) = x and g(f(x′)) = x′, which implies x = x′. To show
that f is surjective, observe that for every y ∈ Y there exists an x = g(y) ∈ X with
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f(x) = f(g(y) = y. Hence f is bijective.

For the second part of the statement, assume that f is bijective. Define a map g :
Y → X by g(y) = x, where x is the unique element in the pre-image f−1(y). Then g
satisfies (f ◦ g)(y) = f(x) = y and (g ◦ f)(x) = g(y) = x and, hence, it is an inverse
map for f .

Finally, to show uniqueness of the inverse map, consider two inverse maps g : Y → X
and g̃ : Y → X. They satisfy g◦f(x) = x = g̃◦f(x) for all x ∈ X. Since f is surjective,
any y ∈ Y can be written as y = f(x) for some x ∈ X and therefore g(y) = g̃(y) for all
y ∈ Y . Hence, g = g̃ and the inverse is unique. We leave the proof that f−1 is bijective
as Exercise 3.1. 2

Note that, by a slight abuse of notation, we are using the same symbol, f−1, to denote
the inverse image and the inverse function. It should be clear from the context which
one is referred to. Since f−1 is also bijective, it has an inverse as well and it is intuitively
clear that this inverse of the inverse must be the original function,

(f−1)−1 = f . (2.13)

Formally, this follows because both f and (f−1)−1 satisfy the conditions in Def. 2.5
for an inverse function to f−1 and uniqueness of the inverse function hence implies
Eq. (2.13).

Combining Prop. 2.4 and Prop. 2.5, it is clear that the composition of two invertible
functions is invertible. Moreover, the inverse of the composition can be worked out by
the rule

(g ◦ f)−1 = f−1 ◦ g−1 . (2.14)

Note the change of ordering in this formula which is indeed correct! For the proof note
that both (g ◦ f)−1 and f−1 ◦ g−1 are an inverse to g ◦ f , in the sense of Def. 2.5.
Uniqueness of the inverse then leads to Eq. (2.14).

Example 2.7 (Inverse function)
The linear map f : R→ R defined by f(x) = ax for a 6= 0 is bijective and, hence, has
a unique inverse. Clearly, the inverse function f−1 : R→ R is given by f−1(x) = x/a.
Frequently, a function can be made bijective by modifying its domain or co-domain.
For example, the quadratic function f(x) = x2, seen as a function f : R → R, is
neither injective (since f(x) = f(−x)) nor surjective (since f(x) ≥ 0). However, seen
as a function f : R≥0 → R≥0 it is bijective. Its unique inverse f−1 : R≥0 → R≥0 is the
square root function f(x) =

√
x. 2

The above example shows that linear maps on R may or may not be bijective and,
hence, may or may not have an inverse. Deciding whether a (more general) linear
function has an inverse and how to compute it is an important problem which we will
address in detail later.
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2.4 Rudiments of logic

Summary 2.4 Predicates are functions with co-domain {0, 1}. New predicates can
be formed from given ones by the operations ’and’, ’or’ and the complement. These
operations are closely related to the union, intersection and the complement of sets.
Implications and quantifiers can be used to formulate conclusions and statements in
terms of predicates. The structure of basic methods of proofs, such as direct proof,
proof by contradiction, and proof by induction can be formulated in this language.

Logic is an important foundational area of mathematics, which we cannot possibly
do justice to in a short introduction. However, we need to develop our main subject
systematically, including proofs, so introducing some elements of logic is unavoidable.
We will keep the discussion short, focus on key ideas, explain notation and finish by
discussing the logical structure of basic types of proofs.

2.4.1 Predicates and Boolean operations

For a set X a Boolean function or predicate on X is a function P : X → {0, 1}. The
idea is that elements x ∈ X can be statements which are true if P (x) = 1 and false if
P (x) = 0. Given two predicates, P and Q, we can define new predicates

P ∨Q , P ∧Q , (2.15)

read as ’P or Q’ and ’P and Q’, respectively, whose values are defined in Table 2.1.
Note that the assignments in the table correspond to the ’intuitive’ meaning of ’and’

Table 2.1 Logical operations ’or’ and ’and’ for predicates P and Q on a set X.

P (x) Q(x) (P ∧Q)(x) (P ∨Q)(x) (P̄ ∨Q)(x) (Q̄ ∨ P )(x)

0 0 0 0 1 1

0 1 0 1 0 1

1 0 0 1 1 0

1 1 1 1 1 1

and ’or’. Both operations are associative and commutative, that is:

P ∧ (Q ∧R) = (P ∧Q) ∧R P ∨ (Q ∨R) = (P ∨Q) ∨R
P ∧Q = Q ∧ P P ∨Q = Q ∨ P .

(associativity)
(commutativity)

Commutativity is evident from Table 2.1 since the results in columns three and four do
not depend on the ordering of the first two columns. Associativity can also be verified
by a truth table, similar to Table 2.1 (Exercise 2.9). In addition to associativity and
distributivity, there are two distributive laws which connect the two operations.

Proposition 2.6 For three predicates P , Q, and R, we have

P ∧ (Q ∨R) = (P ∧Q) ∨ (P ∧R) , P ∨ (Q ∧R) = (P ∨Q) ∧ (P ∨R) . (2.16)
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Proof The proof can be accomplished by a truth table, going through all eight
combinations for the values of P , Q, and R. As an example, suppose that P (x) =
Q(x) = 1 and R(x) = 0. Then, from Table 2.1, we have P ∧ (Q ∨ R)(x) = 1 and
(P ∧Q) ∨ (P ∧R)(x) = 1 which proves the first Eq. (2.16) for this case. The proof is
completed by going through the other seven possibilities (Exercise 2.9). 2

The reader has probably noticed the formal similarity between the above rules for how
to calculate with ’or’ and ’and’ and the rules for the union and intersection of sets, as
discussed in Sec. 2.1.2. These similarities are, of course, not an accident and have to do
with the fact that ’or’ and ’and’ have been used, then somewhat naively, to define the
union and intersection of sets. The relationship can be made more precise by noting
that there is a bijective correspondence between predicates on X and subsets of X.
Concretely, we can assign to a predicate P on X the subset XP = {x ∈ X |P (x) = 1}
of those elements in X, for which the predicate is true (also, see Exercise 2.8). Based
on this correspondence, we can now define the union and intersection of sets

XP ∪XQ = XP∨Q , XP ∩XQ = XP∧Q , (2.17)

in terms of ’or’ and ’and’. With these definitions, it is easy to derive the rules for
calculating with sets from the above rules for predicates. For example, obtaining the
first distributive law (2.2) for sets works, as follows:

XP ∩ (XQ ∪XR)
(2.17)

= XP∨(Q∧R)
(2.16)

= X(P∧Q)∨(P∧R)
(2.17)

= (XP ∩XQ) ∪ (XP ∩XR) .

The complement P̄ of a predicate P on X is defined as:

P̄ (x) =

{
0 if P (x) = 1
1 if P (x) = 0

. (2.18)

The complement satisfies a number of important relations, also known as de Morgan’s
laws.

Proposition 2.7 (de Morgan’s laws) The complement of predicates on X satisfies

¯̄P = P , P ∨Q = P̄ ∧ Q̄ , P ∧Q = P̄ ∨ Q̄ . (2.19)

Proof The first law, ¯̄P = P , is obvious from the Def. (2.18) of the complement. The
other two rules are verified by the truth table below:

P Q P ∨Q P̄ ∧ Q̄ P ∧Q P̄ ∨ Q̄
0 0 1 1 1 1

0 1 0 0 1 1

1 0 0 0 1 1

1 1 0 0 0 0

2
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The complement of predicates is closely related to the set complement, in much the
same way the ’or’ and ’and’ operations are related to the union and intersection of sets.
More precisely, we can now define the set complement in terms of the complement of
predicates as

XP = XP̄ . (2.20)

With this definition, the rules for set complements in Prop. 2.2 immediately follow
from de Morgan’s laws (Exercise 2.10).

Finally, we need to introduce two simple pieces of terminology. A tautology is a predi-
cate on X which returns true for all x ∈ X and Table 2.1 shows that, for example, P∨P̄
is a tautology. A predicate which returns false for all x ∈ X is called a contradiction
and an example is provided by P ∧ P̄ .

2.4.2 Implications

Given two predicates P and Q on X, the implication connective allows us to form a
new predicate, denoted by P ⇒ Q, and read as ’P implies Q’ or ’Q follows from P ’.
It is defined by

(P ⇒ Q) = P̄ ∨Q . (2.21)

Table 2.1 shows that P ⇒ Q is true in all cases, except when P is true and Q is false.
This makes sense, since an implication should only be called false if a true premise P
leads to a false conclusion Q. An implication P ⇒ Q is called valid if it is a tautology,
that is, if (P ⇒ Q)(x) = 1 for all x ∈ X.

The predicate which tests mutual implication is written as P ⇔ Q, read as ’P
equivalent to Q’ and formally this can be defined by

(P ⇔ Q) = (P ⇒ Q) ∧ (Q⇒ P ) . (2.22)

Table 2.1 shows (by taking a logical ’and’ between the last two columns) that (P ⇔
Q)(x) is true iff P (x) = Q(x) and false otherwise. If P ⇔ Q is a tautology we also say
that P holds if and only if Q holds. The phrase ’if and only if’ in this context is often
abbreviated as ’iff’.

A simple calculation based on the definition (2.21), commutativity, and the first de
Morgan law shows that:

(P ⇒ Q) = P̄ ∨Q = ¯̄Q ∨ P̄ = (Q̄⇒ P̄ ) . (2.23)

This result underlies the method of indirect proof (discussed in more detail later) by
which the validity of P ⇒ Q follows from the validity of Q̄⇒ P̄ .

2.4.3 Quantifiers

Logical statements often involve quantifiers, such as the quantifier ’or all’, written as
∀, the quantifier ’there exists’, written as ∃ and the quantifier ’there exists a unique’
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written as ∃!. Using this notation, most theorems can then be cast into one of the
following forms:

(∀x ∈ X)(P (x)) , (∃x ∈ X)(P (x)) , (∃!x ∈ X)(P (x)) . (2.24)

From left to right, these statements should be read ’P (x) is true for all x ∈ X’, ’there
exists an x ∈ X , such that P (x) is true’, and ’there exists a unique x ∈ X such that
P (x) is true’.

As an aside, we remark that quantifiers are also often used in the definition of sets.
For example, the set

nZ := {k ∈ Z | ∃m ∈ Z : k = nm}

consists of all integers which are multiples of n. (The colon in this expression is read
as ’such that’.)

Sometimes, it is easier to prove that the negative of a statement is false rather than
proving the original statement directly. In such cases, it is important to understand how
to negate statements involving quantifiers. The general rule is that, under negation,
the universal quantifier, ∀, turns into the existential one, ∃, and vice versa. More
concretely, we have

(∀x ∈ X)(P (x)) = (∃x ∈ X)(P̄ (x)) , (∃x ∈ X)(P (x)) = (∀x ∈ X)(P̄ (x)) .

2.4.4 Patterns of proofs

We finish this section by discussing the logical structure of some common patterns of
proof. A direct proof has the logical structure,

(P ∧ (P ⇒ Q))⇒ Q . (2.25)

Using a truth table and the results from Table 2.1, it can be checked that this is
tautological (see Exercise 2.11). Note that this formal expression captures what one
would intuitively state as the structure of a direct proof: ’If P is true and if Q follows
from P then Q is true.’

The corresponding expression for an indirect proof is

(Q̄ ∧ (Q̄⇒ P̄ ))⇒ P̄ . (2.26)

It follows immediately from Eq. (2.25) by the replacements P → Q̄ and Q→ P̄ .

The logical structure of a proof by contradiction is

((Q̄⇒ P ) ∧ (Q̄⇒ P̄ ))⇒ Q . (2.27)

and, again, this is tautological (Exercise 2.11). A proof by contraction starts by as-
suming that Q is false. If this can be shown to imply both P and P̄ , a contradiction
has been encountered and Q follows.
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Example 2.8 (Proof by contradiction)
As an example of a proof by contradiction, we want to show that there are infinitely
many prime numbers. This is the statement Q in Eq. (2.27). Then, the statement Q̄ is
that there are only finitely many prime numbers (p1, p2, . . . , pn). It follows that every
prime number is contained in the list (p1, p2, . . . , pn) (the statement P ). Consider the
product p = p1p2 · · · pn and q = p + 1. If q is prime, then it is an additional prime
number not in the list and the statement P̄ follows. If q is not prime, then it contains a
prime factor r. If this prime factor is in the list (p1, p2, . . . , pn), then it is also a prime
factor of p but p and q cannot have a common prime factor since q − p = 1. Hence,
r cannot be in the list and again the statement P̄ follows. We have now shown that
Q̄⇒ P and Q̄⇒ P̄ are both valid, so from Eq. (2.27) it follows that Q holds. 2

Another common type of proof is proof by induction. This arises in the context of
predicates P on countably infinite sets X = {x0, x1, . . .}. If we write Pn = P (xn) its
logical structure is

(P0 ∨ ((∀n ∈ N)(Pn ⇒ Pn+1))⇒ ((∀n ∈ N)Pn) . (2.28)

While this may seem complicated at first it captures a simple idea. If the statement
P0 is true and every statement Pn implies its successor Pn+1 then all statements Pn
must be true.

Example 2.9 (Proof by induction)
We would like to prove a formula for the sum Sn = 0 + 1 + 2 + · · ·+ n and the claim
is that

Sn = n(n+ 1)/2 . (2.29)

Clearly, this claim is true for n = 0 (the ’basis’ of the induction). Let us assume that
it is true for n (the ’induction assumption’), so that Sn = n(n+ 1)/2. To show that it
follows for n+ 1, we carry out the calculation

Sn+1 = 0+1+ · · ·+n+(n+1) = Sn+(n+1) =
1

2
n(n+1)+(n+1) =

1

2
(n+1)(n+2) ,

where the induction assumption has been used in the third step. The left- and right-
hand sides of this equation are precisely the claim (2.29) with n replaced by n + 1.
Hence, this shows that the statement is true for n + 1 and completes the ’induction
step’. It follows that the statement holds for all n ∈ N. 2

Exercises

2.1 Prove the second Eq. (2.2) by showing
mutual inclusion of the left- and right-
hand sides.

2.2 Prove the first and third Eq. (2.3) by
showing mutual inclusion of the left-
and right-hand sides.
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2.3 Show that the relation (2.5) is an
equivalence relation on N2.

2.4 Equivalence relations from partitions
A set S is given as a union S =

⋃
i Si

of mutually disjoint subsets Si. Define
a relation on S by declaring s, s̃ ∈ S
as related if they are contained in the
same subset Si. Show that this is an
equivalence relation, which partitions
S into the subsets Si.

2.5 Show that the inverse of a bijective
function is bijective.

2.6 Composition of linear functions.
(a) Let f, g : R→ R be two linear func-
tions. Show that their composition is
also a linear function. Is there a differ-
ence between f ◦ g and g ◦ f?
(b) Consider the same problem in two
dimensions. Let f, g : R2 → R2 be
two linear functions. Show that their
compositions f ◦ g and g ◦ f are lin-
ear as well. Write these functions as
f(x) = Ax and g(x) = Ãx, where
x ∈ R2 is a vector with entries x1, x2,
and

A =

(
a b
c d

)
, Ã =

(
ã b̃

c̃ d̃

)
are 2 × 2 matrices. Work out the two
matrices, which describe f ◦g and g◦f .
Are these matrices in general equal?

2.7 ’Simplifying’ functions.
Let f : X → Y be a function.
a) Let g, h : Z → X be functions and
assume that f is injective. Show that
f ◦ g = f ◦ h implies that g = h.
b) Let g, h : Y → Z be functions and
assume that f is surjective. Show that
(g ◦ f = h ◦ f) implies that g = h.

2.8 Boolean functions and the power set
Show that the number of Boolean func-
tions on a set X with n elements is
equal to 2n. This is the same as the
cardinality of the power set 2X , defined
as the set of subsets of X. Explain why
this is not a coincidence.

2.9 Verify that the logical operations ’or’
and ’and’ are associative, using a truth
table. Do the same for the distributive
laws (2.16).

2.10 With the set operations defined as
in Eqs. (2.17) and (2.20), show that
Prop. 2.2 follows from de Morgan’s
laws in Prop. 2.7.

2.11 Prove that the statements (2.25) for a
direct proof is tautological by complet-
ing the truth table in Table 2.1. Do the
same with Eq. (2.27).

2.12 Induction
By using induction, show that 1 + 22 +
32 + · · ·+ n2 = n(n+ 1)(2n+ 1)/6.
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Groups

So far, the only structures on sets we have considered are relations. One of the sim-
plest algebraic structures on a set is a group structure. Groups underly the definition
of fields and vector spaces and for this reason alone we need to introduce them. Group
theory is a large and diverse area of mathematics and we have to keep our discussion
short, focusing on basics and some more specific aspects, which will become relevant
later on. (For a dedicated introduction to group theory see, for example, Armstrong
2013.) Groups also provide the mathematical framework for symmetries which are
immensely important for many areas of science, particularly in physics (see, for exam-
ple, Cornwell 1997; Wybourne 1974). In the next section, we begin by defining groups,
sub-groups, and the maps consistent with the group structure, the group homomor-
phisms. A number of simple examples will be presented as we go along. Permutation
groups are required for the determinant (see Chapter 18) and will be examined in
Section 3.2.

3.1 Definition and basic properties

Summary 3.1 A group is a simple algebraic structure that consist of a set with
a multiplication that is associative, has a neutral element, and an inverse for each
group element. If the multiplication commutes the group is called Abelian. Examples
of groups are all the bijective maps on a set, permutations, the integers with respect
to addition, and the cyclic groups. Cartesian products of groups can be given a direct
product group structure by component-wise multiplication. Maps between groups which
are consistent with the group structure are called group homomorphisms.

3.1.1 Definition

In Section 2.3 we have seen that functions f : X → X have a number of interesting
properties. Their composition is associative, there exists a neutral element, the identity
map, under composition, and, for bijective functions, there always exists a unique
inverse. It makes sense to formalize these properties, and this leads to the definition
of a group.

Definition 3.1 (Group) A group (G, ·) is a non-empty set G with an operation · :
G×G→ G, (g1, g2) 7→ g1·g2 (called ’group multiplication’), which satisfies the following
properties.
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(G1) g1 · (g2 · g3) = (g1 · g2) · g3 ∀g1, g2, g3 ∈ G (associativity)
(G2) ∃e ∈ G : e · g = g ∀g ∈ G ((left) neutral element)
(G3) ∀g ∈ G ∃g̃ ∈ G : g̃ · g = e ((left) inverse)

If, in addition, g1 · g2 = g2 · g1 for all g1, g2 ∈ G, then the group is called Abelian.

Note that the term ’multiplication’ in this definition refers to any operation with the
stated properties, not just the usual multiplication of numbers. Groups can have a
finite or infinite number of elements, as we will see, and in the former case G is called
finite with order given by the cardinality |G| (also see Exercise 3.3).

The above definition has a curious asymmetry, in that the neutral element and the
inverse are postulated only when multiplied from the left. However, this is not a
problem, as the following proposition shows.

Proposition 3.1 For a group G, the left inverse is unique and is also a right inverse,
so g̃ · g = e implies g · g̃ = e. The left neutral element is unique and is also right
neutral, so that e · g = g for all g ∈ G implies g · e = g.

Proof We begin by proving that every left inverse is also a right-inverse. For g ∈ G
consider a left-inverse g̃ so that g̃ · g = e. The inverse g̃ has its own left-inverse which
we call ˜̃g, so that ˜̃g · g̃ = e. It follows that

g · g̃ = e · g · g̃ = ˜̃g · g̃ · g︸︷︷︸
=e

·g̃ = ˜̃g · g̃ = e ,

which completes the proof. We leave the other statements as Exercise 3.1. 2

Since the inverse for a given g ∈ G is unique it is usually denoted by g−1. The above
proposition leads to two basics rules for calculating with the inverse, which mirror the
rules (2.13) and (2.14) for the inverse of functions:

(g−1)−1 = g , (g1 · g2)−1 = g−1
2 · g−1

1 . (3.1)

The first of these follows from the fact that both g and (g−1)−1 provide an inverse to
g−1. Hence, from the uniqueness of the inverse, they must be equal. Likewise, both
(g1 · g2)−1 and g−1

2 · g−1
1 are inverse to g1 · g2 and must be equal.

How does the group structure relate to the Cartesian product of sets? More concretely,
for two groups (G, ·) and (G̃, ·) with neutral elements e and ẽ, can the Cartesian
product G× G̃ be made into a group? The answer is ’yes’ providing the multiplication
on G× G̃ is defined component-wise as:

(g1, g̃1) · (g2, g̃2) = (g1 · g2, g̃1 · g̃2) . (3.2)

This leads to the direct product group (G×G̃, ·) with neutral element (e, ẽ) and inverse
(g, g̃)−1 = (g−1, g̃−1). Associativity is clearly satisfied for the direct product group
since it holds for each of the constituent groups. Further, if both (G, ·) and (G̃, ·) are
Abelian groups, then so is the direct product group (G × G̃, ·). This construction is
quite important and will re-appear in the context of fields and vector spaces later on.
Of course it can be generalized to multiple factors. For example, for a group (G, ·) the
Cartesian product Gn can be made into a group by component-wise multiplication.
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3.1.2 Examples of groups

It is now time to discuss a few important examples of groups.

Example 3.1 (Bijective maps on a set)
From Section 2.3, we know that all bijective maps ϕ : X → X on a set X form
a group, denoted by Bij(X). The group multiplication is the composition of maps
(which is associative), idX is the neutral element, and the group inverse is the inverse
map ϕ−1. 2

Example 3.2 (Permutation groups)
This is a special case of the previous example, where we consider all bijective maps on
the set X = {1, 2, . . . , n}. The resulting group is called the permutation group Sn. The
idea is that a map σ ∈ Sn corresponds to a permutation of {1, . . . , n} by permuting
every k ∈ {1, . . . , n} to its image σ(k). Permutation groups will be discussed in more
detail in Section 3.2. 2

Example 3.3 (Integers)
The natural numbers do not form a group with respect to either addition or multi-
plication. For addition we are missing the negative numbers that would provide an
inverse, for multiplication there is no inverse because of the absence of fractions. On
the integers Z, constructed as a quotient of N2 (see Example 2.3), we can also intro-
duce an addition and a multiplication, based on the corresponding operations on N,
by:

[(n1, n2)] + [(m1,m2)] = [(n1 + n2,m1 +m2)]

[(n1, n2)] [(m1,m2)] = [(n1m1 + n2m2, n1m2 + n2m1)] .

To see that this really corresponds to the familiar arithmetic on Z, let us consider
some examples. The sum of a positive number [(n, 0)] and a negative number [(0,m)]
is [(n,m)] which is indeed interpreted as the difference n−m. A product of two negative
numbers [(0, n)], [(0,m)] gives [(nm, 0)], which corresponds to a natural number.

The integers (Z,+) with the above addition do form an Abelian group, with neutral
element 0 = [(0, 0)] and inverse −n = [(0, n)] for any n ∈ Z. However, the integers
with multiplication do not form a group since the multiplicative inverse is still missing.

2

Example 3.4 (Zn)
The set Zn := {0, 1, . . . , n − 1} can be made into a group (Zn, ·) by defining the
’multiplication’

k · k′ = (k + k′) mod n , (3.3)

where k mod n denotes the remainder of the division of k by n. This forms an Abelian
group with neutral element 0 and inverse n− k for k ∈ Zn which is also referred to as
cyclic group of order n. One way to specify the group multiplication for a group with
a finite number of elements is by a multiplication table. For example, from Eq. (3.3),
the multiplication table for Z3 = {0, 1, 2} is:
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· 0 1 2

0 0 1 2
1 1 2 0
2 2 0 1

(See also Exercise 3.6.) 2

3.1.3 Sub-groups

A standard step in the build-up of any algebraic structure is the introduction of the
sub-structure. In the case of groups, this leads to the notion of sub-groups, defined as
follows:

Definition 3.2 (Sub-group) A subset H ⊂ G of a group G is called a sub-group if it
forms a group by itself under the multiplication defined on G.

To check that a subset H ⊂ G is a sub-group it is enough to verify that H contains
the neutral element e, that is, contains the inverse h−1 for all h ∈ H and that it is
closed under group multiplication, so h1, h2 ∈ H implies h1 · h2 ∈ H.

Every groupG contains two trivial sub-groups, namely the group {e} which consists
of the neutral element only and the whole group G. All other sub-groups are called
proper sub-groups.

Example 3.5 (Sub-groups)
Consider the group (Z4, ·), the cyclic group of order four, as defined in Example 3.4.
Then H = {0, 2} forms a sub-group, since it is closed under the group multiplica-
tion (3.3), contains the neutral element 0 and an inverse for each of its elements (as 2
is its own inverse). 2

3.1.4 Group homomorphisms

The final step of the general set-up is to define the maps which are consistent with
the group structure, the group homomorphisms.

Definition 3.3 (Group homomorphism) A map f : G → G̃ between two groups G
and G̃ is called a group homomorphism if:

f(g1 · g2) = f(g1) · f(g2) (3.4)

for all g1, g2 ∈ G.

Group homomorphisms are simply maps between groups which commute with the
group multiplication. In other words, group elements and their images under f multiply
in the same way. As we will see in Chapter 12, linear maps are group homomorphisms
with respect to vector addition.

As every map, group homomorphisms f : G → G̃ have an image, Im(f) ⊂ G̃ which
is a subset of the co-domain group. But there is another interesting set, the kernel,
which can be defined because of the existence of a special group element, the neutral
element.
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Definition 3.4 (Kernel of a group homomorphism) The kernel of a group homomor-
phism f : G→ G̃ is defined as Ker(f) = f−1(ẽ) = {g ∈ G | f(g) = ẽ} ⊂ G, where ẽ is
the neutral element of G̃.

This means the kernel is a subset of the domain group which consists of all group
elements mapped to the co-domain neutral element. Injectivity and surjectivity of a
group homomorphism can be phrased in terms of its image and kernel as explained in
the following proposition:

Proposition 3.2 (Properties of group homomorphisms) A group homomorphism f :
G→ G̃ has the following properties:

(i) f(e) = ẽ so that e ∈ Ker(f)
(ii) f(g−1) = f(g)−1 for all g ∈ G
(iii) f surjective ⇔ Im(f) = G̃
(iv) f injective ⇔ Ker(f) = {e}
(v) Im(f) is a sub-group of G̃ and Ker(f) is a sub-group of G.

Proof (i) f(e) = f(e ·e) = f(e) ·f(e) and multiplying both sides with f(e)−1 implies
that f(e) = ẽ.
(ii) Clearly, f(g)−1 is an inverse for f(g) but so is f(g−1) since f(g−1) · f(g) = f(g−1 ·
g) = f(e) = ẽ. The claim then follows from the uniqueness of the inverse.
(iii) This is clear from the definitions of the image and surjectivity.
(iv) Let f be injective and g ∈ Ker(f), so that f(g) = ẽ. From part (i) it follows that
f(g) = ẽ = f(e) and injectivity implies that g = e. Hence, the kernel only contains
the neutral element, that is, Ker(f) = {e}. Conversely, assume that Ker(f) = {e}. We
want to show that f is injective, so we start with g1, g2 ∈ G satisfying f(g1) = f(g2).
Then ẽ = f(g1) ·f(g2)−1 = f(g1) ·f(g−1

2 ) = f(g1 ·g−1
2 ), so that g1 ·g−1

2 is in the kernel.
Hence g1 · g−1

2 = e or g1 = g2, which shows that f is injective.
(v) This is left as Exercise 3.2. 2

A bijective group homomorphism f : G → G̃ is also called a group isomorphism.
Isomorphisms are of great importance in mathematics and the isomorphisms of vector
spaces — the bijective linear maps — are a central theme of linear algebra, which we
will develop in more detail later on. Recall that we have earlier defined what it means
for two sets to be equal. Isomorphisms provide us with a different, structural notion of
set equality. The existence of a group isomorphism implies that domain and co-domain
groups are equal with respect to their group structures. This means that, by virtue of
Eq. (3.4), the elements of the domain group and their images in the co-domain multiply
’in the same way’. Two groups G and G̃ connected by a group isomorphism are called
isomorphic, written as G ∼= G̃. All these features, including image and kernel, as well
as the statements of Prop. 3.2 have their counterparts for linear maps, as we will see
in Chapter 12.

Example 3.6 (Group homomorphisms)
Consider the map f : Z→ Zn defined by f(k) = k mod n. This is a group homomor-
phism, since:

f(k + k′) = (k + k′) mod n = [(k mod n) + (k′ mod n)] mod n = f(k) + f(k′) .
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Its image is the entire co-domain, Im(f) = Zn, so the map is surjective. The kernel,
Ker(f) = nZ, consists of all multiples of n. Hence, f is not injective. 2

Example 3.7 (Group isomorphism)

The set G = {1,−1} forms a group under regular multiplication of integers. The map
f : Z2 → G defined by f(k) = (−1)k is a group isomorphism, which shows that
G ∼= Z2. 2

3.2 Permutation groups

Summary 3.2 The permutation group Sn consists of all bijective maps on the set
{1, . . . , n}, with multiplication given by map composition. Transpositions are permu-
tation which swap two numbers while leaving all others unchanged. Every permutation
can be written as a product of transpositions. If the number of transpositions required
is even, then the transposition is called even and the sign of the permutation is +1.
Otherwise, the permutation is called odd and its sign is −1. The sign map is a group
homomorphism from Sn to the cyclic group {±1}.

Permutation groups Sn and some of their properties will be required later, in the
context of determinants. Here, we prepare the ground for these applications and also
illustrate some of the general ideas around groups.

3.2.1 Calculating with permutations

The permutation groups Sn have already been defined in Example 3.2. Permutations
σ ∈ Sn are sometimes written as

σ =

[
1 2 · · · n

σ(1) σ(2) · · · σ(n)

]
indicating a permutation which permutes the numbers in the top row to the corre-
sponding numbers in the bottom row. Group multiplication is composition of maps,
the group identity is the identity map (the trivial permutation which leaves everything
unchanged) and the inverse of σ ∈ Sn is the inverse permutation σ−1 which ’undoes’
the effect of the original permutation.

The simplest non-trivial example is the group S2 of permutations of the set {1, 2}
which consists of two elements (see also Exercise 3.5):

S2 =

{
e =

[
1 2
1 2

]
, τ =

[
1 2
2 1

]}
. (3.5)

Clearly, this group is Abelian. What about the higher permutation groups? Consider
the two permutations
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τ1 =

[
1 2 3 · · ·
1 3 2 · · ·

]
, τ2 =

[
1 2 3 · · ·
3 2 1 · · ·

]
,

in Sn which swap (1, 2) and (2, 3), respectively, while leaving all other numbers un-
changed. Such simple permutations which only swap two numbers are called transpo-
sitions. Note that transpositions τ are their own inverse since τ ◦ τ = e.

A quick calculation,

τ1 ◦ τ2 =

[
1 2 3 · · ·
2 3 1 · · ·

]
6= τ2 ◦ τ1 =

[
1 2 3 · · ·
3 1 2 · · ·

]
, (3.6)

shows that Sn is not Abelian for n > 2. The calculation underlying Eq. (3.6) is
perhaps somewhat unfamiliar. To see, for example, that τ2 ◦ τ1 maps 3 to 2 first note
that τ1(3) = 2 and τ2(2) = 2. Combining these two statements gives (τ2 ◦ τ1)(3) =
τ2(τ1(3)) = τ2(2) = 2.

3.2.2 Permutations in terms of transpositions

It is intuitively clear that Sn has n! elements and that every permutation can be writ-
ten as a composition of transpositions. These statements are proved in the following
proposition.

Proposition 3.3 The permutation group Sn has n! := 1 · 2 · · ·n elements. Every
permutation in Sn can be written as a composition of transpositions.

Proof We can prove these statements by induction in n. Both statements are clearly
true for S2, as Eq. (3.5) shows. Now assume that they are true for Sn. Next consider
the permutations Ak := {σ ∈ Sn+1 |σ(n+ 1) = k} ⊂ Sn+1, which map n+ 1 to k and
also the transposition τ ∈ Sn+1 which swaps n+1 with k. Then, the permutations τ ◦σ,
where σ ∈ Ak leave n+ 1 unchanged and can, hence, be identified with permutations
in Sn. Then by the induction assumption, τ ◦ σ can then be written in terms of
transpositions, τ ◦ σ = τ1 ◦ · · · ◦ τk, so that σ = τ ◦ τ1 ◦ · · · τk. This completes the
induction for the statement about transpositions.

Further, by the induction assumption we have |Ak| = n! for all k = 1, . . . , n+1 and
since Sn+1 = A1 ∪ · · · ∪An+1 is the disjoint union it follows that |Sn+1| = (n+ 1)n! =
(n+ 1)!. 2

The number of transpositions required to build up a certain permutation σ is not
unique. For example, if σ = τ1 ◦ · · · ◦ τk can be written in terms of the k transpositions
τi it is equally well given by a composition of the k + 2 transpositions σ = τ1 ◦
· · · ◦ τk ◦ τ ◦ τ , with τ any transposition. (To see this, recall that τ2 = e for any
transposition τ .) However, while the number of transpositions required to generate a
certain permutation is not unique, it is always either even or odd, as we will now show.

3.2.3 The sign of permutations

It is important to distinguish between even and odd permutations and the formal way
to do this is by introducing the sign of a permutation.
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Definition 3.5 The sign of a permutation σ ∈ Sn is defined as

sgn(σ) =
∏
i>j

σ(i)− σ(j)

i− j
, (3.7)

where the product runs over all i, j ∈ {1, . . . , n} with i > j. A permutation σ is called
even if sgn(σ) = 1 and it is called odd if sgn(σ) = −1.

The formula (3.7) might be somewhat confusing at first but it is, in fact, easy to
understand intuitively. First note that the products of numerators and the products
of denominators in Eq. (3.7) consist of the same factors, up to signs and, therefore the
value of the sign functions is indeed ±1. The number of −1 factors in the product (3.7)
corresponds to the number of pairs (i, j) with i > j for which σ(i) < σ(j), so where
the ’natural’ order of a pair (i, j) is changed by the permutation. If this number is
even the permutation is called even, and odd otherwise. The sign satisfies the following
important property:

Theorem 3.1 sgn(σ ◦ ρ) = sgn(σ) sgn(ρ) for all σ, ρ ∈ Sn.

Proof

sgn(σ ◦ ρ) =
∏
i>j

σ(ρ(j))− σ(ρ(i))

j − i
=
∏
i>j

σ(ρ(j))− σ(ρ(i))

ρ(j)− ρ(i)

∏
i>j

ρ(j)− ρ(i)

j − i

=
∏

ρ(i)>ρ(j)

σ(ρ(j))− σ(ρ(i))

ρ(j)− ρ(i)
sgn(ρ) = sgn(σ) sgn(ρ) .

2

In fact, this proposition says that the sign function sgn : Sn → {±1} ∼= Z2 defines a
group homomorphism. The kernel of this homomorphism, which consists of all even
permutations, forms a sub-group of Sn (see Prop. 3.2), which is called the alternating
group An. Also, since 1 = sgn(e) = sgn(σ ◦ σ−1) = sgn(σ) sgn(σ−1), we conclude that

sgn(σ−1) = sgn(σ)−1 , (3.8)

so a permutation and its inverse always have the same sign. Also note that the sign of
a transposition is always negative, since Eq. (3.7) has precisely one negative factor in
this case.

Suppose a permutation σ ∈ Sn can be written in terms of k transpositions τi as
σ = τ1 ◦ · · · ◦ τk. Then, from Theorem (3.1), the sign of the permutation is given by

sgn(σ) = (−1)k . (3.9)

This means the number of transpositions required to build up the permutation σ must
always be even for an even permutation and odd otherwise, as advertised earlier.
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Problem 3.1 (Even and odd permutations in S3)

Write down the elements of the permutation group S3, and determine the even and odd
permutations and the alternating group A3.

Solution: The permutation group S3 of the set {1, 2, 3} has 3! = 6 elements, which consist
of the identity e, three transpositions τi and two further permutations, σ and σ̃, given by

τ1 =

[
1 2 3
1 3 2

]
, τ2 =

[
1 2 3
3 2 1

]
, τ3 =

[
1 2 3
2 1 3

]
, σ =

[
1 2 3
2 3 1

]
, σ̃ =

[
1 2 3
3 1 2

]
. (3.10)

The three transpositions are of course odd permutations. Comparison with Eq. (3.6) shows
that σ = τ1 ◦ τ2 and σ̃ = τ2 ◦ τ1. Hence, σ and σ̃ are both even permutations and the
alternating group A3 ⊂ S3 of even permutations is A3 = {e, σ, σ̃}. (See also Exercise 3.7.)

Exercises

(†=challenging, ††=difficult, wide-ranging)

3.1 Prove the statements in Prop. 3.1.

3.2 Prove the statement (v) in Prop. 3.2, by
showing that Im(f) and Ker(f) contain
the neutral element, the inverse, and are
closed under group multiplication.

3.3 Order of sub-groups
Consider a finite group G with sub-
group H ⊂ G. We can define a rela-
tion on G by saying that g, g̃ are related
if g−1g̃ ∈ H. Show that this defines
an equivalence relation whose equiva-
lence classes can be written as gH =
{gh |h ∈ H}. Why do all these equiva-
lence classes have the same number of el-
ements? Show that the order of H must
divide the order of G.

3.4 The group of linear functions.
Consider the set of all linear functions
f : R → R that have an inverse. Show
that this set together with the group
multiplication defined as function com-
position forms a group.

3.5 Permutation matrices
(a) Consider the group S2 = {e, τ} of
permutations of the set {1, 2}, as given
in Eq. (3.5). Show that the map f de-
fined by

f(e) =

(
1 0
0 1

)
, f(τ) =

(
0 1
1 0

)
satisfies the group homomorphism prop-
erty (3.4). Also show that f(τ) per-
mutes the standard unit vectors, that is,
f(τ)(e1) = e2 and f(τ)(e2) = e1.
(b)† Attempt an analogous construction
by starting with the permutation group
S3 and using 3× 3 matrices.

3.6 Classification of finite groups.
(a) How many different group struc-
tures modulo group isomorphisms are
out there? This depends on the number
of elements of the group. If the group
G has only one element, then G = {e},
so the group consists of the unit only.
If the group has two elements, say G =
{e, a}, show that the multiplication law
is uniquely determined by the following
table:

· e a

e e a
a a e

Show that this group is isomorphic to
Z2 and to S2.
(b)† Find all possible group structures
for a group G = {e, a, b} with three dif-
ferent elements.
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3.7 Sub-groups of S3
†

Find all proper sub-groups of S3. Show
that, apart from the alternating group
A3, there are three sub-groups of order
two which are all isomorphic to S2.

3.8 Normal sub-groups††

A sub-group H ⊂ G is called normal if
gH = Hg for all g ∈ G.
(a) Show that the quotient G/H :=

G/ ∼ with the equivalence relation ∼
from Exercise 3.3 can be given a group
structure if H is a normal sub-group.
(b) Show that the kernel of a group ho-

momorphism f : G → G̃ is a normal
sub-group of G.
(c) For a group homomorphism f : G→
G̃ show that G/Ker(f) is isomorphic to
Im(f).
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Fields

Fields are a much more complicated algebraic structures than groups. They consist
of a set with two Abelian group structures, one referred to as addition, the other
as multiplication, plus a compatibility requirement, called distributive law, between
them. The well-known rules for calculating with numbers are, in fact, the rules for
calculating in a field. Here we are putting these rules on axiomatic ground and also
prepare for the definition of vector spaces, which relies on the one for fields.

We begin by defining fields — since we have introduced groups already, this is rather
easy — and derive some of the implications from this definition. Examples of fields, in-
cluding the important cases of rational numbers Q and real numbers R, are introduced
next. We devote a bit more space to the field C of complex numbers, which is perhaps
less familiar to the reader. Finally, we present a few basic facts about polynomials,
which will be required for the discussion of eigenvalues and eigenvectors in Part VI.

4.1 Fields and their properties

Summary 4.1 Fields are algebraic structures with two operations, referred to as
addition and multiplication, which both form an Abelian group and are connected by
a distributive law. An order on a field provides a notion of ’less’ and ’greater’ which
is consistent with addition and multiplication.

4.1.1 Definition

Definition 4.1 (Field) A field (F,+, ·) is a non-empty set with two operations

+ : F× F → F
(a, b) 7→ a+ b

· : F× F → F
(a, b) 7→ ab ,

called ’addition’ and ’multiplication’, which satisfy the following for all a, b, c ∈ F.

(F1) (F,+) is an Abelian group with neutral element 0 and inverse −a.
(F2) (F \ {0}, ·) is an Abelian group with neutral element 1 and inverse a−1.
(F3) 1 6= 0.
(F4) The distributive law a(b+ c) = ab+ ac holds.

In short, a field combines two Abelian groups, which are linked by a distributive law.
All the ’standard’ rules for calculating which the reader is probably familiar with can
be derived from the above axioms.
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4.1.2 Some conclusions from the field axioms

Let us consider a few examples of simple conclusions from the field axioms.

Claim 0 a = 0 for all a ∈ F.

Proof 0 a = (0 + 0)a
(F4)
= 0a+ 0a and adding −(0a) to both sides leads to the claim.

This property implies that we cannot find any element in the field whose product with
0 gives 1. Hence, 0 has no multiplicative inverse and this explains why 0 has been
removed in the definition of the multiplicative group. It is also the explanation for
axiom (F3). If 1 = 0, then it follows that a = 1 a = 0 a = 0, so that the field only
consists of a single element, 0 = 1. The purpose of axiom (F3) is to exclude this trivial
possibility.

Claim If a b = 0 then a = 0 or b = 0.

Proof If a = 0 we are done. If a 6= 0 we can multiply ab = 0 with the inverse a−1 to
obtain b = a−10 = 0, where the last step follows from the previous claim.

This statement provides the basis for saying that a vanishing product implies the
vanishing of (at least) one of its factors. It also implies that two non-zero elements in
a field can never multiply to zero.

Claim (−a)b = −(ab) for all a, b ∈ F.

Proof 0 = 0 b = (a+ (−a))b
(F4)
= ab+ (−a)b ⇒ (−a)b = −(ab)

Also note that the sum a+ (−b) is often written as a− b, so subtraction is defined in
terms of addition and the additive inverse. In the same spirit, division is defined by
a÷b := ab−1, for b 6= 0. Many more simple and well-known relations of this kind follow
from the field axioms (see Exercises 4.1 and 4.2) and they will be taken for granted
from now on.

It is often convenient to write multiple sums and products in terms of the more concise
summation and product notation.

a1 + a2 + · · ·+ an =

n∑
i=1

ai , a1 a2 · · · an =

n∏
i=1

ai . (4.1)

Using the summation notation, the distributive law can be generalized to (see Exer-
cise 4.3): (∑

i

ai

)∑
j

bj

 =
∑
i,j

aibj . (4.2)

4.1.3 Order on fields

It is often necessary to have a notion of ’less’ or ’greater’ on a field and this is defined
by an order.

Definition 4.2 (Order on fields) A field (F,+, ·) is called ordered with respect to an
order > if
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(O1) For all a ∈ F precisely one of a > 0, a = 0 and −a > 0 is true.
(O2) a > 0 and b > 0 implies a+ b > 0.
(O3) a > 0 and b > 0 implies ab > 0.

We say that a > b, read as ’ a is greater than b’, if a − b > 0. This is also written as
b < a, which reads ’ b is less than a’. Further a ≥ b (b ≤ a) means that a > b or a = b
and is read as ’ a greater or equal b’ (’ b less or equal a’).

Perhaps surprisingly, not all fields admit an order. For example, the complex numbers
cannot be ordered, as we will see. For fields with an order (such as the rational and
real numbers), all the ’usual’ rules for working with inequalities can be derived from
the above axioms (see Exercise 4.4) and we will take these rules for granted from now
on. Here is a simple example of a conclusion from the order axioms.

Claim For a 6= 0 we have a2 > 0.

Proof From Exercise 4.1 we know that (−a)2 = a2. Since a 6= 0, (O1) implies that
either a > 0 or −a > 0 so that the statement follows from (O3).

An immediate consequence is that 1 = 12 > 0

The ordering axiom (O1) in Def. 4.2 facilitates introduction of the absolute value or
modulus |a| of a number a ∈ F by

|a| :=
{

a if a > 0 or a = 0
−a if −a > 0

. (4.3)

An order on a field F also allows us to define intervals, for example

[a, b] := {x ∈ F | a ≤ x ≤ b} , [a, b) := {x ∈ F | a ≤ x < b} .

Note that a square bracket indicates that the boundary is part of the interval, while
a round bracket indicates the boundary is excluded.

4.2 Examples of fields

Summary 4.2 Important examples of ordered fields are the rational numbers Q and
the real numbers R. There are also fields with a finite number of elements but they
cannot be ordered.

Example 4.1 (Rational numbers)

We can introduce the rational numbers as a quotient Q = Z × Z6=0/ ∼, where the
equivalence relation ∼ is defined by (p1, q1) ∼ (p2, q2) if p1q2 = p2q1. Intuitively, if
p1q2 = p2q1 then p1/q1 = p2/q2 so this equivalence relation identifies two pairs (p1, q1)
and (p2, q2) if they represent the same fraction. Correspondingly, an equivalence class
[(p, q)] under this relation is also written as a fraction p/q, where (p, q) ∈ [(p, q)] is any
pair of integers in the class. Addition and multiplication on Q are defined by

[(p1, q1)] + [(p2, q2)] = [(p1q2 +p2q1, q1q2)], [(p1, q1)] [(p2, q2)] = [(p1p2, q1q2)] , (4.4)

where the components are added and multiplied according to the rules in Z. It is a
straightforward, although somewhat tedious exercise (see Exercise 4.5) to show that
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these definitions satisfy all the field axioms in Def. 4.1. The neutral element of addition
is [(0, 1)] and the additive inverse of [(p, q)] is [(−p, q)]. For multiplication the neutral
element is [(1, 1)] and the inverse of [(p, q)] is [(q, p)].

Although Eqs. (4.4) might seem unusual at first, they do formalize the well-known
rules for how to add and multiply fractions. The first Eq. (4.4) instructs us to bring
the two fractions to the same denominator (q1q2) and then add the numerators. The
second Eq. (4.4) simply says that fractions are multiplied by multiplying numerators
and denominators.

To define an order on Q, we note that we would call a fraction positive if both
numerator and denominator have the same sign. This motivates the definition

[(p, q)] > 0 ⇔ pq ∈ N 6=0 , (4.5)

which can indeed be shown to satisfy the order axioms in Def. 4.2 (see Exercise 4.6).
2

Example 4.2 (Real numbers)

The real numbers R can be constructed as limits of sequences of rational numbers. This
is really a topic in analysis and will not be discussed explicitly here (see Exercise 4.18).
Intuitively, R is obtained from Q by ’filling in the gaps’ with irrational numbers. This
construction implies that all real numbers can be approximated by rational numbers
to arbitrary accuracy. This allows extending the definitions (4.4) of addition and mul-
tiplication on Q to R. It can then be shown that (R,+, ·) is a field. In a similar way,
the order (4.5) can be extended to R. In the following, we will take this field and its
order structure for granted (see Exercise 4.18). 2

Example 4.3 (Finite fields)

There exist ’unusual’ fields with a finite number of elements which satisfy all the re-
quirements in Def. 4.1. Consider the sets Fp = Zp = {0, 1, . . . , p−1} with (prospective)
addition and multiplication defined by:

a+ b := (a+ b) mod p , a · b := (ab) mod p . (4.6)

We already know from Example 3.4 that (Fp,+) is an Abelian group. What about
multiplication? Consider F4 where 2 · 2 = (2 2) mod 4 = 0. We know that in a field
two non-zero elements can never multiply to zero, so F4 with the above addition and
multiplication cannot be a field. We can avoid this problem by demanding that p be
a prime number and it turns out that (Fp,+, ·) for p prime is indeed a field.

The fields Fp do not have an order. In an ordered field we always have 1 > 0 and,
hence, p − 1 = 1 + 1 + · · · 1 > 0. But (p − 1) + 1 = 0 in contradiction to axiom (O2)
in Def. 4.2.

The simplest example of such a finite field is (F2 = {0, 1},+, ·). Since every field
must contain the neutral elements 0 and 1, this is indeed the smallest field. From the
definitions (4.6) its addition and multiplication tables are:
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+ 0 1

0 0 1
1 1 0

· 0 1

0 0 0
1 0 1

Note that, taking into account the mod 2 operation, in this field we have 1+1 = 0. Since
the elements of F2 can be viewed as the two states of a bit, this field has important
applications in computer science and in coding theory. (See also Exercise 4.7 and
Application 14.1.) 2

4.3 The complex numbers

Summary 4.3 Complex numbers C are of the form z = a+ ib, where a, b ∈ R and i
is the imaginary unit. As a set, they can be identified with the two-dimensional coor-
dinate vectors R2. The complex numbers form a field with component-wise addition
and complex multiplication defined by i2 = −1. Complex conjugation z = a + ib 7→
z̄ = a − ib is a field automorphism which is used to write down the multiplicative
inverse and to define the length of a complex number. Component vectors Rn with
n > 2 and component-wise addition cannot be given a field structure. This motivates
the introduction of vector spaces.

In Section 3.1 we have introduced the direct product of groups, whereby the Cartesian
product of two groups can be given a group structure by component-wise multiplica-
tion. Is there a similar construction for fields? For concreteness, we will address this
question for the Cartesian product R2.

4.3.1 Construction of complex numbers

We have seen in Eq. (1.15) that elements of R2 can be written in terms of the standard
unit vectors e1 and e2, so that a vector with components a and b can be written as
ae1 + be2. Alternatively, we can write such a pair of real numbers as a formal sum
a+ib, where, for the time being, i is merely a symbol, called the imaginary unit. These
formal sums form the set of complex numbers

C := {a+ ib | a, b ∈ R} , (4.7)

which are identified with vectors in R2 via the bijective map a+ ib 7→ a e1 + b e2. For
now, this is just a different way of writing R2. But can C be turned into a field? From
the construction of the direct product group, we know that C can be turned into an
Abelian group (C,+) by component-wise addition

(a+ ib) + (c+ id) := (a+ c) + i(b+ d) , (4.8)

with neutral element 0 and the inverse of a+ ib given by −a− ib.

At first it seems we can follow the same idea for multiplication, but there is a problem.
For the multiplicative group (R \ {0}, ·) of a field, we have to remove 0 (see Def. 4.1).
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Hence, the direct product group construction leads to a group structure on (R\{0})2,
with component-wise multiplication. However, elements of the form (a, 0) and (0, b)
are not contained in (R \ {0})2, so proceeding in this way does not tell us how we
should multiply such elements. Worse, extending component-wise multiplication to
such elements gives (a, 0)(0, b) = (0, 0), so two non-zero numbers multiply to zero, a
feature which is excluded for a field. The direct product construction is not the right
way forward for the multiplicative group.

The key to defining multiplication on C is to impose the relation i2 = −1. Then, the
distributive law enforces

(a+ ib)(c+ id) = ac− bd+ i(ad+ bc) . (4.9)

The neutral element for this multiplication is 1 and it is easy to check that an inverse
is given by

(a+ ib)−1 =
a− ib
a2 + b2

. (4.10)

The remaining axioms in Def. 4.1 can be checked as well (see Exercise 4.8). We conclude
that (C,+, ·) with addition and multiplication defined as in Eqs. (4.8) and (4.9) is a
field.

We recall that, in an ordered field, we have a2 > 0 for all a 6= 0. Since, i2 = −1, we
see that (C,+, ·) cannot be ordered.

C

|z|

|z|

z

z̄

<(z)

=(z)

Fig. 4.1 The complex plane C, a complex number z, its complex conjugate z̄, its real- and

imaginary parts <(z), =(z), and its length |z|.

4.3.2 Complex conjugation

For a complex number z = a+ib ∈ C, a is called the real part of z, written as a = <(z),
while b is called the imaginary part and is written as b = =(z). The complex conjugate,
z̄, and the length or complex modulus, |z|, are defined by (see Fig. 4.1)

z̄ = <(z)− i=(z) . |z| =
√
zz̄ =

√
<(z)2 + =(z)2 . (4.11)

One way to motivate these definitions is from the formula (4.10) for the inverse, where
the complex conjugate and the length (square) appear in the numerator and denomi-
nator, respectively. In fact, the multiplicative inverse (4.10) can be written as
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z−1 =
z̄

|z|2
. (4.12)

Complex conjugation satisfies the following important properties.

Proposition 4.1 For any two numbers z, w ∈ C we have

z + w = z̄ + w̄ , zw = z̄w̄ . ¯̄z = z . (4.13)

Proof Write z = a+ ib and w = c+ id.

z + w = (a+ c) + i(b+ d) = (a+ c)− i(b+ b) = a− ib+ c− id = z̄ + w̄

zw = (ac− bd) + i(ad+ bc) = (ac− bd)− i(ad+ bc) = (a− ib)(c− id) = z̄w̄

¯̄z = a− ib = a+ ib = z .

2

The content of the first two equations (4.13) can be stated by saying that complex
conjugation is a field homomorphism (see Exercise 4.11). In fact, complex conjugation
is bijective, so it is a field automorphism. It turns out that the complex numbers only
have two (continuous) field automorphisms, the identity and complex conjugation (see
Exercise 4.11), and this fact can be viewed as a motivation for introducing complex
conjugation.

Two immediate conclusions (Exercise 4.12) from the above proposition are

|zw| = |z| |w| , |z| = |z̄| . (4.14)

In other words, lengths of complex numbers multiply and a complex number and its
conjugate have the same length.

Problem 4.1 (Calculating with complex numbers)

For the complex number z = 2 + 4i, work out <(z), =(z), |z|2 and z−1. With w = 3 − 5i,
compute z + w and zw and express each in the standard form a + ib. Finally, write ζ =
(1 + i)/(2− i) in standard form a+ ib and, hence, find its real and imaginary parts.

Solution: The real and imaginary parts, length, and inverse of z = 2 + 4i are given by

<(z) = 2 , =(z) = 4 , |z|2 = 22 + 42 = 20 , z−1 =
z̄

|z|2 =
2− 4i

20
=

1

10
− i

5
.

For its sum and product with w = 3− 5i, we have

z + w = (2 + 4i) + (3− 5i) = 5− i , zw = (2 + 4i)(3− 5i) = 26 + 2i .

Finally, to find the standard form of ζ = (1+i)/(2−i), all we have to do is multiply numerator
and denominator by the complex conjugate, 2 + i, of the denominator. We get

ζ =
1 + i

2− i =
(1 + i)(2 + i)

(2− i)(2 + i)
=

1 + 3i

5
=

1

5
+

3

5
i ,

so that <(ζ) = 1/5 and =(ζ) = 3/5. (See also Exercise 4.13.)
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Problem 4.2 (Polar decomposition for complex numbers)

Show that every non-zero complex number z ∈ C can be uniquely written as z = rζ, where
r is real positive and ζ ∈ C has length one.

Solution: We can certainly write any complex number in this form by setting r = |z| and
ζ = z/|z|. Conversely, if z = rζ with r > 0 and |ζ| = 1 it follows that |z|2 = r2|ζ|2 = r2.
Hence, r = |z| is the unique solution for r and this uniquely determines ζ = z/r = z/|z|.

If we take some properties of trigonometric functions and the exponential function for granted
(proving these is really a task in analysis) we know that every complex number ζ with |ζ| = 1
can be written as ζ = cos(θ) + i sin(θ) = eiθ for a unique θ ∈ [0, 2π). Hence, the polar
decomposition of a complex number can also be cast into the form

z = reiθ , (4.15)

where r = |z| ≥ 0 is the length of z and θ = arg(z) ∈ [0, 2π) is called the argument of z.

4.3.3 Beyond R2

Given that R2 can be turned into a field, it is natural to ask if the same can be
accomplished for Rn, when n > 2. We can certainly turn Rn into an Abelian group by
component-wise addition. However, having made this choice, it is then impossible to
define a generalization of the multiplication (4.9) which satisfies all the field axioms.

This break-down of the field structure for Rn with n > 2 is one of the main motivations
for introducing vector spaces. They can be viewed as the ’next best thing’ when the
field structure is not available. Vector spaces will be defined in the next section.

4.4 Basics of polynomials

Summary 4.4 Polynomial division is an important algorithm for calculating with
polynomials. If a polynomial p has a zero at x = a, polynomial division can be used
to show that p(x) = (x − a)s(x). A zero a of p is said to have multiplicity m if
p(x) = (x− a)ms(x) with s(a) 6= 0. A polynomial fully factorizes if the multiplicities
of all zeros add up to the degree of the polynomial. Polynomials over the real numbers
may or may not fully factorize, depending on the example. The fundamental theorem
of algebra states that every non-constant polynomial over C has a zero and this implies
that all polynomials over C fully factorize.

4.4.1 Basics and polynomial division

Understanding the structure of polynomials is one of the tasks of algebra (see, for
example, Lang 2000), and lies outside the realm of linear algebra. However, we will
see in Part VI that the characteristic polynomial of a linear map is a central object in
the theory of eigenvalues and eigenvectors. For this reason we collect a few basic facts
on polynomials as required for our discussion later on.
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By a polynomial over a field F, we mean a function p : F→ F of the form

p(x) = cnx
n + cn−1x

n−1 + · · ·+ c1x+ c0 , (4.16)

where ci ∈ F. The set of all such polynomials is also denoted by P(F). If cn 6= 0, then
we say that p has degree deg(p) = n and if cn = 1 then p is called a monic polynomial.
A monomial is a special polynomial of the form xk. The polynomial p is called reducible
if it can be written as a product p = q r of two polynomials p, r ∈ P(F) with positive
degree and is otherwise called irreducible. Whether a polynomial is reducible depends
on the field F. For example, p(x) = x2 + 1 is irreducible as a polynomial over R but it
is reducible over C since p(x) = (x+ i)(x− i). An important algorithm for calculation
with polynomials is polynomial division.

Theorem 4.1 (Polynomial division) Let p, q be polynomials over the field F. Then,
there exist unique polynomials r, s with deg(r) < deg(q) such that p = sq + r.

Proof This follows from the standard algorithm for polynomial division as, for ex-
ample, explained in Lang 2000; Lang 1998. 2

4.4.2 Zeros and multiplicity

We call a ∈ F a zero of the polynomial p ∈ P(F) if p(a) = 0. In this case, the polynomial
division theorem with q(x) = x− a implies that

p(x) = (x− a)s(x) + r(x) . (4.17)

Since deg(r) < deg(q) = 1, we conclude that r must be a degree 0 polynomial, that is,
a constant. Inserting x = 0 into the equation (4.17) then immediately leads to r = 0,
so that

p(x) = (x− a)s(x) . (4.18)

Here, s must be a polynomial of degree n − 1 (or else p would not be of degree n).
If s(a) 6= 0 then a is called a simple zero of p, otherwise, if s(a) = 0, we can split a
further factor x− a off from s and repeat this process until the remaining polynomial
is non-zero at x = a. The maximal number of factor x − a obtained in this way is
called the multiplicity of the zero a and it is formally defined as follows:

Definition 4.3 (Multiplicity of a polynomial zero) A polynomial p is said to have a
zero with multiplicity m at x = a if p(x) = (x− a)ms(x), where s is a polynomial with
s(a) 6= 0.

4.4.3 Factorization

Suppose, for a degree n polynomial p, we have a complete list of pairwise different
zeros a1, . . . , ak with multiplicities m1, . . . ,mk. By iterating the above arguments, it
is then easy to see that p can be written as

p(x) = (x− a1)m1 · · · (x− ak)mks(x) , (4.19)

where deg(s) = n−
∑k
i=1mi. We say that p fully factorizes if s is a constant polynomial

or, equivalently, if
∑k
i=1mi = n, that is, if the multiplicities of all pairwise different
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zeros add up to the degree. A fully factorizing degree n polynomials p can, hence, be
written as

p(x) = c(x− a1)m1 · · · (x− ak)mk where

k∑
i=1

mi = n , (4.20)

and c ∈ F. This is a very convenient form for p but whether it can always be achieved
depends on the choice of field F.

Over R, it is easy to write down polynomials which have no (real) zeros at all,
for example p(x) = x2 + 1. There are also polynomials over R with zeros which still
do not fully factorize. For example, p(x) = x3 − x2 + x − 1 has a zero at x = 1
and can be written as p(x) = (x − 1)(x2 + 1) which shows that there are no further
zeros over R. Hence, it does not fully factorize. On the other hand, the polynomial
p(x) = x3 − 3x − 2 has zeros at 2 and −1 with multiplicities 1 and 2, respectively
and, hence, fully factorizes as p(x) = (x − 2)(x + 1)2. The main message is that for
polynomials over R the situation very much depends on the specific example.

Fortunately, things are much clearer for polynomials over C. The main statement is
the famous fundamental theorem of algebra, originally due to Gauß.

Theorem 4.2 Every non-constant polynomial over C has a zero.

Proof The most straightforward proofs can be found in the context of complex anal-
ysis (see, for example, Lang 2013). 2

This means every polynomial over C can be written in the form (4.18) and if the
polynomial s in this equation is non-constant we can apply the theorem again and
split off another factor. Iterating this shows that all polynomials over C fully factorize.

An interesting special case is a polynomial p over C, as in Eq. (4.16), with real
coefficients ci. If a is a zero of such a polynomial then complex conjugating and using
Prop. 4.1 shows that p(ā) = 0. The conclusion is that for such polynomials with real
coefficients zeros are either real or they come in complex conjugate pairs.

Exercises

(†=challenging, ††=difficult, wide-ranging)

4.1 Some conclusions from field axioms
Let (F,+.·) be a field.
(a) Show that −a = (−1)a for all
a ∈ F, where −1 is the additive inverse
of 1.
(b) Show that (−a)(−b) = ab for all
a, b ∈ F.

4.2 Fractions
For a field (F,+.·), a ∈ F and b ∈ F\{0}
define a fraction by

a

b
:= a÷ b = ab−1 .

Show that the usual rules for adding
and multiplying fractions follow from
the field axioms.

4.3 For a field (F,+.·) show that a(b1+b2+
· · ·+bn) = ab1+ab2+· · · abn, for exam-
ple by induction in n. Use this result to
prove Eq. (4.2).

4.4 For a field (F,+, ·) with an order, show
that a > 0 implies a−1 > 0 for all
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a ∈ F. Also show that a > b and c > 0
implies ac > bc.

4.5 Show that (Q,+, ·) with addition and
multiplication defined as in Eq. (4.4) is
a field.

4.6 Show that Eq. (4.5) defines an ordering
on the field (Q,+, ·).

4.7 The field Fp
Find the addition and multiplication
table of the field (F3,+, ·). For F2 show
that (a+ b)2 = a2 + b2 and for F3 show
that (a+ b)3 = a3 + b3. Generalize this
and show that, for the field Fp, we have
(a + b)p = ap + bp. (The equation you
always, secretly, wanted to be true.)

4.8 Show that C with addition (4.8) and
multiplication (4.9) forms a field.

4.9 In C, show that the equation z2 = −1
has precisely the solutions z = ±i.

4.10 Find the solutions z ∈ C to the equa-
tion zn = 1, where n = 1, 2, . . .. (Hint:
Use the polar decomposition of com-
plex numbers.)

4.11 Field automorphisms†

A bijection f : F → F on a field
(F,+, ·) is called a field automorphism
if f(a + b) = f(a) + f(b) and f(ab) =
f(a)f(b) for all a, b ∈ F.
(a) Show that f(0) = 0, f(1) = 1,
f(−a) = −f(a) and f(a−1) = f(a)−1

for all a ∈ F.
(b) Show that the only field automor-
phism on the rational numbers Q is the
identity. (This means the identity is the
only continuous field automorphism on
R.)
(c) Show that the only (continuous)
field automorphisms on C are the iden-
tity and complex conjugation.

4.12 Derive the properties (4.14) of the
length of a complex number from
Prop. 4.1.

4.13 Calculating with complex numbers
Find the complex conjugate, the length
and the inverse of the complex num-
bers 1+i, 2−3i, −2−2i and 4−3i. Con-
vert the complex number 1/i, 2/(1 + i)
and (1− i)/(1 + i) into standard form
a+ ib.

4.14 Complex linear maps
Show that the map f : C → C defined

by f(z) = wz (for a fixed w ∈ C) is
linear, that is, it satisfies Eqs. (1.8) but
with complex instead of real numbers.
Write z = x1 + ix2 and find the 2 × 2
matrix which describes the action of f
on the vector with components x1 and
x2.

4.15 The group U(1)
Show that the set U(1) = {z ∈ C | |z| =
1} of complex numbers with length one
forms a group, with complex multipli-
cation as the group multiplication.

4.16 Polynomial zeros
Let p ∈ P(F) be a fully factorizing de-
gree n polynomial

p(x) = cnx
n+cn−1x

n−1+· · ·+c1x+c0 ,

whose zeros ai have multiplicities mi,
where i = 1, . . . , k. Derive formulae for
the sum

∑k
i=1 miai and the product∏k

i=1 a
mi
i of the zeros in terms of the

coefficients ci of p.

4.17 Sign of polynomial zeros
Let p(x) = xn+cn−1x

n−1+· · ·+c1x+c0
be a fully factorizing polynomial over
R. Show that all zeros of p are negative
iff all coefficients ci are positive. (Hint:
Find formulae for the coefficients ci in
terms of the zeros ai.)

4.18 Construction of the real numbers††

If you do not know already, find out
what a Cauchy series is and consider
Cauchy series in Q.
(a) Define a relation on Cauchy series
in Q by which two series (ai) and (bi)
are related if (ai − bi) is a Cauchy se-
ries. Show that this is an equivalence
relation.
(b) Use the equivalence relation from
(a) to define R as the set of equivalence
classes of Cauchy series.
(c) Show that R defined in this way
forms a field.

4.19 Arithmetics in Fp††
For the finite fields Fp from Exam-
ple 4.3, write code in your favourite
programming language which imple-
ments the addition and multiplication
in Eq. (4.6). Keep p fixed but arbitrary.



Part II

Vector spaces

We are now ready to begin the systematic build-up of linear algebra, by introducing
vector spaces, the arena within which linear algebra takes place. For the beginning
student, the development of linear algebra often represents the first encounter with
modern mathematics and the formality of the approach can come as a shock.

In order to ease into the subject, we begin with coordinate vectors in Fn, that is,
vectors which contain an arbitrary number, n, of elements of a field F. They generalize
the coordinate vectors with two real entries we have already briefly encountered in the
introduction. We will introduce addition and scalar multiplication of such coordinate
vectors, discuss their structural properties and some of the practical aspects of calcu-
lation.

Motivated by the properties of coordinate vectors, we present the general definition
of vector spaces in Chapter 6, along with many examples to illustrate its scope. Of
course these include coordinate vectors, but also more surprising examples, such as
spaces made up from certain classes of functions. Many of these seemingly exotic vec-
tor spaces have scientific applications. Following the standard route, we also define the
sub-structure for vector spaces, the vector subspaces, and the associated morphisms
which are called linear maps.

A central notion in linear algebra is that of linear independence. It leads up to the
ideas of basis and dimension of a vector space which we discuss in Chapter 7. A basis
of a vector space is a list of linearly independent vectors which ’spans’ the entire vector
space. Given a basis, every vector can be represented in terms of coordinates. We will
also see that, for a given vector space, the number of vectors in a basis is unique. This
number is called the dimension of the vector space. In scientific applications, selecting
a basis is sometimes referred to as a choice of ’coordinate system’ and it is frequently
one of the first steps towards setting up a mathematical model. The notion of basis
is, therefore, crucial for the theoretical development of linear algebra and for many of
its applications.
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Coordinate vectors

In this chapter we introduce coordinate vectors with an arbitrary number of compo-
nents from a general field F, along with their addition and scalar multiplication. These
are mathematically well-motivated generalizations of the two-coordinate vectors dis-
cussed in the introduction and they provide us with the intuition for how to define
general vector spaces. In Chapter 7 we will see that such general vector spaces can
always be described by coordinate vectors once a basis has been chosen.

But do we really need to care about vectors with an arbitrary number of components in
an arbitrary field when it comes to scientific applications? After all, such applications
are often tied to physical space whose description requires only three real components.
The answer is an emphatic ’yes’ — the scope of linear algebra applications is much
wider than it might initially appear.

For example, describing the motion of n point masses in space requires vectors with
3n components. In relativity, space and time are combined and described by vectors
with four components. In Application 1.1 we have seen that internet search requires
vectors with a large number of real components. Also, the choice of field is not al-
ways confined to the real numbers. Quantum mechanics requires vectors with complex
components (see Applications 26.1, 26.2, 26.4). Even vectors based on the seemingly
exotic finite fields from Example 4.3 have applications, for example, in coding theory
(see Application 14.1).

5.1 Basic definitions

Summary 5.1 Coordinate vectors with n components are elements of Fn, where F
is a field. The two basic operations, vector addition and scalar multiplication, for
such vectors are defined component-wise. We list the rules for calculating with these
operations.

5.1.1 Definition of coordinate vectors

In Section 1.2.3 we have already introduced coordinate vectors with two real com-
ponents as well as their addition and scalar multiplication. These definitions can be
readily generalized to vectors with n components, taken from a general field F. The
reader still uncomfortable with this level of abstraction may well replace F by the real
numbers R (or the complex numbers C) throughout.

In mathematical parlance, coordinate vectors are elements of the Cartesian product
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Fn, that is, they are n-tuples of numbers from the field F. They are denoted by low-
ercase bold-face letters and explicitly written as column vectors, for example:

v =

 v1

...
vn

 , w =

w1

...
wn

 . (5.1)

Here v1, . . . , vn ∈ F and w1, . . . , wn ∈ F are called the components of v and w, respec-
tively. We will often use index notation to refer to a vector and write the components
of a vector v collectively as vi, where the index i takes the values i = 1, . . . , n. Ele-
ments of the underlying field F are also referred to as scalars.

We adhere to the common convention of writing coordinate vectors as columns but
note that they could also be written as rows. In fact, it is useful to introduce the op-
eration of transposition of a vector which converts a column vector into a row vector
and vice versa. It is denoted by a superscript T attached to a vector so that, for a
column vector v, the vector vT is a row vector with the same components. Using this
notation, we will occasionally write column vectors v in Eq. (5.1) as v = (v1, . . . , vn)T ,
in order to save space.

5.1.2 Addition and scalar multiplication

In Eq. (1.12) we have defined component-wise addition and scalar multiplication of
vector in R2 and these definitions straightforwardly generalize to Fn. Specifically, we
define vector addition + : (Fn,Fn) → Fn and scalar multiplication (F,Fn) → Fn for
the vectors in Eq. (5.1) and a scalar α ∈ F by

(v,w) 7→ v + w :=

 v1 + w1

...
vn + wn

 , (α,v) 7→ αv :=

 αv1

...
αvn

 . (5.2)

Addition and multiplication of the components are of course those defined in the
field F. The intuitive interpretation of these operations has already been indicated in
Fig. 1.1.

It is sometimes useful and efficient to express the above definitions in index nota-
tion, where they take the form

(v + w)i := vi + wi , (αv)i := αvi . (5.3)

Here, the subscript i on the left-hand side indicates the ith component of the vector
enclosed in brackets.

Problem 5.1 Vector addition and scalar multiplication in R3

Work out the vector sum of the R3 vectors v = (1,−2, 5)T and w = (−4, 1,−3)T and the
scalar multiple of v by α = 3.
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Solution: The sum and the scalar multiple are given by

v + w =

 1
−2

5

+

−4
1
−3

 =

−3
−1

2

 , αv = 3

 1
−2

5

 =

 3
−6
15

 . (5.4)

The coordinate vector with all components equal to 0 (where 0 is the neutral element
of addition in the field F) is called the zero vector and it is denoted by the bold-face
symbol

0 :=

 0
...
0

 , (5.5)

in order to distinguish it from the number 0.

5.1.3 Calculating with coordinate vectors

In Section 3.1 we have explained how the Cartesian product Gn of a group G can be
made into a group by component-wise multiplication. If we apply this construction to
the Abelian group (F,+) of addition in the field F, it leads to a group structure on Fn
whose ’multiplication’ is evidently given by vector addition. Hence, we already know
that (Fn,+) forms an Abelian group. Its neutral element is the zero vector 0, since
v + 0 = v for all v ∈ Fn. Further, from v + (−v) = 0 it follows that −v is the inverse
of a vector v ∈ Fn. There are a few further rules for how to calculate with coordinate
vectors, related to scalar multiplication, which are listed in the following proposition.

Proposition 5.1 For any coordinate vectors v,w ∈ Fn and any scalars α, β ∈ F
vector addition and scalar multiplication on Fn satisfy the following rules:

(V0) (F,+) is an Abelian group with (Abelian group)
neutral element 0 and inverse −v.

(V1) α(v + w) = αv + αw (distributivity I)
(V2) (α+ β)v = αv + βv (distributivity II)
(V3) (αβ)v = α(βv) (multiplicative associativity)
(V4) 1v = v (multiplicative neutral element)

Proof We already know from the general construction of direct product groups in
Section 3.1 that (Fn,+) is an Abelian group, so (V0) holds. The other rules fol-
low directly by combining the axioms in Def. 4.1 for calculating in a field with the
component-wise definition (5.2) of vector addition and scalar multiplication. For ex-
ample, (V2) can be shown by

(α+β)v
(5.2)
=

 (α+ β)v1

...
(α+ β)vn

 =

 αv1 + βv1

...
αvn + βvn

 (5.2)
=

 αv1

...
αvn

+

 βv1

...
βvn

 (5.2)
= αv +βv .

Using index notation and Eqs. (5.3) the same proof can also be written, somewhat
more concisely, as
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((α+ β)v)i
(5.3)
= (α+ β)vi = αvi + βvi

(5.3)
= (αv + βv)i .

As a further example, the proof of (V3), using index notation, reads

((αβ)v)i
(5.3)
= (αβ)vi = α(βvi)

(5.3)
= α(βv)i

(5.3)
= (α(βv))i .

The proofs of the remaining rules are analogous and are left as Exercise 5.1. 2

The above rules for calculating with coordinate vectors motivate the general definition
of vector spaces which will be introduced in the next chapter.

5.2 Standard unit vectors

Summary 5.2 The existence of two special elements in a field F, the neutral ele-
ments of addition and multiplication, facilitates the definition of the standard unit
vectors ei, where i = 1, . . . , n, in Fn. All vectors in Fn can be written in terms of
standard unit vectors. Standard unit vectors can also be used to carry out vector
addition and scalar multiplication.

5.2.1 Definition of standard unit vectors

Recall that a field has two special elements, the neutral elements 0 and 1 of addition
and multiplication, respectively. This fact allows us to define a special set of vectors in
Fn by using only these two neutral elements as components. These vectors are called
the standard unit vectors, denoted ei ∈ Fn, where i = 1, . . . , n, and they are defined
as

ei :=


0
...
0
1
0
...
0

 ← ith position . (5.6)

Note that these are n vectors and the ith component of ei is equal to 1 while all other
components are equal to 0. Every vector v ∈ Fn with components vi can be written
in terms of the standard unit vectors as

v = v1e1 + · · ·+ vnen =

n∑
i=1

viei . (5.7)

Problem 5.2 Vectors in terms of standard unit vectors

Write the vectors (−3, 4)T , (−7, 0, 3)T and (1, 2,−1, 3)T in terms of standard unit vectors.
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Solution:

(
−3

4

)
= −3e1 + 4e2 ,

−7
0
3

 = −7e1 + 3e3 ,

 1
2
−1

3

 = e1 + 2e2 − e3 + 3e4 .

5.2.2 Calculating with standard unit vectors

Vector additions and scalar multiplications can also be carried out in terms of standard
unit vectors. With two vectors v =

∑n
i=1 viei and w =

∑n
i=1 wiei, we have

v + w =

n∑
i=1

viei +

n∑
i=1

wiei =

n∑
i=1

(vi + wi)ei , αv = α

n∑
i=1

viei =

n∑
i=1

(αvi)ei .

To write these expressions in their final form, we have used the general rules from
Prop. 5.1, notably associativity and commutativity from (V0), as well as (V2) and
(V3).

In scientific applications, the case n = 3 is important for the description of physical
space and in this context the three standard unit vectors are sometime denoted by i,
j, and k, so that

i := e1 =

1
0
0

 , j := e2 =

 0
1
0

 , k := e3 =

 0
0
1

 . (5.8)

Problem 5.3 Calculating in terms of standard unit vectors

Add the vectors v = (1,−2, 5)T = i − 2j + 5k, w = (−4, 1,−3)T = −4i + j − 3k and work
out the scalar multiple of v with α = 3 in standard unit vector notation.

Solution:

v + w = (i− 2j + 5k) + (−4i + j− 3k) = −3i− j + 2k .

αv = 3(i− 2j + 5k) = 3i− 6j + 15k .

See Exercise 5.3 for further examples.
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Exercises

(†=challenging)

5.1 Rules for coordinate vectors
Proof (V1), (V3), and (V4) from
Prop. 5.1 by using the definition (5.2)
of vector addition and scalar multipli-
cation, together with the axioms for a
field. Also, carry out the same proofs
using the definitions (5.3) and index no-
tation.

5.2 Standard unit vectors
Write the R4 vectors v = (1,−2, 3,−5)T

and w = (0,−1, 1,−3)T in terms of
standard unit vectors.

5.3 Calculating with standard unit vectors
Carry out all mutual sums of the vec-
tors v = 5i + 2j − 3k, u = i − 4j − k

and w = −2i+7j in R3. Scalar multiply
these vectors with α = −3.

5.4 Complex vectors
Write the C3 vectors v = (1 + i, 5i, 3)T

and w = (2−3i, 1−i, 2i)T in terms if the
standard unit vectors i, j, and k. Work
out the sum v+w and the scalar multi-
plications αv and αw, where α = 2− i.

5.5 Vector space Fn2 †
Consider the vector space Fn2 , based on
the finite field F2 introduced in Exam-
ple 4.3. How many elements does Fn2
have? Show that there is a bijective
map between predicates on {1, . . . , n}
and Fn2 . Express vector addition in Fn2
in terms of ’and’ and ’or’ operations for
the corresponding predicates.
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Vector spaces

At this point it might seem that we have gone far enough in abstraction, having
introduced coordinate vectors with an arbitrary number of components and from an
arbitrary field. What else could be needed, particularly in scientific applications of
linear algebra?

It turns out that there are sets of objects, quite unlike coordinate vectors, which
nevertheless follow the same algebraic rules as coordinate vectors. Moreover, many of
these have important scientific applications. For example, on the set of all real-valued
functions [a, b] → R on an interval [a, b] addition and scalar multiplication can be
defined in a way that follows the rules for coordinate vectors in Prop. 5.1. Function
spaces of this kind are important in quantum mechanics. It makes sense to define a
general algebraic structure that captures all examples similar to coordinate vectors:
the vector space.

6.1 Basic definitions

Summary 6.1 Abstract vector spaces (V,F,+, ·) are introduced, where V is a set
of vectors and F is a field. There are two operations, vector addition, +, and scalar
multiplication, ·, which are subject to a list of axioms. Vector subspaces are non-
empty subsets of vector spaces which are closed under vector addition and scalar
multiplication and they form vector spaces in their own right. Linear maps are the
morphism of vector spaces, that is, they are the maps consistent with the vector space
structure.

6.1.1 Vector space axioms

In the previous chapter we have studied coordinate vectors in Fn and their properties.
While these coordinate vectors play an important role in linear algebra, the modern
approach to the subject is more general. Rather than defining vectors by ’what they
are’, they are defined by the properties they should satisfy. This means we are looking
for an axiomatic definition of vector spaces, in analogy with the definitions of groups
and fields in Chapters 3 and 4. The structure of this definition is very much inspired
by what we have found for coordinate vectors. A vector space consists of a pair (V,F),
where V is a set whose elements are called vectors and F is a field, with elements
called scalars. There are two operations, vector addition and scalar multiplication,
which are required to satisfy a list of axioms. These axioms are, in fact, precisely the
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rules for calculations with column vectors listed in Prop. 5.1. Putting all this together,
the formal definition of vector spaces is as follows:

Definition 6.1 A vector space (V,F,+, ·) consists of a set V (with elements called
vectors), a field F (with elements called scalars) and the two operations

vector addition: + : V × V → V , (v,w) 7→ v + w
scalar multiplication: · : (F, V ) → V , (α,v) 7→ αv

For all v,w ∈ V and for all α, β ∈ F, these operations satisfy the following rules:

(V0) (V,+) is an Abelian group with (Abelian group)
neutral element 0 and inverse −v

(V1) α(v + w) = αv + αw (distributivity I)
(V2) (α+ β)v = αv + βv (distributivity II)
(V3) (αβ)v = α(βv) (multiplicative associativity)
(V4) 1v = v (multiplicative neutral element)

The neutral element 0 of vector addition is called the zero vector.

Note that this definition does not specify the nature of vectors. In particular, it is not
assumed that they are made up from components. The expression −v does not imply
any particular operation, such as multiplication by −1 — it is merely the symbol used
for the additive inverse of a vector v. In Prop. 6.1 we will see that the additive inverse
−v is, in fact, obtained by multiplying v with −1 but this needs to be proved. The
choice of field F is an important part of the definition of a vector space — it determines
from which set the scalars are taken. Instead of using the somewhat cumbersome
notation (V,F,+, ·) we will frequently just talk about a vector space V over (the field)
F.

6.1.2 Implications of vector space axioms

There are a few simple rules for calculating with vectors which are obvious for com-
pontent vectors (there they follow immediately from the component-wise definitions
of vector addition and scalar multiplication (5.2)) but in the present abstract case
they have to be derived from the above axioms. A few such rules are covered in the
following proposition.

Proposition 6.1 For a vector space V over F, the following rules hold for all v ∈ V :

(i) −(−v) = v
(ii) 0 v = 0
(iii) α0 = 0 for all α ∈ F
(iv) (−1)v = −v
(v) αv = 0 ⇒ α = 0 or v = 0

Proof (i) This follows from the fact that (V,+) is a group and the first rule (3.1) for
the group inverse.

(ii) Since 0 v = (0 + 0)v
(V 2)
= 0 v + 0 v and 0 v = 0 v + 0, it follows that 0 v = 0.

(iii) α0
(ii)
= α(0 0)

(V 3)
= (α 0)0 = 0 0

(ii)
= 0.

(iv) Since 0
(ii)
= 0 v = (1 + (−1))v

(V 2),(V 4)
= v + (−1)v and 0 = v + (−v), it follows
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that (−1)v = −v.

(iv) If α = 0 we are done. If α 6= 0, then multiplying with α−1 gives 0
(iii)
= α−10 =

α−1(αv)
(V 3)
= (α−1α)v = 1v

(V 4)
= v. 2

We can also generalize the distributive laws (V1) and (V2) to an arbitrary number of
summands. Specifically, for vectors v,v1, . . . ,vn ∈ V and scalars α, α1, . . . , αn ∈ F we
have (see Exercise 6.1):

α
n∑
i=1

vi =
n∑
i=1

αvi ,

(
n∑
i=1

αi

)
v =

n∑
i=1

αiv . (6.1)

6.1.3 Vector subspaces

The first step after setting up a new algebraic structure is to introduce the correspond-
ing ’sub-structure’. In the case of groups we have introduced the notion of sub-groups
and for vector spaces we would like to define vector subspaces. These are subsets of
vector spaces which form vector spaces in their own right. The formal definition is as
follows:

Definition 6.2 A non-empty subset W ⊂ V of a vector space V is a vector subspace
provided it satisfies the following conditions.

(S1) For all w1,w2 ∈W we have w1 + w2 ∈W .
(S2) For all w ∈ V and α ∈ F we have αw ∈W .

In other words, a vector subspace is a non-empty subset of a vector space which is
closed under vector addition and scalar multiplication.

This definition does imply immediately that a vector subspace W ⊂ V is a vector
space (over the same field F that underlies V ) in its own right, with vector addition
and scalar multiplication defined by restriction from V to W .

To verify this, we first note that vector addition and scalar multiplication are closed
operations on W from Def. 6.2. Further, all vector space axioms in Def. 6.1 which are
merely rules for calculation are satisfied on W , simply because they are satisfied on V .
We only have to be careful about the existence of the neutral element and the inverse.
While these are certainly present in V it is not immediately clear they are contained
in W . However, for any w ∈ W we know, combining Prop. 6.1 (ii) and Def. 6.2 (S2),
that 0 = 0 w ∈W and, hence, the zero vector is contained in W . Further, for w ∈W ,
we have from Prop. 6.1 (iii) and Def. 6.2 (S2), that −w = (−1)w ∈W so, from (S2),
the inverse vector is contained in W .

Every vector space V has two trivial vector subspaces: the vector space {0}, which
consists of the zero vector, and the whole space V . All other vector subspaces are
called proper and we will consider examples soon.

6.1.4 Linear Maps

The next step in the general build-up of the theory is to introduce the morphisms of
vector spaces which are also called linear maps. Linear maps are to vector spaces what
group homomorphisms are to groups. In the same way that group homomorphism are
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defined by being compatible with the group multiplication (see Eq. (3.4)), linear maps
are those maps which are consistent with vector addition and scalar multiplication.
In fact, the analogy is even closer since a vector space forms an Abelian group with
respect to addition. Therefore, an obvious requirement for a map to be linear is that it
is a group homomorphism relative to this additive group structure. A second require-
ment arises from consistency with scalar multiplication and this leads to the following
definition.

Definition 6.3 A map f : V →W between two vector spaces V and W over the same
field F is called linear if

(L1) f(v1 + v2) = f(v1) + f(v2)
(L2) f(αv) = αf(v)

for all v,v1,v2 ∈ V and for all α ∈ F.

Note that the addition on the left-hand side of (L1) is carried out in V , while the one
on the right-hand side is carried out in W . Likewise, the scalar multiplication with α
in (L2) is in V on the left and in W on the right. For this to make sense V and W have
to be vector spaces over the same field, as we have indeed required. It is sometimes
useful to combine (L1) and (L2) into the single, equivalent linearity condition

f(α1v1 + α2v2) = α1f(v1) + α2f(v2) , (6.2)

for all v1,v2 ∈ V and all α1, α2 ∈ F.
For now we are content having introduced the general idea of linearity of a map.

Linear maps and their relation to matrices will be systematically discussed in Part IV.

6.1.5 Algebras

As we will see, some of the vector spaces we will come across carry an additional
multiplication between vectors. Such vector spaces with multiplication are also called
an algebra, a structure formally defined as follows:

Definition 6.4 An algebra (V,F,+, ·, ∗) is a vector space (V,F,+, ·) with a multipli-
cation ∗ : V × V → V which satisfies the following properties, for all v1,v2,w ∈ V
and all α1, α2 ∈ F.

(i) (α1v1 + α2v2) ∗w = α1(v1 ∗w) + α2(v2 ∗w) (linear in first argument)
(ii) w ∗ (α1v1 + α2v2) = α1(w ∗ v1) + α2(w ∗ v2) (linear in second argument)

If there is a e ∈ V with e ∗v = v ∗ e = v for all v ∈ V the algebra is called an algebra
with unit. If the product ∗ is associative, the algebra is called an associative algebra.

In short, an algebra is a vector space with a multiplication which is bi-linear. We
will not investigate algebras systematically but, occasionally, it will be useful to point
to the above definition when we come across examples of algebras. One simple such
example is the vector space R3 with the cross product as multiplication, which we
discuss in Section 10.
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6.2 Examples of vector spaces

Summary 6.2 Standard examples of vector spaces are the coordinate vectors
(Fn,F,+, ·). There are also less conventional coordinate vectors, such as (Cn,R,+, ·),
where the vector components and the scalars are taken from different fields. The ma-
trices Mn,m(F) of size n×m with entries in a field F form a vector space. The set of
all functions X → V from a set X into a vector space V can be given a vector space
structure. Many interesting function vector spaces arise as special cases or vector
subspaces from this construction.

6.2.1 Coordinate vector spaces

Coordinate vectors have motivated the Definition 6.1 so it should not come as a surprise
that they provide examples of vector spaces.

Example 6.1 (Fn as a vector space over F)

Coordinate vectors with n components taken from a field F form a vector space
(Fn,F,+, ·), with vector addition and scalar multiplication defined component-wise,
as in Eq. (5.2). This follows immediately by comparing the rules for calculating with
coordinate vectors listed in Prop. 5.1 with the vector space axioms in Def. 6.1. The
most commonly used fields are F = Q,R,C, but the finite fields Fp, introduced in
Example 4.3, can also be relevant. Also note that the field F forms a vector space (of
vectors with one component) over itself. 2

Example 6.2 (Unusual coordinate vector spaces)

While the coordinate vector spaces from Example 6.1 are the most commonly used
ones, there are more exotic constructions where the vector components and the scalars
are taken from different fields. For example, instead of the vector space (Cn,C,+, ·)
with complex vector components and complex scalars, we can also consider the space
(Cn,R,+, ·) with complex vector components but real scalars. Indeed, scalar multi-
plication of complex coordinate vectors with real numbers, defined component-wise,
makes perfect sense and satisfies the required axioms (V1)–(V4) in Def. 6.1. The two
vector spaces (Cn,C,+, ·) and (Cn,R,+, ·) are quite different despite the vectors being
taken from the same set. In the following, unless otherwise stated, we will think of Fn
as a vector space over the field F. 2

6.2.2 Matrices and matrix vector spaces

Coordinate vector spaces are based on defining vector addition and scalar multiplica-
tion component-wise but it should be clear that it is not essential for the components
to be arranged in a column. They might be arranged in a row, in a rectangle, or even
in a triangle for that matter. As long as we decide that addition works by adding
components in the same position and scalar multiplication by multiplying every com-
ponent with same the scalar, such objects can be given a vector space structure.
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Rectangular arrangements of numbers from a field F, with n rows and m columns, are
called n×m matrices (with entries in F) and they are written as

A =

A11 . . . A1m

...
...

An1 . . . Anm

 , B =

B11 . . . B1m

...
...

Bn1 . . . Bnm

 . (6.3)

The numbers Aij , Bij ∈ F are called the components or entries of the matrix. It is
convenient (although slightly abusing notation) to denote the entire matrix and its
entries by the same letter, as we have done above. Just like vectors, matrices can be
written in index notation as the collection, Aij , of their entries which are now labelled
by two indices, i = 1, . . . , n and j = 1, . . . ,m. The set of all n × m matrices with
entries in F is denoted byMn,m(F). Note that n× 1 matrices inMn,1(F) are column
vectors while 1 × n matrices in M1,n(F) are row vectors, each with n components in
F.

Example 6.3 (Matrix vector spaces)

The set Mn,m(F) can be made into a vector space over F by defining addition and
scalar multiplication of matrices component-wise as

A+B :=

 A11 +B11 . . . A1m +B1m

...
...

An1 +Bn1 . . . Anm +Bnm

 , αA :=

 αA11 . . . αA1m

...
...

αAn1 . . . αAnm

 . (6.4)

In index notation, the same definitions can be written as

(A+B)ij := Aij +Bij , (αA)ij := αAij , (6.5)

where the subscript on the left-hand side indicates that the entry (ij) is extracted
from the matrix in the bracket. Of course, these definitions satisfy all the basic rules
of vector addition and scalar multiplication listed in Def. 6.1, for exactly the same
reasons coordinate vectors do. The zero ’vector’ is the matrix with all entries equal to
zero. 2

We can pursue the analogy between coordinate vectors and matrices even further by
introducing the analogue of the standard unit vectors. These are the standard unit
matrices

E(ij) =



0 · · · 0 0 0 · · · 0
...

...
...

...
...

0 · · · 0 0 0 · · · 0
0 · · · 0 1 0 · · · 0
0 · · · 0 0 0 · · · 0
...

...
...

...
...

0 · · · 0 0 0 · · · 0


← ith row ,

↑
jth column

(6.6)
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where i = 1, . . . , n and j = 1, . . . ,m and the ’1’ appears in the ith row and jth column
with all other entries zero. (Note that here the indices i, j label the nm different
matrices, rather than entries of a matrix. To emphasize this fact, they have been
enclosed in brackets.) Every n×m matrix A can be written in terms of the standard
unit matrices as

A =

n∑
i=1

m∑
j=1

AijE(ij) , (6.7)

and addition and scalar multiplication can be expressed as

A+B =
∑
i,j

(Aij +Bij)E(ij) , αA =
∑
i,j

αAijE(ij) , (6.8)

in complete analogy with Eqs. (5.8) for coordinate vectors.

Problem 6.1 (Addition and scalar multiplication of matrices)

Add the 2× 2 matrices

A =

(
1 −2
3 −4

)
, B =

(
0 5
−1 8

)
.

and work out the scalar multiple of A with α = 3. Write A and B in terms of standard unit
matrices and work out A+B and αA using this notation.

Solution: Using matrix notation, the sum and the scalar multiple are given by

A+B =

(
1 −2
3 −4

)
+

(
0 5
−1 8

)
=

(
1 3
2 4

)
, αA = 3

(
1 −2
3 −4

)
=

(
3 −6
9 −12

)
.

In terms of the standard unit matrices, A and B can be written as

A = E(11) − 2E(12) + 3E(21) − 4E(22) , B = 5E(12) − E(21) + 8E(22) .

In this language, their sum and the scalar multiple of A with α = 3 are given by

A+B = E(11) + 3E(12) + 2E(21) + 4E(22) , αA = 3E(11) − 6E(12) + 9E(21) − 12E(22) .

6.2.3 Vector spaces of functions

We begin by describing a very general construction of function vector spaces. Start
with an arbitrary set X as well as a vector space V over the field F and define the set
of all functions F(X,V ) := {g : X → V } from X to V . On this set, we can introduce
an addition and a scalar multiplication by

(g + h)(x) := g(x) + h(x) , (αg)(x) := αg(x) , (6.9)

where g, h ∈ F(X,V ) are functions, α ∈ F and x ∈ X. Note that the right-hand
sides of these expressions are simply vector additions and scalar multiplications on
the given vector space V , so they are well-defined. Moreover, Eqs. (6.9) satisfy all the
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vector space axioms in Def. 6.1 simply because these axioms are satisfied in V . The
null ’vector’ is the function whose value is the zero vector for all x ∈ X.

In conclusion, for a vector space V over F, the function space F(X,V ) with vector
addition and scalar multiplication defined ’point-wise’, as in Eq. (6.9), is a vector
space over the same field F. Many interesting function vector spaces can be obtained
from this construction, by choosing specific sets X or specific vector spaces V or by
restricting to certain vector subspaces. The following examples illustrate the range of
possibilities.

Example 6.4 (Coordinate vectors as functions)

Coordinate vectors can be obtained from the above construction. To see this, choose
the set X = {1, 2, . . . , n} and the vector space V = F. Functions g : {1, 2, . . . , n} → F
are specified by the n-tuples (g(1), g(2), . . . , g(n)) of all their values and can, hence,
be identified with vectors in Fn. 2

Example 6.5 (Functions on a real interval)

Choose the set X = [a, b] ⊂ R to be an interval on the real line and V = F. The
resulting space of functions, F([a, b],F), consists of all F-valued functions, that is,
typically real- or complex-valued functions, on the interval [a, b]. Vector addition and
scalar multiplication, as defined in Eq. (6.9), really just amount to ’naive’ addition
and scalar multiplication of functions. Consider, for example, the two functions g, h ∈
F([a, b],F) defined by g(x) = 2x2 + 3x− 1 and h(x) = −2x+ 4. Their vector sum and
the scalar multiple of g by α = 4 are given by

(g + h)(x) = (2x2 + 3x− 1) + (−2x+ 4) = 2x2 + x+ 3

(αg)(x) = 4(2x2 + 3x− 1) = 8x2 + 12x− 4 .

The vector space F([a, b],F) has many interesting vector subspaces, some of which we
now discuss. 2

Example 6.6 (Continuous and differentiable functions)

Let us focus on the space F([a, b],F) with F = R or F = C, so on real- or complex-
valued functions on the interval [a, b]. From Def. 6.2, any property of such real- or
complex-valued functions which is preserved under the addition and scalar multipli-
cation (6.9) can be used to obtain a vector subspace of F([a, b],F). For example, the
sum of two continuous functions and the scalar multiple of a continuous function are
both continuous, so the space C([a, b],F) of continuous F-valued functions on the in-
terval [a, b] is a vector subspace of F([a, b],F). The same goes for the space Ck([a.b],F)
of k times continuously differentiable functions. (See, for example, Lang 1997 for the
relevant proofs.)

Example 6.7 (Polynomials)

The set P(F) of polynomials is a vector space over F, a vector subspace of F(F,F).
Indeed, the sum of two polynomials and the scalar multiple of a polynomial are again
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polynomials. We can restrict further to the set Pk(F) of all polynomials with degree
less equal k. Since addition and scalar multiplication of such polynomials does not
increase the degree beyond k, this set forms a vector subspace of P(F). 2

Example 6.8 (Solutions to differential equations)

Many scientific problems involve solving differential equations of the form

p(x)
d2g

dx2
+ q(x)

dg

dx
+ r(x)g = 0 , (6.10)

where p, q, r ∈ C([a, b],R) are fixed functions. The task is to find all functions g ∈
C2([a, b],R) which satisfy this equation. Eq. (6.10) is referred to as a second order,
linear, homogeneous differential equation. Here, the term ’second order’ indicates that
the highest derivative of g which appears is the second, ’linear’ means there are no
terms of quadratic or higher order in g and ’homogeneous’ means there is no term
independent of g. These properties immediately imply that for two solutions g, h ∈
C2([a, b],R) to this equation, also the sum g+h and scalar multiples αg, where α ∈ R,
are solutions. This means the solutions to the differential equation (6.10) form a vector
subspace of C2([a, b],R).

A simple example is the differential equation

d2g

dx2
+ g = 0 , (6.11)

which is obviously solved by g(x) = cos(x) and g(x) = sin(x). Since the solution space
forms a vector space, we know that the functions α cos(x) + β sin(x) for arbitrary
α, β ∈ R also solve the equation. Of course, this can also be checked explicitly by
inserting g(x) = α cos(x) + β sin(x) into Eq. (6.11). 2

This list of examples hopefully illustrates the strength of the general approach. Much
of what follows will only be based on the general Definition 6.1 of a vector space and,
hence, will apply to all of the above examples and many more.

Exercises

6.1 Vector space rules
Show that Eqs. (6.1) follow from the
vector space axioms, for example, by
induction in n.

6.2 Coordinate vector subspaces
Which of the following sets constitute
vector subspaces of the given vector
space? Provide reasoning in each case.
(a) All vectors (x, y, z)T ∈ R3 satisfy-

ing x = y = 2z.
(b) All vectors (x, y)T ∈ R2 satisfying
x2 + y2 = 1.

6.3 Adding and multiplying 2× 2 matrices
What is the sum of the matrices

A =

(
1 −2
3 −1

)
, B =

(
0 −5
2 −8

)
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and their scalar multiple with α = −3?

6.4 Adding and multiplying larger matrices
Add the matrices 1 0 −2 4
−1 −3 0 8
−4 4 2 2

 ,

 0 −5 3 0
1 7 0 −5
1 2 −3 0


and scalar multiply them with α = 2.

6.5 Matrices with complex entries
Add the matrices

A =

(
2 1− i
i 4i

)
, B =

(
4− 2i −i
−2− i −i

)
.

and scalar multiply them with α =
2− 3i.

6.6 Matrix vector spaces
Consider the vector space Mn,n(F) of
n×n matrices A with entries in F. Are
the following subsets vector subspaces?
Provide reasoning in each case.
(a) All A with A11 = 0.
(b) All A with A11 = 1.
(c) All A satisfying

∑n
i,j=1 Aij = 0.

6.7 (Anti-) symmetric 2× 2 matrices
A 2× 2 matrix A ∈M2,2(F) given by

A =

(
a b
c d

)
,

is called symmetric if c = b. It is
called anti-symmetric if c = −b and
a = d = 0. Show that the symmetric
(anti-symmetric) 2×2 matrices form a
vector subspace of M2,2(F).

6.8 Function vector subspaces
Which of the following sets constitute
vector subspaces of the vector space of
real-valued functions f : R → R? Pro-
vide reasoning in each case.

(a) Even functions, that is, functions
satisfying f(x) = f(−x) for all x ∈ R.
(b) Odd functions, that is, functions
satisfying f(x) = −f(−x) for all x ∈
R.
(c) Functions satisfying f(0) = 0.
(d) Functions satisfying f(0) = 1.

6.9 Polynomial vector spaces
Which of the following sets are vector
subspaces of the vector space P2(R) of
at most quadratic polynomials in x?
Provide reasoning in each case.
(a) All polynomials of the form ax+ b.
(b) All polynomials of the form (x+b)2.

6.10 Linear maps
Consider a vector space V over F, a
scalar α ∈ F, and a non-zero vector
u ∈ V .
(a) Show that the map f : V → V de-
fined by f(v) = αv is linear.
(b) Show that the map f : V → V
defined by f(v) = u + v is not linear.

6.11 Linear maps for functions
Consider the vector space C∞([a, b])
of infinitely many times differentiable
functions and p ∈ C∞([a, b]).
(a) Show that the map F : C∞([a, b]→
C∞([a, b] defined by multiplication
with p, so F (g)(x) = p(x)g(x), is lin-
ear.
(b) Show that the map D : C∞([a, b]→
C∞([a, b] defined by differentiation, so
D(g)(x) = g′(x), is linear.

6.12 Let f : V →W be a linear map.
(a) Show that f maps the zero vector
of V to the zero vector of W .
(b) Show that f(−v) is the additive in-
verse of f(v).

6.13 More function vector spaces
Use the construction of Section 6.2.3 to
find at least three further vector spaces
of functions.
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Elementary vector space properties

Now that we have set up vector spaces in general, we can start to develop the subject
systematically. For the remainder of Part II we will be working with a general vector
space V over a field F, except in some of the examples or if stated otherwise.

The first important concept we introduce is that of linear independence of a (finite)
list of vectors. Roughly speaking, a list of vectors is called linearly independent if none
of the vectors can be expressed in terms of the others. Linear independence allows
us to introduce the notion of a basis of a vector space: a list of linearly independent
vectors which ’spans” the vector space.

Bases are absolutely crucial for both the theory of vector spaces and their applications.
As we will see, the number of vectors in a basis of a given vector space is fixed and this
number is called the dimension of the vector space. It turns out that every vector space
(V,F,+, ·) of dimension n is isomorphic to the coordinate vector space (Fn,F,+, ·), so
that every vector in V can be described by a unique vector in Fn, whose components
are the coordinates relative to a chosen basis of V . Apart from the theoretical insight,
this also provides a practical way of computing with abstract vector spaces by using
coordinates relative to a basis.

7.1 Linear independence

Summary 7.1 The most general algebraic expressions in a vector space are referred
to as linear combinations. The set of all linear combinations of a given list of vectors
is called the span of these vectors and it forms a vector subspace. A finite number of
vectors is called linearly independent if none of their linear combinations, except the
trivial one, gives the zero vector. Otherwise, the vectors are called linearly dependent.
A set of vectors is linearly dependent if and only if one of them can be written as a
linear combination of the others.

7.1.1 Linear combinations and span

We are working with a general vector space V over the field F. Given that we have two
operations, vector addition and scalar multiplication, at our disposal the most general
algebraic expression is of the form

α1v1 + · · ·+ αkvk =

k∑
i=1

αivi , (7.1)
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where v1, . . . ,vk ∈ V and α1, . . . , αk ∈ F are k vector and scalars, respectively. An
expression of the form (7.1) is called a linear combination of the vectors v1, . . . ,vk.
The set of all linear combinations of given vectors v1, . . . ,vk is called the span of these
vectors, and it is written as

Span(v1, . . . ,vk) :=

{
k∑
i=1

αivi | αi ∈ F

}
. (7.2)

Proposition 7.1 For any vectors v1, . . . ,vk ∈ V , the span, Span(v1, . . . ,vk), is a
vector subspace of V .

Proof All we need to do is to verify that the span satisfies the conditions in Def. 6.2.
Consider two vectors u,w ∈ Span(v1, . . . ,vk) in the span. By definition of the span,
this means they can be written as linear combinations

u =

k∑
i=1

αivi , w =

k∑
i=1

βivi ,

for suitable scalars αi, βi ∈ F. Their sum and the scalar multiple of u with α ∈ F are
then given by

u + w =

k∑
i=1

(αi + βi)vi , αu =

k∑
i=1

(ααi)vi (7.3)

and are, hence, both contained in the span. This shows that the conditions (S1) and
(S2) of Def. 6.2 are indeed satisfied. 2

This result means that the span provides us with a way of generating vector subspaces.
The span has a straightforward geometric interpretation, at least for coordinate vectors
with real entries. The span of a single vector v ∈ Rn consists of all scalar multiples of
this vector and, hence, can be thought of as the line through 0 which contains v. The
span of two vectors u,v ∈ Rn (which are not multiples of each other) represents the
plane through 0 which contains both vectors. More generally, spans of column vectors
are lines, planes and their higher-dimensional analogues through the ’origin’ 0. We
will be more precise about this later but for now just present an example.

Example 7.1 (The span of vectors)

(a) Here is an example for the span of a single vector in R2 (see Fig. 7.1):

v =

(
3
2

)
⇒ Span(v) = {αv |α ∈ R} =

{(
3α
2α

)
|α ∈ R

}
.

(b) For a simple example in R3 consider the span of the first two standard unit vectors
Span(e1, e2) = {xe1 + ye2 |x, y ∈ R} which, of course, corresponds to the x–y plane.

(c) For a more complicated example in R3, define the two vectors v = (−1, 2, 1)T and
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R2

v

Span(v)

R3

v

w

Span(v,w)

Fig. 7.1 The span of a single vector in R2 (left) and the span of two vectors in R3 (right).

w = (2, 1, 0)T . Their span is given by

Span(v,w) = {αv + βw |α, β ∈ R} =


−α+ 2β

2α+ β
α

 |α, β ∈ R
 ,

which describes a plane through 0 (see Fig. 7.1). 2

7.1.2 Linear independence

Two different sets of vectors can lead to the same span. Consider vectors v1, . . . ,vk
and a linear combination w =

∑k
i=1 αivi. It should be intuitively clear (and will be

shown below) that

Span(v1, . . . ,vk,w) = Span(v1, . . . ,vk) , (7.4)

so removing w leaves the span unchanged. How can we decide whether a given set of
vectors is minimal, in the sense that no vector can be removed without changing the
span? This question leads to the concept of linear independence which is central to
the subject. Formally, it is defined as follows:

Definition 7.1 Let V be a vector space over a field F and αi ∈ F scalars. The vectors
v1, . . . ,vk ∈ V are called linearly independent if the equation

k∑
i=1

αivi = 0 (7.5)

implies that all αi = 0. Otherwise, the vectors are called linearly dependent.

Recall from Prop. 6.1 (iii) that α0 = 0 for all α ∈ F. This means any list of vectors
which contains the zero vector allows for a non-trivial solution to Eq. (7.5) and is,
hence, linearly dependent.



72 Elementary vector space properties

7.1.3 Properties of linearly independent vectors

It may not be immediately obvious how the definition of linear independence relates
to our problem of finding a minimal set of vectors for a given span. The connection is
made by the following statement.

Proposition 7.2 The vectors v1, . . . ,vk are linearly dependent iff one vector vi can
be written as a linear combination of the others.

Proof The proof is rather simple but note that there are two directions to show.

’⇒’: Assume that the vectors v1, . . . ,vk are linearly dependent so that the equation∑k
i=1 αivi = 0 has a solution with at least one αi 6= 0. Say, α1 6= 0, for simplicity.

Then we can solve for v1 to get

v1 = − 1

α1

∑
i>1

αivi , (7.6)

and, hence, we have expressed v1 as a linear combination of the other vectors.

’⇐’: Now assume one vector, say v1, can be written as a linear combination of the
others so that v1 =

∑
i>1 βivi. Then it follows that

∑n
i=1 αivi = 0 with α1 = 1 6= 0

and αi = −βi for i > 1. Hence, the vectors are linearly dependent. 2

So for a linearly dependent set of vectors we can write (at least) one vector as a
linear combination of the others. Removing this vector from the list leaves the span
unchanged, as in Eq. (7.4). A linearly independent set is one which cannot be further
reduced in this way, so is ’minimal’ in this sense. The following proposition states this
more formally.

Proposition 7.3 For vectors v1, . . . ,vk ∈ V the following statements are equivalent.

(i) v1, . . . ,vk are linearly dependent.
(ii) One vector from v1, . . . ,vk can be removed without changing the span.

Proof ’(i) ⇒ (ii)’: If the vectors v1, . . . ,vk are linearly dependent then one of the

vectors, say vk, can be written as a linear combination vk =
∑k−1
i=1 βivi of the others.

A vector v ∈ Span(v1, . . . ,vk) can then be written as

v =

k∑
i=1

αivi =

k−1∑
i=1

αivi + αkvk =

k−1∑
i=1

(αi + αkβi)vi .

This shows that v ∈ Span(v1, . . . ,vk−1), so Span(v1, . . . ,vk) ⊂ Span(v1, . . . ,vk−1).
The reverse inclusion, Span(v1, . . . ,vk−1) ⊂ Span(v1, . . . ,vk), holds trivially since it
is always possible to set the scalar in front of vk to zero. Hence, equality of the two
sets and (ii) follows.

’(ii) ⇒ (i)’: Say that vk is the vector which can be removed without changing the
span, so that Span(v1, . . . ,vk) = Span(v1, . . . ,vk−1). Then vk ∈ Span(v1, . . . ,vk−1)

so that vk =
∑k−1
i=1 βivi for some scalars βi. This means vk can be written as a linear

combination of the other vectors and it follows from Prop. 7.2 that v1, . . . ,vk are
linearly dependent. 2
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7.1.4 Examples for linear independence

Let us illustrate the idea of linear independence with a number of examples and exer-
cises.

Example 7.2 (Linear independence of standard unit vectors)

Consider the standard unit vectors e1, . . . , en ∈ Fn. Eq. (7.5) for this case reads

n∑
i=1

αiei =

 α1

...
αn

 !
= 0 .

This is only solved if all αi = 0 and this means the standard unit vectors are linearly
independent. 2

Problem 7.1 (Linear independence in R3)

Show that the R3 vectors v1 = (0, 1, 1)T , v2 = (0, 1, 2)T and v3 = (1, 1,−1)T are linearly
independent.

Solution: Again, using Eq. (7.5), we have

α1v1 + α1v2 + α3v3 =

 α3

α1 + α2 + α3

α1 + 2α2 − α3

 !
= 0 .

The first entry leads to α3 = 0 and combining the other two entries (setting α3 = 0) implies
α1 = α2 = 0. Therefore the three vectors are linearly independent.

Problem 7.2 (Linear dependence in R3)

Show that the three R3 vectors v1 = (−2, 0, 1)T , v2 = (1, 1, 1)T and v3 = (0, 2, 3)T are
linearly dependent.

