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Preface

Since the publication of Basic Algebra I in 1974, a number of
teachers and students of the text have communicated to the
author corrections and suggestions for improvements as well
as additional exercises. Many of these have been incorporated
in this new edition. Especially noteworthy were the
suggestions sent by Mr. Huah Chu of National Taiwan
University, Professor Marvin J. Greenberg of the University
of California at Santa Cruz, Professor J. D. Reid of Wesleyan
University, Tsuneo Tamagawa of Yale University, and
Professor F. D. Veldkamp of the University of Utrecht. We
are grateful to these people and others who encouraged us to
believe that we were on the right track in adopting the point
of view taken in Basic Algebra I.

Two important changes occur in the chapter on Galois theory,
Chapter 4. The first is a completely rewritten section on finite
fields (section 4.13). The new version spells out the principal
results in the form of formal statements of theorems. In the
first edition these results were buried in the account, which
was a tour de force of brevity. In addition, we have
incorporated in the text the proof of Gauss’ formula for the
number N(n, g) of monic irreducible polynomials of degree n
in a finite field of g elements. In the first edition this formula
appeared in an exercise (Exercise 20, p. 145). This has now
been altered to ask for N(2, ¢) and

N(3, g) only. The second important change in Chapter 4 is the
addition of section 4.16, “Mod p Reduction,” which gives a
proof due to John Tate of a theorem of Dedekind’s on the
existence of certain cycles in the Galois permutation group of
the roots of an irreducible monic polynomial f{x) with integer
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coefficients that can be deduced from the factorization of f{x)
modulo a prime p. A number of interesting applications of
this theorem are given in the exercises at the end of the
section.

In Chapter 5 we have given a new proof of the basic
elimination theorem (Theorem 5.6). The new proof is
completely elementary, and is independent of the formal
methods developed in Chapter 5 for the proof of Tariski’s
theorem on elimination of quantifiers for real closed fields.
Our purpose in giving the new proof is that Theorem 5.6
serves as the main step in the proof of Hilbert’s
Nullstellensatz given on pp. 424-426 of Basic Algebra II. The
change has been made for the convenience of readers who do
not wish to familiarize themselves with the formal methods
developed in Chapter 5.

At the end of the book we have added an appendix entitled
“Some Topics for Independent Study,” which lists 10 such
topics. There is a brief description of each, together with
some references to the literature. While some of these might
have been treated as integral parts of the text, we feel that
students will benefit more by pursuing them on their own.

The items listed account for approximately 10 pages of added
text. The remaining 15 or so pages added in this edition can
be accounted for by local improvements in the exposition and
additional exercises.

The text of the second edition has been completely reset,
which presented the chore of proofreading a lengthy
manuscript. This arduous task was assumed largely by the
following individuals: Huah Chu (mentioned above),
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Jone-Wen Cohn of Shanghai Normal University, Florence D.
Jacobson (“Florie,” to whom the book is dedicated), and
James D. Reid (also mentioned above). We are deeply
indebted to them for their help.

Hamden, Connecticut

Nathan Jacobson
November 1, 1984
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Preface to the First Edition

It is more than twenty years since the author began the project
of writing the three volumes of Lectures in Abstract Algebra.
The first and second of these books appeared in 1951 and
1953 respectively, the third in 1964. In the period which has
intervened since this work was conceived—around
1950—substantial progress in algebra has occurred even at
the level of these texts. This has taken the form first of all of
the introduction of some basic new ideas. Notable examples
are the development of category theory, which provides a
useful framework for a large part of mathematics,
homological algebra, and applications of model theory to
algebra. Perhaps even more striking than the advent of these
ideas has been the acceptance of the axiomatic conceptual
method of abstract algebra and its pervading influence
throughout mathematics. It is now taken for granted that the
methodology of algebra is an essential tool in mathematics.
On the other hand, in recent research one can observe a return
to the challenge presented by fairly concrete problems, many
of which require for their solution tools of considerable
technical complexity.

Another striking change that has taken place during the past
twenty years—especially since the Soviet Union startled the
world by orbiting its “sputniks”—has been the upgrading of
training in mathematics in elementary and secondary

schools. (Although there has recently been some regression in
this process, it is to be hoped that this will turn out to be only
a temporary aberration.) The wupgrading of school
mathematics has had as a corollary a corresponding upgrading
of college mathematics. A notable instance of this is the early
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study of linear algebra, with a view of providing the proper
background for the study of multivariable calculus as well as
for applications to other fields. Moreover, courses in linear
algebra are quite often followed immediately by courses in
“abstract” algebra, and so the type of material which twenty
years ago was taught at the graduate level is now presented to
students with comparatively little experience in mathematics.

The present book, Basic Algebra 1, and the forthcoming Basic
Algebra 11 were originally envisioned as new editions of our
Lectures. However, as we began to think about the task at
hand, particularly that of taking into account the changed
curricula in our undergraduate and graduate schools, we
decided to organize the material in a manner quite different
from that of our earlier books: a separation into two levels of
abstraction, the first—treated in this volume—to encompass
those parts of algebra which can be most readily appreciated
by the beginning student. Much of the material which we
present here has a classical flavor. It is hoped that this will
foster an appreciation of the great contributions of the past
and especially of the mathematics of the nineteenth century.
In our treatment we have tried to make use of the most
efficient modern tools. This has necessitated the development
of a substantial body of foundational material of the sort that
has become standard in text books on abstract algebra.
However, we have tried throughout to bring to the fore
well-defined objectives which we believe will prove
appealing even to a student with little background in algebra.
On the other hand, the topics considered are probed to a depth
that often goes considerably beyond what is customary, and
this will at times be quite demanding of talent and
concentration on the part of the student. In our second volume
we plan to follow a more traditional course in presenting
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material of a more abstract and sophisticated nature. It is
hoped that after the study of the first volume a student will
have achieved a level of maturity that will enable him to take
in stride the level of abstration of the second volume.

We shall now give a brief indication of the contents and
organization of Basic Algebra 1. The Introduction, on set
theory and the number system of the integers, includes
material that will be familiar to most readers: the algebra of
sets, definition of maps, and mathematical induction. Less
familiar, and of paramount importance for subsequent
developments, are the concepts of an equivalence relation and
quotient sets defined by such relations. We introduce also
commutative diagrams and the factorization of a map through
an equivalence relation. The fundamental theorem of
arithmetic is proved, and a proof of the Recursion Theorem
(or definition by induction) is included.

Chapter 1 deals with monoids and groups. Our starting point
is the concept of a monoid of transformations and of a group
of transformations. In this respect we follow the historical
development of the subject. The concept of homomorphism
appears fairly late in our discussion, after the reader has had a
chance to absorb some of the simpler and more intuitive
ideas. However, once the concept of homomorphism has been
introduced, its most important ramifications (the fundamental
isomorphism theorems and the correspondence between
subgroups of a homomorphic image and subgroups
containing the kernel) are developed in considerable detail.
The concept of a group acting on a set, which now plays such
an important role in geometry, is introduced and illustrated
with many examples. This leads to a method of enumeration
for finite groups, a special case of which is contained in the
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class equation. These results are applied to derive the Sylow
theorems, which constitute the last topic of Chapter 1.

The first part of Chapter 2 repeats in the context of rings
many of the ideas that have been developed in the first
chapter. Following this, various constructions of new rings
from given ones are considered: rings of matrices, fields of
fractions of commutative domains, polynomial rings. The last
part of the chapter is devoted to the elementary factorization
theory of commutative monoids with cancellation property
and of commutative domains.

The main objective in Chapter 3 is the structure theory of
finitely generated modules over a principal ideal domain and
its applications to abelian groups and canonical forms of
matrices. Of course, before this can be achieved it is
necessary to introduce the standard definitions and concepts
on modules. The analogy with the concept of a group acting
on a set is stressed, as is the idea that the concept of a module
is a natural generalization of the familiar notion of a vector
space. The chapter concludes with theorems on the ring of
endomorphisms of a finitely generated module over a
principal ideal domain, which generalize classical results of
Frobenius on the ring of matrices commuting with a given
matrix.

Chapter 4 deals almost exclusively with the ramifications of
two classical problems: solvability of equations by radicals
and constructions with straightedge and compass. The former
is by far the more difficult of the two. The tool which was
forged by Galois for handling this, the correspondence
between subfields of the splitting field of a separable
polynomial and subgroups of the group of automorphisms,
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has attained central importance in algebra and number theory.
However, we believe that at this stage it is more effective to
concentrate on the problems which gave the original impetus
to Galois’ theory and to treat these in a thoroughgoing
manner. The theory of finite groups which was initiated in
Chapter 1 is amplified here by the inclusion of the results
needed to establish Galois’ criterion for solvability of an
equation by radicals. We have included also a proof of the
transcendence of 7 since this is needed to prove the
impossibility of “squaring the circle” by straight-edge and
compass. (In fact, since it requires very little additional effort,
the more general theorem of Lindemann and Weierstrass on
algebraic independence of exponentials has been proved.) At
the end of the chapter we have undertaken to round out the
Galois theory by applying it to derive the main results on
finite fields and to prove the theorems on primitive elements
and normal bases as well as the fundamental theorems on
norms and traces.

Chapter 5 continues the study of polynomial equations. We
now operate in a real closed field—an algebraic
generalization of the field of real numbers. We prove a
generalization of the “fundamental theorem of algebra™: the
algebraic closure of Rv{=1) for R any real closed field. We
then derive Sturm’s theorem, which gives a constructive
method of determining the number of roots in R of a
polynomial equation in one unknown with coefficients in R.
The last part of the chapter is devoted to the study of systems
of polynomial equations and inequations in several
unknowns. We first treat the purely algebraic problem of
elimination of unknowns in such a system and then establish a
far-reaching generalization of Sturm’s theorem that is due to
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Tarski. Throughout this chapter the emphasis is on
constructive methods.

The first part of Chapter 6 covers the basic theory of
quadratic forms and alternate forms over an arbitrary field.
This includes Sylvester’s theorem on the inertial index and its
generalization that derives from Witt’s cancellation theorem.
The important theorem of Cartan-Dieudonne on the
generation of the orthogonal group by symmetries is proved.
The second part of the chapter is concerned with the structure
theory of the so-called classical groups: the full linear group,
the orthogonal group, and the sympletic group. In this
analysis we have employed a uniform method applicable to
all three types of groups. This method was originated by
Iwasawa for the full linear group and was extended to
orthogonal groups by Tamagawa. The results provide some
important classes of simple groups whose orders for finite
fields are easy to compute.

Chapter 7 gives an introduction to the theory of algebras, both
associative and non-associative. An important topic in the
associative theory we consider is the exterior algebra of a
vector space. This algebra plays an important role in
geometry, and is applied here to derive the main theorems on
determinants. We define also the regular representation, trace,
and norm of an associative algebra, and prove a general
theorem on transitivity of these functions. For nonassociative
algebras we give definitions and examples of the most
important classes of non-associative algebras. We follow this
with a completely elementary proof of the beautiful theorem
on composition of quadratic forms which is due to Hurwitz,
and we conclude the chapter with proofs of Frobenius’
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theorem on division algebras over the field of real numbers
and Wedderburn’s theorem on finite division algebras.

Chapter 8 provides a brief introduction to lattices and
Boolean algebras. The main topics treated are the
Jordan-Holder theorem on semi-modular lattices; the
so-called “fundamental theorem of projective geometry”;
Stone’s theorem on the equivalence of the concepts of
Boolean algebras and Boolean rings, that is, rings all of
whose elements are idempotent; and finally the Mobius
function of a partially ordered set.

Basic Algebra 1 is intended to serve as a text for a first course
in algebra beyond linear algebra. It contains considerably
more material than can be covered in a year’s course. Based
on our own recent experience with earlier versions of the text,
we offer the following suggestions on what might be covered
in a year’s course divided into either two semesters or three
quarters. We have found it possible to cover the Introduction
(treated lightly) and nearly all the material of Chapters 1-3 in
one semester. We found it necessary to omit the proof of the
Recursion Theorem in the Introduction, the section on free
groups in Chapter 1, the last section (on “rngs”) in Chapter 2,
and the last section of Chapter 3. Chapter 4, Galois theory, is
an excellent starting point for a second semester’s course. In
view of the richness of this material not much time will
remain in a semester’s course for other topics. If one makes
some omissions in Chapter 4, for example, the proof of the
theorem of Lindemann-Weierstrass, one is likely to have
several weeks left after the completion of this material. A
number of alternatives for completing the semester may be
considered. One possibility would be to pass from the study
of equations in one unknown to systems of polynomial
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equations in several unknowns. One aspect of this is
presented in Chapter 5. A part of this chapter would certainly
fit in well with Chapter 4. On the other hand, there is
something to be said for making an abrupt change in theme.
One possibility would be to take up the chapter on algebras.
Another would be to study a part of the chapter on quadratic
forms and the classical groups. Still another would be to study
the last chapter, on lattices and Boolean algebras.

A program for a course for three quarters might run as
follows: Introduction and Chapters 1 and 2 for a first quarter;
Chapter 3 and a substantial part of Chapter 6 for a second
quarter. This will require a bit of filling in of the field theory
from Chapter 4 which is needed for Chapter 6. One could
conclude with a third quarter’s course on Chapter 4, the
Galois theory.

It is hoped that a student will round out formal courses based
on the text by independent reading of the omitted material.
Also we feel that quite a few topics lend themselves to
programs of supervised independent study.

We are greatly indebted to a number of friends and colleagues
for reading portions of the penultimate version of the text and
offering valuable suggestions which were taken into account
in preparing the final version. Walter Feit and Richard Lyons
suggested a number of exercises in group theory; Abraham

Robinson, Tsuneo Tamagawa, and Neil White have read parts
of the book on which they are experts (Chapters 5, 6, and 8
respectively) and detected some flaws which we had not
noticed. George Seligman has read the entire manuscript and
suggested some substantial improvements. S. Robert Gordon,
James Hurley, Florence Jacobson, and David Rush have used
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parts of the earlier text in courses of a term or more, and have
called our attention to numerous places where improvements
in the exposition could be made.

A number of people have played an important role in the
production of the book, among them we mention especially
Florence Jacobson and Jerome Katz, who have been of great
assistance in the tedious task of proofreading. Finally, we
must add a special word for Mary Scheller, who cheerfully
typed the entire manuscript as well as the preliminary version
of about the same length.

We are deeply indebted to the individuals we have
mentioned—and to others—and we take this opportunity to
offer our sincere appreciation and thanks.

Hamden, Connecticut

Nathon Jacobson
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INTRODUCTION
Concepts from Set Theory. The Integers

The main purpose of this volume is to provide an introduction
to the basic structures of algebra: groups, rings, fields,
modules, algebras, and lattices— concepts that give a natural
setting for a large body of algebra, including classical algebra.
It is noteworthy that many of these concepts have arisen
either to solve concrete problems in geometry, number theory,
or the theory of algebraic equations, or to afford a better
insight into existing solutions of such problems. A good
example of the interplay between abstract theory and concrete
problems can be seen in the Galois theory, which was created
by Galois to answer a concrete question: “What polynomial
equations in one unknown have solutions expressible in terms
of the given coefficients by

rational operations and extraction of roots?” To solve this we
must first have a precise formulation of the problem, and this
requires the concepts of field, extension field, and splitting
field of a polynomial. To understand Galois’ solution of the
problem of algebraic equations we require the notion of a
group and properties of solvable groups. In Galois’ theory the
results were stated in terms of groups of permutations of the
roots. Subsequently, a much deeper understanding of what
was involved emerged in passing from permutations of the
roots to the more abstract notion of the group of
automorphisms of an extension field. All of this will be
discussed fully in Chapter 4.

Of course, once the machinery has been developed for
treating one set of problems, it is likely to be useful in other
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circumstances, and, moreover, it generates new problems that
appear interesting in their own right.

Throughout this presentation we shall seek to emphasize the
relevance of the general theory in solving interesting
problems, in particular, problems of classical origin. This will
necessitate developing the theory beyond the foundational
level to get at some of the interesting theorems. Occasionally,
we shall find it convenient to develop some of the
applications in exercises. For this reason, as well as others,
the working of a substantial number of the exercises is
essential for a thorough understanding of the material.

The basic ingredients of the structures we shall study are sets
and mappings (or, as we shall call them in this book, maps). It
is probable that the reader already has an adequate knowledge
of the set theoretic background that is required. Nevertheless,
for the purpose of fixing the notations and terminology, and
to highlight the special aspects of set theory that will be
fundamental for us, it seems desirable to indicate briefly some
of the elements of set theory.] From the point of view of what
follows the ideas that need to be stressed concern equivalence
relations and the factorization of a map through an
equivalence relation. These will reappear in a multitude of
forms throughout our study. In the second part of this
introduction we shall deal briefly with the number system £
of the integers and the more primitive system M of natural
numbers or counting numbers: 0, 1, 2,..., which serve as the
starting point for the constructive development of algebra. In
view of the current emphasis on the development of number
systems in primary and secondary schools, it seems
superfluous to deal with M and Z in a detailed fashion. We
shall therefore be content to review in outline the main steps
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in one of the ways of introducing M and Z and to give careful
proofs of two results that will be needed in the discussion of
groups in Chapter 1. These are the existence of greatest
common divisors (g.c.d.’s) of integers and “the fundamental
theorem of arithmetic,” which establishes the unique
factorization of any natural number # 0, 1 as a product of
prime factors. Later (in Chapter 2), we shall derive these
results again as special cases of the arithmetic of principal
ideal domains.

0.1 THE POWER SET OF A SET

We begin our discussion with a brief survey of some set
theoretic notions which will play an essential role in this
book.

Let S be an arbitrary set (or collection) or elements which we
denote as a, b, ¢, etc. The nature of these elements is
immaterial. The fact that an element a belongs to the set S is
indicated by writing a € S (occasionally S 3 @) and the
negation of a € S is written as a ¥ S. If S is a finite set with
elements a;, 1 <i < n, then we write S = {ai1, a2, ..., an}. Any
set S gives rise to another set #(S), the set of subsets of S.
Among these are included the set § itself and the vacuous
subset or null set, which we denote as @. For example, if S is
a finite set of n elements, say, S = {a1, a2, ..., an}, then #(S)
consists of @, the n sets {a;} containing single elements, n(n —
1)2 sets {ai, aj}, i # j, containing two elements,
(',')mn!_.fmn ) =nln— 1) (=i 12

- subsets
containing i elements, and so on. Hence the cardinality of #
(), that is, the number of elements in #(S) is
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1+('|’)+(;)+-~-+(:)=u+1r=1=.

We shall call #(S), the power set of the set S.? Often we shall
specify a subset of S by a property or set of properties. The
standard way of doing this is to write

A={xe8| )

(or, if S is clear, 4 = {x| ...}) where ... lists the properties
characterizing 4. For example, if £ denotes the set of integers,
the M = {x € Z|x > 0} defines the subset of non-negative
integers, or natural numbers.

If A and B € #(S) (that is, 4 and B are subsets of S) we say
that 4 is contained in B or is a subset of B (or B contains A)
and denote this as 4 < B (or B D A) if every element a in A4 is
also in B. Symbolically, we can write thisasa € 4 =>a € B
where the => is read as “implies.” The statement 4 = B is
equivalent to the two statements 4 > B and B D 4
(symbolically, 4 = B <= A > B and B > A where <= reads “if
and only if”). If 4 — B and 4 # B we write A * B and say that
A is a proper subset of B. Alternatively, we can write B # A.

If 4 and B are subsets of S, the subset of S of elements ¢ such
that ¢ € 4 and ¢ € B is called the intersection of A and B. We
denote this subset as 4 N B. If there are no elements of §
contained in both 4 and B, thatis, 4 N B= 0,

then 4 and B are said to be disjoint (or non-overlapping). The
union (or logical sum) A U B of A and B is the subset of
elements d such that either d € 4 or d € B. An important
property connecting N and U is the distributive law:
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(1 AnBuC=(AmrnB)vu(AnC)

This can be indicated pictorially by

%

where the shaded region represents (1). To prove (1), let x €
AN (B U (). Since x (B C) either x € Borx € C, and
since x € A4 either x € (4 N B) or x € (4 N C). This shows
that AN(BUCO)c(ANB)yuANC).Nowlety e (4N B)
U@ NC)soeitherye ANBorye AN C.Inanycasey €
Aandy e Bory e C.Hencey € A N (B U (). Thus (4 N B)
uAdNC)cAdn(BuC). Hence we have both 4 N (B U C)
cAnNBuAnNCandANBuANCcAnNBul)
and consequently we have (1).

We also have another distributive law which dualizes (1) in

the sense that it is obtained from (1) by interchanging U and
N:

(2) AVvBNCl=(AuBniduC)
It is left to the reader to draw a diagram for this law and carry
out the proof. Better still, the reader can show that (2) is a

consequence of (1)—and that, by symmetry, (1) is a
consequence of (2).
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Intersections and unions can be defined for an arbitrary set of
subsets of a set S. Let I" be such a set of subsets ( = subset of

#(S)). Then we define ﬂA erTA={x]x € A forevery A inI'}

and UA eT A= {x|x € A for some 4 in I'}. If T is finite, say,
I' = {41, A2, ..., An} then we write also (Vi=1 A orA1 N A2 N
... N A4y for the intersection and we use a similar designation
for the union. It is easy to see that the distributive laws carry
over to arbitrary intersections and unions:
B (Jaer A= Jacr (B Ax B U ([Naer A) = [NaerlB u 4)

0.2 THE CARTESIAN PRODUCT SET. MAPS

The reader is undoubtedly aware of the central role of the
concept of function in mathematics and its applications. The
case of interest in beginning calculus

real line ®; usually, an open or closed interval or the whole of
R; and a rule which associates with every element x of this
subset a unique real number f{x). Associated with a function
as thus “defined” we have the graph in the two-dimensional
number space R consisting of the points (x, f{x)). We soon
realize that f is determined by its graph and that the
characteristic property of the graph is that any line parallel to
the y-axis through a point x of the domain of definition (on
the x-axis) meets the graph in precisely one point.
Equivalently, if (x, y) and (x, y") are on the graph then y = /.
It is clear that the notion of a graph satisfying this condition is
a precisely defined object whereas the intuitive definition of a
function by a “rule” is not. We are therefore led to replace the
original definition by the definition of a graph.

We shall now proceed along these lines, and we shall also
substitute for the word “function” the geometric term “map”
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which is now more commonly used in the contexts we shall
consider. Also, we wish to pass from real-valued functions of
a real variable to arbitrary maps. First, we need to define the
(Cartesian) product set S x T of two arbitrary sets S and 7.
This is the set of pairs (s, #), s € S, t € T. The sets S and T
need not be distinct. In the product S x T, the elements (s, )
and (s, ¢') are regarded as equal if and only if s =s" and ¢ = 7'.
Thus if S consists of m elements s1, s2, ..., sm and T consists
of n elements ¢1, 2, ..., ty, then S x T consists of the mn
clements (si, #)).

We are now ready to define a map of a set S into a set 7. This
consists of the set S, called the domain of the map, the set T,
called the co-domain, and a subset a of S x T (the graph)
having the following two properties:

1. For any s € S there exists a ¢ € T such that (s, 7) € a.
2.1f (s, ) and (s, ') € athent="¢'.

The second property is called “single-valuedness.” In
specifying a definition one often says that “the function is
well-defined” when one is assured that condition 2 holds.
Together, conditions 1 and 2 state that for every s € § there is
a unique ¢ € T such that (s, f) € a. The classical notation for
this 7 is a(s). One calls this the image of s under a. In many
books on algebra (including our previous ones) we find the
notations s* and sa for a(s). This has advantages when we
deal with the composite of maps. However, since the
consensus clearly favors the classical notation a(s), we have
decided to adopt it in this book.
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Two maps are regarded as equal if and only if they have the
same domain, the same co-domain and the same graphs. The
set of maps “from S to 7,” that is, having domain S and
co-domain 7" will be denoted as 7.

