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To the student

Mathematics is a science. Just as the rest of the scientists, mathematicians are trying to understand how
the Universe operates and discover its laws. When successful, they write these laws as short statements
called �theorems�. In order to present these laws conclusively and precisely, a dictionary of the new concepts
is also developed; its entries are called �de�nitions�. These two make up the most important part of any
mathematics book.

This is how de�nitions, theorems, and some other items are used as building blocks of the scienti�c theory
we present in this text.

Every new concept is introduced with utmost speci�city.

De�nition 0.0.1: square root

Suppose a is a positive number. Then the square root of a is a positive number
x, such that x2 = a.

The term being introduced is given in italics. The de�nitions are then constantly referred to throughout
the text.

New symbolism may also be introduced.

Square root

√
a

Consequently, the notation is freely used throughout the text.

We may consider a speci�c instance of a new concept either before or after it is explicitly de�ned.

Example 0.0.2: length of diagonal

What is the length of the diagonal of a 1×1 square? The square is made of two right triangles and the
diagonal is their shared hypotenuse. Let's call it a. Then, by the Pythagorean Theorem, the square of
a is 12 + 12 = 2. Consequently, we have:

a2 = 2 .

We immediately see the need for the square root! The length is, therefore, a =
√

2.

You can skip some of the examples without violating the �ow of ideas, at your own risk.

All new material is followed by a few little tasks, or questions, like this.

Exercise 0.0.3

Find the height of an equilateral triangle the length of the side of which is 1.

The exercises are to be attempted (or at least considered) immediately.

Most of the in-text exercises are not elaborate. They aren't, however, entirely routine as they require
understanding of, at least, the concepts that have just been introduced. Additional exercise sets are placed
in the appendix. Do not start your study with the exercises! Keep in mind that the exercises are meant to
test � indirectly and imperfectly � how well the concepts have been learned.

There are sometimes words of caution about common mistakes made by the students.
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Warning!

In spite of the fact that (−1)2 = 1, there is only
one square root of 1,

√
1 = 1.

The most important facts about the new concepts are put forward in the following manner.

Theorem 0.0.4: Product of Roots

For any two positive numbers a and b, we have the following identity:

√
a ·
√
b =
√
a · b

The theorems are constantly referred to throughout the text.

As you can see, theorems may contain formulas; a theorem supplies limitations on the applicability of the
formula it contains. Furthermore, every formula is a part of a theorem, and using the former without
knowing the latter is perilous.

There is no need to memorize de�nitions or theorems (and formulas), initially. With enough time spent with
the material, the main ones will eventually become familiar as they continue to reappear in the text. Watch
for words �important�, �crucial�, etc. Those new concepts that do not reappear in this text are likely to be
seen in the next mathematics book that you read. You need to, however, be aware of all of the de�nitions
and theorems and be able to �nd the right one when necessary.

Often, but not always, a theorem is followed by a thorough argument as a justi�cation.

Proof.

Suppose A =
√
a and B =

√
b. Then, according to the de�nition, we have the following:

a = A2 and b = B2 .

Therefore, we have:

a · b = A2 ·B2 = A · A ·B ·B = (A ·B) · (A ·B) = (AB)2 .

Hence,
√
ab = A ·B, again according to the de�nition.

Some proofs can be skipped at �rst reading.

Its highly detailed exposition makes the book a good choice for self-study. If this is your case, these are my
suggestions.

While reading the book, try to make sure that you understand new concepts and ideas. Keep in mind,
however, that some are more important that others; they are marked accordingly. Come back (or jump
forward) as needed. Contemplate. Find other sources if necessary. You should not turn to the exercise sets
until you have become comfortable with the material.

What to do about exercises when solutions aren't provided? First, use the examples. Many of them contain
a problem � with a solution. Try to solve the problem � before or after reading the solution. You can also
�nd exercises online or make up your own problems and solve them!

I strongly suggest that your solution should be thoroughly written. You should write in complete sentences,
including all the algebra. The standards of thoroughness are provided by the examples in the book.

Next, your solution should be thoroughly read. This is the time for self-criticism: Look for errors and weak
spots. It should be re-read and then rewritten. Once you are convinced that the solution is correct and the
presentation is solid, you may show it to a knowledgeable person for a once-over.
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1.1. Introduction to linear algebra

I PROBLEM: Suppose we have the Kenyan co�ee that costs $2 per pound and the Colombian
co�ee that costs $3 per pound. How much of each do you need to have 6 pounds of blend with
the total price of $14?

We don't even try to solve the problem right away. Instead, we �translate� the setup into mathematics. The
idea is to state the conditions that make a blend �acceptable�.

We point out the unknowns �rst. Let x be the weight of the Kenyan co�ee, and let y be the weight of
Colombian co�ee.

Since the total weight is 6, we have an equation that connects x and y:

1 x+ y = 6 .

Since the total price of the blend is $14, we have another equation for x and y:

2 2x+ 3y = 14 .

These two are called linear relations.

Every x is a real number and so is each y. Both the x's and the y's come from certain sets. Those two sets
may both be visualized as the real line R.

Next, let's visualize possible blends all at once. We use the above sets as respectively the x- and the y-axis
of the xy-plane R2. Then, every pair (x, y) is a point on the plane:

7



1.1. Introduction to linear algebra 8

Furthermore, the two relations when plotted produce straight lines.

So, every pair (x, y) that satis�es the �rst equation lies on the �rst line and every pair that satis�ed the
second equation lies on the other line.

Changing gears, our conclusion is the following simple statement:

I For a combination of weights x and y to be acceptable, it must satisfy both of the equations.

Let's explore the logic of this statement. It can be recast as an implication, i.e., an �if-then� statement:

I IF a pair (x, y) is acceptable, THEN it satis�es both equations.

Exercise 1.1.1

Restate as an implication each of the following statements: (a) Every square is a rectangle. (b) Parallel
lines don't intersect. (c) (a+ b)2 = a2 + 2ab+ b2.

We will use the following convenient abbreviation throughout the text:

Implication

=⇒

It reads �then�, �therefore�, or
�implies that�.

Then, the above statement takes the following abbreviated form:

I A pair (x, y) is acceptable =⇒ It satis�es both equations.

Now, we can try to ��ip� the implication of this statement, without assuming that the result will be true:

I A pair (x, y) is acceptable. ⇐= It satis�es both equations.

This is the abbreviation we used:

Implication

⇐=

It reads �whenever�, �pro-
vided�, or �only if�.

In other words, we have the following implication:

I A pair (x, y) satis�es both equations. =⇒ It is acceptable.

The latter is called the converse of the original statement. It can also be stated as:

I IF a pair (x, y) satis�es both equations, THEN it is acceptable.

The converse happens to be true as well!
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Exercise 1.1.2

Justify the last statement.

Exercise 1.1.3

State the converse of each of the following statements: (a) Every square is a rectangle. (b) Parallel
lines don't intersect. (c) 2x = 2y when x = y.

Warning!

The converse of a true statement does not have to
be true; example: x = 1 =⇒ x2 = 1.

Exercise 1.1.4

Suggest your own example of a true statement the converse of which is false.

In our case, the implications go both ways! Combined, the statement and its converse form an equivalence:

I A pair (x, y) satis�es both equations IF AND ONLY IF it is acceptable.

We will use the following convenient abbreviation:

Equivalence

⇐⇒

It reads �if and only if� or �is
equivalent to�.

Then our two statements are combined as follows:

I A pair (x, y) satis�es both equations. ⇐⇒ It is acceptable.

The two parts of an equivalence are interchangeable"

I A pair (x, y) is acceptable. ⇐⇒ It satis�es both equations.

Exercise 1.1.5

Replace �both equations� with �one equation�.

Let's now �nish the problem. We conclude that the point (x, y) to represent an acceptable pair it has to
belong to both of the lines!

The solution, therefore, is the point or points that the two have in common. It is their intersection.

Now, there seems to be just one point:

And this point can be guessed from the picture to be the following:

(x, y) = (4, 2) .
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The guess can be con�rmed by substituting the two numbers x = 4, y = 2 into the two equations:

1 x +y = 6 → 4 +2 = 6 TRUE

2 2x +3y = 14 → 2 · 2 +3 · 2 = 14 TRUE

But are there any others?

Exercise 1.1.6

Make an argument that there are no others based on Euclidean geometry.

An algebraic solution may be as follows:

From the �rst equation, we derive: y = 6− x. Then substitute this y into the second equation:
2x+ 3(6− x) = 14. Solve this new equation: −x = −4, or x = 4. Substitute this back into the
�rst equation: (4) + y = 6, then y = 2.

It is routine!

We can re-write this using implications:

1. 1 =⇒ y = 6− x.

2. #1 and 2 =⇒ 2x+ 3(6− x) = 14.

3. #2 =⇒ −x = −4 =⇒ x = 4.

4. #3 and 1 =⇒ (4) + y = 6 =⇒ y = 2.

Exercise 1.1.7

Make an argument that there are no others based on the above algebra.

Such a problem is called a system of linear equations :{
x +y = 6 ,
2x +3y = 14 .

We will develop a systematic approach to such problems.

As a preview, one of the early steps is to collect the data in tables as follows:

1 · x +1 · y = 6
2 · x +3 · y = 14

, rewritten as:
1 · x + 1 · y = 6
2 · x + 3 · y = 14

, rewritten as:

[
1 1 6
2 3 14

]
The 2-by-2 (left) part of the resulting table is made of the coe�cients of x and y in the equations:[

1 1
2 3

]
It is called a matrix. Meanwhile, these are the vectors involved:[

1
2

]
,

[
1
3

]
,

[
6
16

]
, and

[
x
y

]
.

The existence of an intersection point tells us that it is possible to create such a blend! However, if the
Colombian co�ee is also priced at $2 per pound, we have a new system of linear equations:{

x +y = 6 ,
2x +2y = 14 .

We discover that the lines are parallel:
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There is no such mixture!

Exercise 1.1.8

Prove this fact algebraically.

The third possibility occurs when we change, in addition, the total price of the blend to $12. The system of
linear equations becomes the following: {

x +y = 6 ,
2x +2y = 12 .

The lines merge:

There are in�nitely many possible blends.

Exercise 1.1.9

Prove this fact algebraically.

There can be similar problems about other kinds of mixtures:

variables restrictions
cooking recipes weight or count of each ingredient total weight, total price,

amounts of calories, carbs, fats, etc.
investment portfolio amount of each stock and bond total value, proportions of industries,

tax exposure, etc.
insurance balance sheet amounts of awards total value, proportions of various risks,

regulation requirements, etc.

Warning!

In these examples, the restrictions are likely to take
the form of inequalities rather than equations.

What makes a di�erence, is that the number of unknowns is unlimited! There can be dozens of ingredients
and thousands of securities. This number is the number of degrees of freedom of the system, while the
restrictions reduce this number one equation at a time. We may, therefore, face a 10, 000-dimensional space
with hundreds of sets intersecting each other. Such a space cannot be visualized in the sense we saw above.
The way to deal with this challenge is, of course, algebra.
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Before we turn to this multidimensional linear algebra, we will review some basic abstract ideas: sets,
relations, and functions. In contrast to precalculus, we will present an enhanced review:

1. We broaden the scope by dealing with sets, relations, and functions that aren't necessarily numerical.

2. We narrow the scope by dealing numerical relations and functions that are likely to be linear.

1.2. Sets

In mathematics, we refer to any loose collection of objects or entities � of any nature � as a set.

For example, is this a circle of marbles that we see in a bag? No, the marbles it is made of aren't connected
to each other or to any location. One shake and the circle is gone:

It's the same set!

Example 1.2.1: sets as lists

Sets given explicitly � as lists � are the simplest ones:
• A roster of students: Adams, Adkins, Arrows, ... in the alphabetical order
• A list of numbers: 1, 2, 3, 4, ... in the order of size
• A list of planets: Mercury, Venus, Earth, Mars, ... according to the distance from the Sun

Even though the items in each set appears in a special order, if we rearrange its elements, this will be
the same set:
• A roster of students: Smith, Wilson, Adams, ...
• A list of numbers: 2, 1, 4, 3, ...
• A list of planets: Neptune, Venus, Earth, Mercury, ...

The order is not a part of the information we care about when we speak of sets! Here is a bag of
numbers:

Example 1.2.2: �sets�

The idea of set contrasts with such expressions as �a set of silverware� when the word �set� suggests a
certain structure: speci�c types of knives and forks with a speci�c place in the box:
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It is the same set, mathematically, whether the items are arranged in a box or piled up on the counter.
A set of encyclopedia consists of books that can be arranged alphabetically or chronologically or
randomly.

Warning!

Even though we try to provide a precise de�nition
of every new concept, the idea of set is so general
that we will have to rely on examples.

What creates a set is our knowledge or ability to determine whether an object belongs or does not belong to
it.

A list is one such method. Another is a condition to be veri�ed.

Example 1.2.3: sets via conditions

A roster of a class produces a set of the students in this class. It's a list! On the other hand, the
female students in the class also form a set even if there is no such list; we can just go down the roster
and determine if a student belongs to this new set.

In this fashion, we can modify the example above producing more sets:
• The students with an A

• The even numbers
• The planets the names of which start with an M

There are no lists!

Providing a list is an explicit method of presenting a set. Providing a condition is implicit.

Example 1.2.4: sets in math

A lot of sets examined early in this book will be sets of numbers. For example, take the set of even
numbers ; then we know that 2 belongs to it but 3 does not. We simply check the condition: Is the
number divisible by 2?

Another example from familiar parts of mathematics is sets of points on the plane: straight lines,
triangles, circles and other curves, etc.:
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We can always tell whether a point belongs to the set!

Example 1.2.5: non-sets

If the condition is vague, we don't have a set: �interesting novels�, �bad paintings�, etc. When the
condition is nonsensical, we don't have a set either: �fast trees�, �blue numbers�, etc.

Exercise 1.2.6

Give your own examples of (a) sets as lists, (b) sets de�ned via conditions, and (c) non-sets.

In the rest of this chapter we will be using the following example. These �ve boys form a set:

On the one hand, they are individuals and can always be told from each other. On the other hand, they
are unrelated to each other: We can list them in any order, we can arrange them in a circle, a square, or
at random; we can change the distances between them, and so on. It's the same set! The members of a set
are called its elements.

Our set is nothing but a list :

• Tom

• Ken

• Sid

• Ned

• Ben

Or: �Tom, Ken, Sid, Ned, Ben�, in any order.

Warning!

As there is no order, the elements of a set aren't
to be confused with the terms of a sequence as the
latter are ordered.

There is a speci�c mathematical notation for �nite sets; we put the list in braces :

List notation for sets

{A,B,C,D}

It reads �the set with elements
A,B,C,D�.
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All of these are equally valid representations of our set:

{ Tom , Ken , Sid , Ned , Ben }
= { Ned , Ken , Tom , Ben , Sid }
= { Ben , Ken , Sid , Tom , Ned }
= ...

Exercise 1.2.7

How many such representations are there? Hint: In how many ways can you permute these �ve
elements?

Just as the boys have names, the set also needs one. We can call this set �Team�, or �Boys�, etc. To keep
things compact, let's give it a short name, say X:

X = { Tom , Ken , Sid , Ned , Ben } .
We say then that Tom (Ken, etc.) is an element of set X, as well as:

• Tom belongs to X, or

• X contains Tom.

Just as we want to be clear when two numbers are equal, we want the same clarity for sets. The following
will be assumed to be known:

De�nition 1.2.8: equal sets

Two sets X and Y are said to be equal to each other if the following two condi-
tions are satis�ed:

1. Every element of X is also an element of Y .
2. Every element of Y is also an element of X.

Repetitions aren't allowed! Or, at least, they are to be eliminated:

{ Tom , Ken , Sid , Ned , Ben , Ben } remove repetitions!−−−−−−−−−−−−−−−→ { Tom , Ken , Sid , Ned , Ben }
It's the same set!

We can form other sets from the same elements. We can combine those �ve elements into any set with any
number of elements as long as there is no repetition; for example, we can create these new sets:

T = { Tom }, K = { Ken }, S = { Sid }, N = { Ned }, ...
A = { Tom , Ken }, B = { Sid , Ned }, ...
Q = { Tom , Ken , Sid }, ...

The following will be routinely used.

De�nition 1.2.9: subset

A set A is called a subset of a set X if every element of A is also an element of
X.

This is how we mark subsets when the set is shown:
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Exercise 1.2.10

How many subsets of 3 elements does the set have? Hint: In how many ways can you choose three
elements out of �ve?

We will use the following notation to convey that idea:

Subset

A ⊂ X

The notation resembles the one for numbers: 1 < 2, 3 < 5, etc. Indeed, a subset is, in a sense, �smaller�
than the set that contains it.

Warning!

A subset doesn't have to be literally smaller. In
fact, a set is a subset of itself. Furthermore, an
in�nite set might have a subset just as in�nite...

Exercise 1.2.11

Refer to the de�nition to determine when these are true: (a) X ⊂ X, (b) ∅ ⊂ X, (c) X ⊂ ∅.

Example 1.2.12: plane shapes

We see subsets of geometric �gures in the plane:

The following set is very special:

De�nition 1.2.13: empty set

The set with no elements is called the empty set. It is denoted by:

∅

A study of numbers usually starts with the following sets.

The �rst is the natural numbers used for counting:
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The set of natural
numbers

N

The set is given by an in�nite list:
N = {0, 1, 2, 3, ...} .

The second is the integers used to record, addition, moving in a negative direction:

The set of integers

Z

This is also an in�nite list:
Z = {...,−3,−2,−1, 0, 1, 2, 3, ...} .

Both sets can be visualized as milestones on a road:

The third is the rational numbers used to record fractional locations, time, etc.:

The set of rational
numbers

Q

The set is given via a description of its elements.

The fourth is the set of real numbers:

The set of real numbers

R

It is simply visualized as the x-axis:

We can express the relation between these sets using the new notation:

N ⊂ Z ⊂ Q ⊂ R .

Let's now review how these concepts appeared in the problem we solved in the last section.

We made x be the weight of the Kenyan co�ee and y be the weight of Colombian co�ee. This means that
there are two sets here: X is the set of x's and Y is the set of y's. Both are copies of the set of real numbers
R.

They are also subsets of the xy-plane R2:
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1.3. The real number line

The starting point of studying numbers is the natural numbers :

0, 1, 2, 3, ...

They are initially used for counting. The next step is the integers :

...,−3,−2,−1, 0, 1, 2, 3, ...

They can be used for studying the space and locations, as follows.

Imagine facing a fence so long that you can't see where it ends. We step away from the fence multiple times
and there is still more to see:

Is the number of planks in�nite? It may be. For convenience, we will just assume that we can go on with
this for as long as necessary.

We visualize these as markings on a straight line, according to the order of the planks:

The assumption is that the line and the markings continue without stopping in both directions, which is
commonly represented by �...�. The same idea applies to the milestones on the road; they are also ordered
and might continue inde�nitely.

So, we zoomed out to see the fence. Suppose now we zoom in on a location on the fence. What if there is
a shorter plank between every two planks? We look closer and we see more:
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If we keep zooming in, the result will look similar to a ruler :

It's as if we add one mark between any two and then add another one between either of the two pairs we
have created. We keep repeating this step. Even though this ruler goes only to 1/16 of an inch, we can
imagine that the process continues inde�nitely:

Is the depth in�nite? It may be. For convenience, we will just assume that we can go on with this for as
long as necessary.

If we add nine marks at a time, the result is a metric ruler :
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Here, we go from meters to decimeters, to centimeters, to millimeters, etc.

To see it another way, we allow more and more decimals in our numbers:

1.55 : 1. 1.5 1.55 1.550 1.5500 ...
1/3 : .3 .33 .333 .3333 .33333 ...
π : 3. 3.1 3.14 3.141 3.1415 ...

In order to visualize all numbers, we �rst arrange the integers in a line and then the line of numbers is built.
It takes several steps.

Step 1: Draw a line, called an axis (horizontal when convenient):

Step 2: Choose one of the two ends of the line as the positive direction (the one on the right when convenient),
then the other is the negative:

Step 3: Set a point O (a letter, not a number) as the origin:

Step 4: Choose a segment of the line as the unit of length:

Step 5: Use the segment to measure distances to locations from the origin O (positive in the positive
direction, and negative in the negative direction) and add marks, called the coordinates :

Step 6: Divide the segments further into fractions of the unit, etc.:

The end result depends on what the building block is. It may contain gaps and look like a ruler (or a comb)
as discussed above. It may also be solid and look like a tile or a domino piece:



1.3. The real number line 21

So, we start with integers as locations and then � by cutting these intervals further and further � also include
fractions, i.e., rational numbers.

However, we then realize that some of the locations have no counterparts among these numbers. For
example,

√
2 is the length of the diagonal of a 1× 1 square (and a solution of the equation x2 = 2); it's not

rational. That's how the irrational numbers come into play. Together, they make up the real numbers and
the real number line. We think of this line as complete; there are no missing points. As an illustration, an
�incomplete� rope won't hang:

We use this setup to produce a correspondence between the locations on the line and the real numbers:

location P ←→ number x

We will follow this correspondence in both directions, as follows:

1. First, suppose P is a location on the line. We then �nd the corresponding mark on the line. That's
the �coordinate� of P : some number x.

2. Conversely, suppose x is a number. We think of it as a �coordinate� and �nd its mark on the line.
That's the location of x: some point P on the line.

Once this system of coordinates is in place, it is acceptable to think of every location as a number, and vice
versa. In fact, we often write:

P = x .

The result may be described as the �1-dimensional coordinate system�. It is also called the real number line
or simply the number line.

We have created a visual model of the real numbers. Depending on the real number or a collection of
numbers that we are trying to visualize, we choose what part of the real line to exhibit; for example, the
zero may or may not be in the picture. We also have to choose an appropriate length of the unit segment
in order for the numbers to �t in.
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In addition to the ruler, another way to visualize numbers is with colors. In fact, in digital imaging the
levels of gray are associated with the numbers between 0 and 255. A shorter scale � 1, 2, ..., 20 � is used in
the illustration below (top):

It is also often convenient to associate blue with negative and red with positive numbers (bottom).

Exercise 1.3.1

Think of other examples when numbers are visualized with colors.

1.4. Set building

So far, all numerical sets in this chapter have been subsets of the set of real numbers R. In particular,
numerical sets emerge as domains and codomains of numerical functions. They may also come from solving

equations.

Example 1.4.1: sets from equations

Unless entirely nonsensical, every statement in mathematics is true or false:

1 + 1 = 2 TRUE

1 + 1 = 3 FALSE

What about this:
x+ 1 = 2 TRUE OR FALSE?

It depends on x, of course. We can, therefore, use equations to form sets.

Consider these:
• We face the equation x+ 2 = 5. After some work, we �nd: x = 3.
• We face the equation 3x = 15. After some work, we �nd: x = 5. Is there more?
• We face the equation x2 − 3x+ 2 = 0. After some work, we �nd: x = 1. Is that it?
• We face the equation x2 +1 = 0. After all the work, we can't �nd any x. Should we keep trying?

Here, x is a label that stands for an unspeci�ed number that is meant to satisfy this condition. In
other words, we seek such numbers that, when they replace x in the equation, we see a true statement.
It could simply be trial and error.

Let's take the �rst equation:
x+ 2 = 5 .

We replace x with a number above or write a number in the blank square below:

�+ 1 = 5 .

For example:
• Is x = 1 a solution? Plug it in the equation: x+ 2 = 5 becomes (1) + 2 = 5. FALSE. This is not
a solution.



1.4. Set building 23

• Is x = 2 a solution? Plug it in the equation: x+ 2 = 5 becomes (2) + 2 = 5. FALSE. This is not
a solution.
• Is x = 3 a solution? Plug it in the equation: x + 2 = 5 becomes (3) + 2 = 5. TRUE. This is a
solution.
• Should we stop now? Why would we? For all we know, there may be more solutions.

We never say that we have found �the� solution unless we know for sure that there is only one.

Exercise 1.4.2

Interpret each of these equations as a relation.

Exercise 1.4.3

Solve these equations:

(a) x2 + 2x+ 1 = 0, (b)
x

x
= 0, (c)

x

x
= 1 .

But what does it mean to solve an equation? We have tried to �nd x that satis�es the equation... But what
are we supposed to have at the end of our work?

Let's go back to our running example of boys and balls:

It tells us what game each boy prefers. What about the other way around? Which boys prefer a particular
game?

• Which boys prefer basketball? The answer isn't �Tom�, and it isn't �Ben�; it's �Tom and Ben and
nobody else�.

• Which boys prefer tennis? �just Ned�.

• Which boys prefer baseball? �No one�.

• Which boys prefer football? �Ken and Sid only�.

But each question � one for each element of the codomain Y � is also an equation:

• Find x with F (x) = basketball. Tom is a solution, and Ben is a solution. Combined, Tom and Ben
are the solutions.

• Find x with F (x) = tennis. Ned is the solution.

• Find x with F (x) = baseball. No solutions.

• Find x with F (x) = football. Ken and Sid are the solutions.

This is how we understand this idea:

I A solution of an equation with respect to x is an element that, when put in the place of x in

the equation, gives us a true statement.
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However, we must present all x's that satisfy the equation. In other words, the answer is a set :

• The solution set of the equation F (x) = basketball is { Tom, Ben }.

• The solution set of the equation F (x) = tennis is { Ned }.

• The solution set of the equation F (x) = baseball has no elements.

• The solution set of the equation F (x) = football is { Ken, Sid }.

All of these sets are subsets of the domain X. This is the terminology we will routinely use.

De�nition 1.4.4: equation and its solution

Suppose f : X → Y is a function and b is one of the elements of Y . The solution
set of the equation f(x) = b is the set of all x in X that make the equation true.
To solve an equation means to �nd its solution set.

In other words, the solution set is the solution!

Next, the sets above can be presented in this spirit:

Set-building notation{
x : condition for x

}
The expression stands for the set of all x that satisfy the condition. What kind of condition? An equation,
as above. Any condition as long as it is speci�c enough for us to unambiguously answer the question �does
x satisfy it?�. For example:

{ student: 20 years old } .

The set from which we pick x's one at a time is presented or assumed to be known.

Warning!

Many sources also use:

{x| condition for x } .

For example, the equations above are seen as conditions. Below we list their solution sets (left):

{x, boy : F (x) = basketball } = { Tom, Ben }
{x, boy : F (x) = tennis } = { Ned }
{x, boy : F (x) = baseball } = { }
{x, boy : F (x) = football } = { Ken, Sid } = ∅

These description can sometimes be simpli�ed (right). One can imagine that we simply went over the list
of X and tested each of its elements.

Exercise 1.4.5

Show that the empty set is a subset of any set.

Exercise 1.4.6

Simplify the following sets:

{x, boy : his shirt is red }
{y, ball : is preferred by two boys }
{y, ball : is round }
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Example 1.4.7: inclusion vs. implication

Here is an interpretation of the de�nition of subset. The de�nition says that A ⊂ B when the following
is satis�ed:

I IF x belongs to A, THEN x belongs to B;
or

I x belongs to A =⇒ x belongs to B.
The converse of this implication is false when A 6= B. Furthermore, we have the following:

I x satis�es the condition for A =⇒ x satis�es the condition for B.
In other words, the latter condition is less restrictive.

Example 1.4.8: solution sets of equations

Let's take another look at the equations above, assuming that the �ambient� set is the set of real
numbers:

equation: answer? solution set:
x+ 2 = 5 x = 3 {3}
3x = 15 x = 5 {5}
x2 − 3x+ 2 = 0 x = 1 and... {1, 2}
x2 + 2x+ 1 = 0 no x? { }

This is how we visualize these four sets:

Below we use the set-building notation again on the left, and then on the right, we see another, simpler,
representation of the set:

{x : x+ 2 = 5} = {3}
{x : 3x = 15} = {5}
{x : x2 − 3x+ 2 = 0} = {1, 2}
{x : x2 + 1 = 0} = { } = ∅

The simplest way to represent a set is, of course, a list.

Exercise 1.4.9

Solve these equations:
x = x, 1 = 1, 1 = 0 .

1.5. Relations

To continue with our example, suppose there is another, unrelated, set, say Y , the set of these four balls:
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Just as X, set Y has no structure. Just as X, it's just a list:

Y = { basketball , tennis , baseball , football }
= { football , baseball , tennis , basketball }
= ...

We can remove balls from the set, creating subsets of Y .

Now, let's put the two sets, X and Y , next to each other and ask ourselves: Are these two sets related to
each other somehow?

Yes, boys like to play sports! Let's make this idea speci�c. Each boy may be interested in a particular sport

or he may not. For example, suppose this is what we know:

• Tom likes basketball.

• Ben likes basketball and tennis.

• Ken likes baseball and football.

• Sid likes football.

And that's all each likes.

As a result, we have the following:

I An element of set X is related to an element of set Y .

In order to visualize these relations, let's connect each boy with the corresponding ball by a line segment
with arrows at the ends, while the two sets may be placed arbitrarily against each other:

This visualization helps us discover that Ned doesn't like sports at all. As you can see, this is a two-sided
correspondence: Neither of the two elements at the ends of the line comes �rst or second. The same applies
to the sets: Neither of the two sets comes �rst or second. In fact, we can derive these new facts about the
preferences either from the original list or from the image on the right:

• Basketball is liked by Tom and Ben.

• Tennis is liked by Ben.

• Baseball is liked by Ken.

• Football is liked by Ken and Sid.
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We have, therefore, a list of pairs :

• Tom & basketball

• Ben & basketball

• Ben & tennis

• Ken & baseball

• Ken & football

• Ben & football

The following concept will be commonly used throughout.

De�nition 1.5.1: relation between sets

Any set of pairs (x, y), with x taken from a set X and y from a set Y , is called
a relation between sets X and Y .

In other words, this is a set of arrows.

There may be many di�erent relations between a pair sets; let's call this one R:

Warning!

We don't require every element to have a corre-
sponding element in the other set.

The following diagram represents the approach to relations from the point of computing :

boy Related! → ×
↘ relation: TRUE ↗

Does the boy like the ball? →
↗ FALSE ↘

ball Not related! → �

It's a simple procedure!

Next, we make a step toward visualizing relations.

Where do we place those crosses? When the sets are lists, we build tables. For the relation R above, we put
the boys in the leftmost column and the balls in the top row:



1.5. Relations 28

There are 20 cells. Now, if the boy likes the sport, we put a cross (or another mark) in the cell that lies in
the boy's row and the ball's column (left):

Or, we can put the boys in the �rst row and the balls in the �rst column (right). It's just as good! In other
words, we can �ip the table about its diagonal. These are two visualizations of the same relation.

Exercise 1.5.2

Based on the relation R presented above, create a new relation called, say, S, that relates the boys
and the sports they don't like. Give an arrow representations and a table representations of S.

Exercise 1.5.3

Are there any relations on the subsets of the two sets?

Any collection (a set) of marks in such a table creates a relation, and conversely, a relation is nothing but
a collection of marks in this table.

How do these ideas apply to numbers?

Let's simply rename the boys as numbers, 1 − 5, and rename the balls as numbers, 1 − 4. Even though
the two sets share members, we prefer to think that the former belong to the set of real numbers, while
the latter belong to another copy of this set. We then draw these number lines along the sides of our table
(left):
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These axes are also labeled to avoid confusion between the two very di�erent sets. Furthermore, the table
can be rotated 90 degrees counterclockwise (right). This table is then called the graph of the relation.

Exercise 1.5.4

When the rows and the columns are interchanged, is there anything that is preserved?

Exercise 1.5.5

Finish the sentence: �This renaming of the boys is a ___.�

Suppose we have the elements of the sets renamed as numbers (left), then we capture the relation as a list
of pairs of elements of X and Y (middle), and �nally, the graph of the relation can be plotted automatically
by the spreadsheets:

Let's continue the review of how these concepts appeared in the problem of mixtures.

We made X to be the set of the possible weights of the Kenyan co�ee and Y the set is the set of the possible
weights of the Colombian co�ee. Both are copies of the set of real numbers R. We also had two relations:

1. First, since the total weight is 6, two numbers x and y are related when we have the following condition
satis�ed:

1 x+ y = 6 .

2. Second, since the total price of the blend is $14, two numbers x and y are related when we have the
following condition satis�ed:

2 2x+ 3y = 14 .

The graphs of the relations are these two lines:

More happened though. From the �rst equation, we derived:

y = 6− x .

This is, of course, the same relation! But its new form makes our life much easier: instead of testing every

pair (x, y), we can just plug in as many x's as necessary producing the corresponding y's automatically.
That's why we move from relations to functions whenever we can.
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1.6. The xy-plane

A relation, or a function, deals with two sets of numbers: the domain X and the codomain Y . That's why
we need two axes, one for X = R and one for Y = R. How do we arrange them? We can use the method
presented above: putting the axes next to each other and connecting them by arrows:

But since X = R is in�nite, however, we would need in�nitely many arrows.

Is there a better way? We already know another approach: tables and graphs. Instead of side-by-side, we
place X horizontally and Y vertically.

Step 1

We start with a real line R, or the x-axis. That's where the real numbers live, and now X and Y are subsets
of R. So, we will need two copies of the real line. We give them special names:

• the x-axis, and

• the y-axis.

Just as the inputs and the outputs of a function have typically nothing to do with each other (such as time
vs. space, or space vs. temperature), the two axes may have di�erent unit segments:

Step 2

To move toward the table we need, we arrange the two coordinate axes in a typical way as follows:

• The x-axis is horizontal, with the positive direction pointing right.

• The y-axis is vertical, with the positive direction pointing up.

Usually, the two axes are attached to each other at their origins:
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Step 3

Finally, we attach �fabric� to this �frame�. We use the marks on the axes to draw a rectangular grid.

Now we have what we call the Cartesian plane, or simply the xy-plane. As it is made from a combination
of two copies of R and is often denoted as follows:

xy-plane

R2

The notation is also explained by the fact that the area of an r× r square is r · r = r2. This is literally true,
however, only when both axes measure length.

The idea that the real line is like a ruler leads to the idea that the xy-plane is like a ruled paper :

Example 1.6.1: resizing graphs

In the context of plotting graphs, it is frequently the case that the relative dimensions of x and y
are unimportant, and then the xy-plane can be resized arbitrarily and disproportionately. The graphs
change too! The chart in this spreadsheet shows how di�erent the graph of the same function might
look:
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Such resizing will turn squares into rectangles and circles into ovals:

This fact imposes an important limit on how well the graph visualizes the function. The size, of course,
doesn't matter. The angles might be telling us nothing; even though the inclination � up or down �
of the graph can't disappear under this re-sizing, its steepness can change. We can't, therefore, say
that this line is �steep� but only that it is �steeper� than another one plotted on the same coordinate
plane. In this context, it is also often acceptable to have the origins of the two axes misaligned or even
absent:

The idea of the Cartesian coordinate system is the same as the one for the real line:

I Give a numerical representation of locations.

This time, however, this is a plane, and there are two axes and two coordinates for each point. We use the
above setup to produce a correspondence:

location P ←→ a pair of numbers (x, y)

It works in both directions :

1. → First, suppose P is a location on the plane. We then draw a vertical line through P until it
intersects the x-axis. The mark, x, of the location where they cross is the x-coordinate of P . We next
draw a horizontal line through P until it intersects the y-axis. The mark, y, of the location where
they cross is the y-coordinate of P .

2. ← On the �ip side, suppose x and y are numbers. First, we �nd the mark x on the x-axis and draw a
vertical line through this point. Second, we �nd the mark y on the y-axis and draw a horizontal line
through this point. The intersection of these two lines is the corresponding location P on the plane.



1.6. The xy-plane 33

Example 1.6.2: coordinates

We illustrate this idea below with a speci�c example. From a point to its coordinate:

From coordinates to a point:

The notation is as follows:

xy-coordinates(
x-coordinate , y-coordinate

)
Example 1.6.3: using coordinates in computing

The 2-dimensional Cartesian system isn't as widespread as the 1-dimensional, but it is very common
in certain areas of computing.

Spreadsheet applications use the Cartesian system � starting at the upper left corner � to provide a
convenient way of representing locations of cells:

This is the di�erence:
spreadsheet Cartesian system

1st coordinate rows R , down x, right
2nd coordinate columns C , right y, up

This idea allows us to use reference to express a value located in one cell in terms of values located in
other cells. For example, the following formula computes the double of the number contained in the
cell located at the intersection of row 3 and column 5:

=2*R3C5

It can be placed at any other cell. The next formula computes the sum of the number contained in
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the cell in row 5 and column 2 and the number contained in the cell in row 1 and column 5:

=R5C2+R1C5

There are also relative references. For example, the following formula takes the number contained in
the cell located 3 rows up and 2 columns right from the current cell:

=R[-3]C[2]

In contrast, this is what the proper Cartesian system for spreadsheets would look like:

Thus, every point on the xy-plane is, or can be, labeled with a pair of numbers.

Once the coordinate system is in place, it is acceptable to think of locations as pairs of numbers, and vice
versa. In fact, we can write:

P = (x, y)

It is important to realize that what we are dealing with is a set too! This is the set of all pairs of real
numbers presented in the set-building notation:

R2 = {(x, y) : x real, y real } .

The xy-plane is just a visualization of this set. Below we consider some of its simplest subsets.

Example 1.6.4: lines are �bers of plane

One can think of the xy-plane as a stack of lines, vertical or horizontal, each of which is just a shifted
copy of the corresponding axis:

We can use this idea to reveal the internal structure of the coordinate plane:
• If L is a line parallel to the x-axis, then all points on L have the same y-coordinate. Conversely,
if a set L of points on the xy-plane consists of all points with the same y-coordinate, L is a line
parallel to the x-axis.
• If L is a line parallel to the y-axis, then all points on L have the same x-coordinate. Conversely,
if a set L of points on the xy-plane consists of all points with the same x-coordinate, L is a line
parallel to the y-axis.

Two speci�c examples are shown below:
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Then, we have a compact way to represent these two lines:
• horizontal: y = 3, and
• vertical: x = 2.

Such an equation removes a degree of freedom! On the line, there is only one, and we are left with a
single point. With two degrees of freedom on the plane, we have a line.

1.7. Functions

Let's go back to our running example and change the question from:

• �What sports has the boy played today?� to:

• �Which sport does the boy prefer to play?�

The idea is that everyone, even Ned, has a preference and exactly one.

Of course, the data for the �rst question (left) is di�erent from that for the second (right):

We erased one of the two arrows that start at Ben and one of the two arrows that start at Ken and we had
to add an arrow for Ned.

In a relation, the two sets involved play equal roles. Instead, we now take the point of view of the boys. We
will explore a new relation:

1. Tom prefers basketball.

2. Ben prefers basketball.

3. Ned prefers tennis.

4. Ken prefers football.

5. Sid prefers football.

We move from our two-ended arrows (or simply lines) to regular arrows:
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We maintain the rule:

I There is exactly one y for each x.

As a result, the equality between the two sets is gone: X comes �rst, Y second.

This is a special kind of relation called a function; let's call this one F . What makes it special is that there
is exactly one ball for each boy.

Below is the common notation:

Function from set to set

F : X → Y

or

X
F−−−−→ Y

It reads �function F from X
to Y �.

Each element of X has only one arrow originating from it. Then, the table of this kind of relation must
have exactly one mark in each row:

Our function F is a procedure that answers the question: �Which ball does this boy prefer to play with?� In
fact, it answers all these questions! Conversely, a function is nothing but these answers. Each arrow clearly
identi�es the input � an element of X � of this procedure by its beginning and the output � an element of
Y � by its end.

Each arrow in the diagram of F corresponds to a row of the table (and vice versa). The information
contained in each is more commonly written in the algebraic manner, as follows:
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The function F is then a question-answering machine: if you input the name of the boy, it will produce the
name of the ball he prefers as the output.

This is the notation for the output of a function F when the input is x:

Input and output of
function

F (x) = y

or
F : x 7→ y

It reads: �F of x is y�.

In other words, we have
F ( input ) = output

and
F : input 7→ output.

Just like any relation, a function can be represented in full by providing a list of pairs, x and y. This time,
it's the list of all inputs and their outputs :

1. F ( Tom ) = basketball
2. F ( Ned ) = tennis
3. F ( Ben ) = basketball
4. F ( Ken ) = football
5. F ( Sid ) = football

This notation will be, by far, the most common way of representing functions.

Throughout the early part of this book, we will concentrate on functions the inputs and the outputs of
which are numbers.

To illustrate this idea, let's again rename the boys as numbers, 1 − 5, and rename the balls as numbers,
1− 4. The table of our relation takes this form (seen on the left):

What makes the table of a function special is that it must have exactly one mark in each column. The
values of F have also been rewritten (center). We then rotate the table counterclockwise (right) because it
is traditional to have the inputs along a horizontal line (left to right) and the outputs along a vertical line
(bottom to top).

The latter table is called the graph of the function. The arrows can still be found:
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Exercise 1.7.1

Finish the sentence: �This renaming of the boys (and the balls) is also a ___.�

We can put the data, as before, in a spreadsheet and then plot it automatically:

There is only one cross in every row!

Example 1.7.2: relations and function in spreadsheets

Here is an example of how common spreadsheets are discovered to contain relations and functions.
Below, we have a list of faculty members in the �rst column and a list of faculty committees in the
�rst row. A cross mark indicates on which committee this faculty member sits, while �C� stands for
�chair�:

The table gives a relation between these sets: X = { faculty } and Y = { committees }; however,
this is not a function. On the other hand, there is a function F : Y → X indicating the chair of the
committee.

Exercise 1.7.3

Think of other functions present in the spreadsheet.
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Exercise 1.7.4

Suggest functions in the situation when an employer maintains a list of employees, with each person
identi�ed as a member of one of the projects.

Exercise 1.7.5

What functions do you see below?

A common way to visualize the concept of set � especially when the sets cannot be represented by mere lists
� is to draw a shapeless blob in order to suggest the absence of any internal structure or relation between
the elements. We then connect two such blobs by arrows:

This new concept is central to our study:

De�nition 1.7.6: function

A function is a rule or procedure f that assigns to any element x in a set X,
called the input set or the domain of f , exactly one element y, which is then
denoted by

y = f(x) ,

in another set Y . The latter set is called the output set or the codomain of
f . The inputs are collectively called the independent variable; the outputs are
collectively called the dependent variable. We also say that the value of x under

f is y.

Warning!

In spite of the word �variable�, there is no expec-
tation of change. However, we are free to vary x,
which makes y vary too.

This de�nition fails for a relation that has too few or too many arrows for a given x. Below, we illustrate
how the requirement may be violated, in the domain (two on the left):
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These are not functions. Meanwhile, we also see what shouldn't be regarded as violations, in the codomain
(two on the right).

The main purpose of this section is to discuss the transition from relations to functions.

Now, this transition can happen in two ways:

1. A relation between X and Y becomes a function from X to Y .

2. A relation between X and Y becomes a function from Y to X.

We add the latter option to the example above:

In general, the following is true:

Theorem 1.7.7: When Relation Is Function

Suppose X and Y are sets and R is a relation between X and Y . Then:
• The relation R represents some function F from X to Y , F : X → Y, if
and only if for each x in X there is exactly one y in Y such that x and y
are related by R.
• The relation R represents some function G from Y to X, G : Y → X, if
and only if for each y in Y there is exactly one x in X such that x and y
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are related by R.

Exercise 1.7.8

Give an algebraic example of how (a) both of the two conditions can be violated, (b) both of the
conditions are satis�ed. Repeat the task in the boys-and-balls setting.

Exercise 1.7.9

Split either part of the theorem into a statement and its converse.

When our sets are sets of numbers, the relations are often given by formulas. In that case, the above issue
is resolved with algebra.

Exercise 1.7.10

What function can you think of from the set X of the boys to the sets of: letters, numbers, colors,
geographic locations? Think of others.

Let's again review how these concepts appeared in the problem of mixtures.

Recall that x and y are the weight of the Kenyan co�ee and the weight of Colombian co�ee respectively.
They come from sets X and Y , both of which are copies of the set of real numbers R. There are also two
relations:

The lines are the graphs of the two relations that come from restrictions on the mixtures that we want.

These relations can be converted to functions by solving for one of the two variables. First:

1 x+ y = 6
↗ x = 6− y
↘ y = 6− x

Second:

2 2x+ 3y = 14

↗ x =
14− 3y

2

↘ y =
14− 2x

3

As a result, we can just plug in as many x's as necessary producing the corresponding y's automatically.
The same for y.

1.8. Operations on sets

Let's go back to our example of the �ve boys that form a set and another set is the set of these four balls:
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They are just lists without repetitions:

X = { Tom , Ken , Sid , Ned , Ben }
Y = { basketball , tennis , baseball , football }

We can form a new set that contains all the elements of the two sets, as follows:

We can merge the two sets together and, once the separator is gone, move the elements around. The
following concept will be routinely used:

De�nition 1.8.1: union of sets

The union of any two sets X and Y is the set that consists of the elements that
belong to either X or Y . It is denoted by

X ∪ Y

The most common case is when both sets are subsets of the same set. For example, all of these are subsets
of X ∪ Y :

T = { Tom }, A = { Tom, Ken }, Q = { Tom, Ken, Sid }, ... ⊂ X
B = { basketball }, V = { basketball, tennis }, U = { basketball, tennis, baseball }, ... ⊂ Y
=⇒
{ Tom } ∪ { basketball } = { Tom, basketball } ⊂ X ∪ Y
{ Tom, Ken } ∪ { basketball, tennis } = { Tom, Ken, basketball, tennis } ⊂ X ∪ Y
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Exercise 1.8.2

Present the unions of all pairs of sets shown above. Now, de�ne the unions of triples of sets and
present them. Continue.

So, we check for each x the following:

x belongs to X OR x belongs to Y

Warning!

�X OR Y� means �X OR Y or both�.

Exercise 1.8.3

Solve for Y :
X ∪ Y = X .

So, �nding the union of two sets given as lists is very simple:

I We merge the lists removing repetitions.

These repetitions comprise the �overlap� of the two sets:

{ tennis, Tom, Ken } ∪ { basketball, tennis, Tom } = { tennis, Tom, Ken, basketball, tennis, Tom }
= {Tom, Ken, basketball, tennis }.

Example 1.8.4: unions of lists

We �nd the union in two steps:

{1, 2, 3, 4} ∪ {3, 4, 5, 6, 7} = {1, 2, 3, 4, 3, 4, 5, 6, 7} Merge the lists.
= {1, 2, 3, 4, 5, 6, 7} . Then remove repetitions.

Next, the �overlap� itself. We look at what the two sets have in common:

We �nd the repeated parts and merge each into one; the rest is thrown out. The following concept will be
routinely used:
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De�nition 1.8.5: intersection of sets

The intersection of any two sets X and Y is the set that consists of all the
elements that belong to both X and Y . It is denoted by

X ∩ Y

Here is an example of such a computation:

{ tennis, Tom, Ken } ∩ { basketball, tennis, Tom } = { tennis, Tom }.

So, we check for each x the following:

x belongs to X AND x belongs to Y

Exercise 1.8.6

Solve for Y :
X ∩ Y = X .

Example 1.8.7: colors

The primary colors are red, green, and blue. The rest of the colors are seen as �combinations� of these
three:

We can also interpret them as intersections.

Recall that the set-building notation is used to create a set by stating a condition these numbers are supposed
to satisfy:

Z = {x : condition for x } .
We consider what happens to sets given this way under these two operations.

Example 1.8.8: solution sets of systems of equations

Numerical sets are subsets of the real line R and some of them came from solving these equations, as
their solution sets :

equation solution set simpli�ed

x2 − 3x+ 2 = 0 X = {x : x2 − 3x+ 2 = 0} = {1, 2}
x2 = 1 Y = {x : x2 = 1} = {−1, 1}

What if we have both equations to be satis�ed at the same time? We are interested in the set:

Z = {x : x2 − 3x+ 2 = 0 AND x2 = 1 }
=⇒ x belongs to both X AND Y !

Z = X ∩ Y
= {x : x2 − 3x+ 2 = 0} ∩ {x : x2 = 1}
= {1, 2} ∩ {−1, 1}

= {1} .
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Now, what if we need just one of the equations to be satis�ed? We are interested in the set:

Z = {x : x2 − 3x+ 2 = 0 OR x2 = 1 }
=⇒ x belongs to X OR Y !

Z = X ∪ Y
= {x : x2 − 3x+ 2 = 0} ∪ {x : x2 = 1}
= {1, 2} ∪ {−1, 1}

= {−1, 1, 2} .

So, sometimes the condition that de�nes a set splits into two conditions:

Z = {x : satis�es �rst condition AND satis�es second condition } .

The word �AND� is capitalized in order to emphasize that the set contains only those x's that satisfy both

conditions simultaneously. Then we can see also that there are two sets:

X = {x : satis�es �rst condition } and Y = {x : satis�es second condition } ,

one for either condition. We are interested in their intersection:

Z = X ∩ Y = {x : satis�es �rst condition } ∩ {x : satis�es second condition } .

Example 1.8.9: solution sets of inequalities

These conditions can also be inequalities. Let's consider this �double inequality�:

0 ≤ x ≤ 3 .

Its solution set is all x's that satisfy the inequality. However, there are two inequalities in reality and
two solution sets:

{x : 0 ≤ x ≤ 3}
= {x : x ≥ 0 AND x ≤ 3}
= {x : x ≥ 0} ∩ {x : x ≤ 3}
= [0,+∞) ∩ (−∞, 3]
= [0, 3] .

The geometric interpretation is shown below:

What if we ��ip� both signs of this inequality:

0 ≥ x ≥ 3 ?

Then:
{x : 0 ≥ x ≥ 3}

= {x : x ≤ 0 AND x ≥ 3}
= {x : x ≤ 0} ∩ {x : x ≥ 3}
= (−∞, 0] ∩ [3,+∞)
= ∅ .
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What if we are interested in when the original inequality is not satis�ed? This is our set:

{x : 0 ≤ x ≤ 3, FALSE}
= {x : x ≥ 0 AND x ≤ 3, FALSE}
= {x : x ≥ 0, FALSE OR x ≤ 3, FALSE}
= {x : x ≤ 0 OR x ≥ 3}
= {x : x ≤ 0} ∪ {x : x ≥ 3}
= (−∞, 0] ∪ [3,+∞) .

Exercise 1.8.10

What happens if you �ip only one of the two inequalities above?

As a summary, let's rephrase our two de�nitions.

De�nition 1.8.11: union and intersection of sets

X ∪ Y = {x : x belongs to X OR x belongs to Y }

X ∩ Y = {x : x belongs to X AND x belongs to Y }

Warning!

The word OR in mathematics is always meant inclu-
sively : not as in �black or white� but as in �cream
or sugar�.

When the two sets are de�ned via conditions, we have the following for their intersection:

{x : �rst condition AND second condition }
= {x : �rst condition } ∩ {x : second condition };

and for the union:
{x : �rst condition OR second condition }

= {x : �rst condition } ∪ {x : second condition }.

Example 1.8.12: truth tables

The veri�cation of these combinations of two conditions can be sped up by the following tables:

#1 #2 #1 AND #2
TRUE TRUE TRUE

TRUE FALSE FALSE

FALSE TRUE FALSE

FALSE FALSE FALSE

#1 #2 #1 OR #2
TRUE TRUE TRUE

TRUE FALSE TRUE

FALSE TRUE TRUE

FALSE FALSE FALSE

We next consider subsets of the plane.
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Example 1.8.13: intercepts

For a numerical function F , its graph is the following set presented via the set-building notation:

{(x, y) : y = F (x)} ⊂ R2 .

Now, the two especially important subsets of the xy-plane are its two axes. Now, let's put these
together:

The x-intercepts of F are the elements of the intersection of the graph of F with the x-axis:

{ x-intercepts } = graph of F ∩ x-axis.

Meanwhile, the y-intercept of F is the (possible) element of the intersection of the graph of F with
the y-axis:

{ y-intercept } = graph of F ∩ y-axis.

Warning!

Don't confuse an element of a set and a one-element
set.

Exercise 1.8.14

Give examples of functions for which these sets are empty.

Exercise 1.8.15

Explain what these sets are:
• x-axis ∩ y-axis
• { x-intercepts } ∩ { y-intercepts }

Let's again consider how these concepts appeared in the problem of mixtures.

We produced two linear relations, each representing a line on the xy-plane:{
x + y = 6 ,
2x + 3y = 14 .

The graphs are respectively:

{(x, y) : x+ y = 6} and {(x, y) : 2x+ 4y = 14} .

They are these lines:
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We conclude that the intersection of the two lines is the point (x, y) that is the solution of the system of
equations formed by these two equations. Just as before, when there are two equations, there are two sets:

{(x, y) : x+ y = 6 AND 2x+ 3y = 14}
= {(x, y) : x+ y = 6} ∩ {(x, y) : 2x+ 3y = 14}
= {(4, 2)} .

The intersection is a single point!

The existence of an intersection point tells us that it is possible to create such a blend. We say that the
intersection is non-empty :

{(x, y) : x+ y = 6} ∩ {(x, y) : 2x+ 3y = 14} 6= ∅ .

Now, what if the Colombian co�ee is also priced at $2 per pound? Then it is impossible to create such a
blend. We say that the intersection is empty :

{(x, y) : x+ y = 6} ∩ {(x, y) : 2x+ 2y = 14} = ∅ .

The lines are parallel:

The third possibility occurs when we change, in addition, the total price of the blend to $12:

{(x, y) : x+ y = 6} ∩ {(x, y) : 2x+ 2y = 12} = {(x, y) : x+ y = 6} .

The lines merge:

There are in�nitely many possible mixtures.
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Exercise 1.8.16

Carry out the computations and provide visualization for the second and third possibilities in the last
example.

Exercise 1.8.17

Find algebraic representations of these two lines and repeat the analysis above:

Let's modify our problem as follows:

I PROBLEM: Suppose we have the Kenyan co�ee that costs $2 per pound and the Colombian
co�ee that costs $3 per pound. How much of each do you need to have at least 6 pounds of blend
with the total price of at most $14?

The variables are the same, but the restrictions change. They are inequalities now!

Since the total weight is more than or equal to 6, we have an inequality that connects x and y:

1 x+ y ≥ 6 .

Since the total price of the blend is less than or equal to $14, we have another inequality for x and y:

2 2x+ 3y ≤ 14 .

These are the sets we are interested in:

{(x, y) : x+ y ≥ 6} and {(x, y) : 2x+ 3y ≤ 14} .

We discover that these sets are the half-planes bounded by the lines that we have been talking about:

Since both of the conditions have to be satis�ed, our interest is, again, the intersection:
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The yellow triangle represents all acceptable mixtures.

Exercise 1.8.18

Modify the other two versions of the problem accordingly and solve them in this manner.

Exercise 1.8.19

Evaluate:
{(x, y) : y ≥ f(x) } ∩ {(x, y) : y ≤ f(x) } .

Hint:

More examples of these two operations for subsets of the plane are shown below:

These �generic� sets serve as illustrations of the idea of the union and the intersection.

1.9. Linear relations and functions

Recall that a relation between two sets is any pairing of their elements. This time, the sets are sets of
numbers and the condition to be checked is an equation:

sets: elements:
R → x Related! Add to the list.

↘ relation: TRUE ↗
x+ y = 2 ? →

↗ FALSE ↘
R → y Not related!
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So, a numerical relation processes a pair of numbers x and y and tells only one thing: related or not related.
For example:

x = 1, y = 2 → 1 + 2 = 2? FALSE → Not related!
x = 1, y = 1 → 1 + 1 = 2? TRUE → Related!

Warning!

Just because both sets are the sets of real numbers
(X = R and Y = R), we don't have to think of
the relation as one of a set with itself.

Example 1.9.1: maximizing enclosure

A typical calculus problem asks to maximize a rectangular enclosure made of 100 yards of fencing. We
choose width x and height y, and the two are related:

x+ y = 50 .

To speed up the analysis, we pre-computed all values of x + y for every eligible pair x and y. The
result is a table �lled by means of the following spreadsheet formula:

=RC2+R2C

It is easy in a small table to color by hand the cells with value of x + y equal to 50 (left); they form
the yellow line:

In a very large array of cells (middle), we the ability of the spreadsheet to to color the cells according
to the values they contain: The color of the (x, y)-cell is determined by the value of x+ y. The linear
pattern still seems conceivable. The value of z = x+ y can also be visualized as the elevation at that
location (right).

What is the scope of possible inputs in the above diagram? Any value of x is possible and, independently,
any value of y. Therefore, all pairs (x, y) are possible.

We discover that plotting the graph of a numerical relation means processing a pair of numbers (x, y), one
at a time. What is the output? Related or not related, Yes or No, TRUE or FALSE, a point or no point.

We can remake the above diagram in this spirit:

outcome:
Plot point (x, y).

plane: pair: relation: TRUE ↗
R2 → (x, y) → x+ y = 2 ? →

FALSE ↘
Don't plot anything.

We can try to do this plotting by hand, one point at a time:

(0, 0)→ No! (1, 0)→ No! (1, 1)→ Yes! ...
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It takes a lot of tries to produce a picture that reveals a pattern:

On the far right, we show our conjecture about the graph of the relation; it looks like a straight line. In
retrospect, it's like throwing a dart at the plane trying to hit that thin line!

Exercise 1.9.2

Show that the equation 2x+ 2y = 4 represents the same relation!

In this chapter, we saw two examples of relations the graphs of which are lines:

• The relation y = c produces a horizontal line because every point (x, y) is plotted as long as y = c
(there is no restriction on x).

• The relation x = a produces a vertical line because every point (x, y) is plotted as long as x = a (there
is no restriction on y).

As a summary, we give a precise de�nition:

De�nition 1.9.3: graph of relation

Suppose R is a relation between two sets X and Y of real numbers. Then, the
graph of R is the set of all points on the xy-plane with x and y related by R:

graph of R = {(x, y) : x is related to y} .

We use the set-building notation. This relation is, typically, an equation, and in this case, �most� of the
points on the plane won't satisfy it. Those that do will likely form a curve.

We start with the simplest, and the most common, kind. Linear relations only allow constant multiplication
and addition: the relation

2x+ 3y = 100 ,

involves only multiplication of x by 2, multiplication of y by 3, and then adding them together.

The result below explains the name:

Theorem 1.9.4: Graph of Linear Relation

The graph of any linear relation, i.e.,

Ax+By = C ,

with either A or B not equal to zero, is a straight line.

Exercise 1.9.5

What is the graph when A = B = 0? Hint: There are two cases.

Exercise 1.9.6

State the converse of the theorem and �nd out if it's true.
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It is called an implicit equation of the line:

Ax+By = C

When we represent the line by a function, the equation becomes explicit.

The ideas of linear algebra have a very humble beginning.

Example 1.9.7: linear equation

Suppose we have a type of co�ee that costs $3 per pound. How much do we get for $60?

The setup is the following. Let x be the weight of the co�ee. Since the total price is 60, we have a
linear equation:

3x = 60 .

We solve it:

x =
60

3
= 20 .

The algebraic operations are very simple, and the complexity comes from elsewhere: the number of variables.

One more time: we have the Kenyan co�ee that costs $2 per pound and the Colombian co�ee that costs $3
per pound. Since the total weight is 6, we have a linear relation between x and y:

1 x+ y = 6 .

Since the total price of the blend is $14, we have another linear relation between x and y:

2 2x+ 3y = 14 .

According to the theorem, the graphs of the relations are lines, these lines:

Then, for a combination of weights x and y to satisfy both of the requirements, the point (x, y) has to belong
to both of the lines! This point is (x, y) = (4, 2), which can be con�rmed by substituting the two numbers
x = 4, y = 2 into the two relations:

1 x +y = 6 → 4 +2 = 6 TRUE

2 2x +3y = 14 → 2 · 2 +3 · 2 = 14 TRUE

We also solved the problem algebraically. Solving for one of the variables creates a function from either of
these relations:

1 x +y = 6 =⇒ y = 6− x
2 2x +3y = 14 =⇒ y =

1

3
(14− 2x)

But this is supposed to be the same number:

y = 6− x =
1

3
(14− 2x) .

Therefore, x = 4. Substitute this back into the �rst function: y = 6− x = 6− 4 = 2.

Such a problem is called a system of linear equations.



1.9. Linear relations and functions 54

Exercise 1.9.8

Solve the problem by making the relations functions of y.

Exercise 1.9.9

Set up a system of linear equations � but do not solve it � for the following problem: �An investment
portfolio worth $1, 000, 000 is to be formed from the shares of: Microsoft - $5 per share, and Apple - $7
per share. If you need to have twice as many shares of Microsoft than Apple, what are the numbers?�

Example 1.9.10: nutrition

Consider the following problem: �One serving of tomato soup contains 100 cal and 18 g of carbohy-
drates. One slice of whole bread contains 70 cal and 13 g of carbohydrates. How many servings of
each should be required to obtain 230 cal and 42 g of carbohydrates?�

Let's collect the information in a table:
soup bread meal

carbs 100 70 230
cal 18 13 42

We explicitly introduce the variables:
1. Let x be the number of serving of soup.
2. Let y be the number of serving of bread.

Then the table can be enhanced:
x servings of soup + y servings of bread = meal

carbs 100x + 70y = 230
cal 18x + 13y = 42

Exercise 1.9.11

Finish the problem.

Exercise 1.9.12

Solve the system of linear equations: {
x− y = 2 ,
x+ 2y = 1 .

Exercise 1.9.13

Solve the system of linear equations and geometrically represent its solution:{
x− 2y = 1 ,
x+ 2y = −1 .

Exercise 1.9.14

Geometrically represent this system of linear equations:{
x− 2y = 1 ,
x+ 2y = −1 .

Exercise 1.9.15

What if there is a third type of co�ee in the example, say $4 per pound?
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There may be many relations with the same graph:

2x+ 2y = 4 x+ y − 2 = 0 −x− y + 2 = 0
↖ ↑ ↗

x+ x+ y + y = 4 ← x+ y = 2 → y = −x+ 2

↙ ↓ ↘
−y = x− 2 −x = y − 2 x = −y + 2

But two of them are special: they are functions. One is y in terms of x and the other x in terms of y.

Warning!

Either of those two can also have a di�erent repre-
sentation: y = −x+ 2 and y = 1− x+ 3.

It is crucial that graphs are sets too; they are subsets of R2. In fact, we can still use the set-building
notation:

{(x, y) : condition on x, y} .
This condition, just as before, is often an equation; for example:

{(x, y) : x+ y − 2 = 0} .

Because of the indirect nature of the de�nition of this set, plotting the graph of a numerical relation is
cumbersome:

outcome:
Plot point (x, y).

plane: pair: relation: TRUE ↗
R2 → (x, y) → x+ y = 2? →

FALSE ↘
Don't plot anything.

What else can we do?

We proved that the graph of any linear relation, i.e.,

Ax+By = C ,

with either A or B not equal to zero, is a straight line. To create a function, all we need is to solve for x or
for y.

Theorem 1.9.16: When Linear Relation Is Function

A linear relation between the sets X = R and Y = R,

Ax+By = C ,

may be represented by a function, called a linear function, as follows:
1. When B 6= 0, it is a function F : X → Y given by

y = F (x) = −A
B
x+

C

B
.

2. When A 6= 0, it is a function G : Y → X given by

x = G(y) = −B
A
y +

C

A
.

Indeed, every function is a relation but not every relation is a function, but when it is, there might be two.
The two cases are illustrated below be referencing their graphs:
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Exercise 1.9.17

Explain the intersection of the two cases and what's lies outside.

Example 1.9.18: two functions in a relation

In the relation x+ y = 50 above, we have A = 1 and B = 1, so we can do both:

y = −x+ 50 and x = −y + 50 .

In the relation y = 3, we have A = 0 and B = 1; this is the former case and the function is constant:

F (x) = 3 .

In the relation x = 2, we have A = 1 and B = 0; this is the latter case and the function is constant:

G(y) = 2 .

Exercise 1.9.19

Find all linear functions is these linear relations: (a) 3x− 2y = 2 , (b) 2x = 3 , (c) −y = 7 .

Exercise 1.9.20

Prove the theorem.

Exercise 1.9.21

What lines are not included in case 1? case 2?

Exercise 1.9.22

State both cases of the theorem as implications (an �if-then� statement).

Transitioning to functions makes the plotting task much easier. The 49 computations are reduced to just 7:

x −2 −1 0 1 2 3 4
−2 −4 −3 −2 −1 0 1 2
−1 −3 −2 −1 0 1 2 3

0 −2 −1 0 1 2 3 4
1 −1 0 1 2 3 4 5
2 0 1 2 3 4 5 6
3 1 2 3 4 5 6 7
4 2 3 4 5 6 7 8

→

x y = −x+ 2
−2 4
−1 3

0 2
1 1
2 0
3 −1
4 −2

Instead of testing a lot of points trying, and mostly failing, to �nd the ones that �t the equation, we just
plug in as many values of x as necessary, producing a y and, consequently, a point on the plane every time:



1.10. Representation of functions 57

The price we paid is algebra, solving for y:

x+ y = 2 =⇒ y = x− 2 .

In general, instead of having to run through a whole plane of (x, y)'s � for relations, we only need to run
through a line of x's � for functions. We also observe that since there can be only one point of the graph
of a function above each x, the graph of a function must be one-point thick ; it's a curve!

Exercise 1.9.23

State the converse of �the graph of every linear function is a straight line� and �nd out if it's true.

1.10. Representation of functions

Functions are explicit relations. The two variables are still related to each other, but this relation is now
unequal: The input comes �rst and, therefore, the output is dependent on the input. That is why we say
that the input is the independent variable while the output is the dependent variable.

A function is a black box ; something comes in and something comes out as a result, like this:

input → ��� → output

The only law is the following:

I The same input must produce the same output.

For example, a vending machine will provide you with the item the code of which you have entered (if
su�cient funds are inserted).

In the case of numerical functions, both are numbers. The black box metaphor suggests that while some
computation happens inside the box, what it is exactly may be unknown:

input function output

income → IRS → tax bill

How things happen might be even unimportant; what's important is the rule a function has to follow: one
y for each x. For example, if you don't know how this function is computed, you can ask someone to do it
for you:

input function output
x → cos → y

If we are able to peek inside, we might see something very complex or something very simple:

input → multiply by 3 → output

Function is what function does! It may be simply a sequence of instructions.
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Example 1.10.1: �owcharts represent functions

For example, for a given input x, we do the following consecutively:
• add 3,
• multiply by 2, and then
• square.

Such a procedure can be conveniently visualized with a ��owchart�:

If the input is x = 1, we acquire three more numbers in this order:

1 7→ 1 + 3 = 4 7→ 4 · 2 = 8 7→ 82 = 64

Here is the algebra of what is going on inside of each of the boxes:

x → x+ 3 → y → y · 2 → z → z2 → u

We have introduced intermediate variables for reference. Note how the names of the variables match;
we, therefore, can proceed to the next step. A sequence of algebraic steps of this process is as follows:

x → x+ 3 = y
→ y · 2 = z

→ z2 = u

It can also be called an algorithmic representation.

Exercise 1.10.2

Describe the function that computes a sales tax of 5%.

Exercise 1.10.3

Describe the function that computes a discount of 10%.

Thus, we represent a function diagrammatically as a box that processes the input and produces the output:

input function output

x → f → y

Here, f is the name of the function (in fact, �f � stands for �function�). In this example, the function is
unspeci�ed. We make it speci�c by describing how it works.

Functions come from many sources and can be expressed in di�erent forms:

• a list of instructions (an algorithm)

• an algebraic formula

• a list of pairs of inputs and outputs

• a graph

• a transformation

An algorithm is commonly a list of instructions given to a computer, i.e., a program. It may be preferable to
have a function to be handled by a person represented in the form of a formula. The person may appreciate
a more compact form that allows to notice patterns, simplify, and further manipulate the function.
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An algebraic representation is exempli�ed by y = 3x− 1. In order to properly introduce this as a function,
we give it a name, say f , and write:

f(x) = 3x− 1 .

Let's examine this notation:

Variables of function

y = f ( x ) = 3x− 1
↑ ↑ ↑ ↑

name: dependent function independent independent
variable variable variable

The letters are all just names ! The choices for these names are mostly arbitrary. They have to vary when
there is more than just one function present, for example:

z = g ( t ) = t+ 5
↑ ↑ ↑ ↑

name: dependent function independent independent
variable variable variable

Warning!

It is often acceptable (or even preferable) to omit
the name of the function and concentrate on the
variables, as we did in the last example.

Thus, the independent variable is the input, and the dependent variable is the output. When the independent
variable is made speci�c, so is the dependent variable, via the substitution:

f ( 2 ) = 3 · 2− 1
↑ ↑ ↑

function input output

We can think of this notation as a �black funnel�:

Here x enters through the funnel and then (after processing) y appears from the other end. With the same
e�ect, we can use a blank box as an entry gate instead of x:

f ( � ) = 3 ·� − 1
↑ ↑

insert input insert input

We can substitute functions too:

f ( −t+ 5 ) = 3 · (−t+ 5)− 1
↑ ↑ ↑

function input output

In summary:

I The �x� in a formula serves as a placeholder for: numbers, variables, and whole functions.
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Exercise 1.10.4

Provide a formula for the new function f(z2) made from the function f above.

Example 1.10.5: function as sequence of steps

Let's take the function from the beginning of the section; it requires several stages:

y = x+ 3, z = y · 2, u = z2 .

They can be written as follows:

� → �+ 3 → � · 2 → �2 → �

For example, we compute its output for the input x = 2 in three consecutive steps:

2 7→ 2 + 3 = 5 7→ 5 · 2 = 10 7→ 102 7→ 100

Example 1.10.6: decomposition of function

Consider this formula:
f(x) =

√
x2 − 3 + 5 .

To represent this function as a list of instructions, we just read the formula starting with x:

input → square → subtract 3 → take square root → add 5 → output

We read inside out!

Exercise 1.10.7

Represent this function as a list of instructions:

f(x) =
(√

x+ 2
)3
.

A function can also be represented by a list of pairs of inputs and outputs.

In the numerical case, this list is a table with two columns, for x and y:

x y = f(x)
0 1
1 3
2 4
3 0
4 2
... ...

This may be called a numerical representation of a function as the list contains only numbers. Any list like
this would do as long as there are no repetitions in the x-column!

To create larger lists, one uses a spreadsheet. Each value in the y-column is computed from the corresponding
value in the x-column via some algebraic formula:
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For example, for y = x2, we have in the y-column the following spreadsheet formula:

=RC[-1]� 2

It refers to the value located in: same row, previous column.

Furthermore, it is even possible that a function is pure data and there is no formula! One can imagine, for
example, that the table has come from a measuring device (say, a thermometer) that takes readings at equal
intervals of time.

Even though the data in the list represents the same function as the formula above, we can see that there are
gaps in the data. We can't tell, for example, what 1.52 is or what 1002 is. Thus, our algebraic representation
is complete, but the numerical representation given by the list is not. However, this list is a function but
with a smaller domain than the original.

The advantage of numerical representations is that they have been pre-computed for you so that you can
see patterns ; for example, with x increasing we see that:

• y is also increasing, and furthermore,

• y grows faster and faster.

If the last observation is hard to see in the data, we either produce more data � such as compute the
di�erence of the sequence � or visualize the data that we do have.

We can use the list data to plot points, which leads us to the graphical representation of functions. Below,
the de�nition we have used for relations is repeated, but this one will be even more widely used:

De�nition 1.10.8: graph of function

The graph of a numerical function y = f(x) is the set of points in the xy-plane
that satisfy y = f(x). In other words, it is the following set:

{(x, y) : y = f(x)} .

For example, we can plot the above data (just the points that have been provided):
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Warning!

We will speak of �a graph�, or �graphs�, when we
deal with the graph of some function.

Example 1.10.9: plotting points

A spreadsheet software comes with graphic capabilities. It will plot all points you have in the list:

It can also automatically add a curve connecting these points.

Warning!

The �rst plot is the truth; the rest is a guess.

Note that when x and y represent two variables that have nothing to do with each other � such as time and
location � neither do the two axes. In that case, neither the unit lengths nor the locations of the origins
have to match:

A transformation takes the domain X, a subset of the real line, transforms it according to the function
(shift, stretch, �ip, etc.), and places the result on the codomain Y . It is discussed in the next chapter.

An algorithm is a verbal representation of a function. It may contain no explicit algebra. Instead, it tells
us how to get a certain output given any input. For example,

• Question: How do we get from x to y?

• Answer: Let y be equal to the square of x.

This representation, too, conveys a compete information about the function.

Example 1.10.10: �owchart from formula

Describe what this function does:

f(x) =
x2 + 1

x2 − 1
,

verbally:
• Step 1: Multiply x by itself, call it y.
• Step 2: Add 1 to y, call it z.
• Step 3: Subtract 1 from y, call it u.
• Step 4: Divide z by u.
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There is a fork in the diagram:

y + 1 = z
↗ ↘

x → x2 = y → z/u = w
↘ ↗

y − 1 = u

A (numerical) function is a rule or procedure f that assigns to any number x in a set X, called the set

of inputs or the domain, one number y in another set of real numbers Y , called the set of outputs or the
codomain of f .

In other words,

1. each x in X has a counterpart in Y , and

2. there is only one such counterpart.

This rule can be violated when there are too few or too many arrows for a given x:

Then this is not a function. It is OK, however, to have too few or too many arrows for a given y!

Next, let's revisit the rule � how to get y from x � that de�nes a function. It must satisfy:

I There is only one y for each x.

Let's illustrate how the rule might visibly fail for each of these four ways to represent a function.

Example 1.10.11: algebraic representation

In the following very common way to present a formula, there are two outputs for the same input
(unless x = 0):

y = ±x .

Not a function!

Example 1.10.12: numerical representation

In the following list of values, the inputs aren't ordered. It is, therefore, possible that the list might
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contain two rows with the same x-value and di�erent y-values:

x y
... ...
0 22

↗ ... ... ↖
same! ... ... di�erent!

↘ ... ... ↙
0 55
... ...

Not a function!

Example 1.10.13: algorithmic representation

In this list of commands, one is either ambiguous or it produces multiple outputs:
• Step 1: ...
• ...
• Step 50: Add today's date to the output of step 49.
• ...
• Step 100: ...

Not a function!

Exercise 1.10.14

Suggest your own examples of how formulas, lists, and algorithms can fail to give us a function.

Example 1.10.15: graphical representation

The following graph has two points � outputs � above x = a:

Not a function!

For the graphical representation, all it takes is a glance.

Theorem 1.10.16: Vertical Line Test For Relations

A relation is a function of x if and only if every vertical line crosses the graph
at one point or none.

So, every vertical line is a test:
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Corollary 1.10.17: Horizontal Line Test For Relations

A relation is a function of y if and only if every horizontal line crosses the graph
at one point or none.

So, every horizontal line is a test:

Exercise 1.10.18

Split either theorem into a statement and its converse.

1.11. Linear functions

The dependence of x on y in a numerical function can be very simple.

However, the simplest kind of function is the one whose output does not change with the input! This is a
constant function, i.e., it is given by a formula:

f(x) = k for each x,

for some predetermined number k. Its implied domain is, of course, X = (−∞,∞). Its computation is
non-existent; for example, when k = 3, we have the following:

input → produce 3 → output

As you can see, the input is thrown away. This is the list of values of this function:

x y = f(x)
0 3
1 3
2 3
3 3
4 3
... ...

Warning!

Depending on context, 3 might mean a function.

Plotting a few of these points reveals that the graph is a horizontal line:
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Indeed, the corresponding relation is y = 3.

This is what the graphs of all constant functions combined look like:

The next simplest function is the one that does nothing to the input; i.e., it is given by a formula:

f(x) = x .

Its implied domain is, of course, X = (−∞,∞). Its computation is trivial:

input → pass it → output

This time, the input isn't thrown away but there was still no algebra needed. This is its list of values:

x y = f(x)
0 0
1 1
2 2
3 3
4 4
... ...

Plotting a few of these points reveals that the graph is a 45-degree line:

Indeed, the relation is y = x.

Warning!

If we say that y is x, then the xy-plane should have
the same units for the two axes.

Exercise 1.11.1

Plot the graph of a function that represents the location as it depends on time if the speed is one foot
per second.

So far, the function require no algebraic operations! Linear functions are at the next level of complexity.
They may be �sloped�.
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De�nition 1.11.2: slope

Suppose we have two points in a speci�ed order, A then B, on the xy-plane,
then the slope of the line from A to B is de�ned to be

slope = m =
rise

run
=

change of y

change of x

Exercise 1.11.3

Can the rise be zero? Can the run be?

Example 1.11.4: slope

The geometric meaning of the numerator and denominator is seen below:

We can just count the number of steps vertically and horizontally (left):
• run = 6, and
• rise = 9, therefore,

• slope =
9

6
=

3

2
= 1.5 .

Or we can utilize the coordinates of the two points and subtract those of A from those of B (right):
• run = 8− 2 = 6, and
• rise = 10− 1 = 9, therefore,

• slope =
9

6
=

3

2
= 1.5 .