Solution: Forming a general linear combination gives

α1v1 + α1v2 + α3v3 =

 −2α1 + α2

α2 + 2α3

α1 + α2 + 3α3

 !
= 0 .

This set of equations clearly has non-trivial solutions, for example α1 = 1, α2 = 2, α3 = −1,
so that the vectors are linearly dependent. Alternatively, this could have been inferred from
Prop 7.2 by noting that v3 = v1 + 2v2.

Example 7.3 (Linear independence for up to three vectors)

Let us discuss linear dependence for systems of one, two, and three vectors. To un-
derstand linear independence for a single vector v ∈ V , we have to consider solutions
α ∈ F to the equation αv = 0. We know from Prop. 6.1 (iii) that α0 = 0 for all
α ∈ F. This means that the zero vector is linearly dependent. On the other hand, for
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v 6= 0 the equation αv = 0 is only solved by α = 0, as Prop. 6.1 (v) asserts. Any
non-zero vector is, therefore, linearly independent.

Next, consider two (non-zero) linearly dependent vectors u, v. From Prop. 7.2 this
means that one can be written as a linear combination of the other, for example
u = αv. Hence, two linearly dependent vectors are scalar multiples of each other, that
is, they belong to the same line through 0.

Analogously, for three linearly dependent vectors u, v, w, one can be expressed as
a linear combination of the other two, for example, u = αv + βw. This means that
u ∈ Span(v,w) . 2

Problem 7.3 (Linear independence for polynomials)

Consider the space P(F) of polynomials (see Example 6.6) with F = R or F = C. Show that
the monomials 1, x, x2, . . . , xk ∈ P(F) are linearly independent.

Solution: For linear independence we have to show that the equation

k∑
i=0

αix
i = 0 . (7.7)

only has the trivial solution αi = 0 for all i = 1, . . . , k. To do this we should recall that the
’zero vector’ is the function identical to zero so we are looking for the solutions αi which
solve Eq. (7.7) for all x ∈ R. This means if Eq. (7.7) is satisfied for certain αi, then so are
derivatives of Eq. (7.7). Taking the ith derivative and then setting x = 0 immediately implies
that αi = 0. Hence, Eq. (7.7) only has the trivial solution and we conclude that the monomials
are linearly independent.

Problem 7.4 (Solutions to differential equations)

In Example 6.8 we have explained that the solutions to homogeneous, linear second order
differential equations form a vector space. A simple example of such a differential equation is

d2g

dx2
= −g .

Show that the solutions g(x) = sin(x) and g(x) = cos(x) to this differential equation are
linearly independent.

Solution: Using Eq. (7.5) we should start with α sin(x) + β cos(x) = 0. We are looking for
pairs (α, β) which solve this equation for all x. (Recall that the zero vector in a function
vector space is the zero function.) Hence, we can constrain the allowed values for α and β
by choosing particular x values. Setting x = 0 we learn that β = 0 and setting x = π/2 it
follows that α = 0. Hence, sin and cos are linearly independent.
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7.2 Basis and dimension

Summary 7.2 A basis of a vector space is a list of vectors which are linearly in-
dependent and which span the entire vector space. Every vector can be written as a
unique linear combination of the vectors in a basis. The coefficients in such a linear
combination are called the coordinates of the vector relative to the basis. The dimen-
sion of a vector space is the number of vectors in a basis. Every finitely spanned
vector space has a basis and, hence, a well-defined dimension.

7.2.1 Basis and coordinates

For a vector space V , it is useful to have a ’minimal’ number of vectors which still span
the entire space. Such vectors are called a basis and this important notion is formally
defined as follows:

Definition 7.2 For a vector space V , a list (v1, . . . ,vn) of vectors vi ∈ V is called a
basis of V if

(B1) v1, . . . ,vn are linearly independent
(B2) V = Span(v1, . . . ,vn).

It is clear from condition (B2) that every vector in V can be written as a linear
combination of the basis vectors but, what is more, for a given vector this linear
combination is unique.

Proposition 7.4 The vectors (v1, . . . ,vn) form a basis of V if and only if every vector
v ∈ V can be written as a unique linear combination

v =

n∑
i=1

αivi . (7.8)

Proof ’⇒’ Assume that (v1, . . . ,vn) is a basis of V . From (B2) this means every vec-
tor v can be written as a linear combination of the vi. It remains to show uniqueness.
To do this, we write v as two linear combinations

v =

n∑
i=1

αivi =

n∑
i=1

βivi ⇒
n∑
i=1

(αi − βi)vi = 0 ,

with coefficients αi and βi and show that the coefficients must be equal. Indeed,
taking the difference leads to the equations on the right-hand side and, from linear
independence of the basis, it follows that all αi − βi = 0, so that αi = βi for all
i = 1, . . . , n.

’⇐’ Now assume every vector v can be written as a unique linear combination of
v1, . . . ,vn. This means that v1, . . . ,vn span V and (B2) follows. We still need to show
condition (B1), that is linear independence. To do this, we note that, just as any other
vector, the zero vector can be written as a linear combination 0 =

∑
i αivi. This

equation is satisfied if all αi = 0 and from uniqueness this must be the only possibility.
Hence, the vectors v1, . . . ,vn are indeed linearly independent. 2
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The scalars αi in Eq. (7.8) are called the coordinates of v relative to the basis
(v1, . . . ,vn). They can be organized into a vector α ∈ Fn with entries αi, called
the coordinate vector for v.

7.2.2 Examples of bases and coordinates

Prop. 7.4 is the mathematical basis for a process routinely used in science and often
referred to as ’choosing a coordinate system’. What is really meant by this is choosing
a basis of the vector space and representing vectors by their coordinates relative to
this basis. Let us illustrate this with a few examples.

Example 7.4 (Standard unit vectors as a basis)

The standard unit vectors e1, . . . , en ∈ Fn form a basis of Fn. Indeed, from Example 7.2
we already know they are linearly independent. Moreover, every vector v ∈ Fn can be
written as a linear combination

v =

 v1

...
vn

 =

n∑
i=1

viei ,

so that the standard unit vectors span Fn. The coordinates of a vector v relative to
the standard unit vector basis are identical to the components of v. 2

Problem 7.5 (A basis in R3)

Show that the R3 vectors v1 = (0, 1, 1)T , v2 = (0, 1, 2)T , and v3 = (1, 1,−1)T form a basis
of R3. Find the coordinates of an arbitrary vector v = (x, y, z)T relative to this basis.

Solution: In Exercise 7.1 we have shown that v1, v2, v3 are linearly independent. We can
attempt to express a general vector v = (x, y, z)T ∈ R3 as a linear combination of the vectors
vi by writing

v =

x
y
z

 !
= α1v1 + α2v2 + α3v3 =

 α3

α1 + α2 + α3

α1 + 2α2 − α3

 .

Equating the entries implies x = α3, y = α1 + α2 + α3, z = α1 + 2α2 − α3 and solving these
equations for αi leads to

α1 = −3x+ 2y − z , α2 = 2x− y + z , α3 = x .

This result has several implications. Firstly, it shows that every vector v can indeed be written
as a linear combination of the vectors vi and, hence, that (v1,v2,v3) forms a basis of R3.
Secondly, we have explicit formulae for how to compute the coordinates αi relative to the
basis (v1,v2,v3) in terms of the components x, y, and z of the vector v. Finally, we see that
both (v1,v2,v3) and the standard unit vectors (e1, e2, e3) form a basis of R3, so the basis of
a vector space is by no means unique.
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7.2.3 Dimension of a vector space

How should the dimension of a vector space be defined? Intuitively, we would say that
the vector space Fn over F which consists of vector with n components should be
assigned dimension n. Note that n is also the number of standard unit vectors which,
as we have seen above, form a basis of Fn over F. This observation suggests that, more
generally, the dimension should be defined as the number of vectors in a basis.

However, for a given vector space, there are different choices of bases. Do they all
have the same number of vectors? Intuitively, it seems this has to be the case but the
formal proof is more difficult than expected. It comes down to the following Lemma:

Lemma 7.1 (Exchange Lemma) Let (v1, . . . ,vn) be a basis of V and w1, . . . ,wm ∈ V
are arbitrary vectors. If m > n then w1, . . . ,wm are linearly dependent.

Proof If the vectors w1, . . . ,wn are linearly dependent we are done, so assume they
are not. In particular, w1 6= 0. Since the vectors vi form a basis, we can write

w1 =

n∑
i=1

αivi

with at least one αi (say α1) non-zero (or else w1 would be zero). We can, therefore,
solve this equation for v1 so that

v1 =
1

α1

(
w1 −

n∑
i=2

αivi

)
.

This shows that we can ’exchange’ v1 for w1 such that V = Span(w1,v2, . . . ,vn).
This exchange process can be repeated. Suppose we have already exchanged k < n
vectors in this way so that V = Span(w1, . . . ,wk,vk+1, . . . ,vn). Then we can write

wk+1 =

k∑
i=1

αiwi +

n∑
i=k+1

αivi .

If all αi for i > k are zero in this equation then w1, . . . ,wk+1 are linearly dependent
and we are finished. Otherwise, we can solve the equation for one of the vi with i > k,
say vk+1, and this justifies the next step vk+1 7→ wk+1 of the replacement process. We
can continue in this way until all vi are replaced by wi and V = Span(w1, . . . ,wn).
Since m > n, there is at least one vector, wn+1, ’left over’ which can be written as a
linear combination:

wn+1 =

n∑
i=1

βiwi .

This shows that the vectors w1, . . . ,wm are linearly dependent. 2

Theorem 7.1 If (v1, . . . ,vn) and (w1, . . . ,wm) are bases of a vector space V then
n = m.
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Proof Consider the basis (v1, . . . ,vn). Since the vectors (w1, . . . ,wm) also form a
basis they are, in particular, linearly independent. Hence, we can apply the Exchange
Lemma which implies that m ≤ n. Repeating the argument with the roles of the two
bases exchanged gives n ≤ m and, hence, n = m. 2

While a vector space usually allows many choices of bases the number of basis vectors
is always the same. This facilitates the definition of dimension.

Definition 7.3 If (v1, . . . ,vn) is a basis of the vector space V over F we call dimF(V ) :=
n the dimension of V over F. The trivial vector space {0} has an empty basis and is
assigned the dimension 0.

From what we have just seen, it does not matter which basis we use to determine the
dimension. Every choice leads to the same result. Let us apply this to compute the
dimension for some examples.

Example 7.5 (Coordinate vector spaces)

We have already established that the standard unit vectors (e1, . . . , en) form a basis
of Fn seen as a vector space over the field F, so

dimF(Fn) = dimR(Rn) = dimC(Cn) = n .

However, Cn seen as a vector space over R has a basis (e1, . . . , en, ie1, . . . , ien) and,
therefore, dimR(Cn) = 2n. 2

Example 7.6 (Matrix vector spaces)

We have seen in Example 6.3 that the space Mn,m(F) of n×m matrices with entries
in F forms a vector space over F. The standard unit matrices E(ij) defined in Eq. (6.6),
where i = 1, . . . , n and j = 1, . . . ,m, clearly form a basis of this vector space. Since
there are nm such matrices we have dimF(Mn,m(F)) = nm. 2

Example 7.7 (Polynomial vector spaces)

What is the dimension of the vector space Pk(F) (where F = R or F = C) of polynomial
with degree at most k? We have already seen in Exercise 7.3 that the monomials
1, x, x2, . . . , xk are linearly independent. Clearly, every polynomial with degree less or
equal than k can be written as a linear combination of these monomials so they span
the space. This means, (1, x, x2, . . . , xk) is a basis and dimF(Pk(F)) = k + 1. 2

Example 7.8 (Dimension of solution space to differential equations)

Following up from Problem 7.4, we would like to determine the dimension of the
solution vector space (of real-valued functions) for the differential equation

d2g

dx2
= −g .

The general solution is given by g(x) = α sin(x) + β cos(x) with arbitrary real coeffi-
cients α and β, so the solution vector space is spanned by sin and cos. We have already
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seen in Problem 7.4 that sin and cos are linearly independent. Hence, (sin, cos) is a
basis of the solution space and its dimension equals 2. 2

7.2.4 Existence of a basis

So far, we have discussed the properties and implications of a finite basis but we have
not worried about its existence.

Theorem 7.2 Let V be a vector space spanned by vectors v1, . . . ,vm.

(i) V has a basis and, hence, a well-defined dimension.
(ii) Any linearly independent vectors w1, . . . ,wk ∈ V can be completed to a basis.
(iii) If n = dimF(V ), linearly independent vectors w1, . . . ,wn ∈ V form a basis.

Proof (i) By assumption, V is spanned by the vectors v1, . . . ,vm. If these vectors
are linearly independent, we have found a basis. If not, we know from Prop. 7.3 that
one of the vectors, say vm, can be removed without changing the span, so that V =
Span(v1, . . . ,vm−1). This process can be continued until the remaining set of vectors
is linearly independent and, hence, forms a basis.

(ii) If the linearly independent vectors w1, . . . ,wk already span V we are finished. If not
there exists a vector wk+1 /∈ Span(w1, . . . ,wk) and the vectors w1, . . . ,wk,wk+1 must
be linearly independent (see Exercise 7.9). We can continue this process of adding new
vectors for as long as the span does not equal V . It terminates when we have collected
n = dimF(V ) vectors as finding n + 1 linearly independent vectors would contradict
the Exchange Lemma 7.1.
(iii) If dimF(V ) = n and the linearly independent set w1, . . . ,wn did not span V
then, for the same reason as in the proof of (ii), we could find a vector wn+1 /∈
Span(w1, . . . ,wn) so that w1, . . . ,wn,wn+1 are linearly independent. However, this
contradicts the exchange lemma. Hence, the vectors w1, . . . ,wn must span the space
and they form a basis. 2

The main conclusion from this theorem is that every vector space which is spanned
by a finite number of vectors has a basis and, hence, a well-defined dimension. Such
vector spaces are also called finite-dimensional. All other vector spaces, which cannot
be spanned by a finite number of vectors, are called infinite dimensional.

In this book, we will primarily be concerned with finite-dimensional vector spaces,
although we present the occasional example which involves an infinite-dimensional
space. For instance, the space of all polynomials is infinite dimensional. Indeed, any
finite list of polynomials has a maximal degree and any polynomial with a degree
larger than this maximum cannot be in the span. Likewise, the spaces F([a, b],F) of
F-valued functions on the interval [a, b] (as well as its sub-spaces of continuous and
differentiable functions) are infinite-dimensional. The systematic discussion of such
infinite dimensional spaces leads into another area of mathematics, called functional
analysis, which is beyond the scope of this text (see, for example, Rynne and Youngson
2008).
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7.2.5 Properties of finite-dimensional vector spaces

What can we say about vector subspaces of finite-dimensional vector spaces? Intu-
itively, it seems their dimension should be bounded by the dimension of the ambient
vector space, so let us proof this.

Corollary 7.1 A vector subspace W ⊂ V of a finite-dimensional vector space is
finite-dimensional and dimF(W ) ≤ dimF(V ). Equality, W = V , holds iff dimF(W ) =
dimF(V ).

Proof Set n = dimF(V ). The subspace W cannot contain more than n linearly
independent vectors or else there would be a contradiction with the Exchange Lemma.
This shows that W is finite-dimensional and that dimF(W ) ≤ dimF(V ).

For the second part of the statement, clearly if W = V then dimF(W ) = dimF(V ).
Conversely, if dimF(W ) = dimF(V ), then a basis (w1, . . . ,wk) of W must, from The-
orem 7.2 (iii), also be a basis of V . Hence, W = Span(w1, . . . ,wk) = V . 2

This result combined with Theorem 7.2 means that every vector subspace of a finite-
dimensional vector space has a basis and a dimension. We have shown earlier that
every span is a vector subspace. Now we see that the opposite is also true. Every
vector subspace can be written as a span, for example, as the span of its basis.

Earlier, we have mentioned the intuitive interpretation of spans as lines, planes etc.
through 0. Now, we can introduce a more precise terminology which captures this
intuition. We call a k-dimensional vector subspace W ⊂ V a k-plane through 0, or
k-plane for short. A 0-plane is simple the trivial vector space {0}, a 1-plane is also
called a line, a 2-plane is called a plane and an (n − 1)-plane in an n-dimensional
vector space V is also called a hyperplane. An n-dimensional vector space V contains
k-planes through 0 for every k = 0, 1, . . . , n. To see this, start with a basis (v1, . . . ,vn)
of V and note that Span(v1, . . . ,vk) is a k-plane through 0.

Application 7.1 Vector spaces and magic squares

An entertaining application of vector spaces is to magic squares. Magic squares are 3×3 (say)
quadratic arrays of (rational) numbers such that all rows, all columns and both diagonals
sum up to the same total. To make contact with our discussion of vector spaces, we can think
of magic squares as matrices in the vector space M3,3(Q) of 3 × 3 matrices with rational
entries (seen as a vector space over the field Q). A simple example of a magic square is

M =

 4 9 2
3 5 7
8 1 6

 , (7.9)

where every row, column, and diagonal sums up to 15. Magic squares have long held a
certain fascination and an obvious problem is to find all magic squares.

In our context, the important observation is that magic squares form a vector subspace of
M3,3(Q). Let us agree that we add and scalar multiply magic squares in the same way as
matrices (see Example 6.3), that is, entry by entry. Then, clearly, the sum of two magic
squares is again a magic square, as is the scalar multiple of a magic square. Hence, from
Def. 6.2, the 3 × 3 magic squares form a vector subspace of M3,3(Q). The problem of
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finding all magic squares can now be phrased in the language of vector spaces. What is the
dimension of the vector (sub)space of magic squares and can we write down a basis for this
space?

It is relative easy to find the following three elementary examples of magic squares:

M1 =

 1 1 1
1 1 1
1 1 1

 , M2 =

 0 1 −1
−1 0 1

1 −1 0

 , M3 =

−1 1 0
1 0 −1
0 −1 1

 . (7.10)

It is also easy to show that these three matrices are linearly independent, using Eq. (7.5).
Setting a general linear combination to zero,

α1M1 + α2M2 + α3 +M3 =

 α1 − α3 α1 + α2 + α3 α1 − α2

α1 − α2 + α3 α1 α1 + α2 − α3

α1 + α2 α1 − α2 − α3 α1 + α3

 !
= 0 ,

immediately leads to α1 = α2 = α3 = 0. Hence, M1, M2, M3 are linearly independent and

Span(M1,M2,M3) ⊂M3,3(Q) (7.11)

is a three-dimensional vector space of magic squares. Therefore, the dimension of the magic
square space is at least three. Indeed, our example (7.9) is contained in Span(M1,M2,M3)
since M = 5M1 + 3M2 + M3. As we will see later (see Application 16.2), this is not an
accident. We will show that the dimension of the magic square space equals three and,
hence, that (M1,M2,M3) is a basis.

Exercises

(†=challenging)

7.1 Span of a subset
Let S ⊂ V be an arbitrary subset of a
vector space V and define Span(S) as
the set of all finite linear combinations
of vectors in S. Show that
(a) Span(S) is a vector subspace.
(b) If U ⊂ S is a vector subspace, then
dimF(U) ≤ dimF(Span(S)).
(c) S = Span(S) if and only if S is a
vector subspace.

7.2 Linear dependence and independence
Which of the following sets of vectors
are linearly independent? For each lin-
early dependent set, identify a maximal
subset of linearly independent vectors.
Provide detailed reasoning in each case.
(a) The R3 standard unit vectors
e1, e2, e3.

(b) The R3 vectors v1 = (0, 1, 1)T , v2 =
(1, 1, 1)T and v3 = (0, 0, 1)T .
(c) The R3 vectors v1 = (1, 0, 1)T , v2 =
(2, 3, 1)T and v3 = (1, 6,−1).
(d) The R4 vectors v1 = (1, 2, 0,−3)T ,
v2 = (2, 1, 1,−4)T and v3 =
(−3, 6,−4, 1)T .

7.3 Linear independence of functions
(a) Show that the functions sin(x),
sin(2x), and sin(3x) are linearly inde-
pendent.
(b) Are the functions sin(x), sin(2x) and
sin(x) cos(x) linearly independent?

7.4 Basis for polynomial vector spaces
Consider the vector space V = P3(F) of
at most cubic polynomials in x.
(a) Show that the monomials
(1, x, x2, x3) form a basis of V .
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(b) Show that (1, x, (3x2 − 1)/2, (5x3 −
3x)/2) is another basis of V .
(c) Find the coordinates of a general
cubic p(x) = a3x

3 + a2x
2 + a1x + a0

relative the bases in (a) and (b).

7.5 Basis and coordinates
Show that the vectors v1 = (1,−1, 0)T ,
v2 = (0, 1,−1)T and v3 = (2, 0, 1)T

form a basis of R3. Write a general vec-
tor v = (x, y, z)T ∈ R3 as a linear
combination of this basis. What are the
coordinates of v relative to the basis
(v1,v2,v3)?

7.6 Basis for matrix vector spaces
Consider the vector space M2,2(F) of
2× 2 matrices with entries in F.
(a) Show explicitly that the standard
unit matrices E(ij), where i, j = 1, 2,
form a basis ofM2,2(F) and, hence, that
its dimension is four.
(b) The symmetric 2× 2 matrices form
a vector subspace of M2,2(F) (see Ex-
ercise 6.7). Show that E(11), E(22), and
E(12) +E(21) form a basis of this vector
subspace and, hence, that its dimension
is three.
(c) Carry out a similar analysis for the
vector subspace of anti-symmetric 2× 2
matrices.

7.7 Solutions to differential equation†

Consider the differential equation

x2 d
2y

dx2
− 2x = 0

for real-valued functions y ∈ C2((0,∞)).
(a) Why does the set of solutions form
a vector subspace?
(b) Find a basis for this solution space,
assuming that its dimension is two.
(Hint: Try functions of the form y = xp,
for p ∈ R.)

7.8 2× 2 semi-magic squares†

Consider 2× 2 semi-magic squares, that
is, 2×2 matrices inM2,2(Q) whose rows
and columns sum up to the same total.
(a) Show that the 2 × 2 semi-magic
squares form a vector subspace of
M2,2(Q).
(b) Show that E(1,1)+E(2,2) and E(1,2)+
E(2,1) are semi-magic squares.
(c) Show that the matrices from (b)
form a basis of the 2 × 2 semi-magic
squares.

7.9 Linear independence†

Let v1, . . . ,vk ∈ V be linearly indepen-
dent vectors and v /∈ Span(v1, . . . ,vk).
(a) Show that any subset of {v1, . . . ,vk}
is also linearly independent.
(b) Show that the vectors v1, . . . ,vk,v
are linearly independent.
(c) Show that the vectors v1 +
v, . . . ,vk + v are linearly independent.
Is this statement still true if we drop the
condition v /∈ Span(v1, . . . ,vk)?
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Vector subspaces

In the previous chapter, we have seen that vector subspaces of an n-dimensional vector
space V are also finite-dimensional vector spaces with dimension k ≤ n. To capture
the geometrical intuition, we have called such k-dimensional vector subspace k-planes
through 0, with 1-planes also referred to as lines and 2-planes as planes.

It is natural to ask how vector subspaces relate to basic operations and structures on
sets such as set unions, set intersections or equivalence relations. Are these consistent
with the vector space structure and can they be used to create new vector subspaces
from given ones? If so what happens to the dimension? The results of this chapter
provide geometrical insight but will also be useful for the systematic development of
the subject, in particular for the understanding of linear maps.

8.1 Intersection and sum

Summary 8.1 For two vector subspaces U , W of a vector space V , the intersection
U ∩W and the sum U + W are both vector subspaces. A simple formula relates the
dimensions of these spaces. The two subspaces form a direct sum, U ⊕W , if they
intersect trivially. In this case, the dimension of U ⊕ W is simply the sum of the
dimensions of U and W .

8.1.1 Intersection of vector subspaces

We are working with an n-dimensional vector space V over F. An obvious question is:
What happens to vector subspaces under simple set-theoretical operations? Start with
two vector subspaces U,W ⊂ V and consider their intersection U ∩W . By verifying
the conditions in Def. 6.2, it is quite easy to show that the intersection is also a vector
subspace. First, 0 ∈ U ∩W , so the intersection is not empty. Consider two vectors
v1,v2 ∈ U ∩W in the intersection. This means both vectors must be in U and in W
and since either is a vector subspace, we conclude that v1 + v2 ∈ U and v1 + v2 ∈W .
But this means that v1 + v2 ∈ U ∩W . A similar argument shows that U ∩W is closed
under scalar multiplication.

8.1.2 Union and sum

Things are not so straightforward for the union U ∪W of two vector subspaces. By
thinking about simple examples, it should be immediately clear that the union is
usually not a vector subspace. For example, consider the two subspaces U = Span(e1)
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and W = Span(e2) of R2, that is, the two coordinate axes. Their union is merely both
coordinate axis while linear combinations of e1 and e2 lead to every vector in R2.
This example already points to a possible fix. Instead of the set-theoretical union, we
should form the sum

U +W := {u + w |u ∈ U , w ∈W} , (8.1)

which consists of all vectors u+w, where u ∈ U and w ∈W . It is easy to see that this
is a vector subspace. Consider two vectors v1,v2 ∈ U + W . By definition of U + W
they can be written as v1 = u1 + w1 and v2 = u2 + w2, where u1,u2 ∈ U and
w1,w2 ∈ W . Hence, v1 + v2 = (u1 + u2) + (w1 + w2) ∈ U + W which shows that
U +W is closed under vector addition. Similarly, it follows that U +W is closed under
scalar multiplication. We summarize these results in the following Lemma:

Lemma 8.1 For two vector subspaces W,U ⊂ V of a vector space V , both the inter-
section W ∩ U and the sum W + U are vector subspaces of V .

Proof This follows from the arguments above. 2

8.1.3 Dimension of vector space sums

What is the dimension of the sum U + W of two vector subspaces W and U? The
naive guess is that dimensions simply add up but this ignores a possible non-trivial
intersection U ∩W . The correct dimension formula is stated in the following theorem.

Theorem 8.1 For two vector subspaces U , W of a finite-dimensional vector space V
over F we have

dimF(U +W ) = dimF(U) + dimF(W )− dimF(U ∩W ) . (8.2)

Proof Set p = dimF(U ∩ W ), n = dimF(U), and m = dimF(W ) and start with
a basis BU∩W = (v1, . . . ,vp) of U ∩ W . This basis can be completed to a basis
BU = (v1, . . . ,vp,up+1, . . . ,un) of U and a to basis BW = (v1, . . . ,vp,wp+1, . . . ,wm)
of W . The expectation is that B = (v1, . . . ,vp,up+1, . . . ,un,wp+1, . . . ,wm) is then a
basis of U +W . This can be shown as follows. The set B contains as subsets the bases
BU and BW , so clearly B spans U + W . To show linear independence of B we start
with

p∑
i=1

αivi +

n∑
j=p+1

βjuj +

m∑
k=p+1

γkwk
!
= 0 (8.3)

and define the vector v as the first two terms in the sum on the left-hand side, so

v :=

p∑
i=1

αivi +

n∑
j=p+1

βjuj =⇒ v = −
m∑

k=p+1

γkwk . (8.4)

The definition of v means that v ∈ U and the second relation above that v ∈ W , so
v ∈ U ∩W . This means it can be written as some linear combination
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v =

p∑
i=1

α′ivi

of vector in BU∩W . Comparing this with the first Eq. (8.4), it follows from the unique-
ness of linear combinations relative to the basis BU that all βj = 0 (and that all
αi = α′i). Inserting βj = 0 into Eq. (8.3) linear independence of the basis BW then
implies that all αi = γk = 0. Hence, B is linearly independent and indeed a basis. The
dimension of U +W equals the number of basis elements in B. Counting these gives

dimF(U +W ) = |B| = p+ (n− p) + (m− p)
= n+m− p = dimF(U) + dimF(W )− dimF(U ∩W ) .

2

The dimension formula (8.2) has a simple interpretation. When summing up dimF(U)
and dimF(W ), the intersection U ∩ W is counted twice so its dimension has to be
subtracted once for the correct overall dimension of U +W .

Example 8.1 (Sum of vector subspaces)

In R3, consider two-dimensional vector subspaces U and W which intersect in a line
U ∩W .

R3

U

W

U ∩W

Clearly, U + W = R3, so that dimR(U + W ) = 3. This is matched by dimR(U) +
dimR(W )− dimR(U ∩W ) = 2 + 2− 1 = 3, in accordance with Eq. (8.2). 2

From Eq. (8.2) the dimension of the sum is always bounded from above by the sum of
the dimensions,

dimF(U +W ) ≤ dimF(U) + dimF(W ) , (8.5)

with equality if and only if the intersection U ∩W is trivial. The dimension of U ∩W
can be constrained in two ways, using Cor. 7.1. First, U ∩W is a vector subspace of
both U and W , so its dimension must be less equal than the dimensions of U and W .
Secondly, since U +W ⊂ V it follows that dimF(U +W ) ≤ dimF(V ). Combining these
statements with the dimension formula (8.2) leads to

min(dimF(U),dimF(W )) ≥ dimF(U ∩W ) ≥ dimF(U) + dimF(W )− dimF(V ) . (8.6)
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This result implies that two vector subspaces of sufficiently large dimension, relative to
the dimension of the total space, must intersect non-trivially. For example, two planes
in a three-dimensional space must at least intersect in a line and two three-dimensional
vector subspaces in a four-dimensional vector space must at least intersect in a plane.

8.1.4 Direct sums

If two vector subspaces U,W ⊂ V intersect trivially, that is, if U ∩W = {0}, then
the sum U + W is called a direct sum and is written as U ⊕W . A direct sum has
considerably nicer properties than merely a sum of two vector subspaces. For one,
dimensions simply add up,

dimF(U ⊕W ) = dimF(U) + dimF(W ) , (8.7)

as follows immediately from Eq. (8.2). We also have the following proposition:

Proposition 8.1 For two vector subspace U,W ⊂ V the following statements are
equivalent:

(i) The sum U +W is direct.
(ii) Every v ∈ U+W can be written uniquely as v = u+w, where u ∈ U and w ∈W .

Proof (i) ⇒ (ii): Assume that the sum U + W is direct, so U ∩ W = {0}. It is
clear that every vector v ∈ U ⊕ W can be written as in (ii) but we have to show
uniqueness. Start with two decompositions v = u1 + w1 = u2 + w2 where u1,u2 ∈ U
and w1,w2 ∈ W . It follows that u1 − u2 = w2 − w1 and the left-hand side of this
equation is an element of U while the right-hand side is an element of W . This means
that u1 − u2,w2 −w1 ∈ U ∩W but since U ∩W = {0} it follows that u1 = u2 and
w1 = w2.

(ii) ⇒ (i): Now assume that (ii) holds and consider a vector v ∈ U ∩W . The zero
vector 0 ∈ U +W can then be written as a sum of vectors in U and W in two ways,
namely 0 = 0 + 0 and 0 = v + (−v). This is only consistent with uniqueness if v = 0.
This shows that U ∩W = {0}, so that the sum is direct. 2

It is now easy to argue that a direct sum U ⊕W has an ’adapted’ basis obtained by
merging the vectors from the bases of U and W .

Corollary 8.1 Let U,W ⊂ V be two subspaces which form a direct sum, with bases
(u1, . . . ,um) and (w1, . . . ,wk), respectively, Then, (u1, . . . ,um,w1, . . . ,wk) is a basis
of U ⊕W .

Proof Any vector v ∈ U⊕W can be written as v = u+w, where u ∈ U and w ∈W
are unique. Further, u and w each have a unique expansion in terms of the bases on
U and W . Combining these two steps, we see that every v ∈ U ⊕W can be written
as a unique linear combination of (u1, . . . ,um,w1, . . . ,wk). From Cor. 7.4 this means
that (u1, . . . ,um,w1, . . . ,wk) is a basis of U ⊕W . 2

Direct sums are a very useful tool for linear algebra constructions and proofs, as
they can be used to break up the vector space into smaller, often more manageable
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subspaces. For example, the diagonalization of linear maps and the Jordan normal
form are based on direct sum decompositions, as we will see in Part VI.

8.1.5 Direct sums of vector spaces

We have studied (direct) sums U ⊕ W for vector spaces U and W which are both
vector subspaces of an ’ambient’ vector space V . But can we make sense of the sum
U ⊕W if U and W are not, a priori, contained in some larger vector space but are
merely two abstract vector spaces over the same field F?

In this case, we can proceed by constructing an ambient vector space which contains
U and W . To do this, we observe that the Cartesian product U ×W can be made into
a vector space by defining vector addition and scalar multiplication as

(u,w) + (ũ, w̃) := (u + ũ,w + w̃) , α(u,w) := (αu, αw) , (8.8)

where (u,w), (ũ, w̃) ∈ U ×W , and α ∈ F. This vector space has two obvious vector
subspaces, Û = {(u,0) |u ∈ U} and Ŵ = {(0,w) |w ∈ W}, which can be identified
with U and W , respectively. It is also clear that U ×W = Û + Ŵ and that Û ∩ Ŵ =
{(0,0)}, so we have, in fact, a direct sum U ×W = Û ⊕ Ŵ . Given the identifications
U ∼= Û and W ∼= Ŵ this direct sum is, by slight abuse of notation, also written as
U⊕W . Everything we have said about direct sums of vector subspaces in Section 8.1.4
can now be applied to this construction. In particular, the dimension formula (8.7)
remains valid and we can construct a basis of U ⊕W by combining bases for U and
W , as stated in Cor. 8.1.

8.2 Quotient spaces*

Summary 8.2 A vector subspace W ⊂ V can be used to define an equivalence re-
lation on V . The associated equivalence classes are called cosets or affine k-planes.
The quotient V/W forms a vector space with dimension dimF(V )− dimF(W ).

Quotient vector spaces are a very useful way of ’course-graining’ a vector space by
dividing out a vector subspace. The elements of the quotient vector space V/W are
equivalence classes of vectors under an equivalence relation which declares two vectors
as related if their difference is contained in the vector subspace W . The construction
leads to an elegant proof of the isomorphism and rank theorems, as will be discussed
in Section 14.3. However, it may seem somewhat abstract to the beginner and can be
omitted at first reading.

8.2.1 Equivalence relation and cosets

Consider a vector space V and a vector subspaceW ⊂ V with dimension k = dimF(W ).
We say that two vectors in V are related if their difference is a vector in W , so

v1 ∼ v2 :⇔ v1 − v2 ∈W . (8.9)

It is not hard to show that this defines an equivalence relation (Exercise 8.3). The
associated equivalence classes are called cosets or affine k-planes, and their explicit
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form is v + W := {v + w |w ∈ W}, where v ∈ V . Cosets are typically not vector
subspaces as, for example, they do not need to contain the zero vector. They are
obtained by ’shifting’ the subspace W by vectors v, as indicated in Fig. 8.1. The set

V

v
W

v + W

Fig. 8.1 The relationship between k-planes W and affine k-planes v +W .

of all cosets

V/W := {v +W |v ∈ V } , (8.10)

is called the quotient V/W of V by W .

Example 8.2 (Vector space quotient in R2)

In R2, consider a non-zero vector w and the one-dimensional vector subspace W :=
Span(w). The equivalence classes under the relation (8.9) are then the lines parallel
to W and the quotient R2/W consists of all these lines. In the figure below, we have
indicated some of these lines, given by kv + W , where v is a fixed vector and k =
−2,−1, 0, 1, 2.

R2

w
v

2v + W

v + W

W = Span(w)

−v + W

−2v + W

v1

v2

v1
− v2

Note that the two vectors v1 and v2 indicated in the figure are related since v1−v2 ∈
W and are, hence, both contained in the same equivalence class, in this case the line
v +W . 2
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8.2.2 Quotient vector space

Can the quotient space V/W be given the structure of a vector space and, if so, how
should we define addition and scalar multiplication? It seems intuitive that addition of
two affine k-planes should involve addition of all vectors of the first plane to all vectors
of the second one. Likewise, for scalar multiplication all vectors in an affine k-plane
should be multiplied by the scalar. In other words, addition and scalar multiplication
on V/W should be defined as

(v1 +W ) + (v2 +W ) := (v1 + v2) +W , α(v +W ) := (αv) +W , (8.11)

where α ∈ F and v1,v2,v ∈ V . These definitions simply rely on the vector space
structure on V and, therefore, trivially satisfy all the vector space axioms in Def. 6.1.
The zero vector in V/W is simply the vector subspace W .

Theorem 8.2 Let V be a vector space over F and W ⊂ V a vector subspace. Then
the quotient space V/W is also a vector space over F with vector addition and scalar
multiplication as defined in Eq. (8.11). Its dimension is

dimF(V/W ) = dimF(V )− dimF(W ) . (8.12)

Proof What remains to be done is to proof the dimension formula. We set n :=
dimF(V ) and k := dimF(W ) and start by introducing a basis BW := (w1, . . . ,wk) of
W . This basis can be completed to a basis BV := (w1, . . . ,wk,v1, . . . ,vn−k) of V ,
using Theorem 7.2 (ii). We claim that B := (v1 +W, . . . ,vn−k +W ) is a basis of the
quotient V/W .

First, we show that B spans the quotient V/W . Start with an arbitrary vector
v +W ∈ V/W and write v as a linear combination

v =

k∑
i=1

αiwi +

n−k∑
i=1

βivi

of the basis BV . Then we have

v +W =

k∑
i=1

αiwi +

n−k∑
i=1

βivi +W =

n−k∑
i=1

βivi +W =

n−k∑
i=1

βi(vi +W ) ,

which shows that B spans V/W .
For linear independence, start with

n−k∑
i=1

αi(vi +W ) = 0 ⇒
n−k∑
i=1

αivi ∈W

where the second statement follows because the zero ’vector’ in V/W is really the
entire vector subspace W . We need to show that all αi = 0. Since BW is a basis of W
this means we can find scalars βi such that

n−k∑
i=1

αivi = −
k∑
i=1

βiwi ,

and linear independence of BV then implies that all αi = 0.
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In conclusion, B is a basis of V/W and

dimF(V/W ) = |B| = n− k = dimF(V )− dimF(W ) .

2

Note that the dimension formula (8.12) is in line with the intuitive idea of dividing by
a vector subspace W . Taking the quotient ’removes’ W (the entirety of W becomes
the zero vector of V/W ) and, hence, in passing from V to V/W , the dimension reduces
by dimF(W ).

Exercises

(†=challenging)

8.1 Dimension formula for an example
For V = R3 the vector subspace U is
spanned by u1 = i + 2j, u2 = k and
the vector subspace W is spanned by
w1 = j + k, w2 = −i + 2j. Explicitly
verify the dimension formula (8.2) for
this example.

8.2 Intersections
Consider two 3-planes in R4. What are
the possible dimensions for their inter-
sections? Provide an explicit example
for each case.

8.3 Show that Eq. (8.9) defines an equiv-
alence relation and find the associated
equivalence classes.

8.4 Quotients
In V = R3 consider the vector subspace
W spanned by i and j (’the x–y plane’).
What are the cosets in V/W and what
is the dimension of V/W?

8.5 Quotients in polynomial vector spaces
Consider the polynomial vector space
V = P3(R) and its vector subspace
W = {ax + b | a, b ∈ R} ⊂ V . Work
out the dimensions of V , W , and V/W

and use the result to verify the dimen-
sion formula (8.12). Describe the cosets
in V/W .

8.6 General sums of vector spaces
Let W1, . . . ,Wk ⊂ V be vector sub-
spaces and define the sum W := W1 +
· · ·+Wk = {w1+· · ·+wk |wi ∈Wi, i =
1, . . . , k}. Show that
(a) W = Span(W1 ∪ . . .∪Wk). (See Ex-
ercise 7.1.)
(b) W is a vector subspace.

(c) dimF(W ) ≤
∑k
i=1 dimF(Wi).

8.7 Generalizing directs sums†

Vector subspaces W1, . . . ,Wk ⊂ V are
said to form a direct sum W = W1 ⊕
· · · ⊕Wk if
(i) W = W1 + · · ·+Wk.
(ii) w1 + · · ·+ wk = 0 for wi ∈ Wi im-
plies that all wi = 0.

If W = W1 ⊕ · · · ⊕Wk show that
(a) every w ∈ W can be uniquely writ-
ten as w = w1 + · · · + wk, where wi ∈
Wi.
(b) combining bases of W1, . . . ,Wk into
a single list gives a basis for W .
(c) dimF(W ) =

∑k
i=1 dimF(Wi).



Part III

Basic geometry

In this part, we pause the systematic development of the subject, and turn to a num-
ber of more practical topics, related to elementary geometry. One of the dilemmas of
presenting a linear algebra course for scientists is that some of the practical methods
needed early on in science, such as dot and cross products, only appear relatively late
in the systematic mathematical development of the subject. The present part intends
to address this problem. We focus on coordinate vector in Rn (and, for some parts,
in R3) and introduce the dot and cross products in a somewhat informal manner,
focusing on techniques for calculation and applications to the geometry of lines and
planes.

This is done for a number of reasons. For one, the reader has a chance to engage with
some of the practical methods used in science early on. The material developed in this
part is also a good source of examples to illustrate some of the more abstract ideas
which follow. Learning about new structures, such as the scalar product, in a special
and more familiar setting first may help getting to grips with the axiomatic approach
taken later on. As we go along, we will present powerful methods for calculation with
indices. These techniques are extremely useful for calculations but are rarely covered
in linear algebra textbooks.

School mathematics sometimes talks about vectors as objects with ’length and direc-
tion’. Such a statement lacks the rigour required for a mathematical definition but,
worse, it is also seriously misleading. Vector spaces and vectors have been defined in
Def. 6.1 and the words ’length’ and ’direction’ have not even been mentioned. Vectors
are elements of vector spaces, objects which can be added and scalar multiplied, sub-
ject to a number of rules. Length and direction play no role at this level. Of course, we
can still talk about length and direction of vectors but we do need more structure —
in addition to the vector space structure — to do this. The required structure is that
of a scalar product on a vector space. Its simplest incarnation, the dot product on Rn,
will be introduced in the next chapter. It allows us to introduce the length and the
direction of vectors as well as angles between vectors and the notion of orthogonality.

In Chapter 10 we introduce the cross product in R3. From a mathematical point of
view, the cross product is a somewhat exotic operation whose natural home is in ad-
vanced (multi-) linear algebra, and we will return to the subject in our discussion of
tensors in Chapter 27. However, the cross product is widely used in scientific applica-
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tions and should be discussed early on. On a geometrical level, the cross product is a
method to obtain orthogonal vectors and it will be introduced with this motivation in
mind. Combining the dot and cross products leads to the triple product on R3 which
is, in fact, the same as the determinant in three dimensions. This provides an oppor-
tunity to develop some properties of the determinant in a special case, before general
determinants are introduced in Chapter 18.

In the final Chapter 11 of this part, we apply some of the new tools to elementary
geometry, mainly the geometry of lines and planes in R2 and R3.
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The dot product

Geometry often requires the notion of a length of a vector and an angle between
vectors. As we have emphasized above, a vector space by itself does not provide for
these notions, so we require additional structure.

9.1 Basic properties

Summary 9.1 The dot product · : Rn × Rn → Rn is a bi-linear, symmetric, and
positive map. For two vectors v,w ∈ Rn it is defined by v ·w = v1w1 + · · ·+ vnwn.

What should we require for a structure on Rn which can provide us with an angle
between two vectors? Above all, since the angle is a scalar quantity, we require a map
· : Rn×Rn → R which assigns to a pair of vectors (v,w) a scalar, which we denote by
v ·w. The angle should not depend on the ordering of the two vectors so we should
demand that v · w = w · v. Since linearity is a key feature of vector spaces it also
makes sense to demand that the map (v,w)→ v ·w is linear, in the same sense as a
linear map (see Def. 6.3), in each of its two arguments. Finally, for a notion of length
we need to impose a positivity condition.

9.1.1 Definition of dot product

It turns out that these simple requirements are satisfied by the dot product on Rn
which is defined as

· : Rn × Rn → R
(v,w) 7→ v ·w

}
v ·w = v1w1 + · · ·+ vnwn =

n∑
i=1

viwi . (9.1)

It is customary to omit the sum symbol in this definition and simply write

v ·w = viwi , (9.2)

adopting the convention that an index which appears twice in a given term (such as
the index i in the present case) is summed over. This is also referred to as the Einstein
summation convention. This convention is routinely used in Einstein’s general theory of
relativity which suffers from a proliferation of indices but it also facilitates a simplified
notation and more effective computations in many other contexts. We will soon see
explicit examples.
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Problem 9.1 (Dot product)

Work out the dot product of the R3 vectors v = (1, 3,−2)T , w = (5, 2, 4)T , and of the R4

vectors r = (1, 3, 2,−1)T , s = (0,−4, 7, 5)T .

Solution:

v ·w =

 1
3
−2

 ·
 5

2
4

 = 1 · 5 + 3 · 2 + (−2) · 4 = 3

r · s =

 1
3
2
−1

 ·
 0
−4

7
5

 = 1 · 0 + 3 · (−4) + 2 · 7 + (−1) · 5 = −3

9.1.2 Properties of the dot product

The following proposition shows that the dot product does indeed satisfy the require-
ments of linearity, symmetry, and positivity, discussed above.

Proposition 9.1 The dot product on Rn satisfies the following properties for all
v,w,u ∈ Rn and all α ∈ R.

(D1) v · (w + u) = v ·w + v · u and v · (αw) = α(v ·w) (linearity)
(D2) v ·w = w · v (symmetry)
(D3) v · v > 0 for all v 6= 0 (positivity)

Proof This is our first opportunity to compute with indices, using the Einstein sum-
mation convention 9.2.

(D1) v · (w + u) = vi(w + u)i = vi(wi + ui) = viwi + viui = v ·w + v · u
v · (αw) = vi(αw)i = αviwi = α(v ·w)

(D2) v ·w = viwi = wivi = w · v
(D3) (v,v) =

∑
i v

2
i > 0 for v 6= 0.

Note that the components vi, wi, ui are just numbers, not vectors, so all the rules for
calculating in a field can be applied. This feature is one of the strengths of index cal-
culations (which comes at the price of having to deal with indexed objects). This is
the reason we are allowed to use the distributive law in the proof for (D1) or reverse
the order, viwi = wivi, in the proof for (D2). 2

The condition (D1) is indeed a linearity condition, similar to the one for linear maps
in Def. 6.3, on the second argument of the dot product. Since the dot product is
symmetric, linearity in the second argument immediately translates into linearity in
the first argument.

(w + u) · v (D2)
= v · (w + u)

(D1)
= v ·w + v · u (D2)

= w · v + u · v

(αw) · v (D2)
= v · (αw)

(D1)
= α(v ·w)

(D2)
= α(w · v)
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Hence, the dot product is bi-linear and this can be applied to arbitrary linear combi-
nations, so that (∑

i

αivi

)
·

∑
j

βjwj

 =
∑
i,j

αiβj(vi ·wj) . (9.3)

The properties in Prop. 9.1 will be used later to define general scalar products axiomat-
ically, much as the rules for calculating with coordinate vectors inspire the general
definition of vector spaces.

9.2 Length and angle

Summary 9.2 The Euklidean norm | · | : Rn → R≥0 is defined in terms of the dot
product. It is positive, it scales under scalar multiplication and, as a result of the
Cauchy–Schwarz inequality, it satisfied the triangle inequality. The Cauchy–Schwarz
inequality also facilitates the definition of an angle between two vectors, in terms of
the dot product and the Euklidean norm.

Our original motivation for introducing the dot product was to facilitate the notions
of length and angle. We begin by explaining how the dot product can be used to define
length.

9.2.1 Definition of length

The (Euklidean) length (or norm) on Rn is defined as

| · | : Rn → R≥0

v 7→ |v|

}
|v| =

√
v · v =

(
n∑
i=1

v2
i

)1/2

. (9.4)

The square root in this definition makes sense because of the positivity property (D3)
of the dot product. The length is strictly positive, except for the zero vector which has
length zero.

But this by itself is not enough to convince us that the above is a sensible notion
of length. For example, what happens to the length under scalar multiplication of a
vector?

|αv| =
√

(αv) · (αv) =
√
α2 v · v = |α|

√
v · v = |α| |v| . (9.5)

Evidently, if a vector is multiplied with a scalar α its length scales with the modulus
|α| 1. This certainly makes intuitive sense and explains why the square root has been
included in Eq. (9.4). (Otherwise, the length would scale with the square of the scalar.)

1The notation | · | indicates the length of a vector whenever the argument is vectorial and the (real
or complex) modulus whenever the argument is a scalar.
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The property (9.5) allows us to define, for any non-zero vector v ∈ Rn, an associated
vector n with unit length given by

n = |v|−1v ⇒ |n| = ||v|−1v| (9.5)
= |v|−1|v| = 1 . (9.6)

We can think about this vector n as the direction of v. Vectors with unit length are
also called unit vectors for short.

Problem 9.2 (Euklidean length)

Work out the length of the vectors v = (3, 4)T , w = (−1, 1, 2)T , and u = (−3, 2,−1, 1)T .
What is the unit vector associated to v?

Solution:

|v| =
√

32 + 42 = 5 , |w| =
√

(−1)2 + 12 + 22 =
√

6

|u| =
√

(−3)2 + 22 + (−1)2 + 12 =
√

15

The unit vector associated to v is n = v/|v| = (3, 4)T /5.

9.2.2 The Cauchy–Schwarz inequality

The remaining geometrical notion we still need to define is the angle between two
vectors. To this end, we need to prove an important and famous inequality which
relates the dot product and the length.

Theorem 9.1 (Cauchy–Schwarz inequality) For any two vectors v,w ∈ Rn we have

|v ·w| ≤ |v| |w| . (9.7)

Equality holds if and only if v and w are multiples of each other.

Proof The proof is a bit tricky. We start by considering two unit length vectors
a,b ∈ Rn, so |a| = |b| = 1. A quick calculation shows that

0 ≤ |a± b|2 (9.4)
= (a± b) · (a± b)

(9.3)
= |a|2 ± 2a · b + |b|2 = 2(1± a · b) , (9.8)

and, hence, that |a · b| ≤ 1. Now consider arbitrary vectors v and w. If one of these
vector is zero then (9.7) is satisfied since both sides equal zero. We can therefore
assume that both v and w are non-zero. In this case we can introduce the unit vectors
a := |v|−1v and b := |w|−1w. The earlier result |〈a,b〉| ≤ 1 translates into

|v ·w| = |(|v|a) · (|w|b)| (9.3)
= |v| |w| | |a · b| ≤ |v| |w| ,

which proves the Cauchy–Schwarz inequality.
It remains to prove the second statement about equality. If v and w are multiples

of each other, for example w = αv, then

v ·w = v · (αv)
(D1)
= αv · v (9.4)

= α|v|2 = |v|(α|v|) (9.5)
= |v| |αv| = |v| |w| ,

so that (9.7) is indeed satisfied with an equality.
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Conversely, assume that |v ·w| = |v| |w| and we want to show that v and w are
multiples of each other. If one of the vectors is zero the statement holds trivially (as
the zero vector is a multiple of any vector with 0), so we can again assume both v and
w are non-zero. Their directions a = |v|−1v and b = |w|−1w then satisfy |a · b| = 1
which shows that the right-hand side of Eq. (9.8) vanishes for one choice of sign.
Therefore, |a ± b| = 0 and, from (D3), b = ∓a for one of the signs. It follows that
w = |w|b = ∓|w|a = ∓|w| |v|−1v and, hence, that w is a multiple of v. 2

9.2.3 Properties of the length

The Cauchy–Schwarz inequality implies another important inequality for the length,
the triangle inequality |v + w| ≤ |v| + |w|. (For its geometrical interpretation see
Fig. 9.1.) It follows from the short calculation

|v + w|2 (9.4)
= (v + w)2 (9.3)

= |v|2 + |w|2 + 2 v ·w ≤ |v2 + |w|2 + 2 |v ·w|
(9.7)

≤ |v|2 + |w|2 + 2 |v| |w| = (|v|+ |w|)2 . (9.9)

The following proposition summarizes the properties of the Euklidean length on Rn.

v w

v + w

Fig. 9.1 Geometrical interpretation of the triangle inequality. The length |v+w| of one side

of the triangle is always less equal than the sum |v|+ |w| for the other two sides.

Proposition 9.2 The Euklidean length (norm) | · | : Rn → R≥0 defined in Eq. (9.4)
has the following properties, for all v,w ∈ Rn and all α ∈ R.

(N1) |v| > 0 for v 6= 0 (positivity)
(N2) |αv| = |α| |v| (scaling)
(N3) |v + w| ≤ |v|+ |w| (triangle inequality)

Proof (N1) is immediately evident from the definition (9.4). (N2) and (N3) have
been shown in Eqs. (9.5) and (9.9), respectively. 2

The properties in this proposition are what one would intuitively require from a sen-
sible notion of length and they justify the definition in Eq. 9.4. Later, in Chapter 22,
we will use these properties to define the general notion of norms on vector spaces
axiomatically.

9.2.4 The angle between vectors

The Cauchy–Schwarz inequality (9.7) implies for any two non-zero vectors v,w ∈ Rn
that
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− 1 ≤ v ·w
|v| |w|

≤ 1 . (9.10)

This means there is a unique θ ∈ [0, π] such that

cos(θ) =
v ·w
|v| |w|

. (9.11)

This quantity θ is called the angle between the two vectors v and w and is also denoted
by ^(v,w). By rearranging Eq. (9.11), we can write the dot product as

v ·w = |v| |w| cos(^(v,w)) , (9.12)

and this equation suggests the geometrical interpretation of the dot product indicated
in Fig. 9.2.

w

v|w| cos(θ)
θ

Fig. 9.2 Geometrical interpretation of the dot product which is obtained by multiplying |v|
with |w| cos(θ), the length of the projection of w into the direction of v.

Problem 9.3 (Angle between vectors)

Is the above definition of the angle between two vectors sensible and does it match our
geometrical intuition? Find arguments that this is indeed the case.

Solution: A non-zero vector v should form an angle 0 with itself. Since cos^(v,v) = v ·
v/|v|2 = 1 this is indeed the case (and can be seen as the motivation for using the cos, rather
than the sin, in the definition). We also have cos^(v,−v) = (v · (−v))/|v|2 = −1, so that
^(v,−v) = π, the expected result for the angle between a vector and its negative.

We can also check that the definition of the angle is consistent with the geometrical
definition of the cosine function. Think of Fig. 9.2 in R2 with the vector v = |v|e1 along the
x-axis and w = (w1, w2)T . Then, the geometrical definition of the cosine function says that
cos(θ) = w1/|w|. On the other hand, the angle from Eq. (9.11) is

cos(θ) =
v ·w
|v| |w| =

|v| (e1 ·w)

|v| |w| =
w1

|w| ,

which does indeed give the same result.

Problem 9.4 (Calculating the angle)

Calculate the angle ^(v,w) between the vectors v = (2, 4,−2)T and w = (2, 1, 1). Do the
same for the vectors r = (1, 0, 1, 1)T and s = (2, 1, 0, 1)T .
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Solution: With v ·w = 6, |v| = 2
√

6, and |w| =
√

6, we have from Eq. (9.11)

cos^(v,w) =
6

2
√

6 ·
√

6
=

1

2
⇒ ^(v,w) =

π

3
.

From r · s = 3, |r| =
√

3, and s =
√

6, it follows that

cos^(r, s) =
3√

3 ·
√

6
=

1√
2
⇒ ^(r, s) =

π

4
.

Note that this last example in four dimensions is difficult to visualize. Yet, there is no problem
computing the angle — having a precise definition pays off!

9.3 Orthogonality

Summary 9.3 Two vectors in Rn are defined to be orthogonal if their dot product
vanishes. Two non-zero vectors are orthogonality iff they form an angle π/2. The dot
product can be expressed in terms of the Kronecker delta symbol, which is a useful
tool for calculating with indices. A basis of Rn is called orthonormal if it consists of
pairwise orthogonal unit vectors.

9.3.1 Definition of orthogonality

Two vectors v,w ∈ Rn are called orthogonal or perpendicular, also written as v ⊥ w,
if v ·w = 0. This definition means that every vector is orthogonal to the zero vector
but, more importantly, for two non-zero vectors v,w ∈ Rn the angle formula (9.12)
for the dot product implies that

v ⊥ w ⇔ ^(v,w) =
π

2
. (9.13)

Our definition makes sense: two non-zero vectors are orthogonal if and only if they
form an angle π/2.

Problem 9.5 (Orthogonality)

Are the vectors v = (1, 3,−1, 2)T and w = (0, 1/2, 1,−1/4)T orthogonal? Find a vector
orthogonal to r = (3, 2)T .

Solution: Since v · w = 1 · 0 + 3 · (1/2) + (−1) · 1 + 2 · (−1/4) = 0 the vectors are indeed
orthogonal.

A vector perpendicular to r can be obtained by exchanging its two components and
multiplying one of them with −1, leading, for example, to s = (−2, 3). Indeed, r · s =
3 · (−2) + 2 · 3 = 0.

The notion of orthogonality is a very useful tool for geometry, as the following example
illustrates.
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Example 9.1 (Projections along a vector)

Consider a unit vector n ∈ Rn and define a map pn : Rn → Rn by pn(w) = (n ·w)n.
Comparison with Fig. 9.2 (setting v = n in the figure) shows that pn(w) should be
thought of as the projection of w in the direction of n. It is clear that pn is a linear
map, due to the linearity of the scalar product. Moreover, using linearly of pn and
n · n = 1, it follows that

pn(pn(w)) = pn((n ·w)n) = (n ·w) pn(n) = (n ·w) (n · n)n = (n ·w)n = pn(w) .

This means that pn ◦ pn = pn, a property characteristic for projectors: applying the
projection a second time does not have an effect. Using the above projection we can

w

n w‖ = (n ·w)n

w⊥ = w − (n ·w)n

Fig. 9.3 Decomposing a vector w into a component w‖ along a unit vector n and a compo-

nent w⊥ orthogonal to n.

show that every vector w ∈ Rn can be written as a unique sum w = w‖ + w⊥,
where w‖ is a multiple of the vector n and w⊥ is orthogonal to n. Indeed, if we write
w‖ = αn, then the scalar α is determined by

n ·w = n · (αn + w⊥) = α ,

and, hence, w‖ = (n · w)n = pn(w) is uniquely fixed. This fixes w⊥ uniquely to
w⊥ = w −w‖ and since

n ·w⊥ = n · (w −w‖) = n ·w − (n ·w) (n · n) = 0

it is indeed orthogonal to w‖. In summary, for every vector w ∈ Rn we have the unique
decomposition

w = w‖ + w⊥ , w‖ = pn(w) = (n ·w)n , w⊥ = w −w‖ = w − (n ·w)n (9.14)

into a component w‖ along the unit vector n and a component w⊥ orthogonal to n.
This is illustrated in Fig. 9.3. 2

9.3.2 The Kronecker delta symbol

The vector space Rn has a canonical basis of standard unit vectors (e1, . . . , en). Recall,
that the ith component of ei equals one, while all other components are zero. This
implies that all standard unit vectors have length one, |ei| = 1, and that they are
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mutually orthogonal, ei ·ej = 0 for i 6= j. These two properties are often written more
concisely as

ei · ej = δij where δij =

{
1 for i = j
0 for i 6= j

. (9.15)

The symbol δij is called the Kronecker delta symbol. Its value depends on the value
of its two indices and is equal to 1 if the indices are equal and 0 if they are not.

The Kronecker delta is a very useful tool for calculations with indices. At the most
basic level it acts as an ’index replacer’, meaning that

δijvj = vi (9.16)

for a vector v with components vi. In Eq. (9.16) we have used the Einstein summation
convention: the index j appears twice in the term on the left and is, hence, summed over
(a ’summation index’) while the index i labels different components of the equation (a
’free index’). Given these conventions it is easy to argue that Eq. (9.16) is correct. The
only term from the sum over j which contributes is the one for j = i (since δij = 0 for
i 6= j), giving vi.

Another useful property of the Kronecker delta is

δii = n . (9.17)

Here, the index i appears twice so it is summed over. It runs over the values i =
1, . . . , n, each of which contributes 1 to the sum, for a total of n.

The dot product can also be expressed in terms of the Kronecker delta as

v ·w = viwi = δijviwj , (9.18)

where the second equality follows from Eq. (9.16).

9.3.3 Orthonormal basis

Orthogonality and linear independence relate in an interesting way.

Proposition 9.3 Non-zero vectors v1, . . . ,vk ∈ Rn which are pairwise orthogonal, so
vi · vj = 0 for all i 6= j, are linearly independent.

Proof Consider the equation
∑
j αjvj = 0. For linear independence, we need to show

that it is only solved if all αj = 0. If we take the dot product of this equation with
vi we find, given that vi · vj = 0 for j 6= i, that |vi|2 αi = 0. Dividing this by |vi|2
(which is non-zero since the vectors vi are non-zero) we have αi = 0. This holds for
all i = 1, . . . , n, so linear independence follows. 2

This result can be paraphrased by saying that ’orthogonality implies linear indepen-
dence’ and it motivates defining the concept of a basis consisting of mutually orthog-
onal (unit) vectors.

Definition 9.1 A basis (ε1, . . . , εn) of Rn is called an orthonormal basis if εi ·εj = δij
for all i, j = 1, . . . , n.
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Orthonormal bases have considerably nicer properties than general bases. For example,
it is easy to compute the coordinates of a vector relative to an orthonormal basis since

v =

n∑
j=1

αjεj ⇔ αi = εi · v . (9.19)

This follows simply by taking the dot product of the equation on the left with εi which
gives

εi · v =

n∑
j=1

αj εi · εj =

n∑
j=1

αjδij = αi .

By virtue of Eq. (9.15) the standard unit vectors form an ortho-normal basis of Rn
and the coordinates of a vector v relative to this basis are the components ei · v = vi.
But there are other, less simple orthonormal bases, as the following exercise shows.

Problem 9.6 (Orthonormal basis)

Find an orthonormal basis (ε1, ε2) of R2 which is different from the standard unit vector
basis. Find the coordinates of a vector v = (v1, v2)T relative to this basis, first by explicitly
solving the equations, similar to Exercise 7.5, and then by using Eq. (22.15).

Solution: A possible choice for an orthonormal basis (ε1, ε2) on R2 is

ε1 =
1√
2

(
1
1

)
, ε2 =

1√
2

(
1
−1

)
.

Indeed, |ε1| = |ε2| = 1 and ε1 · ε2 = 0.
We start with the pedestrian way to find the coordinates. Writing an arbitrary vector as

v = (v1, v2)T = α1ε1 + α2ε2 and inserting (ε1, ε2) from above gives(
v1

v2

)
=

1√
2

(
α1 + α2

α1 − α2

)
.

Splitting up into the two components, v1 = (α1 +α2)/
√

2 and v2 = (α1−α2)
√

2, and solving

for αi then leads to the desired result, α1 = (v1 + v2)/
√

2 and α2 = (v1 − v2)/
√

2, for the
coordinates.

On the other hand, we can use Eq. (22.15) to find the same result

α1 = ε1 · v =
1√
2

(
1
1

)
·
(
v1

v2

)
=

1√
2

(v1 + v2)

α2 = ε2 · v =
1√
2

(
1
−1

)
·
(
v1

v2

)
=

1√
2

(v1 − v2)

somewhat more directly and efficiently.

Orthonormal bases are of great importance for vector spaces with scalar products and
we will return to the subject in Chapter 22.
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Application 9.1 (Projections and graphical representation)

In Example 9.1 we have seen how to project a vector v ∈ R3 into the direction of a unit
vector n ∈ R3. We would like to use this method to graphically represent three-dimensional
objects, defined by a set of vectors in R3. One way to tackle this problem is to define a
linear map P : R3 → R2 whose images provide the points which need to be plotted in two
dimensions.

We start by introducing spherical polar coordinates (r, θ, ϕ), where r ∈ [0,∞), θ ∈ [0, π]
and ϕ ∈ [0, 2π), such that any vector x ∈ R3 can be written as

x = r(sin θ cosϕ, sin θ cosϕ, cos θ)T . (9.20)

Associated to these coordinates we introduce the three vectors

er = (sin θ cosϕ, sin θ cosϕ, cos θ)T

eθ = (cos θ cosϕ, cos θ sinϕ,− sin θ)T

eϕ = (− sinϕ, cosϕ, 0)T
(9.21)

which are easily checked to form an ortho-normal basis of R3 for any value of θ and ϕ. The
geometrical interpretation of these vectors and of the angles θ and ϕ is indicated in the
figure below.

x

y

z
x

w

θ

ϕ

er

eθ

eϕ

The angle θ = ^(xw, e3) is the angle x forms with the z-axis and the angle ϕ = ^(w, e1) is
the angle between the x-axis and the projection w of x onto the x–y plane.

For our purposes we would like to think of er as the ’direction of viewing’ which can be
adjusted by changing the angles θ and ϕ. To obtain two-dimensional vectors we use the
coordinates of a vector v in the directions eθ and eϕ, so we define the map P as

Pθ,ϕ(v) = (v · eθ,v · eϕ)T . (9.22)

Let us apply this to the simple example of a tetrahedron with the four vertices

v1 = (1, 1, 1)T , v2 = (1,−1,−1)T , v3 = (−1, 1,−1)T , v4 = (−1,−1, 1)T ,

and edges lij connecting vi and vj given by lij = {vi + t(vj − vi) | t ∈ [0, 1]}. The result
of drawing the line segments Pθ,ϕ(lij) for values (θ, ϕ) = (π/9, π/6) + k(π, π)/18, where
k = 0, . . . , 5, is shown in the figure below.
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Exercises

(†=challenging)

9.1 Length, dot product, and angle
Find the lengths of the following vec-
tors and the dot products and the
(cosines of the) angles between them.
(a) v = (1,−1)T , u = (2, 1)T , w =
(−3, 1)T

(b) v = (1, 0, 1)T , u = (1, 2,−1)T ,
w = (3, 1,−2)T

(c) v = (1, 1, 1, 1)T , u = (1,−1, 1,−1),
w = (1, 2, 0,−1)T

9.2 For vectors v = (1,−1, 2)T and u =
(1, 1, 1)T find the scalar multiple αu for
which the ’distance’ |v − αu| is mini-
mal.

9.3 Find a vector of the form w =
(1, α, β)T , where α, β ∈ R, which is
orthogonal to v = (1, 3, 0)T and u =
(−1, 2,−1).

9.4 For two non-zero vectors v,w ∈ Rn,
show that ^(v,w) = π if and only if
w = αv for α < 0.

9.5 For z, ζ ∈ C, show that <(zζ̄) ≤ |z| |ζ|.
9.6 Triangle inequality†

(a) For vectors v,w ∈ Rn show that
|v −w| ≥ ||v| − |w||.
(b) For vectors v1, . . . ,vk ∈ Rn, show
that |v1 + · · ·+ vk| ≤ |v1|+ · · ·+ |vk|.

9.7 Index notation
(a) Convert the expressions v ·w, |v|2,
(v · w)(u · x), and (v · w)u − v into
index notation.
(b) Convert the expressions δijviwj ,
viwiujujxk, and viδijδjkwk into vector
notation.

9.8 Orthonormal basis
(a) Show that (ε1, ε2, ε3) with ε1 =

(1, 1, 0)T /
√

2, ε2 = (1,−1, 1)T /
√

2 and

ε3 = (1,−1,−2)T /
√

6 is an ortho-
normal basis of R3. Find the coor-
dinates of the vector v = (5,−4, 2)T

relative to this basis.
(b) Show the R4 vectors
ε1 = (1, 1, 1, 1)T /2 and ε2 =
(1, 1,−1,−1)T /2 are ortho-normal.
Find two further vectors ε3, ε4 such
that (ε1, ε2, ε3ε4) is an ortho-normal
basis of R4. Find the coordinates of a
general vector v = (v1, v2, v3, v4)T ∈
R4 relative to this basis.

9.9 Projectors from ortho-normal vectors
Let v1, . . . ,vk ∈ Rn be a set of ortho-
normal vectors. Show that the map
p : Rn → Rn defined by p(v) =∑k
i=1(v ·vi)vi is linear and that it sat-

isfies the projector condition p ◦ p = p.

9.10 Polar coordinates†

In R2 with vectors x = xe1 + ye2 in-
troduce polar coordinates r ∈ [0,∞)
and ϕ ∈ [0, 2π) by x = r cosϕ and
y = r sinϕ.
(a) With er := (cosϕ, sinϕ)T and
eϕ := (− sinϕ, cosϕ)T , show that
(er, eϕ) is an ortho-normal basis of R2.
Write the vector x as a linear combi-
nation of this basis.
(b) Assume that x, y, r, and ϕ are func-
tions of t and work out the t derivatives
of er, eϕ, and x.
(c) Solve the simultaneous differential
equations ẋ = −by, ẏ = bx, (where the
dot denotes the t derivative) using po-
lar coordinates. Interpret the resulting
solution.

9.11 Projections and graphics†

Apply the discussion in Application 9.1
to a cube in R3.
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Vector and triple product

We have seen that two vectors in Rn are, by definition, orthogonal if their dot product
vanishes. Orthogonality is easy to check for any given two vectors since the dot product
can be readily carried out. But how can we find a vector orthogonal to another, given
vector or to a list of vectors? Trying to answer this question in three dimensions leads
to the vector or cross product in R3.

Before we tackle the three-dimensional case, we start with vectors in R2. In this case,
finding a vector perpendicular to a given one is rather simple but the discussion will
provide guidance for how to deal with the three-dimensional case. In three dimensions,
the cross product allows us to compute a vector which is perpendicular to two given
vectors. We will see how the cross product can be elegantly expressed in index notation,
using the Levi-Civita symbol, and how vector identities with cross and dot product
can be efficiently derived with index techniques.

The triple product in R3 is formed by combining the cross and dot products. It is, in
fact, nothing but the three-dimensional determinant, so this is a good opportunity to
get used to determinants, before we develop their general theory in Chapter 18.

10.1 The cross product

Summary 10.1 The cross product × : R3 × R3 → R3 is an anti-symmetric, bi-
linear map which produces orthogonal vectors. The cross product can be expressed
in term of the Levi-Civita symbol which is an efficient tool for index calculations.
Geometrically, the cross product gives a vector orthogonal to both of its arguments
whose length equals the area of the parallelogram defined by the arguments.

10.1.1 Orthogonality in two dimensions

Suppose we would like to construct a linear map R2 → R2 which maps vectors v
into orthogonal vectors v× with the same length. Since the standard unit vectors are
mutually orthogonal a reasonable starting point is to demand that e×1 = −e2 and
e×2 = e1. These conditions together with linearity already fix the map. To see this
consider an arbitrary vector v = v1e1 + v2e2 and use linearity.

v× = (v1e1+v2e2)× = v1e
×
1 +v2e

×
2 = −v1e2+v2e1 ⇒

(
v1

v2

)×
=

(
v2

−v1

)
(10.1)
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(We have already encountered this method to generate an orthogonal vector in Exer-
cise 9.5.) We can verify that v× is indeed orthogonal to v by calculating

v · v× = (v1e1 + v2e2) · (−v1e2 + v2e1) = v1v2 − v1v2 = 0 ,

where we have used bi-linearity of the dot product and Eq. (9.15). It is also easily
checked that all vectors orthogonal to v are multiples of v×, that the map × preserves
the length, so |v×| = |v|, and that (v×)× = −v (see Exercise 10.7).

From Section 1.2.4 we know that a linear map between two-dimensional coordinate
vector can be described by a 2 × 2 matrix which we can find by acting on the stan-
dard unit vectors. Since e×1 = −e2 and e×2 = e1 comparison with the results from
Section 1.2.4 shows that this matrix is given by

ε =

(
0 1
−1 0

)
⇒ εij =

 1 for (i, j) = (1, 2)
−1 for (i, j) = (2, 1)

0 otherwise
. (10.2)

With this notation, the perpendicular vector can be computed from

(v×)i = εijvj , (10.3)

where a sum over j is implied by the Einstein convention. The two-index object εij is
called the Levi-Civita symbol in two dimensions (also see Exercise 10.6).

10.1.2 Definition of cross product in R3

In three dimensions it makes sense to ask for a (bi-) linear map which assigns to two
vectors a third which is orthogonal to either. This map × : R2×R3 → R3 is called the
cross product or vector product and is written as (v,w) 7→ v×w. Apart from linearity
in each of its two arguments we would like the cross product to be anti-symmetric,
that is, v × w = −w × v, so that the orthogonal vector points into the opposite
direction when the order of the arguments is changed. Finally, given that the standard
unit vectors are mutually orthogonal it makes sense to demand that the cross product
of two standard unit vectors gives the third. Altogether this motivates the following
definition.

Definition 10.1 (Cross product) A map × : R2×R3 → R3 is called a cross product if
is satisfied the following conditions for all vectors v,w,u ∈ R3 and all scalars α, β ∈ R.

(C1) v ×w = −w × v (anti-symmetry)
(C2) v × (w + u) = v ×w + v × u (linearity)

v × (αw) = α(v ×w)
(C3) e1 × e2 = e3, e2 × e3 = e1, e3 × e1 = e2 (orthogonality)

While (C2) demands linearity in the second argument it is clear, by combining (C2)
with (C1), that the cross product is also linear in the first argument and, hence, that
it is bi-linear. This means that R3 with the cross product forms an algebra, in the
sense of Def. 6.4. Anti-symmetry implies that v × v = −v × v, so the cross product
of any vector with itself vanishes, that is,

v × v = 0 for all v ∈ R3 . (10.4)
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10.1.3 Existence and uniqueness of the cross product

Def. 10.1 fixes the cross product uniquely. To see this, we start with two vectors
v =

∑3
i=1 viei and w =

∑3
j=1 wjej and use bi-linearity of the cross product to get

v ×w =

(
3∑
i=1

viei

)
×

 3∑
j=1

wjej

 (C2)
=

3∑
i,j=1

viwjei × ej

= (v2w3 − v3w2)e1 + (v3w1 − v1w3)e2 + (v1w2 − v2w1)e3 (10.5)

In the last step, we have removed the terms proportional to ei×ei, as they vanish from
Eq. (10.4), and have worked out the remaining terms proportional to ei × ej using
the rules (C3) together with anti-symmetry (C1) (so that, for example, e1 × e2 = e3

and e2× e1 = −e3). To summarize, the unique expression for the cross product which
follows from Def. 10.1 is given by

v ×w =

 v1

v2

v3

×
w1

w2

w3

 =

 v2w3 − v3w2

v3w1 − v1w3

v1w2 − v2w1

 . (10.6)

It is not hard to verify that this expression does indeed satisfy all the axioms in
Def. 10.1 and that the vector product is orthogonal to its two arguments. We defer
this for now and will come back to it in a moment once we have introduced more
efficient notation.

The formula (10.6) is easy to remember. The third component of the cross product is
computed by ignoring the third entries of v and w and by multiplying the remaining
entries as indicated by the thick lines. The first and second component are obtained
analogously, with multiplications indicated by the thin lines.

Problem 10.1 (Cross product)

Work out the cross product of the vectors v = (2, 4, 3)T and w = (−2, 1, 5)T .

Solution: Using Eq. (10.6), and multiplying as indicated by the lines in this equation, the
cross product is

v ×w =

 2
4
3

×
−2

1
5

 =

 4 · 5− 3 · 1
3 · (−2)− 2 · 5
2 · 1− 4 · (−2)

 =

 17
−16

10

 .

10.1.4 The Levi-Civita symbol in R3

While Eq. (10.6) is convenient for working out the cross product of explicit numerical
vectors, as in the previous problem, it becomes quite cumbersome when the vectors
contain symbolic entries and when multiple products are involved. A more efficient
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way of writing the cross product is facilitated by the Levi-Cicita symbol εijk in three
dimensions, a generalization of the two-dimensional Levi-Civita symbol (10.2). It is
defined by

εijk =

+1 if (i, j, k) = (1, 2, 3), (2, 3, 1), (3, 1, 2) (cyclic permutations)
−1 if (i, j, k) = (2, 1, 3), (3, 2, 1), (1, 3, 2) (anti-cyclic permutations)

0 otherwise (two same indices)
(10.7)

Using this symbol, the cross product can be written as

(v ×w)i = εijkvjwk , (10.8)

generalizing the two-dimensional formula (10.3). We recall that the summation con-
vention is assumed and implies a summation over the indices j and k on the right-hand
side of Eq. (10.8). To check that this expression is correct work out its first component

(v ×w)1 = ε123v2w3 + ε132v3w2 = v2w3 − v3w2 , (10.9)

and note that this does indeed coincide with the first entry in Eq. (10.6). Similarly, one
can verify that the second and third components are correctly reproduced. A low-key
way of thinking about the Levi-Civita symbol is as a convenient short-hand for the
factors of ±1 and 0 which appear in the cross product. To work with the Levi-Civita
symbol efficiently we need to understand its properties, which are collected in the
following proposition.

Proposition 10.1 The Levi-Civita symbol (10.7) has the following properties:

(LC1) It remains unchanged under cyclic index permutation, for example εijk = εjki.
(LC2) It changes sign under anti-cyclic index permutation, for example εijk = −εikj.
(LC3) It vanishes if two indices coincide, for example εijj = 0.
(LC4) εijkεilm = δjlδkm − δjmδkl.
(LC5) εijkεijm = 2δkm.
(LC6) εijkεijk = 6.
(LC7) εijkvjvk = 0 for any vector v ∈ R3.

Proof (LC1), (LC2), (LC3) These properties follow directly from the definition of
the Levi-Civita symbol.
(LC4) This can be reasoned out as follows. If the index pair (j, k) is different from
(l,m) (in any order) then clearly both sides of (LC4) are zero. On the other hand,
if the two index pairs equal each other they can do so in the same or the opposite
ordering and these two possibilities correspond to the two terms on the right-hand
side of (LC4).
(LC5) If we multiply (LC4) by δjl, using the index replacing property (9.16) of the
Kronecker delta, we obtain

εijkεijm = (δjlδkm − δjmδkl)δjl = 3δkm − δkm = 2δkm

and this is the desired result.
(LC6) Further, multiplying (LC5) with δkm we have



The cross product 109

εijkεijk = 2δkmδkm = 2δkk = 6 .

(LC7) From (LC2) we have εijkvjvk = −εikjvkvj = −εijkvjvk, where the summation
indices j and k have been swapped in the last step, and, hence, 2εijkvjvk = 0. 2

10.1.5 Properties of the cross product

With these techniques available it is now quite easy to verify that the cross product,
as defined by Eq. (10.1) or Eq. (10.8), does indeed satisfy the axioms in Def. 10.1. The
property (C3) is easily checked by explicit computation, applying the formula (10.6)
to the standard unit vectors. Axioms (C1) and (C2) are verified by

(v ×w)i
(10.8)

= εijkvjwk = εijkwkvj
(LC2)

= −εikjwkvj
(10.8)

= −(w × v)i

(v × (w + u))i
(10.8)

= εijkvj(w + u)k = εijkvj(wk + uk) = εijkvjwk + εijkvjuk
(10.8)

= (v ×w)i + (v × u)i

(v × (αw))
(10.8)

= εijkvj(αw)k = α εijkvjwk
(10.8)

= αv ×w

Note that all the quantities in indexed expressions are numbers so we can calculate
using the standard rules in a field. The cross product is indeed orthogonal to its two
arguments since

v · (v ×w)
(9.2)
= vi(v ×w)i

(10.8)
= εijkvivjwk

(LC7)
= 0 , (10.10)

and similarly for w ·(v×w). There are a few more complicated relations which involve
double cross products and combinations of cross and dot products, which can be very
useful for explicit computations.

Proposition 10.2 The dot and cross product in R3 satisfy the following relations for
all vectors a,b, c,d ∈ R3.

(a) a× (b× c) = (a · c)b− (a · b)c
(b) (a× b) · (c× d) = (a · c)(b · d)− (a · d)(b · c) (Lagrange identity)
(c) |a× b |2=| a |2| b |2 −(a · b)2

Proof Some of these proofs are very tedious when carried out in vector notation,
using Eq. (10.6) to evaluate the cross product. Index notation is much more efficient.

(a) Using the symmetry properties of the Levi-Civita symbol, in particular (LC1), and
the identity (LC4), we have

(a× (b× c))i = εijkaj(b× c)k = εijkεkmnajbmcn = εkijεkmnajbmcn

= (δimδjn − δinδjm)ajbmcn = ajcjbi − ajbjci
= a · c bi − a · b ci = ((a · c)b− (a · b)c)i .

(b) Proving the Lagrange identity from (LC4) is even easier.

(a× b) · (c× d) = εijkεimnajbkcmdn = (δjmδkn − δjnδkm)ajbkcmdn

= (a · c)(b · d)− (a · d)(b · c)

(c) This identity follows by setting c = a and d = b in the Lagrange identity. 2
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The cross product of any vector with itself vanishes (Eq. (10.4)) and the following
Corollary is a generalization of this statement.

Corollary 10.1 Vectors v,w ∈ R3 are multiples of each other if and only if v×w = 0.

Proof ’⇒’: This is the easier direction. Assume that v and w are multiples of each
other, for example w = αv. Then v ×w = v × (αv) = αv × v = 0, where we have
used linearity of the cross product and, in the final step, Eq. (10.4).

’⇐’: Now assume that v ×w = 0. Using Prop. 10.2 (c) this implies 0 = |v ×w|2 =
|v|2|w|2− (v ·w)2 and, hence, that v and w satisfy Cauchy–Schwarz with an equality.
From Theorem 9.7 this means that v and w are multiples of each other. 2

We can now show that we can always construct an R3 basis of mutually orthogonal
vectors, starting from a given non-zero vector.

Corollary 10.2 For any non-zero vector w1 ∈ R3 there exists a basis (w1,w2,w3)
of R3 of mutually orthogonal vectors.

Proof We need to construct two further vectors which are orthogonal to w1 (and to
each other). Since w1 is non-zero it has at least one non-zero component, say w11 6= 0.
Hence, w1 and e3 are not multiples of each other, so from Cor. 10.1, w2 := w1 × e3

is non-zero. If we further define w3 = w1 × w2 then the vectors (w1,w2,w3) are
mutually orthogonal and, hence, from Prop. 9.3 they are linearly independent. Since
we are in a three-dimensional space, they must form a basis. 2

Of course we can normalize the vectors wi in the above corollary to unit length to
obtain an orthonormal basis.

10.1.6 Geometrical interpretation of the cross product

For a geometrical interpretation we first recall that the cross product is orthogonal to
both its arguments. In order to find an interpretation for its length we use Prop. 10.2
(c) which leads to

|v ×w| = (|v|2|w|2 − (v ·w))
1
2 = |v| |w|

(
1− (v ·w)2

|v|2|w|2

) 1
2

= |v| |w| sin(^(v,w)) (10.11)

This formula together with Fig. 10.1 implies that the length |v × w| of the cross
product equals the area of the parallelogram, that is

Par(v,w) := {αv + βw |α, β ∈ [0, 1]} , Area(Par(v,w)) = |v ×w| . (10.12)

While this statement is intuitively clear, a formal proof requires defining the notion
of area first. This is really part of another subject, called measure theory, which will
not be covered here. However, we can sharpen the argument somewhat if we accept
two plausible properties of the area:

(i) Area(Par(v,w)) = |v| |w| if v ⊥ w ;

(ii) Area(Par(v,w)) = Area(Par(v,w + αv)) ∀v,w ∈ R3, ∀α ∈ R .

The first statement is simply the formula for the area of a rectangle, the second one
says that the area is invariant under a shear. (An example of this is the parallelogram
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w

v

θ

Par(v,w)|w| sin θ

Fig. 10.1 Geometrical interpretation of the length of the cross product |v×w| which equals

the area of the parallelogram defined by v and w.

and the dashed rectangle in Fig. 10.1 which are related by a shear and have the same
area.) For v,w ∈ R3, we can define w′ = w + αv with α = −(v · w)/|v|2, so that
w′ ⊥ v. Then the area formula (10.12) can be shown as follows:

|v ×w| = |v × (w′ − αv| (10.4)
= |v ×w′|

(10.11)
= |v| |w′| (i)

= Area(Par(v,w′))
(ii)
= Area(Par(v,w)) .

Problem 10.2 (Parallelogram area from the cross product)

Work out the cross product of a = (1,−2, 0)T and b = (3, 0,−1)T . Verify that a × b is
perpendicular to a and b and calculate the area of the parallelogram Par(a,b).

Solution: From Eq. (10.6), the cross product is:

c := a× b =

 1
−2

0

×
 3

0
−1

 =

 2
1
6

 . (10.13)

It follows immediately that c · a = 1 · 2 + (−2) · 1 = 0 and c · b = 2 · 3 + (−1) · 6 = 0, so that
the cross product a×b is indeed perpendicular to a and b. Using Eq. (10.12), the area of the

parallelogram defined by a and b is given by Par(a,b) = |a×b| =
√

22 + 12 + 62 =
√

41. The

area of the triangle defined by a and b is half the area of the parallelogram, that is
√

41/2
for the example.

Application 10.1 Kinetic energy of a rotating rigid body

We would like to discuss an application of some of the above identities and index techniques
in the context of classical mechanics. Specifically, the task is to work out a formula for the
kinetic energy of a rigid body which rotates around the origin O, as in the figure below.

To avoid having to carry out integrals we will think of the rigid body as consisting of (a
possibly large number of) mass points, labelled by an index α, each with mass mα, position
vector rα and velocity vα. The total kinetic energy of this body is of course obtained by
summing over the kinetic energy of all mass points, that is, Ekin = 1

2

∑
αmαv

2
α.
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O

w

mα

rα

vα

Since the body is rigid, the velocities of the mass points are not independent but are related
to their positions by vα = ω× rα, where ω is the angular velocity of the body. (The length
|ω| is the angular speed and the direction of ω indicates the axis of rotation.) The kinetic
energy of the rotating body can then be written as

Ekin =
1

2

∑
α

mαv
2
α =

1

2

∑
a

mα | ω × rα |2=
1

2

∑
α

mα(| ω |2| rα |2 −(ω · rα)2)

=
1

2

∑
α

mα(ωiωjδij | rα |2 −wirαiwjrαj) =
1

2
ωi

[∑
α

mα(| rα |2 δij − rαirαj)

]
︸ ︷︷ ︸

=: Iij

ωj ,

where we have used Prop. (10.2) (c) in the third step.

The object in the square bracket, denoted by Iij , is called the moment of inertia tensor, a
characteristic quantity of the rigid body. It plays a role in rotational motion analogous to
that of regular mass in linear motion. In terms of the moment of inertia tensor, the total
kinetic energy of the rigid body can be written as

Ekin =
1

2
Iijωiωj . (10.14)

This relation is of fundamental importance for the mechanics of rigid bodies, in particular
the motion of tops. (For more on the mechanics of rigid bodies see, for example, Goldstein
2013; Landau and Lifshitz 1982.)

10.2 The triple product

Summary 10.2 The triple product is a map R3×R3×R3 → R obtained by combining
the cross and dot products. It is identical to the three-dimensional determinant. Three
vectors in R3 form a basis if and only if their triple product is non-vanishing. The
absolute value of the triple product equals the volume of the parallelepiped defined by
its arguments.

10.2.1 Definition of triple product

The dot and cross products in R3 can be combined to a new product, the triple product
or determinant, a map det : R3 × R3 × R3 → R defined by



The triple product 113

det(a,b, c) := a · (b× c) = εijkaibjck . (10.15)

The index expression on the right-hand side follows from a · (b × c) = ai(b × c)i =
εijkaibjck. The determinant of a 3 × 3 matrix A = (a,b, c) with columns a, b and
c is defined as det(A) = det(a,b, c). The basic properties of the determinant are
summarized in the following proposition.

Proposition 10.3 The determinant (10.15) satisfies the following properties.

(T1) It is linear in each of its three arguments, for example det(αa + βb, c,d) =
α det(a, c,d) + β det(b, c,d) and analogously for the second and third argument.

(T2) Exchanging two arguments flips the sign, for example det(a,b, c) = −det(b,a, c).

(T3) det(e1, e2, e3) = 1.

Proof (T1) This property follows directly from Eq. (10.15) and the bi-linearity of
the dot and cross product. We can also proceed more explicitly and use the index
version expression in Eq. (10.15):

det(αa + βb, c,d) = εijk(αai + βbi)cjdk = αεijkaicjbk + βεijkbicjdk

= α det(a, c,d) + β det(b, c,d) .

The proofs for the second and third argument work complete analogously.

(T2) This is a direct consequence of the symmetry properties (LC1) and (LC2) of the
Levi-Civita symbol in Lemma 10.1. For example,

det(a,b, c) = εijkaibjck = −εjikbjaick = −det(b,a, c) .

(T3) From Def. 10.1 (C3) and Eq. (10.15) we have

det(e1, e2, e3) = e1 · (e2 × e3) = e1 · e1 = 1 .

2

This proposition can be summarized by saying that the determinant is multi-linear
(T1), that is it totally anti-symmetric (T2) and that it is normalized to one (T3). We
note that (T2) implies that any determinant with two same arguments vanishes, for
example

det(a,a,b) = 0 . (10.16)

In Chapter 18 we will discuss the determinant more generally and in arbitrary dimen-
sions and we will use precisely those properties for its axiomatic definition. For now,
we focus on the three-dimensions case.

10.2.2 Calculation of the determinant

One way to calculate three-dimensional determinants is to carry out the cross and dot
product from definition (10.15). Alternatively, we can write out the six terms which
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appear on the right-hand side of Eq. (10.15) explicitly by using the definition (10.7)
of the Levi-Civita symbol. This leads to

det(a,b, c) = det


a1 b1 c1 a1 b1

a2 b2 c2 a2 b2

a3 b3 c3 a3 b3

 =

{
+a1b2c3 + a2b3c1 + a3b1c2
−a1b3c2 − a2b1c3 − a3b2c1

.

(10.17)
We have arranged the components of the three vectors into a 3 × 3 matrix and have
repeated the first and second column after the vertical bar on the right in order to
simplify notation. The components encircled by solid lines are each multiplied together
to form the first three terms with a positive sign in Eq. (10.17) while the components
encircled by dashed lines lead to the last three terms, with a negative sign.

Problem 10.3 (Calculating the three-dimensional determinant)

Calculate the determinant det(a,b, c) = a · (b × c) for the three vectors a = (−1, 2,−3)T ,
b = (−2, 5, 1)T , and c = (4,−6, 3)T .

Solution: One method is to first work out the cross product between b and c and then dot
the result with a:

b× c =

−2
5
1

×
 4
−6

3

 =

 21
10
−8

 ⇒ a · (b× c) =

−1
2
−3

 ·
 21

10
−8

 = 23 .

Alternatively and equivalently, we can use the rule (10.17) which gives

det(a,b, c) = det

−1 −2 4
2 5 −6
−3 1 3

 = (−1) · 5 · 3 + (−2) · (−6) · (−3) + 4 · 2 · 1
− (−1) · (−6) · 1− (−2) · 2 · 3− 4 · 5 · (−3)

=− 15− 36 + 8− 6 + 12 + 60 = 23 .

The determinant has many more properties and applications which we will explore in
more depth later. For now, we prove the following criterion for a basis of R3.

Theorem 10.1 (v1,v2,v3) is a basis of R3 iff det(v1,v2,v3) 6= 0.

Proof ’⇒’: If (v1,v2,v3) is a basis of R3 then the standard unit vectors can be
written as ei = αijvj (sum over j implied) for some αij ∈ R. Using linearity of the
determinant we find

1 = det(e1, e2, e3) = det (α1jvj , α2kvk, α3lvl) = α1jα2kα3l det(vj ,vk,vl) , (10.18)

where sums over j, k, l are implied. If any two of the indices (i, j, k) are the same
then det(vj ,vk,vl) = 0. Hence, only terms with {j, k, l} = {1, 2, 3} contribute to the
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sum on the right. Due to the anti-symmetry of the determinant each of these terms is
proportional to det(v1,v2,v3), so if this determinant is zero then so is the right-hand
side of Eq. (10.18). This is of course a contradiction and, hence, det(v1,v2,v3) 6= 0.

’⇐’: We proof this indirectly so assume that (v1,v2,v3) is not a basis. This means the
vector are not linearly independent and one of them, say v3, can be written as a linear
combination of the other two, v3 = α1v1 +α2v3. From linearity of the determinant it
follows that

det(v1,v2,v3) = det(v1,v2, α1v1 + α2v2)

= α1det(v1,v2,v1) + α2det(v1,v2,v2)
(10.4)

= 0 .

2

The above theorem allows us to derive an explicit formula for the coordinates relative
to a basis (v1,v2,v3) of R3. Write an arbitrary vector v ∈ R3 as a linear combination
v = α1v1 + α2v2 + α3v3. Forming the dot product of this expression with the cross
product v2 × v3 (and remembering that both v2 and v3 are orthogonal to the cross
product) gives the formula det(v,v2,v3) = α1 det(v1,v2,v3). Since det(v1,v2,v3) 6= 0
from the theorem we can divide and obtain a formula for α1. The other two coordinates
are obtained analogously (by dotting with v3 × v1 for α2 and v1 × v3 for α3). As a
result, a vector v = α1v1 + α2v2 + α3v3 has the coordinates

α1 =
det(v,v2,v3)

det(v1,v2,v3)
, α2 =

det(v1,v,v3)

det(v1,v2,v3)
, α3 =

det(v1,v2,v)

det(v1,v2,v3)
, (10.19)

relative to the basis (v1,v2,v3).

Problem 10.4 (Coordinates relative to a basis in R3)

Find the coordinates of a general vector v = (x, y, z)T relative to the basis (v1,v2,v3), where
v1 = (1, 1, 0)T , v2 = (1, 0,−1)T , and v3 = (0, 1, 2)T .

Solution: We can use the ’pedestrian’ methods and write down the equation

v =

x
y
z

 = α1v1 + α2v2 + α3v3 =

 α1 + α2

α1 + α3

−α2 + 2α3

 .

Splitting up into components and solving the resulting three equations, x = α1 + α2, y =
α1 + α3 and z = −α2 + 2α3 for x, y, z, gives the coordinates

α1 = −x+ 2y − z , α2 = 2x− 2y + z , α3 = x− y + z .

Alternatively, we can use the formulae (10.19). First, since det(v1,v2,v3) = −1, we can
conclude from Theorem 10.1 that (v1,v2,v3) is indeed a basis of R3. For the determinants
in the numerators of (10.19) we find

det(v,v2,v3) = x− 2y + z , det(v,v3,v1) = −2x+ 2y− z , det(v,v1,v2) = −x+ y− z .

Dividing by det(v1,v2,v3) = −1 then leads to the same results for the coordinates.
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10.2.3 Interpretation of the triple product

We have argued earlier that the length of the cross product equals the area of the
parallelogram defined by its two arguments. We would expect the (absolute value of
the) triple product is equal to the volume of the parallelepiped (see Fig. 10.2)

Par(v1,v2,v2) =

{
3∑
i=1

αivi |αi ∈ [0, 1]

}
, (10.20)

that is,
Vol(Par(v1,v2,v2)) = |det(v1,v2,v2)| . (10.21)

To see this we can use arguments similar to the ones we have used for the cross
product, based on invariance under shears. We assume (i) the volume formula of a

v1 = α1e1

v2 = α2e2

α3e3 v3

Fig. 10.2 Cuboid with edges (α1e1, α2e2, α3e3), sheared to a parallelepiped with the same

volume.

cuboid, so that, for mutually orthogonal vector vi, we have Vol(Par(v1,v2,v3)) =
|v1| |v2| |v3| and (ii) the invariance of the volume under shear, so that, for example,
Vol(Par(v1,v2,v3)) = Vol(Par(v1,v2,v3 + αv1)) (and similar for the other argu-
ments). If we start with mutually orthogonal vectors vi = αiei, proportional to the
standard unit vectors, which form a cuboid we have

|det(v1,v2,v3)| = |α1| |α2|α3| = Vol(Par(v1,v2,v3)) ,

where we have used multi-linearity of the determinant in the first step. The key ob-
servation is that the determinant is invariant under shears as well since, for example

det(v1,v2,v3 + αv1) = det(v1,v2,v3) + α det(v1,v2,v1)
(18.1)

= det(v1,v2,v3) .

Every parallelepiped can be obtained from a cuboid by shears. Given that the values of
the determinant and the volume agree for cuboids and both quantities are unchanged
under shears the argument is complete.

Problem 10.5 (Volume of a parallelepiped from the triple product)

Find the volume of the parallelepiped defined by the vectors v1 = (1, 1, 0)T , v2 = (1, 0,−1)T ,
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and v3 = (0, 1, 2)T .

Solution: A quick calculation shows that det(v1,v2,v3) = −1, so Vol(Par(v1,v2,v3)) = 1.

Exercises

(†=challenging)

10.1 (a) For a = (2,−3, 1)T , b =
(1, 0,−5)T , and c = (−1, 1, 2)T , com-
pute the cross products a × b, a × c
and b × c and the triple product
a · (b× c).
(b) Work out the determinants of the
matrices

A =

 1 0 −2
0 3 −1
2 2 −5

 , B =

 1
2

0 − 1
6

2
3

1
3

1
0 − 1

6
− 1

2

 .

10.2 For vectors a,b, c ∈ R3, show the fol-
lowing:
(a) a×b = a−b implies that a = b ;
(b) c = λa+µb implies that (a×b) ·
c = 0 ;
(c) (a× b)× (c× b) = b[b · (a× c)] ;
(d) If c = a+b then |a×b| = |b×c| =
|c× a|.

10.3 Show that the cross product is not as-
sociative.

10.4 Use index notation to re-write the fol-
lowing expressions in a simpler form.
(a) a · (b× (a× c))
(b) a× (b× (c× a))

10.5 For two linearly independent vectors
u,w ∈ R, define the lines U =
Span(u) and W = Span(w) and se-
lect non-zero vectors u′ ∈ U and
w′ ∈ W , such that u′ −w′ is a mul-
tiple of u−w.

u u′

w

w′

U

W

(a) Show that |u′|/|u| = |w′|/|w|.
(b) Show that |u′ − w′|/|u − w| =
|u′|/|u|.

10.6 Two-dimensional Levi-Civita symbol
For the two-dimensional Levi-Civita
symbol εij show the following identi-
ties:
(a) εij = −εji, εii = 0;
(b) εijεkl = δikδjl − δilδjk;
(c) εijεil = δjl;
(d) εijεij = 2.

10.7 For a,b ∈ R2 use index notation to
show that:
(a) (a×)× = −a;
(b) a× · b× = a · b;
(c) a× · b = −a · b×.

10.8 For which values of a, b ∈ R is
(v1,v2,v3), with v1 = (1, a, 2)T ,
v2 = (0, 3,−1)T and v3 = (1, 0, b)T ,
not a basis of R3?

10.9 Reciprocal vectors†

Consider a basis (v1,v2,v3) of R3 and
the triple product V := v1 · (v2×v3).
Define the reciprocal vectors v′i by
v′1 = 1

V
v2 × v3, v′2 = 1

V
v3 × v1 and

v′3 = 1
V
v1 × v2. Show that

(a) vi · v′j = δij ;

(b) (v′1,v
′
2,v
′
3) is a basis of R3;

(c) the coordinates of w ∈ R3 relative
to the basis (v1,v2,v3) are given by
w · v′i;
(d) V ′ = 1/V , where V ′ := v′1 · (v′2 ×
v′3);
(e) 1

V ′ v
′
2 × v′3 = v1, 1

V ′ v
′
3 × v′1 = v2

and 1
V ′ v

′
1 × v′2 = v3.

10.10 Reciprocal vectors and linear equa-
tions
(a) For a basis (v1,v2,v3) of R3 and
x ∈ R3 consider the equations

v1 · x = b1, v2 · x = b2, v3 · x = b3,
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where bi ∈ R. Show that these equa-
tions have a unique solution for x and
find this solution in terms of recipro-
cal vectors.
(b) Find the reciprocal vectors for
v1 = (1, 1, 1)T , v2 = (2, 0,−1)T , and
v3 = (−2, 1, 1)T . For b1 = 2, b2 = −3,
and b3 = 1, find the solution to the
system of equations in (a). Check your
results.

10.11 (a) For two linearly independent vec-
tors w1,w2 ∈ R3, and w3 = w1 ×w2

show that (w1,w2,w3) is a basis of
R3.
(b) For a two-dimensional vector sub-
space W ⊂ R3 show that there
are precisely two unit length vectors
which are orthogonal to all vectors in
W .

10.12 Angular momentum of a rigid body†

Following the approach in Applica-
tion 10.1, compute the total angular
momentum of a rigid body in terms
of the moment of inertia tensor.
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Lines and planes

In this chapter we discuss some aspects of elementary geometry in Rn, focusing on
the dimensions n = 2, 3. These topics are not really part of linear algebra but of a
related area of mathematics called affine geometry which we cannot possibly do justice
to in our brief account (see, for example, Bennett 2011). However, what we do cover
should be enough to appreciate the geometrical ideas underlying and motivating linear
algebra and help the reader as we move forward with the formal development of the
subject in the next part. Of course, geometrical applications of linear algebra are also
important in science and need to be covered for this reason alone.

Affine geometry usually starts by thinking about Rn in two roles, as a space of points —
the affine space — and as a vector space, with vectors acting on points by translation.
We will refrain from making this distinction as it would add little substance to our
discussion. Instead, we work with Rn as a vector space and think of vectors and points
as being identified. By the distance between two vectors v,w ∈ Rn, we simply mean
the length |v −w|.

Our main objects of interest are affine k-planes in Rn, that is, subsets p+W ⊂ Rn,
where p ∈ Rn is a vector and W is a k-dimensional vector subspace of Rn. In this
chapter, we will focus on the cases of lines (k = 1) and planes (k = 2) in two and three
dimensions. As we will see, the dot and cross products are very useful tools for dealing
with those objects. A more general discussion of affine k-planes is most easily carried
out once we have developed the theory of linear systems and is, hence, postponed until
Chapter 17.

In the next section, we begin with the simplest case of lines in R2 and their properties.
They can be described in parametric or Cartesian form. In Section 11.2 we generalize
this discussion to lines and planes in R3.

11.1 Lines in R2

Summary 11.1 All lines in R2 can be described in parametric and in Cartesian
form. The intersection of two lines in R2 is described by a system of two linear
equations in two variables.

11.1.1 Parametric and Cartesian form

Lines in R2 are subsets of the form L = p + W , where p ∈ R2 and W is a one-
dimensional vector subspace of R2. They can be explicitly described in parametric or
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Cartesian form.

Theorem 11.1 The following sets are lines in R2.

(i) Lp = {p + tw | t ∈ R} with p,w ∈ R2, w 6= 0 (parametric form)
(ii) Lc = {x ∈ R2 |n · x = b} with n ∈ R2, b ∈ R, n 6= 0 (Cartesian form)

Every line can be written in the form (i) or (ii). If n ⊥ w and b = n ·p then Lp = Lc.

Proof First, we show the equality, Lp = Lc, under the stated conditions.

Lp ⊂ Lc: Start with an element x = p + tw ∈ Lp. Multiply this equation with n
(keeping in mind that n ·w = 0) leads to n · x = n · p = b which shows that x ∈ Lc.
Lc ⊂ Lp: Conversely, consider an element x ∈ Lc which, by definition, satisfies n·x = b.
Given that b = n · p, this equation can be re-written as n · (x− p) = 0. Every vector
x − p can be represented as a linear combination x − p = αn + tw (since (n,w), as
two non-zero orthogonal vectors, form a basis of R2). From 0 = n · (x−p) = α|n|2 we
conclude that α = 0 and, hence, x = p + tw ∈ Lp.
It is clear that every line p + W can be written in parametric form by choosing a
non-zero vector w ∈ R2 such that W = Span(w). Conversely, every parametric form
defines a line by setting W = Span(w).

To complete the proof, we show that every line in parametric form can be converted
into Cartesian form and vice versa. To see the former, start with vectors p, w defining
a parametric line Lp. Setting n = w× (so that n ⊥ w) and b = p · n defines a line in
Cartesian form with Lp = Lc. If we start with the Cartesian line Lc, specified by n
and b, then setting w = n× and choosing p to be any solution of n · p = b, we get a
parametric line Lp with Lp = Lc. 2

The geometric interpretation of the various vectors which enter the parametric and
Cartesian form is indicated in Fig. 11.1. For the parametric form, x(t) = p + tw, the

O

p

w

n

|b|
|n|

p + Span(w)

R2

Fig. 11.1 Line in R2 with parametric form x(t) = p + tw and Cartesian form n · x = b.

vector p is a vector ’to the line’ and the vector w a vector ’along the line’. For the
Cartesian form, n · x = b, the vector n is a vector orthogonal to the line while |b|/|n|
is the minimal distance of the line from the origin. To verify the last statement, write
the parametric form of a line as

|n| |x| cos^(n,x) = b . (11.1)

The value of |x| is minimal when | cos^(n,w)| takes its maximal value which is, of
course, | cos^(n,w)| = 1. It follows that the minimal value of |x| is indeed |b|/|n|.
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We should stress that neither the parametric nor the Cartesian form of a line is unique,
that is, one and the same line can be described by different equations of this form.
For example, in the parametric form we can use instead of w any non-zero multiple
βw or, instead of p any other vector p + αw to the line. For the Cartesian form,
using αn and αb instead of n and b describes the same line. Theorem 11.1 indicates
a method to convert a line in parametric form to Cartesian form and vice versa. It is
worth practising this by looking at examples.

Problem 11.1 (Converting a line from parametric into Cartesian form)

Convert the parametric form

x(t) =

(
1
2

)
+ t

(
1
−3

)
of a line into Cartesian form. Find the minimal distance of the line from the origin.

Solution: With p = (1, 2)T , w = (1,−3)T , and x = (x, y)T we have n = w× = (3, 1)T and
b = n · p = 5. Hence, the Cartesian form of the line is(

3
1

)
· x = 5 or 3x+ y = 5 .

It minimal distance from the origin is |b|/|n| = 5/
√

32 + 12 =
√

5/2.

Problem 11.2 (Converting a line from Cartesian into parametric form)

A line in Cartesian form is given by 2x− 5y = 7. Find its parametric from.

Solution: We can write this equation as n ·x = b with n = (2,−5)T , x = (x, y)T , and b = 7.
A vector w along the line is found by w = n× = (5, 2)T . To find a vector p to the line we can
use any solution to the Cartesian equation, for example, p = (1,−1). Hence, a parametric
form of the line is

x(t) =

(
1
−1

)
+ t

(
5
2

)
.

11.1.2 Intersection of two lines

The intersection of two lines in R2 can be discussed using either parametric or Carte-
sian forms. We opt for the latter and write the equations for the two lines as

L1 = {x ∈ R2 |n1 · x = b1} , L2 = {x ∈ R2 |n2 · x = b2} ,

with intersection

L1 ∩ L2 = {x ∈ R2 |n1 · x = b1 ∧ n2 · x = b2} .

Evidently, the intersection L1 ∩L2 is determined by the solution to two simultaneous
linear equations in two variables. With n1 = (n11, n12)T , n2 = (n21, n22)T , and x =
(x, y)T these can also be written as
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n11x+ n12y = b1 , n21x+ n22y = b2 ,

or, in matrix-vector form, as Nx = b, where N is a 2× 2 matrix with entries nij and
b = (b1, b2)T . This example illustrates how the geometry of lines (and planes, as we
will see) is related to systems of linear equations.

We already know from the introduction that there are several possibilities for the
solutions to a system of two linear equations in two variables. The solution can be
unique, but we can also have an entire line of solutions or there may be no solution at
all, depending on the coefficients in the linear equations. In geometrical terms, these
three cases correspond to the two lines intersecting in a point, being identical and
being parallel (see Fig. 11.2).

x

y

L1

L2

x

y

L1 = L2

x

y

L1

L2

Fig. 11.2 Two lines in R2 can intersect in a point, in a line or do not intersect at all.

Problem 11.3 (Intersection of two lines)

Find the intersection of the two lines in Cartesian form with equations(
1
a

)
· x = 1 ,

(
2
−3

)
· x = b ,

for all possible values of the parameters a, b ∈ R.

Solution: For x = (x, y)T the linear system which corresponds to the intersection of these
two lines is

x+ ay = 1
2x− 3y = b

}
⇒ (2a+ 3)y = 2− b , (11.2)

where the result on the right follows by subtracting the second equation from twice the first.
We have to distinguish the following cases.

(1) a 6= −3/2: We can divide by 2a+ 3 and find the unique solution

x =
ab+ 3

2a+ 3
, y =

2− b
2a+ 3

.

This is the unique intersection point of the two lines.

(2a) a = −3/2 and b = 2: The equation on the right in (11.2) is trivial or, equivalently, the
two linear equations become multiples of each other. This means the two lines are identical
so that the intersection consists of the entire line with Cartesian form 2x− 3y = 2.

(2b) a = −3/2 and b 6= 2: The equation on the right in (11.2) leads to a contradiction so
there is no solution. This corresponds to the two lines being parallel (but not identical).
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11.2 Lines and planes in R3

Summary 11.2 Line and planes in R3 can be described in parametric or Cartesian
form. Formulae for minimal distances, such as between lines and points or planes and
points, can be derived using cross and dot products. The intersection of two (three)
planes is described by a system of two (three) linear equations in three variables.

Next, we discuss lines and planes in R3, their intersections and other related properties.

11.2.1 Parametric and Cartesian form for planes

Planes are sets of the form P = p + W ⊂ R3, where p ∈ R3 and W ⊂ R3 is a
two-dimensional vector subspace.

Theorem 11.2 The following sets are planes in R3.

(i) Pp = {p + t1w1 + t2w2 | t1, t2 ∈ R}
with p ∈ R3 and w1,w2 ∈ R3 linearly independent (parametric form)

(ii) Pc = {x ∈ R3 |n · x = b} with n ∈ R3 nonzero, b ∈ R (Cartesian form)

Every plane can be written as in (i) or (ii). If n ⊥ w1,w2 and b = p ·n then Pp = Pc.

Proof As in theorem 11.1, we begin by showing Pp = Pc under the stated conditions.

Pp ⊂ Pc: For a vector x = p+ t1w1 + t2w2 ∈ Pp, take the dot product with n, keeping
in mind that n ·w1 = n ·w2 = 0. This leads to n · x = n · p = b , so that x ∈ Pc.
Pc ⊂ Pp: Start with a vector x ∈ Pc, so that n·x = b or, equivalently, n·(x−p) = 0. To
solve this last equation we first note that (n,w1,w2) forms a basis of R3. This means
we can write every vector x−p as a linear combination x−p = αn+t1w1+t2w2. From
0 = n · (x− p) = α|n|2 it follows that α = 0 and, hence, x = p + t1w1 + t2w2 ∈ Pp.
Every plane p + W can be written in parametric form by choosing a basis (w1,w2)
of W . Conversely, a parametric form with w1,w2 defines a plane by setting W =
Span(w1,w2).

Every plane in parametric form can be converted into Cartesian form. Start with
vectors p,w1,w2, specifying a parametric plane Pp. Setting n = w1×w2 and b = p ·n
defines a Cartesian plane Pc with Pc = Pp.