If 4 is a subset of §, then we write a(4) = {a(a)la € A} and
call this the image of A under a. In particular, we have a(S),
which is called the image (or range) of the map. We shall
denote this also as im a. Usually, when the domain and
co-domain are clear, we shall speak of the “map a” (or the
“function o) even though, strictly speaking, o is just one
component of the map.

If S1 is a subset of S and a is a map of S into 7, then we get a
map of S1 to T by restricting the domain to S1. This is the map
of S1 to T whose graph is the subset of S1 % T of elements (s1,
a(s1)), s1 € S1. We call this map the restriction of o to S; and
denote it as a|S1. Turning things around we shall say that a
map o of S to 7 is an extension of the map S of S; to T if =
alST.

As was mentioned, the terms “map” and “mapping” come
from geometry. We shall now give a couple of geometric
examples. The first is described by the diagram

)
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Here the lines S and 7 are the domain and co-domain
respectively, O is a fixed point not on S or 7 and we “map”
the point P on § into the point of intersection P’ of the line OP
with 7. Such mappings, called perspectivities, play an
important role in projective geometry. From our point of
view, the map consists of the sets S and 7 and the subset of
points (P, P') of S x T. The second example, from Euclidean
geometry, is orthogonal projection on a line. Here the domain
is the plane, the co-domain is the line, and one maps any point
P in the plane on the foot of the perpendicular from P to the
given line:

P

(It is understood that if P is on / then P’ = P.) As in the
examples, it is always a good idea to keep the intuitive picture
in mind when dealing with maps,

reserving the more precise definition for situations in which a
higher degree of rigor appears appropriate. Geometry

suggests also denoting a map from Sto 7by a: S — T, or S ~
T, and indicating the definition of a particular map by x — y
where y is the image of x under the given map: e.g., P — P’ in
the foregoing example. In the special case in which the
domain and co-domain coincide, one often calls a map from §
to S a transformation of the set S.
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A map S = Tis called surjective if im o = T, that is, if the
range coincides with the co-domain. S = T is injective if
distinct elements of S have distinct images in 7, that is, if 51 #
§2 = a(s1) # a(s2). If a is both injective and surjective, it is
called bijective (or a is said to be a one to one correspondence
between S and T). For example, the perspectivity map defined
above is bijective.

Let S = Tand T % U. Then we define the map S & U as the
map having the domain S, the co-domain U, and the graph the
subset of § x U of elements (s, B(a(s))), s € S. Thus, by
definition,

(fra)s) = flafs)).

We call this the composite (or product, or sometimes
resultant) of o and B (B following a).4 It is often useful to
indicate the relation y = Ba by saying that the triangle

o

s -

U

is commutative. Similarly, we express the fact that Ba = oy for
F r . F .
SST.TAU, 84V, VAU by spacing that the rectangle
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is commutative. In general, commutativity of a diagram of
maps, when it makes sense, means that the maps obtained by
following the diagram from one initial point to a terminal
point along each displayed route are the same. As another
example, commutativity of

means that Ba = { = €(dy).

Composition of maps satisfies the associative law: if

SAT, TAU, and ULV, then y(Ba) = (yB)o. We note first
that both of these maps have the same domain S and the same
co-domain V. Moreover, for any s € S we have

(7Bas) = A(P=Ms)) = 7 fl=ds)))
((78)x)s) = (yfNxis)) = y(flxis)))
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so v(Ba) and (yP)a are identical. This can be illustrated by the
following diagram:

The associative law amounts to the statement that if the
triangles STU and TUV are commutative then the whole
diagram is commutative.

For any set S one defines the identity map 15 (or 1 if S is
clear) as S '} S where 1; is the subset of elements (s, s) of S x
S. This subset is called the diagonal of S x S. If § = T one
checks immediately that 1700 = o = als. We now state the
following important result:

S=Tis bijective if and only if there exists a map T % S such
that Bo=1sand af = 1T.

Proof. Suppose S ~ T is bijective. Consider the subset B of T’
x § of elements (a(s), s). If ¢ € T, surjectivity of a implies
there is an s in S such that a(s) = z#. Hence condition 1 in the
definition of a map from 7 to S holds for

the set B of pairs (a(s), s)e T x S. Condition 2 holds for 3 by
the injectivity of a, since if (¢, s1) and (¢, s2) are in B, then
a(s1) =t and a(s2) = ¢, so s1 = s2. Hence we have the map 7' &
S. If s € S, the facts that (s, a(s))e a and (a(s),s) € p imply
that B(a(s)) =s. Thus Ba = 15. If t € T, we have t = a(s), s € S,
and (z, s) € B, so B(¢) =s € S. Hence a(B(¢)) = a(s) =, so aff =
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17. Conversely, suppose S T, TLS satisfy o = 1s, aff =
I7. If t € T, let s = B(¢). Then a(s) = a(P(¢)) = ¢; hence a is
surjective. Next suppose a(s1) = o(s2) for s; € S. Then s1 =
B(a(s1)) = B(a(s2)) = 52, and a is injective. [J

The map P satisfying pa = 15 and afy = 17 is unique since if 7
= S satisfies the same condition, B’ o= 15, ap’= 17, then

B =15 = (fa)f = flap) =Pl = f.

We shall now denote 3 as o ! and call this the inverse of the
(bijective) map a. Clearly the foregoing result shows that ol
is bijective and (0(1)7 =

As a first application of the criterion for bijectivity we give a
formal proof of a fact which is fairly obvious anyhow: the

product of two bijective maps is bijective. For, let S = T and
T & U be bijective. Then we have the inverses
TS5 and USST and the composite map a_l[}_lz Uu— S
Moreover,

Bada "B ) =((fx)x ") = (Blaz B =P =1,
Also,

(a7 f ") pa) = o (B (Ba) = 2 (BB = 2 Ma = g,
Hence, o 'B~! is an inverse of Ba, that is

(3 ”h"l=,_.‘-lﬁ—l.
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This  important formula has been called the
“dressing-undressing principle”: what goes on in dressing
comes off in the reverse order in undressing (e.g., socks and
shoes).

It is important to extend the notion of the Cartesian ?roduct of
two sets to the product of any finite number of sets.” If S1, S2,
..., Sy are any sets, then | ]S,' or 81 x 82 x ... X 8}, is defined to
be the set of r-tuples (s1, 52, ..., sr) where the ith component
si € Si. Equality is defined by (s1, 52, ..., s7) = (s'1, 82, ..., ')
if S; = s'; for every i. If all the S; = S then we write S for |
Si. The concept of a product set permits us to define the
notion of a function of two or more variables. For example, a
function of two variables in S with values.

in T is a map of S x S to 7. Maps of S to S are called r-ary
compositions (or r-ary products) on the set S. The structures
we shall consider in the first two chapters of this book
(monoids, groups and rings) are defined by certain binary ( =
2-ary) compositions on a set S. At this point we shall be
content merely to record the definition and to point out that
we have already encountered several instances of binary
products. For example, in #(S), the power set of a set S, we
have the binary products 4 U B and 4 N B (that is, (4, B) —
AV Band (4, B> AN B).

EXERCISES
1. Consider the maps /i X — VY, g:Y — Z. Prove: (a) fand g
injective = gf injective, (b) gf injective = f injective, (¢) f

and g surjective = gf surjective. (d) gf surjective = g
surjective. (e) Give examples of a set X and a map f: X — X
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that is injective (surjective) but not surjective (injective), (f)
Let gf be bijective. What can be said about f and g
respectively (injective, surjective)?

2. Show that § =* T'is injective if and only if there is a map T
% S such that Ba = 1g, surjective if and only if there is a map
T & S such that of = I7. In both cases investigate the
assertion: if B is unique then a is bijective.

3. Show that S = T is surjective if and only if there exist no
maps B1, B2 of 7 into a set U such that B1 # B2 but B1a = Boo.
Show that a on is injective if and only if there exist no maps
Y1, Y2 of a set U into S such that y1 # y2 but ay1 = ay2.

4. Let S = Tand let 4 and B be subsets of S. Show that a4 v
B) = a(4) U a(B). and a(4 N B) < a(4) N a(B). Give an
example to show that a(4 N B) need not coincide with a(4) N
a(B).

5.Let S = T, and let 4 be a subset of S. Let the complement of
A in S, that is, the set of elements of S not contained in 4, be
denoted as ~ A. Show that, in general, a(~4) = ~(a(A4)). What
happens if a is injective? Surjective?

0.3 EQUIVALENCE RELATIONS. FACTORING A MAP
THROUGH AN EQUIVALENCE RELATION
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We say that a (binary) relation is defined on a set S if, given
any ordered pair (a, b) of elements of S, we can determine
whether or not a is in the given relation to b. For example, we
have the relation of order “>” in the set of real numbers.
Given two real numbers a and b, presumably we can
determine whether or not a > b. Another order relation is the
lexicographic ordering of words, which determines their
position in a dictionary. Still another example of a relation is
the first-cousin relation among people (¢ and b have a
common grand

parent). To abstract the essential element from these
situations and similar ones, we are led to define in a formal
way a (binary) relation R on a set S to be simply any subset
of the product set S x S. If (a, b) € R, then we say that “a is in
the relation R to 5” and we write aRb. Of particular
importance for what follows are the equivalence relations,
which we now define.

A relation E on a set S is called an equivalence relation if the
following conditions hold for any a, b, ¢, in S:

1. aEa (reflexive property).

2. aEb = bEa (symmetry).

3. aEb and bEc = aEc (transitivity).

An example of an equivalence relation is obtained by letting S
be the set of points in the plane and defining aEb if a and b lie
on the same horizontal line. Another example of an
equivalence relation E' on the same S is obtained by

stipulating that aE'D if a and b are equidistant from the same
point (e.g., the origin 0).
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We shall now show that the concept of an equivalence
relation is equivalent to that of a partition of a set. If S'is a set
we define a partition n(S) of S to be a set of non-vacuous
subsets of S (that is, (S) is a subset of #(S) not containing O)
such that the union of the sets in n(S) is the whole of S and
distinct sets in m(S) are disjoint. The subsets making up n(S)
are called the blocks of the partition. We shall now show that
with any equivalence relation £ on S we can associate a
partition ng(S) and with any partition © we can associate an
equivalence relation Ex. Moreover, the relation between E
and m are reciprocal in the sense that ng, = m and Exg = E.

First, suppose E is given. If a € S we let ag (or simply 5_3) =

{b € S|bEa}. We call a g the equivalence class (relative to E
or E-equivalence class) determined by a. In the first example

considered in the last paragraph, the equivalence class Agis
the horizontal line through ¢ and in the second, the
equivalence class is the circle through a having center O:

[
i

@

In both examples it is apparent that the set of equivalence
classes is a partition of the plane. This is a general

phenomenon. Let { a la € S} be the set of equivalence classes

determined by E. Since aEa, a € @ ; hence every element of
Sis
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contained in an equivalence class and so Ua cs A =5 We
note next that @ = b if and only if aEb. First, let aEb and let
c € A Then cEa and s0, by condition 3, cEb. Then ¢ € b.
Then @ c b. Also, by condition 2, bEa and so b . Hence
a=p. Conversely, suppose A =h.Sincea e @ =b we see
that aEb, by the definition of b. Now suppose a and b are
not disjoint and let ¢ € a N b. Then cEa and cEb. Hence a
= ¢ = b. We therefore see that distinct sets in the set of

equivalence classes are disjoint. Hence {E_'i|a e S} is a
partition of §. We denote this as ntg.

Conversely, let m be any partition of the set S. Then, if a € S,
a is contained in one and only one 4 € n. We define a relation
Er by specifying that aExb if and only if a and b are
contained in the same 4 € m. Clearly this relation is reflexive,
symmetric, and transitive. Hence Ep is an equivalence

relation. It is clear also that the equivalence class @ of a
relative to Er is the subset 4 in the partition 7 containing a.
Hence the partition ng, associated with Er is the given . It is
equally clear that if £ is a given equivalence relation and ng =
{@|g e S}, then the equivalence relation Exg in which
elements are equivalent if and only if they are contained in

the same @ is the given relation E.

If E is an equivalence relation, the associated partition & = {

g e S} is called the quotient set of S relative to the relation

E. We shall usually denote & as S/E. We emphasize again that
S/E 1s not a subset of S but rather of the power set #(S) of S.
We now call attention to the map v of S into S/E defined by
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vid = .

We call this the natural map of S to the quotient set S/E.
Clearly, v is surjective.

We shall consider next some important connections between
maps and equivalence relations. Suppose S = T. Then we can
define a relation Eq in S by specifying that aEyb if and only if
a(a) = a(b). It is clear that this is an equivalence relation in S.
If c € T we put

4 a”Y¢) = {a & S|xla) = ¢}

and we call this the inverse image of the element c. More
generally, if C is a subset of 7, then we define

(5) 2 YC) = [a e S|afa) e C}.

Clearly, 2 "0 = Ucec ™€), Also o '(c) = @ if ¢ # im o. On
the other hand, if ¢ = a(a) for some a € S, then oc_l(c) =
a_l(a(a)) = {bla(b) = a(a)} and this is just the equivalence
class 9 g, in S determined by the element a. We shall refer to
this subset of S also as the fiber over the element ¢ € im o.
The set of these fibers constitutes the partition of S
determined by Eq, that is, they are the elements of the
quotient set S/Ey.

For example, let a be the orthogonal projection map of the
plane onto a line / in the plane, as on page 6. If ¢ is on the line
the fiber ofl(c) is the set of points on the line through ¢
perpendicular to /.
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Note that we can define a bijective map of the set of these
fibers into / by mapping the fiber (x_l(c) into the point c,
which is the point of intersection of oc_l(c) with the line /.

In the general case o defines a map @ of S/Eq into T:
abbreviating @ £, = o '(a(a)) to @ we simply define & by

(6) f{d) = ala).

Since @ = b if and only if a(a) = a(b), it is clear that the
right-hand side is independent of the choice of the element a
in @ and so, indeed, we do have a map. We call & the map of
S/Eq induced by o. This is injective since @( @) = d(b) gives
o(a) = a(b) and this implies @ = b, by the definition of Eq.
Of course, if a is injective to begin with, then aEyb (a(a) =
a(b)) implies a = b. In this case S/Eq can be identified with S
and # can be regarded as the same as a.

We now observe that 2(v(a)) = a(a) = o(a). Hence we have
the factorization

(M x = dv
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of the given map as a product of the natural map v of S to
S/Eq and the induced map @ of S/Eq to 7. The map # is
injective and v is surjective. The relation (7) is equivalent to
the commutativity of the diagram

(8) s = T

SIE,

Since v is surjective it is clear that im o = im @. Hence & is
bijective if and only if a is surjective. We remark finally that
2 is the only map which can be defined from S/Eq to T to
make (8) a commutative diagram. Let B:S/Eq — T satisfy Bv =

a. Then B( 5_'1) = B(v(a) = a(a). Hence B = 2, by the definition
(6).

There is a wuseful generalization of these simple
considerations. Suppose we are given a map a:S — 7 and an
equivalence relation £ on S. We shall say that a is compatible
with E if aEb for a, b in S implies o(a) = a(b). In this case we
can define amap @ of 5 = S/E to T by a:4 = Qg — a(a).
Clearly this is well defined, and if v denotes the natural
surjection @ — @, then o = dv, that is, we have the
commutativity of
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In this case the induced map @ need not be injective. In fact @
is injective if and only if £ = Eq.

The results which we have developed in this section, which at
this point may appear to be a tedious collection of trivialities,
will play a fundamental role in what follows.

EXERCISES

1. LetM = {0, 1,2, ...}. Show that the following are partitions
of M:

(1) {0,2,4,...,2k, ...}, {1,3,5, ..., 2k + 1, ...},(k € N)

(i) {0, 3,6, ..., 3k,...},{1,4,7, ..., 3k+ 1, ...},{2,5,8, ...,
3k+2,...}.

2. LetN be as in 1 and let N® =N x N. On N@ define (a, b)
~ (¢, d) if a +d= b + c. Verify that ~ is an equivalence
relation.
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3. Let S be the set of directed line segments PQ (initial point
P, terminal point Q) in plane Euclidean geometry. With what
equivalence relation on S is the quotient set the usual set of
plane vectors?

4. If S and T are sets we define a correspondence from Sto T
to be a subset of S x 7. (Note that this encompasses maps as
well as relations.) If C is a correspondence from Sto 7, C lis
defined to be the correspondence from 7 to S consisting of the
points (¢, s) such that (s, /) € C. If C is a correspondence from
S to T and D is a correspondence from 7 to U, the
correspondence DC from S to U is defined to be the set of
pairs (s, u) € S x U for which there exists a ¢ € T such that (s,
f) € C and (¢, u) € D. Verify the associative law for
correspondences: (ED)C = E(DC), the identity law Cls=C =
17C.

5. Show that the conditions that a relation £ on S is an
equivalence are: (1) ED 1g, (i) E=E~ 1, (iii) £ o EE.

6. Let C be a binary relation on S. For »r =1, 2, 3, .... define
C" = {(s, {) | for some s1, ..., Sr—1 € S, one has sCs1,5Cs2, ...,
sy—1Ct}. Let

EmlLLulCuC HYu(CuC P ulCulC Pu:--

Show that E is an equivalence relation, and that every
equivalence relation on S containing C contains E. E is called
the equivalence relation generated by C.
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7. How many distinct binary relations are there on a set S
of 2 elements? of 3 elements? of n elements? How many of
these are equivalence relations?

8.1Let S = {3- IU. Show that if U] is a subset of U then
(Bo) (U1)=o (B (U1)).

9. Let § = T and let C and D be subsets of 7. Show that
al(cuD)y=0(C)uaD)and (CND)=a(C) N
(x_l(D)(cf. exercise 4, p. 10).

10. Let € be the set of complex numbers, R* the set of
non-negative real numbers. Let f be the map z — |z| (the
absolute value of z) of € into B . What is the equivalence
relation on € defined by f?

11. Let €* denote the set of complex numbers # 0 and let
g be the map z — |z|_lz. What is the equivalence relation on €
* defined by g?

0.4 THE NATURAL NUMBERS

The system of natural numbers, or counting numbers, 0, 1, 2,
3, ... is fundamental in algebra in two respects. In the first
place, it serves as a starting point for constructing more
elaborate systems: the number systems of integers, of rational
numbers and ultimately of real numbers, the ring of residue
classes modulo an integer, and so on. In the second place, in
studying some algebraic structures, certain maps of the set of
natural numbers into the given structure play an important
role. For example, in a structure S in which an associative
binary composition and a unit are defined, any element a € S
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defines a map n — a”* where = 1, a = a, and d=da

Such maps are useful in studying the structure S.

A convenient and traditional starting point for studying the
system M of natural numbers is an axiomatization of this
system due to Peano. From this point of view we begin with a
non-vacuous set M, a particular element of M, designated as 0,
and a map a — a" of N into itself, called the successor map.

Peano’s axioms are:

1.0 #a' for any a (that is, 0 is not in the image of M
under ¢ — a+).

+ . .. .
2.a — a 1s injective.

3. (Axiom of induction.) Any subset of M which contains
0 and contains the successor of every element in the given
subset coincides with M.

Axiom 3 is the basis of proofs by the first principle of
induction. This can be stated as follows. Suppose that for each
natural number n we have associated a statement E(n) (e.g., 0
+1+2+ ... +n=n(n+1)2). Suppose E(0) is true and E(r")
is true whenever E(r) is true. (The second part is called the
inductive step.) Then E(n) is true for all n € M. This follows
directly from axiom 3. Let S be the subset of ™ of s for which
E(s) is true. Then 0 € S and if € S, then so does r". Hence,
by axiom 3, S =M, so E(n) holds for all natural numbers.

Proofs by induction are very common in mathematics and are

undoubtedly familiar to the reader. One also encounters quite
frequently—without being conscious of it—definitions by
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induction. An example is the definition mentioned above of
d"by a® =1, d" " ! = &’a. Definition by induction is not as
trivial as it may appear at first glance. This can be made
precise by the following

RECURSION THEOREM. Let S be a set, ¢ a map of S into
itself a an element of S. Then there exists one and only one
map ffrom M to S such that

L fi0)=a 2 fin*)=@(f(n),neN®

Proof. Consider the product set d x S. Let I” be the set of
subsets U of M x S having the following two properties: (i) (0,
a) € U, (ii) if (n, b)e U then (n+, ¢(b)) € U. Since M x S has
these properties it is clear that I' # @. Let f be the intersection
of all the subsets U contained in I'. We proceed to show that f
is the desired function from M to S. In the first place, it
follows by induction that if n € N, there exists a b € S such
that (n, b) € f. To prove that fis a map of M to S it remains to
show that if (n, ) and (n, ") € f then b = b'. This is
equivalent to showing that the subset 7 of n € M such that (n,
b) and (n, b') € fimply b = b’ is all of . We prove this by
induction. First, 0 € T. Otherwise, we have (0, a) and (0, a’)
€ fbut a #a'. Then let f be the subset of f obtained by

deleting the element (0, a') from /. Then it is immediate that /'
satisfies the defining conditions (i) and (ii) for the sets U € I..
Hence /' © f. But /' % f'since f’ was obtained by dropping (0,
a') from f. This contradiction proves that 0 € 7. Now suppose
we have a natural number 7 such that » € T'but /€ T. Let (r,
b) e f. Then (", ¢(b)) € fand since * ¢ T, we have a ¢ #
¢(b) such that ', 0 e f. Now consider the subset /" of f
obtained by deleting (r+, ¢). Since r"#0and f contains (0, a),
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f contains (0, a). The same argument shows that if n € M and
n# rand (n, d) € f then (n+, ¢(d)) € f. Now suppose (r, b")
e f then b’ = b and (', ¢(b)) e f since (', ¢(b)) was not
deleted in forming ' from f. Thus we see that f € I" and this
again leads to the contradiction: /' > f, f/ * f. We have
therefore proved that if » € T then » e T. Hence T = N by
induction, and so we have proved the existence of a function f
satisfying the given conditions. To prove uniqueness, let g be
any map satisfying the conditions. Then g € ' so g o f. But g
> ffor two maps f'and g implies f = g, by the definition of a
map. Hence fis unique. [

Addition and multiplication of natural numbers can be
defined by the recursion theorem. Addition of m to n can be
defined by taking a = m and ¢ to be the successor map n —
n". This amounts to the two formulas:
{a) O+m=m

(b) n* 4+ m=(n+mt.

For multiplication by m we use a = 0 and ¢ is the map n — n
+ m. Thus we have
(a) Om =0

(b) n m=nm 4+ m.

It can be proved that we have the associative, commutative,
and cancellation laws of addition and multiplication:7
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Al X+ W +z=x+(y+2) {Associative law)

A2 X+y=y+4+x {(Commutative law)
Al X+z=yp+z=x=y (Cancellation law)
M1 (xy)z = xlyz)

M2 Xy = yx

M3 X2=y2#0=2x=y

We also have the fundamental rule connecting addition and
multiplication:

D Ax + y) = zx + zy (Distributive law)

A fundamental concept for the system M is the relation of
order defined by stating that the natural number a is greater
than or equals the natural number b (notation: a > b or b < a)
if the equation a = b + x has a solution x € M. The following
are the basic properties of this relation:

01 xzy and yzxex=y
02 xzy ad yzzi=sxz:z
03 Foranyix,yJeN xMN either x>y or y=zx.

We also have the following well-ordering property of the set
of natural numbers.