�Rise� and �run� in this context aren't meant to be substitutes for �lengths of these segments� or
�distances between those points�. In contrast to plain geometry, one or both of them can be negative!
In particular, the slope remains unchanged if we reverse the order of the two points: B �rst, A second:

Indeed:
• run = 2− 8 = −6, and
• rise = 1− 10 = −9, therefore,

• slope =
−9

−6
=

3

2
= 1.5 .

Same slope! It follows that we are studying the slope of the line not just that of the two points.
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Exercise 1.11.5

Find more pairs of points on the line with slope 1.5.

We utilize the coordinate system to �nd the slope. Suppose we have two distinct points on a straight line
in a speci�ed order, say,

A = (x0, y0) and B = (x1, y1) ,

then the slope of the line they determine is given by the formula:

m =
change from y0 to y1

change from x0 to x1

=
y1 − y0

x1 − x0

It is crucial to know the following:

Theorem 1.11.6: Slope Backwards

The slope from A to B is equal to the slope from B to A.

Proof.

If we reverse the order of the two points � B then A � both numerator and denominator simply �ip
their signs:

change from y1 to y0 = −(change from y0 to y1) ,

and
change from x1 to x0 = −(change from x0 to x1) .

But if the numerator and denominator of a fraction �ip their signs, the fraction remains intact:
(−a)/(−b) = a/b. We have for the slope:

m =
y0 − y1

x0 − x1

=
−(y1 − y0)

−(x1 − x0)
=
y1 − y0

x1 − x0

= m.

Warning!

Whether it's A then B, or B then A, it must be
the same for both numerator and denominator.

For the de�nition to make sense we need to show that any two pairs of points will produce the same slope:

We have a stronger result below:

Theorem 1.11.7: Slope From Two Points

Any two points chosen on a straight line produce the same slope.
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Proof.

Suppose we put a pair of points A and B on the line, as well as another pair C and D. We will show
that these two triangles produce the same slope:

We use what we know from Euclidean geometry. The two horizontal lines (as all parallel lines) cut
the same angle from our sloped line. So, the base angles are equal. Next, the two vertical lines (as all
parallel lines) cut the same angle from our sloped line. So, these angles are also equal. And so are the
two right angles! Therefore, these are similar triangles. This means that the lengths of their sides are
proportional. In particular, the rise and run are proportional! If the second triangle is k times bigger
than the �rst, we have:

The slope of the second triangle =
k · rise
k · run

=
rise

run
= the slope of the �rst triangle.

That's is what makes a straight line a straight line!

Exercise 1.11.8

Prove the theorem using trigonometry.

What does the slope tell us about the line?

While a positive slope appears when the rise and the run have the same signs, a negative slope appears
when the signs are opposite:

Below we arrange all lines according to their slopes (as if they all start at the origin):
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Warning!

Comparing the line with slope m = 1 and the line
with m = −2 suggests that the word �steepness� as
a substitute for slope should be used with caution:

steepness = |m| .

It's as if increasing the slope rotates the line counterclockwise:

We can see that the scope of possible values of slopes is (−∞,+∞).

Warning!

It is impossible to assign a slope to a vertical line
even if we are willing to use in�nity: Is it −∞ or
+∞?

Exercise 1.11.9

What happens to the slope of a line drawn on a piece of paper for di�erent choices of the axes?

We exclude the possibility of a vertical line and an in�nite slope! This is why we can concentrate on linear
functions only.

De�nition 1.11.10: linear function and polynomial

A linear function is a numerical function given by this formula:

f(x) = m · x+ b

for some predetermined numbersm and b. Whenm 6= 0, such a function is called
a linear polynomial. When b = 0, such a function is called a linear operator.

Warning!

Linear polynomials exclude constant functions.

So, the simplest algebra has appeared: addition/subtraction and multiplication by a constant number. They
are seen in the function's �ow-chart:

f : x → multiply by m → add b → y
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The formula is commonly called the slope-intercept form of the linear function:

Slope-intercept form

f(x) = m · x + b
↑ ↑
slope y-intercept

The latter is indeed the y-intercept of the function as de�ned in the last section:

f(0) = m · 0 + b = b .

The concept of slope is central in calculus. For example, in similarity with sequences, we notice the following:

• If m > 0, then the outputs y = f(x) are increasing as the inputs x are increasing.

• If m < 0, then the outputs y = f(x) are decreasing as the inputs x are increasing.

• If m = 0, then the outputs y = f(x) remain the same as the inputs x are increasing; i.e., f is a
constant function.

Warning!

Even though straight lines remain straight lines
if we resize the plot, the �slopes� will appear to
change.

Exercise 1.11.11

Arrange all linear polynomials with the same slope according to their y-intercepts.

The slope gives us the direction of the line. That's how the slope-intercept formula, y = mx + b, works:
We start at the y-intercept, (0, b), and then proceed in the direction provided by the slope, m. In the same
manner, we can start at any point. Suppose a point is given, say, A = (x0, y0). From there, we go as
described above: 1 unit right (the run) and m units up (the rise).

Example 1.11.12: plotting a line with a ruler

Let's plot the straight line with slope m = 2 through the point A = (−2,−2). From A, we make one
step right and two steps up. We have a new point, say B, with coordinates B = (−1, 0) (left):

With a ruler, we draw a line through A and B (right).

Exercise 1.11.13

Plot the straight line with slope m = −2 through the point A = (−1,−1). Make up your own
parameters and plot the line. Repeat.

Exercise 1.11.14

What is the equation of the line through the points A = (−1, 2) and B = (2, 1)?
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Example 1.11.15: plotting a line without a ruler

Suppose, again, a point is given, A = (x0, y0), and the slope is known to be m. From A, we go 1 unit
right and m units up, repeated as many times as necessary:

(x0, y0) −→ (x0 + 1, y0 +m) −→ (x0 + 2, y0 + 2m) −→ (x0 + 3, y0 + 3m) −→ ...

Then we go 1 unit left and m units down, repeated as many times as necessary:

(x0, y0) −→ (x0 − 1, y0 −m) −→ (x0 − 2, y0 − 2m) −→ (x0 − 3, y0 − 3m) −→ ...

We have a sequence of points forming a line:

How do we �ll the gaps? We make half-steps: We go 1/2 unit left and m/2 units down.

Exercise 1.11.16

Suggest a way to plot more points.

Exercise 1.11.17

Plot as many points as possible for the line from (1, 3) and slope −1.

Now, the algebra.

Suppose we have a speci�ed point A = (x0, y0) on a line with slope m. Let's consider an arbitrary point
X = (x, y) on the line:

How do we represent this point algebraically in terms of A and m?

The run is x− x0 and the rise is y − y0 (left or right). Therefore, the slope is

m =
y − y0

x− x0

.

So, the coordinates of X satisfy in this formula.

However, here x cannot be equal to x0! This is an inconvenience, because the point A itself doesn't satisfy
the equation. To avoid this limitation, we rewrite this formula: We multiply both sides by x − x0. The
result is a new and very important way to represent a line:

Theorem 1.11.18: Point-Slope Form of Line

A line with slope m passing through point (x0, y0) is given by the following linear
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relation:

y − y0 = m · (x− x0)

Once can even consider this to be new de�nition of slope.

Exercise 1.11.19

What is the di�erence between the two relations:

y − y0 = m · (x− x0) and m =
y − y0

x− x0

?

The relation can be converted to a function of y, or to a function of x provided m 6= 0;

y − y0 = m · (x− x0)

↙ ↘

y = y0 +m · (x− x0) x = x0 +
1

m
· (y − y0)

Even though we can solve for y any time we want (and make it a function!), this form is often preferable
because of the information it reveals. First, the rise and the run are clearly visible:

Point-slope form of line

rise = slope · run
(y − y0) = m · (x− x0)

Second, the coordinates of the �xed point A = (x0, y0) and a variable point X = (x, y) on the graph are
visible too:

Point-slope form of line

point X point X
↓ ↓
y − y0 = m · (x − x0)

↑ ↑
point A point A

Exercise 1.11.20

Find the y-intercept from the point-slope form.

Example 1.11.21: plotting incremental motion

What is the slope of the line that follows this path? We make p steps right and q step up as we follow
the line:
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Then the equation becomes:
p(y − y0) = q(x− x0) .

The slope is m = q/p.

1.12. Sequences

Example 1.12.1: falling ball

We videotape a ping-pong ball falling down and record � at equal intervals � how high it is. The result
is an ever-expanding string, a sequence, of numbers. If the frames of the video are combined into one
image, it will look something like this:

We ignore the time for now and concentrate on the locations only. We have the �rst few in a list :

36, 35, 32, 27, 20, 11, 0 .

This data can be visualized by placing the ball at every coordinate location on the real line, oriented
vertically or horizontally:

Though not uncommon, this method of visualization of motion, or of sequences in general, has its
drawbacks: Overlapping may be inevitable and the order of events is lost (unless we add labels). A
more popular approach is the following. The idea is to separate time and space, to give a separate real
line, an axis, to each moment of time, and then bring them back together in one rectangular plot:
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The location varies � as it does � vertically while the time progresses horizontally. The result is similar
to the collection of the frames of the video as seen above. The plot is called the graph of the sequence.
As far as the data is concerned, we have a list of pairs, time and location, arranged in a table:

moment height
1 36
2 35
3 32
4 27
5 20
6 11
7 0

The table is just as e�ective representation of the data if we �ip it; it's more compact:

moment: 1 2 3 4 5 6 7
height: 36 35 32 27 20 11 0

Warning!

It is entirely a matter of convenience to represent
our data as a two-column table (especially in a
spreadsheet) or a two-row table. In either case,
it's a list of pairs of numbers.

So, the most common way to visualize a sequence of numbers is as a sequence of points on a sequence of
vertical axes:

It is also common to represent the same numbers as vertical bars :
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Warning!

The graph is just a visualization of the data.

To represent a sequence algebraically, we �rst give it a name, say, a, and then assign a speci�c variation of
this name to each term of the sequence:

Indices of sequence

index: n 1 2 3 4 5 6 7 ...
term: an a1 a2 a3 a4 a5 a6 a7 ...

The name of a sequence is a letter, while the subscript called the index indicates the place of the term
within the sequence. It reads: �a sub 1�, �a sub 2�, etc.

The letter �n� is often the preferred choice for the index because it might stand for �natural numbers�:
1, 2, 3, 4, .... As before, �...� indicates a continuing pattern: The indices continue to grow incrementally.

Example 1.12.2: falling ball

For the last example, let's name the sequence h for �height�. Then the above table take this form:

moment: 1 2 3 4 5 6 7 ...
height: h1 h2 h3 h4 h5 h6 h7 ...

|| || || || || || || ...
height: 36 35 32 27 20 11 0 ...

This is the same table aligned vertically:

moment height height
1 h1 = 36
2 h2 = 35
3 h3 = 32
4 h4 = 27
5 h5 = 20
6 h6 = 11
7 h7 = 0
.. .. ..

Either table is a list of identities that can be written in any order:

h3 = 32 h5 = 20 h7 = 0 h4 = 27

h1 = 36 h2 = 35 h4 = 27 h6 = 11

Let's deconstruct the notation:
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Index of a term

index

a ↓
↑ n

name

In other words, we specify a sequence �rst and then specify the location of the term within the sequence.

Indices serve as tags :

A sequence can come from a list or a table unless it's in�nite. In�nite sequences often come from formulas.

Example 1.12.3: sequence of reciprocals

The formula:
an = 1/n ,

gives rise to the sequence,

a1 = 1, a2 = 1/2, a3 = 1/3, a4 = 1/4, ...

Indeed, replacing n in the formula with 1, then 2, 3, etc. produces the numbers on the list one by
one, as follows. We enter n into the formula, and an appears at the end of the computation. In other
words, we place the current value of n inside a blank box (where n used to be) in the formula:

a� =
1

�
.

↑ ↑
insert n insert n

It is just substitution. We do this seven times below:

n 1 2 3 4 5 6 7 ...

an a1 a2 a3 a4 a5 a6 a7 ...

|| || || || || || || || ...
1

n

1

1

1

2

1

3

1

4

1

5

1

6

1

7
...

With a formula, we can use a spreadsheet (a vertical table) to produce more values with the formula:

=1/RC[-1]

We also plot these values:
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The complete, algebraic, representation is as follows:

an = 1/n, n = 1, 2, 3, ...

Exercise 1.12.4

Write a few terms of the sequences given by the formulas:
1. an = 3n− 1

2. bn = 1 +
1

n

We will say that this is the nth-term formula of the sequence.

Below is the simplest kind.

De�nition 1.12.5: constant sequence

A constant sequence has all its terms equal to each other.

In other words, we have
a1 = a2 = ... = c

for some number c.

Thus, every formula is capable of creating an in�nite sequence an. For example, we can take these:

• an = n

• bn = n2

• cn = n3

• etc.

They make up a whole class of sequences.

De�nition 1.12.6: power sequence

For every positive integer p, a power sequence, or a p-sequence, is given by the
formula:

an = np, n = 1, 2, 3, ...

The relation between the sequences becomes clear if we zoom out from their graphs (p = 1, 2, ..., 7):
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Indeed, the larger the power p, the faster the sequence grows.

The relation between the consecutive terms of each sequence is also clear: It grows! We use these words:

• �growth� or �increase� when we see the graph that rises left to right, and

• �decline� or �decrease� when we see the graph that drops left to right,

as follows:

As you can see, the behavior varies even within these two categories.

The precise de�nition has to rely on considering every pair of consecutive terms of the sequence. For
example, the sequence of the falling ball,

36, 35, 32, 27, 20, 11, 0 ,

is decreasing because
36 > 35 > 32 > 27 > 20 > 11 > 0 .

For the general case, we write:
a1 > a2 > a3 > a4 > a5 > a6 .

In other words, the current term, an, is larger than the next, an+1:

last ≥ next

The meaning of this inequality is clear when we zoom in on the graph (right):
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On left, the sequence is increasing:
next ≥ last

The following will be used throughout.

De�nition 1.12.7: increasing sequence and decreasing sequence

• A sequence an is called increasing if, for all n, we have

an ≤ an+1 .

• A sequence is called decreasing if, for all n, we have

an ≥ an+1 .

Collectively, they are called monotone.

Warning!

Both increasing and decreasing sequences may have
segments with no change; furthermore, a constant
sequence is both increasing and decreasing.

Example 1.12.8: proving monotonicity

When the sequence is given by its formula, we use it directly. The sequence an = n2 is proven to be
increasing as follows. We need to show that for all n we have:

n2 < (n+ 1)2 .

We simply expand the right-hand side:

(n+ 1)2 = n2 + 2n+ 1 .

As n is positive, the last part, 2n+ 1, is positive too. Therefore, the expression is larger than n2.

Similarly, we show that
1

n
is decreasing via the following algebra:

n < n+ 1 =⇒ 1

n
>

1

n+ 1
.

The sequence
1,−1, 1,−1, 1,−1, 1,−1, 1,−1, ...

is neither increasing nor decreasing, i.e., it's not monotone.

Exercise 1.12.9

Show that
1

n2
is decreasing.

Exercise 1.12.10

Show that all power sequences are increasing.

A major reason why we study sequences is that, in addition to tables and formulas, a sequence can be
de�ned by computing its terms in a consecutive manner, one at a time.
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Example 1.12.11: regular deposits

A person starts to deposit $20 every month in his bank account that already contains $1000. Then,
after the �rst month the account contains:

$1000 + $20 = $1020 ,

after the second:
$1020 + $20 = $1040 ,

and so on. In other words, we have:
next = last + 20 .

Let's make this algebraic. Suppose an is the amount in the bank account after n months, then we
have a formula for this sequence:

an+1 = an + 20 .

How much will he have after 50 years? We'd have to carry out 50 · 12 = 600 additions. For the
spreadsheet, the formula refers to the last row and adds 20, as follows:

=R[-1]C+20

Below, the current amount is shown in blue and the next � computed from the current � is shown in
red:

Plotting several terms of the sequence at once con�rms that the sequence is increasing :

It also looks like a straight line.

De�nition 1.12.12: recursive sequence

We say that a sequence is recursive when its next term is found from the current
term by a speci�ed formula, i.e., an determines an+1.

This is the di�erence between computing a sequence directly, such as an = n2, and recursively, such as
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an+1 = an + 20:
n an
1 → a1

2 → a2

3 → a3

.. ..

n an
1 a1

↓
2 a2

↓
3 a3

↓
.. ..

The following will be routinely used.

De�nition 1.12.13: arithmetic progression

A sequence de�ned (recursively) by the formula:

an+1 = an + b

is called an arithmetic progression with b as its increment.

Exercise 1.12.14

If the increment is zero, the sequence is...

Example 1.12.15: compounded interest

An arithmetic progression describes a repetitive process. Also repetitive is the following typical situ-
ation. A person deposits $1000 in his bank account that pays 1% APR compounded annually. Then,
after the �rst year, the interest is

$1000 · .01 = $10 ,

and the total amount becomes $1010. After the second year, the interest is

$1010 · .01 = $10.10 ,

and so on. In other words, the total amount is multiplied by .01 at the end of each year and then
added to the total. An even simpler way to algebraically describe this is to say that the total amount
is multiplied by 1.01 at the end of each year, as follows. After the �rst year, the total is equal to

$1000 · 1.01 = $1010 .

After the second year, the total is equal to

$1010 · 1.01 = $1020.1 ,

and so on. In other words, we have:
next = last · 1.01 .

Let's make this algebraic. Suppose an is the amount in the bank account after n years. Then we have
the following recursive formula:

an+1 = an · 1.01 .

How much will he have after 50 years? We'd have to carry out 50 multiplications. For the spreadsheet,
the formula refers to the last row ( R[-1] ) and multiplies by 1.01, as follows:

=R[-1]C*1.01

We plot a term and the next one:
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Only after repeating the step 100 times can one see that this isn't just a straight line:

The sequence is increasing.

Exercise 1.12.16

What if, in addition to an interest of rate r, the depositor also faces in�ation of rate s?

The following will be routinely used.

De�nition 1.12.17: geometric progression

A sequence de�ned (recursively) by the formula:

an+1 = an · r ,

with r 6= 0, is called a geometric progression with r as its ratio. We say that this
is:
• a geometric growth when r > 1, and
• a geometric decay when r < 1.

Alternatively, it is called an exponential growth and decay, respectively.

Example 1.12.18: population loss

If the population of a city declines by 3% every year, it is left with 97% of its population at the end
of each year. The result is found by multiplying by .97, every time. We have, therefore:

after 3 years︷ ︸︸ ︷
((1, 000, 000 · 0.97)︸ ︷︷ ︸

after 1 year

·0.97

︸ ︷︷ ︸
after 2 years

) · 0.97 .

And so on. What will be the population after 50 years? We'd have to carry out 50 multiplications.
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The long-term trend is clear from the graph:

This is a geometric progression with ratio r = .97, i.e., a geometric decay. The sequence is decreasing
and eventually there is almost nobody left.

Exercise 1.12.19

Consider population dynamics with birth rate r and death rate s.

Example 1.12.20: deposits and interest, together

What if we deposit money to our bank account and receive interest? The recursive formula is simple,
for example:

an+1 = an · 1.05 + 2000 .

Here, the interest is 5% with a $2000 annual deposit.

Exercise 1.12.21

What does a 2% in�ation do to a dollar hidden in the mattress?

Any algebraic operation, or several operations together, can produce a recursive sequence:

a0 → add 2 → a1 → add 2 → ... → add 2 → an → ...

a0 → divide by 3 → a1 → divide by 3 → ... → divide by 3 → an → ...

a0 → square it → a1 → square it → ... → square it → an → ...

Exercise 1.12.22

How do these recursive sequences depend on the value of a0?

When a sequence is de�ned recursively, we'd need to carry out this de�nition n times in order to �nd the
nth term. This is in contrast to sequences de�ned directly via its nth-term formula, such as an = n2, that
requires a single computation to �nd any term.

An important recursive sequence is constructed from any sequence: the sum represents the totality of the
�beginning� of the sequence, found by adding each of its terms to the next, up to that point.
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Example 1.12.23: sequences given by lists

We just add the current term to what we have accumulated so far:

sequence: 2 4 7 1 −1 ...
↓ ↓ ↓ ↓ ↓ ...

sums: 2
2 + 4 = 6

6 + 7 = 13
13 + 1 = 14

14 + (−1) = 13
↓ ↓ ↓ ↓ ↓ ...

new sequence: 2 6 13 14 13 ...

We have a new list!

Example 1.12.24: sequences given by graphs

We treat the graph of a sequence as if made of bars and then just stack up these bars on top of each
other one by one:

These stacked bars � or rather the process of stacking � make a new sequence.

De�nition 1.12.25: sequence of sums

For a sequence an, its sequence of sums, or simply the sum, is a new sequence sn
de�ned and denoted for each n ≥ m within the domain of an by the following
(recursive) formula:

sm = 0, sn+1 = sn + an+1

In other words, we have:

sn = am + am+1 + ...+ an

Example 1.12.26: alternating sequence

Let's do some algebra. Here an is the original sequence and sn is the new one:

n an sn = sn
1 1 1 = 1
2 −1 1− 1 = 0
3 1 1− 1 + 1 = 1
...

...
...

...
n (−1)n 1− 1 + 1− ...+ (−1)n = 1 or 0

The resulting sequence is also �alternating�!

A commonly used notation is the following:
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Sigma notation for summation

sn = am + am+1 + ...+ an =
n∑

k=m

ak

Let's take a closer look at the new notation. The �rst choice of how to represent the sum of a segment �
from m to n � of a sequence an is this:

am︸︷︷︸
step 1

+am+1︸ ︷︷ ︸
step 2

+... +ak︸︷︷︸
step k

+... +an︸︷︷︸
step n−m

.

This notation re�ects the recursive nature of the process but it can also be repetitive and cumbersome. The
second choice is more compact:

n∑
k=m

ak .

Here the Greek letter Σ stands for the letter S meaning �sum�.

Sigma notation

3∑
k=0

(
k2 + k

)
= 20 −→

beginning and end values for k
↓

3

k = 0

∑(
k2 + k

)
= 20

↑ ↑
a speci�c sequence a speci�c number

Warning!

It would make sense to have �k = 0� above the
sigma:

k=3∑
k=0

(
k2 + k

)
.

Example 1.12.27: expanding from sigma notation

The computation above is expanded here:

3∑
k=0

(
k2 + k

)
=

k k2 + k

0 02 + 0 = 0 +

1 12 + 1 = 2 +

2 22 + 2 = 6 +

3 32 + 3 = 12

= 20

Exercise 1.12.28: contracting to sigma notation

How will the sum change if we replace k = 0 with k = 1, or k = −1? What if we replace 3 at the top
with 4?
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Example 1.12.29: contracting summation

This is how we contract the summation:

12 + 22 + 32 + ...+ 172 =
n∑
k=1

k2 .

This is only possible if we �nd the nth-term formula for the sequence; in this case, ak = k2. And this
is how we expand back from this compact notation, by plugging the values of k = 1, 2, ..., 17 into the
formula:

17∑
k=1

k2 = 12︸︷︷︸
k=1

+ 22︸︷︷︸
k=2

+ 32︸︷︷︸
k=3

+...+ 172︸︷︷︸
k=17

.

Similarly, we have:

1 +
1

2
+

1

22
+

1

23
+ ...+

1

210
=

10∑
k=0

1

2k
.

Exercise 1.12.30

Con�rm that we can start at any other initial index if we just modify the formula:

1 +
1

2
+

1

22
+

1

23
+ ...+

1

210
=

?∑
k=?

1

2k−1
=

?∑
k=?

1

2k−2
= ...

Exercise 1.12.31

Contract this summation:

1 +
1

3
+

1

9
+

1

27
= ?

Exercise 1.12.32

Expand this summation:
4∑

k=0

(k/2) = ?

Exercise 1.12.33

Rewrite using the sigma notation:
1. 1 + 3 + 5 + 7 + 9 + 11 + 13 + 15
2. .9 + .99 + .999 + .9999
3. 1/2− 1/4 + 1/8− 1/16
4. 1 + 1/2 + 1/3 + 1/4 + ...+ 1/n
5. 1 + 1/2 + 1/4 + 1/8
6. 2 + 3 + 5 + 7 + 11 + 13 + 17
7. 1− 4 + 9− 16 + 25
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2.1. The image: the range of values of a function

One of the most important characteristics of a function is the set of its values.

Let's go back to the set X of boys, the set of balls Y , and the �I prefer� function F from X to Y . A simple
question we may ask about it is: What do the boys like as a group? It has a simple answer, a list: basketball,
tennis, and football. We just have to look at Y and record each element that has an arrow drawn toward it:

This set is a subset of the codomain Y :

V = { basketball, tennis, football } ⊂ Y .

While the latter is the set of all possible or potential values of F , the former is the set of actual values.
In other words, this is the range of values of the function. It can be, but is not in this case, the whole
codomain.

De�nition 2.1.1: image of function

The image, or the range, of a function F : X → Y is the set of all of its values,
i.e.,

{ y : F (x) = y , FOR SOME x } .

We see the image of the domain re�ected in the codomain:

88
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In the de�nition, we test each y: Is there a corresponding x? If there is, we add this y to the set.

Exercise 2.1.2

Explain how one can use switch from the original codomain of F to its range V and create a new
function G : X → V . Are there any others?

Now numerical functions.

You get an idea about what the range is by simply looking at the y-column of the table of values of the
function (just as looking at the x-column gives you an idea about the domain). However, �nding the set
explicitly requires some algebra.

Linear functions are simple. Consider how the arrows go from x to the graph and then to y:

All of them can be reversed, unless this is a constant function.

Now algebra. We need to try, if possible, to �nd an x for each y. The computations are easy too:

y = mx+ b =⇒ x =
y − b
m

,

for m 6= 0. So, there is an x for every y! We have proven the former part of the following:

Theorem 2.1.3: Image of Linear Function

The image of a linear function y = mx+ b is one of the two:
• the set of real numbers, V = R, when m 6= 0; otherwise,
• a single point, V = {b}.

Exercise 2.1.4

Prove the latter part.

Exercise 2.1.5

State the theorem as an equivalence (an �if-and-only-if� statement).
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Example 2.1.6: range of x2 and x3

Can we make the same argument for f(x) = x2? Of course not: Squares can't be negative! But what
about the rest of y's? We attempt to solve the equation, for each y:

y = x2 =⇒ x =
√
y AND y ≥ 0 .

Therefore, the image of x2 is
{y : y ≥ 0} = [0,+∞) .

What about x3? It works for any y:

y = x3 =⇒ x = 3
√
y .

Why such a di�erence? In addition to the algebra above, we will appreciate the di�erence between the
two functions by examining their graphs. For example, we can thicken them and shrink the xy-plane:

So, the vertical �spread� of the graph gives us the range (the horizontal �spread� of the graph gives us
the domain). This is how the image of y = x2 is seen as a ray in the y-axis:

Exercise 2.1.7

Use these two methods to �nd the domain of these functions.

Generally, to �nd the image of a numerical function, the graph of which is supplied, we test y's one at a
time. From each of them, we draw a horizontal line and note whether it crosses the graph:

So, these graphs cannot touch or cross the x-axis, and that is the same as to say that 0 isn't in the image.
Likewise, their graphs cannot touch or cross the y-axis and that is the same as to say that 0 isn't in the
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domain. That's the analogy � and the symmetry � of the problems of the domain and the image (not the
codomain). It is the symmetry between the x-axis and the y-axis in the xy-plane.

Warning!

Image 6= codomain.

If the domain and the range are intervals, the graph of the function is contained in the rectangle with these
sides:

Another question we can ask about the boys and the balls is: Who likes basketball? or baseball, etc.? We
just look at the arrow, or arrows, that is drawn towards this ball and note where it comes from. The result
is a subset of X. This is what happens with the above example:

De�nition 2.1.8: preimage of value

The preimage of an element b in a set Y under a function F : X → Y is the set
of all x's the value of which under F is b, i.e.,

{x : F (x) = b} .

In other words, we are solving equations again.

We carry out this computation for every ball. We discover, in particular, that the preimage of baseball is
the empty set. This is always the case with outputs outside the range!

The picture below illustrates how to �nd the preimage of a point of a numerical function:
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This is what we already know:

• The preimages under a constant function are empty with an exception of a single value, the preimage
of which is the whole x-axis.

• The preimages under linear (non-constant) polynomials are single points.

Exercise 2.1.9

Prove the above statements.

2.2. Numerical functions are transformations of the line

...and vice versa.

When we face a numerical function y = f(x) given to us without any prior background, it is a good idea to
create a tangible representation for it. The two main ways we are familiar with are these:

1. We think of the function as if it represents motion: x time, y location.

2. We plot the graph of the function on a piece of paper.

Unfortunately, both approaches fail at higher dimensions:

1. First, the time cannot be an analogue of x when we have a function f : R2 → R.

2. Second, the graph of f : R2 → R2 simply cannot be visualized in the 3-dimensional space, let alone a
piece of paper.

This why we set these two aside for now and consider a third approach:

• We think of the function as a transformation of the real line.
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First, let's go back to representing a numerical function as a correspondence between the x-axis and the
y-axis:

As you can see, these are the same axes we use to plot the graph, but they are arranged parallel to each
other instead of perpendicular. The arrows indicate where each x lands on the y-axis. In fact, they suggest
what happens to the whole x-axis.

Let's consider something speci�c:

We ask: What has happened to the x-axis under this transformation?

Warning!

Above, you see two ways to interpret the function:
(1) arrows are between the x-axis and the intact y-
axis, or (2) we move the y-axis so that y = f(x) is
aligned with x. The approaches give two di�erent,
even opposite, answers to the question. We will
follow the former here.

To make this more tangible, we will think as if the whole x-axis, X, is drawn on a pencil:

The transformation we are starting with is a shift. We simply slide the pencil horizontally. Furthermore,
there is another pencil, Y , to be used for reference. The markings (i.e., its coordinate system) on the second
pencil show the new locations of the points on the �rst:

The example above is a shift of 3 units to the right.

Generally:

I When shifted s > 0 units right, point x moves to x+ s = y.
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This is where the algebra comes from:

Warning!

Replace �right� with �up� if the axes are aligned
vertically; it's the positive direction that matters.

In the meantime, what about shifting left? We have the following:

I When shifted s > 0 units left, point x moves to x− s .

Of course, we can combine the two statements:

I When shifted s > 0 units right/left, point x moves to x± s .

Instead, we should simply allow s to be negative. Then we can interpret the former statement to include
the latter if we understand �s units left� as �−s units right�. This is better:

x
right by s−−−−−−−−−→ x+ s

In other words, we have the following function:

y = f(x) = x+ s .

Of course, s = 0 means that there is no change.

Next, let's consider a transformation produced by the function y = −x. Each x then takes this trip: x 7→ −x.
We plot the arrows to show the origin and the destination:

To understand what is happening to the whole x-axis, we try to imagine what happens to our pencil. We
lift, then �ip the pencil with x-axis on it, and place it next to another such pencil used for reference:

So, we have:

x
�ip−−−−−−→ −x

The transformations that don't distort the line are called rigid motions. Examples of motions are the left
shift and the right shift (the magnitude may vary) and the �ip (the center may vary).
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Example 2.2.1: fold

Going in the opposite direction, we might want to �nd a formula for a transformation we describe
verbally. A di�erent kind of transformation is a fold. In order to visualize it, we can't put the axis on
a pencil anymore! Let's try a piece of wire:

The arrow diagram on the right depicts how a half of the x-axis �ips and the other stays put. What
is this function? It is easy to see the range, [0,+∞), because that's where output land. This is the
absolute value function, y = |x|! It is not linear.

Another basic transformation is a stretch. The line isn't on a pencil or a wire anymore! It is a rubber string
(with knots to mark locations):

We imagine that we grab it by the ends (at in�nity?) and pull them apart in such a way that the center O
doesn't move. For example, a stretch by a factor of 2 is shown below:

This is indeed a uniform stretch because the distance between any two points doubles on the left and is cut
in half on the right:

The transformations are simply y = 2x and y = x/2.

Exercise 2.2.2

What does f(x) = −2x do to the x-axis?

Example 2.2.3: expanding Universe

If you stretch something, it becomes bigger, and if you shrink something, it becomes smaller � unless
it's in�nite! The simplest model of the expanding Universe is the rubber band above. What we learn
from it is that there is no center to this expansion or explosion; no matter where you are, you see that
the distance to the nearest planet (mark) has doubled:
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In contrast, a person whose world has been �shifted� or ��ipped� won't notice a thing.

Generally:

I When the line is stretched by a factor m > 1, point x moves to x ·m .

In the meantime, what about a shrink? We have the following:

I When the line is shrunk by a factor k > 1, point x moves to x/k .

Of course, in order to combine the two statements, we should allow m to be less than 1. Then we can
interpret the former statement to include the latter if we understand �stretched by a factor m� as �shrunk
by a factor 1/m�. This is how we can describe it:

x
stretch by m−−−−−−−−−−−→ x ·m

Of course, m = 1 means that there is no change. In other words, this is the function:

y = f(x) = x ·m.

Exercise 2.2.4

What is the meaning of |m| in the transformation given by f(x) = mx+ b?

Exercise 2.2.5

What is the meaning of b in the transformation given by f(x) = mx+ b?

A function f : R2 → R2 is a transformation of a plane to a plane:

Among examples of these are at least the ones above: shift, �ip, and stretch. At least, these can be vertical
and horizontal.
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Example 2.2.6: coloring numbers

We will often color numbers according to their values. This is the summary of the functions we have
considered:

One can compare the colors of X to those of X as it lands on y and reach the following conclusions:
• The colors are clearly shifted in the �rst two images.
• In the third, the blue and the red are interchanged.
• In the fourth, the colors don't change on Y as fast as on X, while in the �fth, they are changing
faster.

We also plot the graphs of these functions below:

We can, therefore, classify the transformations based on the slopes of their graphs:
• shift (rigid motion), slope 1;
• �ip (rigid motion), slope −1;
• stretch by 2, slope 2;
• shrink by 2, slope 1/2.

A very simple, but important, class of function is the constant functions, f(x) = c. What does this function
do to the x-axis? There is only one output:

The real line is shrunk to a single point; we can call this transformation collapse.

x
collapse−−−−−−−−→ c

Of course, one may see it as an extreme case of a stretch/shrink, with a factor m = 0. The slope of the
graph is, of course, 0.

In summary, these are transformations created by the function y = mx with various m's:

co
ll
ap
se

shrink id
en
ti
ty

stretch
m : 0 1
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In general, it is typical to have di�erent stretching factors at di�erent locations.

Example 2.2.7: transformation from list of values

Let's consider this function given by its values:

x 0 1 2 3 4 5 6 7 8 9 10
y 0 2 5 7 8 8.5 8.5 8 7 4 2

We assume that the function continues between these values in a linear fashion. For example, the
interval [0, 1] is mapped to [0, 2] linearly (y = 2x), the interval [1, 2] to [2, 5], etc. The 1-unit segments
on the x-axis are stretched and shrunk at di�erent rates, and the ones beyond x = 6 are also �ipped
over (left):

We also plot the graph of this function on the right; the stretching factors become the slopes! So, at
its simplest, a non-linear function is a combination of linear patches.

Exercise 2.2.8

Represent the following function given by its values as a transformation:

x 0 1 2 3 4 5 6 7 8 9 10
y 6 5 4 3 3 3 4 5 6 6 6

Make up your own functions and then represent them as transformations. Repeat.

2.3. Functions with regularities: one-to-one and onto

We go back to our example of a function that assigns to each boy a ball to play with.

In order for this to be a function from the former to the latter, the table of this relation must have exactly
one mark in each row :
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It does. But what about the columns?

If we further study this function, we might notice two di�erent but related �irregularities�.

First, no one seems to like baseball! There is no arrow ending at the baseball, and its column has no marks.

Let's modify the function slightly: Ken changes his preference from football to baseball. Then, there is an
arrow for each ball, and all columns in the table have marks:

In the graph, there is a dot corresponding to each horizontal line.

The following concept is crucial:

De�nition 2.3.1: onto function

A function F : X → Y is called onto when there is an x for each y with F (x) = y.

In other words, no potential output is �wasted�.

Below, the reason for this terminology is explained:

We start with an element of X and bring it � along the arrow � to the corresponding element of Y . The
function is onto if all elements of Y are covered.

Second, both Tom and Ben prefer basketball! The two arrows converge on the basketball, and we can also
see that its column has two marks. We note the same about the football.

The above function is modi�ed: Tom and Ben have left. Then, no two arrows converge on one ball, and no
column has more than one mark:
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In the graph, there can only be one dot, or none, corresponding to each horizontal line.

The following concept is crucial.

De�nition 2.3.2: one-to-one function

A function F : X → Y is called one-to-one when there is at most one x for each
y with F (x) = y.

Below, the reason for this terminology is explained:

We start with an element of X and bring it � along the arrow � to the corresponding element of Y . The
function is one-to-one if every element of Y is covered only once, if at all.

In summary, the two concepts are not about how many arrows originate from each x � it's always one � but
about how many arrows arrive at each y. The logic of the two de�nitions is quite di�erent:

• Onto: FOR EACH x THERE IS y such that y = F (x).

• One-to-one: IF F (x1) = F (x2) THEN x1 = x2.

Now numerical functions.

These functions are represented by their transformations and by their graphs. We will follow these two
approaches to discover whether a function satis�es one of the two de�nitions.

The following will be our assumption:

I The codomain is the set of all reals R.

Example 2.3.3: basic transformations

Let's consider the transformations from the last section. Their descriptions � and illustrations � tell
the whole story. We just need to look at how the arrows arrive at the y-axis.

The left and right shifts:

The �ip:

The stretch and the shrink:
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They are all both one-to-one and onto!

What would make a transformation to be not one-to-one? Any folding presents a visible problem:

And so does any collapsing:

So, if we imagine that the x-axis, X, is transformed somehow and then placed on top of the y-axis, Y , we
can understand this function as a transformation. This can happen in these four basic ways:

The questions we ask are these two:

• Onto: Does X cover the whole Y ?

• One-to-one: Does X cover any location on Y no more than once?

What makes a di�erence? Two points on the graph have the same height above the x-axis! The following
is a useful observation:

I A function is one-to-one IF AND ONLY IF the intersection of its graph and any horizontal

line contains at most one point.

Notice the connection with the Vertical Line Test for Relations (�Is this a function?�):
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Exercise 2.3.4

Identify and classify the functions below:

Exercise 2.3.5

A function y = f(x) is given below by a list of some of its values. Add missing values in such a way
that the function is one-to-one.

x −1 0 1 2 3 4 5
y = f(x) −1 4 5 2

Exercise 2.3.6

What codomain of the function given above should we assume to assure that it is onto?

We summarize the results in the following important theorem.

Theorem 2.3.7: Horizontal Line Test

1. A function is onto if and only if its graph and any horizontal line have at
least one point in common.

2. A function is one-to-one if and only if its graph and any horizontal line
have at most one point in common.

Exercise 2.3.8

Break either part of the theorem into a statement and its converse.

The arrows for linear functions are easy to reverse except for the constant function:
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We can then classify them according to their slopes:

Indeed, as we know from Euclidean geometry, two straight lines have exactly one intersection unless they
are parallel; therefore the Horizontal Line Test is passed by all linear functions except the ones with zero
slope. Those are constant functions.

However, we need to prove these facts algebraically.

Example 2.3.9: linear polynomials

Suppose we have a linear function with slope 3 and y-intercept 2:

F (x) = 3x+ 2 .

Is it one-to-one?

Suppose we have two inputs x1 and x2. Can their outputs be equal under F? Let's try: Suppose
F (x1) = F (x2). We substitute and obtain the following:

3x1 + 2 = 3x2 + 2 .

Canceling 2 produces the following:
3x1 = 3x2 .

Finally, we divide by 3:
x1 = x2 .

No, the outputs are equal only when the inputs are!

Is it onto? Suppose we have an output y. Is there an x taken to y under F? We just need to solve
the equation F (x) = y for x, for each y. We have an equation:

3x+ 2 = y ,

with an unspeci�ed y. No matter what y is though, we subtract 2 and then divide by 3, producing:

x =
y − 2

3
.

Yes, there is such an x, for each y!

What made these computation possible is our ability to divide by the slope 3, which is non-zero.



2.3. Functions with regularities: one-to-one and onto 104

The classi�cation of linear function is simple:

Theorem 2.3.10: Linear Functions, One-to-one Onto

A linear function with slope m and y-intercept b,

F (x) = mx+ b ,

is both one-to-one and onto as long as m 6= 0.

Proof.

One-to-one. Suppose we have two inputs x1 and x2. Then we use the fact that m 6= 0:

F (x1) = F (x2) =⇒ mx1 + b = mx2 + b =⇒ mx1 = mx2 =⇒ x1 = x2 .

It's the same input.

Onto. Suppose we have an output y. We solve the equation F (x) = y for x using the fact that m 6= 0:

mx+ b = y =⇒ x =
y − b
m

.

There is such an x.

Exercise 2.3.11

Break the theorem into a statement and its converse.

Exercise 2.3.12

Prove algebraically that f(x) = 1/x2 is neither one-to-one nor not onto. Show how the answer changes
with your choice of the codomain.

Exercise 2.3.13

Classify the function f(x) = x3 − x according to these two de�nitions. Prove algebraically.

The three basic transformation of the line � shift, �ip, and stretch � are both one-to-one and onto:
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It's no surprise to us because they are simply linear functions with the slopes respectively:

m = 1, m = −1, m = 2 .

In the meantime, the collapse has slope m = 0. It's neither.

Furthermore, we see that they are one-to-one in the following. The distances between any two points remain
the same in the �rst two cases and double in the last case. In case of a shrink, they will decrease but never
to 0 as in the case of the collapse (slope m = 0, and all the distances become 0).

Exercise 2.3.14

Prove these statements.

The preimages of all points are also points.

We can also see that they are onto in the fact that the whole y-axis is covered by the image of the x-axis.

Exercise 2.3.15

Prove these statements.

In light of this analysis, the following is just a restatement of the two de�nitions:

Theorem 2.3.16: One-to-one and Onto vs. Image

1. A function F : X → Y is one-to-one if and only if the preimage of every
element of the codomain Y is a single element of the domain, X, or it's
empty.

2. A function F : X → Y is onto if and only if its image is the whole
codomain, Y .

Exercise 2.3.17

Break either part of the theorem into a statement and its converse.

Exercise 2.3.18

Prove the theorem.

The four basic transformation of the plane � shift, �ip, stretch, and rotation � are also both one-to-one and
onto:
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To summarize, the restrictions in these two de�nitions can be violated when there are too few or too many
arrows arriving to a given y. These violations are seen in the codomain. This one is not onto:

That one is not one-to-one:

Example 2.3.19: both one-to-one and onto

What functions are the most �regular�? The ones that are both one-to-one and onto, sometimes called
bijections :

The function may look plain but it has an important property: the boys and the balls can be used as
substitutes of each other! For example, you don't have to remember the name of every boy but just
say �the one that plays basketball� to identify Tom without a chance of confusion. Or you can say
�the ball that Ken plays with� without a chance of confusion.

Exercise 2.3.20

What are the smallest set X and the smallest set Y for which a function F : X → Y can be: (a) not
one-to-one, (b) not onto?

Exercise 2.3.21

Sketch the graph of the function f given by its list of values below. Is it one-to-one?

x 1 2 3 4 5
y = f(x) 1 2 0 3 1

Make up your own functions by providing their lists of values and test the two de�nitions. Repeat.

Exercise 2.3.22

What kind of function is �many-to-one�? What about �one-to-many�?

In summary, we present the two simplest ways the two conditions can be violated :

Not onto:
• −→ •

• Not 1-1:
• −→ •
↗

•
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2.4. Compositions of functions

Back to our boys-and-balls example, let's note the colors of the balls. This has nothing to do with the boys,
and it creates a new function:

It is a function G : Y → Z from the set of all balls to the new set Z of the main colors.

Exercise 2.4.1

Is the new function one-to-one or onto?

We know the boys' preferences in balls, but does it entail any preferences in colors? In a sense. We can just
combine the new function with the old:

If we start with a boy on the left, we can continue with the arrows all the way to the right. This way, we
will know the color of the ball the boy is playing with:

This is a new function, say H : X → Z, from the set of boys X to the set Z of the main colors:
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Exercise 2.4.2

Is the new function one-to-one or onto?

In general, this is the setup:

X
F−−−−→ Y

G−−−−→ Z

The following concept is very important.

De�nition 2.4.3: composition of functions

Suppose we have two functions (with the codomain of the former matching the
domain of the latter):

F : X → Y and G : Y → Z .

Then their composition is the function (from the domain of the former to the
codomain of the latter)

H : X → Z ,

which is computed for every x in X according to the following two-step proce-
dure:

x 7→ F (x) = y 7→ G(y) = z

It is denoted by

G ◦ F

We can imagine that all three sets are copies of the plane and just follow from X along the arrows of F to
Y and then along the arrows of G to Z:

Warning!

The requirement that �the codomain of the former
is the domain of the latter� could be replaced with
�the domain contains the codomain�.

In other words, the new function is evaluated by the substitution formula:

z = H(x) = G(F (x))

This is the �deconstruction� of the notation:
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Composition of functions

names of the second and �rst functions
↓ ↓(

G ◦ F
)

(x) = G

(
F (x)

)
↑ ↑ ↑ ↑

name of the new function substitution

The name of the function on left reads �G composition F �. The computation on right reads �G of F
of x�.

It is not that the operations are read from right to left, but rather from inside out !

If we represent the two functions as black boxes, we can wire them together:

input function output

x → F → y
↓

input function output

y → G → z

Thus, we use the output of the former as the input of the latter.

To make it clear that Y is no longer a part of the picture, we can also visualize the composition as follows:

X
F−−−−→ Y

↘H

yG
Z

The meaning of the diagram is as follows: Whether we follow the F -then-G route or the direct H route, the
results will be the same.

If we think of functions as lists of instructions, we just attach the list of the latter at the bottom of the list
of the former. In other words, here is the list of G ◦ F :

• Step 1: Do F .

• Step 2: Do G.

They are executed consecutively ; you can't start with the second until you are done with the �rst.

Let's test this idea on our example. We take the two lists of values and then cross-reference them (from left
to right):

F ( Tom ) = basketball
F ( Ned ) = tennis
F ( Ben ) = basketball
F ( Ken ) = football
F ( Sid ) = football

,

G( basketball ) = orange
G( tennis ) = yellow
G( football ) = brown
G( baseball ) = white

−→

H( Tom ) = ?
H( Ned ) = ?
H( Ben ) = ?
H( Ken ) = ?
H( Sid ) = ?

We ignore any alignment between the two lists. We take the �rst entry in the second list,

G( basketball ) = orange,

and replace �basketball�, according to the �rst entry of the �rst list, with F ( Tom ). This is the result:

G

(
F ( Tom )

)
= orange.

Therefore,
H( Tom ) = orange.

This is the �rst entry in the new list.
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Exercise 2.4.4

Finish the list.

Once again, algebraically, composition is nothing but substitution!

Unfortunately, the domains of numerical functions are often in�nite, and it is impossible to just follow the
arrows. We deal with formulas. Fortunately, substitution is just as simple for numerical functions.

Example 2.4.5: composition of numerical functions

This time, we substitute one formula into another. For example, consider these two functions:

X
x2=y−−−−−−→ Y

y3=z−−−−−−→ Z

Then, y = x2 is substituted into z = y3 resulting in:

z =
(
x2
)3
.

It is the same function, and it is computed by the same two steps! A simpli�cation might make the
extra work worthwhile:

z = x6 .

Example 2.4.6: substitution of numerical functions

The idea of how the substitution is executed is the same as in before: Insert the input value in all of
these boxes. Suppose this function on the left is understood and evaluated via the diagram on the
right:

f (y) =
2y2 − 3y + 7

y3 + 2y + 1
, f (�) =

2�2 − 3�+ 7

�3 + 2�+ 1
.

Previously, we did the substitution y = 3 by inserting 3 in each of these windows:

f
(

3
)

=
2 3

2 − 3 3 + 7

3
3

+ 2 3 + 1
.

This time, let's insert sinx, or, better, (sinx). This is the result of the substitution y = sinx:

f (sinx) =
2 (sinx)

2
− 3 (sinx) + 7

(sinx)
3

+ 2 (sin x) + 1
.

Then, we have

f (sinx) =
2(sinx)2 − 3(sinx) + 7

(sinx)3 + 2(sinx) + 1
.

Note that if you don't know what the sine function (Chapter 4) does, it makes no di�erence! The only
thing that matters is that we know that this is a function.

Example 2.4.7: composition from graphs

What if we have only their graphs? Suppose we have the two graphs of

u = f(x) and y = g(u) ,

side by side, and we need to �nd the composition, g ◦ f . Let's take a single value:

d = g(f(a)) .
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Then, we use the �rst graph to �nd c = f(a) on the vertical axis, travel all the way to the horizontal
axis of the second, �nd the corresponding c on it, and �nally �nd d = g(c) on the vertical axis.

Graphs don't do a very good job of visualizing compositions...

Example 2.4.8: composition of transformations

What if we, instead, think of numerical functions as transformations? For example:
1. The �rst transformation is a stretch by a factor of 2.
2. The second transformation is a stretch by a factor of 3.

We visualize the �rst by doubling every square and the second by tripling:

As a result there are six squares in the last row for each square in the �rst. Indeed, the composition
of the two transformations is a stretch by a factor of 3 · 2 = 6.

So, we just carry out two transformations in a row. Consider this also:
1. The �rst transformation is a shift (right) by a 3.
2. The second transformation is a �ip.
3. The third transformation is a shift (right) by a 5.

Then what their composition does is shown below:

Exercise 2.4.9

Illustrate, as above, the composition of: a shift left by 5, a stretch by 2, and a �ip.

Exercise 2.4.10

Illustrate the composition of the two transformations shown below:

If we think of functions as lists of instructions (with no forks), then each of them is already a composition!
The steps on the list are the functions the composition of which creates the function. For example,

I F : Add 3. Multiply by −2. Subtract 1.

This is called a decomposition of F . If, furthermore, there is another function, say,
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I G: Subtract 2. Apply sin.

Now, we just add the latter list to the bottom of the former:

I G ◦ F : Add 3. Multiply by −2. Subtract 1. Subtract 2. Apply sin.

Of course, we can have compositions of many functions in a row as long the output of each function matches
the input of the next:

It's as if the �rst function gives us direction to a destination, and at that destination, we receive the directions
to our next destination where we get further directions, and so on... like a treasure hunt.

We represent functions as black boxes that process the input and produce the output:

input function output

x → f → y

input function output
y → g → z

input function output

z → h → u

Because of the match, we can carry over the output to the next line � as the input of the next function.

This chain of events can be as long as we like:

x1 → f1 → x2 → f2 → x3 → f3 → x4 → f4 → x5 → ...

Example 2.4.11: decomposition of �owchart

Such a decomposition will allow us to study the function one piece at a time:

Exercise 2.4.12

Represent the following function by a single formula:

x → multiply by 2 → y → add 5 → z → divide by 3 → u
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Exercise 2.4.13

Represent the function h(x) = (x− 1)2 + (x− 1)3 as the composition g ◦ f of two functions y = f(x)
and z = g(y).

Example 2.4.14: composition with spreadsheet, formulas

This is how the composition of several functions represented by formulas is computed with a spread-
sheet. We start with just a list of numbers in the �rst column. Then we produce the values in the
next column one row at a time. How? We input a formula in the next column with a reference to the
last one. For example, we have in the second and third columns, respectively:

=RC[-1]*2 =RC[-1]+5

referring to the cell to its left. Each of the two consecutive columns is a list of values of a function
(left):

If we hide the middle column (right), we have the list of values of the composition. We can have as
many intermediate columns as we like.

Example 2.4.15: functions given by lists, cross-referencing

What if the functions are given by nothing but their lists of values? Then we need to �nd a match
for the output of the �rst function among the inputs of the second. Given the tables of values of f, g,
�nd the table of values of g ◦ f :

x y = f(x)
0 1
1 0
2 2
3 4
4 2

followed by

y z = g(y)
0 0
1 3
2 5
3 1
4 2

is

x z = g(f(x))
0 ?
1 ?
2 ?
3 ?
4 ?

.

We need to �ll the second column of the last table. First, we need to match the outputs of f with the
inputs of g, as follows:
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Alternatively, we re-arrange the rows of g according to the values of y and then remove the y-columns:

x y
0 1
1 0
2 2
3 4
4 2

y z
1 3
0 0
2 5
4 2
2 5

−→

x z
0 3
1 0
2 5
3 2
4 5

Exercise 2.4.16

Given the tables of values of f, g below, �nd the table of values of g ◦ f :

x y = f(x)
0 0
1 2
2 3
3 0
4 1

y z = g(y)
0 4
1 4
2 0
3 1

Example 2.4.17: composition with spreadsheet, cross-referencing

For this task, we have to use the search feature of the spreadsheet:

For example, the search may be executed with a �look-up� function:

=VLOOKUP(RC[-6],R3C[-4]:R18C[-3],2)

Exercise 2.4.18

Functions y = f(x) and u = g(y) are given below by tables of some of their values. Present the
composition u = h(x) of these functions by a similar table:

x 0 1 2 3 4
y = f(x) 1 1 2 0 2

y 0 1 2 3 4
u = g(y) 3 1 2 1 0
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Exercise 2.4.19

Function y = f(x) is given below by a list of its values. Is the function one-to-one?

x 0 1 2 3 4
y = f(x) 0 1 2 1 2

Functions can be visualized as �owcharts and so can their compositions:

If we name the variables and use the algebraic notation, we produce a more compact version of this �owchart:

x → x+ 3 → y → y · 2 → z → z2 → u

Note how the names of the variables match so that we can proceed to the next step. A purely algebraic
representation of the diagram is below:

x+ 3 = y, y · 2 = z, z2 = u .

It is also possible, but not required, to name the functions, say f, g, h. Then we have:

y = f(x) = x+ 3, z = g(y) = y · 2, u = h(z) = z2 .

As we see, with the variables properly named,

composition is substitution.

In the above composition, we can carry out these two substitutions:

• We substitute z = g(y) = y · 2 into u = h(z) = z2, which results in the following:

u = h(z) = h(g(y)), u = z2 = (y · 2)2 .

• We substitute y = f(x) = x+ 3 into z = g(y) = y · 2, which results in the following:

z = g(y) = g(f(x)), z = y · 2 = (x+ 3) · 2 .

In general, we represent a function f diagrammatically as a black box that processes the input and produces
the output:

input function output

x → f → y

Now, suppose we have another function g:

input function output
x → g → y

How do we represent their composition g ◦ f? To represent it as a single function, we need to �wire� their
diagrams together consecutively (instead of in parallel, as in the last section):

x → f → y → ??? → x → g → y

But it's only possible when the output of f matches with the input of g. We can rename the variable of g.
For example, we can make this switch:

x2 − 1

x+ 2
→ y2 − 1

y + 2
.
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Warning!

If the names of the variables don't match, it might
be for a good reason.

This is what we have after renaming:

x → f → y → g → z

Then we have a new diagram for a new function:

g ◦ f : x → x → f → y → g → z → z

It's just another black box:
x → g ◦ f → z

Compositions are meant to represent tasks that cannot be carried out in parallel. Imagine that you have
two persons working for you, but you can't split the work in half to have them work on it at the same time
because the second task cannot be started until the �rst is �nished.

Example 2.4.20: order matters

For example, you are making a chair. The last two stages are polishing and painting. You can't do
them at the same time:

chair → polishing → painting → �nished chair

You can't change the order either!

Example 2.4.21: gas mileage

Suppose a car is driven at 60 mi/h. Suppose we also know that the car uses 30 mi/gal, while the cost
per gallon is $5. Represent the expense as a function of time.

Consider the �owchart:

time (h)
60 mi/h−−−−−−→ distance (mi)

30 mi/gal−−−−−−−→ gas used (gal)
5$/ gal−−−−−→ expense ($)

t
f−−→ d

k−−→ g
h−−→ e

These are the participating functions:

60t = d
d

30
= g 5g = e

To answer the question, we substitute from right to left:

e = 5g = 5

(
d

30

)
= 5

(
60t

30

)
.

Simpli�ed:
e = 10t .

Exercise 2.4.22

Redo the example using the functions f, k, h.
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2.5. The simplest functions

In this chapter, we will study many speci�c functions as well as some broad categories of functions. We
start with the former.

Even in the most general situation � nothing but sets � there are always two functions that are very simple.

Let's turn to the example of the two sets we considered earlier:

• X is the �ve boys; and

• Y is the four balls.

Now, what if all boys prefer basketball? Then our �preference function�, F , cannot be simpler: All of its
values are equal and all the arrows point to the basketball:

The table of this function F is also very simple: All crosses are in the same column. The graph is just as
simple: All dots are on the same horizontal line.

The value of y = F (x) doesn't vary as x varies; it is constant. The following concept will be routinely used.

De�nition 2.5.1: constant function

Suppose sets X and Y are given. A function f : X → Y is called a constant

function if, for some speci�ed element b of Y , we set:

f(x) = b FOR EACH x

The process is identical for every input:

x → choose 3 → y

In an illustration of a transformation of a plane to a plane, all arrows converge on a single output:

Exercise 2.5.2

What is the image of a constant function? What are the preimages?

What can we say about compositions of this special function, f , with another, g?
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First, consider this diagram:

X
f−−−−→ Y

g−−−−→ Z
x1 y1 → z1

↘
x2 → y2 → z2

↗
x3 y3 → z3

What kind of function is g ◦ f?

And here is another one:
Z

g−−−−→ X
f−−−−→ Y

z1 → x1 y1

↘
z2 → x2 → y2

↗
z3 → x3 y3

What kind of function is f ◦ g?

By following the arrows from the left all the way to the right, we �nd that there is only one output. So,
whether the other function comes after or before a constant function, the result is the same; this is our
conclusion:

Theorem 2.5.3: Compositions with Constant Function

The composition of any function with a constant function is a constant function.

Proof.

This is the algebra for case 1:

x 7→ f(x) = b =⇒ x 7→ g(f(x)) = g(b) .

This is the algebra for case 2:

y 7→ g(y) = x =⇒ y 7→ f(g(y)) = b .

Exercise 2.5.4

Give an example of two non-constant functions the composition of which is constant.

As a transformation of the line, the constant function is extreme; it �crushes� (or collapses) the whole line
into a single point:

At the other end of the spectrum is another extreme transformation; it �does nothing� to the line:
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So, for our set X of boys, we have a special function G from X to X (and another from Y to Y for the
balls); each arrow comes back to the boy (or ball) it starts from:

The table of this function G is also very simple: All crosses are on the diagonal, and the graph has all dots
on the diagonal. The output of G is identical to the input.

De�nition 2.5.5: identity function

Suppose one set X is given. The identity function I : X → X is given by the
following:

I(x) = x FOR EACH x

The process is identical for every input:

x → pass it → y

In an illustration of a transformation of a plane to a plane, every arrow circles back to its input:

Exercise 2.5.6

What is the range of the identity function?
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Exercise 2.5.7

What is the inverse of the identity function?

What can we say about the compositions of this special function, I, with another, g?

What can we say about compositions of this special function, f , with another, g? First, consider this
diagram:

X
I−−−−→ X

g−−−−→ Y
x1 → x1 → y1

x2 → x2 → y2

x3 → x3 → y3

What kind of function is g ◦ I?

And here is another one:
X

g−−−−→ Y
I−−−−→ Y

x1 → y1 → y1

x2 → y2 → y2

x3 → y3 → y3

What kind of function is I ◦ g?

By following the arrows from the left all the way to the right, we �nd that the output always matches that
of g. Whether the other function comes before or after the identity function, the result is the same; this is
our conclusion:

Theorem 2.5.8: Composition with Identity Function

A composition of any function with the identity function is that function, i.e.,

I ◦ g = g and g ◦ I = g .

Proof.

Consider this diagram:

x 7→ y = I(x) = x =⇒ x 7→ g(y) = g(I(x)) = g(x) .

The output is the same as the input! Here is the other one:

y 7→ x = g(y) =⇒ y 7→ I(x) = I(g(y)) = g(y) .

Again, the output is the same as the input!

Numbers can be represented in a number of ways, but sometimes they are identical :

1 + 1 = 2 .

Similarly, functions can be represented in a number of ways, but sometimes they are identical :

x+ x = 2x .

Let's make it clear what we mean when we say that two functions are equal (or identical):

I Two functions are equal when each possible input produces the same output for either function.

De�nition 2.5.9: equal functions

Suppose f and g are two functions:

f, g : X → Y .
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They are equal,

f = g

if their domains are equal (as sets) and we have the following:

f(x) = g(x) FOR EACH x

It is illustrated in the �owchart below:

x → x

↗ x → f → y

↘ x → g → u

same!

Example 2.5.10: equal functions

Consider these two functions:

f(x) = 2x+ 4 and g(x) = 2(x+ 2) .

No matter what x is, the outputs are the same. We conclude that they are equal: f = g. This is just
as example of how we algebraically manipulate formulas.

What does it mean when we say that two functions are not equal? The opposite of equal: The outputs
don't fully match. In other words, the answer is: A possible input produces two di�erent outputs for the
two functions.

De�nition 2.5.11: not equal functions

Suppose f and g are two functions:

f, g : X → Y .

They are not equal,

f 6= g

if their domains are unequal (as sets) or we have the following:

f(x) 6= g(x) FOR SOME x

In the de�nition, we test each x: Do the values match? It is illustrated in the �owchart below:

3 → 3

↗ 3 → f → 7

↘ 3 → g → 12

di�erent!

As you can see, you only need to �nd a single value of x for which there is a mismatch.

This case also includes the situation when the two domains are unequal:

3 → 3

↗ 3 → f → 7

↘ 3 → g → �not in the domain!�

di�erent!
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Example 2.5.12: not equal functions

Consider these two functions:

f(x) =
x2

x
and g(x) = x .

We conclude that they aren't equal: f 6= g. Why? Because f is unde�ned at x = 0, which is in the
implied domain of g. Replacing f with g is an example of how not to do symbol manipulation!

Example 2.5.13: identities

This is a familiar identity:
(x+ 1)2 = x2 + 2x+ 1 .

A more complex two variable identity is

(x+ y)2 = x2 + 2xy + y2 .

And so is
x2 − y2 = (x− y)(x+ y) .

And so are all rules of exponents, logarithms, etc.

We have seen how �reducing� the domain of a function creates a new function:

Any subset of the domain can be chosen, but excluding Tom and Sid creates a function that is one-to-one:

Exercise 2.5.14

Change the codomain of the function to make it onto.
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De�nition 2.5.15: restriction of function

Suppose we have sets X and Y , a function f : X → Y , and a subset A of X.
Then the restriction of f to A is the function de�ned, and denoted, by the
following:

f
∣∣∣
A

(x) = f(x) FOR EACH x

in A.

The notation is reminiscent of the substitution notation. The construction is illustrated below:

Warning!

We have f
∣∣∣
A
6= f , unless A = X.

Here is an illustration of what restrictions can do for us. Below, we restrict the function to

1. the x-axis,

2. the y-axis,

3. a little square in the �rst quadrant.

We then watch their images of these sets in Y (right column):
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These images may reveal how the whole function operates.

The idea of the identity function applies even if the two sets � domain and codomain � don't match. It
su�ces that the former is a subset of the latter. We modify the above example below:

We see U included in X, and V included in Y . This fact creates a function.

De�nition 2.5.16: inclusion

Suppose we have a set X and a subset A of X. Then the inclusion i : A → X
of A into X is the function de�ned by the following:

i(x) = x FOR EACH x

in A.

Below, we make a copy of a set X with a subset A speci�ed. We then construct the inclusion with identical,
horizontal arrows:
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Theorem 2.5.17: Restriction via Compositions

A restriction of a function is its composition with the appropriate inclusion; i.e.,
given a function f : X → Y , a subset A ⊂ X, and its inclusion i : A → X, the
restriction of f to A is:

f

∣∣∣∣
A

= f ◦ i

Exercise 2.5.18

Prove the theorem.

Exercise 2.5.19

Explain how inclusions are restrictions of the identity functions.

Exercise 2.5.20

A restriction of a constant function is ___ .

2.6. The inverse of a function

Our running example of a function answers the question:

I Which ball is this boy playing with?

The arrow points from the boy to that ball:
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Let's turn this around:

I Which boy is playing with this ball?

The solution would seem to be a simple reversal of the arrows so that the arrow should point from the ball
to that boy:

We can see that, even though the latter question is asked about the same situation as the former, it cannot
be answered in a positive manner! Indeed:

• There are two boys playing with the basketball � two answers.

• There is no boy playing with the baseball � no answer.

This means that there is no function this time!

Question:

I Under what circumstances would such a reversal of arrows make sense?

All functions from X to Y are also relations between X and Y . However, not every relation is a function �
either from X to Y or from Y to X. The reasons are the same: too many or too few arrows starting at an
element of the domain set.

An especially important question is: Can we reverse the arrows of a function so that that the same relation
is now seen as a new, �inverse�, function? If the answer is No, can we see the reason by looking at the
original function?

• First, some y's in Y have two or more corresponding x's in X. In other words, the function isn't
one-to-one!

• Second, some y's in Y have no corresponding x's in X. In other words, the function isn't onto!

So, the original function lacks either of the two types of regularity for this to be possible.

What kind of function would make this possible? A function that is both one-to-one and onto:
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We have added an extra ball (soccer) and have re-drown the arrows; there is exactly one arrow for each ball.
This is a very simple, almost uninteresting, kind of function: Each boy holds a single ball, and every ball is
held by a single boy. The arrows have been safely reversed.

As a result, the elements of the two sets are all paired up:

boys balls
Tom basketball
Ben tennis
Ned baseball
Ken football
Sid soccer

In a sense, the only di�erence between the two sets is in the names. Indeed, if you don't remember Tom's
name, you just say �the boy who plays with the basketball�. Or, if you don't remember what that red ball
is for, you just say �the game Sid plays�. There is no ambiguity in this substitution.

The following concept is very important.

De�nition 2.6.1: inverse of function

Suppose F : X → Y is a function. A function G : Y → X is called an inverse

function of F when, for all x and y, we have the following match:

F (x) = y if and only if G(y) = x

In other words, we have:

x
F−−−−→ y ⇐⇒

x
G←−−−− y

Exercise 2.6.2

In the de�nition, interchange F and g, and x and y. What do you have?

We will rely on this important fact.

Theorem 2.6.3: One-to-one Onto vs. Inverse

A function is both one-to-one and onto if and only if it has an inverse.

Exercise 2.6.4

Prove the theorem.

Under this condition, we have a relation R that contains both of the functions:
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As the function is de�ned indirectly, we need an assurance that there is only one.

Theorem 2.6.5: Uniqueness of Inverse

There can be only one inverse for a function.

Exercise 2.6.6

Prove the theorem.

This justi�es using �the inverse� from now on. The inverse of a function F is denoted as follows:

Inverse function

F−1

It reads �F inverse�.

Here �F � is the name of the old function and �F−1� is the name of the new function with a reference to the
one it came from.

Warning!

The notation is not to be confused with the power
notation for the reciprocal: 2−1 = 1

2
. (Warning

inside a warning: the inverse of multiplication by 2
is division by 2.)

An idea to hold on to is that a function and its inverse represent the same relation between sets X and Y :

• x and y are related when y = F (x), or

• x and y are related when x = F−1(y).

There is no preferred alignment:

The choice between F and F−1 is the choice of the �roles� forX and Y , input or output, domain or codomain.
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Exercise 2.6.7

Explain the picture below:

Compositions provide a di�erent point of view on the de�nition of inverse.

Notice that the domain of the new function � the inverse � would have to be the codomain of the original!
Their composition then makes sense:

The �rst thing we notice about the composition is that we have made � through the two functions � a full
circle from boys to balls and back to boys. Furthermore, with every two consecutive arrows, we arrive to
our starting point, the exactly same boy, every time. This is the identity function of X.

We also notice that the domain of the original function is the codomain of the inverse! Their composition
� in the opposite order � then also makes sense:

Once again, we notice about the composition is that we have made � through the two functions � a full
circle from balls to boys and back to balls. Furthermore, with every two consecutive arrows, we arrive to
our starting point, the same ball, every time. This is the identity function of Y .

These are the two compositions next to each other:
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Here is a �owchart representation of this idea:

x → F → y → G → x Same x!

y → G → x → F → y Same y!

We feed the output of F into G, and vice versa. The following is crucial.

Theorem 2.6.8: Inverse via Compositions

Suppose F : X → Y is a function that is both one-to-one and onto. Then a
function G : Y → X is the inverse of F if and only if
• G(F (x)) = x FOR EACH x, AND

• F (G(y)) = y FOR EACH y.

Exercise 2.6.9

Prove the theorem.

The two identities in the theorem can also be written via the identity functions. We take two round trips:

start x → f → y

|| ↓
�nish x′ ← f−1 ← y

x → f → y �nish

↑ ||
x ← f−1 ← y′ start

Both times we arrive where we started � with the same �nal output. We interpret this de�nition in terms
of the identity function, as follows.

Theorem 2.6.10: Inverse via Compositions

Two functions F : X → Y and F−1 : Y → X are inverses of each other if
and only if their compositions produce the identity functions; i.e., these two
conditions are satis�ed:

f ◦ F−1 = I AND F−1 ◦ f = I

Warning!

These are two di�erent identity functions.

Warning!

There are two conditions here.
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So, making circles in the diagram below won't change the value of x or y:

x
F−−−−→ y

↑ ↓
x

F−1

←−−−−−− y

De�nition 2.6.11: invertible function

A function that is both one-to-one and onto is also called invertible (or a bijec-
tion).

Exercise 2.6.12

Suppose A,B,C are the sets of the one-to-one, the onto, and the invertible functions, respectively.
What is the relation between these sets?

Example 2.6.13: inverse of transformation

What is the meaning of the inverse of a function when seen as a transformation of the line? It is a
transformation that would reverse the e�ect of the original, as follows:

To produce the images on the right from those on the left, we simply �ip all arrows.

Just by examining these simple transformations, we discover the following:
1. The inverse of the shift s units to the right is the shift of s units to the left.
2. The inverse of the �ip is another �ip.
3. The inverse of the stretch by k 6= 0 is the shrink by k (i.e., stretch by 1/k).

In fact, we realize that they pair up:
1. The shift s units to the right and the shift of s units to the left are the inverses of each other.
2. The �ip is the inverse with itself.
3. The stretch by k > 0 and the shrink by k are the inverses of each other.

When executed consecutively (in either order), the e�ect is nil.

Algebraically, we have these pairs of functions:

f = g−1 vs. g = f−1

1. shift y = x+ s x = y − s
add s add − s

2. �ip y = −x x = −y
multiply by − 1 multiply by − 1

3. stretch y = x · k x = y/k

multiply by k multiply by
1

k

What about the fold? It can't be undone since any two points that are brought together become
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indistinguishable. Any further transformations will produce the same output:

x = a
↘F

y
G?−−−−−→ x

↗F

x = b

This function isn't one-to-one! And neither is the collapse.

Example 2.6.14: inverse of transformation

Now, the basic transformations of the plane:

We also have pairs of functions:

f = g−1 vs. g = f−1

vertical shift vertical shift back
vertical �ip vertical �ip
vertical stretch vertical shrink
horizontal shift horizontal shift back
horizontal �ip horizontal �ip
horizontal stretch horizontal shrink
rotation rotation back

We will examine these pairs later.

Example 2.6.15: inverse of list

How do we �nd the inverse of a function given by its list of values :

f =

x y = f(x)
0 1
1 0
2 2
3 1
4 3
... ...

=

x → y
0 → 1
1 → 0
2 → 2
3 → 1
4 → 3
... ... ...

To �nd the inverse, one can use the original table for look-up. For example, to �nd f−1(3), locate 3
in the second row and look at the entry to its left, 4. This may be a dangerous practice.

The table is understood as if there are arrows going horizontally left to right. That is why �reversing
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the arrows� means interchanging the columns:

f−1 =

x → y
0 ← 1
1 ← 0
2 ← 2
3 ← 1
4 ← 3
... ... ...

=

y → x
1 → 0
0 → 1
2 → 2
1 → 3
3 → 4
... ... ...

=

y → x
0 → 1
1 → 0
1 → 3
2 → 2
3 → 4
... ... ...

=

y x = f−1(y)
0 1
1 0
1 3
2 2
3 4
... ...

.

It may, or may not, become clear that the new function isn't a function! To make sure, it's a good idea,
at the end, to arrange the inputs in the increasing order. Then we clearly see the con�ict: f−1(1) = 0
and f−1(1) = 3. The original function, f , wasn't one-to-one!

The general rule for �nding the inverse of a function given by a formula follows from the de�nition:

I The inverse of y = f(x) is found by solving this equation for x; i.e., x = f−1(y).

This method results in a success only when there is exactly one solution, x, for each y.

Example 2.6.16: inverse of linear polynomial

To �nd the inverse of a linear polynomial

f(x) = 3x− 7 ,

set and solve the equation (relation), as follows:

y = 3x− 7 =⇒ y + 7 = 3x =⇒ y + 7

3
= x .

Therefore, we have:

f−1(y) =
y + 7

3
.

If it is not known ahead of time whether the function is one-to-one, this fact is established, automati-
cally, as a part of �nding the inverse. For example, to �nd the inverse of the quadratic function

f(x) = x2 ,

we set and solve:
y = x2 =⇒ ±√y = x .

The ± sign indicates that there are two solutions (x > 0). The original function wasn't invertible!

A linear function,
f(x) = mx+ b ,

is one-to-one and onto whenever m 6= 0. Algebraically, we just solve the equation y = mx + b for x. The
algebraic result is below.

Theorem 2.6.17: Inverse of Linear Polynomial

The inverse of a linear polynomial

f(x) = mx+ b, m 6= 0 ,

is also a linear polynomial, and its slope is the reciprocal of that of the original:

f−1(y) =
1

m
y − b

m
.
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We know that the set of invertible functions is split into pairs of inverses. We can be more speci�c with the
set of all linear polynomials. The pairs have reciprocal slopes, for example:

• 2 and 1/2

• −2 and −1/2

• 1 and 1

• −1 and −1

• etc.

We can see these pairs of a steeper line and a shallower line:

Exercise 2.6.18

What do need to do to this sheet of paper in order to make the former land on the latter?

Next, let's try to imagine how some new algebraic operations may have emerged.

Some emerged as the abbreviations for repeated familiar operations; for example, repeated addition, 2 + 2 +
2 = 2 · 3, leads to a new operation: multiplication. Meanwhile, repeated multiplication, 2 · 2 · 2 · 2 = 24, leads
to a new operation: exponent. But what about subtraction and division?

Example 2.6.19: subtraction as inverse

Suppose I know how to add. Problem: With $5 in my pocket, how much do I add to have $12?
Answer: $7. How do I know? Solve the equation:

5 + x = 12 .

This equation leads to a new operation, subtraction: x = 12 − 5. Of course, there is also a new
function. We can say that �subtraction is the inverse of addition�, or more precisely, subtracting 5 is
the inverse of adding 5.

Example 2.6.20: division as inverse

Suppose now I know how to multiply. Problem: If I want to make a table 20 inches wide, how many
2-by-4's do I need? Answer: 5. How do I know? Solve the equation:

4x = 20 .
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This equation leads to a new operation, division: x =
20

4
. Division (by 4) is the inverse of multiplica-

tion (by 4).

Example 2.6.21: square root as inverse

Problem: If I want to make a square table with an area 25 square feet, what should be the width of
the table? Solve the equation:

x · x = 25 =⇒ x2 = 25 =⇒ x =
√

25 .

Thus, we have a new operation: square root. It is the inverse of the squaring function.

Example 2.6.22: cubic root as inverse

Problem: What is the side of a box if its volume is known to be 8 cubic feet? Solve the equation:

x3 = 8 =⇒ x =
3
√

8 .

The cubic root is the inverse of the cubic power.

Thus, solving equations requires us to undo some function present in the equation:

1. x+2 = 5 =⇒ (x+2)−2 = 5−2 =⇒ x = 3

2. x·3 = 6 =⇒ (x·3)/3 = 6/3 =⇒ x = 2

3. x2 = 4 =⇒
√
x2 =

√
4 =⇒ x = 2 (x, y ≥ 0)

We have �cancellation� on the left and simpli�cation on the right.

We are dealing with functions! And some functions undo the e�ect of others :

1. The addition of 2 is undone by the subtraction of 2, and vice versa.

2. The multiplication by 3 is undone by the division by 3, and vice versa.

3. The second power is undone by the square root (for x ≥ 0), and vice versa.

Each of these undoes the e�ect of its counterpart under substitution:

1. Substituting y = x+ 2 into x = y − 2 gives us x = x.

2. Substituting y = 3x into x = 1
3
y gives us x = x.

3. Substituting y = x2 into x =
√
y gives us x = x, for x, y ≥ 0.

And vice versa:

1. Substituting x = y − 2 into y = x+ 2 gives us y = y.

2. Substituting x = 1
3
y into y = 3x gives us y = y.

3. Substituting x =
√
y into y = x2 gives us y = y, for x, y ≥ 0.

Warning!

Both cancellations matter.