On the other hand, for a Cartesian plane Pc, specified by n and p, we can find, from
Cor. 10.2, mutually orthogonal vectors (n,w1,w2). Then, w1, w2 together with any
solution of p of n · p = b defines a parametric plane Pp with Pp = Pc. 2

In the parametric form, p is a vector ’to the plane’ while w1 and w2 are vectors
’along the plane’. For the Cartesian form, n is a vector orthogonal to every vector in
the plane and |b|/|n| is the minimal distance of the plane from the origin. (The last
statement follows from Eq. (11.1) in the same way as for lines in R2.) The geometrical
interpretation of the various vectors is illustrated in Fig. 11.3. Just as for lines, the
parametric and Cartesian forms of planes are not unique — different choices of vectors
can describe the same plane. For example, in the parametric from we can choose any
basis (w1,w2) for the two-dimensional subspace W .
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p + Span(w1,w2)

O

p

w1

w2

n

|b|
|n|

R3

Fig. 11.3 Plane with parametric form x(t1, t2) = p + t1w1 + t2w2 and Cartesian form

n · x = b.

The method for converting between the parametric and Cartesian form of a plane,
implicit in the proof of Theorem 11.2, is worth practising.

Problem 11.4 (Converting a plane from parametric to Cartesian form)

Convert the plane with parametric form

x(t1, t2) =

−1
2
−1

+ t1

 2
0
3

+ t2

 1
−2

0


into Cartesian form. Find the minimal distance of the plane from the origin.

Solution: With p = (−1, 2,−1)T , w1 = (2, 0, 3)T , and w2 = (1,−2, 0)T we have

n = w1 ×w2 =

 2
0
3

×
 1
−2

0

 =

 6
3
−4

 , b = n · p = 4 .

Hence, with x = (x, y, z)T , a Cartesian form of the pane is 6
3
−4

 · x = 4 or 6x+ 3y − 4z = 4 .

The minimal distance from the origin is |b|/|n| = 4/
√

62 + 32 + (−4)2 = 4/
√

61.

Problem 11.5 (Converting a plane from Cartesian into parametric form)

Convert the plane with Cartesian form 2x− 3y + z = 5 into parametric form.

Solution: With n = (2,−3, 1)T , x = (x, y, z)T , and b = 5 the plane can be written in the
Cartesian standard form n · x = b. As a vector p ’to the plane’ we can use any vector which
satisfies n · p = b; for example, p = (1,−1, 0)T . To get two vectors w1, w2 ’in the plane’
we need two linearly independent solutions to n · x = 0; for example, w1 = (3, 2, 0)T and
w2 = (0, 1, 3)T . Hence, a parametric form of the plane is
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x(t1, t2) = p + t1w1 + t2w2 =

 1
−1

0

+ t1

 3
2
0

+ t2

 0
1
3

 .

11.2.2 Parametric and Cartesian form for lines

Lines in R3 are subsets of the form p + W , where p ∈ R3 and W ⊂ R3 is a one-
dimensional vector subspace.

Theorem 11.3 A following sets are lines in R3.

(i) Lp = {p + tw | t ∈ R} with p,w ∈ R3 and w 6= 0 (parametric form)
(ii) Lc = {x ∈ R3 |n1 · x = b1, n2 · x = b2}

with n1,n2 linearly independent, b1, b2 ∈ R (Cartesian form)

All lines in R3 can be written in the form (i) and (ii). If (w,n1, n2) is a basis of
mutually orthogonal vectors and b1 = n1 · p, b2 = n2 · p then Lp = Lc.

Proof We begin by showing the equality of the two sets.

Lp ⊂ Lc: Start with x = p + tw ∈ Lp. Multiplying this equation with n1 and n2 gives
ni · x = ni · p = bi for i = 1, 2 and, therefore, x ∈ Lc.
Lc ⊂ Lp: A vector x ∈ Lc satisfies ni · x = bi or, equivalently, ni · (x − p) = 0 for
i = 1, 2. We can write the vector x−p as a linear combination of the basis (w,n1, n2),
so x−p = tw+α1n1 +α2n2. It follows that 0 = ni ·(x−p) = ni ·(tw+α1n1 +α2n2) =
αi|ni|2 and, hence, αi = 0 for i = 1, 2. Therefore, x = p + tw ∈ Lp.
Clearly, every line p + W can be written in parametric form by choosing a vector w
with W = Span(w); conversely, every parametric form given a line with W = Span(w).

Given a parametric line Lp, specified by vectors p, w, Cor. 10.2 tells us we can find
mutually orthogonal vectors (w,n1, n2). Then n1,n2 along with b1 = n1 · p and
b2 = n2 · p define a Cartesian line Lc with Lc = Lp.

Conversely, let Lc be a Cartesian line specified by n1,n2 and b1, b2. Define w = n1×n2.
We can always find a solution p to the equations n1 · p = b1 and n2 · p = b2. Then w
and p define a parametric line Lp with Lp = Lc. 2

The interpretation of the various vectors in the theorem is illustrated in Fig. 11.4.
The vector p is a vector ’to the line’, the vector w is ’along the line’ and n1, n2 are
orthogonal to it. The two Cartesian equations for a line, n1 · x = b1 and n2 · x = b2,
can also be written as a linear system Nx = b with two equations and three variables,
where N is the matrix with entries nij and b = (b1, b2)T . From this point of view, the
line is the solution space of the linear system. This is another illustration of the close
relation between affine k-planes and linear systems.

Note that a plane in R3 requires two parameters for its parametric form and one
equation for its Cartesian form. For a line in R3 this is reversed and we need one
parameter and two equations. This suggests that, more generally, an affine k-plane in
Rn needs k parameters for its parametric form and n − k equations for its Cartesian
form. We will show this in Section 17.3.
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O

p

w

n1 n2

p + Span(w)

R3

Fig. 11.4 Line in R3 with parametric form x(t) = p + tw and Cartesian form ni · x = bi,

i = 1, 2.

As before, we should practice converting between parametric and Cartesian form.

Problem 11.6 (Converting a line from parametric to Cartesian form)

Convert the line in parametric form given by

x(t) =

 1
0
−1

+ t

−2
1
−1


into Cartesian form.

Solution: With p = (1, 0,−1)T and w = (−2, 1,−1)T we can construct the two orthogonal
vectors as n1 = w× e3 = (1, 2, 0)T and n2 = n1 ×w = (−2, 1, 5)T . Since b1 = n1 ·p = 1 and
b2 = n2 · p = −7 the two equations of the Cartesian form (using x = (x, y, z)T ) read 1

2
0

 · x = 1 ,

−2
1
5

 · x = −7 or x+ 2y = 1 , −2x+ y + 5z = −7 .

Problem 11.7 (Converting a line from Cartesian to parametric form)

Convert the line in Cartesian form specified by the equations x−y+3z = 8 and 2x+y−z = 2
into parametric form.

Solution: Since n1 = (1,−1, 3)T and n2 = (2, 1,−1)T are the two vectors orthogonal to the
line, w = n1 × n2 = (−2, 7, 3)T is ’along the line’. A vector p ’to the line’ is obtained by
finding a solution to the two equations, for example p = (2, 0, 2)T . Hence, a parametric form
is

x(t) = p + tw =

 2
0
2

+ t

−2
7
3

 .

11.2.3 Minimal distances

As an application of some of the techniques based on dot and cross products let us
determine some minimal distances, starting with the minimal distance of a line in R3

from a given point.
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Proposition 11.1 Let L = {p + tw | t ∈ R} ⊂ R3 be a line in parametric form and
p0 ∈ R3. The minimal distance of p0 from the line arises at tmin = −d ·w/|w|2, where
d = p− p0. The minimal distance is given by dmin = |d×w|/|w|.

Proof We simply work out the distance square d2(t) := |x(t)− p0|2 of an arbitrary
point x(t) = p + tw on the line from the point p0. This leads to

d2(t) = |d + tw|2 = |w|2t2 + 2(d ·w) t+ |d|2 =

[
|w| t+

d ·w
|w|

]2

+ |d|2 − (d ·w)2

|w|2
.

This is minimal when the expression inside the square bracket vanishes which happens
for t = tmin = −d ·w/|w|2. This proves the first part of the claim. For the second part
we simply compute the distance at tmin which gives

d2
min := d2(tmin) =

1

|w|2
(
|d|2|w|2 − (d ·w)2

) (10.2)(c)
=

|d×w|2

|w|2
.

2

Problem 11.8 (Minimal distance of a line from a point)

Find the minimal distance of the line x(t) = p+ tw from the point p0, where p = (2,−1, 4)T ,
w = (3,−5, 2)T and p0 = (1, 1, 1)T .

Solution: Using the notation and results from the previous proposition we have

d = p− p0 =

 1
−2

3

 , d×w =

 1
−2

3

×
 3
−5

2

 =

 11
7
1

 . (11.3)

Hence, |d×w| = 3
√

19 and |w| =
√

38 so that dmin = |d×w|/|w| = 3/
√

2.

For the minimal distance of a plane from a point, we have the following statement:

Proposition 11.2 A plane is described in Cartesian form by n · x = b and in para-
metric form by x(t1, t2) = p + t1w1 + t2w2. The minimal distance of the plane from
p0 ∈ R3 is given by

dmin =
|b− n · p0|
|n|

=
|d · (w1 ×w2)|
|w1 ×w2|

, d = p− p0 . (11.4)

Proof Start with the Cartesian form n·x = b and subtract n·p0, so that n·(x−p0) =
b− n · p0 or, equivalently

|n| |x− p0| cos^(n,x− p0) = b− n · p0 .

The value of |x− p0| is maximal when the (absolute) value of the cosine is 1, so that
dmin = |b − n · p0|/|n|. This proves the first part of Eq. (11.4). For the second part,
simple insert the relations n = w1 ×w2 and b = p · n. 2
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Problem 11.9 (Minimal distance of a point from a plane)

Find the minimal distance of the plane x− 2y + z = 4 from p0 = (1, 0, 1)T .

Solution: The plane is given in Cartesian form, n · x = b, with n = (1,−2, 1) and b = 4.

Inserting n · p0 = 2, |n| =
√

6 and b = 4 into the formula (11.4) gives dmin =
√

2/3.

11.2.4 Intersection of two planes

Consider two planes in Cartesian form

P1 = {x ∈ R3 |n1 · x = b1} , P2 = {x ∈ R3 |n2 · x = b2} ,

and their intersection

L = P1 ∩ P2 = {x ∈ R3 |n1 · x = b1 ∧ n2 · x = b2} .

If the two vectors n1 and n2 are linearly independent then L is a line, written down
in Cartesian form, as comparison with Theorem 11.3 shows. If n1 and n2 are linearly
dependent, n2 = αn1 for a non-zero α ∈ R, then the equations for the two planes turn
into n1 · x = b1 and n1 · x = b2/α. If b1 = b2/α the two planes are identical and their
intersection is the entire plane, so L = P1 = P2. On the other hand, if b1 6= b2/α, then
the planes are parallel and the intersection is empty, L = {} (see Fig. 11.5).

P1

P2

L

P1 = P2 P1 P2

Fig. 11.5 Two planes in R3 can intersect in a line, in a plane or have an empty intersection.

Problem 11.10 (Intersection of two planes)

Find the intersection of the two planes −x− y + z = 2 and ax− 2y + 2z = b for all values of
the parameters a, b ∈ R. If the intersection is a line find its parametric form.

Solution: We have n1 = (−1,−1, 1)T , b1 = 2 and n2 = (a,−2, 2), b2 = b.

(1) a 6= −2: In this case n1 and n2 are linearly independent and the intersection must be a
line. With w = n1×n2 = (0, 2+a, 2+a)T and a special solution p = (b−4,−b−2a, 0)T /(2+a)
to the two equations the parametric form of the intersection line is

x(t) =
−1

2 + a

 4− b
2a+ b

0

+ t

 0
1
1

 .

(2a) a = −2 and b 6= 4: In this case the two planes are parallel so the intersection is empty.
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(2b) a = −2 and b = 4: The two planes are identical.

11.2.5 Intersection of line and plane

The intersection of a line and a plane in R3 is easiest discussed with the line in
parametric and the plane in Cartesian form, that is

L = {p + tw | t ∈ R} , P = {x ∈ R3 |n · x = b} .

By inserting the parametrization of the line into the equation for the plane we find for
the intersection

L ∩ P = {p + tw | (n ·w)t = b− n · p} .

If n · w 6= 0 then we can solve for t = t0 = (b − n · p)/(n · w) and the intersection
consists of a single point, L ∩ P = {p + t0w}. On the other hand, if n · w = 0 and
b 6= n · p there is no solution for t, so the intersection is empty, L ∩ P = {}. For
n ·w = 0 and b = n · p every t ∈ R is a solution so that L ∩ P = L — the line is a
subset of the plane (see Fig. 11.6).

P

L

R3

P

L

R3

P

L

R3

Fig. 11.6 A line and a plane in R3 can intersect in a point, in a line or have an empty

intersection.

Problem 11.11 (Intersection of line and plane)

Find the intersection of the plane with Cartesian equation 2x − 5y + z = 7 with the line in
parametric form given by

x(t) =

 0
−2

3

+ t

 2
1
−1

 .

Solution: With x = (x, y, z)T , we can split the parametric form of the line into its compo-
nents, x(t) = 2t, y(t) = −2 + t and z(t) = 3 − t, and insert these into the equation for the
plane. This gives

4t− 5(−2 + t) + 3− t = 7 ⇒ t = 3 .

Hence, the intersection point is x(3) = (6, 1, 0)T . As a check, we note that this point does
indeed satisfy the equation for the plane.
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11.2.6 Intersection of three planes

Suppose that we are interested in the intersection P1 ∩ P2 ∩ P3 of the three planes in
R3 in Cartesian form:

Pi = {x ∈ R2 |ni · x = bi} , where i = 1, 2, 3 .

This intersection is clearly the same as the solution to the system of the three linear
equations in three variables given by ni · x = bi for i = 1, 2, 3, another example of
the close relationship between the geometry of affine k-planes and linear systems. Of
course, the intersection can be found by solving the linear system explicitly. However,
the qualitatively different cases which can arise can be easily reasoned out from what
we have discussed so far.

Start by considering the intersection P1 ∩ P2 of the first two planes. This intersection
may be a line, a plane or it may be empty. If L = P1 ∩ P2 is a line then the triple
intersection P1 ∩ P2 ∩ P3 = L ∩ P3 can be a point, a line or be empty. This already
covers all the cases but one, which is the case P1 = P2 = P3, so that the intersection
is a plane. These four cases are illustrated in Fig. 11.7.

Fig. 11.7 Three planes in R3 can intersect in a point, a line, a plane or have an empty inter-

section.

Problem 11.12 (Intersection of three planes)

Find the intersection of the three planes with Cartesian equations x−y+3z = 5, 2x−2y+z = 0
and x+ 3y − 8z = 1.

Solution: Just add suitable multiples of the three equations to eliminate variables but do so
in an organized manner (labelling equations helps!).

(E1) x− y + 3z = 5
(E2) 2x− 2y + z = 0
(E3) x+ 3y − 8z = 1

 2(E1)− (E2) 10z = 5
(E2)− 2(E3) −8y + 17z = −2

}
z = 2
y = 9/2

}

Inserting the results for z and y into, say, the first equation gives x = 7/2, so that the
intersection point is (x, y, z) = (7/2, 9/2, 2).



Lines and planes in R3 131

Application 11.1 The perceptron — a simple artificial neural networks

Artificial neural networks are motivated by the structure of the human brain and they
play an important role in modern computing. Many of the operating principles of artificial
neural networks can be formulated and understood in terms of linear algebra. Here, we
would like to introduce one of the basic building blocks of artificial neural networks — the
perceptron.

The structure of the perceptron is schematically illustrated in the figure below.

z = w · x− b y = σ(z)Rn 3 x
z ∈ R

y ∈ R

The perceptron receives an input vector x = (x1, . . . , xn)T ∈ Rn which it converts into a
real output y ∈ R in two steps. In the first step, it transforms x as

x 7→ z = w · x− b , (11.5)

where w ∈ R is called the weight vector of the perceptron and b ∈ R is called the bias. The
weight vector and the bias represent the internal state of the perceptron and, for now, we
think of them as given quantities. In the second step, the output z from the first step is
transformed as

z 7→ y = σ(z) . (11.6)

Here, σ is called the activation function and there are several possible choices for this
function. A common choice which we adopt here is called the logistic sigmoid function:

σ(z) :=
1

1 + exp(−z) . (11.7)

Its graph is shown in the figure below.

z

σ(z)

1

Clearly, the logistic sigmoid has two asymptotes, namely σ(z) → 0 for z → −∞ and
σ(z)→ 1 for z →∞. Its presence makes the overall action of the perceptron non-linear.

Given this set-up, the functioning of the perceptron can be phrased in geometrical terms.
To do this, consider the hyperplane in Rn (which is a line for n = 2 and a plane for n = 3)
in Cartesian form

w · x = b , (11.8)

which is determined by the weight vector w and the bias b of the perceptron. If a point
x ∈ Rn is ’above’ this hyperplane, so that z = w · x− b > 0, then, from Eqs. (11.5), (11.6)
and the asymptotic behaviour of the logistic sigmoid, the output of the perceptron is close
to 1. On the other hand, for a point x ∈ Rn below this hyperplane, so that z = w ·x−b < 0,
the perceptron’s output is close to 0. In other words, the purpose of the perceptron is to
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’decide’ whether a given input vector x is above or below the hyperplane (11.8).

So far this does not seem to hold much interest — all we have done is to re-formulate a
sequence of simple mathematical operations related to the Cartesian form of a (hyper)plane
in a different language. The point is that the internal state of the perceptron, that is the
choice of hyperplane specified by the weight vector w and the bias b, is not inserted ’by
hand’ but rather determined by a learning process. This works as follows. Imagine a certain
quantity, y, rapidly changes from 0 to 1 across a certain hyperplane in Rn whose location is
not a priori known. Let us perform m measurements of y at locations x(1), . . . ,x(m) ∈ Rn
resulting in measured values y(1), . . . , y(m) ∈ {0, 1}. These measurements can then be used

to train the perceptron. Starting from random values w(1) and b(1) of the weight vector and
the bias we can iteratively improve those values by carrying out the operations

w(a+1) = w(a) + λ(y(a) − y)x(a) , b(a+1) = b(a) − λ(y(a) − y) . (11.9)

Here, y is the output value produced by the perceptron given the input vector x(a) and λ is
a real value, typically chosen in the interval [0, 1], called the learning rate of the perceptron.
Evidently, if the value y produced by the perceptron differs from the true, measured value
y(a), the weight vector and the bias of the perceptron are adjusted according to Eqs. (11.9).
This training process continues until all measurements are used up and the final values
w = w(m+1) and b = b(m+1) have been obtained. In this state the perceptron can then
be used to ’predict’ the value of y for new input vectors x. Essentially, the perceptron has
’learned’ about the location of the hyperplane via the training process and is now able to
decide whether a given point is located above or below.

−1 0 1

−1

0

1

−1 0 1

−1

0

1

For a simple two-dimensional case, n = 2, this process is illustrated in the above figure. The
plot on the left shows the data points x(a), where filled dots have a value y(a) = 1 and open
dots y(a) = 0. After training the perceptron with this data set, using Eq. (11.9), the values
of weights and biases are w ' (−2, 1)T and b ' 1/2. The resulting line, Eq. (11.8), is shown
in the plot on the right.

In the context of artificial neural networks, the perceptron corresponds to a single neuron.
More complicated neural networks can be constructed by combining several perceptrons
(and, frequently, other building blocks). The learning process for such larger networks is
similar to the one for the perceptron described above and it underlies many applications, for
example to pattern recognition. We will return to some aspects of this in Application 13.3.
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Exercises

(†=challenging, ††=difficult, wide-ranging)

11.1 Consider two lines Li = {pi + twi | t ∈
R} ⊂ R2, where i = 1, 2, with p1 =
(1, b)T , w1 = (−1, 1)T , p2 = (0,−1)T

and w2 = (1, a)T and a, b ∈ R. Find
the intersection L1 ∩ L2 for all values
of a, b.

11.2 In R3, write down the vector equation
of the line

(x− 2)

4
=

(y − 1)

3
=

(z − 5)

2

and find the minimum distance of this
line from the origin.

11.3 For p1,p2 ∈ R2 or R3 and p1 6= p2

show that there is precisely one line L
with p1,p2 ∈ L.

11.4 Show that two lines Li = {pi+twi | t ∈
R} ⊂ R3, where i = 1, 2 and w1,w2

are linearly independent, have a non-
trivial intersection if and only if (p1 −
p2) · (w1 ×w2) = 0.

11.5 Find the Cartesian equation for the
plane in R3 which contains p1 =
(2,−1, 1), p2 = (3, 2,−1), and p3 =
(−1, 3, 2).

11.6 Find the Cartesian and parametric
form of the plane in R3 which contains
p1 = 3i + 2j + k, p2 = −i + 3j− 2k,
and p3 = 2i + 2j + 2k.

11.7 In R3, find the intersection of the line
which contains 0 and p = (1, 1, 1)T

and the plane which contains p1 =
(−1, 1,−2)T , p2 = (1, 5,−5)T , and
p3 = (0, 2,−3)T .

11.8 Smallest distance of trajectories†

In R3, consider the equations x1(t) =
p1 + tw1 and x2(t) = p2 + tw2, where
w1 and w2 are linearly independent
and t ∈ R.
(a) For which value of t is the distance
of x1(t) and x2(t) minimal and what is
this minimal distance?
(b) Consider two planes whose trajec-
tories are described by the above equa-
tions with p1 = (10, 10, 0)T , w1 =
(−1,−1, 1)T , p2 = (−10,−10, 0)T , and
w2 = (1, 1/2, 1)T . For which time t are
the planes closest and what is their dis-
tance at this time? Do they collide?

11.9 The perceptron††

Write code in your favourite program-
ming language which realizes the per-
ceptron in Application 11.1 and which
trains the perceptron from a given
data set using Eqs. (11.9). For two-
dimensional cases, check that your re-
alization is capable of identifying the
separating line between the two sets of
points.





Part IV

Linear maps and matrices

After our interlude on geometry in the previous part, it is now time to come back to
the main narrative. We have already developed the main properties of vector spaces
— linear independence, basis, dimension — and now we need to have a closer look
at its morphisms, the linear maps. Analysing the morphisms of an algebraic structure
is often key to a deep understanding of a mathematical area and linear algebra is no
different in this regard.

In the next chapter, we cover the basics of linear maps: their existence and construc-
tion; the vector space Hom(V,W ) of linear maps V →W ; composition of linear maps
and their inverse and the general linear group GL(V ) of invertible linear maps V → V .
We also present a number of interesting examples, including coordinate maps and dif-
ferential operators.

Earlier, we have encountered matrices in their role as constituents of vector spaces
(see Section 6.2.2). We also know from Section 1.2.4 that linear maps R2 → R2 can
be identified with 2 × 2 matrices with real entries. In Chapter 13 we will generalize
this statement and show that, thanks to the existence of the standard unit vector
basis, linear maps Fn → Fm can be identified with m × n matrices with entries in F.
This leaves us with an obvious task: the features of linear maps need to be translated
into the language of matrices. Indeed, this is how the main properties of matrices
emerge. As we will see, the action of a linear map on a vector turns into matrix-vector
multiplication, the composition of linear maps corresponds to matrix multiplication
and the map inverse becomes the matrix inverse. We will also introduce transposition
and Hermitian conjugation for matrices as well as the matrices invariant under these
operations, the symmetric and Hermitian matrices. These are basic and useful opera-
tions for matrices whose introduction cannot be deferred, although their mathematical
meaning will only become clear later, in the context of inner product vector spaces in
Chapter 23 and duality in Chapter 26.

In Chapter 14 we introduce and prove the central statement about the structure of
linear maps: the rank theorem1. There are two natural vector subspaces associated
to a linear map f : V → W , namely the kernel, Ker(f) ⊂ V , which consists of all
vectors mapped to 0, and the image, Im(f) ⊂ W . The linear map’s domain is a vec-

1In the literature this is often referred to as the ’rank-nullity theorem’. We will avoid this somewhat
cumbersome terminology.



136 Linear maps and matrices

tor space with dimension dimF(V ) but dimF(Ker(f)) dimensions are ’lost’ under the
action of f , since the entire kernel is mapped to the zero vector. This suggests that
dimF(V ) − dimF(Ker(f)) dimensions are available for the image and this is precisely
the statement of the rank theorem.

Finally, in Chapter 15 we will see that all linear maps can be described by matrices,
just as all vectors can be described by coordinate vectors, once bases have been chosen.
Computing the matrix associated to a linear map is one of the key tasks in linear alge-
bra and it is of great importance in linear algebra applications. A prominent example
is the relation between Scrödinger’s formulation of quantum mechanics in terms of
differential operators and Heisenberg’s in terms of matrices (see Example 15.2). We
also need to understand how the matrix which describes a linear map changes under
a change of basis. In other words, we will derive the transformation law for matrices
under a change of the ’coordinate system’, another key aspect of linear algebra with
many applications.



12

Introduction to linear maps

This chapter begins with the theoretical foundations for the understanding of linear
maps. We show that linearity is a ’nice’ property in that is it preserved under basic
map operations, including addition and scalar multiplication of maps as well as map
composition and map inversion. This implies that the linear maps V → W form a
vector space Hom(V,W ), called the vector space of homomorphisms from V to W and
that the invertible linear maps V → V form a group GL(V ), called the general linear
group of V .

We finish the discussion with examples of linear maps. One of them are coordinate
maps which relate vectors to their coordinate vectors and are a very useful tool to
describe the relationship between linear maps and matrices. We also discuss linear
differential operators.

12.1 First properties of linear maps

Summary 12.1 Linear maps are the maps between vector spaces which are con-
sistent with vector addition and scalar multiplication. Given a basis of the domain,
there exists a unique linear map for every choice of images for the basis vectors.
Addition and scalar multiplication of maps preserves linearity. This means that the
space Hom(V,W ) of all linear maps V →W forms a vector space of functions. Lin-
earity is preserved under map composition and under carrying out the inverse. As a
result, the set GL(V ) of all invertible linear maps V → V forms a group, called the
general linear group of V . Invertible linear maps V → W are called (vector space)
isomorphisms and two vector spaces related by an isomorphism are called isomorphic.

12.1.1 Reminder of definition

Let us recall from Def. 6.3 that linear maps f : V →W between two vector spaces V
and W over the same field F are maps which are consistent with vector addition and
scalar multiplication, in the sense that

f(v1 + v2) = f(v1) + f(v2)
f(αv) = αf(v)

}
⇔ f(α1v1 + α2v2) = αf(v1) + α2f(v2) (12.1)

for all v,v1,v2 ∈ V and all α, α1, α2 ∈ F. These linearity conditions can be combined
and generalized to arbitrary linear combinations, so that
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f

(
k∑
i=1

αivi

)
=

k∑
i=1

αif(vi) , (12.2)

for all vi ∈ V and all αi ∈ F. In other words, forming a linear combination and
applying a linear map are two operations which ’commute’.

Another simple but important property of linear maps is that they map the zero vector
of the domain vector space to the zero vector of the co-domain, so

f(0) = 0 . (12.3)

This is easily seen if we recall from Prop 6.1 (ii) that 0 v = 0 for all v ∈ V and, hence,
f(0) = f(0 0) = 0f(0) = 0.

We also note the simple fact that the restriction f |U of a linear map f : V → W
to a sub vector space U ⊂ V is also linear. Indeed, since f satisfies the linearity
conditions (12.1) for all vectors in V , they are also satisfied for vectors in U ⊂ V .

The identity map idV : V → V (defined by idV (v) = v for all v ∈ V ) is a trivial
example of a linear map. Another, slightly more interesting example is the map fα :
V → V which multiplies vectors with a fixed scalar α ∈ F, so fα(v) = αv. This map
is indeed linear (Exercise 12.1) but is still a rather special example of a linear maps.

12.1.2 Existence and construction of linear maps

The full scope of linear maps is described by the following theorem which also provides
us with a practical construction method.

Theorem 12.1 For two vector spaces V , W over the same field F, let (v1, . . . ,vn) be
a basis of V and w1, . . . ,wn ∈W arbitrary vectors. Then there exists a unique linear
map f : V →W with f(vi) = wi, for i = 1, . . . , n.

Proof Existence: Since (v1, . . . ,vn) is a basis of V every vector v ∈ V can be written
as a linear combination v =

∑n
i=1 αivi with unique coordinates αi. Let wi ∈ W be

the intended images of the basis vector. Then we define the map f : V →W by

f(v) =

n∑
i=1

αiwi for v =

n∑
i=1

αivi . (12.4)

Clearly, f is well-defined and f(vi) = wi. It remains to be shown that f is linear. For
a second vector u =

∑n
i=1 βivi we have

f(v +u) = f

(
n∑
i=1

(αi + βi)vi

)
=

n∑
i=1

(αi+βi)wi =

n∑
i=1

αiwi+

n∑
i=1

βivi = f(v) +f(u)

which shows that the first Eq. (12.1) is satisfied. To check the second Eq. (12.1) we
start with a scalar α ∈ F and work out

f(αv) = f

(
n∑
i=1

ααivi

)
=

n∑
i=1

ααiwi = α

n∑
i=1

αiwi = αf(v) .

This completes the existence proof.
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Uniqueness: For a linear map f : V → W with f(vi) = wi and a linear combination
v =

∑n
i=1 αivi it follows from generalized linearity (12.2) that

f(v) = f

(
n∑
i=1

αivi

)
=

n∑
i=1

αif(vi) =

n∑
i=1

αiwi .

Hence, f is already determined for all v ∈ V and is, therefore, unique. 2

In short, we can construct a linear map by choosing a basis (v1, . . . ,vn) on the domain
vector space and by selecting an arbitrary image vector wi = f(vi) for each basis
vector. From Eq. (12.4), this fixes the linear map uniquely and clearly every linear
map (with a finite-dimensional domain vector space) can be obtained in this way. Let
us illustrate this result with a simple example.

Problem 12.1 (Constructing linear maps)

Construct the linear map f : R2 → R2 with f(e1) = w1 and f(e2) = w2, where w1 = (1,−2)T

and w2 = (−3, 6)T .

Solution: Simply write a general vector v = (v1, v2)T ∈ R2 as a linear combination v =
v1v1 + v2e2 and use linearity of f .

f(v) = f(v1e1 + v2e2) = v1f(e1) + v2f(e2) = v1w1 + v2w2 =

(
v1 − 3v2

−2v1 + 6v2

)
. (12.5)

12.1.3 Addition and scalar multiplication of linear maps

How does linearity relate to basic operations that can be performed with maps? We
begin with the addition and scalar multiplication of maps. We already know from
Section 6.2.3 that the space F(V,W ) of all function f : V → W between two vector
spaces V and W over F can be made into a vector space over the same field. Vector
addition and multiplication of functions are defined ’point-wise’,

(f + g)(v) = f(v) + g(w) , (αf)(v) = αf(v) , (12.6)

where f, g ∈ F(V,W ), v ∈ V and α ∈ F (see Eq, (6.9)). Is the property of linearity
preserved under addition and scalar multiplication of functions?

Proposition 12.1 Let f, g : V →W be two linear maps between vector spaces V and
W over F and α ∈ F a scalar. Then the sum f + g and the scalar multiple αf , as
defined in Eq. (12.6), are linear.

Proof We need to check the linearity condition (12.1) for f + g and αf , given it is
satisfied for f and g.

(f + g)(α1v1 + α2v2)
(12.6)

= f(α1v1 + α2v2) + g(α1v1 + α2v2)

(12.1)
= α1f(v1) + α2f(v2) + α1g(v1) + α2g(v2)

= α1(f(v1) + g(v1)) + α2(f(v2) + g(v2))

(12.6)
= α1(f + g)(v1) + α2(f + g)(v2)
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The proof for αf works analogously and is left as Exercise 12.1. 2

We can re-formulate this result more abstractly by saying that the set of linear maps f :
V →W forms a vector subspace of F(V,W ) (see Def. 6.2). This vector space of linear
maps from V to W is also denoted by Hom(V,W ), which stands for homomorphisms
from V to W . For the special case V = W , linear maps V → V are also called (vector
space) endomorphisms and the vector space of endomorphisms is denoted by End(V ).

Theorem 12.2 The space Hom(V,W ) of linear maps V → W , with addition and
scalar multiplication as defined in Eq. (12.6), forms a vector spaces over the same field
as V and W . If V and W are finite-dimensional its dimension is given by

dimF(Hom(V,W )) = dimF(V ) dimF(W ) . (12.7)

Proof It remains to proof the dimension formula. We choose bases (v1, . . . ,vn) and
(w1, . . . ,wm) of V and W and define the linear maps fij ∈ Hom(V,W ) for i = 1, . . . , n
and j = 1, . . . ,m by

fij(vk) =

{
wj for k = i
0 for k 6= i

We want to show that these linear maps form a basis of Hom(V,W ). For linear indepen-
dence, start with the equation

∑
ij λijfij = 0 and act on the vector vk which results

in
∑
j λkjwj = 0. Since (w1, . . . ,wm) forms a basis, this implies that all λkj = 0.

Hence, the fij are linearly independent.
Next, consider the function f =

∑
i,j aijfij , for aij ∈ F. Since f(vk) =

∑
j akjwj

and the wj are a basis, it follows that any image vectors f(vk) can be obtained for
suitable choices of the aij . From Theorem 12.1 this means the fij span Hom(V,W ).
Since the number of these functions is nm, Eq. (12.7) follows. 2

12.1.4 Map composition and inverse

Linearity is also preserved under map composition and inversion, as the following
proposition shows.

Proposition 12.2 Let f, f1, f2 : V → W and g, g1, g2 : W → U be linear maps and
α1, α2 ∈ F.

(i) The composition g ◦ f : V → U is linear.
(ii) g ◦ (α1f1 + α2f2) = α1(g ◦ f1) + α2(g ◦ f2).
(iii) (α1g1 + α2g2) ◦ f = α1(g1 ◦ f) + α2(g2 ◦ f).
(iv) If f−1 : W → V exists it is linear.

Proof (i) All we need to do is check the linearity condition (12.1) for g ◦ f given it
is satisfied for f and g.

(g ◦ f)(α1v1 + α2v2) = g(f(α1v1 + α2v2)) = g(α1f(v1) + α2f(v2))

= α1g(f(v1)) + α2g(f(v2)) = α1 (g ◦ f)(v1) + α2 (g ◦ f)(v2) .

(ii) For v ∈ V we have, from the definition of map composition and linearity, that
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(g ◦ (α1f1 + α2f2))(v) = g((α1f1 + α2f2)(v)) = g(α1f1(v) + α2f2(v))

= α1(g ◦ f1)(v) + α2(g ◦ f2)(v) = (α1(g ◦ f1) + α2(g ◦ f2))(v) .

(iii) This works exactly like the proof for part (ii).
(iv) Let f : V →W be an invertible linear maps with inverse f−1 : W → V . Consider
two vectors w1,w2 ∈W . Since f is surjective they can be written as w1 = f(v1) and
w2 = f(v2) for two vectors v1,v2 ∈ V , so that v1 = f−1(w1) and v2 = f−1(w2). The
linearity condition (12.1) for f−1 is verified by

f−1(α1w1 + α2w2) = f−1(α1f(v1) + α2f(v2)) = f−1(f(α1v1 + α2v2))

= α1v1 + α2v2 = α1f
−1(w1) + α2f

−1(w2) .

2

Not only does map composition preserve linearity, it is also a bi-linear operation, from
(ii) and (iii) of the proposition. In particular, this means that End(V ) forms an algebra,
with map composition as multiplication, as comparison with Def. 6.4 shows. Since map
composition is associative and has a unit element, idV , this is an associative algebra
with unit.

While map composition is associative it is, in general, not commutative. For two linear
maps f, g ∈ End(V ) we can introduce the commutator [f, g] := f ◦ g − g ◦ f , a linear
map in End(V ) which vanishes (equals the zero map) if and only if f and g commute.
The commutator has a number of interesting properties. It is anti-symmetric, linear
in each of its arguments and it satisfies an equation referred to as Jacobi identity (see
Exercise 12.8).

12.1.5 Isomorphisms and general linear groups

Bijective linear maps are of particular importance since they can be used to identify
two vector spaces and this motivates introducing the following terminology.

Definition 12.1 A bijective linear map f : V → W is called a vector space isomor-
phism, or isomorphism for short, from V to W . If such an isomorphism from V to W
exists then V and W are called isomorphic, written as V ∼= W .

Isomorphic vector spaces should be regarded as identical with regard to their vector
space structure. In other words, it does not matter in which of the two spaces cal-
culations are carried out — the isomorphism (and its inverse) can always be used
to translate to the other space in a way that is consistent with addition and scalar
multiplication.

Note that the notion of vector spaces being isomorphic is an equivalence relation. In-
deed, every vector space is isomorphic to itself, V ∼= V (since the identity map idV is
linear and bijective), so the relation is reflexive. If V ∼= W then, by definition, there is
a bijective linear map f : V → W and, from Prop. 12.2 (ii) we know that its inverse
f−1 : W → V is also linear. Therefore, V ∼= W implies that W ∼= V , so the relation
is symmetric. Finally, we need to show that it is also transitive. Consider three vector
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spaces V , W , U with V ∼= W and W ∼= U , so that there are bijective linear maps
f : V → W and g : W → U . Then, the map g ◦ f : V → U is linear from Prop. 12.2
(i) and bijective from Prop. 2.4, so that V ∼= U . In conclusion, being isomorphic is an
equivalence relation. As a result, the vector spaces over a fixed field fall into disjoint
equivalence classes each of which consists of all vector spaces isomorphic to each other.
We will soon learn how to characterize these equivalence classes.

From Example 3.1 we know that the set of bijective maps V → V on a vector space
V forms a group, Bij(V ). Recall that the group multiplication is composition of maps,
the group inverse is the inverse map and the group identity is the identity map. The
invertible linear maps V → V are called (vector space) automorphisms and they form
a subset of Bij(V ), which is denoted by Aut(V ). The interesting observation is that
Aut(V ) forms a sub-group of Bij(V ), as can be verified by checking the conditions in
Def. 3.2. Indeed, Aut(V ) contains the identity map and, from Prop. 12.2 it is closed
under map composition and under taking the map inverse. This sub-group is also
called the general linear group of V and is sometimes denoted by GL(V ) = Aut(V ).

Theorem 12.3 The set Aut(V ) = GL(V ) of invertible linear maps V → V forms a
group under map composition.

General linear groups are quite important. For example, they are a key ingredient in
the theory of linear group representations, a more advanced subject which studies the
interaction between groups and vector spaces (see, for example, Fulton and Harris
2013) and which has many applications in modern physics (see, for example, Cornwell
1997). General linear groups also have many interesting sub-groups some of which
arise and will be discussed in the context of scalar products (see Chapter 23).

12.2 Examples of linear maps

Summary 12.2 Coordinate maps Fn → V map coordinate vectors relative to a basis
into the associated vectors. They are vector spaces isomorphisms which implies that
every n-dimensional vector space V over F is isomorphic to Fn. Linear differential
operators can be viewed as linear maps on suitable vector spaces of functions.

12.2.1 Coordinate maps

There is a simple but extremely useful way to formalize the relationship between
vectors and their coordinates relative to a basis. Consider a vector space V over F
with basis (v1, . . . ,vn). From Theorem 12.1 we know there exists a unique linear map
ϕ : Fn → V with

ϕ(ei) = vi (12.8)

for all i = 1, . . . , n. It maps a coordinate vector α = (α1, . . . , αn)T ∈ Fn to

ϕ(α) =

n∑
i=1

αivi , (12.9)
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that is, to the associated vector. For this reason, ϕ is called a coordinate map. Since
the coordinates of a vector are unique, this map is injective and since (v1, . . . ,vn)
spans V it is surjective. Hence, coordinate maps are bijective. (This also follows from
Exercise 12.5.)

In conclusion, coordinate maps are vector space isomorphisms and their existence
shows that an n-dimensional vector space V over F is isomorphic to the coordinate
vector space Fn over F, so V ∼= Fn. In this sense, we can think of any vector space with
a basis as a coordinate vector space. However, it is important to remember that this
identification of vectors with coordinate vectors is not ’canonical’ but depends on the
choice of basis. In other words, the same vector is represented by different coordinate
vectors for different choices of basis. Coordinate maps will be very useful later when
we examine the relationship between linear maps and matrices.

Problem 12.2 (Coordinate maps)

Find the coordinate map ϕ : R2 → R2 associated to the basis (v1,v2) of R2, where v1 =
(1, 1)T and v2 = (1,−1)T .

Solution: We write an arbitrary vector w ∈ R2 as a linear combination w = α1v1 +α2v2 of
the basis. With α = (α1, α2)T , the coordinate map associated to this basis is

ϕ(α) = α1v1 + α2v2 =

(
α1 + α2

α1 − α2

)
.

Problem 12.3 (Coordinate map for a polynomial vector space)

Show that (p0, p1, p2, p3) with p0(x) = 1, p1(x) = x, p2(x) = 3x2 − 1 and p3(x) = 5x3 − 3x is
a basis of P3(R) and find the coordinate map associated to this basis.

Solution: To show linear independence we consider the equation

0 =

3∑
i=0

αipi(x) = (α0 − α2) + (α1 − 3α3)x+ 3α2x
2 + 5α3x

3 .

Linear independence of the monomials (1, x, x2, x3) implies that α0 − α2 = 0, α1 − 3α3 = 0,
3α2 = 0 and 5α3 = 0. It follows that all αi = 0 so the pi are linearly independent. Since
they are four polynomials in a four-dimensional space they must form a basis. The associated
coordinate map is

ϕ(α)(x) =

3∑
i=0

αipi(x) = (α0 − α2) + (α1 − 3α3)x+ 3α2x
2 + 5α3x

3 .

12.2.2 Differential operators

We recall that C∞([a, b],R) is the vector space of (real-valued) infinitely many times dif-
ferentiable functions on the interval [a, b] ⊂ R. This is of course an infinite-dimensional
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vector space, so it is somewhat outside the main topic of this book. Nevertheless, lin-
ear maps on this and other function spaces are so important for many applications
that we have to mention them. An important class of such maps are linear differential
operators of order n which are of the form

L =

n∑
k=0

pk
dk

dxk
: C∞([a, b],R)→ C∞([a, b],R) , (12.10)

where pk ∈ C∞([a, b],R) are fixed functions. Differentiation is a linear operation since

d

dx
(αg + βg)(x) = α

dg

dx
(x) + β

dh

dx
(x) (12.11)

for functions g, h ∈ C∞([a, b],R) and all scalars α, β ∈ R. Likewise, multiplication with
a fixed function p ∈ C∞([a, b],R) is linear since

(p(αg + βh))(x) = αp(x)g(x) + βp(x)h(x) = (α(pg) + β(ph))(x) . (12.12)

Since the differential operator L is built up from compositions and sums of differen-
tiations and multiplications with fixed functions we know from Props. 12.2 and 12.1
that it must be linear as well. Of course, we can also verify this explicitly.

L(αg + βh) =

n∑
k=0

pk
dk

dxk
(αg + βg) = α

n∑
k=0

pk
dkg

dxk
+ β

n∑
k=0

pk
dkh

dxk
= αL(g) + βL(h)

All results for linear maps which do not assume finite dimensionality can be directly
applied to such linear differential operators.

Problem 12.4 (Playing with differential operators)

Define two linear maps D,X : C∞([a, b]) → C∞([a, b]) by D(g)(x) = g′(x) (single derivative
operator) and X(g)(x) = xg(g) (map which multiplies with x). Are these maps injective or
surjective? Do they commute?

Solution: The derivative operator D maps any constant function to the zero function so it
cannot be injective. On the other hand, every function h is an image h = Dg of a function g
(take g to be an indefinite integral of h) so that D is surjective.

As for X, Xg = Xh implies that xg(x) = xh(x) for all x ∈ [a, b]. Dividing by x leads to g = h
so that X is injective. For surjectivity of X the discussion is a bit more subtle. We need to
check if, for every h ∈ C∞([a, b]) there exists a g ∈ C∞([a, b]) with h = Xg or, equivalently,
h(x) = xg(x) for all x ∈ [a, b]. The obvious (and only possible) choice is to take g(x) = h(x)/x
but this is only an element of C∞([a, b]) if 0 /∈ [a, b]. In conclusion, X is surjective if and only
if 0 /∈ [a, b].

For the final part, we work out the commutator [D,X]:

[D,X](g)(x) =
d

dx
(xg(x))− xg′(x) = g(x) = id(g)(x) ⇒ [D,X] = id .

Hence, D and X do not commute, a result which is of profound importance for quantum
mechanics.
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Exercises

(†=challenging)

12.1 For a linear map f : V → W and a
scalar α ∈ F, show that the function
αf , as defined in Eq. (12.6), is linear.

12.2 Find the linear map f : R2 → R2 for
which f(e1) = (1,−2)T and f(e2) =
(−1, 1)T and find the 2 × 2 matrix
which describes f .

12.3 Two maps f, g : R3 → R3 are defined
by f(x) = (n · x)n and g(x) = v × x,
where n,v ∈ R3 are given non-zero
vectors.
(a) Show that f and g are linear.
(b) Show that f and g are neither sur-
jective nor injective.
(c) Work out the composite maps f ◦f ,
g ◦ f and g ◦ g.

12.4 Consider the vector space V = P2(R)
of quadratic polynomials with mono-
mial basis (1, x, x2).
(a) Find the unique linear map F :
V → V which maps the basis vec-
tors as F (1) = 1, F (x) = 2 + x, and
F (x2) = 2x+ x2.
(b) Show that the map from (a) can be
written as a linear differential operator
of the form (12.10).
(c) Can every linear map F : V → V
be expressed as a linear differential op-
erator?

12.5 For a vector space V with basis
(v1, . . . ,vn) and vectors w1, . . . ,wm ∈
W , let f : V →W be the unique linear
map with f(vi) = wi, for i = 1, . . . , n.
(a) Show that f is surjective iff the vec-
tors w1, . . . ,wn span W .
(b) Show that f is injective iff the vec-

tors w1, . . . ,wn are linearly indepen-
dent.
(c) Show that f is an isomorphism iff
(w1, . . . ,wn) is a basis of W .
(d) If f is an isomorphism, show that
dimF(V ) = dimF(W ).

12.6 Bases and general linear group†

Use the results from Exercise 12.5 to
show that there is a bijective map be-
tween the bases of a vector space V and
the general linear group GL(V ).

12.7 For two vector spaces V , W and a vec-
tor subspace U ⊂ V , we have a linear
map f : U → W . Show that there ex-
ists a linear map F : V → W with
Im(F ) = Im(f).

12.8 Commutator properties
Let f, g, h : V → V be linear maps.
(a) Show that the commutator is anti-
symmetric, so [f, g] = −[g, f ].
(b) Show that the commutator is bi-
linear, by verifying that [f, αg+ βh] =
α[f, g] + β[f, h].
(c) Show that the commutator satisfies
[f, [g, h]]+[g, [h, f ]]+[h, [f, g]] = 0 (Ja-
cobi identity).

12.9 Calculating with commutators†

(a) For linear maps f, g, h : V → V
show that the commutator satisfies [f ◦
g, h] = f ◦ [g, h] + [f, h] ◦ g.
(b) For a vector space V of dif-
ferentiable function, use the formula
from (a) to work out the commuta-
tors [xD, x], [D2, x] and [D3, x], where
D = d/dx is the derivative operator
and x denotes the linear map which
multiplies functions by x.



13

Matrices

Probably the most important class of linear maps are linear maps between coordinate
vector spaces. As we will see, they can be identified with matrices. Under this identifi-
cation, basic map operations are turned into matrix operations: the action of a linear
map on a vector becomes matrix-vector multiplication, the composition of maps turns
into matrix multiplication and the map inverse corresponds to the matrix inverse. In
this way, matrix properties which may, at first, seem contrived become perfectly nat-
ural — they reflect elementary map operations.

We will also use the opportunity to introduce the basic matrix operations of transpo-
sition and Hermitian conjugation. The matrices invariant under these operations are
called symmetric and Hermitian matrices, respectively. The mathematical meaning of
transposition and Hermitian conjugation will become clear in Chapter 22.

13.1 Matrices as linear maps

Summary 13.1 Linear maps f : Fn → Fm between coordinate vector spaces are
identified with m×n matrices with entries in F. Under this correspondence, the action
of linear maps on vectors turns into matrix-vector multiplication, map composition
becomes matrix multiplication and the inverse map is described by the inverse matrix.

In the introduction we have verified that linear maps between two-coordinate vectors
can be identified with 2× 2 matrices. We are now ready to consider the generalization
of this statement to an arbitrary number of components.

13.1.1 Linear maps between coordinate vectors

Suppose, we are interested in a linear map f : Fn → Fm from n-dimensional to m-
dimensional coordinate vectors. First, we introduce the standard unit vector bases
(e1, . . . en) and (ẽ1, . . . , ẽm) on Fn and Fm, respectively1. We can write the images
f(ej) as a linear combination of the standard unit vectors ẽi of the co-domain, so

f(ej) =

 A1j...
Amj

 =

m∑
i=1

Aij ẽi , (13.1)

1Since n and m are allowed to be different the standard unit vectors on either space can have
different numbers of components and the tilde notation has been used to indicate this.



Matrices as linear maps 147

for suitable numbers Aij ∈ F. For general vectors v =
∑n
j=1 vjej ∈ Fn, this implies

f(v) = f

 n∑
j=1

vjej

 (12.2)
=

n∑
j=1

vjf(ej)
(13.1)

=

m∑
i=1

n∑
j=1

Aijvj ẽi (13.2)

so that the ith component of f(v) is given by

(f(v))i =

n∑
j=1

Aijvj . (13.3)

This result shows the linear map is described by the numbers Aij and the action of the
linear map corresponds to carrying out the sum on the right-hand side of Eq. (13.3).

13.1.2 Matrix-vector multiplication

Given that the numbers Aij in Eq. (13.3) are labelled by two indices in the range
i = 1, . . . ,m and j = 1, . . . , n it is natural to arrange them into a m× n matrix

A =

 A11 · · · A1n

...
...

Am1 · · · Amn

 . (13.4)

We will frequently need to refer to the row vectors and column vectors of such a matrix
for which we introduce the following notation:

Ai = (Ai1, . . . , Ain)
T
, Aj = (A1j , . . . , Amj)

T . (13.5)

Hence, Ai is an n-dimensional column vector which contains the entries in the ith row
of A and Aj is an m-dimensional column vector which contains the entries in the jth

column of A. In terms of its row and column vectors, we sometimes write a matrix as

A =

AT
1
...

AT
m

 =
(
A1, . . . ,An

)
. (13.6)

Having introduced the relevant notation we now get to the important point: matrix-
vector multiplication. The product of an m×n matrix A with an n-dimensional coor-
dinate vector v ∈ Fn it is defined by

(Av)i :=

n∑
j=1

Aijvj . (13.7)

and it leads to an m-dimensional coordinate vector Av ∈ Fm. Of course, this definition
is motivated by the action of a linear map in Eq. (13.3) and can, therefore, be seen as
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a natural consequence of linearity. Using the above notation for row vectors matrix-
vector multiplication can also be written as

Av =

AT
1
...

AT
m

v =

 A1 · v
...

Am · v

 . (13.8)

The dot on the right-hand side denotes the dot product between two vectors which,
as in Chapter 9, is defined as

v ·w :=

n∑
i=1

viwi , (13.9)

where v,w ∈ Fn. In other words, we can say that a matrix and a vector are multiplied
by performing the dot product between the vector and the row vectors of the matrix.
Note that, for this process to make sense, the vector needs to have as many components
as the matrix has columns. A useful observation is that the action of a matrix on the
standard unit vectors gives the column vectors,

Aei = Ai , (13.10)

as Eq. (13.8) shows. The above results can be summarized in the following theorem.

Theorem 13.1 For a linear map f : Fn → Fm the m×n matrix A = (f(e1), . . . , f(en)),
whose columns are the images of the standard unit vectors ei, satisfies f(v) = Av for
all v ∈ Fn.

Combining this statement with Theorem 12.1, we conclude that linear maps between
coordinate vectors can be identified with matrices. Moreover, the action of such linear
maps corresponds to matrix-vector multiplication. From now on we will take this
identification for granted and freely switch between linear maps f : Fn → Fm and
their associated matrices A = (f(e1), . . . , f(en)). This identification can be viewed as
’canonical’ in the sense that it arises from a preferred basis — the standard unit vector
basis.

We will see later that linear maps between abstract vector spaces can also be
described by matrices. However, abstract vector spaces do not have a preferred ba-
sis, so the general relationship between linear maps and matrices will not be canonical.

Problem 13.1 (Multiplication of matrices and vectors)

Consider a linear map f : R3 → R4, with f(v) = Av and the 4× 3 matrix A given by

A =

 1 0 −1
2 1 3
−2 1 1

0 0 4

 .

Work out the image of the vector v = (1,−2, 3) under this linear map.
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Solution: The image of vectors v under f is found by computing the matrix-vector product
Av, which gives

Av =

 1 0 −1
2 1 3
−2 1 1

0 0 4


 1
−2

3

 =

−2
9
−1
12

 =: w .

Note that the image vector w ∈ R4 has been computed by carrying out the dot product
between the vector v and the rows of A.

Problem 13.2 (The matrix associated to a linear map between coordinate vectors)

Consider the linear map f : R2 → R2 defined by f(e1) = w1 and f(e2) = w2, where
w1 = (2, 3)T and w2 = (−2, 4)T . Find the 2× 2 matrix A which describes this linear map.

Solution: From Theorem 13.1 the columns of this matrix A are precisely the images w1, w2

of the standard unit vectors, so that

A = (w1,w2) =

(
2 −2
3 4

)
.

It is easy to check that Ae1 = w1 and Ae2 = w2, as should be the case.

13.1.3 The two faces of matrices

Theorem 13.1 can be used to translate features of (linear) maps into features of ma-
trices. The most elementary example of this is linearity of the map itself which trans-
lates into linearity of matrix-vector multiplication. This means for every m×n matrix
A ∈Mm,n(F), vectors v1,v2 ∈ Fn and scalars α,α2 ∈ F we have

A(α1v1 + α2v2) = α1Av1 + α2Av2 . (13.11)

Of course this can also be verified directly from the definition, Eq. (13.7), of matrix-
vector multiplication (Exercise 13.1).

In Prop. 12.1 we have seen that addition and scalar multiplication of maps preserves
linearity, so that the homomorphisms Hom(V,W ) form a vector space. As we have
just seen, the homomorphisms Hom(Fn,Fm) can be identified with matrices, so that

Hom(Fn,Fm) ∼=Mm,n(F) , End(Fn) ∼=Mn,n(F) . (13.12)

These relations have a somewhat abstract flavour: they talk about a bijective lin-
ear map between linear maps and their associated matrices. In practice this is not
so hard to understand. The map which underlies the identifications (13.12) is the
map f 7→ A which assigns to a linear map f ∈ Hom(Fn,Fm) the associated matrix
A = (f(e1), . . . f(en)), as in Theorem 13.1. This map is bijective, as follows from The-
orem 12.1. It is also linear. Indeed, if two maps f, g ∈ Hom(Fn,Fm) are identified with
matrices A,B ∈ Mm,n(F) then the linear map αf + βg is identified with αA + βB
(Exercise 13.4). In this way, addition and scalar multiplication of linear maps between
coordinate vectors translate into addition and scalar multiplication of matrices. This
explains the dual role of matrices as elements of the matrix vector spaces Mm,n(F)
and as linear maps in Hom(Fn,Fm).
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13.1.4 Square and diagonal matrices

Under the identification (13.12), special properties of a linear map between coordinate
vectors translate into special properties of the associated matrix. An endomorphism
f ∈ End(Fn) is described by an n × n matrix A ∈ Mn,n(F) with as many rows as
columns. Such matrices are called square matrices. The entries Aii of a square matrix
A are called the diagonal entries and all other entries Aij with i 6= j are called off-
diagonal entries.

The identity map idFn ∈ End(Fn) is associated to a square matrix called unit or
identity matrix and denoted by 1n. Since idFn(ei) = ei, for i = 1, . . . , n, we know from
Theorem 13.1 that

1n = (e1, . . . , en) =

1 0
. . .

0 1

 . (13.13)

It is clear that 1nv = v for all v ∈ Fn but this can also be explicitly verified from
matrix-vector multiplication. In fact, this is easy to do if we note that the entries of
the unit matrix, (1n)ij = δij , are precisely given by the Kronecker delta symbol, so
that (1nv)i = (1n)ijvj = δijvj = vi. (The last step is just using the index replacing
property of the Kronecker delta.)

Slightly generalizing from the identity map, another simple class of linear maps f ∈
End(Fn) are those which only scale the standard unit vectors, that is, f(ei) = λiei for
some λi ∈ F. From Theorem 13.1, the matrices associated to such linear maps have
column vectors λiei and are, hence, of the form

D = (λ1e1, . . . , λnen) =

λ1 0
. . .

0 λn

 =: diag(λ1, . . . , λn) . (13.14)

Such matrices are called diagonal and are also denoted by diag(λ1, . . . , λn). General-
izing even further, it is sometimes convenient to talk about block-diagonal matrices

A =

A1 0
. . .

0 An

 =: diag(A1, . . . , An) , (13.15)

which are built up from square matrices Ai (of possibly different sizes) arranged along
the diagonal.

13.2 Matrix multiplication

Suppose we have two matrices, each describing a linear map between coordinate vector
spaces. Since the composition of these maps is again linear (see Prop. 12.2) and it is
also a map between coordinate vector spaces, it must be described by a matrix as well.
It turns out this matrix is obtained by matrix multiplication, as we now explain.
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13.2.1 Matrix multiplication from map composition

Consider the following composition of linear maps.

Fn
f

Fm Fk
g

g ◦ f

We know from Theorem 13.1 that f corresponds to an m × n matrix A and g to a
k ×m matrix B. But from Prop. 12.2 the composition g ◦ f is also linear and, hence,
corresponds to a k × n matrix C. How does this matrix C relate to A and B?

From Eq. (13.3), the matrix C satisfies ((g ◦f)v))i =
∑n
k=1 Cikvk. On the other hand,

be applying f and g sequentially, we find

((g ◦ f)(v))i = (g(f(v)))i =

m∑
j=1

Bij(Av)j =

m∑
j=1

n∑
k=1

BijAjkvk . (13.16)

A comparison of these two results shows that

Cik =

m∑
j=1

BijAjk , (13.17)

and this is the desired relationship. Eq. (13.17) defines matrix multiplication and is,
in matrix notation, also written as C = BA. The sum over the adjacent index j in
Eq. (13.17) means that the product matrix C is obtained by performing all possible
dot product between the rows of B and the columns of A. Using our notation for row
and column vectors this can also be written as

BA =

BT
1
...

BT
k

(A1, . . . ,An
)

=

B1 ·A1 · · · B1 ·An

...
...

Bk ·A1 · · · Bk ·An


k ×m m× n → k × n

. (13.18)

The size of the various matrices is indicated underneath. Note that matrix multipli-
cation only makes sense if the first matrix has as many columns as the second one
has rows — only then are the dot products well-defined. We emphasize that there
is nothing strange or unnatural about matrix multiplication. As we have seen, it is
simply the way composition of linear maps is carried out when they are represented
by matrices.

Problem 13.3 (Matrix multiplication)

Consider the 3× 3 matrix A : R3 → R3 and the 2× 3 matrix B : R3 → R2 given by

B =

(
1 0 −1
2 3 −2

)
, A =

 0 1 1
2 0 1
1 −1 1

 .

Compute all well-defined products of these matrices (including with themselves).
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Solution: We can compute the 2 × 3 product matrix BA : R3 → R2 and the 3× product
matrix A2 : R3 → R3 by performing the dot products between the column vectors the second
matrix and the row vectors of the first matrix. This leads to

BA =

(
1 0 −1
2 3 −2

) 0 1 1
2 0 1
1 −1 1

 =

(
−1 2 0

4 4 3

)

A2 =

 0 1 1
2 0 1
1 −1 1

 0 1 1
2 0 1
1 −1 1

 =

 3 −1 2
1 1 3
−1 0 1

 .

The products AB and B2 do not make sense — the number of rows of the second matrix
does not match the number of columns of the first.

Application 13.1 Matrices in graph theory

Graphs are objects which consist of a certain number of vertices, V1, . . . , Vn, and links
connecting these vertices. A simple example with five vertices is shown below.

V1

V2

V5

V3

V4

Here we focus on undirected graphs for which the links have no direction, but our consider-
ations can easily be generalized to directed graphs. Graphs can be related to linear algebra
via the adjacency matrix which is defined by

Mij =

{
1 if Vi and Vj are linked
0 otherwise

.

For example, for the above graph the adjacency matrix is given by

M =


0 1 0 1 0
1 0 1 1 0
0 1 0 0 1
1 1 0 0 1
0 0 1 1 0

 . (13.19)

The following fact (which we will not try to prove here) makes the adjacency matrix a useful
object.

Fact: The number of possible walks from vertex Vi to vertex Vj over precisely n links in a
graph is given by (Mn)ij , where M is the adjacency matrix of the graph.

To illustrate this, compute the low powers of the adjacency matrix M in Eq. (13.19).

M2 =


2 1 1 1 1
1 3 0 1 2
1 0 2 2 0
1 1 2 3 0
1 2 0 0 2

 , M3 =


2 4 2 4 2
4 2 5 6 1
2 5 0 1 4
4 6 1 2 5
2 1 4 5 0

 .
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For example, the number of possible walks from V1 to V3 over three links is given by
(M3)13 = 2. By inspecting the above figure it can be seen that these two walks correspond
to V1 → V4 → V5 → V3 and V1 → V4 → V2 → V3.

13.2.2 Rules for matrix multiplication

The rules for matrix multiplication follow immediately from the rules for composition
of linear maps. We know that composition of maps is associative so the same must be
true for matrix multiplications. Hence, for three matrices A, B, and C (with suitable
size so that multiplication makes sense) we have

A(BC) = (AB)C . (13.20)

This can also be verified using Eq. (13.17) and working with index notation (and the
Einstein summation convention).

(A(BC))il = Aij(BC)jl = AijBjkCkl = (AB)ikCkl = ((AB)C)il .

The identity map acts as the neutral element of map composition, so the unit matrix
must be the neutral element of matrix multiplication. This means for an m×n matrix
A we have

A1n = 1mA = A . (13.21)

Again this is easily verified explicitly using index notation, for example

(A1n)ik = Aij(1n)jk = Aijδjk
(9.16)

= Aik .

If A is a square matrix it can be multiplied with itself an arbitrary number of times
and this is also written as Ak := AA · · ·A for k ∈ Z>0. It is also useful to define
A0 := 1n.

The relation between matrix multiplication on the one hand and matrix addition
and scalar multiplication on the other hand is governed by simple distributive and
associative rules. Specifically, we have

(A+B)C = AC +BC
C(A+B) = CA+ CB

A(αB) = (αA)B = α(AB)
, (13.22)

where α ∈ F and the sizes of A, B, and C should be such that all operations make
sense. These rules follow immediately from the corresponding ones for linear maps in
Prop. 12.2 but they can also be shown explicitly. For example, for the first of these
equations, simply perform the index computation

((A+B)C)ik
(13.17)

=
∑
j

(A+B)ijCjk
(6.5)
=
∑
j

(AijCjk +BijCjk)

(13.17)
= (AC)ik + (BC)ik

(6.5)
= (AC +BC)ik .

Another way to state the rules in Eq. (13.22) is to say that matrix multiplication is
bi-linear. In particular, this means that the vector space of square matricesMn,n(F) ∼=
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End(Fn) with matrix multiplication forms an algebra, in the sense of Def. 6.4. Since
matrix multiplication is associative and has a unit element, the unit matrix 1n, this
is an associative algebra with a unit.

While matrix multiplication is associative it is, in general, not commutative, so, typi-
cally, AB 6= BA for two square matrices A and B. The ’degree of non-commutativity’
of two matrices is often measured by the commutator defined as

[A,B] := AB −BA . (13.23)

Evidently, the matrices A, B commute if and only if [A,B] = 0. The matrix commu-
tator has the same properties as the commutator of linear maps (see Exercise 12.8),
namely it is anti-symmetric, bi-linear, and it satisfies the Jacobi identity.

Problem 13.4 (Non-commutativity of matrix multiplication)

For the matrices

A =

(
1 2
−1 0

)
, B =

(
3 −1
0 2

)
, C =

(
a b
b a

)
, D =

(
c d
d c

)
,

where a, b, c, d ∈ R, show that A and B do not commute and that [C,D] = 0.

Solution: By straightforward computation we have

AB =

(
1 2
−1 0

)(
3 −1
0 2

)
=

(
3 3
−3 1

)
, BA =

(
3 −1
0 2

)(
1 2
−1 0

)
=

(
4 6
−2 0

)
,

so that indeed AB 6= BA.

For the second part, we work out the commutator

[C,D] =

(
a b
b a

)(
c d
d c

)
−
(
c d
d c

)(
a b
b a

)
=

(
0 0
0 0

)
.

This shows that matrices with a specific structure can still commute.

13.2.3 Matrix inverse and general linear group

A bijective linear map f ∈ End(Fn) has a unique linear inverse f−1 (see Prop. 12.2)
and, from Theorem 13.1, both f and f−1 are described by an n×n matrix. If A is the
n × n matrix which describes f , then the matrix which corresponds to f−1 is called
the inverse matrix of A, and it is denoted by A−1. Since map composition becomes
matrix multiplication, the defining relations f ◦ f−1 = f−1 ◦ f = id for the inverse
map translate into the defining relations

AA−1 = A−1A = 1n . (13.24)

for the inverse matrix. Conversely, a general n × n matrix A is called invertible if
it corresponds to an invertible linear map or, equivalently, if an n × n matrix A−1

satisfying Eq. (13.24) can be found. If an inverse does not exist, the matrix A is called
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singular.

Powers of an inverse matrix A−1 are also written as A−k := (A−1)k for k ∈ N.
Therefore, for invertible matrices A the powers Ak are meaningful for all integers k
and we have AkAl = Ak+l for all k, l ∈ Z.

In Section 12.1.5 we have introduced the general linear group GL(V ) of invertible linear
maps V → V and this may have seemed a somewhat abstract object. For V = Fn
we can be more concrete and state that the general linear group GL(Fn) consists of
all invertible n × n matrices with entries in F. The group multiplication is matrix
multiplication (since it corresponds to map composition) and we have already seen
that this is associative. The group inverse is the matrix inverse and, from Eq. (13.21),
the identity matrix is the neutral element.

We recall from Prop. 3.1 that the left inverse in a group is always the right inverse as
well. Hence, once we know that a matrix A is invertible its inverse is already determined
by one of the relations (13.24). We will soon discuss systematic methods to calculate
the inverse matrix but for now we note that this can be done by solving Eq. (13.24).

Problem 13.5 (Matrix inverse the pedestrian way)

Using Eq. (13.24), compute the inverse of the matrix:

A =

(
1 2
3 −1

)
.

Solution: We start with a general Ansatz for A−1 and impose Eq. (13.24).

A−1 =

(
a b
c d

)
⇒ AA−1 =

(
1 2
3 −1

)(
a b
c d

)
=

(
a+ 2c b+ 2d
3a− c 3b− d

)
!
=

(
1 0
0 1

)
.

Splitting the last equation into components gives a linear system a + 2c = 1, b + 2d = 0,
3a − c = 0 and 3b − d = 1 of four equations in four variables. Its solution is easily found to
be a = 1/7, b = 2/7, c = 3/7 and d = −1/7. Inserting this into the Ansatz for A−1 gives

A−1 =
1

7

(
1 2
3 −1

)
.

After such a computation it is always worth checking the result by verifying Eq. (13.24).

Application 13.2 Matrices in cryptography

Matrices can be used for encryption. Here is a basic example for how this works. Suppose
we would like to encrypt the text: ’linear algebra ’. First, we translate this text into
numerical form using the simple code  7→ 0, a 7→ 1, b 7→ 2, · · · and then we partition the
resulting list of numbers into sub-lists of the same size. Here we use sub-lists of size three
for definiteness. Next, we arrange these numbers into a matrix, with each sub-list forming
a column of the matrix. For our sample text this results in

T =

 12 5 0 7 18
9 1 1 5 1

14 18 12 2 0

 for
l e  g r
i a a e a
n r l b  

.
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So far, this is relatively easy to decode, even if we had decided to permute the assignment of
letters to numbers. As long as same letters are represented by same numbers, the code can
be deciphered by a frequency analysis, at least for a sufficiently long text. To do this, the
relative frequency of each number is determined and compared with the typical frequency
with which letters appear in the English language. Matching similar frequencies leads to
the key.

For a more sophisticated encryption, define a square ’encoding’ matrix whose size equals
the length of the sub-lists, so a 3×3 matrix for our case. Basically, the only other restriction
on this matrix is that it should be invertible. For our example, let us choose

A =

−1 −1 1
2 0 −1
−2 1 1

 .

To encode the text, carry out the matrix multiplication

Tenc = AT =

−1 −1 1
2 0 −1
−2 1 1

 12 5 0 7 18
9 1 1 5 1

14 18 12 2 0

 =

−7 12 11 −10 −19
10 −8 −12 12 36
−1 9 13 −7 −35

 .

Note there is no longer an identification of numbers with letters in Tenc. For example, the
letter ’a’ appears three times and corresponds to the three 1’s in T . However, there is no
corresponding repetition of numbers in Tenc. Without knowledge of the encoding matrix
A it is quite difficult to de-cypher Tenc, particularly for large block sizes. The legitimate
receiver of the text should be provided with the inverse A−1 of the encoding matrix. For
our example, it is given by

A−1 =

 1 2 1
0 1 1
2 3 2

 ,

as can be checked by verifying that A−1A = 13. The receiver can then recover the message
by the simply matrix multiplication

T = A−1Tenc .

13.3 Transpose and Hermitian conjugate

Summary 13.2 For a matrix A the transpose AT is obtained by exchanging rows
and columns. Square matrices invariant under transposition are called symmetric. If
they change by an overall sign they are called anti-symmetric. The Hermitian conju-
gate A† of a matrix A with complex entries is a combination of complex conjugation
and transposition. Hermitian matrices are those that are invariant under Hermitian
conjugation, anti-Hermitian matrices change by a sign.

Transposition and Hermitian conjugation are basic matrix operations whose mathe-
matical meaning will only emerge later (see Chapter 22). However, since they are
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widely used in matrix calculations it makes sense to introduce them somewhat ahead
of their proper mathematical context.

13.3.1 The transpose of a matrix

For an n×m matrix A ∈Mn,m(F) the transpose matrix AT ∈Mm,n(F) is an m× n
matrix obtained by exchanging the rows and columns of A. Using index notation the
transpose can be defined by

(AT )ij := Aji . (13.25)

Problem 13.6 (Transposition)

Write down 2×2, 2×3 and 3×3 matrices with general entries together with their transpose.

Solution: Exchange rows and columns to obtain the transpose.

A =

(
a b
c d

)
A =

(
a b c
d e f

)
A =

 a b c
d e f
g h i


AT =

(
a c
b d

)
AT =

 a d
b e
c f

 AT =

 a d g
b e h
c f i

 (13.26)

13.3.2 Symmetric and anti-symmetric matrices

It makes sense to single out matrices which remain unchanged (or nearly unchanged)
under transposition. Since transposition for non-square matrices changes the size of
the matrix (from n×m to m×n), this can of course only happen for square matrices. A
square matrix A ∈Mn,n(F) is called symmetric if it is unchanged under transposition,
so if A = AT . In view of Eq. (13.25), this translates into the condition Aij = Aji for all
i, j = 1, . . . n. On the diagonal (for i = j) this condition becomes trivial, Aii = Aii, so
the diagonal entries of symmetric matrices are arbitrary. The entries above the diagonal
have to equal their counterparts below the diagonal. In particular, this means every
diagonal matrix is symmetric.

A square matrix A ∈ Mn,n(F) is called anti-symmetric if it changes the overall sign
under transposition, so if A = −AT or, in index notation, if Aij = −Aji for all
i, j = 1, . . . , n. For the diagonal entries this implies Aii = −Aii so that (1 + 1)Aij = 0.
So if 1+1 6= 0 in F (true unless the field is F2) the diagonal entries of an anti-symmetric
matrix vanish. In addition, the entries above the diagonal have to be the negatives of
their counterparts below the diagonal.

Problem 13.7 (Symmetric and anti-symmetric matrices)

Write down the most general symmetric and anti-symmetric 2× 2 and 3× 3 matrices.
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Solution: This can be done by equating the entries of the matrices and their transpose in
Eq. (13.26). This leads to the general symmetric 2× 2 and 3× 3 matrices:

A =

(
a b
b d

)
, A =

 a b c
b e f
c f i

 .

Equating the entries of A to the negatives of the entries of AT in Eq. (13.26) gives the most
general anti-symmetric 2× 2 and 3× 3 matrices:

A =

(
0 b
−b 0

)
, A =

 0 b c
−b 0 f
−c −f 0

 .

13.3.3 Properties of transposition

We should think about how transposition relates to addition, scalar multiplication and
multiplication of matrices.

Proposition 13.1 For matrices A, B of suitable sizes with entries in F and α ∈ F
matrix transposition satisfies the following rules:

(i) (A+B)T = AT +BT

(ii) (αA)T = αAT

(iii) (AB)T = BTAT

(iv) If A is invertible then so is AT and (AT )−1 = (A−1)T .

Proof The proofs are most easily carried out in index notation, using Eq. (13.25).

(i) ((A+B)T )ij = (A+B)ji = Aji +Bji = (AT +BT )ij
(ii) ((αA)T )ij = (αA)ji = αAji = (αAT )ij
(iii) ((AB)T )ij = (AB)ji = AjkBki = BkiAjk = (BT )ik(AT )kj = (BTAT )ij
(iv) Taking the transpose of AA−1 = 1 and applying (iii) gives (A−1)TAT = 1. This
means that (A−1)T is the inverse of AT , so (AT )−1 = (A−1)T . 2

From property (iii), matrix multiplication and transposition relate in a well-defined
way but note the change of the order in the multiplication! Property (iv) is also
very useful: the operations of taking the inverse and the transpose commute! Finally,
properties (i) and (ii) mean that transposition is a linear map Mn,m →Mm,n. This
has immediate implications for symmetric and anti-symmetric matrices.

Example 13.1 (Vector spaces of symmetric and anti-symmetric matrices)

By Sn(F) andAn(F) we denote the sets of symmetric and anti-symmetric n×nmatrices
with entries in F 6= F2. These sets are closed under addition and scalar multiplication.
To see this, start with two (anti-) symmetric matrices A,B, soA = ±AT andB = ±BT
and use Prop (13.1).

(αA+ βB)T = αAT + βBT = ±(αA+ βB)

This means that (anti-) symmetry is preserved under addition and scalar multiplication
of matrices and, hence, that Sn(F) and An(F) are vector subspaces ofMn,n(F). What
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are the dimensions of these spaces? It is easy to construct bases by starting with the
elementary unit matrices E(ij) (see Eq. (6.6)). For the symmetric matrices, a basis
is given by the matrices E(ij) + E(ji), where i, j = 1, . . . , n and i ≤ j. For the anti-
symmetric matrices, we have a basis E(ij) − E(ji), where i, j = 1, . . . , n and i < j. It
follows that

dimF(Sn(F)) =
1

2
n(n+ 1) , dimF(An(F)) =

1

2
n(n− 1) . (13.27)

For any matrix A ∈ Mn,n(F) we can introduce its symmetric part A+ and anti-
symmetric part A− by

A± :=
1

2
(A±AT ) ⇒ A = A+ +A− . (13.28)

Evidently, a matrix is the sum of its symmetric and anti-symmetric parts. Furthermore,
this decomposition is unique. Indeed, if A+ +A− = Ã+ + Ã− taking the transpose of
this equation gives A+−A− = Ã+− Ã−. Adding and subtracting these two equations
immediately implies that Ã± = A±. More formally, the existence and uniqueness of
the decomposition (13.28) is expressed by the equation

Mn,n(F) = Sn(F)⊕An(F) .

In other words, the vector space of n× n matrices is a direct sum of the subspaces of
symmetric and anti-symmetric matrices (see Prop. 8.1). 2

Problem 13.8 (Basis for 2× 2 symmetric and anti-symmetric matrices)

Write down a basis for the space S2(F) of symmetric 2× 2 matrices and a basis for the space
A2(F) of anti-symmetric 2× 2 matrices.

Solution: We can specialize the bases constructed in Exercise 13.1 giving, for the symmetric
case, the basis (E(11), E(22), E(12) +E(21)) and, for the anti-symmetric case, the basis (E(12)−
E(21)). More explicitly, these are

S2(F) = Span

((
1 0
0 0

)
,

(
0 0
0 1

)
,

(
0 1
1 0

))
, A2(F) = Span

((
0 1
−1 0

))
.

Problem 13.9 (Symmetric and anti-symmetric parts of a matrix)

Write the following matrix as a sum of its symmetric and anti-symmetric parts.

A =

 1 0 −2
−2 1 6

2 4 0

 .

Solution: We use Eq. (13.28).
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AT =

 1 −2 2
0 1 4
−2 6 0

 , A+ =
1

2
(A+AT ) =

 1 −1 0
−1 1 5

0 5 0

 , A− =
1

2
(A−AT ) =

 0 1 −2
−1 0 1

2 −1 0


Note that A+ is symmetric and A− is anti-symmetric. It is easy to verify that A = A+ +A−.

13.3.4 The Hermitian conjugate of a matrix

Another, somewhat ad-hoc but widely used matrix operation is Hermitian conjugation.
Its mathematical interpretation will emerge in the context of scalar products (see
Chapter 22). For the purpose of this discussion, we will be working with matrices
A ∈ Mn,m(C) with complex entries. For such a matrix A, we can define the complex
conjugate matrix Ā whose entries (Ā)ij = Aij are obtained from those of A by complex
conjugation.

The Hermitian conjugate of an n × m matrix A ∈ Mn,m(C) is an m × n matrix
denoted by A† ∈ Mm,n(C). It is obtained from A by combining complex conjugation
and transposition, so that A† = ĀT , or, using index notation

(A†)ij = Aji . (13.29)

Problem 13.10 (Hermitian conjugate)

Work out the Hermitian conjugate of the matrix

A =

(
a b
c d

)
, B =

 i 1 2− i
2 3 −3i

1− i 4 2 + i

 .

Solution: In addition to transposition, carried out by exchanging rows and columns, all
entries are complex conjugated, so that

A† =

(
ā c̄
b̄ d̄

)
, B† =

 −i 2 1 + i
1 3 4

2 + i 3i 2− i

 .

13.3.5 Hermitian and anti-Hermitian matrices

A square matrix A ∈ Mn,n(C) is called Hermitian if it is invariant under Hermitian
conjugation, so if A = A† or, in index notation, if Aij = Aji for all i, j = 1, . . . , n.
The diagonal entries of a Hermitian matrix A satisfy Aii = Aii, so they are real. The
entries above the diagonal are the complex conjugates of their counterparts below the
diagonal.

A square matrix A ∈ Mn,n(C) is called anti-Hermitian if A = −A† or, in index
notation, if Aij = −Aji for all i, j = 1, . . . , n. Anti-symmetric matrices have purely
imaginary diagonals and the entries above the diagonal are the negative complex
conjugates of their counterparts below the diagonal.
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Problem 13.11 (Hermitian and anti-Hermitian matrices)

Write down the most general Hermitian and anti-Hermitian 2× 2 matrices.

Solution: By imposing A = ±A† on the matrices A and A† from Exercise 13.10, we find

Aherm =

(
a b
b̄ d

)
, a, d ∈ R , b ∈ C

Aanti−herm =

(
a b
−b̄ d

)
, a, d ∈ iR , b ∈ C .

13.3.6 Properties of Hermitian conjugation

Just as for transposition, we should think about how Hermitian conjugation relates to
matrix addition, scalar multiplication, and matrix multiplication.

Proposition 13.2 For matrices A, B of suitable sizes with entries in C and α ∈ C
Hermitian conjugation satisfies the following rules.

(i) (A+B)† = A† +B†

(ii) (αA)† = ᾱA†

(iii) (AB)† = B†A†

(iv) If A is invertible then so is A† and (A†)−1 = (A−1)†.

Proof These rules follow directly by including complex conjugating in the corre-
sponding proofs for transposition in Prop. 13.1. 2

These rules are similar to those for transposition but there is one crucial difference:
in (ii) the scalar is extracted with a complex conjugation. This seemingly innocent
modification means that Hermitian conjugation is not a linear map onMn,m(C) when
viewed as a vector space over C but only when it is viewed as a vector space over R.
Rule (ii) also implies that multiplication with ±i converts between Hermitian and
anti-Hermitian matrices, so if B = ±iA then

A = A† ⇔ B = −B† . (13.30)

Example 13.2 (Vector spaces of Hermitian and anti-Hermitian matrices)

Prop. (13.2) (i) implies that the sum of two (anti-) Hermitian matrices is again (anti-)
Hermitian. From Prop. (13.2) (ii) the same is true for scalar multiplication only if we
restrict to real scalars. The conclusion is that the sets Hn and An of Hermitian and
anti-Hermitian n× n matrices form a vector space over R (but not over C).

Every Hermitian matrix can be written as a sum of its real part, which is symmetric,
and its imaginary part, which is anti-symmetric. Hence, combining the basis E(ij) +
E(ji), where i, j = 1, . . . n and i ≤ j for symmetric matrices and the basis i(E(ij) −
E(ji)), where i, j = 1, . . . , n and i < j for anti-symmetric matrices from Example 13.1
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gives a basis for Hn. From Eq. (13.30), multiplying all these basis matrices with i gives
a basis for An. As a result,

dimR(Hn) = dimR(An) =
1

2
n(n+ 1) +

1

2
n(n− 1) = n2 .

Every matrix A ∈ Mn,n(C) can be written as a sum A = A+ + A−, where A± =
1
2 (A ± A†) are the Hermitian and anti-Hermitian parts of A. As was the case for
transposition, this decomposition is unique, so we can write

Mn,n(C) = Hn ⊕An ,

and this should be understood as a relationship between vector spaces over R. 2

Problem 13.12 (Hermitian and anti-Hermitian 2× 2 matrices)

Write down an explicit basis for the vector space H2 of 2× 2 Hermitian matrices and a basis
for the vector space A2 of 2× 2 anti-Hermitian matrices.

Solution: We can specialize the general construction in Example 13.2, keeping in mind that
we should only use real scalars to form linear combinations. For the Hermitian case a basis is
given by (E(11), E(22), E(12) +E(21), i(E(12) −E(21))) or, taking some linear combinations, by

H2 = Span

(
12 =

(
1 0
0 1

)
, σ1 :=

(
0 1
1 0

)
, σ2 :=

(
0 −i
i 0

)
, σ3 :=

(
1 0
0 −1

))
. (13.31)

The matrices σi are called the Pauli matrices and they play an important role in quantum
mechanics. A basis for A2 is obtained by multiplying with i, so (i12, iσ1, iσ2, iσ3).

Application 13.3 More on neural networks

In Application 11.1 we have introduced the simplest building block of neural networks,
the perceptron. Now we would like to take things further and set up a more complicated
neural network, built up from perceptrons. Recall that a single perceptron realizes a map
Rn 3 x 7→ y ∈ R, with

y = σ(w · x + b) ∼ Rn R
w, b

where w ∈ Rn is the weight vector, b ∈ R is the bias, and an example for the activation
function σ has been given in Eq. (11.7).

As a first step towards a multi-layer perceptron we arrange k perceptrons in par-
allel. Their weight vectors w1, . . . ,wk can be assembled into an k × n weight matrix
W = (w1, . . . ,wk)T and their biases b1, . . . , bk form a bias vector b = (b1, . . . , bk)T . The
network realizes a map Rn 3 x 7→ y ∈ Rk defined by

y = σ(Wx + b) ∼

w1, b1

wi, bi

wk, bk

Rn Rk = Rn RkW,b
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where it is understood that the activation function σ acts on each component of its
argument vector. The final step is to arrange d such layers to act one after the other with
the output of one layer providing the input for the next one.

x = x(0) Rn0

x(0)

Rn1

x(1)
W1,b1

Rn2

x(2)
W2,b2

Rnd−1

x(d−1)

Rnd

x(d)
Wd,bd x(d) = y

For the dimensions of input and output to match from one layer to the next each weight
matrix Wi must have size ni−1 × ni and each bias vector bi must have dimension ni. The
action of this multi-layer perceptron represents a complicated function, obtained by the
iteration

x(i+1) = σ(Wix
(i) + bi) where i = 0, . . . , d− 1 .

For ease of notation, we call this function pθ : Rn0 → Rnd , where θ = (W1,b1, . . . ,Wd,bd)
denotes all the weighs and biases. To train the multi-layer perceptron we require a training
set {xa,ya} of input values xa and ’desirable’ outputs ya. Training goal is to adjust the
weights and biases θ such that the square deviation∑

a

|pθ(xa)− ya|2

of the network’s output from the desired values ya is minimized. This is usually accom-
plished by an algorithm referred to as stochastic gradient descent and which involves
formulae for the weight and bias adjustment similar to Eq. (11.9). Rather than going into
the details of this algorithm which is beyond our scope, we would like to conclude with an
explicit example which illustrates an application of the multi-layer perceptron. (For a more
comprehensive introduction to neural networks see, for example, da Silva 2017; Goodfellow
et al. 2016.)

Consider a relatively simple network with a two-dimensional input, a one-dimensional out-
put and two layers, the first with k perceptrons and the second one with a single perceptron.

x R2 RkW,b
R

W̃ , b̃ y

The training set {(xa, ya)} for this network is shown in the figure on the left-hand side
below.

−1 0 1

−1

0

1

−1 0 1

−1

0

1

The points indicate the coordinates xa ∈ R2 and the desired outcome is ya = 1 for a filled
circle and ya = 0 for an open circle. The idea is that the points marked with filled circles
trace out a certain region in R2 which we would like the network to ’learn’.

After training the network for k = 4 perceptrons in the first layer, we can read out the
4 × 2 weight matrix W and the four-dimensional bias vector b from the first layer. These



164 Exercises

quantities correspond to four lines in R2, defined by the equations Wi · x + bi = 0, where
i = 1, 2, 3, 4 and Wi are the row vectors of W . These four lines have been plotted in the
above figure on the right-hand side. Evidently, they form the boundary between filled and
open points. The first layer ’decides’ on which side of any of these lines a given input point
lies, the second layer effectively performs a logical and-operation. In this way, the trained
network can now decide if a given input point is inside or outside the region. An input point
x ∈ R is judged to be inside if its output is y ' 1 and outside if its output is y ' 0.

Exercises

(†=challenging, ††=difficult, wide-ranging)

13.1 Show that matrix-vector multiplica-
tion is linear, starting with its defi-
nition, Eq. (13.7).

13.2 Two maps f : R3 → R3 and g :
R3 → R2 are defined by f(v) =
(v1 − v2, v2 + 2v3,−2v1)T and g(v) =
(v1 + 2v2 − v3, v3)T .
(a) Why are these maps linear?
(b) Find the matrices A and B which
describe f and g.
(c) Work out the map g ◦ f , its asso-
ciated matrix C, and show explicitly
that C = BA.

13.3 A linear map f : F2 → F2 is de-
fined by f(e1) = (a, 0)T and f(e2) =
(1,−1)T , where a ∈ F.
(a) Find the matrix A which describes
f .
(b) Find the matrices which describe
f ◦ f and f ◦ f ◦ f .
(c) Based on the results in (b), write
down a guess for the matrix which
represents fk = f ◦ f ◦ · · · ◦ f and
prove this guess by induction.

13.4 Let f, g : Fn → Fm be two linear maps
described by m×n matrices A and B.
Show that the linear maps αf + βg,
where α, β ∈ F is represented by the
matrix αA+ βB.

13.5 † Consider the linear maps M1,M2 :
R2 → R2 defined by the matrices

M1 =

(
−1 0
m1 1

)
, M2 =

(
1 m2

0 −1

)
,

where m1,m2 are positive integers,
and M = M1M2. Show that
(a) M2

1 = M2
2 = 12 and M1,M2 do

not commute.
(b) the set which consist of 12 and all
’words’ · · ·M1M2M1M2 · · · is a sub-
group G ⊂ GL(R2).
(c) the set H = {Mk | k ∈ Z} is a
sub-group of G which is isomorphic
to either a cyclic group Zn or to Z.
For m1 = m2 = 3 find all im-
ages g(P ), where g ∈ G and P =
{(x, y)T ∈ R2 |x > 0 ∩ y > 0} is
the positive quadrant. (The picture
on the title page originates from a
generalization of this structure to 4×4
matrices.)

13.6 Block matrices
Consider the block matrices M, M̃ ∈
Mn,n(F) given by

M =

(
A B
C D

)
, M̃ =

(
Ã B̃

C̃ D̃

)
which are made up from the con-
stituent matrices A, Ã ∈ Mk,k(F),

D, D̃ ∈ Mn−k,n−k(F), B, B̃ ∈
Mk,n−k(F) and C, C̃ ∈ Mn−k,k(F).
Show that their matrix product is
given by

MM̃ =

(
AÃ+BC̃ AB̃ +BD̃

CÃ+DC̃ CB̃ +DD̃

)
.

This means multiplication of block
matrices follows the same pattern as
normal matrix multiplication, but the
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products of the entries are replaced by
matrix products of the blocks.

13.7 Inverse for block matrices
A matrix M ∈ Mn+1,n+1(F) has the
block structure

M =

(
a bT

0 A

)
,

where a ∈ F is non-zero, b ∈ Fn and
A ∈Mn,n(F) is invertible. Show that
M is invertible by finding an explicit
expression for M−1 in terms of A−1.

13.8 Matrix commutators
Let A,B ∈ Mn,n(F) be two square
matrices.
(a) If A and B are invertible and com-
mute show that A−1 and B−1 also
commute.
(b) Under the assumptions in (a)
show that Ak and Bl commute for all
k, l ∈ Z.
(c) If A and B are symmetric show
that AB is symmetric iff [A,B] = 0.

13.9 Anti-symmetric matrices
Define the 3×3 matrices T1 = E(32)−
E(23), T2 = E(13) − E(31) and T3 =
E(21) − E(12).
(a) Show that (T1, T2, T3) is a basis of
the space of anti-symmetric matrices
A3(R).
(b) Show that [Ti, Tj ] = εijkTk.
(c) For two matrices A,B ∈ A3(R)
with A = aiTi and B = biTi show
that [A,B] = (a× b)iTi.

13.10 Adjacency matrix
Consider the following simple graph

V1

V2 V3

with three vertices.
(a) Write down the adjacency matrix
M for this graph.
(b) Work out the matrix powers M2

and M3 and interpret their entries in
terms of walks in the graph.

13.11 Encoding with matrices†

(a) Following Application 13.2, a text
has been encoded with the matrix

A =

(
3 −1
5 −2

)
leading to the encoded matrix

Tenc =

(
52 8 −23 −16 −5 −16
84 7 −46 −33 −10 −33

)
.

Decipher the matrix and find the un-
derlying text.
(b) Another message is encoded in(

4 35 30 53 28 59 17
−2 −25 −22 −34 −14 −40 −14

)
but the encoding matrix is not known.
Try to decipher it.

13.12 (Multi-layer perceptron††)
Write code in your favourite program-
ming language which realizes a simple
two-layer perceptron such as the one
described in Application 13.3. Read
up on the training algorithm, imple-
ment it computationally, and apply
your code to simple examples, such
as the two-dimensional data sets de-
scribed in Application 13.3.
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The structure of linear maps

With a basic understanding of linear maps under our belt and examples readily avail-
able we can now move the discussion to a more profound level. Central to this are
two vector subspaces associated to any linear map: the image and the kernel. The
dimension of the image is called the rank, an important characteristic of a linear map.
The rank theorem, which is one of the central results of linear algebra, states that
the rank of a linear map equals the dimension of the domain vector space minus the
dimension of the kernel. As we will see in the next part, the rank theorem is key to a
qualitative understanding of the solution structure for linear systems.

We have seen in the last chapter that linear maps between coordinate vectors can be
canonically identified with matrices. What about linear maps between abstract vec-
tor spaces? It turns out, such linear maps can be described by matrices, relative to
a choice of bases on the domain and co-domain. However, this relationship between
linear maps and matrices is not canonical — it depends on the choice of bases. In the
final part of this chapter, we explain this general correspondence between linear maps
and matrices and derive the formula for basis transformations of matrices.

14.1 Image and kernel

Summary 14.1 The image of a linear map is a vector subspace of the co-domain.
Another set associated to a linear map is the kernel which consists of all vectors in the
domain which are mapped to the zero vector. It is a vector subspace of the domain.
The dimension of the image is called the rank of the linear map. A linear map is
surjective iff its rank equals the dimension of the co-domain and it is injective iff the
dimension of its kernel is zero.

14.1.1 Definition of image and kernel

As for any map, we can consider the image of a linear map which is a subset of the
co-domain vector space. Since vector spaces have a special element, the zero vector,
there is another set, the kernel, which can be associated to a linear map. The kernel is
a subset of the domain vector space and consists of all vectors whose image is the zero
vector of the co-domain. For a linear map f : V → W , these two spaces are formally
defined as

Im(f) = f(V ) = {f(v) |v ∈ V } ⊂W , Ker(f) = {v ∈ V | f(v) = 0} ⊂ V . (14.1)
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Note that both sets are non-empty, the image trivially so, and the kernel since it
contains at least the zero vector of V , as a consequence of Eq. (12.3). If the kernel
only contains the zero vector it is called trivial, otherwise non-trivial.

Since both sets are associated to a morphism of vector spaces, it is natural to expect
that they carry more structure. In fact, it turns out they are vector subspaces as shown
in the following proposition:

Proposition 14.1 (Properties of kernel and image) Let f : V → W be a linear map
between two vector spaces V and W over a field F.

(i) The kernel of f is a sub vector space of V .
(ii) The image of f is a sub vector space of W .

Proof (i) We need to check the conditions in Def. 6.2. Since 0 ∈ Ker(f), the kernel
is not empty. If v1,v2 ∈ Ker(f) then, by definition of the kernel, f(v1) = f(v2) = 0.
It follows that f(v1 + v1) = f(v1) + f(v2) = 0 so that v1 + v2 ∈ Ker(f). Similarly, if
v ∈ Ker(f), so that f(v) = 0 it follows that f(αv) = αf(v) = 0, hence, αv ∈ Ker(f).

(ii) The image is obviously not empty. To show closure under addition start with two
vectors w1,w2 ∈ Im(f). By definition of the image, there exist vectors v1,v2 ∈ V such
that w1 = f(v1) and w2 = f(v2). It follows that w1+w2 = f(v1)+f(v2) = f(v1+v2)
and, hence, w1+w2 ∈ Im(f). For closure under scalar multiplication, consider a vector
w ∈ Im(f), which can be written as w = f(v) for a v ∈ V . Then, for a scalar α ∈ F,
we have αw = αf(v) = f(αv) and, hence, αw ∈ Im(f). 2

14.1.2 Rank of a linear map

Since both image and kernel of a linear map are vector subspaces, they can be assigned
dimensions. Clearly, these dimensions are characteristic properties of the underlying
linear map and, as we will see, they play an important role in analysing its structure.
The dimension of the image is of particular relevance and is given a special name.

Definition 14.1 The dimension of the image of a linear map f is called the rank of
f , in symbols rk(f) := dimF(Im(f)).

The image and the rank can be expressed more explicitly in terms of a basis (v1, . . . ,vn)
of V . The image of a vector v =

∑
i αivi is f(v) =

∑
i αif(vi), so the image

Im(f) =

{∑
i

αif(vi) |αi ∈ F

}
= Span(f(v1), . . . , f(vn) (14.2)

is spanned by the images of the basis vectors. Therefore, the rank equals

rk(f) = dimF(Span(f(v1), . . . , f(vn)) =

{
maximal number of linearly
independent images f(vi)

. (14.3)

Example 14.1 (The image and the rank of a matrix)

An m × n matrix A with entries in F defines a linear map A : Fn → Fm. We can,
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therefore, talk about the rank of a matrix. To determine the image of a matrix we can
apply Eq. (14.2) to the standard unit vector basis, remembering that the images of
the standard unit vectors, Aei = Ai, are the columns of the matrix. Hence, the image

Im(A) = Span(A1, . . . ,An) ,

of a matrix is spanned by its column vectors. For the rank of A, this implies

rk(A) = dimF(Span(A1, . . . ,An)) =

{
maximal number of linearly
independent column vectors

. (14.4)

All we need to do is look at the column vectors of the matrix and find out how many
of them are linearly independent — this number equals the rank of the matrix. To do
this we can use, for now, the standard methods for checking linear independence.

The rank of a matrix as defined above is also called the column rank. We can also
define the row rank of a matrix as the maximal number of linearly independent row
vectors. We will see later that these two ranks are, in fact, always equal! 2

Problem 14.1 (Image, rank, and kernel of a matrix ’by inspection’)

Find the images, kernels, and ranks of the matrices:

A =

(
2 −1
1 0

)
, B =

−1 4 3
2 −3 −1
3 2 5

 . (14.5)

Solution: The matrix A defines a linear map A : R2 → R2. Since its two columns are linearly
independent (they are not multiples of each other) they form a basis of R2 and, therefore,
Im(A) = R2 and the rank is maximal, rk(A) = 2. In order to find the kernel we have to solve
the equation Av = 0 which, split up into components, reads 2v1−v2 = 0 and v1 = 0. Clearly,
the only solution is v1 = v2 = 0 so that the kernel is trivial, Ker(A) = {0}.
The first two columns, B1 and B2, of B are linearly independent (they are not each other’s
multiples) while the third column is the sum of the first two. Hence, the image, Im(B) =
Span(B1,B2), is two-dimensional and the rank, rk(B) = 2, is not maximal. To find the kernel
we have to solve

0 = Bv = v1B
1 + v2B

2 + v3B
3 = (v1 + v3)B1 + (v2 + v3)B2 ,

where the last step follows from B3 = B1 + B2. Since B1 and B2 are linearly independent
the solution is v1 + v3 = v2 + v3 = 0. This leads to the one-dimensional kernel Ker(B) =
Span((1, 1,−1)T ).

Example 14.2 (Kernel of a differential operator)

In Eq. (12.10) we have introduced linear differential operators L : C∞([a, b]) →
C∞([a, b]). These differential operators define homogeneous, linear differential equa-
tions of the form Lg = 0. The simple but important observation is that the space of
solutions to such a differential equation is, in fact, the kernel, Ker(L) of the differential
operator. 2
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Problem 14.2 (Kernel of a linear differential operators)

Find the kernel of the linear differential operator

L =
d2

dx2
+ 4

d

dx
− 5 : C∞(R)→ C∞(R) ,

and determine its dimension.

Solution: The kernel of L consists of all solutions to the homogeneous differential equation
L(g) = 0. This equation is solved by g1(x) = exp(x) and g2(x) = exp(−5x) and the most
general solution is a linear combination of g1 and g2. Moreover, g1 and g2 are linearly inde-
pendent. Indeed, evaluating the equation α1g1 + α2g2 = 0 at x = 0 gives α1 + α2 = 0 and
evaluating it at x = 1 gives α1e+α2e

−5 = 0. These two equations are only solved simultane-
ously for α1 = α2 = 0. In conclusion Ker(L) = Span(g1, g2) and the kernel is two-dimensional.

Problem 14.3 (Image, rank, and kernel of a differential operator)

The space C∞(R) of infinitely many times differentiable functions is infinite-dimensional which
makes it difficult to discuss the image. For a simple example which gets around this problem,
we restrict to the vector space V = P3(R) of at most cubic polynomials. On this space we
introduce the first-order differential operator

L = x
d

dx
− 1 : V → V . (14.6)

Determine the image, the rank, and the kernel of this operator.

Solution: Recall that the monomials (1, x, x2, x3) form a basis of V . A general cubic and its
image under L are given by

p(x) = a3x
3 + a2x

2 + a1x+ a0 ⇒ L(p)(x) = 2a3x
3 + a2x

2 − a0 . (14.7)

It follows immediately that Im(L) = Span(1, x2, x3) and rk(L) = 3. On the other hand,
Eq. (14.7) shows that the polynomials p for which L(p) = 0 are precisely those of the form
p(x) = a1x. This means that Ker(L) = Span(x) and dimR(Ker(L)) = 1.

14.1.3 Injective and surjective linear maps

It might be difficult to check if a map is surjective or injective, using the definitions
of these properties (see Def. 2.4). For linear maps, simple criteria can be formulated
in terms of the image and the kernel and their dimensions.

Proposition 14.2 (Criteria for surjectivity and injectivity) For a linear map f : V →
W we have the following statements:

(i) f surjective ⇔ Im(f) = W ⇔ rk(f) = dimF(W )
(ii) f injective ⇔ Ker(f) = {0} ⇔ dimF(Ker(f)) = 0 (kernel trivial)

(The dimension statements on the right apply to finite-dimensional V and W .)
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Proof (i) The first equivalence, f surjective⇔ Im(f) = W , is clear by the definitions
of surjective and the image. Turning to the second equivalence, if Im(f) = W , then
both spaces have the same dimension. Conversely, from Lemma 7.2, two vector spaces
with the same dimension and one contained in the other (here Im(f) ⊂ W ) must be
identical.

(ii) Suppose f is injective and consider a vector v ∈ Ker(f). Then f(v) = 0 = f(0),
which implies that v = 0 from injectivity and, hence, Ker(f) = {0}. Conversely,
assume that Ker(f) = {0}. Then, from linearity, f(v1) = f(v2) implies that f(v1 −
v2) = 0 so that v1 − v2 ∈ Ker(f) = {0}. Hence, v1 − v2 = 0 and f is injective. This
proves the first equivalence. The second equivalence is evident as the trivial vector
space, {0}, is the only one with dimension zero. 2

Problem 14.4 (Criteria for surjective and injective maps)

Determine if the linear maps defined by the matrices A and B in Eq. (14.5) and the matrix
C : R3 → R2 with

C =

(
2 0 −1
0 3 1

)
are injective or surjective. Are these matrices invertible? Is the differential operator in Eq. (14.6)
injective or surjective?

Solution: In Exercise 14.1 we have found that the rank of A is maximal, and its kernel is
trivial. From Prop. (14.2) this means that A is bijective and, hence, invertible.

For the 3 × 3 matrix B in Eq. (14.5) we know from Exercise 14.1 that rk(B) = 2 and
dimR(Ker(B)) = 1, so B is neither surjective nor injective and, hence, not invertible.

The first two columns of C are linearly independent so that Im(C) = R2, rk(C) = 2 and
C is surjective. On the other hand, it is easy to see that the vector v = (3,−2, 6)T satisfies
Cv = 0. Hence, v ∈ Ker(C) so that the kernel is non-trivial and C is neither injective nor
invertible.

From Exercise 14.3, the differential operator L in Eq. (14.6) has a non-maximal rank and a
non-trivial kernel, so it is neither surjective nor injective.

14.2 The rank theorem

Summary 14.2 The rank theorem states that the rank of a linear map equals the
difference of the domain dimension and the dimension of the kernel. It can be used
to show that two vector spaces are isomorphic if and only if they have the same
dimension. In particular, invertible linear maps only exist between vector spaces of the
same dimension. A linear map between same-dimensional vector spaces is invertible
iff its kernel is trivial or iff its rank is maximal. The rank theorem is implied by the
isomorphism theorem which states that for any linear map f : V → W the quotient
V/Ker(f) is isomorphic to Im(f).
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14.2.1 Motivation

To develop a better intuition we recall our interpretation of vector subspaces as lines,
planes, and their higher-dimensional analogues through 0. We should think of both
the kernel and the image of a linear map in this way, the former residing in the domain
vector space, the latter in the co-domain.

Consider a linear map f : V → W . The entire kernel, Ker(f), is mapped to the
zero vector, so it does not at all contribute to creating a non-trivial image. What is
more, the image of an affine plane v + Ker(f) under f consists of a single vector. To
see this consider two vectors v1 = v + w1 and v2 = v + w2, where w1,w2 ∈ Ker(f).
Then, since f(w1) = f(w2) = 0, it follows

f(v1) = f(v + w1) = f(v) + f(w1) = f(v) = f(v) + f(w2) = f(v + w2) = f(v2) .

This suggest that the dimensions associated to the kernel are lost under the action of
the map and that the remaining dimF(V )− dimF(Ker(f)) dimensions are available to
form the image of f . This is precisely the content of the rank theorem.

14.2.2 The theorem

Theorem 14.1 For a linear map f : V → W between (finite-dimensional) vector
space V and W we have

dimF(Ker(f)) + rk(f) = dimF(V ) . (14.8)

Proof To simplify notation, set k = dimF(Ker(f)) and n = dimF(V ). Let (v1, · · · ,vk)
be a basis of Ker(f) which we complete to a basis (v1, . . . ,vk,vk+1, . . . ,vn) of V . (This
is indeed possible from Theorem 7.2 (ii).) We will show that f(vk+1), . . . , f(vn) forms
a basis of Im(f). To do this we need to check the two conditions in Definition 7.2.

(B1) First we need to show that Im(f) is spanned by f(vk+1), . . . , f(vn). We begin
with an arbitrary vector w ∈ Im(f). This vector must be the image of a v ∈ V , so
that w = f(v). We can expand v as a linear combination

v =

n∑
i=1

αivi

of the basis in V . Acting on this equation with f and using linearity we find

w = f(v) = f

(
n∑
i=1

αivi

)
=

n∑
i=1

αif(vi) =

n∑
i=k+1

αif(vi) ,

where the last step follows since the vectors vi for i = 1, . . . , k are in the kernel so
that f(vi) = 0. Hence, we have written w as a linear combination of the vectors
f(vk+1), . . . , f(vn) which, therefore, span the image of f .
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(B2) For the second step, we have to show that the vectors f(vk+1), . . . , f(vn) are
linearly independent. As usual, we start with the equation

n∑
i=k+1

αif(vi) = 0 ⇒ f

(
n∑

i=k+1

αivi

)
= 0 .

The second of these equations means that the vector
∑n
i=k+1 αivi is in the kernel of f

and, given that v1, . . . ,vk form a basis of the kernel, there are coefficients α1, . . . , αk
such that

n∑
i=k+1

αivi = −
k∑
i=1

αivi ⇒
n∑
i=1

αivi = 0 .

Since (v1, . . . ,vn) is a basis of V it follows that all αi = 0 and, hence, f(vk+1), . . . , f(vn)
are linearly independent.

In summary, (f(vk+1), · · · , f(vn)) forms a basis of Im(f). Hence, by counting the
number of basis elements, we have dimF(Im(f)) = n− k = dimF(V )− dimF(Ker(f)).
2

We emphasize again that this theorem has a simple and intuitive interpretation. We
have dimF(V ) dimensions of the domain vector space available but the dimF(Ker(f))
dimensions of the kernel are removed since the entire kernel is mapped to zero. Hence,
the difference of these two dimensions is available to account for the dimension of the
image.

Example 14.3 (Structure of a linear map R3 → R2)

Consider a linear map f : R3 → R2 with a two-dimensional kernel, dimR(Ker(f)) = 2.
In this case the dimension formula (14.13) implies rk(f) = dimR(R3)−dimR(Ker(f)) =
3−2 = 1, so the image of f is one-dimensional. In other words, f has removed the two
kernel dimensions by mapping them to the zero vector so that one dimension remains
available to create the image. This is schematically illustrated in the figure below.

R3

v
Ker(f)

v + Ker(f)

f

f

Im(f)

f(v)

0

R2

The entire two-dimensional kernel Ker(f) is mapped to the zero vector, while any
affine plane v + Ker(f) is mapped to the single vector f(v). In this way, a one-
dimensional image, Im(f), is created, and the image becomes isomorphic to the set of
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all affine planes v + Ker(f), a statement that will be made more general and precise
in Theorem 14.3. 2

Problem 14.5 (Checking the rank theorem)

Check the rank theorem for the matrices A and B in Eq. (14.5) and for the differential op-
erator L in Eq. (14.6).

Solution: From Exercise 14.1 the 2× 2 matrixA : R2 → R2 has rk(A) = 2 and dimR(Ker(A)) =
0. Hence, we have dimR(Ker(A)) + rk(A) = 0 + 2 = dimR(R2).

For the 3 × 3 matrix B : R3 → R3 we have found in Exercise 14.1 that rk(B) = 2 and
dimR(Ker(B)) = 1 so that dimR(Ker(B)) + rk(B) = 1 + 2 = 3 = dimR(R3).

Finally, the operator L : V → V on the space V of at most cubic polynomials in Eq. (14.6) has
rk(L) = 3 and dimR(Ker(L)) = 1, as was shown in Exercise 14.3. This means dimR(Ker(L))+
rk(L) = 1 + 3 = 4 = dimR(V ).

14.2.3 Easy conclusions from the rank theorem

We can use the rank theorem to derive an upper bound on the rank of a linear map
f : V → W . Since the image of f is a vector subspace of W it is clear that rk(f) ≤
dimF(W ). On the other hand, the rank theorem implies that dimF(V ) − rk(f) =
dimF(Ker(f)) ≥ 0, so that rk(f) ≤ dimF(V ). Together, this leads to

rk(f) ≤ min (dimF(V ),dimF(W )) . (14.9)

If this bound is saturated the rank of f is called maximal. For an m × n matrix
A : Fn → Fm Eq. (14.9) reads

rk(A) ≤ min(n,m) , (14.10)

so the rank of a matrix cannot exceed the number of its rows and columns.

Another simple and useful conclusion from the rank theorem is that injective linear
maps preserve dimension.

Corollary 14.1 Let f : V → W be an injective linear map and U ⊂ V a (finite-
dimensional) vector subspace. Then dimF(U) = dimF(f(U)).

Proof Define the restricted map g = f |U , so that f(U) = Im(g). Since f is injective,
so is its restriction g and from Prop. 14.2 (ii) this means that dimF(Ker(g)) = 0. Hence,
we have dimF(f(U)) = dimF(Im(g)) = rk(g) = dimF(U), where the rank formula (14.8)
applied to g has been used in the last step. 2

14.2.4 Isomorphisms

Recall that a (vector space) isomorphism f : V → W is a bijective linear map and
that two vector spaces V and W are called isomorphic, denoted as V ∼= W , if an
isomorphism f : V →W exists. We have seen in Section 12.2.1 that an n-dimensional
vector space over F is isomorphic to the coordinate vector space Fn. We can now
generalize this statement and use the rank theorem to obtain a simple criterion for
two vector spaces to be isomorphic.
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Theorem 14.2 Two (finite-dimensional) vector spaces are isomorphic if and only if
they have the same dimension.

Proof ’⇒’: If the vector spaces V and W are isomorphic there exists an isomorphism
f : V →W . Since f is bijective it follows from Prop. 14.2 that rk(f) = dimF(W ) and
dimF(Ker(f)) = 0. Inserting this into the rank formula (14.13) leads to dimF(V ) =
dimF(W ).