04 In any non-vacuous subset § of & there is a least number,
that is, an [ € § such that | < s for every s 5.

Proof. Let M be the set of natural numbers m such that m < s
for every s € S. Then 0 € M, and if s € S then s" # M. Hence
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M # M and so, by the axiom of induction, there exists a
natural number / € M such that /" M. Then / is the required
number, since [/ < s for every s € S. Moreover, [ € § since
otherwise / < s for every s € S and then " <s for every s € S.
This contradicts /™ # M.

The well-ordering property is the basis of the following
second principle of induction. Suppose that for every n € W
we have a statement E(n). Suppose it can be shown that E(r)
is true for a particular r if E(s) is true for all s < r. (Note that
this implies that it can be shown that £(0) is true.) Then E(n)
is true for all n. To prove this we must show that the subset /
of M of r such that E(r) is false is vacuous. Now, if F' is not
vacuous, then, by O4, F contains a least element ¢. Then E(7)
is false but E(s) is true for every s < t. This contradicts the
hypothesis and proves F' = Q.

The main relations governing order and addition and order
and multiplication are given in the following statements:

OA azb=a+czb+c
UM a>=h=ac > hc.
EXERCISES

1. Prove thatifa>band c>dthena +c> b+ d and ac > bd.

2. Prove the following extension of the first principle of

induction: Let s € U and assume that for every n > s we have
a statement E(n). Suppose E(s) holds, and if E(r) holds for
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some » > s, then E(r+) holds. Then E(n) is true for all n > s.
State and prove the analogous extension of the second
principle of induction.

3. Prove by induction that if ¢ is a real number > -1 and n €
T then (1+¢)">1+nec.

4. (Henkin.) Let N = {0, 1} and define 0" = 1, 1" = 1. Show
that N satisfies Peano’s axioms 1 and 3 but not 2. Let ¢ be the
map of N into N such that ¢(0) = 1 and ¢( 1) = 0. Show that
the recursion theorem breaks down for N and this ¢, that is,
there exists no map fof N into itself satisfying f0) =0, f(n+) =

#(f(n)).

5. Prove Al and M2.
0.5 THE NUMBER SYSTEM Z OF INTEGERS

Instead of following the usual procedure of constructing this

system by adjoining to T the negatives of the elements of 1
we shall obtain the system of integers in a way that seems
more natural and intuitive. Moreover, the method we shall
give is analogous to the standard one for constructing the
number system L) of rational numbers from the system Z.

Our starting point is the product set M M In this set we
introduce the relation (a, b) ~ (¢, d) if a +d = b + c. It is easy
to verify that this is an equivalence relation. What we have in
mind in making this definition is that the equivalence class
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(@, B) determined by (a, b) is to play the role of the difference
of a and b. If we represent the pair (a, b) in the usual way as
the point with abscissa a and ordinate b, then (@) is the set of
points with natural number coordinates on the line of slope 1
through (a, b). We call the equivalence classes (a, b) integers

L ] - L] L] L ]
fad, M)

and we denote their totality as Z. As a preliminary to defining
addition we note that if (a, b) ~ (@, b") and (¢, d) ~ (', d') then

la+c,b4+d~ad+d b0 +dY

for the hypotheses are thata + b'=da'+bandc+d' ="'+ d.
Hence a+ ¢+ b +d" =a + ¢ + b + d. which means that (a + c,
b+ d ~ (@ + c, b + d). It follows that the integer
(@+¢b+4d) is uniquely determined by (@B) and @)} We
define this integer to be sum of the integers (@ ) and (¢ d):

@b+ d)=(@+cb+d)

It is easy to verify that the rules Al, A2, and A3 hold. Also we
note that (a, a) ~ (b, b) and if we set 0 = (@ a) (not to be

confused with the 0 of ), then
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Ad 0+x=x forevery xel

Finally, every integer has a negative: If x = (a,B), then we
denote ba (which is independent of the representative (a, b)
in (@, b)) as — x. Then we have

AS X+ [(=x)=0

We note next that if (a, b) ~ (@', b") and (¢, d) ~ (¢, d'), then a
+b'=a"+b,c+d =c+d. Hence

da+ )+ dia + b+ alc+d)+ bic' + d)
=cla' + b) + dla + b))+ a'(c’ + d) + Ve + d)

so that

gc+be+ad+bd+ac+ad+ b +bd
=ac+bc+ad+bd+ac +ad+be+ bd.

The cancellation law gives

ac+ bd +ad + b’ =be + ad + a'c’ + bd',

which shows that (ac + bd, ad + bc) ~ (a'c' + b'd', a'd' + b'c’).
Hence, if we define

(a, Blc, d) = (ac + bd, ad + be)

we obtain a single-valued product. It can be verified that this
is associative and

commutative and distributive with respect to addition. The
cancellation law holds if the factor z to be cancelled is not 0.
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We regard @B > & @ if  + d > b + c. The relation is well
defined (that is, it is independent of the choice of the

representatives in the equivalence classes). One can verify
easily that Ol, O2, O3, and OA hold.

The property OM has to be modified to state:

OM' If x=zy and z>0 then xzZz=yz

We now consider the set I of non-negative integers. By
definition, this is the subset of Z of elements x > 0, hence, of
elements x of the form (& +# B) It is immediate that (b + u, b)
~ (c +u, c). Now let u be a natural number (that is, an element

of I';i) and define u' = (6 + 4, b). Our remarks show that u — v’
defines a map of " into 2 whose image is " Moreover, if (b +
u,by~(c+v,c),thenb+u+c=b+c+vsou=v. Thusu —

u' 1s injective. It is left to the reader to verify the following
properties:

u4+vfy=u+1v
{I.I'li':l' = uiur
== zv.

These and the fact that u — u' is bijective of 1 into i imply

that these two systems are indistinguishable as far as the basic
operations and relation of order are concerned. In view of this
situation we can now discard the original system of natural
numbers and replace it by the set of non-negative integers, a
subset of Z. Also we can appropriate the notations originally

used for " for this subset of Z. Hence from now on we denote

58



the latter as ' and its elements as 0, 1, 2,.... It is easily seen
that the remaining numbers in Z can be listed as — 1, -2,....

EXERCISES

1. Show thatx >y < —x <.

2. Prove that any non-vacuous set S of integers which is
bounded below (above), in the sense that there exists an
integer b (B) such that b < s (B > 5), s € S, has a least
(greatest) element.

3. Define |x| = x if x > 0 and |x| = — x if x < 0. Prove that |xy| =
x| vl and e + y| < x| + [y].

0.6 SOME BASIC ARITHMETIC FACTS ABOUT Z

We shall say that the integer b is a factor or divisor of the
integer a if there exists a ¢ € Z such that a = bc. Also a is
called a multiple of b and we denote the relation by bla.
Clearly, this is a transitive relation. If b|a and a|b, we have a =
bc and b = ad. Then a = adc. If a # 0 the cancellation law
gives dc = 1. Then |d| |c| = 1 and d = + 1, ¢ = £1. This shows
that if bla and alb and a # 0, then b = £+ a. An integer p is
called a prime (or irreducible) if p # 0, £1 and the only
divisors of p are +p and £1. If p is a prime so is —p.

The starting point for the study of number theory is the fact
that every positive integer # 1 can be written in one and only
one way as a product of positive primes: a = p1p2 ... ps, Pi
primes, s > 1, and the uniqueness means “uniqueness apart
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from the order of the factors.” This result is called the
fundamental theorem of arithmetic. We shall now give a
proof (due to E. Zermelo) of this result based on
mathematical induction.

Let n be an integer > 1. Either n is a prime, or n = nin2 where
n1 and n2 are > 1 and hence are < n. Hence, assuming that
every integer > 1 and < n is a product of positive primes, we
have that n1 and n2 are such products, and consequently n =
nin2 is a product of positive primes. Then (by the second
principle of induction) every integer > 1 is a product of
positive primes. It remains to prove uniqueness of the
factorization. Let n = p1p2... ps = q1q2... g+ where the p; and
gj are positive primes. First suppose p1 = g1. Cancelling this
factor, we obtain m = p2... ps = q2... gt <n.Ilf m =1 we are
through; otherwise, assuming the property for integers m # 1,
m < n, that is, that p2,... ps are the same as ¢2,... ,q: except
possibly for order, it is clear that this is true also for p1 p2,...,
ps and g1 q2,..., gr. Thus uniqueness follows for n. Next
assume p1 # q1, say p1 < ¢q1. In this case it is clear that > 1
and 0 < p1g2 ...qt < n = q1q92 ... q: Subtracting p1q2 ... q:
from n gives

m=pp;p—4: @)=, —p Mg <n

Since r > I, m > 1.We obtain two factorizations of m into
positive primes by factoring p2 ... ps — q2 ... q¢ and q1 — p1
into positive primes. In the first p1 occurs, and in the second
the primes occurring are ¢2,..., ¢ and the primes that divide
g1 — p1. Assuming that the result holds for m, p1 coincides
with one of the primes ¢2,..., g or it divides g1 — p1. The
latter is excluded since it implies P1lq1, so p1 = q1. Hence p1
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= gj for some j > 2. Writing this gj as the first factor we obtain
a reduction to the previous case.

The fundamental theorem of arithmetic can also be stated in
the form:

Any integer # 0, = 1 can be written as a product of primes.
Apart from order and signs of the factors this factorization is
unique.

The result can be stated also in terms of the number system 1}
of rational numbers.” In this context it states that every

rational number # 0, £ 1 can be written in the form

Mg B o pte . .
PP Ps" where the p; are prime integers and the ?; = + 1.

This is unique except for signs and order.

If n € Z we can write n = £ p1p2 ... ps where the p; are
positive primes (assuming always that n» # 0, £ 1).
Rearranging the primes, and changing the notation, we have n
= £p,"p2" - B" where the p; are distinct positive primes. It
follows from the fundamental theorem of arithmetic that if m
is a factor of n then m has the form £P:"P2" """ P where the /;
satisfy 0 < /; < k;. If m and n are two non-zero integers we can
write both in terms of the same prlmes provided we allow the
exponents to be 0 (and recall that a° = =1,ifa# 0) that is, we
may assume m = £Pi"P2"pS = £pp " pt where
the p; are distinct positive primes and the e;, fi > 0. Now put g;
=min {ej, fi), hi = max (e;, fi) and consider the two integers

(9) (m,m)y=p"'py* - p*  [mn]=ptpt--p
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It is readily seen that (m, n) is a greatest common divisor
(g.c.d.) of m and n in the sense that (m, n) | m, (m, n) | n, and
that if d is any integer such that d | m and d| n then d|(m, n).
Similarly [m, n] is a least common multiple (1.c.m.) of m and n
in the sense that m | [m, n], n | [m, n], and if m | eand n | e
then [m, n] | e. It is clear from (9) that if m and n are positive
then

(10) mn = (m, n)[m, n].

There is another way of .proving the existence of a g.c.d. of
two integers which does not require factorizations into primes
and which gives the additional information that the g.c.d. can
be written in the form mu + nv where u, v € Z. This is based
on

The Division Algorithm in . If a and b are integers and b # 0
then there exist integers g and », 0 < r < |b| such that a = bg +
r.

Proof. Consider the set M of integral multiples x|b| of |b|
satisfying x|b| < a. M is not vacuous since —|a| |b| < — |a| < a.
Hence, the set M has a greatest

number 4|b| (exercise 2, p. 21). Then hlb| < a so a = h|b| + r
where 7 > 0. On the other hand, (4 + 1)|b| = h|b| + |b| > hl|b|.
Hence (h + 1)|b| > a and h|b| + |b| > h|b| + r. Thus, r < |b|. We
now putg=~hifb>0and g =—hif b <0. Then h|b| = gb and
a=gb + r as required. [J

Now let m, n #0 € Z and let I = {mx + ny |x, y € Z}. This set
includes |n| > 0. Hence there is a least positive integer d = mu
+ nv € 1. We claim that d is a g.c.d. of m and n. First, by the
division algorithm we can write m = dg + r where 0 < r < d.

62



Then r =m — dq = m — (mu + nv)g = m(1 — uq) — nvg € 1.
Since d is the least positive integer in /, we must have » = 0.
Hence d | m. Similarly d | n. Next suppose e|m and e|n. Then
elmu and e|nv. Hence elmu + nv. Thus e|d.

If d and d are both g.c.d. of m and n then the second
condition defining a g.c.d. gives d|d’ and d'|d. Hence d' = +d.
If n # 0 then d # 0 and we may take d > 0. This determination
of the greatest common divisor is the one we obtained from
the prime factorizations, and we denote this as (m, n).

EXERCISES
1. Show that if p is a prime and p|ab then either p|a or p|b.

2. Define g.c.d. and l.c.m. for more than two integers and
prove their existence.

3. Show that if k£ and m are positive integers and m # ¥ for n
e 7 then m"¥ is irrational.

0.7 A WORD ON CARDINAL NUMBERS

We shall have occasion frequently in this book to use the
concept of the cardinal number of a set. At this point it will be
well to list the main facts on cardinal numbers that will be
required. No proofs will be given. These can be found in a
number of places, in particular, in Halmos’ Naive Set Theory.
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We begin by saying that two sets have the same cardinal
number or cardinality (or, are equipotent or just plain
equivalent) if there exists a 1-1 (read “one to

one”) correspondence between them. For example, the sets "
2 and the set I of rational numbers all have the same cardinal
number. On the other hand, the set B of reals has a larger
cardinality than ). As a representative of the class of sets
having the same cardinal number we take a particular ordinal
number in the class and call this the cardinal number of any
set in the class. A definition of the ordinal numbers will not
be given here, except the finite ones. We define the ordinal n

for n € 'l to be the subset of T of natural numbers < 7. A set is
called finite if it can be put in 1-1 correspondence with some
finite ordinal, that is, with some set of natural numbers less
than a given one. Otherwise the set is infinite. In general, we
denote the cardinal number of S by |S| and we write |S] < oo or
|IS] = oo according as S is finite or infinite. It is important to
know that if m and n are distinct natural numbers then no
bijective map between the corresponding ordinals exists.
Assuming m < n this is easily proved by induction on n.
Another way of saying this is that if S and T are finite sets
such that |S| > |7] (in particular, if 7 is a proper subset of S)
then for any surjective map o of S onto 7 there exist s1 # 52 in
S such that a(s1) = a(s2). This simple fact, which everyone is
aware of, is called the “pigeonhole” principle: if there are
more letters than pigeonholes then some pigeonhole must
contain more than one letter. This has many important
applications in mathematics. The pigeonhole principle is
characteristic of finite sets. For any infinite set there always
exist bijective maps onto proper subsets. If S and 7 are finite
sets then |§ x 7] = |5]|7] and |ST| = |S||T| where S7 is the set of
maps of 7 into S.
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An important result on cardinal numbers of infinite sets is the
Schréder-Bernstein theorem: If we have injective maps of S
into 7 and of T into S then |S| = |T].

! For a general reference book on set theory adequate for our
purposes we refer the reader to the very attractive little book,
Naive Set Theory. by Paul R. Halmos, Van Nostrand
Reinhold, 1960.

2 This is frequently called the Boolean of S, #(S), after
George Boole who initiated its systematic study. The
justification of the terminology “power set” is indicated in the
footnote on p.5.

3 If T consists of two elements {0, 1} then we may write 7'= 2
and have the set 2° of maps of S into {0, 1}. Such a map is
characterized by specifying 4 = {a € § a(e) = 1 }.
Conversely, given a subset 4 of § we can define its
characteristic function X4(a) =1 1fa € 0 ifa ¢ A. In this way
one can identify the set 2° of maps of S into {0, 1} with the
set of subsets of S, that is, with #(S). This is the reason for
the terminology “power set”.

4 Note that the composite is written in the reverse order to
that in which the operations are performed: fa is o followed
by f. To keep the order straight it is good to think of fo as S
following o.

> Also to infinite products. These will not be needed in this
volume, so we shall not discuss them here.
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%0One is tempted to say that one can define f inductively by
conditions 1 and 2. However, this does not make sense since

in talking about a function on T we must have an a priori

definition of f{(n) for every n € A proof of the existence of /'
must use all of Peano's axioms. An example illustrating this is
given in exercise 4, p. 19. For a fuller account of these
questions we refer the reader to an article, “On mathematical
induction,” by Leon Henkin in the American Mathematical
Monthly, vol. 67 (1960), pp. 323-338. Henkin gives a proof
of the recursion theorem based on the concept of “partial”

functions on /1. The proof we shall give is due independently
to P. Lorenzen, and to D. Hilbert and P. Bernays (jointly).

7 Detailed proofs can be found in E. Laundau, Foundations of
Analysis, 2nd ed., New York, Chelsea Publishing Co., 1960.
A sketch of the proofs is given in paul R. Halmos, Naive set
Theory, New York, Van Nostrand Reinhold, 1960.

8 A different proof of this result and generalizations of it will
be given in Chapter II.

? We are assuming the reader is familiar with the construction
of 1} from the system Z. A more general situation which
covers this will be considered in section 2.9.

10 There is a third, mechanical way of determining a g.c.d for

two integers, called the Euclid algorithm. This is indicated in
exercises 11, p. 150.
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1
Monoids and Groups

The theory of groups is one of the oldest and richest branches
of algebra. Groups of transformations play an important role
in geometry, and, as we shall see in Chapter 4, finite groups
are the basis of Galois’ discoveries in the theory of equations.
These two fields provided the original impetus for the
development of the theory of groups, whose systematic study
dates from the early part of the nineteenth century.

A more general concept than that of a group is that of a
monoid. This is simply a set which is endowed with an
associative binary composition and a unit—whereas groups
are monoids all of whose elements have inverses relative to
the unit. Although the theory of monoids is by no means as
rich as that of groups, it has recently been found to have
important “external” applications (notably to automata
theory). We shall begin our discussion with the simpler and
more general notion of a monoid, though our main target is
the theory of groups. It is hoped that the preliminary study of
monoids will clarify, by putting into a better perspective,
some of the results on groups. Moreover, the results on
monoids will be useful in the study of rings, which can be
regarded

as pairs of monoids having the same underlying set and
satisfying some additional conditions (e.g., the distributive
laws).

A substantial part of this chapter is foundational in nature.
The reader will be confronted with a great many new
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concepts, and it may take some time to absorb them all. The
point of view may appear rather abstract to the uninitiated.
We have tried to overcome this difficulty by providing many
examples and exercises whose purpose is to add concreteness
to the theory. The axiomatic method, which we shall use
throughout this book and, in particular, in this chapter, is very
likely familiar to the reader: for example, in the axiomatic
developments of Euclidean geometry and of the real number
system. However, there is a striking difference between these
earlier axiomatic theories and the ones we shall encounter.
Whereas in the earlier theories the defining sets of axioms are
categorical in the sense that there is essentially only one
system satisfying them—this is far from true in the situations
we shall consider. Our axiomatizations are intended to apply
simultaneously to a large number of models, and, in fact, we
almost never know the full range of their applicability.
Nevertheless, it will generally be helpful to keep some
examples in mind.

The principal systems we shall consider in this chapter are:
monoids, monoids of transformations, groups, and groups of
transformations. The relations among this quartet of concepts
can be indicated by the following diagram:

Monoids

Monoids

Groups :
e of transformations

Ciroups of wansformations
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This is intended to indicate that the classes of groups and of
monoids of transformations are contained in the class of
monoids and the intersection of the first two classes is the
class of groups of transformations. In addition to these
concepts one has the fundamental concept of homomorphism
which singles out the type of mappings that are natural to
consider for our systems. We shall introduce first the more
intuitive notion of an isomorphism.

At the end of the chapter we shall carry the discussion beyond
the foundations in deriving the Sylow theorems for finite
groups. Further results on finite groups will be given in
Chapter 4 when we have need for them in connection with the
theory of equations. Still later, in Chapter 6, we shall study
the structure of some classical geometric groups (e.g., rotation

groups).

1.1  MONOIDS OF TRANSFORMATIONS AND
ABSTRACT MONOIDS

We have seen in section 0.2 that composition of maps of sets
satisfies the associative law. If $ T, TS U, and U4V, and
Po is the map from S to U defined by (Ba)(S) = S(a(s)) then
we have y(Ba) = (yB)a. We recall also that if 17 is the identity
map ¢t — ton 7, then 17 = a and Bl7= P for every a.S — T
and B: 7 — U. Now let us specialize this and consider the set
M(S) of transformations (or maps) of S into itself. For
example, let S = {1, 2}. Here M(S) consists of the four
transformations

1 2
]x-(] I),|
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where in each case we have indicated immediately below the
element appearing in the first row its image under the map. It
is easy to check that the following table gives the products in
this M(S):

1 z B 7

1 1 a B b

(1 a 2 1 T /]
[ [ [ [ i}

¥ 7 7 ¥ ¥

Here, generally, we have put po in the intersection of the row
headed by p and the column headed by ¢ (p, 0 =1, a, B, y).
More generally, if S = {1, 2,..., n} then M(S) consists of n"
transformations, and for a given n, we can write down a
multiplication table like (1) for M(S). Now, for any
non-vacuous S, M(S) is an example of a monoid, which is
simply a non-vacuous set of elements, together with an
associative binary composition and a unit, that is, an element
1 whose product in either order with any element is this
element. More formally we give the following

DEFINITION 1.1. A4 monoid is a triple (M, p, 1) in which
M is a nomn-vacuous set, p is an associative binary

composition (or product) in M, and 1 is an element of M such
thatp(1,a) =a =p(a, 1) foralla ? M.

If we drop the hypothesis that p is associative we obtain a
system which is sometimes called a monad. On the other
hand, if we drop the hypothesis on 1

and so have just a set together with an associative binary
composition, then we obtain a semigroup (M, p). We shall
now abbreviate p(a, b), the product under p of a and b, to the
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customary ab (or a - b). An element 1 of (M, p) such that al =
a = la for all a in M is called a unit in (M, p). If 1’ is another
such element then 1'l =1 and 1'l = 1’, so 1' = 1. Hence if a
unit exists it is unique, and so we may speak of the unit of (M,
p). It is clear that a monoid can be defined also as a
semi-group containing a unit. However, we prefer to stick to
the definition which we gave first. Once we have introduced a
monoid (M, p, 1), and it is clear what we have, then we can
speak more briefly of “the monoid M,” though, strictly
speaking, this is the underlying set and is just one of the
ingredients of (M, p, 1).

Examples of monoids abound in the mathematics that is
already familiar to the reader. We give a few in the following
list.

EXAMPLES

1. (M, +,0); M, the set of natural numbers, +, the usual addition
in M, and 0 the first element of M.

2. (W, -, 1). Here - is the usual product and 1 is the natural
number 1.

3. (#, -, 1); #, the set of positive integers, - and 1 are as in

2).
4.(Z,+, 0); Z, the set of integers, + and 0 are as usual.
5.(Z,-,1); - and 1 are as usual.

6. Let S be any non-vacuous set, #(S) the set of subsets of S.
This gives rise to two monoids (#(S), U, @) and (#(S), N, S).
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7. Let o be a particular transformation of S and define of
inductively by o° = 1, o’ = o’ ~ o, # > 0. Then o/ = o* 7/
(which is easy to see and will be proved in section 1.4). Then
(@ = {oFk e N} together with the usual composition of

transformations and (10 =1 constitute a monoid.

If M is a monoid, a subset N of M is called a submonoid of M
if N contains 1 and N is closed under the product in M, that is,
nn2 ? N for every n; ? N. For instance, example 2, (M, -, 1), is
a submonoid of (Z, -, 1); and 3, (#, -, 1), is a submonoid of (
M, -, 1). On the other hand, the subset {0} of ™ consisting of 0
only is closed under multiplication, but this is not a
submonoid of 2 since it does not contain 1. If N is a
submonoid of M, then N together with the product defined in
M restricted to N, and the unit, constitute a monoid. It is clear
that a submonoid of a submonoid of M is a submonoid of M.
A submonoid of the monoid M(S) of all transformations of the
set § will be called a monoid of transformations (of S).
Clearly the definition means that a subset N of M(S) is

a monoid of transformations if and only if the identity map is
contained in N and the composite of any two maps in N
belongs to N.