As we know, it is more precise to say that they undo each other under composition: Two numerical functions
y = f(x) and x = g(y) are inverse of each other when for every x in the domain of f and for every y in the
domain of g, we have:

g(f(x)) = x and f(g(y)) = y .
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This is an alternative way of writing these compositions:

Inverses in substitution notation

g(y)

∣∣∣∣∣
y=f(x)

= x and f(x)

∣∣∣∣∣
x=g(y)

= y

Thus, we have three pairs of inverse functions:

f(x) = x+ 2 vs. f−1(y) = y − 2
f(x) = 3x vs. f−1(y) = 1

3
y

f(x) = x2 vs. f−1(y) =
√
y for x, y ≥ 0

Next, it is reasonable to ask: What is the relation between the graph of a function and the graph of its
inverse?

In other words, what do we need to do with the graph of f to get the graph f−1? The answer is: Hardly
anything. After all, a function and its inverse represent the same relation.

The graph of f illustrates how y depends on x � as well as how x depends on y. And the latter is what
determines f−1! So, there is no need for a new graph; the graph of f−1 is the graph of f . The only issue is
that the x- and the y-axis point in the wrong directions. It's an easy �x.

Example 2.6.23: points on the graph of inverse

Suppose we are transitioning from f to its inverse f−1:

f =

x y = f(x)
2 5
3 1
8 7
...

=⇒ f−1 =

y x = f−1(y)
5 2
1 3
7 8
...

These are the same pairs! Therefore, they are represented by the same points on the xy-plane.

It is common, however, to put the input variable in the horizontal axis and the output in the vertical.

This makes us replace the points in the xy-plane with new points in the yx-plane:

(x, y) −→ (y, x)

(2, 5) −→ (5, 2)

(3, 1) −→ (1, 3)

(8, 7) −→ (7, 8)

... ...

The two coordinates are interchanged:
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We realize that each point jumps across the diagonal line y = x! So, we have a match:
I Every point (x, y) in the xy-plane corresponds to the point (y, x) in the yx-plane.

Above we made a copy of the graph of f , �ipped it, and then on top of the original.

Example 2.6.24: inverse graph point by point

Suppose, again, a function is given only by its graph and we need to construct the graph of the inverse
x = f−1(y). This time we are to do this without any data:

Start with choosing a few points on the graph. Each of them will jump across the diagonal under this
�ip. How exactly? The general rule for plotting a counterpart of a point is the following:

I From the point go perpendicular to the diagonal and then measure the same distance
on the other side.

In other words, we plot a line through our point with slope −1.

Now, we can simplify our job by choosing the points more judiciously; we choose ones with easy-to-�nd
counterparts. First, points on the diagonal don't move by the �ip about the diagonal. Second, points
on one of the axes jump to the other axis with no need for measuring. Finally, once all points are in
place, �nally, draw a curve that connects them.

Example 2.6.25: graph of inverse point by point

Plot the graph of the inverse of y = f(x) shown below:

These are the steps:
• Draw the diagonal y = x.
• Pick a few points on the graph of f (we choose four).
• Plot a corresponding point for each of them:

� on the line through point A that is perpendicular to the diagonal (i.e., its slope is 45 degrees
down)

� on the other side of the diagonal from A
� at the same distance from the diagonal as A

• Draw by hand a curve from point to point.
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Example 2.6.26: �ip graph

The following approach works without a pen. If we have a piece of paper with the xy-axis and the
graph of y = f(x) on it, we �ip it by grabbing the end of the x-axis with the right hand and grabbing
the end of the y-axis with the left hand then interchanging them:

We face the opposite side of the sheet then, but the graph is still visible: the x-axis is now pointing
up and the y-axis right, as intended. A transparent sheet of plastic would work even better.

Another way is to recognize that this is the same 3d scene seen from two di�erent points of view:

Example 2.6.27: fold graph

Alternatively, we can also fold:

The shapes of the graphs are the same but they are mirror images of each other:

Exercise 2.6.28

What graphs will land on themselves under this transformation?
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Exercise 2.6.29

What letters have this kind of symmetry?

Example 2.6.30: slope of inverse

This is what happens when we apply this �ip to the graph of a linear function:

Then, we can compare:

slope of f =
rise

run
=
A

B
and slope of f−1 =

rise

run
=
B

A
.

They are, as we already know, the reciprocals of each other!

Example 2.6.31: inverse graph with computer graphics

Such a transformation of the plane can be accomplished with simple image editing software by �rst
rotating the image clockwise 90 degrees and then �ipping it vertically:

This is how starting from a graph (�rst below), we �nd the graph of the inverse (second), and then
bring them together for comparison (third):

Remember, we only need the graph of the original function to be able to evaluate all the values of the
inverse:
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Exercise 2.6.32

Function y = f(x) is given below by a list its values. Find its inverse and represent it by a similar
table.

x 0 1 2 3 4
y = f(x) 1 2 0 4 3

Exercise 2.6.33

What kind of function is its own inverse?

Exercise 2.6.34

Plot the inverse of the function shown below, if possible:

Exercise 2.6.35

Function y = f(x) is given below by a list of its values. Is the function one-to one? What about its
inverse?

x 0 1 2 3 4
y = f(x) 7 5 3 4 6

Exercise 2.6.36

Plot the graph of the function f(x) =
1

x− 1
and the graph of its inverse. Identify its important

features.

2.7. Units conversions and changes of variables

The variables of the functions we are considering are quantities we meet in everyday life. Frequently, there
are multiple ways to measure these quantities:

• length and distance: inches, miles, meters, kilometers, ..., light years

• area: square inches, square miles, ..., acres



2.7. Units conversions and changes of variables 141

• volume: cubic inches, cubic miles, ..., liters, gallons

• time: minutes, seconds, hours, ..., years

• weight: pounds, grams, kilograms, karats

• temperature: degrees of Celsius, of Fahrenheit

• money: dollars, euros, pounds, yen

• etc.

Almost all conversion formulas are just multiplications, such as this one:

# of meters = # of kilometers · 1000 .

Warning!

We don't convert �pounds to kilos�, we convert the
number of pounds to the number of kilos.

The only exception of the temperature, because 0 degrees of Celsius doesn't correspond to 0 degrees of
Fahrenheit.

This is the relation between degrees and radians:

π radians = 180 degrees .

In other words, the conversion between the number of degrees d and the number of radians r is the following
relation:

πr = 180d .

Therefore, we convert from degrees to radians with the following function:

r =
π

180
d .

Then, we convert from radians degrees with the inverse of this function:

d =
180

π
r .

Within each of the categories, there may be complex, even circular, relations. For example, we have the
following among these currencies:

# of dollars
×.9−−−−−→ # of eurosx×1.3

y×122

# of pounds
×0.007←−−−−−−− # of yen

or

USD
/.9←−−−−− EURy/1.3 x/122

GBP
/0.007−−−−−−−→ JPY

The arrows, of course, indicate functions, two in a row indicate compositions, and the reversed arrows are
the inverses!

Exercise 2.7.1

Make your way from minutes to years.

We don't deal with these quantities one by one nor even in these pairs. We will study the functions that
have them as variables.

We will �rst consider the compositions of these functions with the functions that represent the unit conver-
sions.
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Example 2.7.2: units of distance

Suppose t is the time and x is the location. Suppose also that a function g represents the change of
units of length, such as from miles to kilometers:

z = g(x) = 1.6x .

Then, the change of the units will make very little di�erence; the coe�cient, m = 1.6, is the only
adjustment necessary. If f is the distance in miles, then h is the distance in kilometers: h(t) = 1.6f(t).
Thus, all the functions are replaced with their multiples. The graphs are stretched!

We call such a unit conversion a change of variables. Usually, it is done one at a time: either the dependent
or the independent variable.

Example 2.7.3: motion and units

Suppose we study motion and we have a function y = f(x) that relates
• x, time in minutes, to
• y, location in inches.

What if we need to switch to
• t, time in seconds, or
• z, location in feet?

The algebra is clear:
x = t/60 and z = y/12 .

Then we might have two new functions:

y = f(t/60) and z = f(x)/12 .

Now, what will the new graphs look like? To answer, we combine the graph of f with the two
transformations of the two axes, as follows:

The result is a vertical and a horizontal stretch/shrink. However, it's entirely up to us to choose the
units on the new axes to match the old: the graph will remain the same!

Exercise 2.7.4

What is the relation between seconds and feet?

Example 2.7.5: time and temperature

Suppose we have a function f that records the temperature (in Fahrenheit) as a function of time (in
minutes).
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Question:
I What should f be replaced with if we want to record the temperature in Celsius as a
function of time in seconds?

Let's name the variables:
• s is the time in seconds,
• m is the time in minutes,
• F is the temperature in Fahrenheit,
• C is the temperature in Celsius.

Suppose the original function, say,
F = f(m) ,

is to be replaced with some new function,

C = g(s) .

First, we need the conversion formulas for these units. First, the time. This is what we know:

1 minute = 60 seconds.

However, this is not the formula to be used to convert s to m because these are the number of seconds
and the number of minutes, respectively. Instead, we have

m = s/60 .

We represent the function by its graph and as a transformation:

Second, the temperature. This is what we know:

C = (F − 32)/1.8 .

We represent the function by its graph and as a transformation:

These are the relations between the four quantities:

g : s
s/60−−−−−−→ m

f−−−−→ F
(F−32)/1.8−−−−−−−−−−→ C

Instead of transforming the axes and, therefore, the plane, we choose to simply relabel them:
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The answer to our question is, we replace f with g, the composition of the above functions:

F = g(s) =
(
f(s/60)− 32

)
/1.8 .

Note that both of the conversion formulas are one-to-one functions! That's what guarantees that the
conversions are unambiguous and reversible. More precisely, we say that these functions are invertible.
Indeed, these are the inverses, for the time:

s = 60m,

and for the temperature:
F = 1.8C + 32 .

Note that all of the conversion formulas have been provided by linear functions. Then, a linear change of
variables will cause the x-axis or the y-axis to shift, stretch, or �ip (vertically or horizontally):

We conclude:

I A linear change of variables will cause the graph of the function to shift, stretch, or �ip.

2.8. The arithmetic operations on functions

We would like to treat all numerical functions as a single group.

We �nd inspiration in how we have handled the real numbers. We put them together in the real number
line, which provides us with a bird's-eye view:

But there is much more! We also recognize that these entities are interacting with each other, producing
o�spring via arithmetic:

3 + 6 = 9, 5 · 7 = 35, etc.
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Understanding the meaning of these computations requires understanding that the beginning and the end
of such a computation are just two di�erent representations of the same number:

1 + 1 = 2 · 1 = 2 .

There is a single location for each of these expressions on the real number line! Similarly, x + x and 2x
correspond to the same (albeit unspeci�ed) location on the number line. We simply say that they are equal.

It is much more challenging to �nd such a bird's-eye view for functions ! For example, this is what an
attempt to visualize all linear functions would look like:

Just as with numbers, it is the interactions between functions that make them manageable as a whole.

For each of the four arithmetic operations on numbers � addition, subtraction, multiplication, and division
� there is an operation on (numerical) functions.

But �rst let's make sure that we have a clear understanding of what it means for two functions to be the
same. For example, these two functions are represented by two di�erent formulas:

x+ x and 2x .

Are they the same function? Of course! These two functions are represented by two similar formulas:

x− 1 and 1− x .

Are they the same function? Of course not! How do we know?

The answer (as is the question itself) is dependent on our de�nition of function:

A function is a list of inputs and outputs.

To answer the question, we can simply test the formulas by plugging input values and watching the outputs:

x+ x

∣∣∣∣
x=0

= 0, 2x

∣∣∣∣
x=0

= 0 . Same!

x+ x

∣∣∣∣
x=1

= 2, x+ x

∣∣∣∣
x=1

= 2 . Same!

... ... ???

It seems the same. Now the second pair:

x− 1

∣∣∣∣
x=0

= −1, 1− x
∣∣∣∣
x=0

= 1 . Di�erent!

x− 1

∣∣∣∣
x=1

= 0, 1− x
∣∣∣∣
x=1

= 0 . Same!

We stop here because a single mismatch means that they are di�erent!

But what about these functions:
2x2 + 2x

2
and x2 + x ,

or those:
2x2 + 2x

x
and 2x+ 2 ?
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We again plug in the values:

2x2 + 2x

2

∣∣∣∣
x=0

= 0, x2 + x

∣∣∣∣
x=0

= 0 . Same!

2x2 + 2x

2

∣∣∣∣
x=1

= 2, x2 + x

∣∣∣∣
x=1

= 2 . Same!

... ... ???

The results are the same for every x! What about the latter? It breaks down:

2x2 + 2x

x

∣∣∣∣
x=0

is unde�ned, 2x+ 2

∣∣∣∣
x=0

= 2 . Di�erent!

Plugging in x = 0 will produce division by 0 for the �rst function in the pair but not for the second. It is
clear then that two functions can't be the same unless their domains are equal too (as sets).

The following is the test two function functions f and g are subjected to:

f

↗ ↘
x → same?

↘ ↗
g

So, f and g are called equal, or we say it's the same function, if they have the same domain and

f(x) = g(x) FOR EACH x

in the domain.

These are our answers to the above questions. Are these two functions the same:

f(x) =
2x2 + 2x

2
and g(x) = x2 + x ?

Yes, because
2x2 + 2x

2
= x2 + x for every x.

It is crucial that the implied domains � for every x � of the two functions are the same.

We use the same simple notation for functions as for numbers:

Equal functions

f = g

Are these two functions the same:

f(x) =
2x2 + 2x

x
and g(x) = 2x+ 2 ?

No, because the implied domain of the former doesn't include 0 while that of the latter does. The di�erence
is in a single value!

We also use this simple notation:
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Not equal functions

f 6= g

As you can see, once we discover that the domains don't match, we are done. However, choosing another
domain will �x the problem:

f(x) =
2x2 + 2x

x
and g(x) = 2x+ 2 are the same function on the domain {x : x 6= 0} .

As another relevant example, these are two di�erent functions:

• x2 with domain (−∞,∞);

• x2 with domain [0,∞).

Exercise 2.8.1

Consider:
x

x2
vs.

1

x
.

Exercise 2.8.2

Suggest your own examples of functions that di�er by a single value.

The statement in the de�nition, such as

2x2 + 2x

2
= x2 + x for every real x,

is called an identity. The last part is often assumed and omitted from computations. The following statement
is also an identity:

2x2 + 2x

x
= 2x+ 2 for every real x 6= 0 .

However, the last part is a caveat that cannot be omitted! In other words, an identity is just a statement
about two functions being �identically� equal, i.e., indistinguishable, within the speci�ed domain.

This idea of transitioning from a function to its twin is the basis of all algebraic manipulations; they are
informally called �simpli�cations� or �cancellations�.

Now, the outputs of numerical functions are numbers. Therefore, any arithmetic operation on numbers �
addition, subtraction, multiplication, and division � can now be applied to functions, one input at a time.
Once again, functions interact and produce o�spring, new functions.

The de�nitions of these new functions are simple:

De�nition 2.8.3: sum of functions

Given two functions f and g, the sum, f + g, of f and g is the function de�ned
by the following:

(f + g)(x) = f(x) + g(x) FOR EACH x

in the intersection of the domains of f and g.

Note how the two plus signs in the formula are di�erent: The �rst one is a part of the name of the new
function while the second is the actual sign of summation of two real numbers. This is the �deconstruction�
of the notation:
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Sum of functions

names of the �rst and second functions
↓ ↓(

f + g
)

(x) = f(x) + g (x)
↑ ↑ ↑ ↑

name of the new function operation on numbers

Furthermore, we now have an operation on functions: f + g is a new function.

Example 2.8.4: algebra of functions

The sum of
g(x) = x2 and f(x) = x+ 2

is
(g + f)(x) = g(x) + f(x) =

(
x2
)

+
(
x+ 2

)
.

Whether this is to be simpli�ed or not, a new function has been built.

This is an illustration of the meaning of the sum of two functions:

One can see how the values are added, location by location.

We represent a function f diagrammatically as a black box that processes the input and produces the output:

input function output

x → f → y

Now, suppose we have another function g:

input function output
t → g → u

How do we represent their sum f + g? To represent it as a single function, we need to �wire� their diagrams
together side by side:

x → f → y

|| l
t → g → u

But it's only possible when the input of f coincides with the input of g. We may have to rename the variable
of g. We replace t with x. Then we have a new diagram for a new function:

f + g : x → x

↗ x → f → y ↘

↘ x → g → u ↗
add → z → z
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We see how the input variable x is copied into the two functions, processed by them in parallel, and �nally
the two outputs are added together to produce a single output. The result can be seen as just a new black
box:

x → f + g → y

Warning!

When units are involved, we must make sure that
the outputs match so that we can add them.

Example 2.8.5: algebra of functions

We have combined two functions into one but we often need to go the other way and break a complex
function into simpler parts that can then be studied separately. Represent

z = h(x) = x2 + 3
√
x

as the sum of two functions. Here is the answer:

x 7→ y = x2 and x 7→ y = 3
√
x .

Subtraction also gives us an operation on functions.

De�nition 2.8.6: di�erence of functions

Given two functions f and g, the di�erence, g − f , of f and g is the function
de�ned by the following:

(g − f)(x) = g(x)− f(x) FOR EACH x

in the intersection of the domains of f and g.

Before we get to multiplication of functions, there is a simpler but very important version of this operation.

De�nition 2.8.7: constant multiple of function

Given a function f , the constant multiple cf of f , for some real number c, is the
function de�ned by the following:

(cf)(x) = cf(x) FOR EACH x

in the domain of f .

In the following illustration of the meaning of a constant multiple of a function, one can see how its values
are multiplied by c = 1.3 one location at a time:
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There may be more than two functions involved in these operations or they can be combined.

Example 2.8.8: algebra of functions

Sum combined with di�erences:

h(x) = 2x3 − 5

x
+ 3x− 4 .

The function is also seen as the sum of constant multiples, called a �linear combination�:

h(x) = 2 ·
(
x3
)

+ (−5) · 1

x
+ 3 · x+ (−4) · 1 .

Example 2.8.9: algebra of functions given by tables

When two functions are represented by their lists of values, their sum (di�erence, etc.) can be easily
computed. We simply go row by row adding the values.

Suppose we need to add these two functions, f and g, and create a new one, h, represented by a similar
list:

x y = f(x)
0 1
1 2
2 3
3 0
4 1

+

x y = g(x)
0 5
1 −1
2 2
3 3
4 0

= ?

We simply add the output of the two functions for the same input. First row:

f : 0 7→ 1, g : 0 7→ 5 =⇒ h : 0 7→ 1 + 5 = 6 .

Second row:
f : 1 7→ 2, g : 1 7→ −1 =⇒ h : 1 7→ 2 + (−1) = 1 .

And so on. This is the whole solution:

x y = f(x)
0 1
1 2
2 3
3 0
4 1

+

x y = g(x)
0 5
1 −1
2 2
3 3
4 0

=

x y = f(x) + g(x)
0 1 + 5 = 6
1 2 + (−1) = 1
2 3 + 2 = 5
3 0 + 3 = 3
4 1 + 0 = 1

=

x y = h(x)
0 6
1 1
2 5
3 3
4 1

.

Example 2.8.10: algebra of functions with spreadsheet

This is how the sum of two functions is computed with a spreadsheet:
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The formula is very simple:
=RC[-6]+RC[-3]

All four algebraic operations produce new functions in the same manner:

x → x

↗ x → f → y ↘

↘ x → g → u ↗
+ − · ÷ → z

Exercise 2.8.11

Have we found the domains of these new functions?

Warning!

The algebra of functions comes from the algebra of
outputs; the inputs don't even have to be numbers.

Composition, however, is the most important operation on functions. There is no matching operation for
numbers.

2.9. Solving equations

Let's review what it means to solve an equation.

We go back to our example of boys and balls. This is our function that tells what ball each boy prefers:

F ( Tom ) = basketball
F ( Ned ) = tennis
F ( Ben ) = basketball
F ( Ken ) = football
F ( Sid ) = football

So, our function � in the form of this list � answers the question:

I Which ball is this boy playing with?

However, what if we turn this question around:

I Which boy is playing with this ball?
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Let's try an example: Who is playing with the basketball? Before answering it, we can give this question a
more compact form, the form of an equation:

F ( boy ) = basketball .

Indeed, we need to �nd the inputs that, under F , produce this speci�c output. We visualize and answer the
question by erasing all irrelevant arrows:

These are a few of possible questions of this kind along with the answers:

• Who is playing with the basketball? Tom and Ben!

• Who is playing with the tennis ball? Ned!

• Who is playing with the baseball? No one!

• Who is playing with the football? Ken and Sid!

It seems that there are several answers to each of these questions. Or are there? �Tom� and �Ben� aren't
two answers; it's one: �Tom and Ben�! Indeed, if we provide one name and not the other, we haven't fully
answered the question. We know that we should write the answer as

{ Tom, Ben } .

It's a set!

Let's review. The solution of an equation f(x) = y with f : X → Y is always a set (a subset of X) and it
may contain any number of elements, including none. To solve an equation with respect to x means to �nd
all values of x that satisfy the equation. In other words:

1. When we substitute any of those x's into the equation, we have a true statement.

2. There are no other such x's.

For example, consider how this equation is solved:

x+ 2 = 5 =⇒ x = 3 .

That's an abbreviated version of the following statement:

I If x satis�es the equation x+ 2 = 5, then x satis�es the equation x = 3.

Plug in:
x+ 2 = (3) + 2 = 5 .

It checks out! We could try others and they won't check out:

(x) + 2 = =? 5 TRUE/FALSE

x = 0 (0) + 2 = 2 6= 5 FALSE

x = 1 (1) + 2 = 3 6= 5 FALSE

x = 2 (2) + 2 = 4 6= 5 FALSE

x = 3 (3) + 2 = 5 = 5 TRUE Add it to the list!
x = 4 (4) + 2 = 6 6= 5 FALSE

... ... ...

Of course, this trial-and-error method is unfeasible because there are in�nitely many possibilities.

A method of how we may arrive to the answer is discussed in this section.

Recall the basic methods (�rules�) of handling equations.
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Example 2.9.1: simple equations

In order to solve the equation
x+ 2 = 5 ,

subtract 2 from both sides producing

x+ 2− 2 = 5− 2 =⇒ x = 3 .

In order to solve the equation
3x = 2 ,

divide by 3 both sides producing

3x/3 = 2/3 =⇒ x = 2/3 .

This is the summary.

Theorem 2.9.2: Basic Algebra of Equations

• Multiplying both sides of an equation by a number preserves it. In other
words, we have:

a = b =⇒ ka = ka for any k .

• Adding any number to both sides of an equation preserves it. In other
words, we have:

a = b =⇒ a+ s = b+ s for any s .

Warning!

Multiplying an equation by 0 is pointless.

Exercise 2.9.3

What about the converses?

As a reminder, in the special case when the right-hand side of the equation is zero, the solution set to this
equation has a clear geometric meaning: An x-intercept of a numerical function f is any solution to the
equation f(x) = 0. In other words, these are the x-coordinates of the intersections of the graph with the
x-axis (top):

Furthermore, when the right-hand side is a number, say, k, the solution to this equation f(x) = k gives us
the intersection of the graph with the line y = k (bottom).

Our interest in this section, though, is algebra.

We will deal with a simple kind of equation:
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I x is present only once (in the left-hand side).

Like this:
x2 = 17 .

Starting with such an equation, our goal is � through a series of manipulations � to arrive to an even simpler
kind of equation:

I x is isolated (in the left-hand side).

Like this:
x =
√

17 .

Warning!

This is an equation.

In other words, we will try to �nd ways to get from left to right here:

sin
(
e

1√
x

)
= 5 −→ ??? −→ x = ......︸︷︷︸

no x here

The main idea of how to manipulate equations is as follows:

I We apply a function to both sides of the equation, producing a new equation.

For example, if we have an equation, say,
x+ 2 = 5 ,

we treat it as a number, call it y. Then we deal with this number:

y = x+ 2 = 5, apply z = y − 2 =⇒ (x+ 2)− 2 = 3− 2 =⇒ x = 3 Solved!

The idea is to produce � from an equation satis�ed by x � another equation satis�ed by x.

However, the challenge (and an opportunity) is that applying any function in this manner will produce a
new equation satis�ed by x! For example:

y = x+ 2 = 5, apply z = y + 2 =⇒ (x+ 2) + 2 = 5 + 2 =⇒ x+ 4 = 7 Not solved!
y = x+ 2 = 5, apply z = y2 =⇒ (x+ 2)2 = 52 Not solved!
y = x+ 2 = 5, apply z = sin y =⇒ sin(x+ 2) = sin 5 Not solved!

Indeed, it is the de�nition of a function that every input has exactly one output. Suppose we have a
function g. Then, two equal (according to the equation) inputs of g will produce two equal outputs (another
equation), always:

old equation: a = byg yg
new equation: g(a) = g(b)

In particular, we have, for any function g:

x+ 2 = 5 =⇒ g(x+ 2) = g(5) .

That is why if the �rst equation is satis�ed by x, then so is the second.

There are in�nitely many possibilities for this function g:

x+ 4 = x+ 2 + 2 = 7 (x+ 2)2 = 52 sin(x+ 2) = sin 5
↖ ↑ ↗

x+ 5 = x+ 2 + 3 = 8 ← x+ 2 = 5 → 2x+2 = 25

↙ ↓ ↘
x = x+ 2− 2 = 3 (x+ 2)3 = 53

√
x+ 2 =

√
5
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If x satis�es the equation in the middle, it also satis�es the rest of the equations.

If we want to solve the original equation, which function � out of in�nitely many � do we pick? Some of
them clearly make the equation more complex than the original! It is the challenge for the equation solver
to have enough foresight to choose a function to apply that will make the equation simpler.

Example 2.9.4: solving equation with function given by �owchart

Let's consider this equation:

3 ·
(√

x

4
+ 1

)
= 6 .

Here, several functions are consecutively applied to x. This is the �owchart of this function:

f : x → root → divide by 4 → add 1 → multiply by 3 → y

We can plug in any value on the left and get the output on the right:

0 → root → 0→ divide by 4 → 0→ add 1 → 1→ multiply by 3 → 3

We test possible inputs this way. That one has failed; it's not 6!

Is there a better method?

We would like to get to x. To get to it, we will need to undo these functions one by one. In what
order? Right to left, of course. We reverse the �ow of the �owchart:

f : x → root → divide by 4 → add 1 → multiply by 3 → 6

f−1 : x ← square ← multiply by 4 ← subtract 1 ← divide by 3 ← 6

Of course, the pairs of functions aligned vertically are the inverses of each other:

x → root → divide by 4 → add 1 → multiply by 3 → y

inverse? inverse inverse inverse ↓
x ← square ← multiply by 4 ← subtract 1 ← divide by 3 ← y

They, therefore, can be canceled out one pair at a time:

x → root → divide by 4 → add 1 ���
↓

x ← square ← multiply by 4 ← subtract 1 ���

Then, we have the following and we can cancel more:

x → root → divide by 4 ��� ���
↓

x ← square ← multiply by 4 ��� ���

And so on. We have demonstrated that the second row is indeed the inverse of the �rst.

With this fact understood, we �nd x by starting on the left with 6:

±16← square ← 4← multiply by 4 ← 1← subtract 1 ← 2← divide by 3 ← 6

Such equations can be visualized as follows; we see a single x �wrapped� in several layers of functions, as if
a gift:
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To get to the gift, the only method is to remove one wrapper at a time, from the outside in. In fact, you
don't even know what kind of wrapper is the next until you've removed the last one!

As a summary, we have developed the following method of solving equations.

Theorem 2.9.5: General Algebra of Equations

Suppose g is an invertible function. Then applying g to both sides of an equation
creates an equivalent equation. In other words, we have:

a = b ⇐⇒ g(a) = g(a) .

Furthermore, the two equations have the same solution set.

Exercise 2.9.6

What is the relation between the two solution sets if instead of ⇐⇒, we have (a) ⇐= , (b) =⇒ ?
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3.1. Parametric curves on the plane

Example 3.1.1: ball

Imagine a person observing the �ight of a thrown ball from aside:

Is there another way to capture this �ight? Imagine there are two more observers:
• The �rst one (red) is on the ground under the path of the ball and can only see the forward
progress of the ball.
• The second one (green) is behind the throw and can see only the rise and fall of the ball.

157
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If the two make records where the ball was at what time, they can use the time stamps to match the
two coordinates and then plot this point on the xy-plane. These points will form the ball's trajectory,
what a side �rst observer would see. It is called a parametric curve

Curves aren't represented as graphs of functions. In fact, y doesn't depend on x anymore, but they are
related to each other. The link is established by means of another variable, t. So, we have two functions
that have nothing to do with each other except the inputs can be matched.

De�nition 3.1.2: parametric curve

A parametric curve on the plane is a combination of two functions of the same
variable: {

x = f(t)

y = g(t)

We can also use the Cartesian system of points to represent this curve:

(x, y) =
(
f(t), g(t)

)
Exercise 3.1.3

Explain how a parametric curve is a relation.

Example 3.1.4: plotter

A curve may be plotted on a piece of paper by hand or by a computer by the following method. A pen
is attached to a runner on a vertical bar, while that bar slides along a horizontal rail at the bottom
edge of the paper:
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The computer commands the next location of both as follows. At each moment of time t, we have:
1. The horizontal location of the vertical bar (and the pen) is given by x = f(t).
2. The vertical location of the pen is given by y = g(t).

Warning!

This view of parametric curves is most useful within
the framework of multidimensional spaces and vec-
tors.

Example 3.1.5: straight lines

Let's examine motion along a straight line on the xy-plane.

First we go along the x-axis. The motion is represented by a familiar linear function of time:

x = 2t+ 1 .

We are moving 2 feet per second to the right starting at x = 1. These are a few of the locations:

Second we go along the y-axis. The motion is represented by another linear function of time:

y = 3t+ 2 .

We are moving 3 feet per second up starting at y = 2. These are a few of the locations:

Now, what if these two are just two di�erent views on the same motion from two di�erent observers?
Then we have: {

x = 2t+ 1 ,

y = 3t+ 2 .

These are a few of the locations:
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Exercise 3.1.6

Explain why these points lie on a straight line. Hint: triangles.

Of course, the motion metaphor � x and y are coordinates in the space � will be superseded. In contrast
to this approach, we look at the two quantities and two functions that might have nothing to do with each
other (except for t of course).

Example 3.1.7: commodities trader

Suppose a commodities trader follows the market. What he sees is the following:
• t is time.
• x is the price of wheat (say, in dollars per bushel).
• y is the price of sugar (say, in dollars per ton).

We simply have two functions and we � initially � look at them separately.

First, let's imagine that the price of wheat is decreasing:

x ↘

The data comes to the observer in a pure, numerical form. To emulate this situation and to make this
speci�c, one can choose a formula, for example:

x = f(t) =
1

t+ 1
.

To show some actual data, we evaluate x for several values of t:

t x
0 1.00
1 .50
2 .33

With more points acquired in a spreadsheet we can plot the graph on the tx-plane:
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At this point, we could, if needed, apply the available apparatus to study the symmetries, the
monotonicity, the extreme points, etc. of this function.

Second, suppose that the price of sugar is increasing and then decreasing:

y ↗ ↘

To make this speci�c, we can choose an upside down parabola:

y = g(t) = −(t− 1)2 + 2 .

We then again evaluate y for several values of t:

t y
0 1.00
1 2.00
2 1.00

With more points acquired in a spreadsheet we plot the graph on the ty-plane:

What if the trader is interested in �nding hidden relations between these two commodities. Let's
combine the data �rst:

t x
0 1.00
1 .50
2 .33

and

t y
0 1.00
1 2.00
2 1.00

−→

t x y
0 1.00 1.00
1 .50 2.00
2 .33 1.00

Since the input t is the same, we give it a single column. There seems to be two outputs. A better
idea is to see pairs (x, y):

t ( x , y )
0 ( 1.00 , 1.00 )
1 ( .50 , 2.00 )
2 ( .33 , 1.00 )

A value of x is paired up with a value of y when they appear along the same t in both plots.

How do we combine the two plots? As the two plots are made of (initially) disconnected points � (t, x)
and (t, y) � so is the new plot. This is what happens to each pair:
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There is no t! As the independent variable is the same for both functions, only the dependent variables
appear. Instead of plotting all points (t, x, y), which belong to the 3-dimensional space, we just plot
(x, y) on the xy-plane � for each t. It's a �scatter plot� connected to make a curve:

The direction matters! Since t is missing, we have to make sure we know in which direction we are
moving and indicate that with an arrow. Ideally, we also label the points in order to indicate not only
�where� but also �when�:

Thus, this is motion, just as before, but through what space? An abstract space of prices that we've
made up. The space is comprised of all possible combinations of prices, i.e., a point (x, y) stands for
a combination of two prices: x for wheat and y for sugar.

How much information about the dynamics of the two prices contained in the original functions can
we recover from the new graph? A lot. We can shrink the graph vertically to de-emphasize the change
of y and to reveal the qualitative behavior of x, and vice versa:
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We see the decrease of x and then the increase followed by the decrease of y. In addition, the density
of the points indicates the speed of the motion.

Example 3.1.8: abstract

We can do this in a fully abstract setting. When two functions, f, g, are represented by their respective
lists of values (instead of formulas), they are easily combined into a parametric curve, F . We just need
to eliminate the repeated column of inputs. Suppose we need to combine these two functions:

t x = f(t)
0 1
1 2
2 3
3 0
4 1

&

t y = g(t)
0 5
1 −1
2 2
3 3
4 0

= ?

We repeat the inputs column � only once � and then repeat the outputs of either function. First row:

f : 0 7→ 1 & g : 0 7→ 5 =⇒ F : 0 7→ (0, 5) .

Second row:
f : 1 7→ 2 & g : 1 7→ −1 =⇒ F : 1 7→ (2,−1) .

And so on. This is the whole solution:

t x = f(t)
0 1
1 2
2 3
3 0
4 1

and

t y = g(t)
0 5
1 −1
2 2
3 3
4 0

−→

t P = (f(t) , g(t))
0 (1 , 5)
1 (2 , −1)
2 (3 , 2)
3 (0 , 3)
4 (1 , 0)

As you can see, there are no algebraic operations carried out and there is no new data, just the old
data arranged in a new way. However, it is becoming clear that the list is also a function of some
kind...

Warning!

The end result isn't the graph of any function.

Example 3.1.9: spreadsheet

This is a summary how the parametric curve is formed from two functions provided with a spreadsheet.
The three columns � t, x, and y � are copied and then the last two are used to create a chart:
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This chart is the path � not the graph � of the parametric curve. Note also that the curve isn't the
graph of any function of one variable as the Vertical Line Test is violated.

Example 3.1.10: pattern

Plotting a parametric curve may reveal a relation between two quantities:

Parametric curves are functions !

This idea comes with certain obligations (Chapter 1). First, we have to name it, say F . Second, as we
combine two functions, we use the following notation for this operation:

parametric curve

F = (f, g) :

{
x = f(t)

y = g(t)

Next, what is the independent variable? It is t. After all, this is the input of both of the functions involved.
What is the dependent variable? It is the �combination� of the outputs of the two functions, i.e., x and y.
We know how to combine these; we form a pair, P = (x, y). This P is a point on the xy-plane!

To summarize, we do what we have done many times before (addition, multiplication, etc.) � we create
a new function from two old functions. We represent a function f diagrammatically as a black box that
processes the input and produces the output:

input function output

t → f → x
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Now, what if we have another function g:

input function output
t → g → y

How do we represent F = (f, g)? To represent it as a single function, we need to �wire� their diagrams
together side by side:

t → f → x

|| l
t → g → y

It is possible because the input of f is the same as the input of g. For the outputs, we can combine them
even when they are of di�erent nature. Then we have a diagram of a new function:

(f, g) : t → t

↗ t → f → x ↘

↘ t → g → y ↗
(x, y) → P

We see how the input variable t is copied into the two functions, processed by them in parallel, and �nally
the two outputs are combined together to produce a single output. The result can be seen as again black
box:

t → F → P .

The di�erence from all the functions we have seen until now is the nature of the output.

What about the image (the range of values) of F = (f, g)? It is supposed to be a recording of all possible
outputs of F . The terminology used is often di�erent though.

De�nition 3.1.11:

The path of a parametric curve x = f(t), y = g(t) is the set of all such points
P = (f(t), g(t)) on the xy-plane.

The path is typically a curve. We plot several of them below.

Example 3.1.12: path

In general, the two processes, x = x(t) and y = y(t), are independent. When we combine them to see
the path of the object by plotting (x, y) for each t, the result may be unexpected:
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What about the graph of F = (f, g)? As we know from Chapter 1, the graph of a function is supposed to be
a recording of all possible combinations of inputs and outputs of F . What if the outputs are 2-dimensional?

De�nition 3.1.13:

The graph of a parametric curve x = f(t), y = g(t) is the set of all such points
(t, x, y) = (t, f(t), g(t)) in the txy-space.

The graph is built from:

• the graph of x = f(t) on the tx-plane (the �oor), and

• the graph of y = g(t) on the ty-plane (the wall facing us).

It is a curve in space, akin to a piece of wire:

Then the shadow of this wire on the �oor is the graph x = f(t) (light from above). If the light is behind us,
the shadow on the wall in front is the graph y = g(t). In addition, pointing a �ashlight from right to left
will produce the path of the parametric curve on the xy-plane.



3.2. Functions of two variables 167

This is the summary of the terminology:

types of functions: general functions numerical functions parametric curves motion
the set of all outputs: image range path trajectory

3.2. Functions of two variables

Any formula with two independent variables and one dependent variable can be studied in this manner:

a = wd or z = x+ y ,

Such an expression is called a function of two variables. The notation is as follows:

g(w, d) = wd or f(x, y) = x+ y .

Example 3.2.1: function of two variables

Let
f(x, y) = x+ y .

We illustrate this new function below. First, by changing � independently � the two variables we
create a table of numbers (left). We can furthermore color this array of cells (middle) so that the color
of the (x, y)-cell is determined by the value of z:

The value of z can also be visualized as the elevation of a point at that location (right).

So, the main metaphor for a function of two variables will be terrain:

Each line indicates a constant elevation.

Example 3.2.2: distance

The distance formula for the Cartesian plane creates a function of two variables. This is the distance
from a point (x, y) to the origin:

z =
√
x2 + y2 .
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Slightly simpler is the square of the distance from a point (x, y) to the origin:

z = x2 + y2 .

We create a table of the values of the expression on the left in a spreadsheet with the formula:

=RC1� 2+R1C� 2

We then color the cells:

The negative values of z are in blue and the positive are in red. The circular pattern is clear.

The pattern seems to be made from concentric circles with the radius that varies with z:

For each z, we have a relation between x and y.

We also represent a function p diagrammatically as a black box that processes the inputs and produces the
output:

inputs function output
x

↘
p → z

↗
y

Instead, we would like to see a single input variable, (x, y), decomposed into two x and y to be processed
by the function at the same time:

(x, y) → p → z

The di�erence from all the functions we have seen until now is the nature of the input.

So, even though we speak of two variables, the idea of function remains the same:

I There is a set (domain) and another (codomain) and the function assigns to each element of
the former an element of the latter.

The idea is re�ected in the notation we use:

F : X → Z

or

X
F−−−−→ Z
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A common way to visualize the concept of function � especially when the sets cannot be represented by
mere lists � is to draw shapeless blobs connected by arrows:

In contrast to numerical function, however, the domain is a subset of the (x, y)-plane.

For example, we have for f(x, y) = x+ y:

(0, 0)→ 0, (0, 1)→ 1, (1, 0)→ 1, (1, 1)→ 2, (1, 2)→ 3, (2, 1)→ 3 ...

Each arrow clearly identi�es the input � an element of X � of this procedure by its beginning and the output
� an element of Z � by its end.

This is the notation for the output of a function F when the input is x:

Input and output of
function

F (x, y) = z

or
F : (x, y) → z

It reads: �F of (x, y) is z�.

We still have:
F ( input ) = output

and
F : input → output .

Functions are explicit relations. There are three variables related to each other, but this relation is unequal:
The two input variables come �rst and, therefore, the output is dependent on the input. That is why we
say that the inputs are the independent variables while the output is the dependent variable.

Example 3.2.3: �owcharts represent functions

For example, for a given input (x, y), we �rst split it: x and y are the two numerical inputs. Then we
do the following consecutively:
• add x and y,
• multiply by 2, and then
• square.

Such a procedure can be conveniently visualized with a ��owchart�:

(x, y) → x+ y → u → u · 2 → z → z2 → v

Functions of two variables come from many sources and can be expressed in di�erent forms:

• a list of instructions (an algorithm)

• an algebraic formula

• a list of pairs of inputs and outputs

• a graph
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• a transformation

An algebraic representation is exempli�ed by z = x2y. In order to properly introduce this as a function, we
give it a name, say f , and write:

f(x, y) = x2y .

Let's examine this notation:

Function of two variables

z = f ( x , y ) = x2y
↑ ↑ ↑ ↑ ↑↑

name: dependent function independent independent
variable variables variables

Example 3.2.4: plug in values

Insert one input value in all of these boxes and the other in those circles. For example, this function:

f (x) =
2x2y − 3y + 7

y3 + 2x+ 1
,

can be understood and evaluated via this diagram:

f (�) =
2�2©−3©+7

©3 + 2�+ 1
.

This is how f(3, 0) is evaluated:

f
(

3 , 0©
)

=
2 3

2
0©− 3 0©+ 7

0©3 + 2 3 + 1
.

In summary,

I �x� and �y� in a formula serve as a placeholders for: numbers, variables, and whole functions.

How do we study a function of two variables? We use what we know about functions of single variable.

Above we looked at the curves of constant elevation of the surfaces. An alternative idea is a surveying
method:

I In order to study a terrain we concentrate on the two main directions.

Imagine that we drive south-north and east-west separately watching how the elevation changes:

We can even imagine that we drive around a city on a hill and these trips follow the street grid:
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Each of these trips creates a function of single variable, x or y.

To visualize, consider the plot of F (x, y) = sin(xy) on the left:

We plot the surface as a �wire-frame� on the right. Each wire is a separate trip.

The graphs of these functions are the slices cut by the vertical planes aligned with the axes from the surface
that is the graph of F :

Example 3.2.5: saddle

Let's plot the graph of the function:
z = xy .
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This is what the graphs of these relations look like plotted for various z's; they are curves called
hyperbolas :

Instead, we �x one independent variable at a time.

We �x y �rst:
plane equation curve
y = 2 z = x · 2 line with slope 2
y = 1 z = x · 1 line with slope 1
y = 0 z = x · 0 = 0 line with slope 0
y = −1 z = x · (−1) line with slope 1
y = −2 z = x · (−2) line with slope − 2

The view shown below is from the direction of the y-axis:

The data for each line comes from the x-column of the spreadsheet and one of the z-columns.
These lines give the lines of elevation of this terrain in a particular, say, east-west direction. This is
equivalent to cutting the graph by a vertical plane parallel to the xz-plane.

We �x x second:
plane equation curve
x = 2 z = 2 · y line with slope 2
x = 1 z = 1 · y line with slope 1
x = 0 z = 0 · y = 0 line with slope 0
x = −1 z = (−1) · y line with slope 1
x = −2 z = (−2) · y line with slope − 2

This is equivalent to cutting the graph by a vertical plane parallel to the yz-plane. The view shown
below is from the direction of the x-axis:

The data for each line comes from the y-row of the spreadsheet and one of the z-rows. These lines
give the lines of elevation of this terrain in a particular, say, north-south direction.

Exercise 3.2.6

Provide a similar analysis for f(x, y) = 3x+ 2y.
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Example 3.2.7: baker

We will take a look at the example in the last section from a di�erent angle. The time t is not a part
of our consideration anymore but we retain the two variables representing the two commodities :
• x is the price of wheat.
• y is the price of sugar.

We also add a product to the setup:
• z is the price of a loaf of bread.

What is the relation between these three? As those two are the two major ingredients in bread, we
will assume that

I z depends on x and y.
One can imagine a baker who every morning, upon receiving the updated prices of wheat and sugar,
uses a table that he made up in advance to decide on the price of his bread for the rest of the day.
Let's see how such a table might come about.

What kind of dependencies are these? Increasing prices of the ingredients in creases the cost and
ultimately the price of the product:

x↗ =⇒ z ↗
y ↗ =⇒ z ↗

At its simplest, such an increase is linear. In addition to some �xed costs,
• Each increase of x leads to a proportional increase of z.
• Each increase of y leads to a proportional increase of z.

Independently! A simple formula that captures this dependence may be this:

z = p(x, y) = 2x+ y + 1 .

In order to visualize this function, we compute a few of its values:
• p(0, 0) = 1
• p(0, 1) = 2
• p(0, 2) = 3
• p(1, 0) = 3
• p(1, 1) = 4
• etc.

Even though this is a list, we realize that the input variables don't �t into a list comfortably... they
form a table!

(0, 0) (1, 0) (2, 0) ...
(0, 1) (1, 1) (2, 1) ...
(0, 2) (1, 2) (2, 2) ...
... ... ... ...

In fact, we can align these pairs with x in each column and y in each row:

y\x 0 1 2 ...
0 (0, 0) (1, 0) (2, 0) ...
1 (0, 1) (1, 1) (2, 1) ...
2 (0, 2) (1, 2) (2, 2) ...
... ... ... ... ...

Now, the values, z = p(x, y):
y\x 0 1 2 ...
0 1 3 5 ...
1 2 4 6 ...
2 3 5 7 ...
... ... ... ... ...

That's what baker's table might look like...
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Let's bring these two together:

y\x 0 1 2 ...
0 (0, 0) (1, 0) (2, 0) ...

↘ ↘ ↘ ...
1 3 5 ...

1 (0, 1) (1, 1) (2, 1) ...
↘ ↘ ↘ ...

2 4 6 ...
2 (0, 2) (1, 2) (2, 2) ...

↘ ↘ ↘ ...
3 5 7 ...

... ... ... ... ...

In the past, we have visualized numerical functions by putting bars on top of the x-axis. Now, we
visualize the values by building columns with appropriate heights on top of the xy-plane:

Notice that by �xing one of the variables � x = 0, 1, 2 or y = 0, 1, 2 � we create a function of one
variable with respect to the other variable. We �x x below and extract the columns from the table:

x = 0 :

y z
0 1
1 2
2 3

, x = 1 :

y z
0 3
1 4
2 5

, x = 2 :

y z
0 5
1 6
2 7

.

A pattern is clear: growth by 1. We next �x y and extract the rows from the table:

y = 0 :
x 0 1 2
z 1 3 5

, y = 1 :
x 0 1 2
z 2 4 6

, y = 2 :
x 0 1 2
z 3 5 7

A pattern is clear: growth by 2. We have the total of six (linear) functions!
Let's do the same with a spreadsheet. This is the data:
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The value in each cell is computed from the corresponding value of x (all the way up) and from the
corresponding value of y (all the way left). This is the formula:

=2*R3C+RC2+1 .

The simplest way to visualize is by coloring the cell depending on the values (common in cartography:
elevation, temperature, humidity, precipitation, population density, etc.:

The growth is visible: it grows the most in some diagonal direction but it's not 45 degrees...
We can also visualize with bar chart, just as before:

If we used bars to represent the Riemann sums to compute the area, here we are after the volume...
The most common way, however, to visualize a function of two variables in mathematics is with its
graph, which, in this case, is a surface:

In this particular case, this is a plane. The second graph is the same surface but displayed as a wire-
frame (or even a wire-fence). The wires are the graphs of those linear functions of one variable created
from our function when we �x one variable at a time. Each of these wires comes from choosing either:
• the row of x's (top) and one other row in the table, or
• the column of y's (leftmost) and one other column in the table.

Exercise 3.2.8

Provide a similar analysis for (a) the wind-chill and (b) the heat index.
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The functions of one variable created from our function z = p(x, y) when we �x one variable at a time are:

y = b −→ fb(x) = p(x, b);
x = a −→ ga(y) = p(a, y).

There are in�nitely many of them. Their graphs are the slices � along the axes � of the surface that is the
graph of F .

Therefore, the monotonicity of these functions tells us about the monotonicity of p � in the directions of the
axes!

Functions of two variables are functions...

This idea comes with certain questions to be answered. What is the input, the independent variable? Taking
a clue from our analysis of parametric curves, we answer: it is the �combination� of the two inputs of the
function, i.e., x and y that form a pair, X = (x, y), which is is a point on the xy-plane. What is the output,
the dependent variable? It is z.

We represent a function p diagrammatically as a black box that processes the input and produces the output:

inputs function output
x

↘
p 7→ z

↗
y

Instead, we would like to see a single input variable, (x, y), decomposed into two x and y to be processed
by the function at the same time:

(x, y) → p → z

The di�erence from all the functions we have seen until now is the nature of the input.

Next, what is the domain of p? It is supposed to be a recording of all possible inputs, i.e., all pairs (x, y) for
which the output z = p(x, y) of the function makes sense. This requirement create a subset of the xy-plane
and, therefore, a relation between x and y.

What about the image, i.e., the range of values of p? It is a recording of all possible outputs of p.

De�nition 3.2.9:

The image of a function of two variables z = p(x, y) is the set of all such values
z on the z-axis.

What about the graph of p = (f, g)? It is supposed to be a recording of all possible combinations of inputs
and outputs of F .
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De�nition 3.2.10:

The graph of a function of two variables z = p(x, y) is the set of all such points(
x, y, p(x, y)

)
in the xyz-space.

3.3. Transforming the axes transforms the plane

We will consider transformations of the plane as a function:

F : R2 → R2 .

We know that numerical functions transform the real line:

f : R→ R .

They, therefore, transform the axes of the xy-plane:

We narrow this down:

I How do the transformations of the axes � horizontal and vertical � a�ect the xy-plane?

Let's review what we know. We have these three basic transformations of an axis: shift, �ip, and stretch.
We now think of them as transformations of the x-axis to the u-axis and transformations of the y-axis to
the v-axis:

This is the algebra:

x
shift by s−−−−−−−−−→ x+ s y

shift by s−−−−−−−−−→ y + s

x
�ip−−−−−−→ −x y

�ip−−−−−−→ −y
x

stretch by k−−−−−−−−−−→ x · k y
stretch by k−−−−−−−−−−→ y · k
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Now, let's imagine that transforming an axis transforms � in unison � all the lines on the plane parallel to
it.

The x-axis and its transformations are horizontal and so are the transformations of the xy-plane:

Then, the shift of the x-axis becomes a horizontal shift of the xy-plane, the �ip of the x-axis becomes a
horizontal �ip of the xy-plane (around the vertical axis), and the stretch of the x-axis becomes a horizontal
stretch of the xy-plane (away from the vertical axis).

For an algebraic representation of these transformations, we just add y, that remains unchanged, to the
formula, as follows:

x-axis u-axis xy-plane uv-plane

x
shift by s−−−−−−−−−→ x+ s =⇒ (x, y)

horizontal shift by s−−−−−−−−−−−−−−−→ (x+ s, y)

x
�ip−−−−−−→ −x =⇒ (x, y)

horizontal �ip−−−−−−−−−−−−→ (−x, y)

x
stretch by k−−−−−−−−−−→ x · k =⇒ (x, y)

horizontal stretch by k−−−−−−−−−−−−−−−−→ (x · k, y)

What about the y-axis? The y-axis and its transformations are vertical and so are the transformations of
the xy-plane:

The shift of the y-axis produces a vertical shift of the xy-plane, the �ip of the y-axis produces a vertical �ip
of the xy-plane (around the horizontal axis), and the stretch of the y-axis produces a vertical stretch of the
xy-plane (away from the horizontal axis).

For an algebraic representation of these transformations, we just add x, that remains unchanged, to the
formula:

x-axis u-axis xy-plane uv-plane

y
shift by s−−−−−−−−−→ y + s =⇒ (x, y)

vertical shift by s−−−−−−−−−−−−−→ (x, y + s)

y
�ip−−−−−−→ −y =⇒ (x, y)

vertical �ip−−−−−−−−−−→ (x,−y)

y
stretch by k−−−−−−−−−−→ y · k =⇒ (x, y)

vertical stretch by k−−−−−−−−−−−−−−−→ (x, y · k)

Horizontal transformations don't change y and vertical don't change x!
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Example 3.3.1: transformations with computer graphics

We can illustrate these transformations with a graphics editor:

The �rst two rows show rigid motions, while the last is re-scaling.

So, the algebra of the real line creates a new algebra of the Cartesian plane. Let's revisit these six transfor-
mations one by one.

We start with a vertical shift. We shift the whole xy-plane as if it is printed on a sheet of paper. Furthermore,
there is another sheet of paper underneath used for reference. It is to the second sheet that we transfer
the resulting points. We then use its coordinate system to record the coordinates of the new point. For
example, a shift of 3 units upward is shown below:

So, all vertical lines are shifted up by s. Then, the whole plane is shifted s > 0 units up. A generic point
(x, y) makes a step up/down by s and becomes (x, y + s). This is another algebraic way to present the
transformation:

x
nothing−−−−−−−−→ u = x

y
shift s−−−−−−−→ v = y + s

(x, y)
up s−−−−−−→ (u, v) = F (x, y) = (x, y + s)

It is as if the algebra of the �ip of the y-axis given previously, y 7→ y + s, is copied and then paired up with
x.

Exercise 3.3.2

What is the e�ect of two vertical stretches executed consecutively?

What about the horizontal shift? For example, a shift of 2 units right is shown below:
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So, all horizontal lines are shifted right by s. Then, the whole plane is shifted s > 0 units right. A generic
point (x, y) makes a step right/left by s and becomes (x + s, y). This is an algebraic way to present the
transformation:

x
shift s−−−−−−−→ u = x+ s

y
nothing−−−−−−−−→ v = y

(x, y)
right s−−−−−−−→ (u, v) = F (x, y) = (x+ s, y)

It is as if the algebra of the �ip of the x-axis given previously, x→ x+ s, is copied and then paired up with
y.

Exercise 3.3.3

What is the e�ect of a vertical stretch and a horizontal stretch executed consecutively? What if we
change the order?

These shifts can also be described as a translation along the y-axis and a translation along the x-axis,
respectively.

Now a vertical �ip. We lift, then �ip the sheet of paper with the xy-plane on it, and �nally place it on top
of another such sheet so that the x-axes align. This �ip is shown below:

So, all vertical lines are �ipped about their origins. Then, the whole plane is �ipped about the x-axis. A
generic point (x, y) jumps across the x-axis and becomes (x,−y). This is the algebraic outcome:

x
nothing−−−−−−−−→ u = x

y
�ip−−−−−−→ v = −y

(x, y)
vertical �ip−−−−−−−−−−→ (u, v) = F (x, y) = (x,−y)

Exercise 3.3.4

What is the e�ect of two vertical �ips executed consecutively?

For the horizontal �ip, we lift, then �ip the sheet of paper with the xy-plane on it, and �nally place it on
top of another such sheet so that the y-axes align. This �ip is shown below:
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So, all horizontal lines are �ipped about their origins. Then, the whole plane is �ipped about the y-axis. A
generic point (x, y) jumps across the y-axis and becomes (−x, y). This is the algebraic outcome:

x
�ip−−−−−−→ u = −x

y
nothing−−−−−−−−→ v = y

(x, y)
horizontal �ip−−−−−−−−−−−−→ (u, v) = F (x, y) = (−x, y)

Exercise 3.3.5

What is the e�ect of a vertical �ip and a horizontal �ip executed consecutively? What if we change
the order?

These �ips can also be described as a mirror re�ection about the x-axis and a mirror re�ection about the

y-axis, respectively.

Next, a vertical stretch. The coordinate system isn't on a piece of paper anymore! It is on a rubber sheet.
We grab it by the top and the bottom and pull them apart in such a way that the x-axis doesn't move. For
example, a stretch by a factor of 2 is shown below:

So, all vertical lines are stretched by k > 0 away from their origins. Then, the whole plane is stretched by a
factor k away from the x-axis. The distance of a generic point (x, y) from the x-axis grows proportionally
to k and the point becomes (x, y · k). This is the algebra to describe it:

x
nothing−−−−−−−−→ u = x

y
stretch by k−−−−−−−−−−→ v = y · k

(x, y)
vertical stretch by k−−−−−−−−−−−−−−−→ (u, v) = F (x, y) = (x, y · k)

Even though the stretch is the same for all subsets of the plane, the new location will vary depending on
the location of the subset relative to the x-axis:
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Exercise 3.3.6

What is the e�ect of a vertical �ip and a horizontal shift executed consecutively? What if we change
the order?

The case k = 0 is very special. As each vertical line collapses on its x-intercept, the whole plane lands on
the x-axis. It is called the projection on the x-axis :

This is the algebra:

x
nothing−−−−−−−−→ u = x

y
collapse−−−−−−−−→ v = 0

(x, y)
vertical projection−−−−−−−−−−−−−−→ (u, v) = F (x, y) = (x, 0)

Exercise 3.3.7

What is the range of the projection?

Exercise 3.3.8

What is the e�ect of a vertical �ip and a projection on the x-axis executed consecutively? What if we
change the order?

What about horizontal stretch? This time, we grab it by the left and right edges of the rubber sheet and
pull them apart in such a way that the y-axis doesn't move. For example, a stretch by a factor of 2 is shown
below:

So, all horizontal lines are stretched by k > 0 away from their origins. Then, the whole plane is stretched by
a factor k away from the y-axis. The distance of a generic point (x, y) from the y-axis grows proportionally
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to k and the point becomes (kx, y). This is a way describe a horizontal stretch:

x
stretch by k−−−−−−−−−−→ u = x · k

y
nothing−−−−−−−−→ v = y

(x, y)
horizontal stretch by k−−−−−−−−−−−−−−−−→ (u, v) = F (x, y) = (x · k, y)

Exercise 3.3.9

What is the e�ect of a vertical �ip and a horizontal �ip executed consecutively? What if we change
the order?

The case k = 0 is very special. As each horizontal line collapses on its y-intercept, the whole plane lands on
the y-axis. It is called the projection on the y-axis :

This is the algebra:

x
collapse−−−−−−−−→ u = 0

y
nothing−−−−−−−−→ v = y

(x, y)
horizontal projection−−−−−−−−−−−−−−−−→ (u, v) = F (x, y) = (0, y)

Exercise 3.3.10

What is the e�ect of a vertical projection and a horizontal projection executed consecutively?

These stretches can also be described as a uniform deformation away from the y-axis and a uniform defor-

mation away from the y-axis, respectively.

These are our six basic transformations:

The algebra below re�ects the geometry above.
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Theorem 3.3.11: Formulas of Transformations of Plane

The following transformations of the plane,

F : R2 → R2 , (u, v) = F (x, y) ,

are given by their formulas:

vertical
shift:

( x , y )
7→ ( x , y + k )

�ip:
( x , y )

7→ ( x , y · (−1) )

stretch:
( x , y )

7→ ( x , y · k )

horizontal
shift:

( x , y )
7→ ( x+ k , y )

�ip:
( x , y )

7→ ( x · (−1) , y )

stretch:
( x , y )

7→ ( x · k , y )

Exercise 3.3.12

What are the images of these six functions? What about the projections?

For now, each of these six operations is limited to one of the two directions: along the x-axis or along the
y-axis. We combine them as compositions. For example,

point → stretch vertically by k → point → �ip horizontally → point

(x, y) → multiply y by k → (x, yk) → multiply x by (−1) → (−x, yk)

We produce a variety of results:

Exercise 3.3.13

Execute � both geometrically and algebraically � the following transformations:
1. Translate up by 2, then re�ect about the x-axis, then translate left by 3.
2. Pull away from the y-axis by a factor of 3, then pull toward the x-axis by a factor of 2.
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Example 3.3.14: transformations with computer graphics

We can illustrate these transformations with a graphics editor:

Exercise 3.3.15

What sequences of basic transformations discussed above produce these results?

Exercise 3.3.16

Describe � both geometrically and algebraically � a transformation that makes a 1 × 1 square into a
2× 1 rectangle.

Exercise 3.3.17

What transformations increase/decrease steepness of lines? What about their slopes?

Exercise 3.3.18

Point out the inverses of each of the six transformations of the plane on the list.

Exercise 3.3.19

Has this parabola been shrunk vertically or stretched horizontally?

Recall some of the transformations of the plane we have seen elsewhere.

Example 3.3.20: even functions

The fact that function y = x2 is even is demonstrated by observing that the parabola's left branch is
a mirror image of its right branch. This operation is executed with a horizontal �ip:

(x, y) 7→ (−x, y)
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Generally, a subset A of the plane is mirror symmetric about the y-axis when we have:

(x, y) belongs to A =⇒ (−x, y) belongs to A .

It is a result of a fold:

Example 3.3.21: odd functions

The fact that function y = x3 is odd is demonstrated by observing that its graph's right branch is a
centrally symmetric to its left branch. This operation is executed with a 180 degree rotation:

The formula can be guessed from the picture:

We achieve the same e�ect if we instead �ip the plane about the y-axis and then about the x-axis (or
vice versa):

(x, y) 7→ (−x, y) 7→ (−x,−y)

Then a subset A of the plane is centrally symmetric when we have:

(x, y) belongs to A =⇒ (−x,−y) belongs to A .

However, some transformations cannot be decomposed into a composition of those six basic transformations!
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Example 3.3.22: inverse functions

Consider the �ip about the line x = y that is needed to construct the graph of the inverse function:

This is the transformation:

The formula is guessed from a single point:

It is given by
(x, y) 7→ (y, x) .

Example 3.3.23: rotations

Another such example is a 90-degree rotation:

The formula is guessed from a single point:

It is:
(x, y) 7→ (−y, x) .

Exercise 3.3.24

What are the inverses of the transformations presented in this section?

In these transformations, x's and y's are intermixed.

It might be su�cient to consider only the compositions of these seven:
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3.4. Linear transformations

We will propose a new point of view on the problems we started with.

The simpler one is: Suppose we have a type of co�ee that costs $3 per pound. How much do we get for $60?

Let x be the weight of the co�ee. Since the total price is 60, we have a linear equation:

3x = 60 .

Imagine that we don't want solve it. First, the solution that we know involves division, an expensive
operation. Second, we might anticipate that the total price could change every day. How do we approach
the problem?

We collect data: For each possible weight x, we �nd the corresponding price u. Of course, this is just a
numerical function:

weight x = 0 1 2 3 ...
total price u = 0 3 6 9 ...

We can now ask someone to use this as a look-up table: To �nd the weight that would produce a total price
of $9, �nd it in the second row and then go up to read: 3 pounds. No computation necessary!

Of course, this task is just the inverse of the original numerical function:

total price u = 0 3 6 9 ...
weight x = 0 1 2 3 ...

For more data points, use a spreadsheet:
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As a result, we can solve the same problem over and over with di�erent data. In other words, the problem
given by the equation

f(x) = u

is solved � for every u � with the inverse:
x = f−1(u) .

Now, the next level of complexity: two unknowns.

We have the Kenyan co�ee that costs $2 per pound and the Colombian co�ee that costs $3 per pound. If
the total weight is 6, we have a linear relation between x and y:

1 x+ y = 6 .

If the total price of the blend is $14, we have another linear relation between x and y:

2 2x+ 3y = 14 .

What if we solve the same problem over and over with di�erent data?

We might anticipate that the total weight and price could change every day: What if tomorrow we expect to
have to �nd a blend with the total weight of 8 pounds and price of $15? How do we approach the problem?

We collect data: For each possible weights x and y, we �nd the corresponding total price u and total weight
v. The inputs, however, won't �t in a single column as in the last example. Instead, it's an array.

We use the formulas:
u = x+ y, v = 2x+ 3y .

This is the data:

total weight u y\x 0 1 2 3 ...
0 0 1 2 3 ...
1 1 2 3 4 ...
2 2 3 4 5 ...
... ... ... ... ... ...

total price v y\x 0 1 2 3 ...
0 0 2 4 6 ...
1 3 5 7 9 ...
2 6 8 10 12 ...
... ... ... ... ... ...

We call either of these functions of two variables : inputs are two numbers and the output is a single number.
We will utilize the general function notation though:

h : R2 → R .

Exercise 3.4.1

Are these functions one-to-one? Onto?

We can now ask someone to use this as look-up tables:

1. To �nd the weights that produce a total weight of u = 3 pounds, �nd its occurrences in the �rst table.
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2. To �nd the weights that produce a total price of v = 7 dollars, �nd its occurrences in the �rst table.

3. Find a location within the tables that produces both: x = 2 and y = 1.

Even though no computation is necessary, there is a lot of looking around!

For more data points, use a spreadsheet with two tables.The formulas are respectively:

=R2C+RC2 and =2*R2C+3*RC2

The result is as follows:

To �nd the output for a given input, we �nd the x = 4 and go down, �nd the y = 2 and go right � until
intersection.

To �nd the input for a given output is easy but only when it is already known. In reality, there are multiple
possibilities in either of the tables:

The lines are the same as those we saw in our previous analysis:
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To �nd the answer, we'd have to move along the two lines matching the locations. Furthermore, because of
the skipped values, we might never �nd the intersection in our table. Is there a better way?

Let's combine these two tables of the two functions of two variables into a single table. We overlap them as
if they are written an plastic sheets. Then, for each x and y, we show the corresponding pair (u, v) of the
total weight and total price:

We use the formula:
=CONCAT("(",R2C+RC2,",",2*R2C+3*RC2,")")

We need to search only a single table now!

Here is a very important observation:

I From a pair of weights (x, y), a pair of the total weight and total price (u, v) is found.

We, therefore, are facing a transformation of the plane:

So, we have combined the tables of the two functions of two variables into a single table for our new function.

The function F : R2 → R2 is given by the two formulas above:

u = x+ y, v = 2x+ 3y ,

or by a single formula presented in terms of the coordinates of the points:

(u, v) = F (x, y) = (x+ y, 2x+ 3y) .

Such a function is called a linear operator, or transformation, or map. There can be a combination of:

1. a �ip over any axis

2. a stretch in any directions and with any magnitude

3. a rotation around the origin through any angle

4. no shift!

In particular, we have
F (4, 2) = (6, 14) .

The look-up procedure is the inverse of F :
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Problem solved!

However, di�erent functions may produce di�erent outcomes.

We saw a price combination � $2 for either � with no solution to our problem:

In other words, the point (6, 14) doesn't belong to the image of the function

(u, v) = G(x, y) = (x+ y, 2x+ 2y) .

We would be searching the table in vain!

For this price combination, we also saw a possibility of in�nitely many solutions if the required total price
and total weight � 6 and 12 � are just right:

This means that the point (6, 12) does belong to the image of the function G and its preimage is the whole
line.

The intersection of the two lines is the preimage of the point (u, v).

So, the problem given by the equation
F (x, y) = (u, v)

is solved � for every (u, v) � with the inverse of the function:

(x, y) = F−1(u, v) .

But is the function one-to-one in the �rst place?
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The �rst one above, F , seems to be. But we know that the second function above, G, isn't one-to-one. The
point (6, 12) is present (many times) but not (6, 14), or (1, 1), etc.:

Examining its formulas explains why:
u = x+ y
v = 2x+ 2y

No matter what x and y are, u and v are proportional to each other:

v = 2u .

In other words, all points (u, v) that come from G lie on the same line. This line is the image of this function.

Let's try to visualize these transformations.

The initial idea is just to show where the x- and the y-axis land on the uv-plane:

Just looking at the output data on the x-axis reveals that they all satisfy v = 2u. The axis, therefore, ends
up on the line v = 2u. Examining the output data on the y-axis shows that F takes it to the line v = 3u.
We plot the two images together:
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We see stretching and rotation but no �ips. We will return to the topic in Chapter 5.

Exercise 3.4.2

Show what happens to the grid of the xy-plane.

Exercise 3.4.3

Repeat the above analysis for G.

Let's �nd the inverse of F , if possible.

The idea is the same as always:

I Solve for the independent variable.

In other words, express (x, y) in terms of (u, v). Or, express x in terms of u and v and express y in terms
of u and v.

The algebra is the same as in the very beginning. We take the equations

u = x+ y, v = 2x+ 3y ,

and solve the �rst one for y:
y = u− x .

Then substitute into the second:

v = 2x+ 3y = 2x+ 3(u− x) = −x+ 3u .

Solve this for x:
x = 3u− v .

Substitute into the second equation:

y = u− x = u− (3u− v) = −2u+ v .

So, the new equations are:
x = 3u− v, y = −2u+ v .

The inverse is:
F−1(u, v) = (3u− v,−2u+ v) .

These are the lessons that we have learned and will apply to higher dimensions:

1. Combine numbers into points.

2. Combine numerical functions into functions of points.
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The last plot can be re-scaled without changing its meaning. This is pure algebra! Now, we add geometry.
The word means �land measuring� in Greek. So, we add the ability to indirectly measure to the xy-plane in
the next section.

3.5. Analytic geometry: the Cartesian system for the Eu-

clidean plane

We introduced the Cartesian coordinate plane as a device for visualizing functions ; it's where the graphs
live (top row):

We now approach it from another direction (bottom row): We want to study the physical space and the
Euclidean plane as its representation. We then want to address Euclidean geometry algebraically. We start
by superimposing � as if it is drawn on a transparent piece of plastic � the Cartesian grid over this plane. As
a result all points acquire coordinates and all geometric objects acquire algebraic representations: functions
and relations.

A major di�erence we see is that the former coordinate plane doesn't need to have a square grid as the units
of x and y might be unrelated (dollars vs. hours). The latter does and the units of x and y are better be
those of length (miles, feet, etc.).

The idea of �analytic geometry� is to use a coordinate system to transition between the following two:

• geometry : points, then lines, triangles, circles, then planes, cubes, spheres, etc.,

• algebra: numbers, then combinations of numbers, then relations and functions, etc.

This will allow us to solve geometric problems without measuring � because everything is pre-measured! We
will initially limit ourselves to the two simplest geometric tasks:

1. �nding distances without a ruler: between two points, between a point and a line or curve, etc., and

2. �nding angles without a protractor: between two lines or two curves.

We start with dimension 1.

Let's �rst review its construction as presented in Chapter 1.

Suppose we live on a road surrounded by nothingness:
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The coordinate system for this road is like a set of milestones. It is devised to be superimposed on the road
in order to numerically capture all the locations.

It is built in several stages:

These are the steps:

1. Draw a line, the x-axis.

2. Choose one of the two directions on the line as positive, then the other is negative.

3. Choose a point O as the origin.

4. Set a segment of the line � of length 1 � as a unit.

5. Use the segment to measure distances to locations from the origin O � positive in the positive direction
and negative in the negative direction � and add marks to the line, the coordinates ; later the segments
are further subdivided to fractions of the unit, etc.

6. We have a coordinate system on the line.

The result is a correspondence:

location P ←→ number x

We can, therefore, refer to this line as the real number line.

The correspondence works in both directions.

For example, suppose P is a location on the line. We then �nd the distance from the origin � positive in
the positive direction and negative in the negative direction � and the result is the coordinate of P , some
number x. We use the nearest mark to simplify the task.

Conversely, suppose x is a number. We then measure x as the distance to the origin � positive in the positive
direction and negative in the negative direction � and the result is a location P on the line. We use the
nearest mark to simplify the task.
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Example 3.5.1: di�erent coordinate systems, dimension 1

Of course, we can place di�erent coordinate systems on the same line:
1. di�erent units (feet instead of inches, etc.)
2. di�erent starting point O

We can place two di�erent rulers next to our line and have two di�erent coordinates for it:

Here, the point P shown has:
• coordinate 1.5 according to the �rst system and
• coordinate 2 according to the other.

We know from Chapter 3 that all the functions de�ned on the �rst axis are transformed to the ones
on the second by a single function; in this particular case, it is:

x = (u+ 1)/2 .

Of course, all the functions de�ned on the second axis are transformed to the ones on the �rst by the
inverse of this function:

u = 2x− 1 .

The transformation happens to be a stretch followed by a shift.

With these two functions, all the quantities � geometric or physical � de�ned within the two coordinate
systems are transformed to each other. For example, suppose the temperature T depends on the
location in terms of x as follows:

T = x3 + x2 + 2 .

Then we �nd how T depends on the location in terms of u by substitution:

T =

(
u+ 1

2

)3

+

(
u+ 1

2

)2

+ 2 .

With any function, the conversion will follows this pattern:

x → T
↓ ↗
u

Exercise 3.5.2

What transformation isn't mentioned above? Provide an illustration and a formula for the combination
of the three.

Now the coordinate system for dimension 2, the plane.

There is much more going on than before:
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The idea is the same: solving geometric problems with algebra.

Let's repeat � with some minor changes � the construction from Chapter 2 �rst. Suppose we live on a �eld

and we build two roads intersecting at 90 degrees:

We can then treat either of the two roads as a 1-dimensional Cartesian system, as above, and use their
milestones to navigate. But what about the rest of the �eld? How do we navigate it? We could build a city
with a grid of streets:

We also number the streets. We can �nd locations as intersections of a numbered street and a numbered
avenue.

A new coordinate system intended to capture what happens in this city or on this �eld is devised to be
superimposed on the �eld. It's a grid:
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It is built in several stages:

1. Choose two identical coordinate axes, the x-axis �rst and the y-axis second, with the same units.

2. Put the two axes together at their origins so that it is a 90-degree turn from the positive direction of
the x-axis to the positive direction of the y-axis.

3. Use the marks on the axes to draw a grid.

Warning!

The xy-plane isn't the same as the yx-plane.

Example 3.5.3: units

It is possible though uncommon to have di�erent units for the two axes:

We have a correspondence that works in both directions :

location P ←→ a pair of numbers (x,y)

Example 3.5.4: coordinates from point and back

Suppose we have the Euclidean plane equipped with a Cartesian system.

Suppose P is a point as shown:
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1. We draw a vertical line through P until it intersects the x-axis. The point of intersection then
lies on this axis, which is equipped with a 1-dimensional Cartesian system. This point has a
coordinate, say 4, within this system.

2. We draw a horizontal line through P until it intersects the y-axis. The point of intersection
then lies on this axis, which is equipped with a 1-dimensional Cartesian system. The point has
a coordinate, say 1, within this system.

3. We have discovered that our point has coordinates P = (4, 1)!

On the �ip side, suppose we have two numbers, −2 and 4:

1. We �nd the location on the x-axis with coordinate −2. We then draw a vertical line through
this point.

2. We �nd the location on the y-axis with coordinate 4. We then draw a horizontal line through
this point.

3. The intersection of these two lines is the corresponding point P = (4, 1) on the plane!

In summary:

• If P is a location on the plane, we �nd the distances from either of the two axes to that location �
positive in the positive direction and negative in the negative direction � and the result is the two
coordinates of P , some numbers x and y.

• If x and y are numbers, we measure x as the distance from the y-axis and y as the distance from the
x-axis � positive in the positive direction and negative in the negative direction � and such locations
together form a vertical line and a horizontal line, and the intersection of these two is the location P
on the plane.

Example 3.5.5: coordinates used in computing

The 2-dimensional Cartesian system isn't as widespread as the one for dimension 1 (numbers). It is,
however, common in certain areas of computing. For example, drawing applications allow you to make
use of this system � if you understand it. The location of your mouse is shown in the status bar on
the lower left, constantly updated in real time. The main di�erence is that the origin is in the left
upper corner of the image and the y-axis is pointing down:
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The choice is explained by the way we write: downward.

Example 3.5.6: di�erent coordinate systems, dimension 2

Of course, we can place di�erent coordinate systems on the same plane.

For example, we can have two systems that di�er only by scale:

That's a uniform stretch! For example, a point with coordinates (2, 3) in the �rst will have coordinates
(1, 1.5) in the second. This suggests that the conversion transformation F : R2 → R2 is given by:

u = x/2, v = y/2 .

Furthermore, if the temperature of the area depends on the coordinates as, say,

T = x2 + 2y ,

then this dependence in the second coordinate system is

T = (2u)2 + 2(2v) .

Or they can di�er only by the location of the origin:

These are a horizontal and a vertical shifts respectively. The �rst is given by

u = x+ 3, v = y ,

and the second by:
u = x, v = y − 4 .

We saw in Chapter 3 how we can transfer information (points, set, functions, etc.) de�ned on the �rst
plane to the second. It only takes a single function. For the former example, it is

(x, y) 7→ (x/2, y/2) .
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For the latter example, the combination of the two shifts is:

(x, y) 7→ (x− 3, y − 4) .

With these functions, all the quantities � geometric or physical � de�ned within the two coordinate
systems are transformed to each other.

Moreover, the coordinate systems can also vary in terms of the directions of the axes:

Rotations and other transformations of the plane are considered later.

Just as in the 1-dimensional case, the conversion will follows this pattern:

(x, y) → T
↓ ↗

(u, v)

Coordinate systems...

If we want to study the Euclidean plane, and Euclidean geometry, algebraically, we superimpose the Cartesian
grid over this plane:

The geometry on the piece of paper then determines what is going on, not a particular choice of a coordinate
system. For example, the direction of fastest growth is determined by the surface itself:

We can place the coordinate system on top of our physical space in a number of ways...
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We start with dimension 1. The line can have di�erent coordinate systems assigned to it and those are
related to each other via some transformations:

Above you see two ways to interpret the transformation:

1. The arrows are between the x-axis and the intact y-axis or

2. We move the y-axis so that y = f(x) is aligned with x.

We followed the former in Chapter 1 and we will follow the latter in this section.