’⇐’: Suppose the two vector spaces V and W have the same dimension n = dimF(V ) =
dimF(W ). First, choose bases (v1, . . . ,vn) for V and (w1, . . . ,wn) forW . Theorem 12.1
tells us there exists a unique linear map f : V → W with f(vi) = wi for i =
1, . . . , n. For a vector v =

∑
i αivi we have, from linearity, that f(v) =

∑
i αiwi

and since the wi form a basis of W this shows that f is surjective. Prop. 14.2 then
implies that rk(f) = dimF(W ) = n. Inserting this into the rank formula (14.8) implies
dimF(Ker(f)) = 0, so, from Prop. 14.2, f is also injective. Hence, f is an isomorphism
and V and W are isomorphic. 2

We have seen earlier that being isomorphic is an equivalence relation on the (finite-
dimensional) vector spaces over a given field F. The associated equivalence classes
consist of all vector spaces isomorphic to each other. We can now easily describe these
equivalence classes: they contain all vector spaces over F with the same dimension.

14.2.5 The inverse of a linear map

It is clear from Theorem 14.2 that a linear map f : V → W can only have an inverse
if V and W have the same dimension (or else we would have an isomorphism between
vector spaces of different dimensions which the theorem excludes). Of course a given
linear map between vector spaces with the same dimension does not have to be an
isomorphism but we can use the rank theorem to derive simple criteria for when this
is the case.

Corollary 14.2 Let f : V → W be a linear map between two (finite-dimensional)
vector spaces with the same dimension. Then the following statements are equivalent.

(i) f is an isomorphism (has an inverse)
(ii) dimF( Ker(f)) = 0 (kernel trivial)
(iii) rk(f) = dimF(V ) (rank maximal)

Proof Proving the equivalence of three statements seems a lot of work. A common
trick which simplifies matters is to show the ’cyclic’ implications (i) ⇒ (ii) ⇒ (iii) ⇒
(i) from which all the others follow.
’(i) ⇒ (ii)’: If f is an isomorphism then it is injective and, hence, from Prop. 14.2 (ii),
we have dimF(Ker(f)) = 0.
’(ii) ⇒ (iii)’: If dim− F(Ker(f)) = 0 then the dimension formula (14.13) implies that
rk(f) = dimF(V ).
’(iii) ⇒ (i)’: If rk(f) = dimF(V ) = dimF(W ) then Prop. 14.2 (i) implies that f is
surjective. Further, inserting rk(f) = dimF(V ) into the dimension formula (14.13)
leads to dimF(Ker(f)) = 0 which, from Prop. 14.2 (ii), means that f is injective.
2
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So, a linear map f : V → W between two vector spaces of the same dimension is an
isomorphism iff its kernel is trivial or iff its rank is maximal.

Applied to matrices, Theorem (14.2) means that only square matrices can have an
inverse. From Cor. 14.2, such a matrix is invertible iff its rank is maximal and this is
the case iff its column vectors are linearly independent.

Problem 14.6 (Checking if a matrix is invertible)

Are the following matrices invertible?

A =

−3 2 0
1 −1 −2
5 −8 0

 , B =

 1 −3 9
−1 0 −3

2 4 −2


Solution: Since the equation

0
!
= α1A

1 + α2A
2 + α3A3 =

 −3α1 + 2α2

α1 − α2 − 2α3

5α1 − 8α2

 ⇒ α1 = α2 = α3 = 0

only has the trivial solution, αi = 0, the columns of A are linearly independent and the rank
is maximal, rk(A) = 3. Hence, A is invertible.

It is easy to see that B(−3, 2, 1)T = 0, so the kernel of B is non-trivial and the rank non-
maximal. Therefore, B is not invertible.

14.3 Another proof of the rank theorem*

Our proof the rank theorem in Section 14.2.2 has been elementary. We have explicitly
constructed bases for the various vector spaces to determine dimensions in order to
verify the dimension formula. There is a slightly more abstract approach which provides
more insight into the structure of linear maps and which relies on the results for vector
subspaces and quotients in Chapter 8. The reader who has skipped this material at
first reading should move on to the next chapter.

Consider a linear map f : V → W with kernel Ker(f). We know that f maps the
entire kernel to the zero vector and also that the affine planes v + Ker(f) are each
mapped to the single vector f(v). This structure is reminiscent of the quotient vector
space construction we have discussed in Section 8.2. Recall that the quotient V/Ker(f)
consists precisely of the affine planes v + Ker(f) and on each these the map f only
has a single value. This means we can write down a well-defined map

f̂ : V/Ker(f)→ Im(f) , f̂(v + Ker(f)) := f(v) , (14.11)

whose domain is the quotient V/Ker(f). Clearly, this map is linear as it inherits the
linearity properties from f . What is more, since we have divided by Ker(f), there is no
obstruction to injectivity. In fact, the kernel Ker(f) is the zero vector of the quotient

V/Ker(f). Moreover, since we have replaced the co-domain by Im(f) the map f̂ is

surjective. It appears that f̂ is an isomorphism and this is shown in the following
theorem.
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Theorem 14.3 (Isomorphism theorem) The map f̂ defined in Eq. (14.11) is a vector
space isormorphism. Hence, for a linear map f : V →W , we have

V/Ker(f) ∼= Im(f) . (14.12)

Proof The linearity of f̂ in Eq. (14.11) follows directly from the linearity of f . It is
obviously surjective since the co-domain is Im(f). To show injectivity, set U = Ker(f)

and start with an element v +U ∈ Ker(f̂) in the kernel. It follows from the definition,

Eq. (14.11), of f̂ that 0 = f̂(v + U) = f(v), which implies v ∈ U . This means that

v +U = U which is the zero vector in V/U . Hence, the kernel of f̂ is trivial and, from

Prop. 14.2 (ii), this means f̂ is injective. 2

The rank theorem now follows very easily from this isomorphism statement and the
dimension formula for quotient spaces.

Theorem 14.4 For a linear map f : V → W between (finite-dimensional) vector
spaces V and W we have

dimF(Ker(f)) + rk(f) = dimF(V ) . (14.13)

Proof From Theorem 14.2 we know that the isomorphism (14.12) implies equality
of dimensions, so that dimF(V/Ker(f)) = dimF(Im(f)) = rk(f). On the other hand,
Theorem 8.2 implies that dimF(V/Ker(f)) = dimF(V ) − dimF(Ker(f)). Combining
these two equations gives the rank theorem. 2

Application 14.1 Coding theory

Coding theory deals with the problem of errors in information such as they may arise when
information is transmitted in the presence of noise. Whenever information may be faulty,
methods are required for both error detection and error correction. A simple but potentially
inefficient method is to transmit the information repeatedly. Here, we would like to discuss
a more sophisticated method, referred to as Hamming code, which is based on some of the
linear algebra methods we have explored.

Information is conveniently described in binary form, that is, as a sequence of bits,
β1, . . . , βn ∈ {0, 1}. Mathematically, a bit can be seen as an element of the finite field
F2 = {0, 1} which we have introduced in Example 4.3 and information encoded by n bits
can be seen as an element of the n-dimensional vector space V = Fn2 over the field F2. In
other words, we can think of the above bit sequence as a column vector (β1, . . . , βn)T ∈ Fn2 .
Through this simple re-interpretation all the tools of linear algebra are now available to deal
with information.

To be specific we focus on the case of four bits, β = (β1, β2, β3, β4)T , but the method can
be generalized to arbitrary dimensions. We begin by writing down the matrix

H = (H1, . . . ,H7) =

 0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

 , (14.14)

whose columns consist of all non-zero vectors of Z3
2. Clearly, rk(H) = 3 (since H1, H2, H4

are linearly independent) and, from Eq. (14.13), its kernel has dimension dimF2(Ker(H)) =
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7 − 3 = 4. It is easy to see that this four-dimensional kernel has a basis consisting of the
vectors

k1 = (1, 0, 0, 0, 0, 1, 1)T k2 = (0, 1, 0, 0, 1, 0, 1)T

k3 = (0, 0, 1, 0, 1, 1, 0)T k4 = (0, 0, 0, 1, 1, 1, 1)T
.

The key idea is now to encode the information stored in β1, . . . , β4 by forming the linear
combination of these numbers with the above vectors ki. In other words, we encode the
information in the following seven-dimensional vector

v =

4∑
i=1

βiki .

Note that, given the choice of the vectors ki, the first four bits in v coincide with the actual
information β1, . . . , β4. By construction, the vector v is an element of Ker(H).

Now suppose that the transmission of v has resulted in a vector w which may have an error
in at most one bit. How do we detect whether such an error has occurred? We note that the
seven-dimensional standard unit vectors e1, . . . , e7 are not in the kernel of H. Given that
v ∈ Ker(H), it follows that none of the vectors w = v + ei is in Ker(H). This means the
transmitted information w is free of (one-bit) errors, if and only if w ∈ Ker(H), a condition
which can be easily tested.

Suppose w /∈ Ker(H) so that the information is faulty. How can the error be corrected?
If bit number i has changed in w the correct original vector is v = w−ei. Since v ∈ Ker(H)
it follows that Hw = Hei = Hi. Consequently, if Hw equals column i of H then we should
flip bit number i in w to correct for the error.

Let us carry all this out for an explicit example. Suppose that the transmitted message
is w = (1, 1, 0, 0, 0, 1, 1)T and that it contains at most one error. Then we work out

Hw =

 0
1
0

 = H2 .

First, w is not in the kernel of H so an error has indeed occurred. Secondly, the vector Hw
corresponds to the second column vector of H so we should flip the second bit to correct
for the error. This means, v = (1, 0, 0, 0, 0, 1, 1)T and the original information (which is
contained in the first four entries of v) is β = (1, 0, 0, 0)T .

By paying the price of enhancing the transmitted information from four bits (in β) to seven
bits (in v) both a detection and correction of one-bit errors can be carried out with this
method. Compare this with the naive method of transmitting the information in β twice
which corresponds to an enhancement from four to eight bits. In this case, a one-bit error has
occurred if the two transmissions differ. However, without further information it is unclear
which transmission is the correct one, so there is no method for error correction.
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Exercises

(†=challenging)

14.1 Image, kernel, and rank of matrices
Find the images, kernels, and ranks of
the following matrices:

A =

(
1 2
−1 1

)
, B =

 1 −2 −4
0 1 3
−5 2 −4


C =

 0 1
2

− 4
5

1
−2 0

 D =

(
1
3
−1 0

0 2 1

)
,

seen as linear maps Rn → Rm. Verify
the rank theorem in each case.

14.2 Rank of 3× 3 matrices
Consider matrices A ∈M3,3(R).
(a) Show that rk(A) < 3 iff det(A) = 0.
(b) Work out for which values of a, b ∈
R the matrix

A =

 1 −4 2
−2 0 −1

3 −4 a

 , B =

 0 −3 1
a 2 −4
1 1 b


have maximal rank and are, hence, in-
vertible.

14.3 Image, kernel, and rank for differential
operators
Consider the space Pk(R) of polynomi-
als with degree less equal k and D =
d/dx. Find the image, kernel, and rank
of the following maps:
(a) D : V3 → V2

(b) D : Vk → Vk−1 for k ∈ Z>0

(c) Dp : Vk → Vk for p, k ∈ Z>0.
Are the maps injective or surjective?
Verify the rank theorem in each case.

14.4 Rank of matrices
Determine the rank of the matrices

A =

(
1 2
a 1

)
, B =

(
1 0 b
a a −1

)
for all a, b ∈ R.

14.5 Some properties of matrix ranks
For matrices A,B of suitable size, show
that
(a) rk(AB) ≤ min(rk(A), rk(B))
(b) rk(AB) ≥ rk(A)+rk(B)−m where
m is the number of columns of A
(c) rk(ATA) = rk(A).

14.6 Direct sums and maps
For V = U1 ⊕ U2 and linear maps
f1 : U1 → W , f2 : U2 → W show the
following.
(a) There exists a unique linear map
f : V → W with f |U1 = f1 and
f |U2 = f2.
(b) f(V ) = f1(U1) + f2(U2).
(c) rk(f) ≤ rk(f1) + rk(f2) with equal-
ity iff f1(U1) ∩ f2(U2) = {0}.

14.7 Coding theory
Use the Hamming code described in
Application 14.1 to decide whether the
information contained in the vectors

w1 = (1, 1, 1, 1, 1, 1, 1)T

w2 = (1, 1, 1, 0, 1, 1, 1)T

w3 = (1, 1, 1, 0, 0, 1, 1)T

has one-bit errors and find the correct
original information in each case.

14.8 Sequences†

For vector spaces V0, V1, V2 we have
linear maps

{0} f0→ V0
f1→ V1

f2→ V2
f3→ {0}

which satisfy fi+1 ◦ fi = 0 for i =
0, . . . , 2.
(a) Show that Im(fi) ⊂ Ker(fi+1) for
i = 0, . . . , 2.
(b) If Im(fi) = Ker(fi+1) for i =
0, . . . , 2 show that f1 is injective and
f2 is surjective.
(c) Under the same assumptions as
in part (b), show that dimF(V1) =
dimF(V0) + dimF(V2).
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Linear maps in terms of matrices

At this point, we have a full understanding of linear maps between coordinate vectors
which, as we have seen, can be identified with matrices. This is possible thanks to the
existence of a canonical basis, the standard unit vector basis. On the other hand, linear
maps between general vector spaces might still seem somewhat abstract. Can we find
a more ’hands-on’ description of linear maps, in general? For general vector spaces no
preferred choice of basis is available. However, we can still, arbitrarily, choose a basis
on the domain and co-domain vector space. It turns out, relative to such a choice of
bases, a linear map between abstract vector spaces can be described by a matrix. We
will now discuss how this works.

15.1 Matrices representing linear maps

Summary 15.1 A linear map f : V → W can be represented by a matrix, relative
to a choice of bases on V and W . This matrix maps coordinate vectors in the same
way as f maps the associated vectors. It can be computed by working out the images
of the basis vectors for V under f .

15.1.1 Basis choice

Start with a linear map f : V → W between two (finite-dimensional) vector spaces
V and W over F. On each vector space we introduce a basis and a coordinate map,
as defined in Section 12.2.1. The resulting set-up is summarized in Table 15.1. The

Table 15.1 Set-up to represent a linear map f : V →W by a matrix.

Vector space Dimension Basis Coordinate map Coordinate vector

V n (v1, . . . ,vn) ϕ : Fn → V α ∈ Fn
W m (w1, . . . ,wm) ψ : Fm →W β ∈ Fm

diagram below indicates the idea for how to assign a matrix A to the linear map f .
The m × n matrix A should act on coordinate vector ’in the same way’ as f acts on
the associated vectors.
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A = ψ−1 ◦ f ◦ ϕ
α ∈ Fn Fm 3 β

ϕ(α) ∈ V W 3 ψ(β)
f

ϕ ψ

(15.1)

More precisely, if the coordinate vectors are related by β = Aα, then the correspond-
ing vectors ψ(β) and ϕ(α) should be related by ψ(β) = f(ϕ(α)). In mathematical
parlance, this is expressed by saying that the above diagram commutes: the result does
not depend on the path chosen in the diagram. This means the desired matrix A can
be written as

A = ψ−1 ◦ f ◦ ϕ . (15.2)

This can be seen by going from Fn to Fm in the above diagram using the ’upper
path’, via V and W .

The matrix A in Eq. (15.2) is said to be the matrix which represents the linear map f
relative to the bases (v1, . . . ,vn) of V and (w1, . . . ,wm) of W . An important special
case is the one of a linear map f : V → V with the same domain and co-domain
vector spaces and the ’in-basis’ and ’out-basis’ chosen to be the same, so wi = vi. In
this case, A is simply referred to as the representing matrix for f relative to the basis
(v1, . . . ,vn) of V .

15.1.2 Computing the representing matrix

How do we find the representing matrix A explicitly? The images f(vj) of the V basis
vectors can always be written as a linear combination of the basis vectors for W so we
have

f(vj) =

m∑
i=1

aijwi (15.3)

for some coefficients aij ∈ F. In fact, we know from Theorem 12.1 that the linear map
is uniquely characterized by these images. We denote the standard unit vectors on Fn
by ei and the ones on Fm by ẽi. Their images under the coordinate maps

ϕ(ei) = vi , ψ(ẽi) = wi (15.4)

are precisely the basis vectors for V and W (see Eq. (12.8)). Following Eq. (13.1), we
find the entries of the matrix A by acting on the standard unit vectors.

Aej
(15.2)

= ψ−1 ◦ f ◦ ϕ(ej)
(15.4)

= ψ−1 ◦ f(vj)

(15.3)
= ψ−1

(
m∑
i=1

aijwi

)
=

m∑
i=1

aijψ
−1(wi)

(15.4)
=

m∑
i=1

aij ẽi

Hence, the entries of A are the coefficients aij which appear in the expansion (15.3) of
the images of the basis vectors. We summarize this result in the following theorem.
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Theorem 15.1 (Matrix describing a linear map) Let V and W be vector spaces over
F with bases (v1, . . . ,vn) and (w1, . . . ,wm), respectively, and f : V → W be a linear
map. The entries Aij of the m×n matrix A : Fn → Fm representing f relative to this
choice of bases can be read off from the images of the basis vectors via

f(vj) =

m∑
i=1

Aijwi . (15.5)

The ranks of f and its representing matrix A are equal, rk(f) = rk(A).

Proof It remains to show the final statement on the equality of ranks. From Eq. (15.2)
and Im(f) = f(V ) we have

Im(A) = Im(ψ−1 ◦ f ◦ ϕ) = ψ−1(f(ϕ(Fn))) = ψ−1(f(V )) = ψ−1(Im(f)) .

Cor. 14.1 applied to ψ−1 and U = Im(f) then implies that dimF(ψ−1(Im(f)) =
dimF(Im(f)) = rk(f), which completes the proof. 2

While the above discussion might seem somewhat abstract it has led to a practical
method to extract the matrix A which describes a linear map f relative to a choice
of bases. Simply work out the images of the domain basis vectors and express them
as linear combinations of the co-domain basis, as in Eq. (15.5). The coefficients which
appear in this way are the entries of the desired matrix. More precisely, by careful
inspection of the indices in Eq. (15.5), it follows that the coefficients which appear in
the image of the jth basis vector form the jth column of the matrix A. This simple
rule is one of the most useful ones in linear algebra. (See Exercises 15.6 and 15.7 for
more on the relationship between linear maps and matrices.)

15.1.3 Examples for matrices describing linear maps

Note that the above theorem is even relevant for linear maps between coordinate
vector spaces. In this case, we have a canonical identification between linear maps and
matrices by choosing the standard unit vector bases. However, other bases choices on
coordinate vector spaces are possible and we might like to know about the associated
representing matrix. This is illustrated in our first exercise.

Problem 15.1 (Matrix describing a linear map between coordinate vectors)

Consider the linear map B : R2 → R2 defined by the matrix

B =

(
1 0
0 −2

)
.

For simplicity, choose the same basis for the domain and the co-domain, namely v1 = w1 =
(1, 2)T and v2 = w2 = (−1, 1)T . Compute the matrix B′ which represents the linear map B
relative to this choice of basis. Discuss how the diagram (15.1) specializes for this example.
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Solution: The first step is to work out the images of the domain basis vector and write them
as linear combinations of the co-domain basis.

Bv1 =

(
1
−4

)
= −1v1 − 2v2 , Bv2 =

(
−1
−2

)
= −1v1 + 0v2 .

Arranging the coefficients from Bv1 into the first column of a matrix and the coefficients
from Bv2 into the second column we find

B′ =

(
−1 −1
−2 0

)
.

This is the matrix representing the linear map B relative to the basis (v1,v2).
To see what exactly this means it is useful to think about the diagram (15.1). We start

by working out the coordinate map ϕ : R2 → R2 associated to the basis (v1,v2). For a
coordinate vector α = (α1, α2)T we have, using linearity,

ϕ(α) = ϕ(α1e1 + α2e2) = α1ϕ(e1) + α2ϕ(e2)
(15.4)

= α1v1 + α2v2 =

(
α1 − α2

2α1 + α2

)
.

The diagram below is the specialized version of diagram (15.1) and it captures the meaning
of the representing matrix B′. If B′ maps between two coordinate vectors then the original
linear map B maps between the corresponding vectors under the coordinate map ϕ.

B′

(
α1

α2

)
= α β = B′α =

(
−α1 − α2

−2α1

)

(
α1 − α2

2α1 + α2

)
= ϕ(α) ϕ(β) =

(
α1 − α2

−2(2α1 + α2)

)
B

ϕ ϕ

Said another way, starting with the vector α in the lower left corner of the diagram, both
the upper and the lower path lead to the same vector ϕ(β) in the upper right corner.

In order to develop a better conceptual understanding it might be useful to discuss a
linear map which is not defined by a matrix.

Problem 15.2 (The matrix representing a differential operator)

Consider the vector space V = P2(R) of at most quadratic polynomials and the linear map

D =
d

dx
: V → V ,

obtained by taking the first derivative. Write down the coordinate map ϕ : R3 → V for the
basis (1, x, x2) of monomials and find the matrix A, which represents D relative to this basis.
Work out the first derivative of the polynomial p ∈ V , where p(x) = 7 + 3x + 5x2, by using
the matrix A.

Solution: The coordinate map reads explicitly

ϕ(α) = α0 + α1x+ α2x
2 .
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To find the matrix A which represents D we compute the first derivatives of the basis mono-
mials and write them as linear combinations of the same monomials.

D(1) = 0 = 0 · 1 + 0 · x+ 0 · x2

D(x) = 1 = 1 · 1 + 0 · x+ 0 · x2

D(x2) = 2x = 0 · 1 + 2 · x+ 0 · x2

Arranging the coefficients in each row into the columns of a matrix we arrive at

A =

 0 1 0
0 0 2
0 0 0

 .

This matrix generates the first derivative of quadratic polynomials relative to the standard
monomial basis.

To understand the meaning of this matrix, we consider the specific polynomial p(x) =
ϕ((7, 3, 5)T ) = 7 + 3x + 5x2 with first derivative p′(x) = ϕ((3, 10, 0)T ) = 3 + 10x. Since the
matrix A describes the first derivative map it must map the coordinate vector (7, 3, 5)T for p
into the coordinate vector (3, 10, 0)T for p′. This is easily checked.

A

 7
3
5

 =

 3
10
0

 .

The correspondence between operators acting on functions and matrices acting on
coordinate vectors illustrated in the previous example is at the heart of quantum me-
chanics. Historically, Schrödinger’s formulation of quantum mechanics is in terms of
(wave) functions and operators, while Heisenberg’s formulation is in terms of vectors
and matrices. The relation between those two formulations is precisely as in the above
example.

The next two exercises, provide interesting applications of linear maps and their rep-
resenting matrices to geometry.

Problem 15.3 (The cross product as a linear map)

Define a map f : R3 → R3 by f(v) = n × v, where n = (n1, n2, n3)T ∈ R3 is a fixed
vector. Show that this map is linear and find its representing matrix A relative to the basis
of standard unit vectors. Assume that n is a unit vector and consider an ortho-normal basis
(n,u1,u2) of R3, where u2 = n × u1. Compute the matrix A′ which represent f relative to
this basis.

Solution: The map is linear since the cross product is linear in its second argument. To find
the representing matrix A we work out the action of f on the standard unit vectors.

f(e1) = n× e1 = n3e2 − n2e3

f(e2) = n× e2 = −n3e1 + n1e3

f(e3) = n× e3 = n2e1 − n1e2 .
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Arranging the coefficients which appear in f(ej) into the jth column we get the matrix

A =

 0 −n3 n2

n3 0 −n2

−n2 n1 0

 . (15.6)

It follows that f(v) = n × v = Av for all vectors v ∈ R3. The interesting conclusion is
that vector products with a fixed vector n can also be represented by multiplication with an
anti-symmetric matrix of the form (15.6). Everything is much more elegant in index notation
where

Aij = [f(ej)]i = [n× ej ]i = εiklnk[ej ]l = εiklnkδjl = εikjnk , (15.7)

so that Aij = εikjnk, in agreement with Eq. (15.6).

For the images of the ortho-normal basis (n,u1,u2) we find

f(n) = n× n = 0 = 0n + 0u1 + 0u2

f(u1) = n× u1 = u2 = 0n + 0u1 + 1u2

f(u2) = n× u2 = n× (n× u1) = (n · u1)︸ ︷︷ ︸
=0

n− |n|2u1 = 0n + (−1)u1 + 0u2

Filling the coefficients from each equation into the columns gives the representing matrix

A′ =

 0 0 0
0 0 −1
0 1 0

 .

Problem 15.4 (Reflections in R3 as linear maps)

Define the map f : R3 → R3 by

f(v) = v − 2(n · v)n , (15.8)

where n ∈ R3 is a unit vector. Show that f is linear and that it satisfies f ◦f = idR3 . Find the
representing matrix A for f relative the standard unit vector basis (e1, e2, e3). Next consider
a basis (u1,u2,n) of R3 with n · u1 = n · u2 = 0 and determine the representing matrix B
for f relative to this basis. Interpret your results geometrically.

Solution: This map is linear due to linearity of the dot product. To show that it squares to
the identity we can carry out an explicit computation.

f ◦ f(v) = f(v − 2(n · v)n) = v − 2(n · v)n− 2(n · (v − 2(n · v)n))n = v

Next, we determine the matrix A which represents f relative to the standard unit vector basis
(e1, e2, e2). Working out their images, f(ej) = ej − 2(n · ej)n = ej − 2njn = (δij − 2ninj)ei,
we find

Aij = δij − 2ninj , A =

 1− 2n2
1 −2n1n2 −2n1n3

−2n1n2 1− 2n2
2 −2n2n3

−2n1n3 −2n2n3 1− 2n2
3

 .

Now consider the basis (u1,u2,n). What is the matrix B representing f relative to this basis?
Inserting these basis vectors into the definition, Eq. (15.8), of f and using n ·u1 = n ·u2 = 0
as well as |n| = 1 we find
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f(u1) = u1 , f(u2) = u2 , f(n) = −n ,

so the representing matrix is

B =

 1 0 0
0 1 0
0 0 −1

 .

This matrix makes the geometrical interpretation of f obvious. While the coordinates relative
to the vectors u1,u2 remain unchanged, the coordinate relative to n is inverted. This means
that f describes a reflection on the plane perpendicular to n. Of course this explains why f
squares to the identity — performing two reflections successively leaves a vector unchanged.
The more complicated matrix A above describes the same reflection but relative to the basis
of standard unit vectors.

15.2 Change of basis

Summary 15.2 Two matrices A and A′ which describe a linear map f : V → W
relative to different basis choices on V and W are related by A′ = QAP−1. The
matrices P and Q are invertible and describe the change of bases. For a linear map
f : V → V this specializes to A′ = PAP−1.

As we have seen, a linear map can be described by a matrix which depends on a choice
of bases. We would like to understand how the representing matrix for a given linear
map changes if the bases are changed.

15.2.1 General case

As usual, we start with a linear map f : V → W between two (finite-dimensional)
vector spaces V and W over the field F. The set-up for the choice of bases, coordinate
vectors and maps is summarized in Table 15.2.

Relative to the unprimed basis, f is represented by the m × n matrix A and relative
to the primed basis by the m×n matrix A′. Our goal is the work out the relationship
between those two matrices. From Eq. (15.2) they can be written as A = ψ−1 ◦ f ◦ ϕ

Table 15.2 Set-up to represent a linear map f : V →W by a matrix.

Vector space Dimension Basis Coordinate map Coordinate vector

V n (v1, . . . ,vn) ϕ : Fn → V α ∈ Fn
(v′1, . . . ,v

′
n) ϕ′ : Fn → V α′ ∈ Fn

W m (w1, . . . ,wm) ψ : Fm →W β ∈ Fm
(w′1, . . . ,w

′
m) ψ′ : Fm →W β′ ∈ Fm

and A′ = ψ′
−1 ◦ f ◦ ϕ′. A short calculation gives
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A′ = ψ′
−1 ◦ f ◦ ϕ′ = ψ′

−1 ◦ ψ ◦ ψ−1︸ ︷︷ ︸
=idW

◦f ◦ ϕ ◦ ϕ−1︸ ︷︷ ︸
=idV

◦ϕ′

= ψ′
−1 ◦ ψ︸ ︷︷ ︸
=:Q

◦ψ−1 ◦ f ◦ ϕ︸ ︷︷ ︸
=A

◦ϕ−1 ◦ ϕ′︸ ︷︷ ︸
=:P−1

= QAP−1 .

All we have done is to insert two identity maps in the second step and then combine
maps differently in the third step. The result

A′ = QAP−1 (15.9)

describes the basis transformation of a matrix and is one of the key equations of linear
algebra.

What is the interpretation of the matrices Q = ψ′
−1 ◦ ψ : Fm → Fm and P =

ϕ′
−1 ◦ ϕ : Fn → Fn in this equation? Focusing on P for now, consider a vector v ∈ V

with coordinate vectors α = ϕ−1(v) and α′ = ϕ′
−1

(v) relative to the two choices

of bases. Then, α′ = ϕ′
−1

(v) = ϕ′
−1 ◦ ϕ(α) = Pα and a similar argument for Q

gives β′ = Qβ. In summary, the matrices P and Q can be viewed as coordinate
transformations, relating the coordinate vectors relative to the primed and unprimed
bases, that is

α′ = Pα , β′ = Qβ , (15.10)

provided that ϕ(α) = ϕ′(α′) and ψ(β) = ψ′(β′).

Given this interpretation of P and Q Eq. (15.9) can be understood intuitively. When
acting on a coordinate vector α′, the matrix P−1 on the right-hand side of Eq. (15.9)
first converts this coordinate vector into its unprimed counterpart α, on which the
matrix A can sensibly act. Finally, Q converts the result back into a coordinate vector
relative to the primed bases. Altogether, this reproduces the action of A′.

To compute the entries of P we can start with the equation Pej =
∑
i Pijei, apply

ϕ′ to both sides and use Eq. (15.4). This results in vj =
∑
i Pijv

′
i and, from a similar

argument, we have wj =
∑
iQijw

′
i. In conclusion, the entries of P and Q are obtained

by expanding the unprimed basis vector in terms of the primed ones.

vj =
∑
i

Pijv
′
i , wj =

∑
i

Qijw
′
i . (15.11)

The above results are summarized in the following theorem.

Theorem 15.2 (General basis change) Let V and W be vector spaces over F and f :
V →W be a linear map. Suppose relative to bases (v1, . . . ,vn) of V and (w1 . . . ,wm)
of W the map f is represented by a matrix A and relative to bases (v′1, . . . ,v

′
n) of V

and (w′1 . . . ,w
′
m) of W by a matrix A′. Then the two matrices are related by

A′ = QAP−1 where vj =
∑
i

Pijv
′
i and wj =

∑
i

Qijw
′
i . (15.12)

Proof This follows from the above arguments. 2
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15.2.2 Identical domain and co-domain

An important special case of our general discussion above arises when the vector spaces
V and W are equal and we choose the same bases on domain and co-domain, so that
vi = wi and v′i = w′i. Then, Theorem 15.2 specializes to the following statement:

Corollary 15.1 (Basis change for identical domain and co-domain) Let V be a vector
space and f : V → V be a linear map. Suppose relative to a basis (v1, . . . ,vn) of V
the map f is represented by a matrix A and relative to a basis (v′1, . . . ,v

′
n) of V it is

represented by A′. Then the two matrices are related by

A′ = PAP−1 where vj =
∑
i

Pijv
′
i . (15.13)

Proof This follows immediately from Theorem 15.2 by setting W = V , wi = vi,
w′i = v′i and Q = P . 2

Eq. (15.13) is another key equation of linear algebra which describes the basis trans-
formation of a matrix for same bases changes on domain and co-domain.

For linear maps f : Fn → Fn between coordinate vector spaces we can consider an
interesting special case. In this case, we can choose the unprimed basis to be the stan-
dard unit vector basis, (v1, . . . ,vn) = (e1, . . . , en), so that the representing matrix
A is the one canonically identified with f . Then, the second Eq. (15.13) turns into
v′j =

∑
i(P
−1)ijei. Hence, the matrix A identified with f is transformed to a matrix

A′ relative to a new basis (v′1, . . . ,v
′
n) by

A′ = PAP−1 where P−1 = (v′1, . . . ,v
′
n) . (15.14)

The point is that, in this case, the basis transformation P−1 is easily written down
since its columns are the new basis vectors v′i.

Problem 15.5 (Basis transformation of a matrix)

Relative to the unprimed basis (v1 = e1,v2 = e2) of standard unit vectors, a linear map
A : R2 → R2 is described by the matrix A = diag(1,−1). Find the representing matrix A′ for

this linear map relative to the basis v′1 = (1,−1)/
√

2, v′2 = (1, 1)/
√

2.

Solution: One way to proceed is as before, by applying Theorem 15.1, and compute the
images of the basis vectors in order to read off A′. This leads to

Av′1 = 0v′1 + 1v′2 , Av′2 = 1v′1 + 0v′2 ,

and arranging the coefficients on the right-hand sides into the column of a matrix gives

A′ =

(
0 1
1 0

)
.

Alternatively, we can determine A′ from Eq. (15.14). This leads to

P−1 = (v′1,v
′
2) =

1√
2

(
1 1
−1 1

)
⇒ P =

1√
2

(
1 −1
1 1

)
,
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and applying this basis transformation gives

A′ = PAP−1 =
1

2

(
1 −1
1 1

)(
1 0
0 −1

)(
1 1
−1 1

)
=

(
0 1
1 0

)
,

in accordance with the earlier result.

Problem 15.6 (Basis change for a differential operators)

In Exercise 15.2 we have considered the vector space V = P2(R) of at most quadratic
polynomials and the derivative map D = d

dx
: V → V . We have shown that, relative

to the monomial basis (v1 = 1,v2 = x,v3 = x2) of V , the derivative D is represented
by the matrix A in Eq. (15.2). What is its representing matrix A′ relative to the basis
(v′1 = 1 + x,v′2 = 1− x,v′3 = 1 + x+ x2)?

Solution: A direct computation from Theorem 15.1 leads to

D(v′1) = 1 = 1
2
v′1 + 1

2
v′2 + 0v′3

D(v′2) = −1 = − 1
2
v′1 − 1

2
v′2 + 0v′3

D(v′3) = 1 + 2x = 3
2
v′1 − 1

2
v′2 + 0v′3

 ⇒ A′ =
1

2

 1 −1 3
1 −1 −1
0 0 0

 .

On the other hand, by comparison with the second Eq. (15.13), expanding the primed basis
vectors in terms of the unprimed ones gives

v′1 = v1 + v2

v′2 = v1 − v2

v′3 = v1 + v2 + v3

 ⇒ P−1 =

 1 1 1
1 −1 1
0 0 1

 ⇒ P =
1

2

 1 1 −2
1 1 −1
0 0 2

 .

Performing the basis transformation from Eq. (15.13) gives

A′ = PAP−1 =
1

2

 1 1 −2
1 1 −1
0 0 2

 0 1 0
0 0 2
0 0 0

 1 1 1
1 −1 1
0 0 1

 =
1

2

 1 −1 3
1 −1 −1
0 0 0

 ,

in agreement with the earlier result.

15.2.3 Conjugate matrices

We say that two matrices A,A′ ∈Mn,n(F) are conjugate if they are related by a basis
transformation (15.13), so if there exists an invertible matrix P ∈ GL(Fn) such that
A′ = PAP−1.

Proposition 15.1 Conjugacy of matrices is an equivalence relation.

Proof We need to show reflexivity, symmetry, and transitivity.

’Reflexivity’: To see that every matrix is conjugate to itself simply choose P = 1n.

’Symmetry’: If A is conjugate to A′, so A′ = PAP−1, then A = P−1A′P so A is
conjugate to A′.

’Transitivity’: If A is conjugate to B and B is conjugate to C, so that B = PAP−1

and C = QBQ−1, then C = (PQ)A(PQ)−1. This means A is conjugate to C. 2
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This means that Mn,n(F) partitions into disjoint equivalence classes, also called con-
jugacy classes. Each conjugacy class contains all the matrices related by a basis trans-
formation, so all the matrices which describe the same linear map.

Many problems in linear algebra are motivated by understanding these conjugacy
classes better. For example, we would like to be able to decide whether two given
matrices belong to the same class or not. A useful tool for this are class functions
— functions of matrices which only depend on the conjugacy class but not on the
particular element within each class. As we will see in Chapter 18, the determinant is
an example of such a class function. Another important problem is to find the ’simplest’
matrix in each conjugacy class — this leads to normal forms and diagonalization of
matrices (see Part VI).

Exercises

(†=challenging)

15.1 A linear map in R2 is given by the ac-
tion of the matrix

A =

(
1 2
0 1

)
.

(a) Work out the matrix A′ which rep-
resents this linear map relative to the
basis v1 = (1, 1)T and v2 = (0, 1)T .
(b) Find a 2 × 2 matrix P such that
A′ = PAP−1.
(c) What is the interpretation of the
matrix P?

15.2 A linear map f : R3 → R3 is defined
by f(v) = (n · v)n + v, where n ∈ R3

is a unit vector.
(a) Find the representing matrix A of
f relative to the standard unit vector
basis.
(b) Find the representing matrix A′

of f relative to an ortho-normal basis
(n,u1,u2) of R3.
(c) What is the geometrical interpreta-
tion of f?

15.3 Consider the vector space V = P2(R)
of at most quadratic polynomials and
define the map L : V → V by

L(p) = x
d2p

dx2
+ (1− x)

dp

dx
+ 2p .

(a) Why is this map linear?
(b) Work out the matrix, A, which

represents L relative to the standard
monomial basis (1, x, x2) of V .
(c) Find the kernel of the matrix A,
that is, the vectors v satisfying Av =
0. Which polynomials p correspond to
these vectors?
(d) Show by explicitly applying L that
the polynomials p found in part (c) sat-
isfy L(p) = 0.

15.4 A linear map f : R4 → R4 is repre-
sented by a matrix

A =

−
1
2

1
2
− 1

2
− 1

2
1 0 1 1
2 −1 2 0
− 3

2
3
2
− 3

2
1
2


relative to the basis of standard unit
vectors.
(a) Find the matrix A′ which rep-
resents f relative to the basis
(v′1,v

′
2,v
′
3,v
′
4), where

v′1 = (1, 1, 1,−1)T

v′2 = (1,−1, 1, 1)T

v′3 = (1, 1,−1,−1)T

v′4 = (1, 1,−1, 1)T

Also find the matrix P with A′ =
PAP−1.
(b) Use the results from part (a) to find
the matrix Ak which represents fk for
k ∈ N relative to the basis of standard
unit vectors.
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15.5 Cross product as a linear map†

For n ∈ R3 define the linear map fn :
R3 → R3 by fn(v) = n × v, as in Ex-
ercise 15.3.
(a) Write down the matrix An which
represents fn relative to the basis of
standard unit vectors. Show that the
map n 7→ An defines an isomorphism
R3 → A3(R) with An(v) = n× v.
(b) Show that the matrices Bk which
represents odd powers, f2k+1

n are anti-
symmetric. Find the vectors nk which
correspond to Bk under the isomor-
phism in (b).

15.6 Isomorphism between linear maps and
matrices†

Let V , W be vector spaces over F, each
with a fixed basis, relative to which we
consider all representing matrices.
(a) Linear maps f, g ∈ Hom(V,W ) are
described by matrices A and B. Show
that the linear map αf + βg, where
α, β ∈ F, is described by the matrix

αA+ βB.
(b) Denote by Af the matrix which de-
scribes f ∈ Hom(V,W ). Show that the
map ı : Hom(V,W ) → Hom(Fn,Fm)
defined by f 7→ Af is a vector space
isomorphism.
(c) Use the result from part (b) to
proof the dimension formula (12.7).

15.7 Relation between GL(V ) and GL(Fn)†

Let V , W and U be three vector spaces
over F, each with a fixed basis, relative
to which we consider all representing
matrices.
(a) Two linear maps f : V → W and
g : W → U are described by matrices
A and B. Show that the linear map g◦f
is described by the matrix BA.
(ii) If f ∈ GL(V ) is described by a ma-
trix A, show that f−1 is described by
A−1.
(iii) Denote by Af the matrix which
describes f ∈ End(V ). Show that the
map ı : GL(V ) → GL(n) defined by
f 7→ Af is a group isomorphism.



Part V

Linear systems and algorithms

We have now covered the theoretical foundations of vector spaces and linear maps.
They have been illustrated with many examples, mostly in a small number of dimen-
sions. However, we still have to develop efficient and systematic methods for calculation
which will also work for higher-dimensional cases. The key question is how to com-
pute with linear maps. Linear maps can always be described by matrices, relative to
a choice of bases, so what we require is methods to calculate with matrices.

As we will see, the basic ingredient of these methods are row operations on matrices.
In Chapter 16, we set up algorithms based on row operations in order to calculate
the rank and the inverse of a matrix. Linear systems and systems of linear equation
are studied in Chapter 17. As we explain, the algorithm for solving systems of linear
equations is also based on row operations.

Determinants are another method for calculating with matrices. In Section 10.2 we
have already introduced the determinant for 3 × 3 matrices and Chapter 18 general-
izes this discussion to matrices with arbitrary size. Determinants can be used to decide
whether a matrix is invertible, to calculate the matrix inverse and to solve (certain)
systems of linear equations. But they are also of theoretical importance and play a key
role in the theory of eigenvalues and eigenvector which will be developed in Part VI.





16

Computing with matrices

How do we compute the rank of a matrix and the matrix inverse? The rank has been
determined by counting the number of linearly independent column vectors while the
inverse has been computed by inserting an Ansatz into the defining equation (13.24).
Either method is cumbersome for larger matrices. The key ingredients of systematic,
algorithmic methods are row operations on matrices. These will first be introduced
and then applied to the calculation of the matrix rank and inverse.

16.1 Row operations

Summary 16.1 There are three elementary row operations for matrices: exchange
of rows, adding a multiple of one row to another and multiplying a row with a non-zero
scalar. Elementary row operations leave the span of the matrix row vectors unchanged.
They form the basic steps of an algorithm, called Gaussian elimination, which can be
used to bring any matrix into upper echelon form.

16.1.1 Definition of row operations

We are working with elements in Mn.m(F), so matrices of size n ×m with entries in
a field F. At the heart of algorithmic methods for computing with such matrices are
elementary row operations which are defined as follows.

Definition 16.1 The following manipulations of a matrix are called elementary row
operations:

(R1) Exchange two rows.
(R2) Add a scalar multiple of one row to another.
(R3) Multiply a row with a non-zero scalar.

Elementary column operations are analogous but carried out on the columns.

In the following, we will focus on elementary row operations but most of our state-
ments have analogues for elementary column operations. At any rate, we can think of
elementary column operations as row operations carried out on the transpose of the
matrix.

The key property of the elementary row operations is that they leave the span,
Span(A1, . . . ,An), of the row vectors of an n ×m matrix A unchanged. This is im-
mediately clear for row operations (R1) and (R3). To check this for (R2) consider
changing the first row A1 to A1 + βA2, so by adding a multiple of the second row.
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Span(A1,A2, . . . ,An) = {α1A1 + α2A2 + · · · |αi ∈ F}
= {α1(A1 + βA2) + (α2 − βα1)A2 + · · · |αi ∈ F}
= Span(A1 + βA2,A2, . . . ,An)

By a similar argument column operations leave the span, Span(A1, . . . ,An), of the
column vectors unchanged.

16.1.2 Upper echelon form

The main purpose of row operations is to bring a matrix to a simpler, more convenient
form where certain properties can be read off easily. One important such form is the
upper echelon form which is useful to compute the rank and the matrix inverse. A
matrix A is in upper echelon form if it has the following structure.

A =



· · · a1j1 ∗

a2j2

...

. . .

... arjr · · ·

0
...


Here the entries aiji are non-zero for all i = 1, . . . , r, all other entries above the solid
line are arbitrary (indicated by the ∗) and all entries below the solid line are zero. To
be clear, we formulate this in a definition.

Definition 16.2 A matrix is said to be in upper echelon form if the following condi-
tions are satisfied:

(E1) All entirely zero rows appear at the bottom of the matrix.
(E2) For each non-zero row i, its first non-zero entry (aiji in the above matrix) ap-
pears strictly to the right of the first non-zero entry in row i− 1.

The left-most non-zero entry in a row (aiji in the above matrix) is called a pivot.

An important feature of the upper echelon form is that the non-zero rows are, in fact,
linearly independent. To see this, consider the equation

∑r
i=1 αiAi = 0 where Ai are

the non-zero row vectors of the above matrix in upper echelon form. The pivot in the
first row vector A1 is in component j1 but no other row vector has a non-zero j1 entry.
It follows immediately that α1 = 0. We can then repeat this argument with the second
row and continue until we have concluded that all αi = 0.

16.1.3 Algorithm to bring a matrix into upper echelon form

Our next step is to show that every n×m matrix can be brought into upper echelon
form by a sequence of row operations, using an algorithm called Gaussian elimination
or row reduction.

Algorithm (Gaussian elimination) The algorithm proceeds row by row. Let us assume
that we have already dealt with the first i − 1 rows of the matrix. Then, for the ith

row we should carry out three steps.
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(1) Find the left-most column j which has at least one non-zero entry in rows i, . . . , n.

(2) If the (i, j) entry is zero exchange row i with one of the rows i+ 1, . . . , n (the one
which contains the non-zero entry identified in step 1) so that the new (i, j) entry
is non-zero.

(3) Subtract suitable multiples of row i from all rows i+ 1, . . . , n such that all entries
(i+ 1, j), . . . , (n, j) in column j and below row i vanish.

Continue with the next row until no more non-zero entries can be found in step (1).

The procedure is probably best explained with an example.

Problem 16.1 (Bringing a matrix into upper echelon form)

Bring the 3× 3 matrix

A =

 0 1 −1
2 3 −2
2 1 0

 ,

into upper echelon form by Gaussian elimination.

Solution: 0 1 −1
2 3 −2
2 1 0

 R1↔R3

−−−−−−−−→

 2 1 0
2 3 −2
0 1 −1

 R2→R2−R1

−−−−−−−−→

 2 1 0
0 2 −2
0 1 −1

 R3→R3−R2/2

−−−−−−−−→

 2 1 0
0 2 −2
0 0 0


We have indicated the row operation from one step to the next above the arrow, referring to
the ith row by Ri.

16.2 Rank of a matrix

Summary 16.2 The column rank and the row rank of a matrix are equal. The rank
can be determined by converting the matrix into upper echelon form, using Gaussian
elimination. In upper echelon form, the rank equals the number of non-zero rows.

16.2.1 Row and column rank

Our first application of row operations is to compute the rank of a matrix. For an
n×m matrix A ∈Mn,m(F) we can define the row and column rank

rowrk(A) = dimF(Span(A1, . . . ,An)) (16.1)

colrk(A) = dimF(Span(A1, . . . ,Am)) . (16.2)

The column rank is of course the rank of the linear map defined by A while the row
rank is the rank of the linear map associated to AT . Having two types of ranks available
for a matrix seems awkward but fortunately these two ranks are the same.

Theorem 16.1 Row and column rank are equal, so rk(A) = colrk(A) = rowrk(A),
for any matrix A.
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Proof Suppose one row, say A1, of a matrix A can be written as a linear combination
of the others. Then, by dropping A1 from A we arrive at a matrix with one less row,
but its row rank unchanged from that of A. The key observation is that the column
rank also remains unchanged under this operation. This can be seen as follows. Write

A1 =

n∑
j=2

αjAj , α =

 α2

...
αn


with some coefficients α2, . . . , αn which we have arranged into the vector α. Further,
let us write the column vectors of A as

Ai =

(
ai
bi

)
,

that is, we split off the entries in the first row, denoted by ai, from the entries in the
remaining n− 1 rows which are contained in the vectors bi. It follows that ai = A1i =
(A1)i =

∑n
j=2 αjAji =

∑n
j=2 αj(A

i)j = α ·bi, so that the column vectors can also be
written as

Ai =

(
α · bi

bi

)
.

Hence, the entries in the first row are not relevant for the linear independence of the
column vectors Ai — merely using the vectors bi will lead to the same conclusions
for linear independence. As a result we can drop a linearly dependent row without
changing the row and the column rank of the matrix. Clearly, an argument similar to
the above can be made if we drop a linearly dependent column vectors — again, both
the row and column rank remain unchanged.

In this way, we can continue dropping linearly dependent row and column vectors
from A until we arrive at a (generally smaller) matrix A′ which has linearly indepen-
dent row and column vectors and the same row and column ranks as A. On purely
dimensional grounds, a matrix with all row vectors and all column vectors linearly
independent must be a square matrix (for example, consider a 3× 2 matrix. Its three
2-dimensional row vectors cannot be linearly independent). Therefore, row and column
rank are the same for A′ and, hence, for A. 2

This theorem implies that the rank of an n×m matrix A cannot exceed the number
of its rows and columns, so that

rk(A) ≤ min(n,m) . (16.3)

We have already obtained this bound in Eq. (14.10) from arguments based on the
structure of linear maps, but we have now re-derived it purely from matrix properties.

It is sometimes useful to talk about the ’generic’ rank of matrices. We will not attempt
to define this precisely, but loosely we mean the rank that ’most’ matrices inMn,m(F)
have. It should be intuitively clear that this generic rank is, in fact, the maximal rank,
rk(A) = min(n,m). Indeed, a smaller value requires linear dependencies between the
rows or columns of the matrix which amount to specific choices of entries.
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Application 16.1 More on internet search

In Application 1.1 we have described a network with n pages, labelled by an index k =
1, . . . , n, with the kth page containing nk links to some of the other pages and being linked
to by the pages Lk ⊂ {1, . . . , n}. It was proposed that the page ranks xk satisfy the equations

xk =
∑
j∈Lk

xj
nj

, (16.4)

where k = 1, . . . , n. These equations form a homogeneous linear system which can also be
written in matrix-vector form as Ax = 0, where x = (x1, . . . , xn)T is a vector containing
the page ranks and the n× n matrix A has entries

Aij = δij −
{ 1
nj

if j ∈ Li
0 if j 6= Li

.

The solutions to this linear system are given by the kernel, Ker(A). Of course, this always
contains the trivial solution, x = 0, but this is of no use for the purpose of ranking sites.
For the set-up to make sense, it is crucial that Ker(A) 6= {0}. To see that this is, in fact,
always the case we note that the sum of the rows of A,

n∑
i=1

Aij =
n∑
i=1

δij −
∑
i:j∈Li

1

nj
= 1− 1

nj

∑
i:j∈Li

1 = 0 ,

vanishes. This means the rows of A are linearly dependent so rk(A) < n. From the dimension
formula (14.13) we conclude that dimR Ker(A) = n− rk(A) > 0 and, hence, that the kernel
of A is indeed non-trivial. This property is part of the magic of the page rank formula (16.4)
— it guarantees the existence of a non-trivial solution which is crucial for ranking the pages
of the network.

16.2.2 Computing the rank

Another important conclusion from Theorem 16.1 is that we can focus on the rows or
the columns of a matrix to compute its rank. Since we want to work with elementary
row operations we opt for rows. We have seen that elementary row operations leave the
span of the row vectors and, therefore, the rank unchanged. Moreover, the non-zero
rows of a matrix in upper echelon form are linearly independent, so

A in upper echelon form ⇒ rk(A) = number of non-zero rows .

Altogether, this implies the following algorithm to compute the rank of a matrix.

Algorithm (Computing the rank of a matrix)

To compute the rank of a matrix A, carry out the following steps:

(1) Bring A to upper echelon form using row reduction.

(2) Read off the number of non-zero rows. This number equals the rank.

For example, the matrix A in Exercise 16.1 has rank 2.
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Problem 16.2 (Computing the matrix rank)

Compute the rank of the following matrix:

A =

 0 2 1 −1
2 1 3 0
4 0 −2 1
0 −4 3 2

 .

Solution: We first bring A to upper echelon form. 0 2 1 −1
2 1 3 0
4 0 −2 1
0 −4 3 2

 R1↔R2

−−−−−−−−→

 2 1 3 0
0 2 1 −1
4 0 −2 1
0 −4 3 2

 R3→R3−2R1

−−−−−−−−→

 2 1 3 0
0 2 1 −1
0 −2 −8 1
0 −4 3 2


R3 → R3 + R2
R4 → R4 + 2R2

−−−−−−−−→

 2 1 3 0
0 2 1 −1
0 0 −7 0
0 0 5 0

 R4→R4+5R3/7

−−−−−−−−→

 2 1 3 0
0 2 1 −1
0 0 −7 0
0 0 0 0


The last matrix is in upper echelon form and it has three non-zero rows. Hence, rk(A) = 3.

Application 16.2 Back to magic squares

We now return to our discussion of magic squares. We have seen in Application 7.1 that
all 3 × 3 magic squares form a vector space, and we have shown that the three specific
magic squares M1,M2,M3 in Eq. (7.10) are linearly independent. It remains to be shown
that these matrices form a basis of the magic square vector space as asserted earlier. To do
this it suffices to show that the dimension of the magic square vector space is three (see
Theorem 7.2 (iii)).

We begin with an arbitrary 3× 3 matrix

S =

 a b c
d e f
g h i

 .

Recall that, for S to be a magic square, its rows, columns and both diagonals have to sum
up to the same total. These conditions can be cast into the seven linear equations,

d+ e+ f = a+ b+ c
g + h+ i = a+ b+ c
a+ d+ g = a+ b+ c
b+ e+ h = a+ b+ c
c+ f + i = a+ b+ c
a+ e+ i = a+ b+ c
c+ e+ g = a+ b+ c


⇔



−a− b− c+ d+ e+ g = 0
−a− b− c+ g + h+ i = 0

−b− c+ d+ g = 0
−a− c+ e+ h = 0
−a− b+ f + i = 0
−b− c+ e+ i = 0
−a− b+ e+ g = 0


.

In matrix form, this system of equations can be written as follows:
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

−1 −1 −1 1 1 1 0 0 0
−1 −1 −1 0 0 0 1 1 1

0 −1 −1 1 0 0 1 0 0
−1 0 −1 0 1 0 0 1 0
−1 −1 0 0 0 1 0 0 1

0 −1 −1 0 1 0 0 0 1
−1 −1 0 0 1 0 1 0 0


︸ ︷︷ ︸

A



a
b
c
d
e
f
g
h
i


︸ ︷︷ ︸

x

=



0
0
0
0
0
0
0


︸ ︷︷ ︸

0

,

or, in short, Ax = 0. The magic squares are precisely the solutions to this homogeneous
linear system which shows that the magic square vector space is the kernel, Ker(A), of
the matrix A. By Gaussian elimination and with a bit of calculation, the matrix A can
be brought into upper echelon form and the rank can be read off as rk(A) = 6. Then, the
dimension formula (14.13) leads to dimQ(Ker(A)) = 9−rk(A) = 3 and, hence, the dimension
of the magic square vector space is indeed three.

In summary, the three matrices M1, M2, M3 in Eq. (7.10) form a basis of the magic square
vector space and every magic square is given as a (unique) linear combination of these three
matrices.

16.3 Matrix inverse

Summary 16.3 Elementary row operations can be generated by multiplying with
certain elementary matrices from the left. This leads to an algorithm for computing
the matrix inverse. Using elementary row operations, the matrix is first converted
into upper echelon form and then into the unit matrix. Carrying out the same row
operations on the unit matrix produces the matrix inverse.

Row operations can be used to calculate the matrix inverse. To see how this works it
is useful to re-formulate row operations in terms of matrix multiplication.

16.3.1 The elementary matrices

At first sight, the elementary row operations look somewhat artificial. But it turns out
they are well-adapted to the structure of matrices, in that they can be generated by
multiplying with certain, specific matrices from the left. In other words, to perform a
certain row operation on a matrix A, we can find a suitable matrix P such that the
row operation is generated by A 7→ PA. As a simple example, consider 2× 2 matrices.

A =

(
a b
c d

)
, P =

(
1 λ
0 1

)
⇒ A 7→ PA =

(
1 λ
0 1

)(
a b
c d

)
=

(
a+ λc b+ λd
c d

)
Evidently, multiplication with the matrix P from the left has generated the elementary
row operation R1 → R1 + λR2 on the arbitrary 2× 2 matrix A. This works in general
and the appropriate matrices, generating the three types of elementary row operations
in Def. 16.1, are given by
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PRi↔Rj
= 1− E(ii) − E(jj) + E(ij) + E(ji)

PRi→Ri+λRj
= 1+ λE(ij)

PRi→λRi = 1+ (λ− 1)E(ii) .
(16.5)

To see that these matrices do indeed produce the desired result, we first note that
E(ij)A is a matrix with all rows zero except the ith one which contains the jth row
of A. Using this rule and the distributive laws (13.22) it is easy to reason out what
happens when one of the above matrices multiplies a matrix A from the left. For ex-
ample, PRi→Ri+λRjA = A+λE(ij)A and the second matrix, λE(ij)A, is zero except for

its ith row which contains λAj . Adding this matrix to A produces the desired effect,
Ri → Ri + λRj .

It is intuitively clear that the elementary matrices are invertible since the row op-
erations they generate can be undone by another row operation. Again, focusing on
PRi→Ri+λRj

, we would expect PRi→Ri−λRj
to be its inverse. Noting that E(ij)E(ij) = 0

for i 6= j, this can be easily verified:

PRi→Ri+λRjPRi→Ri−λRj = (1+ λE(ij))(1− λE(ij)) = 1 .

16.3.2 Algorithm to calculate the matrix inverse

Our next task is to devise an algorithm to compute the inverse of an n × n matrix
A, using elementary row operations. (Recall that only square matrices can have an
inverse.) To do this we attempt to convert the matrix into the unit matrix using row
operations. Schematically, this works as follows:

A
row red.
−−−−−→


a′11 ∗

a′22

. . .

0 a′nn

 (R1), (R2)

−−−−−→


a′11 0

a′22

. . .

0 a′nn

 (R3)

−−−→

1 0
. . .

0 1

 = 1n .

In the first step, we bring A into upper echelon form, by the algorithm already dis-
cussed, and we read off its rank. In rk(A) < n then, from Cor. 14.2, the matrix is
not invertible and we can stop. Otherwise, if rk(A) = n, all pivots must be along the
diagonal so that a′ii 6= 0 for all i = 1, . . . , n. This means we can apply further row
operations to set the entries above the diagonal to zero. We start with the last column
and subtract suitable multiples of the last row from the others until all entries in the
last column except a′nn are zero. We proceed in a similar way, column by column from
the right to the left, using row operations of type (R1) and (R2). In this way we arrive
at a diagonal matrix, with diagonal entries a′ii 6= 0 which, in the final step, can be
converted into the unit matrix by row operations of type (R3).

This discussion implies we can find elementary matrices P1, . . . , Pk, as defined in
Eq. (16.5), generating elementary row operations, such that

1n = P1 · · ·Pk︸ ︷︷ ︸
A−1

A ⇒ A−1 = P1 · · ·Pk1n . (16.6)

These equations imply an explicit algorithm to compute the inverse of a square matrix.
We convert A into the unit matrix 1n using elementary row operations as described
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above, and then simply carry out the same operations on 1n in parallel. When we are
done the unit matrix will have been converted into A−1.

Algorithm (Computing the matrix inverse)

To find the inverse of an n× n matrix A, carry out the following steps:

(1) Bring A to upper echelon form and read off the rank. If rk(A) < n then A is not
invertible so there is nothing more to do.

(2) Otherwise, if rk(A) = n, use row operations (R2) to set the entries above the
diagonal to zero, starting with the last column and proceeding from right to left.
The result is a diagonal matrix.

(3) Use row operations (R3) to convert the diagonal matrix into a unit matrix.

(4) Carry out, in the same order, all above row operations on the unit matrix 1n.
This converts 1n into A−1.

Problem 16.3 (Computing the matrix inverse with row operations)

Using row operations, compute the inverse of the matrix below.

A =

(
1 0 −2
0 3 −2
1 −4 0

)

Solutions: We follow the above algorithm and carry all row operation out on A and 13 in
parallel.

A =

(
1 0 −2
0 3 −2
1 −4 0

)
13 =

(
1 0 0
0 1 0
0 0 1

)

R3 → R3 −R1 :

(
1 0 −2
0 3 −2
0 −4 2

) (
1 0 0
0 1 0
−1 0 1

)

R3 → R3 +
4

3
R2 :

(
1 0 −2
0 3 −2
0 0 − 2

3

)
← rk(A) = 3

(
1 0 0
0 1 0
−1 4

3
1

)

R2 → R2 − 3R3 :

(
1 0 −2
0 3 0
0 0 − 2

3

) (
1 0 0
3 −3 −3
−1 4

3
1

)

R1 → R1 − 3R3 :

(
1 0 0
0 3 0
0 0 − 2

3

) (
4 −4 −3
3 −3 −3
−1 4

3
1

)

R2 →
R2

3
:

(
1 0 0
0 1 0
0 0 − 2

3

) (
4 −4 −3
1 −1 −1
−1 4

3
1

)

R3 → −
3

2
R3 :

(
1 0 0
0 1 0
0 0 1

)
= 13

(
4 −4 −3
1 −1 −1
3
2
−2 − 3

2

)
= A−1

As a final check we show that

AA−1 =

 1 0 −2
0 3 −2
1 −4 0

 4 −4 −3
1 −1 −1
3
2
−2 − 3

2

 =

 1 0 0
0 1 0
0 0 1

 = 13 X
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and thus confirm that we have correctly computed the inverse of A.

Exercises

(†=challenging, ††=difficult, wide-ranging)

16.1 Computing the rank of a 3× 3 matrix
Use row operations to compute the
rank of the matrix

A =

 2 0 −3
4 1 2
2 1 a


for all a ∈ R. (Hint: Keep in mind that
the rank of A may depend on the value
of a so a case distinction may be re-
quired.)

16.2 Computing the rank of a 4× 4 matrix
Use row operation to work out the rank
of the matrix

A =

 1 1 0 −1
0 2 −2 1
3 2 0 −4
1 −2 a 0

 ,

where a ∈ R.

16.3 Matrices for column operations
(a) Explicitly verify for 2× 2 matrices
that the matrices in Eq. (16.5) generate
row operations by multiplication from
the left.
(b) Suppose a row operation is gener-
ated by multiplying from the left with
one of the matrices P in Eq. (16.5).
Show that the corresponding column
operation is generated by multiplying
with PT from the right.
(c) Verify the statement from part (b)
explicitly for 2× 2 matrices.

16.4 Computing the matrix inverse
Use row operations to find the inverse
of the matrix

A =

 1 0 −1
2 1 −2
1 −3 0

 .

Check your result!

16.5 Semi-magic squares — again†

A 3×3 semi-magic square is a 3×3 ma-
trix of such that all rows and columns
sum up to the same total.
(a) Verify that

A =

 3 2 1
2 2 2
1 2 3

 ,

is a semi-magic square.
(b) Why do the semi-magic squares
form a vector space?
(c) Show that the matrices

M1 =

 1 1 1
1 1 1
1 1 1


M2 =

 1 −1 0
−1 1 0

0 0 0


M3 =

 0 1 −1
0 −1 1
0 0 0


M4 =

 0 0 0
1 −1 0
−1 1 0


M5 =

 0 0 0
0 1 −1
0 −1 1


form a basis of the semi-magic squares.
Write the semi-magic square from part
(a) as a linear combination of this ba-
sis.

16.6 Code for matrix rank††

Write a programme in your favourite
programming language which com-
putes the rank of a matrix. To avoid
numerical problems work with matri-
ces in Mn,m(Fp).
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Linear systems

17.1 Abstract linear systems

Summary 17.1 For a linear map f : V → W and b ∈ W an inhomogeneous
linear system is defined by the equation f(x) = b. The solutions set of the associated
homogeneous system, f(x) = 0, is given by Ker(f), with dimension k = dimF(V ) −
rk(f). The inhomogeneous system has a solution x0 if and only if b ∈ Im(f). In this
case, the solution set to the inhomogeneous system is the affine k-plane x0 + Ker(f).

17.1.1 Definition of linear systems

Linear systems are the fundamental equations which arise and need to be solved in the
context of vector spaces. They are determined by a linear map f : V → W between
two vector spaces V and W and a vector b ∈W . Given this data, a linear system and
its solution space are defined by

f(x) = b , Sol(f,b) = {x ∈ V | f(x) = b} . (17.1)

If b = 0 the linear system is called homogeneous otherwise it is called inhomogeneous
with imhomogeneity b. For an inhomogeneous linear system it is instructive to consider
the associated homogeneous linear system

f(x) = 0 , Sol(f,0) = {x ∈ V | f(x) = 0} , (17.2)

obtained by setting b = 0 in Eq. (17.1).

The solution space of a homogeneous linear system is non-empty. It always contains
the zero vector, 0 ∈ Sol(f,0), since f(0) = 0 for any linear map. The zero vector
is often referred to as the ’trivial solution’ of the homogeneous linear system and all
other solutions as ’non-trivial’.

17.1.2 Structure of solution space

The following theorem provides useful information about the existence of non-trivial
solutions for a homogeneous linear system.
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Theorem 17.1 Let f : V → W be a linear map. The solution space to the homoge-
neous linear system f(x) = 0 is the vector subspace Sol(f ,0) = Ker(f) of V . If V and
W are finite-dimensional then

dimF(Sol(f,0)) = dimF(V )− rk(f) . (17.3)

Proof The equality Sol(f ,0) = Ker(f) follows trivially from the definition of the ker-
nel of a linear map and we know from Lemma 14.1 that the kernel is a vector subspace.
The formula (17.3) for the dimension of the solution space is a direct consequence of
the rank formula (14.13) for linear maps. 2

In other words, the solution space of a homogeneous linear system is a vector space,
the kernel of the linear map. Its dimension is an important piece of information which
can be computed from the rank using Eq. (17.3). In particular, if rk(f) = dimF(V )
then the solution space is zero-dimensional, and the only solution is the trivial one
(the zero vector). Otherwise, if rk(f) < dimF(V ), there are non-trivial solutions.

The solution space of an inhomogeneous linear system is closely related to the one for
the associated homogeneous system.

Theorem 17.2 Let f : V → W be a linear map and b ∈ W . The linear system
f(x) = b has a solution, x0, if and only if b ∈ Im(f). In this case, the solution sets
of the inhomogeneous and the associated homogeneous linear systems are related by

Sol(f,b) = x0 + Sol(f,0) . (17.4)

If V and W are finite-dimensional, this represents an affine k-plane in V with k =
dimF(V )− rk(f).

Proof If x0 is a solution of the inhomogeneous equation, then f(x0) = b which shows
that b ∈ Im(f). On the other hand, if b ∈ Im(f), then, by definition of the image,
there exists an x0 ∈ V with f(x0) = b.

To show the equality (17.4), assume the existence of a solution x0 ∈ V with f(x0) = b.

x ∈ Sol(A,b) ⇔ f(x) = b = f(x0) ⇔ f(x− x0) = 0

⇔ x− x0 ∈ Ker(f) ⇔ x ∈ x0 + Sol(f,0)

Finally, provided we are in the finite-dimensional case, it is clear that Eq. (17.4) is an
affine k-plane, since Sol(f,0) is a vector subspace. The dimension k of this affine plane
is defined to be the dimension of Sol(f,0) which, from Eq. (17.3), is indeed given by
dimF(V )− rk(f). 2

The content of the previous theorem is often paraphrased by saying that the ’general
solution to the inhomogeneous system’ is obtained by adding to a ’special solution of
the inhomogeneous system’ all solution of the homogeneous system. We will see this
more concretely in the next section when we discuss systems of linear equations. But
the structure of linear systems outlined above is also instructive in other contexts, as
the next example shows.
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Example 17.1 (Solution to inhomogenous linear differential equation)

The previous theorems have a prominent application to inhomogeneous, linear (sec-
ond order, say) differential equations. Introduce the linear second-order differential
operator L : C∞([a, b],R)→ C∞([a, b],R) by

L := p
d2

dx2
+ q

d

dx
+ r ,

where where p, q, r ∈ C∞([a, b],R) are fixed functions. For a function b ∈ C∞([a, b],R)
an inhomogeneous linear system and its homogeneous counterpart are defined by

L(y) = b , L(y) = 0 .

The solution space of the homogeneous system is given by Sol(L, 0) = Ker(L). Provided
we can find a solution y0 to the inhomogeneous system, so L(y0) = b, then the set
of solutions to the inhomogeneous system is given by Sol(L, b) = y0 + Ker(L), from
Eq. (17.4).

To make this more concrete, consider the specific differential operator L = d2

dx2 + 1
and a function b(x) = x which lead to an inhomogeneous differential equation and
associated homogeneous equation

d2y

dx2
+ y = x ,

d2y

dx2
+ y = 0 .

It is easy to see that the inhomogeneous equation is solved by y0(x) = x while the
solution to the homogeneous equation is given by Sol(L, 0) = Ker(L) = Span(sin, cos).
Hence, the general solution to the inhomogeneous equation is

y(x) = x+ a sin(x) + b cos(x) ,

for a, b ∈ R arbitrary. 2

17.2 Systems of linear equations

Summary 17.2 A system Ax = b of m linear equations in n variables has a solution
if and only if b ∈ Im(A). If a solution x0 exists the solution set is the affine k-plane
Sol(A,b) = x0 + Ker(A), where k = n − rk(A). The solution of a system of linear
equations can be computed by an algorithm based on elementary row operations.

17.2.1 Definition

Every linear system f(ξ) = β, where f : V → W and β ∈ W (for finite-dimensional
vector spaces V and W over F) can be converted into a system of linear equations,
relative to a choice of bases (v1, . . . ,vn) and (w1, . . . ,wm) for V and W . To see this,
write ξ =

∑n
j=1 xjvj , β =

∑m
i=1 biwi and recall that the m×n matrix A with entries
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aij which represents f relative to this basis choice is obtained by f(vj) =
∑m
i=1 aijwj .

Then, the left- and right-hand sides of the linear system can be written as

f(ξ) = f

 n∑
j=1

xjvj

 =

n∑
j=1

xjf(vj) =
∑
i,j

aijxjwi , β =
∑
i

biwi ,

and matching the coordinates of wi shows that the equation f(ξ) = β is equivalent
to Ax = b. In other words, every linear system (for finite-dimensional vector spaces)
can be converted into a system of linear equations of the form

Ax = b Sol(A,b) = {x ∈ Fn |Ax = b} (inhomogeneous)
Ax = 0 Sol(A,0) = {x ∈ Fn |Ax = 0} (homogeneous) .

(17.5)

Writing out the entries of the matrix A and the components of x and b explicitly

A =

 a11 · · · a1n

...
...

am1 · · · amn

 , x =

 x1

...
xn

 , b =

 b1
...
bm

 ,

the Eqs. (17.5) can be cast into the form

(inhomogeneous) (homogeneous)

a11x1 + · · · + a1nxn = b1
...

...
...

...
am1x1 + · · · + amnxn = bm

a11x1 + · · · + a1nxn = 0
...

...
...

...
am1x1 + · · · + amnxn = 0

,
(17.6)

of m linear equations in n variables x1, . . . , xn.

17.2.2 Solutions of homogeneous system

Everything we have said in Theorems 17.1 about the solution structure of homogeneous
linear systems directly applies to systems of linear equations. To recap, for the solution
space of the homogeneous system Ax = 0 of m equations in n variables we have

Sol(A,0) = Ker(A) , dimF(Sol(A,0)) = n− rk(A) . (17.7)

To determine the dimension of the solution space — the number of free parameters
required to describe the solution — all we need is the rank of A.

Problem 17.1 (Homogeneous linear system in R2)

Find the solution of the simple homogeneous linear system

(E1) : x1 − x2 = 0
(E2) : ax1 + 3x3 = 0

of two equations in two variables for all values of the parameter a ∈ R.
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Solution: We can write this system in matrix vector form, Ax = 0, with

A =

(
1 −1
a 3

)
, x =

(
x1

x2

)
.

The rank of A depends on the value of the parameter a. For the generic choice a 6= −3 the
two columns of A are linearly independent so that rk(A) = 2. From Eq. (17.7) this means the
solution space is zero-dimensional so the zero vector is the only solution. On the other hand,
if a = −3 the rank decreases to rk(A) = 1, so that the solution space is one-dimensional.

To see this more explicitly combine the two equations in order to eliminate x2.

3(E1) + (E2) : (3 + a)x1 = 0 . (17.8)

For a 6= −3 we can divide by 3 + a so that x1 = 0 and, by inserting this into (E1), we find
that x2 = 0. This is precisely the case when rk(A) = 2 and the system only has the trivial
solution, Sol(A,0) = {0}.
If a = 3 then Eq. (17.8) becomes trivial or, equivalently, (E1) and (E2) are multiples of each
other. In this case, the solution consists of all x = (x1, x2)T with x1 = x2, so that the solution
space Sol(A,0) = Span((1, 1)T ) is one-dimensional, as expected.

The geometry of the solution spaces for these two cases is illustrated in the figure below.

R2
Sol(A,0)
a = −3

Sol(A,0)
a 6= −3

17.2.3 Solution of inhomogeneous system

Let us discuss the solution structure of an inhomogeneous linear system Ax = b
of m equations in n variables, so A : Fn → Fm, x ∈ Fn and b ∈ Fm, following
Theorem 17.2. Much can be said about the qualitative solution structure based on the
three dimensions n, m and rk(A).

It is worth stressing that linear systems do not need to have a solution at all. A solution
exists if and only if b ∈ Im(A). If rk(A) = m then, from Prop. (14.2), A is surjective
and, hence, a solution exists whatever the inhomogeneity b. On the other hand, if
rk(A) < m then the image, Im(A), is a proper vector subspace of the co-domain Fm.
Typical choices for b will not be in this subspace and in this case a solution does
not exist. For example, if m = 3 and rk(A) = 2 then the image of A is a plane in a
three-dimensional space and we need to choose b to lie in this plane for a solution to
exist. Clearly this corresponds to a very special choice of b.
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If a solution x0 to the inhomogeneous system of linear equations exists then the solution
set is the affine k-plane

Sol(A,b) = x0 + Ker(A) (17.9)

with dimension k = n − rk(A). This is just the solution Sol(A,0) = Ker(A) of the
associated homogeneous system ’shifted’ by x0 (see Fig. 17.1). The solution is unique
(that is, the solution set is zero-dimensional) iff the associated homogeneous system
only has the trivial solution or, equivalently, iff rk(A) = n. In summary, we can classify

R3

x0 Sol(A,0)

Sol(A,b)

Fig. 17.1 The relation Sol(A,b) = x0+Sol(A,0) between the solution set of an inhomogeneous

and associated homogeneous system of linear equations.

the solution structure as follows:

(1) rk(A) = m
In this case there exists a solution, x0, for any choice of b and the general solution
is given by the affine k-plane x0 + Ker(A). Its dimension (the number of free
parameters in this solution) equals k = n−m.

(2) rk(A) < m

(a) b ∈ Im(A) (this requires special choices for b)
There exists a solution x0. The solution set is the affine k-plane x0 + Ker(A)
with dimension k = n− rk(A).

(b) b /∈ Im(A) (true for generic choices of b)
There is no solution.

A common special situation is that of a system of n linear equations in n variables, so
that n = m. In this case, the above classification becomes slightly more specific.

(1) rk(A) = n
A solution exists for any choice of b and there are no free parameters since
dimF(Ker(A)) = n − n = 0. Hence, the solution is unique. Indeed, in this case,
the matrix A is invertible (see Cor. 14.2) and the unique solution is given by
x = A−1b. Hence, the solution can be found by computing the inverse matrix
A−1.

(2) rk(A) < n
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(a) b ∈ Im(A) (this requires special choices for b)
There exists a solution x0. The solution set is the affine k-plane x0 + Ker(A)
with dimension k = n− rk(A).

(b) b /∈ Im(A) (true for generic choices of b)
There is no solution.

17.2.4 Examples with explicit calculation

We should illustrate the above structure with a few examples. For now, we follow a
’pedestrian’ approach, solving the systems of linear equations by adding multiples of
the equations in order to eliminate variables. This is what we have done so far and
it is often the most efficient method in a small number of dimensions. A systematic
method, based on row operations, will be introduced afterwards.

Problem 17.2 (Inhomogeneous linear system in R2)

Find the (real) solutions of the inhomogeneous linear system of equations

(E1) : x1 − x2 = 3
(E2) : ax1 + 3x3 = b

for all values of the paramters a, b ∈ R.

Solution: The system can be written in matrix vector form, Ax = b with

A =

(
1 −1
a 3

)
, x =

(
x1

x2

)
, b =

(
3
b

)
.

Note that the associated homogeneous system has already been solved in Exercise 17.1.
Without much calculation, we can already make qualitative statements about the solution
following the above classification.

(1) a 6= 3: In this case, rk(A) = 2, so there is a unique solution.
(2a) a = −3, b special so that b ∈ Im(A): Now rk(A) = 1, so the solution is an affine line.
(2b) a = −3, b generic so that b /∈ Im(A): There is no solution.

To verify these expectations by explicit calculation we first eliminate x2.

3(E1) + (E2) : (3 + a)x1 = 9 + b , (17.10)

This equation already reveals the expected case distinction.

(1) a 6= −3: We can divide Eq. (17.10) by 3 + a to find x1 and then insert into (E2) to find
x2.

Sol(A,b) = {(x1, x2)T } where x1 =
b+ 9

a+ 3
, x2 =

b+ 9

a+ 3
− 3 =

b− 3a

a+ 3
.

Hence, the solution is unique and exists for all choices of b, as predicted.

(2a) a = −3, b = −9: For this choice of parameters, Eq. (17.10) becomes trivial or, equiva-
lently, (E1) and (E2) are multiples of each other. Every x with x1 = x2 + 3 is a solution in
this case, so we can write

Sol(A,b) =

{(
t+ 3
t

)
| t ∈ R

}
= x0 + Sol(A,0) , x0 =

(
3
0

)
,

where x0 = (3, 0)T is a solution of the inhomogeneous system and Sol(A,0) = Span((1, 1)T )
is the solution set of the associated homogeneous system from Exercise 17.1. As predicted,
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the solution is an affine line.

(2b) a = −3, b 6= −9: Inserting these parameter choices into Eq. (17.10) leads to a contradic-
tion, so the linear system has no solution, Sol(A,b) = {}.
The solution structure for these case is illustrated in the figure below.

R2
Sol(A,0)
a = −3

Sol(A,0)
a 6= −3

Sol(A,b)
a = −3, b = 9

x0

x

Sol(A,b)
a 6= −3

Problem 17.3 (An inhomogeneous linear system in R3)

Find the real solutions of the linear system

(E1) : 2x1 + 3x2 − x3 = −1
(E2) : −x1 − 2x2 + x3 = 3
(E3) : ax1 + x2 − 2x3 = b

for all values of the parameters a, b ∈ R.

Solution: We can write this system in vector matrix form, Ax = b, with

A =

 2 3 −1
−1 −2 1
a 1 −2

 , x =

x1

x2

x3

 , b =

−1
3
b

 .

As usual, we begin by predicting the qualitative solution structure. The columns A2, A3 of
A are clearly linearly independent so the rank of A is at least two. For a specific value of
a = a0 (to be determined shortly) we expect A1 to be in the plane spanned by A2, A3, and
in this case rk(A) = 2. Generically, we have a 6= a0 so that rk(A) = 3.

(1) a 6= a0: We have rk(A) = 3 so there is a unique solution for every value of b.
(2a) a = a0, b special so that b ∈ Im(A): The solution is an affine line.
(2b) a = a0, b generic so that b /∈ Im(A): There is no solution.

To confirm these expectations we start by eliminating x3 from two combinations of the three
equations.

(E1′) = (E1) + (E2) : x1 + x2 = 2
(E3′) = (E3) + 2(E2) : (a− 2)x1 − 3x2 = b+ 6

.

(While these are simple calculations in principle mistakes can easily slip in. It is, therefore,
important to keep the calculation organized and keep track of the steps performed.) Finally,
we combine the above two equations to eliminate x2.

3(E1′) + (E3′) : (a+ 1)x1 = b+ 12 . (17.11)

Case distinctions come into such calculations when divisions by (parameter-dependent) quan-
tities which may be zero have to be carried out. It is helpful to avoid such divisions for as long
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as possible. This is the reason why we have eliminated x2 and x3 first. The case distinction
can now be read off from Eq. (17.11).

(1) a 6= −1: We can divide Eq. (17.11) by a+ 1 to obtain x1, insert this result into (E1′) to
obtain x2 and, finally, use (E1) to get x3. This leads to

x1 =
b+ 12

a+ 1
, x2 =

2a− b− 10

a+ 1
, x3 =

7a− b− 5

a+ 1
,

and, hence, we have a unique solution for every a 6= −1 and every b ∈ R. We know that the
solution to the associated homogeneous system in this case must be trivial.

(2a) a = −1, b = −12: For this choice of parameters, Eq. (17.11) becomes trivial which
indicates that we have only two independent equations. We can solve the equations (E1’) and
(E1) for x1 and x3 in terms of x2 which leads to x1 = 2−x2 and x3 = 5 +x2. Setting t = x2,
the solutions space is the affine line

Sol(A,b) =


 2− t

t
5 + t

 | t ∈ R
 =

 2
0
5

+ Span

−1
1
1

 . (17.12)

The above span is the solution space of the associated homogeneous system.

(2b) a = −1, b 6= −12: Inserting these values into Eq. (17.11) leads to a contradiction so there
is no solution, Sol(A,b) = {}.

17.2.5 Row operations for linear equations

A good strategy for solving systems of linear equations is the successive elimination
of variables by adding multiples of equations. So far we have carried this out in a
somewhat ad-hoc fashion which is efficient and works well for low dimensions. But for
larger systems it is worth developing an algorithm and this is where row reduction
comes into play.

As before, we start with a linear system Ax = b with n variables and m equations,
so x ∈ Fn, b ∈ Fm and A ∈ Mm,n(F). Suppose we multiply both sides of the linear
system with an invertible m×m matrix P ∈ GL(Fm), so we arrive at the new linear
system PAx = Pb. This operation can be undone by multiplying with the inverse,
P−1, so the solution spaces of the two linear systems must be equal,

Sol(PA,Pb) = Sol(A,b) . (17.13)

Now recall that elementary row operations can be generated by multiplying with the
elementary matrices in Eq. (16.5) and that these matrices are invertible. If we take P
to be one of these matrices then the operation

Ax = b 7→ PAx = Pb (17.14)

corresponds to a row operation simultaneously carried out on A and b and, from
Eq. (17.13), this does not change the solutions space of the linear system. Note that
such row operation on a linear system are really just a formal restatement of the steps
involved in adding up multiples of equations. Row operations of type (R1) in Def. 16.1
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exchange two columns of A (as well as the two corresponding entries of b) and simply
amount to exchanging two equations. Row operations of type (R2) correspond to
adding a multiple of one equation to another and row operations of type (R3) multiple
an equation with a non-zero number. The idea is now to simplify the linear system by
a suitable sequence of such row operations until the solution set can be easily read off.

This is facilitated by introducing the augmented matrix

A′ = (A|b) , (17.15)

an m× (n+ 1) matrix which consists of the matrix A and one additional, final column
given by the vector b. The augmented matrix is really just an efficient way to collect the
data which determines the linear system into a single matrix. Row operations (17.14)
on the linear system then translate into row operations A′ 7→ PA′ on the augmented
matrix.

Before we formulate an explicitly algorithm, we note a useful criterion in terms of
the augmented matrix which helps us to decide whether or not the linear system has
solutions.

Proposition 17.1 b ∈ Im(A)⇐⇒ rk(A) = rk(A′)

Proof ’⇒’: If b ∈ Im(A) it is a linear combination of the column vectors of A and
adding it to the matrix does not increase the rank.
’⇐’: If rk(A) = rk(A′) the rank does not increase when b is added to the matrix.
Therefore, b ∈ Span(A1, . . . ,An) = Im(A). 2

This means a solution exists iff the matrix A and the augmented matrix A′ have the
same rank!

17.2.6 Algorithm for solving linear equations

We are now ready to describe the solution algorithm for linear systems.

Algorithm (Solving systems of linear equation by row reduction)

(1) First we perform row operations on the augmented matrix A′ in order to bring
A into upper echelon form. This works exactly as described in Section 16.1.3 and
converts the augmented matrix into the following form

A′ 7→



· · · a1j1 ∗ b′1

a2j2

...
...

. . .
...

... arjr · · · b′r
0 b′r+1

...
b′m


,

where the pivots aiji are non-zero for i = 1, . . . r and the star indicates arbitrary
entries. Recall that the number of non-zero rows r = rk(A) equals the rank of
A. If any of the entries b′i with i > r is non-zero, then rk(A′) > rk(A) and,
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from Prop. 17.1, we conclude that there is no solution. This can also be seen
much more directly by converting the above matrix back into a system of linear
equations. Any of the rows i > r correspond to an equation 0 = b′i which is a
contradiction unless b′i = 0. We only need to carry on if b′i = 0 for all i > r, so
that rk(A′) = rk(A) and the linear system has a solution.

(2) To proceed, we assume that b′i = 0 for all i > r. For ease of notation we also
permute the columns of A (this corresponds to a permutation of the variables
that we will have to keep track of) so that the columns with pivots become the
first r of the matrix. The resulting matrix has the following structure.

A′ 7→



a1j1 b′1

a2j2 ∗ ∗
...

. . .
...

0 arjr b′r
0

0
...
0


(3) By further row operations we can convert the r×r matrix in the upper left corner

of the previous matrix into a unit matrix 1r using the same steps we have used
in the algorithm to calculate the inverse of a matrix.. Schematically, the result is

A′fin =

(
1r B c
0 0 0

)
(17.16)

where B is an r × (n− r) matrix and c is an r-dimensional vector.

(4) We are now ready to convert the augmented matrix A′fin back into a system of
linear equations. To do this it is useful to split the vector x which contains the n
variables xi up into an r dimensional vector ξ and an (n− r)-dimensional vector
t, in accordance with the structure of the matrix A′fin. Hence, writing

x =

(
ξ
t

)
(17.17)

the linear system associated to A′fin takes the simple form

ξ +Bt = c . (17.18)

Note that this is a system of r linear equations in n variables. It follows that
every linear system of m equations in n variables can be reduced to an equivalent
system with r = rk(A) ≤ m equations in n variables. More importantly, the
system (17.18) can be easily solved for ξ in terms of t, giving ξ = c − Bt, and
this was really the point of the exercise. Hence, the solution space is

Sol(A,b) =

{(
c−Bt

t

)
| t ∈ Fn−r

}
=

(
c
0

)
+ Ker(A) (17.19)

Ker(A) = Span

((
−B1

e1

)
, . . . ,

(
−Bn−r

en−r

))
(17.20)
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where Bi are the columns of the matrix B and ei are the standard unit vectors
in Fn−r. Note that the solution (17.19) does indeed represent an affine k = n− r
plane of the general form (17.9).

Problem 17.4 Solving a linear system with row reduction

Use row reduction to solve the following linear system

x1 + x2 − 2x3 = 1
2x1 − x2 + 3x3 = 0
−x1 − 4x2 + 9x3 = b

in R3, for all values of the parameter b ∈ R.

Solution: The augmented matrix for the above system reads

A′ =

 1 1 −2 1
2 −1 3 0
−1 −4 9 b

 ,

We proceed in the four steps outlined above.

(1) First we perform row operations on A′ to bring A into upper echelon form.

A′ 7→

 1 1 −2 1
0 −3 7 −2
0 0 0 b+ 3


We conclude that the rank of A is r = rk(A) = 2. If b 6= −3 we have rk(A′) = 3 > 2 = rk(A)
so in this case there is no solutions.

(2) Setting b = −3 we have the matrix

A′ 7→

 1 1 −2 1
0 −3 7 −2
0 0 0 0

 .

As it happens, we do not have to permute columns since the pivots are contained in the first
two columns.

(3) By further elementary row operations we convert the 2×2 matrix in the upper left corner
into a unit matrix.

A′fin =

 1 0 1
3

1
3

0 1 − 7
3

2
3

0 0 0 0


(4) We split x up into an r = 2 dimensional vector ξ with components x1, x2 and an n− r =
3− 2 = 1 dimensional vector t with a single component t as

x =

x1

x2

t

 .

Converting A′fin into a linear system in those variables results in
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x1 +
1

3
t =

1

3
, x2 −

7

3
t =

2

3
.

This can be easily solved for x1, x2 in terms of t which was the point of the exercise. This
leads to the solution space

Sol(A,b) =


 (1− t)/3

(2 + 7t)/3
t

 | t ∈ R
 =

 1/3
2/3
1

+ Span

−1/3
7/3
1

 .

Hence, the solution is an affine line.

Application 17.1 Linear algebra and circuits

Electrical circuits with batteries and resistors, such as the circuit below, can be described
using methods from linear algebra.

V

R5

R4

R1

R3

R2

R6
I1

I2

I3

To do this, first assume that the circuit contains n loops and assign (’mesh’) currents Ii,
where i = 1, . . . , n, to each loop. Then, applying Ohm’s law and Kirchhoff’s voltage low
(’The voltages along a closed loop must sum to zero’) to each loop leads to the linear system

R11I1 + · · ·+R1nIn = V1

...
...

...
Rn1Ii + · · ·+RnnIn = Vn ,

(17.21)

where Rij describe the various resistors and Vi correspond to the voltages of the batteries.
If we introduce the n × n matrix R with entries Rij , the current vector I = (I1, . . . , In)T

and the voltage vector V = (V1, . . . , Vn)T this system can also be written in the form of a
generalized Ohm’s law as

RI = V . (17.22)

This is an n×n linear system, where we think of the resistors and battery voltages as given,
while the currents I1, . . . , In are a priori unknown and can be determined by solving the
system. Of course any of the methods previously discussed can be used to solve this linear
system and determine the currents Ii.

For example, consider the above circuit. To its three loops we assign the currents I1, I2, I3
as indicated in the figure. Kirchhoff’s voltage law applied to the three loops then leads to

R1I1 +R2(I1 − I2) +R3(I1 − I3) = V
R2(I2 − I1) +R4I2 +R6(I2 − I3) = 0
R3(I3 − I1) +R6(I3 − I2) +R5I3 = 0

⇐⇒
(R1 +R2 +R3)I1 −R2I2 −R3I3 = V
−R2I1 + (R2 +R4 +R6)I2 −R6I3 = 0
−R3I1 −R6I2 + (R3 +R5 +R6)I3 = 0 .

With the current and voltage vectors I = (I1, I2, I3)T and V = (V, 0, 0)T the matrix R in
Eq. (17.22) is then given by
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R =

R1 +R2 +R3 −R2 −R3

−R2 R2 +R4 +R6 −R6

−R3 −R6 R3 +R5 +R6

 .

For example, for resistors (R1, . . . , R6) = (3, 10, 4, 2, 5, 1) (in units of Ohm) we have the
resistance matrix

R =

 17 −10 −4
−10 13 −1
−4 −1 10

 .

For a battery voltage V = 12 (in units of volt) we can write down the augmented matrix

R′ =

 17 −10 −4 12
−10 13 −1 0
−4 −1 10 0

 ,

and solve the linear system by row reduction. This leads to the solution

I =
1

905

 1548
1248
744


for the currents (in units of Ampere).

17.3 Applications to geometry

Summary 17.3 Solution sets to systems of linear equations are affine k-planes and,
conversely, every affine k-plane can be described as a solution to a system of linear
equations. An affine k1-plane and an affine k2-plane in Fn either have zero intersec-
tion or they intersect in an affine k-plane. For generic affine planes the dimension
of their intersection is k = k1 + k2 − n.

In Chapter 11, we have looked at lines and planes in R2 and R3, their parametric and
Cartesian forms and some of their geometry properties, such as intersections. Perhaps
somewhat frivolously, we have earlier used methods such as the dot and cross product
to do this. We will now study the generalization to arbitrary dimensions, so to affine
k-planes in Fn, using only the results for systems of linear equations.

17.3.1 Parametric and Cartesian form

We have seen that the non-empty solution sets to systems of linear equations are, in
fact, affine k-planes. An obvious question is if, conversely, every affine k-plane can be
obtained as the solution set of a system of linear equations. The following theorem
shows that the answer is ’yes’ and that this amounts to what we have called the
Cartesian form.

Theorem 17.3 An affine k-plane P = p + W ⊂ Fn, where p ∈ Fn and W is a k-
dimensional vector subspace of Fn, can be described as follows.
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(i) P =
{

p +
∑k
i=1 tiwi | ti ∈ F

}
(parametric form)

where (w1, . . . ,wk) is a basis of W
(ii) P = {x ∈ Fn |Nx = Np} = Sol(N,Np) (Cartesian form)

where N is a (n− k)× n matrix with Ker(N) = W .

Proof The existence of the parametric form is immediate — all we need to do is
choose a basis (w1, . . . ,wk) of W .

The Cartesian form is a little less obvious. Let us first assume that a matrix N with the
stated properties exists. Then the system of n−k linear equations in n variables defined
by Nx = Np is solved by x = p and the solution of the associated homogeneous
system, Nx = 0, is Ker(N) = W . Hence, Sol(N,Np) = p +W = P , as required.

We still need to show that a matrix N with the stated properties exists. A basis
(w1, . . .wk) of W can be completed to a basis (w1, . . .wk,wk+1, . . . ,wn) of Fn. Define
a linear map N : Fn → Fn−k by

Nwi =

{
0 for i = 1, . . . , k
ei−k for i = k + 1, . . . , n

We know from Theorem (12.1) that such a map does indeed exist. We clearly have
W ⊂ Ker(N) and since Im(N) = Fn−k it follows that rk(N) = n− k. Hence, the rank
formula (14.13) implies that dimF(Ker(N)) = n− (n−k) = k. As a result Ker(N) has
the same dimension, k, as W and since the latter is included in the former, they must
be equal. 2

The parametric form of an affine k-plane requires k parameters. For this reason it is
usually more practical for small k. For example, the parametric form of an affine line
is L = {p + tw | t ∈ F} ⊂ Fn. On the other hand, the Cartesian form of an affine
k-plane amounts to a linear system with n − k equations (since N is an (n − k) × n
matrix). Therefore, affine k-planes with a large dimensions k or, equivalently, a small
co-dimensions n − k, are easier described in Cartesian form. For example, an affine
hyperplane (k = n − 1) is described by a single equation, Nx = Np, where N is a
1× n matrix, that is, a row vector.

17.3.2 Intersection of affine k-planes

The intersection of two affine k-planes can be easily described in Cartesian form. All
we need to do is combine the linear equations of each Cartesian form into a single
linear system. Specifically, consider the two affine ki-planes

Pi = pi +Wi = {x ∈ Fn |Nix = Nipi} where i = 1, 2 ,

and Ni are matrices of size (n− ki)× n with Ker(Ni) = Wi. Then the intersection

P1 ∩ P2 = {x ∈ Fn |Nx = p} where N =

(
N1

N2

)
, p =

(
N1p1

N2p2

)
,

equals the solution set of the linear system Nx = p of 2n − k1 − k2 equations in
n variables, obtained by combining the linear systems for P1 and P2. Of course, if
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p /∈ Im(N) this intersection is empty. Otherwise, Theorem 17.2 tells us that it is an
affine k-plane, where k = n − rk(N). To summarize, we have found that P1 and P2

either do not intersect or intersect in another affine k-plane.

Can we say more about the dimension, k, of the intersection? We know that rk(N1) =
n− k1 and rk(N2) = n− k2 so it is certainly clear that

rk(N) ≥ max(n− k1, n− k2) . (17.23)

(The number of linearly independent row vectors cannot decrease when we combine
N1 and N2.) On the other hand, given that N is a matrix of size (2n − k1 − k2, n),
Eq. (16.3) implies that

rk(N) ≤ min(2n− k1 − k2, n) . (17.24)

Combining Eqs. (17.23) and (17.24) with rk(N) = n− k gives

max(k1 + k2 − n, 0) ≤ k ≤ min(k1, k2) , (17.25)

and this is the desired constraint on the dimension of the intersection. We summarize
these results in the following theorem.

Theorem 17.4 Let Pi = {x ∈ Fn |Nix = Nipi} be affine ki-planes, where i = 1, 2.
Then the intersection P1 ∩ P2 is either empty or it is the affine k-plane which is the
solution of the combined system of linear equations, Nx = p, where

N =

(
N1

N2

)
, p =

(
N1p1

N2p2

)
.

The dimension of the intersection is k = n− rk(N) and this dimension is constrained
by max(k1 + k2 − n, 0) ≤ k ≤ min(k1, k2).

The dimension of the intersection P1 ∩ P2 can vary, depending on the specific affine
planes, as indicated in the theorem, but there is a ’generic’ value which holds for ’most”
affine planes of given dimensions k1 and k2. This arises when the matrix N has its
generic (that is maximal) rank which, from Eq. (17.24), is rk(N) = min(2n−k1−k2, n).
Hence there are two possibilities for the value of rk(N). If n < 2n − k1 − k2 or,
equivalently, k1 +k2−n < 0 then N is not surjective, so the linear system Nx = p has
no solution for generic p. Hence, this case cannot correspond to the generic situation.
In the opposite case, when rk(N) = 2n − k1 − k2, the map N is surjective so that a
solution, an affine k-plane with k = dimF(Ker(N)) = n− (2n− k1− k2) = k1 + k2−n,
always exists. In summary, the generic dimension of the intersection is

kgen = k1 + k2 − n , (17.26)

and if this number is negative the intersection is generically empty.
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Problem 17.5 (Intersection of affine k-planes)

Find the possible and generic dimensions of (i) the intersection of two affine planes in R3 and
(ii) the intersection of an affine plane and an affine hyperplane in R4.

Solution: (i) The answer in this case is clear from geometrical intuition but let us follow
Theorem 17.4 and Eq. (17.26) to convince ourselves that these statements make sense. For
two planes in R3 we have k1 = k2 = 2 and n = 3. From Theorem (17.26) the intersection
is either empty or an affine k-plane with 1 ≤ k ≤ 2. The generic intersection dimension is
kgen = 2 + 2− 3 = 1. Of course all this fits with geometrical intuition. Two ’typical’ planes in
R3 intersect in a line (k = 1) but, if they are identical, they can intersect in a plane (k = 2)
or not intersect at all, if they are parallel.

(ii) Geometrical intuition is not particularly helpful in this four-dimensional case. We have
k1 = 2 for a plane, k2 = 3 for a hyperplane and n = 4. If the intersection in not empty then,
from Theorem 17.4, it is an affine k-plane with 1 ≤ k ≤ 3 and, generically, kgen = 2+3−4 = 1
from Eq. (17.26). So a plane and a hyperplane in R4 generically intersect in a line.

17.3.3 Intersections and linear systems

The geometry of affine k-planes leads to a geometrical interpretation of systems of
linear equations. Consider such a system, Ax = b of m equation in n variables. We
can break this up into m equations as

Ax = b ↔


A1 · x = b1

...
...

...
Am · x = bm

.

If any of the row vectors Ai of A is zero and bi = 0 then this equation is trivial and
can be dropped. On the other hand, if Ai = 0 and bi 6= 0 for any i then the system
of linear equations does not have a solution. If we discard these two cases and assume
that Ai 6= 0 for all i = 1, . . . ,m then each equation on the right defines an affine
hyperplane in Fn. This means the solution set of a system of m linear equations in
n variables is the intersection of m affine hyperplanes in Fn. This provides us with a
geometrical way to think about the solutions to a system of linear equations.

Problem 17.6 Solutions to linear systems as hyperplane intersection

Using geometrical arguments, discuss the various qualitative possibilities for the solutions of
a system of linear equations with (i) two equations and two variables, (ii) two equations and
three variables, (iii) three equations and three variables.

Solution: (i) A system of two equations in two variables corresponds to two hyperplanes,
that is lines, in F2. Such two lines can intersection in a point (generic case), a line or have
an empty intersection. This corresponds to the system of linear equations having a unique
solution, a solution line or no solution at all (see Fig. 11.2).

(ii) A system of two equations in three variables corresponds to two hyperplanes, that is two
planes in F3. Two such planes can intersect in a line (generic case), in a plane or have an
empty intersection. Correspondingly, the system of linear equations can have a solution line,
a solution plane or have no solution at all (see Fig. 11.5).

(iii) A system of three equations in three variables corresponds to three planes in F3. From
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Fig. 11.7 they can intersect in a point (generic case), a line, a plane or have an empty inter-
section. This corresponds to the possible solution structure of the system of linear equations.

Exercises

17.1 For functions y ∈ C2(R), consider the
linear inhomogeneous differential equa-
tion

d2y

dx2
+ 4y = 8x2 .

(a) Find a solution to this differential
equation. (Hint: Try a quadratic poly-
nomial.)
(b) Find the general solution to
the associated homogeneous differen-
tial equation.
(c) Write down the general solution to
the inhomogeneous equation.

17.2 Consider the linear system of equations

(2− λ)x+ y + 2z = 0

x+ (4− λ)y − z = 0

2x− y + (2− λ)z = 0 ,

where x, y, z ∈ R are the variables and
λ ∈ R is a parameter.
(a) What is the rank of the associated
coefficient matrix, A, depending on the
value of λ?
(b) Based on the result in (a) what
is the expectation for the qualitative
structure of the solution.
(c) Confirm this expectation by an ex-
plicit calculation.

17.3 The linear system

x+ y + z = 1 (E1)
x+ 2y + 4z = η (E2)
x+ 4y + 10z = η2 (E3)

with variables x, y, z ∈ R depends on
the real parameter η.
(a) Show that the rank of the coeffi-
cient matrix is two. What does this im-
ply for the qualitative structure of the
solution?
(b) Explicitly solve the system for the
cases where a solution exists.

17.4 Solve the linear system

x+ 2y + 3z = 2
αy + z = β

2x+ 2y = 1 ,

with variables x, y, z ∈ R for all values
of the parameters α, β ∈ R.

17.5 Solve the linear system

3x+ 2y − z = 10
5x− y − 4z = 17
x+ 5y + αz = β ,

with variables x, y, z ∈ R for all values
of the parameters α, β ∈ R, using row
reduction.

17.6 Solve the linear system

x1 + 1
2
x2 − 3x3 = 1

2x2 − 4x3 + 1
3
x4 = 2

x1 + 1
4
x2 − x3 = 0

x1 − 5
4
x2 − x3 + ax4 = b

with variables x1, x2, x3, x4 ∈ R for all
values of the parameters a, b ∈ R, using
row reduction.

17.7 Following Application 17.1, write down
the linear system for the circuit below.

V

R1

R3R2I1 I2

Solve this system for the currents
I1, I2 for general values of the resistors
R1, R2, R3, and the voltage V .

17.8 What are the possible and generic di-
mensions for the intersections of the
following affine k-planes.



Exercises 221

(a) Two hyperplanes in four dimen-
sions.
(b) Three hyperplanes in four dimen-
sions.
(c) A plane and a hyperplane in five
dimensions.
(d) Two hyperplanes in five dimen-
sions.

17.9 (a) What are the possible and generic
intersection dimensions of k hyper-
planes in n dimensions.
(b) Use the result from (a) to predict
the possible dimensions of the solution
space for a linear system with k equa-
tions and n variables.
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Determinants

In Section 10.2 we have introduced the three-dimensional determinant as the triple
product of three vectors. We have observed that it is multi-linear and anti-symmetric
and we will now use these properties to define the determinant axiomatically and in all
dimensions. The determinant is quite a complicated object, compared to linear maps
which are linear in only a single argument. From this point of view, it is appropriate
for the determinant to appear quite late in a build-up of linear algebra. On the other
hand, it is a very useful tool and it plays a crucial role in the computation of eigen-
values, as we will see in Part VI.

In the next section we show that multi-linearity and anti-symmetry, together with a
normalization condition, fixes the determinant uniquely. More advanced properties of
the determinant, such as its behaviour under matrix transposition and matrix mul-
tiplication, will be covered in Section 18.2. A crucial conclusion from these results is
that the determinant is invariant under basis transformations (15.13) and this allows
introducing the determinant of a linear map.

In Section 18.3 we study various computational aspect of determinants. To facilitate
calculating determinants we introduce Laplace’s rule as well as a method based on
elementary row operations. The determinant can also be used to compute the inverse
of a matrix and to solve certain systems of linear equations.

18.1 Existence and uniqueness

Summary 18.1 The determinant in n dimensions maps n vectors in Fn to a num-
ber. It is multi-linear, anti-symmetric, and evaluates to one on the standard unit
vectors. These properties define the determinant uniquely. The explicit formula for
the n-dimensional determinant involves a sum over the n! permutations in the per-
mutation group Sn. Alternatively, this formula can also be written in terms of the
generalized Levi-Civita symbol in n dimensions.

18.1.1 Definition of determinant

In Prop. 10.3 we have shown that the three-dimensional determinant is linear in each
argument, that it changes sign under the exchange of any two arguments and that it
evaluates to one on the basis of standard unit vectors. Now we revert the logic and
use these properties to define the determinant axiomatically.
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Definition 18.1 A map det : Fn × · · · × Fn → F with (a1, . . . ,an) 7→ det(a1, . . . ,an)
is called a determinant if it satisfies the following properties for all a,b ∈ Fn and all
α, β ∈ F.

(D1) det(· · · , αa + βb, · · · ) = α det(· · · ,a, · · · ) (multi-linearity)
+β det(· · · ,b, · · · )

(D2) det(· · · ,a, · · · ,b, · · · ) = −det(· · · ,b, · · · ,a, · · · ) (anti-symmetry)
(D3) det(e1, . . . , en) = 1 (normalization)

The dots in (D1) and (D2) stand for arguments which remain unchanged. The deter-
minant of an n × n matrix A ∈ Mn,n(F) is defined as the determinant of its column
vectors, so det(A) := det(A1, . . . ,An).

An easy but important conclusion from (D2) is that a determinant with two same
arguments must vanish, so

det(· · · ,a, · · · ,a, · · · ) = 0 . (18.1)

We know that an object with the above properties exists for n = 3 but not yet in other
dimensions.

To address this problem we need to use some facts about permutations from Sec-
tion 3.2. Recall that the group Sn of permutations of n objects consists of bijective
maps {1, . . . , n} → {1, . . . , n}. A permutation is called a transposition if it only swaps
two integers and leaves all others unchanged. We have seen that any permutation
σ ∈ Sn can be written as a composition σ = τi ◦ · · · ◦ τk of transpositions τi and that
the sign of the permutation is given by sgn(σ) = (−1)k. Permutations with sgn(σ) = 1
(sgn(σ) = −1) are called even (odd).

The reason permutations are relevant for the discussion of determinants is the anti-
symmetry property (D2) in Def. 18.1. We can ask how the value of the determinant
det(a1,a2, . . . ,an) changes when we permute the arguments by a permutation σ, so
if we consider det(aσ(1),aσ(2), . . . ,aσ(n)). If σ is a transposition, then, from (D2), the
two determinants are related by a factor of −1. Hence, for an arbitrary permutation
σ ∈ Sn, written as a product of transpositions, σ = τ1 ◦ · · · ◦ τk, the determinant
changes by (−1)k = sgn(σ), so that

det(aσ(1),aσ(2), . . . ,aσ(n)) = sgn(σ) det(a1,a2, . . . ,an) , (18.2)

for all σ ∈ Sn.

18.1.2 The general formula for the determinant

To show uniqueness, we start with an n×n matrix A ∈Mn,n(F) whose column vectors
we expand as

Ai =
∑
j

Ajiej , (18.3)

in terms of standard unit vectors. The remainder of the argument really just involves
inserting this expansion into the determinant and applying the axioms (D1), (D2),
and (D3). But the proliferation of indices in multi-linear objects takes getting used to.
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det(A)
(18.3)

= det

 n∑
j1=1

Aj11ej1 , · · · ,
n∑

jn=1

Ajnnejn


(D1)
=

∑
j1,··· ,jn

Aj11 · · ·Ajnn det(ej1 , · · · , ejn)

(18.1)
=

∑
σ∈Sn

Aσ(1)1 · · ·Aσ(n)n det(eσ(1), · · · , eσ(n))

(18.2)
=

∑
σ∈Sn

sgn(σ)Aσ(1)1 · · ·Aσ(n)n det(e1, · · · , en)

(D3)
=

∑
σ∈Sn

sgn(σ)Aσ(1)1 · · ·Aσ(n)n

In the second line, only terms with all indices ji different contribute to the sum due
to Eq. (18.1). This means that the sum over j1, . . . , jn effectively runs over all permu-
tations of {1, . . . , n} and can be replaced by a sum over all σ ∈ Sn. This can be done
by setting ji = σ(i), as has been done in the third line.

Theorem 18.1 The determinant defined in Def. 18.1 exists, it is unique and given
by the expression

det(A) = det(A1, · · · ,An) =
∑
σ∈Sn

sgn(σ)Aσ(1)1 · · ·Aσ(n)n . (18.4)

Proof Uniqueness is shown by the above calculation. To verify existence we have
to show that the formula in Eq. (18.4) does indeed satisfy the three conditions in
Def. 18.1.
(D1) This is apparent since the right-hand side of Eq. (18.4) depends linearly on the
entries Aij of each column j.
(D2) We verify the equivalent statement (18.2):

det(Aσ(1), . . . ,Aσ(n)) =
∑
ρ∈Sn

sgn(ρ)Aσ(1)ρ(1) · · ·Aσ(n)ρ(n)

=
∑
ρ∈Sn

sgn(ρ)Aσ(ρ−1(1))1 · · ·Aσ(ρ−1(n))n

τ=σ◦ρ−1

=
∑
τ∈Sn

sgn(τ−1 ◦ σ)Aτ(1)1 · · ·Aτ(n)n

Thm. 3.1
= sgn(σ) det(A1, . . . ,An) .

(D3) Insert Ai = ei in Eq. (18.4). Since the components of the standard unit vectors
satisfy eiσ(i) = 0 unless σ(i) = i, we see that only the trivial permutation, σ = id, can
contribute to the sum. Hence

det(e1, . . . , en) = sgn(id) e11 · · · enn = 1 .

2
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Note that the sum on the right-hand side of Eq. (18.4) runs over all permutations in
Sn and, therefore, has n! terms. A useful way to think about this sum is as follows.
From the n × n matrix A, choose n entries such that no two of these appear in the
same column or in the same row. A term in Eq. (18.4) consists of the product of these
n entries (times the sign of the permutation) and the sum amounts to all possible ways
of choosing them.

18.1.3 The Levi-Civita symbol

In Eq. (10.7) we have introduced the three-dimensional Levi-Civita symbol εijk and we
have seen that both the vector product and the three-dimensional determinant can be
written concisely in terms of this symbol. In order to write the general determinant in
a similar way we introduce the n-dimensional generalization of the Levi-Civita symbol
by

εi1···in =

+1 if i1 = σ(1), . . . , in = σ(n) with an even permutation σ
−1 if i1 = σ(1), . . . , in = σ(n) with an odd permutation σ

0 otherwise
. (18.5)

Essentially, the Levi-Civita tensor plays the same role as the sign of the permuta-
tion but, in addition, it vanishes if it has an index appearing twice, in which case
(i1, . . . , in) is not actually a permutation of (1, . . . , n) . Then, the formula (18.4) for
the determinant can alternatively be written as

det(A) = εi1···inAi11 · · ·Ainn , (18.6)

with sums over the n indices i1, . . . , in implied. This formulate for the determinant is
frequently used in a physics context.