A monoid is said to be finite if it has a finite number of
elements. We shall usually call the cardinality of a monoid its
order, and we shall denote this as [M|. In investigating a finite
monoid it is useful to have a multiplication table for the
products in M. As in the special case which we considered
above, if M = {a;j =1, ay,..., am} the multiplication table has
the form
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where aja; is tabulated in the intersection of the row headed
by a; and the column headed by 4;.

EXERCISES

1. Let S be a set and define a product in S by ab = b. Show
that S is a semigroup. Under what condition does S contain a
unit?

2. Let M = Z x Z the set of pairs of integers (x1, x2). Define
(x1, x2)(v1, ¥2) = (x1 + 2x2)2, x12 + x2v1), 1 = (1, 0). Show
that this defines a monoid. (Observe that the commutative law
of multiplication holds.) Show that if (x1, x2) # (0,0) then the

cancellation law will hold for (x1, x2), that is,
(i XM ¥y Ya) = (x5, XaH2p, 22} = (¥, Yad = (24, 2;3)

3. A machine accepts eight-letter words (defined to be any
sequence of eight letters of the alphabet, possibly
meaningless), and prints an eight-letter word consisting of the
first five letters of the first word followed by the last three
letters of the second word. Show that the set of eight-letter
words with this composition is a semigroup. What if the
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machine prints the last four letters of the first word followed
by the first four of the second? Is either of these systems a
monoid?

4. Let (M, p, 1) be a monoid and let m ? M. Define a new
product py, in M by pm(a, b) = amb. Show that this defines a
semigroup. Under what condition on m do we have a unit
relative to pm?

5. Let S be a semigroup, u an element not in S. Form M =S U
{u} and extend the product in S to a binary product in M by
defining ua = a = au for all a ? M. Show that M is a monoid.

1.2 GROUPS OF TRANSFORMATIONS AND
ABSTRACT GROUPS

An element # of a monoid M is said to be invertible (or a
um’tl) if there exists a v in M such that

(3) ue=1=rpu

If v also satisfies uv' = 1 = v'u then v' = (vi)v' = v(uv') = v.
Hence v satisfyin% (3) is unique. We call this the inverse of u
and write v = u L. It is clear also that ! is invertible and

(u71)71 = u. We now give the following

DEFINITION 1.2. A4 group G (or (G, p, 1)) is a monoid all
of whose elements are invertible.

We shall call a submonoid of a monoid M (in particular, of a
group) a subgroup if, regarded as a monoid, it is a group.
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Since the unit of a submonoid coincides with that of M it is
clear that a subset G of M is a subgroup if and only if it has
the following closure properties: 1 € G, gig2 € G for every g;
? G, every g ? G is invertible, and g_] ?G.

Let U(M) denote the set of invertible elements of the monoid
M and let u1 up € U(M). Then

(gt iy ™y =) = (g™ ey~ = (g (g™ Py ! =gy T =1

and, similarly, (uz_lm_l)(umz) = 1. Hence uju2 ? UM). We
saw also that if u ? U(M) then ul e UM),and clearly 1 - 1 =
1 shows that 1 € U(M). Thus we see that U(M) is a subgroup
of M. We shall call this the group of units or invertible
elements of M. For example, if M = (£, -, 1) then UM) = {1,
—1}and if M= M, -, 1) then UM) = {1}.

We now consider the monoid M(S) of transformations of a
non-vacuous set S. What is the associated group of units
UM(S))? We have seen (p. 8) that a transformation is
invertible if and only if it is bijective. Hence our group is just
the set of bijective transformations of § with the composition
as the composite of maps and the unit as the identity map. We
shall call UM(S)) the symmetric group of the set S and denote
it as Sym S. In particular, if § = {1, 2,..., n) then we shall
write S, for Sym S and call this the symmetric group on n
letters. We usually call the elements of S, permutations of {1,
2,..., n}. We can easily list all of these and determine the
order of S;. Using the notation we introduced in the case n =
2, we can denote a transformation of {1, 2,..., n} by a symbol
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where this means the transformation sending i — 7', 1 <i < n.
In order for a to be injective the second line 1 ',..., n" must
contain no duplicates, that is, no i can appear twice. This will
also assure bijectivity since we cannot have an injective map
of {1, 2,...,n} on a proper subset. We can now count the
number of elements in S, by observing that we can take the
element 1’ in the symbol (4) to be any one of the » numbers
1,2,...,n. This gives n choices for 1'. Once this has been
chosen, to avoid duplication, we must choose 2" among the n
— 1 numbers different from 1'. This gives n — 1 choices for 2'.
After the partners of 1 and 2 have been chosen, we have n — 2
choices for 3’, and so on. Clearly this means we have n/
symbols (4) representing the elements of S;. We have
therefore proved

THEOREM 1.1. The order of Sp is n!.

This is to be compared with the order #”" of the monoid of
transformations of S = {1, 2,..., n}.

We have called a submonoid of the monoid of
transformations of a set, a monoid of transformations.
Similarly, a subgroup of the symmetric group of S will be
called a group of transformations (or transformation group).
If S is finite we generally use the term permutation group for
a group of transformations of S. A set G of transformations of
a set S is a group of transformations if and only if it consists
of bijective maps and G has the following closure properties:
I=1se G,ap € G,ifotandBeG,of1 e Gifa e G.

76



EXAMPLES

1. (Z, +,0) the group of integers under addition.” Here the
inverse of a is —a.

2. (9, +, 0) where Q denotes the set of rational numbers; the
composition is addition; the inverse of a is —a.

3. (R, +, 0), R the set of real numbers, usual + and 0.
4. (C, +,0), C the set of complex numbers; usual + and 0.

5. (Q*, -, 1), @* the set of non-zero rational numbers; the
composition is multiplication; 1 is the usual 1 and a! the
usual inverse.

6. (F*, - 1), B* the set of non-zero real numbers; usual
multiplication, 1, and inverses.

7. (€*, -, 1), €* the set of non-zero complex numbers; usual
multiplication, 1, and inverses.

8. ([E(3 )+, 0), RO the set of triples of real numbers (x, y, z)
with addition as (x1, y1, z3) + (x2, 12, z2) = (x1 + x2, y1 + 2, z1
+ 22), 0= (0, 0, 0). The inverse of (x, y, z) is ( —x, —y, —z). This
example can be described also as the group of vectors in
three-dimensional Euclidean space with the usual geometric
construction of the sum.

9. The set of rotations about a point 0 in the plane;
composition as usual. If 0 is taken to be the origin, the
rotation through an angle 6 can be represented analytically as
the map (x, y) — (x', ') where
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X =xcosfl—ysinfl, y =xsind+ ycosh.

For 8 = 0 we get the identity map, and the inverse of the
rotation through the angle 6 is the rotation through — 6.

10. The set of rotations together with the set of reflections in
the lines through 0. The latter are given analytically by (x, y)
— (x', y") where

x'=xcos 0+ ysin 0, Y =xsm@ — ycosf.

The product of two reflections is a rotation and the product in
either order of a reflection and a rotation is a reflection.

11. Consider the regular n-gon ( = polygon of n sides)
inscribed in the unit circle in the plane, so that one of the
vertices is (1,0) e.g., a regular pentagon:

The vertices subtend angles of 0, 2n/n, 4n/n,..., 2(n — 1)n/n
radians with the positive x-axis. The subset of the rotation
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group which maps our figure into itself consists of the »
rotations through angles of 0, 2n/n,..., 2(n — 1)n/n radians
respectively. These form a subgroup R of the rotation group.

12. We now consider the set D; of rotations and reflections
which map the regular n-gon, as in 11, into itself. These form
a subgroup of the group defined in 10. We shall call the
elements of this group the symmetries of the regular n-gon.
The reflection in the x-axis is one of our symmetries.
Multiplying this on the left by the » rotational symmetries we
obtain n distinct reflectional symmetries. This gives them all,
for if we let S denote the reflection in the x-axis and 7 denote
any reflectional symmetry then S7'is

one of the n-rotational symmetries Ry, ..., Ry, say R;. Since 52
=1, ST = R; gives T = SR; which is one of those we counted.
Thus Dy, consists of »n rotations and » reflections and its order
is 2n. The group Dy is called the dihedral group. For n = 3
and 4 the lines in whose reflections we obtain symmetries of
our n-gon are indicated as broken lines in the following
figures:

13. Let Uy denote the set of complex numbers which are nth
roots of unity in the sense that z’ = 1. It is easy to determine
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these using the polar representation of a complex number: z =
re'? = r(cos € +isin 0), r =| z |, 0, the argument (= angle) of
z. If z1 = r1e'® and 22 = 126/ then z1z2 = ryr2e' @ +92) 1t
follows that if 2 = 1 then |z] = » = 1 and 6 must be one of the
angles 0 = 0, 2n/n, 4n/n,..., 2(n — 1)n/n. Since 1" =1, and Z1"
=1 and 22" = 1 imply (z122)" = z/"z" = 1 and (z;7)" =
(zln)*1 = 1, it is clear that U, is a subgroup of C*, the
multiplicative group of complex numbers (as in example 7).

14. The rotation group in three-dimensional Euclidean space.
This is the set of rotations about the origin 0 in the number
space RO of triples (x, v, z), x, v, z € R, From analytic
geometry it is known that these maps are given analytically as
(x,y,2z) = (x, ', z") where

X'=Ax 4oy vz

Vo= dax 4 gy + vaZ

2= AyX + iy + ¥y

and the 4;, ui, vi, are any real numbers satisfying:

At vt=l Ly vyy=0 0 P # ),
AyoHy vy
Ay M2 V3
| -;-3 15 ""J|

We remark that all the examples 9-14 except 13 are
transformation groups. We remark also that in our list of
monoids given on p. 29, 1, 2, 3, 5 are not groups and 7 may or
may not be a group. The two geometric examples 11 and 12
illustrate a general principle. If G is a transformation group of
a set S and A4 is a subset then the transformations contained in
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G which map A4 onto itself (6(4) = A) constitute a subgroup
G4 of G. The validity of this is immediate.

We shall now consider a general construction of monoids and
groups out of given monoids and groups called the direct
product. Let M1, M>,..., M, be given monoids and put M =
My x M2 x ... x My. We introduce a product in M by

{ﬂl. L T H,‘"hl- b: ..... h" = {ﬂtb]. ﬂzh:. —— ﬂﬂb.}

where ai, b; 0. M; and put
L=(ly 130000 1))

li, the unit of M;. Then, writing (a;) for (ai, ..., an) etc., we
have ((ai)(bi)(ci) = ((aibi)ci) and (ai)((bi)(ci)) = (ai(bici)).
Hence the associative law holds. Also 1 (a;) = (a;) = (ai)1 so 1
is the unit. Hence we have a monoid. This is called the direct
product M1 x M2 % ... X My of the monoids M;. If every M; is
a group Gij, then G; x G2 x ... X Gy is a group since in this
case (a;) has the inverse (ai_l). Then G1 x G2 x ... X Gy is
called the direct product of the groups Gi. A special case of
this construction is given in example 8 above. This can be
regarded as a direct product of (R, + ,0) with itself taken three
times. As in this example, it should be noted that we do not
require the M; (or the Gj) to be distinct. In fact, we obtain an
interesting case if we take all the M; = N, a fixed monoid.
Then we obtain the direct product of N with itself taken n
times or the n-fold direct power of N. We shall usually denote
this as N,

EXERCISES
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1. Determine af, fo. and alins 5 1f
__(12345 ﬁ_t2345

2311 54 M1 34352

2. Verify that the permutations

: 1 2 3) (I 2 3)
_(1 2 3)' 2 3 1)

form a subgroup of S3.

3. Determine a multiplication table for S3.

4. Let G be the set of pairs of real numbers (a, b) with a # 0

and define: (a, b)(c, d) = (ac, ad + b), 1 = (1, 0). Verify that

this defines a group.

5. Let G be the set of transformations of the real line R
defined by x — x" = ax + b where a and b are real numbers
and a # 0. Verify that G is a transformation group of R,

6. Verify that the set of translations x — x' = x + b is a
subgroup of the group defined in exercise 5.

7. Show that if an element a of a monoid has a right inverse b,
that is, ab = 1; and a left inverse ¢, that is, ca = 1; then b = ¢,
and a is invertible with ¢~ = b. Show that a is invertible with
b as inverse if and only if aba = a and ab’a=1.

8. Let a be a rotation about the origin in the plane and let p be
the reflection in the x-axis. Show that pozp_1 = o a.
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9. Let G be a non-vacuous subset of a monoid M. Show that
G is a subgroup if and only if every g ? G is invertible in M
and gflgz ? G for any g7,22€G.

10. Let G be a semigroup having the following properties: (a)
G contains a right unit I, that is, an element satisfying al, =
a, a € G, (b) every element a 7 G has a right inverse relative
to 1,(ab = 1;). Show that G is a group.3

11. Show that in a group, the equations ax = b and ya = b are
solvable for any a, b € G. Conversely, show that any
semigroup having this property contains a unit and is a group.

12. Show that both cancellation laws hold in a group, that is,
ax = ay = x =y and xa = ya = x = y. Show that any finite
semigroup in which both cancellation laws hold is a group
(Hint: Use the pigeon-hole principle and exercise 11.)

13. Show that any finite group of even order contains an
element a # 1 such that a° = 1.

14. Show that a group G cannot be a union of two proper
subgroups.

15. Let G be a finite set with a binary composition and unit.
Show that G is a group if and only if the multiplication table
(constructed as for monoids) has the following properties:

(i) every row and every column contains every element of G,
(i) for every pair of elements x # 1, y # 1 of G, let R be any

rectangle in the body of the table having 1 as one of its
vertices, x a vertex in the same row as 1, y a vertex in the
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same column as 1, then the fourth vertex of the rectangle
depends only on the pair (x, y) and not on the position of 1.

1.3 ISOMORPHISM. CAYLEY’S THEOREM

At this point the reader may be a bit overwhelmed by the
multitude of examples of monoids and groups. It may
therefore be somewhat reassuring to know that

certain groups which look different can be regarded as
essentially the same— that is, they are “isomorphic” in a
sense which we shall define. Also we shall see that every
monoid is isomorphic to a monoid of transformations, and
every group is isomorphic to a group of transformations. Thus
we obtain essentially all monoids (groups) in the class of
monoids (groups) of transformations. This result for groups is
due to Cayley. We give first

DEFINITION 1.3. Two monoids (M, p, 1) and (M', p', 1")
are said to be isomorphic if there exists a bijective map 1 of
M to M' such that

(5) nl)=1, nxy) = nixn(y), x,ye M.

The fact that M is isomorphic to M’ will be indicated by M =
M'. The map # satisfying the conditions (5) is called an
isomorphism of M onto M'. Actually, the first condition in (5)
is superfluous. For, if # satisfies the second condition, then
we have n(x)n(1) = n(x) = n(I)n(x). Since 7 is surjective, this
shows that n(1) acts as the unit 1’ in M’, and since we know
that the unit is unique, we have n(1) = 1'. Nevertheless, we
prefer to include the first condition in (5) as part of the
definition, since this will be needed in a more general context
which we shall consider later.
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Perhaps the first significant example of isomorphism between
groups which was discovered was one between the additive
group of real numbers and the multiplicative group of positive
reals. We denote these as (R, +, 0) and (R™, -, 1) respectively.
An isomorphism of (B, +,0) and (R™, -, 1) is the exponential
map x — e". This is bijective with inverse y — log y (the
natural logarithm) and we have the “functional equation”

ety = et

which is just the second condition in (5) since + is the
composition in (B, +, 0).

If M and M' are isomorphic there may exist many
isomorphisms between these monoids. For instance, if a is
any positive real number #1, the map x — a' is an
isomorphism between the groups we have just considered. It
is clear that isomorphism is an equivalence relation: any
monoid is isomorphic to itself (with respect to the 1dent1ty
map) and if #: M — M’ is an isomorphism, then applying ;1

to the second condition in (5) gives xy =1 (n(x)n(y)) Hence
if we write 7(x) = x' () = ", then 1 '(m 1(0) = n (),
and this holds for all x', ' € M" since 7 is surjective. Thus 77

is an isomorphism from M- to M. Finally, if { is an

isomorphism of M"to M" then (Cn)(xy) =C(n(xy)) = LxM(»))
={(M™)ZM()). Thus {n :M — M" is an isomorphism.

We shall now prove the result which was mentioned before.

CAYLEY’S THEOREM FOR MONOIDS AND
GROUPS. (1) Any monoid is isomorphic to a monoid of
transformations. (2) Any group is isomorphic to a
transformation group.
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Proof. (1) Let (M, p, 1) be a monoid. Then we shall set up an
isomorphism of (M, p, 1) with a monoid of transformations of
the set M itself. For any a € M, we define the map ar.: x — ax
of M into M. We call ar the left translation (or left
multiplication) defined by a. We claim first that the set M1 =
{arla € M} is a monoid of transformations, which, we have
seen, means that the identity map is in the set M7, and this set
is closed under the composite product of maps. Since 17, is x
— Ix =x, 1 = 1(= 1m) € M. Also arbr, is the map x —
a(bx). By the associative law, a(bx) = (ab)x, and this is
(ab)rx. Thus arbr = (ab)r € Mr. We note next that the map a
— ag is an isomorphism of (M, p, 1) with the monoid of
transformations M. The equations 17 = 1 and azbr = (ab)L
are the conditions (5) for @ — ar, and, obviously, this map is
surjective. Moreover, it is also injective; for, if az, = br, then,
in particular, @ = ar 1 = by 1 = b. Hence a — ar is an
isomorphism.

(2) Now let (G, p, 1) be a group. Then everything will follow
from the proof of (1) if we can show that G, is a group of
transformations. This requires two additional facts beyond
those we obtained in the preceding argument: the maps ay, are
bijective and G, is closed under inverses. Both follow from
Iz = (cf1 a) = (ail)LaL and 17 = aL{cfl)L which show that
ar, has the inverse (cfl)L and this is in Gz. [J

It should be noted that if M (or G) is finite then M, acts in the
finite set M. In particular, if |G| = n, then G, is a subgroup of
Sy, the symmetric group on a set of n elements. Hence we
have the

COROLLARY. Any finite group of order n is isomorphic to
a subgroup of the symmetric group Sp.
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EXAMPLES

1. Let (R, +,0) be the additive group of reals. If a € R, the left
translation az, is x — a + x.

2. Let G be the group of pairs of real numbers (a, b), a # 0
with product (a, b) (c, d) = (ac, ad + b), 1 = (1, 0) (exercise 4,
p. 36). Here (a, b)L. is the map

(x, ¥) = {ax, ay + b).

Another transformation group isomorphic to G is the group of
transformations of ® consisting of

the maps x — ax + b, a # 0. The map sending (a, b) into the
transformation T, p) defined as x — ax + b, a # 0, is an
isomorphism.

EXERCISES

1. Use a multiplication table for S3 (exercise 3, p. 36) and the
isomorphism a — ar. (ar the left translation defined by a) to
obtain a subgroup of S isomorphic to S3.

2. Show that the two groups given in examples 11 and 13 on
pages 33 and 34 are isomorphic. Obtain a subgroup of Sy
isomorphic to these groups.

3. Let G be a group. Define the right translation ar fora € G
as the map x — xa in G. Show that GrR = {agr} is a
transformation group of the set G and a — ag”! is an
isomorphism of G with Gg.
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4. Is the additive group of integers isomorphic to the additive
group of rationals (examples 1 and 2 on p. 32)?

5. Is the additive group of rationals isomorphic to the
multiplicative group of nonzero rationals (examples 2 and 5
on p. 32)?

6. In Z define a 0 b = a + b — ab. Show that (Z, o, 0) is a
monoid and that the map a — 1 — a is an isomorphism of the
multiplicative monoid (Z, o, 1) with (Z, o, 0).

1.4 GENERALIZED ASSOCIATIVITY.
COMMUTATIVITY

Let as az,..., an be a finite sequence of elements of a monoid
M. We can determine from this sequence a number of
products obtained by iterating the given binary composition
of M. For instance, if n = 4, we have the following
possibilities:

(layas)aslay, (aylazas)la,, (@ a;0asa,), asllasas)a,), alas(aya,)).

In general, we obtain the products of aj, a2,..., an by
partitioning this sequence into two subsequences ai,...,am
and am + 1,..., an, 1 <m < n — 1. Assuming we already know
how to obtain the products of a1, ..., am and am + 1,..., an, we
apply the binary composition to these results to obtain an
element of M which is a product associated with the sequence
ai, az,..., an. Varying m in the range 1,..., n — 1 and taking all
the products for the subsequences, we obtain the various
products for ai, a2,..., an. Now we claim that the associative
law guarantees that all of these products are equal. This is, of
course, clear
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for n = 1, if we understand that the “product” in this case is

just a; To prove the assertion in general we use induction on
n and we first prove a little lemma.

LEMMA. Define [Ti a by [} @ = ay, [11*" @ = ([T apa,. 1,
Then

n m n+m
[Il a [L[ Byyj= [i[ ay.

Proof. By definition this holds if m = 1. Assume it true for m
= r and consider the case m = r + 1. Here

(lfl [Tows Josess

ﬂ‘r
f dytp 41

=]_]a..D

Now consider any product associated with the sequence ai,
az,..., ap. This has the form wuv where u is a product
associated with ai, ..., am and v is a product associated with
am + 1,..., ap. By induction on n we may assume that
u=[]7a and v=[[i " au., Then, by the lemma, uv = ITa
Thus all products determined by the sequence aj,..., an are
equal (= I “). From now on we shall denote this uniquely
determined product as aja? ...an, omitting all parentheses.
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If all the a; = a, we denote ajay ... an as " and call this the
nth power of a. It is clear by counting that

[ﬁ] a"a" = a™ H'r. {um]n = g™

Also, if we define ag = 1, then it is immediate that (6) is valid
forallm,n e M.

If @ is an invertible element of M, then we define a " for n ?
Nbya =@ ' =alal... a" (ntimes). Itis clear that a "
= (") and one can prove easily that (6) holds for all m, n
Z. This is left to the reader to check.

If @ and b are elements of a monoid M, it may very well
happen that ab # ba. For example, in the monoid M(S), S =
{1, 2}, whose multiplication table is (1) we have o = vy
whereas Pa = . If ab = ba in M then a and b are said to
commute

and if this happens for all @ and b in M then M is called a
commutative monoid. Commutative groups are generally
called abelian groups after Niels Hendrik Abel, a great
Norwegian mathematician of the early nineteenth century.4
We shall adopt this terminology in what follows.

If a € M we define the centralizer C(a)—or Cp(a) if we need
to indicate M— as the subset of M of elements 4 which
commute with a. This is a submonoid of M. For, 1 € C(a)
since la=a=a l and if b1, b2, € C(a) then

(bybs)a = by(bia) = bylab,) = (bya)by = (aby )b, = albb,).

Also, if b € C(a) and b is invertible then bl e C(a), since
multiplication of ab = ba on the left and on the right by b
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gives b 'a = ab~'. This shows also that if M = G is a group
then C(a) is a subgroup.

It is immediate that if {My} is a set of submonoids of a
monoid then [ 1 Mx is a submonoid. Similarly, the intersection
of any set of subgroups of a group is a subgroup.