We can think as if the whole x-axis is drawn on a pencil:

Each letter will have a new coordinate in the new coordinate system.

These are the three main transformations of an axis: shift, �ip, and stretch (left) and this is what happens
to the coordinates (right):

This is the algebra for the basic transformations of the axis, the old and the new coordinates:

t
shift by k−−−−−−−−−→ x = t− k

t
�ip−−−−−−→ x = −t

t
stretch by k−−−−−−−−−−→ x = t/k

Now dimension 2, the plane.
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Both x and y-axes can be subjected to the transformations above. The change of coordinates under the
resulting six basic transformations of the xy-plane is shown below:

vertical shift:
( x , y )
( x , y − k )

, �ip:
( x , y )
( x , y · (−1) )

, stretch:
( x , y )
( x , y/k )

,

horizontal shift:
( x , y )
( x− k , y )

, �ip:
( x , y )
( x · (−1) , y )

, stretch:
( x , y )
( x/k , y )

.

Example 3.5.7

Some transformations cannot be reduced to a combination of these six. Recall from Chapter 1, that
in order to �nd the graph of the inverse function, we execute a �ip about the diagonal of the plane.
We grab the end of the x-axis with the right hand and grab the end of the y-axis with the left hand
then interchanging them:

We face the opposite side of the paper then, but the graph is still visible: the x-axis is now pointing
up and the y-axis right. The axes can be rotated, together:

The coordinate will change but they will still unambiguously determine a location on the plane. The
axes can be skewed :

Even then the two numbers indicating the intersection of two lines will unambiguously determine a
location on the plane. And so on... Further analysis is presented in Chapter 1.

3.6. The Euclidean plane: distances

The distance � a number � between any two locations P and Q � on the line, on the plane, or in space � is
assumed to be available.

The distance between two points P and Q is denoted as follows:
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Distance on line

d(P,Q)

Warning!

The distance must never be negative.

The distance is inherited from the Euclidean line that underlies the Cartesian system. Since everything in
the Cartesian system is pre-measured, we can solve some geometric problems by algebraically manipulating
the coordinates of points.

In this section, we consider the very basic geometric task of computing � as opposed to measuring � distances.

First, the line.

Now, how do we express this number in terms of their coordinates, say x and x′?

Example 3.6.1: distance dim 1

One �nds the distance that has been covered on the road by subtracting the number on the milestone
in the beginning and the number on the milestone at the end:

Here is the algebra:

from P = 4 to Q = 6 =⇒ distance = Q− P = 6− 4 = 2 .

But what if we are moving in the opposite direction? The distance should be the same! And the
computation should be the same:

from Q = 6 to P = 4 =⇒ distance = Q− P = 6− 4 = 2 .

In other words, one must subtract the smaller number from the larger one every time in order for the
computation to make sense.

We conclude that the distance between two locations P and Q on the real line given by their coordinates x
and x′ is:

• d(P,Q) = x′ − x when x < x′ ,

• d(P,Q) = x− x′ when x > x′ ,

• d(P,Q) = 0 when x = x′ .

Is there a single formula for this computation? The idea that the distance between two locations can never
be negative suggests that this has something to do with the absolute value:
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The absolute value function is de�ned to be

|a| =


−a when a < 0 ,
0 when a = 0 ,
a when a > 0 .

We just substitute a = x′ − x into this formula to prove the following:

Theorem 3.6.2: Distance Formula for Dimension 1

The distance between two points on the real line with coordinates x and x′ is
the absolute value of their di�erence (in either order).

In other words, we have:

d(x, x′) = |x− x′| = |x′ − x| = d(x′, x)

Exercise 3.6.3

Derive the formula from the following:

d(P,Q) =


x− x′ when x > x′ ,
0 when x = x′ ,
x− x′ when x < x′ .

Exercise 3.6.4

Prove that for any two numbers x, x′, we have |x+ x′| ≤ |x|+ |x′| .

Exercise 3.6.5

Prove that the point half-way between points P = x and Q = x′ (called their �midpoint�) has the

coordinate
x+ x′

2
.

The word �stretch� that we have used in the past now takes a precise meaning. We can rely on the idea of
distance. For example, both y = 2x and y = −2x double the distances. The following is a general result
about all linear transformations:

Theorem 3.6.6: Linear Transformations in Dimension 1

A linear function stretches the x-axis by a factor of |m|, where m is its slope.

Proof.

This is what happens to the distance between two points u and v, which is |v − u|, after a linear
function f(x) = mx+ b is applied:

|f(v)− f(u)| = |(mv + b)− (mu+ b)| = |mv −mu| = |m| · |v − u| .

The distance has increased by a factor of |m|. (We say that it has decreased by a factor of m when
|m| < 1). This stretch/shrink factor is the same everywhere.

In other words, stretching means that the distances increase or decrease proportionally.

Next, the plane.

Once again, the value of the distance between two locations P and Q is inherited from the Euclidean plane
that underlies the Cartesian system.
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So, the Distance Formula for Dimension 1 allows us to compute distances along the axis:

d(x, x′) = |x− x′|

If there are two axes, the formula still allows us to compute distances along either. Moreover, we compute
distances along lines parallel to either of the axes:

But what about the diagonal directions?

We have a tool:

We present a result that is one of the most important:

Theorem 3.6.7: Pythagorean Theorem

Suppose we have a right triangle with sides a, b, c, with c the longest one facing
the right angle. Then, we have the following:

a2 + b2 = c2

Proof.

We use what we know about similar triangles (i.e., the ones with equal angles):
I The ratio of any two corresponding sides of similar triangles is the same.

Let ABC be our right triangle, with:
• vertex A opposite to side a,
• vertex B opposite to side b,
• vertex C opposite to side c.

We draw the height (the line perpendicular to c) from C, and call H its intersection with the side c:

The new triangle ACH is similar to our original triangle ABC, because they both have a right angle,
and they share the angle at A, α. In the same way, we prove that the triangle CBH is also similar to
ABC. The similarity of these two pairs of triangles leads to the equality of ratios of the corresponding
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sides:
BC

AB
=
BH

BC

AC

AB
=
AH

AC
BC2 = AB ·BH AC2 = AB · AH

We add the two items in the last row and factor:

b2 + a2 = BC2 + AC2 = AB ·BH + AB · AH = AB · (AH +BH) = AB2 = c2 .

Exercise 3.6.8

State the converse of the theorem. Is it true?

Exercise 3.6.9

What do the ratios in the proof tell us about the trigonometric functions of the angle α?

We now realize that the value of the theorem for us is its treatment of rectangles:

Corollary 3.6.10: Pythagorean Theorem For Rectangles

The square of the length c of the diagonal of a rectangle with sides a, b is given
by the following:

c2 = a2 + b2

So, we have a Cartesian system placed on top of this piece of paper. How do we express the distance between
P and Q in terms of their coordinates (x, y) and (x′, y′)? We �nd the distances along the axes �rst:

We applied the Distance Formula for Dimension 1 for either of the two axes and then used the Pythagorean
Theorem.
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Exercise 3.6.11

What would the a�ect on this computation be if we shift the grid to horizontally, or vertically, or
both?

The following is one of the most useful results in geometry of the Cartesian plane.

Theorem 3.6.12: Distance Formula for Dimension 2

The distance between two points with coordinates P = (x, y) and Q = (x′, y′) is

d(P,Q) =
√

(x− x′)2 + (y − y′)2

Proof.

According to the formula:
• The distance between x and x′ on the x-axis is |x− x′|.
• The distance between y and y′ on the y-axis is |y − y′|.

Then, the segment between the points P (x, y) and Q = (x′, y′) is the hypotenuse of the right triangle
with sides: |x− x′| and |y − y′|. Then our conclusion below follows from the Pythagorean Theorem:

d(P,Q)2 = |x− x′|2 + |y − y′|2 .

Since |z|2 = z2 for any z, we can remove the absolute value signs.

The result is so important that one can even say that the 90-degree angle between the axes was chosen so
that we can produce this formula from the Pythagorean theorem.

Exercise 3.6.13

Find the distance between the points (−5, 2) and (2,−1).

Warning!

Combine x's with x's and y's with y's.

We now have two formulas for the two cases: dimension 1 and 2. They look quite di�erent. However, if we
square both formulas, this is how they can be matched up:

Euclidean Cartesian

dimension diagonal x-axis y-axis

1 d(P,Q)2 = (x− x′)2

2 d(P,Q)2 = (x− x′)2 + (y − y′)2

We just have an extra term for an extra axis!

This is how we can state both formulas as one, verbally:

Theorem 3.6.14: Distance Formula for Dimensions 1 and 2

For dimensions 1 and 2, the square of the distance is the sum of the squares of
the di�erences of the coordinates.

This reformulation of the two theorems allows us to guess that it might apply to higher dimensions: the
sum of one, two, three squares, etc. We will see a continuation of this list and of this pattern in higher
dimensions.
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Example 3.6.15: miles and kilometers

It is possible to have the x-axis measured in di�erent units from the y-axis. For example, it is typical
to measure the distance to the airport in miles but the altitude in feet:

Also, one can speak, hypothetically, of a point located �2 miles east and 5 kilometers north� from here.
However, when this is the case, the Distance Formula won't be applicable anymore!

Here is a familiar property of the lengths of the sides of a triangle: The length of any side is less than the
sum of the lengths of the other two. In other words, if a, b, c are these three sides, then:

c < a+ b .

As you can see (bottom row), even when the triangle �degenerates� to a segment, we have an equation:

c = a+ b .

Thus, the inequality remains true though non-strict. It is, therefore, applicable to distances between points:

We restate this extended inequality as follows.

Theorem 3.6.16: Triangle Inequality

For any three points P,Q,R on the plane, we have the following:

d(P,R) ≤ d(P,Q) + d(Q,R)

In other words,

I The straight line is the shortest.

The theorem helps to con�rm that the concept of distance matches our intuition.

Exercise 3.6.17

Derive the theorem from the Distance Formula.
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Exercise 3.6.18

Derive the inequality for a right triangle from the Pythagorean Theorem.

When the triangle degenerates into a segment, we have the triangle inequality for dimension 1 presented
above.

Exercise 3.6.19

Prove that the point M half-way between points P = (x, y) and Q = (x′, y′) � called their midpoint �
is given by their average coordinates:

M =

(
x+ x′

2
,
y + y′

2

)
.

Now, from distances to angles.

3.7. The Euclidean plane: angles

The Greek word �trigonometry� means �measuring triangles�. From the study of the angles of triangles,
however, it is developed into a study of the angles of rotations. We will follow this approach in this section
and consider angles between directions.

This is the second task of analytic geometry.

What does a direction on the real line, or a plane, mean? We will pursue the approach via vectors.

First, in the 1-dimensional Euclidean space, i.e., nothing but the x-axis, vectors are segments of this line:

De�nition 3.7.1: vector in dimension 1

If a line segment's starting point is the origin, i.e., OP for some point P 6= O, it
is called a (1-dimensional) vector in R. A vector has two attributes:
• itsmagnitude, which is the absolute value of the coordinate x of its terminal
point: |x|; and
• its direction, which is either positive or negative.

The zero vector OO has zero magnitude and unde�ned direction.

For example:

Now, how do we compare the directions of two vectors?
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Suppose we have two points: P 6= O, Q 6= O. We deal with the directions from the origin O toward locations
P and Q. Of course, there can be only two outcomes:

• If P and Q are on the same side of O, then the directions are same:

P Q ←− O −→ or ←− O −→ P Q

• If P and Q are on the opposite sides of O, then the directions are opposite:

P ←− O −→ Q or Q ←− O −→ P

Let's examine the coordinates of the points with those four possibilities:

When the two vectors are represented by their coordinates, x and x′, the analysis of their directions becomes
algebraic:

• If x > 0, x′ > 0 or x < 0, x′ < 0, then the directions are the same.

• If x > 0, x′ < 0 or x < 0, x′ > 0, then the directions are the opposite.

Fortunately, the product provides us with a single expression that makes this determination. We just multiply
the coordinates:

locations: P Q ← O → ← O → P Q same directions

signs of coordinates: − − + +

sign of product: − · − = + + ·+ = + +

locations: P ← O → Q Q ← O → P opposite directions

signs of coordinates: − + − +

sign of product: − ·+ = − − ·+ = − −

The problem is solved:

Theorem 3.7.2: Directions for Dimension 1

The directions from 0 to x 6= 0 and x′ 6= 0 are
1. the same when x · x′ > 0; and
2. the opposite when x · x′ < 0.

Let's restate the theorem in terms of the sign function:

sign of the product directions vectors angle
sign(x · x′) = 1 same ←−

←−
−→
−→ 0 degrees

sign(x · x′) = −1 opposite −→
←− 180 degrees
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We also measure the actual angles between the vectors (last column).

Consider the last correspondence:

1 ↔ 0 degrees and − 1 ↔ 180 degrees

We've see it before:

It's the cosine!

In summary, this is the idea we'll take to solve the problem of angles on the Cartesian plane:

I Multiplying the coordinates gives us the cosine of the angle.

Next, the 2-dimensional Euclidean space, i.e., the xy-plane. There are in�nitely many directions now:

The issue of the direction of a single line (or a vector) has been solved: It's the slope!

Example 3.7.3: trigonometry

he question is the one about the angle between the line OP with the x-axis. It is determined from the
coordinates of P = (x, y) via this simple trigonometry:

The angle has been found:
α = tan−1 2 .

We get much more from this: The sides of a triangle can't be negative, but the coordinates can. We
don't deal with an actual triangle anymore:
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Exercise 3.7.4

Explain these computations.

We put these trigonometric formulas forward as theorems. The �rst one has been especially important:

Theorem 3.7.5: Slope is Tangent

The tangent of the angle α between the x-axis and the line from O to a point
P = (x, y) 6= O is equal to the slope of this line:

tanα =
y

x

The other two formulas will be used later in this section:

Theorem 3.7.6: Sine and Cosine of Direction

The sine and the cosine of the angle α between the x-axis and the line from O
to a point P = (x, y) 6= O are given by:

cosα =
x√

x2 + y2

sinα =
y√

x2 + y2

Exercise 3.7.7

Prove the theorem.

Recall from Euclidean geometry that two lines are called parallel if the angle they form with another line
are equal in magnitude:
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If we choose this other line to be the x-axis (bottom), we can apply the above theorem to these angles:

equal angles =⇒ equal tangents =⇒ equal slopes

We conclude the following:

Theorem 3.7.8: Parallel Lines, Same Slope

Two (non-vertical) lines on the xy-plane are parallel if and only if they have
equal slopes.

In other words, we have:

y = mx+ b || y = m′x+ b′ ⇐⇒ m = m′

Example 3.7.9

Find the line parallel to y = 2x that passes through the point (1, 1). The slope of the new line will
have to be 2. We then just use the point-slope formula for this line:

y − 1 = 2(x− 1) .

Exercise 3.7.10

Find the line parallel to y = −3x + 2 that passes through the point (1, 2). Suggest another line and
repeat.

Exercise 3.7.11

Split the theorem into a statement and its converse.

Exercise 3.7.12

The case not covered by the theorem is a pair of two vertical lines. Show that they are all parallel to
each other and not parallel to other lines.

Lines on the plane are its subsets. It is, therefore, natural to ask about their intersections. We know from
Euclidean geometry that two parallel lines don't intersect:
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If they did, they'd form a triangle with the sum of the angles above 180 degrees.

The Cartesian system makes it possible to prove this fact algebraically:

Corollary 3.7.13: Parallel Lines Don't Intersect

1. Parallel lines don't intersect.
2. Conversely, non-parallel lines intersect.

Proof.

1. According to the last theorem, the two lines have the same slope, m, and two y-intercepts, b and c.
Suppose the y-intercepts are di�erent, b 6= c. These are the equations of the lines:

y = mx +b AND

y = mx +c

For a point (x, y) to belong to the intersection, it would have to satisfy both. We have a system
of linear equations! Subtracting the two equations produces: b − c = 0. There is no solution and,
therefore, no intersection.

2. Suppose the two lines have slopes, m and n, and two y-intercepts, b and c. Suppose the slopes are
di�erent, m 6= n. These are the equations of the lines:

y = mx +b AND

y = nx +c

For a point (x, y) to belong to the intersection, it would have to satisfy both. We solve this system of
linear equations as before.
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Exercise 3.7.14

Finish the proof of the converse part of the corollary.

Exercise 3.7.15

State the corollary as an equivalence (an �if-and-only-if� statement).

Exercise 3.7.16

Prove that vertical lines don't intersect each other and do intersect all other lines.

Example 3.7.17: mixtures, what can happen

Recall an example from Chapter 2: Is it possible to create, from the Kenyan co�ee ($2 per pound)
and the Colombian co�ee ($3 per pound), 6 pounds of blend with a total price of $14? The problem
is solved via a system of linear equations:{

x +y = 6 AND

2x +3y = 14 .

Without even solving it, we follow this line of thought:
• The slopes of the two lines are di�erent; therefore,
• the lines are not parallel; therefore,
• the lines intersect; therefore,
• the system has a solution.

Con�rmed:

So, it is possible to create such a blend! It would be impossible if both types of co�ee were priced at
$2 per pound.

Exercise 3.7.18

Justify the last statement � second possibility � using the theorem about parallel lines. What is the
third possibility?

Using the slopes as stand-ins for directions of lines is very e�cient but incomplete.

The value of the angle between the directions (i.e., the lines) from O to point P and from O to point Q
comes from the triangle OPQ. This triangle and all of its measurements is inherited from the Euclidean

plane that underlines the Cartesian system. The angle is denoted by Q̂OP . Now, the question is:

I How do we express Q̂OP in terms of the coordinates of the points P = (x, y) and Q = (x′, y′)?

Above we considered a special case: Q = (1, 0).

The geometry is illustrated below:
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Exercise 3.7.19

Find θ by �nding the slopes.

We have the following from the theorem above:

P = (x, y) Q = (x′, y′)

horizontal cosα =
x√

x2 + y2
cos β =

x′√
x′2 + y′2

runs

distances

vertical sinα =
y√

x2 + y2
sin β =

y′√
x′2 + y′2

rises

distances

The formulas look complicated, but keep in mind that the denominators are just the distances from O to P
and Q, respectively. The numerators are the runs and rises.

However, our interest isn't these two angles but their di�erence,

θ = Q̂OP = α− β .

Fortunately, there is another trigonometric formula � Sine and Cosine of Di�erence � that allows us to
represent the cosine of this angle in terms of the four quantities above:

cos θ = cos(α− β) = cosα cos β + sinα sin β

=
x√

x2 + y2

x′√
x′2 + y′2

+
y√

x2 + y2

y′√
x′2 + y′2

We substitute.

=
xx′ + yy′√

x2 + y2
√
x′2 + y′2

. And simplify.

The two parts of the denominator are the distances to P = (x, y) and Q = (x′, y′):

d(O,P ) =
√
x2 + y2 and d(O,Q) =

√
x′2 + y′2 .

Therefore, we have:

cos θ =
xx′ + yy′

d(O,P ) · d(O,Q)
.

But what about the numerator? We see multiplication of the coordinates, as expected.

Exercise 3.7.20

Show that the angle found is dependent on the directions and not on the distances from O.

We take the vector approach again:
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De�nition 3.7.21: vector in dimension 2

If a segment's starting point is the origin, i.e., it's OP for some P , it is called a
(2-dimensional) vector in R2.

De�nition 3.7.22: vector in xy-plane

The components of vector OP are the coordinates of its terminal point P , ac-
cording to the following notation:

P = (a, b) ⇐⇒ OP =< a, b >

Warning!

It is also common to use (a, b) to denote the vector.

A vector has a direction, which is one of the two directions of the line it determines, and a magnitude,
de�ned as follows.

De�nition 3.7.23: magnitude of vector

The magnitude of a vector OP =< a, b > is de�ned as the distance from O to
its tip P , denoted by

|| < a, b > || =
√
a2 + b2

Exercise 3.7.24

Apply the de�nition to a vector < x, 0 > and explain its relation to the one-dimensional case.

Exercise 3.7.25

Finish the sentence: �If a vector A represents the velocity, then ||A|| represents _____ .�

The notation will help us with our formula for the angle:
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It is rewritten as follows:

cos θ = cos(α− β) =
xx′ + yy′

|| < x, y > || · || < x′, y′ > ||
.

We now would like to make sense of the numerator of this fraction. The following will become commonly
used.

De�nition 3.7.26: dot product

The dot product of two vectors < a, b > and < c, d > is de�ned, as denoted, to
be the following number:

< a, b > · < c, d >= ac+ bd

Warning!

Often, the meaning of the dot �·� has to be deter-
mined from the context.

Example 3.7.27

Let's link the dot product back to the magnitude. by the formula:

< a, b > · < a, b >= a · a+ b · b = a2 + b2 = || < a, b > ||2 .

So, the dot products contain all the information about the angles and about the magnitudes.

The numerator of the formula for the angle cos(α− β) takes a simpler form now:

< x, y > · < x′, y′ > .

We conclude the following:

Theorem 3.7.28: Directions for Dimension 2

The angle θ between the vectors OP and OQ, where P = (x, y) 6= O and
Q = (x′, y′) 6= O, is determined by the following formula:

cos θ = cos Q̂OP =
< x, y > · < x′, y′ >

|| < x, y > || || < x′, y′ > ||

So, the cosine of the angle can be now computed by using only addition, multiplication, and division of the
four coordinates involved!

We can make the formula more compact by taking advantage of the new notation. We give either vector a
single letter:

U = OP, V = OQ .

Then the angle θ between U and V satis�es:

cos θ =
U · V
||U || ||V ||
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Exercise 3.7.29

(a) If the vectors represent the displacements of two objects in motion, what is the unit of this
expression? (b) If the vectors represent the velocities of two objects in motion, what is the unit of this
expression?

Exercise 3.7.30

What will happen to this expression if we double one of the vectors?

Exercise 3.7.31

Explain the di�erence between �the angle between two vectors� and �the angle between two lines�.

Example 3.7.32

What is the angle between the lines y = −2x + 3 and y = x − 1? Since +3 and −1 are just shifts,
this angle is the same as between y = −2x and y = x. This way any point on either line will give us
a vector we need. Just choose x = 1. Then we got y = −2 for the �rst line and y = 1 for the second.
The two points are:

P = (1,−2), Q = (1, 1) .

We substitute these four numbers into the formula:

cos Q̂OP =
< 1,−2 > · < 1, 1 >

|| < 1,−2 > || || < 1, 1 > ||
=

1− 2√
5
√

2
=
−1√

10
.

Therefore,

Q̂OP = arccos

(
− 1√

10

)
.

Exercise 3.7.33

What is the angle between the lines x − y = 3 and 2x + 3y = −1? Suggest another pair of lines and
repeat.

Exercise 3.7.34

Find a line that makes a 30-degree angle with the line y = −2x + 3? Suggest another angle and
another line and repeat.

Exercise 3.7.35

Derive a formula for the sine of this angle.

Example 3.7.36: angle with itself

When two vectors are equal to each other, we have from the theorem:

cos P̂OP =
< x, y > · < x, y >

|| < x, y > || || < x, y > ||
=

xx+ yy√
x2 + y2

√
x2 + y2

=
x2 + y2

x2 + y2
= 1 .

Therefore, P̂OP = 0, as expected.

Example 3.7.37: angle within x-axis

When the terminal points of both vectors lie on the x-axis, i.e., y = y′ = 0, the formula turns into the



3.7. The Euclidean plane: angles 222

following:

cos Q̂OP =
xx′

|x| |x′|
=

x

|x|
x′

|x′|
= sign(x) · sign(x′) .

There are only two possibilities here, 1 or −1, and, therefore, Q̂OP can only be either 0 or 180 degrees.

Exercise 3.7.38

Show how this fact demonstrates the theorem about the directions in dimension 1.

A case special importance is: When are two vectors or two lines perpendicular? For example, the velocity
of the Moon orbiting the Earth is perpendicular to the force of gravity:

An example of such two lines, y = 2x and y = −1

2
x, suggests that the slopes will have to be negative

reciprocals of each other:

Let's prove this fact using the theorem. For any point (x, y) on the �rst line and any point (x′, y′) on the
second (other than O), we have:

0 = cos π/2 =
< x, y > · < x′, y′ >

|| < x, y > || || < x′, y′ > ||
.

Therefore,

< x, y > · < x′, y′ >= 0 ⇐⇒ xx′ + yy′ = 0 ⇐⇒ xx′ = −yy′ ⇐⇒ y

x
· y
′

x′
= −1 .

But these two expressions are the slopes of the lines!

Theorem 3.7.39: Slopes of Perpendicular Lines

Two lines with slopes m and m′ are perpendicular if and only if their slopes are
negative reciprocals of each other; i.e.,

mm′ = −1 .

Exercise 3.7.40

Split the theorem into a statement and its converse.

Since any vertical line is perpendicular to any horizontal line and vice versa, we have solved the problem of
perpendicularity. This is the summary:
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Exercise 3.7.41

Find the line perpendicular to y = −3x that passes through the point (1, 1). Suggest another line and
repeat.

The theory of vectors is further developed in Chapter 4.

3.8. How complex numbers emerge

The equation
x2 + 1 = 0

has no solutions. Indeed, we observe the following:

x2 ≥ 0 =⇒ x2 + 1 > 0 =⇒ x2 + 1 6= 0 .

If we try to solve it the usual way, we get these:

x =
√
−1 and x = −

√
−1 .

There are no such real numbers.

However, let's ignore this fact for a moment. Let's substitute what we have back into the equation and �
blindly � follow the rules of algebra. We �con�rm� that this �number� is a �solution�:

x2 + 1 = (
√
−1)2 + 1 = (−1) + 1 = 0 .

We call this entity the imaginary unit, denoted by i.

We just add this �number� to the set of numbers we do algebra with:

And see what happens...

Making i a part of algebra will only require this three-part convention:
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1. i is not a real number (and, in particular, i 6= 0), but

2. i can participate in the (four) algebraic operations with real numbers by following the same rules; also

3. i2 = −1.

What algebraic rule are those? A few very basic ones:

x+ y = y + x, x · y = y · x, x(y + z) = xy + xz, etc.

We allow one or several of these parameters to be i. For example, we have:

i+ y = y + i, i · y = y · i, i(y + z) = iy + iz, etc.

What makes this extra e�ort worthwhile is a new look at quadratic polynomials. For example, this is how
we may factor one:

x2 − 1 = (x− 1)(x+ 1) .

Then x = 1 and x = −1 are the x-intercepts of the polynomial:

But some polynomials, called irreducible, cannot be factored; there are no a, b such that:

x2 + 1 = (x− a)(x− b) .

There are no real a, b, that is! Using our rules, we discover:

(x− i)(x+ i) = x2 − ix+ ix− i2 = x2 + 1 .

Of course, the number i is not an x-intercept of f(x) = x2 + 1 as the x-axis (�the real line�) consists of only
(and all) real numbers.

So, multiples of i appear immediately as we start doing algebra with it.

De�nition 3.8.1: imaginary numbers

The real multiples of the imaginary unit, i.e.,

z = ri, r real,

are called imaginary numbers.

We have created a whole class of non-real numbers! Of course, ri, where r is real, can't real:

(ri)2 = r2i2 = −r2 < 0 .

The only exception is 0i = 0; it's real!

There are as many of them as the real numbers:
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Example 3.8.2: quadratic equations

The imaginary numbers may also come from solving the simplest quadratic equations. For example,
the equation

x2 + 4 = 0

gives us via our substitution:

x = ±
√
−4 = ±

√
4(−1) = ±

√
4
√
−1 = ±2i .

Indeed, if we substitute x = 2i into the equation, we have:

(2i)2 + 4 = (2)2(i)2 + 4 = 4(−1) + 4 = 0 .

More general quadratic equation are discussed in the next section.

Imaginary numbers obey the laws of algebra as we know them! If we need to simplify the expression, we
try to manipulate it in such a way that real numbers are combines with real while i is pushed aside.

For example, we can just factor i out of all addition and subtraction:

5i+ 3i = (5 + 3)i = 8i .

It looks exactly like middle school algebra:

5x+ 3x = (5 + 3)x = 8x .

After all, x could be i. Another similarity is with the algebra of quantities that have units:

5 in. + 3 in. = (5 + 3) in. = 8 in. .

So, the nature of the unit doesn't matter (if we can push it aside). Even simpler:

5 apples + 3 apples = (5 + 3) apples = 8 apples .

It's �8 apples� not �8�! And so on.

This is how we multiply an imaginary number by a real number:

2 · (3i) = (2 · 3)i = 6i .

We have a new imaginary number.

How do we multiply two imaginary numbers? It's di�erent; after all, we don't usually multiply apples by
apples! In contrast to the above, even though multiplication and division follow the same rule as always, we
can, when necessary, and often have to, simplify the outcome of our algebra using our fundamental identity :

i2 = −1 .

For example:
(5i) · (3i) = (5 · 3)(i · i) = 15i2 = 15(−1) = −15 .

It's real!

We also simplify the outcome using the other fundamental fact about the imaginary unit:

i 6= 0 .

We can divide by i! For example,
5i

3i
=

5

3

i

i
=

5

3
· 1 =

5

3
.
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As you can see, doing algebra with imaginary numbers will often bring us back to real numbers. These two
classes of numbers cannot be separated from each other!

They aren't. Let's take another look at quadratic equations. The equation

ax2 + bx+ c = 0, a 6= 0 ,

is solved with the familiar Quadratic Formula:

x =
−b±

√
b2 − 4ac

2a
.

Let's consider
x2 + 2x+ 10 = 0 .

Then the roots are supposed to be:

x =
−2±

√
22 − 4 · 10

2

=
−2±

√
−36

2

= −1±
√
−9 There is no real solution!

= −1±
√

9
√
−1 But we go on.

= −1± 3i .

We end up adding real and imaginary numbers!

As there is no way to simplify this, we conclude the following:

I A number a+ bi, where a, b 6= 0 are real, is neither real no imaginary.

Exercise 3.8.3

Explain why.

This addition is not literal. It's like �adding� apples to oranges:

5 apples + 3 oranges = .. .

It's not 8 and it's not 8 fruit because we wouldn't be able to read this equality backwards. The algebra will,
however, be meaningful:

(5a+ 3o) + (2a+ 4o) = (5 + 3)a+ (3 + 4)o = 8a+ 7o .

It is as if we collect similar terms, like this:

(5 + 3x) + (2 + 4x) = (5 + 2) + (3 + 4)x = 8 + 7x .

This idea enables us to do this:

(5 + 3i) + (2 + 4i) = (5 + 3) + (3 + 4)i = 8 + 7i .

The number we are facing consist of both real numbers and imaginary numbers. This fact makes them
�complex�...

De�nition 3.8.4: complex number

Any sum of real and imaginary numbers is called a complex number. The set of
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all complex numbers is denoted as follows:

C

Warning!

All real numbers are complex.

Addition and subtraction are easy; we just combine similar terms just like in middle school. For example,

(1 + 5i) + (3− i) = 1 + 5i+ 3− i = (1 + 3) + (5i− i) = 4 + 4i .

To simplify multiplication of complex numbers, we expand and then use i2 = −1, as follows:

(1 + 5i) · (3− i) = 1 · 3 + 5i · 3 + 1 · (−i) + 5i · (−i)
= 3 + 15i− i− 5i2

= (3 + 5) + (15i− i)
= 8 + 14i .

It's a bit trickier with division:
1 + 5i

3− i
=

1 + 5i

3− i
3 + i

3 + i

=
(1 + 5i)(3 + i)

(3− i)(3 + i)

=
−2 + 8i

32 − i2

=
−2 + 8i

32 + 1

=
1

10
(−2 + 8i)

= −.2 + .8i .

The simpli�cation of the denominator is made possible by the trick of multiplying by 3 + i. It is the same
trick we used in Volume 1 to simplify fractions with roots to compute their limits:

1

1−
√
x

=
1

1−
√
x

1 +
√
x

1 +
√
x

=
1 +
√
x

1− x
.

De�nition 3.8.5: complex conjugate

The complex conjugate of z = a+ bi is de�ned and denoted by:

z̄ = a+ bi = a− bi .

The following is crucial.

Theorem 3.8.6: Algebra of Complex Numbers

The rules of the algebra of complex numbers are identical to those of real num-
bers:
• Commutativity of addition: z + u = u+ z .
• Associativity of addition: (z + u) + v = z + (u+ v) .
• Commutativity of multiplication: z · u = u · z .
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• Associativity of multiplication: (z · u) · v = z · (u · v) .
• Distributivity: z · (u+ v) = z · u+ z · v .

This is the complex number system; it follows the rules of the real number system but also contains it.
This theorem will allow us to build calculus for complex functions that is almost identical to that for real
functions and also contains it.

De�nition 3.8.7: standard form of complex number

Every complex number x has the standard representation:

z = a+ bi ,

where a and b are two real numbers. The two components are named as follows:
• a is the real part of z, with notation:

a = Re(z) ,

• bi is the imaginary part of z, with notation:

b = Im(z) .

Then, the purpose of the computations above were to �nd the standard form of a complex number that
comes from algebraic operations with other complex numbers. They were literally simpli�cations.

The de�nition makes sense because of the following result:

Theorem 3.8.8: Standard Form of Complex Number

Two complex numbers are equal if and only if both their real and imaginary
parts are equal.

So, we have:
z = Re(z) + Im(z)i .

In order to see the geometric representation of complex numbers we need to combine the real number line
and the imaginary number line. How? We realize that that have nothing in common... except 0 = 0i
belongs to both:

We can try to combine them like that, or like this:

Or we can try to combine them in the same manner we built the xy-plane:
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This representation helps us understand the main idea:

I Complex numbers are linear combinations of the real unit, 1, and the imaginary unit, i.

If z = a+ bi, then a and b are thought of as the components of vector z in the plane. We have a one-to-one
correspondence:

C←→ R2 ,

given by
a+ bi ←→ < a, b > .

Then the x-axis of this plane consists of the real numbers and the y-axis of the imaginary numbers.

It is called the complex plane.

Warning!

This is just a visualization.

Then the complex conjugate of z is the complex number with the same real part as z and the imaginary
part with the opposite sign:

Re(z̄) = Re(z) and Im(z̄) = − Im(z) .
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Warning!

All numbers we have encountered so far are real
non-complex, and so are all quantities one can en-
counter in day-to-day life or science: time, location,
length, area, volume, mass, temperature, money,
etc.

3.9. Classi�cation of quadratic polynomials

The general quadratic equation with real coe�cients,

ax2 + bx+ c = 0, a 6= 0 ,

can be simpli�ed. Let's divide by a and study the resulting quadratic polynomial:

f(x) = x2 + px+ q ,

where p = b/a and q = c/a.

The Quadratic Formula then provides the x-intercepts of this function:

x = −p
2
±
√
p2 − 4q

2
.

Of course, the x-intercepts are the real solutions of this equation and that is why the result only makes
sense when the discriminant of the quadratic polynomial,

D = p2 − 4q ,

is non-negative.

Now, increasing the value of q (while keeping p constant) makes the graph of y = f(x) shift upward and,
eventually, pass the x-axis entirely. We can observe how its two x-intercepts start to get closer to each other,
then merge, and �nally disappear:

What is behind this event is the emergence of complex roots:
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This process is explained by what is happening, with the growth of q, to the roots given by the Quadratic
Formula:

x1,2 = −p
2
±
√
D

2
.

There are three states:

1. Starting with a positive value, D decreases, and

√
D

2
decreases.

2. Then D becomes 0 and, therefore, we have

√
D

2
= 0.

3. Then D becomes negative, and

√
D

2
becomes imaginary (but

√
−D
2

is real).

Case 2 is a borderline between the other two!

The roots are, respectively:

discriminant root #1 root #2

1. D > 0 x1 = −p
2
−
√
D

2
x2 = −p

2
+

√
D

2

2. D = 0 x1 = −p
2

x2 = −p
2

3. D < 0 x1 = −p
2
−
√
−D
2

i x2 = −p
2

+

√
−D
2

i

We make two observations:

• The two real roots (D > 0) are unrelated.

• The two complex roots (D < 0) are conjugate of each other.

The complex ones always come in pairs:

Exercise 3.9.1

Show that a pair of complex numbers that aren't conjugate can't be the roots of a quadratic polynomial.
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Exercise 3.9.2

Show that any pair of real numbers can be the roots of a quadratic polynomial.

As a summary, we have the following classi�cation the roots of quadratic polynomials in terms of the sign

of the discriminant.

Theorem 3.9.3: Classi�cation of Roots I

The two roots of a quadratic polynomial with real coe�cients are:
1. distinct real when its discriminant D is positive;
2. equal real when its discriminant D is zero;
3. complex conjugate of each other when its discriminant D is negative.

In the future study of di�erential equations, we will need a more precise way to classify the polynomials:
according to the signs of the real parts of their roots. The signs will determine increasing and decreasing
behavior of certain solutions. Once again, these are the possibilities:

Theorem 3.9.4: Classi�cation of Roots II

Suppose x1 and x2 are the two roots of a quadratic polynomial f(x) = x2 +px+q
with real coe�cients. Then the signs of the real parts Re(x1) and Re(x2) of x1

and x2 are:
1. same when p2 > 4q and q ≥ 0;
2. opposite when p2 > 4q and q < 0;
3. same and opposite of that of p when p2 ≤ 4q.

Proof.

The condition p2 ≤ 4q is equivalent to D ≤ 0. We can see in the table above that, in that case, we

have Re(x1) = Re(x2) = −p
2
. We are left with the case D > 0 and real roots. The case of equal signs

is separated from the case of opposite signs of x1 and x2 by the case when both are equal to zero:
x1 = x2 = 0. We solve:

−p
2
−
√
D

2
= 0 =⇒ p = −

√
p2 − 4q =⇒ p2 = p2 − 4q =⇒ q = 0 .

Exercise 3.9.5

Finish the proof.

Let's visualize our conclusion. We would like to show the main scenarios of what kinds of roots the polynomial
might have depending on the values of its two coe�cients, p and q.

First, how do we visualize pairs of numbers? As points on a coordinate plane of course... but only when
they are real.
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Suppose for now that they are. We start with a plane, the x1x2-plane to be exact, as a representation of
all possible pairs of real roots (left). Then the diagonal of this plane represents the case of equal (and still
real) roots, x1 = x2, i.e., D = 0. Since the order of the roots doesn't matter � (x1, x2) is as good as (x2, x1)
� we need only half of the plane. We fold the plane along the diagonal (middle).

The diagonal � represented by the equation D = 0 � exposed this way can now serve its purpose of separating
the case of real and complex roots. Now, let's go to the pq-plane. Here, the parabola p2 = 4q also represents
the equation D = 0. Let's bring them together! We take our half-plane and bend its diagonal edge into the
parabola p2 = 4q (right).

Note that the average of this two �solutions� will continue to provide the vertex of the parabola even though
there are no x-intercepts!

Theorem 3.9.6: Vieta's Formulas

The roots x1, x2 of the quadratic polynomial f(x) = x2 + px + q satisfy the
following equations:

x1 + x2 = −p and x1 · x2 = q

Classifying polynomials this way allows one to classify matrices and understand what each of them does as
a transformation of the plane, which in turn will help us understand systems of ODEs.

3.10. The complex plane C is the Euclidean space R2

If we call complex number numbers, they must be subject to some algebraic operations.

We will initially look at them through the lens of vector algebra of the plane R2.

A complex number z has the standard representation:

z = a+ bi ,

where a and b are two real numbers. These two can be seen in the geometric representation of complex
numbers:
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Therefore, a and b are thought of as the coordinates of z as a point on the plane. But any complex number
is not only a point on the complex plane but also a vector. We have a correspondence:

C←→ R2 ,

given by

a+ bi ←→ < a, b >

There is more to this than just a match; the algebra of vectors in R2 applies!

Warning!

In spite of this fundamental correspondence, we will
continue to think of complex numbers as numbers

(and use the lower case letters).

Let's see how this algebra of numbers works in parallel with the algebra of 2-vectors.

First, the addition of complex numbers is done component-wise:

(a+ bi) + (c+ di) = (a+ c) + (b+ d)i ,
< a, b > + < c, d > = < a+ c , b+ d > .

It corresponds to addition of vectors:

Second, we can easily multiply complex numbers by real ones:

(a+ bi) c = (ac) + (bc)i ,
< a, b > c = < ac , bc > .

It corresponds to scalar multiplication of vectors.
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Warning!

Vector algebra of R2 is complex algebra, but not
vice versa. Complex multiplication is what makes
it di�erent.

Example 3.10.1: circle

We can easily represent circles on the complex plane:

z = r cos θ + r sin θ · i .

Our study of calculus of complex numbers starts with the study of the topology of the complex plane. This
topology is the same as that of the Euclidean plane R2!

Just as before, every function z = f(t) with an appropriate domain creates a sequence:

zk = f(k) .

A function with complex values de�ned on a ray in the set of integers, {p, p + 1, ...}, is called an in�nite

sequence, or simply sequence.

Example 3.10.2: spiral

A good example is that of the sequence made of the reciprocals:

zk =
cos k

k
+

sin k

k
i .

It tends to 0 while spiraling around it.

The starting point of calculus of complex numbers is the following. The convergence of a sequence of complex
numbers is the convergence of its real and imaginary parts or, which is equivalent, the convergence of points
(or vectors) on the complex plane seen as any plane: the distance from the kth point to the limit is getting
smaller and smaller.
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We use the convergence for vectors on the plane simply replacing vectors with complex numbers and �mag-
nitude� with �modulus�.

De�nition 3.10.3: convergent sequence

Suppose {zk : k = 1, 2, 3...} is a sequence of complex numbers, i.e., points in C.
We say that the sequence converges to another complex number z, i.e., a point
in C, called the limit of the sequence, if:

||zk − z|| → 0 as k →∞ ,

denoted by:
zk → z as k →∞ ,

or
z = lim

k→∞
zk .

If a sequence has a limit, we call the sequence convergent and say that it con-
verges ; otherwise it is divergent and we say it diverges.

In other words, the points start to accumulate in smaller and smaller circles around z. A way to visualize
a trend in a convergent sequence is to enclose the tail of the sequence in a disk :
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Theorem 3.10.4: Uniqueness of Limit

A sequence can have only one limit (�nite or in�nite); i.e., if a and b are limits
of the same sequence, then a = b.

De�nition 3.10.5: sequence tends to in�nity

We say that a sequence zk tends to in�nity if the following condition holds: for
each real number R, there exists such a natural number N that, for every natural
number k > N , we have

||zk|| > R;

we use the following notation:

zk →∞ as k →∞ .

The following is another analog of a familiar theorem about the topology of the plane.

Theorem 3.10.6: Component-wise Convergence of Sequences

A sequence of complex numbers zk in C converges to a complex number z if and
only if both the real and the imaginary parts of zk converge to the real and the
imaginary parts of z respectively; i.e.,

zk → z ⇐⇒ Re(zk)→ Re(z) and Im(zk)→ Im(z) .

The algebraic properties of limits of sequences of complex numbers also look familiar...

Theorem 3.10.7: Sum Rule for Complex Sequences

If sequences zk, uk converge then so does zk + uk, and

lim
k→∞

(zk + uk) = lim
k→∞

zk + lim
k→∞

uk .
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Theorem 3.10.8: Constant Multiple Rule for Complex Sequences

If sequence zk converges then so does czk for any complex c, and

lim
k→∞

c zk = c · lim
k→∞

zk .

Wouldn't calculus of complex numbers be just a copy of calculus on the plane? No, not with the possibility
of multiplication taken into account.
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4.1. Multiple variables, multiple dimensions

Why do we need to study multidimensional spaces?

These are the main sources of spaces of multiple dimensions :

1. The physical space, dimension 3.

2. Multiple spaces of single dimension interconnected via functional relations: The graphs of these func-
tions lie in higher-dimensional spaces.

3. Multiple quantities, homogeneous (such as stock and commodity prices) and non-homogeneous (such
as other data): They are combined into points in abstract spaces.

The 3-dimensional space represents a signi�cant challenge in comparison to the plane. Furthermore, taking
into account time will make it 4-dimensional.

Furthermore, planning a �ight of a plane would require 3 spatial variables, but the number increases to 6 if
we are to consider the orientation of the plane in the air: the roll, the pitch, and the yaw.

Next, let's notice that even when we deal with only numerical functions, the graph of such a function lies
in the xy-plane, a space of dimension 2. What if there are two such functions?

Example 4.1.1: road trip

Let's imagine a car driven through a mountain terrain. Its location and its speed, as seen on the map,
are known. The grade of the road is also known. How fast is the car climbing?

239
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The �rst variable is time, t. We also have two spatial variables: the horizontal location x and the
elevation (the vertical location) z. Then z depends on x, and x depends on t. Therefore, z depends
on t via the composition:

Plotting both functions together requires a 3-dimensional space.

We can take speci�c functions:
• The horizontal location is a linear function of time, x = 2t− 1.
• The elevation is a linear function of horizontal location, z = 3x+ 7.
• Then elevation is, too, a linear function of time, z = 3(2t− 1) + 7.

Example 4.1.2: hiking

Let's now consider a more complex trip. Planning a hike, we create a trip plan: The times and the
places are put on a simple map of the area:

This is a parametric curve:
x = f(t), y = g(t) ,

with x and y providing the coordinates of your location. Conversely, motion in time is a go-to
metaphor for parametric curves!

We then bring the terrain map of the area. The data is colored accordingly:
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Such a topographic map has the colors indicating the elevation of the actual terrain:

This is a function of two variables :
z = f(x, y) .

Conversely, a terrain map is a go-to metaphor for functions of two variables!

Now, back to the same question: How fast will we be climbing? The composition required is illustrated
below:
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We face new kinds of functions:

trip map

∣∣∣∣
t −→ (x, y) −→ z∣∣∣∣ terrain map

Both functions deal with 3 variables at the same time, with a total of 4!

In the meantime, there are many functions of the 2 or 3 variables of location: the temperature and
the pressure of the air or water, the humidity, the concentration of a particular chemical, etc.

Example 4.1.3: costs and prices

We saw an example of an abstract space: the space of prices. At its simplest, the baker does two
things:

1. He watches the prices of the two ingredients of his bread: sugar and wheat.
2. He decides, based on these two numbers, what the price of the bread should be.

The space's dimension was 2, with only the two prices of the two ingredients of bread. The dependence
is just as in the last example:

costs

∣∣∣∣
t 7→ (x, y) 7→ z∣∣∣∣ price

Multiple variables lead to high-dimensional abstract spaces, such as in the case of the price of a car
dependent on the prices of 1000 of its parts:

t 7→ (x1, x2, ..., x1000) 7→ z

We can develop algebra, geometry, and calculus that will be applicable to a space of any dimension.
We replace a large number of single variables with a single variable in a space of a large dimension.
For example, P below is such a variable, i.e., a location in a 1000-dimensional space:

t 7→ P 7→ z

Example 4.1.4: mixtures

Recall the example of two types of co�ee � costs $2 per pound and $3 per pound � used to make a
blend worth $12. The space of prices is 2-dimensional with the restriction:

2x+ 3y = 14 .

The restriction creates a 1-dimensional subspace � the line � within the plane. What happened is
that we don't have two degrees of freedom anymore: x and y can't both be available at the same
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time. Once one is known, so is the other.

Now we can imagine an example of an investment portfolio. Suppose there are 10, 000 stocks available.
The prices per share are known:

p1, p2, ... , p10000 .

What �blend� of these would produce an investment worth $10 million?

The question is about the number of shares of each stock, respectively:

x1, x2, ... , x10000 .

Each investment will be recorded as a point in the 10, 000-dimensional space. And so is the price
combination.

Let's combine these together:

stocks: 1 2 ... 10, 000
prices: p1 p2 ... p10000

# of shares: x1 x2 ... x10000

subtotals: p1x1 p2x2 ... p10000x10000

TOTAL p1x1 +p2x2 +... +p10000x10000 = 10

The restriction we have produced in the last line creates a 9, 999-dimensional subspace within the
10, 000-dimensional space. What happened is that we don't have 10, 000 degrees of freedom anymore:
all x1, x2, ... , x10000 can't be available at the same time. Indeed, we have:

x1 =
1

p1

(
10− p2x2 − ...− p10000x10000

)
.

Once 9, 999 of them are known, then so is the one that is left.

Initially we will limit ourselves to dimensions that we can visualize!

Convention. We will use upper case letters for the entities that are (or may be) multidimensional, such as
points and vectors:

A, B, C, ... P, Q, ... ;

and lower case letters for numbers:
a, b, c, ... , x, y, z, ...

4.2. Euclidean spaces and Cartesian systems of dimensions

1, 2, 3,...

We start with the Cartesian system for dimension 1. It is a line with a certain collection of features � the
origin, the positive direction, and the unit � added:
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The main idea is this correspondence (i.e., a function that is one-to-one and onto):

a location P ←→ a real number x.

We can have such �Cartesian lines� as many as we like and we can arrange them in any way we like. Then
the Cartesian system for dimension 2 is made of two copies of the Cartesian system of dimension 1 aligned
at 90 degrees (of rotation) from positive x to positive y:

We continue with dimension 3.

There is much more going on in �space� than on a plane:
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That is why we'll need three numbers to represent the locations.

The Cartesian system for dimension 3 is made of three copies of the Cartesian system of dimension 1. Just
like in the case of dimension 2 above, these copies don't have to be identical; their units might be unrelated.

The system is built in several stages:

1. Three coordinate axes are chosen: the x-axis, the y-axis, and the z-axis.

2. The two axes are put together at their origins so that it is a 90-degree turn from the positive direction
of one axis to the positive direction of the next � from x to y to z to x.

3. Use the marks on the axis to draw grids on the planes.

4. We repeat these three grids in parallel to create threads in space.

The last step is shown below:
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The second requirement is called the Right Hand Rule:

It reads:

I If we curl our �ngers from the x-axis to the y-axis, our thumb will point in the direction of
the z-axis.

We can also understand this idea if we imagine turning a screwdriver in this direction and seeing which way
the screw goes.

The axes are perpendicular to each other, but there is more! For example, in addition to the x- and y-axis
being perpendicular to the z-axis, all lines in the xy-plane are perpendicular to it:

The main purpose of the Cartesian system remains the same; it is this correspondence:

a location P ←→ a triple of real numbers (x, y, z)
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Warning!

The three variables or quantities represented by the
three axes may be unrelated. Then our visualiza-
tion will remain valid with rectangles instead of
squares, and boxes instead of cubes.

Alternatively, the system is built from three copies of the Cartesian plane: the xy-plane, the yz-plane, and
the zx-plane. They are arranged at 90 degrees as walls of a room:

These planes are called the coordinate planes.

This is how the system works:

First, suppose P is a location in this space. We �nd the dimensions of the box with one corner at O and
the opposite at P . We �nd the distances from the three planes to that location � positive in the positive
direction and negative in the negative direction � and the result is the three coordinates of P , some numbers
x, y, and z. The distance from the yz-plane is measured along the x-axis, etc. We use the nearest mark to
simplify the task:

Conversely, suppose x, y, z are numbers. If we need to build a box with these dimensions:

• First, we measure x as the distance from the yz-plane � positive in the positive direction and negative
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in the negative direction � along the x-axis and create a plane parallel to the yz-plane.

• Second, we measure y as the distance from the xz-plane along the y-axis and create a plane parallel
to the xz-plane.

• Third, we measure z as the distance from the xy-plane along the z-axis and create a plane parallel to
the xy-plane.

The intersection of these three planes � as if these were the two walls and the �oor in a room � is a location
P = (x, y, z) in the space. We use the nearest marks to simplify the task:

This 3-dimensional coordinate system is called the Cartesian space or the 3-space.

Once the coordinate system is in place, it is acceptable to think of location as triples of numbers and vice
versa. In fact, we can write:

P = (x, y, z) .

Consider more of the planes parallel to the coordinate planes:

Then, we have a compact way to represent these planes:

x = k, y = k, or z = k ,

for some real k.

We can use this idea to reveal the internal structure of the space.
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Theorem 4.2.1: Planes Parallel to Coordinate Planes

1. If L is a plane parallel to the xy-plane, then all points on L have the same
z-coordinate. Conversely, if a collection L of points consists of all points
with the same z-coordinate, L is a plane parallel to the xy-plane.

2. If L is a plane parallel to the yz-plane, then all points on L have the same
x-coordinate. Conversely, if a collection L of points consists of all points
with the same x-coordinate, L is a plane parallel to the yz-plane.

3. If L is a plane parallel to the zx-plane, then all points on L have the same
y-coordinate. Conversely, if a collection L of points consists of all points
with the same y-coordinate, L is a plane parallel to the zx-plane.

We turn to analytic geometry of the 3-space.

Now that everything is pre-measured, we can solve geometric problems by algebraically manipulating coor-
dinates.

The �rst geometric task is �nding the distance: What is the distance between locations P and Q in terms
of their coordinates (x, y, z) and (x′, y′, z′)?

For dimension 2, we used the distance formula from the 1-dimensional case. We found distance between two
points on the plane as the length of the diagonal of the rectangle � with its sides parallel to the coordinate
axes � that has these points at the opposite corners:

First, we need to realize that the problem itself is 1-dimensional! Indeed, any two points, in any space �
1-, 2-, 3-, or n-dimensional � can be connected by a line, and along that line � a 1-dimensional space � we
measure the distance:

The coordinate system is just a means to an end.

So, we need to �nd the distance between two points in space as the length of the diagonal of the box � with
its edges parallel to the coordinate axes, and sides parallel to the coordinate planes � that has these points
at the opposite corners:
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We now utilize these two facts:

1. Every coordinate plane of the 3-space has its own, 2-dimensional, coordinate system.

2. The coordinate axes are perpendicular to the coordinate planes.

This is the outline of the construction:

The Pythagorean theorem is to be applied within the horizontal plane and then within a certain vertical
plane.

The formula is, as we anticipated, symmetric with respect to the dimensions:

Theorem 4.2.2: Distance Formula for dimension 3

The distance between points with coordinates P = (x, y, z) and Q = (x′, y′, z′)
is

d(P,Q) =
√

(x− x′)2 + (y − y′)2 + (z − z′)2 .

Proof.

The segment between the points P = (x, y, z) and Q = (x′, y′, z′) is the diagonal of this �box�. We use
the distance formula from the 1-dimensional case separately for each of the three axes, as follows:
• The distance between x and x′ on the x-axis is |x− x′|.
• The distance between y and y′ on the y-axis is |y − y′|.
• The distance between z and z′ on the z-axis is |z − z′|.

These are the dimensions of the box.

Next we use the Pythagorean Theorem twice. We �rst �nd the length of the diagonal of the bottom
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of the box and then the length of the main diagonal:

PT 1: d(P,A) = |x− x′|, d(A,B) = |y − y′|
=⇒ d(P,B)2 = (x− x′)2 + (y − y′)2

PT 2: d(P,B)2 = (x− x′)2 + (y − y′)2, d(B,Q) = |z − z′|
=⇒ d(P,Q)2 = d(P,B)2 + d(B,Q)2

= (x− x′)2 + (y − y′)2 + (z − z′)2

Exercise 4.2.3

Prove that in the latter case the triangle is indeed a right triangle.

Relations are used in the same way as before but with more variables. A relation processes a triple of
numbers (x, y, z) as the input and produces an output, which is: Yes or No. If we are to plot the graph of
a relation, this output becomes: a point or no point. For example:

outcome:
Plot point (x, y, z).

plane: triple: relation: TRUE ↗
R3 → (x, y, z) → x+ y + z = 2 ? →

FALSE ↘
Don't plot anything.

We can do it by hand:

We can use, as before, the set-building notation:

{(x, y, z) : a condition on x, y, z} .

For example, the graph of the above relation is a subset of R3 given by:

{(x, y, z) : x+ y + z = 2} .

What about dimension 4 and higher?

We cannot use our physical space as a reference anymore! We can't use it for visualization either. The space
is abstract.

The idea of the n-dimensional space remains the same; it is the correspondence:

a location P ←→ a string of n real numbers (x1, x2, x3, ..., xn)

Using the same letter with subscripts is preferable even for dimension 3 as the symmetries between the axes
and variables are easier to detect and utilize. However, using just P is often even better!

Because of the di�culty or even impossibility of visualization of these �locations� in dimension 4, this
correspondence becomes much more than just a way to go back and forth whenever convenient. This time,
we just say �It's the same thing�.
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Example 4.2.4: non-homogeneous variables

This may be the data continuously collected by a weather center :

1 2 3 4 5 ...
temperature pressure precipitation humidity sunlight ...

They are all measured in di�erent units and cannot be seen as an analog of our physical space.

How do we visualize this n-dimensional space?

Let's �rst realize that, in a sense, we have failed even with the three-dimensional space! We have had to
squeeze these three dimensions on a two-dimensional piece of paper. Without the numbers telling us what
to expect, we wouldn't be able to tell the dimension (top row):

At best, we are seeing the shadows of the lines (bottom row).

These are the spaces we will study and the notations for them:

Euclidean spaces

• R, all real numbers (line)
• R2, all pairs of real numbers (plane)
• R3, all triples of real numbers (space)
• R4, all quadruples of real numbers
• ...
• Rn, all strings of n real numbers
• ...

Each of them is supplied with its own algebra and geometry.

We can build these by consecutively adding one dimension at a time.

• If R is given, we treat it as the x-axis and then add another axis, the y-axis, perpendicular to the �rst.

• The result is R2, which we treat as the xy-plane and then add another axis, the z-axis, perpendicular
to the �rst two.

• The result is R3, which we treat as the xyz-space and then add another axis perpendicular to the �rst
three; and so on.

Here is the summary:
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With our 1-dimensional �nger, we puncture the space. In R4, the same thing happens; the �nger disappears:

The formula that represents the line in the �rst row is:

y = 0 or x2 = 0 .

The formula that represents the plane in the second row is:

z = 0 or x3 = 0 .

This space is abstract but is still constructed from lower-dimensional spaces:

1. Four copies of R: the four coordinate axes.

2. Six copies of R2: the six coordinate planes, each spanned on a pair of those coordinate axes.

3. Four copies of R3: four spaces, each constructed on the frame of three of those coordinate planes.

Exercise 4.2.5

What is the formula that represents each of these spaces?

Exercise 4.2.6

How many coordinate planes are there in R5? Rn? How many coordinate spaces?

So, these spaces aren't unrelated!
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In order to reveal the internal structure of a spaces, we look for lower-dimensional spaces in it.

The plane is a stack of lines, each of which is just a copy of one of the coordinate axes:

These lines are given by the equations for each real a or b:

x = a, y = b

They are copies of R and will have the same algebra and geometry. In fact, they can have their own
coordinate systems:

Now, one can think of the 3-space as a stack of planes, each of which is just a copy of one of the coordinate
planes:

They are given by the equations for all real a, b, c:

x = a, y = b, z = c

These are copies of R2.

If a 2-dimensional person can recognize � thinking mathematically � that the 3-space is made of layers of
copies of his own space, we can see our physical 3-space as just a single �layer� in R4.
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So, R4 is a �stack� of R3s. How they �t together is hard to visualize, but they are still copies of R3 given
by equations:

x1 = a1, x2 = a2, x3 = a3, x4 = a4

Exercise 4.2.7

What is a line a stack of?

So, we can see many copies of Rm in Rn, with n > m.

Beyond a certain point, the chance to visualize the space is gone. We, however, are still able to visualize
the space one element at a time. For example, a point in the n-dimensional space is nothing but a sequence
with n terms:

k 1 2 3 4 5 ... n
xk x1 x2 x3 x4 x5 ... xn

It's just a function, with the inputs in the �rst row and the outputs in the second. We visualize functions
with their graphs. For example, this string of 6 numbers is a point in the 6-dimensional space:

Warning!

The curve that you see is incidental because the
rows of the table can be re-arranged.

Next, there is no point in studying spaces without studying functions between them.

Let's review multidimensional functions. We place them in a table with two axes representing the dimension
of the domain and the dimension of the codomain:
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We always start at the very �rst cell. Previously we made a step in the vertical direction and explored the
�rst column of this table. We also moved to the right.

With all this complexity, we shouldn't overlook the general point of view on functions. We represent a
function diagrammatically as a black box that processes the input and produces the output of whatever
nature:

input function output

X 7→ f 7→ Y

Let's take one from the left-most column and one from the bottom row:

parametric
input curve output

t 7→ F 7→ X
R Rm

number point
time prices of parts
time prices of stocks

function of
input two variables output

X 7→ f 7→ z

Rm R
point number

prices of parts price of car
prices of stocks value of portfolio

They can be linked up and produce a composition, which is just a numerical function.

Above is a view of �generic� functions. In the linear algebra context, the functions in the table are simpler
and so are their visualizations:
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We turn to analytic geometry of n-dimensional spaces.

4.3. Geometry of distances

The axes of the Cartesian system R3 for our physical space refer to the same: distances to the coordinate
planes. They are (or should be) measured in the same unit. Even though, in general, the axes of Rn refer
to unrelated quantities, they may be measured in the same unit, such as the prices of n commodities being
traded. When this is the case, doing geometry in Rn based entirely on the coordinates of points is possible.

A Cartesian system has everything in the space pre-measured.

In particular, we compute (rather than measure) the distances between locations because the distance can
be expressed in terms of the coordinates of the locations.
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Theorem 4.3.1: Distance Formula for Dimension 1

The distance from point P to point Q in R given by real numbers x and x′

respectively is

d(P,Q) = |x− x′|

Here, the geometry problem of �nding distances relies on the algebra of real numbers (the subtraction).

Now the coordinate system for dimension 2. The formula for the distance between locations P and Q in
terms of their coordinates (x, y) and (x′, y′) is found by using the distance formula from the 1-dimensional
case for either of the two axes in order to �nd

1. the distance between x and x′, which is |x− x′| = |x′ − x|, and

2. the distance between y and y′, which is |y − y′| = |y′ − y|, respectively.

Then the two numbers are put together by the Pythagorean Theorem taking into account this simpli�cation:

|x− x′|2 = (x− x′)2, |y − y′|2 = (y − y′)2 .

Theorem 4.3.2: Distance Formula for Dimension 2

The distance between points P and Q in R2 with coordinates (x, y) and (x′, y′)
respectively is

d(P,Q) =
√

(x− x′)2 + (y − y′)2

The two exceptional cases when P and Q lie on the same vertical or the same horizontal line (and the
triangle �degenerates� into a segment) are treated separately.

Now the coordinate system for dimension 3. We can guess that there will be another term in the sum of the
Distance Formula.

Theorem 4.3.3: Distance Formula for Dimension 3

The distance between points P and Q in R3 with coordinates (x, y, z) and
(x′, y′, z′) respectively is

d(P,Q) =
√

(x− x′)2 + (y − y′)2 + (z − z′)2

A pattern starts to appear:

I The square of the distance is the sum of the squares of the distances along each of the
coordinates.
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Thinking by analogy, we continue on to include the case of dimension 4:

dimension points coordinates distance
1 P x

Q x′ d(P,Q)2 = (x− x′)2

2 P (x, y)
Q (x′, y′) d(P,Q)2 = (x− x′)2 + (y − y′)2

3 P (x, y, z)
Q (x′, y′, z′) d(P,Q)2 = (x− x′)2 + (y − y′)2 + (z − z′)2

4 P (x1, x2, x3, x4)
Q (x′1, x

′
2, x
′
3, x
′
4) d(P,Q)2 = (x1 − x′1)2 + (x2 − x′2)2 + (x3 − x′3)2 + (x4 − x′4)2

... ... ... ...

There are n terms in dimension n:

dimension points coordinates distance
n P (x1, x2, ..., xn)

Q (x′1, x
′
2, ..., x

′
n) d(P,Q)2 = (x1 − x′1)2 + (x2 − x′2)2 + ...+ (xn − x′n)2

Example 4.3.4: geometry of R3 in R4

The formula for n = 1, 2, 3 is justi�ed by what we know about the physical space. What about n = 4
and above? Let's take a look at the copies of R3 that make up R4. One of them is given by x4 = a4

for some real number a4. If we take any two points P,Q within it, the formula becomes:

d(P,Q) =
√

(x1 − x′1)2 + (x2 − x′2)2 + (x3 − x′3)2 + (a4 − a4)2

=
√

(x1 − x′1)2 + (x2 − x′2)2 + (x3 − x′3)2 .

In other words, the distance is the same as the one for dimension 3. We conclude that the geometry
of such a copy of R3 is the same as the �original�!

Exercise 4.3.5

Show that the geometry of any plane in R3 and R4 is the same as that of R2.

Can we justify this formula with more than just �It's a pattern�? Yes, we progress from understanding the
geometry of X = Rn to that of Y = Rn+1, every time.

Suppose the distances in X = Rn are computed by the above formula. Then, we add an extra axis �
perpendicular to the rest � to create Y = Rn+1:

Then, the Pythagorean Theorem is applied (green triangle). The computation is just as in the case n = 3
presented above:

d(P,Q)2 = d(P,R)2 + d(R,Q)2 = (x1 − x′1)2 + (x2 − x′2)2 + ...+ (xn − x′n)2 + (xn+1 − x′n+1)2 .
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The formula applies to a space of any dimension n. It matches the measured distance in the physical space:
n = 1, 2, 3. We can't say the same about the spaces of dimensions n > 3. They are abstract spaces. The
formula, therefore, is seen as the de�nition of the distance for these spaces:

De�nition 4.3.6: Euclidean metric

The Euclidean distance between points P and Q in Rn is de�ned to be the square
root of the sum of the squares of the distances for each of the coordinates:

P = (x1, x2, ..., xn)

Q = (x′1, x
′
2, ..., x

′
n)

d(P,Q) =
√

(x1 − x′1)2 + (x2 − x′2)2 + ...+ (xn − x′n)2

We refer to the formula as the Euclidean metric. The space Rn equipped with
the Euclidean metric is called the n-dimensional Euclidean space.

Now, the formula is somewhat complicated. Is it possible to have a few simple rules apply equally to all
dimensions, without reference to the formulas?

We formulate three very simple properties of the distances. First, the distances can't be negative and,
moreover, for the distance to be zero, the two points have to be the same. Second, the distance from P to
Q is the same as the distance from Q to P . And so on.

Theorem 4.3.7: Axioms of Metric Space

Suppose P,Q, S are points in R3. Then the following properties are satis�ed:
• Positivity: d(P,Q) ≥ 0; and d(P,Q) = 0 if and only if P = Q.
• Symmetry: d(P,Q) = d(Q,P ).
• Triangle Inequality: d(P,Q) + d(Q,S) ≥ d(P, S).

Proof.

Suppose d(P,Q) = 0. Then

0 = d(P,Q)2 = (x1 − x′1)2 + (x2 − x′2)2 + ...+ (xn − x′n)2 .

Since none of the terms is negative, all have to be zero:

(x1 − x′1)2 = 0, (x2 − x′2)2 = 0, ..., (xn − x′n)2 = 0 .

Therefore,
x1 = x′1, x2 = x′2, ..., xn = x′n .

It follows that P = Q.

Exercise 4.3.8

Prove the rest of the theorem.

These geometric properties have been justi�ed following the familiar geometry of the �physical space� R3.
However, they also serve as a starting point for further development of linear algebra. Below, we will de�ne
the new geometry of the abstract space Rn and demonstrate that these �axioms� are still satis�ed.
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Exercise 4.3.9

The distance is a function. Explain.

We know the last property from Euclidean geometry:

We can justify it for dimension n ≥ 4 by referring to the following fact: Any three points lie within a single
plane. This fact brings us back to Euclidean geometry... if that's what we want.

Example 4.3.10: city blocks

The Distance Formula for the plane gives us the distance measured along a straight line as if we are
walking through a �eld. But what if we are walking through a city? We then cannot go diagonally
as we have to follow the grid of streets. This fact dictates how we measure distances. To �nd the
distance between two locations P = (x, y) and Q = (u, v), we measure along the grid only:

The formula is, therefore:

dT (P,Q) = |x− u|+ |y − v|

It is called the taxicab metric. It is di�erent from the Euclidean metric as the diagonal of a 1 square
is 2 units long under this geometry.

Exercise 4.3.11

Prove that the taxicab metric satis�es the three properties in the theorem.

If the physical space can be reasonably treated with non-Euclidean distances, the idea is even more applicable
to higher dimensions.

If we are given space of locations or �states�, Rn, it is our choice to pick an appropriate way to compute
distances from coordinates:

De�nition 4.3.12: three metrics

Suppose points P and Q inRn have coordinates (x1, x2, ..., xn) and (x′1, x
′
2, ..., x

′
n)

respectively.
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1. The Euclidean metric, or the L2-metric, is de�ned to be

d2(P,Q) =

√√√√ n∑
k=1

(xk − x′k)2

2. The taxicab metric, or the L1-metric, is de�ned to be

d1(P,Q) =
n∑
k=1

|xk − x′k|

3. The max metric, or the L∞-metric, is de�ned to be

d∞(P,Q) = max
k=1,...,n

|xk − x′k|

They are illustrated below (n = 40):

For the Euclidean metric, we compute for each row:

=ABS(RC[-2]-RC[-1])

We plot it, then apply this formula:
=SUM(R[1]C:R[40]C)

For the taxicab metric, we compute for each row:

=RC[-1]� 2

We then apply this formula:
=SQRT(SUM(R[1]C:R[40]C))

The formula for max metric is simply:

=MAX(R[1]C[-2]:R[40]C[-2])
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Exercise 4.3.13

Prove the Axioms of Metric Space for these formulas.

When we deal with the �physical space� (n = 1, 2, 3) as in the above theorems, the Euclidean metric is
implied. For the �abstract spaces� (n = 1, 2, ...), the Euclidean metric is the default choice; however, there
are many examples when the Euclidean geometry and, therefore, the Euclidean metric (aka the Distance
Formula) don't apply.

Example 4.3.14: attributes

Let's consider the prices of wheat and sugar again. The space of prices is the same, R2. However,
measuring the distance between two combinations of prices with the Euclidean metric leads to unde-
sirable e�ects. For example, such a trivial step as changing the latter from �per ton� to �per kilogram�
will change the geometry of the whole space. It is as if the space is stretched vertically. As a result, in
particular, point P that used to be closer to point A than to B might now satisfy the opposite condition.

Furthermore, the two (or more) measurements or other attributes might have nothing to do with each
other. In some obvious cases, they will even have di�erent units. For example, we might compare two
persons built based to the two main measurements: weight and height. Unfortunately, if we substitute
such numbers into our formula, we will be adding pounds to feet!

Some of the concepts of geometry �nd their analogs in higher dimensions. For example, consider:

• A circle on the plane is de�ned to be the set of all points a given distance away from its center.

• A sphere in the space is de�ned to be the set of all points a given distance away from its center.

What about higher dimensions? The pattern is clear:

• A hypersphere in Rn is de�ned to be the set of all points a given distance away from its center.

In other words, each point P on the hypersphere satis�es:

d(P,Q) = R ,

where Q is its center and R is its radius.

Example 4.3.15: Newton's Law of Gravity

According to the law, the force of gravity between two objects is
• proportional to either of their masses,
• inversely proportional to the square of the distance between their centers.

In other words, the force is given by the formula:

F = G
mM

r2
,

where:
• F is the force between the objects;
• G is the gravitational constant;
• m is the mass of the �rst object;
• M is the mass of the second object;
• r is the distance between the centers of the mass of the two.

The dependence of F on m and M is very simple and, furthermore, we can assume that the masses of
planets are remain the same. We are left with a function of one variable:

F (r) = G
mM

r2
.

More precisely, r depends on the location P of the second object in the 3-dimensional space:

r = d(O,P ) ,
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if, for simplicity, we assume that the �rst object is located at the origin. Note that this force is
constant along any of the spheres centered at O.

Now, we can re-write the law as a function of P :

F (P ) =
GmM

d(O,P )2

Furthermore, if we suppose that the three spatial variables x, y, z are the coordinates of P , we can
re-write the law as a function of three variables:

F (x, y, z) =
GmM

d(O,P )2
=

GmM(√
x2 + y2 + z2

)2 =
GmM

x2 + y2 + z2
.

If we ignore the third variable (z = 0), we can plot the graph of the resulting function of two variables:

But what about the direction of this force? This question is addressed in the next section.

Exercise 4.3.16

Visualize the function for the case of 3 dimensions.

4.4. Where vectors come from

We introduced vectors in previously to properly handle the geometric issue of directions and angles between
directions. However, vectors also appear frequently in our study of the natural world.

De�nition 4.4.1: displacement

When the points in Rn are called locations or positions, the vectors are called
displacements. In particular, if P and Q are two locations, then the vector PQ
is the displacement from P to Q.

The idea applies to any space Rn but we will start with the physical space devoid of a Cartesian system.

From this point of view, a vector is a pair, PQ, of locations P and Q.
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Warning!

�Vector� is not synonymous with �segment�; it's not
even a set. The segment that you see is just a
visualization.

We saw vectors in action previously, but the goal was limited to using vectors to understand directions and
angles between them. Our interest here is the algebraic operations on vectors.

If a vector is an ordered pair, this means that PQ 6= QP . But is there a relation? The displacement from
P to Q is the opposite to the displacement from Q to P :

QP = −PQ

The locations and displacements and, therefore, points and vectors are subject to algebraic operations that
connect them:

P + PQ = Q

As you can see, we add a vector to a point that is its initial point and the result is its terminal point.

It follows:
PQ = Q− P .

As you can see, the vector is the di�erence of its terminal and its initial points. It follows that

QP = P −Q = −(Q− P ) = −PQ .

We are back to the above formula.

De�nition 4.4.2: a�ne space

The a�ne space of the Euclidean space Rn is the set of ordered pairs PQ of
points P and Q in this space. These pairs are called vectors.

We now review the algebra.

First, dimension 1.
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Even though the algebra of vectors is the algebra of real numbers, we can still, even without a Cartesian
system, think of the algebra of directed segments.

The addition of two vectors is executed by attaching the head of the second vector to the tail of the �rst,
as illustrated below:

The negative number (red) is a segment directed backwards so that its tail is on its left.

Now dimension 2.

Example 4.4.3: consecutive displacements

We move point to point through the space:

This is how we can understand addition of vectors as displacements:

initial location displacement terminal location
P PQ P + PQ = Q
Q QR Q+QR = R = P + (PQ+QR)
R RS R +RS = S = P + (PQ+QR +RS)
S ST S + ST = T = P + (PQ+QR +RS + ST )

The right column shows how adding vector to point can be seen as an alternative approach: We add
vector to vector �rst.

For the general case of m steps, we have these two representations:

m∑
k=0

XkXk+1 = X0X1 + ... +Xm−1Xm = X0Xm

m∑
k=0

(Xk+1 −Xk) = (X1 −X0) + ... +(Xm −Xm−1) = Xm −X0

Since moving from P to Q and then from Q to R amounts to moving from P to R, the construction is,
again, a �head-to-tail� alignment of vectors:

PR = PQ+QR .

Warning!

We use the same symbol �+� as for addition of
numbers.
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However, in the physical world, there are other �metaphors� for vectors besides the displacements.

Example 4.4.4: velocity of stream

We look at the velocities of particles in a stream at each location. Then they may be combined with
the speed of rowing of the boat:

We are to add these two vectors at each location, but they, in contrast to the displacements, start at
the same point!

Exercise 4.4.5

With the velocities as shown, what is the best strategy to cross the canal?

Example 4.4.6: forces

Let's also look at forces as vectors. For example, springs attached to an object will pull it in their
respective directions:

We add these vectors to �nd the combined force as if produced by a single spring. The forces are
vectors that start at the same location.

Example 4.4.7: displacements

We can interpret the displacements, too, as vectors aligned to their starting points. Imagine we
are crossing a river 3 miles wide and we know that the current (with no rowing) takes us 2 miles
downstream. Three di�erent ways this can happen:

1. a free-�ow trip 3 miles north followed by a walk 2 miles east over a bridge; or
2. a walk 2 miles east over another bridge followed by a free-�ow trip 3 miles north; but also
3. a rowing trip along the diagonal of a rectangle with one side going 3 miles north and another 2

miles east.
The three outcomes are the same:
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The sum of these two vectors is the same in any order:

3 miles north and 2 miles east

So, to add two vectors, we follow either

1. The head-to-tail: the triangle construction.

2. The tail-with-tail: the parallelogram construction.

They have to produce the same result! They do, as illustrated below:

1. For the former, we make a copy B′ of B, attach it to the end of A, and then create a new vector with
the initial point that of A and terminal point that of B′.

2. For the latter, we make a copy B′ of B, attach it to the end of A, also make a copy A′ of A, attach
it to the end of B. Then the sum A + B of two vectors A and B with the same initial point is the
vector with the same initial point that is the diagonal of the parallelogram with sides A and B.

Exercise 4.4.8

Prove that the result is the same according to what we know from Euclidean geometry.

It is the same construction.