18.1.4 The determinant in low dimensions

The determinant of a 1 × 1 matrix A = (a) is obviously given by its single entry, so
det(A) = a.

For the two-dimensional case we find from Eq. (18.6) that

det

(
a1 b1
a2 b2

)
= εijaibj = ε12a1b2 + ε21a2b1 = a1b2 − a2b1 . (18.7)

The two terms on the right-hand side correspond to the two permutations of {1, 2}.

In three dimensions we find

det

a1 b1 c1
a2 b2 c2
a3 b3 c3

 = εijkaibjck = a1b2c3 + a2b3c1 + a3b1c2 − a2b1c3 − a3b2c1 − a1b3c2

= a · (b× c) (18.8)

The six terms which arise correspond to the six permutations of {1, 2, 3}. In particular,
we see explicitly that the three-dimensional version of the determinant coincides with
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our earlier definition in Section 10.2. (This was already clear from uniqueness.)

The expression for the n-dimensional determinant consists of n! terms. For n = 4 this
leads to 4! = 24 terms which is already rather impractical to write down. Clearly, to
work with higher-dimensional determinants we require more sophisticated methods.

18.1.5 Determinants for triangular matrices

An interesting special class of matrices for which the determinant is simple consists
of upper triangular matrices, that is, matrices with all entries below the diagonal
vanishing. In this case

det

a1 ∗
. . .

0 an

 = a1 · · · an , (18.9)

so the determinant is simply the product of the diagonal elements. (An analogous state-
ment holds for lower triangular matrices, of course.) This can be seen from Eq. (18.4).
We should consider all ways of choosing one entry per column such that no two entries
appear in the same row. For an upper triangular matrix, the only non-zero choice in the
first column is the first entry, so that the first row is ’occupied’. In the second column
the only available non-trivial choice is, therefore, the entry in the second row etc. In
conclusion, from the n! terms in Eq. (18.4) only the term for the identity permutation,
σ = id, which corresponds to the product of the diagonal elements is non-zero.

Problem 18.1 (Computing determinants)

Compute the determinants of the matrices

A =

(
3 −2
4 −5

)
, B =

 1 −2 0
3 2 −1
4 2 5

 , C =

 1 −2 0 5
0 2 1 −3
0 0 −4 1
0 0 0 −1

 .

Solution: From Eq. (18.7), the determinant of A is

det(A) = det

(
3 −2
4 −5

)
= 3 · (−5)− (−2) · 4 = −7 .

For the determinant of B, Eq. (18.8) gives

det(B) = det

 1 −2 0
3 2 −1
4 2 5

 = +1 · 2 · 5 + (−2) · (−1) · 4 + 0 · 3 · 2
− 0 · 2 · 4− (−2) · 3 · 5− 1 · (−1) · 2

= 10 + 8 + 30 + 2 = 50 .

Finally, C is an upper diagonal matrix so from Eq. (18.9) its determinant is the product of
the diagonal entries.

det(C) = det

 1 −2 0 5
0 2 1 −3
0 0 −4 1
0 0 0 −1

 = 1 · 2 · (−4) · (−1) = 8 .
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18.2 Properties of the determinant

Summary 18.2 The determinant is unchanged under transposition of matrices and
the determinant of a matrix product equals the product of the two determinants. Since
the determinant is invariant under basis transformation it is a class function. This
fact facilitates defining the determinant of a linear map. A linear map is invertible
iff its determinant is non-zero.

The explicit expression for the determinant becomes complicated quickly as the di-
mension increases. To be able to work with determinants we need to explore some of
their more sophisticated properties.

18.2.1 Determinant and transposition

We begin by showing that a matrix and its transpose have the same determinant.

Proposition 18.1 For any n× n matrix A ∈Mn,n(F) we have det(A) = det(AT ).

Proof By setting ja = σ(a), for a permutation σ ∈ Sn we can re-write a term in
the sum (18.4) for the determinant as Aσ(1)1 · · ·Aσ(n)n = Aj1σ−1(j1) · · ·Ajnσ−1(jn) =
A1σ−1(1) · · ·Anσ−1(n), where the last equality follows simply be re-ordering the factors,
given that j1, . . . , jn is a permutation of 1, . . . , n. From this observation the determi-
nant (18.4) can be written as

det(A) =
∑
σ∈Sn

sgn(σ)A1σ−1(1) · · ·Anσ−1(n)
(3.8)
=

∑
σ−1∈Sn

sgn(σ−1)A1σ−1(1) · · ·Anσ−1(n)

ρ=σ−1

=
∑
ρ∈Sn

sgn(ρ)(AT )ρ(1)1 · · · (AT )ρ(n)n = det(AT ) .

2

Recall that the determinant sums all products of n entries of the matrix, chosen such
that no two of these n entries appear in the same row or column. This statement
treats rows and columns on equal footing, so it should not come as a surprise that
transposition does not change the determinant.

18.2.2 Determinant and matrix multiplication

Another obvious question is about the relation between the determinant and matrix
multiplication. Fortunately, there is a simply and beautiful answer.

Theorem 18.2 For two n× n matrices A,B ∈Mn,n(F) we have

det(AB) = det(A) det(B) . (18.10)
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Proof We begin by writing the jth column (AB)j of the matrix product AB in a
suitable way.

(AB)ij =
∑
k

AikBkj ⇒ (AB)j =
∑
k

BkjA
k .

Inserting these expressions into the determinant and using multi-linearity gives

det(AB) = det((AB)1, · · · , (AB)n) = det

(∑
k1

Bk11A
k1 , · · · ,

∑
kn

BknnAkn

)
(D1)
=

∑
k1,··· ,kn

Bk11 · · ·Bknn det(Ak1 , · · · ,Akn)

ka=σ(a)
=

∑
σ∈Sn

Bσ(1)1 · · ·Bσ(n)n det(Aσ(1), · · · ,Aσ(n))

(18.2)
=

∑
σ∈Sn

sgn(σ)Bσ(1)1 · · ·Bσ(n)n︸ ︷︷ ︸
det(B)

det(A1, · · · ,An)︸ ︷︷ ︸
det(A)

= det(A) det(B) .

2

This simple multiplication rule for determinants of matrix products has a number of
profound consequences. First, we can prove a criterion for invertibility of a matrix,
based on the determinant, a generalization of Theorem 10.1.

Theorem 18.3 An n× n matrix A ∈Mn,n(F) has the following properties.

(i) A is invertible if and only if det(A) 6= 0.
(ii) If A is invertible then det(A−1) = (det(A))−1.

Proof (i) ’⇒’: If A is bijective it has an inverse A−1 and 1 = det(1n) = det(AA−1) =
det(A) det(A−1). This implies that det(A) 6= 0 and that det(A−1) = (det(A))−1 which
also proves (ii).
(i) ’⇐’: We prove this indirectly, so we start by assuming that A is not bijective. From
Corollary 14.2 this means that rk(A) < n, so the rank of A is less than maximal. Hence,
at least one of the column vectors of A, say A1 for definiteness, can be expressed as
a linear combination of the others, so that A1 =

∑n
i=2 αiA

i for some coefficients αi.
For the determinant of A this means

det(A) = det(A1,A2, . . . ,An) = det

(
n∑
i=2

αiA
i,A2, . . . ,An

)
(D1)
=

n∑
i=2

αi det(Ai,A2, . . . ,An)
(18.1)

= 0

2
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Problem 18.2 (Using the determinant to check if a matrix is invertible)

Find the values of the parameter a ∈ R for which the following matrix is invertible.

A =

 1 −1 a
0 a −3
−2 0 1


Solution: Computing the determinant is straightforward and leads to det(A) = 2a2 + a− 6.
This vanishes precisely when a = −2 or a = 3/2. Hence, for these values of a the matrix A
is singular and rk(A) < 3. In fact, the first two column of A are always linearly independent
so rk(A) = 2. For all other values, a 6= −2 and a 6= 3/2, it is invertible and rk(A) = 3. Note
that the rank reduces only for specific values of a, so maximal rank is the generic case.

18.2.3 Determinant and basis transformation

In Section 15.2.2 we have derived the formula, Eq. (15.13), for the transformation of a
matrix under a change of basis. What happens to the determinant under such a basis
change?

Corollary 18.1 The determinant is invariant under basis change, so

det(PAP−1) = det(A) , (18.11)

for all matrices A ∈Mn,n(F) and P ∈ GL(Fn).

Proof This follows easily from Eq. (18.2) and Theorem 18.3 (ii).

det(PAP−1) = det(P ) det(A) det(P−1) = det(P ) det(A) (det(P ))−1 = det(A) .

2

This statement is of immense significance and is one of the ’magical’ properties of
the determinant. Recall that matrices related by a basis transformation are called
conjugate and that conjugation is an equivalence relation. The associated equivalence
classes, called conjugacy classes, contain all matrices related by basis transformation.
The invariance (18.11) means that the determinant is a class function: it only depends
on the conjugacy class but not the specific matrix within each class. This property
allows us to define the determinant of linear maps.

Definition 18.2 For a linear maps f : V → V , the determinant, det(f), is defined
to be the determinant of any of the matrices describing f relative to a choice of basis.

This definition makes sense since the determinant is a class function, so that the value
of det(f) is the same for whichever representing matrix is chosen. In this way, many of
the properties of the matrix determinant straightforwardly transfer to the determinant
for linear maps.
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Proposition 18.2 For f, g ∈ End(V ), the determinant has the following properties.

(i) det(f ◦ g) = det(f) det(g).
(ii) f is invertible iff det(f) 6= 0.
(iii) If f is invertible then det(f−1) = det(f)−1.

Proof Let A and B be matrices which described f and g relative to a basis of V
(i) Since f ◦ g is represented by AB we have

det(f ◦ g) = det(AB)
Eq. (18.10)

= det(A) det(B) = det(f) det(g) .

(ii)

f invertible
Thm 15.1⇐⇒ A invertible

Thm 18.3⇐⇒ det(A) = det(f) 6= 0 .

(iii) This follows directly from (i), by setting g = f−1 and using that det(idV ) =
det(1n) = 1. 2

Problem 18.3 (Determinant and basis transformations)

Show that the two matrices

A =

(
1 −3
2 1

)
, B =

(
−1 4
−2 2

)
cannot be related by a basis transformation.

Solution: One approach is to show that no invertible matrix P with B = PAP−1 exists but
this would entail an awkward calculation. Instead, work out the two determinants det(A) =
1 ·1− (−3) ·2 = 7 and det(B) = (−1) ·2−4 · (−2) = 6. Since they are different (18.11) implies
that A and B cannot be related by a basis transformation.

18.2.4 Orientation

Orientation or handedness is an important property of a coordinate system which
plays a role in many applications. As we will now see, this notion follows naturally
from the properties of linear maps, bases and determinants.

The first observation is that Prop. 18.2 provides us with a way of characterizing the
general linear group GL(V ) of a vector space V . It consists of all endomorphisms with
non-zero determinant, so

GL(V ) = {f ∈ End(V ) |det(f) 6= 0} . (18.12)

For the remainder of this subsection we assume V is a vector space over an ordered
field F, for example F = R. Then the general linear group splits into two disjoint
subsets of positive and negative determinant.

GL(V ) = GL+(V ) ∪GL−(V ) , GL±(V ) = {f ∈ GL(V ) | ± det(f) > 0} . (18.13)

It is easy to check (using Prop. 18.2 and the criteria in Section 3.1.3) that GL+(V ) is
a sub-group of GL(V ) (see Exercise 18.7). We call a linear map f ∈ GL(V ) orientation
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12

43

x

y

Fig. 18.1 The elephant in quadrant 1 has been mapped to quadrants 1 and 4 by the orien-

tation reversing maps x 7→ Ax, with A = diag(±1,∓1), and to quadrant 3 by the orientation

preserving map x 7→ −x, where x = (x, y)T .

preserving if f ∈ GL+(V ) and orientation reversing otherwise (see Fig. 18.1).

Suppose we have two bases (v1, . . . ,vn) and (v′1, . . . ,v
′
n) of V . Then, from Theo-

rem 12.1 there exists a unique linear map f ∈ GL(V ) with f(vi) = v′i for i = 1, . . . , n.
We say the two bases (v1, . . . ,vn) and (v′1, . . . ,v

′
n) have the same orientation if the

so-defined linear map f is orientation preserving, that is, if det(f) > 0.

Theorem 18.4 Having the same orientation defines an equivalence relation on the
set of all bases on a vector space V over an ordered field F. There are precisely two
equivalence classes.

Proof Any basis of V is related to itself since det(idV ) = 1 > 0, so the relation is
reflexive. If a map f ∈ GL+(V ) relates two bases via v′i = f(vi), then vi = f−1(v′i) and
det(f−1) = det(f)−1 > 0. This shows the relation is symmetric. Finally, transitivity
follows since det(f) > 0 and det(g) > 0 imply that det(f ◦ g) = det(f)det(g) > 0.

If we fix a basis (v1, . . . ,vn) of V then the two equivalence classes are

B±(V ) = {(w1, . . . ,wn) basis of V |wi = f(vi) and ± det(f) > 0} (18.14)

It is clear from Theorem (12.1) that B+(V )∪B−(V ) contains all bases on V . It is also
easy to show that any two bases in B+(V ) (B−(V )) are related, while any basis in
B+(V ) is unrelated to any basis in B−(V ). 2

The two equivalence classes in Eq. (18.14) are referred to as orientations since they
each contain all the bases with the same orientation. At this point neither of the two
orientations is preferred.

However, on coordinate vector spaces Fn (over an ordered field F), we have a preferred
basis of standard unit vectors (e1, . . . , en) and we can be more explicit. Any other
basis can be obtained from the standard unit vectors by the action of a linear map A ∈
GL(Fn) via (Ae1, . . . , Aen) = (A1, . . . ,An). Such a basis has the same orientation as
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(e1, . . . , en) if det(A) = det(A1, . . . ,An) > 0 and the opposite orientation if det(A) =
det(A1, . . . ,An) < 0. This means the two orientations are

B±(Fn) = {(v1, . . . ,vn) basis of Fn | ± det(v1, . . . ,vn) > 0} , (18.15)

and we can refer to the bases in B+(Fn) which have the same orientation as the
standard unit vector basis as positively oriented or right-handed and to the others in
B−(Fn) as negatively oriented or left-handed.

Problem 18.4 Orientation of a basis

What is the orientation of the R3 bases (e1, e2, e3), (−e1, e2, e3), (e2, e1, e3) and (v1,v1,v3),
where v1 = (−2, 0, 1)T , v2 = (1, 1, 0)T and v3 = (0, 0,−1)T ? Do the bases (1, x, x2) and
(1− x, 1 + x, x− x2) on P2(R) have the same or different orientation?

Solution: Since det(e1, e2, e3) = 1 the basis (e1, e2, e3) is right-handed. (The three vec-
tors correspond to the first three fingers of your right hand, hence the term right-handed.)
However, det(−e1, e2, e3) = −1, so (−e1, e2, e3) is left-handed. (These vectors correspond to
the first three fingers of your left hand.) The basis (e2, e1, e3) is left-handed as well, since
det(e2, e1, e3) = −1. Finally, from

det(v1,v2,v3) = det

−2 1 0
0 1 0
1 0 −1

 = 2

it follows that (v1,v2,v3) is right-handed.

To compare the two bases of P2(R) we consider the map f : P2(R) → P2(R) defined by
f(1) = 1− x, f(x) = 1 + x and f(x2) = x− x2. The representing matrix B of f , relative to
the monomial basis (1, x, x2), is

B =

 1 1 0
−1 1 1

0 0 −1

 ⇒ det(f) = det(B) = −2 .

Since det(f) < 0, the map f is an orientation-reversing map and it follows that (1, x, x2) and
(1− x, 1 + x, x− x2) have opposite orientations.

18.3 Computing with determinants

Summary 18.3 The Laplace expansion can be used to express the determinant in
terms of determinants of sub-matrices. Alternatively, determinants can be calculated
by an algorithm based on row operations. The determinant also provides a formula
for the matrix inverse in terms of the co-factor matrix and a formula for the solution
of certain systems of linear equations.

18.3.1 The co-factor matrix

Our next goal is to find a recursive method to calculate the determinant, essentially
by writing the determinant of a matrix in terms of determinants of sub-matrices. To
this end, we define for an n× n matrix A, the associated n× n matrices
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Ã(ij) =



0

’A’
... ’A’
0

0 · · · 0 1 0 · · · 0
0

’A’
... ’A’
0

← ith row .

↑
jth column

(18.16)

They are obtained from A by setting the (i, j) entry to 1, the other entries in row i
and column j to zero and keeping the rest of the matrix unchanged. Note that the
subscripts (i, j) indicate the row and column which have been changed rather than
specific entries of the matrix (hence the bracket notation). We can now define the
co-factor matrix.

Definition 18.3 (Co-factor matrix) For an n × n matrix A ∈ Mn,n(F), the n × n
matrix C with entires

Cij := det(Ã(ij)) , (18.17)

and the matrices Ã(ij) defined in Eq. (18.16), is called the co-factor matrix of A.

To find a more elegant expression for the co-factor matrix, we also introduce the
(n− 1)× (n− 1) matrices A(ij) which are obtained from A by simply removing the ith

row and the jth column. It takes i− 1 swaps of neighbouring rows in (18.16) to move
row i to the first row (without changing the order of any other rows) and a further
j − 1 swaps to move column j to the first column. After these swaps the matrix Ã(ij)

becomes

B(ij) =


1 0 · · · 0
0
... A(ij)

0

 . (18.18)

From Def. 18.1 (D2) and Lemma 18.1 it is clear that det(Ã(ij)) = (−1)i+j det(B(ij)),
since we need a total of i+ j−2 swaps of rows and columns to convert one matrix into
the other. Further, the explicit form of the determinant (18.4) implies that det(B(ij)) =
det(A(ij)), as the only non-trivial choice of entry in the first column of B(ij) is the
1 in the first row (see also Exercise 18.9). Combining these observations we get the
following formula for the co-factor matrix.

Lemma 18.1 (Formula for co-factor matrix) For an n× n matrix A ∈Mn,n(F), the
entries of the co-factor matrix C are given by

Cij = (−1)i+j det(A(ij)) , (18.19)

where the (n − 1) × (n − 1) matrices A(i,j) are obtained from A by removing the ith

row and the jth column.

Proof This follows from the arguments above. 2
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Hence, the co-factor matrix contains, up to signs, the determinants of the (n − 1) ×
(n − 1) sub-matrices of A, obtained by deleting one row and one column from A. As
we will see, for explicit calculations, it is useful to note that the signs in Eq. (18.19)
follow a ’chess board pattern’, that is, the matrix with entries (−1)i+j has the form

+ − + · · ·
− + − · · ·
+ − + · · ·
...

...
...

. . .

 . (18.20)

The crucial statement which makes the co-factor matrix a useful object is the following
lemma.

Lemma 18.2 For an n× n matrix A with associated co-factor matrix C, as given in
Eq. (18.19), we have

CTA = det(A)1n . (18.21)

Proof This follows from the definition of the co-factor matrix, more or less by direct
calculation.

(CTA)ij =
∑
k

(CT )ikAkj =
∑
k

AkjCki
(18.17)

=
∑
k

Akj det(Ã(ki))

(18.16)
=

∑
k

Akj det(A1, · · · ,Ai−1, ek,A
i+1, · · · ,An)

(D1)
= det

(
A1, · · · ,Ai−1,

∑
k

Akjek,A
i+1, · · · ,An

)

= det(A1, · · · ,Ai−1,Aj ,Ai+1, · · · ,An)
(18.1)

= δij det(A)

2

18.3.2 Laplace expansion of determinant

The first main conclusion from Eq. (18.21) is the desired recursive formula for the
determinant.

Theorem 18.5 (Laplace expansion of determinant) For an n×n matrix A ∈Mn,n(F)
we have

det(A) =

n∑
i=1

(−1)i+jAij det(A(ij)) =

n∑
l=1

(−1)k+lAkl det(A(kl)) (18.22)

for any j, k = 1, . . . , n. The sub-matrices A(ij) are obtained by deleting row i and
column j from A.
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Proof To prove the first equality in (18.22), we focus on the diagonal (jj) entry of
Eq. (18.21).

det(A) = (CTA)jj =
∑
i

(CT )jiAij =
∑
i

CijAij =
∑
i

(−1)i+jAij det(A(ij)).

The second equality (18.21) follows from the first by using the invariance of the de-
terminant under transposition. 2

Eq. (18.22) is referred to as Laplace expansion of the determinant. It realizes our goal
of expressing the determinant of A in terms of determinants of the sub-matrices A(i,j).
More specifically, in the first part of Eq. (18.22) we can choose any column j and
compute the determinant of A by summing over the entries i in this column times
the determinants of the corresponding sub-matrices A(ij) (taking into account the

sign). This is also referred to as expanding the determinant ’along the jth column’.
The second part of Eq. (18.22) says that we can carry out an analogous process by
expanding ’along the kth row’. To see how this works in practice we consider the
following exercise.

Problem 18.5 (Laplace expansion of determinant)

Compute the determinant of the matrix

A =

 2 −1 0
1 2 −2
0 3 4


by a Laplace expansion along its 1st column.

Solution: From Eq. (18.22), taking into account the signs as indicated in (18.20), we find

det(A) = A11 det(A(1,1))−A21 det(A(2,1)) +A31 det(A(3,1))

= 2 · det

(
2 −2
3 4

)
− 1 · det

(
−1 0

3 4

)
+ 0 · det

(
−1 0

2 −2

)
= 2 · 14− 1 · (−4) + 0 · 2 = 32

Note that the efficiency of the calculation can be improved by expanding along the row or
column with the most zeros.

18.3.3 Matrix inverse from co-factors

The second important result from Eq. (18.21) is a new method to compute the matrix
inverse.

Theorem 18.6 For an invertible n× n matrix A ∈Mn,n(F) the inverse is given by

A−1 =
1

det(A)
CT , (18.23)

where C is the co-factor matrix of A.
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Proof Since A is invertible we know that det(A) 6= 0 from Theorem 18.3. We can,
hence, divide Eq. (18.21) by det(A) and obtain

1

det(A)
CTA = 1n ⇒ A−1 =

1

det(A)
CT .

2

Problem 18.6 (Inverse of a 2× 2 matrix using the co-factor method)

Using the co-factor methods, find the inverse of a general 2× 2 matrix

A =

(
a b
c d

)
.

Solution: The co-factor matrix of A is easily obtained by switching around the diagonal and
non-diagonal entries and inverting the signs of the latter:

C =

(
d −c
−b a

)
. (18.24)

With det(A) = ad− cb (which should be different from zero for the inverse to exist) we have
for the inverse

A−1 =
1

det(A)
CT =

1

ad− cb

(
d −b
−c a

)
. (18.25)

Note that this provides a rule for inverting 2×2 matrices which is relatively easy to remember:
Exchange the diagonal elements, invert the signs of the off-diagonal elements and divide by
the determinant.

Problem 18.7 (Inverse of a 3× 3 matrix using the co-factor method)

Using the co-factor method, find the inverse of the matrix A from Exercise 18.5.

Solution: Applying Eq. (18.19) gives the associated co-factor matrix

C =

 14 −4 3
4 8 −6
2 4 5

 .

For example, the (1, 1) entry of C is computed from A(11), the 2× 2 matrix obtained from A
by dropping the first row and first column.

A(11) =

(
2 −2
3 4

)
, C11 = det(A(11)) = 14 .

The other entries of C are computed analogously. With det(A) = 32 and Eq. (18.23) the
inverse is given by

A−1 =
1

det(A)
CT =

1

32

 14 4 2
−4 8 4

3 −6 5

 .
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18.3.4 Determinant and row operations

Despite our improved methods, the calculation of determinants for large matrices
remains a problem, essentially because of the aforementioned n! growth of the number
of terms in Eq. (18.4). Using a Laplace expansion will improve matters only if the
matrix in question has many zeros. How can we compute the determinants of large
matrices? The key is to understand the relationship between determinants and row
operations.

Proposition 18.3 Under row operations, Def. 16.1, on an n×n matrix A the deter-
minant of A behaves as follows:

(R1) Adding a multiple of one row to another does not change the determinant.
(R2) Exchanging two rows changes the determinant by a factor −1.
(R3) Multiplying a row with a number α 6= 0 changes the determinant by a factor α.

Proof Since the determinant does not change under transposition we can proof the
analogues of the above statements for columns.
(R1) Linearity of the determinant and Eq. (18.1) implies that

det(· · · ,ai, · · · ,aj + αai, · · · )
(D1)
= det(· · · ,ai, · · · ,aj , · · · ) + α det(· · · ,ai, · · · ,ai, · · · )

(18.1)
= det(· · · ,ai, · · · ,aj , · · · ) .

(R2) This is the anti-symmetry property of the determinant, Def. 18.1 (D2).

(R3) det(· · · , α a, · · · ) (D1)
= α det(· · · ,a, · · · ) 2

Suppose we use row operations of type (R1) and (R2) to bring an n × n matrix A
into upper echelon form, by applying the algorithm described in Section 16.1.3. From
the previous lemma this process changes the value of the determinant only by a factor
(−1)k, where k is the number of row swaps (R2) used. A square matrix in upper
echelon form is also an upper triangular matrix and, from Eq. (18.9), its determinant
is simply the product of its diagonal entries. In summary, the value of the determinant
is given by

det(A) = (−1)ka1 · · · an , (18.26)

where a1, . . . , an are the diagonal entries in the upper echelon form of A and k is the
number of rows swaps used to reach the upper echelon form. Computing the upper
echelon form for an n×n matrix needs ∼ n3 algebraic operations so for large matrices
this method is much more efficient than using the formula (18.4) which involves n!
terms. (Even on a modern computers, working out n! terms is impossible even for
moderately large n while n3 operations are still feasible.)

Problem 18.8 (Computing determinants via row operations)

Compute the determinant of the matrix

A =

 0 1 2
−1 3 −2

2 0 5


by bringing it to upper triangular form, using elementary row operations.
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Solution: Bringing A to upper echelon form with row operations gives

A =

 0 1 2
−1 3 −2

2 0 5

 R1↔R2

−−−−→

−1 3 −2
0 1 2
2 0 5

 R3→R3+2R1

−−−−−−−−→

−1 3 −2
0 1 2
0 6 1

 R3→R3−6R2

−−−−−−−−→

−1 3 −2
0 1 2
0 0 −11


The matrix on the right is in upper echelon and upper triangular form with diagonal entries
(a1, a2, a3) = (−1, 1,−11) and we can now compute the determinant from Eq. (18.26). We
note that we have used one row exchange, so k = 1. Then, det(A) = (−1)ka1a2a3 = (−1) ·
(−1) · 1 · (−11) = −11. Using the explicit formula (18.8) for the determinant of course leads
to the same answer.

For practical reasons we have illustrated this method with a small matrix. However,
its main relevance is for computer calculations of large determinants where the basic for-
mula (18.4) or a Laplace expansion is inefficient.

Example 18.1 (Vandermonde determinant)

The Vandermonde determinant (of order n) is the determinant of the n× n matrix

An =


1 1 · · · 1
a1 a2 · · · an
a2

1 a2
2 · · · a2

n
...

...
...

...
an−1

1 an−1
2 · · · an−1

n

 , (18.27)

where a1, . . . , an ∈ F. The claim is that this determinant is explicitly given by

det(An) =
∏

1≤i<j≤n

(aj − ai) (18.28)

This can be shown in a number of ways but we opt for a proof based on induction
in n. The basis of the induction, for n = 2, is certainly true since det(A2) = a2 − a1.
The induction assumption is that the formula (18.28) is true for n − 1. To make the
induction step, we add multiplies of the first n− 1 rows of An to the last row to get

Ãn =


1 1 · · · 1
a1 a2 · · · an
a2

1 a2
2 · · · a2

n
...

...
...

...
p(a1) p(a2) · · · p(an)

 with p(x) =

n−1∏
i=1

(x− ai) ,

where the specified polynomial p can be achieved by adding suitable row multiples. Of
course, these row operations have not changed the determinant. In addition we know
that p(ai) = 0 for all i < n, so the only non-zero entry in the bottom row of Ãn is
the last one. This suggest we should try a Laplace expansion along the last row of Ãn
which gives

det(An) = p(an)det(An−1) =

n−1∏
i=1

(an − ai)
∏

1≤i<j≤n−1

(aj − ai) =
∏

1≤i<j≤n

(aj − ai) ,

where the induction assumption has been used for the second equality. This completes
the argument.
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Note that the Vandermonde determinant is non-zero iff the numbers a1, . . . , an are
pairwise different. 2

18.3.5 Minors

We have seen how to use row operations to compute the rank of a matrix but can de-
terminants be used for the same purpose? The determinant does provide some limited
information about the rank of an n × n matrix A. From Theorem 18.3 det(A) 6= 0
implies that rk(A) = n. On the other hand, for det(A) = 0 we know that the rank of A
is less than maximal, rk(A) < n, but we have no further information about its value.
Of course the determinant is only defined for square matrices so even these limited
statements cannot be directly applied to non-square matrices.

To extract more information we need to consider the square sub-matrices which can
be extracted from a given matrix A ∈Mn,m(F) as well as their determinants. Suppose
by a sequence of row and column swaps A can be brought into the form

k m− k

A
row,col. swaps

−−−−−−−−→ Ã =

(
A′ B
C D

)
k
n− k

, (18.29)

where the size of the blocks has been indicated on top and to the right. The determinant
det(A′) of the k × k block in the upper left is called a minor of order k of A.

Theorem 18.7 The maximal order of non-zero minors of a matrix A equals its rank.

Proof We begin by showing that any non-zero minor of order k satisfies k ≤ rk(A).
To this end, assume that det(A′) 6= 0 for the k × k matrix A′ in Eq. (18.29). Then
rowrk(A′) = k and, hence,

rk(A) = rk(Ã) ≥ rk

(
A′

C

)
= rowrk

(
A′

C

)
≥ rowrk(A′) = k .

It remains to be shows that A has a non-zero minor of rank k = rk(A). Clearly, A
has rk(A) linearly independent column vectors which can be swapped into the first k
columns of Ã. Suppose this has been done in Eq. (18.29) so that

rk(A) = rk(Ã) = colrk

(
A′

C

)
= rowrk

(
A′

C

)
.

The rk(A) linearly independent rows in the matrix on the right can be brought to the
top by suitable row swaps and in this way we obtain a rk(A)× rk(A) matrix A′′ which
leads to a non-zero minor, det(A′′) 6= 0, of order rk(A). 2

This theorem can be used to determine the rank of any matrix by computing its
minors.
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Problem 18.9 Matrix rank from minors

Using minors, determine the rank of the matrix A ∈M3,3(R) given by

A =

 1 a b
−2 b 1

2 −3 b


for all a, b ∈ R.

Solution: We have det(A) = 2ab + 2a− b2 + 6b + 3 and for all pairs (a, b) for which this is
non-zero we have rk(A) = 3. On the other hand, the determinant vanishes for all b 6= −1 and

a =
b2 − 6b− 3

2(b+ 1)
.

In this case, rk(A) < 3. However, one minor of order two is obtained from the second and
third row and column,

A′ =

(
b 1
−3 b

)
⇒ det(A′) = b2 + 3 ,

and since this never vanishes we have rk(A) = 2 whenever rk(A) < 3.

18.3.6 Cramer’s rule

For a system of n linear equations in n variables with a unique solution a formula for
the solution can be written down in terms of determinants. This formula is known as
Cramer’s rule.

Theorem 18.8 (Cramer’s rule) Let A ∈ Mn,n(F) be invertible and b ∈ Fn. Then,
the unique solution of the linear system Ax = b is given by

xi =
det(B(i))

det(A)
where B(i) := (A1, · · · ,Ai−1,b,Ai+1, · · · ,An) . (18.30)

Proof The linear system Ax = b can also be written as∑
j

xjA
j = b , (18.31)

where Aj are the columns of A. A short calculation shows that

det(B(i)) = det(A1, · · · ,Ai−1,b,Ai+1, · · · ,An)

(18.31)
= det(A1, · · · ,Ai−1,

∑
j

xjA
j ,Ai+1, · · · ,An)

(D1)
=
∑
j

xj det(A1, · · · ,Ai−1,Aj ,Ai+1, · · · ,An)

(18.1)
= xi det(A1, · · · ,Ai−1,Ai,Ai+1, · · · ,An) = xi det(A) .

Since A is invertible Theorem 18.3 implies that det(A) 6= 0. Dividing by det(A) then
gives the desired result. 2
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Problem 18.10 (Cramer’s rule)

Using Cramer’s rule find the solution of the linear system Ax = b with

A =

 2 −1 0
1 2 −2
0 3 4

 , b =

 1
2
0

 .

Solution: The three matrices B(i) in Cramer’s rule (18.30) are obtained by replacing the ith

column of A with the vector b.

B(1) =

 1 −1 0
2 2 −2
0 3 4

 , B(2) =

 2 1 0
1 2 −2
0 0 4

 , B(3) =

 2 −1 1
1 2 2
0 3 0

 .

By straightforward computation, for example using a Laplace expansion, it follows that
det(A) = 32, det(B(1)) = 22, det(B(2)) = 12 and det(B(3)) = −9. From Eq. (18.30) this
leads to the solution

x =
1

32

 22
12
−9

 .

Exercises

(†=challenging)

18.1 Calculate the determinants of the ma-
trices

A =

 0 −i i
i 0 −i
−i i 0


B =

1√
8

√3 −
√

2 −
√

3
1

√
6 −1

2 0 2

 .

18.2 For which values of the parameters
a, b ∈ R is the matrix

A =

 a 1 a
1 b −1
0 −1 a


not invertible? Determine the rank of
A for all a, b ∈ R.

18.3 Invert the matrix

A =

 1 −2 0 3
0 4 −1 1
2 −1 0 3
5 4 1 −2


using the co-factor method.

18.4 Solve the system of linear equations

x+ 2y + 3z = 2
3x+ 4y + 5z = 4
x+ 3y + 4z = 6

by (a) the matrix inverse, (b)
Cramer’s method and (c) row reduc-
tion.
(d) If you had to write a computer
program solving systems of linear
equations (of arbitrary and possibly
large size) which of the above meth-
ods would you base it on?

18.5 Rank of non-square matrices
(a) For a 2 × 3 matrix A show
that A has non-maximal rank iff
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det(A1,A2) = det(A2,A3) =
det(A1,A3) = 0.
(b) Formulate and proof the analo-
gous statement for 2 × n matrices,
where n ≥ 3.
(c) Determine the rank of the matrix

A =

(
1 a −2
b 3 −a

)
for all values of a, b ∈ R, using the
criterion from part (a).

18.6 Determinant of linear map
On the vector space V = P3(R) of
polynomials with degree less equal
three consider the linear map L : V →
V defined by

L =
d

dx
+ 1 .

(a) Compute det(L). Why is L invert-
ible even though L(y) = 0 must have
a solution?
(b) Find L−1.
(c) Use the result from part (b) to find
a solution y to L(y)(x) = x3.

18.7 Subgroups of GL(V )
(a) For a vector space V over R, show
that the set GL+(V ) of all linear maps
f ∈ GL(V ) with det(f) > 0 forms a
subgroup of GL(V ).
(b) Let V be a vector space over F
and F∗ = F \ {0} is the multiplica-
tive group of the field F. Show that
det : GL(V ) → F∗ is a group homo-
morphism.
(c) Show that the set SL(V ) of all lin-
ear maps f ∈ GL(V ) with det(f) = 1
forms a subgroup of GL(V ). (This
group is called the special linear
group.)

18.8 Orientation
(a) For two linearly independent vec-

tors v1,v2 ∈ R3 show that (v1 ×
v2,v1,v2) is a positively oriented ba-
sis.
(b) For a permutation σ ∈ Sn,
show that the bases (v1, . . . ,vn) and
(vσ(1), . . . ,vσ(n)) of V have the same
orientation iff sgn(σ) = 1.

18.9 Determinant of block-diagonal matri-
ces
Matrixes A ∈ Mn,n(F) and B ∈
Mm,m(F) are arranged into the
block-diagonal matrix

C =

(
A 0
0 B

)
,

with size (n+m)×(n+m). Show that
det(C) = det(A) det(B).

18.10 Generalization of cross product
For linearly independent vectors
v1, . . . ,vn−1 ∈ Rn, define the vec-
tor w ∈ Rn with components wi =
det(v1, . . . ,vn−1, ei). Show that
(a) w is orthogonal with respect to
the dot product to all vectors va.
(b) (v1, . . . ,vn−1,w) is a basis of Rn.
(c) |w|2 = det(v1, . . . ,vn−1,w).
(d) for va = ea we have w = en.
(e) for n = 3 the vector w can be
written in terms of a cross product.

18.11 Determinant formulae†

For two matrices A,B ∈ Mn,m(R)
show the following:
(a) det(ABT ) = 0 if n > m.
(b) det(ABT ) =

∑
det(Aa1 , . . . ,Aan)·
det(Ba1 , . . . ,Ban)

if n ≤ m, where the sum runs over all
a1, . . . , an with 1 ≤ a1 < · · · < an ≤
m. (Hint: Write the determinants in
terms of Levi-Civita tensors and go
wild with indices.)
(c) det(AAT ) =

∑
det(Aa1 , . . . ,Aan)2

if n ≤ m and with the sum over the
ak as in part (b).



Part VI

Eigenvalues and eigenvectors

In Chapter 15, we have seen that an endomorphism f ∈ End(V ) can be represented by
a square matrix A, relative to a choice of basis on V . For a different basis, the same lin-
ear map is represented by another matrix A′, related to A by the basis transformation
A′ = PAP−1, as in Eq. (15.13). Two matrices related by such a basis transformation
are called conjugate and we have seen that conjugation is an equivalence relation.
Its equivalence classes, the conjugacy classes, consist of all matrices which represent
the same linear map, relative to different basis choices. This structure suggests a set
of questions. How can we find a basis for which the representing matrix of a linear
map is particularly simply, for example diagonal? Does such a diagonal matrix exist
in each conjugacy class? If not, what is the simplest possible choice? As we will see,
eigenvectors and eigenvalues are the key to answering these questions.

Bringing matrices into a simple form by a basis transformation can be immensely help-
ful for solving or simplifying a wide range of problems. For this reason, eigenvectors
and eigenvalues are of great practical importance and have numerous applications. For
example, eigenvectors and eigenvalues are at the heart of quantum mechanics. We will
encounter a number of these applications as we go along.

As a simple motivational example for why diagonalizing or otherwise simplifying matri-
ces can be useful consider a sequence x0,x1, . . . ∈ Fn of vectors which are determined
recursively, by an equation xk+1 = Mxk, where M ∈ Mn,n(F) is a fixed matrix.
This might describe a discrete process, such as the evolution of a population, where
the index k labels the time step, xk describes a distribution of certain characteristics
within the population at time k and the evolution to the next time step is accom-
plished by multiplying with M . Once we fix the initial vector x0, the entire sequence
is determined by the equation

xk = Mkx0 . (18.32)

Therefore, if we want to understand how the system evolves, we have to work out
powers, Mk, of the matrix M . Matrix multiplication is generally a complicated oper-
ation and repeating it many times may well be very difficult, even for small matrices
M . However, for a diagonal M = diag(λ1, . . . , λn) the calculation is easy and leads to
Mk = diag(λk1 , . . . , λ

k
n). If we can somehow bring Eq. (18.32) into an equivalent form

where M becomes diagonal the problem can be solved. Eigenvector and eigenvalues
will help to do this, as we will see.
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In the next chapter, we begin by developing the basics of eigenvalues and eigenvectors,
their definition, structure and computation. In particular, the characteristic polyno-
mial, a central object in the theory of eigenvalues, is introduced. We finish with the
theorem of Cayley–Hamilton which states that every endomorphism inserted into its
own characteristic polynomial gives the zero map.

In Chapter 20, we derive criteria for when endomorphisms can be diagonalized and
show how eigenvalues and eigenvectors can be used to compute the diagonal form.
While this can be achieved frequently we will also see that there are some conjugacy
classes which do not contain a diagonal matrix.

For such cases, the strategy is to find a basis in which the representing matrix is
as close to diagonal as possible. The resulting structure is called the Jordan normal
form which leads to matrices with zeros everywhere except possibly along the diagonal
and the entries just above the diagonal. The Jordan normal form will be derived in
Chapter 21.
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Basics of eigenvalues

Eigenvectors and eigenvalues play a role in many areas of pure and applied mathe-
matics. In this chapter, we develop the basics, define eigenvalues and eigenvectors and
explain how to compute them. Every endomorphism f : V → V has an associated
polynomial χf , called the characteristic polynomial. The eigenvalues of f are precisely
the zeros of χf . As a by-product, we obtain new class functions for matrices which
follow from the invariance of the characteristic polynomial under basis transforma-
tions. We discuss in detail the most important one of those, the trace of a matrix
which is given by the sum of its diagonal entries. We end the chapter by proving the
Cayley—Hamilton theorem.

19.1 Eigenvalues and eigenspaces

Summary 19.1 For a linear map f : V → V , an eigenvector v ∈ V is a non-zero
vector which scales under f , so that f(v) = λv. The scalar λ is the associated eigen-
value. The eigenvectors for each eigenvalue λ are collected in the eigenspace Eigf (λ)
which consists of all solutions to the homogeneous linear system (f − λ idV )v = 0.
The dimension of the eigenspace is called the degeneracy of the eigenvalue.

19.1.1 Definition of eigenvalues and eigenvectors

Recall from Theorem 15.1 that the matrix A which represents a linear map f : V → V
relative to a basis (v1, . . . ,vn) of V is determined by

f(vj) =

n∑
i=1

Aijvi . (19.1)

Suppose we had somehow succeeded in choosing the basis (v1, . . . ,vn) such that A =
diag(a1, . . . , an) is diagonal. In this case, Eq. (19.1) turns into

f(vi) = aivi . (19.2)

Hence, a diagonal representing matrix requires basis vectors which are multiplied by
a scalar under the action of f . Vectors with such a scaling behaviour are called eigen-
vectors and the scalars ai multiplying them are called eigenvalues. Formally, they are
defined as follows.
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Definition 19.1 Let f : V → V be a linear map on a vector space V over F. A scalar
λ ∈ F is called an eigenvalue of f if there exists a non-zero vector v ∈ V such that

f(v) = λv . (19.3)

Such a vector v is called an eigenvector of f with eigenvalue λ.

Note that, while λ = 0 is a perfectly acceptable eigenvalue, eigenvectors are always
non-zero. This requirement is, in fact, crucial. If the zero vector was allowed as an
eigenvector, then the eigenvalue equation (19.3) would be satisfied for every scalar λ,
since f(0) = 0 = λ0.

19.1.2 Degeneracy and eigenspaces

For a given eigenvalue λ, the eigenvector is not unique. For example, for an eigenvector
v, every multiple αv, where α 6= 0, is also an eigenvector, since f(v) = λv implies that
f(αv) = αf(v) = λ(αv). For this reason it makes sense to collect all eigenvectors for
a given eigenvalue into a set, called the eigenspace. Since Eq. (19.3) can be re-written
as (f − λ idV )v = 0 the eigenspace for a scalar λ ∈ F is defined as

Eigf (λ) := Ker(f − λ idV ) . (19.4)

As a kernel of a linear map, the eigenspace is a vector subspace of V . Note that
the eigenspace for eigenvalue 0 is the kernel of the linear map, so Eigf (0) = Ker(f).
From Def. 19.1, the scalar λ is an eigenvalue if and only if the eigenspace Eigf (λ) is
non-trivial, so we have

λ eigenvalue of f ⇔ Eigf (λ) 6= {0} ⇔ dimF(Eigf (λ)) > 0 . (19.5)

The dimension of the eigenspace is an important property of the eigenvalue for which
we introduce the following terminology.

Definition 19.2 An eigenvalue λ ∈ F for a linear map f ∈ End(V ) is called non-
degenerate if dimF(Eigf (λ)) = 1 and, otherwise, if dimF(Eigf (λ)) > 1, it is called
degenerate. The dimension dimF(Eigf (λ)) is called the degeneracy of the eigenvalue λ.

What is the intersection of the eigenspaces for two different eigenvalues λ and λ′?
Suppose we have a vector v ∈ Eigf (λ)∩Eigf (λ′). Then the eigenvalue equation (19.3)
implies that f(v) = λv = λ′v and, hence, since λ 6= λ′, that v = 0. In conclu-
sions, eigenspaces for different eigenvalues intersect trivially so their sum is direct (see
Section 8.1.4).

19.2 The characteristic polynomial

Summary 19.2 The characteristic polynomial χf of a linear map f : V → V is
a polynomial of degree dimF(V ) whose zeros are the eigenvalues of f . The charac-
teristic polynomial of a matrix is invariant under basis transformations, so that all
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coefficients in χf are class functions. In particular this shows that the trace of a
matrix is a class function. The degeneracy of an eigenvalue λ is bounded from above
by the multiplicity of λ in the characteristic polynomial.

19.2.1 Definition of characteristic polynomial

How do we compute eigenvalues and eigenvectors for a given linear map? The key
observation comes from the equivalence (19.5). It says that λ is an eigenvalue iff
Ker(f − λ idV ) is non-trivial. This is the case iff f − λ idV is not invertible which is
equivalent to det(f−λ idV ) = 0. This last condition is crucial since it gives an equation
for the eigenvalues and it motivates the following definition.

Definition 19.3 For a linear map f : V → V the map χf : F→ F defined by

χf (λ) := det(f − λ idV ) (19.6)

is called the characteristic polynomial of f .

As suggested by the above discussion, the eigenvalues are the zeros of the characteristic
polynomial.

Theorem 19.1 Let f ∈ End(V ) be a linear map on a vector space V over F with
characteristic polynomial χf : F → F. The scalar λ ∈ F is an eigenvalue of f if and
only if χf (λ) = 0.

Proof

λ eigenvalue of f
(19.5)⇐⇒ dimF(Ker(f − λ idV )) > 0

Cor. 14.2⇐⇒ f − λ idV not invertible

Thm. 18.3⇐⇒ det(f − λ idV ) = 0

2

19.2.2 Properties of the characteristic polynomial

To get a handle on eigenvalues we should understand the characteristic polynomial
better, including why it actually is a polynomial.

Proposition 19.1 For a linear map f : V → V , where V is an n-dimensional vector
space over F, and any representing matrix A ∈ Mn,n(F) of f the characteristic poly-
nomial χf has the following properties.

(i) χf = χA
(ii) χf is a polynomial of degree n
(iii) χPAP−1 = χA for any matrix P ∈ Gl(Fn)
(iv) If we write the characteristic polynomial as

χA(λ) = cnλ
n + cn−1λ

n−1 + · · ·+ c1λ+ c0 (19.7)

then the coefficients ci are invariant under basis transformations.
(v) For the coefficients we have
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cn = (−1)n , cn−1 = (−1)n−1
n∑
i=1

Aii , c0 = det(A) . (19.8)

Proof (i) This follows from Def. 18.2 which defined the determinant of a linear map
as the determinant of any of its representing matrices.

(ii) To find the characteristic polynomial, we need to compute the determinant

χf (λ) = det


A11 − λ A12 · · · A1,n−1 A1n

A21 A22 − λ · · · A2,n−1 A2n

...
...

. . .
...

...
An−1,1 An−1,2 · · · An−1,n−1 − λ An−1,n

An1 An2 · · · An,n−1 Ann − λ

 . (19.9)

The general expression (18.4) for the determinant of an n × n matrix is a degree n
polynomial in the entries. Since the entries of the matrix in Eq. (19.9) are at most
linear in λ is follows that χf (λ) is a polynomial in λ of degree n or less. Result (v)
shows that the coefficient of λn is, in fact, always non-zero so the degree equals n.

(iii) This follows from (i) since the characteristic polynomial is the same for any rep-
resenting matrix of f but it can also be checked explicitly.

χPAP−1(λ)
(19.6)

= det(PAP−1 − λ1n) = det(PAP−1 − λP1nP−1)

= det(P (A− λ1n)P−1)
(18.11)

= det(A− λ1n)
(19.6)

= χA(λ)

(iv) This follows from (iii). If the entire characteristic polynomial is invariant under
basis transformations then so are its coefficients.

(v) The formula for c0 follows easily from c0 = χf (0) = det(f). Powers λn and λn−1

in the determinant (19.9) can only arise from the product of the diagonal elements, so

χA(λ) =

n∏
i=1

(Aii − λ) +O(λn−2) = (−1)nλn + (−1)n−1

(
n∑
i=1

Aii

)
λn−1 +O(λn−2)

Reading off the factors in front of λn and λn−1 gives the desired results. 2

19.2.3 Examples

Combining the above results leads to an algorithm for computing eigenvalues and
eigenvectors which can be summarized as follows.

Algorithm (Computing eigenvalues and eigenvectors)

(1) Compute the characteristic polynomial χf (λ) = det(f − λ idV ) of f .

(2) Find the zeros, λ, of χf . They are the eigenvalues of f .

(3) For each eigenvalue λ compute the eigenspace Eigf (λ) = Ker(f−λ idV ) by finding
all vectors v which solve the homogeneous linear system

(f − λ idV )(v) = 0 . (19.10)
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Things are simple for diagonal matrices A = diag(a1, . . . , an) since their characteristic
polynomial equals χA(λ) = (a1−λ) · · · (an−λ). Hence, the eigenvalues are precisely the
diagonal entries ai and, provided they are pairwise different, they are non-degenerate
with eigenspaces EigA(ai) = Span(ei). (If some of the ai are the same then there is
degeneracy and the eigenspaces enhance to the span of the unit vectors in those direc-
tions.) In general, finding eigenvalues and eigenvectors is not as simple and requires a
calculation.

Problem 19.1 Computing eigenvalues and eigenvectors

Compute the eigenvalues, eigenvectors (and eigenspaces) of the linear map A : R3 → R3

defined by

A =

 1 −1 0
−1 2 −1

0 −1 1

 . (19.11)

Solution: The characteristic polynomial is

χA(λ) = det

 1− λ −1 0
−1 2− λ −1
0 −1 1− λ

 = λ(λ− 1)(λ− 3) ,

so we have three eigenvalues, λ1 = 0, λ2 = 1 and λ3 = 3. Writing v = (x, y, z)T , we compute
the eigenvectors for each of these eigenvalues in turn.

λ1 = 0 : (A− 01)v =

 1 −1 0
−1 2 −1

0 −1 1

x
y
z

 =

 x− y
−x+ 2y − z
−y + z

 !
= 0 ⇔ x = y = z

λ2 = 1 : (A− 11)v =

 0 −1 0
−1 1 −1

0 −1 0

x
y
z

 =

 −y
−x+ y − z
−y

 !
= 0 ⇔ y = 0, x = −z

λ3 = 3 : A− 31)v =

−2 −1 0
−1 −1 −1

0 −1 −2

x
y
z

 =

 −2x− y
−x− y − z
−y − 2z

 !
= 0 ⇔ y = −2x, z = x

Hence, the eigenspaces are given by EigA(λi) = Span(vi) with

v1 =

 1
1
1

 , v2 =

−1
0
1

 , v3 =

 1
−2

1

 .

They are one-dimensional so all eigenvalues are non-degenerate.

Counting in the previous exercise is rather suggestive: we have three dimensions and
three non-degenerate eigenvalues. Unfortunately, things are not always so straightfor-
ward as the following exercise shows.

Problem 19.2 (Eigenvalues and eigenvectors — more examples)



250 Basics of eigenvalues

Find the eigenvalues and eigenvectors (eigenspaces) for the linear maps R2 → R2 defined by

12 , A =

(
1 1
0 1

)
, B =

(
0 1
−1 0

)
, C =

(
2 1
1 2

)
. (19.12)

Solution: For the characteristic polynomials we find

χ12(λ) = det

(
1− λ 0

0 1− λ

)
= (1− λ)2 χA(λ) = det

(
1− λ 1

0 1− λ

)
= (1− λ)2

χB(λ) = det

(
−λ 1
−1 −λ

)
= λ2 + 1 χC(λ) = det

(
2− λ 1

1 2− λ

)
= (2− λ)2 − 1

.

The map 12 has only one eigenvalue, λ = 1, with a two-dimensional eigenspace Eig12(1) = R2.

The map A has the same characteristic polynomial as 12, so also has only one eigenvalue,
λ = 1. To find the eigenvectors we work out

(A− 12)v =

(
0 1
0 0

)(
x
y

)
!
= 0 ⇔ y = 0 .

Hence, unlike for the previous case, the eigenspace EigA(1) = Span(e1) is one-dimensional
and the eigenvalue is non-degenerate.

The characteristic polynomial for B has no zeros over R, so there are no eigenvalues. However,
if we view B as a map C2 → C2 then we have the two eigenvalues λ± = ±i and the associated
eigenvectors are determined by

λ± = ±i : (B ∓ i1)v =

(
∓i 1
−1 ∓i

)(
x
y

)
=

(
∓ix+ y
−x∓ iy

)
!
= 0 ⇔ y = ±ix

This shows both eigenvalues are non-degenerated with eigenspaces EigB(±i) = Span((1,±i)T ).

Finally, for C we have two eigenvalues λ1 = 1 and λ2 = 3 with eigenvalues determined by

λ1 = 1 : (C − 1)v =

(
1 1
1 1

)(
x
y

)
=

(
x+ y
x+ y

)
!
= 0 ⇔ y = −x

λ2 = 3 : (C − 31)v =

(
−1 1

1 −1

)(
x
y

)
=

(
x− y
x− y

)
!
= 0 ⇔ y = x

.

Both eigenvalues are non-degenerate with eigenspaces EigC(1) = Span((1,−1)T ) and EigC(3) =
Span((1, 1)T ).

19.2.4 Degeneracy and multiplicity

In Section 4.4 we have introduced various basic features of polynomials. It will help
our discussion of eigenvalues and eigenvectors to consider these for the characteristic
polynomial. First, recall that the existence of zeros and factorization of polynomials
depends on the choice of the underlying field F. That is why we have to be careful about
the field F when we discuss eigenvalues and eigenvectors, as Problem 19.2 illustrates.
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We have also seen that different values for the degeneracy of eigenvalues are possible.
However, the degeneracy can never exceed the multiplicity of the eigenvalue in the
characteristic polynomial, as we now prove.

Proposition 19.2 Let f : V → V be a linear map on a (finite-dimensional) vector
space V over F. If λ0 is a degeneracy d eigenvalue of f whose multiplicity in χf is m
then 1 ≤ d ≤ m.

Proof The eigenvalue λ0 has an associated eigenvector so it is clear that 1 ≤ d.

To proof the upper bound choose a basis (v1, . . . ,vd) of Eigf (λ0) and complete to a
basis (v1, . . . ,vd,vd+1, . . . ,vn) of V . Then f(vj) = λ0vj for j = 1 . . . d and

f(vj) =

d∑
i=1

Bijvi +

n∑
i=d+1

Cijvi ,

for j = d+1, . . . , n and suitable matrices B and C. This means the representing matrix
A for f relative to the chosen basis has the form

A =

(
λ01d B

0 C

)
⇒ χf (λ) = det(A− λ1n) = (λ− λ0)dχC(λ) .

The above result for χf means the degeneracy of λ0 is at least d, so d > m leads to a
contradiction (see Def. 4.3). It follows that d ≤ m. 2

19.2.5 Class functions

In Section 18.2.3 we have seen that the determinant is a class function — it takes the
same value on any two matrices in the same conjugacy class. It is, therefore, a property
of the underlying linear map and we have used this fact to define the determinant for
linear maps. Class functions are very important since they can tell us about properties
of matrices which are independent of the choice of basis. We should, therefore, take
note that Prop. 19.1 tells use about the existence of a whole range of class functions:
the coefficients ci in the characteristic polynomial (19.7) for f . In fact, the coefficient
c0 = det(A) is the determinant and cn = (−1)n is trivial but all other ci are new.

Of particular interest is the coefficient cn−1 in Eq. (19.7) which is proportional to
the sum of all diagonal entries. This sum is called the trace of a matrix and for
A ∈Mn,n(F) it is defined by

tr(A) :=

n∑
i=1

Aii . (19.13)

Proposition 19.3 (Properties of the trace) For matrices A,B ∈ Mn,n(F) and P ∈
GL(Fn) and scalars α, β ∈ F, the trace has the following properties.

(i) tr(αA+ βB) = α tr(A) + β tr(B) (linearity)
(ii) tr(AB) = tr(BA) (commutativity)

(iii) tr((PAP−1)k) = tr(Ak) for k = 1, 2, . . . (class function)
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Proof (i) tr(αA+ βB) =
∑
i(αA+ βB)ii = α

∑
iAii + β

∑
iBii = α tr(A) + β tr(B)

(ii) tr(AB) =
∑
i,j AijBji =

∑
i,j BjiAij = tr(BA)

(iii) For k = 1 this follows from Prop. 19.1 (iv). The general case follows from direct
calculation.

tr((PAP−1)k) = tr(PA

1n︷ ︸︸ ︷
P−1P AP−1 · · ·PAP−1) = tr(PAkP−1)

(ii)
= tr(P−1PAk) = tr(Ak)

2

Since the trace is a class function, we can define the trace of a linear map as the trace of
any of its representing matrices, in analogy with what we did for the determinant. Of
course the linearity and commutativity properties of the matrix trace from Prop. 19.3
directly transfer to the trace for linear maps. The trace is of particular importance
since it is a class function which is linear and it plays a role in many other areas
of mathematics. Also note that we have obtained an entire sequence tr(Ak), where
k = 1, 2, . . ., of class functions.

Problem 19.3 (Basis independence of determinant and trace)

Are the matrices

A =

(
1 2
−1 −3

)
, B =

(
−1 1

3 −2

)
.

related by a basis transformation?

Solution: The two matrices have the same determinant, det(A) = det(B) = −1, which is
inconclusive. However, their traces tr(A) = 1−3 = −2 and tr(B) = −1−2 = −3 are different
so the matrices are not related by a basis transformation.

19.3 The theorem of Cayley–Hamilton*

Summary 19.3 Endomorphisms f ∈ End(V ) can be inserted into polynomials p
which results in endomorphisms p(f) ∈ End(V ). The Cayley–Hamilton theorem
states that any endomorphism f inserted into its own characteristic polynomial χf
gives the zero map, so χf (f) = 0.

The Cayley–Hamilton theorem establishes a profound relationship between an endo-
morphism and its characteristic polynomial. It is, admittedly, of limited use in applica-
tions of linear algebra but needs to be covered nevertheless because of its mathematical
importance. We require a bit of preparation to formulate the statement.

19.3.1 Polyomials of endomorphisms

We start with an endomorphism f ∈ End(V ) on a vector space V over F and a
polynomial p with coefficients in F. Our goal is to make sense of the expressions p(f),
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obtained by ’inserting’ f into the polynomial. From Section 12.1.4 we know that powers
fk = f ◦ · · · ◦ f ∈ End(V ) are again endomorphisms. We also recall that End(V ) is a
vector space (see Section 12.1.3) so endomorphisms can be added and scalar multiplied.
This is really all that is required to see that the formal replacement

p(x) =

k∑
i=0

cix
i

x 7→f
−−−−−−−−→ p(f) =

k∑
i=0

cif
i (19.14)

of the polynomial’s argument x by an endomorphism f makes sense, and leads to a
new endomorphisms p(f) ∈ End(V ).

In particular, we can insert square matrices A ∈ End(Fn) into a polynomial. A useful
observation is that this process commutes with basis transformations, that is,

p(P−1AP ) = P−1p(A)P . (19.15)

This follows from

p(PAP−1) =

k∑
i=0

ci

k times︷ ︸︸ ︷
PAP−1P︸ ︷︷ ︸

= 1n

AP−1 · · ·PAP−1

=

k∑
i=0

ciPA
iP−1 = P

(
k∑
i=0

ciA
i

)
P−1 = P p(A)P−1 .

19.3.2 The minimal polynomial

For a given endomorphism f ∈ End(V ) it is natural to consider the set

If := {p ∈ P(F) | p(f) = 0} (19.16)

of polynomials for which p(f) is the zero map. It is easy to see that this set contains

non-zero polynomials. Consider the n2 + 1 linear maps f0, f1, f2, . . . , fn
2

, where n =
dimF(V ). Since dimF(End(V )) = n2 we know that these must be linearly dependent,
so there are αi ∈ F with at least one αi 6= 0 such that

n2∑
i=0

αif
i = 0 . (19.17)

This means the polynomial
∑
i αix

i is contained in If . Since If is closed under addition
and scalar multiplication of polynomials it is, in fact, a vector subspace of P(F). What
is more, if p(x) ∈ If , then q(x)p(x) ∈ If for any polynomial q(x) and this property
makes If into what is called an ideal (see, for example, Lang 2000). At first sight, If
appears to be a complicated object but it is, in fact, easily described.

Proposition 19.4 There is a unique monic polynomial µf ∈ If such that every p ∈ If
can be written as p = q µf , where q ∈ P(F).
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Proof There is a minimal non-zero degree m which arises in If . Choose a monic
polynomial µ with this degree. By polynomial division, every other polynomial p ∈ If
can be written as p = q µ+r, where det(r) < m (see Theorem 4.1). But r = p−q µ ∈ If
which contradicts degree minimality of µ, unless r = 0. Hence, every p ∈ If can be
written as p = q µ.

For uniqueness consider another monic polynomial µ̃ ∈ If with degree m. From
the earlier statement it must be a multiple µ̃ = aµ, where a ∈ F, but since both µ̃
and µ are monic it follows that a = 1. 2

The polynomial µf from this proposition is called the minimal polynomial of the
endomorphism f . The set If is now easily described as all the polynomial multiples of
the minimal polynomial µf , so

If = {q µf | q ∈ P(F)} .

19.3.3 The theorem

We have expressed the set If for f ∈ End(V ) in terms of a minimal polynomial but
we do not yet know what its degree is. Eq. (19.17) shows it is certainly less equal than
n2, where n = dimF(V ). The Cayley–Hamilton theorem states that the characteristic
polynomial of f is in If , so this tightens the upper bound on the degree of the minimal
polynomial to n.

Theorem 19.2 (Cayley–Hamilton) For f ∈ End(V ), we have χf (f) = 0.

Proof We represent f by a matrix A ∈ Mn,n(F) relative to some basis of V and
we want to proof that χA(A) = 0. To do this define the matrix M(λ) = (A− λ1n)T ,
so that det(M(λ)) = χA(λ). Its entries are polynomials in λ, linear on the diagonal,
constant otherwise. If we evaluate each of these polynomials on the matrix A, that is
replace λ by A (and constants by 1n), we get the n2 × n2 matrix:

M(A) =

 A111n −A A211n · · · An11n
...

...
...

...
A1n1n A2n1n · · · Ann1n −A

 .

This matrix has the remarkable property

v :=

 e1
...

en

 , M(A)v =

 A11e1 −Ae1 +A21e2 + · · ·An1en
...

A1ne1 +A2ne2 + · · ·Annen −Aen

 =

0
...
0

 ,

of vanishing on the above vector v. Denote by C(λ) the co-factor matrix of M(λ) so
that, from Eq. (18.21)

C(λ)TM(λ) = det(M(λ))1n = χA(λ)1n .

If we replace λ by A in this equation and let it act on v, using M(A)v = 0, we get0
...
0

 = C(λ)M(λ)v =

χA(A) · · · 0
...

...
...

0 · · · χA(A)

v =

 χA(A)e1
...

χA(A)en

 .
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This means χA(A)ei = 0 for all i = 1, . . . , n, so χA(A) vanishes on a basis. This is
only possible if χA(A) = 0. 2

An immediate conclusion form the Cayley–Hamilton theorem and Prop. 19.4 is that
the characteristic polynomial must be a multiple of the minimal polynomial, so

χf = q µf (19.18)

for q ∈ P(F). This means zeros of the minimal polynomial are zeros of the characteristic
polynomial and, hence, eigenvalues of f . More concretely, if these polynomials fully
factorize (as is always the case if F = C) then

χf (x) = (λ1 − x)m1 · · · (λk − x)mk , µf (x) = (x− λ1)s1 · · · (x− λk)sk , (19.19)

where λ1, . . . , λk are the pairwise different eigenvalues of f with multiplicities mi and
si ≤ mi. In many cases, the minimal and characteristic polynomials are equal (up to a
possible factor −1), but, as the following problem shows, this is not always the case.

Problem 19.4 (Minimal and characteristic polynomials)

Check the Cayley–Hamilton theorem for the matricesA = diag(0, 1,−1) andB = diag(−1, 1, 1)
and compare their characteristic and minimal polynomials.

Solution: We have χA(x) = x(1− x)(1 + x), so clearly χA(A) = 0. There is no factor which
can be dropped from χA while preserving the vanishing on A so in this case µA(x) = −χA(x).

For the matrix B we have χB(x) = −(x+1)(x−1)2 and χB(B) = 0 is immediate. But in this
case one factor of x− 1 can be dropped, so µB(x) = (x+ 1)(x− 1) is the minimal polynomial
since µB(B) = 0. This shows the minimal polynomial can indeed have a lower degree than
the characteristic polynomial.

We will be able to be more precise about the multiplicities si in the minimal polynomial
— and under which circumstances it differs from the characteristic polynomial — when
we discuss the Jordan normal form in Chapter 21.
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Exercises

19.1 Eigenvalues for 2× 2 matrices
Find the eigenvalues, eigenspaces and
degeneracies for the matrices

A =

(
1 2
3 1

)
, B =

(
−5 0
1 1

)
C =

(
1 −2
1 1

)
, D =

(
0 i
0 0

)
where A,B ∈ M2,2(R) and C,D ∈
M2,2(C).

19.2 Eigenvalues for real 3× 3 matrices
Find the eigenvalues, eigenspaces and
degeneracies for the linear map A :
R3 → R3 given by

A =

 4 3
2

3
2

−9 − 7
2
− 9

2

−3 − 3
2
− 1

2

 .

19.3 Eigenvalues for complex 3 × 3 matri-
ces
Find the eigenvalues, eigenspaces, and
degeneracies for the linear map A :
C3 → C3 given by

B =

 1 + i 1
2

+ i
2

1 + i
−1 + i −1 −1 + i
−1 − 1

2
− i

2
−1


19.4 Eigenvalues of a differential operator

Consider the space Vk = Pk(R) of
polynomials with degree less equal k
and the linear maps Vk → Vk given
by

D =
d

dx
, L = xD + 1 .

(a) For k = 2, find the eigenvalues
and eigenvectors of D by solving the
eigenvalue equation.
(b) For k = 2, find the representing
matrix for D relative to the monomial

basis (1, x, x2) and use this to work
out the eigenvalues and eigenvectors.
(c) Carry out the analogous tasks for
the map L.
(d) Work out eigenvalues and eigen-
vectors for D and L for arbitrary k.

19.5 Determinant in terms of traces
(a) Find a formula for the determi-
nant of matrices A ∈ M2,2(F) in
terms of tr(A) and tr(A2).
(b) Find the analogous formula for
matrices A ∈M3,3(F).

19.6 (a) Show that the characteristic poly-
nomial of a matrix A ∈ M2,2(F) can
be written as

χA(λ) = λ2 − tr(A)λ+ det(A) .

(b) Do the same for a matrix A ∈
M3,3(F) and show that

χA(λ) = −λ3 + tr(A)λ2

− 1
2
(tr(A)2 − tr(A2))λ

+det(A) .

19.7 Show that the matrices in Exer-
cise 19.1 are pairwise non-conjugate.

19.8 For the matrices B and D in Exer-
cise 19.1 explicitly verify the Cayley–
Hamilton theorem.

19.9 For a linear map f : V → V show
that, provided f is invertible,
(a) all eigenvalues of f are non-zero.
(b) if λ is an eigenvalue for f then λ−1

is an eigenvalue for f−1.
(c) Eigf (λ) = Eigf−1(λ−1).

19.10 For a linear map f : V → V prove the
following statements.
(a) If λ is an eigenvalue of f then λk

is an eigenvalue of fk.
(b) Eigf (λ) ⊂ Eigfk (λk).
(c) Give an example to show that
Eigfk (λk) can be larger than Eigf (λ).
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Diagonalizing linear maps

Probably the most important application of eigenvalues and eigenvectors is to the
diagonalization of linear maps. Unfortunately, not all linear maps can be diagonalized
so the first task is to spell out criteria for when this is possible. When it is we can
formulate an algorithm for how to carry this out and in Section 20.2 this algorithm
will be applied to a number of examples. Projectors are a class of endomorphisms with
a range of interesting applications and, as we will see in Section 20.3, they can always
be diagonalized. Sometimes, problems involve two or more linear maps and it may be
desirable to diagonalize them simultaneously. This point will be addressed in the final
section of this chapter.

20.1 Diagonalization

Summary 20.1 We say a linear map f : V → V can be diagonalized if there is
a basis of V relative to which f is described by a diagonal matrix. Not all linear
maps f : V → V can be diagonalized. This is the case if and only if there is a basis
(v1, . . . ,vn) of V which consists of eigenvectors of f , so that f(vi) = λ̂ivi. Then,

the diagonal matrix which describes f relative to this basis is Â = diag(λ̂1, . . . , λ̂n).

To be precise we start by defining what exactly we mean by saying that a linear map
or a matrix can be diagonalized.

Definition 20.1 (i) We say a linear map f : V → V can be diagonalized if there exist
a basis of V relative to which f is described by a diagonal matrix.

(ii) We say a matrix A ∈ Mn,n(F) can be diagonalized if there exists a matrix P ∈
GL(Fn) such that the basis-transformed matrix P−1AP is diagonal.

20.1.1 Basic criteria

Here is a set of criteria to decide whether a linear map can be diagonalized.

Theorem 20.1 Let f : V → V be a linear map on an n-dimensional vector space V .
The degeneracies of the pairwise different eigenvalues λi of f are denoted by di and
their multiplicity in χf by mi, where i = 1, . . . , k. Then the following statements are
equivalent.
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(i) f can be diagonalized.
(ii) There exists a basis of V which consists of eigenvectors of f .

(iii) The degeneracies sum to the total dimensions,
∑k
i=1 di = n.

(iv)
∑k
i=1mi = n (χf fully factorizes) and di = mi for i = 1, . . . , k.

(v)
⊕k

i=1 Eigf (λi) = V

Proof (i) ’⇒ (ii)’: Assume that f can be diagonalized. From Def. 20.1 there ex-
ists a basis (v1, . . . ,vn) relative to which f is described by a diagonal matrix Â =

diag(λ̂1, . . . , λ̂n). Given the general relationship (19.1) between a linear map and a

representing matrix this implies f(vj) =
∑n
i=1 Âijvi = λ̂jvj . Hence, the vi are eigen-

vectors of f with eigenvalues λ̂i and (v1, . . . ,vn) is a basis of eigenvectors.

(ii) ’⇒ (iii)’: Assume (v1, . . . ,vn) is a basis of V consisting of eigenvectors of f , so

that f(vi) = λ̂ivi. Group the eigenvalues λ̂i into pairwise distinct ones, λ1, . . . , λk,

each of which arises δi times in the list (λ̂1, . . . , λ̂n) and, hence, come with δi linearly
independent eigenvectors. The span of these eigenvectors forms a δi-dimensional vec-
tor subspace of Eigf (λi) so it follows that δi ≤ di = dimF(Eigf (λi)) and

∑k
i=1 di ≥∑k

i=1 δi = n. But since the sum of eigenspaces for different eigenvalues is direct we

also have
∑k
i=1 di ≤ n. Combining these inequalities we get the desired statement∑k

i=1 di = n (and indeed δi = di for all i = 1, . . . , k).

(iii) ’⇒ (iv)’: Assume that
∑k
i=1 di = n. Certainly,

∑k
i=1mi ≤ n, but since mi ≥ di

from Prop. 19.2, it also follows that
∑k
i=1mi ≥

∑k
i=1 di = n. Hence,

∑k
i=1mi = n, so

the characteristic polynomial fully factorizes. Given that di ≤ mi, if any di < mi then∑k
i=1 di < n, so we must have di = mi for all i = 1, . . . , k.

(iv) ’⇒ (v)’: Since the sum of eigenspaces for different eigenvalues is direct the condi-

tion
∑k
i=1 di = n implies

⊕k
i=1 Eigf (λi) = V (see Cor. 7.1 and Eq. (8.7)).

(v) ’⇒ (i)’: Given that
⊕k

i=1 Eigf (λi) = V , choose a basis for each eigenspace and

combine these into a basis (v1, . . . ,vn) of V with f(vi) = λ̂ivi for i = 1, . . . , n. (As

above, the λ̂i are the same as the eigenvalues λi but with repetitions to account for
the degeneracies.) From Eq. (19.1) the representing matrix for f relative to this basis

is the diagonal matrix Â = diag(λ̂1, . . . , λ̂n) so f can indeed be diagonalized. 2

In particular, the theorem tells us that a linear map f : V → V on an n-dimensional
vector space V can be diagonalized if it has n pairwise distinct eigenvalues. Indeed,
in this case we have mi = di = 1 for i = 1, . . . , n so that criterion (iv) is satisfied.
But also note that finding less than n distinct eigenvalues does not imply that the
linear map cannot be diagonalized — degeneracies might save the day. If multiplicities
sum to less than the dimension, so

∑k
i=1mi < n, we can definitely say from (iv) that

the map cannot be diagonalized. On the other hand, if
∑k
i=1mi = n, the map may

still not be diagonalizable since it may happen that di < mi for some i. In essence,
Theorem 20.1 says that, special cases apart, the number of eigenvalues is not the right
quantity to decide whether a map can be diagonalized but what matters is the number
of linearly independent eigenvectors.
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20.1.2 The diagonal matrix

If a map can be diagonalized we should spell out exactly what this implies.

Corollary 20.1 Relative to a basis (v1, . . . ,vn) of eigenvectors, a map f ∈ End(V )

with eigenvalues λ̂1, . . . , λ̂n is described by the matrix Â = diag(λ̂1, . . . , λ̂n). If f is
identified with a matrix A ∈ End(Fn) it is diagonalized by

Â = diag(λ̂1, . . . , λ̂n) = P−1AP where P = (v1, . . . ,vn) . (20.1)

Proof Since f(vi) = λ̂ivi, Eq. (19.1) implies that Â = diag(λ̂1, . . . , λ̂n) represents f
relative to the basis (v1, . . . ,vn). For a matrix A, the formula (20.1) follows from the
result for basis transformations, Eq. (15.14). 2

Note that the diagonal matrix which describes f has the eigenvalues as its diagonal en-
tries. Also, Eq. (20.1) is quite convenient for diagonalizing matrices. It tells us that the
diagonalizing basis transformation P is the matrix whose columns are the eigenvectors.

20.1.3 Diagonalizing and class functions

Suppose an endomorphism f ∈ End(V ) can be diagonalized with diagonal matrix Â =

diag(λ̂1, . . . , λ̂n) and eigenvalues λ̂i. Any class function from Section 19.2.5 evaluates
to the same value in any basis, including the diagonalizing one. This implies

det(f) =

n∏
i=1

λ̂i , tr(f) =

n∑
i=1

λ̂i , tr(fk) =

n∑
i=1

λ̂ki , (20.2)

so the determinant is the product and the trace is the sum of the eigenvalues (in-
cluded with degeneracies). These formulae can be useful for explicit calculations (see
Exercise 20.3).

20.2 Examples

Summary 20.2 We practice diagonalizing linear maps, including 2 × 2, 3 × 3 and
4× 4 matrices and a linear differential operator.

Before we tackle explicit examples we summarize the results be setting up an algorithm
for diagonalizing linear maps.

Algorithm (Diagonalizing linear maps) To diagonalize a linear map f : V → V where
V is an n-dimensional vector space, proceed as follows:
(1) Find the pairwise different eigenvalues λ1, . . . , λk of f and compute the eigenspace

Eigf (λi) for each.
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(2) Define the degeneracies di = dimF(Eigf (λi)). If
∑k
i=1 di < n the map f cannot

be diagonalized and there is nothing more to do. Otherwise, if
∑k
i=1 di = n holds,

f can be diagonalized.

(3) Choose a basis for each eigenspace Eigf (λi) and combine these bases into a basis

(v1, . . . ,vn) of V with f(vi) = λ̂ivi. Relative to this basis f is described by the

matrix Â = diag(λ̂1, . . . , λ̂n).

(4) If V = Fn and f is a matrix A, then Â = P−1AP , where P = (v1, . . . ,vn).

Problem 20.1 (Diagonalizing 2× 2 matrices)

Check if the 2 × 2 matrices from Exericse 19.2, seen as linear maps on R2 or C2, can be
diagonalized and, if so, find the diagonalizing basis transformation and the diagonal matrix.

Solution: The matrix 12 is already diagonal so, clearly, it can be diagonalized.

The matrix A in Eq. (19.12) has only one eigenvalue, λ = 1 with multiplicity 2, which is
non-degenerate. Hence, from Theorem 20.1 (iii) it cannot be diagonalized.

The matrix B in Eq. (19.12) has no eigenvalues over R so cannot be diagonalized in this case.
Over C it has two non-degenerate eigenvalues, λ± = ±i with eigenvalues v± = (1,±i)T , so
in this case it can be diagonalized. We already know that the diagonalized matrix must have

the eigenvalues along the diagonal, so Â = diag(i,−i). This can also be checked explicitly by
carrying out the basis transformation (20.1):

P = (v+,v−) =

(
1 1
i −i

)
, P−1BP =

1

2

(
1 −i
1 i

)(
0 1
−1 0

)(
1 1
i −i

)
= diag(i,−i) = Â .

Finally, the matrix C in Eq. (19.12) has two eigenvalues λ1 = 1, λ2 = 3 with eigenvalues
v1 = (1,−1)T and v2 = (1, 1)T . Hence, it can be diagonalized and the diagonal matrix is

Â = diag(1, 3). This can be verified by

P = (v1,v2) =

(
1 1
−1 1

)
, P−1CP =

1

2

(
1 −1
1 1

)(
2 1
1 2

)(
1 1
−1 1

)
= diag(1, 3) = Â .

Problem 20.2 (Diagonalizing a 3× 3 matrix)

Show that the matrix A ∈ End(R3) from Exercise 19.1 can be diagonalized. Find the diago-
nalizing basis transformation and the diagonal matrix.

Solution: The matrix A in Eq. (19.11) has eigenvalues λ1 = 0, λ2 = 1 and λ3 = 3 with
eigenvectors v1 = (1, 1, 1)T , v2 = (−1, 0, 1)T and v3 = (1,−2, 1)T . Since there are three dif-
ferent eigenvalues in three dimensions the matrix can be diagonalized. The diagonal matrix

is Â = diag(0, 1, 3) and this is confirmed by a basis transformation.

P = (v1,v2,v3) =

 1 −1 1
1 0 −2
1 1 1

 , P−1 =
1

6

 2 2 2
−3 0 3

1 −2 1

 ⇒ P−1AP = diag(0, 1, 3) .
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Problem 20.3 (Diagonalizing a 4× 4 matrix)

For the 4× 4 matrix A ∈ End(R4) defined by

A =

 −9 −28 7 −2
5 24 −7 2
5 28 −11 2

−18 −24 6 8


find the eigenvalues and eigenspaces. Check if A can be diagonalized and if so, find the
diagonalizing basis transformation and the diagonal matrix.

Solution: The characteristic polynomial for A is

χA(λ) = det(A− λ14) = (λ+ 4)2(λ− 8)(λ− 12) ,

so we have three eigenvalues λ1 = −4, λ2 = 8 and λ3 = 12. This is fewer eigenvalues than
the dimension of the space so to check whether A can be diagonalized we have to compute
the eigenspaces and degeneracies. Writing v = (x, y, z, u)T we have

λ1 = −4 : (A− λ114)v =

 −8 −28 7 −2
5 25 −7 2
5 28 −10 2

−18 −24 6 9


 x
y
z
u

 !
= 0 ⇔ x = u, z − u− 4y = 0

λ2 = 8 : (A− λ114)v =

−11 −28 7 −2
5 22 −7 2
5 28 −13 2

−18 −24 6 6


 x
y
z
u

 !
= 0 ⇔ 2x = −2y = −2z = u

λ3 = 12 : (A− λ114)v =

−12 −28 7 −2
5 21 −7 2
5 28 −14 2

−18 −24 6 5


 x
y
z
u

 !
= 0 ⇔ x = −y = −z, u = 0

For λ1 we have only two conditions on the vector v so the eigenspace is two-dimensional
while the other two eigenspaces are one-dimensional. If we write

EigA(−4) = Span(v1,v2) , EigA(8) = Span(v3) , EigA(12) = Span(v4)

the vectors vi can be taken as

v1 =

 4
−1

0
4

 , v2 =

 0
1
4
0

 , v3 =

 1
−1
−1

2

 , v4 =

−1
1
1
0

 .

These vectors form a basis of R4 (or, equivalently, the degeneracies of the eigenvalues sum
up to four) so the matrix A can be diagonalized. A diagonalizing matrix is

P = (v1,v2,v3,v4) =

 4 0 1 −1
−1 1 −1 1

0 4 −1 1
4 0 2 0

 , P−1 =
1

8

 3 4 −1 0
−1 −4 3 0
−6 −8 2 4
−2 8 −2 4


and it can be checked that indeed P−1AP = diag(−4,−4, 8, 12) = Â. Note that, instead of
(v1,v2), we could have chosen any other basis of the two-dimensional eigenspace EigA(−4).
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Problem 20.4 (Diagonalizing a differential operator)

It is worth discussing eigenvalues and eigenvectors for a linear map which is not defined by a
matrix. To this end, consider the vector space V = P2(R) of at most quadratic polynomials
and the differential operator

L = (1 + x)
d

dx
: V → V .

Find the eigenvalues and eigenvectors of L, check if it can be diagonalized and if so find its
diagonal representing matrix.

Solution: The first step is to work out the characteristic polynomial χL. To do this we have
to remember that the determinant of a linear map is defined to be the determinant of any of
its representing matrices. So we choose the simple monomial basis (1, x, x2) for V and work
out the representing matrix A for L, relative to this basis:

L(1) = 0
L(x) = 1 + x
L(x2) = 2x+ 2x2

 ⇒ A =

 0 1 0
0 1 2
0 0 2

 ⇒ χL(λ) = det(A−λ13) = −λ(λ−1)(λ−2) .

Hence, we have three eigenvalues, λ = 0, 1, 2, and it follows that L can be diagonalized. To
work out the eigenspaces, we first write out a general quadratic polynomial p(x) = a0 +
a1x+ a2x

2 and compute L(p)(x) = a1 + (a1 + 2a2)x+ 2a2x
2. Then, the eigenvalue equation

L(p) = λp for the three eigenvalues reads

L(p) = a1 + (a1 + 2a2)x+ 2a2x
2 =


0 λ = 0
a0 + a1x+ a2x

2 λ = 1
2a0 + 2a1x+ 2a2x

2 λ = 2

 ⇔

 a1 = a2 = 0
a0 = a1, a2 = 0
2a0 = a1 = 2a2

This means, the three eigenspaces are

EigL(0) = Span(1) , EigL(1) = Span(1 + x) , EigL(2) = Span(1 + 2x+ x2) ,

and, relative to the basis (1, 1 + x, 1 + 2x+ x2), the operator L is diagonalized and described

by the matrix Â = diag(0, 1, 2).

Example 20.1 (Discrete linear process)

Our motivational example at the beginning of the chapter was about a discrete process,
with the state xk ∈ Rn of a system at time k = 0, 1, . . . given recursively by xk+1 =
Mxk, where M ∈ Mn,n(R) is a matrix. As we have mentioned, we can write down a
formal solution

xk = Mkx0 (20.3)

but this is of little practical use unless we can evaluate the matrix powers Mk. Eigen-
values and eigenvectors can help us to do this. First, we need to assume that the matrix
M can be diagonalized, so that P−1MP = M̂ = diag(λ̂1, . . . , λ̂n) with eigenvalues λ̂i
and a suitable basis transformation P . The key point is that the same matrix P also
diagonalizes all matrix powers Mk. To see this note that

P−1MkP = P−1M PP−1︸ ︷︷ ︸
=1n

M · · ·PP−1︸ ︷︷ ︸
=1n

MP = M̂k = diag(λ̂k1 , . . . , λ̂
k
n) , (20.4)

where the unit matrix in the form PP−1 has been inserted between the factors of M
in the second step. This result also implies that the eigenvalues of Mk are λ̂ki (see



Examples 263

Exercise 19.10). Now introduce the vectors yk = P−1xk and multiply Eq. (20.3) with
P−1 from the left.

yk = P−1xk = P−1Mkx0 = P−1MkPP−1x0 = M̂ky0 .

This manoeuvre has diagonalized the equation and the components yk,i of the vector yk
can now easily be computed from yk,i = λ̂ki y0,i. If an eigenvalue λ̂i satisfies |λ̂i| < 1 then

the corresponding component yk,i will go to zero for large k. For λ̂i = 1, the component

yk,i remains constant and for |λ̂i| > 1 it grows unbounded. With yk determined, the
original variable xk can be re-covered from xk = Pyk. 2

Problem 20.5 (A specific discrete linear process)

The fractions with which two features occur in a populations are described by the components
of xk ∈ R2, were k = 0, 1, . . . is discrete time. Evolution is according to xk+1 = Mxk, where

M =
1

6

(
5 2
1 4

)
,

and, initially, only the first feature exists, so x0 = (1, 0)T . Find xk for large k.

Solution: The characteristic polynomial for M is χM (λ) = det(M −λ12) = (λ− 1/2)(λ− 1)
so we have eigenvalues λ1 = 1/2 and λ2 = 1. Associated eigenvectors are easily found to be
v1 = (1,−1)T and v2 = (2, 1)T , so that

P = (v1,v2) =

(
1 2
−1 1

)
, P−1MP =

1

18

(
1 −2
1 1

)(
5 2
1 4

)(
1 2
−1 1

)
= diag(1/2, 1) = M̂ .

The power M̂k = diag((1/2)k, 1) becomes M̂∞ = diag(0, 1) in the large k limit. Hence,

M∞ = PM̂∞P
−1 =

1

3

(
2 2
1 1

)
⇒ M∞x0 =

(
2/3
1/3

)
.

For large k the fraction of the population with the first (second) feature is 2/3 (1/3).

Application 20.1 Newton’s equation with linear forces

A common problem in classical mechanics is the motion under linear forces. Suppose, the
system is described by n coordinates q(t) = (q1(t), . . . , qn(t))T ∈ Rn which are functions of
time t ∈ R and evolve according to the differential equation

q̈ = −Mq ,

where M ∈ Mn,n(R) is an n × n matrix, and the dot indicates a time-derivative d/dt.
Solving this differential equation is complicated by the presence of the matrix M which
may be non-diagonal and may ’couple’ the n components of the equation.

We can make significant progress if we assume that M can be diagonalized, so that there is

an invertible n×n matrix P such that P−1MP = M̂ := diag(m1, . . . ,mn) and, for simplicy,
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that the eigenvalues mi ∈ R are real. (These assumption have to be checked for a given
example, but as we will see in Chapter 24 they are automatic for symmetric matrices.) If
we introduce new coordinates s = P−1q and multiply the differential equation with P−1

we find
s̈ = −PTMP︸ ︷︷ ︸

=M̂

s ⇔ s̈i = −misi for i = 1, . . . , n .

By diagonalizing M and re-writing the system in terms of the new coordinates s we have
decoupled the n components of the equation. Each component can now be solved separately
and this leads to

si(t) =

 ai sin(wit) + bi cos(wit) for mi > 0
aie

wit + bie
−wit for mi < 0

ait+ bi for mi = 0
where wi =

√
|mi| ,

and ai, bi ∈ R are arbitrary constants. To obtain the solution in terms of the original
coordinates all we have to do is work out q = P s. (In a physical context, the constants ai, bi
can be fixed by imposing initial conditions, that is, be demanding specific values for q(t0)
and q̇(t0) at a given time t0.)

An interesting observation which we would like to focus on is that the nature of the solution
depends on the signs of the eigenvalues mi of the matrix M . For a positive eigenvalue,
the solution is oscillatory, for a negative one exponential and for a vanishing one linear.
Physically, a negative or vanishing eigenvalue mi indicates an instability. In this case, the
corresponding solution for si(t) becomes large at late times (except for special choices of
the constants ai, bi). The lesson is that stability of the system can be analysed simply by
looking at the eigenvalues of M . If they are all positive, the system is fully oscillatory and
stable, if there are vanishing or negative eigenvalues the system generically ’runs away’ in
some directions.

As an explicit example, consider the coordinates q(t) = (q1(t), q2(t), q3(t))T with differential
equations

q̈1 = −q1 + q2
q̈2 = q1 − q2 + q3
q̈3 = q2 − q3

 ⇒ M =

 1 −1 0
−1 2 −1

0 −1 1

 .

This matrix M has already been studied in Exercise 20.2 (a) and we have seen that is has
three eigenvalues, m1 = 0, m2 = 1 and m3 = 3, and that it can be diagonalized. Inserting
into the above general formulae, the solution in term of the variable s is

s(t) =

 a1t+ b1
a2 sin(t) + b2 cos(t)

a3 sin(
√

3t) + b3 cos(
√

3t)


and we can rotate this to the original coordinates by q = P s with the matrix P from
Exercise 20.2 (a). We note that the system is oscillatory in the directions s2 and s3 but,
due to the vanishing eigenvalue m1 = 0, linear and, hence, unstable in the direction s1.

For another explicit case, consider two variables q(t) = (q1(1), q2(t))T with differential
equations

q̈1 = −(aq1 + bq2)
q̈2 = −(bq1 + aq2)

}
⇒ M =

(
a b
b a

)
where a, b ∈ R are parameters. The characteristic polynomial

χM (λ) = det

(
a− λ b
b a− λ

)
= (λ− a− b)(λ− a+ b) ,
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shows we have two eigenvalues, λ± = a ± b, and, hence, M can be diagonalized. For this
system to be stable both eigenvalues need to be strictly positive which is the case if and
only if a > |b|. The stable and unstable regions in the (a, b) parameter space are indicated
in the figure below.

a

b

stableunstable

This result, simple as it may be, points to an important lesson about physical systems.
Suppose that the parameters (a, b) of the system are slowly changing over time, as a result
of changes in the environment into which our system is embedded. If we start out with values
(a, b) in the stable region the system may remain stable for a long time until it reaches one of
the ’critical lines’, a = |b|. When this happens it becomes unstable and drastically changes its
behaviour from oscillatory to linear and, after crossing the line, exponential. This indicates
that physical systems can develop sudden ’catastrophic’ behaviour when external conditions
exceed certain limits.

20.3 Projectors

Summary 20.3 Projectors are endomorphisms p characterized by the relation p◦p =
p. Their eigenvalues can only be zero or one and they can always be diagonalized.
The rank of a projector equals its trace. The unique decomposition of vectors implied
by a direct sum can be phrased in terms of projectors.

20.3.1 Definition of projectors

An interesting class of endomorphism which can always be diagonalized are projectors.
Special projectors in Rn have already been considered in Example 9.1 and Applica-
tion 9.1. Projectors have many applications and are worth a closer look. We start with
their abstract definition.

Definition 20.2 An endomorphism p ∈ End(V ) with p ◦ p = p is called a projector.

A projector is also called an idempotent linear map. The intuitive idea behind the
relation p ◦ p = p is that a projection, once applied, should have no further effect.

Lemma 20.1 A projector p ∈ End(V ) has the following properties.

(i) The only possible eigenvalues of p are 0 and 1.
(ii) p|I = idI , where I = Im(p).
(iii) V = I ⊕K, where K = Ker(p).
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Proof (i) For an eigenvalue λ of p with eigenvector v we have

λv = p(v) = p ◦ p(v) = λ2v

and, since v 6= 0, it follows that λ2 = λ, so λ ∈ {0, 1}.
(ii) If w ∈ I then there exists a v ∈ V with w = p(v). Then p(w) = p◦p(v) = p(v) = w
which shows that p|I = idI .
(iii) Suppose that w ∈ I ∩K, so that w = p(v) for a v ∈ V and p(w) = 0. Then

w = p(v) = p ◦ p(v) = p(w) = 0

so it follows that I ∩K = {0}. Hence, the sum I +K is direct and since

dimF(I ⊕K)
Eq. (8.7)

= dimF(K) + dimF(I)
Eq. (14.8)

= dimF(V )

we conclude that V = I ⊕K, from Cor. 7.1. 2

20.3.2 Diagonalizing projectors

Lemma 20.1 already contains all the information we need to diagonalize a projector. In
fact, since p|I = idI and p|K = 0 it is clear that the image I = Eigp(1) is the eigenspace
for eigenvalue 1 and, as always, the kernel K = Eigp(0) equals the eigenspace for
eigenvalue 0. Therefore, V = Eigp(1)⊕Eigp(0) so Theorem 20.1 (v) implies that p can
be diagonalized.

More explicitly, since V = I ⊕ K, a basis (w1, . . .wk) of the image I and a basis
(u1, . . . ,un−k) of the kernel K combine to a basis (w1, . . .wk,u1, . . . ,un−k) of V .
Since p(wi) = wi for i = 1, . . . , k and p(ui) = 0 for i = 1, . . . , n− k the matrix which
describes p relative to this basis is

Â = diag(1, . . . , 1︸ ︷︷ ︸
k

, 0, . . . , 0︸ ︷︷ ︸
n−k

) . (20.5)

The 1’s in this matrix correspond to the image I which is projected onto, while the
0’s correspond to the kernel K. The rank of the projector which equals the dimension
of the subspace projected onto can be computed in terms of the trace as

rk(p) = rk(Â) = k = tr(Â) = tr(p) . (20.6)

We summarize these results in the following theorem.

Theorem 20.2 A projector p ∈ End(V ) can be diagonalized. If (w1, . . .wk) is a basis
of Im(p) and (u1, . . . ,un−k) is a basis of Ker(p) then (w1, . . .wk,u1, . . . ,un−k) is a
basis of V relative to which p is described by the matrix (20.5). The rank is given by
rk(p) = tr(p).

If p is a projector then so is q := idV − p since

q ◦ q = idV − 2p+ p ◦ p︸︷︷︸
=p

= idV − p = q .

It is clear that Ker(q) = Im(p) and Im(q) = Ker(p), so q is a projector with the kernel
and image exchanged, relative to p. For this reason q is also called the complementary
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projector to p. The meaning of this terminology is apparent when we write down the
matrix

B̂ = diag(0, . . . , 0︸ ︷︷ ︸
k

, 1, . . . , 1︸ ︷︷ ︸
n−k

) ,

which represents q relative to the basis where p takes the form (20.5).

To a direct sum V = W ⊕U we can always associate a projector which project onto W
and its complement which projects onto U . Indeed, from Theorem 12.1, there exists a
unique linear map pW with p|W = idW and p|U = 0. This is clearly a projector onto
W = Im(pW ) with kernel U = Ker(pW ). The complementary projector pU = idV −pW
projects onto U . With these projectors, the unique decomposition for a vector v ∈ V
implied by the direct sum (see Prop. 8.1) can be written as

v = idV (v) = (pW + pU )(v) = pW (v) + pU (v) , (20.7)

where pW (v) ∈W and pU (v) ∈ U .

Problem 20.6 (Projectors in R3)

Show that the map A ∈ End(R3) defined by

A =

 2 1 −1
−1 0 1

1 1 0


is a projector, find the dimension of the subspace it projects onto, its image and its kernel.
Write down the complementary projector B and decompose the vector v = (1, 1, 1)T as in
Eq. (20.7).

Solution: To show that A is a projector, verify that A2 = A, which is easily done. Since
tr(A) = 2 it projects onto a plane in R3. This plane is the eigenspace EigA(1) = Ker(A−13) =
Span(w1,w2), where w1 = (1, 0, 1)T and w2 = (1,−1, 0)T . On the other hand, for the kernel
one finds Ker(A) = Span(u1) with u1 = (1,−1, 1)T . Everything can be checked explicitly by
diagonalizing A.

P = (w1,w2,u1) =

 1 1 1
0 −1 −1
1 0 1

 , P−1 =

 1 1 0
1 0 −1
−1 −1 1

 ⇒ P−1AP = diag(1, 1, 0)

The complementary projector is given by

B = 13 −A =

−1 −1 1
1 1 −1
−1 −1 1

 ,

and the desired decomposition of v is v = Av + Bv, where Av = (2, 0, 2)T and Bv =
(−1, 1,−1)T .
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20.4 Simultaneous diagonalization*

Summary 20.4 Restrictions of diagonalizable linear maps to vector subspaces are
diagonalizable. Two or more linear maps are called simultaneously diagonalizable
if there exists a common basis relative to which they are represented by diagonal
matrices. Diagonalizable maps are simultaneously diagonalizable if and only if they
commute.

Being able to diagonalize a linear map or a matrix can lead to substantial simplifica-
tions. In a situation where two or more linear maps are involved, we might like to know
whether all these maps can be brought into diagonal form simultaneously. We should
be precise about what this means. We say that two endomorphisms f, g ∈ End(V ) over
a finite-dimensional vector space can be diagonalized simultaneously if there exists a
basis of V relative to which both f and g are represented by a diagonal matrix. As
we will see, this is by no means always possible, even if f and g can be diagonalized
individually. However, there is a simple criterion whose derivation requires a bit of
preparation.

20.4.1 Diagonalization of restricted maps

The following Lemma proves that restrictions of diagonalizable maps are diagonaliz-
able.

Lemma 20.2 Let V be a finite-dimensional vector space, f ∈ End(V ) a diagonalizable
endomorphisms and W ⊂ V a vector subspace with f(W ) ⊂ W . Then the restriction
f |W is diagonalizable.

Proof Let λi, where i = 1, . . . , k, be the pairwise distinct eigenvalues of f and
Wi := Eigf (λi) the associated eigenspaces. Since f can be diagonalized we know from

Theorem 20.1 (v) that V =
⊕k

i=1Wi. This means any vector w ∈ W can be written

as w =
∑k
j=1 wj , where wj ∈Wj . Since f(wj) = λjwj it follows that

f i−1(w) =

k∑
j=1

λi−1
j wj =

k∑
j=1

Aijwj where Aij = λi−1
j ,

for i = 1, . . . , k. The k × k matrix A is, in fact, of the Vandermonde type (see Ex-
ample 18.1) and, since the eigenvalues are pairwise distinct, its determinant is non-
zero. This means A is invertible and the vectors wj can be written as linear com-
binations of the vectors f i−1(w) ∈ W . It follows that wj ∈ W and, hence, that

W =
⊕k

i=1(Wi ∩W ). From Theorem 20.1 (v) this means that f |W can be diagonal-
ized. 2

20.4.2 Criterion for simultaneous diagonalization

To formulate the main criterion we recall that the commutator of two linear maps
f, g ∈ End(V ) is defined as [f, g] := f ◦ g − g ◦ f . Clearly, the two maps commute iff
the commutator vanishes.
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Theorem 20.3 Two diagonalizable linear maps f, g ∈ End(V ) on a finite-dimensional
vector space can be simultaneously diagonalized if and only if they commute, that is,
iff [f, g] = 0.

Proof ’⇒’: This is the easy direction. Suppose f, g can be simultaneously diagonal-
ized, so there is a basis (v1, . . . ,vn) of V with f(vi) = λ̂ivi and g(vi) = µ̂ivi. A short
calculation

(f ◦ g)(vi) = f(g(vi)) = f(µ̂ivi) = µ̂if(vi) = µ̂iλ̂ivi = µ̂if(vi) = (g ◦ f)(vi)

shows that f and g commute on a basis and, hence, they commute. Another way of
saying the same things is that the matrices which represent f and g relative to the
basis (v1, . . . ,vn) are both diagonal and, therefore, commute.

’⇐’: Now assume f and g can each be diagonalized and they commute. We can write
V =

⊕k
i=1Wi, where Wi = Eigf (λi) are the eigenspaces for the pairwise different

eigenvalues λi of f . Consider an eigenvector w ∈ Wi, so that f(w) = λiw. It follows
from commutativity that

f(g(w)) = g(f(w)) = f(λiw) = λig(w)

and this shows that g(Wi) ⊂Wi. In other words, the eigenspaces of f are invariant un-
der g. We know from Lemma (20.2) that the restricted maps g|Wi

can be diagonalized.
Hence, choose, for each Wi, a basis (wi1, . . . ,widi) of eigenvectors of g|Wi . Combining
these bases into a single list (w11, . . . ,w1d1 , . . . ,wk1, . . . ,wkdk) gives a basis for V
which consists of common eigenvectors of f and g. So relative to this basis f and g
are both described by diagonal matrices. 2

Note that things are much easier if the eigenvalues λi of f are all non-degenerate. In
this case, the eigenspaces Eigf (λi) are all one-dimensional. If we writeWi = Eigf (λi) =
Span(vi), then invariance of Wi under g implies that g(vi) = µ̂ivi, for some numbers
µ̂i (which are, in fact, the eigenvalues of g). So, in this case, the eigenvectors of f are
also eigenvectors of g, although for generally different eigenvalues. The situation for a
degenerate eigenspace Eigf (λ) of f is more complicated. Not every basis on Eigf (λ)
consists of eigenvector of g — we have to make the right choice.

Problem 20.7 (Simultaneous diagonalization)

Can the three matrices

A =

(
2 −1
−1 2

)
, B =

(
3 2
2 3

)
, C =

(
1 1
1 2

)
be diagonalized? Which of these matrices can be diagonalized simultaneously?

Solution: The characteristic polynomials for the three matrices are

χA(λ) = (λ− 1)(λ− 3) , χB(λ) = (λ− 1)(λ− 5) , χC(λ) = (λ− λ+)(λ− λ−) ,

where λ± = (3 ±
√

5)/2. This shows that all three matrices can be diagonalized. We could
continue computing the eigenvectors and check if a set of common eigenvectors can be found
for each two of the matrices. But it is quicker to use Theorem 20.3 and check the commutators.
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[A,B] = 0 , [A,C] 6= 0 , [B,C] 6= 0 .

Hence, A, B can be diagonalized simultaneously but not A, C or B, C.

Eigenvectors for the eigenvalues λ1 = 1 and λ2 = 3 of A are given by v1 = (1, 1)T and
v2 = (1,−1)T . Since these eigenvalues are non-degenerate we know that they must also be
eigenvectors of B and this is easy to check explicitly.

P = (v1,v2) =

(
1 1
1 −1

)
⇒ P−1AP = diag(1, 3) , P−1BP = diag(5, 1)

Problem 20.8 (Simultaneous diagonalization of differential operators)

On the space Vk of polynomials over R with degree less equal k consider the two linear
differential operators

D =
d

dx
, L = x

d

dx
.

Can D and L be diagonalized simultaneously?

Solution: Check, on an arbitrary polynomial p ∈ V , if D and L commute.

[D,L](p)(x) =
d

dx
(xp′(x))−x d

dx
(p′(x)) = p′(x)+xp′′(x)−xp′′(x) = Dp(x) ⇒ [D,L] = D

In conclusion, D and L do not commute so they cannot be simultaneously diagonalized.

Exercises

20.1 Which of the matrices in Exer-
cises 19.1, 19.2 and 19.3 can be diago-
nalized? For those which can be diago-
nalized, check your results by carrying
out the diagonalizing basis transforma-
tions explicitly.

20.2 (a) Diagonalize the matrix A from Ex-
ercise 19.2 by performing a basis trans-
formation.
(b) Do the same for the matrix B from
Exercise 19.3.

20.3 A matrix A ∈ M2,2(F) can be diago-
nalized. Find formulae for its eigenval-
ues λ1 and λ2 in terms of tr(A) and
det(A).

20.4 Show that the linear map A : C3 → C3

given by

A =

 1 1 0
0 0 1
0 0 0


cannot be diagonalized.

20.5 The linear map f : R3 → R3 is defined
by

f(v) = α(n · v)n + β(v − (n · v)n)) ,

where n ∈ R3 is a unit vector and
α, β ∈ R. Show that f can be diagonal-
ized, find its eigenvalues, eigenspaces
and associated diagonal matrix. Inter-
pret the map geometrically.

20.6 Which of the matrices



Exercises 271

A =

(
2 −4
3
4
−2

)
, B =

(
− 1

2
1

1 1

)
C =

(
7
2
−6

9
8
− 5

2

)
, D =

(
5
2

2
− 3

8
9
2

)
can be simultaneously diagonalized?

20.7 Assume f ∈ End(V ) is diagonalized
relative to a basis (v1, . . . ,vn) with di-

agonal matrix Â = diag(λ1, . . . , λn).
Prove the following statements.
(a) If f−1 exists it is diagonalized rel-
ative to the basis (v1, . . . ,vn) with di-

agonal matrix Â−1 = (λ−1
1 , . . . , λ−1

n ).
(b) If p is a polynomial then p(f)
is diagonalized relative to the ba-
sis (v1, . . . ,vn) with diagonal matrix

p(Â) = diag(p(λ1), . . . , p(λn)).
(c) Use part (b) for a simple proof of
the Cayley–Hamilton theorem for lin-
ear maps which can be diagonalized.

20.8 Consider an endomorphism f ∈
End(V ) with f ◦ f = idV . Show that
(a) the only eigenvalues of f are ±1.
(b) f can be diagonalized

with diagonal matrix Â =
diag(1, . . . , 1,−1 . . . ,−1).
(c) the degeneracy of the eigenvalues
±1 equals 1

2
(dimF(V )± tr(f)).

20.9 Stability of linear Newton type equa-
tions
Discuss the stability of the solutions
q(t) = (q1(t), q2(t), q3(t))T to the sys-
tem of differential equations

q̈1 = −(aq1 + q2)
q̈2 = −(q1 + aq2 + q3)
q̈3 = −(q2 + aq3)

as a function of the parameter a ∈ R.
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The Jordan normal form*

We have seen in the previous chapter that not all linear maps can be diagonalized.
The Jordan normal form is the ’next best thing’ if diagonalization is not possible —
it leads to a representing matrix which is quite close to being diagonal.

Throughout this chapter, we will be working with endomorphisms f ∈ End(V ) on a
n-dimensional vector space V over F and pairwise different eigenvalues λ1, . . . , λk with
multiplicities mi. We also assume that the characteristic polynomial fully decomposes,
so
∑k
i=1mi = n. As we will show, the Jordan normal form of f is an n × n block-

diagonal matrix of the form


J̃1 0 · · · 0

0 J̃2 · · · 0
...

...
. . .

...

0 0 · · · J̃k

 with J̃i =


λi ∗ 0 · · · 0
0 λi ∗ · · · 0
...

...
. . .

. . .
...

0 0 0 λi ∗
0 0 0 0 λi

 . (21.1)

The mi ×mi blocks J̃i contain the eigenvalues λi on the diagonal, the starred entries
above the diagonal represent either 0 or 1 and all other entries are zero. Clearly,
eigenvalues play a central role for the Jordan normal form as much as they do for
diagonalization.

Given we assume that the characteristic polynomial fully decomposes, the potential
obstruction to diagonalization is that some degeneracies di = dimF(Eigf (λi)) may
be smaller than their maximal possible value mi. When this happens the eigenspace
Eigf (λi) = Ker(f − λi idV ) contains too few eigenvectors and, as a result, a basis of
eigenvectors cannot be found. The Jordan normal form is based on the simple idea of
replacing the eigenspaces by the generalized eigenspaces

Wi = Ker((f − λi idV )mi) . (21.2)

Taking a power of the map f − λi idV potentially increases the size of the kernel and,
as it turns out, it does so precisely as required so that dimF(Wi) = mi. But there is
a price to pay — the appearance of a nilpotent map — which manifests itself in the
non-vanishing entries above the diagonal in Eq. (21.1).

While the basic idea is simple, deriving the Jordan normal form requires a bit of prepa-
ration, particularly on powers of endomorphisms and nilpotent maps, which makes the
story somewhat more complicated than most of what we have seen so far.
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21.1 Nilpotent endormorphisms*

Summary 21.1 Endomorphisms ν ∈ End(V ) are called nilpotent if νq = 0 for some
positive integer q. There exists a basis of V relative to which a nilpotent endomor-
phism is represented by a simple matrix with 0 or 1 in the entries just above the
diagonal and zero everywhere else.

21.1.1 Powers of endomorphisms

Our first step is to look at the structure which emerges from taking powers gr of an
endomorphism g ∈ End(V ) on an n-dimensional vector space V . Eventually, in view of
Eq. (21.2), we will apply the results to endormorphisms of the form g = f −λi idV but
for now we keep g general. The powers of g induce ascending and descending chains
of kernels and images of the form

{0} ⊂ Ker(g) ⊂ Ker(g2) ⊂ · · · ⊂ Ker(gr) ⊂ · · ·
V ⊃ Im(g) ⊃ Im(g2) ⊃ · · · ⊃ Im(gr) ⊃ · · · . (21.3)

Since we are working in a finite-dimensional vector spaces the kernels in the above
chain cannot increase forever, so the lowest power

q = min{r |Ker(gr) = Ker(gr+1)} (21.4)

for which the kernel does not increase is well-defined. More importantly, once the
kernel has staid the same from one step to the next it remains constant thereafter, as
the following lemma shows.

Lemma 21.1 For an endomorphism g ∈ End(V )on an n-dimensional vector space
V , define K = Ker(gq) and I = Im(gq), with q as in Eq. (21.4). Then we have the
following statements:

(i) Ker(gr) = K and Im(gr) = I for all r ≥ q.
(ii) dimF(K) ≥ q.
(iii) V = K ⊕ I.

Proof (i) We show mutual inclusion of the two sets. For r ≥ q we have K ⊂ Ker(gr)
from Eq. (21.3). On the other hand, from the definition of q in Eq. (21.4), we know
that gq+1(v) = 0 for v ∈ V implies gq(v) = 0. Applying this statement r − q times
shows that gr(v) = 0 implies gq(v) = 0, so that Ker(gr) ⊂ K.

Since the dimensions of Ker(gr) and Im(gr) have to sum up to dimF(V ) for every
r it is clear that Im(gr) must remain constant when Ker(gr) does, so for r ≥ q.
(ii) Given the definition of q, Eq. (21.4), every step in the kernel chain (21.3) must
increase the dimension by at least one. This implies the claim.

(iii) Suppose v ∈ K ∩ I, so that gqv = 0 and v = gqw for some w ∈ V . It follows
that g2qw = 0 and, hence, from (i), that w ∈ Ker(g2q) = K. This means that
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0 = gq(w) = v and we conclude that K ∩ I = {0}. Hence, the sum K + I is direct.
Since K ⊕ I ⊂ V and

dimF(K ⊕ I)
(8.7)
= dimF(K) + dimF(I)

(14.13)
= dimF(V )

it follows from Cor. 7.1 that K ⊕ I = V . 2

So, in essence, the kernel and image chains (21.3) become constant after q steps and,
from thereon, kernel and image of gr for r ≥ q directly sum to the total vector space.