If 4 is a subset of M we define the centralizer of A as
ClA) = (Naca Cla), Clearly this is a submonoid and it is a
subgroup if M is a group. The submonoid C(M) is called the
center of M.

Suppose we have elements a1, a2,..., an € M such that aja; =
aja; for all i, j and consider any product ai'a2’ ... an’ where 1/,
2',..., n' is a permutation of 1, 2,..., n. Suppose a, occurs in
the Ath place in aj'ay’ ... an.. ., that is, ap’ = an. Then, since the
aj € Clan), a(h+ 1y ... an’ ... C(an) and so

ﬂl’ul' s as ah' 5 s -“'"_, — al' R -a[h" ll'ﬂﬂl+1,' Gy W

n [

The sequence of numbers 1',..., (A — 1), (h + 1),...,n"is a
permutation of 1, 2, ... ,n — 1. Hence, using induction, we
may assume that

ﬂ!.""ﬂ'[h syt B = Ayttt i,y

This implies that a1'a2’ ... aan'. Thus the product a1az ... an is
invariant under all permutations of the arguments. In
particular, if ab = ba, then

(7 {ab)' = a"b", n=0,12.,..
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Since @ = (a )" it is clear that (7) holds also for negative

integers if a and b are invertible.

If M is commutative, one frequently denotes the composition
in M as + and writes a + b for ab. Also one writes 0 for 1.
Then + is called addition and 0

the zero element. Also in this additive notation one writes —a
for @/ and calls this the negative of a. The nth power d"
becomes na, the nth multiple of a. The rules for powers
become the following rules for multiples:

(8) ma + na = (m + na, m(na) = (mn)a

(9) n{a + b) = na + nb.

These are valid for all integral m and » if M is an abelian
group.

EXERCISES

1. Let 4 be a monoid, M(A) the monoid of transformations of
A into itself, Az the set of left translations az, and AR the set
of right translations ar. Show that 4y, (respectively AR) is the
centralizer of AR (respectively Ar) in M(A) and that A1 N AR
= {cr=cL|c € C}, C the center of 4.

2. Show that if n > 3, then the center of Sy, 1s of order 1.

3. Show that any group in which every a satisfies a’ =1 is

abelian. What if &° = 1 for every a?

4. For a given binary composition define a simple product of
the sequence of elements ai, a2,..., an inductively as either
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aju where u is a simple product of a,..., an or as vay where v
is a simple product of a1, ... ,an — 1. Show that any product of
>2" elements can be written as a simple product of r elements
(which are themselves products).

1.5 SUBMONOIDS AND SUBGROUPS GENERATED
BY A SUBSET. CYCLIC GROUPS

Given a subset S of a monoid M or of a group G, one often
needs to consider the “smallest” submonoid of M or subgroup
of G containing S. What we want to have is a submonoid (or
subgroup) containing the given set and contained in every
submonoid (subgroup) containing this set. If such an object
exists it is unique; for the stated properties imply that if H(S)
and H'(S) both satisfy the conditions, then we have H(S) D
H'(S) and H'(S) o H(S). Hence H(S) = H'(S). Existence can
also be established immediately in the following way. Let S
be a given subset of a monoid M (or of a group G) and let
{Mqy} ({Ga}) be the set of all submonoids of M (subgroups of
G) which contain the set S. Form the intersection “*’ of all
these My (Gq). This is a submonoid (subgroup) since the

intersection of submonoids (subgroups) is a submonoid
(subgroup). Of course, 5/ > S. Moreover, if N is any
submonoid of M (or subgroup of G) containing S, then N is
one of the My (Gq) and so N contains ‘3’ which is the
intersection of all the My (Gg). We shall call the submonoid
(subgroup) generated by S. If S is a finite set, say, S = {s1,
§2,..., Sr}, then we write <1, $2,..., s» in place of the more
cumbersome <{s1, $2,..., Sr}>. An important situation occurs
when “*2 = M (or G). In this case we say that the monoid M
(group G) is generated by the subset S, or S is a set of
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generators for M (or G). This simply means that no proper
submonoid of M (subgroup of G) contains the set S.

The reader may feel somewhat uncomfortable with the
non-constructive nature of our definition of “*’. Modern
mathematics is full of such definitions, and so one has to learn
to cope with them, and to use them with ease. Nevertheless, it
is nice and often useful to have constructive definitions when
these are available. This is the case with “37, as we shall now
show. We consider first the case of monoids. What do the
elements of look like? Since “*” is a submonoid containing S,
clearly “*’ contains 1 and every product of the form s1s2 ... s
where the s; are elements of S (which need not be distinct).
Thus

(10) (8> 2 (8Y ={1,5;5,""5,|5, € S}

Here the notation indicates that “**' is the subset of the given
monoid M consisting of 1 and every product of a finite
number of elements of S. Now we claim that, in fact, *37 = &
'. To see this we observe that %' contains S, since we are
allowing » = 1 in (10). Also “*' contains the unit, and the
product of any two elements of the form s;7 ... 57, 5; € S, is
again an element of this form. Hence ‘3’ is a submonoid of
M and since “*' © § we have “*' o 37, Since previously we
had 37 o @3, €53 = <5’ Thus a constructive definition of **
is that this is just the subset of M consisting of 1 and all finite
products of elements of the set S.

In the group case we let “" be the subset of the given group

G consisting of 1 and all finite products of elements of S or
the inverses of elements of S. In other words,
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{I]} <S>r={1,3152"'&,]:’?'0r.‘:‘|. IE’S:’.

It is immediate that 5" o <3 that ' > S and ' is a
subgroup. Hence 5" = <57,

We now restrict our attention to groups, and we consider the
simplest possible groups—those with a single generator. We
have G = €42 and we call G cyclic with generator a. The
preceding discussion (or the power rules) show that a = {ak|k
€ Z} and this is an abelian group. One example of a cyclic
group is the additive group of integers (Z, +, 0) which is
generated by 1 (or by — 1).

We now consider the map

n

n—a

of Z into €@, Since €@> = {a*} this map is surjective. Also we
have m + n — a™ " " = d"™d", 0 — 1. Hence if our map is
injective it will be an isomorphism. Now suppose n — a” is
not an isomorphism. Then a”" =" = 4" for some m # n. We
may assume n > m. Then d" ~ " = d"a™ = d"a 7" = 1; so
there exist positive integers p such that &’ = 1. Let  be the
least such positive integer. Then we claim that

(12) (ad={l,a,a%..., a1}

and the elements listed in (12) are distinct, so |¢4?| = r. Let a”"
be any element of €42, By the division algorithm for integers,
we can write m = rq + p where 0 < p <r. Then we have " =
d97P = (d")aP = 194° = oP. Hence a" = & is one of the
elements displayed in (12). Next we note that if & # [ are in
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the range 0, 1, ...,  — 1 then ak * al. Otherwise, taking / > k
we obtaina’ *F=1and0</-k<r contrary to the choice of
r. We now see that if n — 4" is not an isomorphism, then <@>
is a finite group. Accordingly, any infinite cyclic group is
isomorphic to (Z, +, 0) and so any two infinite cyclic groups
are isomorphic.

We shall show next that any two finite cyclic groups of the
same order are isomorphic. Suppose ¢b? has order r. Then, as
in the case of €42, we have (b2 = {1, b, . ~ Iy where 7 is
the smallest positive integer such that br = 1 We now observe
that if / is any integer such that a"= =1, then r|h (7 1s a divisor
ofh) Wehave h=gr+s,0<s<r,so1=d"= (")’ = 1%"
= a’. Since r was the least positive integer satisfying a’ = 1
we must have s = 0 and so & = gr. We now claim that if m and
n are any two integers such that a” = 4" then also b = b".
For, a” = a" gives " ~" = 1. hence m —n=qr. Then " ~ " =
(b")g =19 =1and b" = b". By symmetry b”" = b" implies a”
= 4", It is now clear that we have a 1-1 correspondence
between €@2 and <b? pairing " and b". Since a”'d" = d™ " is
paired with 8™ * " = p™b", ¢ —b" is an isomorphism of <&>
and <b7.

Our analysis has proved the following

THEOREM 1.2. Any two cyclic groups of the same order
(finite or infinite) are isomorphic.

We have seen that (£, +, 0) can serve as the model of a cyclic
group of infinite order. If » is any positive integer, the
multiplicative group U, of the complex rth roots of unity
(example 13, p. 34) can serve as a model for cyclic groups of
order r. The elements of this group are the complex numbers
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e?*%ir = cos 2knfr + isin 2knfr, k=0, 1,...,r— 1 Since
e = ¢"*® it is clear that a = ¢>™/" generates Uy.

We can use the notion of a cyclic group to obtain a
classification of the elements of any group G. If a ? G we say
that a is of infinite order or of finite order r according as the
subgroup €47 is infinite or finite of order 7. In the first case a”
# 1 for m # 0. In the second case we have ¢’ = 1 and r is the
least positive integer having this property. Also, if a™ = 1 then
m is a multiple of ». We shall denote the order of a by o(a)
(finite or infinite). It is clear that if o(a) = » = st where s and ¢
are positive integers then o(a”) is t. More generally, one sees
easily that if o(a) = r < oo then o(ak) for any integer k # 0 is [7,
kl/k = rv/(r, k) where as usual [,] denotes the l.c.m. and (,)
denotes the g.c.d. (exercise 4, p. 47).

Cyclic groups are the simplest kind of groups. It is therefore
not surprising that most questions on groups are easy to
answer for this class. For example, one can determine all the
subgroups of a cyclic group. This is generally an arduous task
for most groups. We shall now prove

THEOREM 1.3. Any subgroup of a cyclic group <47 is
cyclic. If <42 is infinite, the subgroups # 1 are infinite and s
— $8%is q bijective map of N with the set of subgroups of <>,
If @Y is finite of order r, then the order of every subgroup is a
divisor of r, and for every positive divisor q of r there is one
and only one subgroup of order q.

Proof. Let H be a subgroup of €42 If H=1 (= {1}) then H
=<1> Now let H # 1. Then there exists an n # 0 in Z such that
a" ? H. Since also " = (d")"! € H we may assume n > 0.
Now let s be the smallest positive integer such that ¢’ € H.
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Then we claim H = €@, Let ¢ ? H and write m = gs + t
where 0 < ¢ <s. Then a’ = a™(a®) ¥ € H, and, since s was the
least positive integer such that @° € H, we must have ¢ = 0.
Then o = (a*)? € <@°7. Since ™ was any element of H we
have H = €@ which proves the first statement of the
theorem.

If €47 is infinite we saw that for distinct integers m and n, a”"
+ d". Hence for any positive s, the elements ¢, m =0, £ 1,
£2, ... are distinct, so €@ is an infinite group. Moreover, s is
the smallest positive integer such that @’ € €@, Thus every
subgroup #1 is infinite and we have the 1-1 correspondence s
— €@} between the set of positive integers and the set of
subgroups #1 of a2

Now suppose €42 is of finite order 7, so <@ = {1, a, ..., d" ~
1 We have seen that if H is a subgroup #1 of €42, then H =
(@> where s is the smallest positive integer such that a* € H.
We claim that s|r. For, writing » = gs + ¢ with 0 <t <s, we
have 1 = a" = (a*)%a" so a' = (a°)™? ? H. The minimality of s
then forces

t =0 and so » = gs. We can now list the elements of H as

(13) (La,..., gt~ ')

and ¢*? = a" = 1. This applies to H = 1 if we take s = 7. In this
way we obtain a bijective map s — <@ of the set of positive
divisors s of 7 onto the set of subgroups of ¢@>. The order of
the subgroup <@ corresponding to s is ¢ = /s and as s runs
through the positive divisiors of 7, so does ¢g. Hence the order
of every subgroup is a divisor of » and for every positive g\r
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we have one and only one subgroup of this order. This
completes the proof. []

We note again that the subgroup of order g of the finite cyclic
group <4> of order r can be displayed as in (13). There is
another characterization of this subgroup which is often
useful, namely:

COROLLARY. If €42 has order r < w, then the subgroup H
of order q|r is the set of elements b € <82 such that b = 1.

Proof. Any element of H has the form d" where s = r/q.
Then (@*)9 = a* = 1. Conversely, let b = " satisfy b7 = 1.
Then @”? = 1 and hence mgq = kr. Then m = ks so b = (a*)* e
H.

After cyclic groups the next simplest type of groups are the
finitely generated abelian ones, (that is, abelian groups with a
finite number of generators). These include the finite abelian
groups. We shall determine the structure of this class of
groups in Chapter 3, obtaining a complete classification by
means of numerical invariants. Independently of the structure
theory, we shall now derive a criterion for a finite abelian
group to be cyclic. This result will be needed to prove an
important theorem on fields (Theorem 2.18, p. 128) To state
our criterion we require the concept of the exponent, exp G,
of a finite group G, which we define to be the smallest
positive integer e such that x° = 1 for all x ? G. For example,
exp 83 = 6 =|S3|. The result we wish to prove is

THEOREM 1.4. Let G be a finite abelian group. Then G is
cyclic if and only if exp G = |G].
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The proof will be based on two lemmas that are of
independent interest.

LEMMA 1. Let g and h be elements of an abelian group G
having finite relatively prime orders m and n respectively
(that is, (m, n) = 1). Then o(gh) = mn.

Proof. Suppose (gh) = 1. Thenk =g =h" e <@ N <k,
Then o(k)|m and o(k)|n and hence o(k) = 1. Thus (gh) =1 =>
g =1="1" Then m|r and n|r and hence mn = [m, n] |r. On the
other hand, (gh)"™" = ¢""h""" = 1. Hence o(gh) = mn. [

LEMMA 2. Let G be a finite abelian group, g an element of
G of maximal order. Then exp G = o(g).

Proof. We have to show that #°® =1 for every h ? G. Write
olg) = p" o p" olh) = p, /0 P:'r', where the p; are distinct
primes and e; > 0, f; > 0. If n0® # 1, then some f; > e; and we
may assume f; > el. Put g = g"'€l, K =h*" *" Then
ol@)=p:"" P and o(h) = p/!. Hence, by Lemma I,
olg'h’) = p\"'p" *=* p," > olg) | This contradicts the maximality

of o(g). [
We can now give the

Proof of Theorem 1.4. First suppose G = €{g7. Then |G| = o(g)
and hence exp G = |G|. Conversely, let G be any finite abelian
group such that exp G = |G|. By Lemma 2 we have an element
g such that exp G = o(g). Then |G| = o(g) = |<g?|. Hence G =
{g». O

EXERCISES
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1. As in section 1.4, let C(4) denote the centralizer of the
subset 4 of a monoid M (or a group G). Note that C(C(4)) o
A and if 4 < B then C(4) > C(B). Show that these imply that
C(C(C(A4))) = C(A). Without using the explicit form of the
elements of ¢4? show that C(4) = C(%4?). (Hint: Note that if ¢
€ C(A) then 4 < C(c) and hence ‘4> < C(c).) Use the last
result to show that if a monoid (or a group) is generated by a
set of elements 4 which pair-wise commute, then the monoid
(group) is commutative.

2. Let M be a monoid generated by a set S and suppose every
element of S is invertible. Show that M is a group.

3. Let G be an abelian group with a finite set of generators
which is periodic in the sense that all of its elements have
finite order. Show that G is finite.

4. Show that if g is an element of a group and o(g) = n then
gk, k # 0, has order [n, k]/k = n/(n, k). Show that the number
of generators of {g7 is the number of positive integers < n
which are relatively prime to n. This number is denoted as
¢(n) and o is called the Euler -function.

5. Show that any finitely generated subgroup of the additive
group of rationals (@, +, 0) is cyclic. Use this to prove that
this group is not isomorphic to the direct product of two
copies of it.

6. Let a, b be as in Lemma 1. Show that €@» N <b> = 1 and
{a b) = {ab),

7. Show that if o(a) = n = rs, where (r, s) = 1, then
@y =B x () \where o(b) = r and o(c) = 5. Hence prove that
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any finite cyclic group is isomorphic to a direct product of
cyclic groups of prime power orders.

1.6 CYCLE DECOMPOSITION OF PERMUTATIONS

A permutation y of {1, 2, ..., n} which permutes a sequence
of elements iy, 12, ..., i, ¥ > 1, cyclically in the sense that

“4} T"i} = Iy, Tﬁz} e PPN .},(ir— =i, i) =i,

and fixes (that is, leaves unchanged) the other numbers in {1,
2, ...,n} 1s called a cycle or an r-cycle. We denote this as

(15) =0y~ 1)
It is clear that we can equally well write
Y= igiz - i) = (I3iy - -+ Biyip), ete,

The permutation y2 maps i1 into i3, i2 into i4,..., iy into i2 etc.,
and, in general, for 1 <k <r,

(16) Mip=ip il j+k<r
'j'lﬁj}=l.j+t_, if j+k:=-r_

Clearly this shows that yk =1 but yk #1if 1 <k <r. Hencey
is of order 7.

Two cycles y and y’ are said to be disjoint if their symbols
contain no common letters. In this case it is clear that any
number moved by one of these transformations is fixed by the
other. Hence if i is any number such that y(i) # i then yy'(i) =
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v(i), and since also 72(1') Z# v(D), y'y(@) = y(i). Similarly, if y'(7)
# i then y'y(i) = y'(i) = yy'(i). Also if y(i) = i = y'(i) then yy'(7)
= v'y(i). Thus yy" = 7'y, that is, any two disjoint cycles
commute. Let a be a product of disjoint cycles, that is,

“ﬂ X =“1i:: Al “r}Uth iy ,r',!' o ”|"2 o fu]-

Let m be the least common multiple of 7, s,... ,u. Then we
claim that m is the order of a. Putting yi1= (i1 ... ir), Y2 = (i1
e Js)seen Yk = (11 ... L) we have o/ =y1"y2" ...y =1.On
the other hand, a permutes i1, ..., i and so do its powers and
the restriction of o to {i1, ..., ir} is y;. Hence if o’ = 1 then
i =

1 and so 7 is divisible by 7. Similarly, # is divisible by s,..., u
and so 7 is divisible by the least common multiple of 7.s,... ,u.
Hence the least common multiple of these numbers is the
order of a.

It is convenient to extend the definition of cycles and the
cycle notation to 1- cycles where we adopt the convention
that for any 7, (7) is the identity mapping. With this convention
we can see that every permutation is a product of disjoint
cycles. For example, if

_(I2345ﬁ?8
"\ 5 54 8271

then

2(1)=3,a2(3) = 5,a(5) = 8, 2(8) = 1, a(2) = 6, 2(6) = 2: a(d) = 4, 2(7) = 7

from which one deduces that
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o = (THAN26)(1358).

In general, for any o we can begin with any number in 1,
2,..., n, say ij, and form a(i1) = i2, a(i2) = i3,..., until we
reach a number that occurs previously in this list. The first
such reIpetition occurs when iy + 1 = a(iy) = i1; for, we have i
= o~ (i1) and if ix = i1 for [ > k then al_k(zd) = i]. Thus the
sequence ij, i2, ... ,ir is permuted cyclically by a. If » < n we
choose a j; not in {i1, i2, ..., ir}. If d"(j1) = &’"(i1) then j; =
of ™) e {i1, i2, ..., ir} contrary to our choice of j;. Hence
we obtain a new sequence of numbers j1, j2,... ,js permuted
cyclically by a and having no elements in common with the
first. Continuing in this way we ultimately exhaust the set {1,
2,..., n}. It is clear, on comparing the images of any i under
the two maps aand (/7 ... I) a (i ... i) that

a=(ly ) iy i)

a product of disjoint cycles. The different cycles occurring in
such a factorization commute and we may add or drop trivial
one-cycles. Apart from order of the factors and inclusion or
omission of 1-cycles this factorization is unique. For, if we
have one which is essentially different from the one displayed
above (or 17)), then for some i, j, i # j, which occur in the
order i followed by j in one of the cycles in (17), we have that
this is not the case in the other one. The first factorization
then shows that a(i) = j and the second that a(i) # j. This
contradiction proves our assertion.

A cycle of the form (ab) is called a transposition. It is easy to
verify that
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(18) (yiy =~ - i) = (ighy) *  * (igisWiyi)

a product of » — 1 transpositions. It follows that any a € Sy, is
a product of transpositions. In fact, if a factors as a product of
disjoint cycles as in (17), then a is a product of (r — 1) + (s —
1) + ... + (u — 1) transpositions. We denote this number,
which is uniquely determined by a, as N(a). It is clear that
N(1) = 0. There is no uniqueness of factorization of a
permutation as a product of transpositions. For example, we
have (123) = (13)(12) = (12)(23) = (23)(13). However, as we
shall now show, there is one common feature of all the
factorizations of a given a as a product of transpositions. The
number of factors occurring all have the same parity: that is,
their number is either always even or always odd. Our proof
of this fact will be based on a simple formula, which is
anyhow worth noting:

(19) (abac, - - cybd, ---dy) = (bd, * - d)ac, - - - ¢,).

Here we are allowing / or k to be 0, meaning thereby that no
c’s or no d’s occur. Comparing images of any i in {1, 2,..., n}
shows that (19) holds. Since (ab) ~ = (ab) multiplying both
sides of (19) on the left by (ab) gives:

{20] {ﬂh]{hd1 e dt]{ﬂf| Nl f*_l —_— {ﬂl’-“ S l.""h‘dj iy dl.]'

If N is defined as above, we have N((aci ... chbd] ... di)) =h
+ k+ 1 and N((bd1 ... di)(aci ... ch)) = h + k. It follows that
N((ab)(a)) = N(a) — 1 if @ and b occur in the same cycle in the
decomposition of a into disjoint cycles and N((ab)a) = N(a) +
1 if @ and b occur in different cycles. Hence if a is a product
of m transpositions then, since N(1) = 0, Nz} = 201 8 where
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€i =1. Changing an ?i = — 1 to 1 amounts to adding 2 to the
sum and so does not change the parity. If we make this
change for every €i =— 1 the final sum we obtain is m. Hence
m and N(a)) have the same parity. Hence the number of factors
in any two factorizations of a as a product of transpositions
have the same parity, namely, the parity of NM(a).

We call a even or odd according as a factors as a product of
an even or an odd number of transpositions (equivalently:
N(a) is even or odd.) We define the sign of a, sg a, by

(21) sg o= 11f & is even, sgax= —11ifxis odd

Thensg1=1and ifa= (ab) ... (kI), f=(pq) ... (uv), aff =
(ab) ... (kD(pq) ... (uv). Hence of is even if and only if both
a and B are even or both are odd while off is odd if one of the
factors is even and the other is odd. It follows that

(22) sg aff = (sg a)sg ).

It is clear also that the subset 4, of even permutations is a
subgroup of Sy,.

This is called the alternating group (of degree n). Suppose we
list its elements as

ﬂlv al! # "1|x.|'

Then if n > 2 we have m different odd permutations

oy (ab), aylab), . . ., a,lab)
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and this catches them all, since if B is odd B(ab) is even so
B(ab) = a; for some i and B = aj(ab). Hence |Sy| = 2m = 2|4,
and so |[Ap| =n!/2 ifn>2.

EXERCISES

1. Write (456)(567)(671)(123)(234)(345) as a product of
disjoint cycles.

2. Show that if n > 3 then is generated by the 3-cycles (abc).

3. Determine the sign of the permutation
1 2 =+ n—1 n
n =1 --- 2 1)

4. Show that if a is any permutation then

xliyiy - - - i) Y = (=i, Dxliy) - - - ali ).

5. Show that Sy is generated by the n — 1 transpositions (12),
(13),..., (In) and also by the n — 1 transpositions (12),
(23),..., (n — 1n).