We think about vectors as line segments in a Euclidean space. As such, it has a direction and the length.
It is possible to have the length to be 0; that's the zero vector. Its direction is unde�ned.

Once we know addition, subtraction is its inverse operation. Indeed, given vectors A and B, �nding the
vector C such that B + C = A amounts to solving an equation, just as with numbers:

A−B = C =⇒ B + C = A .

In other words, what do I add to B to get A? An examination reveals the answer:
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So, we construct the vector from the end of B to the end of A. One more step: make a copy of C with the
same starting point as A.

If we want to go faster, we row twice as hard; the vector has to be stretched! Or, one can attach two
springs in a consecutive manner to double the force, or cut any portion of the spring to reduce the force
proportionally. A force might keep its direction but change its magnitude! It might also change the direction
to the opposite.

There is then another algebraic operation on vectors. This is dimension 1:

This is dimension 2:

As you can see, every point has a special vector attached to it. For every point P , the zero vector is:

0 = PP .

We say that 0 serve as the identity.

Thus, the scalar product c ·A of a vector A and a real number c is the vector with the same initial point as
A, with the direction which is

• same as that of A when c > 0,

• opposite to that of A when c < 0, and

• zero when c = 0.



4.4. Where vectors come from 270

Warning!

We use the same symbol �·� as for multiplication of
numbers.

Example 4.4.9: velocity of wind

Velocities appear as the wind speed at di�erent locations:

If the velocities are combined with the time increments, we can �nd the displacements of the particles
of the air. We can also plot a whole trip of one such particle, just as in the beginning of the section.
With the velocities denoted by Vk, k = 1, 2, ...,m, respectively, takes the form:

m∑
k=0

Vk ·∆t = Xm −X0 .

Exercise 4.4.10

Plot a few more paths.

What is the dimension of the space? As we know from Euclidean geometry, two lines and, therefore, two
vectors, determine a plane. This is why we imagine that the operations, as we have de�ned them, are limited
to a certain plane within a possibly higher-dimensional space:

Example 4.4.11: units

Out of caution, we should look at the units of the scalar. Yes, the force is a multiple of the acceleration:

F = ma .

However, these two have di�erent units and, therefore, cannot be added together!

Also, the displacement is the time multiplied by the velocity:

∆X = ∆t · V .
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But these two have di�erent units and, therefore, cannot be added! They live in two di�erent spaces.

We will continue, throughout the chapter, to use capitalization to help to tell vectors from numbers.

Warning!

To indicate vectors, many sources use:

• an arrow above the letter, ~v, or

• the bold face, v.

In this section, we introduced to Rn, a space of points, a new entity � a vector. It is an ordered pair PQ of
points, P and Q, linked back to points by this algebra:

PQ = Q− P or Q = P + PQ

The vectors can be added together and multiplied by a number according to the procedures described above.

The operations satisfy the following properties:

Theorem 4.4.12: Axioms of A�ne Space

The points and the vectors in the a�ne space of Rn satisfy the following prop-
erties:

1. Identity: For every point P , we have for some vector denoted by 0 the
following:

P + 0 = P .

2. Associativity: For every point P and any vectors V and W starting at
P , we have:

(P + V ) +W = P + (V +W ) .

3. Free and transitive action: For every point P and every point Q, there
is a vector V such that

P + V = Q .

Proof.

1. Choose:
0 = PP .

2. Compare:
(P + PQ) +QR = R and P + (PQ+QR) = P + PR = R .

3. Choose:
V = PQ .

Example 4.4.13: family relations

Let's imagine that every point in the space stands for a person. Now, each person is linked by a vector
to one's family:
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Every person is the center of such a system of links. Also, potentially, each person is linked to any
other person.

Now, a marriage will link one such center to another, and renaming commences:

The word �a�ne� means �in-law�.

Let's simplify.

This is what we have in particular:

1. Two vectors with the same origin can be added together, producing another one with the same origin.

2. A vector can be multiplied by a number, producing another one with the same origin.

These operations are carried out according to the procedures described above. Given points P and Q and
a real number k, we have for some points R and S:

PQ+ PR = PR and k · PQ = PS

Indeed, the result is another vector with the same initial point as the original(s)!

This algebra of vectors (including the scalar multiplication) can, therefore, be carried out separately at every
location:

And this algebra is identical for every location! Therefore, a single initial point will be su�cient for our
study of vector algebra.
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But the choice of the initial point is crucial. This point will be assumed to be O, the origin, unless otherwise
indicated.

This is what our collection of vectors looks like, for dimension 2:

Such a �space of vectors� is called a vector space. It is equipped with two operations, the vector addition:

vector + vector = vector

and the scalar multiplication:

number · vector = vector

Warning!

There are no points in a vector space.

Let's add a Cartesian system to our plane (with the origin already chosen).

We can watch what happens to the coordinate of the end-points of the vectors as we carry out our algebra.
Sum implies coordinate-wise addition:

Scalar product implies multiplication of the coordinates by the same number:
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We are in R2 now.

4.5. Vectors in Rn

We now understand vectors. Or at least we understand them in the lower-dimensional setting.

Now, we move to the next stage:

1. We add a Cartesian system to these spaces: line, plane, and space.

2. We also consider the abstract spaces of arbitrary dimensions, Rn.

We will use the former to make sure that the approach to the latter makes sense.

A vector is still a pair PQ of points P and Q in Rn. Now, either of these two points corresponds to a string
of n numbers called its coordinates.

On the line R1, points are numbers and the vectors are simply di�erences of these numbers:

PQ = Q− P .

On the plane R2, we might have:
P = (1, 2) and Q = (2, 5) .

How can we express vector PQ in terms of these four numbers?
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We look at the change from P to Q:

• The change with respect to x, which is 2− 1 = 1.

• The change with respect to y, which is 5− 2 = 3.

We combine these into a new pair of numbers (with triangular brackets to distinguish these from points):

PQ =< 1, 3 > .

Technically, however, we have to mention the initial point P = (1, 2) of the vector.

Now in R3, we might have:
P = (x, y, z) and Q = (x′, y′, z′) .

How can we express vector PQ in terms of these six numbers?

There are three changes (di�erences) along the three axes, i.e., a triple:

PQ =< x′ − x, y′ − y, z′ − z > .

De�nition 4.5.1: vector and its components

A vector PQ in Rn with its initial point

P = (x1, x3, ..., xn)

and its terminal point
Q = (x′1, x

′
2, ..., x

′
n)

is given by the string of n numbers called the components of the vector:

x′1 − x1, x
′
2 − x3, ..., x

′
n − xn .

The de�nition matches the one that relies on directed segments.

A vector may emerge from its initial and terminal points or independently. In either case, we assemble the
components according to the following notation.

Row and column vectors


a1

a2

...
an

 = < a1, a2, ..., an >

The former is preferred; the latter is its abbreviation.
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Once again we can only carry out vector addition on vectors with the same initial point. What happens
if we change the initial point while leaving the components of the vectors intact? Not only is each vector
�copied� but so are the results of all algebraic operations. They are the same, just shifted to a new location:

We can even rotate the coordinate system (right).

It is then su�cient to provide results for the vectors that start at the origin O only! Only these are allowed:

In that case, the components of a vectors are simply the coordinates of its end :

P = (x1, x3, ..., xn) =⇒
OP =< x1, x2, ..., xn >

Warning!

The di�erence between points and vectors lies in
the algebraic operations to which they are subject.

Next we consider the familiar algebraic operations but this time the vectors are represented by their com-
ponents.

We carry out operations componentwise.

We demonstrate these operations for dimension n = 3 and for both the row and the column styles of
notation. The vector addition is de�ned by:

A =< x, y, z >
+
B =< u, v, w >

A+B =< x+ u, y + v, z + w >

 x
y
z

+

 u
v
w

 =

 x+ u
y + v
z + w


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This is how we progress to the de�nition that doesn't involve points:

P = (x1, ..., xn) OP
Q = (y1, ..., yn) OQ
R = (x1 + y1, ..., xn + yn) OP +OQ = OR

→
U =< x1, ..., xn >
V =< y1, ..., yn >
U + V =< x1 + y1, ..., xn + yn >

A visualization of this operation in R20 is below:

The scalar multiplication is de�ned by:

A =< x, y, z >
×
k

kA =< kx, ky, kz >

k ·

 x
y
z

 =

 kx
ky
kz


In either case, the components are aligned. Even though both seem equally convenient, the former will be
seen as an abbreviation of the latter.

This is how we progress to the de�nition that doesn't involve points:

k real
P = (x1, ..., xn) OP
R = (kx1, ..., kxn) k ·OP = OR

→
k real
U =< x1, ..., xn >
k · U =< kx1, ..., kxn >

A visualization of this operation in R20 is below (k = 1.3):

The scalar k is also known as the constant multiple.

Example 4.5.2: investment portfolios

If there are 10, 000 stocks on the stock market, every investment portfolio can be seen as a 10, 000-
dimensional vector.

Then, merging two or more portfolios will add their vectors:
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We use the formula:
=RC[-2]+RC[-1]

Second, doubling or tripling a portfolio while preserving the proportion (or weight) of each stock will
scalar multiply its vector:

We use the formula:
=2*RC[-1]

Even non-homogeneous holdings are subject to these operations:

< 10000 tons of wheat , 20000 barrels of oil , ... > ,

or
< $100000, U1000000, ... > .

De�nition 4.5.3: sum of vectors

For two vectors in Rn, their sum is de�ned to be the vector acquired by their
componentwise addition:

A =< a1, ..., an >
B =< b1, ..., bn >

=⇒ A+B =< a1 + b1, ..., an + bn >
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De�nition 4.5.4: scalar product

For a number k and a vector in Rn, their scalar product is de�ned to be the
vector acquired by their componentwise multiplication:

k real
A =< a1, ..., an >

=⇒ kA =< ka1, ..., kan >

We thus have the algebra of vectors for a space of any dimension!

These operations can be proven to satisfy the same properties as the vectors in R3 (next section). The
proof is straight-forward and relies on the corresponding property of real numbers. For example, to prove
the commutativity of vector addition, we use the commutativity of addition of numbers as follows:

A+B =

xy
z

+

uv
w

 =

x+ u
y + v
z + w

 =

u+ x
v + y
w + z

 =

uv
w

+

xy
z

 = B + A .

As a result, we are able to treat vectors as if they were numbers.

Furthermore, the special vectors deserve special attention:

De�nition 4.5.5: zero vector

The zero vector in Rn has only zero components:

0 =< 0, ..., 0 >

De�nition 4.5.6: the negative of vector

The negative vector of a vector A in Rn has its components the negatives of
those of A:

−A =< −a1, ...,−an >

Exercise 4.5.7

Prove the eight axioms of vector spaces for the algebraic operations de�ned this way for (a) R3, (b)
Rn.

Let's explain the reason for the word �component�.

A vector A is decomposed into the sum of other vectors. We chose those vectors to be special: Each is
aligned with one of the axes. For example, we decompose:

A =< 3, 2 > = < 3, 0 >+< 0, 2 > .
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Then the two vectors are called the component vectors of A. We take this analysis one step further with
scalar multiplication:

A =< 3, 2 > =< 3, 0 > + < 0, 2 >= 3< 1, 0 >+ 2< 0, 1 > .

This is a decomposition of A:

Similarly, any vector can be represented in such a way:

< a, b >= a < 1, 0 > +b < 0, 1 > .

We use the following notation for these special vectors in R2:

Basis vectors in R2

i =< 1, 0 >, j =< 0, 1 >

Then, any vector is as a linear combination of these two:

< a, b >= ai+ bj

Example 4.5.8: decomposition

Below we present a new point of view. Before, we'd consider a point and its coordinates:

P = (4, 1) .

Now we write a vector and its components:

4i+ j =< 4, 1 > .

Thus, representing a vector in terms of its components is just a way (a single way, in fact) to represent it in
terms of a pair of speci�ed unit vectors aligned with the axis.

We, furthermore, use the following notation for such vectors in R3:
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Basis vectors in R3

i =< 1, 0, 0 >, j =< 0, 1, 0 >, k =< 0, 0, 1 >

For every vector, we have the following representation:

< a, b, c >= ai+ bj + ck

Example 4.5.9: decomposition

Now we write a vector and its components:

2i+ 4j + k =< 2, 4, 1 > .

De�nition 4.5.10: basis vectors

The basis vectors in Rn are de�ned and denoted by

e1 =< 1, 0, 0, ..., 0 >
e2 =< 0, 1, 0, ..., 0 >
...
en =< 0, 0, 0, ..., 1 >

Together they form a basis of Rn.

Then, any vector is as a linear combination of these n vectors:

< x1, x2, ..., xn >= x1e1 + x2e2 + ...+ xnen

We have come to a new understanding:

• old: Cartesian system = the axes

• new: Cartesian system = the origin and the basis vectors

Of course, we can choose a di�erent Cartesian system by choosing a new set of basis vectors. The choice of
the basis vectors is dictated by the problem to be solved.

Example 4.5.11: compound motion

Suppose we are to study the motion of an object sliding down a slope.

Even though gravity is pulling it vertically down, the motion is restricted to the surface of the slope.
It is then bene�cial to choose the �rst basis vector i to be parallel to the surface and the second j
perpendicular:
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The gravity force is then decomposed into the sum of two vectors. It is the �rst one that a�ects the
object and is to be analyzed in order to �nd the acceleration (Newton's Second Law). The second is
perpendicular and is canceled by the resistance of the surface (Newton's Third Law). The problem
becomes 1-dimensional:

Example 4.5.12: investing

Even when we deal with the abstract spaces Rn, such decompositions may be useful.

For example, an investment advice might be to hold the proportion of stocks and bonds 1-to-2. We
plot each possible portfolio as a point on the xy-plane, where x is the amount of stocks and y is the
amount of bonds in it. Then the �ideal� portfolios lie on the line y = 2x. Furthermore, we would like
to evaluate how well portfolios follow this advice. We choose the �rst basis vector to be i =< 2, 1 >
and the second perpendicular to it, j =< −1, 2 >:

Then the �rst coordinate � with respect to this new coordinate system � of your portfolio re�ects how
far you have followed the advice, and the second how much you've deviated from it. Now we just need
to learn how to compute distances and angles in such a space.

4.6. Algebra of vectors

We will look for similarities with the algebra of numbers: the laws of algebra.
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For example, we freely use the following shortcut when we deal with numbers:

x · (y + z) = (x · y) + (x · z) .

Is there a similar rule for vectors? Yes, in a sense.

The complexity and the number of these laws will be higher because the participants are of two di�erent
types: numbers and vectors. They are also intermixed. For example, we may write an analog of the above
formulas as follows:

x · (Y + Z) = (x · Y ) + (x · Z) .

Here x is still a number, but Y and Z are vectors. The formula can, however, be easily veri�ed in speci�c
situations. The left-hand side:

2 · (< 3, 4 > + < 5, 6 >) = 2 · (< 3 + 5, 4 + 6 >= 2· < 8, 10 >=< 16, 20 > .

The right-hand side:

2· < 3, 4 > +2· < 5, 6 >=< 2·3, 2·4 > + < 2·5, 2·6 >=< 6, 8 > + < 10, 12 >=< 6+10, 8+12 >=< 16, 20 > .

We will �rst explore these rules and short-cuts as they appear independently from componentwise represen-
tations of vectors.

In dimension 1, we deal with the algebra of directed segments. As these segments now all start at 0, this is
the algebra of real numbers. Nonetheless, we keep the two types apart, with an eye on the higher dimensions.

The following simple idea connects vector addition to scalar multiplication:

A+ A = 2A .

Its generalization is the First Distributivity Property of Vector Algebra:

aA+ bA = (a+ b)A

It's just factoring:

I We factor a vector out.

For example, let's add a double to a triple:

The result is the same if we quintuple the original vector.

In other words, we distribute scalar multiplication over addition of real numbers.

If we are to be precise, the symbol �+� stands for two di�erent things above:

• aA+ bA, addition of vectors

• a+ b, addition of numbers
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Next, we can also distribute multiplication of real numbers over addition of vectors. The Second Distributivity
Property of Vector Algebra is:

aA+ aB = a(A+B)

It's just factoring again:

I We factor a number out.

For example, let's double the sum:

The result is the same if we add the doubles.

Dimension 2.

Below, we add two vectors and then stretch the result (left) and we stretch two vectors and then add them
(right):

The result is the same.

Exercise 4.6.1

Explain why the results are the same. Hint: Similar triangles.

This algebraic rule, and others still to come, has been justi�ed following the familiar algebra and geometry
of the �physical space� R2 and R3. However, they also serve as a starting point for further development of
linear algebra. In the last section, we de�ned the algebra of the abstract space Rn and now demonstrate
that these �axioms� are still satis�ed.

Below is the same formula for dimension 2, presented along with the components of the vectors:
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The formula is illustrated for dimension 40:

Recall that to �nd A+B, we make a copy B′ of B, attach it to the end of A, and then create a new vector
with the initial point that of A and terminal point that of B′. Now, to �nd B+A, we make a copy A′ of A,
attach it to the end of B, and then create a new vector with the initial point that of B and terminal point
that of A′:

The results are the same.

Exercise 4.6.2

Explain why the results are the same. Hint: Similar triangles.
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Therefore, we have the Commutativity Property of Vector Addition:

A+B = B + A

Now with the coordinate system present, the components of the vectors are combined as follows:

Next, we know that we can ignore the parentheses when we are adding numbers:

(1 + 2) + 3 = 1 + (2 + 3) = 1 + 2 + 3 .

Identical is the Associativity Property of Vector Addition:

A+ (B + C) = (A+B) + C

The order of addition doesn't matter!

This is the property of dimension 1:

This is dimension 2:
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Let's consider next how we can apply two (or more) scalar multiplications in a row. Given a vector A and
real numbers a and b, we can create several new vectors:

• B = aA from A and then C = bB from B

• D = bA from A and then C = aD from D

• C = (ab)A directly from A

The results are the same. For example, below we double, then triple:

The result is the same if we sextuple.

If we are to be precise, the missing symbol �·� stands for two di�erent things above:

• B = a · A, scalar multiplication of a vector

• D = b · A, scalar multiplication of a vector

• C = (a · b)A, multiplication of numbers

Our conclusion is the Associativity Property of Scalar Multiplication:

b(aA) = (ba)A

Exercise 4.6.3

Provide an illustration for dimension 2.

There are some special numbers : 0 and 1. These formulas is what makes them special:

0 + x = x, 0 · x = 0, 1 · x = x .

Are there special vectors?

Consider vector addition. The zero vector is special. It has no magnitude nor direction and would have to
be visualized as the dot O itself. This is what the zero vector is in R40:
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There is 0, the real number, and then there is 0, the vector. The latter can mean no displacement, no motion
(zero velocity), forces that cancel each other, etc. The two are related:

0 · A = 0

This is a simple expression with a tricky algebraic meaning:

number · vector = vector

Of course, the following holds for all vectors:

A+ 0 = A

Now, scalar multiplication. Consider:

1 · A = A

We have the same participants here as above:

number · vector = vector

So, 1 remains special in vector algebra.

Next, since PQ = −QP , we have the negative −A of a vector A, as the vector that goes in reverse of A.
They are acquired by the central symmetry of the plane:

This is what happens in R40:
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From the algebra, we also discover that

−A = (−1) · A

As a summary, this is the complete list of rules one needs to carry out algebra with vectors:

Theorem 4.6.4: Axioms of Vector Space

The two operations � addition of two vectors and multiplication of a vector by
a scalar � in Rn satisfy the following properties:

1. X + Y = Y +X for all X and Y .
2. X + (Y + Z) = (X + Y ) + Z for all X, Y , and Z.
3. X + 0 = X = 0 +X for some vector 0 and all X.
4. X + (−X) = 0 for any X and some vector −X.
5. a(bX) = (ab)X for all X and all scalars a, b.
6. 1X = X for all X.
7. a(X + Y ) = aX + aY for all X and Y .
8. (a+ b)X = aX + bX for all X and all scalars a, b.

Taken together, these properties of vectors match the properties of numbers perfectly!

We put forward the following idea:

I All manipulations of algebraic expressions that we have done with numbers are now allowed

with vectors � as long as the expression itself makes sense.

In other words, we just need to avoid operations that haven't been de�ned: no multiplication of vectors, no
division of vectors, no adding numbers to vectors (of course!), etc.

All spaces of vectors, vector spaces if you like, we have seen so far have been only Rn. Are there others?

Example 4.6.5: subsets and subspaces

Let's �x the last coordinate in Rn and look at the algebra:

< a1 a2 ... an−1 an >
+
< b1 b2 ... bn−1 bn >
< a1 + b1 a2 + b2 ... an−1 + bn−1 an + bn >

→

< a1 a2 ... an−1 0 >
+
< b1 b2 ... bn−1 0 >
< a1 + b1 a2 + b2 ... an−1 + bn−1 0 >

It works exactly the same!
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How scalar multiplication works is also matched. Furthermore, we would anticipate that the eight
properties in the theorem are satis�ed.

Let's denote this set as follows:

Rn
0 = {< x1, x2, ..., xn−1, 0 >} ⊂ Rn .

If we drop the redundant 0's, we realize that this is just a copy of Rn−1:

→

< a1 a2 ... an−1 >
+
< b1 b2 ... bn−1 >
< a1 + b1 a2 + b2 ... an−1 + bn−1 >

De�nition 4.6.6: vector space

Any set with two operations that satisfy the conclusions of the theorem is called
a a vector space.

So, Rn−1
0 is a vector space, a subspace of Rn.

Every subset of Rn is subject to the algebraic operations of the ambient space. How do we determine when
this is a vector space? We just need to make sure that the algebra makes sense:

Theorem 4.6.7: Subspaces

Suppose U is a subset of a vector space that satis�es:
1. If X and Y belong to U , then so does X + Y .
2. If X belongs to U , then so does kX for any number k.

Then U is a vector space.

Exercise 4.6.8

For the last example, show that setting the last coordinate to a non-zero number won't create a vector
space.

Exercise 4.6.9

For the last example, show that setting the several coordinates to zero will create a vector space.

Exercise 4.6.10

Prove that a line through 0 on the plane is a vector space.

Exercise 4.6.11

Prove the theorem.

4.7. Convex, a�ne, and linear combinations of vectors

The average of two numbers is de�ned to be their half sum:

x+ y

2
=

1

2
x+

1

2
y .
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Since the algebra of vectors mimics that of numbers, nothing stops us from de�ning the average of vectors

U and V in the same manner:
1

2
U +

1

2
V =

1

2
(U + V ) .

It is a convenient concept illustrated below for dimension 2:

The average of two vectors is the vector that goes to the center of the parallelogram formed by the two.

Exercise 4.7.1

Prove the last statement.

In dimension 40, the graph of the average lies half-way (vertically) between the two:

Let's take this idea one step further.

The weighted average of two numbers is de�ned to be a combination like this:

αx+ βy ,

where α ≥ 0 and β ≥ 0 add up to 1:
α + β = 1 .

Similarly, the weighted average of vectors U and V is de�ned to be:

αU + βV .

We can see in dimension 2 how one vector is gradually transformed into the other as alpha runs from 1 to
0 (and β from 0 to 1):

These intermediate stages are also called convex combinations of the two vectors. Together their ends form
a line segment; it runs from the end of U to the end of V .

In dimension 40, we can also see a gradual transition from one vector to the other:
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Now, we saw in dimension 2 that the average is also a straight segment between the two vectors. Of course,
it is a straight segment between the two for dimension 3 or any dimension that we can visualize.

If we remove the restriction α ≥ 0 and β ≥ 0, our combinations

αU + βV

are called the a�ne combinations of U and V . Together, their ends form a whole line; it passes through the
end of U and the end of V :

Let's recall the problem we have been using to illustrate many new ideas.

Problem: We are given the Kenyan co�ee at $2 per pound and the Colombian co�ee at $3 per pound. How
much of each do you need to have 6 pounds of blend with the total price of $14?

We let x be the weight of the Kenyan co�ee and let y be the weight of the Colombian co�ee. Then the total
price of the blend is $14. Therefore, we have a system:

x + y = 6
2x + 3y = 14

The solution to the system as presented initially had a clear geometric meaning. We thought of the two
equations as equations about the coordinates of points, (x, y), in the plane. In fact, either equation is a
representation of a line on the plane. Then the solution (x, y) = (4, 2) is the point of their intersection:

The second interpretation was in terms of a function de�ned on the plane. A function F : R2 → R2 is given
by:

F (x, y) = (x+ y, 2x+ 3y) .

Then our solution is:
(x, y) = F−1(6, 14).

We now have a new interpretation � in terms of vectors in the plane.



4.7. Convex, a�ne, and linear combinations of vectors 293

We re-write the system as a vector equation:

x + y = 6
2x + 3y = 14

=⇒
[
x + y
2x + 3y

]
=

[
6
14

]
.

The �rst vector's components are computed via some algebra. We will try to interpret this algebra of
numbers in terms of our algebra of vectors.

We split the vector up: [
x + y
2x + 3y

]
=

[
x
2x

]
+

[
y
3x

]
We factor the repeated coe�cients out:[

x + y
2x + 3y

]
= x

[
1
2

]
+ y

[
1
3

]
.

Our system has been reduced to a single vector equation:

x

[
1
2

]
+ y

[
1
3

]
=

[
6
14

]
.

Let's analyze this equation and the problem it presents.

Given two vectors:

U =

[
1
2

]
and V =

[
1
3

]
,

�nd two numbers x and y so that we have:

xU + yV =

[
6
14

]
.

It may appear that we just need to represent the vector < 6, 14 > as an a�ne combination of the vectors
U and V . However, there is no restriction that x and y must add up to 1. We speak of linear combinations.

So, we need to �nd a way to stretch either of these two vectors so that their sum is the third vector. The
setup is on the left followed by a trial-and-error:

Just adding the two vectors or adding their proportional multiples fails; it is clear that the angle can't
match. Hypothetically, we go through all linear combinations of these two vectors to �nd one that is just
right.

So, the new point of view on the problem of mixtures is di�erent:
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I Instead of the locations, we are after the directions.

In general, these are all linear combinations αU + βV , in addition to the a�ne combinations:

α\β ... −2 −1 0 1 2 ...
... ... ... ... ... ... ... ...
−2 ... −2U − 2V −2U − V −2U −2U + V −2U + 2V ...
−1 ... −U − 2V −U − V −U −U + V −U + 2V ...

0 ... −2V −V 0 V 2V ...
1 ... U − 2V U − V U U + V U + 2V ...
2 ... 2U − 2V 2U − V 2U 2U + V 2U + 2V ...
... ... ... ... ... ... ... ...

These are the linear combinations with integer coe�cients of U =< 2, 1 > and V =< −1, 1 >:

They seem to cover the whole plane.

Exercise 4.7.2

Is it true?

In summary, we have these three combinations:

De�nition 4.7.3: linear, a�ne, and convex combinations

1. A linear combination of two vectors U and V is de�ned to be the following
expression with any real numbers α and β called its coe�cients:

αU + βV .

2. An a�ne combination of two vectors U and V is de�ned to be their linear
combination with coe�cients α and β that add up to 1:

α + β = 1 .

3. A convex combination of two vectors U and V is de�ned to be their a�ne
combination with coe�cients α and β that are non-negative:

α ≥ 0, β ≥ 0 .

Example 4.7.4: hulls

These concepts have analogs for points. We de�ne three hulls :
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As you can see, the convex and the a�ne hulls are independent of the location of the origin.

Exercise 4.7.5

What about the linear hull?

In the general Euclidean space, we consider the results of all possible computations with the two algebraic
operations that we have: vector addition and scalar multiplication.

This is what a few of them (αf + βg) look like in R40:

Exercise 4.7.6

Label these.

The next de�nition is an extension of this idea to an unlimited number of vectors:

De�nition 4.7.7: linear combination

Suppose V1, ..., Vm are vectors in Rn. Then, the linear combination of the vectors

V1, ..., Vm with coe�cients r1, ..., rm is the following vector:

r1V1 + ...+ rmVm .

Then, the set of all linear combinations of a single vector is simply the set of its multiples (a line).



4.8. The magnitude of a vector 296

The set of all linear combinations of two vectors in the plane R2 is the whole plane, unless the two are
multiples of each other.

Exercise 4.7.8

Prove the last statement.

Exercise 4.7.9

Finish the sentence: �The set of all linear combinations of three vectors in the 3-space is the whole
3-space, unless ________�.

An important fact is the following:

Theorem 4.7.10: Linear Combination of Basis Vectors

Every vector in Rn is a linear combination of the basis vectors:

< a1, ..., an >= a1e1 + ...+ anen .

Exercise 4.7.11

Prove the theorem.

Example 4.7.12: polynomials

A polynomial is a linear combination of the power functions:

a0 + a1x
1 + ...+ anx

n .

In this sense, the space of all polynomials of degree up to n is indistinguishable from Rn+1.

Exercise 4.7.13

Show that the multiples of a given vector in a vector space form a vector space.

Exercise 4.7.14

Show that the linear combinations of a given pair of vector in a vector space form a vector space.

Exercise 4.7.15

What is the next statement in this sequence?

4.8. The magnitude of a vector

A vector is a directed segment. Its attributes are, therefore, the direction and the magnitude. It may be
hard to explain what direction means without referring, circularly, to vectors. That is why we look at the
magnitude �rst:

I The magnitude of a vector is what's left of it when it's stripped o� its direction.

When we interpret the vector as a displacement, we'd rather talk about its length. The meaning of this
number is clear when the vector is given by two points, PQ. The length is the distance d(P,Q) between
them:
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We intentionally make no reference to a Cartesian system:

De�nition 4.8.1: magnitude of a vector

The magnitude or the length of a vector in Rn is de�ned to be the distance
between its initial and terminal points:

||PQ|| = d(P,Q)

This number is also called the norm of the vector.

In particular, we have:
1. If d(P,Q) stands for the Euclidean metric, ||PQ|| is called the Euclidean

norm.
2. If d(P,Q) stands for the taxicab metric, ||PQ|| is called the taxicab norm.

The notation resembles the absolute value and not by accident; they are the same in the 1-dimensional case,
R.

We also intentionally make no reference to a speci�c distance formula. The approach is as follows:

I We now look at each of the three Axioms of Metric Space and � using the above formula �
translate it into a property of vectors.

First, the Positivity :

d(P,Q) ≥ 0; and d(P,Q) = 0 if and only if P = Q

We rewrite according to the de�nition above:

||PQ|| ≥ 0; and ||PQ|| = 0 if and only if P = Q

But the vector PP is just the zero vector! Therefore, we have this new form of the property:

||A|| ≥ 0; and ||A|| = 0 if and only if A = 0

Second, the Symmetry :

d(P,Q) = d(Q,P )

We rewrite according to the de�nition above:

||PQ|| = ||QP ||

But the vector PQ is the negative of QP :
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Therefore, we have this new form of the property:

||A|| = || − A||

Its meaning is visualized for R40 below:

The norm is the purple area at the bottom.

Third, the Triangle Inequality :

d(P,Q) + d(Q,R) ≥ d(P,R)

We rewrite according to the de�nition above:

||PQ||+ ||QR|| ≥ ||PR||

But PQ+QR = PR:

Therefore, we have this new form of the property:

||A||+ ||B|| ≥ ||A+B||

So, we have moved from the geometry of points to the algebra of vectors.

In summary:

1. The magnitude cannot be negative, and only the zero vector has a zero magnitude.

2. The magnitude of the negative of a vector is equal to that of the vector.

3. The magnitude of the sum of two vectors is larger than or equal to that of their sum.
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That is how the magnitude interacts with vector addition. What about scalar multiplication? There is no
corresponding property of distances.

All vectors double in length whether we multiply by 2 or −2, while their directions are preserved or �ipped.
When the direction doesn't matter, we just multiply the components by this stretching factor, 2 = |2| = |−2|:

The result is another convenient property:

Theorem 4.8.2: Homogeneity of Norm

Both the Euclidean and the taxicab norms satisfy the following for any vector
A and any scalar k:

||k · A|| = |k| · ||A||

Proof.

For the Euclidean norm in R2:

||k < a, b > || = || < ka, kb > || =
√

(ka)2 + (kb)2 = |c| ·
√
a2 + b2 = |k| · || < a, b > || .

For the taxicab norm in R2:

||k < a, b > || = || < ka, kb > || = |ka|+ |kb| = |k| · |a|+ |k| · |b| = |k| · (|a|+ |b|) = k · || < a, b > || .

Warning!

The Symmetry above is now redundant as it is in-
corporated into this new property:

−A = (−1)A .

These properties are applicable to all dimensions and are used to manipulate vector expressions.

We now turn around and ask:

I What's left of a vector when its magnitude is stripped o�?

If we �remove� the magnitude from consideration, we are left with nothing but the direction. We can only
say this:

I Vectors with the same direction are (positive) multiples of each other.

But what is the simplest vector among those?

To study directions, we limit our attention to some special vectors:
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De�nition 4.8.3: unit vector

Every vector with magnitude equal to 1 is called a unit vector :

||X|| = 1 .

We can make such a vector from any vector � �normalize� it � except 0, by dividing by its magnitude:

Theorem 4.8.4: Normalization of Vectors

For any vector X 6= 0, the vector

X

||X||

is a unit vector.

It's simply a re-scaled version of the original. This is what it looks like in R40:

Exercise 4.8.5

Prove the theorem.

The e�ect of normalization is that the vectors that are too long are shrunk and the ones that are too short
are stretched � radially � toward the unit circle:

Unit vectors capture nothing but the direction:

Theorem 4.8.6: Multiples of Vectors

Suppose two vectors have equal or opposite unit vectors:

V

||V ||
= ± W

||W ||
.
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Then they are multiples of each other:

V = kW .

Exercise 4.8.7

Prove the theorem.

Example 4.8.8: Newton's Law of Gravity

Recall the law of gravity. Its force pulls two objects the harder the closer to each other they are:

The gravity is a function of two variables, x, y, that give the location, or better, it is a function of
points, P , in R2 with real values:

f : R2 → R .

Algebraically, the law says that the force of gravity between two objects of masses M and m located
at points O and P is given by:

f(P ) = G
mM

d(O,P )2

Next, the law, in addition to the formula, includes the statement that the force is directed from P to

O. This is implicitly the language of vectors : The direction of the force depends on the direction of
the location vector. Let's sort this out.

Let's take care of the magnitudes �rst. We have two vectors:
• Gravity is a force and, therefore, a vector.
• The location of the second object is its displacement from the �rst and, therefore, a vector.

The function will have both vector inputs and vector outputs:

F : R2 → R2 .

We place the origin O at the location of the �rst object (maybe the Sun). Then OP = X, and we can
re-write the formula as follows:

||F (X)|| = G
mM

||X||2

Next, what about the directions? Let's derive the vector form of the law. The law states:
I The force of gravity a�ecting either of the two objects is directed towards the other
object.

We see this below:
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In other words, F points in the opposite direction to X, i.e., it's direction is that of −X. Therefore,
the unit vectors of F (X) and −X are equal:

F

||F ||
= − X

||X||
.

Therefore, the vectors themselves are multiples of each other:

F (X) = c(−X)

That's all we need except for the coe�cient. We now use Homogeneity to �nd it:

G
mM

||X||2
= ||F || = |c| · ||(−X)|| = |c| · ||X|| .

The �nal form is the following:

F (X) = −G mM

||X||3
X

Now that both the input and the output are 2-dimensional vectors, how do we visualize this kind of
function? Even though this is just a (non-linear) transformation of R2 (or R3), there is a better way.
First, we think of the input as a point and the output as a vector and then we attach the latter to the
former. Below, we plot vector F (X) starting at location X on the plane:

It is called a vector �eld.

Exercise 4.8.9

Suggest other examples of location-dependent forces.

These geometric properties have been justi�ed following the familiar geometry of the �physical space� R3.
However, they also serve as a starting point for a further development of linear algebra.
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When a Cartesian system is provided, we have the Euclidean metrics, i.e., the distance between points P
and Q in R3 with coordinates (x, y, z) and (x′, y′, z′) respectively is

d(P,Q) =
√

(x− x′)2 + (y − y′)2 + (z − z′)2 .

The three terms are recognized as the three components of the vector PQ:

If we apply this computation to a vector OP with P = (a, b, c), we conclude:

|| < a, b, c > || =
√
a2 + b2 + c2 .

Meanwhile, the taxicab norm of this vector is

|| < a, b, c > || = |a|+ |b|+ |c| .

In general we have the following:

Theorem 4.8.10: Magnitude of Vector

Suppose we have a vector
A =< a1, ..., an >

in Rn. Then we have:
1. The Euclidean norm of A is equal to

||A|| =
√
a2

1 + ...+ a2
n

2. The taxicab norm of a vector A is equal to

||A|| = |a1|+ ...+ |an|

In the sigma notation, we have, respectively:

||A|| =

√√√√ n∑
k=1

a2
k ,

and

||A|| =
n∑
k=1

|ak| .

As a summary, these are the properties of the magnitudes of vectors.
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Theorem 4.8.11: Axioms of Normed Space

For any vectors A,B in Rn and any real k, the following properties are satis�ed
by both the Euclidean norm and the taxicab norm:

1. Positivity: ||A|| ≥ 0; and ||A|| = 0 if and only if A = 0 .
2. Triangle Inequality: ||A||+ ||B|| ≥ ||A+B|| .
3. Homogeneity: ||k · A|| = |k| · ||A|| .

Exercise 4.8.12

Demonstrate that the formulas for the norms satisfy those three properties.

Example 4.8.13: investment portfolios

A portfolio of stocks can be subject to these operations. Assuming that there are only these 10 stocks
available, all portfolios are vectors (or points) in R10:

The taxicab norm (yellow) is just the total value of the portfolio. The Euclidean norm is in pink.

Let's consider the �direction� of this portfolio. We normalize this vector by dividing by 88.1 for the
taxicab norm and by 38.0 for the Euclidean norm:

The former simply consists of the percentages of the stocks within the portfolio.

Warning!

It wouldn't make sense to have the norm of a port-
folio of non-homogeneous items, such as commodi-
ties:

< 10000 tons of wheat, 20000 barrels of oil, ... > ,

or currencies:

< $100000, U1000000, ... > .
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Exercise 4.8.14

When is the norm equal to the sum of the components?

4.9. Lines as parametric curves

Functions may process an input of any nature and produce an output of any nature.

We represent a function diagrammatically as a black box that processes the input and produces the output:

input function output

x 7→ f 7→ y

Convention. We will use the upper case letters for the functions the outputs of which are (or may be)
multidimensional, such as points and vectors:

F, G, P, Q, ...

We will use the lower case letters for the functions with numerical outputs:

f, g, h, ...

Functions in multidimensional spaces take points or vectors as the input and produce points or vectors of
various dimensions as the output. We can say that the input X is in Rn and the output U = F (X) of X is
in Rm:

F : P 7→ U
in Rn in Rm

Then, the domain of such a function is in Rn and the range (image) is in Rm. The domain can be less than
the whole space.

Below we illustrate the four (linear) possibilities for n = 1, 2 and m = 1, 2:
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We will concentrate in this section on the �rst (in�nite) column: parametric curves.

We will refer to as a parametric curve to

• any function of the real variable, i.e., the domain lies inside R, and

• with its values in Rm for some m = 1, 2, 3....

Recall from earlier in this chapter how straight lines appear as a�ne combinations of the two vectors on the
plane:

And this is the line in R40 that passes through the two points shown in red and green:
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In this section, we will limit ourselves to the interpretation of these functions via motion. The independent
variable is the time, and the value is the location.

A point is the simplest curve. Such a curve with no motion is provided by a constant function.

A straight line is the second simplest curve.

We start with lines in R2. We already know how to represent straight lines on the plane:

1. The �rst method is the slope-intercept form:

y = mx+ b .

This method excludes the vertical lines! This is too limiting because in our study of curves, there are
no preferred directions.

2. The second method is implicit :
px+ qy = r .

The case of p 6= 0, q = 0 gives us a vertical line.

3. The third method is parametric. It has a dynamic interpretation (below).

Example 4.9.1: straight motion

Suppose we would like to trace the line that starts at the point (1, 3) and proceeds in the direction of
the vector < 2, 3 >.

We use motion as a starting point and as well as a metaphor for parametric curves, as follows. We
start moving:
• from the point P0 = (1, 3),
• under a constant velocity of V =< 2, 3 >.

To get the rest of the path, we introduce another variable, time t. When t = 1, 2, 3, ... is increasing
incrementally, we have a sequence of locations on the plane:
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For the negative t's, we go in the opposite direction.

Let's initially treat x and y separately:
• Horizontal: We move from 1 at 2 feet per second.
• Vertical: We move from 3 at 3 feet per second.

Let's �nd the formulas for the two. These are two consecutive locations:

x(0) = 1, x(1) = 3 and y(0) = 3, y(1) = 6 .

The functions x and y must be linear:

x(t) = 1 + 2t and y(t) = 3 + 3t .

Combined, this is a parametric curve. Now, let's translate these formulas into the language of vectors.

In terms of vectors, if we are at point P now, we will be at point P +V after one second. For example,
we are at P1 = P0 + V = (1, 3)+ < 2, 3 >= (3, 6) at time t = 1. We de�ne this function:

P : R→ R2 .

It is made of two numerical functions:

P (t) = (x(t), y(t)) .

We already have two points on our parametric curve P :

P (0) = P0 = (1, 3) and P (1) = P1 = (3, 6) .

What is its formula?
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We need to convert this to vectors:

x(t) = 1 + 2t, y(t) = 3 + 3t .

Let's assemble the two coordinate functions into one parametric curve:

P (t) = (x(t), y(t)) = (1 + 2t, 3 + 3t) .

This is still not good enough; we'd rather see the P0 and V in the formula. We continue by using
vector algebra:

P (t) = (1 + 2t, 3 + 3t) We undo vector addition.
= (1, 3)+ < 2t, 3t > Then we undo scalar multiplication.
= (1, 3) + t < 2, 3 > And �nally we have the answer.
= P0 + tV .

So, the four coe�cients, of course, come from the speci�c numbers that give us P0 and V .

Exercise 4.9.2

The line is not the graph of the function P but its _____ .

We have discovered a vector representation of a straight uniform motion. The location P is given by:

P (t) = P0 + tV ,

where P0 is the initial location and V is the (constant) velocity. Then tV is the displacement.

Warning!

One can, of course, move along a straight line at a
variable velocity.

So, we have:

position at time t = initial position + t · velocity

We used this approach for dimension 1; only the context has changed.

The pattern becomes clear. The line starting at the point (a, b) in the direction of the vector < u, v > is
represented parametrically as follows:

P (t) = (a, b) + t < u, v > .

Similarly for dimension 3, the line starting at the point (a, b, c) in the direction of the vector < u, v, w > is
represented as:

P (t) = (a, b, c) + t < u, v, w > .

And so on.

At the next level, we'd rather have no references to neither the dimension of the space nor the speci�c
coordinates:

De�nition 4.9.3: parametric curve of the uniform motion

Suppose P0 is a point in Rm and V is a vector. Then the parametric curve of
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the uniform motion through P0 with the initial velocity of V is the following:

P (t) = P0 + tV

Then, the line through P0 in the direction of V is the path (image) of this
parametric curve.

Stated for dimension m = 1, the de�nition produces the familiar point-slope form:

P (t) = P0 + tV .

Indeed, P0 is the y-intercept and V is the slope. The rate of change is a single number because the change
is entirely within the y-axis. What has changed is the context as there are in�nitely many directions in R2

for change:

That is why the change and the rate of change is a vector.

The importance of straight lines stems from the fact that, under common restrictions, every curve is likely
to look like a straight line in the short term:

Example 4.9.4: recursive formulas

These are the recursive formulas that give the location as a function of time when the velocity is
constant (k = 0, 1, ...):

x : pk+1 = pk +v∆t
y : qk+1 = qk +u∆t
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These points are plotted on the right for p0 = 3, q0 = 3, v = 1, u = 3, ∆t = 1/5:

These quantities are now combined into points and vectors on the plane:

Pk = (pk, qk), V =< v, u > .

The equations take a vector form too:

Pk+1 = Pk + V∆t .

Exercise 4.9.5

Consider the case when the velocity isn't constant.

Example 4.9.6: price dynamics

The de�nition applies to spaces of data. Suppose Rm is the space of prices (of stocks or commodities);
we might have m = 10, 000.

The prices recorded continuously or incrementally will produce a parametric curve and this curve
might be a straight line. This happens when the prices are growing (or declining) proportionally but,
possibly, at di�erent rates.

Recursive formulas are especially easy to implement with a spreadsheet. In each column, we use the
same formula for the kth price:

xk(t+ ∆t) = xk(t) + vk∆t ,

where vk is the kth rate of change shown at the top:

The table gives us our curve. It lies in the 10, 000-dimensional space. Can we visualize such a curve
in any way? Very imperfectly. We pick two columns at a time and plot that curve on the plane. Since
these columns correspond to the axes, we are plotting a �shadow� (a projection) of our curve cast on



4.10. The angles between vectors; the dot product 312

the corresponding coordinate plane. They are all straight lines. A similar (short-term) dynamics may
be exhibited by other data such as, for example, the vitals of a person:

1. body temperature
2. blood pressure
3. pulse (heart rate)
4. breathing rate

Exercise 4.9.7

Find a parametric representation of the line through two distinct points P and Q.

In the physical space, a straight line is followed by an object when there are no forces at play. Even a
constant force leads to acceleration which may change the direction of the motion.

The advantage of the vector approach is that the choice of the coordinate system is no longer a concern!

Example 4.9.8: from relation to parametric

Suppose we have a line given by its relation:

y − 3 = 2(x− 1) .

What is its parametric representation?

Let's examine the equation. From its the slope-intercept form we derive:
1. 2 is the slope.
2. (1, 3) is the point.

So, let's just move
1. from the point (1, 3),
2. along the vector < 1, 2 > every second.

We have:
(x, y) = (1, 3) + t < 1, 2 > .

Exercise 4.9.9

What if we move faster?

The example suggests a shortcut for R2:

slope =
rise

run
=⇒ direction =< run, rise >

4.10. The angles between vectors; the dot product

Recall that a Cartesian system pre-measures the space Rn so that we can do analytic geometry :

I Using the coordinates of points and the components of vectors, we compute distances and
angles.

In this chapter, we applied this idea to the distances between points and, therefore, to the magnitudes of
vectors. What about the angles? Let's �rst review what we did for dimensions 1 and 2.

Dimension 1 �rst.
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What is the di�erence between the vectors OP and OQ (P,Q are not equal to O) represented in terms of
their components x and x′? There can be only two possibilities:

• If P and Q are on the same side of O then the directions are the same,

• If P and Q are on the opposite sides of O then the directions are the opposite.

Then the theorem about the directions for dimension 1 is stated as follows:The angle between the vectors
OP and OQ with components x 6= 0 and x′ 6= 0 is

• 0 when x · x′ > 0; and

• π when x · x′ < 0.

However, we have made some progress since we faced this task. Mainly, it is this realization:

I The direction of the vector is its normalization, a unit vector.

Indeed, only the directions of the vectors matter and not the sizes! We can then make the same statement
but about the unit vectors:

x

|x|
and

x′

|x′|
.

The advantage is that they can only take two possible values, 1 and −1, the positive direction and the
negative direction. And so does their product:

We can then restate the result: The angle between vectors OP and OQ with components x 6= 0 and x′ 6= 0
is the following:

normalization of x · normalization of y product angle
x

|x|
· x′

|x′|
= 1 0

x

|x|
· x′

|x′|
= −1 π

Matching these four numbers,
0 7→ 1 and π 7→ −1 ,

we realize that this is the cosine:
cos 0 = 1 and cosπ = −1 .

We then have a new version of our theorem:

Theorem 4.10.1: Angles for Dimension 1

If θ is the angle between vectors OP and OQ in R with components x 6= 0 and
x′ 6= 0 then

cos θ =
x

|x|
· x

′

|x′|

Now the coordinate system for dimension 2.
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What is the di�erence between the directions from the origin O toward points P and Q (other than O)
represented in terms of their coordinates (x, y) and (x′, y′)? We are talking about angle between the two
non-zero vectors:

OP =< x, y > and OQ =< x′, y′ > .

Warning!

If one of the vectors is zero, there is no angle be-
cause there is no direction.

We know how to �nd the angles with the x-axis, α and β:

The angle we are looking for is:

θ = Q̂OP = β − α .
The cosine of this angle can be found from the trigonometric functions of these two angles according to the
following formula:

cos θ = cos(β − α) = cos β cosα + sin β sinα .

Let's exclude the magnitudes of the vectors from consideration:

Instead of the original vectors OP and OQ, we look their normalizations, U and V , respectively:

OP =< x, y > =⇒ U =
< x, y >

|| < x, y > ||
=

〈
x

|| < x, y > ||
,

y

|| < x, y > ||

〉
OQ =< x′, y′ > =⇒ V =

< x′, y′ >

|| < x′, y′ > ||
=

〈
x

|| < x′, y′ > ||
,

y

|| < x′, y′ > ||

〉
The sines and cosines of these angles are found in terms of the four components of these two vectors U
and V . These sines and cosines are exactly these components because the magnitude of the vector and,
therefore, the hypotenuse is 1 in either case:

cosα =
x

|| < x, y > ||
sinα =

y

|| < x, y > ||

cos β =
x′

|| < x′, y′ > ||
sin β =

y′

|| < x′, y′ > ||
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Therefore, according to the formula, we have:

cos θ =
x

|| < x, y > ||
· x′

|| < x′, y′ > ||
+

y

|| < x, y > ||
· y′

|| < x′, y′ > ||

=
xx′ + yy′

|| < x, y > || · || < x′, y′ > ||

We will have a special name for the numerator of this fraction:

De�nition 4.10.2: dot product

The dot product of vectors < x, y > and < x′, y′ > in R2 is de�ned by:

< x, y > · < x′, y′ >= xx′ + yy′

Thus, the dot product is computed, as other vector operations, componentwise.

We now re-state our theorem about the directions:

Theorem 4.10.3: Angles for Dimension 2

If θ is the angle between vectors A 6= 0 and B 6= 0 in R2, then:

cos θ =
A ·B
||A|| ||B||

Warning!

It makes sense not to put �·� in the denominator to
avoid confusion.

The presence of the magnitudes in the denominator suggests (to be proven later) that the result is, as
expected, depends only on the directions.

Example 4.10.4: simple vectors

Let's test the theorem on simple vectors.

First the two basis vectors:

i =< 1, 0 >, j =< 0, 1 > =⇒ i · j = 1 · 0 + 0 · 1 = 0 .

Indeed, they are perpendicular and cosπ/2 = 0. Similarly,

< 1, 1 > · < −1, 1 >= 1 · (−1) + 1 · 1 = 0 .

However,
< 1, 0 > · < 1, 1 >= 1 · 1 + 0 · 1 = 1 .

To see the correct angle of 45 degrees, we apply the formula from the theorem:

cos θ =
< 1, 0 > · < 1, 1 >

|| < 1, 0 > || || < 1, 1 > ||
=

1

1
√

2
=

√
2

2
.

The following is a very convenient result:
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Corollary 4.10.5: Right Angle, Zero Dot Product

Two non-zero vectors are perpendicular if and only if their dot product is zero;
i.e.,

A ⊥ B ⇐⇒ A ·B = 0

Example 4.10.6: lines

Suppose we have two lines given by their relations:

y − 3 = 2(x− 1) and y + 1 = −3(x− 3) .

What is the angle θ between them?

Do we need their parametric representations? No, just the direction vectors. The slope of the �rst is
2, so we can choose the direction vector to be V =< 1, 2 >. The slope of the second is −3, so we can
choose the direction vector to be U =< 1,−3 >. Therefore,

cos θ =
< 1, 2 > · < 1,−3 >

|| < 1, 2 > || || < 1,−3 > ||
=

1− 6√
5
√

10
= − 5√

50
.

We start to climb the dimensions.

De�nition 4.10.7: dot product

The dot product of vectors < x, y, z > and < x′, y′, z′ > in R3 is de�ned by:

< x, y, z > · < x′, y′, z′ >= xx′ + yy′ + zz′

The dot product is componentwise operation:

A =< x, y, z >
·
B =< u, v, w >

A ·B = x · u+ y · v+ z · w

A ·B =

 x
y
z

 ·
 u
v
w

 =
x · u+
y · v+
z · w

Our theorem about the directions remains valid:

Theorem 4.10.8: Angles for Dimension 3

If θ is the angle between vectors A 6= 0 and B 6= 0 in R3, then:

cos θ =
A ·B
||A|| ||B||

Proof.

Instead of trigonometric formulas we used for case n = 2, we will rely on the algebraic properties of

the dot product. We start with the Law of Cosines (cosine is what we are looking for anyway) which
states:

c2 = a2 + b2 − 2ab cos θ ,

for any triangle with sides a, b, c and angle θ between a and b.
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We interpret the lengths of the sides of the triangle in terms of the lengths of vectors:

a = ||A||, b = ||B||, c = ||A−B|| .

Then we translate the law into the language of vectors:

||A−B||2 = ||A||2 + ||B||2 − 2||A|| ||B|| cos θ .

Instead of solving for cos γ, we expand the left-hand side:

||A−B||2 = (A−B) · (A−B) Normalization.
= A · A+ A · (−B) + (−B) · A+ (−B) · (−B) Distributivity.
= ||A||2 − 2A ·B + ||B||2 Associativity and Normalization.

The Law of Cosines then takes the following form:

||A||2 − 2A ·B + ||B||2 = ||A||2 + ||B||2 − 2||A|| ||B|| cos θ .

Now we cancel the repeated terms in the two sides of the equation and obtain the following:

−2A ·B = −2||A|| ||B|| cos θ .

Example 4.10.9: basis vectors

It is once again easy to con�rm that the basis vectors are perpendicular to each other:

The 1 and 0 are mismatched:

i · j =< 1, 0, 0 > · < 0, 1, 0 > = 1 · 0 + 0 · 1 + 0 · 0 = 0
j · k =< 0, 1, 0 > · < 0, 0, 1 > = 0 · 0 + 1 · 0 + 0 · 1 = 0
k · i =< 0, 0, 1 > · < 1, 0, 0 > = 0 · 1 + 0 · 0 + 1 · 0 = 0

Example 4.10.10: diagonals

The angle between the sides and the diagonal in a square is 45 degrees. Now, what is the angle between
the diagonal of a cube and any of its edges? Try to guess from the picture if the angle is 45 degrees:
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A hard trigonometric problem is solved easily with the dot-product.

First we choose vectors to represent the edges: the three basis vectors for the outside edges and
A =< 1, 1, 1 > for the diagonal. We have for the angle:

cos θ =
< 1, 1, 1 > · < 1, 0, 0 >

|| < 1, 1, 1 > || || < 1, 0, 0 > ||
=

1√
3
.

What is this angle? We only know that
1√
3
<

1√
2
.

Because cosine is a decreasing function, it follows that this angle is larger than π/4. There is more
room for maneuver than on the plane!

Exercise 4.10.11

Find all the angles from the center of a cube to its corners.

Can we make sense of directions and angles in Rn?

We previously �extrapolated� the de�nition of the magnitude (and the distance before that) to produce the
Euclidean norm:

dimension vector components norm

1 A a |A| = |a|

2 A < a, b > ||A||2 = a2 + b2

3 A < a, b, c > ||A||2 = a2 + b2 + c2

... ... ... ...

n A < a1, a2, ..., an > ||A||2 = a2
1 + a2

2 + ...+ a2
n
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We do the same for the de�nition of the dot product:

dimension vectors components dot product

1 A a

B u A ·B = a · u

2 A < a, b >

B < u, v > A ·B = a · u+ b · v

3 A < a, b, c >

B < u, v, w > A ·B = a · u+ b · v + c · w

... ... ... ...

n A < a1, a2, ..., an >

B < b1, b2, ..., bn > A ·B = a1 · b1 + a2 · b2 + ...+ an · bn

De�nition 4.10.12: dot product in n-space

The dot product of vectors A and B is de�ned to be the sum of the products of
their components:

A =< a1, a2, ..., an >

B =< b1, b2, ..., bn >

A ·B = a1b1 +a2b2 +... +anbn

In the sigma notation:

A ·B =
n∑
k=1

akbk

Exercise 4.10.13

What is the angle between the diagonal of a 4-dimensional cube and any of its edges?

Exercise 4.10.14

What is the angle between the diagonal of a n-dimensional cube and any of its edges? What value
does the angle approach when n approaches in�nity?

Below we see how this new operation (last row) compares with the other vector operations:

vector addition A + B = C

vector vector vector

scalar multiplication c · A = C

number vector vector

dot product A · B = s

vector vector number
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Warning!

The last two might be confusing without a context ;
for example, consider the three possible meanings
of the following:

0 ·A = 0 .

Let's consider the properties of the dot product.

If we just set Y = X, we have the so-called Normalization:

||X||2 = X ·X

One can, therefore, recover the magnitude from the dot product just as before. So, once we have the dot
product, we don't need to introduce the magnitude independently.

The Positivity of the norm then requires a similar property for the dot product:

V · V ≥ 0; and V · V = 0 ⇐⇒ V = 0

Next, Commutativity or Symmetry :

A ·B = B · A

This means that the angle is between A and B; i.e., the same from A to B as from B to A.

Next, Associativity :

(kA) ·B = k(A ·B) = A · (kB)

So, the e�ect of stretching on the dot product is a multiple and the angle doesn't change for k > 0 or is
replaced with the opposite when k < 0.

We can see now that only the normalizations matter for the angle between two vectors. We just choose
these values for k in the last formula:

1

||A|| ||B||
,

1

||A||
, and

1

||B||

to re-write our formula from the last section:

cos θ =
A ·B
||A|| ||B||

=
1

||A|| ||B||
A ·B =

1

||A||
A · 1

||B||
B =

A

||A||
· B

||B||
.

The result suggests that the dot product is independent from the coordinate system. Certainly, this system
is just a tool that we introduce into the space the geometry of which we study, and we don't expect that
changing the components of vectors will also change the distances and the angles. But it's also true in Rn!

Next, Distributivity or Linearity :

A · (B + C) = A ·B + A · C

Treated componentwise, the Commutativity, Associativity, Distributivity properties for the dot product of
vectors follow from the Commutativity, Associativity, Distributivity for numbers. For example, this is the
whole proof of the Commutativity for n = 2:a

b

 ·
u
v

 = au+ bv = ua+ vb =

u
v

 ·
a
b


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Once again, these properties allow us to use the usual algebraic manipulation steps for numbers as long as
the expressions make sense to begin with.

How do we understand the geometry of this made-up space? After all, when n > 3, there is no reality test
for this concept and we can't verify the formulas we are to use!

We have come to understand the distances in Rn and now ask:

I What is the meaning of the angle between two vectors A and B in Rn?

The answer is to reduce the multidimensional case to the case of n = 2. Indeed, every two vectors de�ne a
plane and this plane has the same vector algebra operations � including the dot product � as the ambient
space Rn:

The Distributivity will require 3 dimensions. In the meantime, the plane has the well-understood Euclidean
geometry: The lengths of vectors and the angles between vectors can be measured.

The de�nition is abstract but it matches the lower dimensions n = 1, 2, 3:

De�nition 4.10.15: angles for dimension n

The angle θ between vectors A 6= 0 and B 6= 0 in Rn is de�ned to satisfy:

cos θ =
A ·B
||A|| ||B||

For the record, we summarize the rules of the dot product:

Theorem 4.10.16: Axioms of Inner Product Space

The dot product in Rn satis�es the following three properties for all vectors
U, V,W and all scalars a, b:
• Symmetry: U · V = V · U .
• Linearity: U · (aV + bW ) = a(U · V ) + b(U ·W ) .
• Positive-de�niteness: V · V ≥ 0; and V · V = 0 ⇐⇒ V = 0 .

We have added a third vector operation to the toolkit but vector algebra still looks like that of numbers!

From the inequality
| cos θ| ≤ 1 ,

we derive the following.
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Corollary 4.10.17: Cauchy Inequality

For any pair of vectors A 6= 0 and B 6= 0 in Rn, we have:

|A ·B| ≤ ||A|| ||B||

In other words, if we rotate one of the vectors, the dot product reaches its maximum when they are parallel
to each other.

So, what is the dot product of two vectors? Two partial answers:

1. The dot product is the cosine of the angle when the vectors are unit vectors.

2. The dot product is the square of the magnitude when the vectors are equal.

A complete, geometric answer may simply be our formula:

A ·B = ||A|| ||B|| cos θ

Example 4.10.18: inner product for taxicab?

Once can see how the dot product emerged from the Euclidean metric and norm:

dimension vectors components Euclidean norm and dot product

n A < a1, a2, ..., an > ||A||2 = a1 · a1 + a2 · a2 + ...+ an · an

n A < a1, a2, ..., an >

B < b1, b2, ..., bn > A ·B = a1 · b1 + a2 · b2 + ...+ an · bn

But what about the taxicab metric? We can suggest the following candidate for the inner product:

dimension vectors components taxicab norm and inner product?

n A < a1, a2, ..., an > ||A|| = |a1|+ |a2|+ ...+ |an|

n A < a1, a2, ..., an >

B < b1, b2, ..., bn > A ·B =
√
|a1| · |b1|+

√
|a2| · |b2|+ ...+

√
|an| · |bn|

Unfortunately, the Linearity fails! We, therefore, will be unable to deal with angles in this space.

Exercise 4.10.19

Prove the last statement for n = 2.

4.11. Projections and decompositions of vectors

To �nd the x-coordinate of a point on the xy-plane, we go vertically from that points until we reach the
x-axis:
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It's a familiar function:
F : R2 → R, < x, y >7→ x .

The result resembles shadows cast by points, vectors, or subsets onto the x-axis with the light cast from
above (or from the right for the y-axis):

It is called the projection of the point on the x-axis. Same for the y-axis.

Similarly, the projection of a vector on the x-axis gives its x-component. If several coordinate systems
co-exit, a transition from one to another will require expressing the new coordinates of a point or the new
components of a vector in terms of the old. We do that one axis or basis vector at a time.

As a reason for this study here is the example of compound motion from earlier in this chapter, an object
sliding down a slope:

In order to concentrate on the relevant part of the motion, one would choose the �rst basis vector to be
parallel to the surface and the second perpendicular.

For vectors, the projection on the x-axis will require choosing a representative vector on it; it's i. Any vector
A is expressed in terms of i by �nding A's component P on the x-axis. For example, below the component
is 3:
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Speci�cally, we have a linear combination of i and j:

A =< 3, 4 >= 3i+ 4j .

What if instead of i we have an arbitrary vector V ?

But �rst, we consider a shortcut for �nding a perpendicular vector :

The problem of rotating a given vector V in the plane through π/2 has an easy solution:

Theorem 4.11.1: Orthogonality in 2-space

For any vector V =< u, v > on the plane, the following vector, called a normal

vector of V , denoted by V ⊥, has the angle of π/2 with V :

V ⊥ =< u, v >⊥=< −v, u >

Proof.

This is easy to con�rm:

V · V ⊥ =< u, v > · < −v, u >= u(−v) + vu = 0 .

We have then a special operation on vectors in dimension 2. Every vector has exactly two normal unit
vectors.

Example 4.11.2: investing advice

An initially investment advice might be very simple, for example: hold the proportion of stocks and
bonds 1-to-2. If x is the amount of stocks and y is the amount of bonds in it, the �ideal� portfolios lie
on the line y = 2x, i.e., they are the ends of vectors that are multiples of V =< 2, 1 >:
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How do we determine how close is each portfolio to the ideal? We can use V as a measuring stick.
What about the bad? We can �nd a vector perpendicular to V via the last theorem. Though not unit
vectors, these two vectors will give the good and the bad components of any portfolio:

g =< 1, 2 > and b =< −2, 1 > .

So, we need to represent every portfolio as a linear combination of these two. For example:

< 5, 6 >= p < 1, 2 > +q < −2, 1 > and < 7, 4 >= u < 1, 2 > +v < −2, 1 > .

In other words, we need to solve two systems of linear equations:{
p− 2q = 5

2p+ q = 6
and

{
u− 2v = 7

2u+ v = 4

These are the solutions:
p = 17/5, q = −4/5 and u = 4, v = −2 .

The second numbers in these pairs indicate how far it is from the ideal. The second portfolio is farther.

What if we have many investment vehicles in each portfolio? For example, we may assume that these
portfolios live in R7:

Unfortunately, the shortcut of the last theorem is not available anymore. We will need a further
analysis.

This is what a projection on a line de�ned by a vector looks like:
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The question becomes: How much does A �protrude� in the direction of V ? More precisely:

I Vector A is expressed in terms of V by �nding A's projection P on the line created by V .

So, every vector A needs to be expressed as a linear combination of V and some other vector perpendicular
to V :

If P is the projection, what's the other vector? We simply subtract:

A = P + (A− P ) .

The vector we are after is described indirectly:

De�nition 4.11.3: orthogonal projection

Suppose A and V 6= 0 are two vectors in Rn. Then the orthogonal projection of

A onto V is a vector P that satis�es the following:
1. P is parallel to V .
2. A− P is perpendicular to V .

Let's �nd an explicit formula.

First, �parallel� simply means a multiple! Therefore, the �rst property means that there is a number k �
this is the one we are looking for � such that:

P = kV .

The second property is expressed in terms of the dot product:

V · (A− P ) = 0 .

We substitute:
V · (A− kV ) = 0 ,

and use Distributivity and Associativity :

V · A− kV · V = 0 .
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Next we use Normalization:
V · A = k||V ||2 .

Then,

k =
V · A
||V ||2

.

This is the multiple of V that gives us P . Thus, we have proven the following result:

Theorem 4.11.4: Projection Via Dot Product

The orthogonal projection of a vector A onto a vector V 6= 0 is the vector P
given by:

P =
V · A
||V ||2

V

Notice that the formula � as expected � depends only on the direction of V ; only unit vectors are involved:

P =

(
V

||V ||
· A
)

V

||V ||
.

Exercise 4.11.5

Prove the last formula.

Example 4.11.6: investing advice continued

We have 7 instruments in each portfolio. The portfolio advice V is shown in column 4 and the two
competing portfolios A1 and A2 in columns 8 and 9. We carry out the following computations:

1. We �nd the coordinatewise products of A1 and A2 with V (columns 10 and 11) and then by
adding those obtain the two dot products (bottoms of the columns).

2. From those two, we �nd the multiples c1 and c2 for the projections according to the last theorem
(tops of columns 12 and 13).

3. We use those two to multiply V componentwise to obtain the projections P1 and P2 of A1 and
A2 (columns 12 and 13).

4. The di�erences of A1 and A2 from V are found (columns 14 and 15).

Finally, we compute the magnitudes of those two (tops of columns 14 and 15). We conclude that the
second portfolio is closer to the line that represents the ideal:
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Alternatively, we realize that these distances are proportional to the size of the investment, which
skews the conclusions. We then turn to the angles instead. Their cosines are computed (tops of
columns 10 and 11) with the formula from the last section. We conclude that the �rst portfolio is
closer to the line that represents the ideal.

Exercise 4.11.7

What is the set of all portfolios with the total investment of 1?
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5.1. Where matrices come from

In this chapter, we set aside the geometry of the Euclidean spaces � measuring distances and angles � and
concentrate on pure algebra.

Let's recall these problems about mixtures.

Problem, dimension 1: Suppose we have a type of co�ee that costs $3 per pound. How much do we get for
$60?

Let x be the weight of the co�ee. Then we have:

Setup: 3x = 60 . Solution: x =
60

3
.

Problem, dimension 2: Suppose the Kenyan co�ee costs $2 per pound and the Colombian co�ee costs $3
per pound. How much of each do you need to have 6 pounds of blend with a total price of $14?

Let x be the weight of the Kenyan co�ee and let y be the weight of Colombian co�ee. Then we have:

Setup:
x + y = 6

2x + 3y = 14

Solution: From the �rst equation, we derive: y = 6 − x. Then substitute it into the second equation:
2x+3(6−x) = 14. Solve the new equation: −x = −4, or x = 4. Substitute this back into the �rst equation:
(4) + y = 6, then y = 2.

329
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But it was so much simpler for the former problem! Is it possible to mimic the setup, i.e., the equation, and
the solution of the 1-dimensional case for the 2-dimensional case? The existence of vector algebra suggests
that it might be possible.

Let's recall the ways we have interpreted the problem.

First: points and lines.

We think of the two equations as equations about the coordinates of points, (x, y), in the plane:{
x+ y = 6,

2x+ 3y = 14.

Either equation is a line on the plane. The solution (x, y) = (4, 2) is the point of their intersection:

Second: vectors and their linear combinations.

Let's put the equations in these tables:

1 · x + 1 · y = 6

2 · x + 3 · y = 14

The table is split horizontally to reveal the equations. Next, we start to split vertically and realize that we
see a componentwise addition of vectors :

1 · x + 1 · y = 6

2 · x + 3 · y = 14

We have:

1 · x 1 · y 6

+ =

2 · x 3 · y 14

But x's and y's are repeated! We realize that we see a componentwise scalar multiplication of vectors :

1 1 6

· x + · y =

2 3 14

Vectors start to appear. Indeed, our system has been reduced to a single vector equation:1

2

x+

1

3

 y =

 6

14


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We see three vectors of the same dimension 2. This isn't a coincidence. They are of the same nature:1

2

 ,
1

3

 ,
 6

14

 are

weight (in pounds)

cost (in dollars)

 .

They live in the same space R2 and, therefore, subject to the operations of vector algebra.

The solution to the system in this interpretation has the following algebraic meaning. We can think of the
two equations as a single equation about the coe�cients, x and y, of these vectors in the plane:

x

1

2

+ y

1

3

 =

 6

14

 .

Geometrically, we need to �nd a way to stretch these two vectors so that after adding them the result is the
vector on the right. We speak of linear combinations.

The setup is on the left followed by a trial-and-error on the right:

So, the new point of view has changed: Instead of the locations, we are after the directions.

Exercise 5.1.1

Are there other vectors here?

Third: transformations.

Initially, we use points.

Dimension 1 problem:

• A transformation f : R→ R is given by

f(x) = 30x .

• Solve the equation:
f(x) = 60 .

Dimension 2 problem:

• A transformation f : R2 → R2 is given by

F (x, y) = (x+ y, 2x+ 3y) .

• Solve the equation:
F (x, y) = (6, 14) .
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Now, we prefer to use vectors. Let's �nd all 2-dimensional vectors in the equations:

1 · x + 1 · y = 6

2 · x + 3 · y = 14

The �rst is on the right; it consists of the two �free� terms (free of x's and y's!) on the right-hand side:

B =

 6

14

 .

Another one is less visible; it is made up of the two unknowns:

X =

x
y

 .

Even though its dimension is also 2, it's not of the same nature as the others:x
y

 is

# of pounds

# of pounds

 .

It lives in a di�erent R2.

Then, we have a function between these two spaces:

F : R2 → R2, Y = F (X) .

Its formula can be written in terms of vectors:

F

x
y

 =

 x+ y

2x+ 3y

 .

Our problem becomes a problem of solving an equation for X:

F (X) = B .

Warning!

Since we aren't doing any geometry but we are do-
ing vector algebra, the vector approach will be pre-
ferred throughout the chapter.

The algebraic operations needed to compute F are so simple that they will be easy to abbreviate.

Let's review the setup. The problem for dimension n has n ingredients:

dim 1 dim 2

the unknown x X =< x, y >

multiplied by 3 ?

is equal to 60 B =< 6, 14 >

We have transitioned from numbers to vectors. But what is the operation that makes B from X? None of
the familiar ones.
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The four coe�cients of x, y form a table:

F =

1 1

2 3

 .

It has two rows and two columns. In other words, this is a 2× 2 matrix.

Both X and B are column-vectors in dimension 2, and matrix F turns X into B. This is very similar to
multiplication of numbers; after all, they are vectors of dimension 1. Let's match the setups of the two
problems:

dim 1 : m · x = b

dim 2 : F ·X = B

If we can just make sense of the new algebra!

Here FX = B is a matrix equation, and it's supposed to capture the system of equations. Let's compare
the original system of equations to FX = B:

x +y = 6

2x +3y = 14
, rewritten as

1 1

2 3

 ·
x
y

 =

 6

14

 .

We can see these equations on the right-hand side as these two dot products. First:

1 · x+ 1 · y = 6 , rewritten as
[
1 1

]
·

x
y

 = 6 .

Second:

2x+ 3y = 14 , rewritten as
[
2 3

]
·

x
y

 = 14 .

This suggests what the meaning of FX should be. We �multiply� either row in A, as a vector, by the vector
X � via the dot product:

De�nition 5.1.2: product of matrix and vector

The product FX of a 2× 2 matrix F and a 2-vector X,

F =

a b

c d

 , X =

x
y

 ,
is de�ned to be the following 2-vector:

FX =

a b

c d

 ·
x
y

 =

ax+ by

cx+ dy



We can still see these dot products in the result:a b

c d

 ·
x
y

 =

ax+ by

cx+ dy

 and

a b

c d

 ·
x
y

 =

ax+ by

cx+ dy

 .
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Warning!

A matrix is nothing but an abbreviation of a trans-
formation of the plane:

FX = F (X) .

However, not all transformations can be repre-
sented by matrices.

Example 5.1.3: 3 variables

What if the blend is to contain another, third, type of co�ee? Given three prices per pound, 2, 3, 5,
how much of each do you need to have 6 pounds of blend with a total price of 14?

Let x, y, and z be the weights of the three types of co�ee, respectively. Then the total price of the
blend is 14. Therefore, we have a system: x + y + z = 6

2x + 3y + 5z = 14

Either of these equations represents a plane in R3. The solution set then comes from their intersection:

There are, of course, in�nitely many solutions. An additional restriction in the form of another linear
equation may reduce the number to one... or none. The variety of possible outcomes is, by far, higher
than in the 2-dimensional case; they are not discussed in this chapter.

The vector algebra, however, is the same! The three weights can be written in a vector, < 1, 1, 1 >,
and the �rst equation becomes the dot product:

< 1, 1, 1 > · < x, y, z >= 6 .

The three prices per pound can be written in a vector, < 2, 3, 5 >, and the �rst equation becomes the
dot product:

< 2, 3, 5 > · < x, y, z >= 14 .

Finally, we have a matrix equation: 1 1 1

2 3 5

 ·

x

y

z

 =

 6

14

 .

Without harm, we can make the matrix square:
1 1 1

2 3 5

9 0 0

 ·

x

y

z

 =


6

14

0

 .
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Example 5.1.4: spreadsheet

One can utilize a spreadsheet and other software to this multiplication for matrices of any dimensions.
In order to make this work, the vector X has to be �transposed� (bottom):

This is the code for the transpose of X:

=TRANSPOSE(R[-5]C:R[-3]C)

This is the code for Y :
=SUMPRODUCT(RC2:RC4,R8C[-2]:R8C)

The whole system can be written in the form of exactly the same matrix equation:

FX = B .

The multiplication is executed in the same way too:

[
r r o o w w

]
·



c

o

l

u

m

n


= rc+ ro+ ol + ou+ wm+ wn

Generally, we face a system with:

1. the number of variables m, and

2. the number of equations n.

We will have an n×m matrix:

1 2 3 ... m

1

2
...

n


2 0 3 ... 2

0 6 2 ... 0
...

...
... ...

...

3 1 0 ... 12


Here, the number at the ij-position is the coe�cient of the jth variable in the ith equation.

Recall how an index points at a location within a sequence. Similarly, we use double index to point at the
correct location within a table.
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De�nition 5.1.5: entries of matrix

The ij-entry in an n×m matrix A is the number at the ith row and jth column,
denoted by

Aij

for each i = 1, 2, ...,m and each j = 1, 2, ..., n.

For example, we have for the above matrix:

i\j 1 2 3 ... n

1

2
...

m


A1,1 = 2 A1,2 = 0 A1,3 = 3 ... A1,n = 2

A2,1 = 0 A2,2 = 6 A2,3 = 2 ... A2,n = 0
...

...
... ...

...

Am,1 = 3 Am,2 = 1 Am,3 = 0 ... Am,n = 12



Warning!

What is the di�erence between tables of numbers
and matrices? The algebraic operations discussed
here.

5.2. Transformations of the plane

Transformations of the plane are made up of two real-valued functions of two variables.

De�nition 5.2.1: transformation of the plane

A transformation of the plane is a function

F : R2 → R2 ,

given by any pair of functions f, g of two variables:

F (x, y) = (u, v) =

(
f(x, y), g(x, y)

)
.

When appropriate, we can also look at the inputs and outputs as vectors :

< x, y >=

x
y

 7→ < u, v >=

u
v

 ,

instead of points.

Let's review a few examples of such transformations.
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Example 5.2.2: two functions of two variables

We need two real-valued functions of two variables. Consider u = f(x, y) = 2x− 3y:

f : R2 → R, meaning

f : (x, y) → u = 2x− 3y

Consider also v = g(x, y) = x+ 5y:

g : R2 → R, meaning

g : (x, y) → v = x+ 5y

Let's build a new function from these two. We take the input to be the same � a point in the plane �
and we combine the two outputs into a single point (u, v) � in another plane. Then what we have is
a single function:

F : R2 → R2, meaning

F : (x, y) → (u, v) = (2x− 3y, x+ 5y)

In short, this is the formula for this function:

F (x, y) = (2x− 3y, x+ 5y) .