21.1.2 Definition of nilpotentency

How would you define an endomorphism which is close to the zero endomorphism but
is not quite equal to it? One possible answer to this question leads to the following
definition of nilpotent endomorphisms.

Definition 21.1 (Nilpotent endomorphisms) An endomorphism ν ∈ End(V ) is called
nilpotent if there exists a positive integer r such that νr = 0. The smallest such r is
called the order of the nilpotent endomorphism.

Problem 21.1 (Nilpotent endomorphisms)

On a vector space V with basis (v1, . . . ,vp) define an endomorphisms f ∈ End(V ) by f(vi) =
vi−1, for i = 1, . . . , p, adopting the convention that vi = 0 for i < 1. Show that f is nilpotent
of order p and find the matrix Np which represents f relative to the basis (v1, . . . ,vp). For
the case p = 4, work out N4, N 2

4 , N 3
4 and N 4

4 .

Solution: Since fr(vi) = vi−r (with vi = 0 for i < 1) it follows that fp = 0 and this is the
smallest integer for which this happens. Since f(vi) = vi−1 the representing matrix is

Np = (0, e1, e2, . . . , ep−1) =


0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
. . .

. . .
...

...
0 0 0 · · · 1 0
0 0 0 · · · 0 1
0 0 0 · · · 0 0

 . (21.5)

In the four-dimensional case, n = 4, the matrix N4 and its powers are

N4 =

 0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 , N 2
4 =

 0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 , N 3
4 =

 0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

 , N 4
4 =

 0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 .

Since the order of the nilpotent map is n = 4, the result N 4
4 = 0 was, of course, expected.

However, it is instructive to see how the non-zero diagonal ’propagates’ towards the upper
right of the matrix as successive powers are taken, until it disappears.

Comparison of the above matrices with Eq. (21.1) indicates why nilpotent maps are
relevant for the Jordan normal form — they encode the degree to which the linear map
cannot be diagonalized.
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21.1.3 Structure of nilpotent endomorphisms

To get to the Jordan normal form we need to construct a basis which leads to a simply
representing matrix for nilpotent endomorphisms. In fact, Example 21.1 is not too far
away from the general case, as the following theorem shows.

Theorem 21.1 (Nilpotent endomorphisms) Let ν ∈ End(V ) be a nilpotent endomor-
phisms of order q on an n-dimensional vector space V . Then there exists a basis of V
relative to which ν is represented by a block-matrix,

N̂ = diag(Nq, . . . ,Nq︸ ︷︷ ︸
rq

,Nq−1, . . . ,Nq−1︸ ︷︷ ︸
rq−1

, . . . ,N1, . . . ,N1︸ ︷︷ ︸
r1

) (21.6)

with the matrices Np from Eq. (21.5) appearing with multiplicity rp along the diagonal
and

∑q
p=1 p rp = n.

Proof Our task is to construct the relevant basis. As before, we define the kernels
Kp = Ker(νp) for p = 0, . . . , q. From their definition, these kernels satisfy ν(Kp) ⊂
Kp−1 and Kq−1 ⊂ Kq, so that we have chains

V = Kq
ν−→ Kq−1

ν−→ · · · ν−→ K1
ν−→ K0 = {0}

V = Kq ⊃ Kq−1 ⊃ · · · ⊃ K1 ⊃ K0 = {0} .

The right basis is obtained by focusing on the ’difference’ between two successive
kernels, so we write

Kq = Kq−1 ⊕ Uq , (21.7)

for some suitable vector subspace Uq. An element u ∈ Uq must satisfy νq−1(u) 6= 0
(because otherwise it would be in Kq−1), so for its image v = ν(u) we have νq−2(v) =
νq−1(u) 6= 0. This means that v /∈ Kq−2 so that ν(Uq)∩Kq−2 = {0}. This means that
we write Kq−1 = Kq−2 ⊕ Uq−1 for a suitable subspace Uq−1, such that ν(Uq) ⊂ Uq−1.
Moreoever ν|Uq

is injective since Uq has a trivial intersection with K1 = Ker(ν).

We can repeat this process of constructing the spaces Up to end up with the structure

Uq
ν−→ Uq−1

ν−→ · · · ν−→ U1 = Ker(ν) , V = U1 ⊕ · · · ⊕ Uq , (21.8)

and all the maps ν|Up
are injective. If we define the dimensions dq = dimF(Uq) and

start by selecting a basis (u1, . . . ,udq ) of Uq, the images ν(u1), . . . , ν(udq ) are linearly
independent (since ν|Up

is injective and with Cor. 14.1) and can be completed to a
basis of Uq−1. We can continue in this way, recursively constructing a basis for all
subspaces Up, by completing the images of the Up+1 basis vectors to a basis for Up.
The resulting list of basis vectors looks as follows:

Uq u1 , . . . , udq
Uq−1 ν(u1) , . . . , ν(udq ) , udq+1 , . . . , udq−1

...
...

...
...

...
...

...
U1 νq−1(u1) , . . . , νq−1(udq ) , νq−2(udq+1) , . . . , νq−2(udq−1

) · · ·

(21.9)

There are rq = dq columns with length q each of which, with the basis vectors ordered
from bottom to top, gives rise to a matrix Nq. The next rq−1 = dq−1 − dq columns,
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with length q − 1, each leads to a matrix Nq−1 and so forth. The number rp of p× p
blocks can be determined by writing Kp = Kp−1 ⊕Up = Kp−1 ⊕ ν(Up+1)⊕Rp, where
Rp is the space spanned by the additional basis vector which have to be added to
complete to a basis of Up. It follows that

rp = dimF(Rp) = dimF(Kp)− dimF(Kp−1)− dim(Up+1) . (21.10)

2

The above proof contains an algorithm to work out the normal form of a nilpotent
endomorphism which is worth summarizing.

Algorithm (Normal form of a nilpotent endomorphism)

To find the normal form of a nilpotent endomorphism ν ∈ End(V ) proceed as follows:

(1) Work out the powers νp and find the order, q, of ν (the smallest integer p such
that νp = 0).

(2) Compute the kernels Kp = Ker(νp) for p = 1, . . . , q.

(3) Determine the subspaces Up with Kp = Kp−1 ⊕ Up and ν(Up) ⊂ ν(Up−1) for
p = 1, . . . , q.

(4) Choose a basis for Uq and bases for Up with p < q such that the images under ν
of the Up basis vectors are basis vectors of Up−1, as indicated in Eq. (21.9).

(5) Combine the Up bases from (4) into a single basis of V , with the ordering as
indicated below Eq. (21.9). Relative to this basis ν is described by the normal
form (21.6).

(6) In order to find the explicit normal form either work out ν relative to the basis
from (5) or compute the multiplicities rp of the various block sizes in Eq. (21.6)
from Eq. (21.10).

21.1.4 Examples

Problem 21.2 (Normal form of a nilpotent endomorphism)

Show that the endomorphism N ∈ End(R4) given by

N =

−2 −3 −5 −6
−1 −1 −2 −2

0 −1 −1 −2
1 2 3 4


is nilpotent of order 3. Find the normal form (21.6) of N and the associated basis (21.9).

Solution: (1) We begin by working out the powers of N .

N =

−2 −3 −5 −6
−1 −1 −2 −2

0 −1 −1 −2
1 2 3 4

 , N2 =

 1 2 3 4
1 2 3 4
−1 −2 −3 −4

0 0 0 0

 , N3 =

 0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


which shows that N is nilpotent of order 3.
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(2) It is straightforward to work out the kernels Kp = Ker(Np) by solving the homogeneous
linear systems Npv = 0. The result is

K1 = Span(2e2−e4, e1 +e2−e3) , K2 = Span(2e2−e4, e1 +e2−e3, 2e2−e4) , K3 = R4 .

(3) Next we should work out the ’difference subspaces’ Up which satisfy Kp = Kp−1⊕Up. To
satisfy K3 = K2 ⊕ U2 we can choose U2 = Span(e1). The space U1 in K2 = K1 ⊕ U1 must
contain the vector Ne1 = −2e1 − e2 + e4 and is, in fact spanned by this vector and we have
U1 = K1.

(4) So, writing down the basis vectors as in Eq. (21.9) gives

U3 e1

U2 Ne1 = −2e1 − e2 + e4

U1 N2e1 = e1 + e2 − e3, 2e2 − e4 .

(5) Arranging these into a basis, proceeding from bottom to top and left to right, we have

P = (N2e1, Ne1, e1, 2e2 − e4) =

 1 −2 1 0
1 −1 0 2
−1 0 0 0

0 1 0 −1

 ⇒ P−1 =

 0 0 −1 0
0 1 1 2
1 2 3 4
0 1 1 1

 .

(6) This matrix brings N into the normal form via a basis transformation, as can be checked
explicitly.

P−1NP = diag(N3,N1) =

 0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0


For the multiplicities of the various block sizes this mean (r3, r2, r1) = (1, 0, 1), a result which
can also be easily obtained by inserting the dimensions of Kp and Up into Eq. (21.10).

Problem 21.3 (A nilpotent differential operator)

On the space V = P2(R) of at most quadratic polynomials, consider the linear differential
operator D = d/dx. Show that D is nilpotent with order 3 and find its normal form (21.6).

Solution: (1) For a general quadratic polynomial p(x) = a2x
2 + a1x+ a0 we have

Dp(x) = 2a2x+ a1 , D2p(x) = 2a2 , D3p(x) = 0 .

(2, 3) Hence, the kernels Kp = Ker(Dp) and the spaces Up in Kp = Kp−1 ⊕ Up are given by

K1 = Span(1) K2 = Span(1, x) K3 = Span(1, x, x2)
U1 = Span(1) U2 = Span(x) U3 = Span(x2)

(4, 5, 6) The adapted basis (21.9) is then (D2(x2) = 2, D(x2) = 2x, x2) and the matrix
representing D relative to this basis

N =

 0 1 0
0 0 1
0 0 0


is of the expected normal form with multiplicities (r3, r2, r1) = (1, 0, 0).
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21.2 The Jordan form*

Summary 21.2 The decomposition theorem states that, for any endomorphism f ∈
End(V ), the generalized eigenspaces Wi of f are invariant under f and directly sum to
V . In each generalized eigenspace Wi with eigenvalue λi the map νi := (f−λi id)|Wi

is
nilpotent. Combining these facts with the normal form for nilpotent endomorphisms
leads to the Jordan normal form. The Jordan normal form is close to a diagonal
matrix, with the eigenvalues λi in the diagonal, entries 0 or 1 in the entries above
the diagonal and zeros everywhere else.

21.2.1 The decomposition theorem

We are now ready to proof the crucial decomposition theorem which splits the vector
space into the generalized eigenspaces (21.2).

Theorem 21.2 Let f ∈ End(V ) be an endomorphism on an n-dimensional vector
space, λ1, . . . , λk its pairwise different eigenvalues with multiplicities mi satisfying∑k
i=1mi = n and Wi = Ker((f − λi idV )mi) the generalized eigenspaces. Then we

have the following statements for all i = 1, . . . k.

(i) f(Wi) ⊂Wi

(ii) The maps νi := (f − λi id)|Wi
are nilpotent of order qi ≤ mi.

(iii) dimF(Wi) = mi

(iv) V = W1 ⊕ · · · ⊕Wk

(v) f can be written as f = h+ ν, where h ∈ End(V ) can be diagonalized
and ν ∈ End(V ) is nilpotent.

Proof (i) A vector v ∈Wi satisfies (f − λi idV )mi(v) = 0 and, hence,

0 = f((f − λi idV )mi(v)) = (f − λi idV )mi(f(v))

so that f(v) ∈Wi. It follows that f(Wi) ⊂Wi.

(ii) The definition of Wi implies that νmi
i = 0, so νi is nilpotent of order qi ≤ mi.

(iii) Set di := dimF(Wi) and, from (iii), write f |Wi = λi idWi+νi. This means that there
is a suitable basis of Wi where the matrix representing f |Wi

has λi along the diagonal,,
from the normal form (21.6) of nilpotent maps, 0 or 1 above the diagonal and zero
everywhere else. Taking the determinant, this implies for the characteristic polynomial
that χf (λ) = (λ − λi)di χ̃(λ), where χ̃ is the remaining part of χf . Since χf cannot
have more that mi factors of λ−λi is follow that di ≤ mi. If we apply Lemma 21.1 to
g = f − λi idV it follows that V = Wi ⊕ I and χf (λ) = (λ − λi)diχf |I (λ). If di < mi

at least one factor of λ− λi must reside in χf |I , implying at least on eigenvector with
eigenvalue λi in I. However, this is a contradiction since all such eigenvectors must be
in Wi and we conclude that di = mi.

(iv) We want to show that Wi∩Wj = {0} for i 6= j. If v ∈Wi∩Wj is follows from (ii)
that f(v) = λiv + νi(v) and f(v) = λjv + νj(v). Combining these two equations and
taking the mth power gives (λi− λj)m(v) = (νj − νi)m(v) and for sufficiently large m
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the right-hand side vanishes due to nilpotency of νi and νj . Since λi 6= λj it follows
that v = 0. Hence, the sum W1 ⊕ · · · ⊕Wk is direct. Since

dimF(W1 ⊕ · · · ⊕Wk) =

k∑
i=1

dimF(Wi) =

k∑
i=1

mi = n ,

it follows that W1 ⊕ · · · ⊕Wk = V .

(v) From (iv) every v ∈ V can be written as v =
∑k
i=1 wi with wi ∈ Wi in a unique

way. Then, the map h ∈ End(V ) defined by h(v) =
∑k
i=1 λiwi can be diagonalized.

On the other hand, ν ∈ End(V ) defined by ν(v) =
∑k
i=1 νi(wi) is nilpotent and, from

(ii), we have f = h+ ν. 2

21.2.2 The theorem

This previous theorem tells us every endomorphism can be written as a sum of a
diagonalizable and a nilpotent endomorphism. Combining these statements with the
normal form for nilpotent maps from Theorem 21.1 leads to the Jordan normal form.

Theorem 21.3 (Jordan normal form) Let f ∈ End(V ) be an endomorphism on an
n-dimensional vector space and λ1, . . . , λk its pairwise different eigenvalues with mul-
tiplicities mi satisfying

∑k
i=1mi = n. Then there exists a basis of V relative to which

f is represented by a block matrix

Â = diag(λ11m1 + N̂1, . . . , λk1mk
+ N̂k) , (21.11)

where each N̂i is a mi ×mi nilpotent matrix of the normal form (21.6).

Proof From Theorem 21.2 we can write V as a direct sum V = W1⊕· · ·⊕Wk of the
generalized eigenspaces Wi and f |Wi

= λi idWi
+ νi with νi nilpotent for i = 1, . . . , k.

On each generalized eigenspace Wi we choose the basis (w
(i)
1 , . . . ,w

(i)
mi), for which νi is

represented by a matrix N̂i in the standard form (21.6), as explained in Theorem 21.1.

These bases are combined into a single basis (w
(1)
1 , . . . ,w

(1)
m1 , . . . ,w

(k)
1 , . . . ,w

(k))
mk ) of V

and relative to this basis f is represented by the matrix (21.11). 2

Each block λi1mi
+ N̂i of the matrix (21.11) splits into smaller blocks of the form

λi1p +Np =


λi 1 0 · · · 0 0
0 λi 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · λi 1
0 0 0 · · · 0 λi

 , (21.12)

where Np are the matrices (21.5). Their sizes p are determined by the structure of the

nilpotent map N̂i, as in Eq. (21.6) and they are in the range p = 1, . . . , qi, each with
multiplicity ri,p and qi the order of the nilpotent map N̂i. Of course the largest block
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with size, qi, appears at least once, ri,qi > 0, since this block determines the order of

N̂i. In addition, in order to match dimensions we must have

mi =

qi∑
p=1

ri,p p . (21.13)

The p× p matrices in Eq. (21.12) are also called Jordan blocks.

Evidently, the Jordan normal form (21.11) is an ’almost diagonal’ form with the eigen-
values along the diagonal, the entries just above the diagonal 0 or 1 and all other entries
vanishing.

21.2.3 Implications of Jordan normal form

The Jordan normal form allows us to generalize the formulae (20.2) for the determi-
nant and trace in terms of the eigenvalues to all linear maps. For any endormorphism
f ∈ End(V ) with eigenvalues λ̂1, . . . , λ̂n (listed with multiplicity) we have (see Exer-
cise 21.5)

tr(fk) =

n∑
i=1

λ̂ki , det(f) =

n∏
i=1

λ̂i . (21.14)

Problem 21.4 Eigenvalues in terms of trace and determinant

Find a formula for the eigenvalues λ̂± of a 2 × 2 matrix A ∈ M2,2(C) in terms of the trace
and the determinant. Use the result to compute the eigenvalues of

B =

(
2 −3
1 4

)
.

Solution: Eq. (21.14) implies that λ̂+ + λ̂− = tr(A) and λ̂+λ̂− = det(A). Solving these two

equations for λ̂± gives

λ̂± =
1

2

(
tr(A)±

√
tr(A)2 − 4 det(A)

)
.

For the explicit matrix B we have tr(B) = 6, det(B) = 11 and inserting this into the above

formula gives λ̂± = 3± i
√

2.

The Jordan normal form also leads to a more specific statement about the minimal
polynomial.

Corollary 21.1 The minimal polynomial µf of an endomorphism f ∈ End(V ) is
given by

µf (x) = (λ1 − x)q1 · · · (λk − x)qk , (21.15)

where λi are the pairwise different eigenvalues of f and qi are the orders of the nilpotent
matrices N̂i which appear in the Jordan normal form 21.11.
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Proof We know from Eq. (19.19) that the minimal polynomial must be of the form
p(x) = (x − λ1)s1 + · · · (x − λk)sk with multiplicities si ≤ mi. Inserting the Jordan
normal form (21.11) leads to

p(A) = (A− λ11n)s1 · · · (A− λk1n)sk

= diag

Ns1
1

∏
i 6=1

((λ1 − λi)1m1 −Ni)si , · · · ,
∏
i 6=k

((λk − λi)1mk
−Ni)siNsk

k

 .

This matrix vanishes iff every block vanishes and since the matrices (λj −λi)1mj
−Ni

for i 6= j are invertible this is the case iff all Nsi
i = 0. The smallest powers si for which

this happens are the nilpotent orders qi of the matrices Ni. 2

An easy conclusion is this new criterion for an endomorphism to be diagonalizable.

Corollary 21.2 The endomorphism f ∈ End(V ) can be diagonalized iff all zeros of
the minimal polynomial have multiplicity one.

Proof If f can be diagonalized to a matrix Â = diag(λ11m1
, . . . , λk1mk

), then in-

serting into Eq. (21.15) shows that µf (Â) = 0 for all qi = 1. Conversely, if all qi = 1,

then all N̂i are nilpotent of order one, that is, N̂i = 0. From Eq. (21.11) this means
the Jordan normal form is, in fact, diagonal and, hence, f can be diagonalized. 2

21.3 Examples*

Algorithm (Jordan normal form)

Let f ∈ End(V ) be an endomorphism on an n-dimensional vector space whose char-
acteristic polynomial fully decomposes. To find the Jordan normal form of f proceed
as follows.

(1) Compute the characteristic polynomial χf and find the pairwise different eigen-
values λi and their multiplicities mi, where i = 1, . . . , k.

(2) Compute the generalized eigenspaces Wi = Ker((f − λi idV )mi).

(3) For each nilpotent map νi := f |Wi−λi idWi find the basis (w
(i)
1 , . . . ,w

(i)
mi) relative

to which νi is described by a matrix N̂i in the normal form (21.6).

(4) Combine the bases from (3) into a single basis (v1, . . . ,vn) of V . Relative to this
basis f is described by the matrix Â = diag(λ11m1

+ N̂1, . . . , λk1mk
+ N̂k).

(5) If f ∈ End(Fn) is given by matrix A then the Jordan normal form can be achieved
by the basis transformation Â = P−1AP , where P = (v1, . . . ,vn).

Problem 21.5 (Jordan normal form for a 3× 3 matrix)

Compute the Jordan normal form for the endomorphism A ∈ End(R3) given by

A =

 4 −3 −2
1 1 −1
0 −1 2

 .

Solution: (1) We have χA(λ) = −(λ− 3)(λ− 2)2 so that we have k = 2 eigenvalues, λ1 = 3
and λ2 = 2 with multiplicities m1 = 1 and m2 = 2.
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(2) Solving (A−313)v = 0 gives W1 = Span(v1) with v1 = (1, 1,−1)T . Solving (A−213)v =
0 gives the one-dimensional eigenspace EigA(2) = Span(v2) with v2 = (−1, 0,−1)T . Hence,
A cannot be diagonalized — there is no basis of eigenvectors. To find W2 we have to solve
(A− 213)2v = 0 and this leads to W2 = Span(v2,v3), where v3 = (1, 1, 0)T .

(3) Since W1 is one-dimensional the nilpotent map on this subspace is trivial and we can use
(v1) as a basis. For W2 we define the nilpotent map N2 = A− 212 and compute

K1 = Ker(N2) = Span(v2) K2 = Ker(N2
2 ) = W2 = Span(v2,v3)

U1 = K1 = Span(v2) U2 = Span(v3)

Since N2v3 = v2 we know that (v2,v3) is the correct basis on W2, which leads to the normal
form for N2.

(4) The correct basis is then

P = (v1,v2,v3) =

 1 −1 1
1 0 1
−1 −1 0

 ⇒ P−1 =

 0 1 1
1 −2 −1
1 −1 −1


and the Jordan normal form for A is

P−1AP = diag(3, 212 + J2) =

 3 0 0
0 2 1
0 0 2

 .

Problem 21.6 (Jordan normal form for a differential operator)

On the space V = P3(R) of at most cubic polynomials find the Jordan normal form for the
linear differential operator

L = x2 d
2

dx2
+

d

dx
.

Solution: (1) To compute the characteristic polynomial we represent L relative to the stan-
dard monomial basis (1, x, x2, x3). With

L(1) = 0 , L(x) = 1 , L(x2) = 2x3 + 2x , L(x3) = 6x3 + 3x2

the representing matrix is

A =

 0 1 0 0
0 0 2 0
0 0 2 3
0 0 0 6

 ⇒ χL(λ) = det(A− λ14) = λ2(λ− 2)(λ− 6) .

Hence, we have k = 3 eigenvalues, λ1 = 0, λ2 = 2 and λ3 = 6, with multiplicities m1 = 2,
m2 = 1, and m3 = 1. The eigenspace for λ1 = 0 is EigL(0) = Span(e1), so the degeneracy
d1 = 1 of this eigenvalue is smaller than its multiplicity m1 = 2. This shows that L cannot
be diagonalized and we should proceed to computing the Jordan normal form.

(2) To find the generalized eigenspaces Wi = Ker((L−λi idV )mi) we write down their defining
equations for a general cubic p(x) = a3x

3 + a2x
2 + a1x+ a0

L(p)(x) = 6a3x
3 + (2a2 + 3a3)x2 + 2a2x+ a1

!
= λ(a3x

3 + a2x
2 + a1x+ a0) , λ = 2, 6

L2(p)(x) = 36a3x
3 + (4a2 + 24a3)x2 + (4a2 + 6a3)x+ 2a2

!
= 0 , λ = 0
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Inserting the different eigenvalues and comparing monomial coefficients gives

W1 = Span(1, x) , W2 = Span(x2 + x+ 2) , W3 = Span(24x3 + 18x2 + 6x+ 1) .

(3) There is nothing to do for the one-dimensional eigenspaces W2 and W3. For W1 we should,
in principle, apply the procedure to bring the nilpotent map ν1 = L|W1 into standard form,
but the upper 2× 2 block of above matrix A shows that the monomial basis (1, x) is already
the appropriate basis for W1.

(4) The complete basis is then (1, x, x2 + x + 2, 24x3 + 18x2 + 6x + 1) and, relative to this
basis, L is represented by

Â =

 0 1 0 0
0 0 0 0
0 0 2 0
0 0 0 6

 .

Exercises

21.1 Nilpotent matrix
Show that the map N : R4 → R4 with

N =

−5 6 2 −11
2 −2 −1 4
−9 12 3 −21

2 −2 −1 4


is nilpotent of order three and find its
normal form.

21.2 Jordan normal form for 3× 3 matrix
Find the Jordan normal form for the
linear map A : R3 → R3 with

A =

 4
3
− 2

3
−1

− 5
6

8
3
− 1

2

− 2
3

4
3

1

 .

21.3 Jordan normal form for 3× 3 matrix
Find the Jordan normal form for the
linear map B : R3 → R3 with

B =

 10 −6 4
11 −6 6
−1 1 2

 .

21.4 Jordan normal form for 4× 4 matrix
Find the Jordan normal form for the

linear map A : R4 → R4 with

A =


5 − 8

3
2
3

1
3

7
2
− 17

6
− 1

6
− 7

3
5
2
− 5

6
− 1

6
8
3

− 5
2

5
2

5
2

4

 .

21.5 (a) Let A and B be upper triangular
matrices with diagonal entries ai and
bi. Show that AB is upper triangular
with diagonal entries aibi.
(b) Use the result from part (a) to
prove Eqs. (21.14).

21.6 Newton type equations and Jordan nor-
mal form
The functions

q(t) = (q1(t), q2(t), q3(t))T

satisfy the differential equation q̈ =
Aq, where A is the matrix from Exer-
cise 21.2. Discuss how the Jordan nor-
mal form can help to solve this equa-
tion and find its solutions.

21.7 Cayley–Hamilton theorem
Use the Jordan normal form to prove
the Cayley–Hamilton theorem.





Part VII

Inner product vector spaces

A great deal has been said about maps which are linear in one vectorial argument. In
this part we go one step further and talk about objects which are bi-linear, that is,
they are linear in two vectorial argument (or sesqui-linear in the case of complex num-
bers). The most important such objects are scalar products 〈·, ·〉 : V × V → F which
are generalizations of the dot product we have already encountered in Chapter 9. In
fact, in much the same way that the general definition of vector spaces was motivated
by the rules observed for coordinate vectors, the definition of scalar products takes its
cues from the dot product and its properties.

Scalar products provide us with basic notions of geometry, such as length, angles, and
orthogonality, on a vector space V , much as the dot product has done for Rn. How-
ever, this is the first time we need to distinguish explicitly between different underlying
fields F. For F = R, we define the real scalar product which is the direct generalization
of the dot product. In the complex case, for F = C, there is a small twist due to the
existence of complex conjugation, which leads to the introduction of the Hermitian
scalar product. In either case, a vector space equipped with such a scalar product is
also called an inner product vector space.

An important property of inner product vector spaces is the existence of a special class
of bases — the ortho-normal bases. A basis (v1, . . . ,vn) on an inner product vector
space V is called ortho-normal if all basis vectors have length one and if they are
mutually orthogonal or, in short, if 〈vi,vj〉 = δij for all i, j = 1, . . . , n. As we will see,
such bases always exist (in the finite-dimensional case) and can be constructed using
the Gram–Schmidt procedure. An ortho-normal basis leads to many simplifications
compared to a general basis. For example, it is much easier to compute the coordi-
nates of a vector or the representing matrix of a linear map relative to an ortho-normal
basis. All this will be discussed in the next chapter.

The presence of a scalar product on V naturally singles out certain classes of en-
domorphisms. For one these are the self-adjoint linear maps (also called Hermitian
maps) which can be moved from one argument of a scalar product into the other
without changing the scalar product’s value. Another important class are the unitary
maps which leave a scalar product invariant. Both types of maps will be introduced in
Chapter 23 and are of considerable importance, both in mathematics and in scientific
applications. For example, Hermitian linear maps can always be diagonalized relative
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to an ortho-normal basis and their eigenvectors are real, as we will see in Chapter 24.
In the context of quantum mechanics, these properties facilitate representing physical
quantities by Hermitian maps. The set of all unitary endomorphisms on a given vector
space with a scalar product forms a group, the unitary group. For the dot product
on Rn this group is the orthogonal group O(n), which contains the special orthogo-
nal group (or rotation group) SO(n) as a sub-group. The standard Hermitian scalar
product on Cn leads to the unitary group U(n) and its sub-group, the special unitary
group SU(n).

With new classes of endomorphisms singled out in this way it makes sense to re-visit
the problem of diagonalization. In Part VI we have seen that not all endomorphisms
can be diagonalized. Moreover, checking if diagonalization is possible usually requires
computing the eigenvalues and eigenvectors which can be tedious. In Chapter 24 we will
see that certain classes of endomorphisms, including self-adjoint and normal endomor-
phisms, can always be diagonalized. We will also discuss the problem of diagonalizing
homomorphisms V → W between two generally different vector spaces. This leads to
the singular value decomposition, an important method with a large range of scientific
applications.

The final chapter of this part is devoted to symmetric bi-linear forms and Hermi-
tian sesqui-linear forms, which generalize scalar products. We will see how these linear
forms can be classified in terms of the signature (n+, n−). Perhaps the most prominent
example is the Minkowski product, a symmetric bi-linear form with signature (3, 1)
which is one of the main ingredients in the theory of special relativity. We will also
briefly consider a geometrical application of symmetric bi-linear forms and their asso-
ciated quadratic forms. These can be used be used to define quadratic hyper-surfaces
in Rn which turn out to be classified by the signature.



22

Scalar products

In this chapter, we cover the basics of scalar products, their definition, important
classes of examples and the existence and construction of ortho-normal bases.

22.1 Real and Hermitian scalar products

Summary 22.1 Real scalar products are defined on vector spaces V over R. They
are symmetric, bi-linear and positive maps V × V → R which are abstract gener-
alizations of the dot product. Their counterparts for vector spaces over C are called
Hermitian scalar products. Vector spaces with either type of scalar product are called
inner product vector spaces. On such spaces there is a norm (or length) associated to
the scalar product and the notion of orthogonality can be defined.

22.1.1 Definition of norms

The most basic geometrical notion on a vector space is that of the length or norm of a
vector. The following definition of norm is inspired by the properties of the Euklidean
norm in Prop. 9.2.

Definition 22.1 For a vector space V over F = R or F = C, a length (norm) is a
map | · | : V → R≥0 which has the following properties for all v,w ∈ V and all α ∈ F.

(N1) |v| > 0 if v 6= 0 (positivity)
(N2) |αv| = |α| |v| (scaling)
(N3) |v + w| ≤ |v|+ |w| (triangle inequality)

A vector space with a norm is also called a normed vector space.

We will see more examples of norms shortly but for now we emphasize that the three
properties above are what we would intuitively ask any notion of length to satisfy.
Note that the modulus, |α|, of the scalar in (N2) refers to the real (complex) modulus
for F = R (F = C) 1.

22.1.2 Definition of scalar products

The following definition of scalar products is motivated by the properties for the dot
product in Prop. 9.1.

1We continue to be somewhat sloppy notationally, by using | · | to denote the modulus of scalars
as well as the norm of vectors, letting the type of the argument indicate which one is referred to.



288 Scalar products

Definition 22.2 A real (Hermitian) scalar product on a vector space V over F = R
(over F = C) is a map 〈 · , · 〉 : V × V → F which satisfies the following rules for all
v,u,w ∈ V and all α, β ∈ F,

(S1) 〈v,w〉 = 〈w,v〉, for a real scalar product, F = R (symmetry)

〈v,w〉 = 〈w,v〉, for a Hermitian scalar product, F = C (hermiticity)
(S2) 〈v, αu + βw〉 = α〈v,u〉+ β〈v,w〉 (linearity)
(S3) 〈v,v〉 > 0 if v 6= 0 (positivity)

A vector space with such a scalar product is also called an inner product vector space.

Let us discuss these properties, starting with the real scalar product, so F = R. In this
case, combining symmetry (S1) with linearity in the second argument (S2), implies
linearity

〈αv + βu,w〉 = α〈v,w〉+ β〈u,w〉 , (22.1)

in the first argument. In short, a real scalar product is bi-linear, just as the dot product
on Rn.

The situation is somewhat more complicated in the Hermitian case, so for F = C.
First, hermiticity implies that 〈v,v〉 = 〈v,v〉. Hence, 〈v,v〉 is always real and it is
for this reason the positivity condition (S3) makes sense in the complex case. This
fact can also be seen as a motivation for including the complex conjugation in (S1).
Combining linearity in the second argument with hermiticity leads to

〈αv + βu,w〉 = ᾱ〈v,w〉+ β̄〈u,w〉 . (22.2)

Evidently, sums in the first argument of a Hermitian scalar product can still be pulled
apart as usual, but scalars are ’pulled out’ with a complex conjugation. This property,
together with the linearity in the second argument 2 is also called sesqui-linearity. This
term means ’1.5 linearity’, which alludes to 〈·, ·〉 being linear in the second argument
and half — or semi-linear — in the first argument.

In the following we will often carry out proofs and calculations for the Hermitian case.
The corresponding version for the real case is then obtained by omitting the complex
conjugations.

22.1.3 The norm associated to a scalar product

For any inner product vector space, we can define a prospective length or norm by

|v| :=
√
〈v,v〉 . (22.3)

The positivity condition (S3) on the scalar product ensures that the above square
root is well-defined and that the positivity condition (N1) of a norm in Def. (22.1) is

2The convention adopted in some parts of the mathematics literature is to define a Hermitian scalar
product as linear in the first argument, rather than the second one as we have done. All formulae can
be easily converted between the two conventions.
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satisfied. It is also easy to see that the scaling property, (N2), of a norm follows from
the (sesqui-) linearity of the scalar product:

|αv|2 = 〈αv, αv〉 = α ᾱ〈v,v〉 = |α|2|v|2 .

Proving that Eq. (22.3) satisfies the triangle inequality is a bit more difficult but
proceeds exactly as in the case of the dot product and the Euklidean norm.

Proposition 22.1 For an inner product vector space V with scalar product 〈·, ·〉 and
a map | · | : V → R≥0 defined by |v| :=

√
〈v,v〉 the following relations hold.

|〈v,w〉| ≤ |v| |w| (Cauchy–Schwarz inequality)
|v + v| ≤ |v|+ |w| (triangle inequality)

Proof The proof of the Cauchy–Schwarz inequality works exactly as in the dot prod-
uct case (see Theorem 9.1) with the dot replaced by the general scalar product 〈·, ·〉.
The proof of the triangle inequality in the real case is also exactly as for the Eulkidean
length (see Eq. (9.9)). For the complex case, it is similar but with a slight twist due
to hermiticity.

|v + w|2 = 〈v + w,v + w〉 = |v|2 + |w|2 + 〈v,w〉+ 〈w,v〉
= |v|2 + |w|2 + 2<(〈v,w〉) ≤ |v|2 + |w|2 + 2 |〈v,w〉|
≤ |v|2 + |w|2 + 2 |v| |w| = (|v|+ |w|)2

2

We conclude that Eq. (22.3) does indeed satisfies all conditions of Def. 22.1 and,
therefore, defines a norm. This norm is also called the norm associated to the scalar
product.

Problem 22.1 (Norm associated to a scalar product)

Show that a scalar product is determined by its associated norm. Start with the case of a
real scalar product and then tackle the Hermitian case.

Solution: For a real scalar product on V and v,w ∈ V we have |v±w|2 = |v|2+|w|2±2〈v,w〉
and subtracting these two equations from each other gives the polarization identity:

〈v,w〉 =
1

4

(
|v + w|2 − |v −w|2

)
. (22.4)

This equation allows computation of the scalar product in terms of the associated norm.

For a Hermitian product, things are slightly more complicated since 〈v,w〉 = 〈w,v〉. However,
taking an appropriate linear combination of the four equations

|v ±w|2 = 〈v ±w,v ±w〉 = 〈v,v〉+ 〈w,w〉 ± 〈v,w〉 ± 〈w,v〉
|v ± iw|2 = 〈v ± iw,v ± iw〉 = 〈v,v〉+ 〈w,w〉 ± i〈v,w〉 ∓ i〈w,v〉

we find

〈v,w〉 =
1

4

(
|v + w|2 − |v −w|2 − i|v + iw|2 + i|v − iw|2

)
. (22.5)
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22.1.4 Orthogonal vectors and angles

In analogy with the dot product, we can define two vectors v,w ∈ V as orthogonal,
denoted v ⊥ w, if their scalar product vanishes, so

v ⊥ w :⇐⇒ 〈v,w〉 = 0 . (22.6)

In the real case, the Cauchy–Schwarz inequality facilitates introducing an angle be-
tween two non-zero vectors by

cos(^(v,w)) :=
〈v,w〉
|v| |w|

, (22.7)

so that two non-zero vectors v and w are orthogonal iff ^(v,w) = π/2. In the complex
case, the scalar product 〈v,w〉 is, in general, complex, so that Eq. (22.7) is not a
sensible definition of an angle.

No non-zero vector v ∈ V can be orthogonal to all vectors in V , for if 〈u,v〉 = 0
for all u ∈ V then also 〈v,v〉 = 0 which implies v = 0 from positivity of the scalar
product. This property is sometimes expressed by saying that a scalar product is
non-degenerate.

22.2 Examples of scalar products

Summary 22.2 The dot product is the standard scalar product on Rn and there is
a corresponding standard scalar product on Cn. Scalar products can also be intro-
duced on matrix vector spaces, using the trace, and on function vector spaces, using
integrals.

Example 22.1 (Standard scalar product on Rn)

Having motivated the general definition, the dot product on Rn is of course an example
of a scalar product. It is also referred to as the standard scalar product on Rn and its
associated norm is the Euklidean length:

〈v,w〉 = v ·w = vTw =

n∑
i=1

viwi , |v| =
√
〈v,v〉 =

√√√√ n∑
i=1

v2
i . (22.8)

We know from Prop. 9.1 that the dot product satisfies the axioms for a real scalar
product in Def. 22.2. 2

Example 22.2 (Standard scalar product on Cn)

The standard scalar product on Cn (as a vector space over C) is a Hermitian scalar
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product and it is the close cousin of the dot product. It is obtained by modifying the
dot product (22.8) to include an additional complex conjugation, so

〈v,w〉 := v†w =

n∑
i=1

v̄iwi , |v| =
√
〈v,v〉 =

√√√√ n∑
i=1

|vi|2 . (22.9)

Note that including the complex conjugation in the first argument is crucial to ensure
hermiticity (S2) as well as positivity of the expression for the associated norm. 2

Example 22.3 (Scalar product on Mn,n(R))

We know that the n×n matricesMn,n(R) with real entries form a vector space under
matrix addition and multiplication of matrices with scalars. On this vector space, we
can introduce a real scalar product by using the trace. Specifically, for two matrices
A,B ∈Mn,n(R) we can define

〈A,B〉 := tr(ATB) =

n∑
i,j=1

AijBij , |A| =
√

tr(ATA) =

n∑
i,j=1

A2
ij . (22.10)

Bi-linearity and symmetry follows easily from the properties of the trace in Prop. 19.3
and positivity is explicit from the above expressions. In fact, the scalar product (22.10)
is identical to the dot product (22.8), but with the sum running over two indices rather
than one.

For complex matrices in Mn,n(C) we can also define a Hermitian scalar product
by changing the transposition in Eq. (22.10) to a Hermitian conjugation, in complete
analogy with the standard scalar product on Cn. 2

Example 22.4 (Scalar product on function vector spaces)

Our last example is a bit more surprising and it lllustrates why we have gone to the
trouble of a general axiomatic definition. The vector space under consideration is the
space C([a, b],F) of continuous functions on the interval [a, b] which are either real-
valued (F = R) or complex-valued (F = C). Given two functions f, g ∈ C([a, b],F) a
scalar product can be defined by

〈f, g〉 =

∫ b

a

dx f(x)g(x) , |f | =
√
〈f, f〉 =

√∫ b

a

dx|f(x)|2 . (22.11)

Linearity in the second argument is obvious from the structure of the integrand and
linearity of the integral and symmetry (hermiticity) follows immediately from the form
of the integrand. Positivity is a bit harder to prove (and is really a question for analysis)
but, intuitively, a continuous function f which is non-zero for some x ∈ [a, b] must be
non-zero in an entire neighbourhood of x and, hence, must leads to a a positive norm,
|f | > 0. Intuitively, we can think of the scalar product (22.11) as a ’continuous’ version
of the standard scalar products on Rn or Cn where the sum has been replaced by an
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integral. Function scalar products of this kind are widely used in functional analysis
(see, for example, Rynne and Youngson 2008) and they are of great importance in
physics, particularly in the context of quantum mechanics (see, for example, Messiah
2014). 2

22.3 Orthogonality and Gram–Schmidt procedure

Summary 22.3 An ortho-normal basis of an inner product vector space is a basis of
pairwise orthogonal unit vectors. Every finite-dimensional inner product vector space
has ortho-normal bases which can be constructed via the Gram–Schmidt procedure.
Ortho-normal bases simplify a number of task, such as computing coordinates of
vectors and finding the matrix representing a linear map. For any vector subspace
W ⊂ V of an inner product vector space V , we have V = W ⊕W⊥, where W⊥ is
the orthogonal complement of W .

In the remainder of this part we will work with a general inner product vector space V
with (real or Hermitian) scalar product 〈·, ·〉 and associated norm | · |, unless specified
otherwise. In this way, all general results can be applied to any of the above examples
and indeed many more.

22.3.1 Ortho-normal bases

A simple but important observation is that orthogonality implies linear independence.

Lemma 22.1 Non-zero and pairwise orthogonal vectors v1, . . . ,vk ∈ V are linearly
independent.

Proof We need to show that the equation
∑k
i=1 αivi = 0 is only solved if all αi = 0.

To do this, we take the scalar product of this equation with vj , for any j = 1, . . . , k,
using that 〈vj ,vi〉 = 0 for i 6= j. This results in αj |vj |2 = 0 and since vj 6= 0 (so that
|vj | > 0) it follows that αj = 0. 2

This motivates the following definition of ortho-normal bases.

Definition 22.3 A basis (ε1, . . . , εn) of V is called ortho-normal if 〈εi, εj〉 = δij for
all i, j = 1, . . . , n.

We have already used ortho-normal bases routinely without drawing attention to this
property. For example, the standard unit vectors (e1, . . . , en) form an ortho-normal
basis on Rn and on Cn, relative to their respective standard scalar products (22.8)
and (22.9). However, the standard unit vectors are by no means the only ortho-normal
bases, as the following problem shows.

Problem 22.2 (Ortho-normal bases on R2 and C2)

(i) On R2, show that (ε1, ε2) with ε1 = (1, 1)T /
√

2 and ε2 = (1,−1)T /
√

2 form an ortho-
normal basis relative to the dot product.
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(ii) On C2, show that (ε1, ε2) with ε1 = (2, i)T /
√

5 and ε2 = (1,−2i)T /
√

5 form an ortho-
normal basis, relative to the standard scalar product.

Solution: (i) Using the dot product (22.8) this is easily verified.

|ε1| =
1√
2

√
12 + 12 = 1 , |ε2| =

1√
2

√
12 + (−1)2 = 1 , ε1 · ε2 =

1

2
(11̇ + 1 · (−1)) = 0 .

(ii) Now we should use the standard scalar product (22.9), taking care to include the complex
conjugation in the calculation.

|ε1| =
1√
5

√
|2|2 + |i|2 = 1, |ε2| =

1√
5

√
|1|2 + | − 2i|2 = 1, 〈ε1, ε2〉 =

1

5
(2̄ · 1 + ī · (−2i)) = 0 .

It is important to appreciate that the concept of an ortho-normal basis is general and
can be applied to more abstract vector spaces as well.

Problem 22.3 Finite Fourier series

On the interval [−π, π], consider the vector space of finite Fourier series

V =

{
α0

2
+

n∑
k=1

(αk sin(kx) + βk cos(kx) |αk, βk ∈ R

}
,

with scalar product

〈g, h〉 =

∫ π

−π
dx g(x)h(x) .

Show that the functions c0(x) = 1√
2π

, sk(x) = 1√
π

sin(kx) and ck(x) = 1√
π

cos(kx), where

k = 1, . . . , n, form an ortho-normal basis of V .

Solution: Explicit integration, using standard integrals for sine and cosine, gives 〈sk, sl〉 =
δkl, 〈ck, cl〉 = δkl and 〈sk, cl〉 = 0. From Lemma 22.1 this means the functions sk, ck must be
linearly independent and since they evidently span V they form an ortho-normal basis of V .

22.3.2 Existence of ortho-normal bases

Does every (finite-dimensional) inner product vector space space have an ortho-normal
basis and, if so, how can such a basis be constructed? The Gram–Schmidt procedure
answers both of these questions.

Theorem 22.1 (Gram–Schmidt procedure) Let V be an inner product vector space
with basis (v1, . . . ,vn). Then V has an ortho-normal basis (ε1, . . . , εn) with

Span(ε1, . . . , εk) = Span(v1, . . . ,vk) for all k = 1, . . . , n . (22.12)

Proof The proof is constructive. The first vector of our prospective ortho-normal
basis is obtained by simply normalizing v1, that is,

ε1 =
v1

|v1|
. (22.13)

Clearly, |ε1| = 1 and Span(ε1) = Span(v1). Suppose we have already constructed
the first k − 1 vectors ε1, . . . , εk−1, mutually orthogonal, normalized, and such that
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Span(ε1, . . . , εj) = Span(v1, . . . ,vj) for all j = 1, . . . , k − 1. The next vector, εk, is
then constructed by first subtracting from vk its projections onto ε1, . . . , εk−1 and
then normalizing (see Fig. 22.1), so

v′k = vk −
k−1∑
i=1

〈εi,vk〉εi , εk =
v′k
|v′k|

. (22.14)

Note that v′k can indeed be normalized to one for if v′k = 0 Eq. (22.14) implies that vk
is a linear combination of ε1, . . . , εk−1 and, hence, of v1, . . . ,vk−1 which contradicts
the assumption that (v1, . . . ,vn) is a basis. For any vector εj with j < k we have

〈εj ,v′k〉 = 〈εj ,vk〉 −
k−1∑
i=1

〈εi,vk 〉〈εj , εi〉︸ ︷︷ ︸
=δij

= 〈εj ,vk〉 − 〈εj ,vk〉 = 0 .

Hence, εk is orthogonal to all vectors ε1, . . . , εk−1. Moreover, since Span(ε1, . . . , εk−1) =
Span(v1, . . . ,vk−1) and vk and εk only differ by a re-scaling and terms proportional
to ε1, . . . , εk−1 is follows that Span(ε1, . . . , εk) = Span(v1, . . . ,vk). 2

Span(ε1, ε2)
ε1

ε2

v3

w

v′3 = v3 −w

ε3

Fig. 22.1 The third step in a Gram–Schmidt procedure, with the first two ortho-normal

vectors ε1 and ε2 already determined. The vector w = 〈ε1,v3〉ε1 +〈ε2,v3〉ε2 is the projection

of v3 onto the plane Span(ε1, ε2).

22.3.3 Construction of ortho-normal bases

Since every finite-dimensional vector space has a basis the above theorem tells us that
every finite-dimensional inner product vector space has an ortho-normal basis. What
is more, it provides a method to construct this ortho-normal basis which is worth
summarizing as an algorithm.

Algorithm (Gram–Schmidt procedure)

Given an inner product vector space V with a basis (v1, . . . ,vn), an ortho-normal
basis (ε1, . . . , εn) of V with the property (22.12) can be obtained as follows.

(1) Compute ε1 by normalizing v1, using Eq. (22.13).

(2) Assuming (ε1, . . . , εk−1) are known, work out εk from vk, using Eqs. (22.14).

(3) Repeat (2) until the basis is complete.
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Problem 22.4 (Gram–Schmidt procedure for R3)

For R3 with the dot product and basis (v1,v2,v3), where v1 = (1, 1, 0)T , v2 = (2, 0, 1)T and
v3 = (1,−2,−2)T , find the associated Gram–Schmidt basis (ε1, ε2, ε3).

Solution: (1) To find ε1 use Eq. (22.13):

ε1 =
v1

|v1|
=

1√
2

 1
1
0

 .

(2) To find ε2 use Eq. (22.14) for k = 2:

v′2 = v2 − 〈ε1,v2〉ε1 =

 2
0
1

−
 1

1
0

 =

 1
−1

1

 , ε2 =
v′2
|v′2|

=
1√
3

 1
−1

1

 .

(3) To find ε3 use Eq. (22.14) for k = 3:

v′3 = v3 − 〈ε1,v3〉ε1 − 〈ε2,v3〉ε2 =
7

6

 1
−1
−2

 , ε3 =
v′3
|v′3|

=
1√
6

 1
−1
−2

 .

So, in summary, the ortho-normal basis is

ε1 =
1√
2

 1
1
0

 , ε2 =
1√
3

 1
−1

1

 , ε3 =
1√
6

 1
−1
−2

 .

It is easy (and always advisable) to check that indeed 〈εi, εj〉 = δij .

Problem 22.5 (Gram–Schmidt procedure for a function vector space)

For a somewhat more adventurous application of the Gram–Schmidt procedure consider the
vector space V = P2(R) of at most quadratic polynomials on the interval [−1, 1] and a scalar
product defined by

〈p, q〉 =

∫ 1

−1

dx p(x)q(x) .

Find the ortho-normal basis (p0, p1, p2) associated to the monomial basis (m0,m1,m2), where
mk = xk.

Solution: (1) To find p0 we have to normalize the monomial m0:

〈m0,m0〉 =

∫ 1

−1

dx = 2 , p0 =
m0

|m0|
=

1√
2
.

(2) To find p1 first compute

〈p0,m1〉 =

∫ 1

−1

dx
x√
2

= 0 , m′1 = m1 − 〈p0,m1〉p0 = x ,
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and then normalize

〈m′1,m′1〉 =

∫ 1

−1

dxx2 =
2

3
p1 =

m′1
|m′1|

=

√
3

2
x .

(3) Finally, to find p2 first compute the integrals

〈p0,m2〉 =
1√
2

∫ 1

−1

dxx2 =

√
2

3
, 〈p1,m2〉 =

√
3

2

∫ 1

−1

dxx3 = 0 ,

and m′2 = m2 − 〈p0,m2〉p0 − 〈p1,m2〉p1 = x2 − 1
3

and normalize

〈m′2,m′2〉 =

∫ 1

−1

dx

(
x2 − 1

3

)2

=
8

45
, p2 =

m′2
|m′2|

=

√
5

8
(3x2 − 1) .

So, in summary, the ortho-normal polynomial basis is

p0 =
1√
2
, p1 =

√
3

2
x , p2 =

√
5

8
(3x2 − 1) .

These are the first three of an infinite family of ortho-normal polynomials, referred to as
Legendre polynomials, which play an important role in mathematical physics (see, for example,
Jackson 1962; Messiah 2014).

22.3.4 Properties of ortho-normal bases

An ortho-normal basis has many advantages compared to an arbitrary basis of a
vector space. For example, consider the coordinates of a vector v ∈ V relative to an
ortho-normal basis (ε1, . . . , εn). Of course, we can write v as a linear combination
v =

∑n
i=1 αiεi with some coordinates αi which can be determined by solving a linear

system. However, for an ortho-normal basis there is a much simpler and faster method.
We can just take the scalar product with εj , which leads to

〈εj ,v〉 = 〈εj
n∑
i=1

αiεi〉 =

n∑
i=1

αi 〈εj , εi〉︸ ︷︷ ︸
=δij

= αj .

In summary, the coordinates of a vector v relative to an ortho-normal basis (ε1, . . . , εn)
can be computed as

v =

n∑
i=1

αiεi ⇐⇒ αi = 〈εi,v〉 for i = 1, . . . , n. (22.15)

Problem 22.6 (Coordinates relative to an ortho-normal basis)

Consider an ortho-normal basis (ε1, ε2) and the vector v = (2,−3)T = α1ε1 +α2ε2. Compute
the coordinates αi
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(i) in R2 with the dot product and ε1 = (1, 1)T /
√

2 and ε2 = (1,−1)T /
√

2.

(ii) in C2 with the standard scalar product and ε1 = (2, i)T /
√

5 and ε2 = (1,−2i)T /
√

5.

Solution: (i) Use Eq. (22.15) and the dot product:

α1 = εT1 v =
1√
2

(
1
1

)T (
2
−3

)
= − 1√

2
, α2 = εT2 v =

1√
2

(
1
−1

)T (
2
−3

)
=

5√
2
.

(ii) Use Eq. (22.15) and the standard Hermitian scalar product on C2:

β1 = ε†1v =
1√
5

(
2
i

)†(
2
−3

)
=

4 + 3i√
5

, β2 = ε†2v =
1√
5

(
1

−2i

)†(
2
−3

)
=

2− 6i√
5

.

Note it is crucial to use the Hermitian conjugate, rather than the transpose in this calculation.

We would like to re-write the scalar product in terms of coordinates relative to an
orth-normal basis (ε1, . . . , εn). To do this we expand two vectors v,w ∈ V as

v =
∑
i

αiεi , αi = 〈εi,v〉 , w =
∑
i

βiεi , βi = 〈εi,w〉 ,

and compute their scalar product

〈v,w〉 =
∑
i,j

ᾱiβj 〈εi, εj〉︸ ︷︷ ︸
=δij

=
∑
i

ᾱiβi =
∑
i

〈v, εi〉〈εi,w〉 . (22.16)

The result means that, in terms of the coordinates relative to an ortho-normal basis,
every real scalar product looks like the dot product on Rn and every Hermitian scalar
product like the standard scalar product on Cn.

Finally, suppose we would like to compute the representing matrix A of a linear map
f : V → W between two inner product spaces V and W with scalar products 〈·, ·〉V
and 〈·, ·〉W , relative to an ortho-normal bases (ε1, . . . , εn) of V and (ε̃1, . . . , ε̃m) of W .
In general, following Theorem 13.1, the entries Aij of the matrix A can be obtained
from

f(εj) =
∑
k

Akj ε̃k . (22.17)

Taking the scalar product of this equation with ε̃i results in the simple formula

Aij = 〈ε̃i, f(εj)〉W . (22.18)

An expression of the form 〈w, f(v)〉W for v ∈ V and w ∈ W is sometimes called a
matrix element of the linear map f . In this language, the result (22.18) states that
the entries of a representing matrix relative to ortho-normal bases are given by the
matrix elements with respect to the basis vectors. It is worth noting that linear maps
are uniquely determined by their matrix elements.

Proposition 22.2 If two linear maps f, g : V → W between inner product vector
spaces V , W have the same matrix elements for all v ∈ V and w ∈W then f = g.
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Proof Having the same matrix elements means that 〈w, f(v)〉W = 〈w, g(v)〉W for
all v ∈ V and w ∈ W . From linearity this implies 〈w, (f − g)(v)〉W = 0 and if we
choose w = (f − g)(v) it follows that |(f − g)(v)| = 0. From positivity of the norm
this implies f(v) = g(v) for all v ∈ V which is the required statement. 2

Problem 22.7 (Matrix representing a linear map relative to an ortho-normal basis)

For a fixed unit length vector n ∈ R3, consider the linear maps f, g : R3 → R3 defined by
f(v) = (n · v)n and g = idR3 − f . Verify that both maps are projectors and compute the
matrices Q, P which represent f and g relative to the standard unit vector basis.

Solution: The maps f satisfies the projector property f ◦ f = f since

f ◦ f(v) = f((n · v)n) = (n · n)︸ ︷︷ ︸
=1

(n · v)n = f(v) .

and g is the complementary projector to f (see Section 20.3).
The three standard unit vectors form an ortho-normal basis of R3 so we can use Eq. (22.18)

to compute the entries of Q and P . This gives Qij = ei · f(ej) = (n · ei)(n · ej) = ninj and
Pij = ei · g(ej) = δij − ninj or, in matrix notation

Q =

 n2
1 n1n2 n1n3

n1n2 n2
2 n2n3

n1n3 n2n3 n2
3

 , P =

 1− n2
1 −n1n2 −n1n3

−n1n2 1− n2
2 −n2n3

−n1n3 −n2n3 1− n2
3

 . (22.19)

Geometrically, f represents the projection of vectors into the direction of n and g is the
projection onto the plane orthogonal to n.

22.3.5 Orthogonal spaces

The notion of orthogonality for two vectors can be extended to vector subspaces. For
a vector subspace W ⊂ V of an inner product vector space V we can define the
orthogonal complement W⊥ by

W⊥ = {v ∈ V | 〈w,v〉 = 0 for all w ∈W} . (22.20)

In other words, W⊥ consists of all vectors which are orthogonal to all vector in W .
For example, if W ⊂ R3 is a plane through the origin then W⊥ is the line through the
origin perpendicular to this plane.

Proposition 22.3 Let V be an inner product vector space and W ⊂ V a vector
subspace. Then we have the following statements.

(i) W⊥ is a vector subspace of V .
(ii) V = W ⊕W⊥.

Proof (i) First, W⊥ is not empty since 0 ∈W⊥. For v1,v2 ∈W⊥ we have 〈w,v1〉 =
〈w,v2〉 = 0 for all w ∈W . It follows that 〈w, α1v1 +α2v2〉 = α1〈w,v1〉+α2〈w,v2〉 =
0, so α1v1 + α2v2 ∈ W⊥. This means W⊥ is closed under vector addition and scalar
multiplication and is, hence, a vector subspace.

(ii) We begin by showing that W ∩ W⊥ = {0}. A vector v ∈ W ∩ W⊥ must be
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orthogonal to itself so must satisfy 〈v,v〉 = 0 but from Def. 22.2 this implies v = 0.
We conclude that the sum W +W⊥ is direct.
To show that V = W ⊕ W⊥ all we need to do is show equality of dimensions. To
this end, we choose an ortho-normal basis (ε1, . . . , εk) of W and define the linear map

pW : V → V by pW (v) =
∑k
i=1〈εi,v〉εi. Clearly Im(pW ) ⊂ W . For w ∈ W it follows

from Eq. (22.15) that pW (w) = w so that Im(pW ) = W . Moreover, Ker(pW ) = W⊥

and the claim follows from the dimension formula (14.13) applied to the map pW .
2

From Prop. 8.1, this result means that every vector v ∈ V can be written as a unique
sum

v = w‖ + w⊥ (22.21)

of a vector w‖ ∈ W and a vector w⊥ ∈ W⊥ in the orthogonal complement of W .
To make this more explicit we introduce an ortho-normal basis (ε1, . . . , εk) on W and
consider the endomorphism

pW (v) =

k∑
i=1

〈εi,v〉εi , (22.22)

which we have already used in the previous proof. Obviously, for w ∈ W we have
pW (w) = w, while pW (u) = 0 for u ∈ W⊥. This means pW is a projector with
Im(pW ) = W and Ker(pW ) = W⊥. The complementary projector pW⊥ := idV − pW
projects onto Ker(pW ) = W⊥.

The orthogonal decomposition (22.21) of vectors v ∈ V into components w‖ ∈W and
w⊥ ∈W⊥ can then we written explicitly as

v = w‖ + w⊥ where

{
w‖ = pW (v) =

∑k
i=1〈εi,v〉εi

w⊥ = pW⊥(v) = v −w‖
. (22.23)

Problem 22.8 (Orthogonal projections)

Consider the subspace W = Span(v1,v2) in R4 with the dot product, where v1 = (1, 1, 1, 1)T

and v2 = (2, 2, 1,−1)T . Find the projector pW onto W and decompose v = (2, 2,−1,−1)T

as in Eq. (22.21).

Solution: We would like to use Eqs. (22.23) so our first step is to find an ortho-normal basis
(ε1, ε2) for W . This can, of course, be done by applying the Gram–Schmidt procedure to
v1,v2 which gives

ε1 =
1

2
(1, 1, 1, 1)T , ε2 =

1√
6

(1, 1, 0,−2)T .

Then we have v = w‖ + w⊥ with

w‖ = (ε1 · v)ε1 + (ε2 · v)ε2 = 1
2
(3, 3, 1,−3)T

w⊥ = v −w‖ = 1
2
(1, 1,−3, 1)T .
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Exercises

(†=challenging)

22.1 Which of the following maps are scalar
products on R2?
(a) 〈v,w〉 = v2

1 + v2
2 + w2

1 + w2
2

(b) 〈v,w〉 = (v1 − v2)(w1 − w2)
(c) 〈v,w〉 = (v1− v2)(w1−w2) + v2w2

Here, v = (v1, v2)T ∈ R2 and w =
(w1, w2)T ∈ R2. Provide reasoning in
each case.

22.2 (a) For the vector spaceMn,n(C) over
C show that

〈A,B〉 = tr(A†B)

defines a Hermitian scalar product,
where A,B ∈Mn,n(C).
(b) Show that the elementary matrices
E(ij), where i, j = 1, . . . , n, form an
ortho-normal basis of Mn,n(C) with
respect to this scalar product.

22.3 (a) For the vector space Hn over R,
which consists of Hermitian n× n ma-
trices, show that

〈A,B〉 = tr(AB)

defines a scalar product, where A,B ∈
Hn.
(b) Show that 1√

2
(12, σ1, σ2, σ3), where

σi are the Pauli matrices, is an ortho-
normal basis of H2, relative to this
scalar product.

22.4 Gram–Schmidt procedure in R3

Use the Gram–Schmidt procedure to
find an ortho-normal basis of R3 (with
the standard scalar product), starting
with the basis

v1 =

 1
1
0

 ,v2 =

 2
1
2

 ,v3 =

 0
2
−1

 .

Check your result.

22.5 Scalar product on a function space
On the vector space V of at most
quadratic polynomials over R, define

〈p, q〉 =

∫ ∞
−∞

dx e−x
2

p(x)q(x) ,

where p, q ∈ V .
(a) Why does this define a scalar prod-
uct?
(b) Consider the polynomials p0(x) =
b0, p1(x) = 2b1x and p2(x) = b2(4x2 −
2), with b0, b1, b2 ∈ R. Show that these
polynomials are orthogonal under the
scalar product.
(c) Determine the constants ba such
that the polynomials pa have unit
length.
(Hint: Look up integrals of the form∫∞
−∞ dxx

ne−x
2

)

(d) Find the coordinates of p(x) =
4x2 − 2x + 3 relative to the basis
(p0, p1, p2) in two ways, namely by
matching monomial coefficients and by
carrying out scalar products.

22.6 (a) Show that the vectors

ε1 = 1√
2
(1, i, 0)T

ε2 = 1√
6
(1,−i, 2)T

ε3 = 1√
3
(i, 1,−i)T

form an orthonormal basis of C3, rel-
ative to the standard Hermitian scalar
product.
(b) Find the coordinates of the vectors

v = (2, 1 + i,−3)T

w = (1, 1, 1)T

relative to the basis from part (a).

22.7 Let V be a vector space over R or
C with basis (v1, . . . ,vn). Show that
there is a unique scalar product on
V relative to which (v1, . . . ,vn) is an
ortho-normal basis.

22.8 For vector subspaces U,W ⊂ V of an
inner product vector space V show the
following:
(a) (W⊥)⊥ = W
(b) (U +W )⊥ = U⊥ ∩W⊥
(c) U⊥ +W⊥ = (U ∩W )⊥
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22.9 Parallelogram identity†

Let V be a vector space over R.
(a) Show that a norm | · | on V asso-
ciated to a scalar product 〈·, ·〉 on V
satisfies the parallelogram identity

|v + w|2 + |v −w|2 = 2(|v|2 + |w|2)

for all v,w ∈ V .
(b) For V = Rn, show that

|v| =
n∑
i=1

|vi|

defines a norm.
(c) Show that the norm from part (b)

is not associated to a scalar product.
(Hint: Show that this norm violates the
parallelogram identity.)

22.10 Let V be an n-dimensional inner prod-
uct vector space, v1, . . . ,vn ∈ V and P
the matrix with entries Pij = 〈vi,vj〉.
(a) Show that (v1, . . . ,vn) is a basis of
V iff P is invertible.
(b) If (v1, . . . ,vn) is a basis of V show
there is a unique basis (u1, . . . ,un) of
V with 〈ui,vj〉 = δij .
(c) Show that the coordinates of a
vectors v ∈ V relative to the basis
(v1, . . . ,vn) are given by 〈ui,v〉.
(d) Work out how the coordinate vec-
tors of v ∈ V relative to the two bases
from part (b) are related.



23

Adjoint and unitary maps

In the previous chapter, we have explored inner product vector spaces by studying the
interplay between the scalar product and the vector space structure. But vector spaces
come equipped with homomorphisms, so it is natural to ask about the relationship
between a scalar product and linear maps. The short version of the story is that
a scalar product facilitates defining specific linear maps and single out interesting
subsets of linear maps. In this chapter, we will study two classes of such linear maps
— the adjoint and self-adjoint linear maps and the unitary maps.

As we will see, taking the adjoint is the operation required if we want to move a
linear map from one argument of a scalar product into the other without changing the
value of the scalar product. A self-adjoint map can be moved between the two scalar
product arguments without changing its value. The adjoint is an abstract versions of
Hermitian conjugation (or transposition in the real case) for matrices. Correspondingly,
self-adjoint linear operators correspond to Hermitian matrices (symmetric matrices in
the real case).

Unitary maps are linear maps which leave a scalar product invariant. This means that
unitary maps do not change the basic geometrical quantities which follow from a scalar
product, including the length of vectors. Therefore, on Rn, unitary maps should be
interpreted as rotations and combinations of rotations and reflections. On Cn unitary
maps are identified with unitary matrices which can be viewed as generalizations of
rotations and reflections to the complex case.

23.1 Adjoint and self-adjoint maps

Summary 23.1 The adjoint linear map f† of an endomorphism f ∈ End(V ) is
defined by the relation 〈v, f(w)〉 = 〈f†(v),w〉 for all v,w ∈ V . For V = Rn (V =
Cn) with the standard scalar product, the adjoint operation corresponds to matrix
transposition (Hermitian conjugation). A map is self-adjoint or Hermitian iff f =
f†. For Rn (Cn) with the standard scalar product self-adjoint maps are given by
symmetric (Hermitian) matrices.

23.1.1 Definition and basic properties of adjoint map

We start with two inner product vector spaces V and W , with scalar products 〈·, ·〉V
and 〈·, ·〉W , and a linear map f : V →W .
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Definition 23.1 (Adjoint linear map) For a linear map f : V → W between two
inner product vector spaces V and W , an adjoint linear map f† : W → V for f is a
map which satisfies

〈w, f(v)〉W = 〈f†(w),v〉V , (23.1)

for all v ∈ V and all w ∈W .

In other words, a linear map can be ’moved’ into the other argument of the scalar
product by taking its adjoint. The following properties of the adjoint map are relatively
easy to show.

Proposition 23.1 (Properties of adjoint) If the adjoint exists it is unique and it
satisfies

(i) (f†)† = f (ii) (αf + βg)† = ᾱf† + β̄g†

(iii) (g ◦ f)† = f† ◦ g† (iv) (f−1)† = (f†)−1
, (23.2)

where α, β ∈ F and provided the various maps exist.

Proof All proofs involve verifying the stated equality inside a scalar product and
then using Prop. 22.2 to remove the scalar product.

(Uniqueness) Say f1, f2 : W → V are two adjoints for f : V → W . From Eq. (23.1)
they must satisfy 〈f1(w),v〉V = 〈w, f(v)〉W = 〈f2(w),v〉V for all v ∈ V and all
w ∈W . It follows from Prop. 22.2 that f1 = f2.

(i) For all v ∈ V and all w ∈W we have

〈w, f(v)〉W
(23.1)

= 〈f†(w),v〉V
(S3)
= 〈v, f†(w)〉V

(23.1)
= 〈(f†)†(v),w〉W

(S3)
= 〈w, (f†)†(v)〉W

and comparing the left and right-hand sides gives f = (f†)† from Prop. 22.2.

(ii) A straightforward calculation gives

〈(αf + βg)†(w),v〉V
(23.1)

= 〈w, (αf + βg)(v)〉W
(S2)
= α〈w, f(v)〉W + β〈w, g(v)W 〉W

(23.1)
= α〈f†(w),v〉V + β〈g†(w),v〉V

(22.2)
= 〈(ᾱf† + β̄g†)(w),v〉V

and comparing the left- and right-hand sides implies the claim from Prop. 22.2.

(iii) With the two linear maps f : V →W and g : W → U we have

〈(g ◦ f)†(u),v〉V
(23.1)

= 〈u, g(f(v))〉U
(23.1)

= 〈g†(u), f(v)〉W =
(23.1)

= 〈(f† ◦ g†)(u),v〉V

and hence, (g ◦ f)† = f† ◦ g† from Prop. 22.2.

(iv) Since

〈(f† ◦ (f−1)†)(v1),v2〉V
(23.1)

= 〈v1, (f
−1 ◦ f)v2〉V = 〈idV (v1),v2〉V

it follows that f† ◦ (f−1)† = idV and, analogously, that (f−1)† ◦ f† = idW . Together,
these equations imply that (f−1)† = (f†)−1. 2
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23.1.2 Adjoint map relative to a basis

To get a better understanding of the adjoint map it is useful to work this out relative
to ortho-normal bases. Say that (ε1, . . . , εn) and (ε̃1, . . . , ε̃m) are ortho-normal bases of
V and W while the linear maps f ∈ Hom(V,W ) and f† ∈ Hom(W,V ) are represented
by matrices A and B, relative to those bases. From Eq. (22.18), the entries of A and
B are given by the matrix elements

Aij = 〈ε̃i, f(εj)〉W , Bij = 〈εi, f†(ε̃j)〉V .

A short calculation

Bij = 〈εi, f†(ε̃j)〉V
(S1)
= 〈f†(ε̃j), εi〉V

(23.1)
= 〈ε̃j , f(εi)〉W = Āji ⇒ B = A† (23.3)

shows that the matrices are, in fact, related by Hermitian conjugation (or by transposi-
tion in the real case). There are several lessons from this. Previously (see Section 13.3),
we have introduced Hermitian conjugation merely as a ’mechanical’ operation to be
carried out for matrices. Now we understand its proper mathematical context — it
corresponds to carrying out the adjoint for a linear map. For the case of real scalar
products, complex conjugation can be dropped in the above equations and the matrices
representing f and f† are related by transposition. This means, for matrices with real
entries, we have also found the mathematical interpretation of matrix transposition.

So far, it is actually not clear whether the adjoint map always exists. However, for
finite-dimensional vector spaces this is easy to show by reversing the above argument
and defining f† as the linear map associated to A†.

Finally, the relationship between the adjoint and Hermitian conjugation (transposi-
tion) of matrices explains the similarity between the rules for the adjoint in Prop. 23.1
and the rules for Hermitian conjugation (transposition) in Prop. 13.2 (Prop. 13.1).

Problem 23.1 (Adjoint and determinant)

How are the determinants of a linear map f ∈ End(V ) and its adjoint f† related?

Solution: If f is represented by the matrix A, relative to an ortho-normal basis of V , then
f† is represented by A† = ĀT . Hence

det(f†)
Def. 18.2

= det(A†)
Prop. 18.1

= det(A)
Def. 18.2

= det(f) . (23.4)

In conclusion, the determinants of f and f† are related by complex conjugation.

23.1.3 Examples

Example 23.1 (The adjoint for coordinate vector spaces)

We start with coordinate vector spaces V = Rn and W = Rm, each equipped with the
dot product, and a linear map A : Rn → Rm, given by an m × n matrix A. Working
out the adjoint of the matrix A, relative to the dot product, is straightforward.

〈w, Av〉V = w · (Av) = wi(Av)i = wiAijvj = (AT )jiwivj = (ATw) · v = 〈ATw,v〉V
The conclusion is that the adjoint of a matrix A relative to the dot product is simply
its transpose AT .
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For the complex case, we consider vector spaces V = Cn and W = Cm, each with
the standard scalar product (22.9) and a linear map A : Cn → Cm. To calculate the
adjoint of A we proceed as above, except that complex conjugation has to be included.

〈w, Av〉V = w̄i(Av)i = w̄iAijvj = (AT )jiw̄ivj = (A†w)ivi = 〈A†w,v〉V

Hence, in the complex case the adjoint of a matrix A relative to the standard scalar
product is its Hermitian conjugate A†. Of course neither of these results is surprising
in view of the discussion in Section 23.1.2. 2

Example 23.2 (Adjoint of a derivative map)

For a more abstract example of an adjoint linear map, consider the vector space V of
(infinitely many times) differentiable functions ϕ : [a, b] → C, satisfying ϕ(a) = ϕ(b),
with scalar product

〈ϕ,ψ〉 =

∫ b

a

dxϕ(x)ψ(x) .

The derivative operator D = d/dx : V → V defines a linear map on this space and we
would like to find its adjoint. Performing an integration by parts leads to

〈ϕ,Dψ〉 =

∫ b

a

dxϕ(x)
dψ

dx
(x) =

[
ϕ(x)ψ(x)

]b
a
−
∫ b

a

dx
dϕ

dx
(x)ψ(x)

=

∫ b

a

dx (−Dϕ)(x)ψ(x) = 〈−Dϕ,ψ〉 .

Note that the boundary term vanishes due to the boundary condition on our functions.
We conclude that D† = −D. 2

23.1.4 Kernel and image of the adjoint map

The kernel and the image are two vector subspaces naturally associated to a linear
map f . It is, therefore, natural to ask about the image and kernel of the adjoint f†

and how they relate to their counterparts for f . Fortunately, there is a simple and
beautiful answer.

Theorem 23.1 For a linear map f ∈ Hom(V,W ) between finite-dimensional vector
spaces V and W we have the following equations.

(i) Ker(f†) = Im(f)⊥ , (ii) Im(f†) = Ker(f)⊥ , (iii) rk(f†) = rk(f) (23.5)

Proof (i) w ∈ Ker(f†) ⇔ f†(w) = 0 ⇔ 0 = 〈f†(w),v〉V = 〈w, f(v)〉W ∀v ∈
V ⇔ w ∈ Im(f)⊥.

(iii) rk(f†)
(14.13)

= dimF(W ) − dimF(Ker(f†))
(i)
= dimF(W ) − dimF(Im(f)⊥)

Prop. 22.3
=

rk(f)

(ii) We start by showing the inclusion Im(f†) ⊂ Ker(f)⊥.
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v ∈ Im(f†) ⇒ v = f†(w) for a w ∈ W ⇒ for all u ∈ Ker(f) we have 〈v,u〉V =
〈f†(w),u〉V = 〈w, f(u)〉W = 0 ⇒ v ∈ Ker(f)⊥

But the two spaces have the same dimensions since dimF(Im(f†)) = rk(f†)
(ii)
= rk(f) =

dimF(V )− dimF(Ker(f)) = dimF(Ker(f)⊥), so they must be equal. 2

In passing, we have learned that a linear map and its adjoint have the same rank.
In view of Example 23.1, this implies that the rank of a matrix and its Hermitian
conjugate (transpose for real matrices) are the same. A related statement has been
shown, by more elementary methods, in Theorem 16.1.

23.1.5 Self-adjoint maps

The adjoint operation singles out a particular class of endomorphisms, which are in-
variant under taking the adjoint.

Definition 23.2 An endomorphism f ∈ End(V ) on an inner product vector space V
is called self-adjoint or Hermitian if

〈v, f(u)〉 = 〈f(v),u〉 (23.6)

for all v,u ∈ V or, equivalently, if f = f†.

A Hermitian linear map can be moved from one argument of the scalar product to
the other without changing the scalar product’s value. We emphasize that being self-
adjoint is a property which is defined, and only makes sense, in relation to a scalar
product.

In analogy with what we have done for matrices we can also define anti-Hermitian
endomorphisms by the condition f† = −f . As Prop. 23.1 shows, multiplication by a
factor of ±i converts between the Hermitian and anti-Hermitian case, so

f = f† ⇔ (±if)† = −(±if) . (23.7)

Further, just as for matrices (see Example 13.2), every endomorphisms f ∈ End(V ) can
be written as a (unique) sum of a Hermitian endomorphism f+ and an anti-Hermitian
endomorphism f− as

f = f+ + f− where f± =
1

2
(f ± f†) . (23.8)

For two Hermitian endomorphisms f, g ∈ End(V ) we can ask if the composition f ◦ g
is Hermitian. Since (f ◦ g)† = g† ◦ f† = g ◦ f this is the case iff f ◦ g = g ◦ f , so iff f
and g commute. So for f = f† and g = g† we have

f ◦ g = (f ◦ g)† ⇔ [f, g] = 0 . (23.9)

Example 23.3 (Hermitian maps for coordinate vector spaces)

From Example 23.1, it is clear that the (anti-) Hermitian linear maps A on Rn with
the dot product are precisely the (anti-) symmetric matrices. In the complex case,
the (anti-) Hermitian maps A on Cn with the standard scalar product are the (anti-)
Hermitian matrices. 2
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Example 23.4 (Hermitian differential operators)

From Example 23.2 we know that the differential map D = d/dx (on the vector space
V of infinitely times differentiable functions ϕ : [a, b] → C with ϕ(a) = ϕ(b)) is anti-
Hermitian, so D† = −D. From Eq. (23.7) this means that ±iD is Hermitian. What
about the multiplication map X : V → V defined by Xϕ(x) = xϕ(x)? Using the scalar
product from Example 23.2 we have

〈ϕ,Xψ〉 =

∫ b

a

dxϕ(x)(xψ(x) =

∫ b

a

dxxϕ(x)ψ(x) = 〈Xϕ,ψ〉 ,

so that X is Hermitian, X† = X. 2

Problem 23.2 (Hermitian operators on function vector spaces)

Consider the vector space V of infinitely times differentiable functions ϕ : [a, b] → C with
ϕ(a) = ϕ(b)), the linear derivative map P = −iD = −id/dx and the multiplication map X,
all as defined in Examples 23.2 and (23.4). Show that any power P k and Xk is Hermitian.
Work out the commutator [X,P ] and show that X ◦ P is not Hermitian.

Soluion: From Eq. (23.9) we know that the composition of two Hermitian maps is Hermitian
iff they commute. Since both X and P are Hermitian and commute with themselves, the
powers Xk and P k are Hermitian. Since [X,P ] = X ◦ P − P ◦X = −ixD+ iD ◦ x = i 6= 0 it
follows that X ◦ P is not Hermitian.

In quantum mechanics, physical operators are represented by Hermitian linear maps.
In this context, the above maps X and P correspond to the linear maps for position and
momentum, respectively.

23.2 Unitary maps

Summary 23.2 A map f ∈ End(V ) is called unitary if it leaves the scalar product
on V invariant. This is equivalent to the condition f† ◦ f = idV . The unitary maps
form a sub-group of GL(V ), called the unitary group U(V ). Unitary maps with de-
terminant one form a sub-group of U(V ) called the special unitary group SU(V ). For
V = Rn this leads to the orthogonal group O(n) and the special orthogonal group (or
rotation group) SO(n). In the complex case, V = Cn, we have the unitary and special
unitary groups U(n) and SU(n).

23.2.1 Definition of unitary maps

Another important class of linear maps which relate to a scalar product in a partic-
ular way are unitary maps. They are the linear maps which leave a scalar product
unchanged in the sense of the following definition.
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Definition 23.3 An endomorphism f ∈ End(V ) on an inner product vector space V
with scalar product 〈·, ·〉 is called unitary iff

〈f(v), f(w)〉 = 〈v,w〉 (23.10)

for all v,w ∈ V .

In particular, unitary maps f leave lengths of vectors unchanged, so |f(v)| = |v| for
all v ∈ V . In fact, this property is already sufficient for the map to be unitary since
the scalar product is determined by its associated norm (see Problem 22.1). In the real
case, we can use the scalar product to defines angles between vectors as in Eq. (9.11).
These angles are left unchanged by a unitary map f , that is, ^(v, w) = ^(f(v), f(w)).
In short, we can think of unitary maps intuitively as those linear maps which leave
basic geometrical characteristics of vectors invariant.

23.2.2 Unitary groups

Unitary maps have a number of interesting properties which are listed in the following
proposition.

Proposition 23.2 (Properties of unitary maps) For linear maps f, g ∈ End(V ) on a
(finite-dimensional) inner product vector space V have the following properties.

(i) The identity map idV is unitary.
(ii) If f, g are unitary then so is f ◦ g.
(iii) Unitary maps f are invertible.
(iv) f is unitary iff f† ◦ f = idV .
(v) If f is unitary then so is the adjoint f† = f−1.

Proof (i) This is clear since idV (v) = v for all v ∈ V .

(ii) If f, g are unitary we have 〈f(v), f(w)〉 = 〈v,w〉 and 〈g(v), g(w)〉 = 〈v,w〉 for all
v,w ∈ V , which implies

〈f ◦ g(v), f ◦ g(w)〉 = 〈f(v), f(w)〉 = 〈v,w〉 .

Hence, f ◦ g is unitary.

(iii) If v ∈ Ker(f), so that f(v) = 0 it follows from unitarity of f that 0 = 〈f(v), f(v)〉 =
〈v,v〉, so v = 0. Hence, Ker(f) = {0} which implies that f is invertible (see Cor. 14.2).

(iv) Unitarity and the definition of the adjoint implies

〈f† ◦ f(v),w〉 (23.1)
= 〈f(v), f(w)〉 (23.10)

= 〈v,w〉 = 〈idV (v),w〉

for all v,w ∈ V . From Prop. 22.2 this is equivalent to f† ◦ f = idV .

(v) A unitary f is invertible from (iii) and, from (iv), its left-inverse in the general
linear group GL(V ) is f†. But in a group the left-inverse is also the right-inverse (see
Prop. 3.1), so idV = f ◦ f† = (f†)† ◦ f†. From (iv), the last relation implies that
f† = f−1 is unitary. 2
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One way to summarize the content of the above lemma is to say that the set of unitary
maps on V forms a sub-group of the general linear group GL(V ). This group is called
the unitary group of V and it is denoted by

U(V ) := {f ∈ GL(V ) | f is unitary} . (23.11)

Problem 23.3 Determinant of unitary maps

Show that unitary maps f have a unit modulus determinant, so |detf)| = 1.

Solution: The unitarity condition f† ◦ f = idV implies that

1 = det(idV ) = det(f ◦ f†) Thm. (18.2)
= det(f) det(f†)

(23.4)
= |det(f)|2

An important sub-group of the unitary group U(V ) is the special unitary group, de-
noted SU(V ), which consists of all unitary maps with determinant one, so

SU(V ) := {f ∈ U(V ) |det(f) = 1} . (23.12)

To see that this set is indeed a group we check the standard conditions for a sub-group
(see Def. 3.2). First, since det(idV ) = 1 the identity is an element of SU(V ). For two
special unitary maps f, g ∈ SU(V ) it follows that det(f ◦ g) = det(f) det(g) = 1, so
that f ◦ g ∈ SU(V ) and, finally, det(f−1) = det(f)−1 = 1, so f−1 ∈ SU(V ).

23.2.3 Orthogonal matrices

To get a better intuition for unitary maps it is useful to discuss coordinate vector
spaces in more detail and we begin with the real case, that is, Rn with the standard
scalar product (the dot product). In this case, the adjoint of an n× n matrix A is its
transpose, AT , so from Def. 23.3 and Prop. 23.2, unitarity of A is equivalent to any of
the following conditions.

(Av) · (Aw) = v ·w ∀v,w ∈ Rn ⇔ ATA = 1n ⇔ A−1 = AT

⇔ Ai ·Aj = δij i, j = 1, . . . , n . (23.13)

Matrices A satisfying this condition are called orthogonal matrices and they can be
characterized, equivalently, by either one of the four conditions above. The simplest
way to check if a given matrix is orthogonal is usually to verify the second condition,
ATA = 1n. The third condition tells us it is easy to compute the inverse of an orthog-
onal matrix — it is simply the transpose. And, finally, the condition in the second row
says that the column vectors of an orthogonal matrix form an ortho-normal basis with
respect to the dot product.
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The group formed by the orthogonal matrices (the unitary group of Rn with the dot
product) is also called the orthogonal group and it is denoted by

O(n) := {A ∈ GL(Rn) |ATA = 1n} . (23.14)

Taking the determinant of Eq. (23.13) leads to det(A)2 = 1, so det(A) ∈ {±1}. The
orthogonal matrices with determinant +1 are also called rotations and they form
the special orthogonal group (the special unitary group of Rn with the dot product)
denoted by

SO(n) := {R ∈ O(n) |det(R) = 1} . (23.15)

Note that the term ’rotation’ is indeed appropriate for those matrices. Since they
leave the dot product invariant they do not change lengths of vectors and angles
between vectors and the det(A) = +1 conditions excludes orthogonal matrices which
contain reflections. To understand this last statement better, it is useful to look at the
orthogonal matrices with determinant −1.

Consider an orthogonal matrix A with det(A) = −1 and the specific orthogonal matrix
F = diag(1, . . . , 1,−1) with det(F ) = −1, which corresponds to a reflection in the
last coordinate direction. Then the matrix R = AF is a rotation since det(R) =
det(A) det(F ) = (−1)2 = 1. This means every orthogonal matrix A can be written as
a product

A = RF (23.16)

of a rotation R and a reflection F .

Problem 23.4 (Orthogonal matrices in R2)

Show that the two-dimensional rotation group SO(2) consists of matrices R(θ), parametrized
by θ ∈ [0, 2π), which satisfy R(θ1)R(θ2) = R(θ1 + θ2). What is the interpretation of θ? Also,
find the orthogonal matrices in O(2). Show that SO(2) is Abelian and that O(2) is non-
Abelian.

Solution: To find the explicit form of two-dimensional rotation matrices we start with a
general 2× 2 matrix

R =

(
a b
c d

)
,

where a, b, c, d ∈ R and impose the conditions RTR = 12 and det(R) = 1. This gives

RTR =

(
a2 + c2 ab+ cd
ab+ cd b2 + d2

)
!
=

(
1 0
0 1

)
, det(R) = ad− bc !

= 1 ,

and, hence, the equations a2 +c2 = b2 +d2 = 1, ab+cd = 0 and ad−bc = 1. It is easy to show
that a solution to these equations can always be written as a = d = cos(θ), c = −b = sin(θ),
for θ ∈ [0, 2π) so that two-dimensional rotation matrices can be written in the form

R(θ) =

(
cos θ − sin θ
sin θ cos θ

)
. (23.17)

For the rotation of a vector x = (x, y)T ∈ R2 we get
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x′ = Rx =

(
x cos θ − y sin θ
x sin θ + y cos θ

)
. (23.18)

It is straightforward to verify that |x′| = |x|, as must be the case, and that the cosine of the
angle between x and x′ is given by

cos(^(x′,x)) =
x′ · x
|x′||x| =

(x cos θ − y sin θ)x+ (x sin θ + y cos θ)y

|x|2 = cos θ . (23.19)

This result means we should interpret R(θ) as a rotation by an angle θ. From the addition
theorems of sine and cosine it also follows that

R(θ1)R(θ2) = R(θ1 + θ2) , (23.20)

that is, the rotation angle adds up under composition of rotations, as one would expect.
Eq. (23.20) implies that two-dimensional rotations commute since the right-hand side remains
the same when θ1 and θ2 are exchanged. With the reflection F = diag(1,−1) the orthogonal
group O(2) consists of the rotations R(θ) and the products

R(θ)F =

(
cos θ sin θ
sin θ − cos θ

)
(23.21)

of F with rotations, where θ ∈ [0, 2π). Since R(θ)F 6= FR(θ) (for θ 6= 0) it follows that O(2)
is non-Abelian.

Problem 23.5 (Rotations in R3)

Build three-dimensional rotations by using the two-dimensional rotations from Exercise 23.4.
Show that the group SO(3) is non-Abelian.

Solution: The idea is to construct a 3× 3 block matrix with a 1 in one diagonal entry and
a two-dimensional rotation R(θ) as the complementary 2× 2 block. There are three ways to
do this, corresponding to where the 1 is placed along the diagonal, namely

R1(θ1) =

 1 0 0
0 cos θ1 − sin θ1

0 sin θ1 cos θ1

 , R2(θ2) =

 cos θ2 0 − sin θ2

0 1 0
sin θ2 0 cos θ2

 , R3(θ3) =

 cos θ3 − sin θ3 0
sin θ3 cos θ3 0

0 0 1

 .

We need to check that these matrices satisfy RTR = 13 and det(R) = 1, but this follows
immediately from the fact that their 2 × 2 blocks of the form R(θ) satisfy these conditions.
The above matrices satisfy Ri(θi)ei = ei so ei is left invariant (it is an eigenvector with
eigenvalue 1). Hence, we should interpret Ri(θi) as a rotation around the axis ei with angle
θi.

More general three-dimensional rotations can be obtained by multiplying the above matrices.
Writing si = sin(θi) and ci = cos(θi) for convenience of notation, their product is given by

R1(θ1)R2(θ2)R3(θ3) =

 c2c3 −c2s3 −s2

c1s3 − c3s1s2 c1c3 + s1s2s3 −c2s1

c1c3s2 + s1s3 c3s1 − c1s2s3 c1c2


It turns out every three-dimensional rotation matrix can be written in this form, so three-
dimensional rotations depend on three real parameters. This can be shown by solving the
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equations RTR = 13 and det(R) = 1, as we have done for two-dimensional rotations, although
the explicit calculation is tedious.

Finally, we note that, unlike their two-dimensional counterparts, three-dimensional ro-
tations do not, in general, commute. For example, apart from special choices for the angles
R1(θ1)R2(θ2) 6= R2(θ2)R1(θ1). Hence, SO(3) is non-Abelian.

Application 23.1 Rotating physical systems

Suppose we have a stationary coordinate system with coordinates x ∈ R3 and another
coordinate system with coordinates y ∈ R3, which is rotating relative to the first one. Such
a set-up can be used to describe the mechanics of objects in rotating systems and has many
applications, for example to the physics of tops or the laws of motion in rotating systems
such as the earth. Mathematically, the relation between these two coordinate system can
be described by the equation

x = R(t)y , (23.22)

where R(t) are time-dependent rotation matrices. This means the matrices R(t) satisfy

R(t)TR(t) = 13 , (23.23)

(as well as det(R(t)) = 1)) for all times t. In practice, we can write rotation matrices in
terms of rotation angles, as we have done in Problem 23.5. The time-dependence of R(t)
then means that the rotation angles are functions of time. For example, a rotation around
the z-axis with constant angular speed ω can be written as

R(t) =

 cos(ωt) − sin(ωt) 0
sin(ωt) cos(ωt) 0

0 0 1

 . (23.24)

In physics, a rotation is often described by the angular velocity ω, a vector whose direction
indicates the axis of rotation and whose length gives the angular speed. It is very useful to
understand the relation between R(t) and ω. To do this, define the matrix

W = RT Ṙ , (23.25)

where the dot denotes the time derivative and observe, by differentiating Eq. (23.23) with
respect to time, that

RT Ṙ︸ ︷︷ ︸
=W

+ ṘTR︸ ︷︷ ︸
=WT

= 0 . (23.26)

Hence, W is an anti-symmetric matrix and can be written in the form

W =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 or Wij = εikjωk . (23.27)

The three independent entries ωi of this matrix define the angular velocity ω = (ω1, ω2, ω3)T .
To see that this makes sense consider the example (23.24) and work out the matrix W .

W = ω

 cos(ωt) sin(ωt) 0
− sin(ωt) cos(ωt) 0

0 0 1

− sin(ωt) − cos(ωt) 0
cos(ωt) − sin(ωt) 0

0 0 0

 =

 0 −ω 0
ω 0 0
0 0 0

 . (23.28)
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Comparison with the general form (23.27) of W then shows that the angular velocity for
this case is given by ω = (0, 0, ω), indicating a rotation with angular speed ω around the
z-axis, as expected.

In Problem 15.3 we have seen that the multiplication of an anti-symmetric 3 × 3 matrix
with a vector can be written as a cross-product, so that

Wb = ω × b (23.29)

for any vector b = (b1, b2, b3)T . This can also be directly verified using the matrix form of
W together with the definition, Eq. (10.6), of the cross product or, more elegantly, by the
index calculation Wijbj = εikjωkbj = (ω×b)i, using the index form, Eq. (10.8), of the cross
product. This relation can be used to re-write expressions which involve W in terms of the
angular velocity ω.

For a simple application of this formalism, consider an object moving with velocity ẏ relative
to the rotating system. What is its velocity relative to the stationary coordinate system?
Differentiating Eq. (23.22) gives

ẋ = Rẏ + Ṙy = R (ẏ +Wy) = R (ẏ + ω × y) . (23.30)

The velocity ẋ in the stationary system has, therefore, two contribution, namely the velocity
ẏ relative to the rotating system and the velocity ω×y due to the rotation itself. For more
on the mechanics of rotating systems (see, for example, Goldstein 2013; Landau and Lifshitz
1982).

23.2.4 Unitary matrices

We now carry out the analogous discussion in the complex case, so we would like to
analyse the unitary maps on Cn with the standard scalar product (22.9). In this case,
the adjoint of an n× n matrix A is its Hermitian conjugate A†, so that unitarity of A
is equivalent to any of the following conditions.

(Av)†Aw) = v†w ∀v,w ∈ Rn ⇔ ATA = 1n ⇔ A−1 = AT

⇔ (Ai)†Aj = δij i, j = 1, . . . , n . (23.31)

Matrices satisfying these conditions are called unitary matrices. As for orthogonal
matrices, checking whether a given matrix is unitary is usually easiest accomplished
using the second condition, A†A = 1n. The third condition states that the inverse of a
unitary matrix is simply its Hermitian conjugate and the condition in the second row
says that the column vectors of a unitary matrix form an ortho-normal basis under
the standard Hermitian scalar product on Cn.

The group formed by the unitary matrices is called the unitary group and it is denoted
by

U(n) = {A ∈ GL(C)n |A†A = 1n} . (23.32)

It is clear from our general discussion (see Problem 23.3) that unitary matrices sat-
isfy |det(A)| = 1. Unitary matrices with determinant +1 are called special unitary
matrices. They form the special unitary group denoted by
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SU(n) = {U ∈ U(n) |det(U) = 1} . (23.33)

The relation between unitary and special unitary matrices is easy to understand. For
a unitary matrix A ∈ U(n) we can always find a complex number ζ with |ζ| = 1
such that ζn = det(A). Then, the matrix U = ζ−1A is special unitary since det(U) =
det(ζ−1A) = ζ−n det(A) = 1. This means every unitary matrix A can be written as a
product

A = ζU (23.34)

of a special unitary matrix U and a complex number ζ with |ζ| = 1. We should think
of unitary and special unitary matrices as the complex generalization of orthogonal
matrices and rotations, respectively. In fact, unitary (special unitary) matrices with
real entries are orthogonal matrices (rotations) since the unitarity condition A†A = 1n
turns into the orthogonality condition ATA = 1n if A is real. This means the (special)
orthogonal groups are sub groups

O(n) ⊂ U(n) , SO(n) ⊂ SU(n) , (23.35)

of the (special) unitary groups.

Problem 23.6 (Special unitary matrices in two dimensions)

Find the two-dimensional special unitary matrices and, hence, determine the group SU(2).
Show that this group is non-Abelian.

Solution: We start with an arbitrary complex 2× 2 matrix

U =

(
α β
γ δ

)
,

where α, β, γ, δ ∈ C and impose the conditions U†U = 12 and det(U) = 1. After a short
calculation we find the group SU(2) is given by

SU(2) =

{(
α β
−β̄ ᾱ

)
|α, β ∈ C, |α|2 + |β|2 = 1

}
. (23.36)

This shows that two-dimensional special unitary matrices depend on two complex parameters
α, β subject to the (real) constraint |α|2 + |β|2 = 1 and, hence, on three real parameters.
Inserting the special choice α = cos θ, β = − sin θ into (23.36) we recover the two-dimensional
rotation matrices (23.4), so that SO(2) ⊂ SU(2), as expected from our general discussion.

It is easy to choose matrices of the form (23.36) which do not commute, so SU(2) is
non-Abelian.

The general study of orthogonal and unitary groups is part of the theory of Lie groups,
a more advanced mathematical discipline which is beyond the scope of this introduc-
tory text (see, for example, Cornwell 1997; Fulton and Harris 2013).
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Application 23.2 Newton’s equation in a rotating system

Newton’s law for the motion x = x(t) of a mass point with mass m under the influence of
a force F reads

mẍ = F , (23.37)

where the dot denotes the derivative with respect to time t. We would like to work out
the form this law takes if we transform it to rotating coordinates y, related to the original,
non-rotating coordinates x by

x = R(t)y . (23.38)

Here R(t) is a (generally time-dependent) rotation, that is, a 3× 3 matrix satisfying

R(t)TR(t) = 13 (23.39)

for all times t. For example, such a version of Newton’s law is relevant to describing me-
chanics on earth.

To re-write Eq. (23.37) in terms of y we first multiply both sides with RT = R−1 so that

mRT ẍ = FR , (23.40)

with FR := RTF the force in the rotating coordinate system. If the rotation matrix is time-
independent it can be pulled through the time derivatives on the LHS of Eq. (23.40) and
we get mÿ = FR. This simply says that Newton’s law keeps the same form in any rotated
(but not rotating!) coordinate system.

If R is time-dependent so that the system with coordinates y is indeed rotating relative
to the coordinate system x we have to be more careful. Taking two time derivatives of
Eq. (23.38) gives

ẋ = Rẏ + Ṙy , ẍ = Rÿ + 2Ṙẏ + R̈y . (23.41)

Using the second of these equations to replace ẍ in Eq. (23.40) leads to

mÿ = FR − 2mRT Ṙẏ −mRT R̈y . (23.42)

Compared to Newton’s equation in the standard form (23.37) we have acquired the two
additional terms on the RHS which we should work out further. From Eq. (23.25), recall

the definition W = RT Ṙ and further note that Ẇ = RT R̈+ ṘT Ṙ = RT R̈+(ṘTR)(RT Ṙ) =

RT R̈−W 2, so that
RT R̈ = Ẇ +W 2 . (23.43)

With these results we can re-write Newton’s equation (23.42) as

mÿ = FR − 2mW ẏ −mW 2y −mẆy . (23.44)

Also, recall that the matrix W is anti-symmetric, encodes the angular velocity ω, as in
Eq. (23.27) and its action on vectors can be re-written as a cross product with the angular
velocity ω (see Eq. (23.29)). Then, Newton’s equation (23.44) in a rotating system can be
written in its final form

mÿ = FR−2mω × ẏ︸ ︷︷ ︸
Coriolis force

−mω × (ω × y)︸ ︷︷ ︸
centrifugal force

−2mω̇ × y︸ ︷︷ ︸
Euler force

. (23.45)

The three terms on the RHS represent the additional forces a mass point experiences in a
rotating system. The centrifugal force is well-known. The Coriolis force is proportional to
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the velocity, ẏ, and, hence, vanishes for mass points which rest in the rotating frame. It is,
for example, responsible for the rotation of a Foucault pendulum. Finally, the Euler force
is proportional to the angular acceleration, ω̇. For the earth’s rotation, ω is approximately
constant so the Euler force is quite small in this case. For more details on mechanics in
rotating systems (see, for example, Goldstein 2013; Landau and Lifshitz 1982).

Exercises

(†=challenging)

23.1 Determine whether the matrices

A =

(
1√
2
− 1√

2
1√
2

1√
2

)
,

B =

(
2√
5

1√
5

1√
5
− 2√

5

)
, C =

(
1 2
0 1

)

are orthogonal or special orthogonal.

23.2 Determine whether the matrices

A =

 1√
2

0 1√
2

0 1 0
1√
2

0 − 1√
2

 ,

B =

− 1
3
− 2

3
2
3

− 2
3

2
3

1
3

− 2
3
− 1

3
− 2

3


are orthogonal or special orthogonal.

23.3 Verify that the matrix

U =

(
α β
−β̄ ᾱ

)
where α, β ∈ C and |α|2 + |β|2 = 1 is
special unitary.

23.4 Consider the linear map f : R3 → R3

defined in Exercise 20.5.
(a) Find an explicit expression for
|f(v)|2, where v ∈ R3.
(b) For which values of α, β ∈ R is f a
unitary (special unitary) linear map?
(c) What is the geometric interpreta-
tion of f in case it is unitary (special
unitary)?

23.5 A vector space V over C with Hermi-
tian scalar product 〈·, ·〉 has a basis
(ε1, . . . , εn) and the vectors ε′j are de-
fined by ε′j =

∑
i Uijεi, where Uij ∈

C. Show that
(a) Uij = 〈εi, ε′j〉.
(b) the matrix U with entries Uij is
unitary iff (ε′1, . . . , ε

′
n) is an ortho-

normal basis of V .

23.6 Let f ∈ End(V ) be a Hermitian map
on an inner product vector space V .
Show that
(a) Ker(f) ⊥ Im(f)
(b) V = Ker(f)⊕ Im(f)

23.7 (Hermitian projectors)
Show that a projector p ∈ End(V )
on an inner product vector space V
is Hermitian iff Ker(p) = Im(p)⊥.

23.8 For a linear map f : V →W between
two inner product vector space V and
W show that
(a) Ker(f† ◦ f) = Ker(f) and Ker(f ◦
f†) = Im(f)⊥.
(b) rk(f† ◦ f) = rk(f ◦ f†) = rk(f).

23.9 Unitary maps and orthogonal
matrices†

For a map f ∈ End(V ) on a vector
space V over R, denote by Af the
matrix which describes f relative to
an ortho-normal basis (ε1, . . . , εn) of
V .
(a) Show that f is (special) unitary iff
Af is a (special) orthogonal matrix.
(b) Show that the map ı : U(V ) →
O(n) defined by f 7→ Af is a group
isomorphism and that its restriction
to SU(V ) gives a group isomorphism
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SU(V )→ SO(n).

23.10 Unitary maps and matrices†

Repeat the discussion from Exer-
cise 23.9 for a vector space V over C.

23.11 Small rotations in three dimensions
Using the notation from Prob-
lem 23.5, consider a rotation R(θ) =
R1(θ1)R2(−θ2)R3(θ3) ∈ SO(3).
(a) By approximating sin(x) = x+· · ·
and cos(x) = 1 + · · · , show that
R(θ) = 13 +

∑
i θiTi + · · · , where

θ = (θ1, θ2, θ3)T , the dots stand for
terms quadratic and higher in θi and
(T1, T2, T3) is the basis for the space
A3 of anti-symmetric 3 × 3 matrices
from Exercise 13.9.
(b) For x ∈ R3 define δx = Rx − x.
Show that δx = θ × x + · · · , where
the dots stand for terms quadratic
and higher in θi.
(c) Work out δx for θ = (0, 0, θ)T

and x = (x, y, 0)T and interpret this
result geometrically.

23.12 Hermitian differential operators
On the inner product vector space V
from Example 23.2 define the linear
maps D = d/dx, P = −iD and X,
with X(ϕ)(x) := xϕ(x).
(a) Which of the maps X2, P 2, XP ,
X2P and XPX is Hermitian?
(b) For XP + c find the values of
c ∈ C so that the map is Hermitian.

23.13 Rotating systems in two dimensions†

Derive the analogue of the results
from Applications 23.1 and 23.2 for
two-dimensional rotations

R(θ(t)) =

(
cos(θ(t)) sin(θ(t))
− sin(θ(t)) cos(θ(t))

)
where θ(t) is a time-dependent angle
of rotation. Proceed as follows.
(a) Show that W := RT Ṙ = θ̇ε where
ε is the matrix in Eq. (10.2).
(b) If x(t),y(t) ∈ R2 and x = Ry

show that ẋ = R(ẏ + θ̇y×).
(c) Transform Newton’s equation
mẍ = F in R2 to the rotating coordi-
nates y = RTx.

23.14 Endomorphisms commuting with
groups†

Let V be a vector space over C and G
a subgroup of GL(V ). The group G
is called irreducible if no non-trivial
subspace U ⊂ V exists which is left
invariant under all endomorphisms in
G.
(a) Suppose G is irreducible and
f ∈ End(V ) satisfies [f, g] = 0 for
all g ∈ G. Show that f = λ idV for
λ ∈ C. (Hint: Consider an eigenspace
of f .)
(b) Which of the groups SO(2) and
SU(2) is irreducible?
(c) A matrix A ∈ End(C2) is un-
changed under unitary basis transfor-
mations. What is the most general
form of A?
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Diagonalization — again

With considerably more structure on our vector spaces, it is worth revisiting eigen-
values, eigenvectors and diagonalization. We have seen in Chapter 20 that not all
endomorphisms can be diagonalized. Theorem 20.1 provides criteria for when this is
possible but checking these usually amounts to calculating all the eigenvalues and
eigenvectors.

The main problem we will tackle in this chapter is whether the presence of a scalar
product simplifies matters and leads to more straightforward criteria for when an endo-
morphism can be diagonalized. In fact, we will show that two classes of endomorphisms
— self-adjoint and normal endomorphisms — can always be diagonalized. Section 24.4
discusses functions of matrices, a topic somewhat outside the main narrative of linear
algebra but one with many applications. As we explain, diagonalization of matrices is
a powerful computational tool in this context.

The final section is looking at normal forms for homomorphisms V →W , rather than
at endomorphisms. This leads to the singular value decomposition of linear maps, a
technique widely used in applications.

24.1 Hermitian maps

Summary 24.1 Hermitian maps have real eigenvalues and eigenvectors for different
eigenvalues are always orthogonal. They can always be diagonalized relative to an
ortho-normal basis.

24.1.1 Eigenvectors and eigenvalues of Hermitian maps

The following theorem shows that eigenvalues and eigenvectors of self-adjoint endo-
morphisms have special properties.

Theorem 24.1 For an inner product vector space V and a self-adjoint endomorphism
f ∈ End(V ), we have the following statements:

(i) All eigenvalues of f are real.
(ii) Eigenvectors for different eigenvalues are orthogonal.

Proof (i) For the case of real scalar products the statement is trivial. For Hermitian
scalar products, we start with an eigenvalue λ of f with eigenvector v, so that f(v) =
λv. The self-adjoint property of f then implies
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λ〈v,v〉 (S1)
= 〈v, λv〉 = 〈v, f(v)〉 (23.6)

= 〈f(v),v〉 = 〈λv,v〉 (22.2)
= λ̄〈v,v〉

Eigenvectors are non-zero, so 〈v,v〉 6= 0, and it follows that λ ∈ R.

(ii) If f(vi) = λivi for i = 1, 2, where, from part (i), λi ∈ R, it follows that

λ2〈v1,v2〉
(S1)
= 〈v1, λ2v2〉 = 〈v1, f(v2)〉 (23.6)

= 〈f(v1),v2〉 = 〈λ1v2,v2〉
(22.2)

= λ1〈v1,v2〉 .

For λ1 6= λ2 this implies that 〈v1,v2〉 = 0. 2

24.1.2 Diagonalizing Hermitian maps

Orthogonality of eigenvectors for Hermitian maps is an important feature which facil-
itates the proof of the following statement.

Theorem 24.2 A self-adjoint map f ∈ End(V ) on a (finite-dimensional) inner prod-
uct vector space V can be diagonalized and has an ortho-normal basis of eigenvectors.

Proof We proof this by induction in n = dimF(V ). For n = 1 the assertion is trivial.
The induction assumption is that the statement holds for all dimensions k < n and
we need to show that it is true for dimension n.

The characteristic polynomial χf has at last one zero, λ, over the complex numbers
but from Theorem 24.1 λ must, in fact, be real. Hence, even if V is a vector space over
R, the Hermitian map f has an eigenvalue λ and an associated non-trivial eigenspace
W = Eigf (λ). For any vectors w ∈W and v ∈W⊥ we have

〈w, f(v)〉 = 〈f(w),v〉 = 〈λw,v〉 = λ〈w,v〉 = 0 .

This means that f(v) is perpendicular to w so that, whenever v ∈ W⊥, then also
f(v) ∈W⊥. As a result, W⊥ is invariant under f and we can consider the restriction
g = f |W⊥ of f to W⊥. Since dim(W⊥) < n, there is an ortho-normal basis ε1, . . . , εk of
W⊥ consisting of eigenvectors of g (which are also eigenvectors of f) by the induction
assumption. Add to this ortho-normal basis of W⊥ an ortho-normal basis of W (which,
by definition of W , consists of eigenvectors of f with eigenvalue λ). Since V = W⊕W⊥
(see Prop. 22.3) this list of vectors forms an ortho-normal basis of V which consists of
eigenvectors of f . 2

In summary, a self-adjoint endomorphism f ∈ End(V ) on a finite dimensional inner
product space V can be diagonalized, it has real eigenvalues and an ortho-normal basis
of eigenvectors. In practice, the ortho-normal basis of eigenvectors can be found by
first computing all the eigenspaces Eigf (λi) and then constructing an ortho-normal
basis on each eigenspace, using the Gram–Schmidt procedure. If the eigenvalue is
non-degenerate, so that the eigenspace is one-dimensional, this simply amounts to
normalizing the eigenvector. Then combine the bases for all eigenspaces into a basis
of V . Theorem 24.1 guarantees that this basis is ortho-normal.

For a Hermitian matrix A ∈ End(Fn) with an ortho-normal basis of eigenvectors

(ε1, . . . , εn) and corresponding eigenvectors (λ̂1, . . . , λ̂n), the diagonalizing basis trans-
formation P = (ε1, . . . , εn) is, in fact, a unitary matrix (orthogonal matrix in the real
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case), as follows from Eq. (23.31) (Eq. (23.13) in the real case). This means that
P−1 = P † and that diagonalization of A can be accomplished by

P †AP = Â = diag(λ̂1, . . . , λ̂n) . (24.1)

24.1.3 Examples

It is worth setting up an algorithm for how to diagonalize a self-adjoint endomorphism.

Algorithm (Diagonalizing self-adjoint endomorphisms)
To diagonalize a self-adjoint endomorphism f ∈ End(V ) carry out the following steps.

(1) Determine the (pairwise distinct) eigenvalues λ1, . . . , λk of f and their multiplic-
ities mi, by finding the zeros of the characteristic polynomial χf .

(2) For each eigenvalue λi, find the corresponding eigenspace Eigf (λi) by solving the
linear system (f − λi idV )v = 0. The degeneracy di = dimF(Eigf (λi)) equals the
multiplicity mi.

(3) For each eigenspace Eigf (λi), choose an arbitrary basis and apply the Gram–
Schmidt procedure to convert this into an ortho-normal basis of Eigf (λi). (If the
eigenvalue is non-degenerate, so if di = 1, all this requires is normalizing the
eigenvector for λi.)

(4) Combine the bases for all eigenspaces found in (3) into a single basis (ε1, . . . , εn).
This is an ortho-normal basis of V which diagonalizes f . The diagonal matrix
describing f is Â = diag(λ̂1, . . . , λ̂n), where λ̂i are the eigenvalues of εi, that is,
the values λi repeated with multiplicities di.

(5) If f is a matrix A ∈ End(Fn), then form the unitary (or, for F = R, orthogonal)
matrix P = (ε1, . . . , εn) and diagonalize with the basis transformation P †AP = Â.

Problem 24.1 (Diagonalizing symmetric matrices)

Diagonalize the symmetric matrix A ∈ End(R3) given by

A =
1

4

 2 3
√

2 3
√

2
3
√

2 −1 3
3
√

2 3 −1

 .