1.7 ORBITS. COSETS OF A SUBGROUP

Let G be a group of transformations of a set S. Then G defines
an equivalence relation on S by the rule that x ~ g y (read: x is
G-equivalent to y) if y = a(x) for some a € G. That this
relation is reflexive, symmetric, and transitive is immediate
from the definition of a transformation group: x = 15(x), also
if y = a(x) then x = a_l(y), and if y = a(x) and z = () then z =
(foa)(x). Moreover, 15 € G and o ! and Ba € G, ifaand p €
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G. The G-equivalence class determined by an element x is the
set Gx = {a(x)|a € G} and this is called the G-orbit of x € S.
For example, if G is the group of rotations about the origin in
a plane, then the orbit of a point P is the circle through P with
center at the origin. As with any equivalence relation, the set
of orbits constitute a partition of the set S. It may happen that
there is just one orbit, that is, § = Gx for some x (and hence
for every x). In this case we say that G is a transitive group of
transformations

of the set S. It is clear that Sy, is transitive on {1, 2, ... ,n}. The
reader will have no difficulty showing that this is true also of
the alternating group A4, if n > 3. On the other hand, if o € Sy
and a = (i1 ... i»)(1 ... Js) ... (I1 ... I) the factorization of a
into disjoint cycles, where we have included the 1-cycles, and
every letter in {1, 2,..., n} appears once and only once among
1y eous 01y «ovs Jssees L1, ., Ly, then the sets

fieeersi) {yseeos ! 3 T—-— ' L)

are the orbits in {1, 2,..., n} determined by the cyclic
subgroup €@ of S,. Observe that this gives another
interpretation of the number N(a) which we used in section

1.6, namely, N =L (k= 1) where k runs over the cardinal
numbers of the orbits determined by (.

Now let G be any group and let H be a subgroup of G. We
recall that we have the transformation groups G of left
translations g7 (x — gx) and GR of right translations gr both
acting in G. Since y = gx and y = xg are solvable for g for any
given y and x it is clear that Gz and GR are transitive groups.
Now let H7(G) denote the subset of G, of maps /7, (in G) for
h ? H. Since H is a subgroup of G and g — gz is an
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isomorphism, H7(G) is a subgroup of Gz and hence H7(G) is
a transformation group of the set G. What are the orbits in the
set G determined by H7(G)? If x ? G then it is clear that its
Hi(G)-orbit is

(23) Hx = {hx|he H}.

In the group theory literature this is sometimes called the left
coset of x relative to the subgroup H and sometimes the right
coset of x relative to H. The majority opinion seems to favor
the second terminology. Accordingly, we shall adopt it here
and call Hx the right coset of x relative to H. We have the
partition G = sea Hx Moreover, any two right cosets Hx and
Hy have the same cardinality since the map (x_ly)R:z —
z(x_] ») 1s bijective from Hx to Hy. Since H = H1 is one of the
right cosets we have |Hx| = |H|.

In particular, suppose G is a finite group and |G| = n and |H| =
m. We have the partition

(24) G=Hx, uHx,u- vy Hx,
where we have displayed the distinct cosets, so Hx; N Hxj = O
if i # j. We call the number r of these cosets the index of H in
G and denote this as [G:H]. Since |Hx;| = m, we have by (24)
that n = mr. This proves a fundamental theorem which is due
to Lagrange:

THEOREM 1.5. The order of a subgroup H of a finite
group G is a factor of
the order of G. More precisely, we have
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G| = |H|[G:H].

We also have the following

COROLLARY. If G is a finite group of order n, then X" = 1
foreveryx ? G.

Proof. Let m be the order of <*¥>. Then x” =1 and n = mr, so
=1 O

The results on right cosets have their counterparts for left
cosets. These are the orbits in G determined by the
transformation group HR(G). The orbit of x in this case is xH
= {xh|h € H} and this is called the left coset of X relatlve to H.
If Hx is a right coset the set of i 1nverses (hx) =x'h ! of the
elements of Hx is the left coset x H. It is immediate that the
map Hx — x 'Hisa bijective map of the set of right cosets
onto the set of left cosets. It follows that these two sets (of left
and right cosets) have the same cardinal number. As in the
case of finite groups, we call this the index of H in G and
denote it as [G :H]

EXERCISES
1. Determine the cosets of €& in where a = (1234).

2. Show that if G is finite and H and K are subgroups such
that H © K then [G:K] = [G:H][HK].

3. Let H; and H2 be subgroups of G. Show that any right

coset relative to A1 N H> is the intersection of a right coset of
H; with a right coset of H>. Use this to prove Poincaré’s

110



Theorem that if H; and H> have finite index in G then so has
H; N Ho.

4. Let G be a finitely generated group, H a subgroup of finite
index. Show that H is finitely generated.

5. Let H and K be two subgroups of a group G. Show that the
set of maps x — hxk, h € H, k € K is a group of
transformations of the set G. Show that the orbit of x relative
to this group is the set HxK = {hxklh € H, k € K}. This is
called the double coset of x relative to the pair (H, K). Show
that if G is finite then |[HxK| = |H|[K:x ' Hx N K] = K| [H:
xkx ' n A

6. Let H be a subgroup of the finite group G. Show that there
exists a subset {zj, ..., zy/ of G which is simultaneously a set
of representatives of the left and of the right cosets of H in G,
that is, G is a disjoint union of the z;H and also of the Hz; 1 <i
< r. (Hint: For any g € G, write HaH = | J{ xgH_ where the x; €
H

and xjgH N x)gH = O if j # k. Note that the number of right
cosets of H contained in HgH is s and write HgH = Ui Hay;
where y; ? H. Put Z; = xjgyj and show that
HgH =) z;H = | | Hz;)

1.8 CONGRUENCES. QUOTIENT MONOIDS AND
GROUPS

In elementary number theory two integers a and b are defined
to be congruent modulo the integer m and this is denoted as a
= b (mod m) if a — b is a multiple of m:a — b = km, k € E.°
The relation between a and b thus defined for fixed m is an
equivalence relation; for, we have a = a (mod m) since a —a =
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0 = 0m, a = b (mod m) implies b = a (mod m) since a — b =
km implies b — a = (— k)m and a = b (mod m) and b = ¢ (mod
m) imply a = ¢ (mod m) since a — b = km and b — ¢ = Im imply
a — ¢ = (k + D)m. In the additive group (Z, +, 0) congruences
mod m can be added, that is, if @ = a (mod m) and b = b(mod
m) then a + b = a + b (mod m). This follows since a — a’' =
km, b—b=1Imimply a + b — (a + b') = (k + )m. Also in the
monoid (£, -, 1) congruences mod m can be multiplied: a = a'
(mod m), b =>b" (mod m) imply ab = a'b’ (mod m), since a = a’
+ km, b = b" + Im imply ab = a'b’ + (a'l + b'k + kim)m.
Congruences mod m in (£, +, 0) and in (Z, -, 1) are examples
of a general notion which we shall now define.

DEFINITION 14. Let (M, -, 1) be a monoid. A congruence
(or congruence relation) = in M is an equivalence relation in
M such that for any a, a', b, b" such that a = a' and b = b' one
has ab = a'b’. (In other words, congruences are equivalence
relations which can be multiplied.)

Let = be a congruence in the monoid M and consider the
quotient set M = M/ = of M relative to =. We recall that M is
the subset of the power set #(M) consisting of the equivalence

classes A = {b € M\b = a}. For example, in (Z, +, 0) if we
define = (mod m) as above, then @ = {a + km|k € Z}. Since
congruences can be multiplied it is clear in the general case
that, lfﬂ =g and h = E H'IEII rI_IE = &‘F' Hence

(d, b) — ab

is a well-defined map of M x M into M; that is, this is a binary
composition on M. We denote this again as -, and we shall
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now show that (M, -, .f) is a monoid. We note first that
(ah) = albé)_ since the left-hand side is @b¢ = (able and the
right-hand side is dbc = afbe), Hence (@b = albé) follows from
the associative law in M. Also 1 = al =dandTa=Ta=dso |
is a unit. The monoid (M, -, ‘f) is called the quotient monoid
of M relative to the congruence =.

In the special case M = (£, +, 0) in which = is = (mod m)
where m > 0, any a € Z can be written as a = gm + r where 0
< r < m, which means that a = r (mod m). If r; and > both
satisfy 0 < r; < m then r1 = r2 (mod m) implies that »1 = 2.
Hence in this case the quotient monoid, which we shall
denote as #/Zm (a special case of a general notation that will
be introduced below), consists of m elements:

m—l={m=1lm=1+mm—1+2m,...}.

In the multiplicative case of M = (Z, -, 1) we also have this
same set of elements as the underlying set for the monoid (Z/

Zm, -, .f)

We can say a good deal more if M = G is a group and = is a
congruence on G. In the first place, in this case the quotient
monoid (G.*. 1) is a group since da ' =1=a""a Hence every
a is invertible and its inverse is @ '. Next we can determine
all congruences on a group—or, more precisely, we can

reduce the problem of determining the congruences to that of
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determining certain kinds of subgroups of the given group
which we specify in the following

DEFINITION 1.5. A4 subgroup K of a group G is said to be
normal (sometimes called invariant, and in the older
literature, self-conjugate) if

g 'kge K

foreveryg e Gand k ? K.

We have the following fundamental connection between
congruences on a group G and normal subgroups of G.

THEOREM 1.6. Let G be a group and = a congruence on
G. Then the congruence class K = I of the unit is a normal
subgroup of G and for any g ? G, 8 = Kg = gK, the right or
the left coset of g relative to K. Conversely let K be any
normal subgroup of G, then = defined by:

a=bmodK) if a'bekK

is a congruence relation in G whose associated congruence
classes are the left (or righta) cosets gK.

Proof. Suppose first that we have a congruence = on G and
let K = 1. If ki, ko € K, then kikx e K since
kik; =Kk;=T1=1 Also 1 € K and k1" e K since, as we
showed above, ki ' =k; ' =T7'=T. Hence K is a subgroup
of G. Next let g be any element of G and consider the
congruence class #. If a € # then g_la and ag_1 € K since

g la=g 'a=g'g=T1=K and, similarly. ag! ? K. It
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follows that a ? Kg and a ? gK. Conversely, let a ? Kg. Then
a=kg ke K, and d=kj=Td=4d so a = g. The same thing
holds if a ? gK. Thus

(23) g=gK=Kg, geG.

It follows that K is normal in the sense of the foregoing
definition. This can be seen directly, or better still, it can be
seen by observing that gK = Kg for all g and a subgroup K is
equivalent to normality. If this holds, then for any g ? G and
any k ? K, kg ? gK, so kg has the form gk, k' € K. Then gﬁl kg
€ K, so K is normal. On the other hand, if K is normal, a
reversal of the steps shows that kg € gK for k 7 K, g 7 G.
Hence Kg ? gK. Replacing g by g_1 in the definition of
normality, we obtain Kg_] ? g_]K, which implies that gK —
Kg. Hence Kg = gK for every gin G.

Conversely, let K be a normal subgroup of G and define a = b
(mod K) to mean a b ? K. This is equivalent to saying that b
? aK, or that b is in the orbit of a relative to the
transformation group Kr(G). We showed in the last section
that the relation we are considering is an equivalence relation
in G for any subgroup K of G. We now proceed to show that
normality of K insures that equivalences can be multiplied
and hence that ¢ = b (mod K) is a congruence. Thus let a = g
(mod K) and b = h (mod K). Then a = gkj, b = hk2, ki ? K,
and since Kh = hK, kih = hk3, k3 ? K. Then ab = gkihk2 =
ghksk2 so ab = gh (mod K). Thus = (mod K) is a congruence
relation in G. For this congruence we have 1= {k|1_1k e K}
=K and forany g, § = {a|g_1a € K} = gK. This completes our
verification. [J
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We shall now write G/K for & = G/= (mod K) and call this the
factor group (or quotient group) of G relative to the normal
subgroup K. By definition, the product in G/K is

(26) (gK)hK) = ghK,

K = 1K is the unit, and the inverse of gK is gﬁIK.

Every group #1 has two normal subgroups: G and 1. G is
called simple if these are its only normal subgroups.
Equivalently, G is simple if the only congruences on G are the
two trivial ones: =, and the one in which any two elements are
equivalent. It is clear from the definition that any subgroup of
an abelian group is normal. It follows easily that the only
simple abelian groups are the cyclic groups of prime order. It
is left to the reader to prove this. We remark also that if C is
the center of G then every subgroup of C is normal in G.

There is another way of looking at factor groups in terms of
multiplication of subsets of a group. If 4 and B are subsets of
a group G (similarly of a monoid) one defines

AB = {ablae A,b e B}.

With this definition of product and 1 = {1}, the set of
non-vacuous subsets of G is a monoid, since (4B8)C is the set
of elements (ab)c and A(BC) is the set of elements a(bc), a €
A, b € B, ¢ € C. Hence, associativity follows from the
associative law in G. Also /4 = A4 = Al. It is clear that a
subset H of G is a subgroup if and only if: (1) H? H,(2) 1€
H,3)H "= {h"'|h e H} = H,and (1) and (2) together imply
that B2 = H. Tt is clear also that the coset Hg (respectively

116



gH) is the product of H and {g} (of {g} and H). A subgroup K
is normal if and only if any of the following equivalent
conditions hold: g_]Kg c K, Kg = gk, g_IKg =K forallg?
G. In this case, the product for sets as just defined gives
(gK)(hK) = g(Kh)K = g(hK)K = gth = ghK. Thus the product
in G/K as defined by (26) coincides with the set product of gk
and /K.

EXERCISES

1. Determine addition tables for (£/Z3, + ) and (£/£6, + ).
Determine all the subgroups of (£/Z6, +).

2. Determine a multiplication table for (£/£6, -).

3. Let G be the group of pairs of real numbers (a, b) a # 0,
with the product (a, b)(c, d) = (ac, ad + b) (exercise 4, p. 36).
Verify that K = {(1, b)|b € R} is a normal subgroup of G.
Show that G/K = (F* - 1) the multiplicative group of
nonzero reals.

4. Show that any subgroup of index two is normal. Hence
prove that Ay is normal in Sj,.

5. Verify that the intersection of any set of normal subgroups
of a group is a normal subgroup. Show that if H and K are
normal subgroups, then HK is a normal subgroup.

6. Let G1 and G2 be simple groups. Show that every normal

subgroup of G = G1 x G2, # G, # 1 is isomorphic to cither Gy
or (2.
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7. Let = be an equivalence relation on a monoid M. Show that
= is a congruence if and only if the subset of M % M defining
= (p. 10) is a submonoid of M x M.

8. Let {=;} be a set of congruences on M. Define the
intersection as the intersection of the corresponding subsets of
M x M. Verify that this is a congruence on M.

9. Let G1 and G2 be subgroups of a group G and let a be the
map of G; x G2 into G defined by =(g1, g2) = g1g2. Show that
the fiber over g1g>—that is, ofl(gl 22)—is the set of pairs (gjk,
! g2) where k ? K = Gj N G2. Hence show that all fibers
have the same cardinality, namely, that of K. Use this to show
that if G; and G2 are finite than

Gyl |G
IG,G,| = I ‘“ ?l. .
|G, n G,
10. Let G be a finite group, 4 and B non-vacuous subsets of
G. Show that G=AB if [A| + |B| > |G].

11. Let G be a group of order 2k where k is odd. Show that G
contains a subgroup of index 2. (Hint: Consider the
permutation group G, of left translations and use exercise 13,
p. 36.)

1.9 HOMOMORPHISMS

In dealing with mathematical structures such as monoids,
groups, vector spaces, topological spaces, etc., it is important
to specify the types of maps which in some sense are natural
in the particular context. For vector spaces these are the linear
maps, and for topological spaces they are the continuous
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ones. Nearly all the interesting results in linear algebra
concern linear transformations, or equivalently, matrices. In
fact, there is not much one can say about vector spaces that
does not involve explicitly the notion of a linear
transformation or matrix.® The natural maps for monoids (and
for groups) are called homomorphisms. These are obtained
simply by dropping the requirement of bijectivity in the
definition of an isomorphism. The concept of homomorphism
was a rather late bloomer in the theory of groups, and it
became an important tool for the study of groups only
comparatively recently—during the past forty or fifty years.
The concept is applicable to all types of algebraic structures.
In the case of monoids we can state the definition formally as
follows:

DEFINITION 1.6. If M and M' are monoids, then a map n
of M into M' is
called a homomorphism if

nlab) = nlamib), n(l)=1, abeM.

If M’ is a group the second condltlon is s ?erﬂuous For, if
the first holds we have n(1) = n(1 ) = n(1)” and multiplying
by n(l) we obtain 1’ = n(1). We have already encountered
several instances of homomorphisms which may not be
isomorphisms. One of these is the map

Han—a'

of the additive group of integers into any group G, determined
by a fixed element a ? G. Since 5q(n + m) =da" "™ = d"a" =
Na(m)na(m), this is a homomorphism of (Z, +, 0) into G.

Another example we had is the map
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o — 8 o

of the symmetric group S, into the multiplicative group
{1,—1}. That this is a homomorphism is clear from (22). Some
additional examples of homomorphisms (and of one fake) are
given in the following list.

EXAMPLES

1. Let M and M’ be monoids and map every a ? M into the
unit 1’ of M'. This is a homomorphism of M into M'.

2. Let M be the multiplicative monoid of integers: M = (Z, -,
1). Map every a ? M into 0. This satisfies n(ab) = n(a)n(b)
but it is not a homomorphism since 1 — 0 (£ 1).

3.Let G=(®, +, 0), G’ = (C*, -, 1) the multiplicative group of
non-zero complex numbers. Let 7.0 — % This is a
homomorphism of G into G'.

4. Let G be the group of pairs (a, b), a # 0, given in exercise
4, p. 36, and map G into G’ = (R*, -, 1) by (a, b) — a. This is
a homomorphism.

5. Let G be a transformation group of a set S and let 7 be a
subset of § which is stabilized by G in the sense that o(7) = T
for every a € G. Let a| T be the restriction of a to 7. Then a
— o | T is a homomorphism of G into Sym 7. This is called
the restriction homomorphism.

We emphasize that—as in the foregoing examples—a

homomorphism # need not be surjective or injective. If, by
chance, 7 is surjective then we call it an epimorphism, and if
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it is injective then we call it a monomorphism. Of course, if it
is bijective, then # is an isomorphism.

If # is a homomorphism of the monoid M into the monoid A’
then induction shows that for any a ? M and k € M, n(ak) =
n(a)k. If a is invertible, application of ytoaa " =1=a "a
gives n(a)n(a_l) =1'= n(a_l)n(a). Hence a'= n(a)

is invertible in M’ and n(a ') = (a)"". 1t then follows that
n(ak) = n(a)k for all £ € Z. Another useful result which we
have to refer to frequently enough to warrant stating as a
theorem is

THEOREM 1.7. Let n and { be homomorphisms of a
monoid M (or group G) into a monoid M' and let S be a set of
generators for M (for the group G). Suppose y(s) = {(s) for all
s ?S. Thenn=C_.

Proof. We consider first the case of monoids and let

M, = {ae M|n(a) = {(a)}.

Then 1 € M1 since (1) =1"={(1) and M1 o S. Also ifa, b ?
M7 then ab ? M| since n(ab) = n(a)n(b) = {(a)((b) = {(ab).
Thus M1 is a submonoid, and since it contains a set of
generators, M; = M. Hence n(a) = {(a) for all a, and so n = (.
The proof is similar in the case of a group G. In this case the
argument shows that the subset G; = {a ? G| n(a) = {(a)} is a
submonoid. But if a € G, then (@) = na)™ = ¢a) ! =
C(a_l). Hence a ' € G; and G| is a subgroup. Then G; = G
since G1 contains a set of generators of G (as a group). [
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A homomorphism of M into itself is called an endomorphism
and an isomorphism of M to M is called an automorphism of
M. The identity map is an automorphism. Theorem 1.7
applied to any endomorphism # and to { = 1 shows that if 7 is
an endomorphism of a monoid or a group and # is the identity
map on a set of generators then # = 1. We remark also that if
n is an endomorphism, then the set of fixed elements under #
(n(a) = a) is a submonoid if M is a monoid and a subgroup if
M = G is a group. This is clear from the proof of Theorem
1.7.

Let M — M' and (: M' — M" be homomorphisms of
monoids. Then for a, b ? M,
a, b e M, (nlab) = {(n{ab)) = {(n(an(b)) = ({nla)inlb)). Also (n(1)
= {(1') = 1", the unit of M". Hence {n :M — M" is a
homomorphism. If ) is bijective then, as we saw before, nfl
is an isomorphism of M’ into M. It is clear that the identity
map is an automorphism. Hence the set, Aut M, of
automorphisms of a monoid is a group of transformations of
the monoid. We call this the group of automorphisms of M.
We remark also that the larger set, End M, of endomorphisms
is a monoid of transformations, the endomorphism monoid of
M.

Let M be a monoid, = a congruence on M and M the quotient

monoid determined by =. Then the natural map v: a — @ (the
congruence class of @) is a homomorphism, since, v(1) = Tis
the unit of M and wab) = ab = ab =

v(a)v(b) by definition of the product in M. We shall now
derive the main result on homomorphisms of monoids and
groups which we state as the
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FUNDAMENTAL THEOREM OF HOMOMORPHISMS
OF MONOIDS AND GROUPS. Let n be a homomorphism
of a monoid M into a monoid M'. Then the image n(M) is a
submonoid of M' and if M is a group, n(M) is a subgroup of
M'. The equivalence relation Ej determined by the map n
(aEyb means n(a) = n(b)) is a congruence in M and we have a
unique homomorphism ' of the quotient monoid M = M/Ej
into M' making

L

M M’

M

commutative. v is an epimorphism and " is a monomorphism.
In the case of groups, I=k-= 77_1 (1') is a normal subgroup
of M, M = M/K, v is a — aK, and " is ak — n(a).

Proof. As happens frequently at the foundational level, the
proof is not much longer than the statement of the theorem
and it amounts merely to a direct verification of the various
assertions. Let n :M — M’ be a homomorphism of monoids.
Then 1" =#(1) € n(M), and n(a)n(b) = n(ab) shows that n(M)
is closed under the product in M'. Hence n(M) is a
submonoid. If M is a group, 7n(a) is invertible with inverse
n(aﬁl), and so 5(M) is a subgroup of M'. Now consider the
equivalence relation Ej, in M. Suppose ajEya2 and biEyb2,
which means that @) =nlaz) and nib,) = nibs)  Then
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mayby) = nia,)nib,) = magmib;) = wlazb,) so a\byEyasb, Thus Ey is
a congruence. Our results on maps of sets (section 0.3) show
that we have a unique induced map " of M = M/E; into M’
such that v =m. We have seen that v is a homomorphism. All
that remains (for the case of monoids) is to show that " is a
homomorphism. We have "(a) = n(a). Then
iab) = ijabh) = niab) = plapib) = fawib) and 1) = nil) = 1,
which is what we needed. We saw in section 0.3 that v is
surjective and " is injective. Hence these are respectively an
epimorphism and monomorphism of M and M. Now suppose
M and M’ are groups. Since Ej is a congruence in the group
M,

we know that the congruence class K of 1 is a normal
subgroup of M and the congruence class of any a is Ka = aK
(section 1.8). By definition, the congruence class of 1 is

K = {ae M|nia) =n(l) =1},

that is, K = ;77] (1"). The rest is clear by Theorem 1.6. [

In the foregoing discussion we have derived the results on
groups as consequences of results on monoids. For the latter
the concepts of congruence and quotient monoid defined by a
congruence are essential. On the other hand, the basic results
on group homomorphisms can also be derived directly
without recourse to congruences. We proceed to do this. This
will help clarify the situation in the most important case of
group homomorphisms.