In terms of vectors:

F :

x
y

 7→
2x− 3y

x+ 5y


The coe�cients of the matrix of F are read from that representation:

F =

2 −3

1 5


What this function does to the plane remains to be determined.

Example 5.2.3: vertical shift

The function de�ned by
F (x, y) = (x, y + 3)

is a vertical shift :

(x, y)
up k−−−−−−→ (x, y + k).

We visualize these transformations by drawing something on the original plane (the domain) and then
see what that looks like in the new plane (the co-domain):

Predictably, the formula:

F (x, y) = (x+ a, y + b) = (x, y)+ < a, b > ,

gives the shift by vector < a, b >.
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Exercise 5.2.4

Explain why there is no matrix.

Example 5.2.5: horizontal and vertical �ip

Now the horizontal �ip. We lift, then �ip the sheet of paper with xy-plane on it, and �nally place it
on top of another such sheet so that the y-axes align. If the function is given by

F (x, y) = (−x, y) ,

then we have the following:

Below we illustrate the fact that the parabola's left branch is a mirror image of its right branch:

We can also represent this transformation via vectors:

F :

x
y

 7→
−x
y

 =

(−1)x+ 0y

0x+ 1y


Then, we have its matrix:

F =

−1 0

0 1

 .

Indeed,

F

x
y

 = F

x
y

 =

−1 0

0 1

x
y

 =

−x
y

 .

Next, consider vertical �ip. We lift, then �ip the sheet of paper with xy-plane on it, and �nally place
it on top of another such sheet so that the x-axes align. If

G(x, y) = (x,−y) ,

then we have:

(x, y)
vertical �ip−−−−−−−−−−→ (x,−y).
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We can also represent this transformation via a matrix:

G =

1 0

0 −1

 .

Indeed,

G

x
y

 =

−1 0

0 1

x
y

 =

 x

−y

 .

Example 5.2.6: central symmetry

How about the �ip about the origin? This is the formula,

F (x, y) = (−x,−y) ,

of what is also known as the central symmetry:

This is what the transformation does to a star:

We can also represent this transformation via vectors:

F :

x
y

 7→
−x
y

 =

(−1)x+ 0y

0x+ (−1)y


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Then, we have its matrix:

F =

−1 0

0 −1

 .

Indeed,

F

x
y

 = F

x
y

 =

−1 0

0 −1

x
y

 =

−x
−y

 .

Example 5.2.7: horizontal and vertical stretch

Now the horizontal stretch. We grab a rubber sheet by the top and the bottom and pull them apart
in such a way that the y-axis doesn't move. Here,

F (x, y) = (kx, y) .

Similarly, the horizontal stretch is given by:

G(x, y) = (x, ky) .

We can also represent these transformations via matrices:

F =

k 0

0 1

 and G =

1 0

0 k

 .

Example 5.2.8: re-scaling

How about the uniform stretch (same in all directions)? This is its formula:

F (x, y) = (kx, ky) .
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The result is re-scaling. The reason comes from what we know from geometry: Similar triangles have
the same angles. Here is an illustration why:

We can also represent this transformations via a matrix:

F =

k 0

0 k

 .

Exercise 5.2.9

Find the matrix for a disproportional stretch.

Just as before, we put all newly introduced functions in broad categories.

Some of these categories � such as monotonicity � have become irrelevant.

Others � such as symmetry � have become by far more complex.

Two that will be pursued are one-to-one and onto.

Recall:

• We call a function one-to-one if there is no more that one input for each output.

• We call a function onto if there is at least one input for each output.

The functions above are all both one-to-one and onto.

Exercise 5.2.10

Prove the last statement.

Example 5.2.11: projections

The functions that are not one-to-one or onto are the projections. There are at least two types:
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This is the vertical one:
F (x, y) = (x, 0) .

It is the projection on the x-axis. It's as if the sheet of the xy-plane is rolled into a thin scroll:

We can also represent this transformations via a matrix:

F =

1 0

0 0

 .

Exercise 5.2.12

Find the formula and the matrix for the projection on the y-axis.

Exercise 5.2.13

Find the formula and the matrix for the projection on the line y = x.

Example 5.2.14: collapse

Finally, we have the collapse:
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It is a constant function:
F (x, y) = (x0, y0) .

It's as if the sheet is crushed into a tiny ball:

There is a matrix representation when this point is the origin:

F =

0 0

0 0

 .

Exercise 5.2.15

Show that there is no matrix unless x0 = 0, y0 = 0.

The meaning of each number in the matrix depends on its location:

x y

x a b

y c d

This is a special case that we have learned about so far:

Matrix Deconstruction

stretched or �ipped x → a, 0 ← there is no interaction between x, y

there is no interaction between x, y → 0, d ← stretched or �ipped y

There are many more transformations, however, that aren't covered so far because they cannot be represented
in terms of the vertical and horizontal transformations.

Example 5.2.16: �ip about diagonal

A �ip about the line x = y that appeared in the context of �nding the graph of the inverse function:

As we acquire the inverse by interchanging x and y, we have the same here:

(x, y) 7→ (y, x) .

The matrix is:

F =

0 1

1 0

 .
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We see here some new features:

Matrix Deconstruction

x doesn't depends on x → 0, 1 ← x depends on y

y depends on x → 1, 0 ← y doesn't depends on y

Exercise 5.2.17

Find the matrix for this rotation:

Example 5.2.18: compositions

More complex transformations, however, will require further study. Below, we visualize the 90-degree
rotation with a stretch with a factor of 2:

Example 5.2.19: folding

Among others, we may consider folding the plane:

F (x, y) = (|x|, y) .
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Exercise 5.2.20

Con�rm that this function cannot be represented by a matrix.

Of course, any Euclidean space Rn can be � in a similar manner � rotated (around various axes), stretched
(in various directions), projected (onto various lines or planes), or collapsed.

For example, this is how the projection on the xy-plane

F (x, y, z) = (x, y, 0)

works:

This is how maps are made (stereographic projection):

5.3. Linear operators

We consider transformations of the plane as before but we think of the points on the plane as the ends of
2-vectors. It makes no di�erence when they are expressed in terms of their components:

< x, y > 7→ < u, v >

Then, what happens to the functions? It used to be the case that the coordinates of the output depend on
the coordinates of the input:

F (x, y) = (u, v) = 2x− 3y, x+ 5y) .
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Now our function shows how the components of the output depend on the components of the input:

F
(
< x, y >

)
=< u, v >=< 2x− 3y, x+ 5y > .

Here < x, y > is the input and < u, v > is the output:

input function output

< x, y > → F → < u, v >

Both are vectors; it's a vector function:
F : R2 → R2 .

Warning!

We could interpret F as a vector �eld, but we
won't.

Example 5.3.1: re-scaling

Some of the bene�ts of this point of view are immediate. For example, even if we didn't know that
the transformation given by

F (x, y) = (2x, 2y)

is a uniform stretch, we can discover that fact with our knowledge of vector algebra. We write this
function in terms of vectors and discover scalar multiplication:

F (< x, y >) =< 2x, 2y >= 2 < x, y > .

In fact, this idea will work in any dimension. This is how you stretch the space by a factor of 2, using
the component-free approach:

F : Rn → Rn given by F (X) = 2X .

The approach gives us a better representation when the functions that make up the transformation happen
to be linear. Matrices reply on vector algebra:

F (X) =
(
f(x, y), g(x, y)

)
=

a b

c d

 ·
x
y

 = F ·X .

Exercise 5.3.2

Does it work when the function isn't linear? Try F (x, y) =

(
ex,

1

y

)
.

Conversely, if we do have a matrix, we can always understand it as a function, as follows:a b

c d

x
y

 =

ax+ by

cx+ dy

 =< ax+ by, cx+ dy > ,

for some a, b, c, d �xed. So, matrix F contains all the information about function F . One can think of F (a
table) as an abbreviation of FX (a formula).
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Warning!

We will continue to use the same letter for the func-
tion and the matrix.

Clearly, a function given by a matrix is a special one. What is so special about it?

Now, the domain R2 of this function is a vector space, and so is its codomain. How does such a function
interact with the algebra of these two spaces? What happens to the vector operations under F?

Suppose we have addition and scalar multiplication carried out in the domain space of F . Once F has
transformed the plane, what do these operations look like now?

Example 5.3.3: dimension 1

The multiplication by 2, f(x) = 2x �preserves addition�:

f(x+ x′) = 2(x+ x′) = 2x+ 2x′ = f(x) + f(x′) .

After all, this is just a stretch by a factor of 2.

The computation is just an abbreviation of the following diagram:

x, x′
+−−−−→ x+ x′y·2 y·2

2x, 2x′
+−−−−→ 2x+ 2x′ = 2(x+ x′)

In the diagram, we start with a pair of numbers at the top left and then we proceed in two ways:
• Right: Add them. Then down: Apply the function to the result.
• Down: Apply the function to them. Then right: Add the results.

A shift by 1, f(x) = x+ 1, doesn't preserve addition:

f(x+ x′) = (x+ x′) + 1 = x+ x′ + 1 6= x+ x′ + 2 = (x+ 1) + (x′ + 1) = f(x) + f(x′) .

Exercise 5.3.4

What e�ect does the function f : R→ R given by f(x) = 2x have on multiplication in its domain?

Example 5.3.5: addition under rotation

What happens to an addition diagram (the parallelogram construction) when the plane is transformed?
If such a diagram is rotated, as if on a piece of paper, it will remain an addition diagram:
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We see the parallelogram rule of addition on the left and on the right. This is the algebra:

A,B
+−−−−→ A+Byrotated

yrotated

F (A), F (B)
+−−−−→ F (A) + F (B) = F (A+B)

What happens to an addition diagram when the vector space is transformed? When it is still an addition
diagram, this is the language we will use:

De�nition 5.3.6: addition is preserved

We say that addition is preserved under a function F : Rn → Rm if

F (A+B) = F (A) + F (B)

for any vectors A and B.

Example 5.3.7: stretch dimension 2

Furthermore, the example of a stretch below shows that the triangles of the diagram, if not identical,
are similar to the original:

It's as if we just stepped away from the piece of paper that has the addition diagram on it or put the
diagram under a magnifying glass.

Example 5.3.8: re�ection dimension 2

We can also see the addition diagram in the mirror, and it's still an addition diagram:
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Exercise 5.3.9

Show that a fold doesn't preserve vector addition. Suggest other examples.

What about the general case?

Theorem 5.3.10: Preserving Addition

If a function F : Rn → Rm is given by a matrix, F (X) = FX, it preserves
addition.

Proof.

Consider F : R2 → R2 and two input vectors:

A =

x
y

 and B =

x′
y′

 .

Let's con�rm the formula:
F (A+B) = F (A) + F (B) .

Let's compare:

Left-hand side: Right-hand side:

F


x
y

+

x′
y′


 F

x
y

+ F

x′
y′


=

a b

c d



x
y

+

x′
y′




=

a b

c d


x+ x′

y + y′


=

a(x+ x′) + b(y + y′)

c(x+ x′) + d(y + y′)



=

a b

c d


x
y

+

a b

c d


x′
y′


=

ax+ by

cx+ dy

+

ax′ + by′

cx′ + dy′


=

ax+ by + ax′ + by′

cx+ dy + cx′ + dy′


These are the same, after factoring.

Example 5.3.11: stretch dimension 2

Here is a con�rmation of the result for a horizontal stretch:
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We simply compare what happens in the domain with its �re�ection� in the codomain.

The diagram of scalar multiplication is much simpler:

It is a stretch of the vector; rotated or stretched, it remains a stretch. This is the language we will use:

De�nition 5.3.12: scalar multiplication is preserved

We say that scalar multiplication is preserved under a function F : Rn → Rm if

F (kA) = kF (A)

for any vector X and real k.

The formulas in the two de�nitions are just abbreviations of these diagrams:

A,B
+−−−−→ A+ByF yF

F (A), F (B)
+−−−−→ F (A) + F (B) = F (A+B)

A
·k−−−−→ kAyF yF

F (A)
·k−−−−→ kF (A) = F (kA)

In other words, the order of these operations makes no di�erence.

Example 5.3.13: motions

The same conclusion is quickly reached for the �ip and other motions: The triangles of the new
diagram are identical to the original. We can just imagine that the addition diagram is drawn on a
piece of paper with no grid, which then has been rotated:
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Theorem 5.3.14: Preserving Scalar Multiplication

If a function F : Rn → Rn is given by a matrix, F (A) = FA, it preserves scalar
multiplication.

Proof.

Consider an input vector X =< x, y > and a scalar k. Then,a b

c d

k
x
y

 =

a b

c d

kx
ky

 =

akx+ bky

ckx+ dky

 = k

ax+ by

cx+ dy

 = k

a b

c d

x
y

 .

Now, this is the general case:

De�nition 5.3.15: linear operator

A function F : Rn → Rm that preserves both addition and scalar multiplication
is called a linear operator (or a linear map); i.e.,:

F (U + V ) = F (U) + F (V )

F (kV ) = kF (V )

Warning!

Previously, y = ax + b has been called a �linear
function�. Now, y = ax is called a �linear operator�.

We combine the two operations together:

Theorem 5.3.16: Linear Operators and Linear Combinations

A linear operator F : Rn → Rm preserves linear combinations; i.e.,

X = xA+ yB =⇒ F (X) = xF (A) + yF (B) ,

for any vectors A and B and any real coe�cients x and y.

In other words, the diagram of a linear combination will remain such under a linear operator:
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Exercise 5.3.17

Describe what this linear operator does and �nd its matrix.

This is the summary of our analysis.

Theorem 5.3.18: Linear Operators vs. Matrices

• The function F : R2 → R2 de�ned via multiplication by a 2× 2 matrix F ,

F (X) = FX ,

is a linear operator.
• Conversely, every linear operator F : R2 → R2 is de�ned via multiplication
by some 2× 2 matrix.

Proof.

The �rst part of the theorem follows from the two theorems above. The converse is proven in the next
section.

Warning!

Linear operators and matrices aren't interchange-
able, because matrices emerge only when a Carte-
sian system has been speci�ed.

Corollary 5.3.19: Linear Operator at 0

A linear operator takes the zero vector to the zero vector:

F (0) = 0 .

Exercise 5.3.20

Prove the corollary (a) from the de�nition of a linear operator, (b) by examining the matrix multipli-
cation.

The conclusion will be visible in the examples in the next section.
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The latter part of the theorem is materialized when a matrix is found for a linear operator described by
what it does. We start with a couple of simple examples.

Let's not forget:

I Linear operators are functions.

The two simplest functions � no matter what the domain and codomain are � are the constant function and
the identity function.

However, according to the last corollary, there can be only one constant, 0, and, therefore, only one constant
linear operator. This is the simplest linear operator:

De�nition 5.3.21: zero operator

The function F : Rn → Rm that takes every vector to the zero vector,

F (0) = 0 ,

is called the zero operator. The notation is as follows:

0 : Rn → Rm, 0(X) = 0 .

The matrix of the zero operator consists, of course, of all zeros:

0 =


0 0 0 ... 0

0 0 0 ... 0

... ... ... ... ...

0 0 0 ... 0


We can write:

0ij = 0 .

What about the identity function? The dimensions of the domain and the codomain must be the same:

De�nition 5.3.22: identity operator

The function F : Rn → Rn that takes every vector to itself,

F (X) = X ,

is called the identity operator. The notation is as follows:

I : Rn → Rn, I(X) = X .

The matrix of the identity operator is the following:

I =


1 0 0 ... 0

0 1 0 ... 0

... ... ... ... ...

0 0 0 ... 1


It has 1's on the main diagonal and 0's elsewhere. We can write:

Iij =

{
1 if i = j ,

0 if i 6= j .
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5.4. Examining and building linear operators

The transformations of the plane are illustrated previously with curves plotted on the original plane and
then seen transformed. Beyond just saying that the curve was drawn on a piece of paper or a sheet of
rubber, what exactly happens to those curves?

Using the graphs of functions to represent these curves in the domain of the transformation fails. For
example, rotating such a curve, y = f(x), is likely to produce a curve that isn't the graph of any function,
u = g(v), in the codomain:

Our choice is, then, parametric curves :
P : R→ R2 ,

given by:
X = P (t) or x = x(t), y = y(t) .

Example 5.4.1: non-uniform re-scale

Let's consider this transformation:  u = 2x

v = 4y

Here, this function is given by the matrix:

F =

2 0

0 4


We can see what happens to the lines through 0:
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They all remain straight even though some of them rotate.

Let's take a closer look at the straight lines that pass through the origin. The equation of such a line is very
simple:

P (t) = tV ,

where V 6= 0 is some �xed vector. As V is transformed by F , then so are all of its multiples:

It's another straight line. Linear operators don't bend!

We con�rm the observation:

Theorem 5.4.2: Images of Lines

The image of a straight line through the origin under a linear operator will
produce another straight line thorough the origin.

Proof.

Suppose F is such an operator and V is the direction vector of the line. Then:

P (t) = tV
F−−−−→ (F ◦ P )(t) = F (tV ) = tF (V )

This is a line with F (V ) as the direction vector.

In general, we witness the following:

parametric curve
F−−−−→ parametric curve

Let's consider two more basic types of curves.

The graph of a quadratic polynomial is called a �parabola�. This is what we care about:

I Any parabola can be acquired from the parabola of f(x) = x2 via a vertical stretch or shrink.

It follows from the fact that every quadratic polynomial has its vertex form:

f(x) = a(x− h)2 + k .
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There are many circles on the plane. This is what we care about:

I Any circle can be acquired from the circle of x2 + y2 = 1 via a uniform stretch or shrink.

It follows from the fact that every circle has its centered form:

(x− h)2 + (y − k)2 = r2 .

Exercise 5.4.3

Explain how the graph of any exponential function ax can be acquired from the natural one ex via
linear transformations. Same for the logarithms.

We take advantage of our knowledge of vector algebra to summarize these three cases:

�template� relation parametric

/ line: y − 3 = 2(x− 1) (x, y) = (1, 3) + t < 1, 2 >

y = x vertical stretch by 2, shift up by < 1, 3 >

^ parabola: y − 3 = 2(x− 1)2 (x, y) = (1, 3)+ < t, 2t2 >

y = x2 vertical stretch by 2, shift up by < 1, 3 >

◦ circle: (y − 3)2 + (x− 1)2 = 22 (x, y) = (1, 3) + 2 < cos t, sin t >

x2 + y2 = 1 uniform stretch by 2, shift up by < 1, 3 >

We will need to visualize examples of linear operators on the plane:

F : R2 → R2 .

We illustrate them by creating marks on the original plane and then see what happens to them as they
appear on the new plane. Each of these marks will be a parametric curve in the domain:

P : R→ R2, X = P (t) .

We then plot its image in the codomain under the transformation Y = F (X):
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To be precise, we plot the image of the composition of the two functions:

F ◦ P : R→ R2, Y = F (P (t)) .

It is also a parametric curve.

In other words, we have:

R2 F−−−−→ R2

↑P ↗F◦P

R

We will plot many pairs of curves each time:

old curve:

R2

↑P
R

−→ new curve:

R2

↗F◦P

R

We can use this setup in two ways:

1. We can study a curve by applying various transformations to the plane.

2. We can study a transformation by applying it to various curves.

We did the former in the beginning of the section. Now the latter.

Example 5.4.4: stretch

So, applying transformations to curves will give us new curves. For example, we start with the circles:

P (t) = r < cos t, sin t >, r > 0 .

Then, using scalar multiplication by 2 on all vectors means stretching radially the whole space. We
then discover that the image of the curve is given by:

Q(t) = 2P (t) = 2r < cos t, sin t > .

It is a parametric curve of the circle of radius 2r:

What curves do we choose? Familiar ones: straight lines and circles. How many? The whole grid.

We have two possibilities:

Cartesian grid: a rectangular grid of lines

Polar grid: a grid of circles and radii
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The Cartesian grid is created with these two types of lines:

These lines are de�ned parametrically:

1. horizontal: x = t, y = k, k = ...− 3,−2,−1, 0, 1, 2, 3, ...

2. vertical: x = k, y = t, k = ...− 3,−2,−1, 0, 1, 2, 3, ...

The polar grid is created with these two types of lines:

Here they are de�ned parametrically:

1. rays: x = at, y = bt, a, b real; and

2. circles: x = r cos t, y = r sin t, r real.

We will apply the Cartesian or the polar as needed.

Example 5.4.5: collapse on axis

Let's consider this very simple function: u = 2x

v = 0
, re-written:

u
v

 =

2 0

0 0

 ·
x
y

 .

Below, one can see how this function collapses the whole plane to the x-axis:

This is what happens to every circle:
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In the meantime, the x-axis is stretched by a factor of 2. We can see both in the matrix:

stretch of x → 2, 0 ←
y doesn't depends on x → 0, 0 ←

 collapse

Because of the collapse of the y-axis, the function is neither one-to-one nor onto.

Example 5.4.6: stretch-shrink along axes

Let's revisit this linear operator:

F =

2 0

0 4

 .

We look at the circles �rst:

The circles have become ellipses! We can see what happens in the matrix:

stretch of x → 2, 0 ← x doesn't depends on y

y doesn't depends on x → 0, 4 ← stretch of y

The axes stay put. What happens to the rest of the plane? Let's look at the lines now:

Since the stretching is non-uniform, the vectors turn. However, since the basis vectors e1 and e2 don't
turn, this is not a rotation but rather a �fanning out� of the vectors. Their slopes have increased. We
also discover that the function is both one-to-one and onto.
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Example 5.4.7: stretch-shrink along axes

A slightly di�erent function is:  u = −x
v = 4y

It is simple because the two variables are fully separated. Just the circles:

The slight change to the function produces a similar but di�erent pattern: We see the reversal of the
direction of the ellipse around the origin. We way that the orientation has changed. The matrix of F
is still diagonal:

F =

−1 0

0 4

 .

The function is both one-to-one and onto.

Example 5.4.8: experiment

Let's consider a more general function: u = x +2y

v = 2x +4y
=⇒ F =

1 2

2 4

 .

It is hard to tell what it does, judging by its matrix. We experiment :

It appears that the function is stretching the plane in one direction and collapsing in another. That's
why there is a whole line of points X with FX = 0. To �nd it, we solve this equation: x +2y = 0

2x +4y = 0
=⇒ x = −2y .
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The vector < 1, 2 > is, in fact, visible in the matrix. Because of the collapse of the green line to the
origin, the function is neither one-to-one nor onto.

Exercise 5.4.9

Show where each point goes.

Example 5.4.10: experiment

Consider the following matrix F :

F =

−1 −2

1 −4

 .

Again, it's too complex to reveal what it does, and we have to experiment:

It looks like a non-uniform stretch along diagonal directions. The function is both one-to-one and
onto.

Exercise 5.4.11

Describe what is happening under this operator F :

F =

1 2

3 2

 .

Example 5.4.12: skewing-shearing

Consider this matrix:

F =

1 1

0 1

 .

Below, we replace circles with ellipses and see what happens to them under such a function:
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There seems to be no stretch along the x-axis. There is still angular stretch-shrink but this time it is
between the two ends of the same line.

To see more clearly, consider the Cartesian grid. This is what happens to a square:

The plane is skewed, like a deck of cards:

Such a skewing can be carried out with any image-editing software. The function is both one-to-one
and onto.

Example 5.4.13: rotation π/2

Consider a rotation through 90 degrees: (x, y) becomes (−y, x). We have: u = −y
v = x

, re-written:

u
v

 =

 0 1

−1 0

 ·
x
y

 .

The experiment con�rms what we know:
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We've had many examples, but how do we build a linear operator from a description?

The solution relies on the following simple observation:

Theorem 5.4.14: Columns are Values of Basis Vectors

The two columns of the matrix of a linear operator are the values of the two
basis vectors under this operator:

F =

a b

c d

 =⇒ F

1

0

 =

a
c

 and F

0

1

 =

b
d

 .

Exercise 5.4.15

Prove the theorem.

The converse is just as important:

Theorem 5.4.16: Values of Basis Vectors Are Columns

The matrix of a linear operator is fully determined by the values of the two basis
vectors under this operator.

In other words, we merge the two column-vectors into a matrix:

F :

1

0

 7→
a
c

, F :

0

1

 7→
b
d

 Merge: F =

a b

c d

 .
Example 5.4.17: matrices from values

This is the zero operator:1

0

 7→
0

0

 ,
0

1

 7→
0

0

 Merge: 0 =

0 0

0 0

 .

This is the identity: 1

0

 7→
1

0

 ,
0

1

 7→
0

1

 Merge: I =

1 0

0 1

 .
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This is the horizontal stretch by 2:1

0

 7→
2

0

 ,
0

1

 7→
0

1

 Merge: Sx =

2 0

0 1

 .

And this is the vertical stretch by 3:1

0

 7→
1

0

 ,
0

1

 7→
0

3

 Merge: Sy =

1 0

0 3

 .

This is the horizontal �ip:1

0

 7→
−1

0

 ,
0

1

 7→
0

1

 Merge: Fx =

−1 0

0 1

 .

And this is the vertical �ip:1

0

 7→
1

0

 ,
0

1

 7→
 0

−1

 Merge: Fy =

1 0

0 −1

 .

This is the �ip about the diagonal:1

0

 7→
0

1

 ,
0

1

 7→
1

0

 Merge: Fd =

0 1

1 0

 .

Warning!

Its matrix is just an abbreviated representation of
a linear operator.

Exercise 5.4.18

Suppose a linear operator A:
• leaves the x-axis intact, and
• stretches the y-axis by a factor of 2.

Find the matrix of A.

Exercise 5.4.19

Suppose a linear operator A:
• rotates the x-axis 45 degrees clockwise, and
• �ips the y-axis.

Find the matrix of A.

Exercise 5.4.20

Suppose a linear operator A:
• leaves the x-axis intact, and
• stretches the diagonal y = x by a factor of 2.

Find the matrix of A.
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Exercise 5.4.21

Make up your own linear operator and �nd its matrix. Repeat.

Let's apply this result to some transformations we have been interested in.

Theorem 5.4.22: Matrix of Rotation

The linear operator of rotation through an angle α is given by the following
matrix:

R =

cosα − sinα

sinα cosα



Proof.

We only need to see where the basis vectors < 1, 0 > and < 0, 1 > go.

The �rst one is simple:

R

1

0

 =

cosα

sinα

 .

The second one �ips the sign of the x-component:

R

0

1

 =

− sinα

cosα

 .

Example 5.4.23: rotation π/4

Consider a rotation through 45 degrees:{
u = cos π

4
x − sin π

4
y

v = sin π
4
x + cos π

4
y

, re-written:

[
u

v

]
=

[
cos π

4
− sin π

4

sin π
4

cos π
4

]
·

[
x

y

]
.

We plot ellipses instead of circles to make it easier to see what is happening:
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The function is both one-to-one and onto.

Example 5.4.24: rotation with stretch-shrink

Let's consider a more complex function: u = 3x −13y

v = 5x +y
.

Here, the matrix of F is not diagonal:

F =

3 −13

5 1

 .

This is what happens to our ellipses:

We seem to have a combination of stretching, �ipping, and rotating... The function is both one-to-one
and onto.

For linear operators, there is an easy way to answer the question we have been asking: When is it one-to-one?

Theorem 5.4.25: One-to-one Linear Operator

A linear operator F is one-to-one if and only if the equation F (X) = 0 has only
the zero solution.

Proof.

Suppose there are two distinct solutions X 6= Y . Then, we conclude:

F (X) = F (Y ) =⇒ F (X)− F (Y ) = 0 =⇒ F (X − Y ) = 0 .

In other words, we have found such a Z = X − Y 6= 0 that F (Z) = 0 = F (0).

Exercise 5.4.26

Prove the rest of the theorem.

In other words, F is one-to-one when

F (X) = 0 =⇒ X = 0 .

So, to determine whether a mixture problem has a single solution, we choose, in a twist, to replace it with a
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mixture problem that requires to produce zeros in all equations. Then we ask if this problem has a non-zero
solution.

5.5. The determinant of a matrix

Example 5.5.1: one-to-one and not

Consider this matrix:

A =

1 1

0 1

 .

Is the linear operator one-to-one? Every one of our ellipses in the domain has been stretched and
maybe rotated but they still cover the the whole plane in the codomain:

It is one-to-one.

This one is di�erent:

A =

1 2

2 4

 .

We just watch where the two basis vectors go:

What is the di�erence from the former case? They go to multiples of each other: Their values are
proportional to the vector < 1, 2 >. We can see that in the matrix that the second column is twice
the �rst:

2

1

2

 =

2

4

 .

In fact, a whole line of vectors goes to 0; it's not one-to-one!

De�nition 5.5.2: singular matrix

A 2× 2 matrix A is called singular when its two columns are multiples of each
other.
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So, for a singular matrix

A =

a b

c d

 ,

there is such an x that: a
c

 = x

b
d

 .

Let's examine this idea: Under what circumstances is a matrix singular?

We break the vector equation above into two scalar equations:

a = xb, c = xd .

Instead of solving them for x, we assume that there is such an x. We multiply the �rst by d, and the second
by b, and then subtract to eliminate x:

ad = xbd

cb = xbd

ad− bc = 0

We conclude that if such an x exists, then
ad− bc = 0 .

In this expression, the terms of the matrix are cross-multiplied and subtracted:a b

c d

 → ad− bc .

This number is an important characteristic of the matrix:

De�nition 5.5.3: determinant

The determinant of a 2× 2 matrix A is de�ned and denoted as follows:

detA = det

a b

c d

 = ad− bc

What does the determinant determine?

Theorem 5.5.4: Singular Matrix and Determinant

A 2× 2 matrix A is singular if and only if detA = 0.

Proof.

(⇒) Suppose A is singular, thena
c

 = x

b
d

 =⇒

 a = xb

c = xd
=⇒ detA = ad− bc = (xb)d− b(xd) = 0 .

(⇐) Suppose ad− bc = 0, then let's �nd x, the multiple.
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• Case 1: Assume b 6= 0, then choose x =
a

b
. Then

xb =
a

b
b = a,

xd =
a

b
d =

ad

b
=
bc

b
= c.

So

x

b
d

 =

a
c

 .

• Case 2: Assume a 6= 0 ...

Exercise 5.5.5

Finish the proof.

We make the following observation about the determinant, which will also reappear in the case of n × n
matrices:

I The determinant is an alternating sum of terms, each of which is the product of n of the
matrix's entries, exactly one from each row and exactly one from each column.

Let's consider a special matrix equation, with the zero right-hand side:

F (X) = 0 .

It is called a homogeneous equation.

We know that there is always at least one solution, the zero vector!

The question is then becomes

I Are there any non-zero solutions?

We know that the answer may be provided by a more basic question:

I Is the function one-to-one?

Let's start with dimension 1:
f(x) = mx, solve f(x) = 0 .

This is simple:
mx = 0 =⇒ x = 0 ... unless m = 0.

All functions except the constant zero function are one-to-one and, therefore, can only produce a single
solution for our equation:
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Is there a similar decisive condition in the two-dimensional case? We do have the zero operator (matrix):

F (X) = 0 for all X .

It collapses the whole plane to the origin. However, there are other, less extreme collapses, projections onto
lines:

Then a whole line is taken to 0. They are also not one-to-one!

We deploy simple algebra in order to resolve this issue.

Theorem 5.5.6: Non-Zero Solutions

Suppose A is a 2 × 2 matrix. Then, detA 6= 0 if and only if the solution set of
the matrix equation AX = 0 consists of only 0.

Proof.

We will use the Zero Factor Property: The product of two numbers is zero if and only if either one of
them (or both) is zero; i.e.,

a = 0 OR b = 0 ⇐⇒ ab = 0 .

Let's solve the system of linear equations: ax + by = 0, (1)

cx + dy = 0. (2)

From (1), we derive:
y = −ax/b, provided b 6= 0. (3)

Substitute this into (2):
cx+ d(−ax/b) = 0 .

Then
x(c− da/b) = 0 ,
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or, alternatively,
x(cb− da) = 0, when b 6= 0 .

One possibility is x = 0; it follows from (3) that y = 0 too. Then, we have two cases for b 6= 0:
• Case 1: x = 0, y = 0, or
• Case 2: ad− bc = 0.

Case 1 doesn't interest us. In case 2, x is arbitrary and there may be non-zero solutions.

Now, we apply this analysis to y in (1) instead of x; we have for a 6= 0:
• Case 1: x = 0, y = 0, or
• Case 2: ad− bc = 0.

The result is the same! Furthermore, if we apply this analysis for x and y in (2) instead of (1), we
have the same two cases. Thus, whenever one of the four coe�cients, a, b, c, d, is non-zero, we have
these cases:
• Case 1: x = 0, y = 0, or
• Case 2: ad− bc = 0.

But when a = b = c = d = 0, Case 2 is satis�ed... and we can have any values for x and y!

According to the analysis above:
detA 6= 0 =⇒ x = y = 0 .

The converse is also true. Indeed, let's consider our system of linear equations again: ax + by = 0, (1)

cx + dy = 0. (2)

We multiply (1) by c and (2) by a. Then we have:
cax + cby = 0 c · (1)

acx + ady = 0 a · (2)

(ca− ac)x + (cb− ad)y = 0

0 · x − detA · y = 0

The third equation is the result of subtraction of the �rst two. The whole equation is zero when
detA = 0! This means that equations (1) and (2) represent two identical lines on the plane. It follows
that the original system has in�nitely many solutions.

Exercise 5.5.7

What if a = 0 or c = 0?

Example 5.5.8: computing determinants

The �ip over the y-axis:

det

−1 0

0 1

 = (−1) · 1− 0 · 0 = −1 .

The stretch:

det

λ 0

0 µ

 = λ · µ− 0 · 0 = λ · µ .
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The rotation:

det

cosα − sinα

sinα cosα

 = cosα · cosα− (− sinα) · sinα = cos2 α + sin2 α = 1 ,

by the Pythagorean Theorem.

These have non-zero determinants. Meanwhile, the projection on the x-axis has a zero determinant:

det

λ 0

0 0

 = λ · 0− 0 · 0 = 0 .

As you can see, we can derive some more information from the value of the determinant than just that
it's one-to-one.

The following is the contra-positive form of the theorem:

Corollary 5.5.9: Non-Zero Solutions

Suppose A is a 2× 2 matrix. Then, there is such an X 6= 0 that AX = 0 if and
only if detA = 0.

Since A(0) = 0, this indicates that A isn't one-to-one. There is more:

Corollary 5.5.10: Bijections and Determinants

Suppose A is a 2× 2 matrix. It is a bijection if and only if detA 6= 0.

Exercise 5.5.11

Prove the rest of the theorem.

So, a zero determinant indicates that some non-zero vector X is taken to 0 by A. It follows that all the
multiples, kX, of X are also taken to 0:

A(kX) = kA(X) = k0 = 0 .

In other words, the whole line is collapsed to 0.

Theorem 5.5.12: Line Collapses

If a vector is taken to zero by a linear operator, then the whole line in the
direction of this vector from the origin is taken to zero:

A(X) = 0 =⇒ A

(
{Y : Y = kX, k real }

)
= 0 .

We can place di�erent coordinate systems on the same plane. The origin is the same, but the units and the
angles of the axes may be di�erent:
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We know that the vector algebra remains the same. However, a component representation of a vector does
depend on our choice of the Cartesian system. Therefore, a matrix representation of a linear operator
depends on our choice of the Cartesian system too. Remarkably, this isn't true for the determinant! The
following important fact is accepted without proof:

Corollary 5.5.13: Determinant Is Intrinsic

The determinant of a linear operator remains the same in any Cartesian coordi-
nate system.

The determinant will tell us a lot about the linear operator:

• detA < 0 indicates the presence of a �ip.

• | detA| = 1 indicates that this is a motion.

• detA = 0 indicates the collapse or the presence of a projection.

But how do we detect stretches or rotations?

5.6. It's a stretch: eigenvalues and eigenvectors

An easy observation about rotation is that if just one vector isn't rotated, there is no rotation!

If a vector isn't rotated, what can possibly happen to it under a linear operator? A stretch (with a possible
�ip). In other words, it's scalar multiplication:

V 7→ λV ,

for some real λ.

Example 5.6.1: re-scaling

Consider a linear operator given by the matrix:

A =

2 0

0 3

 .

What exactly does this transformation of the plane do to it? To answer, just consider where A takes
the standard basis vectors:

A : e1 =

[
1

0

]
7→

[
2

0

]
= 2e1

A : e2 =

[
0

1

]
7→

[
0

3

]
= 3e2
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In other words, what happens to either is a (di�erent) scalar multiplication:

A(e1) = 2e1 and A(e2) = 3e2

Furthermore, the entirety of each of the axes is stretched this way. So, we can say that A stretches
the plane horizontally by a factor of 2 and vertically by 3, in either order:

Even though we speak of stretching the plane, this is not to say that all vectors are stretched. Indeed,
other vectors may be rotated; for example, the values of < 1, 1 > isn't its multiple:

A

1

1

 =

2

3

 6= λ

1

1

 ,

for any real λ.

Exercise 5.6.2

Analyze a linear operator with a diagonal matrix:

A =

h 0

0 v

 .

Example 5.6.3: stretch along other axes

What if the operator stretches along other lines? Here we simply rotate the picture in the last example
through 45 degrees to make this point:

The circle is stretched, but in what direction or directions? Is there a rotation too? It is hard to tell
without prior knowledge. We also have seen this:
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The plane is visibly stretched, but in what direction or directions? It is hard to tell because the result
simply looks skewed.

It might be typical then that a linear operator A rotates some vectors, but A also stretches other vectors.
On such a vector V , A acts as a scalar multiplication:

A(V ) = λV ,

for some number λ. For example, we see disproportional horizontal and vertical stretching:

This idea bring us to the following important concept:

De�nition 5.6.4: eigenvalue

Given a linear operator A : R2 → R2, a (real) number λ is called an eigenvalue

of A if it satis�es:

A(V ) = λV

for some non-zero vector V in R2. Then, V is called an eigenvector of A corre-
sponding to λ.

Warning!

Vector V = 0 is excluded because we always have
A(0) = 0.

Note that �eigen� means �characteristic� in German.

Now, how do we �nd these?

Example 5.6.5: identity operator

If this is the identity matrix, A = I, the equation is easy to solve:

λV = AV = IV = V.

So, λ = 1. This is the only eigenvalue. What are its eigenvectors? All vectors but 0. Indeed, no vector
is rotated!
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Exercise 5.6.6

What about a stretch by a factor of k?

Example 5.6.7: diagonal matrix

Let's revisit this diagonal matrix:

A =

2 0

0 3

 .

Then our vector equation AV = λV becomes:2 0

0 3

x
y

 = λ

x
y

 .

Let's rewrite: 2x

3y

 =

λx
λy

 =⇒

 2x = λx AND

3y = λy
=⇒

 x(2− λ) = 0, (1)

y(3− λ) = 0. (2)

The two equations must be satis�ed simultaneously.

We will use the Zero Factor Rule again. Now, we have V =< x, y > 6= 0, so either x 6= 0 or y 6= 0.
Let's use the above equations to consider these two cases:
• Case 1: x 6= 0, then from (1), we have: 2− λ = 0 =⇒ λ = 2.
• Case 2: y 6= 0, then from (2), we have: 3− λ = 0 =⇒ λ = 3.

These are the only two possibilities. We have found the eigenvalues!

The second part is to �nd the eigenvectors. If λ = 2, then y = 0 from (2). Therefore, the corresponding
eigenvectors are: x

0

 , x 6= 0 , A

x
0

 = 2

x
0

 .

If λ = 3, then x = 0 from (1). Therefore, the corresponding eigenvectors are:0

y

 , y 6= 0 , A

0

y

 = 3

0

y

 .

These two sets are almost equal to the two axes! If we append 0 to these sets of eigenvectors, we have
the following. For λ = 2, the set is the x-axis:

x
0

 : x real


And for λ = 3, the set is the y-axis: 

0

y

 : y real


The solution is time-consuming, but there will be a short-cut later. We have con�rmed the fact that,
because of the non-uniform re-scaling, all vectors are rotated except for the vertical and horizontal
ones.
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Exercise 5.6.8

Analyze a linear operator with a diagonal matrix:

A =

h 0

0 v

 .

From the example, we can guess a pattern.

Theorem 5.6.9: Multiples of Eigenvectors

Any non-zero multiple of an eigenvector is also an eigenvector � with respect to
the same eigenvalue.

Proof.

Suppose V is an eigenvector of a linear operator A corresponding to the eigenvalue λ:

AV = λV .

If W = kV , then

AW = A(kV ) Substitute.

= kAV Use the fact that it preserves scalar multiplication.

= kλV Use the fact that this is an eigenvector of λ.

= λ(kV ) Rearrange.

= λW Substitute back.

The whole line is made up of eigenvectors. It's a copy of R! More general is the following:

De�nition 5.6.10: eigenspace

For an eigenvalue λ of a linear operator A, the eigenspace of A corresponding to
λ is de�ned and denoted by the following:

E(λ) = {V : A(V ) = λV } .

It's all eigenvectors of λ plus 0. We include it in order to make this set into a space, a vector space.

From the examples above, we derive the following.

Example 5.6.11: identity matrix

For the identity matrix, we have:
E(1) = R2 .

Example 5.6.12: diagonal matrix

For

A =

2 0

0 3

 ,

we have:
• E(2) is the x-axis.
• E(3) is the y-axis.
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Two copies of R!

Example 5.6.13: rotation

A rotation doesn't stretch any vectors. Therefore, there are no (real) eigenvalues. Therefore, there are
no eigenvectors and no eigenspaces.

Example 5.6.14: zero matrix

For the zero matrix, A = 0, we have:

AV = λV, or 0 = λV .

Therefore, λ = 0 since V 6= 0. Furthermore:

E(0) = R2 .

Example 5.6.15: projection

Consider now the projection on the x-axis,

P =

1 0

0 0

 .

Then our matrix equation is solved as follows:1 0

0 0

x
y

 = λ

x
y

 =⇒

x
0

 =

λx
λy

 =⇒

 x = λx AND

0 = λy

So, the only possible cases are:
λ = 0 and λ = 1 .

It appears that the operator is projecting in one direction and doing nothing in another.

Next, in order to �nd the corresponding eigenvectors, we now go back to the system of linear equations
for x and y. We consider these two cases. First:

Case 1: λ = 0 =⇒

{
x = 0 · x AND

0 = 0 · y
=⇒

{
x = 0 AND

y any
=⇒ E(0) =


0

y

 : y real


This is the y-axis. Second:

Case 2: λ = 1 =⇒

{
x = 1 · x AND

0 = 1 · y
=⇒

{
x any AND

y = 0
=⇒ E(1) =


x

0

 : x real


This is the x-axis.

Typically, we have two eigenvectors that aren't multiples of each other:

• A(V1) = λ1V1 and

• A(V2) = λ2V2,

for some numbers λ1 6= λ2.
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Example 5.6.16: stretch along other axes

Let's revisit the stretch along special lines. It might look like this:

However, how would we even �nd these special directions?

Below, we try the basis vectors, look at where they go (from the matrix itself), and see that they have
rotated:

They are not eigenvectors! The eigenvectors below may be found by trial and error or by the method
presented below; they, indeed, don't rotate:

Example 5.6.17: no eigenvectors

Can we derive what a linear operator does from its matrix only, without visualization? Suppose A is
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given:

A =

0 −1

1 0

 .

Then, to �nd the eigenvalues, we consider this system of linear equations:

AV = λV =⇒

0 −1

1 0

x
y

 = λ

x
y

 .

We solve it as follows:

=⇒

 −y = λx AND

x = λy
=⇒

 −xy = λx2 AND

xy = λy2
=⇒ λx2 = −λy2 =⇒ x2 = −y2 OR λ = 0 .

A direct examination reveals that λ = 0 is not an eigenvalue:

AV = 0 · V =⇒

0 −1

1 0

x
y

 = 0 =⇒ x = 0, y = 0 .

In the meantime, the equation x2 = −y2 is impossible unless both x and y are zeros, which is not
allowed.

There seems to be no eigenvalues, certainly not real ones... This means that every vector is rotated.
Maybe this is a rotation? Yes, we recognize the matrix of the 90-degree rotation.

Exercise 5.6.18

How does the determinant of A tell you whether 0 is an eigenvalue?

Exercise 5.6.19

Show that a zero eigenvalue implies a collapse.

Example 5.6.20: need for homogeneous system

Let's revisit this linear operator:

A =

−1 −2

1 −4

 .

Our vector equation becomes: −1 −2

1 −4

x
y

 = λ

x
y

 .

We rewrite, again, as a system of linear equations:−x− 2y

x− 4y

 =

λx
λy

 =⇒

 (−1− λ)x − 2y = 0 AND

x + (−4− λ)y = 0

This is another system of linear equations to be solved, again. It is more complex than the ones we
saw above and none of the shortcuts are available... The system corresponds to a homogeneous vector
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equation: −1− λ −2

1 −4− λ

x
y

 =

0

0

 .

What do we know about those?

Let's review.

Suppose we have a linear operator A and we need to �nd its eigenvalues and eigenvectors. Let's, for now,
concentrate on the former. Suppose λ is an eigenvalue of A. This means that λ is a real number and there
is some non-zero vector V that satis�es:

AV = λV

Let's do some vector algebra:
AV = λV =⇒ AV − λV = 0 .

We want to turn this equation of vectors and matrices into one entirely of matrices. We can take this
equation one step further by observing that

λV = λIV ,

where I is the identity matrix. The linearity of these operators allows to factor V out of our equation. It
takes a new form:

(A− λI)V = 0

The equation characterizes an eigenvector and its eigenvalues in a space of any dimension.

Example 5.6.21: dimension 2

In the R2 case, we make this speci�c when our linear operator A is speci�c. Suppose it is given by a
matrix:

A =

a b

c d

 .

We carry out these computations:

AV =

a b

c d

x
y

 =

ax+ by

cx+ dy

 and λ

x
y

 =

λx
λy

 .

These two vectors are supposed to be equal, so we have a system of linear equations, which is then
transformed into a homogeneous form: ax + by = λx AND

cx + dy = λy.
⇐⇒

 (a− λ)x + by = 0 AND

cx + (d− λ)y = 0.

The matrix of this system is:

G =

a− λ b

c d− λ

 .

Following these computations, we recognize some matrix algebra:

G =

a b

c d

− λ
1 0

0 1

 .
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We go back to our compact representation:

Theorem 5.6.22: Eigenvalues and Eigenvectors

Suppose A is a linear operator. Then every pair of an eigenvalue λ and its
eigenvector V of A satisfy the following matrix equation:

GV = 0, where G = A− λI

Now, the question about the eigenvalues of the matrix A becomes one about the matrix G:

I Under what circumstances does the system GV = 0 have a non-zero solution?

We know the answer from the last section:

I The system GV = 0 has a non-zero solution if and only if detG = 0.

We have proven the following result:

Theorem 5.6.23: Eigenvalues as Roots

Suppose A is a linear operator R2. Then every eigenvalue λ of A is a solution
to the following equation:

det(A− λI) = 0

In contrast to the matrix equation in the last theorem, this simple algebraic equation allows to discover
eigenvalues and then, possibly, their eigenvectors.

We codify this idea below:

De�nition 5.6.24: characteristic polynomial

The characteristic polynomial of a 2× 2 matrix A is de�ned to be:

χA(λ) = det(A− λI)

Meanwhile, the equation χA(λ) = 0 is called the characteristic equation.

This is the convenient form of the equation we are to solve for dimension n = 2:

χA(λ) = det

a− λ b

c d− λ

 = (a− λ)(d− λ)− bc = 0 .

It's quadratic!

We don't know what a linear operator does but � even without the eigenvectors � we can tell a lot from its
eigenvalues. We rediscover some of the information about familiar operators below.

Example 5.6.25: re-scaling?

Consider again:

A =

2 0

0 3

 .
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Then we solve:

χA(λ) = det

2− λ 0

0 3− λ

 = (2− λ)(3− λ) = 0 .

Therefore, we have:
λ = 2, 3 .

We conclude that the linear operator stretches the plane by these factors in two di�erent directions.
What are those directions? We can't tell without �nding the eigenvectors.

Example 5.6.26: projection?

If

A =

1 0

0 0

 ,

the characteristic equation is:

χA(λ) = det

1− λ 0

0 −λ

 = (1− λ)(−λ) = 0 .

Then,
λ = 1, 0 .

We conclude that the linear operator does nothing in one direction and collapses in another. That's a
projection! What are those directions? We don't know without the eigenvectors.

Example 5.6.27: rotation?

Consider

A =

0 −1

1 0

 .

Then,

χA(λ) = det

−λ −1

1 −λ

 = λ2 + 1 = 0 .

No real solutions! So, no non-zero vector is taken by A to its own multiple. Maybe this is a rotation...

These three examples suggest a classi�cation of linear operators of the plane. But �rst a quick review of
quadratic polynomials.

Consider one:
f(x) = x2 + px+ q .

The Quadratic Formula then provides the x-intercepts of this function:

x = −p
2
±
√
p2 − 4q

2
.

Of course, the x-intercepts are the real solutions of this equation and that is why the result only makes
sense when the discriminant of the quadratic polynomial,

D = p2 − 4q ,

is non-negative.
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Increasing the value of the free term q makes the graph of y = f(x) shift upward and, eventually, pass the
x-axis entirely. We can observe how its two x-intercepts start to get closer to each other, then merge, and
�nally disappear:

This process is explained by what is happening, with the growth of q, to the roots given by the Quadratic
Formula:

x1,2 = −p
2
±
√
D

2
.

There are three states:

1. Starting with a positive value, D decreases, and

√
D

2
decreases.

2. Then D becomes 0 and, therefore, we have

√
D

2
= 0.

3. ThenD becomes negative, and there are no real roots (complex roots are discussed in the next chapter).

So, we have:

• The eigenvalues are the real roots of the (quadratic) characteristic polynomial χA.

• Therefore, the number of eigenvalues is less than or equal to 2, counting their multiplicities.

Let's try to expand the characterstic polynomial and see if patterns emerge:

χ(λ) = det

a− λ b

c d− λ


= (a− λ)(d− λ)− bc

= ad− aλ− λd+ λ2 − bc

= λ2 − (a+ d)λ+ (ad− bc)

= λ2 − trAλ+ detA .

The term in the middle is de�ned as follows:

De�nition 5.6.28: trace of matrix

The trace of a matrix A is the sum of its diagonal elements. It is denoted by:

trA = tr

a b

c d

 = a+ d

So, the trace appears � along with the determinant � in the characteristic polynomial:
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Theorem 5.6.29: Characteristic Polynomial

The characteristic polynomial of matrix A takes this form:

χA(λ) = λ2 − trA · λ+ detA

It is known that not only the determinant but also the trace are independent of our choice of a Cartesian
system. Therefore, so is the characteristic polynomial.

The discriminant of the characteristic polynomial can now be used to tell what the linear operators does:

D = (trA)2 − 4 detA .

Theorem 5.6.30: Classi�cation of Linear Operators

Suppose A is a linear operator given by a 2×2 matrix and D is the discriminant
of its characteristic polynomial. Then we have three cases:

1. D > 0. The eigenvalues are distinct: Operator A non-uniformly re-scales
the plane in the distinct directions of the corresponding eigenvectors.

2. D = 0. The eigenvalues are equal: Operator A uniformly re-scales the
plane in all directions unless the eigenvectors are all multiples of each
other.

3. D < 0. There are no eigenvalues: Operator A rotates the plane (with a
possible re-scaling).

Proof.

For Part 1, we already know that the directions are distinct because if two eigenvectors are multiples
of each other, then they have the same eigenvalue. Indeed:

A(V ) = λV =⇒ A(kV ) = kA(V ) = kλV = λ(kV ) .

Parts 2 and 3 are addressed later in the chapter.

5.7. The signi�cance of eigenvectors

We have shown how one can visualize the way a linear operator transforms the plane: by examining what
happens to various curves in the domain. By mapping these curves, one can discover stretching, shrinking
in various directions, rotations, etc.

In the last section, we also saw how one can understand the way a linear operator transforms the plane: by
examining its eigenvalues. The method is entirely algebraic rather than experimental. We simply �nd the
directions of pure stretch for F :

FV = λV

The visualizations are produced by a spreadsheet. The spreadsheet also computes the eigenvector and its
eigenvalues; they are shown above the graphs.The spreadsheet also shows eigenspaces as two (or one, or
none) straight lines; they remain in place under the transformation.

We would like to learn how to predict the outcome by examining only its matrix.
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Below is a familiar fact that will take us down that road:

Theorem 5.7.1: Preimages of Zero

If the image of V 6= 0 under a linear operator F is zero, then so is that of any of
its multiples kV .

In other words, the whole line with V as its direction vector is collapsed to 0 by F :

Example 5.7.2: collapse on axis

We start with a familiar example: u = 2x

v = 0
is re-written as

u
v

 =

2 0

0 0

 x
y

 .

Even without the characteristic equation, we can guess the eigenvalue-eigenvector pairs:2 0

0 0

 1

0

 = 2

1

0

 ,
2 0

0 0

 0

1

 = 0

0

1

 .

Below, one can see how this operator projects the whole plane to the x-axis:

The operator collapses the y-axis to 0, while the x-axis is stretched by a factor of 2. The standard
basis vectors happen to be eigenvectors! That's the reason why the matrix is so simple.
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Example 5.7.3: stretch-shrink along axes

Let's consider this linear operator and its matrix u = 2x

v = 4y
and F =

2 0

0 4

 .

Once again, we don't need the characteristic equation to suggest the eigenvalues (and then �nd the
eigenvectors): 2 0

0 0

 1

0

 = 2

1

0

 ,
2 0

0 0

 0

1

 = 4

0

1

 .

As it turns out, we only need to track the values of the basis vectors, and the rest of the values are
seen as a linear combination of these:

The rest of the vectors turn non-uniformly; i.e., they �fan out�:

This is what happens to an arbitrary vector X =< x, y >:

FX =

2 0

0 4

x
y

 = x

2

0

+ y

0

4

 = 2x

1

0

+ 4y

0

1

 = 2xe1 + 4ye2 .

The last expression is a linear combination of the values of the two standard basis vectors. The middle,
however, is also a linear combination but with respect to these two vectors:

V1 =

2

0

 and V2 =

0

4

 .
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They can be thought of as forming a �non-standard� basis. Though not unit vectors as the standard
ones, they are still aligned with the axes. Now, what is the point? Every vector can be expressed as
a linear combination of the two:

< x, y >=
x

2
V1 +

y

4
V2 .

Furthermore, to know where any X goes under F , we need only to know where these two go: It's pure
scalar multiplication! We will see that any pair of eigenvectors � when not multiples of each other �
would do.

Example 5.7.4: stretch-shrink along axes

A slightly di�erent operator is the following: u = −x
v = 4y

and F =

−1 0

0 4

 .
It is still simple because the two variables remain fully separated. As a result, the two transformations
of the axes can be thought of as transformations of the whole plane:

The negative sign produces a di�erent pattern: We see the reversal of the direction of the ellipse
around the origin. Algebraically, we have as before:

FX =

−1 0

0 4

x
y

 = x

−1

0

+ y

0

4

 = −x

1

0

+ 4y

0

1

 = −xe1 + 4ye2 .

Once again, the last expression is a linear combination of the values of the two standard basis vectors,
while the middle is a linear combination but with respect to another basis made up of the eigenvectors:

V1 =

−1

0

 and V2 =

0

4

 .

What if the matrix isn't diagonal?

Exercise 5.7.5

Show that the standard basis vectors e1, e2 are eigenvectors of diagonal matrices.

Instead of the standard basis vectors, we will concentrate on the eigenvectors of the operator in order to
understand what the operator does. To illustrate, just imagine that the picture on the left has been skewed,
resulting in the image of the right:
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The eigenvectors of the matrix will serve as an alternative basis.

Example 5.7.6: collapse

Let's consider a more general linear operator: u = x + 2y

v = 2x + 4y
=⇒ F =

1 2

2 4

 .

It appears that the function has a stretching in one direction and a collapse in another. What are
those directions? Linear algebra gives the answer.

Even without looking for eigenvectors, we know that we can use the fact that the determinant is zero:

detF = det

1 2

2 4

 = 1 · 4− 2 · 2 = 0 .

It's not one-to-one and, in fact, there is a whole line of points X with FX = 0. To �nd it, we solve
this equation by solving this system of equations: x + 2y = 0

2x + 4y = 0
=⇒ x = −2y .

The two equations are equivalent and represent the same line. We have, indirectly, found the eigenspace
and, of course, the eigenvectors of the zero eigenvalue λ1 = 0. We can take this eigenvector for further
use:

V1 =

 2

−1

 =⇒ FV1 = 0 .

Let's instead turn to the characteristic polynomial:

det(F − λI) = det

1− λ 2

2 4− λ

 = λ2 − 5λ = λ(λ− 5) =⇒ λ1 = 0, λ2 = 5 .
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Let's �nd the eigenvectors for λ2 = 5. We need to solve the vector equation:

FV = 5V ,

i.e.,

FV =

1 2

2 4

x
y

 = 5

x
y

 .

This gives as the following system of two linear equations (it's the same equation): x + 2y = 5x AND

2x + 4y = 5y
=⇒

 −4x + 2y = 0 AND

2x − y = 0
=⇒ y = 2x .

This line is the eigenspace. We choose a vector along this line to as the eigenvector for further use:

V2 =

1

2

 .

We summarize what F does:
• A projection along the vector < 2,−1 >: The line x = −2y is collapsed to 0.
• A stretch by a factor of 5 along the vector < 1, 2 >: The line y = 2x is stretched without any
rotation.

We have con�rmed the illustration above!

Furthermore, the two eigenvectors aren't multiples of each other. That is why every vector is a linear
combination of the two eigenvectors and, therefore, its value under F is a linear combination of the
eigenvectors too:

X = xV1 + yV2 =⇒ FX = x · 0 · V1 + y · 5 · V2 .

We derive where X goes from the above summary!

Exercise 5.7.7

Find the line of the projection.

We are able to summarize what the operator does from the algebra only. The idea is uncomplicated:

I The linear operator within the eigenspace is �1-dimensional�; it can then be represented by a
single number.

This number, the stretch-shrink factor, is of course the eigenvalue.

If we know these two numbers, how do we �nd the rest of the values of the linear operator? In two steps.

First, every X that lies within the eigenspace, which is a line, is a multiple of the eigenvector, and its value
under F can be easily computed:

X = rV =⇒ U = F (rV ) = rFV = rλV .

Second, the rest of the values are found by following this idea: Try to express the value as a linear combination
of two values found so far.

Let's provide a foundation for this idea.
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5.8. Bases

The matrix representation of a linear operator is determined by our choice of the Cartesian system. On
the other hand, what it does may be described with such words as �stretch�, �rotation�, ��ip�, etc. These
descriptions have nothing to do with the coordinate system. And neither do such algebraic characteristics of
the operator as the trace, the determinant, the eigenvalues and the eigenvectors. We are on the right track!

Once again, dealing with vectors instead of points requires a di�erent approach.

The standard basis of R2, as before, consists of these two:

e1 =< 1, 0 >, e2 =< 0, 1 > .

The components of a vector X =< a, b > with respect to this basis are, as before, a, b:

< a, b >= a < 1, 0 > +b < 0, 1 >= ae1 + be2 .

In other words, every vector can be represented as a linear combination of these two vectors.

However, they aren't the only ones with this property! For example, let's rewrite the above representation:

< a, b >= a < 1, 0 > +b < 0, 1 >= ae1 + (−b)(−e2) .

So, this vector is a linear combination of the two vectors V1 = e1 and V2 = −e2.

Exercise 5.8.1

Represent vector < a, b > in terms of e1 and e1 + e2.

All of these pairs of vectors may serve in such representations:

Exercise 5.8.2

Show that vectors that are multiples of each other can't be used for this purpose.

A very important concept below captures this idea:

De�nition 5.8.3: basis

A basis of R2 is any such pair of vectors V1, V2 that every vector can be repre-
sented as a linear combination of these vectors:

X = r1V1 + r2V2 .

Then the coe�cients r1, r2 are called the components of X with respect to the
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basis.

Exercise 5.8.4

Prove that there is only one such representation.

The reasoning is that the algebra of vectors was established before the Cartesian system was added to the
vector space and before the two operations were expressed in terms of the components of vectors. For
example, this is how we add vectors:

Example 5.8.5

The components are found for the standard basis are found via the orthogonal projections:

A very di�erent choice of basis U, V is shown below:

Here, vector X has components 2 and 2 with respect to this basis:

X = 2U + 2V .

Example 5.8.6: component algebra

Linear combinations are behind the components algebra. Collecting common terms after addition is
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what happens to the components:

components linear combination

U =< 2, 3 > = 2e1 + 3e2

W =< −1, 2 > = −1e1 + 2e2

U + V =< 2, 3 > + < −1, 2 > = (2e1 + 3e2) + (−1e1 + 2e2)

=< 2− 1, 3 + 2 > = (2e1 − 1e1) + (3e2 + 2e2)

=< 1, 5 > = 1e1 + 5e2

Replacing e1, e2 with, say, V1, V2 won't change anything in this computation. Same for scalar multi-
plication:

components linear combination

U =< 2, 3 > = 2e1 + 3e2

r = −3

rU = (−3) < 2, 3 > = (−3)(2e1 + 3e2)

=< (−3)2, (−3)3 > = (−3)2e1 + (−3)(1e1)

=< −6,−9 > = −6e1 − 9e2

Example 5.8.7: non-basis

We need to cover all the vectors:

Let's try V1 =< 1, 0 >, V2 =< 2, 0 >. What are all possible linear combinations? For all pairs r1, r2,
we have

X = r1V1 + r2V2 = r1 < 1, 0 > +r2 < 2, 0 >=< r1 + 2r2, 0 > .

The second component will remain 0 no matter what the coe�cients are! This is not a basis because
we can't represent some of the vectors.

The general result is as follows:

Theorem 5.8.8: Basis on the Plane

Any two vectors that aren't multiples of each other and only they form a basis
of R2; i.e.,

V1 = rV2 ⇐⇒ {V1, V2} is not a basis.

Exercise 5.8.9

Prove the theorem.



5.8. Bases 394

Example 5.8.10: linear system

Recall from the beginning of the chapter how the solution to a system of linear equations was seen as
if the two equations were equations about the coe�cients, x and y, of vectors in the plane:

x

1

2

+ y

1

3

 =

 6

14

 .

To solve the system is to �nd a way to stretch these two vectors so that after adding them the result
is the vector on the right:

Now we conclude that we can guarantee that there is a solution only when the two vectors form a
basis! For example, this mixture problem doesn't have a solution:

x

1

2

+ y

2

6

 =

 6

14

 .

Example 5.8.11: coordinates

Consider an alternative basis along with the standard one:

It's easy to express the new vectors in terms of old:

V1 =< 1, 1 >, V2 =< −1, 1 > .

But what about vice versa? It's harder; we need to �nd a and b so that

e1 = aV1 + bV2 ,

and the same for e2. We draw a grid for the new system to help:
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The answer is:

e1 =
1

2
V1 −

1

2
V2, e2 =

1

2
V1 +

1

2
V2 .

We can then re-write these vectors in the language of components with respect to the new basis :

e1 =

〈
1

2
,−1

2

〉
=

1

2
< 1,−1 >, e2 =

〈
1

2
,
1

2

〉
=

1

2
< 1, 1 > .

In summary, we have di�erent coe�cients and, therefore, di�erent components of the same vectors
with respect to di�erent bases:

bases: {e1, e2} {V1, V2}

V1 = < 1, 1 > =< 1, 0 >

V2 = < −1, 1 > =< 0, 1 >

and

bases: {e1, e2} {V1, V2}

e1 = < 1, 0 > =

〈
1

2
,−1

2

〉

e2 = < 0, 1 > =

〈
1

2
,−1

2

〉

In general, the vectors of the alternative basis might have any angle between them (as long as it's not zero).
Then, we have a skewed grid:

Thus, the component-wise algebra is fully operational whatever basis we choose:

< a, b > + < c, d >=< a+ c, b+ d > and r < a, b >=< ra, rb > .

Warning!

Unlike algebra, the geometry of the Cartesian sys-
tem relies on the Pythagorean Theorem. As a
result, the formulas for magnitudes and the dot
products fail in the current form if used for non-
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perpendicular bases.

Now, the linear operators. They can be described apart from the Cartesian system (that was added to the
vector space), i.e., rotation, stretching, etc.:

However, just as vector algebra works componentwise, so do linear operators. Furthermore, this approach
works with respect to any basis:

Theorem 5.8.12: Linear Operator in Terms of Basis

Suppose {V1, V2} is a basis. Then, all values of a linear operator Y = F (X) are
expressed as linear combinations of its values on these vectors; i.e., for any pair
of real coe�cients r1 and r2, we have:

X = r1V1 + r2V2 =⇒ F (X) = r1F (V1) + r2F (V2) .

Exercise 5.8.13

Prove the theorem.

In other words, the operator is fully determined by its values on the basis vectors � just as with the standard
basis. But, just as with vectors, we have di�erent matrices for the same linear operator with respect to
di�erent bases. The columns of the matrix of A are the values of the basis vectors under the operator:

A(V1) and A(V2) .

Example 5.8.14: matrices

We, again, consider this alternative basis along with the standard one:

The mutual representations are:

e1 =
1

2
V1 −

1

2
V2, e2 =

1

2
V1 +

1

2
V2 ,

and
V1 = e1 + e2, V2 = −e1 + e2 .

Suppose an operator A stretches the plane along the x-axis (in other words, along e1) by a factor of
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2. Then the matrix of A with respect to {e1, e2} is:

A =

2 0

0 1

 .

What about the other basis, {V1, V2}? It is hard to guess this time because � unlike for the standard
basis � the change is not aligned with the basis vectors. Let's use the �convenient� basis and then
switch to the one we are interested in. We write the formulas in terms of e1, e2 �rst:

A(V1) = A(e1 + e2) = A(e1) + A(e2) = 2e1 + e2.

A(V2) = A(−e1 + e2) = −A(e1) + A(e2) = −2e1 + e2.

Then we substitute the values of e1, e2 in terms of V1, V2 as written above:

A(V1) = 2e1 + e2 = 2

(
1

2
V1 −

1

2
V2

)
+

(
1

2
V1 +

1

2
V2

)
=

3

2
V1 −

1

2
V2.

A(V2) = −2e1 + e2 = −2

(
1

2
V1 −

1

2
V2

)
+

(
1

2
V1 +

1

2
V2

)
= −1

2
V1 +

3

2
V2.

Therefore, the matrix of the linear operator with respect to {V1, V2} is:

A =


3

2
−1

2

−1

2

3

2

 .

What if the stretch was along V1? This operator's matrix with respect to {V1, V2} is simple:

B =

2 0

0 1

 .

Exercise 5.8.15

Rewrite the above computation in terms of components.

5.9. Classi�cation of linear operators according to their

eigenvalues

We apply the last theorem to eigenvectors.

Corollary 5.9.1: Representation in Terms of Eigenvectors

Suppose V1 and V2 are two eigenvectors of a linear operator F that correspond to
two (possibly equal) eigenvalues λ1 and λ2. Suppose also that V1 and V2 aren't
multiples of each other. Then, all values of the linear operator Y = F (X) are
represented as linear combinations of its values on the eigenvectors:

X = r1V1 + r2V2 =⇒ F (X) = r1λ1V1 + r2λ2V2 ,
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with some real coe�cients r1 and r2.

In other words, the matrix of F with respect to the basis {V1, V2} of eigenvectors
is diagonal with the eigenvalues on the diagonal:

F =

λ1 0

0 λ2

 .

Example 5.9.2: stretch-shrink

Let's consider this function: u = −x − 2y

v = x − 4y
=⇒ F =

−1 −2

1 −4

 .

Let's con�rm what is shown above. The analysis starts with the characteristic polynomial:

det(F − λI) = det

−1− λ −2

1 −4− λ

 = λ2 − 5λ+ 6 .

Therefore, the eigenvalues are:
λ1 = −3, λ2 = −2 .

To �nd the eigenvectors, we solve the two vector equations:

FVi = λiVi, i = 1, 2 .

The �rst, λ1 = −3:

FV1 =

−1 −2

1 −4

x
y

 = −3

x
y

 .

This gives us the following system of linear equations: −x − 2y = −3x

x − 4y = −3y
=⇒

 2x − 2y = 0

x − y = 0
=⇒ x = y .

We have discovered, again, that this is the same equation; this line gives us the eigenspace. We choose
one eigenvector:

V1 =

1

1

 .
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The second eigenvalue:

FV2 =

−1 −2

1 −4

x
y

 = −2

x
y

 .

We have the following system (same equation): −x − 2y = −2x

x − 4y = −2y
=⇒

 x − 2y = 0

x − 2y = 0
=⇒ x = 2y .

This line is the eigenspace of λ2 = −2. We choose one eigenvector:

V2 =

2

1

 .

The pair {V1, V2} is a basis!

We summarize what F does:
1. A �ip and stretch along the vector < 1, 1 >: The line y = x remains intact.
2. A �ip and stretch along the vector < 2, 1 >: The line x = 2y remains intact.

We also conclude that there is no change of orientation. Stretching aside, this looks like central
symmetry:

We observe fanning between these two lines. For the rest of the vectors, we have:

X = xV1 + yV2 =⇒ FX = −3x

 2

−1

− 2y

1

2

 .

Therefore, matrix of F with respect to the basis {V1, V2} is diagonal:

F =

−3 0

0 −2

 .

Example 5.9.3: stretch-shrink

Let's consider this linear operator: u = x + 2y

v = 3x + 2y
=⇒ F =

1 2

3 2

 .
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Let's �nd the eigenvectors:

det(F − λI) = det

1− λ 2

3 2− λ

 = λ2 − 3λ− 4 .

Therefore, the eigenvalues are:
λ1 = −1, λ2 = 4 .

Now we �nd the eigenvectors. We solve the two equations:

FVi = λiVi, i = 1, 2 .

The �rst:

FV1 =

1 2

3 2

x
y

 = −1

x
y

 .

This gives as the following system of linear equations: x + 2y = −x
3x + 2y = −y

=⇒

 2x + 2y = 0

3x + 3y = 0
=⇒ x = −y .

We choose:

V1 =

 1

−1

 .

Every value within this eigenspace (the line y = −x) is a multiple of this eigenvector:

X = λ1V1 = −

 1

−1

 .

The second eigenvalue:

FV2 =

1 2

3 2

x
y

 = 4

x
y

 .

We have the following system: x + 2y = 4x

3x + 2y = 4y
=⇒

 −3x + 2y = 0

3x − 2y = 0
=⇒ x = 2y/3 .
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We choose:

V2 =

 1

3/2

 .

Every value within this eigenspace (the line y = 3x/2) is a multiple of this eigenvector:

X = λ2V2 = 4

 1

3/2

 .

The pair {V1, V2} is a basis! Then,

X = xV1 + yV2 =⇒ U = F (X) = −xV1 + 4yV2 .

The matrix of F with respect to the basis {V1, V2} is:

F =

−1 0

0 4

 .

We observe fanning between these two lines.

Let's summarize the results.

Theorem 5.9.4: Classi�cation of Linear Operators � Real Eigenvalues

Suppose matrix F has two real non-zero eigenvalues λ1 and λ2. Then, the
function U = F (X) stretches/shrinks the two eigenspace by factors |λ1| and |λ2|
respectively and, furthermore:
• If λ1 and λ2 have the same sign, it preserves the orientation of a closed
curve around the origin.
• If λ1 and λ2 have the opposite signs, it reverses the orientation of a closed
curve around the origin.

Exercise 5.9.5

Apply the theorem to the last example.

Example 5.9.6: skewing-shearing

Consider this matrix:

F =

1 1

0 1

 .

Below, we replace a circle with an ellipse to see what happens to it under such a function:
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There is still angular stretch-shrink but this time it is between the two ends of the same line. We see
�fanning out� again:

This time, however, the fan is fully open! It makes a di�erence that the fanning happens to a whole
half-plane. To see more clearly, consider what happens to a square:

This is the characteristic polynomial:

det(F − λI) = det

1− λ 1

0 1− λ

 = (1− λ)2 .

Therefore, the eigenvalues are
λ1 = λ2 = 1 .

What are the eigenvectors?

FV =

1 1

0 1

x
y

 = 1

x
y

 .
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This gives as the following system of linear equations: x + y = x AND

y = y
=⇒ x any, y = 0 .

The only eigenvectors are horizontal! Therefore, our classi�cation theorem doesn't apply. There is no
diagonal matrix for this operator.

Example 5.9.7: rotations

There are other outcomes that the theorem doesn't cover. Recall the characteristic polynomial of the
matrix A of the 90-degree rotation:

χA(λ) = det

−λ −1

1 −λ

 = λ2 + 1 .

But the characteristic equation,
x2 + 1 = 0 ,

has no solutions! Are we done then? Not if we are willing to use complex numbers (next chapter):

λ1,2 = i and − i .

This is the e�ect of rotation:

Let's consider a rotation through an arbitrary angle θ:u
v

 =

cos θ − sin θ

sin θ cos θ

 x
y

 .
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The angle can be seen in the characteristic polynomial:

χA(λ) = (cos θ − λ)2 + sin2 θ = cos2 θ − 2 cos θ λ+ λ2 + sin2 θ = λ2 − 2 cos θ λ+ 1 .

The discriminant of this polynomial is negative. Therefore, it has no real roots. The result makes sense: A
rotation cannot possibly have eigenvectors because all vectors are rotated!

Example 5.9.8: rotation with stretch-shrink

Let's consider this linear operator: u = 3x −13y ,

v = 5x +y ,
and F =

3 −13

5 1

 .

Below we can recognize both rotation and re-scaling:

This is our characteristic polynomial:

χ(λ) = det(F − λI) = det

3− λ −13

5 1− λ

 = λ2 − 4λ+ 68 .

Exercise 5.9.9

What does it tell us?

Our interpretation of the characteristic polynomial in terms of the trace of the matrix:

χ(λ) = λ2 − trF λ+ detF .

allows us to prove in the next chapter the following result for the case of no real eigenvalues:

Corollary 5.9.10: Trace and Discriminant

Suppose the discriminant of the characteristic polynomial of a matrix F satis�es:

D = (trF )2 − 4 detF ≤ 0 .

Then, the operator U = FX does the following:
1. It rotates the real plane through the following angle:

θ = sin−1

(
1

2

√
4− (trF )2

detF

)
.

2. It re-scales the plane uniformly by the following factor:

s =
√

detF .
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Exercise 5.9.11

Apply the corollary to the last example.

5.10. Algebra of linear operators and matrices

We will take a broader view at linear operator and include the lower dimensions. These are the four
possibilities:

We want to understand how these operators are represented by matrices and how these matrices are combined
to produce compositions.

The rule remains:

I The value under F of each basis vector in the domain of F becomes a column in the matrix
of F .

Let's apply the rule to these four situations using the standard bases.

Example 5.10.1: dimensions 1 and 1

Suppose we have a linear operator, which is just a numerical function:

f : R→ R de�ned by f(x) = 3x .

It is a stretch by a factor of 3. What is its matrix? The basis of the x-axis is < 1 > and the basis of
the u-axis is < 1 >. The operator works as follows:

f(< 1 >) = 3 < 1 > .

Therefore, its matrix is
f = [3] .
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Example 5.10.2: dimensions 1 and 2

Suppose we have a linear operator, which is just a parametric curve:

F : R→ R2 de�ned by F (x) =< 3x, 2x > .

It stretches the x-axis on the uv-plane along the vector < 3, 2 >. What is its matrix? The basis of the
x-axis is < 1 > and the basis of the uv-plane is < 1, 0 > and < 0, 1 >. The operator works as follows:

F (< 1 >) =< 3, 2 > .

Therefore, its matrix is

F =

3

2

 .

Example 5.10.3: dimensions 2 and 1

Suppose we have a linear operator, which is just a function of two variables:

f : R2 → R de�ned by f(x, y) = 3x+ 2y .

It rolls the xy-plane on the u-axis. What is its matrix? The basis of the xy-plane is < 1, 0 > and
< 0, 1 > and the basis of the u-axis is < 1 >. The operator works as follows:

f(< 1, 0 >) =< 3 > and f(< 0, 1 >) =< 2 > .

Therefore, its matrix is
f = [3 2] .

Example 5.10.4: dimensions 2 and 2

Suppose we have a linear operator, which is just a transformation of the plane:

F : R2 → R2 de�ned by f(x, y) =< 3x+ 2y, 5x− y > .

We'd need the eigenvector analysis in order to determine what it does... What is its matrix? The
basis of the xy-plane is < 1, 0 > and < 0, 1 > and the basis of the u-axis is < 1, 0 > and < 0, 1 >.
The operator works as follows:

F (< 1, 0 >) =< 3, 5 > and F (< 0, 1 >) =< 2,−1 > .

Therefore, its matrix is

F =

3 2

5 −1

 .