Solution: The characteristic polynomial χA(λ) = det(A − λ1)3) = −λ3 + 3λ + 2 = (2 −
λ)(1 + λ)2 shows that there are two eigenvalues, λ1 = 2 and λ2 = −1, with multiplicities
(=degeneracies) m1 = 1 and m2 = 2. For the eigenvector v = (x, y, z)T for λ1 = 2 we find

(A− 213)v =
3

4

−2
√

2
√

2√
2 −3 1√
2 1 −3

x
y
z

 =
3

4

−2x+
√

2y +
√

2z√
2x− 3y + z√
2x+ y − 3z

 !
= 0 ⇒ y = z =

x√
2
.

So, this eigenvalue is indeed non-degenerate. We should normalize the eigenvector using the
dot product (since A is symmetric and, hence, self-adjoint relative to the dot product) which

leads to ε1 = (
√

2, 1, 1)T /2. For λ2 = −1 a similar calculation gives

(A+ 13)v =
3

4

 2
√

2
√

2√
2 1 1√
2 1 1

x
y
z

 =
3

4

 2x+
√

2y +
√

2z√
2x+ y + z√
2x+ y + z

 !
= 0 ⇒ z = −

√
2x− y .
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Since there is only one condition on x, y, z there are two linearly independent eigenvectors,
so this eigenvalue has degeneracy 2, as expected. Obvious choices for the two eigenvectors
are obtained by setting (x, y) = (1, 0) and (x, y) = (0, 1) which gives v2 = (1, 0,−

√
2)T and

v3 = (0, 1,−1)T . Both of these vectors are orthogonal to ε1 above, as they must be, but they
are not orthogonal to one another. However, they do form a basis of the two-dimensional
eigenspace EigA(−1) = Span(v2,v3) to which we can apply the Gram–Schmidt procedure.
The first step is to normalize v2 which gives

ε2 =
v2

|v2|
=

1√
3

 1
0
−
√

2

 .

Next, we need to subtract from v3 its projection onto ε2 and normalize, resulting in

v′3 = v3 − (ε2 · v3)ε2 =
1

3

−√2
3
−1

 , ε3 =
v′3
|v′3|

=
1

2
√

3

−√2
3
−1

 .

The vectors (ε1, ε2, ε3) form an ortho-normal basis of eigenvectors, so the matrix

P = (ε1, ε2, ε3) =


1√
2

1√
3
− 1√

6
1
2

0
√

3
2

1
2
−
√

2
3
− 1

2
√

3


is orthogonal, as can be checked explicitly by verifying that PTP = 13. Diagonalization is
accomplished by PTAP = diag(2,−1,−1).

Problem 24.2 (Diagonalizing Hermitian matrices)

Diagonalize the Hermitian matrix A ∈ End(C2) given by

A =

(
2 1 + 2i

1− 2i −2

)
Solution: The characteristic polynomial χA(λ) = det(A − λ12) = (λ + 3)(λ − 3) indicates
we have two non-degenerate eigenvalues λ± = ±3. Note, they are real as must be the case
from Theorem 24.1. For the eigenvalues v = (x, y)T we have

(A− λ∓12)v = (A± 312)v =

(
2± 3 1 + 2i
1− 2i −2± 3

)(
x
y

)
= 0 ⇒

{
v− = (1 + 2i,−5)T

v+ = (1 + 2i, 1)T
.

Note that v− and v+ are automatically orthogonal, as they correspond to different eigenval-
ues. All we need to do is normalize them, relative to the standard scalar product on C2. Since
|v1|2 = v†1v1 = 30 and |v2|2 = v†2v2 = 6 this gives

ε− =
1√
30

(
1 + 2i
−5

)
, ε+ =

1√
6

(
1 + 2i

1

)
, U = (ε−, ε+) =

1√
30

(
1 + 2i

√
5(1 + 2i)

−5
√

5

)
.

It is easily verified that U is unitary by checking that U†U = 12. Diagonalization is accom-
plished by U†AU = diag(−3, 3).
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Problem 24.3 A self-adjoint differential operator

Let V be the vector space of infinitely many times differentiable functions ϕ : [−π, π] → R
which satisfy ϕ(−π) = ϕ(π), with the scalar product

〈ϕ,ψ〉 =

∫ π

−π
dxϕ(x)ψ(x) .

Show that the linear map D2 = d2/dx2 : V → V is self-adjoint. Find its eigenvalues and
eigenvectors and convince yourself that eigenvectors for different eigenvalues are indeed or-
thogonal.

Solution: The proof that D2 is self-adjoint is based on integration by parts, where the
boundary terms vanish due to the ’periodicity condition’ ϕ(−π) = ϕ(π) on functions in V .
Simplifying notation by dropping the argument x, we have

〈ϕ,D2ψ〉 =

∫ π

−π
ϕD2ψ = −

∫ π

−π
(Dϕ)(Dψ) =

∫ π

−π
(D2ϕ)ψ = 〈D2ϕ,ψ〉 ,

so D2 is indeed self-adjoint. To find the eigenvalues and eigenvectors we solve the equation
D2ϕ = λϕ, subject to ϕ(−π) = ϕ(π). The eigenvalues are λ = 0 and λ = −k2, where
k = 1, 2, . . ., and defining the functions

c0(x) =
1√
2π

, sk(x) =
1√
π

sin(kx) , ck(x) =
1√
π

cos(kx) ,

the corresponding eigenspaces can be written as

EigD2(0) = Span(c0) , EigD2(−k2) = Span(sk, ck) .

Hence, each eigenvalue λ = −k2 for k = 1, 2, . . . has degeneracy two and the eigenvalue
λ = 0 is non-degenerate. By using standard integrals for sine and cosine it is straightforward
to check orthogonality, 〈sk, sl〉 = 〈ck, cl〉 = δkl, of eigenvectors for different eigenvalues, as
predicted by Theorem 24.1. Orthogonality of the functions sk and ck does not follow from
Theorem 24.1. They are nevertheless orthogonal, 〈sk, ck〉 = 0, as can be seen by direct
integration. Altogether, this means that the functions ck, for k = 0, 1, . . . and sk for k =
1, 2, . . . are ortho-normal.

The functions sk and ck are at the heart of the Fourier series expansion. The idea is to expand
a periodic function ϕ as

ϕ(x) =

∞∑
k=0

αkck(x) +

∞∑
k=1

βksk(x) ,

in analogy with how we expand a vector in a finite-dimensional vector space in terms of
an ortho-normal basis. Of course, the infinite summations in this expression raises issues of
convergence. They are the subject of an analysis course and will not be tackled here. All we
would like to point out is that a naive application of Eq. (22.15) for the coordinates relative
to an ortho-normal basis leads to formulae for the Fourier coefficients αk and βk, namely

αk = 〈ck, ϕ〉 =

∫ π

−π
dx ck(x)ϕ(x) , βk = 〈sk, ϕ〉 =

∫ π

−π
dx sk(x)ϕ(x) .

In the theory of Fourier expansion, these are key equations which are used to compute the
Fourier coefficients of a function ϕ.
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24.2 Normal maps*

Summary 24.2 Normal maps are, by definition, maps which commute with their
adjoint. The class of normal maps is larger than the one of Hermitian maps and it
includes anti-Hermitian and unitary maps. Over the complex numbers, a map can be
diagonalized relative to an ortho-normal basis if and only if it is normal.

24.2.1 Definition of normal maps

Self-adjoint endomorphisms are not the most general class of endomorphisms which
can be diagonalized relative to an ortho-normal basis. It turns out, the slightly weaker
condition of normality is sufficient (and indeed necessary) for the existence of an
ortho-normal basis of eigenvectors, provided the characteristic polynomial factorises.
We begin by defining normal linear maps.

Definition 24.1 An endomorphism f ∈ End(V ) on an inner product vector space V
is called normal if [f, f†] = 0.

In other words, normal maps are those that commute with their adjoint. Clearly, self-
adjoint maps are normal since f = f† implies [f, f†] = [f, f ] = 0. But there are other
classes of normal endomorphisms. Anti self-adjoint maps, so maps f with f = −f†,
are normal as well since [f, f†] = −[f, f ] = 0. More importantly, unitary maps are
normal since the unitarity conditions f ◦ f† = f† ◦ f = idV leads to [f, f†] = 0. So it
is clear that normal maps cover significantly more ground than self-adjoint ones.

Self-adjoint maps have real eigenvalues. This is not necessarily the case for normal
maps but they satisfy a weaker property, namely that the eigenvalues of f and f† are
related by complex conjugation.

Lemma 24.1 Let V be an inner product vector space and f ∈ End(V ) normal. If λ
is an eigenvalue of f with eigenvector v then λ̄ is an eigenvalue of f† for the same
eigenvector v.

Proof First, we show that the map g = f − λ idV is also normal. This follows from
the straightforward calculation

[g, g†] = [f − λ idV , f
† − λ̄ idV ] = [f, f†]− λ[idV , f

†]− λ̄[f, idV ] + |λ|2[idV , idV ] = 0 ,

where some of the properties of the adjoint map from Prop. 23.1 have been used. Now
consider an eigenvalue λ of f with eigenvector v, so that f(v) = λv or, equivalently,
g(v) = 0. Then we have

0 = 〈g(v), g(v)〉 = 〈v, g† ◦ g(v)〉 = 〈v, g ◦ g†(v)〉 = 〈g†(v), g†(v)〉 ,

and it follows that g†(v) = 0. Since g† = f−λ̄ idV this, in turn, means that f†(v) = λ̄v.
Hence, λ̄ is indeed an eigenvalue of f† with eigenvector v. 2
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24.2.2 Diagonalization of normal maps

Now we are ready to prove the key result for normal maps.

Theorem 24.3 (Diagonalization of normal maps) Let V be an inner product vector
space and f ∈ End(V ) an endomorphism with a fully factorizing characteristic poly-
nomial. Then f is normal if and only if it has an ortho-normal basis of eigenvectors.

Proof ’⇐’: This is the ’easy’ direction. Start with an ortho-normal basis (ε1, . . . , εn)
of eigenvector of f , so that f(εi) = λiεi. Then, Lemma (24.1) implies that f†(εi) = λ̄iεi
and it follows that

[f, f†](εi) = (f ◦ f† − f† ◦ f)(εi) = (|λi|2 − |λi|2)εi = 0 .

Since [f, f†] vanishes on a basis it vanishes and, hence, f is normal.

’⇒’: Conversely, assume that f is normal. We will show that f has an ortho-normal
basis of eigenvectors by induction in n = dim(V ). For n = 1 the statement is trivial.
Assume that it is valid for all dimensions k < n. Since χf fully factorizes, f has at
least one eigenvalue λ so that the associated eigenspace W = Eigf (λ) is non-trivial.

For w ∈W and v ∈W⊥ we have

〈f(v),w〉 = 〈v, f†(w)〉 Lm. (24.1)
= 〈v, λ̄w〉 = λ̄〈v,w〉 = 0

〈f†(v),w〉 = 〈v, f(w)〉 = 〈v, λw〉 = λ〈v,w〉 = 0 ,

so it follows that the orthogonal complement W⊥ is invariant under f and f†. The
restriction f |W⊥ is normal as well and, from the induction assumption has an ortho-
normal basis of eigenvectors. Combining this basis with a basis of W gives a ortho-
normal basis of eigenvectors for V = W ⊕W⊥. 2

Diagonalizing normal maps by finding first their eigenvalues and then an ortho-normal
basis of eigenvectors proceeds exactly as for Hermitian maps and we will refrain from
further explicit examples. It is, however, useful to discuss the diagonalization of unitary
maps in more detail.

24.2.3 Diagonalizing unitary maps

Proposition 24.1 The eigenvalues of a unitary map have complex modulus one.

Proof For an eigenvalue λ with eigenvector v of f the eigenvalue equations f(v) = λv
together with unitarity condition (23.10) gives

|λ|2〈v,v〉 = 〈λv, λv〉 = 〈f(v), f(v)〉 = 〈v,v〉 .

Since v 6= 0 it follows that |λ| = 1. 2

Hence, in a complex inner product vector space a unitary map f ∈ U(V ) can be
described, relative to an ortho-normal basis (ε1, . . . , εn) of V , by a matrix Â =
diag(z1, . . . , zn), where zi ∈ C have complex length one, |zi| = 1. In particular, for
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a unitary matrix A ∈ U(n) we have a unitary basis transformation U = (ε1, . . . , εn) ∈
U(n) which diagonalizes A, so that

Â = diag(z1, . . . , zn) = U†AU where |zi| = 1 . (24.2)

The eigenvalues of a unitary map f ∈ U(V ) over a real inner product space can
only assume the values ±1. However, such a map can only be diagonalized if the
characteristic polynomial fully factorizes and this is not necessarily the case over R.
If we assume full factorization, there is an ortho-normal basis (ε1, . . . , εn) relative to
which f is described by the matrix

Â = diag(1, . . . 1,−1, . . . ,−1) = RTAR , where R = (ε1, . . . , εn) ∈ O(n) . (24.3)

Problem 24.4 (Orthogonal matrices in two dimensions)

Show that two-dimensional rotations R 6= ±12 cannot be diagonalized over R. Diagonalize
them over C. Also show that two-dimensional orthogonal matrices A with det(A) = −1 can
be diagonalized over R.

Solution: We know from Eq. (23.17) that two-dimensional rotations can be written as

R(θ) =

(
cos θ − sin θ
sin θ cos θ

)
, (24.4)

where θ ∈ [0, 2π). For the characteristic polynomial we have χR(θ)(λ) = (λ − exp(iθ))(λ −
exp(−iθ)), so the eigenvalues are λ± = exp(±iθ). These eigenvalues are not real unless
θ = 0, π which corresponds to R 6= ±12, so apart from those special cases R cannot be
diagonalized over the real numbers. However, it can be diagonalized over C. The eigenvectors,
normalized relative to the standard scalar product on C, are v± = (±i, 1)T /

√
2 and with the

unitary basis transformation U = (v−,v+) ∈ U(2) we have

U†R(θ)U = diag(exp(−iθ), exp(iθ)) .

On the other hand, from Eq. (23.21), two-dimensional orthogonal matrices with negative
determinant can be written as

A(θ) =

(
cos θ sin θ
sin θ − cos θ

)
.

The subtle change of sign, compared to rotations, is important since the characteristic polyno-
mial χA(θ)(λ) = (λ−1)(λ+ 1) now fully factorizes over R. The eigenvalues are λ± = ±1 with

the corresponding eigenvectors v+ = (cos(θ/2), sin(θ/2))T and v− = (− sin(θ/2), cos(θ/2))T .
The diagonalizing matrix R(θ/2) = (v+,v−) is a rotation with angle θ/2 and we have

R(θ/2)TA(θ)R(θ/2) = diag(1,−1) .
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24.2.4 Orthogonal matrices

The previous problem illustrates that not all orthogonal matrices can be diagonalized
over R. What is the simplest ’normal form’ we can achieve in this case?

Theorem 24.4 Let A ∈ O(n) be an orthogonal matrix. Then there exists a basis
transformation P ∈ O(n) such that

PTAP = diag(1, . . . , 1,−1, . . . ,−1, R(θ1), . . . , R(θk)) , (24.5)

where R(θi) are two-dimensional rotations as in Eq. (24.4).

Proof We start by showing that there is a vector subspace U ⊂ Rn with dimR(U) ∈
{1, 2} which is invariant under A. If we consider A as a map on Cn then it is unitary
and, over C, there exists an eigenvalue λ with eigenvector v, so Av = λv. Complex
conjugating this equation and taking into account that A is real we have Av̄ = λ̄v̄, so
that v̄ is also an eigenvector of A with eigenvalue λ̄. Define the two real vectors

vR =
1

2
(v + v̄) , vI =

1

2i
(v − v̄) ,

and define U = Span(vR,vI). It is clear that U is at least one-dimensional and at
most two-dimensional. Invariance of U under A is easily checked and follows from the
fact that v and v̄ are eigenvectors of A.

Let W = U⊥ be the orthogonal complement. For w ∈W and u ∈ U we have

(Aw) · u = (A−1Aw) · (A−1u) = w · (A−1u)︸ ︷︷ ︸
∈U

= 0 .

Hence, W is invariant under A and we have a orthogonal decomposition Rn = U ⊕W
into A-invariant subspaces. The restriction A|W is also orthogonal, so we can continue
this process to find an orthogonal decomposition Rn = U1 ⊕ U2 ⊕ · · · ⊕ Um into one-
or two-dimensional A-invariant subspaces Ui. The restriction of A to each of those
subspaces is orthogonal. If dimR(Ui) = 1 then A|Ui

∈ {±1} and if dimR(Ui) = 2 then
A|Ui

must be a two-dimensional orthogonal matrix. From Exercise 24.4 this means
either A|Ui is a two-dimensional rotation so can be written as A|Ui = R(θ), or it is
orthogonal with negative determinant and it can be diagonalized to diag(1,−1). 2

24.2.5 Three-dimensional rotations — again

Three-dimensional rotations are important for many applications and this justifies
having a closer look. From Theorem 24.4 we know that a three-dimensional rotation
R can be basis-transformed to the normal form in Eq. (24.5). Since det(R) = 1 this
means there must be a basis transformation P = (ε1, ε2, ε3) ∈ O(3) such that

R̂ = PTRP =

(
1 0T

0 R(θ)

)
=

 1 0 0
0 cos(θ) − sin(θ)
0 sin(θ) cos(θ)

 . (24.6)

We conclude that a three-dimensional rotation always has at least one eigenvector
n = ε1 with eigenvalue one,
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Rn = n . (24.7)

This eigenvector is called the axis of rotation and the angle θ which appears in
Eq. (24.6) is called the angle of rotation. Basis-independence of the trace means that
tr(R) = tr(R̃) = 1 + 2 cos(θ) and this leads to the interesting and useful formula

cos(θ) =
1

2
(tr(R)− 1) (24.8)

which allows for an easy computation of the angle of rotation, even if the rotation
matrix is not in the simple form (24.6). The axis of rotation n, on the other hand, can
be found as the eigenvector for eigenvalue one, that is, by solving Eq. (24.7).

It can be useful to have a more explicit form of rotations in terms of the axis of
rotation and the rotation angle available. To this end, we can write the matrix R̂ from
Eq. (24.6) as

R̂ij = (1− cos(θ))n̂in̂j + cos(θ)δij + sin(θ)εikj n̂k

where n̂ = e1 is the axis of rotation relative to the basis (ε1, ε2, ε3). The reason for this
somewhat contrived-looking form is that it is easily transformed back to the original
basis by carrying out R = PR̂PT . In this case, all that happens is that n̂ is replaced
by n = P n̂, so that

Rij = (1− cos(θ))ninj + cos(θ)δij + sin(θ)εikjnk . (24.9)

This is the desired form of a three-dimensional rotation in terms of the axis of rotation
n with |n| = 1 and the rotation angle θ ∈ [0, 2π). 2

Problem 24.5 (Three-dimensional rotations)

Check that the matrix R ∈M3,3(R) given by

R =
1

2

√2 −1 −1
0
√

2 −
√

2√
2 1 1


is a rotation matrix and find its axis of rotation and the (cosine of the) angle of rotation.

Solution: It is easy to verify that RTR = 13 and det(R) = 1 so this is indeed a rotation.
By solving Eq. (24.7) for this matrix (and normalizing the eigenvector) we find for the axis
of rotation

n =
1√

5− 2
√

2
(1,−1,

√
2− 1)T .

Also, we have tr(R) =
√

2 + 1/2, so from Eq. (24.8) the angle of rotation satisfies

cos(θ) =
1

4
(2
√

2− 1) .
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24.3 Singular value decomposition*

Summary 24.3 A homomorphism f ∈ Hom(V,W ) can always be diagonalized, rel-
ative to basis choices on V and W , to a matrix with r = rk(f) entries 1 along the
diagonal and all other entries zero. If V and W are inner product vector spaces, f
can also be diagonalized relative to ortho-normal bases on V and W and this leads
to the singular value decomposition.

So far we have been concerned with normal forms and diagonalization of endomor-
phisms, so, in practical terms, with square matrices. What about homomorphisms
V → W between two different vector spaces, not necessarily with the same dimen-
sion? Finding a normal form for such homomorphisms is, in fact, a much easier problem
than for endomorphisms. This is because we have two choices of bases, one on V and
one on W , which we can adjust in order to find a simple representing matrix.

24.3.1 General bases

If we allow arbitrary basis choices on V and W every homomorphism V →W can be
brought to a rather simple form.

Theorem 24.5 For a homomorphisms f ∈ Hom(V,W ) there exist bases (v1, . . . ,vn)
of V and (w1, . . . ,wm) of W relative to which f is represented by an m×n matrix of
the form

r n− r

Â =

 1r 0

0 0

 r

m− r

, (24.10)

where r = rk(f), with block sizes indicated on top and to the right.

Proof With r = rk(f) we can choose a basis (vr+1, . . . ,vn) of Ker(f) and complete
this to a basis (v1, . . . ,vr,vr+1, . . . ,vn) of V . The images of these basis vector are

f(vi) =

{
wi for i ≤ r
0 for i > r

, (24.11)

where (w1, . . . ,wr) forms a basis of Im(f). This basis can be completed to a basis
(w1, . . . ,wr, . . . ,wm) of W . Comparing Eqs. (24.11) and (15.5) shows that, relative
to the bases (v1, . . . ,vn) and (w1, . . . ,wm), f is described by the matrix (24.10).
2

The normal form (24.10) is completely characterized by the rank, r = rk(f), of the
homomorphism, so can be immediately written down once the rank is known. The
relevant bases may also be required and an algorithm for their computation can be
easily extracted from the proof of the previous theorem.

Algorithm (Compute the normal form of a homomorphism)
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To find the normal form (24.10) and associated bases for a homomorphism f ∈
Hom(V,W ), with n = dimF(V ), m = dimF(W ), and r = rk(f), perform the following
steps:

(1) Find Ker(f) by solving the homogeneous linear system f(v) = 0.

(2) Choose a basis (vr+1, . . . ,vn) of Ker(f) and complete to a basis (v1, . . . ,vn) of
V .

(3) Compute the images wi = f(vi) for i ≤ r and complete to a basis (w1, . . . ,wm)
of W . Relative to this basis and the basis for V from (2) f is represented by the
matrix (24.10).

(4) If f = A ∈ Hom(Fn,Fm) is a matrix, then a basis transform withQ = (w1, . . . ,wm)
and P = (v1, . . . ,vn) brings A into the normal form, that is, Â = Q−1AP .

Problem 24.6 (Normal form of a homomorphism)

For the linear map A ∈ Hom(R3,R2) given by

A =

(
1 1 −2
0 1 1

)
find the normal form (24.10) and the associated bases.

Solution: We clearly have r = rk(A) = 2 (the first two rows are linearly independent) so we
can immediately write down the normal form as

Â =

(
1 0 0
0 1 0

)
.

In order to find the bases (and basis transformation) associated to this normal form, we follow
the above algorithm.
(1) Solving Av = 0 shows that Ker(A) = Span(v3), where v3 = (3,−1, 1)T .
(2) Setting v1 = e1 and v2 = e2 the vectors (v1,v2,v3) form a basis of R3.
(3) With w1 = Av1 = (1, 0)T and w2 = Av2 = (1, 1)T we have basis (w1,w2) of R2.
(4) The explicit basis transformation is accomplished with the matrices

P = (v1,v2,v3) =

 1 0 3
0 1 −1
0 0 1

 , Q = (w1,w2) =

(
1 1
0 1

)

and it is easy to verify that Â = Q−1AP .

24.3.2 Ortho-normal bases

Allowing generic choices of bases on the domain and co-domain involves considerable
freedom and consequently leads to a rather simple normal form (24.10) for homomor-
phisms f ∈ Hom(V,W ). What if we constrain the choice of bases to ortho-normal
ones? Of course for this to make sense, we have to assume that V and W are inner
product vector spaces with inner products 〈·, ·〉V and 〈·, ·〉W . The first step is to define
the analogue of eigenvalues. But an equation of the form f(v) = σw, where v ∈ V
and w ∈W , is not sufficient to characterize the number σ since it involves two vectors
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which can be arbitrarily re-scaled. Rather, we have to impose two equations and a
natural choice is

f(v) = σw , f†(w) = σv , (24.12)

for v ∈ V and w ∈W both non-zero. These two equations imply that f† ◦f(v) = σ2v
and, hence,

|σ|2〈w,w〉W = 〈f(v), f(v)〉W = 〈v, f† ◦ f(v)〉V = 〈v, σ2v〉V = σ2〈v,v〉V .

There are two immediate conclusions from this. First, σ ∈ R and we can always achieve
σ ≥ 0 by performing a re-scaling v 7→ −v, if required. Secondly, for σ > 0 we learn
that |v|V = |w|W . All this motivates the following definition.

Definition 24.2 (Singular values and vectors) For a homomorphisms f ∈ Hom(V,W )
between inner product vector spaces V and W , the number σ ∈ R≥0 is called a singular
value of f if there are vectors v ∈ V and w ∈W with |v|V = |w|W 6= 0 such that the
Eqs. (24.12) are satisfied. In this case the vectors (v,w) are called singular vectors for
σ.

Eigenvalues are computed by finding the zeros of the characteristic polynomial. How
can the singular values be determined?

Proposition 24.2 For a homomorphisms f ∈ Hom(V,W ) between inner product vec-
tor spaces V and W the following statements are equivalent.

(i) σ > 0 is a singular values of f with singular vectors (v,w).
(ii) σ2 > 0 is an eigenvalue of f† ◦ f with eigenvector v and w = σ−1f(v).
(iii) σ2 > 0 is an eigenvalue of f ◦ f† with eigenvector w and v = σ−1f(w).

Proof The proofs are straightforward and based on Eqs. (24.12) which imply f† ◦
f(v) = σ2v and f ◦ f†(w) = σ2w. 2

Hence, we can find the singular values and vectors by working out the eigenvalues and
eigenvectors of f† ◦ f or f ◦ f†. Since both of these endomorphisms are Hermitian we
know that they have an ortho-normal basis of eigenvectors. This observation is the
basis for constructing the singular value normal form.

Theorem 24.6 (Singular value normal form) Let f ∈ Hom(V,W ) be a homomor-
phism over inner product vector spaces V and W with dimensions n = dimF(V ) and
m = dimF(W ). Then, there are ortho-normal bases (ε1, . . . , εn) of V and (ε̃1, . . . , ε̃m)
of W relative to which f is described by the matrix

r n− r

Â =

 D 0

0 0

 r

m− r

, D = diag(σ1, . . . , σr) , (24.13)

where r = rk(f), σ1 ≥ σ2 ≥ · · · ≥ σr > 0 are the non-zero singular values of f and σ2
i

the non-zero eigenvalues of f†f , repeated in line with degeneracies.



Singular value decomposition* 331

Proof First of all the eigenvalues λ of f† ◦ f must be real since f† ◦ f is Hermitian.
They are also non-negative since the eigenvalue equation f† ◦ f(v) = λv implies that

0 ≤ 〈f(v), f(v)〉 = 〈v, f† ◦ f(v)〉 = λ〈v,v〉 .

We conclude that f† ◦ f has an ortho-normal basis (ε1, . . . , εn) of eigenvectors with
non-negative eigenvalues (σ2

1 , . . . , σ
2
n). We can assume that all σi ≥ 0 and adopt the

ordering σ1 ≥ · · · ≥ σr > 0 and σi = 0 for i > r, where r = rk(f). This means, the last
n−r eigenvectors εi for i > r have zero eigenvalues and they span Ker(f†◦f) = Ker(f)
(see Exercise 23.8). For the other eigenvectors, εi for i ≤ r, we can define the re-scaled
images ε̃i = σ−1

i f(εi). Since

σiσj〈ε̃i, ε̃j〉W = 〈f(εi), f(εj)〉W = 〈εi, f† ◦ f(εj)〉V = σ2
j 〈εi, εj〉V = σ2

j δij

these images form, in fact, an ortho-normal system which we can completed to an
ortho-normal basis (ε̃1, . . . , ε̃r, . . . , ε̃m) of W . In summary, f acts on the ortho-normal
basis vectors as

f(εi) =

{
σiε̃i for i ≤ r
0 for i > r

,

which means the matrix which describes f relative to the bases (ε1, . . . , εn) and
(ε̃1, . . . , ε̃m) is indeed Â in Eq. (24.13). 2

The above proof is constructive and can be directly translated into an algorithm for
computing the singular value form and its associated bases.

Algorithm (Singular value form) In order to compute the singular value form and
associated bases of a homomorphism f ∈ Hom(V,W ) between two inner product
vector spaces V and W with dimensions n = dimF(V ) and m = dimF(W ) proceed as
follows.

(1) Find an ortho-normal basis of eigenvectors (ε1, . . . , εn) with eigenvalues (λ1, . . . , λn)
of f† ◦ f ∈ End(V ), ordered such that λ1 ≥ · · · ≥ λr > 0 and λi = 0 for i > r,
where r = rk(f). The singular values are σi =

√
λi.

(2) Find the re-scaled images ε̃i := σ−1
i f(εi), for i = 1, . . . , r, which are automatically

ortho-normal. Complete them to an ortho-normal basis (ε̃1, . . . , ε̃m) of W .

(3) Relative to the bases (ε1, . . . , εn) of V and (ε̃1, . . . , ε̃m) of W the map f is repre-
sented by the matrix Â in singular value form given in Eq. (24.13).

(4) If f = A ∈ Hom(Fn,Fm) is a matrix, define the unitary matrices U = (ε1, . . . , εn)
and Ũ = (ε̃1, . . . , ε̃m) in order to write down the singular value decomposition
A = Ũ ÂU† of A.

Problem 24.7 (Singular value form)

Find the singular value form and decomposition of A ∈ Hom(R3,R2) defined by

A =

(
1 1 −2
1 2 1

)
,

with the scalar product on R3 and R2 given by the dot product.
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Solution: (1) We have

M = ATA =

 2 3 −1
3 5 0
−1 0 5

 ⇒ χM (λ) = −(λ− 7)(λ− 5)λ

so the eigenvalues of M are λ1 = 7, λ2 = 5 and λ3 = 0, with associated eigenvectors
ε1 = (2, 3,−1)T /

√
14, ε2 = (0, 1, 3)/

√
10 and ε3 = (5,−3, 1)/

√
35. The non-zero singular

values are σ1 =
√
λ1 =

√
7 and σ2 =

√
λ2 =

√
5.

(2) The images ε̃i = σ−1
i Aεi for i = 1, 2 are given by ε̃1 = (1, 1)T /

√
2 and ε̃2 = (−1, 1)T /

√
2.

(3) Relative to the bases (ε1, ε2, ε3) of R2 and (ε̃1, ε̃2) of R2 the map A is described by the
singular value form

Â =

( √
7 0 0

0
√

5 0

)
.

(4) With the unitary matrices

U = (ε1, ε2, ε3) =


√

2
7

0
√

5
7

3√
14

1√
10
− 3√

35

− 1√
14

3√
10

1√
35

 , Ũ = (ε̃1, ε̃2) =
1√
2

(
1 −1
1 1

)
,

the singular value decomposition is A = ŨÂUT and this can be easily verified explicitly.

Application 24.1 (Data compression with singular values)

For data that can be represented as a matrix the singular value decomposition can be used
for data compression. Consider, for example, a (black-and-white) picture with size m × n.
The underlying data can be stored in an m×n matrix A whose entries Aij ∈ [0, 1] represent
the grayscale of each pixel.

We can think of this matrix as a map A : Rn → Rm and find its singular value decomposition.
With U = (ε1, . . . , εn) and Ũ = (ε̃1, . . . , ε̃m) being the relevant ortho-normal bases of Rn
and Rm we can write

A = ŨÂU† (24.14)

where Â has the structure indicated in Eq. (24.13). As usual, we assume that the non-zero
singular values σi, where i = 1, . . . , r = rk(A), are ordered by size, so that σ1 ≥ σ2 ≥ · · · ≥
σr > 0. Suppose, instead of all r singular values we only consider the s < r largest ones,
together with their singular vectors. This leads to the reduced matrices

Us︸︷︷︸
n×s

= (ε1, . . . , εs) , Âs︸︷︷︸
s×s

= diag(σ1, . . . , σs) , Ũs︸︷︷︸
m×s

= (ε̃1, . . . , ε̃s) . (24.15)

which we can use to define a reduced version, As, of the matrix A by

As = ŨsÂsU
†
s . (24.16)

Note that the matrix As, for any choice of s, has the same size, m × n, as the original
matrix A. Since we can expect the largest singular values to dominate in the singular value
decomposition (24.14) for A the matrix As in Eq. (24.16) can be viewed as an approximation
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of A. The quality of this approximation depends on the nature of the data and, of course,
on the number, s, of singular values considered.

The matrices in Eq. (24.15) which determine As contain a total of

n s+ s+ms = (m+ n+ 1)s (24.17)

real values and this can be considerably smaller than the mn real values in the original
matrix A. This is why a compression of the data can be achieved.

As an example, consider the following picture of Emmie the Cat, that has size
(m,n) = (200, 250).

Converting this leads to a 200 × 250 matrix A with a total of 50, 000 entries Aij ∈ [0, 1].
This matrix has the maximal possible rank, rk(A) = 200, as one would expect. (Recall that
matrices with reduced rank are non-generic and there is no reason why a matrix derived
from a complicated picture should have this property.) This means the matrix A has 200
non-zero singular values. If we calculate the reduced matrices A10, A20, and A50, based on
considering the largest 10, 20, and 50 singular values, respectively, from Eq. (24.16) and
convert the resulting matrices As back into pictures we find the following.

The picture on the left, based on 10 singular values, is a relatively poor version of the original
but the outlines are still visible. The middle picture, based on 20 singular values is already
a good approximation and the picture on the right, based on 50 values, is almost as good
as the original. From Eq. (24.17) with m = 200, n = 250, and s = 10, 20, 50, the number of
real values underlying these three compressions are 4510, 9020, and 22, 550, respectively, so
in either case a relevant reduction has been achieved, compared to the 50, 000 entries in A.

Application 24.2 (Quark masses and singular values)

Understanding properties of elementary particles requires the formalism of quantum field
theory which is a challenging and thorny subject, well beyond the scope of this book.
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However, without too much effort and assuming the reader is willing to accept a few basic
facts, we can get to an interesting connection between masses of elementary particles and
linear algebra.

For simplicity we focus on the masses of the quarks, which are the main building blocks of
matter. There is a total of six types of quarks which are organised into two groups of three
families each, the u-type quarks (ui) = (u, c, t) (’up”, ’charm’ and ’top’) and the d-type
quarks (di) = (d, s, b) (’down’, ’strange’ and ’bottom’), where i = 1, 2, 3 labels the three
families. In addition, each quark comes in a left- and right-handed version which we label
by subscripts L and R, respectively. Only the members u and d of the first family form the
matter which surrounds us, that is, the protons and neutrons.

The masses of these quarks are described by a certain part of the standard model of particle
physics. Schematically, this is given by a Lagrangian density, an expression bi-linear in the
quarks and written as

Lmass =

3∑
i,j=1

Mu
ij ū

i
Lu

j
R +

3∑
i,j=1

Md
ij d̄

i
Ld

j
R . (24.18)

Here Mu and Md are 3 × 3 matrices, also called mass matrices, with generally complex
entries. There is currently no accepted theory which tells us what these matrices look like
but we do know that they determine the masses of the quarks as well as the related property
of quark mixing. The way this works is as follows.

Suppose we transform the quarks to another basis (denoted by a hat) via

uiL = U iu,j û
j
R , ujR = V ju,lû

l
R , diL = U id,kd̂

k
L , djR = V jd,ld̂

l
R , (24.19)

where Uu, Vu, Ud, Vd ∈ U(3) are unitary matrices. (These matrices have to be unitary in
order to keep some other parts of the theory unchanged under these transformations. This
works because the relevant parts are, structurally, of the same form as the standard Her-
mitian scalar product on C3.) Re-writing the mass Lagrangian density in terms of the new
basis by inserting Eqs. (24.19) into Eq. (24.18) gives

Lmass =

3∑
i,j=1

M̂u
ij

¯̂uiLû
j
R +

3∑
i,j=1

M̂d
ij

¯̂
diLd̂

j
R where M̂u = U†uMuVu, M̂d = U†dMdVd .

This means the basis change transforms the mass matrices as

Mu = UuM̂uV
†
u , Md = UdM̂dV

†
d . (24.20)

Note these equations have precisely the structure of a singular value decomposition of Mu

and Md. If we choose the unitary matrices Uu, Vu, Ud and Vd so that the singular value

decomposition is realized then the new mass matrices, M̂u = diag(mu,mc,mt) and M̂d =
diag(md,ms,mb) are diagonal. The singular values which appear along the diagonal are
interpreted as the quark masses and the matrices Mu and Md have to be chosen so that
their singular values coincide (within errors) with the measured masses of the quarks.

Of course one has to be careful in tracking which other parts of the standard model of
particle physics is changed by the transformation (24.19). It turns out only the weak force
is affected and since only the left-handed quarks experience this force, the change depends
on Uu and Ud. More precisely, it depends on the relative transformation given by the famous
Cabbibo–Kobayashi–Maskawa matrix
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VCKM = U†uUd ,

a unitary 3 × 3 matric which described the ’misalignment’ between the left-handed u and
d quarks. The entries of this matrix have been experimentally measured and reproducing
these values from the theory places further constraints on the mass matrices Mu and Md.
For a gentle introduction to particle physics see, for example, Halzen and Martin 2008.

24.4 Functions of matrices*

Summary 24.4 Functions g : F→ F with a power series expansion can be extended
to functions g :Mn,n(F)→Mn,n(F) between n×n matrices by replacing the numer-
ical argument in the power series by a matrix. Such functions of matrices can be eval-
uated by diagonalizing the matrix argument. The matrix exponential is of particular
importance as it relates certain matrix vector spaces to matrix groups. In particular,
anti-symmetric matrices exponentiate to rotations while the anti-Hermitian matrices
exponentiate to unitary matrices.

24.4.1 Defining functions of matrices

Suppose we have a function F 3 x 7→ g(x) ∈ F. Can we insert a square matrix, rather
than a number, into this function, that is, can we make sense of the expression g(A),
where A ∈Mn,n(F)? Suppose g has a power series expansion

g(x) = a0 + a1x+ a2x
2 + a3x

3 + · · · , (24.21)

where ai ∈ F. In this case, we can attempt to define g(A) by inserting the matrix A
into the power series, so

g(A) = a01n + a1A+ a2A
2 + a3A

3 + · · · . (24.22)

Note that this expression makes perfect sense, since powers, sums and scalar multiples
of a square matrix are well-defined. The value g(A) ∈Mn,n(F) is a matrix of the same
size as its argument A. Of course, if we are dealing with an infinite series (rather than
merely a polynomial) issues of convergence are involved, for the original series (24.21)
as well as its matrix version (24.22). We will not attempt to address these, as they are
the subject of an analysis course (see, for example, Lang 1997). Instead, we focus on
how to evaluate such matrix functions.

How do matrix functions relate to basis matrix operations? For transposition, we
clearly have

g(AT ) = g(A)T (24.23)

so transposition commutes with evaluating the function. If the function g is such that
g(z̄) = g(z) for all z ∈ C (that is, if all coefficients ai in the series (24.21) are real) it
follows from Eq. (24.23) that

g(z̄) = g(z) for all z ∈ C ⇒ g(Ā) = g(A) , g(A†) = g(A)† . (24.24)
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It is important to realize that functional equations which g satisfies for numerical ar-
guments might not continue to hold for matrices. For example, the functional equation
ex+y = exey of the exponential function does not remain true in general when matrix
arguments are inserted. To see why this happens, recall from analysis that such equa-
tions are often proven by using the series expansion of the relevant function and that
the proof involves commuting the numerical arguments. Matrices do not commute in
general so simply repeating the standard proof with matrices does not work. However,
this can be done if the matrices are special and do commute, so in this case functional
equations typically remain valid for matrix arguments.

24.4.2 Matrix functions and diagonalization

Computing the matrix function of a diagonal matrix Â = diag(λ1, . . . , λn) is easy since

g(Â) = g(diag(λ1, . . . , λn)) = diag(g(λ1), . . . , g(λn)) . (24.25)

This suggests that diagonalizing matrices might be helpful in order to evaluate matrix
functions. The key reason for why this works is that the two operations of basis trans-
formations and evaluating matrix functions commute. This can be easily verified, first
for matrix powers and then for power series.

(P−1AP )k = P−1APP−1︸ ︷︷ ︸
=1

AP · · ·P−1AP = P−1AkP ⇒

g(P−1AP ) =
∑
k

ak(P−1AP )k =
∑
k

akP
−1AkP = P−1

(∑
k

akA
k

)
P = P−1g(A)P

In summary, we have
g(P−1AP ) = P−1g(A)P . (24.26)

Now suppose that the matrix A ∈ Mn,n(F) can be diagonalized to a matrix Â =
diag(λ1, . . . , λn) = P−1AP with eigenvalues λi. Then,

g(A) = g(PÂP−1)
(24.26)

= Pg(Â)P−1 (24.25)
= P diag(g(λ1), . . . , g(λn))P−1 (24.27)

So, for matrices which can be diagonalized there is a simple recipe for how to compute
their matrix functions. Form the diagonal matrix with entries given by the function
evaluated on the eigenvalues, then transform this matrix back to the original basis.

Example 24.1 (The matrix exponential)

The matrix exponential function is defined as

exp(A) = 1+A+
1

2
A2 +

1

6
A3 + · · · =

∞∑
k=0

1

k!
Ak . (24.28)

We remark that the matrix exponential series always converges, just as its standard
counterpart (essentially thanks to the 1/k! factors). As we will see, the matrix ex-
ponential plays an important role for matrix groups such as orthogonal and unitary
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groups. As mentioned above, the functional equation of the exponential function is
not generally valid for matrices. However, for two matrices A,B ∈Mn,n(F) we have

[A,B] = 0 ⇒ eA+B = eAeB . (24.29)

What is the determinant of a matrix exponential? Suppose the matrix A can be diag-
onalized with Â = diag(λ1, . . . , λn) = P−1AP . Eq. (24.27) then implies that

exp(A) = Pdiag(exp(λ1), . . . , exp(λn))P−1 ,

and, using the basis invariance of the determinant, we find that

det(exp(A)) =
∏
i

exp(λi) = exp

(∑
i

λi

)
= exp(tr(A)) . (24.30)

In particular, the determinant of exp(A) is non-zero (since the exponential function
has no zeros) so exp(A) is always invertible.

For the matrix exponential R = eA of a (real) anti-symmetric matrix A we have

RTR = exp(A)T exp(A)
(24.23)

= exp(AT ) exp(A) = exp(−A) exp(A)
(24.29)

= exp(0) = 1 ,

where, in the second last step, we have used the fact that A and −A commute. The
conclusion is that the exponential of an anti-symmetric matrix is an orthogonal matrix.
In fact, since the trace of an anti-symmetric matrix vanishes, Eq. (24.30) implies that
det(R) = 1, so R is, in fact, a rotation.

Something analogous happens for the exponential U = exp(A) of an anti-Hermitian
matrix A. Since

U†U = exp(A)† exp(A)
(24.24)

= exp(A†) exp(A) = exp(−A) exp(A)
(24.29)

= exp(0) = 1 ,

such a matrix is unitary. It is not necessarily special unitary since the trace of an anti-
Hermitian matrix can be non-zero. However, if we impose that A is anti-Hermitian
and that tr(A) = 0 then U = exp(A) is special unitary.

The above examples point to a relationship between certain vector spaces and groups
of matrices, via the matrix exponential: the vector spaceAn of anti-symmetric matrices
exponentiates to rotations in SO(n), the vector space Hn of anti-Hermitian matrices
to the unitary group U(n) and the vector space of anti-Hermitian, traceless matrices to
the special unitary group SU(n). These are examples of a general relationship between
Lie algebras and Lie groups. The theory of Lie groups plays an important role in many
scientific applications but anything more than a discussion of examples is beyond the
scope of the present text (see, for example, Fulton and Harris 2013; Cornwell 1997).
2
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Problem 24.8 (Matrix monomial)

Work out the value of the function g(x) = xn, where n ∈ N, for the matrix

A =

(
1 2i
−2i 1

)
.

Solution: The characteristic polynomial is χA(λ) = (λ − 3)(λ + 1), so the eigenvalues are
λ1 = 3 and λ2 = −1. The associated eigenvectors (normalized relative to the standard scalar

product on C2) are ε1 = (i, 1)T /
√

2 and ε2 = (−i, 1)T /
√

2, so we have the unitary matrix
U = (ε1, ε2) with U†AU = diag(3,−1). Then, applying Eq. (24.27) gives

g(A) = U diag(3n, (−1)n)U† =
1

2

(
(−1)n + 3n −i((−1)n − 3n)
i((−1)n − 3n) (−1)n + 3n

)
.

Problem 24.9 (Matrix sine)

Evaluate the function g(x) = sin(x) on the matrix

A =
π

2

(
2 1
1 2

)
.

Solution: The characteristic polynomial χA(λ) = (λ− 3π/2)(λ− π/2) shows that the eigen-
values are λ1 = 3π/2 and λ2 = π/2. The associated eigenvectors (normalized relative to

the dot product) ε1 = (1, 1)T /
√

2 and ε2 = (1,−1)T /
√

2 give rise to the orthogonal matrix
P = (ε1, ε2) with PTAP = π

2
diag(3, 1). It follows from Eq. (24.27) that

sin(A) = P diag(sin(3π/2), sin(π/2))PT = P diag(−1, 1)PT = −
(

0 1
1 0

)
.

24.4.3 Direct computation of matrix functions

Sometimes a matrix function can be computed directly, without diagonalizing. Typi-
cally, this is possible when the argument matrix has specific properties, such as matrix
powers which are easily evaluated. For example, consider a nilpotent matrix A with
order q, so that Aq = 0. In this case the series for g(A) terminates and we have

g(A) =

q−1∑
k=0

akA
k .

Another example is a projection matrix P . Of course the projector condition P 2 = P
applied repeatedly implies that P k = P for all k = 1, 2, . . .. Hence,

g(P ) =

∞∑
k=0

akP
k = a01+

∞∑
k=1

akP = g(0)1 + (g(1)− g(0))P .

Some other interesting examples which can be dealt with in this way are related to
matrix groups.
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Example 24.2 (Two-dimensional rotations from matrix exponentials)

We have seen in Example 24.1 that the matrix exponential of anti-symmetric matrices
leads to rotations. Let us explore this in more detail for the case of 2× 2 matrices. A
general 2× 2 anti-symmetric matrix can be written in the form

A = θT , T =

(
0 1
−1 0

)
,

where θ ∈ R. Its matrix exponential can be worked out by diagonalizing A but also
more directly, starting from the observation that A2 = −θ212. As a result, the even
and odd powers of A are given by

A2n = (−1)nθ2n12 , A2n+1 = (−1)nθ2n+1T .

With these results it is straightforward to work out the matrix exponential explicitly.

exp(A) =

∞∑
n=0

An

n!
=

∞∑
n=0

A2n

(2n)!
+

∞∑
n=0

A2n+1

(2n+ 1)!
=

∞∑
n=0

(−1)nθ2n

(2n)!
12 +

∞∑
n=0

(−1)nθ2n+1

(2n+ 1)!
T

= cos(θ)12 + sin(θ)T =

(
cos θ sin θ
− sin θ cos θ

)
.

We have used definitions of the sine and cosine functions in terms of a series in the
second last step. As is evident, the exponential of anti-symmetric 2× 2 matrices does
indeed produce rotations. The interesting additional information we obtain from this
explicit calculation is that we do obtain all two-dimensional rotations in this way.
2

Example 24.3 (Two-dimensional special unitary matrices from matrix exponential)

We would like to verify explicitly that the matrix exponential of 2× 2 anti-Hermitian,
traceless matrices leads to special unitary matrices. To do so, we note that this vector
space is three-dimensional with a basis (iσ1, iσ2, iσ3), where σi are the Pauli matrices
introduced in Problem 13.12.

Working out the matrix exponential explicitly is made possible by the properties of
the Pauli matrices which we have to develop first. From the explicit matrices in Prob-
lem 13.12 it is easy to verify that the Pauli matrices square to the unit matrix, σ2

i = 12,
and two of them multiply to ±i times the third, for example σ1σ2 = iσ3. These rela-
tions can be summarized by writing

σiσj = 12δij + iεijkσk . (24.31)

This equation includes practically everything one needs to know about Pauli matri-
ces. For example, subtracting from Eq. (24.31) the same equation with indices (i, j)
exchanged gives the commutator

[σi, σj ] = 2iεijkσk (24.32)

of the Pauli matrices. For the purpose of computing matrix exponentials, we introduce
the formal vector σ = (σ1, σ2, σ3)T and, for a ∈ R3, we write linear combinations of
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Pauli matrices as a formal dot product a ·σ = aiσi. Multiplying Eq. (24.31) with aiaj
shows that (a · σ)2 = |a|212 and, hence, for n ∈ N we have

(a · σ)2n = |a|2n12 , (a · σ)2n+1 = |a|2na · σ . (24.33)

Thanks to these relations it is now easy to work out the matrix exponential U =
exp(iθn · σ), where n is a real unit length vector and θ ∈ R. Using Eqs. (24.33) with
a = n we find

U = exp(iθ n · σ) =

∞∑
n=0

(iθ)n

n!
(n · σ)n = cos(θ)12 + i sin(θ)n · σ

=

(
cos θ + in3 sin θ (n2 + in1) sin θ
−(n2 − in1) sin θ cos θ − in3 sin θ

)
=

(
α β
−β̄ ᾱ

)
,

where α = cos θ + in3 sin θ and β = (n2 + in1) sin θ. Comparison with Eq. (23.36)
shows that this is, in fact, the general form of an SU(2) matrix. 2

Application 24.3 (Differential equations and matrix exponential)

The matrix exponential can be used to solve systems of first order ordinary differential
equations. To see how this work, start with a single first order ordinary differential equation

dx

dt
= ax

for a function x ∈ C1(R,F) and an arbitrary constant a ∈ F, where we allow x to be real-
valued, F = R, or complex-valued, F = C. The general solution to this equation can of
course be written as an exponential

x(t) = eatx0 , (24.34)

with an arbitrary ’initial value’ x0 = x(0).

What about its multi-dimensional generalization

dx

dt
= Ax , (24.35)

where x(t) = (x1(t), . . . , xn(t))T is a vector of n functions xi ∈ C1(R,F) and A ∈ Mn,n(F)
is a constant n × n matrix? The straightforward generalization of the solution (24.34) to
the multi-dimensional case reads

x(t) = eAtx0 , (24.36)

where x0 = x(0) ∈ Fn is an arbitrary vector of initial values. Note that, given our defi-
nition of the matrix exponential, Eq. (24.36) makes perfect sense. But does it really solve
the differential equation (24.35)? We verify this by simply inserting Eq. (24.36) into the
differential equation (24.35), using the definition of the matrix exponential.

dx

dt
=

d

dt
eAtx0 =

d

dt

∞∑
n=0

1

n!
Antnx0 =

∞∑
n=1

1

(n− 1)!
Antn−1x0 = A

∞∑
n=0

1

n!
Antnx0 = Ax

In conclusion, Eq. (24.36) is indeed a solution of the differential equation (24.35) for arbitrary
vectors x0 ∈ Fn.
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If the matrix A in Eq. (24.35) is anti-Hermitian, we know from Example 24.1 that U(t) :=
eAt is unitary. In this case, the solution (24.36) can be represented by the action of a unitary
map

x(t) = U(t)x0 , U(t) = eAt ∈ U(n) , (24.37)

on the initial value x0. This is also sometimes expressed by saying that the differential
equation (24.35), for anti-Hermitian A, leads to a unitary evolution. A unitary evolution
has interesting properties — for example, the length |x(t)| of the solution vector is the same
for all t. In a physical context, the variable t often has the interpretation of time, so in
this case we talk about unitary time evolution. An important physical equation with this
property is Schrödinger’s equation in quantum mechanics.

Exercises

(†=challenging)

24.1 On R3 with the dot product, find the
eigenvalues and an ortho-normal ba-
sis of eigenvectors for the linear map
given by

A =

 1 2 1
2 1 1
1 1 2

 .

Construct an orthogonal matrix R
such that RTMR is diagonal.

24.2 On C2 with the standard scalar prod-
uct, find the eigenvalues and an ortho-
normal basis of eigenvectors for the
linear map given by

H =

(
10 3i
−3i 2

)
.

Construct a unitary matrix U such
that U†HU is diagonal.

24.3 Consider the vector space V of
at most quadratic polynomials p :
[0,∞)→ R with scalar product

〈p, q〉 =

∫ ∞
0

dx e−xp(x)q(x) .

(a) Show that the linear map L : V →
V defined by

L = x
d2

dx2
+ (1− x)

d

dx

is Hermitian.
(b) Find the eigenvalues and an ortho-
normal basis of eigenvectors for L.

24.4 Show that the matrix

R =
1

3
√

2

 3 0 3
−1 −4 1

2
√

2 −
√

2 −2
√

2


is a rotation. Compute the character-
istic polynomial of R and verify that
1 is an eigenvalue. Compute the axis
of rotation, n, and cos(θ), where θ is
the angle of rotation.

24.5 A football is placed at the centre
point of the pitch before the start
and after the end of a game. Argue
that there are (at least) two points on
the football’s surface which are in the
same location at these two times.

24.6 Use the explicit formula (24.9) for
three-dimensional rotations to con-
firm the results of Exercise 23.11.

24.7 (a) Find the singular value decompo-
sition of the matrix

A =


11√

6

16
3
− 5

3
√

2
11

2
√

3
− 5

3
√

2

37
6

9
2

11√
6

11

2
√

3

 .

(b) Following the procedure described
in Application 24.1, find an approxi-
mation A2 for A by only keeping the
two largest singular values.
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24.8 ∗ Show that the formula (24.30) holds
even if the matrix A cannot be diago-
nalized. (Hint: Use the Jordan normal
form.)

24.9 Pauli matrices
(a) Show that the space H0

2 of Hermi-
tian traceless matrices in M2,2(C) is
a vector space over R.
(b) Show that (σ1, σ2, σ3) is a basis of
H0

2, where σi are the Pauli matrices.
(c) Show that [σi, σj ] = 2iεijkσk and
{σi, σj} = 212δij , where {A,B} :=
AB +BA is the anti-commutator.
(d) For a,b ∈ R3, show that
aiσi, biσi ∈ H0

2 commute iff a and b
are parallel.

24.10 Geometric series for matrices†

Assume that the matrix A ∈
Mn,n(R) can be diagonalized with
eigenvalues λ1, . . . , λn.
(a) Show that

ν∑
k=0

Ak = (1n −Aν+1)(1n −A)−1 .

(b) If |λi| < 1 for i = 1, . . . , n, show
that

∑∞
k=0 A

k = (1n −A)−1.

(c) A sequence of vectors xν ∈ R2,

where ν ∈ N, is defined recursively by
xν+1 = x0+Axν , where A ∈M2,2(R)
can be diagonalized with eigenvalues
|λi| < 1. Find a formula for xν in
terms of x0.
(d) Within the setting of part (c),
work out xν for ν →∞ with x0 = e1

and

A =
1

4

(
1 2
2 1

)
.

24.11 (a) Work out the matrix exponential
Λ(ξ) := exp(ξT ), where ξ ∈ R and

T =

(
0 1
1 0

)
.

(b) Show that Λ(ξ1)Λ(ξ2) = Λ(ξ1 +
ξ2).
(c) Show that L := {Λ(ξ) | ξ ∈ R} is
an Abelian group.
(d) Show that ΛT ηΛ = η, where η =
diag(−1, 1).

24.12 Find the matrix exponential
exp(iαP ) for a projector P ∈
Mn,n(C), where α ∈ R. Show that
exp(iαP ) can be diagonalized and
find its eigenvalues.
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Bi-linear and sesqui-linear forms*

25.1 Basics definitions*

Summary 25.1 Symmetric bi-linear and Hermitian sesqui-linear forms, collectively
called linear forms, are closely related to real and Hermitian scalar product but they
lack the positivity requirement. Linear forms have an associated quadratic form, which
is the analogue of the norm (squared) associated to a scalar product. Relative to a
basis, a linear form can be described in terms of a symmetric or Hermitian matrix A
which transform as A 7→ P †AP under a change of basis. A linear form is positive iff
its describing matrices are positive definite and it is non-degenerate iff its describing
matrices are non-singular.

25.1.1 Definition of bi-linear and sesqui-linear forms

Bi-linear and sesqui-linear forms are generalizations of scalar products which are im-
portant for a range of applications. Perhaps the most prominent example of a bi-linear
form (which is not a scalar product) is the Minkowski product which plays a central
role in the theory of special relativity.

For the definition of a symmetric bilinear or Hermitian sesqui-linear form we can copy
the definition of a real or Hermitian scalar product, Def. 22.2, except that the positivity
condition (S3) is omitted.

Definition 25.1 A symmetric bilinear form (Hermitian sesqui-linear form) on a vec-
tor space V over F = R (over F = C) is a map ( · , · ) : V × V → F which satisfies the
following rules for all v,u,w ∈ V and all α, β ∈ F,

(B1) (v,w) = (w,v), for a symmetric bi-linear form, F = R (symmetry)

(v,w) = (w,v), for a Hermitian sesqui-linear form, F = C (hermiticity)
(B2) (v, αu + βw) = α(v,u) + β(v,w) (linearity)

In the real case, the symmetry condition (B1) together with linearity in the second
argument implies bi-linearity of (·, ·), just as in the case of a real scalar product (see
Eq. (22.1)) — hence the name symmetric bi-linear form. In the complex case, that
is for Hermitian sesqui-linear forms, linearity in the second argument translates, via
hermiticity, into

(αv + βu,w) = ᾱ(v,w) + β̄(u,w) . (25.1)
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in analogy with Hermitian scalar products (see Eq. (22.2)). In the following, to avoid
awkward case distinctions, we will take linear form to mean symmetric bi-linear form
for a vector space over R and Hermitian sesqui-linear form for a vector space over C.
Calculations will usually be carried out for the complex case, on the understanding
that the corresponding real version is obtained by omitting all complex conjugations.
Clearly, such a linear form (·, ·) on V is a scalar product iff (v,v) > 0 for all non-
zero v ∈ V . In analogy with scalar products, we can define two vectors v,w ∈ V as
orthogonal if (v,w) = 0.

Definition 25.2 A linear form (·, ·) on V is called non-degenerate if (v,w) = 0 for
all v ∈ V implies that w = 0. Otherwise is is called degenerate.

In other words, degeneracy amounts to the existence of non-zero vectors which are
orthogonal to the entire vector space. We can collect such vectors in the vector subspace

V0 := {u ∈ V | (v,u) = 0 ∀v ∈ V } ⊂ V , (25.2)

so that the linear form is degenerate iff dimF(V0) > 0.
All scalar products are non-degenerate linear forms, as follows easily from the

positive condition of scalar products:

〈v,w〉 = 0 ∀v ∈ V =⇒ 〈w,w〉 = 0
Def. 22.1

=⇒ w = 0 .

However, not every non-degenerate linear form is a scalar product, as we will see.

25.1.2 The associated quadratic form

The quadratic form q : V → F associated to a linear form (·, ·) is defined by

q(v) = (v,v) (25.3)

and is the analogue of the norm (squared) of a scalar product. Note that the value of
the quadratic form is real, even for Hermitian sesqui-linear forms, as a consequence
of condition (B1) in Def. 25.1. The quadratic form uniquely determines the linear
form much as a scalar product is determined by its associated norm. To see this, the
argument from Problem 22.1 can be repeated with the replacements 〈·, ·〉 → (·, ·) and
| · |2 → q(·).

25.1.3 Linear forms relative to a basis

On a finite-dimensional vector spaces V it is quite straightforward to get a systematic
handle on linear forms (·, ·) if we express them relative to a basis (v1, . . . ,vn). Consider
two vectors v,w ∈ V and their coordinate vectors x = (x1, . . . , xn)T ∈ Fn and y =
(y1, . . . , yn)T ∈ Fn, so that v =

∑
i xivi and w =

∑
j yjvj . Then we can write the

linear form as

(v,w) =
∑
i,j

x̄iAijyj = x†Ay where Aij = (vi,vj) . (25.4)

The n× n matrix A is Hermitian (or symmetric in the real case) since
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(A†)ij = Āji
(25.4)

= (vj ,vi)
(B1)
= (vi,vj)

(25.4)
= Aij .

This shows that, given a basis, every linear form can be expressed in terms of a
Hermitian matrix, as in Eq. (25.4). Conversely, for a Hermitian matrix A, a linear
form is defined by Eq. (25.4). We refer to the matrix A in Eq. (25.4) as the matrix
which describes the linear form relative to the basis (v1, . . . ,vn). How does this matrix
change under a basis transformation?

Proposition 25.1 (Basis change for a linear form) Let (·, ·) be a linear form on a
(real or complex) vector space V with bases (v1, . . . ,vn) and (v′1, . . . ,v

′
n). Then the

matrices A and A′ which describe the linear form relative to these bases are related by

A′ = P †AP , (25.5)

where the entries Pij of P are obtained from v′j =
∑
i Pijvi.

Proof

A′ij = (v′i,v
′
j) =

(∑
k

Pkivk,
∑
l

Pljvl

)
=
∑
k,l

P̄kiPljAkl = (P †AP )ij

2

Note that this is conceptually quite similar to the basis change of a matrix describing a
linear map, which is governed by the formula A′ = P−1AP . However, the appearance
of P †, as opposed to P−1, in Eq. (25.5) is a crucial difference. The two transformation
laws are identical if P−1 = P †, that is if the basis transformation P is a unitary
matrix, but otherwise they differ and care has to be taken to use the correct formula.

25.1.4 Positive definiteness

A linear form is a scalar product iff it is positive and this property can be translated
into a property of the matrix describing a linear form.

Definition 25.3 A Hermitian n × n matrix A ∈ Mn,n(F) is called positive definite
iff v†Av > 0 for all non-zero v ∈ Fn. It is called negative definite iff −A is positive
definite and indefinite otherwise.

By comparing with Eq. (25.4) it is clear that a linear form is positive definite and, hence
that it is a scalar product, iff it is described by positive definite matrices. Whether a
Hermitian matrix is positive (negative) definite can be decided simply by looking at
its eigenvalues.

Proposition 25.2 Positive and negative definiteness are properties independent un-
der the basis transformation (25.5). A Hermitian matrix A is positive (negative) defi-
nite iff all its eigenvalues are positive (negative).
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Proof It follows from Eq. (25.5) that

v†A′v = v†P †APv = (Pv)†A(Pv) .

Since P is invertible this implies A is positive (negative) definite iff A′ is.

From the previous statement, we can decide positive (negative) definiteness in any
basis. But we know that a Hermitian matrix A can be diagonalized by a unitary basis
transformation P so that Â = diag(λ1, . . . , λn) = P †AP with eigenvalues λi. The
matrix A is positive (negative) definite iff Â is and, since

v†Âv =

n∑
i=1

λi|vi|2

this is the case iff all eigenvalues are positive (negative). 2

Problem 25.1 (Polar decomposition)

Show that every invertible matrix A ∈Mn,n(C) has a unique decomposition A = PU , where
P is Hermitian positive definite and U is unitary. Specialize the statement to n = 1 and
discuss.

Solution: To get an idea where to start is is useful to assume for a moment we have a
decomposition A = PU as stated and explore the implications. Since U is unitary, so UU† =
1n, we have AA† = PUU†P = P 2. This indicates we should define P as the square root
of AA† and, from Exercise 25.4, we know this is indeed possible provided AA† is positive
definite. This is not hard to show.

Certainly x†AA†x = (A†x)†(A†x) ≥ 0 from the positivity of the standard Hermitian
scalar product on Cn. Moreover, if x†AA†x = 0 then A†x = 0 but since A† is invertible this
implies x = 0. So we can conclude that x†AA†x > 0 whenever x 6= 0 and, hence, AA† is
indeed positive definite.

It is now clear, there is only one possibility to define P and U , namely

P = (AA†)1/2 , U = P−1A . (25.6)

From Exercise 25.4, the matrix P is Hermitian positive definite (and, hence, invertible) and
the above definitions ensure that A = PU . What remains to be shown is that U , as defined
in Eq. (25.6), is indeed unitary and this follows from

U†U = A†(PP †)−1A = A†(AA†)−1A = 14 .

Writing an invertible matrix as a product of a positive definite and a unitary matrix is also
referred to as polar decomposition.

For n = 1 the polar decomposition says that every (non-zero) complex number z ∈ C can
be written as z = rζ, where r ∈ R>0 and ζ ∈ U(1), as we already know from Problem 4.2.
The polar decomposition for matrices can be seen as a generalization of its counterpart for
complex numbers.

25.1.5 Degeneracy

Non-degeneracy of a linear form can also be translated into a property of the describing
matrix.
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Proposition 25.3 A linear form is non-degenerate iff it is described by non-singular
matrices.

Proof A basis transformation (25.5) does not affect whether the matrix is invertible
or singular (as follows, for example, by taking the determinant of Eq. (25.5)) so all
matrices describing a linear form are either invertible or singular. It is, therefore,
sufficient to look at one such matrix. Start with any matrix A describing the linear
form. We can carry out a basis transformation with a unitary matrix U so that U†AU =
Â = diag(λ1, . . . , λn), with real eigenvalues λi, is the matrix describing the linear form
relative to a basis (v1, . . .vn). In this new basis, the linear form can be written as

(v,w) =

n∑
i=1

λixiyi , (25.7)

where x = (x1, . . . , xn)T and y = (y1, . . . , yn)T are the coordinates of v and w,
respectively. If the matrix Â is singular it has at least one zero diagonal entry λi. In
this case, Eq. (25.7) implies that (v,vi) = λixi = 0 for all v ∈ V , and, hence, the
linear form is degenerate. On the other hand, if Â is non-singular then all λi 6= 0. If
(v,w) = 0 for all v ∈ V then, in particular (vi,w) = λiyi = 0, so that yi = 0 for all
i = 1, . . . , n. Hence, w = 0 and the linear form is non-degenerate. 2

25.2 Classification of linear forms*

Summary 25.2 Every linear form on an n-dimensional vector space V can be de-
scribed by a diagonal matrix with n± entries ±1 and n − n+ − n− entries 0 along
the diagonal. The numbers (n+, n−) are called the signature of the linear form and
the theorem of Sylvester shows they are indeed characteristic quantities of the linear
form. A linear form is positive iff n+ = n and it is non-degenerate iff n+ + n− = n.
The endomorphisms which leave a linear form invariant form a group which can be
identified with the generalized orthogonal groups O(n+, n−) in the real case and with
the generalized unitary groups U(n+, n−) in the complex case.

25.2.1 A normal form for the describing matrix

We can attempt to classify linear forms by finding suitable bases, or, equivalently,
coordinate transformations (25.5), such that their describing matrices take a simple
form. Since the describing matrices are Hermitian we already know they have real
eigenvalues and can always be diagonalized with a unitary basis transformation. This
is, in fact, the key step underlying the proof of the following theorem.

Theorem 25.1 For a linear form (·, ·) on V there exists a basis (v1, . . . ,vn) so its
describing matrix is η = diag(1, . . . , 1,−1, . . . ,−1, 0, . . . 0), with n± entries ±1 along
the diagonal and n− n+ − n− zeros.
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Proof Let A be the Hermitian matrix which describes (·, ·) relative to an arbitrary
basis of V . As a first step, we can diagonalize this matrix A by a unitary basis trans-
formation U so that U†AU = Â = diag(λ1, . . . , λk, 0, . . . , 0), where the possible zero
eigenvalue has been separated off and all other eigenvalues λi are real, non-zero, and
ordered such that λi > 0 for i = 1, . . . , n+ and λi < 0 for i = n+ + 1, . . . , n+ + n−.
Then, define the matrix P = UB, where B = diag(|λ1|−1/2, . . . , |λk|−1/2, 1, . . . , 1) and
it follows that

P †AP = (UB)†A(UB) = BU†AUB = BÂB = diag(1, . . . 1︸ ︷︷ ︸
n+

,−1, . . . ,−1︸ ︷︷ ︸
n−

, 0, . . . , 0) = η .

2

The proof shows that the integers n± in the above theorem count the number of
positive and negative eigenvalues of a matrix which describes the linear form. In,
summary, for any linear form (·, ·) on an n-dimensional vector space V we have a basis
(v1, . . . ,vn) of V and a matrix

η = diag(1, . . . , 1︸ ︷︷ ︸
n+

,−1, . . . ,−1︸ ︷︷ ︸
n−

, 0, . . . , 0︸ ︷︷ ︸
n−n+−n−

) , (25.8)

such that the linear form with arguments v =
∑
i xivi and w =

∑
j yjvj can be

written as

(v,w) = x†ηy =

n∑
i,j=1

xiηijyj . (25.9)

Evidently the vector space can be decomposed into vector subspaces as

V = V+ ⊕ V− ⊕ V0 where

V+ = Span(v1, . . . ,vn+)
V− = Span(vn++1, . . . ,vn++n−)
V0 = Span(vn++n−+1, . . . ,vn)

, (25.10)

where any non-zero vector v ∈ V+ (v ∈ V−) has a positive (negative) quadratic form,
q(u) > 0 (q(u) < 0) and V0 is, in fact, the subspace defined in Eq. (25.2). As we will
see below, (n+, n−), with n± = dimF(V±), are characteristic numbers associated to
the linear form which are referred to as the signature of the linear form.

25.2.2 Theorem of Sylvester

In the previous subsection we have derived a simple normal form which is characterized
by the integers n± which count the number of positive and negative eigenvalues of a
describing matrix A. However, as stands, these numbers could still depend on which
describing A we choose as a starting point in the proof of Theorem 25.1. Of course, we
do know that eigenvalues are preserved under a transformation A 7→ P−1AP but the
relevant transformation is A 7→ P †AP (see Eq. (25.5)). Unless P is unitary it is not
clear if this transformation preserves the number of positive and negative eigenvalues.
The point of the following theorem is to show that this is indeed the case and that n±
are characteristic numbers of the linear form.
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The decomposition in Eq. (25.10) suggests we should be looking at the sets

S± = {v ∈ V | ± q(v) > 0} ∪ {0} , S0 = {v ∈ V | q(v) = 0} (25.11)

on which the quadratic form is positive, negative, or vanishing. Unfortunately, these
sets are not vector subspaces since their definition involves a quadratic form (rather
than a linear map) and inequalities. Clearly, the vector subspaces in the decomposi-
tion (25.10) are subsets, V± ⊂ S± and V0 ⊂ S0, but they are by no means unique, as
the following example shows.

Example 25.1 (Minkowski product in Rn)

The Minkowski product on Rn is a symmetric bi-linear form defined as

(v,w) = vT ηw =

n−1∑
µ,ν=0

ηµνv
µwν = −v0w0 +

n−1∑
i=1

viwi , (25.12)

where v,w ∈ Rn and η = diag(−1, 1, . . . , 1) is called the Minkowski metric. The
Minkowski product on R4 plays a central role in the theory of special relativity. In
this context, vectors v ∈ R4 are also referred to as four-vectors and their zeroth com-
ponents are interpreted as time and their other components as spatial coordinates.
The Minkowski product is a symmetric bi-linear form and the describing matrix η has
n+ = n − 1 positive and n− = 1 negative eigenvalues. Since, (e1, e1) = −1 it is clear
that the Minkowski product is not positive and, hence, not a scalar product. However,
η is a non-singular matrix so it follows from Prop. 25.3 that the Minkowski product
is non-degenerate.

Splitting a vector as v = (v0, v̂) into time and spatial components, the sets in
Eq. (25.11) are explicitly given by

S+ = {v ∈ V | v̂| < |v0|} ∪ {0} (v is time-like)
S− = {v ∈ V | |v̂| > |v0|} ∪ {0} (v is space-like)
S0 = {v ∈ V | |v̂| = |v0|} (v is light-like or null)

. (25.13)

For R2 these sets are shown in Fig. 25.1. It is clear from the figure that the one-
dimensional vector subspaces V+ = Span(e1) and V− = Span(e2) are contained in S+

and S−, respectively, but also that there are other one-dimensional subspaces with
this property. In fact, any one-dimensional subspace Span(v) spanned by a time-like
(space-like) vector v is contained in S+ (S−). The point is that the maximal vector
subspaces contained in S+ (S−) all have the same dimension n+ (n−). This is, in fact,
the statement of Sylvester’s theorem which will be proven below.

In the context of special relativity, the set S+ is referred to as the light cone, with
the part of S+ for v0 > 0 called the future light cone and the v0 < 0 part of S+ the
past light cone. 2

While the above example shows the vector subspaces W± ⊂ S± of maximal dimension
are not unique, the following theorem shows that their dimensions are.
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v1

v0

S0S0

S0 S0

S+ S+
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S−

S−

S−

S−

Fig. 25.1 The sets S± and S0 in Eq. (25.13) for the Minkowski product in R2.

Theorem 25.2 (Sylvester) Let (·, ·) be a linear form on V and V = W+⊕W−⊕V0 =
W̃+ ⊕ W̃− ⊕ V0, with W±, W̃± ⊂ S± and V0 ⊂ S0 as defined in Eq. (25.2). Then
dimF(W±) = dimF(W̃±).

Proof We assume that dimF(W̃+) > dimF(W+) and show that this leads to a contra-
diction. In fact, from dimF(W̃+) > dimF(W+) = dimF(V )− dimF(W− ⊕ V0) it follows
that dimF(W̃+) + dimF(W− ⊕ V0) > dimF(V ) so that, by comparison with the dimen-
sion formula (8.2), the intersection W̃+ ∩ (W− ⊕ V0) must be non-trivial. Choose a
non-zero w = w− + v0 ∈ W̃+ ∩ (W− ⊕ V0), where w− ∈ W− and v0 ∈ V0. Since
w ∈ W̃+ it follows that q(w) > 0 but, on the other hand, this is contradicted by

q(w) = (w− + v0,w− + v0) = q(w−) ≤ 0 .

Hence, we conclude that dimF(W̃+) ≤ dimF(W+). This argument can be repeated
with the role of W+ and W̃+ reversed which leads to dimF(W̃+) ≥ dimF(W+) and,
hence, dimF(W̃+) = dimF(W+). In the same way, it can be shown that dimF(W̃−) =
dimF(W−) 2

Hence, we can use any decomposition V = W+ ⊕W− ⊕ V0 with the properties stated
in the theorem to define the dimensions n± := dimF(W±). The pair (n+, n−) is a
characteristic of the linear form and its associated quadratic form and it is called the
signature. Pulling together our various statements, we see that every linear form with
signature (n+, n−) can be described by a matrix (25.8) and every matrix describing
this linear form must have n+ positive and n− negative eigenvalues. The signature also
provides straightforward criteria for positivity and non-degeneracy of a linear form.

Corollary 25.1 For a linear form with signature (n+, n−) on an n-dimensional vector
space we have the following statements.

(i) The linear form is positive (it is a scalar product) iff n+ = n.
(ii) The linear form is non-degenerate iff n+ + n− = n.
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Proof (i) The linear form is positive iff any of its describing matrices A is positive
definite and, from Prop. (25.2), this is the case iff all eigenvalues of A are positive.
This in turn is equivalent to n+ = n.

(ii) From Prop. (25.3) the linear form is non-degenerate iff a describing matrix A is
non-singular. This is equivalent to all eigenvalues of A being non-zero and, hence, to
n+ + n− = n. 2

25.2.3 Groups associated to linear forms

We have seen in Section 23.2 that the automorphisms which leave a scalar product
invariant form a group, called the unitary group. For real and complex coordinate
vector spaces this leads to the orthogonal and unitary matrix groups O(n) and U(n).
This construction can be generalized to linear forms, as we will now explain.

Consider an n-dimensional vector space V with a non-degenerate linear form (·, ·) with
signature (n+, n−). We say that an automorphism f ∈ GL(V ) leaves the linear form
invariant if

(f(v), f(w)) = (v,w) for all v,w ∈ V . (25.14)

Clearly, these maps form a subgroup of GL(V ) which we can call U(V, n+, n−). To get
a more concrete description of this group we write (·, ·) in the standard form (25.9),
relative to a suitable basis (v1, . . . ,vn), so that the describing matrix ηij = (vi,vj) of
the linear form is given by Eq. (25.8). We also introduce the matrix A which describes
f relative to this basis, so that f(vj) =

∑
iAijvi. A map f leaves the linear form

invariant iff

ηij = (vi,vj) = (f(vi), f(vj)) =

(∑
k

Akivk,
∑
l

Aljvl

)
=
∑
k,l

ĀkiAjlηkl = (A†ηA)ij .

Hence, the group in question can be identified with the matrices A satisfying A†ηA = η.
Note that this is an obvious generalization of unitary groups which corresponds to the
case (n+, n−) = (n, 0) so that η = 1n. In the real case (when the Hermitian conjugate
becomes a transpose), these groups are denoted by

O(n+, n−) = {A ∈ GL(Rn) |AT ηA = η} , (25.15)

and are called generalized orthogonal groups. Matrices A ∈ O(n+, n−) satisfy det(A) ∈
{±1} from the multiplication theorem for determinants and we can define the sub-
groups

SO(n+, n−) = {A ∈ O(n+, n−) |det(A) = 1} . (25.16)

Proceeding analogously for the complex case, we can define the generalized unitary
groups

U(n+, n−) = {A ∈ GL(Cn) |A†ηA = η} , (25.17)

whose elements have unit modulus determinant, |det(U)| = 1. Its subgroups of deter-
minant one elements are denoted by

SU(n+, n−) = {A ∈ U(n+, n−) |det(A) = 1} . (25.18)
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Problem 25.2 (Lorentz group in two dimensions)

Consider the Minkowski product on R2, defined by (v,w) = vT ηw, where η = diag(−1, 1).

Show that the matrices Λ̃ ∈ SO(1, 1) with Λ̃11 ≥ 0 can be written in the form

Λ̃(ξ) =

(
cosh ξ − sinh ξ
− sinh ξ cosh ξ

)
, (25.19)

where ξ ∈ R. In special relativity, the quantity ξ is also called rapidity. Show that multiplica-
tion of these matrices corresponds to addition of rapidities, that is, Λ̃(ξ1)Λ̃(ξ2) = Λ̃(ξ1 + ξ2).

Write Λ̃(ξ) in terms of the quantity β = tanh ξ ∈ [−1, 1]. How does addition of rapidity
translate to the quantity β?

Solution: The story is analogous to the one for two-dimensional rotation, as developed in
Exercise 23.4, but with trigonometric functions replaced by hyperbolic functions. We begin
with a general 2× 2 matrix

Λ̃ =

(
a b
c d

)
,

where a, b, c, d ∈ R, and insert this into the defining conditions, Λ̃T ηΛ̃ = η and det(Λ̃) = 1,
for SO(1, 1). This leads to

a2 − c2 = 1 , d2 − b2 = 1 , ab− cd = 0 , ad− cb = 1 .

Since we assume that Λ̃11 = a ≥ 0, the first of these equations implies that a ≥ 1, so there
must exist a ξ ∈ R such that a = cosh ξ. After a suitable sign choice of ξ, we can then
set c = − sinh ξ. Solving the third equation for b, b = cd/a, and inserting into the fourth

gives d = a and using this in the third equation implies b = c. Hence, Λ̃(ξ) has the stated
form (25.19).

The relation Λ̃(ξ1)Λ̃(ξ2) = Λ̃(ξ1 + ξ2) follows by carrying out the matrix multiplication
on the left-hand side and then using the addition theorems for hyperbolic functions. With
cosh ξ = 1√

1−β2
=: γ and sinh ξ = βγ the matrices can be written in the form

Λ̃(β) =

(
γ −βγ
−βγ γ

)
. (25.20)

This is the familiar form for Lorentz transformations involving time and one spatial coordinate
between two inertial systems with a relative velocity β (in units of the speed of light).

For two such transformations performed one after the other rapidities add up. The cor-
responding velocities β1 = tanh ξ1, β2 = tanh ξ2 and β = tanh(ξ1 + ξ2) are then related
by

β =
β1 + β2

1 + β1β2
, (25.21)

as follows immediately from the addition theorem tanh(ξ1 +ξ2) = tanh ξ1+tanh ξ2
1+tanh ξ1 tanh ξ2

. Eq. (25.21)

is the standard formula for the addition of velocities in special relativity.
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Application 25.1 Lorentz group in four dimensions

In Exercise 25.2 we have seen that the Lorentz group in two dimensions can rather easily
be worked out explicitly, and that its structure is analogous to the group SO(2) of two-
dimensional rotations. The physically relevant group is, of course, the Lorentz group in four
dimensions. To define this group we introduce on R4 the Minkowski product

〈v,w〉 = vT ηw , (25.22)

where v,w ∈ R4 and η = diag(−1, 1, 1, 1) is the Minkowski metric. The Minkowski product
is a symmetric bi-linear form with signature (n+, n−) = (3, 1). From Cor. 25.1 this means
the Minkowski product is non-positive (it is not a scalar product) and non-degenerate. The
group O(3, 1) which leaves the Minkowski product unchanged is called the Lorentz group
and, from Eq. (25.15), it is explicitly given by

L := O(3, 1) = {Λ ∈ GL(R4) |ΛT ηΛ = η} = {Λ ∈ GL(R4) |ΛµρΛνσηµν = ηρσ} . (25.23)

In Special Relativity the linear transformations

x 7→ x′ = Λx (25.24)

generated by Λ ∈ L are interpreted as a transformations from one inertial system with
space-time coordinates x = (t, x, y, z)T to another one with space-time coordinates x′ =
(t′, x′, y′, z′)T .

The Lorentz group has an interesting global structure which can be seen as follows. First,
taking the determinant of the defining equation, ΛT ηΛ = η and using standard determinant
properties, gives det(Λ)2 = 1, that is,

det(Λ) = 1 or det(Λ) = −1 . (25.25)

Further, the ρ = σ = 0 component of the last Eq. (25.23) reads

− (Λ0
0)2 +

3∑
i=1

(Λi0)2 = −1 ⇒ Λ0
0 ≥ 1 or Λ0

0 ≤ −1 . (25.26)

Combining the sign choices in Eqs. 25.23 and (25.26) means the Lorentz group splits into
four part, as summarized in the table below.

det(Λ) Λ00 subset of L contains given by

1 ≥ 1 L↑+ 14 -

1 ≤ −1 L↓+ −14 L↓+ = −L↑+
−1 ≥ 1 L↑− P := diag(1,−1,−1,−1) L↑− = PL↑+
−1 ≤ −1 L↓− T := diag(−1, 1, 1, 1) L↓− = TL↑+

The matrix P inverts the spatial coordinates under the transformation (25.24) and is called
parity while T inverts time and is called time inversion. The matrices (14,−14, P, T ) are
indeed Lorentz transformation (as they each satisfy ΛT ηΛ = η) and they realize the four
possible choices of signs for det(Λ) and Λ00. This shows that the four parts of the Lorentz

group are indeed non-empty sets. What is more, the part L↑+, is a sub-group of the Lorentz
group called the proper, ortho-chronous Lorentz group. It generates the other three parts
via multiplication with (−14, P, T ), as indicated in the last column of the table. If we think
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of a continuous path of Lorentz transformations in L then neither the sign of det(Λ) nor
the sign of Λ00 can change from +1 to −1 or vice versa. This means that the four parts of
the Lorentz group are disconnected and, schematically, the structure of the Lorentz group
can be depicted as follows.

14

L↑+
P

L↑−

T

L↓−
−14

L↓+

P

−14 = PTT

L

The Lorentz transformations normally used in special relativity are the proper, ortho-
chronous Lorentz transformations L↑+. However, the other parts of the Lorentz group are
relevant as well and it is an important question whether they constitute symmetries of na-
ture in the same way that proper, ortho-chronous Lorentz transformations do. More to the
point, the question is whether nature respects parity P and time-reversal T . One of the
important and surprising discoveries of 20th century physics is that the weak interactions
violate parity (Halzen and Martin, 2008).

As we have seen the entire Lorentz group L can be generated from L↑+ via multiplication

with simple matrices. But what do proper ortho-chronous Lorentz transformation in L↑+ look
like? To answer this question we basically have to solve Eq. (25.23) which is possible but
somewhat difficult to do in full generality. However, some special Lorentz transformations
are more easily obtained. First, we note that matrices of the type

Λ =

(
1 0
0 R

)
(25.27)

where R is a three-dimensional rotation matrix are elements of L↑+. Indeed, such matri-
ces satisfy the defining relation for Lorentz transformations in Eq. (25.23) by virtue of
RTR = 13 and we also have det(Λ) = det(R) = 1 and Λ0

0 = 1. In other words, regu-
lar three-dimensional rotations in the spatial directions are proper, ortho-chronous Lorentz
transformations.

Another easy subset is constructed from the two-dimensional Lorentz transformation Λ̃
in Eq. (25.20), by writing down the block matrices

Λ =

(
Λ̃ 0
0 12

)
. (25.28)

For these matrices, the transformations (25.24) become explicitly

t′ = γ(t− βx) , x′ = γ(x− βt) , y′ = y , z′ = z . (25.29)

These equations describe a transformation between two inertial systems which move relative
to one another with velocity β in the x-direction. This is also called a boost in the x-direction
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with velocity β. A general boost depends on the velocity β ∈ R3 and is, hence, described
by three parameters. (Its general form can, for example, be found in Jackson 1962). Every

Lorentz transformation in L↑+ can be written in terms of a rotation and a general boost and
can, hence, be parametrized by six quantities, the three angles describing a rotation and
the velocity β.

25.3 Quadratic hyper-surfaces*

Summary 25.3 A quadratic form q in Rn defines a quadratic hyper-surface via
the equation q(x) = const. The nature of this hyper-surface can be determined by
diagonalizing the quadratic form and depends on the signature (n+, n−) of q. The
quadratic curves in R2 are ellipses, hyperbolas and various degenerations of these. The
quadratic surfaces in R3 consist of ellipsoids, hyperboloids, cylinders with elliptical
or hyperbolic cross sections as well as various degenerations.

25.3.1 Definition of quadratic hyper-surfaces

Linear forms and their associated quadratic forms lead to an important geometrical
application, as they can be used to define quadratic hyper-surfaces. To see how this
works, we start with a linear form (·, ·) with signature (n+, n−) on Rn and its associated
quadratic form q. Following our earlier discussion (see Eq. (25.4)), we can write the
linear and quadratic form, relative to the standard unit vector basis of Rn, as

(x,y) =
∑
i,j

xiAijyj = xTAy , q(x) =
∑
i,j

xiAijxj = xTAx , (25.30)

where A is a symmetric n× n matrix with entries Aij = (ei, ej).

A quadratic hyper-surface S ⊂ Rn is defined as the set of all vectors on which the
quadratic form q has a fixed value k, so

S := {x ∈ Rn | q(x) = k} = {x ∈ Rn |xTAx = k} . (25.31)

This imposes one condition on the n components of the vector x so, intuitively, defines
on object S of dimension n−1, that is, one less than the space it is embedded into – this
is what the terminology ’hyper-surface’ alludes to. We limit our discussion to values
k > 0. A non-negative k can always be achieved by changing the matrix A 7→ −A,
if necessary, and we exclude k = 0 from our discussion since this leads to certain
degenerate cases (see Exercise 25.7).

Problem 25.3 (Quadratic forms and matrices)

In R3 with coordinates x = (x1, x2, x3)T consider the quadratic form

q(x) = 2x2
1 + 4x1x2 + x2

2 − 6x1x3 + 5x2
3 .

Find the symmetric 3× 3 matrix A such that q(x) = xTAx.
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Solution: The matrix A can be easily read off from the coefficients in the quadratic form.
The coefficients in front of the square terms x2

i become the diagonal entries Aii while the off-
diagonal entries Aij and Aji for i < j are each given by half the coefficient of xixj . Applying
this to the above quadratic form gives

A =

 2 2 −3
2 1 0
−3 0 5

 .

25.3.2 Diagonalization of quadratic hyper-surfaces

To understand the structure of quadratic surfaces better it is useful to diagonalize the
quadratic form. As a symmetric matrix, A has an ortho-normal basis RT = (ε1, . . . , εn)
of eigenvectors (relative to the dot product) and, as usual, we can diagonalize to
Â = diag(λ1, . . . , λn) = RART , where λi ∈ R are the eigenvalues, for convenience
ordered such that λi > 0 for i = 1, . . . , n+, λi < 0 for i = n+ + 1, . . . , n+ + n− and
λi = 0 for i > n+ + n−. Then, the defining equation of our quadratic hyper-surface
from Eq. (25.31) can be re-written as

xTAx = (Rx)T Â(Rx) = yT Ây =
∑
i

λiy
2
i

!
= k ,

where y = Rx are the coordinates relative to the basis (ε1, . . . , εn). Using slightly more
suggestive notation, this means the defining equation for S in terms of the coordinates
y and split into the parts with positive and negative eigenvalues has the form

n+∑
i=1

y2
i

R2
i

−
n++n−∑
i=n++1

y2
i

R2
i

= 1 where Ri =

√
k

|λi|
. (25.32)

Evidently, the nature of the hyper-surface S depends on the signature (n+, n−) of the
linear form in a crucial way.

If the signature is (n+, n−) = (n, 0) then all eigenvalues are positive and Eq. (25.32)
defines an ellipsoid whose half-axes have length Ri and point into the direction of the
eigenvectors εi. If, in addition, all eigenvectors happen to be equal, λ := λ1 = · · · =
λn > 0, then this ellipsoid degenerates into a sphere with radius R =

√
k/λ. If the

signature is (n+, 0) with n+ < n, then we have n− n+ zero eigenvalues. In this case,
the hyper-surface is an ellipsoid in the directions yi with i ≤ n+ but, since Eq. (25.32)
is independent of the coordinates yi with i > n+, it is cylindrical in those coordinates.
On the other hand, for a signature (n+, n−) with n± > 0 the quadratic hyper-surface
is a hyperboloid in directions yi with 1 ≤ i ≤ n+ + n− and it is cylindrical in the
directions yi with i > n+ + n−. For purely negative signatures, (0, n−), Eq. (25.32)
does not have a solution since we are assuming that k > 0. If k = 0 is allowed various
special cases arise but we will not discuss these in detail. To develop a better intuition
it is useful to discuss the lowest-dimensional cases n = 2 and n = 3 in more detail.
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Table 25.1 Quadratic curves in R2

(n+, n−) Eigenvalues Conditions on A Curve Equation

(2, 0) λ1 > 0, λ2 > 0 tr(A) > 0,det(A) > 0 ellipse
y21
R2

1
+

y22
R2

2
= 1

λ1 = λ2 > 0 tr(A) > 0, circle y2
1 + y2

2 = R2
1

4 det(A) = tr(A)2

(1, 1) λ1 > 0, λ2 < 0 det(A) < 0 hyperbola
y21
R2

1
− y22

R2
2

= 1

(1, 0) λ1 > 0, λ2 = 0 tr(A) > 0,det(A) = 0 two lines y1 = ±R1

25.3.3 Quadratic curves in R2

A quadradic form q in R2 defines a hyper-surface of dimension one, that is, a quadratic
curve. Explicitly, this can be written as

q(x) = ax2
1 + 2bx1x1 + cx2

2 = xTAx
!
= k where A =

(
a b
b c

)
,

and a, b, c ∈ R. In two dimensions, a good way to find the eigenvalues — and the
signature — is to use the trace and determinant, that is, the relations

λ1 + λ2 = tr(A) = a+ c , λ1λ2 = det(A) = ac− b2 .

For example, the quadratic form q has signature (2, 0) iff both eigenvalues of A are
positive and this is the case iff tr(A) > 0 and det(A) > 0. For this signature, the
quadratic curve is an ellipse described by the equation

y2
1

R2
1

+
y2

2

R2
2

= 1 where Ri =

√
k

λi
.

Recall that y = (y1, y2)T are coordinates relative to the ortho-normal basis (ε1, ε2) of
eigenvectors. This means that the half-axes of the ellipse point into the directions of
the eigenvectors εi.

Going through the possible signatures systematically, leads to the four non-trivial
cases listed in Table 25.1. The four types of curves in Table 25.1 are shown in Fig. 25.2.

Problem 25.4 (Quadratic curves in R2)

In R2 with coordinates x = (x1, x2)T consider the quadratic form q(x) = 3x2
1 + 2x1x2 + 2x2

2.
Show that the equation q(x) = 1 defines an ellipse and compute the directions and lengths
of its half-axes.

Solution: The quadratic form can be written as q(x) = xTAx, with the matrix A given by

A =

(
3 1
1 2

)
.

Since tr(A) = 5 > 0 and det(A) = 5 > 0 the case in the first row of Table 25.1 is realized.
This means the signature is (2, 0) and we are indeed dealing with an ellipse.
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ε1ε2

R1

R2

ellipse

R1 = R2

circle

ε1
R1ε2

R2

hyperbola

ε1
R1

two lines

Fig. 25.2 The four types of quadratic curves in R2 from Table 25.1.

From the characteristic polynomial χA(λ) = λ2−5λ+5 of A we find the eigenvalues λ± =

(5±
√

5)/2 and the (unnormalized) eigenvectors v± = (1±
√

5, 2)T . These are the directions

of the ellipse’s half-axes and their lengths are given by R± = 1/
√
λ± =

√
2/(5±

√
5).

25.3.4 Quadratic surfaces in R3

A quadratic hyper-surface in R3 has dimension two, so it is a surface. Perhaps the
simplest case is for signature (3, 0) which leads to the equation

y2
1

R2
1

+
y2

2

R2
2

+
y2

3

R2
3

= 1 where Ri =

√
k

λi
,

written in coordinates y = (y1, y2, y3)T relative the ortho-normal basis (ε1, ε2, ε3) of
eigenvectors of A. This represent an ellipsoid with half-axes in the directions εi and
lengths Ri. The other cases are listed in Table 25.2.

Problem 25.5 (Quadratic surfaces in R3)

For the quadratic form q(x) = x2
1 + x2

2 + x2
3 − 2ax1x3, determine the nature of the quadratic

surface defined by q(x) = 1, for all values of the parameter a ∈ R.
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Table 25.2 Quadratic surfaces in R3.

(n+, n−) Eigenvalues Surface Equation

(3, 0) λ1 > 0, λ2 > 0, λ3 > 0 ellipsoid
y21
R2

1
+

y22
R2

2
+

y23
R2

3
= 1

λ1 = λ2 = λ3 > 0 sphere y2
1 + y2

2 + y2
3 = R2

1

(2, 1) λ1 > 0, λ2 > 0, λ3 < 0 hyperboloid, one sheet
y21
R2

1
+

y22
R2

2
− y23

R2
3

= 1

(1, 2) λ1 > 0, λ2 < 0, λ3 < 0 hyperboloid, two sheets
y21
R2

1
− y22

R2
2
− y23

R2
3

= 1

(2, 0) λ1 > 0, λ2 > 0, λ3 = 0 elliptic cylinder
y21
R2

1
+

y22
R2

2
= 1

(1, 1) λ1 > 0, λ2 < 0, λ3 = 0 hyperbolic cylinder
y21
R2

1
− y22

R2
2

= 1

(1, 0) λ1 > 0, λ2 = 0, λ3 = 0 two planes y2
1 = R2

1

Solution: The above quadratic form can be written as q(x) = xTAx with

A =

 1 0 −a
0 1 0
−a 0 1

 .

The characteristic polynomial χA(λ) = −λ3 +3λ2 +(a2−3)λ+1−a2 leads to the eigenvalues
λ1 = 1, λ2 = 1 − a and λ3 = 1 + a. For −1 < a < 1 all three eigenvalues are positive, so
the signature of q is (3, 0) and the surface is an ellipsoid. In particular, for a = 0 all three
eigenvalues are equal and the ellipsoid degenerates to a sphere. For |a| = 1 two eigenvalues
are positive and one vanishes so we have signature (2, 0). Hence, the surface is a cylinder with
elliptic cross section. Finally, for |a| > 1 two eigenvalues are positive and one is negative, so
we have signature (2, 1) and the surface is a one-sheeted hyperboloid.

Exercises

(†=challenging)

25.1 (a) For 2 × 2 Hermitian matri-
ces A, formulate criteria for pos-
itive definiteness/negative definite-
ness/indefiniteness in terms of tr(A)
and det(A).
(b) Are the following matrices positive
definite, negative definite, or indefi-
nite?

A1 =

(
1 −1
−1 2

)
, A2 =

(
2 3
3 −2

)
A3 =

(
−4 3

3 −5

)
, A4 =

(
7 1
1 −1

)
25.2 Criterion for positive definiteness

Let A be a Hermitian n×n matrix with
characteristic polynomial χA(λ) =∑n
k=0 ckλ

k. Show that A is positive

definite iff (−1)kck > 0 for k =
0, . . . , n− 1. (Hint: Use the result from
Exercise 4.17.)

25.3 Another criterion for positive
definiteness†

For a symmetric matrix A ∈ Mn,n(R)
denote by A(k) the k × k sub-matrices
obtained by omitting the last n−k rows
and columns from A. Show that A is
positive definite iff all minors det(A(k))
for k = 1, . . . , n are positive.
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25.4 For a Hermitian positive definite ma-
trix A show the following:
(a) A is invertible.
(b) There exists a sensible definition
of the power Ax, where x ∈ R, for
which Ax is Hermitian positive definite
as well.
(c) AxAy = Ax+y for x, y ∈ R.

25.5 The group U(1, 1)
(a) Show that every A ∈ U(1, 1) can be
written as A = ζU , where U ∈ U(1, 1)
and ζ ∈ C with |ζ| = 1.
(b) Show that every U ∈ U(1, 1) can
be written as

U =

(
α β
ᾱ β̄

)
,

where α, β ∈ C and |α|2 − |β|2 = 1.

25.6 A curve in R2 is defined by all vectors
x = (x, y)T which solve the equation

x2 + 3y2 − 2xy = 1.
(a) Show that this equation can be
written in the form xTAx = 1 and de-
termine the matrix A.
(b) By diagonalizing the matrix A,
show that this curve is an ellipse and
determine the length of its two half-
axes.

25.7 A curve in R2 is defined by all vectors x
which satisfy xTAx = 0 for a symmet-
ric matrix A ∈M2,2(R). Discuss which
types of curves arise depending on the
signature of the associated linear form.

25.8 A linear form on R3 is defined by
(x,y) = xTAy, where A is the matrix
from Exercise 24.1. What is the signa-
ture of this linear form and what type
of surface is defined by q(x) = 1, where
q is the associated quadratic form?
Find the length of half axes where ap-
propriate.



Part VIII

Dual and tensor vector spaces*

In this final part we cover the more advanced topics of dual and tensor vector spaces.
For the beginner, these topics often seem difficult and forbiddingly abstract. However,
the idea of having universal constructions which allow us to create new vector spaces
from given ones is a powerful one which has many applications in more advanced
areas of mathematics and in science. We have already seen some examples of such
constructions, namely the direct sum, V ⊕W of two vector spaces (see Section 8.1.5)
and the homomorphisms Hom(V,W ) of linear maps V →W (see Section 12.1.3).

We begin with a particularly important class of vector space homomorphisms, namely
the dual vector space V ∗ = Hom(V,F) whose elements consist of linear maps V → F,
also called linear functionals. Vector spaces V and their duals V ∗ appear in many
scientific applications but often implicitly or in disguise. For example, the presence of
vectors with upper (=covariant) and lower (=contravariant) indices indicates that a
vector space and its dual are in play. A prominent example is the theory of special
relativity which uses upper and lower index objects. Vectors and dual vectors are also
omnipresent in quantum mechanics where they are referred to as ket vectors, |·〉, and
bra vectors, 〈·|, respectively. One reward for getting through the formal set-up for dual
vector spaces will be a mathematical grounding for these various applications.

The dual vector space also underlies the definition of tensors. The tensor space V ⊗W of
two vector spaces V ,W consists of all bi-linear forms V ∗×W ∗ → F. Relative to a choice
of bases, such tensors can be represented by the two-index objects τ ia. Tensoring can be
repeated multiple times so we can, for example, consider the tensor space V ⊗p⊗(V ∗)⊗q

which is built from p factors of V and q factors of V ∗. Its elements are also referred to
as (p, q) tensors and, relative to a choice of bases, they can be represented by objects
τ i1···ip j1···jq with p upper and q lower indices. Of particular importance is the space
ΛqV ∗ of completely anti-symmetric (0, q) tensors, also called alternating q forms. The
direct sum of the spaces ΛqV ∗ forms the outer algebra ΛV ∗ of V ∗. Alternating q forms
are important for some more advanced mathematical constructions, such as differential
forms (see, for example, Lang 1997).

As we will see, many of the object in linear algebra can be described in terms of tensors.
For example, we have an isomorphism Hom(V,W ) ∼= W ⊗V ∗ which means that linear
maps V →W can be described by tensors in W ⊗ V ∗. A symmetric bi-linear form on
V can be identified with a tensor in V ∗ ⊗ V ∗. The determinant on Fn is, in fact, a
tensor in ΛnFn. We will also see that the various products, the dot product, the cross
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product and the triple product, introduced in a somewhat ad-hoc manner in Part III,
have their natural home in the outer algebra ΛR3. By appealing to the index form
of tensors we can also, finally, understand why objects such as the Levi-Civita or the
Kronecker symbol are referred to as tensors. In short, the gain in understanding the
structural aspects of linear algebra is well worth the effort of getting to grips with
tensors.

In scientific applications, tensors are usually represented in index form. Conversely, the
presence of such indexed objects usually indicates a mathematical formulation which
involves tensors. A prominent example is the field-strength tensor Fµν in covariant
electromagnetism (see, for example, Jackson 1962) which can be viewed as a (0, 2)
tensor in Λ2R4. In the applications on machine learning (see Applications 11.1 and
13.3) we have explained the principle of neural networks in terms of vectors. More
generally, neural networks can be seen as devices which process tensors.

We hope that all this provides the reader with sufficient motivation to carry on and
tackle this final part.



26

The dual vector space*

As we have seen in Section 12.1.3, for two vector spaces V and W over F, the space
of homomorphisms Hom(V,W ), which consists of all linear maps V →W , is a vector
space. A special case arises when we choose W = F (as a one-dimensional coordinate
vector space over itself). The linear maps V → F are called linear functionals and they
form a vector space V ∗ = Hom(V,F), called the dual vector space, which is naturally
associated to V .

It turns out that a vector space V and its dual V ∗ have the same dimension and
are, hence, isomorphic. In general, this isomorphism depends on a choice of bases.
However, a canonical isomorphism between V and V ∗ can be defined if V carries a
non-degenerate linear form (·, ·). We will also see that transposition, introduced earlier
as a somewhat ad-hoc operation on matrices, has a natural home in the context of dual
vector spaces. In practice, relative to basis choices, vectors in V can be represented
by objects vi with an upper index, and dual vectors in V ∗ by objects vi with a lower
index. In this language, the canonical isomorphism between V and V ∗ is realized by
lowering and raising indices, for example vi = gijv

j , where gij is the matrix which
describes the linear form.

26.1 Definition of dual vector space*

Summary 26.1 For a vector space V over F, linear functionals are linear maps
V → F. The space of all linear functionals on V is called the dual vector space,
V ∗ = Hom(V,F). For finite-dimensional vector spaces, V and V ∗ have the same
dimension and for a basis of V there exists a unique dual basis of V ∗. The double
dual V ∗∗ is canonically isomorphic to V .

26.1.1 Linear functionals

The formal definition of linear functionals and the dual vector space is as follows:

Definition 26.1 For a vector space V over F, a linear map V → F is called a linear
functional on V . The vector space V ∗ := Hom(V,F) of all linear functionals on V is
called the dual vector space.

Note that, in the above definition, the field F in Hom(V,F) is viewed as a one-
dimensional vector space over itself. We emphasize that linear functionals ϕ ∈ V ∗

are specific linear maps and, hence, satisfy the usual linearity property
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ϕ(α1v1 + α2v2) = α1ϕ(v1) + α2ϕ(v2) , (26.1)

for all vectors v1,v2 ∈ V and all scalars α1, α2 ∈ F. A wide variety of objects can be
viewed as linear functionals, as the following examples show.

Example 26.1 (Linear functionals on coordinate vector spaces)

For the vector space Fn (seen as a vector space of columns) the dual vector space
(Fn)∗ = Hom(Fn,F) = M1,n(F) consists of 1 × n matrices, that is, of row vectors,
with entries in F (see Eq. (13.12)). For such a row vector ϕ = (ϕ1, . . . , ϕn) the action
on a vector v ∈ V is given by matrix multiplication, so

ϕ(v) = ϕv =

n∑
i=1

ϕivi . (26.2)

Note that the matrix product of an 1× n matrix (a row vector) with an n× 1 matrix
(a column vector) is indeed a 1× 1 matrix, so a number, as required. The expression
on the right-hand side of Eq. (26.2) is, effectively, a dot product which we have now
written as a matrix product.

To summarize, the elements of Fn, as per our convention, can be viewed as column
vectors while the elements of the dual, (Fn)∗, can be viewed as row vectors, each with
n entries in F. In particular, Fn and (Fn)∗ have the same dimension. 2

Example 26.2 (Integrals as linear functionals)

A prominent example of a linear functional on function vector spaces is the integral.
For example, consider C([a, b]), the space of continuous (real-valued) functions on the
interval [a, b] ⊂ R. The integral over [a, b] defines a linear function I : C([a, b]) → R
given by

I(g) =

∫ b

a

dx g(x) . (26.3)

Linearity, I(αg + βh) = αI(g) + βI(h), follows directly from linearity of the integral.
2

Example 26.3 (Dirac delta)

Another interesting functional on C([a, b]) is the Dirac delta functional δc : C([a, b])→
R, defined by

δc(g) := g(c) , (26.4)

where c ∈ [a, b] is fixed. The Dirac delta is indeed linear since

δc(αg + βh) = (αg + βh)(c) = αg(c) + βh(c) = αδc(g) + βδc(h) .

As a mathematical object, δc is an example of a distribution. The mathematics of
distributions is well beyond the scope of these lectures and cannot be pursued further
(see, for example, Constantinescu 1980). However, the Dirac delta functional deserves
a mention as it is widely used in applications. It is often (incorrectly) viewed as a
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’function’ δ(x − c) which vanishes everywhere except at x = c. In this language,
Eq. (26.4) is written as ∫ b

a

dx g(x)δ(x− c) = g(c) . (26.5)

An integral over a function which vanishes everywhere except at one point must be zero
so Eq. (26.5) cannot be literally correct. It should be viewed as a symbolic equation
which uses the integral to capture the linear nature of the Dirac delta functional and
is written in place of the correct expression (26.4). 2

26.1.2 Dual basis

In Example 26.1 we have seen that Fn and its dual, (Fn)∗ have the same dimension. In
fact, Eq. 12.7 shows that dimF(V ) = dimF(V ∗) is generally true. The following theorem
provides another proof of this fact which relies on constructing the dual basis.

Theorem 26.1 Let V be a vector space with basis (ε1, ..., εn). Then there exists a
unique basis (ε1

∗, ..., ε
n
∗ ) of V ∗, called the dual basis, with

εi∗(εj) = δij , (26.6)

for all i, j = 1, . . . , n. In particular, dimF(V ) = dimF(V ∗).

Proof Consider the coordinate map ψ : Fn → V associated to the basis (ε1, ..., εn).
We claim that the correct dual basis is defined by

εi∗(v) := vi = ei · ψ−1(v) , (26.7)

where v =
∑n
i=1 viεi. First we check the duality property, Eq. (26.6).

εi∗(εj) = ei · ψ−1(εj)
(15.4)

= ei · ej = δji . (26.8)

To verify that (ε1
∗, . . . , ε

n
∗ ) forms a basis of V ∗ we first check linear independence.

Applying the equation
∑
i βiε

i
∗ = 0 to εj and using Eq. (26.8) immediately shows that

all βj = 0 and linear independence follows. To show that the εi∗ span the dual space,
we start with an arbitrary functional ϕ and define λi = ϕ(εi). It follows that

ϕ(v) = ϕ

(
n∑
i=1

viεi

)
=

n∑
i=1

viϕ(εi) =

n∑
i=1

λivi =

n∑
i=1

λiε
i
∗(v) .

Dropping the argument v from either side shows that the arbitrary functional ϕ can
indeed be written a a linear combination of the εi∗. Hence, (ε1

∗, . . . , ε
n
∗ ) is a basis of

V ∗.

Finally, we need to proof uniqueness. Consider another basis (ε̃1
∗, . . . , ε̃

n
∗ ) of V ∗ which

satisfies ε̃i∗(εj) = δij . Equating this with Eq. (26.6) leads to ε̃i∗(εj) = εi∗(εj) for all

i, j = 1, . . . , n. Hence, ε̃i∗ and εi∗ are equal since they coincide on a basis. 2
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A useful application of the dual basis is the calculation of the coordinates of a vector.
For v ∈ V we have

v =

n∑
i=1

viεi ⇔ vi = εi∗(v) , (26.9)

as follows directly from the duality property (26.6).

Example 26.4 (Dual basis for coordinate vector spaces)

We start with Fn and its basis (e1, . . . , en) of standard unit vectors. Its dual basis of
(Fn)∗ is given by (eT1 , . . . , e

T
n ), that is the standard unit vectors written as row vectors.

Indeed, from Eq. (26.2) we have

eTi (ej) = eTi ej = δij ,

so that the defining property (26.6) of the dual basis is satisfied.

Next, consider an arbitrary basis (ε1, ε2, ε3) of R3 and define the determinant d :=
det(ε1, ε2, ε3) which is non-zero from Theorem 10.1. We claim that the three vectors

ε1
∗ :=

1

d
(ε2 × ε3)T , ε2

∗ :=
1

d
(ε3 × ε1)T , ε3

∗ :=
1

d
(ε1 × ε2)T (26.10)

form the dual basis. To see this just verify the defining property (26.6), for example

ε1
∗(ε1) =

1

d
(ε2 × ε3)T ε1 =

1

d
(ε2 × ε3) · ε1 = 1 , ε1

∗(ε2) =
1

d
(ε2 × ε3) · ε2 = 0 ,

and similarly for the other combinations. Here, we have used standard properties of
the triple product/the determinant, in particular the fact that a determinant with
two same arguments vanishes (see Section 10.2). The dual basis (26.10) is, in fact, the
transpose of the reciprocal basis introduced in Exercise 10.9. 2

Problem 26.1 (Computing the dual basis in R3)

For the R3 basis (ε1, ε2, ε3), where ε1 = (1, 2,−1)T , ε2 = (0,−1, 2)T and ε3 = (1, 0, 1), find the
dual basis of (R3)∗. Use this result to compute the coordinates of the vector v = (2, 1, 3)T ∈ R3

relative to the basis (ε1, ε2, ε3).

Solution: Inserting the vectors εi into Eq. (26.10), with d = det(ε1, ε2, ε3) = 2, gives

ε1
∗ =

1

2
(−1, 2, 1) , ε2

∗ = (−1, 1, 1) , ε3
∗ =

1

2
(3,−2,−1) .

As a check, it is useful to verify that εi∗(εj) = δij .