We start from scratch and consider a homomorphism 7 of a

group G into a group G'. Then it is immediate that the image
im G is a subgroup of G'. Next we consider K = ;171 (1,
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which is analogous to the null space of a linear map of one
vector space into a second one. Direct verification shows that
K is a normal subgroup of G. We call this the kernel of n and
denote it also as ker #. We observe first that # is injective if
and only if ker # = 1; for, if ker # # / then we have b # 1 in G
such that n#(b) = 1' = n(1). On the other hand, if # is not
injective then we have a # b in G with 5(a) = 5n(b). Then a'b
# 1 andn(a@ 'b) =n(a) () = 1, so ker 5 # 1.

Now let L be a normal subgroup of G contained in K. Then
we can form the factor group G = G/L consisting of the cosets
al = La, a € G, with multiplication (aL)(bL) = abL and unit
1= (see the last paragraph on p. 56). This definition shows
that the map v:ia — al is a homomorphism of G onto & =
G/L. Now suppose alL. = bL. Then b =al, | € L, and 5n(b) =
n(@n(l) = n(a)l’ (since L c ker 1) = n(a). Hence we have a
well-defined map ".alL — #n(a) of G/L into G'. Since "
((aL)(bL)) = M(abL) = n(ab) = n(an(b) = M(@L)"(bL), " is a
homomorphism. We call # the homomorphism of G = G/L
induced by n. If a € G then fv(q) = "(al) = n(a). Thus n = fiv,
which means that we have a commutative diagram as on the
preceding page.

Evidently = im 1. What is the kernel of #? By definition,
this is the set of cosets aL such that #(aL) = 1'. Since M(al) =
n(a), the condition is n(a) = 1'. Hence ker " = {al|a € ker n}
= ker #/L (Clearly L is a normal subgroup of K.) Since a
homomorphism is injective if and only if its kernel is 1,  is
injective if and only if L = ker .
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The facts we have listed go beyond those stated in the
“Fundamental Theorem” in the replacement of K = ker # by
any normal subgroup L of G contained

in K. Now suppose K = L and 7 is surjective. Then the
homomorphism % of G = G/K into G' is surjective and
injective, hence an isomorphism. We therefore have the

COROLLARY. If G is a group and n is an epimorphism of
G onto the group G' with kernel K, then the induced map ' :
aK — n(a) is an isomorphism. Thus any homomorphic image
of a group G is isomorphic to a factor group G/K by a normal
subgroup K.

EXERCISES

1. Let G = (L), +, 0), K = Z. Show that G/K = the group of
complex numbers of the form ™’ 0 e © under
multiplication.

2. Let G be the set of triples of integers (k, /, m) and define
(k1, 11, m1)(k2, Io, m2) = (k1 + k2 + [1m2, 11, m1 + m2). Verify
that this defines a group with unit (0, 0,0). Show that C = {{£,
0, 0) | £ € Z} is a normal subgroup and that G/C = the group
7@ - {(l, m) | I, m € Z} with the usual addition as
composition.

3. Show that @ — a ™! is an automorphism of a group G if and
only if G is abelian, and if G is abelian, then ¢ — a" is an
endomorphism for every k € Z.

4. Determine Aut G for (i) G an infinite cyclic group, (ii) a
cyclic group of order six, (iii) for any finite cyclic group.
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5. Determine Aut S3.

6. Let a € G, a group, and define the znner automorphism (or
conjugation) I, to be the map x — axa Vin G. Verify that [,
is an automorphism. Show that a — /; is a homomorphism of
G into Aut G with kernel the center C of G. Hence conclude
that Inn G = {I,Ja € G} is a subgroup of Aut G with Inn G =
G/C. Verify that Inn G is a normal subgroup of Aut G. Aut
G/Inn G is called the group of outer automorphisms.

7. Let G be a group, G the set of left translations arz, a ? G.
Show that G Aut G is a group of transformations of the set G
and that this contains Gr. G Aut G is called the holomorph
of G and is denoted as Hol G. Show that if G is finite, then
|Hol G| = |G| |Aut G|.

8. Let G be a group such that Aut G = 1. Show that G is
abelian and that every element of G satisfies the equation X =
1. Show that if G is finite then |G| = 1 or 2. (Hint: Use the
procedure of finding a base for a vector space to show that G
contains elements a1, a2, ..., ar such that every element of G
can be written in one and only one way in the form a7 a;*?

k, 0, 1. Then show that there exists an automorphism
1nterchang1ng aj and ay.)

9. Let a be an automorphism of a group G which fixes only
the unit of G (a(a) = a => a = 1). Show that a — a(a)a
injective. Hence show that if G is finite, then every element of
G has the form oc(a)a

10. Let G and a be as in 8, G finite, and assume o = 1. Show
that G is abelian of odd order.
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11. Let G be a finite group, a an automorphism of G, and set

={geGlalg)=¢ ']

3 3
Suppose |I| > #|G|. Show that G is abelian. If |I] = #|G|, show
that G has an abelian subgroup of index 2.

1.10 SUBGROUPS OF A HOMOMORPHIC IMAGE.
TWO BASIC ISOMORPHISM THEOREMS

We shall establish a 1-1 correspondence between the set of
subgroups of a homomorphic image G of a group G and the
set of subgroups of G containing the kernel of a given
homomorphism. Since any homomorphic image is
isomorphic to a factor group we may assume & = G/K, K a
normal subgroup of G. Then we have

THEOREM 1.8. Let K be a normal subgroup of G, H a
subgroup of G containing K. Then i = H/K is a subgroup of
G = G/K and the map H —> H is a bijective map of the set of
subgroups of G containing K with the set of subgroups of G.
H(o K) is normal in G if and only if # is normal in G. In this
case,

Sy
-

¢

G
H |

iy
ey
-
-

Proof. The fact that H/K is a subgroup of G/K is clear from
the definition of G/K. Now let H; and H? be two subgroups of
G containing K and suppose H1/K = Hz/K. Then for any /| €
Hi1 mK € Hy/K, so h1K = haK for some h2 € H2. Then h2_1h1
€ K, so h1 = hok, k € K. Since K < H? this shows that /#] €
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H>. Thus H; < H> and, similarly, H> < Hj. Hence H1 = H2,
and we have shown that H — H/K is injective. To see that it
is surjective let f be a subgroup of G, so that f is a collection
of cosets. Let H be the union in G of these cosets. If
hy, hye H. K, h;K e H and hh,K = (h,KWh:K)e B Hence /i
hy € H. Similarly h7 /K= (hK)"' e f,s0 h"! € H. Hence H
is a subgroup of G. Clearly fi = H/K. It is evident that if H is
normal in G, then A is normal in . Conversely, if A is
normal in G, then for any 2 € H, g € G, (g_lhg)K =
(gK) "\ (hK)(gK) = 'K for some /' € H. It follows that g 'hg
€ Hand H is normal in G. If this condition is satisfied we can
form the factor group G/ and

we have the natural homomorphism ¥:d = §H of G with G/H.
We also have the natural homomorphism g — # of G with G.
Hence we have the homomorphism g — # i of G with G/H.
The kernel is the set of g € G such that g € A, that is, the set
of g such that gK = AhK for some # € H. This is just the
subgroup H. Hence, by the fundamental theorem of

homomorphisms, g — @ i is an isomorphism of G/H with
G/H O

It is sometimes useful to state Theorem 1.8 in what appears to
be a slightly more general form, as follows:

THEOREM 1.8'. Let n be an epimorphism of G onto G' and
let A be the set of subgroups H of G containing K = ker 7.
Then the map H — n(H) of A gives a 1-1 correspondence
between the set A and the complete set of subgroups of G'. H
is normal in G if and only if W(H) is normal in G'. In this case

(27) gH — nlg)n(H)
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is an isomorphism of G/H with G'/m(H).

This can either be proved directly in a manner similar to the
proof of Theorem 1.8, or, it can be deduced from Theorem
1.8 via the isomorphism gK — #(g) of G/K with G'. We leave
the details to the reader.

The isomorphism (27) is often called the first isomorphism
theorem for groups. There is also a basic second isomorphism
theorem. This is

THEOREM 1.9. Let H and K be subgroups of G, K normal
in G. Then HK = {hklh ? H, k ? K} is a subgroup of G
containing K, H N K is normal in H and the map

(28) hK — WK ~ H), he H

is an isomorphism of HK/K with H/(K N H).

Proof. Since K is normal we have hK = Kh, h ? H. Since

HK = Usen WK and KH = Uneu Kh  clearly HK = KH. Then
(HK)? = HKHK = H?K® = HK. Also 1 e HK and if hk
HK(h € H, k € K) then (hk) ' = k''h™! e KH = HK. Hence
HK is a subgroup of G. Clearly, HK o 1K = K and K is
normal in HK. We now consider the restriction v' = v|H where
vig — gK. The image of v' is the set of cosets 4K, h ? H.
Since any coset of the form 4kK, h ? H, k ? K, coincides with
hK, it is clear that im v’ is HK/K. The kernel of this
homomorphism is the set of # ? H such that AK = K, the unit
of HK/K. Since hK = K if and only if & ? K, we see that ker V'
= H N K and so this is a normal subgroup
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of H, and by the fundamental theorem of homomorphisms,
h(H N K) — hK is an isomorphism of H/(H N K) with HK/K.
The inverse is hK — h(H N K) as given in (28). [

The proofs of the theorems in this section illustrate the power
of the fundamental theorem. As another illustration of this
and also of the use of the subgroup correspondence of
Theorem 1.8, we shall now give a quick re-derivation of the
results on cyclic groups. Everything will follow from the
determination of the subgroups of (£, +, 0) and their inclusion
relations. Let K be a subgroup #0 of Z. Then if n ? K so does
—n, hence K contains positive integers and consequently K
contains a least positive integer k. Now let n be any element
of K. Then the division algorithm in Z permits us to write n =
gk +rwhere 0 <r<k. Clearly gk ? K and sincen € K, r=n —
gk € K. This forces » = 0, since k is the least positive integer
in K. Thus we see that every element of K is a multiple of k&
and, of course, every multiple of k£ is in K. Hence K = Fk =
{mklm € Z}. Conversely, it is clear that for any k> 0, Zk is a
subgroup. This includes the subgroup 0 as £0. Thus the set of
subgroups of Z are the various sets Zk, k € M. Suppose k, [ €
M and #Z/ o Zk. Then k € Z[ so k= Im and [l\k. The converse is
clear. Hence

(29) Zl > Tk k.

Next we note that if k=0 then #/Zk = Z and if k> 0 then Z/Zk
is just the set of congruence classes modulo the integer &, and
these are

0= 7k, 1= {1+ mk|me Z}, 2={2+ mk|me Z},

coik=1={(k = 1) + mk|me Z}.
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Thus the order of Z/Zk is k. Clearly Z/Zk is cyclic with T as
generator.

Now let G = €42, so that G is a cyclic group with generator a.
Since a™a" = a™ " " we have the epimorphism of (Z, +, 0) into
G sending n — a". Hence G = Z/Zk for some k € M. If k=0,
G = Z and if £ > 0, G is finite of order k. Hence it is clear that
any two cyclic groups of the same order are isomorphic.

We can also determine the subgroups of Z/Zk. If k= 0 we are
dealing with Z and we have the determination which we
made: the subgroups are #/, [ > 0, and Z/ is cyclic with
generator /. If k£ > 0 it follows from Theorem 1.8 that the
subgroups of Z/Zk have the form Z//Zk where [> (0 and Z/ > Z
k. Then l|k, say, k = Im. Now
(Z/ZKAZYZK) = Z/Z1 so |ZUZK| = |Z/ZK|Z/Z) =kl =m It
follows that the cyclic group Z/Zk of order k has one and only
one subgroup of order m for each divisor m of k. Moreover,
this subgroup, Z//Zk, is cyclic with 1 + Zk as generator.

EXERCISES

1. Show that £/ N Zk = Z[], k] and Z/ + Zk = {a + bla € £, b
€ Tk} = Z(L k).

2. Let {Ho} be a collection of subgroups containing the
normal subgroup K. Show that [} (H/K) = ([} HVK

1.11 FREE OBJECTS. GENERATORS AND
RELATIONS
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The method used in the last section of studying cyclic groups
by considering these as a homomorphic images of the
“universal” cyclic group (Z, +, 0) can be generalized to obtain
the structure of finitely generated abelian groups. We shall
carry out this program in Chapter 3. At this point we shall
define these universal finitely generated abelian groups,
called free abelian groups, and consider also their analogues
for commutative monoids, for arbitrary monoids, and for
arbitrary groups.

We construct first for any positive integer » and abelian group
20 with r generators x1, x2, ... X such that if G is any
abelian group and a1, a2, ..., ar are elements of G then there
exists a unique homomorphism of 29 into G sending

xu—=a,l<sisr

Let ) be the r-fold direct power of Z:2") is the set of
r-tuples (n1, n2, ..., ny) of integers ni with addition by
components, (m;) + (n;) = (m;i, + n;) and 0 = (0, 0,..., 0). This
is an abelian group. Put

(30) - M || PR, 010,...,0) I<i<r.
Then (n1, n2,..., ny) = zi "% so the x; generate Z")_ Now let

ai, az, ...,ar be a sequence of r elements of any abelian group
G and consider the map

(31) n:ng, Ny, ... n) = a"a" - a,™.

Since the a; commute, we have
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(@™a;™ - a,"Na,"a," *++ a,*) = a," Mg, ..- g >IN

which implies that # is a homomorphism of 2 into G.
Moreover,

i
":I":xil=fir{ﬁ».----fﬁ- 11”1---qﬂ}=ﬂ|_“"'ﬂ?..lﬂilﬂ?.'.l "'ﬂﬂ=ﬂ-

and, since the x; generate E(r), there is only one
homomorphism of 2t sending x; — ai, 1 < i < r (see
Theorem 1.7). We shall call 2 the free abelian group with r
(free) generators Xxi.

Identical considerations apply to commutative monoids. Let
") be the r-fold direct power of the monoid (4, +, 0). This is
a commutative monoid generated by the » elements x;, as in
(30). Moreover, as in the group case, if ai, a2, ..., ar are
elements of a commutative monoid M, there exists a unique
homomorphism of N into M such that Xi—ai, 1 <i<r. We
call N the free commutative monoid with r (free) generators
Xi.

We shall now drop the requirement of commutativity in these
considerations. We seek to construct first a monoid, then a
group, generated by » elements x; such that if a; are any r
elements of a monoid M (group G), then there exists a unique
homomorphism of the constructed monoid (group) sending x;
—a;, 1 <i<r.

We consider first the monoid case. Put X' = X = {x1, x2, ...,
Xt ¥ =XxXx .. xX jtimes, where j=2, 3, .... Let FS("
denote the disjoint union of the sets X 1, X2, .... The elements
of FS™ are “words in the alphabet X’ that is, they are
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sequences (Xil, X2, ..., Xim), Xij € X, m =1, 2, 3, .... We
introduce a multiplication in F. S(/r ) by juxtaposition, that is,

[32] t.th.. Kigs=nmss X ‘“Ixj,, Kijgp==es -"j;“] = il’;l. veay Xy 'tj;# 2y th]

This is clearly an associative product, but we have no unit.
However, we can adjoin one and call it 1 (see exercise 5, p.
30) to obtain a monoid FM". 1t is clear from (32) that (x;q,
eees Xiyy) = Xi1 ... Xip; hence FMY s generated by the x;. Now
let aj, az, ... , ar be any r elements of any monoid M. Then

since we have a unique way of writing an element #1 of
FM as (x1y, ..., xi),

ni—1, (x; X )=a,a,

is a well defined map of FMD . Tt is clear from (32) that this is
a homomorphism of FM® sending x; — a; 1 <i <r. Since the
X; generate FMY) this is the only homomorphism having this
property. We call FM? the free monoid (freely) generated by
the r elements x; (or the monoid of words in the x;,).

To obtain a construction of a free group we observe first that
the subgroup of a group generated by a subset X coincides
with the submonoid generated by the union of X and the set of
inverses of the elements of X. This suggests forming the set X
w X' where X is the given set {x1, x2, ..., x»} and X is another
set {x1, x2, ..., xr} disjoint to X and in 1-1 correspondence x;
> x; with X. Form the free monoid FM?" generated by X U
X. Now suppose G is a group, and a1, a2, ..., ar 1S a sequence
of elements of G. Then we have a unique homomorphism 7 of
FM®) into G sending x; — ai, x — ai \, 1 <i < r. By the
fundamental theorem of homomorphisms, we obtain a
congruence £y on FM3) by specifying that aE,b means that
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n(a) = n(b). Then xjxiEyl and xix;jEyl. This suggests that we
consider the set /" of all the congruences =y on FM2D

in which x;x; =¢ 1 and xjx; =¢ 1 for 1 < i <r, and form their
intersection =. By definition, a = b means a =yb for every =q.
This is again a congruence (exercises 8, p. 57) and so we can
form the quotient monoid FM?)) = , which we shall denote
as FG"). We observe first that FG") is a group generated by
the congruence classes %; 1 < i < r. This is clear since the
congruence class ¥; has the inverse X”; in F G and FG) is
generated as monoid by the elements ¥; and X’;. Again, let G
be a group, a1, a2, ..., ar a sequence of elements of G. We
have the unique homomorphism 7 of FM@ into G sending x;
— aj, x — afl, 1 <i < r which gives a congruence Ejy on
FM®" such that xjx "iEy 1 and x"ixiEy 1. Then a = b on FM3ED
implies aEyb and hence we obtain a well defined map of

FG") sending the element a into n(a). This is a
homomorphism of F' G\ mapping ¥; — a; 1 <i <r. Since the
X; generate F G") this is the only homomorphism which does
this.

To summarize: given the set X = {x1, ..., x»} we have
obtained a map x; — X; of X into a group F' G") such that if G
is any group and x; — a;i, 1 <i<ris any map of X into G then
we have a unique homomorphism of F G into G, making the
following diagram commutative:
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Y o FG'"

(s

We shall now show that the map x; — X; is injective. We do
this by taking G in the foregoing diagram to be the free
abelian group z generated by the elements (0, ..., 0, 1, 0,

..., 0) and choose the vertical arrow to be the map sending
I

% =+ (0,..., 1,0,....0) Since this is injective, and injectivity of
the composite fa of two maps implies injectivity of a, it
follows that x; — X; is injective. Our last step is to identify x;
with its image X;. We can then say that F G s generated by
the x;. Moreover, if a; € G then we have a unique
homomorphism of FG) into G such that x; — a; 1 <i <r.
We call FG”) the free group (freely) generated by the r
elements x;.|

A group G is said to be finitely generated if it contains a finite
set of generators {aq;| 1 < i < r}. Then we have the
homomorphism 7 of FG") sending xi — a;. Since the a;
generate G, this is an epimorphism and G = F' G™/K where K
is

the kernel of #. The normal subgroup K is called the set of
relations connecting the generators aj. If S 1s a subset of a
group, we can define the normal subgroup generated by S to
be the intersection of all normal subgroups of the group
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containing S. This is a normal subgroup containing S and
contained in every normal subgroup containing S. If S is a
subset of FG") we say that G is defined by the relations S if G
= FG"/K where K is the normal subgroup generated by S. If
S is finite, then we say that G is a finitely presented group.

As an example, we shall now show that the dihedral group Dj,
consisting of the » rotations and the »n reflections mapping a
regular n-gon into itself (example 12, p. 34) is defined by the
relations

(33) x", ¥, xyxy

in the free group generated by x and y. It is clear that Dy is
generated by the rotation R through an angle of 2n/n and the
reflection § in the x-axis. We have the relations

(34) R"=1, §1=1, SRS =R .

Hence Dy, is a homomorphic image of F' G?/K where K is the
normal subgroup generated by the elements (33). We shall
now show that |[FG?)/K| < 2n which will imply that D, =
FGPIK. Let % = xK, ¥ = yK in FG?/K. Then, since x", 7,
and xyxy ? K we have ¥ = 1, 72 = |, 7%i = 1_Then #X = X '§
which implies that ¥ =% ¥ From this we see that the
product of any two of the elements *+ ¥V, k=0, 1, ...,n—1,
is one of these elements. Also, 1 is included in the displayed
set of elements and the set is closed under inverses. Hence it
is a subgroup of F G?/K. Since it contains the generators X
and ¥, FGY/K = (¥ %'9)0 < k < n — 1}. Thus |[FG?/K| < 2n
and Dy, = FG(Z)/K.
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EXERCISES

1. Let S be a subset of a group G such that gfl Sg ? S forany g
? G. Show that the subgroup “*” generated by S is normal. Let
T be any subset of G and let = Usea ¢ 'T0. Show that <% is
the normal subgroup generated by 7.

2. Let G be the group defined by the following relations in
FG®:xax1 = x3xpx2, x3x1 = x1x3, X3%2 = x2x3. Show that G is
isomorphic to the group defined in exercise 2, p. 62

The following three exercises are taken from Burnside’s The
Theory of Groups of Finite Order, 2nd ed., 1911. (Dover
reprint, pp. 464—465.)

3. Using the generators (12), (13), ..., (1n) (see exercise 5, p.
51) for Sn, show that Sy is defined by the following relations
onxz, x, ..., in FG" D

X {-"f-“_ﬂ']- [-‘Cu"j-“r’f|1'11 ik #.
4. Using the generators (12), (23), ..., (n — In) for S, show
that this group is defined by x1, ..., x» — 1 subjected to the

relations:

2 3 R |
X (e ) f = i+ 1.

5. Show that 4, can be defined by the following relations on
X1, X2,y «uy Xn—2:

x4 = Ll ) xx =i+ L

1.12  GROUPS ACTING ON SETS
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Historically, the theory of groups dealt at first only with
transformation groups. The concept of an abstract group was
introduced later in order to focus attention on those properties
of transformation groups that concern the resultant
composition only and do not refer to the set on which the
transformations act. However, in geometry one is interested
primarily in transformation groups, and even in the abstract
theory it often pays to switch back from the abstract point of
view to the concrete one of transformation groups. For one
thing, the use of transformation groups provides a counting
technique that plays an important role in the theory of finite
groups. We have already seen one instance of this in the proof
of Lagrange’s theorem. We shall see other striking examples
of results obtained by counting arguments in this section and
the next.

It is useful to have a vehicle for passing from the abstract
point of view to the concrete one of transformations. This is
provided by the concept of a group acting on a set which we
proceed to define. The idea is a simple one. We begin with an
abstract group G and we are interested in the various
“realizations” of G by groups of transformations. At first one
is tempted to consider only those realizations which are
“faithful” in the sense that they are isomorphisms of G with
groups of transformations. Experience soon shows that it is
preferable to broaden the outlook to encompass also
homomorphisms of G into transformation groups.

We now consider a group G and a homomorphism 7 of G into
Sym S, the group of bijective transformations of a set S.
Writing the transformation corresponding to g 7 G as 7(g),
the conditions on T are:
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1. T(1) =1 (= 15, the identity map of S).

2. T(g1g2) = T(g1)T(g2), gi € G.

The first of these can be omitted if we assume, as we are
doing, that every 7(g) is bijective. On the other hand, if we
retain condition 1, then the hypothesis that 7(g) is bijective is
redundant. For, if 7' is a map of the group G into the monoid
M(S) of transformations of § satisfying both conditions, then
T is a homomorphism of G into M(S). Hence the image of G
is a subgroup of M(S) and so this is contained in Sym S. It is
useful to regard the image 7(g)x of x under the transformation
T(g) corresponding to g as simply a product gx of the element
g € G with the element x 7 S. Thus we obtain a map

(g, x) = gx  (=T(g)x)

of G x S into S. What are its properties? Clearly, conditions 1
and 2 imply respectively:

{1) lx = x, xXe§

{iI} IH.H:}E = Q:iﬂz-ﬂ-

We shall now reverse the order and put the following

DEFINITION 1.7. A4 group G is said to act (or operate) on
the set S if there exists a map (g, x) — gx of G X S into S

satisfying (1) and (i1).