As you can see, we can jump ahead of the rule described above and write the coe�cients present in
the formula of the linear operator straight into the matrix.

Warning!

Its matrix is just an abbreviated representation of
a linear operator.

Exercise 5.10.5

Include the dimension 0 for domains and codomains in the above analysis.
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Whenever there is algebra in the output space, we can use it to do algebra of the functions. If the codomain
of functions is a vector space, we can add these functions and multiply them by a constant. We just narrow
down this idea to linear operators:

De�nition 5.10.6: addition of linear operators

Given two linear operators:

F,G : Rn → Rm ,

their sum is linear operator:

F +G : Rn → Rm ,

de�ned by:
(F +G)(x) = F (x) +G(x) .

We illustrate this operation just as before:

But if these are linear operators, what happens to their matrices? We go though the same four cases below.

Example 5.10.7: dimensions 1 and 1

Given linear operators (numerical functions):

f, g : R→ R de�ned by f(x) = 3x and g(x) = 2x .

Their matrices are:
f = [3] and g = [2] .

What about their sum? It is an operator with the same domain and codomain and it is computed as
follows:

f + g : R→ R de�ned by (f + g)(x) = f(x) + g(x) = 3x+ 2x = 5x .

Its matrix is
f + g = [5] .

Of course, this new number is just the sum of the two original numbers.

Example 5.10.8: dimensions 1 and 2

Given linear operators (parametric curves):

F,G : R→ R2 de�ned by F (x) =< 3x, 2x > and G(x) =< 5x,−x > .
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Their matrices are:

F =

3

2

 and G =

 5

−1

 .

What about their sum? It is an operator with the same domain and codomain and it is computed as
follows:

F +G : R→ R2 de�ned by (F +G)(x) = F (x) +G(x) =< 3x, 2x > + < 5x,−x >=< 8x, x > .

Its matrix is

F +G =

8

1

 .

Of course, this is just the sum of the two as if they were vectors.

Example 5.10.9: dimensions 2 and 1

Given linear operators (functions of two variables):

f, g : R2 → R de�ned by f(x, y) = 3x+ 2y and g(x, y) = 5x− 2y .

Their matrices are:
f = [3, 2] and g = [5, −2] .

Their sum is an operator with the same domain and codomain and it is computed as follows (this is
vector addition):

f + g : R2 → R de�ned by (f + g)(x, y) = f(x, y) + g(x, y) = 3x+ 2y + 5x− 2y = 8x .

Its matrix is
f = [8, 0] ,

the sum � componentwise � of the two.

Example 5.10.10: dimensions 2 and 2

Given linear operators (transformations of the plane):

F,G : R2 → R2 de�ned by F (x, y) =< 3x+ 2y, 5x− y > and G(x, y) =< 5x+ y, x+ y > .

Their matrices are:

F =

3 2

5 −1

 and G =

5 1

1 1

 .

Their sum is an operator with the same domain and codomain and it is computed as follows (this is
vector addition):

F+G : R2 → R2 de�ned by (F+G)(x, y) =< 3x+2y, 5x−y > + < 5x+y, x+y >=< 8x+3y, 6x > .

Its matrix is

F +G =

8 3

6 0

 ,

the sum � componentwise � of the two:

F +G =

3 2

5 −1

+

5 1

1 1

 =

3 + 5 2 + 1

5 + 1 (−1) + 1

 =

8 3

6 0

 .
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This operation of matrix addition is componentwise: The two operators have the same domain and codomain,
so that the dimensions of the matrices are equal too. They can then be overlapped so that the entries are
aligned and added accordingly:

De�nition 5.10.11: addition of matrices

Suppose A and B are two m×n matrices. Then their sum is the m×n matrix,
denoted by:

A+B

the ij-entry of which is the sum of the ij-entries of A and B.

In other words, if A = aij, B = bij, and C = A+B = cij, then

cij = aij + bij ,

for each i = 1, 2, ...,m and each j = 1, 2, ..., n.

It is simpler for scalar multiplication:

De�nition 5.10.12: scalar multiplication of linear operator

Given a linear operator:
F : Rn → Rm ,

its scalar product with a real number r is linear operator:

rF : Rn → Rm ,

de�ned by:
(rF )(x) = rF (x) .
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This operation is component-wise again: Every entry is multiplied by the same number.

De�nition 5.10.13: scalar multiplication of matrices

Suppose A is an m × n matrix. Then its scalar multiple by a real number r,
denoted by:

rA

is an m×n matrix, the ij-entry of which is the product of the ij-entry of A by r.

In other words, if A = aij and C = rA = cij, then

cij = raij ,

for each i = 1, 2, ...,m and each j = 1, 2, ..., n.

Warning!

The matrix is just an abbreviated representation
of a linear operator. Accordingly, the matrix oper-
ations are just abbreviated representations of the
operations on linear operators.

5.11. Compositions of linear operators

Let's take the problem about mixtures to the next level.

We have:

1. n ingredients and, therefore, n unknowns or variables x1, ..., xn representing the amounts of each; and

2. m requirements or restrictions, i.e., m linear equations involving these variables (k = 1, 2, ...,m):

ak1x1 + ...+ aknxn = bk .
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This system of linear equations is very cumbersome.

As before, we translate this a system into a vector-matrix equation:

FX = B

where

1. X =< x1, ..., xn > is the vector of the unknowns,

2. B =< b1, ..., bm > is the vector of the totals, and

3. F = aij is the m× n matrix made up of the coe�cients of the system of linear equations.

In light of the recent development, we prefer to look at the equation as the following:

F (X) = B

i.e., we have a linear operator:
F : Rn → Rm .

And the equation needs to be solved!

In dimension 1, the equation kx = b is solved by undoing the multiplication by k by division by k:

kx = b =⇒ x =
b

k
.

Similarly, we need the inverse
F−1 : Rm → Rn

of F to solve our equation:

F (X) = B =⇒ X = F−1(B)

As an illustration, the operator F transforms the xy-plane into the, say, uv-plane:

One particular vector in the uv-plane, B, needs to be traced back to the xy-plane. Of course, if we have
F−1, we'll �nd the counterparts for all B's.

Example 5.11.1: transformations of the plane

We know some of the answers:
1. If F is the uniform stretch by 2, then F−1 is the uniform shrink by 2.
2. If F is the stretch by 2 in the direction of a vector e1 =< 1, 0 >, then F−1 is the uniform shrink

by 2 in the direction of e1.
3. If F is the rotation by 90 degrees clockwise, then F−1 is the rotation by 90 degrees counterclock-

wise.
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4. If F is the �ip about the x-axis, then F−1 is the �ip about the x-axis.
In other words,

1. F (X) = 2X =⇒ F−1(Y ) = 1
2
Y

2. F =

2 0

0 1

 =⇒ F−1 =

1
2

0

0 1


3. F =

 0 1

−1 0

 =⇒ F−1 =

0 −1

1 0


4. F =

1 0

0 −1

 =⇒ F−1 =

1 0

0 −1


Let's recall that the inverse is de�ned via compositions. It must satisfy:

F (F−1(Y )) = Y ,

for all Y , and
F−1(F (X)) = X ,

for all X. In other words,
F ◦ F−1 = I ,

and
F−1 ◦ F = I ,

where I is the identity matrix.

We need to understand compositions better.

We know how to compute compositions of functions. This is the composition:

Rn F−−−−→ Rm G−−−−→ Rk

It is computed via substitution:
(G ◦ F )(X) = G(F (X)) .

But what happens to the matrices? How are the matrices of F and G combined to produce the matrix of
G ◦ F? It is called matrix multiplication. Here is why.

Example 5.11.2: compositions R1 → R1 → R1

Given linear operators (numerical functions):

f : R→ R de�ned by f(x) = 3x ,

and
g : R→ R de�ned by g(y) = 2y .

Their matrices are:
f = [3] and g = [2] .

What about their composition? The codomain of the former and the domain of the latter match! The
composition is computed as follows:

g ◦ f : R→ R de�ned by (g ◦ f)(x) = g(f(x)) = 2(3x) = 6x .
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Its matrix is
g ◦ f = [6] .

Of course, this new number is just the product of the two original numbers.

Example 5.11.3: compositions R1 → R1 → R2

Given linear operators (a numerical function and a parametric curve):

f : R→ R de�ned by f(x) = 3x ,

and
G : R→ R2 de�ned by G(y) =< 3y, 2y > .

Their matrices are:

f = [3] and G =

3

2

 .

What about their composition? It is an operator (a parametric curve) computed as follows:

G ◦ f : R→ R2 ,

de�ned by
(G ◦ f)(x) = G(f(x)) =< 3(3x), 2(3x) >=< 9x, 6x > .

Its matrix is

G ◦ f =

9

6

 .

Of course, this is just the product of the two as if the �rst is a number and the second a vector:

Gf =

3

2

 [3] =

3 · 3
2 · 3

 =

9

6

 .

Example 5.11.4: compositions R1 → R2 → R1

Given linear operators (a parametric curve and a function of two variables):

F : R→ R2 de�ned by F (x) =< 3x, 2x > ,

and
g : R2 → R de�ned by g(u, v) = 5u− 2v .

Their matrices are:

F =

3

2

 and g = [5, −2] .

Their sum is a numerical function and it is computed as follows:

g ◦ F : R→ R ,

de�ned by
(g ◦ F )(x) = g(F (x)) = 5(3x)− 2(2x) = 11x .

Its matrix is
g ◦ F = [11] .
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It's the dot product of the two vector-like matrices:

gF = [5, −2]

3

2

 = [5 · 3 + (−2) · 2] = [11] .

Example 5.11.5: compositions R2 → R2 → R2

Given linear operators (transformations of the planes):

F,G : R2 → R2

de�ned by

F (x, y) =< u, v >=< 3x+ 2y, 5x− y > and G(u, v) =< 5u+ v, u+ v > .

Their matrices are:

F =

3 2

5 −1

 and G =

5 1

1 1

 .

Their composition is an operator computed by substitution:

G ◦ F : R2 → R2 ,

de�ned by

(G ◦ F )(x, y) =< 5(3x+ 2y) + (5x− y), (3x+ 2y) + (5x− y) >=< 20x+ 9y, 8x+ y > .

Its matrix is

G ◦ F =

20 9

8 1

 .

It is seen as computed via four dot products of the four pairs of rows (from the �rst matrix) and
columns (from the second):5 1

1 1

 ·
3 2

5 −1

→ 5 · 3 + 1 · 5 = 20 →

20 9

8 1


5 1

1 1

 ·
3 2

5 −1

→ 5 · 2 + 1 · (−1) = 9 →

10 9

8 1


5 1

1 1

 ·
3 2

5 −1

→ 1 · 3 + 1 · 5 = 8 →

10 9

8 1


5 1

1 1

 ·
3 2

5 −1

→ 1 · 2 + 1 · (−1) = 1 →

10 9

8 1





5.11. Compositions of linear operators 415

In general, we have a single formula:

a b

c d

 ·
e f

g h

 =

ae+ bg af + bh

ce+ dg cf + dh



Warning!

As the matrix multiplication is just an abbreviated
representation of the composition of linear opera-
tors, it is secondary to the substitution of the for-
mulas it comes from.

Now we consider linear operators in arbitrary dimensions:

Rn → Rm → Rk .

For their matrices, the length of the column in the �rst must be equal to the length of the row in the second.
That's m! Then, we can carry out a dot product:

We do this nk times and produce an n× k matrix.

Exercise 5.11.6

Multiply: 
1 2 3

4 5 6

7 8 9

 ·


1 −1

−1 1

1 −1

 .

Example 5.11.7: spreadsheet

One can utilize a spreadsheet and other software to multiplication for matrices of any dimensions. In
order to make this work, the second matrix B has to be �transposed� (bottom):
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This is the code for the transpose of X:

=TRANSPOSE(R[-5]C:R[-3]C[1])

This is the code for Y :
=SUMPRODUCT(RC2:RC4,R8C[-3]:R8C[-1])

Finding the inverse of a matrix, especially of high dimension, is a challenging problem. There is a simple
formula for the 2× 2 matrices:

Theorem 5.11.8: Inverse of 2× 2 Matrix

The inverse of an invertible matrix A is computed as follows:

a b

c d

−1

=
1

detA

 d −b
−c a



Exercise 5.11.9

Prove the theorem.

Exercise 5.11.10

Use the theorem to solve the following problem: A tourist group took a train trip at $3 per child and
$3.20 per adult for a total of $118.40. They took the train back at $3.50 per child and $3.60 per adult
for a total of $135.20. How many children, and how many adults?

Exercise 5.11.11

Use the theorem to solve the following problem: A tourist group with 10 children and 20 adults took
a train trip for a total of $110. Another tourist group with 15 children and 25 adults took a train trip
for a total of $145. What were the ticket prices?

To summarize, we go back to the general setup of linear operators applied consecutively:

Rn F−−−−→ Rm G−−−−→ Rk

We have implicitly used the following fact:

Theorem 5.11.12: Composition of Linear Operators

The composition of two linear operators is a linear operator.

Exercise 5.11.13

Prove the theorem.

We have also implicitly used the the following important result:

Theorem 5.11.14: Matrix of Composition

The product of two matrices that represent two linear operators is the matrix of
their composition.
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6.1. What is calculus about?

One of the main entry ways to calculus is the study of motion.

We present the idea of calculus in these two related pictures.

First, we derive the speed from the distance that we have covered:

Beyond this conceivable situation, this formula is the de�nition of speed.

On the �ip side, we derive the distance we have covered from the known velocity:

417
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The two problems are solved, respectively, with the help of these two versions of the same elementary school
formula:

speed = distance / time and distance = speed × time

We solve the equation for the distance or for the speed depending on what is known and what is unknown.

What takes this idea beyond elementary school is the possibility that velocity varies over time.

We �rst take the simplest model of motion: The location changes incrementally.

Let's be more speci�c. We will face the two situations above but with more data collected and more
information derived from it.

First, imagine that our speedometer is broken. What do we do if we want to estimate how fast we are
driving during our trip? We look at the odometer several times � say, every hour on the hour � during the
trip and record the mileage on a piece of paper. The list of our consecutive locations might look like this:

1. initial reading: 10, 000 miles

2. after the �rst hour: 10, 055 miles

3. after the second hour: 10, 095 miles

4. after the third hour: 10, 155 miles

5. etc.

This is a sequence with 4 terms:
10, 000, 10, 055, 10, 095, 10, 155 .

This is also a vector in R4:
< 10, 000, 10, 055, 10, 095, 10, 155 > .

We can plot � as an illustration � the locations against time:

But what do we know about what the speed has been? We write a quick formula:

speed =
distance

time
=

current location − last location

1

The time interval was chosen to be 1 hour, so all we need is to �nd the distance covered during each of these
one-hour periods, by subtraction:
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1. distance covered during the �rst hour: 10, 055− 10, 000 = 55 miles; speed 55 miles an hour

2. distance covered during the second hour: 10, 095− 10, 055 = 40 miles; speed 40 miles an hour

3. distance covered during the third hour: 10, 155− 10, 095 = 60 miles; speed 60 miles an hour

4. etc.

This is a new sequence with 3 terms:
55, 40, 60 .

Or a new vector in R3:
< 55, 40, 60 > .

We see below how these new numbers appear as the blocks that make up each step of our last plot (top):

We then lower these blocks to the bottom to create a new plot (bottom).

As you can see, we illustrate the new data in such a way as to suggest that the speed remains constant
during each of these hour-long periods.

The problem is solved! We have established that the speed has been � roughly � 55, 40, and 60 miles an
hour during those three time intervals, respectively.

It appears that we have a function (a linear operator?):

∆ : R4 → R3 .

Now on the �ip side: Imagine this time that it is the odometer that is broken. If we want to estimate how
far we will have gone, we should look at the speedometer several times � say, every hour � during the trip
and record its readings on a piece of paper. The result is a sequence of numbers that may look like this:

1. during the �rst hour: 35 miles an hour

2. during the second hour: 65 miles an hour

3. during the third hour: 50 miles an hour

4. etc.

This is a sequence with 3 terms:
35, 65, 50 .

This is also a vector in R3:
< 35, 65, 50 > .

Let's plot our speed against time to visualize what has happened:
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Once again, we illustrate the data in such a way as to suggest that the speed remains constant during each
of these hour-long periods.

Now, what does this tell us about our location? We write a quick formula:

distance = speed × time = speed × 1

In contrast to the former problem, we need another bit of information. We must know the starting point of
our trip, say, the 100-mile mark. The time interval was chosen to be 1 hour so that we need only to add,
and keep adding, the speed at which � we assume � we drove during each of these one-hour periods:

1. the location after the �rst hour: 100 + 35 = 135-mile mark

2. the location after the two hours: 135 + 65 = 200-mile mark

3. the location after the three hours: 200 + 50 = 250-mile mark

4. etc.

We have a new sequence with 4 terms:
100, 135, 200, 250 .

This is also a vector in R4:
< 100, 135, 200, 250 > .

In order to illustrate this algebra, we plot the speeds as these blocks (top):

Then we use these blocks to make the consecutive steps of the staircase to show how high we have to climb
(bottom).

It appears that we have a function (a linear operator?):

Σ : R3 → R4 .

The problem is solved! We have established that we have progressed through the roughly 135-, 200-, and
250-mile marks during this time.

Warning!

An actual speedometer is likely to use the distance
covered (computed from the number of revolutions
of the wheel) to �nd the velocity.

We next consider more complex examples of the relation between location and velocity.

First, from location to velocity.

Suppose that this time we have a sequence of more than 30 data points (more is indicated by �...�); they are
the locations of a moving object recorded every minute:

time minutes 0 1 2 3 4 5 6 7 8 9 10 ...

location miles 0.00 0.10 0.20 0.30 0.39 0.48 0.56 0.64 0.72 0.78 0.84 ...
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This data is also seen in the �rst two columns of the spreadsheet (left):

Every pair of numbers in the table is then plotted (right). The �scatter plot� that illustrates the data looks
like a curve! We will however, continue to treat it as a vector. It lives in R30.

What has happened to the moving object can now be read from the graph. Just as in the last example, we
concentrate on the vertical increment of the staircase:

These are the results:

1. The object was moving in the positive direction.

2. It was moving fairly fast but then started to slow down.

3. It stopped for a very short period.

4. Then it started to move in the opposite direction.

5. Then it started to speed up in that direction.

To understand how fast we move over these one-minute intervals, we compute the di�erences of locations
for each pair of consecutive locations.

First, the table.

We use the data from the row of locations and subtract every two consecutive locations. This is how the
�rst step is carried out:

time min 0 1 ...

location miles 0.00 0.10 ...

↘ ↓
di�erence 0.10− 0.00 ...

||
velocity miles/min 0.10 ...

We compute this di�erence for each pair of consecutive locations and then place it in a row for the velocities
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that we added to the bottom of our table:

time min 0 1 2 3 4 5 6 7 8 9 ...

location miles 0.00 0.10 0.20 0.30 0.39 0.48 0.56 0.64 0.72 0.78 ...

↘ ↓ ↘ ↓ ↘ ↓ ↘ ↓ ↘ ↓ ↘ ↓ ↘ ↓ ↘ ↓ ↘ ↓ ...

velocity miles/min 0.10 0.10 0.10 0.09 0.09 0.09 0.08 0.07 0.07 ...

We have a new sequence!

Practically, we'd rather use the computing capabilities of the spreadsheet.

We compute the di�erences by pulling data from the column of locations with the following formula:

=RC[-1]-R[-1]C[-1]

Here, the two values come from the last column, C[-1] , same row, R , and last row, R[-1] . Below, you
can see the two references in the formulas marked with red and blue (left) and the dependence shown with
the arrows (right):

We place the result in a new column we created for the velocities:

This new data is illustrated with the second scatter plot. We can see that the time column is shared and,
therefore, the time axis is the same in the two plots. To emphasize the fact that the velocity data, unlike
the location, is referring to time intervals rather than time instances, we plot it with horizontal segments.
In fact, the data table can be rearranged as follows to make this point clearer:

time 0 1 2 3 4 ...

location 0.00 − 0.10 − 0.20 − 0.30 − .39 − ...

velocity · 0.10 · 0.10 · 0.10 · 0.09 · 0.09 ...
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This is a a vector that lives in R29.

What has happened to the moving object can now be easily read from the second graph. These are the �ve
stages:

1. The velocity was positive initially (it was moving in the positive direction).

2. The velocity was fairly high (it was moving fairly fast) but then it started to decline (slow down).

3. The velocity was zero (it stopped) for a very short period.

4. Then the velocity became negative (it started to move in the opposite direction).

5. And then the velocity started to become more negative (it started to speed up in that direction).

Thus, the latter set of data succinctly records some important facts about the dynamics of the former.

Now, from velocity to location.

Again, we consider a sequence of 30 data points. These numbers are the values of the velocity of an object
recorded every minute (a vector in R30):

time minutes 0 1 2 3 4 5 6 7 8 9 10 ...

velocity miles/hour 0.10 0.20 0.30 0.39 0.48 0.56 0.64 0.72 0.78 0.84 ...

This data is also seen in the �rst two columns of the spreadsheet plotted one bar at a time:

The data is furthermore illustrated as a scatter plot on the right. Again, we emphasize the fact that the
velocity data is referring to time intervals by plotting its values with horizontal bars.

The data may be describing the horizontal speed of a ball rolling through a trough:

To �nd out where we are at the end of each of these one-minute intervals, we compute by adding the
velocities one at a time. This is how the �rst step is carried out, under the assumption that the initial



6.1. What is calculus about? 424

location is 0:

time min 0 1 ...

velocity miles 0.10 ...

↓
sum 0.00+ 0.10 ...

↑ ||
location miles/min 0.00 0.10 ...

We place this data in a new row added to the bottom of our table:

time min 0 1 2 3 4 5 6 7 8 ...

velocity miles 0.10 0.20 0.30 0.39 0.48 0.56 0.64 0.72 ...

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ...

location miles/min 0.00→ 0.10→ 0.30→ 0.59→ 0.98→ 1.46→ 2.03→ 2.67→ 3.39→ ...

We have a new sequence and a vector that lives in R31.

Practically, we use the spreadsheet. We compute the sums by pulling the data from the column of velocities
using the following formula:

=R[-1]C+RC[-1]

Here, the two values come from the same, C , or last, C[-1] , column and the same, R , and last, R[-1] ,
row, as follows:

We place the result in a new column for locations:

The data is also illustrated as the second scatter plot on the right.
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What has happened to the moving object can now be easily read from the �rst or the second plot. These
are the �ve stages:

1. The velocity is positive and low.

2. The velocity is positive and high.

3. The velocity is the highest.

4. The velocity is positive and high.

5. The velocity is positive and low.

We, again, rearrange the data table to make the di�erence between the two types of data clearer:

time 0 1 2 3 4 ...

velocity · 0.00 · 0.10 · 0.20 · 0.30 · 0.39 ...

location 0.00 − 0.10 − 0.30 − 0.59 − .98 − ...

Thus, as the former data set records some facts about the dynamics of the latter, we are able to use this
information to recover the latter.

One of the easier conclusions we derive from this analysis is the following simple statement:

I With a positive velocity, we are moving forward.

It takes the following abbreviated form:

I The velocity is positive =⇒ the motion is in the positive direction.

Now, we can try to ��ip� the implication of this statement, without assuming that the result will be true:

I The velocity is positive ⇐= the motion is in the positive direction.

In other words, we have the following implication:

I The motion is in the positive direction =⇒ the velocity is positive.

The latter is called the converse of the original statement. It's also an implication stated as follows:

I IF the motion is in the positive direction, THEN the velocity is positive.

The converse is true as well!

In our case, the implications go both ways! Combined, the statement and its converse form an equivalence:

I The velocity is positive IF AND ONLY IF the motion is in the positive direction.

Our statement is written as follows:

I The velocity is positive ⇐⇒ the motion is in the positive direction.

The two parts of an equivalence are interchangeable!

So, this is what we have discovered:

I We can tell the velocity from the location and, conversely, the location from the velocity.

Is this it though?

Motion is a continuous phenomenon. Can we understand it following the above approach?

If it is known that our data is just a snapshot of a �continuous� process, we may be able to collect more
information in order to make this representation better. We, for example, may look at the odometer every
minute, or every second, etc., instead of every hour. The in�nite divisibility of the real line allows us to
produce sets of points on the plane with denser and denser patterns: We make the time intervals smaller
and smaller and insert more and more inputs. When there are enough of them, the points start to form a
curve:
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Both location and velocity are changing continuously!

We imagine that at the end of this process we will have an actual curve. This is not the kind of curve that
is made of marbles placed close together, but a rope. What happens �at the end� is studied in calculus.

Thus, this main idea of calculus is to derive velocity from location (from the top row to the bottom) and
location from velocity (from the bottom row to the top):

6.2. Spaces of functions

In Chapter 2 we chose to treat all numerical functions as a single group. The inspiration came from how
we have handled the real numbers. We put them together in the real number line, which provides us with a
bird's-eye view:
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Example 6.2.1: �nite sequences

We can add sequences term-wise as long as they have to have the same length, n:

a1 a2 ... an

+

b1 b2 ... bn

a1 + b1 a2 + b2 ... an + bn

→

< a1 a2 ... an >

+

< b1 b2 ... bn >

< a1 + b1 a2 + b2 ... an + bn >

It's the same algebra illustrated below for R20:

So, the set of sequences with n terms is just a copy of Rn! In what sense? There is a very simple
function from the left part to the right:

a1 a2 ... an 7→ < a1 a2 ... an >

But the algebra matches too: According to the above diagram, the �addition is preserved�. And so is
scalar multiplication. So, this function is linear! And it's one-to-one and onto.

Exercise 6.2.2

Sequences are just functions. Prove the above statements about function.

Exercise 6.2.3

Is the function
< a1, a2, ..., an > 7→ max{a1, a2, ..., an}

a linear operator?

What kind of �group� is the set of all numerical functions f : R1 → R1? A vector space.

What are its operations? Addition and scalar multiplication, of course:

The new functions are constructed from the old:
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De�nition 6.2.4: vector operations on functions

1. Given two numerical f and g de�ned on the same set, the sum, f + g, of
f and g is the function de�ned by the following:

(f + g)(x) = f(x) + g(x) FOR EACH x .

2. Given a numerical function f , the constant multiple cf of f , for some real
number c, is the function de�ned by the following:

(cf)(x) = cf(x) FOR EACH x .

The algebraic operations on the right-hand sides of the two de�nitions are nothing but operations on numbers.
These operations satisfy the simple algebraic properties. Therefore, so are the function operations.

Let's recall how this idea is codi�ed:

De�nition 6.2.5: vector space

A set with two operations � addition of two vectors and multiplication of a vector
by a scalar � in that satisfy the properties below is called a vector space:

1. X + Y = Y +X for all X and Y .
2. X + (Y + Z) = (X + Y ) + Z for all X, Y , and Z.
3. X + 0 = X = 0 +X for some vector 0 and all X.
4. X + (−X) = 0 for any X and some vector −X.
5. a(bX) = (ab)X for all X and all scalars a, b.
6. 1X = X for all X.
7. a(X + Y ) = aX + aY for all X and Y .
8. (a+ b)X = aX + bX for all X and all scalars a, b.

The argument presented above suggests the following:

Theorem 6.2.6: Linear Algebra of Functions

The numerical functions de�ned on a �xed set D ⊂ R,

{f : D → R} ,

form a vector space.

Example 6.2.7: in�nite sequences

If we move from �nite to in�nite sequences, they are numerical functions too; the domain is D = N.
We add them this termwise as if we adding vectors:

a1 a2 ... an ...

+

b1 b2 ... bn ...

a1 + b1 a2 + b2 ... an + bn ...

There is no match with some Rn anymore:

a1 a2 ... an ...
?−−−−→ < a1 a2 ... an ... >
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Exercise 6.2.8

Suppose B is the the set of all sequences with a single non-zero value, 1. Can you express every
sequence as a linear combination of elements of B?

Example 6.2.9: vector space of linear operators

This is the algebra we saw in the last chapter. Two operations:
1. Given two linear operators:

F,G : Rn → Rm ,

their sum is linear operator:
F +G : Rn → Rm ,

de�ned by:
(F +G)(x) = F (x) +G(x) .

2. Given a linear operator:
F : Rn → Rm ,

its scalar product with a real number r is linear operator:

rF : Rn → Rm ,

de�ned by:
(rF )(x) = rF (x) .

This is a vector space.

Exercise 6.2.10

Prove the last statement.

Warning!

Compositions, too, are possible when m = n, but
this isn't one of the operations of this vector space.

Example 6.2.11: vector space of matrices M(n,m)

To deal with the vector space of linear operators

F : Rn → Rm ,

in the last example, we introduce a basis to either of these two Euclidean spaces. Accordingly, all
linear operators become matrices. Let's consider the algebra of matrices.

Suppose A and B are two m×n matrices. Then their sum is the m×n matrix, A+B, the ij-entry of
which is the sum of the ij-entries of A and B. In other words, if A = aij, B = bij, and C = A+B = cij,
then

cij = aij + bij ,

for each i = 1, 2, ...,m and each j = 1, 2, ..., n.

Suppose A is anm×n matrix. Then its scalar multiple by a real number r, rA, is them×n matrix, the
ij-entry of which is the product of the ij-entry of A by r. In other words, if A = aij and C = rA = cij,
then

cij = raij ,

for each i = 1, 2, ...,m and each j = 1, 2, ..., n.
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This is a vector space denoted by M(n,m). Each them has a total of nm independent entries. That's
why we can say that it's just like a copy of Rnm. Here is the linear function

F : M(n,m)→ Rnm

that connects them:
a1,1 a1,2 a1,3 ... a1,n

a2,1 a2,2 a2,3 ... a2,n

...
...

... ...
...

am,1 am,2 am,3 ... am,n

 7→
[
a1,1 a1,2 a1,3 ...am,n

]

Exercise 6.2.12

Provide a formula for the function. Provide a formula for its inverse.

Warning!

Matrix multiplication is possible here when m =
n, but it isn't one of the operations of this vector
space.

Linear combinations of functions are also available:

Example 6.2.13: vector space of polynomials

Consider the vector space of up to nth-degree polynomials, denoted by Pn:
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We add them this termwise:

a0 +a1x
1 +a2x

2 ... +anx
n

+

b0 +b1x
1 +b2x

2 ... +bnx
n

(a0 + b0) +(a1 + b1)x1 +(a2 + b2)x2 ... +(an + bn)xn

The operations work one power at a time with no intermixing. We can ignore the powers and see that
the algebra works as if these are just vectors in Rn+1 (or �nite sequences):

< a0 a1 a2 ... an >

+

< b0 b1 b2 ... bn >

< a0 + b0 a1 + b1 a2 + b2 ... an + bn >

Each of them has a total of (n + 1) independent entries. That's why we can say that it's just like a
copy of Rn+1.

Exercise 6.2.14

Provide a formula for the function Pn → Rn+1. Show that it is linear. Show that it's one-to-one and
onto.

Exercise 6.2.15

What if the sequences are in�nite (power series)?

6.3. The sequence of di�erences

Numbers are subject to algebraic operations: addition, subtraction, multiplication, and division. Since the
terms of sequences are numbers, a pair of sequences can be added (subtracted, etc.) to produce a new one.

In addition, there are two operations that apply to a single sequence and produce a new sequence that
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tells us a lot about the original sequence. These operations are: subtracting the consecutive terms of the
sequence and adding its terms repeatedly. We saw them in action in the �rst section:

This is the summary:

• If each term of a sequence represents a location, the pairwise di�erences will give you the velocities,
and

• If each term of a sequence represents the velocity, their sum up to that point will give you the location
(or displacement).

The pairwise di�erences represent the change within the sequence, from each of its terms to the next.

Example 6.3.1: sequence given by list

When a sequence is given by a list, we subtract the last term from the current one and put the result
in the bottom row as follows:

a sequence: 2 4 7 1 ...

↘ ↙ ↘ ↙ ↘ ↙ ↘ ...

its di�erences: 4− 2 7− 4 1− 7 ...

|| || || ...

a new sequence: 2 3 −6 ...

We have a new list.

Example 6.3.2: sequence given by graph

In the simplest case, a sequence takes only integer values, then on the graph of the sequence, we just
count the number of steps we make, up and down:

These increments then make a new sequence plotted on the right.

De�nition 6.3.3: sequence of di�erences

For a sequence an, its sequence of di�erences, or simply the di�erence, is a new
sequence, say dn, de�ned for each n by the following:

dn = an+1 − an .
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It is denoted by

∆an = an+1 − an

Warning!

The symbol ∆ applies to the whole sequence an,
and ∆a should be seen as the name of the new
sequence; the notation for the di�erence is an ab-
breviation for (∆a)n.

This is what the de�nition says:

Sequence of di�erences

a sequence: a1 a2 a3 a4 ...

↘ ↙ ↘ ↙ ↘ ↙ ...

its di�erences: a2 − a1 a3 − a2 a4 − a3 ...

|| || || ...

a new sequence: d1 d2 d3 ...

|| || || ...

the notation: ∆a1 ∆a2 ∆a3 ...

Here is an elementary statement about motion:

I IF two runners are running away from a post, THEN their relative velocity is the sum of
their respective velocities.

It's as if the one runner is standing still while the other is running with the combined speed:

The idea why we add their di�erences when we add sequences is illustrated below:

Here, the bars that represent the change of the values of the sequence are stacked on top of each other. The
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heights are then added to each other, and so are the height di�erences. The algebra behind this geometry
is very simple:

(A+B)− (a+ b) = (A− a) + (B − b) .
It's the Associative Rule of addition.

The idea above is equally applicable to runners who change how fast they run; we speak of sequences.

Theorem 6.3.4: Sum Rule for Di�erences

The di�erence of the sum of two sequences is the sum of their di�erences.

In other words, for any two sequences an, bn, their sequences of di�erences satisfy:

∆(an + bn) = ∆an + ∆bn

Proof.

∆(an + bn) = (an+1 + bn+1)− (an + bn)

= (an+1 − an) + (bn+1 − bn)

= ∆an + ∆bn .

Here is another simple statement about motion:

I IF the distance is re-scaled, such as from miles to kilometers, THEN so is the velocity � at
the same proportion.

The idea why a proportional change causes the same proportional change in the di�erences is illustrated
below (tripling):

Here, if the heights triple, then so do the height di�erences. The algebra behind this geometry is very simple:

kA− ka = k(A− a) .

It's the Distributive Rule. This is how it applies to sequences.

Theorem 6.3.5: Constant Multiple Rule for Di�erences

The di�erence of a multiple of a sequence is the multiple of the sequence's
di�erence.
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In other words, for any sequence an, the sequence of di�erences satis�es:

∆(kan) = k∆an

Proof.

∆(kan) = kan+1k − kan
= kan+1k − kan
= k∆an .

The theorem can also be interpreted as follows: If the distances are proportionally increased, then so are
the velocities needed to cover them, in the same period of time.

When we represent these sequences as vectors, we can ask and answer linear algebra questions.

Now, the di�erence will have to be carefully rede�ned as a function.

We have the above formula re-written:

∆ < x1, ..., xn >=< x2 − x1, x3 − x2, ..., xn − xn−1 > .

There are only n− 1 entries on the right, which means that we understand this function as

∆ : Rn → Rn−1 .

We have for any number α:

∆
(
α < x1, ..., xn >

)
= ∆ < αx1, ..., αxn >

=< αx2 − αx1, αx3 − αx2, ..., αxn − αxn−1 >

=< α(x2 − x1), α(x3 − x2), ..., α(xn − xn−1) >

= α < x2 − x1, x3 − x2, ..., xn − xn−1 >

= α∆ < x1, ..., xn > .

Therefore, ∆ preserves scalar multiplication.

Exercise 6.3.6

Prove that ∆ preserves addition.

The following de�nition is now justi�ed:

De�nition 6.3.7: di�erence operator

The di�erence operator
∆ : Rn → Rn−1

is a linear operator de�ned by:

∆ < x1, ..., xn >=< x2 − x1, x3 − x2, ..., xn − xn−1 >
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What is the matrix of this linear operator? We just look at its values on the standard basis:

∆



1

0

0

...

0

0


=



−1

0

...

0

0


, ∆



0

1

0

...

0

0


=



1

−1

...

0

0


, ... , ∆



0

0

0

...

0

1


=



0

0

...

0

1


.

The gaps are meant to indicate that there are only n− 1 entries in the output vectors.

We have proven the following:

Theorem 6.3.8: Matrix of Di�erence

The di�erence operator ∆ : Rn → Rn−1 is given by the following (n − 1) × n
matrix:

∆ =



−1 1 0 0 ... 0 0

0 −1 1 0 ... 0 0

0 0 −1 1 ... 0 0

...

0 0 0 0 ... 1 0

0 0 0 0 ... −1 1



Here, −1's are on the diagonal that starts at the top-left corner, while 1's are on the diagonal that starts at
the bottom-right corner; the rest are 0's.

Exercise 6.3.9

Is this operator one-to-one? Onto?

Let's consider a couple of speci�c sequences.

The �rst one is the arithmetic progression and it is very simple.

Theorem 6.3.10: Di�erence of Arithmetic Progression

The sequence of di�erences of an arithmetic progression with increment m is a
constant sequence with the value equal to m.

Proof.

We simply compute from the de�nition:

dn = ∆(a0 +mn) = an+1 − an = (a0 + b(m+ 1))− (a0 +mn) = m.

The theorem can be recast as an implication, an �if-then� statement:

I IF an is an arithmetic progression with increment m, THEN its sequence of di�erences is a
constant sequence with the value equal to m.

We can also use our convenient abbreviation:
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I an is an arithmetic progression with increment m =⇒ its sequence of di�erences of an is a
constant sequence with the value equal to m.

This is what the graphs of this pair of sequences may look like, zoomed out, for the following three choices
of the increment m:

Let's take a look at a geometric progression an = arn with a > 0 and r > 0.

Example 6.3.11: geometric progression an = 3n

This is a geometric progression with ratio r = 3. Let's compute the di�erence:

∆an = an+1 − an
= 3n+1 − 3n

= 3n · 3− 3n

= 3n(3− 1)

= 3n · 2 .

It's a geometric progression with r = 3, again!

Is there a pattern? Let's plot the graph of a geometric progression an = arn with a > 0 and r > 0. There
are two cases, depending on the choice of ratio r (growth or decay):

What do the sequence of di�erences (second row) look like? We notice the following:

• It is positive and increasing, with speeding up when the ratio r is larger than 1.

• It is negative and increasing, with slowing down when 0 < r < 1.

It also resembles the original sequence!
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Theorem 6.3.12: Di�erence of Geometric Progression

The sequence of di�erences of a geometric progression is a geometric progression
with the same ratio.

Proof.

If we have a geometric progression with ratio r and initial term a, its formula is an = arn. Therefore,

dn = ∆(arn) = an+1 − an = arn+1 − arn = a(r − 1) · rn .

But that's the formula of a geometric progression with ratio r and initial term a(r − 1).

The theorem can be restated as an implication:

I IF an is a geometric progression with ratio r, THEN its sequence of di�erences is a geometric
progression with ratio r.

Also:

I an is a geometric progression with ratio r =⇒ its sequence of di�erences is a geometric
progression with ratio r.

Example 6.3.13: alternating sequence

The sequence of di�erences of the alternating sequence an = (−1)n is computed below:

∆ ((−1)n) = (−1)n+1 − (−1)n =

 (−1)− 1, n is even

1− (−1), n is odd
=

 −2, n is even

2, n is odd
= 2(−1)n+1 .

Exercise 6.3.14

What is the relation between the sequence above and its di�erence?

Example 6.3.15: di�erences are velocities

We can use computers to speed up these computations. For example, one may have been recording
one's locations and now needs to �nd the velocities. Here is a spreadsheet formula for the sequence of
di�erences (velocities):

=RC[-1]-R[-1]C[-1]

Whether the sequence comes from a formula or it's just a list of numbers, the formula applies equally:

As a result, a curve has produced a new curve:
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While the �rst graph tells us that we are moving forward and then backward, it is easier to derive
better description from the second: Speed up forward, then slow down, then speed up backward.

Exercise 6.3.16

Describe what has happened referring, separately, to the �rst graph and the second graph.

Exercise 6.3.17

Imagine, instead, that the �rst column of the spreadsheet above is where you have been recording the
monthly balance of your bank account. What does the second column represent? Describe what has
been happening with your �nances referring, separately, to the �rst graph and the second graph.

This is the time for some theory.

Consider this obvious statement about motion:

I IF I am standing still, THEN my velocity is zero.

We can also say:

I IF my velocity is zero, THEN I am standing still.

We see the implications going both ways; the latter is the converse of the original statement (and vice
versa!). Let's use symbols to restate these statements more compactly:

I am standing still =⇒ my velocity is zero.

I am standing still ⇐= my velocity is zero.

The abbreviation of the combination of the two is an equivalence, an �if-and-only-if� statement:

I am standing still ⇐⇒ my velocity is zero.

It's just another way of saying the same thing.

If we set the motion point of view aside, here is the general statement.

Theorem 6.3.18: Di�erence of Constant Sequence

A sequence is constant IF AND ONLY IF its sequence of di�erences is zero.

In other words, we have:

an is constant ⇐⇒ ∆an = 0 .
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Proof.

Direct:
an = c for all n =⇒ an+1 − an = c− c = 0 =⇒ ∆an = 0 .

Converse:
an+1 = an = c for all n ⇐= an+1 − an = 0 ⇐= ∆an = 0 .

Exercise 6.3.19

Prove that the di�erence of an arithmetic progression is constant and, conversely, that if the di�erence
of a sequence is a constant sequence, then the sequence is an arithmetic progression.

Consider another obvious statement about motion:

I IF I am moving forward, THEN my velocity is positive.

And, conversely:

I IF my velocity is positive, THEN I am moving forward.

In other words, we have this pair of statements:

Original: I am moving forward =⇒ my velocity is positive.

Converse: I am moving forward ⇐= my velocity is positive.

Exercise 6.3.20

What is the converse of the converse?

We combine these two in the following far-reaching result.

Theorem 6.3.21: Monotonicity Theorem for Sequences

A sequence is increasing/decreasing IF AND ONLY IF the sequence of di�er-
ences is positive/negative or zero, respectively.

In other words, we have:

an is increasing ⇐⇒ ∆an ≥ 0 .

an is decreasing ⇐⇒ ∆an ≤ 0 .

an is constant ⇐⇒ ∆an = 0 .

Proof.

an+1 ≥ an for all n ⇐⇒ an+1 − an ≥ 0 ⇐⇒ ∆an ≥ 0 .

It's just another way of saying the same thing.

Suppose now that there are two runners; then we have a less obvious fact about motion:

I IF the distance between two runners isn't changing, THEN they are running with the same
velocity.

And vice versa:

I IF two runners are running with the same velocity, THEN the distance between them isn't
changing.
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It's as if they are holding the two ends of a pole:

The conclusion holds even if they speed up and slow down all the time. In other words, we have:

I The distance between two runners isn't changing IF AND ONLY IF they are running with
the same velocity.

Once again, for sequences an and bn representing their respective positions at time n, we can restate this
idea mathematically in order to con�rm that our theory makes sense.

Corollary 6.3.22: Di�erence under Subtraction

Two sequences di�er by a constant IF AND ONLY IF if their sequences of
di�erences are equal.

In other words, we have:

an − bn is constant ⇐⇒ ∆an = ∆bn .

Proof.

The corollary follows from the Di�erence of Constant Sequence Theorem above.

Example 6.3.23: shift of sequence

We shift the sequence an below by 1 unit up to produce a new sequence bn (top):

Because the ups and downs remain the same, the sequences of di�erences of these two sequences are
identical (bottom).

Exercise 6.3.24

What if the two runners holding the pole also start to move their hands back and forth?

We can use the latter theorem to watch after the distance between the two runners. A matching statement
about motion is the following:

I IF the distance from one of the two runners to the other is increasing, THEN the former's
velocity is higher.

Conversely:
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I IF the velocity of one runner is higher than the other, THEN the distance between them is
increasing.

Exercise 6.3.25

Combine the two statements into one.

We can restate this mathematically.

Corollary 6.3.26: Monotonicity and Subtraction

The di�erence of two sequences is increasing IF AND ONLY IF the former's
di�erence is bigger than the latter's.

In other words, we have:

an − bn is increasing ⇐⇒ ∆an ≥ ∆bn .

an − bn is decreasing ⇐⇒ ∆an ≤ ∆bn .

Proof.

The corollary follows from the Monotonicity Theorem for Sequences above.

Example 6.3.27: three runners

The graph below shows the positions of three runners in terms of time, n. Describe what has happened:

They are all at the starting line together, and at the end, they are all at the �nish line. Furthermore,
A reaches the �nish line �rst, followed by B, and then C (who also starts late). This is how each did
it:
• A starts fast, then slows down, and almost stops close to the �nish line.
• B maintains the same speed.
• C starts late and then runs fast at the same speed.

We can see that A is running faster because the distance from B is increasing. It becomes slower
later, which is visible from the decreasing distance. We can discover this and the rest of the facts by
examining the graphs of the di�erences of the sequences:
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Exercise 6.3.28

Suppose a sequence is given by the graph for velocity above. Sketch the graph of the di�erence of this
sequence. What is its meaning?

Exercise 6.3.29

Plot the location and the velocity for the following trip: �I drove fast, then gradually slowed down,
stopped for a very short moment, gradually accelerated, maintained speed, hit a wall.� Make up your
own story and repeat the task.

Exercise 6.3.30

Draw a curve on a piece of paper, imagine that it represents your locations, and then sketch what your
velocity would look like. Repeat.

Exercise 6.3.31

Imagine that the �rst graph represents, instead of locations, the balances of three bank accounts.
Describe what has been happening.

How do we treat motion when the time increment isn't 1? What is the velocity then?

First, we de�ne the time and the location by two separate sequences, say, xn and yn. Then the velocity is
the increment of the latter over the increment of the former. We notice that those two are the di�erences
of the two sequences. The di�erence quotient of two sequences of xn and yn is de�ned to be the sequence
that is the di�erence of yn divided by the di�erence of xn:

∆yk
∆xk

=
yk+1 − yk
xk+1 − xk

,

provided the denominator is not zero. It is the relative change � the rate of change � of the two sequences
(for each consecutive pair of points, it is the slope):

The di�erence quotient of the sequence of the location with respect to the sequence of time is the velocity.

Typically, the sequence xn is �xed. This makes the di�erence quotient a function de�ned on the sequences
of length n just as the di�erence. We can write this function as follows:

∆

∆xk
: Rn+1 → Rn .

Exercise 6.3.32

Prove analogues of the Sum Rule and the Constant Multiple Rule for the di�erence quotient. Derive
that the di�erence quotient is a linear operator.

Exercise 6.3.33

Express the di�erence quotient operator in terms of the di�erence operator.
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6.4. The sequence of sums

In the �rst section, we saw how the sequences of locations and velocities interact. We took a closer look at
the transition from the former to the latter and now in reverse:

The sum represents the totality of the �beginning� of a sequence, found by adding each of its terms to the
next, up to that point.

Example 6.4.1: sequences given by lists

We just add the current term to what we have accumulated so far:

sequence: 2 4 7 1 −1 ...

↓ ↓ ↓ ↓ ↓ ...

sums: 2

2 + 4 = 6

6 + 7 = 13

13 + 1 = 14

14 + (−1) = 13

↓ ↓ ↓ ↓ ↓ ...

new sequence: 2 6 13 14 13 ...

We have a new list!

Example 6.4.2: sequences given by graphs

We treat the graph of a sequence as if made of bars and then just stack up these bars on top of each
other one by one:

These stacked bars � or rather the process of stacking � make a new sequence.

Unlike the di�erence, the sum must be de�ned (and computed) in a recursive manner.
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De�nition 6.4.3: sequence of sums

For a sequence an, its sequence of sums, or simply the sum, is a new sequence sn
de�ned and denoted for each n ≥ m within the domain of an by the following
(recursive) formula:

sm = 0, sn+1 = sn + an+1

In other words, we have:

sn = am + am+1 + ...+ an

Of course, we will use our notation:

Sigma notation for summation

sn = am + am+1 + ...+ an =
n∑

k=m

ak

Recall that the Greek letter Σ stands for the letter S meaning �sum�.

The notation applies to all sequences, both �nite and in�nite. For in�nite sequences, recognized by �...� at
the end, the sum sequence is also called �partial sums� as well as �series�.

This is the de�nition of the sequence of sums written with the sigma notation:

Sequence of sums

a sequence: a1 a2 a3 a4 . . .

↓ ↓ ↓ ↓ . . .

its sums: a1

a1 + a2 = s2

s2 + a3 = s3

s3 + a4 = s4 . . .

s4 . . .

↓ ↓ ↓ ↓ . . .

the sequence of sums: s1 s2 s3 s4 . . .

|| || || || . . .

the sigma notation:
1∑

k=1

ak

2∑
k=1

ak

3∑
k=1

ak

4∑
k=1

ak . . .

Now, the properties of linear algebra.

Here is an elementary statement about motion:

I IF two runners are running away from a post, THEN the distance between them is the sum
of their respective distances from the post.

It's as if the one runner is standing still while the other is running with the combined speed:
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This simple algebra, the Associative Property combined with the Commutative Property, tells the whole
story:

re-arrange the sum of four numbers:

a + b = (a+ b),

+ + +

A + B = (A+B)

= (a+ A) + (b+B) = a+ A+ b+B

The rule applies even if we have more than just two terms; it's about re-arranging the terms of sequences:

re-arrange the sum

of two sequences:

ap + bp = (ap + bp)+

ap+1 + bp+1 = (ap+1 + bp+1)+
...

...
...

...

aq + bq = (aq + bq)

= (ap + ...+ aq) + (bp + ...+ bq) = (ap + bp)+ ... +(aq + bq)

The summation is illustrated below:

An abbreviated version of this formula is as follows.

Theorem 6.4.4: Sum Rule for Sums

The sum of the sums of two sequences is the sum of the sequence of the sums.

In other words, if an and bn are sequences, then, for any p, q with p ≤ q, their
sequences of sums satisfy:

q∑
n=p

an +

q∑
n=p

bn =

q∑
n=p

(an + bn)

Exercise 6.4.5

Derive this theorem from the last one, reverse.

If your velocity is tripled, then so is the distance you have covered.
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When a sequence is multiplied by a constant, what happens to its sums? This simple algebra, the Distributive
Property, tells the whole story:

take out a common factor:
k · ( a + b)

= ka + kb

The rule applies even if we have more than just two terms; it's about factoring:

take out a common factor:

k · ap = k · ap+
k · ap+1 = k · ap+1+
...

...
...

...

k · aq = k · aq
= k · ap+ ... +k · aq = k · (ap + ...+ aq)

This summation is illustrated below:

An abbreviated version of this formula is as follows.

Theorem 6.4.6: Constant Multiple Rule for Sums

The sum of a multiple of a sequence is the multiple of its sum.

In other words, if an is a sequence, then for any p, q with p ≤ q and any real k,
its sequence of sums satis�es:

q∑
n=p

(kan) = k

q∑
n=p

an

Exercise 6.4.7

Derive this theorem from the last one, reverse.

When we represent these sequences as vectors, we can ask and answer linear algebra questions.

Now, the sum will have to be carefully rede�ned as a function.

We have the above formula re-written:

Σ < x1, x2, ..., xn >=< x0 , x0 + x1 , ... , x0 + x1 + ...+ xn−1 + xn > .

As you can see, x0 isn't present among the inputs. It is the starting value of our sequence (the initial position
in case of motion), and can be chosen arbitrarily, producing a new function every time. We have a function

Σ : Rn → Rn+1 .



6.4. The sequence of sums 448

For any number α, we write:

X =< x1, x2, ..., xn >

αX =< αx1, αx2, ..., αxn >

kth entry ΣαX = x0 + αx1 + ...+ αxk−1 + αxk = x0 + α
(
x1 + x2 + ...+ xk−1 + xk) = x0 + αΣX

Therefore, Σ preserves scalar multiplication but only when x0 = 0!

Exercise 6.4.8

Prove that Σ preserves addition only when x0 = 0.

For the sake of linear algebra, we will choose this particular case of the sum.

The following de�nition is now justi�ed:

De�nition 6.4.9: sum operator

The sum operator

Σ : Rn → Rn+1

is a linear operator de�ned by:

Σ < x1, x2, ..., xn >=< 0 , x1 , x1 + x2 ... , x1 + ...+ xn−1 + xn >

What is the matrix of this linear operator? We just look at its values on the standard basis:

Σ



1

0

...

0

0


=



0

1

1

...

1

1


, Σ



0

1

...

0

0


=



0

0

1

...

1

1


, ... , Σ



0

0

...

0

1


=



0

0

0

...

0

1


.

We have proven the following:

Theorem 6.4.10: Matrix of Sum Operator

The sum operator Σ : Rn → Rn+1 is given by the following (n+ 1)× n matrix:

Σ =



0 0 0 0 ... 0 0

1 0 0 0 ... 0 0

1 1 0 0 ... 0 0

...

1 1 1 1 ... 1 0

1 1 1 1 ... 1 1



Here, the diagonal that starts at the left-upper corner (and all above) consists of 0's, while the one that
starts at the bottom-right corner (and all below) consists of 1's.
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Exercise 6.4.11

Is this operator one-to-one? Onto?

Below is the simplest result about the sum of a speci�c sequence. It is still considerably more challenging
than most results about the di�erences that we saw in the last section.

Theorem 6.4.12: Sum of Arithmetic Progression

The sum of an arithmetic progression with increment m and a 0 initial term is
a (quadratic) sequence given by the following:

n∑
k=1

(mk) =
n(n+ 1)

2
m.

Exercise 6.4.13

Prove the theorem.

Example 6.4.14: from sequences to series

What does the sum
1

2
+

1

4
+

1

8
+ ...

compute? We can see these terms as the areas of the squares below:

On the one hand, adding the areas of these squares will never go over 1 (the area of the big square),
and, on the other, these squares seem to exhaust this square entirely. So, even the in�nite sum
sometimes makes sense. Of course, this is a geometric progression.
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Let's take a look at a geometric progression with an = arn with a > 0 and r > 0. There are two cases,
depending on the choice of ratio r (growth or decay):

What about the sequence of sums (second row)? We notice the following:

• It is increasing, with speeding up when its ratio r is larger than 1.

• It is increasing, with slowing down when 0 < r < 1.

It also resembles the original sequence!

Theorem 6.4.15: Sum of Geometric Progression

The sequence of sums of a geometric progression with ratio r 6= 1 is a geometric
progression with the same ratio and a constant sequence.

In other words, we have:
n∑
k=1

ark = Arn + C ,

for some real numbers A and C.

Proof.

Below, we use a clever trick to get rid of �...�. We write the nth sum sn,

sn = ar0 +ar1 +ar2 +... +arn−1 +arn

and then multiply it by r:

rsn = r
(
ar0 +ar1 +ar2 +... +arn−1 +arn

)
= ar1 + ar2 + ar3 +... + arn + arn+1

Now we subtract these two:

sn = ar0 +ar1 +ar2 +... +arn−1 +arn

rsn = ar1 + ar2 + ar3 +... + arn + arn+1

sn − rsn = ar0 − ar1 +ar1 − ar2 +ar2 − ar3 +... +arn−1 − arn +arn − arn+1

= ar0 −arn+1

We cancel the terms that appear twice in the last row and �...� is gone! Therefore,

sn(1− r) = a− arn+1 .
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Thus, we have an explicit formula for the nth term of the sum:

sn =
a

1− r
(1− rn+1) = − a

1− r
· rn+1 +

a

1− r
.

The former term is the geometric part, and the latter is the constant:

A = − ar

1− r
, C =

a

1− r
.

Exercise 6.4.16

Find the explicit formula for the sequence of sums of the alternating sequence an = (−1)n.

Exercise 6.4.17

Use the trick to prove the theorem about arithmetic progressions.

Warning!

Our ability to produce an explicit formula for the
nth term of the sequence of sums of a known se-
quence is an exception, not a rule.

Example 6.4.18: sums are displacements

We can use computers to speed up these computations. For example, one may have been recording
one's velocities and now looking for the location. This is a formula for a spreadsheet (the locations):

=R[-1]C+RC[-1]

Whether the sequence comes from a formula or it's just a list of numbers, the formula applies:

As a result, a curve has produced a new curve:

Exercise 6.4.19

Describe what has happened referring to, separately, to the �rst graph and the second graph.



6.4. The sequence of sums 452

Exercise 6.4.20

Imagine that the �rst column of the spreadsheet is where you have been recording your monthly
deposit/withdrawals at your bank account. What does the second column represent? Describe what
has been happening referring, separately, to the �rst graph and the second graph.

This is the time for some theory.

Recall from the last section this pair of obvious statements about motion:

I I am standing still IF AND ONLY IF my velocity is zero.

If the velocity is represented by a sequence, its sum is the location. We can then restate the above mathe-
matically.

Theorem 6.4.21: Constant Sequence as Sum

The sequence of sums of a sequence is constant IF AND ONLY IF the sequence
has only zero values starting from some index N .

In other words, we have:

n∑
k=m

ak is constant ⇐⇒ an = 0 for all n ≥ N .

Proof.

n∑
k=m

ak = c for all n ⇐⇒ an+1 =
n+1∑
k=m

ak −
n∑

k=m

ak = c− c = 0 ⇐⇒ an+1 = 0 .

Here is another equivalence statements about motion:

I I am moving forward IF AND ONLY IF my velocity is positive.

We can restate this mathematically using the sums.

Theorem 6.4.22: Monotonicity of Sum

The sequence of sums of a sequence is increasing IF AND ONLY IF the terms
of the sequence are non-negative.

In other words, we have:

n∑
k=m

ak is increasing ⇐⇒ an ≥ 0 .

n∑
k=m

ak is decreasing ⇐⇒ an ≤ 0 .

Proof.

n+1∑
k=m

ak ≥
n∑

k=m

ak for all n ⇐⇒ an+1 =
n+1∑
k=m

ak −
n∑

k=m

ak ≥ 0 .

Now suppose, just like in the last section, that there are two runners:



6.4. The sequence of sums 453

Then, we have:

I The distance between two runners isn't changing IF AND ONLY IF they are running with
the same velocity.

We restate this mathematically.

Corollary 6.4.23: Subtracting Sums of Sequences

The sequences of sums of two sequences di�er by a constant IF AND ONLY IF

the sequences are equal starting with some term N .

In other words, we have:

n∑
k=m

ak −
n∑

k=m

bk is constant ⇐⇒ an = bn for all n ≥ N .

Proof.

The corollary follows from the Constant Sequence as Sum above.

Example 6.4.24: shift of sequence

We have below two di�erent sequences an and bn that become identical after 3 terms:

The result is that the sum of the latter sequence is just a vertical shift of the sum of the former:

To state this algebraically, we have for each n:

n∑
k=m

ak =
n∑

k=m

bk + C ,

where C is some number. The outcome is the same when the two sequences an and bn are identical
but the computation of their sequences of sums starts at di�erent points:
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Exercise 6.4.25

What is the meaning of the number C?

We can use the theorems to watch for the distance between the two runners:

I The distance from one of the two runners to the other is increasing IF AND ONLY IF the
former's velocity is higher.

We can restate this mathematically using the sums.

Corollary 6.4.26: Subtracting Sums: Monotonicity

The di�erence of the sequences of sums of two sequences is increasing IF AND

ONLY IF the corresponding terms of the former are larger than or equal to
those of the latter.

In other words, we have:

n∑
k=m

ak −
n∑

k=m

bk is increasing ⇐⇒ an ≥ bn .

n∑
k=m

ak −
n∑

k=m

bk is decreasing ⇐⇒ an ≤ bn .

Proof.

The corollary follows from Monotonicity of Sum above.

Here is another way to look at the statement the faster covers the longer distance. It is about comparing
the values of two sums. Consider this simple algebra:

a ≤ b

A ≤ B

a+ A ≤ b+B



6.4. The sequence of sums 455

The rule applies even if we have more than just two terms:

am ≤ bm

am+1 ≤ bm+1

...
...

...

aq ≤ bq

am + ...+ aq ≤ bm + ...+ bq

The summation is illustrated below:

Example 6.4.27: three runners, continued

The graph shows the velocities of three runners in terms of time, n:

It's easy to describe how they are moving:
• A starts fast and the slows down.
• B maintains the same speed.
• C starts late and then runs fast.

But where are they, at every moment? There are several possible answers:

Which one is the right one depends on the starting point. Of course, a simple examination of the �rst
graph doesn't prove that the three runners will arrive at the �nish line at the same time.

Furthermore, if the requirement that they all start at the same location is lifted, the result will be
di�erent, for example:
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Exercise 6.4.28

Suggest other graphs that match the description above.

Exercise 6.4.29

Plot the location and the velocity for the following trip: �I drove slowly, gradually speed up, stopped
for a very short moment, then started but in the opposite direction, quickly accelerated, and from that
point maintained the speed.� Make up your own story and repeat the task.

Exercise 6.4.30

Draw a curve on a piece of paper, imagine that it represents your velocity, and then sketch what your
locations would look like. Repeat.

Here is another trivial statement about motion:

distance covered during the 1st hour

+ distance covered during the 2nd hour

= distance during the two hours

The statement is about the fact that when adding, we can change the order of terms freely; this is called
the Associativity Property of addition. At its simplest, it allows us to remove the parentheses:

(am + am+1 + ...+ aq−1 + aq) + (aq+1 + aq+2 + ...+ ar−1 + ar)

= am + am+1 + ...+ aq−1 + aq + aq+1 + aq+2 + ...+ ar−1 + ar

= am + am+1+ ... +ar−1 + ar .

The three sums are shown below:

An abbreviated version of this identity is as follows.

Theorem 6.4.31: Additivity for Sums

The sum of the sums of two consecutive segments of a sequence is the sum of
the combined segment.
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In other words, for any sequence an and for any m, q, r with m ≤ q ≤ r, we have:

q∑
k=m

ak +
r∑

k=q+1

ak =
r∑

k=m

ak

How do we deal with motion when the time moments aren't integers? What is the displacement then?

Suppose xn is the sequence of locations and vn the sequence of velocities:

Then their Riemann sum is de�ned to be the sequence of sums of the sequence of the product of vn and the
di�erence of xn:

n∑
k=1

vn ∆xn .

We know from the last section that if yn is the position, then the velocity is vn = ∆yn/∆xn. Therefore, the
Riemann sum of the sequence of the velocity with respect to the sequence of time is the displacement.

Typically, the sequence xn is �xed. This makes the Riemann sum quotient a function de�ned on the
sequences of length n, just as the sum. We can write this function as follows:∑

y∆x : Rn → Rn .

Exercise 6.4.32

Prove analogues of the Sum Rule and the Constant Multiple Rule for the Riemann sum. Derive that
the Riemann sum is a linear operator.

Exercise 6.4.33

Express the Riemann sum operator in terms of the sum operator.

6.5. Sums of di�erences and di�erences of sums

We know that addition and subtraction undo each other ; it makes sense then that the operations for making
the sequence of di�erences and making the sequence of sums will cancel each other too!

Example 6.5.1: broken odometer � broken speedometer

We know how to get the velocity from the location, and the location from the velocity. We expect
that executing these two operations consecutively should bring us back where we started.



6.5. Sums of di�erences and di�erences of sums 458

Let's take another look at the example of two computations about motion � a broken odometer and
a broken speedometer � presented in the beginning of this chapter. The terminology has now been
developed: Every time we speak of a sequence, we also speak of the sequence of its di�erences and
the sequence of its sums.

In the �rst diagram, one �rst takes the velocity data and acquires the displacements via the sums,
then someone else takes this displacement data and acquires the velocities by using the di�erences:

We are back to the original sequence.

In the second diagram, one �rst takes the location data and acquires the velocities via the di�erences,
then someone else takes this velocity data and acquires the locations by using the sums:

We are back to the original sequence (provided we start at the same initial value).
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Example 6.5.2: sequences given by lists

Below we have a sequence given by a list. We compute its sequence sums and then compute the
sequence of di�erences of the result:

a sequence: 3 1 0 −2 . . .

↓ ↓ ↓ ↓ . . .

its sums: 3

3 + 1 = 4

4 + 0 = 4 . . .

4 + (−2) = 2 . . .

2 . . .

↓ ↓ ↓ ↓ . . .

the sequence of sums: 3 4 4 2 . . .

↘ ↙ ↘ ↙ ↘ ↙ . . .

the di�erences: 4− 3 4− 4 2− 4 . . .

|| || || . . .

a new sequence: 1 0 −2 . . .

We are back to the original sequence!

Exercise 6.5.3

What happened to the very �rst term?

Exercise 6.5.4

Start with the sequence in the last example and use the diagrams to show that the sums of the
di�erences give us the original sequence.

Example 6.5.5: sequences given by graphs

Just comparing the illustrations above demonstrates that the two operations � the di�erence and the
sum � undo the e�ect of each other. The two operations are shown together below:

As you can see in the picture, the sum (left to right) stacks up the terms of the sequence on top of
each other, while the di�erence (right to left) takes these apart.

Let's take care of the algebra.

These are the two facts we will be using:

1. Suppose we have a sequence, an. We compute its di�erence, a new sequence:

bn+1 = an+1 − an .
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2. Suppose we have a sequence, ck. We compute its sum, a new sequence:

dn =
n∑
k=1

ck ,

or, recursively:
dn+1 = dn + cn+1 .

We use this setup to answer the following two questions.

The �rst question we would like to answer is:

I What is the di�erence of the sum?

We start with cn. Then, we have from (2) and (1), respectively:

dn+1 = dn + cn+1 and bn+1 = dn+1 − dn .

We substitute the �rst formula into the second (and then cancel):

bn+1 = dn+1 − dn = (dn + cn+1)− dn = cn+1 .

As we can see, the answer is:

I The original sequence.

The second question we would like to answer is:

I What is the sum of the di�erence?

We start with an. Then, we have from (1) and (2), respectively:

bk = ak − ak−1 and dn =
n∑
k=1

bk .

We substitute the �rst formula into the second (and then cancel):

dn =
n∑
k=1

bk =
n∑
k=1

(ak − ak−1) = (a2 − a1) + (a3 − a2) + (a4 − a3) + ...+ (an − an−1) = −a1 + an .

As we can see, the answer is:

I The original sequence plus a number.

We summarize these results in the form of the following two far-reaching theorems.

Theorem 6.5.6: Fundamental Theorem of Calculus of Sequences I

The di�erence of the sum of a sequence is that sequence; i.e., for all n, we have:

∆

( n∑
k=1

ak

)
= an

The two operations cancel each other!
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Theorem 6.5.7: Fundamental Theorem of Calculus of Sequences II

The sum of the di�erence of a sequence is that sequence plus a constant number;
i.e., for all n, we have:

n∑
k=1

(
∆bk

)
= bn + C

The two operations � almost � cancel each other, again!

Now �operations� become �operators�.

The idea is to look at the composition of the di�erence and the sum operators.

The inputs and outputs of the di�erence operator

∆ : Rp → Rp−1

will have to be matched with the outputs and inputs of the sum operator

Σ : Rq → Rq+1 .

This is what happens when we put them together:

Rn+1 ∆−−−−→ Rn Σ−−−−→ Rn+1

Rn Σ−−−−→ Rn+1 ∆−−−−→ Rn

The compositions Σ ◦∆ and ∆ ◦ Σ now make sense.

Next, according to the above theorems, they �cancel� each other, but not entirely. Are they inverses? No.

Example 6.5.8: inverses?

No, ∆ and Σ aren't the inverses of each other, because ∆ isn't one-to-one. We just need to think of
how two objects can move di�erently but with the same velocity (n = 2):

∆ < 0, 1 >=< 1 >, ∆ < 1, 2 >=< 1 > .

On the other hand, we have:
Σ < 1 >=< 0, 1 > .

So,
Σ
(
∆ < 1, 2 >

)
=< 0, 1 >6=< 1, 2 > .

Therefore,
Σ ◦∆ 6= I .

In order to �nd inverses here, we change one of the spaces: We �x the �rst coordinate in Rn+1. It's as if
the starting position is always 0. Let's denote this space as follows:

Hyperplane

Rn+1
0 = {< 0, x1, ..., xn >} ⊂ Rn+1 .

It's is a copy of Rn.

This move changes the domain of ∆ (we have its restriction) and the codomain (but not the image) of Σ.
We still have two compositions:

Rn+1
0

∆−−−−→ Rn Σ−−−−→ Rn+1
0

Rn Σ−−−−→ Rn+1
0

∆−−−−→ Rn
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Now, the di�erence and the sum are given by:

∆ < 0, x1, ..., xn > =< x1, x2 − x1, ..., xn − xn−1 >

Σ < x1, x2, ..., xn > =< 0, x1 , x1 + x2 , ... , x1 + x2 + ...+ xn−1 + xn >

This is how their values on the standard basis change:

∆



1

0

0

...

0

0


=



−1

0

...

0

0


, ∆



0

1

0

...

0

0


=



1

−1

...

0

0


, ... , ∆



0

0

0

...

0

1


=



0

0

...

0

1


,

Σ



1

0

...

0

0


=



0

1

1

...

1

1


, Σ



0

1

...

0

0


=



0

1

1

...

1

1


, ... , Σ



0

0

...

0

1


=



0

0

0

...

0

1


.

This is what happens to their matrices:

∆ =



−1 1 0 0 ... 0 0

0 −1 1 0 ... 0 0

0 0 −1 1 ... 0 0

...

0 0 0 0 ... 1 0

0 0 0 0 ... −1 1


Σ =



0 0 0 0 ... 0 0

1 0 0 0 ... 0 0

1 1 0 0 ... 0 0

...

1 1 1 1 ... 1 0

1 1 1 1 ... 1 1


These are square matrices now!

The linear algebra analogs of the above theorems are below:

Corollary 6.5.9: I

The composition of the di�erence operator ∆ : Rn+1
0 → Rn and the sum operator

Σ : Rn → Rn+1
0 is the identity:

∆Σ = I

Proof.

An alternative proof is by matrix multiplication. We start the multiplication with the �rst row and
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the �rst column:

∆Σ =



1 0 0 ... 0 0

−1 1 0 ... 0 0

0 −1 1 ... 0 0

...

0 0 0 ... 1 0

0 0 0 ... −1 1





1 0 0 0 ... 0

1 1 0 0 ... 0

1 1 1 0 ... 0

...

1 1 1 1 ... 0

1 1 1 1 ... 1



=



1 · 1 + 0 · 1 + ...+ 0 · 1 + 0 · 1 ...

...

...

...

... ...

...

...


=



1 ...

...

...

...

... ...

...

...


Exercise 6.5.10

Finish the proof.

Corollary 6.5.11: II

The composition of the sum operator Σ : Rn → Rn+1
0 and the di�erence operator

∆ : Rn+1
0 → Rn is the identity:

Σ∆ = I

Proof.

An alternative proof is by matrix multiplication. We start the multiplication with the �rst row and
the �rst column:

Σ∆ =



1 0 0 0 ... 0

1 1 0 0 ... 0

1 1 1 0 ... 0

...

1 1 1 1 ... 0

1 1 1 1 ... 1





1 0 0 ... 0 0

−1 1 0 ... 0 0

0 −1 1 ... 0 0

...

0 0 0 ... 1 0

0 0 0 ... −1 1



=



1 · 1 + 0 · (−1) + ...+ 0 · 0 ...

...

...

...

...

...


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Exercise 6.5.12

Finish the proof.

We combine them together into this truly fundamental result:

Theorem 6.5.13: Fundamental Theorem of Calculus of Sequences

The sum operator Σ : Rn → Rn+1
0 and the di�erence operator ∆ : Rn+1

0 → Rn

are inverses of each other:

∆−1 = Σ

The conclusion re-appears, in an almost identical form, in in�nitesimal calculus.

Exercise 6.5.14

What are the eigenvectors of ∆? Of Σ?

Example 6.5.15: fundamental theorems, computed

For larger sets of data, we use a spreadsheet. Recall the formulas:
• From a sequence to its sum:

=R[-1]C+RC[-1]

• From a sequence to its di�erence:

=RC[-1]-R[-1]C[-1]

What if we combine the two consecutively? From a sequence to its di�erence to the sum of the latter:

It's the same curve! Now in the opposite order, from a sequence to its sum to the di�erence of the
latter:
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It's the same curve!

Exercise 6.5.16

What would the resulting curve look like if we started at another point?

Example 6.5.17: falling ball, acceleration

Consider the experimental data of the heights of a ping-pong ball falling down:

Just as before, we use a spreadsheet to plot the location sequence, pn (green). We then compute the
di�erence of pn, i.e., the velocity, vn (purple):

It looks like a straight line. But this time, we take one more step: We compute the di�erence of the
velocity sequence. It is the acceleration, an (blue). It appears constant! There might be a law of
nature here.

Example 6.5.18: shooting a cannon

Let's accept the premise put forward in the last example, that the acceleration of free fall is constant.
Then we can try to predict the behavior of an object shot in the air � from any initial height and
with any initial velocity.
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The direction of our computation is opposite to that of the last example: We assume that we know
the acceleration, then derive the velocity, and then derive the location (altitude) of the object in time.
While we used di�erences in the last example, we use sums now:

Above we show a projectile launched from a 100-meter tall building vertically up in the air with a
speed of 100 meters per second (the gravity causes acceleration of −9.8 meters per second squared).
We can see that it will reach its highest point in about 20 seconds and will hit the ground in about
40 seconds.

Exercise 6.5.19

How high does the projectile go in the above example?

Exercise 6.5.20

Using the above example, how long will it take for the projectile to reach the ground if �red down?

Exercise 6.5.21

Use the above model to determine how long it will take for an object to reach the ground if it is
dropped. Make up your own questions about the situation and answer them. Repeat.

Exercise 6.5.22

Suppose the time moments are given by another sequence (an arithmetic progression). Compute the
velocity and the acceleration from the table below:

time height

n tn an

1 .00 36

2 .05 35

3 .10 32

4 .15 25

5 .20 20

6 .25 11

7 .30 0
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6.6. Limits as linear operators

We continue with in�nitesimal calculus.

The starting point is the limits of in�nite sequences, i.e., their long term trends:

We use the following notation:

Limit of sequence

an → a

All sequences below are in�nite.

Example 6.6.1: limits

A few examples with predictable patterns of long-term behavior:

list nth-term formula

(1) 1 1/2 1/3 1/4 1/5 ... → 0 1/n

(2) .9 .99 .999 .9999 .99999 ... → 1 1− 10−n

(3) 1. 1.1 1.01 1.001 1.0001 ... → 1 1 + 10−n

(4) 3. 3.1 3.14 3.141 3.1415 ... → π

(5) 1 2 3 4 5 ... → +∞ n

(6) 0 1 0 1 0 ... → nothing

But what is the limit?

De�nition 6.6.2: limit of sequence

We call number a the limit of a sequence an if the following condition holds:
I For each real number ε > 0, there exists a number N such that for every

natural number n > N , we have:

|an − a| < ε .

If a sequence has a limit, then we call the sequence convergent and say that it
converges ; otherwise, it is divergent and we say it diverges.

The de�nition is somewhat complex. The good news is:

I It won't matter here what the exact de�nition of the limit is.

What matters is this:
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1. The limit (when it exists) is a number.

2. The limits behave under algebraic properties in a predictable way (below).

Then:

1. The limits taken together is a real-valued function the inputs of which are the convergent sequences:

sequence → lim → number

2. This function satis�es certain algebraic properties.

The properties of limits that we know from calculus tell us about the nature of this function:

Theorem 6.6.3: Sum Rule for Limits of Sequences

1. If sequences an, bn converge, then so does an + bn.
2. Furthermore, we have:

lim
n→∞

(an + bn) = lim
n→∞

an + lim
n→∞

bn

or
an → a, bn → b =⇒ an + bn → a+ b as n→∞ .

The former notation for the statement of the Sum Rule matches the following method of function notation:

F (x+ y) = F (x) + F (y) .

The latter matches the other:
x 7→ X, y 7→ Y =⇒ x+ y 7→ X + Y .

The same match is also visible below:

Theorem 6.6.4: Constant Multiple Rule for Limits of Sequences

1. If sequence an converges, then so does kan for any real k.
2. Furthermore, we have:

lim
n→∞

(
k · an

)
= k · lim

n→∞
an

or
an → a =⇒ k · an → ka as n→∞ .

This is what we see in the two theorems:

1. Parts 1 match: A linear combination of two convergent sequences is convergent.

2. Parts 2 match: Limits preserve linear combinations.

We conclude the following, which is the purpose of this investigation:

Theorem 6.6.5: Linear Algebra of Limits of Sequences

1. The convergent sequences form a vector space.
2. The limit is a real-valued linear operator on this space:

lim : an 7→ a

We have a function with a complicated name...
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Exercise 6.6.6

Provide details of the proof.

Exercise 6.6.7

Is this function one-to-one or onto?

Unfortunately, replacing sequences with vectors,

a1, a2, ... 7→ < a1, a2, ... > ,

does not help to �nd a match for our vector space this time. This isn't a Euclidean space!