To compute the coordinates vi of the vector v =
∑3
i=1 viεi we use Eq. (26.9) which gives

v1 =
1

2
(−1, 2, 1)

 2
1
3

 =
3

2
, v2 = (−1, 1, 1)

 2
1
3

 = 2 , v3 =
1

2
(3,−2,−1)

 2
1
3

 =
1

2
.
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26.1.3 Index notation

Vectors and dual vectors are ubiquitous in scientific applications but they are rarely
used in the abstract way in which they have been developed so far. To connect with
applications, we have gradually slipped a notational refinement into our discussion, as
the reader may have noticed. Basis vectors (εi) of V have been labelled by a lower
index, while we have used an upper index for the basis vectors (εi∗) of the dual vector
space V ∗. Relative to these bases, elements of either vector space are written as

v = viεi ∈ V ; , ϕ = ϕiε
i
∗ ∈ V ∗ . (26.11)

The action of a linear functional on a vector then reads

ϕ(v) =
∑
i,j

ϕiv
j εi∗(εj)︸ ︷︷ ︸

=δij

= ϕiv
i . (26.12)

In writing these expressions, we have adopted a refined Einstein summation convention
whereby a same upper (covariant) and lower (contravariant) index in a term is being
summed over. In physics, such a summation of an upper and a lowed index is often
referred to as a contraction of indices.

In applications, bases choices are usually implied (but rarely made explicit) and vectors
and dual vectors are referred to by their coordinate vectors. In this case, the position
of the index is used to distinguish the two types. Upper index objects vi represent
coordinate vectors relative to a basis (εi) of V and are also called covariant vectors.
Lower index objects ϕi are the coordinates of dual vectors relative to the dual basis
(εi∗) and are also called contravariant vectors. In this language, the action of a linear
functional on a vector is simply written as on the right-hand side of Eq. (26.12), that is,
as a contraction ϕiv

i. Whenever such upper and lowed index objects appear, implicit
reference is being made to a vector space and its dual.

26.1.4 The double dual

What happens if we dualize the dual vector space, so if we form the double dual
V ∗∗ of a vector space V ? The duals of column vectors are row vectors obtained by
transposition. Taking another transpose leads back to column vectors which suggests
that the double dual is identical to the original vector space. The general statement is
only slightly more complicated.

Theorem 26.2 For a finite-dimensional vector space V , the linear map  : V → V ∗∗

defined by (v)(ϕ) := ϕ(v) is an isomorphism.

Proof From Theorem 26.1 we know that dim(V ) = dim(V ∗) = dim(V ∗∗). Then,
Corollary 14.2 tells us verifying Ker() = {0} is sufficient to show that  is an
isomorphism. To do this we introduce a basis (ε1, . . . , εn) on V with dual basis
(ε1
∗, . . . , ε

n
∗ ) and start with a vector v = viεi ∈ Ker() in the kernel. It follows that

0 = (v)(εi∗) = εi∗(v) = vi, so all coordinates vi vanish and, hence, v = 0. 2

Note that the definition of the above map  does not depend on a choice of basis.
For this reason  is also referred to as a canonical isomorphism between V or V ∗∗. In
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practice, we should think of V and V ∗∗ as the same space by identifying vectors v ∈ V
with their images (v) ∈ V ∗∗. If we simplify our notation accordingly and write (v)
as v, then the defining relation, (v)(ϕ) = ϕ(v), for  turns into

v(ϕ) = ϕ(v) . (26.13)

This means that the relation between V and V ∗ is ’symmetric’. Elements ϕ ∈ V ∗ can
act on vector v ∈ V but the converse is also possible and leads to the same scalar.
This fact will become relevant for the discussion of tensors.

26.2 The dual map*

Summary 26.2 For a vector subspace U ⊂ V we define an orthogonal space U⊥ ⊂
V ∗ which consists of all linear functionals which vanish on U . The dimensions of U
and U⊥ add up to the dimension of V . For a linear map f : V → W we can define
a dual linear map f∗ : W ∗ → V ∗. Relative to a choice of bases for V and W and
their dual bases, the matrices which describe f and f∗ are related by transposition.
The linear map and its dual have the same rank, and their images and kernels are
related.

The two main structural features of vector spaces are vector subspaces and linear maps
and it is natural to ask how they relate to dual vector spaces. We begin with vector
subspaces.

26.2.1 The orthogonal space

For a vector subspace W ⊂ V the orthogonal space W⊥ associated to W is defined by

W⊥ = {ϕ ∈ V ∗ |ϕ(w) = 0 ∀w ∈W} ⊂ V ∗ . (26.14)

Linearity of the functionals ϕ means that W⊥ is indeed a vector subspace. Earlier,
we have introduced the concept of orthogonality based on a scalar product and have
used this to define the orthogonal complement W⊥ ⊂ V for a vector subspace W ⊂
V (see Eq. (22.20)). Note that, despite the similar notation, the present notion is
quite different. It does not rely on a scalar product and the orthogonal space W⊥ in
Eq. (26.14) is a subspace of V ∗, rather than V .

Example 26.5 (Orthogonal space for column vectors)

For column vectors the interpretation of orthogonal spaces is quite straightforward.
For example, consider a one-dimensional vector subspace W = Span(w) ⊂ R2. Linear
functionals in (R2)∗ can be viewed as two dimensional row vectors, ϕ = (ϕ1, ϕ2).
The elements of W⊥ are those for which ϕ(w) = 0 and, hence, W⊥ = Span((w×)T ),
with the orthogonal w× of a two-dimensional vector defined in Eq. (10.1). So the
orthogonal space to a line through 0 in R2 is indeed the orthogonal line through 0,
but it is contained in the dual space (R2)∗. This is illustrated in Fig. 26.1.

For a one-dimensional sub vector space W = Span(w) in R3 there is an orthogonal
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R2

w

W

(R2)∗

(w×)T

W⊥

Fig. 26.1 The orthogonal space W⊥ ⊂ (R2)∗ to a sub space W = Span(w) ⊂ R2.

plane U = {v ∈ R3 |v ·w = 0}, written down in Cartesian form. The orthogonal space
is simple this same plane but written in term of row vectors, so W⊥ = {wT |w ∈
U} ⊂ (R3)∗. 2

The above examples suggests that the dimensions of W and W⊥ add up to the di-
mension of V . This is indeed the case.

Theorem 26.3 For a finite-dimensional vector space V over F and a sub vector space
W ⊂ V we have

dimF(W ) + dimF(W⊥) = dimF(V ) . (26.15)

Proof We set n = dimF(V ) and m = dimF(W ) and choose a basis (ε1, . . . , εm) for W
which we complete to a basis (ε1, . . . , εm, εm+1, . . . , εn) for V . For a general functional
ϕ = ϕjε

j
∗ ∈ V ∗, written in terms of the dual basis (ε1

∗, . . . , ε
n
∗ ), it follows

ϕ ∈W⊥ ⇔ ϕi = ϕ(εi) = 0 for i = 1, . . . ,m .

As a result, W⊥ = Span(εm+1
∗ , . . . , εn∗ ) and, being a subset of the dual basis, the

vectors εm+1
∗ , . . . , εn∗ are linearly independent and, hence, form a basis of W⊥. This

means dimF(W⊥) = n−m which is what we wanted to show. 2

Another obvious guess from the above examples is that taking the orthogonal of an
orthogonal space reverts to the original vector subspace.

Theorem 26.4 For a finite-dimensional vector space V and a sub vector space W ⊂ V
we have (W⊥)⊥ = W .

Proof From the dimension formula (26.15) we conclude

dimF(W ) + dimF(W⊥) = dimF(V )
dimF((W⊥)⊥) + dimF(W⊥) = dimF(V )

}
⇒ dimF(W ) = dimF((W⊥)⊥) .

Since the two spaces have the same dimension equality follows from Lemma 7.2 if we
can show that W ⊂ (W⊥)⊥. A vector w ∈ W satisfies ϕ(w) = 0 for all ϕ ∈ W⊥.
From Eq. (26.13) this means that w(ϕ) = 0 for all ϕ ∈ W⊥ so that w ∈ (W⊥)⊥.
2
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26.2.2 The dual map

Our next step is to discuss the relationship between dual vector spaces and linear
maps. We start with a linear map f : V → W , with V and W vector spaces over F.
Given this set-up, there is an obvious way to define a map f∗ : W ∗ → V ∗, called the
dual map of f , by the simple relation

f∗(ψ) := ψ ◦ f , (26.16)

where ψ ∈ W ∗. Note that this makes sense: both sides of this definition are linear
functionals in V ∗, acting on vectors in V . Despite its simplicity, the definition (26.16)
might seem painfully abstract. As often in linear algebra, we can get to a much more
concrete picture if we introduce bases and work out the matrices associated to the
linear maps. Our notation for the various basis sets is summarized in Table 26.1.
Relative to these bases the linear map f and its dual map f∗ are described by matrices

Table 26.1 Basis choices for V , W and their dual vector spaces.

Vector space Dimension Basis Dual space Dual basis

V n (v1, . . . ,vn) V ∗ (v1
∗, . . . ,v

n
∗ )

W m (w1, . . . ,wm) W ∗ (w1
∗, . . . ,w

m
∗ )

which we denote by A and B, respectively. From Theorem 15.1, these matrices satisfy

f(vj) =
m∑
i=1

Aijwi , f∗(wj
∗) =

n∑
i=1

Bijv
i
∗ . (26.17)

To understand the relationship between A and B we simply evaluate the defini-
tion (26.16) with ψ = wj

∗ and apply it to a basis vector vk.

f∗(wj
∗)(vk)

(26.16)
= wj∗(f(vk))

(26.17)
= wj

∗

(
m∑
i=1

Aikwi

)
=

m∑
i=1

Aikw
j
∗(wi)

(26.6)
= Ajk

(26.6)
=

n∑
i=1

Ajiv
i
∗(vk) =

n∑
i=1

(AT )ijv
i
∗(vk) (26.18)

Eq. (26.18) holds on the basis (v1, . . . ,vn) so we can drop the argument vk on either
side and conclude, by comparison with Eq. (26.17), that B = AT . We summarize this
result in the following theorem.

Theorem 26.5 Let V and W be finite-dimensional vector space, f : V → W be a
linear map and f∗ : W ∗ → V ∗ its dual map, as defined in Eq. (26.16). If f is described
by a matrix A relative to a choice of bases on V and W , then f∗ is described by the
transpose matrix AT , relative to the dual choice of bases on W ∗ and V ∗.

Proof This follows from the calculation (26.18). 2

In short, the dual of a map is simply the abstract version of the transpose of a matrix.
This provides a practical interpretation of the abstract definition (26.16) but also a
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deeper understanding of matrix transposition, an operation which we have previously
introduced in a somewhat ad-hoc manner1.

26.2.3 Kernel and image of the dual map

Associated to each linear map are two vector subspaces, the kernel and image. The
next theorem states an interesting relation between these spaces and their counterparts
for the dual map.

Theorem 26.6 For finite-dimensional vector spaces V and W , the kernel and image
of the linear map f : V →W and its dual map f∗ : W ∗ → V ∗ are related by

(i) Ker(f∗) = (Im(f))⊥ , (ii) Im(f∗) = (Ker(f))⊥ . (26.19)

Proof (i) We use the definitions (26.16) and (26.14) of the dual map and the orthog-
onal space.

ψ ∈ Ker(f∗)
(26.16)⇔ f∗(ψ) = ψ◦f = 0 ⇔ ψ(f(v)) = 0 ∀v ∈ V (26.14)⇔ ψ ∈ (Im(f))⊥

(ii) This can be shown in a similar way and we leave it as an exercise. 2

In short, the orthogonal of the kernel and the image of f are the image and the kernel
of the dual map f∗, respectively. Let us work this out for an example.

Problem 26.2 (The dual map)

Verify the relations (26.19) explicitly for the linear map R3 → R3 specified by the matrix

A =

−1 4 3
2 −3 −1
3 2 5

 .

Solution: The first two columns A1, A2, are linearly independent, while A3 = A1 +A2. This
means that Im(A) = Span(A1,A2), rk(A) = 2 and, from the dimensional formula (14.13),
dimR(Ker(A)) = 3 − 2 = 1. Since Av = 0, where v = (1, 1,−1)T , it follows that Ker(A) =
Span(v).

The orthogonal spaces Im(A)⊥ and Ker(A)⊥ can be easily computed.

(Im(A))⊥ = Span(ψ) , ψ = (A1 ×A2)T = (13, 14,−5)

(Ker(A))⊥ = {ϕ ∈ R3 |ϕv = 0} = Span(ϕ1,ϕ2) , ϕ1 = (1,−1, 0) , ϕ2 = (1, 1, 2)

On the other hand, we can compute the kernel and image of the dual map, described by the
transpose matrix

AT =

−1 2 3
4 −3 2
3 −1 5

 .

It is easy to see that ATψT = 0, so that Ker(AT ) = Span(ψ) = (Im(A))⊥. Further,
since ϕT1 = (5AT

2 + AT
3 )/13 and ϕT2 = (−AT

2 + 5At
3)/13 the image of AT is Im(AT ) =

Span(ϕ1,ϕ2) = (Ker(A))⊥, all in accordance with Eqs (26.19).

1The scalar product has also provided us with a mathematical interpretation of transposition but
only for vector spaces over R. The dual map leads to an interpretation for vector spaces over an
arbitrary field F.
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The following corollary is a simple but important conclusion from Theorem 26.6.

Corollary 26.1 For finite-dimensional vector spaces V and W , a linear map f : V →
W and its dual map f∗ : W ∗ → V ∗ satisfy

rk(f∗) = rk(f) . (26.20)

Proof

rk(f∗) = dimF(Im(f∗))
(26.19)

= dimF (Ker(f)⊥)
(26.15)

= dimF(V )− dimF(Ker(f))
(14.13)

= dimF(Im(f)) = rk(f) .

2

A linear map and its dual map have the same rank! In particular, this implies that a
matrix and its transpose have the same rank or, equivalently, that the row and column
ranks of a matrix are always equal. This statement has already been proven, by more
elementary methods, in Theorem 16.1.

26.3 Linear forms and dual space*

Summary 26.3 A linear form (·, ·) on a vector space V allows us to define a map
V → V ∗ between the vector space and its dual. This map is bijective iff the linear
form is non-degenerate. In index notation, this map amounts to raising and lowering
indices.

26.3.1 The map between V and V ∗

It is interesting to discuss how linear forms fit into the relation between vector spaces
and their dual spaces. To this end, consider a vector space V with a linear form (·, ·),
bi-linear symmetric in the real case and sesqui-linear Hermitian in the complex case.
We can use this linear form to define a map s : V → V ∗ between the vector space and
its dual by

s(v)(w) = (v,w) , (26.21)

where v,w ∈ V . Note that s(v) is indeed a linear functional since the linear form (·, ·)
is linear in its second argument. The map s inherits its properties from the properties
of the linear form, with respect to its first argument. In the real case, (·, ·) is linear in
its first argument, so that s is linear as well. However, in the complex case, the first
argument of (·, ·) and s are semi-linear, that is,

s(αv + βw) = ᾱ s(v) + β̄ s(w) , (26.22)

for all v,w ∈ V and all α, β ∈ C. The following proposition provides another useful
link between the properties of s and the linear form.
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Proposition 26.1 The map s : V → V ∗, defined in Eq. (26.21), is bijective if and
only if the linear form (·, ·) is non-degenerate.

Proof The proof is simple in the real case when s is linear. Since dim(V ) = dim(V ∗)
we know that s is bijective iff its kernel is trivial. This is the same as saying that
s(v)(w) = (v,w) = 0 for all w ∈ V implies that v = 0 which is indeed precisely the
definition of non-degeneracy.

In the complex case, s is only semi-linear and we cannot immediately apply our
various statements about linear maps. We leave the proof of this case as Exercise 26.4.

2

The proposition means that a non-degenerate linear form provides us with an identi-
fication of the vector space V and its dual V ∗.

Application 26.1 (Dirac notation)

Dirac notation is a system of notation for inner product vector spaces which was invented
for efficient calculation in quantum mechanics (see, for example, Dirac 2019; Sakurai and
Napolitano 2017; Messiah 2014) but which can also be convenient in a purely mathematical
context.

The setting is a vector space V with a Hermitian scalar product. Since a scalar product is
a non-degenerate sesqui-linear form it defines a bijective map s : V → V ∗, as discussed in
Section 26.3.1. From Eq. (26.21) we know that this map identifies the action of dual vector
on vectors with the scalar product. Dirac notation makes this identification notationally
manifest. By writing vectors v ∈ V as ’ket’ vectors |v〉 and dual vectors s(w), obtained
from vectors w ∈ V by the map s, as ’bra’ vectors 〈w|, the scalar product is written as a
’bra(c)ket’:

〈w|v〉 := 〈w,v〉 = s(w)(v) . (26.23)

In Dirac notation, matrix elements of Hermitian linear maps h : V → V are written as

〈w|h|v〉 := 〈w, h(v)〉 = 〈h(w),v〉 . (26.24)

Note that having h sit symmetrically between the two arguments of the scalar product makes
notational sense for a Hermitian map, since it does not matter which of the two arguments
it acts on. Suppose we select on ortho-normal basis (εi) of V . These basis vectors are also
written as |i〉 and their ortho-normality condition is

〈i|j〉 = δij . (26.25)

The matrix elements of h relative to this basis are hij = 〈i|h|j〉 and the map itself can then
be written as

h =
∑
i,j

hij |i〉〈j| . (26.26)

This relation can be easily verified by computing the matrix elements of the right-hand side

〈k|
∑
i,j

hij |i〉〈j|l〉 =
∑
i,j

hij〈k|i〉〈j|l〉
(26.25)

=
∑
i,j

hijδkiδjl = hkl = 〈k|h|l〉

which are indeed identical to the matrix elements of h. In more mathematical terms, we can
view Eq. (26.26) as an explicit realization of the isomorphism End(V ) ∼= V ⊗ V ∗ defined in
Eq. 27.22. The identity idV has matrix elements δij so Eq, (26.26) becomes



374 The dual vector space*

idV =
∑
i

|i〉〈i| . (26.27)

This simple formula is an efficient tool for computation. For example, consider expanding
a vector |ψ〉 ∈ V in terms of our ortho-normal basis.

|ψ〉 = idV |ψ〉 =
∑
i

|i〉〈i|ψ〉 (26.28)

This is of course the well-known result that the coordinates of |ψ〉 relative to the ortho-
normal basis (|i〉) are given by the scalar products 〈i|ψ〉 (see Eq. (22.15)) but here it follows
simply by inserting the identity map in the form (26.27). Also note that the projector
Pi : V → V which projects onto the one-dimensional space spanned by |i〉 can be written
as

Pi = |i〉〈i| . (26.29)

Indeed, for any vector |ψ〉 ∈ V we have Pi|ψ〉 = |i〉〈i|ψ〉 which is the standard form (22.22)
of an orthogonal projector onto a one-dimensional space.

Now suppose |i〉 is an ortho-normal basis of eigenvectors of h with eigenvalues λi. In this
case, the basis vector are often labelled by the eigenvalues, so they are written as |λi〉 (Of
course, this only makes sense if the eigenvalues are non-degenerate, or else an additional
label is required.) The eigenvalue equation then takes the suggestive form

h|λi〉 = λi|λi〉 , (26.30)

while Eq. (26.26) can be simplified to

h =
∑
i

λi|λi〉〈λi| =
∑
i

λiPλi , (26.31)

where Pλi = |λi〉〈λi| is the projector onto the eigenspace spanned by |λi〉.

Application 26.2 Quantum mechanics — a rough dictionary

The close connection between mathematics and physics is particularly pronounced when
a physical theory can be viewed as an instance or a special version of a mathematical
discipline. The relationship between linear algebra and quantum mechanics is a case in point.
Having learned linear algebra means having learned about many of the structural aspects of
quantum mechanics. However, mathematicians’ and physicists’ language famously differs,
so recognizing and using this relationship requires setting up a dictionary. A rough version
of such a dictionary is given in the following table.

Mathematical structure Interpretation in quantum mechanics

Inner product vector space V over C All states of a quantum system
A vector |ψ〉 ∈ V A specific quantum state of the system

A Hermitian map h ∈ End(V ) A physical observable, such as space, position,...
Eigenvalues λi of h Values that the observable can take

Ortho-normal eigenvectors |λi〉 States in which observable assume values λi
pi = |〈λi|ψ〉|2, where 〈ψ|ψ〉 = 1 Probability to measure λi in state |ψ〉
〈ψ|h|ψ〉, where 〈ψ|ψ〉 = 1 Expectation value for observable in state |ψ〉

|ψ〉 7→ Pi|ψ〉, where Pi = |λi〉〈λi| Collapse of state after measurement



Linear forms and dual space* 375

Let us discuss some of these correspondences in more detail. (For a proper introduction
into quantum mechanics, see, for example, Dirac 2019; Sakurai and Napolitano 2017; Mes-
siah 2014.) The mathematical area for quantum mechanics are vector spaces V over C
with a Hermitian scalar product 〈·|·〉. The specific realization and dimension of the vector
space V depends on the quantum system and its description. Some quantum systems are
described by a finite-dimensional vector space, others require infinite-dimensional vector
spaces, where methods of functional analysis, notably Hilbert spaces, become relevant (see,
for example, Rynne and Youngson 2008). Naturally, within our context, we will focus on
the finite-dimensional case, as illustrated by the spin system in Application 26.4.

Possible quantum states for a system are represented by vectors |ψ〉 ∈ V . In order to ex-
tract measurements from such a quantum state we require observables, such as position,
momentum, energy, angular momentum and so forth. In quantum mechanics, each of these
observables is represented by a specific Hermitian map h ∈ End(V ). A particularly impor-
tant such map is the Hamilton operator H ∈ End(V ) which corresponds to the energy of
the system. The Hamilton operator also determines the time evolution |ψ(t)〉 of a quantum
system via the time-dependent Schrödinger equation

H|ψ(t)〉 = i
d

dt
|ψ(t)〉 . (26.32)

We recall from Section 24 that Hermitian maps h can be diagonalized and that they have an
ortho-normal basis (|λi〉) of eigenvectors with real eigenvalues λi. In quantum mechanics,
the eigenvalues λi are the possible values which can be measured for the observable h —
and it is, therefore, important that they are real — while the corresponding eigenvectors
|λi〉 are the quantum states in which the observable assumes the values λi.

What is measured for the observable h in a more general quantum state |ψ〉 ∈ V , which is
not necessarily one of the eigenstates? In this case, the outcome is probabilistic in nature
and the value λi is measured with probability pi = |〈λi|ψ〉|2, provided 〈ψ|ψ〉 = 1. Note that
the pi sum up to one,∑

i

pi =
∑
i

|〈λi|ψ〉|2 =
∑
i

〈ψ|λi〉〈λi|ψ〉
Eq. (26.27)

= 〈ψ|ψ〉 = 1

in line with their interpretation as probabilities. If λi is observed with probability pi then
the expectation value 〈h〉ψ for h in the state |ψ〉 is given by

〈h〉ψ =
∑
i

piλi =
∑
i

λi〈ψ|λi〉〈λi|ψ〉
Eq. (26.31)

= 〈ψ|h|ψ〉 ,

as claimed in the above table.

The process of measurement in quantum mechanics is described in terms of the mathematics
of projectors. If the observable h is measured to be λi for a state |ψ〉 the state collapses from
|ψ〉 to Pi|ψ〉 = |λi〉〈λi|ψ〉 immediately after the measurement. This collapse of the state is
attributed to the interference of the measuring process with the system.

26.3.2 Index notation — again

It is instructive to work out the identification (26.21) of V and V ∗ relative to a basis
(ε1, . . . , εn) of V and its dual basis (ε1

∗, . . . , ε
n
∗ ). Suppose the linear form is described

by the matrix g with entries gij = (εi, εj), so that
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(v,w) = gij v̄
iwj (26.33)

for v =
∑
i v
iεi and w =

∑
j w

jεj (see Eq. (25.4)). The matrix g is also sometimes
referred to as a metric. For the action of the map s from Eq. (26.21) on the basis
vectors we find

s(εi)(εk) = (εi, εk) = ḡki = ḡjiε
j
∗(εk) ⇒ s(εj) = ḡijε

i
∗

Hence, relative to a basis and its dual, the map s is described by the matrix ḡ. It is
common to use the same symbol for the coordinates of a vector and the dual vector,
related under s. If we adopt this convention and write v = vjεj and s(v) = viε

i
∗ then

viε
i
∗ = s(v) = v̄js(εj) = ḡij v̄

jεi∗

shows that the coordinates vi of the dual vector are obtained from the coordinates vj

of the vector by

vi = ḡij v̄
j . (26.34)

If the linear form is non-degenerate then the matrix g is invertible and the entries of
g−1 are often denoted by gij . Eq. (26.34) can then be inverted as

vi = gij v̄j . (26.35)

Physicists refer to the Eqs. (26.34) and (26.35) by saying that we can ’lower and
raise indices’ with the metric gij and its inverse gij . With this notation, the linear
form (26.33) can be written as

(v,w) = gij v̄
iwj = v̄iw̄i = vjw

j . (26.36)

Application 26.3 (Four vectors in special relativity)

The structure we have discussed in Sections 26.3.1 and 26.3.2 is realized in special relativity,
although this is not usually made explicit in expositions of the subject.

To see the connection, we introduce the Minkowski product on R4 by

(v,w) := vT ηw (26.37)

just as we have done in Application 25.1. Here v,w ∈ R4 are four-vectors and η =
diag(−1, 1, 1, 1). Recall that the Minkowski product has signature (n+, n−) = (3, 1) and,
from Prop. 25.1, it is non-degenerate.

We would like to represent vectors in R4 by coordinate vectors relative to the basis
of standard unit vectors (eµ), where we use the index range µ, ν, . . . = 0, 1, 2, 3, with
e0 = (1, 0, 0, 0)T pointing in the time direction and ei, with i = 1, 2, 3 pointing in the
three spatial directions, as is common in relativity. We also introduce the dual basis (eν∗)
for (R4)∗ so that vectors v ∈ R4 and dual vectors w∗ ∈ (R4)∗ can be written as

v = vµeµ , w∗ = wνe
ν
∗ . (26.38)
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Hence, vectors are represented by coordinate vectors vµ with upper indices and dual vectors
by coordinate vectors wν with lower indices. By virtue of the duality relation, eµ∗ (eν) = δµν
the action of a dual vector an a vector can be written as

w∗(v) = wµv
µ . (26.39)

The metric gµν = (eµ, eν) = ηµν which describes the Minkowski product relative to our
basis is, in fact, the Minkowski metric ηµν . Hence, the isomorphism between R4 and (R4)∗

induced by the Minkowksi product is represented by lowering and raising indices with ηµν
and its inverse ηµν . This means for v = vµeµ ∈ V and v∗ = vµe

µ
∗ = s(v) ∈ V ∗ related by

the bijective map s in Eq. (26.21), we have

vµ = ηµνv
ν , vµ = ηµνvν . (26.40)

With this notation, the Minkowski product can be expressed as

(v,w) = ηµνv
µwν = vµwµ = vνw

µ . (26.41)

The Lorentz group L = O(3, 1) is by definition the group which leaves the Minkowski
product invariant (see Application 25.1). Eq. (26.41), therefore, indicates that Lorentz-
invariant expressions are those with all indices contracted. (For an introduction to special
relativity see, for example, Goldstein 2013.)

Application 26.4 (A spin system)

Many quantum mechanical systems are based on infinite dimensional vector spaces V , so
their mathematics is somewhat beyond our scope. In this application we discuss a quantum
system based on a single spin (such as the spin of an electron). The associated vector space
V over C is two-dimensional and has an ortho-normal basis (| ↑〉, | ↓〉) of two states which
are interpreted as ’spin up’ and ’spin down’. A general element |ψ〉 ∈ V has the form

|ψ〉 =
∑
s=↑,↓

αs|s〉 = α↑| ↑〉+ α↓| ↓〉 ,

where α↑, α↓ ∈ C. If we normalize the state, 〈ψ|ψ〉 = |α↑|2 + |α↓|2
!
= 1, the complex moduli

|α↑|2 and |α↓|2 of the coordinates should be interpreted as the probabilities of ’spin up’ and
’spin down’ when measuring the state |ψ〉 (see Application 26.2).

Recall that in quantum mechanics physical quantities are represented by Hermitian linear
maps V → V . A particularly important such map is the Hamilton operator H : V → V
which corresponds to the energy. Its matrix elements

Hss′ = 〈s|h|s′〉

must form a Hermitian 2 × 2 matrix H. In Exercise 13.12 we have seen that the two-
dimensional unit matrix and the three Pauli matrices form a basis of the vector space of
2× 2 Hermitian matrices. This means that the matrix H can be written as

H = a12 + b · σ , (26.42)

where σ = (σ1, σ2, σ3) is a formal vector which contains the Pauli matrices, a ∈ R and
b ∈ R3. In a physical context, the term a12 represents on overall energy contribution which
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affects all spin states equally (for example a kinetic energy of the electron) while the term
b · σ may describe the effect of a magnetic field proportional to b.

What are the eigenvalues and eigenvectors of H? A quick calculation of the characteristic
polynomial

χH(E) = det

(
a− E + b3 b1 + ib2
b1 − ib2 a− E − b3

)
= (a− E)2 − |b|2 !

= 0

shows that the two energy eigenvalues are E± = a±|b|. The corresponding eigenstates |E±〉
form an ortho-normal basis of V and satisfy the eigenvalue equation H|E±〉 = E±|E±〉. Let
us consider two simple special cases.

(1) First assume that b1 = b2 = 0, so that H = diag(a+ b3, a− b3) with energy eigenvalues
E± = a ± b3. The corresponding eigenvectors are the standard unit vector e1, e2, so the
energy eigenstates

|E+〉 = | ↑〉 , |E−〉 = | ↓〉 ,
are the spin up and spin down states. Hence, for the energy eigenstate |E+〉, the probability
of measuring spin up is |〈↑, E+〉|2 = 1 while the probability for measuring spin down is
|〈↓ |E+〉|2 = 0. The situation is of course reversed for the energy eigenstate |E−〉.

(2) As a second example consider b2 = b3 = 0 and b1 > 0, so that H, its eigenvalues and
eigenvectors are given by

H =

(
a b1
b1 a

)
, E± = a± b1 , v± =

1√
2

(1,±1) .

Now the energy eigenstates are

|E±〉 =
1√
2

(| ↑〉 ± | ↓〉 , (26.43)

so the probability of measuring a spin up state with energy E+ is |〈↑ |E+〉|2 = 1/2.

The evolution of a state |ψ(t)〉 with time t is governed by the time-dependent Schrödinger
equation

H|ψ(t)〉 = i
d

dt
|ψ(t)〉 .

The simplest way to solve this equation is by writing the state |ψ(t)〉 as a linear combination
|ψ(t)〉 = α+(t)|E+〉+α−(t)|E−〉 of the energy eigenstates, with time-dependent coordinates
α±(t). Inserting this into the Schrödinger equation, using that H|E±〉 = E±|E±〉, gives the
simple differential equations α̇± = −iE±α±. They are solved by α±(t) = β± exp(−iE±t),
where β± ∈ C are integration constants, so that the complete solution reads

|ψ(t)〉 = β+e
−iE+t|E+〉+ β−e

−iE−t|E−〉 . (26.44)

Consider the second case above where b2 = b3 = 0, b1 > 0, E± = a ± b1 and the energy
eigenstates are given by Eq. (26.43). The constants β± allow us to specify a state at some
initial time, say t = 0. Let us assume that the system is initially in a spin-up state, so
|ψ(0)〉 = | ↑〉 = (|E+〉 + |E−〉)/

√
2. This fixes the constants to β± = 1/

√
2. Inserting into

Eq. (26.44), the resulting time-dependent solution reads

|ψ(t)〉 =
e−iat√

2

(
e−ib1t|E+〉+ eib1t|E−〉

)
.
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Solutions such as these can be used to answer questions about the probability of measuring
certain quantities as a function of time. For example, if we want to know the probability
for the spin pointing downwards, we compute

〈↓ |ψ(t)〉 =
e−iat

2
(〈E+| − 〈E−|)

(
e−ib1t|E+〉+ eib1t|E−〉

)
= sin(b1t) ,

where | ↓〉 = (|E+〉 − |E−〉)/
√

2 and the ortho-normality of the states |E±〉 has been used.
Hence, the probability for measuring a downward spin at time t is |〈↓ |ψ(t)〉|2 = sin2(b1t).
By a similar calculation, the probability for an upward spin is |〈↑ |ψ(t)〉|2 = cos2(b1t)

Exercises

(†=challenging)

26.1 Consider R3 with basis (v1,v2,v3),
where

v1 = (1, 0, 2)T

v2 = (−3, 1, 0)T

v3 = (1,−1,−2)T .

(a) Find the dual basis of (R3)∗.
(b) Find the coordinates of x =
(x, y, z)T ∈ R3 relative to the basis
(v1,v2,v3).

26.2 Consider the vector space V of at most
quadratic polynomials over R on the
interval [−1, 1] and define the maps
ϕk : V → R by

ϕk(p) =

∫ 1

−1

dxxkp(x) ,

where k = 0, 1, 2.
(a) Show that the ϕk are linear func-
tionals on V .
(b) Show that (ϕ0, ϕ1, ϕ2) is a basis of
V ∗.
(c) Find the basis of V ∗ dual to the
monomial basis (1, x, x2).

26.3 Consider the vector space V =
Mn,n(F) of n× n matrices.
(a) Show that the trace tr : V → F is
a linear functional on V .
(b) Find the basis of V ∗ dual to the
basis (E(ij)) of standard unit matrices
on V .

(c) Write the trace as a linear combi-
nation of the dual basis vectors from
(b).

26.4 Prove Prop. 26.1 for a Hermitian
sesqui-linear form.

26.5 Let V be a vector space over R with
a non-degenerate symmetric bi-linear
form (·, ·). Show that there is a natu-
ral non-degenerate symmetric bi-linear
form (·, ·)∗ on V ∗. Relative to a ba-
sis of V and its dual basis, work out
the matrices which describe these lin-
ear forms.

26.6 Practice Dirac notation
A complex inner product vector space
V has two ortho-normal bases (|i〉) and
(|a〉), where i, a = 1, . . . , n. Use Dirac
notation to do the following:
(a) Find the coordinates of |ψ〉 ∈ V rel-
ative to the basis (|i〉).
(b) Show that the matrix U with en-
tries Uia = 〈i|a〉 is unitary.
(c) Find the relation between the coor-
dinates of |ψ〉 ∈ V relative to the bases
(|i〉) and (|a〉).
(d) Find the relation between the ma-
trix elements 〈i|f |j〉 and 〈a|f |b〉 of a
linear map f ∈ End(V ).

26.7 A three-state quantum system†

The task is to generalize some of the
discussion in Application 26.4 to a
three-dimensional vector space V with
ortho-normal basis |s〉, where s =
−1, 0, 1. The Hamilton operator H ∈
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End(V ) has matrix elements Hss′ =
〈s|H|s′〉 where

H =

 a 0 b
0 a 0
b 0 a

 ,

and a, b ∈ R.

(a) Find the eigenvalues and eigenvec-
tors of H.
(b) What is the time evolution of
|ψ(t)〉 ∈ V ?
(c) If |ψ(0)〉 = |s〉 what is the probabil-
ity of measuring |s′〉 at time t, where
s, s′ = −1, 0, 1?



27

Tensors*

In Section 8.1.5 we have seen that the Cartesian product V ×W ∼= V ⊕W of two vector
spaces V , W over the same field F can be made into a vector space by defining vector
addition and scalar multiplication component-wise, as in Eq. (8.8). However, there is
a different and more ambitious way to build a vector space based on the Cartesian
product V × W and this leads to the tensor product vector space V ⊗ W . Rather
than just considering all the pairs (v,w) ∈ V ×W as we did for the direct sum, the
tensor product V ⊗W also includes linear combinations of such pairs. But this raises a
problem. In the spirit of linearity, it seems desirable for (v, αw) to equal α(v,w) and for
(v,w1 +w2) to equal (v,w1)+(v,w2). However, the Cartesian product is not linear in
its arguments. The tensor product V ⊗W fixes this ’deficiency’ by identifying (v, αw)
with α(v,w) as well as (v,w1 + w2) with (v,w1) + (v,w2) in V ⊗W (with similar
identifications in the first argument). In fact, the tensor product can be defined as the
linear combinations of elements in V ×W subject to these identifications, although we
will follow a different path.

A much more practical approach is to start with bases (v1, . . . ,vn) and (w1, . . . ,wm)
of V and W and define the tensor product V ⊗ W as the set of all formal linear
combinations ∑

i,a

τ iavi ⊗wa ,

where τ ia ∈ F are scalars and the pairs (vi,wj) ∈ V ×W have been written as vi⊗wj .
This already points to the way tensors are frequently used in scientific applications.
Relative to a choice of bases, they can be identified with multi-index objects, such as
τ ia above.

From a mathematical viewpoint it is, of course, not a good idea to introduce a new
concept in a basis-dependent way, so we begin our discussion with a basis-independent
definition of V ⊗W , as the space of bi-linear maps V ∗ ×W ∗ → F. This construction
can be generalized to an arbitrary number of tensor products. In particular, this leads
to (p, q) tensors which are elements of the tensor space V ⊗p ⊗ (V ∗)⊗q and can be
represented by indexed objects with p upper and q lower indices. We also introduce
anti-symmetric (0, q) tensors, also referred to as alternating q forms, which form vector
spaces denoted as ΛqV ∗. Their direct sum, ΛV ∗ = Λ0V ∗ ⊕ · · · ⊕ ΛnV ∗, is called the
outer algebra of V ∗. As we will show, the dot, cross, and triple products on R3 have
their natural home in the outer algebra ΛR3.
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27.1 Tensor basics*

Summary 27.1 The tensor space V ⊗ W of two vector spaces V and W over F
consists of all bi-linear forms V ∗×W ∗ → F. Tensors can be built up from vectors by
using the tensor product. For bases (vi) and (wa) of V and W the tensors (vi⊗wa)
form a basis of V ⊗W , so that dimF(V ⊗W ) = dimF(V ) dimF(W ). Relative to a
choice of bases, tensors in V ⊗ W are represented by two-index objects. Under a
basis change these two-index objects follow a characteristic transformation law, with
a transformation matrix acting on each index.

27.1.1 Definition of tensors

For now our discussion involves two (finite-dimensional) vector spaces V and W over
the same field F, and their dual vector spaces V ∗ and W ∗. Before we start, it is useful
to fix a suggestive notation for these vector spaces, their bases and typical elements
as in Table 27.1. The bases are chosen to be dual to one another, so

Table 27.1 Bases, typical elements, and index notation for tensor products.

Vector space V V ∗ W W ∗

Basis (vi)i=1,...,n (vj∗)j=1,...,n (wa)a=1,...,m (wb
∗)b=1,...,m

Typical element v = vivi v∗ = vjv
j
∗ w = wawa w∗ = wbw

b
∗

Index version vi vj wa wb

vj∗(vi) = δji , wb
∗(wa) = δba , (27.1)

and the action of dual vectors on vectors (and vice versa, see Eq. (26.13)) can be
written in terms of index contractions as

v∗(v) = v(v∗) = vivi , w∗(w) = w(w∗) = wawa . (27.2)

Throughout this chapter we will use the Einstein summation convention, whereby
same upper and lower indices in the same term are summed over (’contracted’), in
order to simplify notation. The abstract definition of the tensor space V ⊗W is as
follows:

Definition 27.1 For two finite-dimensional vector spaces V and W over the same
field F the tensor space V ⊗W is the set of all bi-linear forms V ∗ ×W ∗ → F, so

V ⊗W = {τ : V ∗ ×W ∗ → F | τ is bi-linear} . (27.3)

In other words, a tensor τ ∈ V ⊗W takes as its arguments two functionals, v∗ ∈ V ∗
and w∗ ∈W ∗, such that τ(v∗,w∗) ∈ F is a scalar and linear in each of its arguments.
Addition and scalar multiplication of tensors are defined as usual by
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(τ1 + τ2)(v∗,w∗) = τ1(v∗,w∗) + τ2(v∗,w∗) , (ατ)(v∗,w∗) = ατ(v∗,w∗) , (27.4)

where τ, τ1, τ2 ∈ V ⊗W and α ∈ F. It is readily verified that τ1 + τ2 and ατ are again
bi-linear and are, hence, elements of V ⊗W as well. We conclude that V ⊗W is a
vector space with addition and scalar multiplication given by Eq. (27.4).

27.1.2 The tensor product

Elements in V ⊗W can be constructed by ’tensoring together’ elements of V and W .
To this end, we define the tensor product v ⊗w ∈ V ⊗W for two vectors v ∈ V and
w ∈W by

v ⊗w(v∗,w∗) := v(v∗)w(w∗) . (27.5)

Note that this definition makes sense since the elements of V and W can be viewed as
linear functionals on V ∗ and W ∗ (see Eq. (26.13)). The right-hand side of Eq. (27.5)
is linear in each of the arguments v∗ and w∗, so we conclude that v ⊗ w is indeed
bi-linear and, hence, an element of V ⊗W . The tensor product itself is also linear in
both arguments, as follows easily from the definition (27.5). This implies the following
rules for calculating with the tensor product.

(α1v1 + α2v2)⊗w = α1v1 ⊗w + α2v2 ⊗w
v ⊗ (β1w1 + β2w2) = β1v ⊗w1 + β2v ⊗w2

(27.6)

Tensors in V ⊗W which can be written as a tensor product v ⊗w are called decom-
posable. Not all tensor in V ⊗W can be written in this way (see Exercise 27.1), but
all tensors can be obtained from linear combinations of tensor products, as shown in
the following theorem.

Theorem 27.1 Let V and W be two vector spaces over the same field F with bases
(vi)i=1,...,n and (wa)a=1,...,m, respectively. Then the nm vectors (vi⊗wa) form a basis
of V ⊗W . In particular,

dimF(V ⊗W ) = dimF(V ) dimF(W ) . (27.7)

Proof To show linear independence we let the equation τ iavi ⊗wa = 0 act on the
dual basis vectors (vj∗,w

b
∗) which, due to the duality relations (27.1), immediately leads

to τ jb = 0. Since this holds for all j = 1, . . . , n and b = 1, . . . ,m linear independence
follows.

To show that our prospective basis spans V ⊗W we start with an arbitrary tensor
τ ∈ V ⊗W and introduce its ’components’ τ ia := τ(vi∗,w

a
∗). Define the tensor τ̃ =

τ iavi ⊗ wa. It follows that τ(vj∗,w
b
∗) = τ jb = τ̃(vj∗,w

b
∗) for all j = 1, . . . , n and all

a = 1, . . . ,m and, hence, that τ = τ̃ is in the span of (vi ⊗wa). 2

27.1.3 The universal property

We have started motivating the tensor product as an ’improved’ version of the Carte-
sian product, consistent with linearity. Now that we have defined the tensor product,
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what precisely is its relation to the Cartesian product? First, we note that for two
vector spaces V , W over F we have a map

ρ : V ×W → V ⊗W , ρ((v,w)) := v ⊗w , (27.8)

which is bi-linear due to Eq. (27.6). The universal property of the tensor product
asserts that every bi-linear map φ : V ×W → U from the Cartesian product V ×W to
another vector space U over F can be ’lifted’ to a unique linear map ψ : V ⊗W → U ,
in the sense that φ = ψ ◦ρ. This can also be expressed by saying that there is a unique
map ψ for which the diagram

V ×W

V ⊗W

Uρ

φ

ψ

commutes. The term ’commute’ in this context means both possible paths from V ×W
to U in the above diagram lead to the same result. We formulate and proof this in the
following theorem.

Theorem 27.2 (Universal property) For vector spaces V,W,U over F and a bi-linear
map φ : V ×W → U , there exists a unique linear map ψ : V ⊗W → U such that
φ = ψ ◦ ρ, where ρ is defined in Eq. (27.8).

Proof We choose bases (v1, . . . ,vn) and (w1, . . . ,wm) on V and W . Then the given
map φ : V ×W → U is characterized by the images uia := φ((vi,wa)). From Theo-
rem 12.1, there exists a linear map ψ : V ⊗W → U with ψ(vi⊗wa) = uia and this map
obviously satisfies φ = ψ ◦ρ. To show uniqueness, we start with a map ψ : V ⊗W → U
which satisfies the desired property φ = ψ ◦ ρ. It follows that

uia = φ((vi,wa)) = ψ(ρ((vi,wa))) = ψ(vi ⊗wa)

and since (vi⊗wa) is a basis of V ⊗W (see Theorem 27.1) this determines ψ uniquely.
2

27.1.4 Indices

We can repeat the above discussion for the tensor product V ⊗W with the replacements
V → V ∗ or W → W ∗ (keeping in mind that V ∼= V ∗∗ and W ∼= W ∗∗) and in this
way arrive at the tensors in Table 27.2. The last row of the table shows the two index

Table 27.2 Tensors from vector spaces V , W and their duals.

Tensor space V ⊗W V ⊗W ∗ V ∗ ⊗W V ∗ ⊗W ∗
Basis (vi,wa) (vi,w

a
∗) (vi∗,wa) (vi∗,w

a
∗)

Typical element τ iavi ⊗wa τ iavi ⊗wa
∗ τi

avi∗ ⊗wa τiav
i
∗ ⊗wa

∗
Index version τ ia τ ia τi

a τia
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objects which represent the different types of tensors, where a covariant (=upper)
index refers to the vector spaces V and W and a contravariant (=lower) index refers
to their duals V ∗ and W ∗.

The action of a tensor on its arguments can be written in terms of index contrac-
tions. For example for a tensor τ ∈ V ⊗W we have, using linearity, the definition (27.5)
of the tensor product and the duality relations (27.1), that

τ(v∗,w∗) = τ iavjwbvi(v
j
∗)wa(wb

∗) = τ iavjwbδ
j
i δ
b
a = τ iaviwa . (27.9)

Similar results hold for the other types of tensors in Table 27.2.

27.1.5 Basis transformation of tensors

Suppose we have two choices of bases on V and W and their duals, as in Table 27.3.
The matrices P and Q in the last row parametrize the change of basis. As usual, we

Table 27.3 Choices of bases for tensor transformations.

V V ∗ W W ∗

First basis (vi) (vi∗) (wa) (wa
∗)

Second basis (ṽi) (ṽi∗) (w̃a) (w̃a
∗)

Relation ṽi = Pi
jvj ṽi∗ = P i∗jv

j
∗ w̃a = Qa

bwb w̃a
∗ = Qa∗bw

b
∗

require that the bases for V and V ∗ (and for W and W ∗) are dual, for either set
of bases. For this to remain true as we pass from the first to the second basis, the
matrices P and P∗ (and Q and Q∗) need to be related. The short calculation

δij = ṽi∗(ṽj) = P i∗kPj
lvk∗(vl) = P i∗kPj

lδkl = (P∗P
T )ij ,

shows that P∗ = (PT )−1 and, similarly, Q∗ = (QT )−1. What we would like to know is
the relation between the index versions of the tensors

τ̃ia = τ(ṽi, w̃a) , τia = τ(vi,wa)

which follows from

τ̃ia = τ(ṽi, w̃a) = τ(Pi
jvj , Qa

bwb) = Pi
jQa

bτjb .

Carrying out similar calculations for the other tensors in Table 27.2 leads to the
transformation laws

τ̃ia = Pi
jQa

bτjb , τ̃ a
i = Pi

jQa∗bτj
b , τ̃ ia = P i∗jQa

bτ jb , τ̃ ia = P i∗jQ
a
∗bτ

jb .
(27.10)

Note that these rules are quite systematic. A covariant index transforms with P∗ (or
Q∗) while a contravariant index transforms with P (or Q).
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27.1.6 Induced maps on tensors

Suppose we have linear maps f ∈ End(V ) and g ∈ End(W ). These maps lead to an
induced tensor map f ⊗ g ∈ End(V ⊗W ) which is defined by

(f ⊗ g)(v ⊗w) := f(v)⊗ g(w) . (27.11)

Note it is sufficient to make this definition on decomposable tensors v⊗w — linearity
implies it extends uniquely to all tensors. The map tensor product is compatible with
composition of maps,

(f̃ ⊗ g̃) ◦ (f ⊗ g) = (f̃ ◦ f)⊗ (g̃ ◦ g) , (27.12)

for f, f̃ ∈ End(V ) and g, g̃ ∈ End(W ), as follows immediately from Eq. (27.11).

Suppose that the map f is represented by an n× n matrix A, relative to a basis (vi)
of V and that g is represented by an m × m matrix B, relative to a basis (wa) of
W . It is then natural to ask what the representing matrix for the tensor map f ⊗ g
relative to the basis (vi ⊗wa) of V ⊗W is. First we note, from Theorem 27.1, that
dimF(V ⊗W ) = nm, so the matrix we are looking for must be of size (nm) × (nm).
As usual, a representing matrix is found by acting on the basis vectors and this leads
to

f(vi) = Ajivj
f(wa) = Bbawb

}
⇒ (f ⊗ g)(vi ⊗wa) = f(vi)⊗ g(wa) = AjiB

b
avi ⊗wb .

This means the desired representing matrix has as its entries all possible products
AjiB

b
a of entries of A and B. Note that this gives exactly the correct number, (nm)2,

of entries. How exactly these entries are arranged into a matrix depends on choosing
an ordering for the tensor basis (vi⊗wa). Suppose we agree on the following ordering.

(v1 ⊗w1, . . . ,v1 ⊗wm,v2 ⊗w1, . . . ,v2 ⊗wm, . . .) .

Relative to this ordering the representing matrix for f ⊗ g is given by the Kronecker
product A×B of matrices, defined by

A×B :=


A11B A12B · · · A1nB
A21B A22B · · · A2nB

...
...

...
...

An1B An2B · · · AnnB

 . (27.13)

In other words, the Kronecker product A×B is obtained by replacing every entry Aij
of A with the m×m matrix AijB. It is linear in each argument,

(αA+ α̃Ã)×B = αA×B + α̃Ã×B
A× (βB + β̃B̃) = βA×B + β̃A× B̃ , (27.14)

a property which follows easily from its definition, Eq. (27.13). Eq. (27.12) also implies
that the Kronecker product is compatible with matrix multiplication, that is,

(Ã× B̃)(A×B) = (ÃA)× (B̃B) . (27.15)
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Problem 27.1 Tensor maps and Kronecker product

The linear maps f, g ∈ End(R2) are defined by f(v) = (n · v)n and g(v) = v×, where
n ∈ R2. Find the matrices A and B which represent these maps relative to the standard
unit vector basis (e1, e2) of R2 and the matrix C which represents f ⊗ g relative to the basis
(e1 ⊗ e1, e1 ⊗ e2, e2 ⊗ e1, e2 ⊗ e2) of R2 ⊗ R2. Check that C = A×B.

Solution: Since (f(ei))j = (n · ei)nj = ninj , g(e1) = −e2 and g(e2) = e1 we have

A =

(
n2

1 n1n
2

n1n2 n2
2

)
, B =

(
0 1
−1 0

)
.

From Eq. (27.11), the action of f ⊗ g on the tensor basis is

(f ⊗ g)(e1 ⊗ e1) = f(e1)⊗ g(e1) = −n1niei ⊗ e2

(f ⊗ g)(e1 ⊗ e2) = f(e1)⊗ g(e2) = n1niei ⊗ e1

(f ⊗ g)(e2 ⊗ e1) = f(e2)⊗ g(e1) = −n2niei ⊗ e2

(f ⊗ g)(e2 ⊗ e2) = f(e2)⊗ g(e2) = n2niei ⊗ e1

 ⇒ C =


0 n2

1 0 n1n
2

−n2
1 0 −n1n2 0

0 n1n2 0 n2
2

−n1n2 0 −n2
2 0


Forming the Kronecker product by replacing the entries Aij of A with AijB does indeed lead
to the matrix C = A×B.

27.2 Further tensor properties*

Summary 27.2 The symmetric and anti-symmetric tensors in V ⊗ V form vector
subspaces S2V and Λ2V , respectively, and V ⊗V = S2V ⊕Λ2V . Symmetric and anti-
symmetric tensors can be constructed from vectors by using the symmetrized tensor
product and the wedge product. Linear maps V → W can be identified with tensors
in W ⊗ V ∗.

27.2.1 Symmetric and anti-symmetric tensors

For the tensor product V ⊗ V of V with itself we can consider symmetric and anti-
symmetric tensors, which are defined as follows.

Definition 27.2 A tensor τ ∈ V ⊗V is called symmetric if τ(v∗, ṽ∗) = τ(ṽ∗,v∗) and
anti-symmetric if τ(v∗, ṽ∗) = −τ(ṽ∗,v∗), for all v∗, ṽ∗ ∈ V ∗.

From Eq. (27.4) it is clear that the sum and scalar multiple of symmetric (anti-
symmetric) tensors are again symmetric (anti-symmetric). Therefore, symmetric and
anti-symmetric tensor form vector subspaces of V ⊗ V which are also denoted by

S2V = {τ ∈ V ⊗ V | τ symmetric}
Λ2V = {τ ∈ V ⊗ V | τ anti-symmetric} . (27.16)

To construct symmetric and anti-symmetric tensors we can define the following refine-
ments of the tensor product

v ⊗S ṽ := v ⊗ ṽ + ṽ ⊗ v , v ∧ ṽ := v ⊗ ṽ − ṽ ⊗ v , (27.17)

where v, ṽ ∈ V . Clearly, the symmetrized tensor product v⊗S ṽ produces a symmet-
ric tensor, while the wedge product v ∧ ṽ produces an anti-symmetric tensor. Both
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products are linear in each argument, just as the tensor product itself, as follows
immediately from the rules (27.6). In addition, the definitions in Eq. (27.17) imply
that

v ⊗S ṽ = ṽ ⊗S v , v ∧ ṽ = −ṽ ∧ v . (27.18)

Theorem 27.1 has the following analogue for symmetric and anti-symmetric tensors.

Theorem 27.3 For a vector space V with basis (vi)i=1,...,n, the n(n + 1)/2 vectors
(vi ⊗S vj)i≤j form a basis of S2V , while the n(n − 1)/2 vectors (vi ∧ vj)i<j form a
basis of Λ2V . In particular,

dimF(S2V ) =
1

2
n(n+ 1) , dimF(Λ2V ) =

1

2
n(n− 1) , (27.19)

and V ⊗ V = S2V ⊕ Λ2V .

Proof We start with the anti-symmetric case. Letting the equation
∑
i<j τ

ijvi∧vj =

0 act on (vk∗ ,v
l
∗) for k < l gives τkl = 0 and this shows linear independence of

(vi ∧ vj)i<j .

Consider an anti-symmetric tensor τ , define τ ij = τ(vi∗,v
j
∗) and the anti-symmetric

tensor τ̃ =
∑
i<j τ

ijvi ∧ vj . It follows that τ(vi∗,v
j
∗) = τ ij = τ̃(vi∗,v

j
∗) and, hence,

τ = τ̃ . This shows that the vectors (vi ∧ vj)i<j span Λ2V .
The proof of the symmetric case works analogously and the dimension formu-

lae (27.19) follow immediately by counting the number of basis vectors.
If the tensor τ is symmetric and anti-symmetric at the same time we have τ(v∗, ṽ∗) =

τ(ṽ∗,v∗) = −τ(v∗, ṽ∗) for all v,v∗ ∈ V ∗ so that τ = 0. This shows that S2V ∩Λ2V =
{0} and, hence, that the sum S2V + Λ2V is direct (see Section 8.1.4). From Eq. (8.7)
we find for the dimension of this direct sum

dimF(S2V ⊕ Λ2V ) = dimF(S2V ) + dimF(Λ2V ) =
n(n+ 1)

2
+
n(n− 1)

2

= n2 = dimF(V ⊗ V ) .

This equality of dimensions together with Corollary 7.1 then shows that S2V ⊕Λ2V =
V ⊗ V . 2

From the previous theorem, symmetric and anti-symmetric tensors can be written as

τ+ =
1

2
τ ij+ vi ⊗S vj , τ− =

1

2
τ ij− vi ∧ vj , (27.20)

where τ ij+ is symmetric, so τ ij+ = τ ji+ and τ ij− is anti-symmetric, τ ij− = −τ ji− . Fur-
thermore, the decomposition V ⊗ V = S2V ⊕ Λ2V tells us that every tensor τ =
τ ijvi ⊗ vj ∈ V ⊗ V can be written as a unique sum, τ = τ+ + τ− of a symmet-
ric and an anti-symmetric tensor. At the level of index notation, this translated into
τ ij = τ ij+ + τ ij− . This is in direct analogy to our earlier result that every square matrix
can be written as a unique sum of a symmetric and an anti-symmetric matrix (see
Example 13.1).
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27.2.2 Linear maps as tensors

Many of the objects in linear algebra we have encountered can be phrased in the
language of tensors and linear maps are a case in point. Consider the space Hom(V,W )
of linear maps V →W . This space has the same dimension, dimF(V ) dimF(W ), as the
tensor space W ⊗ V ∗, so we know these two spaces must be isomorphic. However, the
relationship is even closer since there is a canonical isomorphism ı : Hom(V,W ) →
W ⊗ V ∗ defined by

ı(f)(w∗,v) := f(v)(w∗) , (27.21)

where v ∈ V and w∗ ∈ W ∗. Note that the right-hand side of this definition makes
sense: f(v) is a vector in W which can act on a dual vector w∗ ∈W .

Theorem 27.4 The map defined in Eq. (27.21) is an isomorphism so we have a
canonical isomorphism Hom(V,W ) ∼= W ⊗ V ∗.

Proof Since Hom(V,W ) and W ⊗ V ∗ have the same dimension all we have to do is
show that Ker(ı) = {0} (see Corollary 14.2). But a map f ∈ Ker(ı) satisfies ı(f) = 0
and, hence ı(f)(w∗,v) = f(v)(w∗) = 0 for all v ∈ V and w∗ ∈W ∗. This implies that
f is the zero map, f = 0. 2

How does the map ı looks like more explicitly? Suppose f ∈ Hom(V,W ) is described
by a matrix A, relative to our choice of bases, so that f(vi) = Abiwb. Then we can
find the components of the tensor ı(f) by letting it act on (wa

∗ ,vi) which gives

ı(f)(wa
∗ ,vi)

(27.21)
= f(vi)(w

a
∗) = Abiwb(w

a
∗) = Abiδ

a
b = Aai .

So, in summary, we have

f with f(vi) = Aaiwa
ı−→ ı(f) = Aaiwa ⊗ vi∗ , (27.22)

so, perhaps not surprisingly, both the map f and the associated tensor ı(f) are de-
termined by the same matrix Aai. In particular, consider the identity map idV on V
(setting W = V in the previous discussion). Its associated tensor is

idV
ı−→ ı(idV ) = δjivj ⊗ vi∗ = vi ⊗ vi∗ , (27.23)

with index version given by the Kronecker delta δji . This is the sense in which we can
think about the Kronecker delta as (the index version of) a tensor in V ⊗ V ∗.

Problem 27.2 (Linear maps and decomposable tensors)

For a non-zero linear map f : V →W , show that the corresponding tensor ı(f) ∈W ⊗ V ∗ is
decomposable iff rk(f) = 1. In this case, write down a simple representing matrix for f .

Solution: We start by assuming that rk(f) = 1, so that Im(f) = Span(w) for a non-zero
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vector w ∈ W . Then every image of f is a multiple of w and we can write f(v) = ϕ(v)w,
where ϕ ∈ V ∗. From Eq. (27.21) we have

ı(f)(w∗,v) = f(v)(w∗) = w(w∗)ϕ(v) = w ⊗ ϕ(v,w∗) ,

and this shows that ı(f) = w⊗ϕ is decomposable. Conversely, if ı(f) is decomposable it can
be written as ı(f) = w ⊗ ϕ and we have

f(v)(w∗) = ı(f)(w∗,v) = ϕ(v)w(w∗) .

Dropping the argument w∗ on either side gives f(v) = ϕ(v)w. This shows that Im(f) =
Span(w) and, hence, rk(f) = 1.

Since maps f ∈ Hom(V,W ) with rk(f) = 1 are quite special we conclude that tensors in
W ⊗ V ∗ are ’typically’ not decomposable.

To find the representing matrix we introduce bases (v1, . . . ,vn) on V and (w1, . . . ,wm) on
W , define αi = ϕ(vi) and expand w = βawa. For the representing matrix A of f we find

Aaiwa = f(vi) = ϕ(vi)w = αiβ
awa

so that Aai = αiβ
a. In matrix-vector notation this can be written as

A = αβT ,

where α = (α1, . . . , αn)T and β = (β1, . . . , βm)T .

27.2.3 Bi-linear forms and tensors

Consider a symmetric bi-linear form (·, ·) on V . Comparing Definitions 22.2 and 27.1
shows that this bi-linear form is the same as a symmetric tensor in V ∗ ⊗ V ∗. More
precisely, if we introduce the matrix gij = (vi,vj) which described the linear form (see
Eq. (25.4)), we can write

(·, ·) =
1

2
gijv

i
∗ ⊗S vj∗ , (27.24)

so the index version of this tensor is simply gij . We have seen in Section 26.3.2 that a
non-degenerate linear form on V leads to a canonical injective map V → V ∗. Relative
to a basis choice, this isomorphism is described by gij and its inverse gij via lowering
and raising indices. We can now extend this operation to tensors. For example, we can
convert a tensor τ ij in V ⊗ V into a tensor τ ij in V ⊗ V ∗ via

τ ij = gjkτ
ik , τ ij = gjkτ ik . (27.25)

27.3 Multi-linearity*

Summary 27.3 The tensor product can be generalized to an arbitrary number of
vector spaces. Of particular importance are (p, q) tensors which are elements of V ⊗p⊗
(V ∗)q. Relative to a basis they are described by objects with p covariant (upper) indices
and q contravariant (lower) indices. Alternating forms are (0, q) tensors and, due to
anti-symmetry, they are non-trivial for q = 0, 1, . . . ,dimF(V ) only. The alternating



Multi-linearity* 391

forms over a vector space V , together with the wedge product, form the outer algebra,
ΛV ∗, of V ∗. The outer algebra of R3 is the natural framework for the cross, dot, and
triple products.

So far we have discussed tensor products of two vector spaces which lead to what
is also referred to as rank two tensors. But the discussion is easily generalized to an
arbitrary number, k, of vector spaces. This leads to multi-linear algebra, which deals
with objects linear in k arguments. These are also called rank k tensors and in index
notation, they are represented by objects with k indices.

27.3.1 Higher-rank tensors

Consider k vector spaces Vp, where p = 1, . . . , k, over the same field F and also in-

troduce bases (vp,i) for Vp and dual bases (vp,i∗ ) for V ∗p . The tensor space of rank k
tensors is defined as

V1 ⊗ · · · ⊗ Vk := {τ : V ∗1 × · · · × V ∗k → F | τ is linear in each argument} . (27.26)

Vector addition and scalar multiplication on this space is defined by the obvious gen-
eralisation of Eq. (27.4) to multiple arguments. As before, we can introduce the tensor
product

v1 ⊗ · · · ⊗ vk(v1
∗, . . . ,v

k
∗) :=

k∏
p=1

vp(v
p
∗) , (27.27)

where vp ∈ Vp and vp∗ ∈ V ∗p for p = 1, . . . , k. Theorem 27.1 then generalizes to the
following statement.

Theorem 27.5 Let Vp, where p = 1, . . . , k, be vector spaces over the same field F with
bases (vp,i). Then the tensors (v1,i1 ⊗ · · · ⊗ vk,ik) form a basis of V1 ⊗ · · · ⊗ Vk. In
particular,

dimF(V1 ⊗ · · · ⊗ Vk) =

k∏
p=1

dimF(Vp) . (27.28)

Proof The proof is a straightforward generalization of the proof of Theorem 27.1.
2

In particular, this means the tensors τ ∈ V1 ⊗ · · · ⊗ Vk can be written as

τ = τ i1···ikv1,i1 ⊗ · · · ⊗ vk,ik , (27.29)

and correspond to objects τ i1···ik with k indices.

27.3.2 (p, q) tensors

From the k vector spaces V1, . . . , Vk we can choose p spaces to be equal to V and
q = k− p spaces to be equal to V ∗, for a given vector space V . In other words, we can
consider the tensor spaces
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V ⊗ · · · ⊗ V︸ ︷︷ ︸
p

⊗V ∗ ⊗ · · · ⊗ V ∗︸ ︷︷ ︸
q

=: V ⊗p ⊗ (V ∗)⊗q . (27.30)

The tensors τ in this space are also referred to as (p, q) tensors and they can be written
as

τ = τ i1···ip j1···jqvi1 ⊗ · · · ⊗ vip ⊗ vj1∗ ⊗ · · · ⊗ v
jq
∗ , (27.31)

so they are represented, in index form, by objects τ i1···ip j1···jq with p upper and q
lower indices. The (p, q) tensors for low values of p and q correspond to objects we
have already encountered. For example, (0, 0) tensors carry no indices and are, hence,
scalars in F. Further, (1, 0) tensors carry one covariant index and are vectors in V while
(0, 1) tensors carry one contravariant index and are dual vectors in V ∗. The discussion
in Section 27.2.2 shows that End(V ) ∼= V ⊗V ∗, so (1, 1) tensors can be identified with
linear maps V → V .

The transformation laws for tensors under the basis change in Table 27.3 are easily
generalized to (p, q) tensors. From Eq. (27.18) every covariant index transforms with
P and every covariant index with P∗. This leads to

τ̃
i1···ip

j1···jq = P i1∗ k1
· · ·P ip∗ kp Pj1

l1 · · ·Pjq
lq τk1···kp l1···lq . (27.32)

If we have a non-degenerate bi-linear form (·, ·), represented by a metric gij , available
on V then we can lower and raise indices of (p, q) tensors, in analogy with Eq. (27.25),
thereby converting to a different (p, q) type.

For (p, 0) or (0, q) tensors we can also consider totally symmetric and totally anti-
symmetric tensors, which generalizes the discussion of anti-symmetric tensors from
Section 27.2.1. A particularly important class of tensors are completely anti-symmetric
(0, q) tensors, also called alternating q forms which we discuss next.

27.3.3 Alternating q forms

An alternating q form is a (0, q) tensor ω ∈ (V ∗)⊗q which is completely anti-symmetric,
that is

ω(. . . ,v, . . . , ṽ, . . .) = −ω(. . . , ṽ, . . . ,v, . . .) , (27.33)

for all v, ṽ ∈ V and the dots stand for arguments which remain unchanged. The above
anti-symmetry condition is preserved under addition and scalar multiplication of (0, q)
tensors, so the alternating q forms constitute a vector space, denoted by

ΛqV ∗ := {ω ∈ (V ∗)⊗q |ω completely anti-symmetric} , (27.34)

for q = 1, 2, . . .. It is also customary and convenient to define Λ0V ∗ = F. Note that
the alternating one forms Λ1V ∗ = V ∗ are simply the linear functionals on V so we
can think of alternating q forms as generalizing the notion of linear functionals.

We can produce alternating q forms from linear functionals in V ∗ by defining a gen-
eralization of the wedge product in Eq. (27.17). For functionals w1

∗, . . . ,w
q
∗ ∈ V ∗ and

vectors u1, . . . ,uq ∈ V we can define the wedge product w1
∗ ∧ · · · ∧wq

∗ by
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w1
∗ ∧ · · · ∧wq

∗(u1, . . . ,uq) := det

w1
∗(u1) · · · w1

∗(uq)
...

. . .
...

wq
∗(u1) · · · wq

∗(uq)

 . (27.35)

That this does indeed define an alternating q form follows immediately from the prop-
erties of the determinant. More specifically, linearity in each argument ui is a direct
consequence of linearity of the determinant in its arguments (the columns of the ma-
trix). Complete anti-symmetry follows from the anti-symmetry of the determinant
under exchange of its arguments.

The wedge product is linear in each argument and totally anti-symmetric, so the
rules for calculation are

· · · ∧ (αv∗ + βṽ∗) ∧ · · · = α(· · · ∧ v∗ ∧ · · · ) + β(· · · ∧ ṽ∗ ∧ · · · )
· · · ∧ v∗ ∧ · · · ∧ ṽ∗ ∧ · · · = −(· · · ∧ ṽ∗ ∧ · · · ∧ v∗ ∧ · · · )
· · · ∧ v∗ ∧ · · · ∧ v∗ ∧ · · · = 0

(27.36)

where v∗, ṽ∗ ∈ V ∗, α, β ∈ F and the dots denote arguments which remain unchanged.
The first two of these rules follow since the determinant is also linear and anti-
symmetric in its rows (remembering that the determinant does not change under
transposition) and the third rule is a direct consequence of the second.

Just as for the case of anti-symmetric rank two tensors (Theorem 27.3) we can use the
wedge product to construct a basis for the space of alternating q forms.

Theorem 27.6 For a vector space V with basis (vi)i=1,...,n and dual basis (vi∗)i=1,...,n,

the tensors (vi1∗ ∧ · · · ∧ v
iq
∗ ), where 1 ≤ i1 < i2 < · · · < iq ≤ n form a basis of the

alternating q forms ΛqV ∗. In particular,

dimF(ΛqV ∗) =

(
n
q

)
. (27.37)

Proof The proof that the stated tensors form a basis is a direct generalization of the
proof of Theorem 27.3. The number of tensors (vi1∗ ∧ · · · ∧ v

iq
∗ ) subject to the index

restriction 1 ≤ i1 < i2 < · · · < iq ≤ n is given by the binomial in Eq. (27.37) (the
number of ways to choose q different indices from n) and this proofs the dimension
formula. 2

The theorem tells us that every alternating q form ω ∈ ΛqV ∗ can be written as

ω =
∑

i1<···<iq

ωi1···iqv
i1
∗ ∧ · · · ∧ v

iq
∗ =

1

q!

∑
i1,...,iq

ωi1···iqv
i1
∗ ∧ · · · ∧ v

iq
∗ (27.38)

where we have converted the first, restricted sum into an unrestricted sum using the
anti-symmetry of the wedge product. Hence, in index form, an alternating q form
is represented by an object ωi1···iq with q totally anti-symmetric indices. The above
theorem also tells us that there are no non-trivial alternating q forms for q > dimF(V ).
In this case, every wedge product in Eq. (27.38) contains at least two same basis
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vectors, which means, from the last Eq. (27.36), that it vanishes. The highest non-
trivial forms for an n-dimensional space V are the alternating n forms in ΛnV ∗, a
one-dimensional space spanned by v1

∗ ∧ · · · ∧ vn∗ .

The wedge product can be extended to alternating forms of arbitrary degree. To do
so we introduce a p form ν ∈ ΛpV ∗ as

ν =
1

p!
νj1···jpvj1∗ ∧ · · · ∧ v

jp
∗

and define the generalization ∧ : ΛqV ∗ × ΛpV ∗ → Λq+pV ∗ of the wedge product by

ω ∧ ν :=
1

q! p!
ωi1···iqνj1···jpvi1∗ ∧ · · · ∧ viq ∧ vj1∗ ∧ · · · ∧ v

jp
∗ . (27.39)

By using the anti-symmetry, Eq. (27.36), repeatedly is is easy to show that

ω ∧ ν = (−1)qpν ∧ ω (27.40)

for a q form ω and a p form ν. For a vector space V with dimF(V ) = n, the direct sum

ΛV ∗ = Λ0V ∗ ⊕ Λ1V ∗ ⊕ · · · ⊕ ΛnV ∗ (27.41)

together with the wedge product is also called the outer algebra of V ∗. Since the wedge
product is linear in each argument, this is, in fact, an algebra in the sense of Def. 6.4.
The dimension of the outer algebra is

dimF(ΛV ∗)
(27.37)

=

n∑
q=0

(
n
k

)
= 2n . (27.42)

27.3.4 The determinant as an alternating form

Consider the coordinate vector space Fn with standard unit vector basis ei and dual
basis ei∗. For n vectors ui = ujiej , with ej∗(ui) = uji , we have

e1
∗ ∧ · · · ∧ en∗ (u1, . . . ,un)

(27.35)
= det

 e1
∗(u1) · · · e1

∗(un)
...

. . .
...

en∗ (u1) · · · en∗ (un)

 = det

 u1
1 · · · u1

n
...

. . .
...

un1 · · · unn


= det(u1, . . . ,un)

.

Hence we learn that the determinant is, in fact, an alternating n form

det = e1
∗ ∧ · · · ∧ en∗ =

1

n!
εi1···inei1∗ ∧ · · · ∧ ein∗ (27.43)

whose index version is the Levi-Civita tensor εi1···in .
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27.3.5 The outer algebra of R3

As an example, we would like to develop the outer algebra of the vector space R3 in
detail. We introduce the standard unit vectors basis (ei) as well as the following two
and three forms.

ν1 = e2 ∧ e3 , ν2 = e3 ∧ e1 , ν3 = e1 ∧ e2 , Ω = e1 ∧ e2 ∧ e3

Some of the properties of the outer algebra

ΛR3 = Λ0R3 ⊕ Λ1R3 ⊕ Λ2R3 ⊕ Λ3R3

are summarized in the table below.

Forms Space Basis Dimension Typical element

0 forms Λ0R3 = R (1) 1 a, a ∈ R
1 forms Λ1R3 = R3 (e1, e2, e3) 3 viei, v

i ∈ R
2 forms Λ2R3 (ν1, ν2, ν3) 3 uiνi, u

i ∈ R
3 forms Λ3R3 (Ω) 1 bΩ, b ∈ R

Note that three forms are the highest non-trivial forms and that the dimensions of the
four parts add up to 8 = 23, in accordance with Eq. (27.42). The table makes it clear
that zero and three forms can be interpreted as scalars while one and two forms can
be identified with vectors in R3.

Let us work out the wedge product explicitly, starting with two one forms v = viei
and w = wjej . A quick calculation, based on the rules in Eq. (27.36) gives

v ∧w = (v1e1 + v2e2 + v3e3) ∧ (w1e1 + w2e2 + w3e3)

= (v2w3 − v3w2)ν1 + (v3w1 − v1w3)ν2 + (v1w2 − v2w1)ν3 = (v ×w)iνi

This shows that the wedge product of one forms on R3 is, in fact, the cross product
which we have introduced, in a somewhat ad-hoc fashion, in Chapter 10. The outer
algebra is the proper mathematical context in which to discuss the cross product.
Within this framework it is also evident why the cross product can only be defined in
the three-dimensional case. The wedge product of two one forms gives two forms and
these can only be re-interpreted as vectors if the dimension of Λ2Rn equals n. From
the dimension formula (27.37) this is only the case for n = 3.

What about the wedge product of three one forms v = viei, u = ujej and w = wkek?

v ∧ u ∧w = viujwkei ∧ ej ∧ ek = εijkv
iujwk e1 ∧ e2 ∧ e3 = det(v,u,w) Ω

So this is the three-dimensional determinant or, equivalently, the triple product.

The final non-trivial case is the wedge product of a one form v = viei and a two form
u = ujνj .

v ∧ u = (v1e1 + v2e2 + v3e3) ∧ (w1ν1 + w2ν2 + w3ν3) = (v · u) Ω

So this corresponds to the dot product on R3.
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In summary, we have seen that the products between vectors introduced in Part III,
that is, the cross, triple and dot products, have a natural home in the outer algebra
and are really all special versions of the wedge product.

Problem 27.3 (The outer algebra of R2)

Explicitly work out the outer algebra of R2 by introducing a suitable basis and compute the
wedge product.

Solution: The outer algebra is ΛR2 = Λ0R2 ⊕ Λ1R2 ⊕ Λ2R2. With the standard unit vector
basis (ei)i=1,2 and Ω = e1 ∧ e2, we can write the three pieces of the outer algebra as

Λ0R2 = Span(1) , Λ1R2 = Span(e1, e2) , Λ2R2 = Span(Ω) .

The total dimension is dimR(ΛR2) = 1+2+1 = 4, in accordance with Eq. (27.42). The wedge
product of two one forms v = viei and w = wjej gives

v ∧w = (v1e1 + v2e2) ∧ (w1e1 + w2e2) = (v1w2 − v2w1)ω = det(v,w)ω .

So the wedge product of two one forms in R2 gives the two-dimensional determinant.

Problem 27.4 (The outer algebra of Rn)

Show that the wedge products between elements of Rn and Λn−1Rn leads to the dot product.
Use this observation to define a generalization of the cross product which produces a vector
orthogonal, with respect to the dot product, to given vectors v1, . . . ,vn−1 ∈ Rn.

Solution: The key is that Rn and Λn−1Rn have the same dimension, n, so they can be
identified. To do this, we use the standard unit vector basis (e1, . . . , en) on Rn and on Λn−1Rn
we introduce the basis (ν1, . . . , νn) with

νk = (−1)k+1e1 ∧ · · · ∧ êk ∧ · · · ∧ en ,

where the hat indicates that the vector underneath should be omitted. We also introduce
Ω = e1∧· · ·∧en which spans ΛnRn. Then we can identify n−1 forms w = wkνk with vectors
w = wkek and we find that the wedge product of v = viei and w,

v ∧ w = viwkei ∧ νk = (−1)k+1viwkei ∧ e1 ∧ · · · ∧ êk ∧ · · · ∧ en = δikv
iwkΩ = (v ·w)Ω ,

is indeed proportional to the dot product.
For the second part, define w = wiνi := v1 ∧ · · · ∧ vn−1. But it is clear that (vk ·w)Ω =

vk ∧w = 0 vanishes from from anti-symmetry of the wedge product (see Eq. (27.36)). Hence,
w · vk = 0 for all k = 1, . . . , n− 1, as desired.

Application 27.1 (Quantum bits and computation)

As explained in Application 26.1, the set of possible states of a quantum system forms
a vector space V over C. Time-evolution of states |ψ(t)〉 ∈ V is governed by the time-
dependent Schrödinger equation

H|ψ(t)〉 = i
d

dt
|ψ(t)〉 , (27.44)
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where the Hermitian linear map H : V → V , called the Hamilton operator, is the observable
which corresponds to energy. One way to solve the time-dependent Schrödinger equation is
in terms of the energy eigenstates |Ei〉, as we have done in Eq. (26.44).

For another approach, start with any ortho-normal basis (|i〉), where i = 1, . . . , n, on V .
Then introduce the matrix H with entries Hij = 〈i|H|j〉 which describes the Hamilton
operator relative to this basis and write states |ψ(t)〉 as a linear combination of this basis.

|ψ(t)〉 =
∑
i

αi(t)|i〉 , αi(t) = 〈i|ψ(t)〉 , α(t) = (α1(t), α2(t), . . .)T . (27.45)

By acting with a dual basis vector 〈i| and inserting the identity idV =
∑
j |j〉〈j| (see

Eq. (26.27)) on the left-hand side, the Schrödinger equation can be converted into the
vector/matrix equation:

∑
j

〈i|H|j〉|j〈ψ(t)〉 = i
d

dt
〈i|ψ(t)〉 ⇔ Hα = i

dα

dt
. (27.46)

We have already solved differential equations of this type in Application 24.3. Setting A =
−iH in Eq. (24.36), the solution can be written down in terms of the matrix exponential.

α(t) = U(t)α0 , U(t) = e−iHt . (27.47)

Note that A = −iH is anti-Hermitian (since H is Hermitian) so that the above matrix U(t)
is indeed unitary, as suggested by the notation (see Application 24.3). The conclusion is that
time-evolution in Quantum Mechanics is realized by the action of unitary linear maps which
depend on the Hamilton operator and, hence, on the physical properties of the quantum
system.

A classical computation proceeds by performing a sequence of logical operations on some
information, typically given by a number of bits. For a quantum computation, the infor-
mation consists of an initial quantum state |ψ0〉 which is processed by successive physical
manipulations, each of which is described by a unitary linear map Ua, as in Eq. (27.47).
Schematically, a quantum computation can, therefore, be represented as

|ψ0〉 =
∑
i

α0,i|i〉 → αfinal = U1U2 · · ·Udα0 → |ψfinal〉 =
∑
i

αfinal,i|i〉 . (27.48)

Each step in the calculation corresponds to a multiplication with a unitary matrix Ua ∈
U(n), also called a quantum logic gate. Let us discuss in more detail how this works for the
simple spin system from Application 26.4.

Recall in this case the vector space V is two-dimensional and its ortho-normal basis of up
and down spin states is denoted by (| ↓〉, | ↑〉). The information which can be stored in
such a two-dimensional quantum state is also called a quantum bit or qubit for short. For
the general Hamilton operator, Eq. (26.42), of this system the matrix exponential can be
worked out explicitly.

U(t) = e−iHt
(26.42)

= e−iate−ib·σt = e−iat
(

cos(|b|t)12 − i sin(|b|t)b · σ|b|

)
. (27.49)

In the last step we have used the result from Exercise 24.3 with θ = −|b|t and n = b/|b|.
We also know from Exercise 24.3 and Eq. (23.34) that all U(2) matrices can be obtained
from Eq. (27.49), for suitable values of a ∈ R, b ∈ R3 and t ∈ R.



398 Tensors*

Common choices for quantum logic gates for a single qubit are the identity, the not gate
and the Hadamard gate, with the following unitary maps, actions on the basis states and
diagrams.

unitary matrix 12 UN :=

(
0 1
1 0

)
UHd := 1√

2

(
1 1
1 −1

)

action
idV | ↓〉 = | ↓〉
idV | ↑〉 = | ↑〉

N| ↓〉 = | ↑〉
N| ↑〉 = | ↓〉

Hd| ↓〉 = 1√
2
(| ↓〉+ | ↑〉)

Hd| ↑〉 = 1√
2
(| ↓〉 − | ↑〉)

diagram H

A collection of p qbits is described by states in the tensor space V ⊗p of (p, 0) tensors, which
has dimension 2p. Let us explicitly discuss the case of two qubits, so the space V ⊗V of (2, 0)
tensors which, from Theorem 27.1, has a basis (↓↓〉, | ↓↑〉, | ↑↓〉, | ↑↑〉). Here, the notation
| ↑↑〉 := | ↑〉 ⊗ | ↑〉 is a convenient shorthand for the tensor product. Simple logic gates on
V ⊗ V can be obtained by tensoring maps on V , following Section 27.1. For example, the
map N ⊗ idV acts as a not on the first qubit and as an identity on the second one, so

N ⊗ idV | ↑ s〉 = | ↓ s〉 , N ⊗ idV | ↓ s〉 = | ↑ s〉 ,

where s =↑, ↓. Of course, there are unitary maps on V ⊗ V which cannot be obtained as a
tensor maps in this way, for example the conditional not map CN : V ⊗V → V ⊗V defined
by

UCN =

 1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 ,

CN| ↓↓〉 = | ↓↓〉
CN| ↓↑〉 = | ↓↑〉
CN| ↑↑〉 = | ↑↓〉
CN| ↑↓〉 = | ↑↑〉

.

The CN map inverts the second spin provided the first one points upwards and it has no
effect otherwise. Consider a quantum circuit CN◦ (Hd⊗ idV ) which can also be represented
by the diagram

H

Here the vertical line indicates that the not gate on the second qubit is controlled by the
first qubit. For example, the action of this circuit on an initial state | ↑↑〉 is

CN ◦ (Hd⊗ idV )| ↑↑〉 =
1√
2

CN(| ↓↑〉 − | ↑↑〉) =
1√
2

(| ↓↑〉 − | ↑↓〉)

Evidently, the circuit has converted a decomposable tensor product | ↑↑〉 = | ↑〉 ⊗ | ↑〉 into
a linear combination of decomposable tensors. Such linear combinations are also referred
to as entangled states. Useful application of quantum computing rely on more complicated
circuits which are beyond our present scope. (An introduction to quantum computing can,
for example, be found in Jones and Jaksch 2012.)
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Exercises

(†=challenging, ††=difficult, wide-ranging)

27.1 Let V be a two-dimensional vector
space over R.
(a) Show that not all tensors in V ⊗ V
can be written in the form v⊗w, where
v,w ∈ V .
(b) Show that the set of tensors in
V ⊗ V which can be written as v ⊗w
can be viewed as a quadratic hyper-
surface in R4 with signature (2, 2).

27.2 (a) For two inner product vector spaces
V and W show that there is a natural
scalar product that can be defined on
V ⊗W .
(b) If (vi) and (wa) are ortho-normal
bases of V and W show that (vi⊗wa)
is an ortho-normal basis of V ⊗W .
(c) Relative to he bases in part (b), how
are the matrix elements of f ∈ End(V )
and g ∈ End(W ) related to the matrix
elements of f ⊗ g.

27.3 Tensors and eigenvalues
Consider linear maps f ∈ End(V ),
g ∈ End(W ) and the tensor map
f ⊗ g ∈ End(V ⊗W ).
(a) How are basis transformations for
matrices representing f and g related
to basis transformations of matrices
which represent f ⊗ g?
(b) Show, if λ is an eigenvalue of f with
eigenvector v and µ an eigenvalue of
g with eigenvector w, then λµ is an
eigenvalue of f ⊗ g with eigenvector
v ⊗w.
(c) Show, if f and g can be diagonal-
ized then so can f ⊗ g.

27.4 A linear map A ∈ End(R2) is given by

A =

(
0 1
1 0

)
.

(a) Find its eigenvalues and eigenvec-
tors and diagonalize A.
(b) Do the same for A⊗A ∈ End(R2⊗
R2).
(c) Generalize the result from part (b)

to an arbitrary number of tensor fac-
tors, so to A ⊗ · · · ⊗ A ∈ End(R2 ⊗
· · · ⊗ R2).

27.5 Pauli matrices and Kronecker product†

Define the anti-commutator of two
square matrices A, B by {A,B} :=
AB +BA.
(a) Show that the Pauli matrices σi
satisfy {σi, σj} = 212δij .
(b) Define the 4×4 matrices γm, where
m = 1, 2, 3, 4, by

γ1 = σ1 × σ3 γ2 = σ2 × σ3

γ3 = 12 × σ1 γ4 = 12 × σ2 .

Show that {γm, γn} = 214δmn.
(c) For the matrix γ5 := γ1γ2γ3γ4 show
that γ2

5 = 14 and that tr(γ5) = 2.
(d) Show that the maps P± ∈ End(C4)
defined by P± = 1

2
(14±γ5) are projec-

tors onto two-dimensional subspaces.
(e) Based on the results so far, define
8× 8 matrices Γm, where m = 1, . . . , 6
with {Γm,Γn} = 218δmn.

27.6 Symmetric tensors††

(a) Consider symmetric tensors in
S2V ∗, for a vector space V over R, rep-
resented, relative to a basis, by sym-
metric two-index objects τij . We say
two such objects, τij and τ̃ij , are conju-
gate if there exists a basis transforma-
tion (27.10) which relates them. Find
the conjugacy classes and a simple rep-
resentative tensor in each class.
(b) For dimR(V ) = 2, repeat the dis-
cussion from part (a) for symmetric
tensors in S3V ∗, represented by com-
pletely symmetric three-index objects
τijk.

27.7 Outer algebra of R4†

Following Section 27.3.5, work out the
outer algebra of R4.

27.8 Quantum circuits
(a) Following the set-up in Applica-
tion 27.1, find the action of the quan-
tum circuit CN ◦ (Hd⊗ idV ) on all ba-
sis vectors (↓↓〉, | ↓↑〉, | ↑↓〉, | ↑↑〉) of the
two qubit system.
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(b) Using the basic gates from Appli-
cation 27.1, build a quantum circuit C
which acts as

C| ↓↓〉 = 1√
2
(| ↓↑〉+ | ↑↑〉)

C| ↓↑〉 = 1√
2
(| ↓↓〉+ | ↑↓〉)

C| ↑↓〉 = 1√
2
(| ↓↓〉 − | ↑↓〉)

C| ↑↑〉 = 1√
2
(| ↓↑〉 − | ↑↑〉) .
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Absolute value, 42
Addition

coordinate vectors, 54
linear maps, 139
matrix, 64
natural numbers, 13
numbers, 3
real numbers, 4

Adjoint linear map, 303
determinant, 304
differential operator, 305
for coordinate vector spaces, 304
image, 305
kernel, 305
properties of, 303
relative to a basis, 304

Affine k-plane, 87, 216
intersection, 217, 218, 220

Affine space, 119
Algebra, 62, 106, 141, 154, 394

definition of, 62
fundamental theorem of, 49

Algorithm
data compression, 332
diagonalizing Hermitian maps, 320
diagonalizing matrices, 259
eigenvalues and eigenvectors, 248
Gaussian elimination, 194
Gram–Schmidt procedure, 294
homomorphism normal form, 328
internet search, 7
Jordan normal form, 281
linear equations, 212
matrix inverse, 201
matrix rank, 197
nilpotent map, 276
singular value form, 331

Alternating forms, 392
determinant, 394
dimension, 393

Angle, 98, 104, 290
Angular momentum, 118
Angular velocity, 312
Anti-commutator, 342
Anti-Hermitian

endomorphism, 306
matrices, 306
matrix, 160

Anti-symmetric
matrix, 157, 165

tensor, 387
Area

parallelogram, 110
Associative

and, or, 24
function composition, 20
group, 31

Augmented matrix, 212
Automorphism

field, 46, 50
vector space, 142

Axioms
algebra, 62
field, 40
group, 30
vector space, 60

Basis, 5
change of, 186, 187
coordinates, 76, 82, 115
definition of, 75
dual, 365
existence, 79
left-handed, 232
matrices, 82
negatively oriented, 232
orthonormal, 101, 104
polynomials, 81
positively oriented, 232
right-handed, 232
standard unit vectors, 76
tensor space, 383

Bi-linear, 95, 288, 343, 382
Bi-linear form

as tensor, 390
symmetric, 343

Bijective
function, 20
maps as group, 32

Block matrix, 164, 165
Block-diagonal, 150, 164
Bra vector, 361, 373

Cardinality, 15, 22
Cartesian form

k-plane, 216
Line, 125
line, 120
plane, 123, 133

Cartesian product, 15
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Cauchy–Schwarz inequality, 96, 289
Cayley–Hamilton theorem, 254, 271, 283
Characteristic polynomial, 255

definition of, 247
properties, 247

Circle, 357
Circuit, 215, 220
CKM matrix, 334
Class function, 189, 229, 251, 280

diagonalization, 259
eigenvalue, 259

Classical mechanics, 8, 111, 263, 315
Co-domain, 18
Co-factor matrix, 233
Coding theory, 176, 178
Column operations, 193, 202
Column rank, 168, 195
Column vectors, 54
Commutative

and, or, 24
Commutator, 337

linear maps, 141, 145
matrices, 154

Commuting, 3
Complex numbers, 44

addition, 44
argument, 47
complex conjugate, 45
definition of, 44
imaginary part, 45
inverse, 45
length, 45
multiplication, 45
polar decomposition, 47
real part, 45

Conjugacy class, 189, 229
Coordinate map, 143

polynomials, 143
Coordinate vectors, 54, 63, 76

addition, 54
component, 54
definition of, 54
dimension, 78
length, 95
linear map, 146
rules for calculation, 55
scalar multiplication, 54
transpostion, 54

Cramer’s rule, 240, 241
Cross product, 242

as linear map, 183, 190
definition of, 106
formula, 107
geometrical interpretation, 110
relations, 109

Cryptography, 155, 165
Cyclic group, 32

De Morgan’s laws, 25
Degenerate, 344

Determinant, 280, 359
adjoint, 304
as alternating form, 394
change of basis, 229
class function, 229
computation, 226, 241
Cramer’s rule, 240
formula for, 114, 224
formulae, 242
general, 224
general definition of, 222
Laplace expansion, 234, 235
linear map, 229, 242
matrix inverse, 228, 235, 241
matrix multiplication, 227
minor, 239
orientation, 230
properties, 113, 227
row operations, 237
three-dimensional, 112
trace relations, 256
transposition, 227
two-dimensional, 225
upper triangular matrix, 226
Vandermonde, 238

Diagonal matrix, 150
Diagonalization, 257, 270

2× 2 matrix, 260
3× 3matrix, 260
4× 4 matrix, 261
algorithm for Hermitian map, 320
Hermitian map, 319
algorithm, 259
algorithm for homomorphism, 328
class function, 259
criteria for, 257
differential operator, 262, 270
Hermitian differential operator, 322
Hermitian matrix, 321, 341
homomorphism, 328
linear map, 270
map restriction, 268
matrix, 270
matrix function, 336
minimal polynomial criterion, 281
normal endomorphism, 324
orthogonal matrix, 325, 326
projector, 266
quadratic hyper-surface, 356
simultaneous, 269, 270
symmetric matrix, 320, 341
unitary map, 324

Differential equation, 67, 82, 220
linear independence, 74
linear system, 205
matrix exponential, 340
Newton’s equation, 263

Differential operator, 10, 143, 144, 205
adjoint, 305
basis transformation, 188
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diagonalization, 262, 270
eigenvalues, 256
Hermitian, 307, 317, 341
image, 169, 178
Jordan normal form, 282
kernel, 168, 169, 178
nilpotnent, 277
rank, 169, 178
representing matrix, 182

Dimension
coordinate vectors, 78
definition of, 78
matrix vector space, 78
polynomial space, 78
tensor space, 383
vector space intersection, 85
vector space sum, 84

Dirac delta functional, 364
Direct sum, 86, 90, 178

vector spaces, 87
basis, 86

Distributive law, 40
and, or, 24
generalized, 41
sets, 14, 25

Domain, 18
Dot product, 104, 148

definition of, 93
geometrical interpretation, 98
properties of, 94

Double dual, 367
Dual basis, 365, 382

for Fn, 366
for R3, 366
in R3, 379

Dual linear map, 370
image, 371
in R3, 371
kernel, 371
rank of, 372

Dual vector space, 363
dual of, 367
linear form, 372
orthogonal space, 368

Eigenspace, 246
generalized, 272

Eigenvalue, 270
class function, 259
computation, 248, 249
definition, 246
degeneracy, 246, 251
differential operator, 256
Hermitian map, 318
in terms of trace, 280
linear map, 256
matrix, 256
tensor map, 399

Eigenvector
computation, 248, 249

definition, 246
Hermitian map, 318

Einstein summation convention, 93, 367, 382
Electromagnetism, 8
Elementary matrices, 199
Ellipse, 357

half-axes, 357
Ellipsoid, 356, 358
Endomorphism

anti-Hermitian, 306
Hermitian, 306
nilpotent, 274
normal, 323
polynomial of, 252
powers of, 273
self-adjoint, 306
unitary, 307
vector space, 140, 149

Energy
kinetic, 111
potential, 1, 2, 10

Entangled state, 398
Equations

linear, 3, 4, 6–8, 10, 205
linear homogeneous, 206
linear, inhomogeneous, 206
quadratic, 355

Equivalence class, 16
Equivalence relation, 16
Euklidean norm

definition of, 95
properties of, 97

Exchange Lemma, 77

Field, 40
automorphism, 46, 50
definition of, 40
distribute law, 40
finite, 50, 176
finite field, 43, 50, 58
homomorphism, 46
order, 41
rational numbers, 42
real numbers, 43

finite field, 43
Force, 1, 2, 10

centrifugal, 315
Coriolis, 315
Euler, 315
linear, 263

Four vector, 376
Fourier series, 293
Free index, 101
Function

activation, 131
argument, 18
bijective, 20
Boolean, 24
co-domain, 18
composition of, 20
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continuous, 66
definition of, 18
differentiable, 10, 66
domain, 18
equality, 18
graph, 10
image, 19
injective, 20
inverse, 22
linear, 2, 4, 5, 10
linear independence, 81
of matrix, 335
one-to-one, 20
onto, 20
pre-image, 19
restriction, 19, 22
surjective, 20
value, 18
vector space, 65, 68

Gaussian elimination, 194
General linear group, 142, 155, 309
Generalized unitary group, 360
Geometric series, 342
Gram–Schmidt procedure, 293, 299, 300

algorithm, 294
for R3, 295
for polynomials, 295

Graph, 10, 152
links, 7
sites, 7

Group, 30
Abelian, 31
alternating group, 37
associativity, 31
bijective maps, 32
cyclic, 32
definition of, 30
direct product, 31
finite, 31, 38
general linear, 142, 155, 309
generalized orthogonal, 351
generalized unitary, 351, 360
homomorphism, 33
infinite, 31
integers, 32
inverse, 31
irreducible, 317
isomorphic, 34
isomorphism, 34
left inverse, 31
left neutral, 31
Lorentz, 352, 353, 377
neutral element, 31
normal sub-group, 39
orthogonal, 310
permutations, 32, 35
right inverse, 31
right neutral, 31
special linear, 242

special orthogonal, 310
special unitary, 309, 313
sub-group, 33
unitary, 50, 309, 313

Group homomorphism, 33
image, 33
kernel, 33

Group isomorphism, 34

Hadamard gate, 398
Hamilton operator, 375, 397
Hamming code, 176
Hermitian

differential operator, 307, 317, 341
endomorphism, 306
linear map, 306
matrices, 306
matrix, 160
sesqui-linear form, 343

Hermitian conjugate, 160, 305
properties of, 161

Hermitian linear map
eigenvectors, 318
diagonalization, 319
eigenvalues, 318

Hermitian matrix
diagonalization, 341

Hermitian sesqui-linear form, 343
Hilbert space, 375
Homomorphism

diagonalization, 328
field, 46
normal form, 328, 329
vector space, 61, 140, 149

Hooke’s law, 1, 2
Hyper-surface

quadratic, 355
Hyperbola, 357
Hyperboloid, 356, 358
Hyperplane, 80

Idempotent, 265
Identity map, 19, 138
Identity matrix, 150, 153, 155
If and only if, 26
Iff, 26
Image

differential operator, 169, 178
function, 19
linear map, 166
matrix, 167, 178
of adjoint, 305

Index
contraction, 367, 385
contravariant, 367, 385
covariant, 367, 385
lower, 367
lowering, 376
raising, 376
upper, 367
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Index notation, 54, 367, 375, 384
Injective

function, 20
linear map, 169

Instability, 264, 271
Integers, 17, 32
Internet search, 7, 197
Intersection

k-planes, 217, 218, 220
line and plane, 129
lines, 121
plane and line, 133
three planes, 130
two lines, 133
two planes, 128

Intersection,
sets, 14

Interval, 42
Inverse

determinant, 228
linear map, 140, 174
matrix, 154, 155, 175, 202
of matrix, 200

Isomorphic, 141
Isomorphism

linear maps and matrices, 190
theorem, 176
vector space, 141, 174

Jacobi identity, 141, 154
Jordan block, 280
Jordan normal form, 279, 342

algorithm, 281
decomposition theorem, 278
differential operator, 282
matrix, 281, 283

k-plane, 80
Kernel

differential operator, 168, 169, 178
group homomorphism, 34
linear map, 166
matrix, 178
non-trivial, 167
of adjoint, 305
trivial, 167

Ket vector, 361, 373
Kirchhoff’s law, 215
Kronecker delta, 101, 150, 389
Kronecker product, 386, 387, 399

Lagrange identity, 109
Laplace expansion, 234, 235
Legendre polyonomials, 296
Levi-Civita tensor, 242, 394

in arbitrary dimensions, 225
properties, 108
three dimensional, 108
two dimensional, 106

Light cone, 349

Line, 80, 133
Cartesian form, 120, 125
in two dimensions, 119
intersection, 121
parametric form, 120, 125

Linear combination, 69
Linear dependence, 72
Linear equations, 220, 241

Cramer’s rule, 240
examples, 209
homogeneous, 206
inhomogeneous, 207
row operations, 211
solution algorithm, 212
solution of, 8
system of, 8

Linear form, 344
as tensor, 390
associated quadratic form, 344
basis change, 345
classification, 347
dual vector space, 372
non-degenerate, 344
signature, 348, 350

Linear functional, 363
definition of, 363
Dirac delta, 364
from integral, 364, 379
from trace, 379
on Fn, 364

Linear independence, 71, 81, 82
definition of, 72
differential equation, 74
function, 81
polynomial, 74

Linear map, 10, 137
between coordinate vectors, 146
addition, 139
adjoint, 303
as tensor, 389
commutator, 141, 145
composition, 140
definition of, 62
determinant, 229, 242
diagonalization, 257
dual, 370
eigenvalues, 256
existence, 138
function vector space, 68
Hermitian, 306
idempotent, 265
image, 166
injective, 169
inverse, 140, 174
kernel, 166
rank, 167
reflection, 184
representing matrix, 180, 181
scalar multiplication, 139
self-adjoint, 306
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surjective, 169
unitary, 307

Linear process, 243, 262, 263
Linear system, 203

differential equation, 205
homogeneous, 203
inhomogeneous, 203
solution space, 203, 204

Linearity, 1–3
List, 13
Logic, 24

and, 24
complement, 25
contradiction, 26
de Morgan’s laws, 25
implication, 26
or, 24
tautology, 26

Logistic sigmoid, 131
Lorentz group, 352, 353, 377

ortho-chronous, 354

Magic square, 80, 198
Map

definition of, 18
identity, 19
linear, 2, 3, 5

Mass matrix, 334
Matrix

2× 2, 6
addition, 64, 67, 68
adjacency, 165
adjecency, 152
anti-Hermitian, 160, 306
anti-symmetric, 157, 158, 165
augmented, 212
basis transformation, 186, 187
block-diagonal, 150
co-factor, 233
column rank, 168, 195
column vector, 147
commutator, 154, 165
complex, 68
conjugation, 188, 229
diagonal, 150
diagonal entries, 150
diagonalization, 257
elementary, 199
entry, 64
geometric series, 342
Hermitian, 160, 306
Hermitian conjugate, 160
identity, 150
image, 167, 178
inverse, 154, 155, 175, 200, 202, 241
inverse from determinant, 235
inverse, computation, 201
Jordan normal form, 281, 283
kernel, 178
Kronecker product, 386, 387

minor, 239
multiplication, 151
multiplication rules, 153
multiplication with vector, 6
multiplied with vector, 147–149
negative definite, 345
nilpotent, 274, 283
off-diagonal entries, 150
orthogonal, 309, 316
positive definite, 345
rank, 167, 178, 202, 241
reflection, 310
representing differential operator, 182
representing linear map, 180, 181
rotation, 310
row, 6
row rank, 168, 195
row vector, 147
scalar multiplication, 64, 67, 68
square, 150
symmetric, 157, 158
trace, 251
transpose, 157
unitary, 313
vector multiplication, 6
vector space, 63, 68

Matrix element, 297, 298
Matrix exponential, 336, 342

differential equation, 340
rotations, 339
special unitary matrices, 339

Matrix function, 335
definition of, 335
diagonalization, 336
exponential, 336

Matrix monomial, 338
Matrix sine, 338
Metric, 376
Minimal distance, 126, 133

line from point, 127, 133
plane from point, 127

Minimal polynomial, 253–255, 280
Minkowski metric, 349, 353, 377
Minkowski product, 349, 353, 376
Minor, 239
Moment of inertia tensor, 112
Monomial, 48
Morphism, 5

vector space, 5, 61
Multiplication

matrices, 151
matrix-vector, 147–149, 164
natural numbers, 13
numbers, 3
rational numbers, 42
real numbers, 4

Multiplicity, 48

Negative definite, 345, 359
Network, 7
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neural, 131, 162, 165
Neutral element

addition, 5
function composition, 20
group, 31
multiplication, 5

Newton’s equation, 263, 271, 315
Nilpotent differential operator, 277
Nilpotent endomorphism, 274

algorithm, 276
normal form, 275, 276
order of, 274

Nilpotent matrix, 274, 283
Non-degenerate, 290, 344
Norm, 287

associated to scalar product, 288, 289
Numbers

integers, 17
natural numbers, 13
prime, 28
real, 3, 4

Ohm’s law, 215
Order on field, 41
Orientation, 230, 242

preserving, 231
reversing, 231

Orthogonal, 99, 290
complement, 298, 300
group, 310
matrix, 309, 316
matrix in R2, 310
projector, 299
space, 368

Orthogonal group
generalized, 351

Orthogonal matrix
diagonalization, 325, 326

Orthogonal space
dimension formula, 369

Orthonormal basis, 104
matrix element, 297, 298
coordinates, 296
definition of, 292
definition on Rn, 101
existence, 293
Fourier series, 293
Gram–Schmidt procedure, 293
in two dimensions, 292
on C3, 300
properties, 296

Outer algebra, 394
of R2, 396
of R3, 395
of R4, 399

Parallelepiped, 116
Parallelogram, 110
Parallelogram identity, 301
Parametric form

k-plane, 216
Line, 125
line, 120
plane, 123, 133

Parity, 353
Pauli matrices, 162, 300, 339, 342, 377, 399
Perceptron, 131, 133, 165
Permutations, 32, 35, 223

even, 37
matrices, 38
odd, 37
sign, 223
sign of, 36
transposition, 36, 223

Perpendicular, 99
Plane, 80, 133

Cartesian form, 123, 133
in three dimensions, 123
parametric form, 123, 133

Polar coordinates, 104
Polar decomposition

complex numbers, 47
matrix, 346

Polarization identity, 289
Polynomial, 48

basis, 81
characteristic, 247, 255
coordinate map, 143
definition of, 48
degree, 48
division, 48
endomorphism, 252
fully factorizing, 48
Gram–Schmidt procedure, 295
irreducible, 48
Legendre, 296
linear independence, 74
minimal, 253–255, 280
monic, 48
multiplicity of zero, 48, 251
reducible, 48
vector space, 66, 68, 145, 295
zero of, 48

Positive definite, 345, 359
criterion for, 359

Predicate, 24
Projector, 100, 103, 104, 298

complementary, 267
diagonalization, 266
general definition, 265
orthogonal, 299
properties of, 265
three-dimensional, 267

Proof
by contradiction, 27
by induction, 28
de Morgan’s laws, 25
direct, 27
indirect, 26, 27
patterns of, 27
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Quadratic curve, 357, 360
Quadratic form, 344, 355

hyper-surface, 355
signature, 348, 350
Sylvester’s theorem, 350

Quadratic hyper-surface, 355
diagonalization, 356

Quadratic plane, 358, 360
Quadratic surface, 358
Quantifier, 26
Quantum computation, 396

entangled state, 398
Hadamard gate, 398
quantum circuit, 398, 399
quantum gate, 398
qubit, 397

Quantum mechanics, 183, 307, 341, 361, 374,
396

Dirac notation, 373, 379
Hamilton operator, 377
probability, 378
spin system, 377
three state system, 379

Quarks, 333
Qubit, 397
Quotient

equivalence relation, 16
vector space, 175

Quotient vector space, 89

Rank
bound on, 173, 196
computation, 197, 198
differential operator, 169, 178
generic, 196
linear map, 167
matrix, 167, 178, 202, 241
maximal, 173
minor, 239, 240
nullity theorem, 171, 176
theorem, 171, 176

Rapidity, 352
Rational numbers, 42
Real numbers, 43
Reflection, 184, 310
Relation, 16
Rigid body, 111, 118
Rotating system, 312, 315, 317
Rotation, 310

angle of, 327
axis of, 327
three-dimensional, 311, 317, 326, 327, 341
two-dimensional, 310

Row operations, 193
determinant, 237
linear equations, 211

Row rank, 168, 195
Row reduction, 194, 241
Row vectors, 54

Scalar multiplication
coordinate vectors, 54
linear maps, 139
matrix, 64

Scalar product
definition of, 288
for matrices, 291, 300
function vector space, 300
function vector spaces, 291
Hermitian, 288
in R2, 300
matrix element, 297, 298
orthonormal basis, 297
real, 288
standard on Cn, 290
standard on Rn, 290

Schrödinger equation, 375
Self-adjoint

endomorphism, 306
linear map, 306

Semi-linear, 288
Semi-magic square, 82, 202
Sequence, 178
Sesqui-linear, 288
Sesqui-linear form, 343
Set

cardinality, 15, 22
Cartesian product, 15
complement, 14, 26
conditional notation, 14
definition of, 13
disjoint sets, 14
distributive laws, 14, 25
element of, 13
empty set, 13
equality, 14
equivalence class, 16
equivalence relation, 16
integers, 17
intersection, 14
member of, 13
membership, 14
natural numbers, 13
power set, 15
quotient, 16
real numbers, 2
relation on, 16
subset, 14
union, 14

Shear, 110, 116
Signature, 348, 350, 356
Simultaneous diagonalization, 269, 270
Singular value, 330

normal form, 330
Singular value decomposition, 330, 341

algorithm, 331
data compression, 332
quark masses, 333

Singular vectors, 330
Solution
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differential equation, 67, 74, 78, 205, 340
linear equation, 4
linear equations, 206
linear system, 203, 204
quadratic equation, 355
unique, 4, 7

Span, 70
row vectors, 193

Special linear group, 242
Special orthogonal group, 310
Special relativity, 9, 352, 353, 361, 376
Special unitary group, 309, 313
Special unitary matrix, 316
Spring, 1
Spring constant, 1
Square matrix, 150
Stability, 264, 271
Standard unit matrices, 64
Standard unit vectors, 5, 56, 58

basis, 76
calculating with, 57
linear independence, 73

Sub-group, 33
Subset, 14
Summation index, 101
Surjective

function, 20
linear map, 169

Sylvester’s theorem, 350
Symmetric

matrix, 157
tensor, 387

Symmetric bi-linear form, 343
Symmetric matrix

diagonalization, 341

Tautology, 26
Taylor series, 2
Tensor, 382

(p, q), 391
anti-symmetric, 387
basis transformation, 385, 392
decomposable, 383
higher-rank, 391
inner product vector space, 399
non-decomposable, 399
symmetric, 387, 399

Tensor map, 386, 387
eigenvalues, 399
two-dimensional, 399

Tensor product
definition of, 383
induced tensor map, 386
symmetrized, 387
universal property, 384
wedge product, 387

Tensor space
basis, 383
definition of, 382
dimension, 383

Time inversion, 353
Trace, 270, 280, 359

linear map, 252
matrix, 251

Transposition, 54, 157, 304
determinant, 227
properties of, 158

Triangle inequality, 97, 104, 287, 289
Triple product, 112
Tuples, 15

Unit vector, 96
Unitary

endomorphism, 307
group, 50, 313
linear map, 307
matrix, 313

Unitary group, 309
generalized, 351
special, 309, 313
two-dimensional, 314

Unitary linear map, 307
determinant, 309
diagonalization, 324
eigenvalues, 324
properties of, 308

Universal property, 384
Upper echelon form, 194

algorithm, 194
Upper triangular matrix, 226, 283

Vandermonde determinant, 238
Vector

addition, 4, 5
column, 147
coordinate vector, 4
coordinates, 76
light-like, 349
null, 349
orthogonal, 99
product, 106
reciprocal, 117
row, 147
scalar multiplication, 4, 5
space, 5
space-like, 349
time-like, 349
two components, 4

Vector space
automorphism, 142
axioms, 60
cosets, 87
definition of, 60
dimension, 78
dual, 363
endomorphism, 140, 149
finite dimension, 79
homomorphism, 140, 149
infinite dimensional, 79
isomorphism, 141, 174
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norm, 287
of functions, 65
quotient, 88

Vector space quotient, 90
Vector subspace

definition of, 61
direct sum, 86
intersection, 83

proper, 61
sum, 83
trivial, 61
union, 83

Wedge product, 387, 392, 394

Zero vector, 55, 60
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