Therefore, we have two vectors spaces:

convergent sequences ⊂ sequences

It is also important to remember that they are linked by the inclusion:

i : convergent sequences → sequences

Therefore, all linear operators de�ned on the space of sequences will also be de�ned on the space of convergent
sequences via restriction.

Next, the sums of series.

With what we have learned about limits, we don't need to invoke calculus results anymore. We go in reverse:
linear algebra, then calculus.

Every sequence produces another sequence, its sequence of sums:

an 7→ bn = a1 + a2 + ...+ an .

It is also known as the partial sum in this context.

This is, of course, our function,
Σ : sequences → sequences

De�nition 6.6.8: sum of the series

The sum of a series given by a sequence a1, a2, ... is de�ned to be the limit of
the sequence of its sums:

∞∑
an = lim

n→∞
(a1 + a2 + ...+ an)

Then the series is called convergent.

We have, therefore, two linear operators executed consecutively:

∞∑
: convergent series

Σ−−−−→ convergent sequences
lim−−−−−→ R

The fact that the composition of two linear operators is a linear operator proves the following:

Theorem 6.6.9: Linear Algebra of Sums of Series

1. The convergent series form a vector space.
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2. The sum is a real-valued linear operator on this space:

∞∑
= lim ◦Σ : an 7→ a

We have another function with a complicated name...

Exercise 6.6.10

Provide details of the proof.

Exercise 6.6.11

Is this function one-to-one or onto?

Familiar results from calculus follow from the theorem:

Theorem 6.6.12: Sum Rule for Sums of Series

1. If series
∞∑
an,

∞∑
bn converge, then so does

∞∑
(an + bn).

2. Furthermore, we have:

∞∑
(an + bn) =

∞∑
an +

∞∑
bn

or
∞∑
an = a,

∑
bn = b =⇒

∞∑
(an + bn) = a+ b .

Theorem 6.6.13: Constant Multiple Rule for Sums of Series

1. If series
∑

an converges, then so does
∑

kan for any real k.

2. Furthermore, we have: ∑(
k · an

)
= k ·

∑
an

or ∑
an = a =⇒

∑
k · an = ka .

Consider the limits of functions next:

Once again, it doesn't matter what the de�nition of the limit of a function is. What matters is that once
x = a is �xed, the limit is a number if it exists. Taken together, these numbers form a real-valued function
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the inputs of which are convergent at a functions:

function → lim
x→a

→ number

The reason is that there can be only one limit.

The properties of limits are translated into the properties of this function.

Let's consider addition of functions. Here, g serves as a vertical �push� of the graph of f . The picture below
is meant to illustrate that idea. There are ping-pong balls arranged in a curve, f , on the ground and there
is also wind, g. Then, the wind, non-uniformly but continuously, blows them forward:

The ping-pong balls remain arranged in a curve, f + g.

Theorem 6.6.14: Sum Rule of Limits of Functions

For each a, we have:
1. If the limits at a of functions f, g exist, then so does that of their sum,
f + g.

2. Furthermore, the limit of the sum is equal to the sum of the limits:

lim
x→a

(
f(x) + g(x)

)
= lim

x→a
f(x) + lim

x→a
g(x)

or

f(x)→ F, g(x)→ G =⇒ f(x) + g(x)→ F +G as x→ a .

Theorem 6.6.15: Constant Multiple Rule of Limits of Functions

For each a, we have:
1. If the limit at a of function f exists, then so does that of its multiple, kf .
2. Furthermore, the limit of the multiple is equal to the multiple of the limit:

lim
x→a

kf(x) = k · lim
x→a

f(x)

or
f(x)→ F =⇒ k · f → k · F as x→ a .

Parts 1 match: A linear combination of two convergent functions is convergent. And Parts 2 match too:
Limits preserve linear combinations.

We conclude the following, which is the purpose of this investigation:

Theorem 6.6.16: Linear Algebra of Limits of Functions

For each a, we have:
1. The numerical functions convergent at x = a form a vector space.
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2. The limit is a real-valued linear operator on this space:

lim
x→a

: f 7→ L

We have another function with a complicated name...

Exercise 6.6.17

Provide details of the proof.

Exercise 6.6.18

Is this function one-to-one or onto?

We can also derive the following:

Corollary 6.6.19: Linear Algebra of Continuous Functions

The continuous on a particular set X ⊂ R real-valued functions form a vector
space.

Therefore, we have two vectors spaces:

continuous functions ⊂ functions

It is also important to remember that they are linked by the inclusion, which is a linear operator:

i : continuous functions → functions

Therefore, all linear operators de�ned on the space of functions will also be de�ned on the space of continuous
functions via restriction.

6.7. Di�erentiation as a linear operator

The derivative of a function at some x = a is de�ned to be the limit of the di�erence quotients of this
function. That why its algebra is similar to that of the di�erence operator:

It doesn't matter what the de�nition is exactly, but di�erentiation,

f 7→ f ′(a) ,

is a real-valued function function of functions:

function → d

dx

∣∣∣∣
x=a

→ number
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Its domain is the functions di�erentiable at a.

Exercise 6.7.1

Is this function linear? One-to-one? Onto?

We take this to the next level: The derivative is a function.

Di�erentiation is a function-valued function de�ned on all di�erentiable (on a given interval) functions:

It is seen as the collection of all tangent lines.

The input of this function is a di�erentiable function f , and the output is another function f ′:

f 7→ f ′ .

What this means is that this process is a special kind of function too:

function → d

dx
→ function

Its domain is still the di�erentiable at a functions, but the codomain consists of functions.

Now the algebra.

Consider this elementary statement about motion:

I IF two runners are running away from a post, THEN their relative velocity is the sum of
their respective velocities.

It's as if the one runner is standing still while the other is running for the both of them with the combined
speed:

Theorem 6.7.2: Sum Rule for Derivatives

1. The sum of two functions di�erentiable at a point is di�erentiable at that
point.

2. For any two functions f, g di�erentiable at x, we have at x:

d

dx
(f + g) =

d

dx
(f) +

d

dx
(g) .

It can be illustrated with the following:
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Next, consider:

I If the distances are proportionally increased, then so are the velocities needed to cover them,
in the same period of time.

More precisely, we have:

Theorem 6.7.3: Constant Multiple Rule for Derivatives

1. A multiple of a function di�erentiable at a point is di�erentiable at that
point.

2. For any function f di�erentiable at x and any real k, we have at x:

d

dx
(kf) = k

d

dx
(f) .

It can be illustrated with the following:

These two operations can be combined into one producing linear combinations :

αx+ βy ,

where α, β are two constant numbers. For example, this is the average of two functions (left):

We also notice what happens to their derivatives (right):

I The derivative of the average is the average of the derivatives.

Of course, we conclude the following �rst:

1. The functions di�erentiable at a particular x = a form a vector space.
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2. The derivative at x = a is a real-valued linear operator on this space:

d

dx

∣∣∣∣
x=a

: f 7→ f ′(a)

The following is a more profound conclusion:

Theorem 6.7.4: Linear Algebra of Di�erentiation

1. The functions di�erentiable on a particular interval I form a vector space.
2. The derivative is a linear operator on this space with values in functions

de�ned on I:

d

dx
: f 7→ f ′

Exercise 6.7.5

Is the operator one-to-one? Onto?

What happens to linear combinations of functions under di�erentiation? These two formulas can be com-
bined into one:

d

dx
(αf + βg) = α

d

dx
(f) +β

d

dx
(g)

The last formula is illustrated with the following diagram:

αf + βg → d

dx
→ αf ′ + βg′

We have now three vectors spaces connected by the inclusion operators:

di�erentiable functions → continuous functions → functions

Therefore, all linear operators de�ned on the space of functions will also be de�ned on the space of di�er-
entiable functions via restriction.

Exercise 6.7.6

(a) Prove that the set of all in�nitely many times di�erentiable functions is a vector space. (b) Show
that the derivative is a linear operator on this space. (c) On this space, what are the eigenvalues and
eigenvectors?

6.8. Integration as a linear operator

The de�nite integral of a function over an interval [a, b] is de�ned to be the limit (in a certain sense) of the
Riemann sums of this function. That why its algebra is similar to that of the sum operator:
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It doesn't matter what the de�nition is exactly, but integration,

f 7→
∫ b

a

f dx ,

is a real-valued function of functions:

function →
∫ b

a

→ number

Its domain is the functions integrable over [a, b].

Exercise 6.8.1

Is this function linear? One-to-one? Onto?

We take this to the next level: The inde�nite integral is a function.

Integration is a function-valued function de�ned on all integrable (over a given interval) functions:

It is seen as a way to organize the areas of all regions under the graph.

The input of this function is a integrable function f , and the output is another function

∫
f dx:

f 7→
∫
f dx .

Since this is a de�nite integral, we choose a speci�c antiderivative:

F (x) =

∫ x

a

f dx .

In other words,
F (a) = 0 .

Just as in the case of the sum operator, this will be crucial for the linear algebra treatment.
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What this means is that this process is a special kind of function too:

function →
∫

→ function

Its domain is still the functions integrable over [a, b], but the codomain consists of functions.

Furthermore, the last item on either list comes from the algebraic properties of the limits. In fact, the ideas
come from those for limits : the Sum Rule and the Constant Multiple Rule. The question we will be asking
is the following:

I What happens to the output function of integration as we perform algebraic operations with
the input functions?

Consider this elementary statement about motion:

I IF two runners are running away from a post, THEN the distance between them is the sum
of their distances to the post.

It's as if the one runner is standing still while the other is running for the both of them with the combined
speed:

Theorem 6.8.2: Sum Rule for Integrals

1. The sum of two functions integrable over an interval is integrable over that
interval.

2. For any two functions f, g integrable over an interval, we have over the
interval: ∫

(f + g) dx =

∫
(f) dx+

∫
(g) dx .

The picture below illustrates what happens when the bottom drops from a bucket of sand and it falls on a
uneven surface:

The theorem can also be demonstrated with the spreadsheet:
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Next, when a function is multiplied by a constant, what happens to its sums?

Consider:

I If the distances are proportionally increased, then so are the velocities needed to cover them,
in the same period of time.

More precisely, we have:

Theorem 6.8.3: Constant Multiple Rule for Integrals

1. A multiple of a function integrable over an interval is integrable over that
interval.

2. For any function f integrable over an interval and any real k, we have over
the interval: ∫

(kf) dx = k

∫
(f) dx .

The picture below illustrates the idea that tripling the height of a road will need tripling the amount of soil
under it:

The last two theorems demonstrate that this is true whether the surface is staircase-like or curved.

For the motion metaphor, if your velocity is tripled, then so is the distance you have covered over the same
period of time.

The theorem can also be demonstrated with the spreadsheet:
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These two operations can be combined into one producing linear combinations :

αx+ βy ,

where α, β are two constant numbers. For example, this is the average of two functions (left):

We also notice what happens to their integrals (right):

I The integral of the average is the average of the integrals.

Of course, we conclude the following �rst:

1. The functions integrable over a particular [a, b] form a vector space.

2. The integral at x = a is a real-valued linear operator on this space:∫
[a,b]

: f 7→
∫

[a,b]

f dx

More important is the following:

Theorem 6.8.4: Linear Algebra of Integration

1. The functions integrable on a particular interval I form a vector space.
2. The integral is a linear operator on this space with values in functions

de�ned on I: ∫
: f 7→

∫
f dx

Exercise 6.8.5

Is the operator one-to-one? Onto?

What happens to linear combinations of functions under integration? These two formulas can be combined
into one: ∫

(αf + βg) dx = α

∫
f dx +β

∫
g dx

The last formula is illustrated with the following diagram:

αf + βg →
∫

→ α

∫
f + β

∫
g

Therefore, we have three vectors spaces connected by the inclusion operators:

di�erentiable functions → continuous functions → integrable functions → functions

Therefore, all linear operators de�ned on the space of functions will also be de�ned on the space of integrable
functions via restriction.
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6.9. The Fundamental Theorem of Calculus

Di�erentiation and integration have been proven to be inverses in the discrete context:

∆−1 = Σ .

In this section, we will address the general case of the relation between di�erentiation and integration in the
in�nitesimal context. But �rst, a very instructive special case.

Example 6.9.1: di�erentiation of quadratic functions

What is the matrix of the derivative when limited to the space of quadratic functions? Just consider
its e�ect on the basis elements, the power functions:

(1)′ = 0, (x)′ = 1, (x2)′ = 2x .

Then we have:

d

dx

1
0
0

 =

0
0
0

 , d

dx

0
1
0

 =

1
0
0

 , d

dx

0
0
1

 =

0
2
0

 .

Therefore, the matrix of
d

dx
: P2 → P2

is:

d

dx
=

0
0
0

1
0
0

0
2
0

 =

0 1 0
0 0 2
0 0 0

 .

It's not invertible though.

Drawing an idea from our treatment of the di�erence operator, we try the following ideas:
1. What if we concentrate on the input on the quadratic functions with a zero constant term? Then

1 is removed from the basis.
2. What if we concentrate on the output on the linear functions only? Then x2 is removed from

the basis.
We have a new function:

d

dx
: {f ∈ P2 : f(0) = 0} → P1

with the following matrix:
d

dx
=

[
1
0

] [
0
2

]
=

[
1 0
0 2

]
.

It's diagonal and invertible: (
d

dx

)−1

=

1 0

0 1
2

 .

The starting point of our treatment of all polynomials is the following:

Theorem 6.9.2: Derivative of Polynomial

The derivative of a polynomial of degree n > 0 is a polynomial of degree n− 1,
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as follows:

f(x) = anx
n +an−1x

n−1 +... +a2x
2 +a1x +a0

f ′(x) = nanx
n−1 +(n− 1)an−1x

n−2 +... +2a2x +a1

Corollary 6.9.3: Matrix of Derivative of Polynomials

The matrix of the derivative on the space of polynomials of the nth degree or
lower, Pn, is given by:

d

dx
=


0 1 0 0 ... 0
0 0 2 0 ... 0
0 0 0 3 ... 0
...
0 0 0 0 ... n
0 0 0 0 ... 0



Except for the entries just above the main diagonal, all are 0's.

Now, we know that integration is supposed to be the inverse of di�erentiation. But the latter isn't one-to-one!

As before, we reduce the domain to make it one-to-one. We limit ourselves to the polynomials with a 0
constant term:

f(x) = anx
n +an−1x

n−1 +... +a2x
2 +a1x

f ′(x) = nanx
n−1 +(n− 1)an−1x

n−2 +... +2a2x +a1

We don't lose a lot because the term only contributes a vertical shift to the graph. And the number of terms
(the dimension) in the domain and the codomain match!

The derivative then is this function:

d

dx
: {f ∈ Pn : f(0) = 0} → Pn−1

The dimensions are still the same, and the matrix has become diagonal:

d

dx
=


1 0 0 ... 0
0 2 0 ... 0
0 0 3 ... 0
...
0 0 0 ... n


We have dropped a row and a column in comparison to the original matrix. The inverse might exist.

We need a linear operator: (
d

dx

)−1

: Pn → {f ∈ Pn+1 : f(0) = 0} .

And we know how it is supposed to work:

g(x) = bnx
n +bn−1x

n−1 +... +b2x
2 +b1x +b0∫

g(x) dx = 1
n+1

bnx
n+1 + 1

n
bn−1x

n +... +1
2
b2x

3 +b1x
2 +b0x

A diagonal matrix is easy to invert:
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Corollary 6.9.4: Matrix of Integral of Polynomials

The matrix of the integral as a linear operator from the space of the up to nth
degree polynomials to the space of the up to n + 1 degree polynomials with a
zero constant term is given by:

(
d

dx

)−1

=



1 0 0 0 ... 0

0 1
2

0 0 ... 0

0 0 1
3

0 ... 0

...

0 0 0 0 ... 0

0 0 0 0 ... 1
n+1



Exercise 6.9.5

Suppose A is the vector space of all linear combinations of sinx and cosx. What is the matrix of the
derivative on this space?

Exercise 6.9.6

Suppose A is the vector space of all linear combinations of ex and e−x. What is the matrix of the
derivative on this space?

So far, we have learned the following two facts that match totally:

1. The di�erence operator and the sum operator are inverses.

2. The derivative operator and the integral operator are inverses in case of polynomials.

On to the general case.

Below, a function is sampled to produce the Riemann sums, which, under the limit, produce the Riemann
integral to be di�erentiated:

Will we make the full circle?

Recall these two theorems from calculus:

Theorem 6.9.7: Fundamental Theorem of Calculus I

Given a continuous function f on [a, b], the function de�ned by

F (x) =

∫ x

a

f dx

is an antiderivative of f on (a, b); i.e,

F ′ = f .
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Theorem 6.9.8: Fundamental Theorem of Calculus II

For any integrable function f on [a, b] and any of its antiderivatives F , we have:∫ b

a

f dx = F (b)− F (a) .

The Part I supplies us with a special choice of antiderivative � the one that satis�es F (a) = 0. The rest,
according to Part II, are acquired by vertical shifts: G = F +C. The idea is that if the ceiling and the �oor
of a tunnel are equal at every point, its height is constant:

Now, linear algebra.

The idea is to look at the composition of the derivative and the integral operators. The domains and
codomains of both include only functions de�ned on [a, b].

Let's keep in mind that the codomain of the latter is determined by the de�nite integral, so that

F (a) = 0 .

The inputs and outputs of the derivative operator
d

dx
will have to be matched with the outputs and inputs

of the integral operator

∫
. They do, according to our de�nition:

d

dx
: di�erentiable functions → integrable functions with F (a) = 0∫
: integrable functions with F (a) = 0 → di�erentiable functions

This is what happens when we put them together:

di�erentiable
d
dx−−−−−→ integrable with F (a) = 0

∫
−−−−→ di�erentiable

integrable with F (a) = 0
∫

−−−−→ di�erentiable
d
dx−−−−−→ integrable with F (a) = 0

The compositions ∫
◦ d
dx

and
d

dx
◦
∫

now make sense.

The linear algebra analogs of the above theorems are below:
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Corollary 6.9.9: I

The composition of the derivative operator
d

dx
and the integral

∫
is the identity:

d

dx
◦
∫

= I

Proof.

Exercise 6.9.10

Finish the proof.

Corollary 6.9.11: II

The composition of the integral

∫
and the derivative

d

dx
is the identity:

∫
◦ d
dx

= I

We combine them together into this truly fundamental result:

Theorem 6.9.12: Fundamental Theorem of Calculus

The integral operator

∫
and the derivative operator

d

dx
are inverses of each

other: (
d

dx

)−1

=

∫

Exercise 6.9.13

What are the eigenvectors of the derivative operator?

6.10. Linear algebra of power series

Suppose a point a is given. Then the following creates a function, f :

• There is a sequence of numbers,
c0, c1, c2, ...

• For each input x, its value under this function is computed by substituting it into a formula, a power
series with the sequence providing its coe�cients:

f(x) =
∞∑
n=0

cn(x− a)n .
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• The domain of the function is the region of convergence of the series.

Here, a is the the center of the power series.

We start with algebra.

Just as with functions in general, we can carry out (some) algebraic operations on power series producing
new power series. However, what is truly important is that we can do these operations term by term. The
idea comes from our experience with polynomials ; after all the algebra, we want to put the result in the
standard form, i.e., with all terms arranged according to the powers.

First, we can add two polynomials one term at a time:

p(x) = 1 +2x +3x2

q(x) = 7 +5x −2x2

p(x) + q(x) = (1 + 7) +(2 + 5)x +(3− 2)x2

We know that we can also add two series one term at a time:

p(x) = c0 +c1x +c2x
2 +...

q(x) = d0 +d1x +d2x
2 +...

p(x) + q(x) = (c0 + d0) +(c1 + d1)x +(c2 + d2)x2 +....

Second, we can multiply a series by a number one term at a time:

p(x) = 1 +2x +3x2

2p(x) = (2 · 1) +(2 · 2)x +(2 · 3)x2

We also multiply a series by a number one term at a time:

p(x) = c0 +c1x +c2x
2 +...

kp(x) = (kc0) +(kc1)x +(kc2)x2 +...

The general result is below.

Theorem 6.10.1: Term-by-Term Algebra of Power Series

Suppose two functions are represented by power series:

f(x) =
∞∑
n=0

cn(x− a)n and g(x) =
∞∑
n=0

dn(x− a)n .

Then we have:
1. The function f + g is represented by the power series that is the term-by-

term sum of those of f and g, de�ned on the intersection of their domains:

(f + g)(x) =
∞∑
n=0

cn(x− a)n +
∞∑
n=0

dn(x− a)n =
∞∑
n=0

(cn + dn)(x− a)n .

2. The function kf , for any constant k, is represented by the power series that
is the term-by-term product of that of f , de�ned on the same domain:

(kf)(x) = k ·
∞∑
n=0

cn(x− a)n =
∞∑
n=0

(kcn)(x− a)n .

In other words, these �in�nite� polynomials behave just like ordinary polynomials, wherever they converge.
Linear algebra allows us to restate this theorem in a very compact form:
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Theorem 6.10.2: Linear Algebra of Power Series

The power series, convergent on a particular interval, form a vector space.

Next is di�erentiation and integration, i.e., calculus, of power series.

We will see that, just as with functions in general, we can carry out the calculus operations on power series
producing new power series. However, what is truly important is that we can do these operations term by

term.

Example 6.10.3: di�erentiation and integration

Let's di�erentiate � only the Power Formula of di�erentiation required � the terms of the power series
representation of the exponential function:

ex = 1 + x +
1

2!
x2 +

1

3!
x3 + ... +

1

n!
xn +

1

(n+ 1)!
xn+1 + ...y d

dx

y d
dx

y d
dx

y d
dx

y d
dx

y d
dx

y d
dx

(ex)′
?

== 0 + 1 +
1

2!
2x +

1

3!
3x2 + ... +

1

n!
nxn−1 +

1

(n+ 1)!
(n+ 1)xn + ...

= 1 + x +
1

2!
x2 + ... +

1

(n− 1)!
xn−1 +

1

n!
xn + ...

= ex.

Let's integrate � only the Power Formula of integration required � the terms of the power series
representation of the exponential function:

ex = 1 + x +
1

2!
x2 + ... +

1

n!
xn +

1

(n+ 1)!
xn+1 + ...y∫ y∫ y∫ y∫ y∫ y∫∫

ex dx
?

== C+ x +
1

2
x2 +

1

2!

1

3
x3 + ... +

1

n!

1

n+ 1
xn+1 +

1

(n+ 1)!

1

n+ 2
xn+2 + ...

= C+ x +
1

2!
x2 +

1

3!
x3 + ... +

1

(n+ 1)!
xn+1 +

1

(n+ 2)!
xn+2 + ...

= C+ ex.

Di�erentiation and integration of the terms is easy:

d

dx

(
cn(x− a)n

)
= ncn(x− a)n−1,

∫ (
cn(x− a)n

)
dx =

cn
n+ 1

(x− a)n+1 .

The following theorem is the summary:

Theorem 6.10.4: Term-by-Term Calculus of Power Series

Suppose the radius of convergence of a power series,

f(x) =
∞∑
n=0

an(x− a)n ,

is positive or in�nite. Then the function f represented by this power series
is di�erentiable (and, therefore, integrable) on the interval of convergence, and
the power series representations of its derivative and its antiderivative converge
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inside this interval and are found by term-by-term di�erentiation and integration
of the power series of f respectively, i.e.,

d

dx
f(x) =

d

dx

(
∞∑
n=0

cn(x− a)n

)
=
∞∑
n=0

d

dx

(
cn(x− a)n

)
and ∫

f(x) dx =

∫ ( ∞∑
n=0

cn(x− a)n

)
dx =

∞∑
n=0

∫
cn(x− a)n dx .

With this theorem, there is no need for the rules of di�erentiation or integration except for the Power

Formula!

Corollary 6.10.5: Matrix of Derivative of Power Series

The matrix of the derivative on the space of power series convergent on a par-
ticular open interval is given by the following in�nite matrix:

d

dx
=



0 1 0 0 0 ... 0 ...
0 0 2 0 0 ... 0 ...
0 0 0 3 0 ... 0 ...
... ... ...
0 0 0 0 0 ... 0 ...
0 0 0 0 0 ... n+ 1 ...
... ... ...



The multiplication of this in�nite matrix by an in�nite vector (a sequence) doesn't represent a problem
because there are only �nitely many non-zero entries in each row.

De�nition 6.10.6: analytic function

A function de�ned on an open interval that can be represented by a power series
is called analytic on this interval.

Theorem 6.10.7: Uniqueness of Power Series Representation

An analytic function has a unique power series representation, i.e., if two power
series are equal, as functions, on an open interval, then their corresponding
coe�cients are equal too, i.e.,

f(x) =
∞∑
n=0

cn(x− a)n =
∞∑
n=0

dn(x− a)n for all a− r < x < a+ r, r > 0

=⇒ cn = dn for all n = 0, 1, 2, 3, ...

Furthermore, every analytic function is in�nitely many times di�erentiable.

Example 6.10.8: sine and cosine

Let's �nd the power series representation for f(x) = sinx at x = 0. We start with what we already
know:
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We need them all:

f(x) = sinx =⇒ f(0) = 0 =⇒ T0(x) = 0
f ′(x) = cosx =⇒ f ′(0) = 1 =⇒ T1(x) = x
f ′′(x) = − sinx =⇒ f ′′(0) = 0 =⇒ T2(x) = x

f ′′
′
(x) = − cosx =⇒ f ′′

′
(0) = −1 =⇒ T3(x) = 1− 1

6
x3

...

The sequence starts to repeat itself, every four steps... Every polynomial leaves for in�nity eventually
but the resemblance extends further and further from the center:

There are no even powers present because the sine is odd. Therefore,

f (2m−1)(0) = (−1)m .

We have the Taylor coe�cients:

c2m−1 =
(−1)m

(2m− 1)!
.

Let's approximate f(x) = cos x at x = 0. We start with what we already know:
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We need them all:

f(x) = cosx =⇒ f(0) = 1 =⇒ T0(x) = 1
f ′(x) = − sinx =⇒ f ′(0) = 0 =⇒ T1(x) = 1

f ′′(x) = − cosx =⇒ f ′′(0) = −1 =⇒ T2(x) = 1− 1

2
x2

f ′′
′
(x) = sinx =⇒ f ′′

′
(0) = 0 =⇒ T3(x) = 1− 1

2
x2

f (4)(x) = cosx =⇒ f (4)(0) = 1
...

The sequence starts to repeat itself, every four steps... Every polynomial leaves for in�nity eventually
but the resemblance extends further and further from the center:

There are no odd powers present because the cosine is even. Therefore,

f (2m)(0) = (−1)m .

We have the Taylor coe�cients:

c2m =
(−1)m

(2m)!
.

This is what polynomial approximations would look like:

Even though each approximation eventually becomes bad, the interval where things are good is ex-
panding.

The di�erentiation and integration are perfectly re�ected in this mirror of power series:

f
Taylor−−−−−−−→

∑
n

cn(x− a)ny d
dx

y d
dx

f ′
Taylor−−−−−−−→

∑
n

(cn(x− a)n)′

f
Taylor−−−−−−−→

∑
n

cn(x− a)ny∫ y∫∫
f dx

Taylor−−−−−−−→
∑
n

∫
(cn(x− a)n) dx
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In the �rst diagram, we start with a function at the top left and then we proceed in two ways:

• Right: Find its Taylor series. Then down: Di�erentiate the result term by term.

• Down: Di�erentiate it. Then right: Find its Taylor series.

The result is the same!

Exercise 6.10.9

What are the eigenvectors of the derivative operator?
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1. Exercises: Background

Exercise 1.1

Give each of the following functions a domain and
codomain and determine if it is one-to-one or onto:
(a) y = x2; (b) y =

√
x; (b) z = x + y; (c)

(x, y) = (sin t, cos t).

Exercise 1.2

Contract this summation:

2− 2

2
+

2

3
− 2

4
=?

Exercise 1.3

Expand this summation:

5∑
k=−1

k2

k + 2
=?

Exercise 1.4

True or False?
(a) x < r =⇒ |x| < r;
(b) x < r ⇐= |x| < r;
(c) x < r ⇐⇒ |x| < r.

491
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Exercise 1.5

For 4y + 16x = 20, provide the slope and the y-
intercept.

Exercise 1.6

A diameter of a circle runs between points R and T .
The center of the circle, P , has coordinates (−4, 1).
The coordinates of the point R are (2,−3). What
are the coordinates of T?

Exercise 1.7

Let f(x) = 7+2x−x2. Find the di�erence quotient

f(3 + h)− f(3)

h
.

Simplify your answer.

Exercise 1.8

Find an expression for f(x) and state its domain in
interval notation given that f is the function that
takes a real number x and performs the following
three steps in order:

1. divide by 3,

2. take square root, and then

3. make the quantity the denominator of a frac-
tion with numerator 13.

Exercise 1.9

Compute
4∑

n=1

n2.

Exercise 1.10

Present the �rst 5 terms of the sequence:

a1 = 1, an+1 = −(an + 1).

Exercise 1.11

Represent in sigma notation:

−1− 2− 3− 4− 5− ...− 10.

Exercise 1.12

Find the sum of the following:

−1− 2− 3− 4− 5− ...− 10.

Exercise 1.13

Find the sequence of sums of the following se-

quence:
−1, 2,−4, 8,−5, ...

Exercise 1.14

Show that
n

n+ 1
is an increasing sequence. What

kind of sequence is
n+ 1

n
? Give examples of in-

creasing and decreasing sequences.

Exercise 1.15

Find the next item in each list:

1. 7, 14, 28, 56, 112, ...

2. 15, 27, 39, 51, 63, ...

3. 197, 181, 165, 149, 133, ...

Exercise 1.16

A pile of logs has 50 logs in the bottom layer, 49
logs in the next layer, 48 logs in the next layer, and
so on, until the top layer has 1 log. How many logs
are in the pile?

Exercise 1.17

In the beginning of each year, a person puts $5000
in a bank that pays 3% compounded annually. How
much does he have after 15 years?

Exercise 1.18

An object falling from rest in a vacuum falls ap-
proximately 16 feet the �rst second, 48 feet the
second second, 80 feet the third second, 112 feet
the fourth second, and so on. How far will it fall in
11 seconds?
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2. Exercises: Sets and logic

Exercise 2.1

Represent the following set in the set-building no-
tation:

X = [0, 1] ∪ [2, 3] = ...

Exercise 2.2

Simplify:

{x > 0 : x is a negative integer }.

Exercise 2.3

What are the max, min, and any bounds of the set
of integers? What about R?

Exercise 2.4

Is the converse of the converse of a true statement
true?

Exercise 2.5

State the converse of this statement: �the converse
of the converse of a true statement is true�.

Exercise 2.6

Represent these sets as intersections and unions:

1. (0, 5)

2. {3}

3. ∅

4. {x : x > 0 OR x is an integer}

5. {x : x is divisible by 6}

Exercise 2.7

True or false: 0 = 1 =⇒ 0 = 1?

Exercise 2.8

Prove:

max{maxA,maxB} = max(A ∪B).

Exercise 2.9

(a) If, starting with a statement A, after a series of
conclusions you arrive to 0 = 1, what can you con-
clude about A? (b) If, starting with a statement
A, after a series of conclusions you arrive to 0 = 0,

what can you conclude about A?

Exercise 2.10

We know that �If it rains, the road gets wet�. Does
it mean that if the road is wet, it has rained?

Exercise 2.11

A garage light is controlled by a switch and, also, it
may automatically turn on when it senses motion
during nighttime. If the light is OFF, what do you
conclude?

Exercise 2.12

If an advertisement claims that �All our second-
hand cars come with working AC�, what is the eas-
iest way to disprove the sentence?

Exercise 2.13

Teachers often say to the student's parents: �If your
student works harder, he'll improve�. When he
won't improve and the parents come back to the
teacher, he will answer: �He didn't improve, that
means he didn't work harder�. Analyze.
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3. Exercises: Coordinate system

Exercise 3.1

Find the equation of the line passing through the
points (−1, 1) and (−1, 5).

Exercise 3.2

What is the distance from the center of the circle

(x− 1)2 + (y + 3)2 = 5

to the origin?

Exercise 3.3

One circle is centered at (0, 0) and has radius 1.
The second is centered at (3, 3). What is the ra-
dius of the second if the two circles touch?

Exercise 3.4

What is the distance from the circle

x2 + (y + 3)2 = 2

to the origin?

Exercise 3.5

Find the equation of the circle centered at (−1,−1)
and passing through the point (−1, 1).

Exercise 3.6

Three straight lines are shown below. Find their
slopes:

Exercise 3.7

Three straight lines are shown below. Find their
equations:

Exercise 3.8

For the points P = (0, 1), Q = (1, 2), and R =
(−1, 2), determine the points that are symmetric
with respect to the axis and the origin.

Exercise 3.9

The hypotenuse of an isosceles right triangle is 10
inches. The midpoints of its sides are connected to
form an inscribed triangle, and this process is re-
peated. Find the sum of the areas of these triangles
as this process is continued.

Exercise 3.10

Consider triangle ABC in the plane where A =
(3, 2), B = (3,−3), C = (−2,−2). Find the
lengths of the sides of the triangle.

Exercise 3.11

Sketch the region given by the set {(x, y) : xy < 0}.
Which axes and which quadrants of the plane are
included in the set?

Exercise 3.12

Find all x such that the distance between the points
(3,−8) and (x,−6) is 5.

Exercise 3.13

Two cars leave a highway junction at the same time.
The �rst travels west at 70 miles per hour and the
second travels north at 60 miles per hour. How far
apart are they after 1.5 hours?

Exercise 3.14

Find the perimeter of the triangle with the vertices
at (3,−1), (3, 6), and (−6,−5).
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Exercise 3.15

Find the point on the x-axis that is equidistant
from the points (−1, 5) and (6, 4).

Exercise 3.16

Find the distance between the points of intersec-
tion of the circle (x − 1)2 + (y − 2)2 = 6 with the
axes.
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4. Exercises: Relations and functions

Exercise 4.1

A contractor purchases gravel one cubic yard at a
time. A gravel driveway x yards long and 4 yards
wide is to be poured to a depth of 1.5 foot. Find
a formula for f(x), the number of cubic yards of
gravel the contractor buys, assuming that he buys
10 more cubic yards of gravel than are needed.

Exercise 4.2

Visualize the relation:

x2

4
+
y2

9
= 1 .

Do you see these 4 and 9 on the graph?

Exercise 4.3

Suppose the cost is f(x) dollars for a taxi trip of x
miles. Interpret the following stories in terms of f .

1. Monday, I took a taxi to the station 5 miles
away.

2. Tuesday, I took a taxi to the station but then
realized that I left something at home and
had to come back.

3. Wednesday, I took a taxi to the station and
I gave my driver a �ve dollar tip.

4. Thursday, I took a taxi to the station but the
driver got lost and drove �ve extra miles.

5. Friday, I have been taking a taxi to the sta-
tion all week on credit; I pay what I owe
today.

What if there is an extra charge per ride of m dol-
lars?

Exercise 4.4

Let f : A → B and g : C → D be two possi-
ble functions. For each of the following functions,
state whether or not you can compute f ◦ g:

• D ⊂ B

• C ⊂ A

• B ⊂ D

• B = C

Exercise 4.5

An amusement park sells multi-day passes. The
function g(x) = 1/3x represent the number of days
a pass will work, where x is the amount of money
paid, in dollars. Interpret the meaning of g(6) = 3.

Exercise 4.6

The perimeter of a rectangle is 10 feet. (a) Express
the area of the rectangle in terms of its width. (b)
Find the minimal possible area. (c) Find the max-
imal possible area.

Exercise 4.7

Let A = f(r) be the area of a circle with radius
r and r = h(t) be the radius of the circle at time
t. Which of the following statements correctly pro-
vides a practical interpretation of the composition
f(h(t))?

1. The length of the radius at time t.

2. The area of the circle at time t.

3. The length of the radius of a circle with area
A = f(r) at time t.

4. The area of the circle which at time t has
radius h(t).

5. The time t when the area will be A = f(r).

6. The time t when the radius will be r = h(t).

Exercise 4.8

The area of a rectangle is 100 sq. feet. (a) Express
the perimeter of the rectangle in terms of its width.
(b) Find the minimal possible perimeter. (c) Find
the maximal possible perimeter.

Exercise 4.9

The graph of the function y = f(x) is given be-
low. (a) Find such a y that the point (2, y) belongs
to the graph. (b) Find such an x that the point
(x, 3) belongs to the graph. (b) Find such an x
that the point (x, x) belongs to the graph. Show
your drawing.
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Exercise 4.10

Make a �owchart and then provide a formula for
the function y = f(x) that represents a parking fee
for a stay of x hours. It is computed as follows:
free for the �rst hour and $1 per hour beyond.

Exercise 4.11

Find all possible values of x for which

tanx = 0 .

Exercise 4.12

Make a hand-drawn sketch of the graph of the func-
tion:

f(x) =


−3 if x < 0,

x2 if 0 ≤ x < 1,
x if x > 1.

Exercise 4.13

Find the implied domains of the functions given by:

(a)
x+ 1√
x2 − 1

; (b) 4
√
x+ 1 .

Exercise 4.14

Find the implied domain of the function given by:

1

(x− 1)(x2 + 1)
.

Exercise 4.15

Find the implied domain of the function given by:

1√
x+ 1

.

Exercise 4.16

Find the implied domain of the function:

x− 1

x+ 1
ln(x2 + 1) sinx .

Exercise 4.17

Find the implied domain of the function:

(x− 1)(x2 + 1)2x .

Exercise 4.18

Finish the sentence: �If a function fails the horizon-
tal line test, then...�

Exercise 4.19

Restate (but do not solve) the following problem al-
gebraically: �What are the dimensions of the rect-
angle with the smallest possible perimeter and area
�xed at 100?�

Exercise 4.20

A sketch of the graph of a function f and its table
of values are given below.
Complete the table:

x 0 3 1

y 2 4 5

Exercise 4.21

Plot the graph of the function y = f(x), where x
is the income (in thousands of dollars) and f(x) is
the tax bill (in thousands of dollars) for the income
of x, which is computed as follows: no tax on the
�rst $10, 000, then 5% for the next $10, 000, and
10% for the rest of the income.

Exercise 4.22

Plot the graph of the function y = f(x), where x is
time in hours and y = f(x) is the parking fee over
x hours, which is computed as follows: free for the
�rst hour, then $1 per every full hour for the next
3 hours, and a �at fee of $5 for anything longer.
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Exercise 4.23

Explain the di�erence between these two functions:√
x− 1

x+ 1
and

√
x− 1√
x+ 1

.

Exercise 4.24

Classify these functions:

function odd even onto one-to-one

f(x) = 2x− 1
g(x) = −x+ 2
h(x) = 3

Exercise 4.25

Describe the function that computes the cash-back
of 5% followed by the discount of 10%. What if we
reverse the order?

Exercise 4.26

Represent this function as a list of instructions:

f(x) =
( 3
√

sinx+ 2
)1/2

.

Exercise 4.27

Find a formula for the following function:

→ square it → take its reciprocal →

Exercise 4.28

Plot the graph of the function given by the list of
instructions: 1. add −1; 2. divide by 0; 3. square
the outcome.

Exercise 4.29

Find the x- and y-intercepts for the graphs in this
section.

Exercise 4.30

Give each of the following functions a domain and
codomain and determine if it is one-to-one or onto:
(a) y = x2; (b) u =

√
x; (c) z = 1/y.

Exercise 4.31

The plane below is the graph of a function. Find
the function.
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5. Exercises: Graphs

Exercise 5.1

A sketch of the graph of a function f is given be-
low. Describe its behavior the function using words
�decreasing� and �increasing�.

Exercise 5.2

Function y = f(x) is given below by a list of some
of its values. Make sure the function is onto.

x −1 0 1 2 3 4 5

y = f(x) −1 4 5 2

Exercise 5.3

Function y = f(x) is given below by a list of some
of its values. Add missing values in such a way that
the function is one-to-one.

x −1 0 1 2 3 4 5

y = f(x) −1 0 5 0

Exercise 5.4

What is the relation between being (a) one-to-one
or onto and (b) having a mirror symmetry or cen-
tral symmetry?

Exercise 5.5

By changing its domain or codomain, make the
function y = x3 − x (a) onto, and (b) one-to-one?

Exercise 5.6

Is the function below even, odd, or neither?

f(x) =
x

ex − 1
+

1

2
x− 1

Exercise 5.7

Give an example of an even function, an odd func-
tion, and a function that's neither. Provide formu-
las.

Exercise 5.8

Test whether the following three functions are even,
odd, or nether: (a) f(x) = x3 + 1; (b) the function
the graph of which is a parabola shifted one unit
up; (c) the function with this graph:

Exercise 5.9

Find horizontal asymptotes of these functions:

Exercise 5.10

The graph of a function f(x) is given below. (a)
Find f(−4), f(0), and f(4). (b) Find such an x
that f(x) = 2. (c) Is the function one-to-one?

Exercise 5.11

Is sinx/2 a periodic function? If it is, �nd its
period. You have to justify your conclusion alge-
braically.

Exercise 5.12

Is sinx + cosπx a periodic function? If it is, �nd
its period. You have to justify your conclusion al-
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gebraically.

Exercise 5.13

Is sinx + sin 2x or sinx + sin
1

2
x a periodic func-

tion? If it is, �nd its period. You have to justify
your conclusion algebraically.

Exercise 5.14

(a) State the de�nition of a periodic function. (b)
Give an example of a periodic polynomial.

Exercise 5.15

Prove, from the de�nition, that the function f(x) =
x2 + 1 is increasing for x > 0.

Exercise 5.16

The graph of the function y = f(x) is given below.
(a) Find its domain. (b) Determine intervals on
which the function is decreasing or increasing. (c)
Provide x-coordinates of its relative maxima and
minima. (d) Find its asymptotes.

Exercise 5.17

If a rational function has 10 vertical asymptotes,
how many branches does its graph have?

Exercise 5.18

For the graph of the function y =
√
x+ 8, answer

the following questions: Is the graph symmetric
with respect to the x-axis? The y-axis? The origin?

Exercise 5.19

Determine which of the following statements are
true and which are false.

1. The function sinx on the domain (−π, π) has
at least one input which produces a smallest
output value.

2. The function f(x) = x3 with domain (−3, 3)
has at least one input which produces a
largest output value.

3. The function f(x) = x3 with domain [−3, 3]

has at least one input which produces a
largest output value.

4. The function f(x) = x3 with domain [−3, 3]
has at least one input which produces a
smallest output value.

5. The function sinx on the domain [−π, π] has
at least one input which produces a smallest
output value.

Exercise 5.20

Give an example of a function that is both odd and
even but not periodic.

Exercise 5.21

Give the de�nition of a circle.
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6. Exercises: Compositions

Exercise 6.1

Represent the function h(x) = sin2 x + sin3 x as
the composition g ◦ f of two functions y = f(x)
and z = g(y).

Exercise 6.2

Function y = f(x) is given below by a list its val-
ues. Find its inverse and represent it by a similar
table.

x 0 1 2 3 4

y = f(x) 0 1 2 4 3

Exercise 6.3

Find the formulas of the inverses of the following
functions: (a) f(x) = (x+ 1)3; (b) g(x) = ln(x3).

Exercise 6.4

Are the following functions invertible? 1. f(n) is
the number of students in your class whose birth-
day is on the nth day of the year. 2. f(t) is the
total accumulated rainfall in inches t on a given day
in a particular location.

Exercise 6.5

The graph of y = f(x) is plotted below. Sketch
y = −f(x+ 5)− 6.

Exercise 6.6

Given the tables of values of f, g, �nd the table of
values of f ◦ g:

x y = g(x)

0 0
1 4
2 3
3 0
4 1

y z = f(y)

0 4
1 4
2 0
3 1
4 2

What if the last rows were missing?

Exercise 6.7

Represent the function below as a composition f ◦g
of two functions:

h(x) =
√

2x3 + x.

Exercise 6.8

Find the composition h(x) = (g ◦f)(x) of the func-
tions y = f(x) = x2−1 and g(y) = 3y−1. Evaluate
h(1).

Exercise 6.9

Represent the function h(x) = 2 sin3 x + sinx + 5
as the composition of two functions one of which is
trigonometric.

Exercise 6.10

(a) Represent the function h(x) = ex
3−1, as the

composition of two functions f and g. (b) Provide
formulas for the two possible compositions of the
two functions: �take the logarithm base 2 of� and
�take the square root of�.

Exercise 6.11

Suppose a function f performs the operation: �take
the logarithm base 2 of�, and function g performs:
�take the square root of�. (a) Verbally describe
the inverses of f and g. (b) Find the formulas for
these four functions. (c) Give them domains and
codomains.

Exercise 6.12

1. Represent the function h(x) =
√
x2 − 1 as

the composition of two functions f and g.

2. Provide a formula for the composition y =
f(g(x)) of f(u) = u2 + u and g(x) = 2x− 1.

Exercise 6.13

Provide a formula for the composition y = f(g(x))
of f(u) = sinu and g(x) =

√
x.

Exercise 6.14

Provide a formula for the composition y = f(g(x))
of f(u) = u2 − 3u+ 2 and g(x) = x.
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Exercise 6.15

Find the inverse of the function f(x) = 3x2 + 1.
Choose appropriate domains for these two func-
tions.

Exercise 6.16

1. Represent the function h(x) =
√
x− 1 as the

composition of two functions.

2. Represent the function k(t) =
√
t2 − 1 as the

composition of three functions.

3. Represent the function p(t) = sin
√
t2 − 1 as

the composition of four functions.

Exercise 6.17

(a) What is the composition f ◦ g for the functions
given by f(u) = u2 + u and g(x) = 3? (a) What
is the composition f ◦ g for the functions given by
f(u) = 2 and g(x) =

√
x?

Exercise 6.18

Is the composition of two functions that are odd-
/even odd/even?

Exercise 6.19

Represent this function: h(x) =
x3 + 1

x3 − 1
, as the

composition of two functions of variables x and y.

Exercise 6.20

Represent the composition of these two functions:

f(x) =
1

x
+ 1 and g(y) =

√
y − 1, as a single func-

tion h of variable x. Don't simplify.

Exercise 6.21

Function y = f(x) is given below by a list its val-
ues. Find its inverse and represent it by a similar
table.

x 0 1 2 3 4

y = f(x) 1 2 0 4 3

Exercise 6.22

Give examples of functions that are their own in-
verses?

Exercise 6.23

Plot the inverse of the function shown below, if
possible.

Exercise 6.24

Plot the graph of the inverse of this function:

Exercise 6.25

Represent this function: h(x) = tan(2x) as the
composition of two functions of variables x and y.

Exercise 6.26

Find the composition h(x) = (g ◦f)(x) of the func-

tions y = f(x) = x2−1 and g(y) =
y − 1

y + 1
. Evaluate

h(0).

Exercise 6.27

Find the composition h(x) = (g ◦f)(x) of the func-
tions y = f(x) = x2−1 and g(y) = 3y−1. Evaluate
h(1).

Exercise 6.28

Represent the composition of these two functions:

f(x) = 1/x and g(y) =
y

y2 − 3
, as a single function

h of variable x. Don't simplify.

Exercise 6.29

Represent this function: h(x) =
x3 + 1

x3 − 1
, as the

composition of two functions of variables x and y.
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Exercise 6.30

Function y = f(x) is given below by a list of its
values. Is the function one-to one? What about its

inverse?

x 0 1 2 3 4

y = f(x) 0 1 2 1 2

Exercise 6.31

Function y = f(x) is given below by a list of its
values. Is the function one-to one? What about its
inverse?

x 0 1 2 3 4

y = f(x) 7 5 3 4 6

Exercise 6.32

Functions y = f(x) and u = g(y) are given below
by tables of some of their values. Present the com-
position u = h(x) of these functions by a similar
table:

x 0 1 2 3 4

y = f(x) 1 1 2 0 2

y 0 1 2 3 4

u = g(y) 3 1 2 1 0

Exercise 6.33

Function y = f(x) is given below by a list of some
of its values. Add missing values in such a way that
the function is one-to one.

x −1 0 1 2 3 4 5

y = f(x) −1 4 5 2

Exercise 6.34

Plot the graph of the function f(x) =
1

x− 1
and

the graph of its inverse. Identify its important fea-
tures.

Exercise 6.35

(a) Algebraically, show that the function f(x) = x2

is not one-to-one. (b) Graphically, show that the
function g(x) = 2x+1 is one-to-one. (c) Find the
inverse of g.

Exercise 6.36

Find the formulas of the inverses of the following
functions: (a) f(x) = (x+ 1)3; (b) g(x) = ln(x3).

Exercise 6.37

Sketch the graph of the inverse of the function be-
low:

Exercise 6.38

Determine whether the functions below are or are
not one-to-one:

f(x) = (x− 1)3 and g(x) = 2x−1 .

Exercise 6.39

Sketch the graph of the composition of the above
function and (a) y = 2x; (b) y = x − 1; and (c)
y = x2.
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7. Exercises: Linear equations

Exercise 7.1

What is the equation of the line through the points
A = (−3, 2) and B = (2, 5)?

Exercise 7.2

Set up, but do not solve, a system of linear equa-
tions for the following problem: �Suppose your
portfolio is worth $20, 000 and it consists of two
stocks A and B. The stocks are priced as follows:
A $2.1 per share, B $1.5 per share. Suppose also
that you have twice as much of stock A than B.
How much of each do you have?�

Exercise 7.3

In an e�ort to �nd the point in which the lines
2x − y = 2 and −4x + 2y = 1 intersect, a student
multiplied the �rst one by 2 and then added the
result to the second. He got 0 = 5. Explain the
result.

Exercise 7.4

Find the angle between the lines: from (0, 0) to
(1, 1) and from (0, 0) to (1, 2). Don't simplify.

Exercise 7.5

Solve the system of linear equations:{
x −y = −1,
2x +y = 0.

Exercise 7.6

Solve the system of linear equations:{
x −2y = 1,
2x +y = 0.

Exercise 7.7

A movie theater charges $10 for adults and $6 for
children. On a particular day when 320 people paid
an admission, the total receipts were $3120. How
many were adults and how many were children?

Exercise 7.8

The taxi charges $1.75 for the �rst quarter of a mile
and $0.35 for each additional �fth of a mile. Find
a linear function which models the taxi fare f as a

function of the number of miles driven, x.

Exercise 7.9

Given vectors a =< 1, 2 >, b =< −2, 1 >, �nd
their magnitudes and the angle between them.

Exercise 7.10

Set up a system of linear equations � but do not
solve � for the following problem: �A mix of cof-
fee is to be prepared from: Kenyan co�ee - $3 per
pound and Colombian co�ee - $5 per pound. How
much of each do you need to have 10 pounds of
blend with $3.50 per pound?�

Exercise 7.11

Set up, do not solve, the system of linear equations
for the following problem: �One serving of tomato
soup contains 100 Cal and 18 g of carbohydrates.
One slice of whole bread contains 70 Cal and 13
g of carbohydrates. How many servings of each
should be required to obtain 230 Cal and 42 g of
carbohydrates?�

Exercise 7.12

Solve the system of linear equations:{
x− y = 2,
x+ 2y = 1.

Exercise 7.13

Solve the system of linear equations and geometri-
cally represent its solution:{

x− 2y = 1,
x+ 2y = −1.

Exercise 7.14

Geometrically represent this system of linear equa-
tions: {

x− 2y = 1,
x+ 2y = 1.

Exercise 7.15

What are the possible outcomes of a system of lin-
ear equations?
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Exercise 7.16

Set up, but do not solve, a system of linear equa-
tions for the following problem: �Suppose your
portfolio is worth $1, 000, 000 and it consists of two
stocks A and B. The stocks are priced as follows:
A $2.1 per share, B $1.5 per share. Suppose also
that you have twice as much of stock A than B.
How much of each do you have?�

Exercise 7.17

Give the number t that makes X =< 3, 2, 1 > and
Y =< 2, t, t > perpendicular.

Exercise 7.18

Here are xyz-equations for two planes: x+y−z = 0
and x − y + z = 0. Explain how you can tell that
these planes cut each other NOT at right angles.

Exercise 7.19

A plane has an xyz-equation x + y = 2. Give a
vector perpendicular to the plane.

Exercise 7.20

In an e�ort to �nd the line in which the planes
2x− y − z = 2 and −4x+ 2y + 2z = 1 intersect, a
student multiplied the �rst one by 2 and then added
the result to the second. He got 0 = 5. Explain the
result.

Exercise 7.21

Determine whether these points lie on a straight
line:

A = (0,−5, 5), B = (1,−2, 4), C = (3, 4, 2) .

Exercise 7.22

Find the plane through the point P = (−1, 6,−5)
and parallel to the vectors A =< 1, 1, 0 > and
B =< 0, 1, 1 > .

Exercise 7.23

Vectors A and B are given below. Copy the picture
and illustrate graphically (a) A+B, (b) A−B, (c)
||A||, (d) the projection of A on B, (e) the projec-
tion of B on A.

Exercise 7.24

Find the angle between the vectors < 1, 1, 1 > and
the x-axis. Don't simplify.

Exercise 7.25

Find the plane through the origin perpendicular to
the line from (1, 0, 0) and (0, 1, 1).

Exercise 7.26

Find an equation of the plane through (2, 1, 0) and
parallel to x+ 4y − 3z = 1.

Exercise 7.27

(a) Find the angle between the planes x+y+z = 1
and x− 2y + 3z = 1. (b) Find the equation of the
line of intersection of these planes.

Exercise 7.28

Find the vector equation of the line parallel to both
xy- and xz- coordinate planes an passing through
(2, 3, 1).

Exercise 7.29

Solve the system of linear equations:{
x −y = −1 ,
2x +y = 0 .

Exercise 7.30

Find the reduced row echelon form of the following
system of linear equations. What kind of set is its
solution set?

−x −2y +z = 0 ,
3x +z = 2 ,
x −y +z = 1 .

Exercise 7.31

Represent the system of linear equations as a ma-
trix equation:

x −y +z = −1 ,
3x +z = 2 ,
2x +y +z = 1 .

Exercise 7.32

Represent this matrix equation as a system of lin-
ear equations: 1 3 2

0 2 0
−1 0 3

 x
y
z

 =

 1
2
3

 .
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Exercise 7.33

Give explicitly the solution set of the system of lin-
ear equations represented by its augmented matrix:[

1 0 2 −1
0 1 1 2

]
.

Exercise 7.34

Find scalars a and b such that

a < 1, 2 > +b < −1, 3 >=< 1, 7 > .

Exercise 7.35

Is it possible for a system of linear equations to
have: (a) no solutions, (b) exactly one solution, (c)
exactly two solutions, (d) in�nitely many solutions?
Give an example or explain why it's not possible.

Exercise 7.36

Find the set of all vectors inR2 that are orthogonal
to < −1, 3 >. Write the set in the standard form
of a line through the origin.

Exercise 7.37

Compute:  1 3 2
0 2 0
−1 0 3

 1
0
2

 .
Exercise 7.38

Is it possible that a system of linear equations has
(a) no solutions, (b) one solution, (c) two solutions,
(3) in�nitely many solutions? Give an example or
explain why it's not possible.

Exercise 7.39

Find four 2× 2 matrices A such that AA = I.

Exercise 7.40

Determine all 2× 2 matrices with AA = I.

Exercise 7.41

Find all 2 × 2 matrices A that commute with all
2× 2 matrices.

Exercise 7.42

Show that the system ax+ by = r, cx+ dy = s has
a unique solution if ad− bc is not zero.

Exercise 7.43

Show that [2, 4, 2], [3, 2, 0], [1,−2, 2] are linearly in-
dependent.

Exercise 7.44

Suppose u and v are linearly independent. Let
x = u + v and y = u − v. Are x and y linearly
independent?

Exercise 7.45

Find the Hermite form of the given 3× 4 matrix.

Exercise 7.46

Show that row operations can be undone by other
row operations.

Exercise 7.47

Are [1, 2], [1, 3], [1, 4] linearly independent? Prove.
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8. Exercises: Vector algebra

Exercise 8.1

Represent the vector < 1, 2 > as a linear combina-
tion of the vectors < 0, 2 > and < 1, 1 >.

Exercise 8.2

Find a vector in R3 that cannot be represented
as a linear combination of the vectors < 1, 0, 0 >,
< 1, 1, 1 >, and < 2, 1, 1 >.

Exercise 8.3

Find the value of k so that the line containing the
points (−6, 0) and (k,−5) is parallel to the line
containing the points (4, 3) and (1, 7).

Exercise 8.4

Give each of the following functions a domain and
codomain and determine if it is one-to-one or onto:
(a) y = x2; (b) y =

√
x; (c) z = x + y; (d)

(x, y) = (sin t, cos t).

Exercise 8.5

Represent the vector < 1, 2 > as a linear combina-
tion of the vectors < 0, 2 > and < 1,−1 >.

Exercise 8.6

Find a vector in R3 that cannot be represented
as a linear combination of the vectors < 1, 0, 0 >,
< 1, 1, 1 >, and < 2, 1, 1 >.

Exercise 8.7

The plane below is the graph of a function. Find
the function.

Exercise 8.8

Find the matrix of a linear operator that stretches
the axes by 2 and 3 respectively, rotates the plane
by 90 degrees, and then �ips it about the x-axis.

Exercise 8.9

Vectors A and B are given below. Copy the picture
and illustrate graphically: (a) A + B, (b) A − B,
(c) ||A||.

Exercise 8.10

Find the angle between the vectors < 1, 1 > and
< 1, 2 >. Don't simplify.

Exercise 8.11

Solve the system of linear equations:{
x −y = −1,
2x +y = 0.

Exercise 8.12

Vectors A and B are given below. (a) Illustrate
graphically: A+B and A−B. (b) Give the com-
ponents of these vectors. (c) Compute A ·B.

Exercise 8.13

(a) Let

A =

 1 0 0
0 2 0
0 0 3

 .
Compute A2, A3. (b) Formulate and prove a theo-
rem about 3× 3 matrices based on the outcome of
part (a).
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9. Exercises: Eigenvalues and eigenvectors

Exercise 9.1

Find the eigenvalues of the following matrix:[
1 −1
1 0

]

Exercise 9.2

Arguing from the de�nition, show that a rotation
cannot have eigenvectors.

Exercise 9.3

Find the eigenvalues of the following matrix:[
1 1
1 1

]

Exercise 9.4

Find scalars a and b such that a(1, 2) + b(−1, 3) =
(1, 12).

Exercise 9.5

A is singular i� 0 is an eigenvalue.

Exercise 9.6

Find the eigenvalues, the eigenvectors, and the
bases of the eigenspaces of the matrix: 1 0 1

0 1 0
1 0 1

 .
Start: =⇒ det(λI −A) = 0 =⇒ λ = 0, ...

Exercise 9.7

Find the eigenvalues, the eigenvectors, and bases of
the eigenspaces of the matrix:

A =

[
1 1
0 0

]
.
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10. Exercises: Transformations

Exercise 10.1

Describe � both geometrically and algebraically �
two di�erent transformations that make a 1 × 1
square into a 2× 3 rectangle.

Exercise 10.2

Find the matrix of a linear operator that stretches
the axes by 2 and 3 respectively, rotates the plane
by 90 degrees, and then �ips it about the x-axis.

Exercise 10.3

What happens to the domain and the range of a
function under the six basic transformations?

Exercise 10.4

How do the six basic transformations a�ect a func-
tion being one-to-one or onto?

Exercise 10.5

The graph drawn with a solid line is y = x3. What
are the other two?

Exercise 10.6

The graph below is the graph of the function
f(x) = A sinx + B for some A and B. Find these
numbers.

Exercise 10.7

The graph of function f is given below. Sketch the
graph of y = 2f(x + 2) + 2. Explain how you get
it.

Exercise 10.8

The graph of the function y = f(x) is given be-
low. Sketch the graph of y = 2f(x) and then
y = 2f(x)− 1.

Exercise 10.9

The graph of the function y = f(x) is given be-

low. Sketch the graph of y =
1

2
f(x) and then

y =
1

2
f(x− 1).

Exercise 10.10

Plot the graph of a function that is both odd and
even.
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11. Exercises: Advanced

Exercise 11.1

Is B = {1, x, x2, x3, ...} a basis of C(R), the space
of all continuous functions?

Exercise 11.2

Suppose C(R) is the vector space of all continu-
ous functions. Let the function T : C(R) → R be
de�ned by

T (f) = f ′(0), for all f ∈ C(R).

Show that T is linear.

Exercise 11.3

Let U and V be 2-dimensional subspaces of R3.
Prove that U ∩ V 6= 0.

Exercise 11.4

Suppose V is a vector space with operations: v +
w = 0 and rv = 0 for all v, w ∈ V, r ∈ R. How
many elements does V have? Prove by using only
the axioms.

Exercise 11.5

Express f(x) = (x−1)2−x as a linear combination
of the power function: 1, x, x2, x3, ....

Exercise 11.6

Find the set of all vectors in R2 that are orthogo-
nal to (−1, 3). Write the set in the standard form
of a line through the origin.

Exercise 11.7

Find the standard inner product of f(x) = cosx
and g(x) = 1 in C[0, π].

Exercise 11.8

Suppose a is an element of an inner product space
V . Let S be the set of all vectors orthogonal to a
plus 0. Show that S is a subspace of V .

Exercise 11.9

Suppose S is a subspace of V and dimS = dimV .
From the de�nition of the dimension, prove that
S = V .

Exercise 11.10

Suppose V is a subspace of C1[0, 1] spanned by
sinx, cosx. De�ne A as A(f) = f ′. (a) Show that
A is well de�ned on V . (b) Find the matrix of A.

Exercise 11.11

Find all possible values for rankA if A is an n×m
matrix.

Exercise 11.12

Suppose a, b, c are 3 linearly independent vectors.
Suppose A is 3 × 3 matrix of rank 3. Are the 3-
vectors Aa,Ab,Ac linearly independent?

Exercise 11.13

Find the row rank of a given 4× 4 matrix.

Exercise 11.14

Suppose A is an n × n matrix with only 0 entries
on the diagonal and below. Show that An = 0.

Exercise 11.15

Solve a given 4× 4 system.

Exercise 11.16

Suppose A is an n × n matrix with only 0 entries
on the diagonal and below. Show B = I −A is in-
vertible and B−1 = I+A+A2 + . . . +An−1. Prove
the problem by means of inverses.

Exercise 11.17

Find the inverse of a given 3× 3 matrix.

Exercise 11.18

What is the smallest subset of R that contains 1/2
and closed under (a) addition, (b) multiplication.

Exercise 11.19

Determine whether

S = {f ∈ C1(R) : 2f ′(x) + x2f(x) = 0 for all x}

is a subspace of C1(R).
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Exercise 11.20

Let P be the space of all polynomials. Show that
P is not spanned by any �nite set.

Exercise 11.21

Show that {1, (x− 1), (x− 1)2, . . . } is a basis of P.

Exercise 11.22

Does the set {(1, 2,−1), (2, 4, 2), (1, 2, 3), (−1,−2, 1)}
span R3?

Exercise 11.23

Suppose S is a subspace of V and dimS = dimV .
From the de�nition of the dimension, prove that
S = V .

Exercise 11.24

Find the dimension of the space of all symmetric
3× 3 matrices.

Exercise 11.25

The scalar multiplication in a vector space is a lin-
ear function in some sense. In what sense and why?

Exercise 11.26

Suppose f : V → W is linear and surjective. Sup-
pose that SpanS = V , where S is a subset of V .
Show that Span f(S) = W .

Exercise 11.27

Consider the function f : R3 → R3 that rotates
each point about the x-axis through an angle a.
Prove that f is linear and �nd its matrix.

Exercise 11.28

Prove that G(f) = f(0) + f ′(0) is linear.

Exercise 11.29

Find the determinant of the 7× 7 matrix with the
following entries: 1, 2, 3, . . . , 49.

Exercise 11.30

Prove that the set of all non-zero rational numbers,
Q\{0}, is closed under division. Hint: Prove that

r ∈ Q , q ∈ Q =⇒ r

q
∈ Q. Start with

r =
a

b
, q =

c

d
, a, b, c, d ∈ Z \ {0} .

Exercise 11.31

Prove that the intersection of two subspaces is al-
ways a subspace.

Exercise 11.32

Prove that the set of all diagonal n × n matrices,
i.e., ones with aij = 0 for all i 6= j, is a subspace of
M(n, n).

Exercise 11.33

Provide the details for the solution of the following
system of linear equations:

x +y −z = 1
x −y +2z = 0
3x +y = 2

We start with:
1 1 −1 1

1 −1 2 0

3 1 0 2

→


1 0 −1

2

1

2

0 1 −3

2

1

2

0 0 0 0

 →


x1 =
1

2
x3 +

1

2

x2 =
3

2
x3 +

1

2

x3 = x3

→


x1

x2

x3

 = t


1

2
3

2

1

+


1

2
1

2

0


What is the dimension of its solution set?

Exercise 11.34

Is it possible that a homogeneous system of linear
equations has (a) no solutions, (b) one solution, (c)
two solutions, (3) in�nitely many solutions? Give
an example of such a system or explain why it's not
possible.

Exercise 11.35

Prove that the set

{(2, 1, 1), (1, 2, 1), (0, 1, 1), (1, 1, 1)}

spans R3. Hint: Use the proof of the Reduction
Theorem as a recipe for �nding a subset of this set
that is a basis of R3. Find one vector that is a
linear combination of the rest and remove it.

a1

 2
1
1

+ a2

 1
2
1

+ a3

 0
1
1

 =

 1
1
1

 .
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What you really need:

rank

 2 1 0
1 2 1
1 1 1

 =?

Exercise 11.36

Let
B = {x− 1, x+ 1} .

(a) Prove that B is a basis of P1. (b) Find the
coordinate vector [3x− 5]B.

Exercise 11.37

Suppose A is an invertible matrix. What is
(Am)−1?

Exercise 11.38

Given basis {1, x, x2} of the space P2 of degree ≤2
polynomials, �nd the change of basis matrix for the
new basis {2, x− x2, x− 1}. Start:

2 = 2 · 1 =

 2
0
0



x− x2 = 0 · 1 + 1 · x+ (−1)x2 =

 0
1
−1


x− 1 = −1 · 1 + 1 · x+ 0 · x2 = ?

Exercise 11.39

Suppose V is the space of di�erentiable at 0 func-
tions of two variables. Suppose A : V → R2 is
given by A(f) = grad f(0). Prove that A is linear
and �nd its kernel.

Exercise 11.40

Prove that the composition of two onto functions
is onto. Start:

X
f→ Y

g→ Z ,

where f and g are onto. Prove g ◦ f is onto if and
only if for every z ∈ Z there is x ∈ X such that
(g ◦ f)(x) = z. Does it exist? First, g is onto, so
there is y ∈ Y such that g(y) = z. Second, f is
onto, so there is x ∈ X such that f(x) = y.

Exercise 11.41

Prove that the composition of two one-to-one func-
tions is one-to-one.

Exercise 11.42

Suppose we have a vector space V with basis S.
Give examples of linear operators A : V → V satis-
fying (a) A is an isomorphism but not the identity.
(b) The dimension of the image of A is equal to 1.
(b) The dimension of the kernel of A is equal to 1.
Hint 1: Try V = R3 �rst. Hint 2: Use the basis.

Exercise 11.43

Show that the set of all even functions f : R→ R
is a vector space. What about the set of all the odd
functions?

Exercise 11.44

Give the de�nition of linear independence in vector
spaces. Give examples of (a) three 2 × 2 matrices
that are linearly independent, and (b) three func-
tions that are linearly dependent but not multiples
of each other.

Exercise 11.45

Suppose A and B are two invertible matrices. Ex-
press (AB)−1 in terms of A−1 and B−1.

Exercise 11.46

Are the following functions linear? (a) f(x, y, z) =
(0, 0, 0); (b) g(x, y, z) = (x − y, y − z, z − x); (c)
h(x, y, z) = (1, 1, 1); (d) k(x, y, z) = ||(x, y, z)||.
Just the answers.

Exercise 11.47

Suppose {v1, ..., vm} is a linearly independent sub-
set of a vector space V and suppose A : V →
U is a linear one-to-one operator. Prove that
{Av1, ..., Avm} is a linearly independent subset of
U .

Exercise 11.48

(a) Give the de�nition of the determinant of an
n×nmatrix. (b) Find the determinant of an upper-
triangular matrix (all entries below the main diago-
nal are 0). (c) Is the determinant a linear operator?
Prove or disprove.

Exercise 11.49

We know that if S is a basis of V then every element
of V can be represented as a linear combination of
the elements of S. Prove that such a representation
is unique.



11. Exercises: Advanced 513

Exercise 11.50

(a) Give the de�nition of an inner product space.
(b) State the Cauchy-Schwarz inequality. (c) De-
�ne the angle between two vectors in an inner prod-
uct space. Prove that it's well-de�ned.

Exercise 11.51

Suppose a is an element of an inner product space
V and suppose S is the set of all vectors orthogonal
to a, plus 0. Prove that S is a subspace of V .

Exercise 11.52

Find the determinant of the n× n matrix with en-
tries 1, 2, 3, . . . , n2.

Exercise 11.53

Let V be the space of in�nite sequences
{x1, . . . , xn, . . .}. Find an in�nite dimensional sub-
space U of V that can be equipped with a non-
trivial inner product.

Exercise 11.54

Let A(f) = f − f ′, A : C1 → C1. Find the kernel
of A

Exercise 11.55

A =

[
2 0
0 3

]
∼
[

3 0
0 2

]
= B .

Hint: We need P with A = P−1BP.

Exercise 11.56

Find A,B such that trA = trB but detA 6= detB.
Hint: [

1 0
0 1

] [
1 1
1 1

]

Exercise 11.57

Suppose T : P3 → P3 is given by T (f)(x) = xf ′(x).
Find the matrix of T . Start: This means (not
T (f(x))): T (f) = g and g(x) = xf ′(x) for all x.
Basis of P3 is {1, x, x2, x3}, dimP3 = 4.

T (x3) = x · 3x2 = 3x3

T (x2) = x · 2x = 2x2

T (x) = x · 1 = x
T (1) = x · 0 = 0

Rewrite:

1. e1 = 1

2. e2 = x

3. e3 = x2

4. e4 = x3

Then

1. T (e1) = 0

2. T (e2) = e2

3. T (e3) = 2e3

4. T (e4) = 3e4

We write these are columns in terms of e1, . . . , e4.
Then

e2 =


0
1
0
0


etc.

T =


0 0 0 0
0 1 0 0
0 0 2 0
0 0 0 3


Finish the solution.

Exercise 11.58

Compute 0 0 a
0 b 0
c 0 0

−1

= ? ; a, b, c 6= 0

Start:  0 0 a 1 0 0
0 b 0 0 1 0
c 0 0 0 0 1

→
R1 ↔ R3

 0 0 0 0 0 1
0 b 0 0 1 0
0 0 a 1 0 0

→
(

1

c
R1,

1

b
R2,

1

a
R3

)
1 0 0 0 0

1

c

0 1 0 0
1

b
0

0 0 1
1

a
0 0


Finish the solution.
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Derivative of Polynomial, 480
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elements of set, 14
empty set, 16
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Fundamental Theorem of Calculus II, 483

514



515

Fundamental Theorem of Calculus of, 484
Fundamental Theorem of Calculus of Sequences, 464
Fundamental Theorem of Calculus of Sequences I,

460, 462, 484
Fundamental Theorem of Calculus of Sequences II,

461, 463, 484

geometric growth and decay, 83
geometric progression, 83, 438, 450
graph of function, 61
Graph of Linear Relation, 52
graph of relation, 52

Homogeneity of Norm, 299
Horizontal Line Test, 65, 102

identity function, 119, 120
identity operator, 353
IF-AND-ONLY-IF, 9
IF-THEN, 8
image of function, 88, 89, 105
Image of Linear Function, 89
Images of Lines, 355
imaginary numbers, 224
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inclusion function, 124
increasing sequence, 80
independent variable, 39
index of terms of sequence, 76
integral, 478, 484
intersection of sets, 44, 46
inverse function, 127, 128, 130
inverse matrix, 416
Inverse of Linear Polynomial, 133
Inverse of Matrix of Dimension 2, 416
Inverse via Compositions, 130
invertible function, 131

length of vector, 297
limit of function, 471
limit of sequence, 467
Line Collapses, 372
Linear Algebra of Continuous Functions, 472
Linear Algebra of Di�erentiation, 475
Linear Algebra of Functions, 428
Linear Algebra of Integration, 479
Linear Algebra of Limits of Functions, 471
Linear Algebra of Limits of Sequences, 468
Linear Algebra of Power Series, 486
Linear Algebra of Sums of Series, 469
linear combination, 294, 295
Linear Combination of Basis Vectors, 296
linear function, 55, 70
Linear Functions, One-to-one Onto, 104
linear operations on functions, 428
linear operator, 351, 353, 363, 365
Linear Operator at 0, 352
Linear Operator in Terms of Basis, 396
Linear Operators and Linear Combinations, 351

Linear Operators vs. Matrices, 352
linear polynomial, 70, 133
linear relation, 52, 55
Linear Transformations in Dimension 1, 206
list notation for sets, 14

Magnitude of Vector, 303
magnitude of vector, 219, 297, 303
Matrix of Composition, 416
Matrix of Derivative of Polynomials, 481
Matrix of Derivative of Power Series , 487
Matrix of Di�erence, 436
Matrix of Integral of Polynomials, 482
Matrix of Rotation, 365
Matrix of Sum Operator, 448
monotone sequence, 80, 440
Monotonicity and Subtraction, 442
Monotonicity of Sum, 452
Monotonicity Theorem for Sequences, 440
Multiples of Eigenvectors, 377
Multiples of Vectors, 300

negative vector, 279
Newton-Leibniz Formula, 483
Non-Zero Solutions, 370, 372
norm of vector, 303
Normalization of Vectors, 300
not equal functions, 121, 147
number line, 20

One-to-one and Onto vs. Image, 105
one-to-one function, 100, 102, 105, 127
One-to-one Linear Operator, 366
One-to-one Onto vs. Inverse, 127
ONLY-IF, 8
onto function, 99, 102, 105, 127
OR, 46
orthogonal projection, 326
Orthogonality in 2-space, 324

Parallel Lines Don't Intersect, 216
Parallel Lines, Same Slope, 215
parametric curve, 158
parametric curve of the uniform motion, 309
Planes Parallel to Coordinate Planes, 249
Point-Slope Form of Line, 72
power sequence, 78
preimage of value, 91
Preimages of Zero, 386
Preserving Addition, 349
Preserving Scalar Multiplication, 351
product of matrix and vector, 333
Projection Via Dot Product, 327
Pythagorean Theorem, 207, 208

quadratic polynomial, 233

recursive, 81, 83, 84, 460
relation, 27, 40, 55, 64, 65
Representation, 397
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restriction, 125
restriction of function, 123
Restriction via Compositions, 125
Right Angle, Zero Dot Product, 316
roots of quadratic polynomial, 233

scalar multiplication is preserved, 350
scalar product, 279
sequence, 76
sequence of di�erences, 432, 434, 460�464, 484
sequence of sums, 85, 445�447, 460�464, 484
sequence tends to in�nity, 237
set, 15, 16
set-building notation, 24, 25, 34, 44, 52, 55
sigma notation, 86, 445
Sine and Cosine of Direction, 214
singular matrix, 367
Singular Matrix and Determinant, 368
slope, 67, 68, 73, 214, 215
Slope Backwards, 68
Slope From Two Points, 68
Slope is Tangent, 214
slope-intercept form of line, 71
Slopes of Perpendicular Lines, 222
standard form of complex number, 228
subset, 15, 123
Subspaces, 290
substitution, 109
Subtracting Sums of Sequences, 453
Subtracting Sums: Monotonicity, 454
Sum Is Constant Sequence, 452
sum of a series, 469
Sum of Arithmetic Progression, 449
sum of functions, 147, 148
Sum of Geometric Progression, 450
sum of sequence, 446, 447
sum of vectors, 278
sum operator, 448
Sum Rule for Complex Sequences, 237

Sum Rule for Derivatives, 473

Sum Rule for Di�erences, 434

Sum Rule for Integrals, 477

Sum Rule for Limits of Sequences, 468

Sum Rule for Sums, 446

Sum Rule for Sums of Series, 470

Sum Rule of Limits of Functions, 471

sup metric, 261

tangent, 214

taxicab metric, 261

Term-by-Term Algebra of Power Series, 485

Term-by-Term Calculus of Power Series, 486

Trace and Discriminant, 404

trace of matrix, 384

transformation of the plane, 336

transformations, 184, 206

Triangle Inequality, 210

union of sets, 42, 46

Uniqueness of Inverse, 128

Uniqueness of Limit, 237

unit vector, 300

Values of Basis Vectors Are Columns, 363

variables, 59, 170

vector, 265, 275

vector in dimension 1, 211

vector in dimension 2, 219

vector in xy-plane, 219

vector space, 290, 428

Vertical Line Test, 64

Vieta's Formulas, 233

When Linear Relation Is Function, 55

When Relation Is Function, 40

zero operator, 353

zero vector, 279
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