We have seen that a homomorphism 7 of G into M(S) defines
an action of G on S simply by putting

gx = Ti(g)x.

141



Conversely, suppose G acts on S. Then we define 7(g) to be
the map x — gx, x ? S. Then (i) and (ii) imply 1 and 2 so T:g
— T(g) is a homomorphism of G into Sym S.

We shall refer to T as the homomorphism associated with the
action and to 7(G) as the associated transformation group. If
T is a monomorphism then we shall say that G acts effectively
on the set S. Also the kernel of 7 will be called the kernel of
the action. Thus G acts effectively if and only if the kernel of
the action is 1.

EXAMPLES

1. Let S = G, the underlying set of the group G. Define gx for
g ? G and x € § to be the product in G of g and x. Then (1)
and (i1) are clear. This action is called the action of G on itself
by left translations (or left multiplications). This is the action
which was used to prove Cayley’s theorem. The point of the
proof of that theorem was that this action is effective.

2. Next we define an action of G on itself by right
translations. Again we take the set S to be the set G. In order
to avoid confusion with the group product gx we now

denote the action of g € G on x € S by g 0o x and we define
this to be xg_l. Then we have 1 o x =x1 =x and (g7g2) o x =
x(glgz)_1 = xgz_lgf1 = g1 o (g2 o x). Hence we do indeed
have an action of G on itself. We call this action G the action
by right translations. This is effective.

3. Another action of G on itself is the action by conjugations.
This time we denote the action of g € G on x € S (= G) by &x
which we define to be grg . Then 'x = x and 218 =
(2192)x(g122) " = gi(goxg2 g1~ = #(gox). The kernel of
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this action is the set of ¢ such that “x = x for all x. This means
exc™l = x or ex = xc. Hence the kernel is the center C and the
action is effective if and only if the center is trivial (C = 1).

4. If we have an action of G on a set S we have an action of
any subgroup H of G on § by restriction. In particular, we
have the actions of H on G by left and by right translations.

5. Let H be a subgroup and let G/H denote the set of left
cosets xH, x € G. We used this notation previously only when
H was normal in G and G/H denoted the factor group. We
shall call G/H the (left) coset space of G relative to H. If g €
G we take g(xH) to be the set product of {g} with xH, so
g(xH) = gxH. 1t is clear that this defines an action of G on
G/H. The kernel of this action is the set of g such that gxH =
xH for all x € G, which is equivalent to x_lgx € H for all x.
This is equivalent to g € xHx " for all x or 9 Nees xHx™" We
see easily that the right-hand side is the largest normal
subgroup of G contained in H. Hence the action of G on G/H
is effective if and only if A contains no subgroup #1 which is
normal in G.

6. As in 5 we obtain an action of G on the set G\H of right
cosets Hx by g o (Hx) = (Hx)g_1 = ng_l.

7. Suppose we have an action of G on a set S and T is a subset
stabilized by the action in the sense that g7 c T for every g €
G. Then restricting the action to 7 gives an action of G on T.
For example, consider the action of G on itself by
conjugation. If K is a normal subgroup of G then 6K =K, g
G, so we have an action of G on K by restricting the
conjugation action to K.
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8. If G acts on a set S, then we have an induced action on the
power set #(S). Here, if 4 is a non-vacuous subset we define
gA={gx|x € A} and if A = O we put g = Q. Then 14 = 4
and (g122)4 = g1(g24), so we have defined an action of G on
#(S). It is clear that |g4| = |4|. Hence we have induced actions
also on the subsets of S of a fixed cardinality.

There is a natural definition of equivalence of actions of a
fixed group G: we say that two actions of G on § and §'
respectively are equivalent if there exists a bijective map x —
x" of S onto S’ such that

(35) (gxy =gx', yeG, xeSs.

If we denote x — x" by a and the transformations x — gx and
x" — gx' by T(g) and T'(g) respectively, then (35) means the
same thing as

(36) xT(g) = T'(g)a, ge .

In other words, for every g € G we have the commutativity of
the diagram

Fig)

Tig

Since a is bijective (36) can be written also as (36)
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(36) T =aTlig ', geG.

As an example of equivalence we consider the two actions of
G on itself by left and by right translations. Here the map x —

X is an equivalence since (g)c)_1 =x ! g_l =go x L

The equivalence relation on a set S defined by a
transformation group of S carries over to actions. If G acts on
S we define x ~ g y for x, y € S to mean that y = gx for some g
€ G. Evidently this means the same thing as equivalence
relative to the transformation group 7(G), as we defined it
before. As before we obtain a partition of S into orbits, where
the G-orbit of x is Gx = {gx|g € G}. We denote the quotient
set consisting of these orbits by S/G.

If H is a subgroup of G then the H-orbits of the action of H on
G by left (right) translations are the right (left) cosets of H.
Now let G act on itself by conjugations. In this case the orbit
ofx e Gis Ox = {gxg_1 lg € G}. This is called the conjugacy
class of the element x. Of course, we have a partition of G
into the distinct conjugacy classes. It is worth noting that Oy
consists of a single element, Oy = {x}, if and only if x is in the
center. Thus the center is the union of the set of conjugacy
classes which consist of single elements of G.

As an example of a decomposition into conjugacy classes we
consider the problem of determining this decomposition for
Sn. We have noted before (exercise 4, p. 51) that if f € Sy
then Mlislz =+ iDB™" = (Bl Bida), .. . BD. 1t follows that if o is
a product of cycles vy1, 72, ... as in (17) then
Paf™" = (B b~ "WBv2B ") Hence if o = (i1 ... i) ... (I1 ...
ly) then
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(37) Pap = = (B, ..., PG (BUly)y ..y PO

It is convenient to assume that » > s > ... > u and that the
decomposition into disjoint cycles displays every number in
{1, 2, ..., n} once and only once. In this way we can associate
with o a set of positive integers (7, s,... , u) satisfying

(38) r=s=---2u, r+s+--+u=n

We call such a sequence (7, s, ..., u) a partition of n. It is clear
from (37) that two permutations are conjugate if and only if
they determine the same partition. It follows that the
conjugacy classes are in 1-1 correspondence with the
different partitions of n. Hence if p(n) denotes the number of
distinct partitions of n, then there are p(n) conjugacy classes
in Su. The function of positive integers p(n) is an interesting
arithmetic function. Its first few values are

p(2) =2, p(3) =3, p(4) = 5, p(5) =T, p(6) = 11.

If there is just one orbit in the action of a group G on a set S,
that is, if S = Gx for some x € S (and hence for every x € ),
then we say that G acts transitively on S. It is clear that the
actions of G on itself by translations are transitive. More
generally, if H is a subgroup the action of G on the coset
space G/H (set of left cosets) is transitive, since for any xH
and yH we have gxH = yH for g = yx_l. We are now going to
show that in essence these are the only transitive actions of a
group G. To see this we need to introduce the stabilizer, Stab
x, of an element x € S, which we define to be the set of
elements g € G such that gx = x. It is clear that this is a
subgroup of G. For example, in the action of G on G by
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conjugation, Stab x = C(x), the centralizer of x in G Ify=ax
then gy = y is equlvalent to gax = ax and to (a ga)x = x.
Hence Stab x = a (Stab y)a. It follows that if G acts
transitively on S then all stablhzers of elements of S are
conjugate: Stab y = a(Stab x)a

We shall now prove the following result, which gives an
internal characterization of transitive actions.

THEOREM 1.10. Let G act transitively on S and let H =
Stab x for x € S. Then the action of G on S is equivalent to the
action of G on the coset space G/H.

Proof. Consider the map a:g — gx of G into S. This is
surjective since G is transitive on S. Hence we have an
induced bijective map # of the quotient set & of G defined by
a. We recall that G is the set of equivalence classes in G

defined by ¥~ laoda) = ofg)} = {alax = gx} Now ax = gx is
equivalent to g_lax = x, that is, to g_la € Stab x. Hence # is
the coset g(Stab x) of Stab x and so we have the bijective map
#:g(Stab x) — gx. It remains to see that this is an equivalence
of actions. This requires verifying that if g’ € G then g'(g Stab
x) — g'(gx) by &. This is clear since these are respectively

(g'g)Stab x and (g'g)x. [J

From the point of view of finite groups one of the most
important conclusions that can be drawn from the preceding
theorem is that if G is a finite group acting

transitively on a set S then |S| = [G:Stab x] for any x € S. This
shows that |S| is finite and this number is a divisor of |G|.
More generally, we can apply this to any action of a finite
group G on a finite set S. We have the partition
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(39) S=0,u0,vu"v0,

where the O; are the different orbits of elements of S under
the action of G. Then G acts transitively in O; so if x; € O;
then |O;] = [G:Stab x;]. Hence we have the following
enumeration of the elements of S,

(40) S| = ¥ [G:Stab x],

where the summation is taken over a set {xi, x2, ..., xr} of
representatives of the orbits. It is important to take note that
all the terms [G:Stab xi] on the right-hand side are divisors of
|G|. Another useful remark that is applicable to any group is

(41) Stab axa ' = a(Stab x)a '

The proofis clear.

An important special case of (40) is obtained by letting G act
on itself by conjugations. Then (40) specializes to

(42) |Gl =Y [G:C(x)]

where C(x;) is the centralizer of x;, and {x;} is a set of
representatives of the conjugacy classes of G. This formula is
called the class equation of the finite group G. We can modify
the formula slightly by collecting the classes consisting of the
x; such that C(x;) = G. These are just the elements of the
center C of G, and their classes contain a single element.
Hence we have

(42) |Gl = || + ¥ [G:C(y)]
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where y; runs through a set of representatives of the
conjugacy classes which contain more than one element.

The type of counting of elements of a finite group given in
(40) and (42) is an important tool in the study of finite groups.
Some instances of this will be encountered in the next section
when we consider the Sylow theorems. At this point we
illustrate the method by using the class equation to prove

THEOREM 1.11. Any finite group G of prime power order
has a center C# 1.

Proof. The left hand side of (42') is divisible by the prime p
and every term on the right-hand side is a power of p.
Moreover, since C(yj) # G, [G:C(yj)] > 1,

so [G:C(y))] is divisible by p. Then (41") shows that |C] is
divisible by p andso C# 1. [

There is a useful distinction we can make for transitive
actions called primitivity and imprimitivity. This has to do
with the induced action on the power set #(S). We shall say
that a partition n(S) of S is stabilized by the action of G on S if
gA € n(S) for every g € G and 4 € n(S). There are two
partitions which trivially have this property: n1(S) = {S} and
70(S) consisting of the set of subsets {x}, x € S. Now we shall
call the action primitive if m1 and no are the only partitions of
S stabilized by G. We have the partition of S into the orbits
relative to G and this partition is stabilized by G since g4 = 4
for every orbit 4 and every g € G. If the orbits consist of
single points, then G acts trivially in the sense that gx =x, g €
G, x € S; if there is just one orbit then G is transitive. Hence if
we have a non-trivial and intransitive action of G on § then
this action is imprimitive. The interesting situation is that in
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which G acts transitively on a set with more than one element.
In this case we have the following criterion.

THEOREM 1.12. If G acts transitively on a set S with |S| >
1, then G acts primitively if and only if the stabilizer, Stab x,
of any x € S is a maximal subgroup of G, that is, there exists
no subgroup H such that Stab * S H < G,

Proof. We observe first that G acts imprimitively on a set S
if and only if there exists a proper subset 4 of S with |4]| > 2
such that for any g € G either g4 = 4 or g4 N A = Q. If this
condition holds, then for any g1, g2 € G we have either g14 =
g24 or g1A N g24 = Q. Let B be the complement in S of Z.
Then g1B O g24 = O for every g1, g2 € G, which implies that
gB = B for every g € G.It follows that the set of (distinct)
subsets g4, g € G, together with B constitute a non-trivial
partition of S which is stabilized by G. Conversely, suppose G
acts imprimitively on S so that we have a partition n(S) that
contains a proper subset 4 with |4| > 2 such that n(S) is
stabilized by G. Then if g € G eithergd =4 orgd N A = 0.

Now suppose Stab x for some x € S is not maximal, and let H
be a subgroup such that Stab *S$HS G Since we are
assuming that G acts transitively on S, this action is
equivalent to the usual one on the coset space G/Stab x. Since
equivalent actions are either both primitive or both
imprimitive, it suffices to show that the action of G on G/Stab
x is imprimitive. Now consider the set 4 of cosets of the form
h Stab x,h € H. Since Stab * S H S G we have |4| >2 and 4 is
a proper subset of G/Stab x. If 4" € H then h'A is the set of
cosets h'h Stab x, h € H, and so 7’4 = A. On the other hand, if
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g % H, then ghy Stab x # hp Stab x for every hi, hp € H.
Otherwise, we have ghik1 = hak, where h1, h2 € H, ki1,

k2 € Stab x. This implies that g = hokoky 't - H, contrary
to our hypothesis. We now see that g4, which is the set of
cosets of the form gh Stab x, 4 € H, has vacuous intersection
with 4 if g # H. Thus g4 N A = @ in this case. It follows as
above that G acts imprimitively on G/Stab x, hence on S.

Next assume that G is transitive but not primitive on S. Then
we have a subset 4 of S, 4 # S, |A] > 2, such that for any g €
G,eithergd=AorgdNA=0.Letx € Aand let H= {h €
G|lhA = A). Then H is a subgroup of G and H o Stab x since
gx=x=>gANA#+QD=>g4=A4Since 4 # S and G is
transitive on S, there exists a g € G such that gx # 4. Then g4
#Aand g H. Hence G # H. Now let y € A, y # x (existence
clear since |4| > 2). Then we have a g € G such that gx = y.
Then (g4 N A) 2 y and, consequently, g4 = 4 but gx # x. Thus
g € H, % Stab x, and so H # Stab x. Hence Stab x is not a
maximal subgroup of G. This completes the proof. [J

EXERCISES

1. Let y=(12 ... n) in Sy. Show that the conjugacy class of y

in Sy, has cardinality (n — 1)!. Show that the centralizer C(y) =
o,

2. Determine representatives of the conjugacy classes in S5
and the number of elements in each class. Use this
information to prove that the only normal subgroups of S5 are
1, 4s, Ss.
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3. Let the partition associated with a conjugacy class be (1,
n2, ..., ng) where

By Ry, M = My gy P Myigeet =

Show that the number of elements in this conjugacy class is

[TaTT

4. Show that if a finite group G has a subgroup H of index n
then H contains a normal subgroup of G of index a divisor of
n!. (Hint: Consider the action of G on G/H by left
translations.)

5. Let p be the smallest prime dividing the order of a finite
group. Show that any subgroup H of G of index p is normal.

6. Show that every group of order pz, p a prime, is abelian.
Show that up to isomorphism there are only two such groups.

7. Let H be a proper subgroup of a finite group G. Show that
G G ¥ Url@'ﬂ},ﬂ I_

8. Let Gacton S, Hacton 7T, and assume SN T=0. Let U=
Su Tand define forg e G,he H,s € S, t € T, (g, h)s = gs,
(g, h)t = ht. Show that this defines an action of G x H on U.

9. A group H is said to act on a group K by automorphisms if
we have an action of H on K and for every 4 € H the map k
— hk of K is an automorphism. Suppose this is the case and
let G be the product set K x H. Define a binary composition in
K x Hby
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(kyy kg hg) = (ky(hykg), hyhig)

and define 1 = (1, 1)—the units of K and H respectively.
Verify that this defines a group such that # — (1, 4) is a
monomorphism of H into K x H and k — (k, 1) is a
monomorphism of K into K x H whose image is a normal
subgroup. G is called a semi-direct product of K and H. Note
that if H and K are finite then |K x H| = |K||H]|.

10. Let G be a group, H a transformation group acting on a set
S and let G° denote the set of maps of S into G. Then G’ is a
group (the S-direct power of G) if we define (f1/2)(s) =
AAEPE)fi € G,s € S.If h € Hand f € G define hf by
(hf)(s) = f(h_ls). Verify that this defines an action of H on G°
by automorphism. The semi-direct product of H and G’ is

called the (unrestricted) wreath product G [ H of G with H.

11. Let G, H, S be as in exercise 10 and suppose G acts on a
set T. Let (,h)e G IH where [ is a map of S into G. If (1,
h1), (f2, h2) are two such elements, the product in G IH is
(fi(hf2),hh2). If (¢,s)e T x S define (f, h)(t, s) = (f(s)t, hs).
Verify that this defines an action of GlH on 7' x S. Note that
if everything is finite then |G ' H| = |G|S|H] and the degree of
the action, defined to be the cardinality of the set on which

the action takes place, is the product of the degrees of the
actions of H and of G.

12. Let G act on S. Then the action is called k-fold transitive

for k=1, 2, 3,. .., if given any two elements (x1, xr), (1, ...,
Vk) In S® where the x; and the yi are distinct, there exists a g
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€ G such that gx; = y; 1 <i < k. Show that if the action of G is
doubly transitive then it is primitive.

13. Show that if the action of G on S is primitive and effective
then the induced action on S by any normal subgroup H # 1 of
G is transitive.

1.13 SYLOW’S THEOREMS

We have seen that the order of a subgroup of a finite group G
is a factor of |G| and if G is cyclic, there is one and only one
subgroup of order any given divisor of |G|. A natural question
is: If k divides |G] is there always a subgroup of G of order k?
A little experimenting shows that this is not so. For example,
the alternating group 44, whose order is 12, contains no
subgroup of order 6. Moreover, we shall show later (in
Chapter 4) that A, for n > 5 is simple, that

is, contains no normal subgroup #1, 4,. Since any subgroup
of index two is normal, it follows that 4,, n > 5, contains no
subgroup of order n!/4. The main positive result of the type
we are discussing was discovered by Sylow. This states that if
a prime power p" divides the order of a finite group G, then G
contains a subgroup of order pk. Sylow also proved a number
of other important results on the subgroups of order p™ where
p™ is the highest power of p dividing |G|. We shall now
consider these results.

We prove first

SYLOW L. If p is a prime andpk, k>0, divides |G| (assumed
finite), then G contains a subgroup of order p”.
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Proof. We shall prove the result by induction on |G|. It is
clear if |G| = 1, and we may assume it holds for every group
of order <|G|. We first prove a special case of the theorem
(which goes back to Cauchy): if G is finite abelian and p is a
prime divisor of |G| then G contains an element of order p. To
prove this we take an element a # 1 in G. If the order » of a is
divisible by p, say » = pr’, then b = a" has order p. On the
other hand, if the order r of a is prime to p, then the order
|G|/r of G/%a? is divisible by p and is less than |G|. Hence this
factor group contains an element h%@> of order p. We claim
that the order s of b is divisible by p, for we have (b%a2>)’ = p*
(a) = 1 (= €a). Hence the order p of h<@> is a divisor of s.
Now, since b has order divisible by p, we obtain an element
of order p as before. After this preliminary result we can
quickly give the proof. We consider the class equation (41):
|G| = |l + L [G:Cy]. 1f pHIC] then pX[G:C(¥)] for some ;.
Then pk| |C(yj)| and the subgroup C(yj) has order < |G| since y;
is not in the center. Then, by the induction hypothesis, C(y))
contains a subgroup of order pk. Next suppose p| |C|. Then, by
Cauchy’s result, C contains an element ¢ of order p. Now ¢
is a normal subgrou}P of G of order p, and the order |G|/p of G/
(e) is divisible by p* 1. Hence, by induction, G/{¢) contains a
subgroup of order pk ~ 1 This subgroup has the form H/{e>
where H is a subgroup of G containing <¢2. Then

|H| = [H:{c))Ked| =p'p=p" D

Let p™ be the largest power of p dividing |G|. Then Sylow I
proves the existence of subgroups of order p”* of G. Such
subgroups are called Sylow p-subgroups of G. The next
Sylow theorem concerns these.
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SYLOW 1II. (1) Any two Sylow p-subgroups of G are
conjugate in G; that is, if P1 and P> are Sylow p-subgroups,
then there exists an a ? G such that P2 = aPla . (2) The
number of Sylow p-subgroups is a divisor of the index

of any Sylow p-subgroup and is = 1 (mod p). (3) Any
subgroup of order p” is contained in a Sylow subgroup.

We shall obtain the proof by considering the action of G on
the set II of Sylow p-subgroups by conjugation. More
generally, we note that if / is a subgroup of a group G and g
€ G then gHg_1 is a subgroup. It follows that we have an
action of G on the set I of subgroups of G by conjugation: $H
= gHg_l. The stabilizer of H under this action is the subgroup
N(H) (or NG(H)) = {g G\gHg_1 = H}. This is called the
normalizer of H in G. Evidently H — N(H) and hence H is a
normal subgroup of N(H). The orbit of H under the
conjugation action of G is {gHg71|g € G}. The counting
formula on p. 74 shows that |{gHg71|g e G}|=[G:NH)]. If G
is finite then [G:N(H)]|[G:H] since G © N(H) o H and hence

[G:H] = [G:N(H)][M(H):H].

Now let G be finite and let Il denote the set of Sylow
p-subgroups of G. If P € II then ng_l € II, so we have an
action of G on IT induced by the conjugation action on I'. We
shall require the following

LEMMA. Let P be a Sylow p-subgroup of G, H a subgroup
of order p’ contained in N(P). Then H  P.

Proof. Since H is a subgroup of N(P) and P is a normal

subgroup of N(P), HP is a subgroup and HP/P = H/(H N P)
(by the first isomorphism theorem, p. 64). Thus HP/P is
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isomorphic to a factor group of H and so it has order pi. Then
|HP| = pk]P\. Since P is a Sylow p-subgroup, k = 0, HP = P
andso Hc P, [

Evidently P is a Sylow p-subgroup of N(P). Moreover, it is
clear from the foregoing lemma that P is the only Sylow
p-subgroup of N(P).

We are now ready to give the

Proof of Sylow II. Let Il be the set of Sylow p-subgroups
and let G act on I by conjugation. Let £ be one of the orbits
under this action. Now let P € X and restrict the action of G
on £ to an action of P on . Then we have a decomposition of
¥ into P-orbits, one of which is {P}. Moreover, {P} is the
only P-orbit in ¥ of cardinality one. For, if {P'} is such a
P-orbit then P — N(P'), so P = P' since P’ is the only Sylow
p-subgroup of N(P'). Now every P-orbit has cardinality a
power of p since this cardinality is a divisor of |P|. Hence [Z| =
1 (mod p). We show next that X = I1. Otherwise, we have a P
e II, ¢ Z. Applying the foregoing argument to this P we see
that there are no P-orbits

in X of cardinality one. This gives [£| = 0 (mod p) contrary to
|Z| # 1 (mod p). Hence X = I1, which means G acts transitively
on II. Hence (1) is proved. We also have |II| = 1 (mod p),
which is the second assertion in (2). The first is clear also,
since |II| = [G:N(P)]. Now let H be a subgroup of G of order
p" and restrict the action of G on Il to H. Since the H-orbits
have cardinality a power of p and since [II| = 1 (mod p), there
exists an orbit {P} containing one element. Then H < N(P)
and so H c P, by the lemma. This proves (3). [l
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EXERCISES
1. Show that if P is a Sylow subgroup then N(N(P)) = N(P).

2. Show that there are no simple groups of order 148 or of
order 56.

3. Show that there is no simple group of order pg, p, and ¢
primes (cf. exercise 5, p. 77).

4. Show that every non-abelian group of order 6 is isomorphic
to S3.

5. Determine the number of non-isomorphic groups of order
15.

An element of order 2 in a group is called an involution. An
important insight into the structure of a finite group is
obtained by studying its involutions and their centralizers.
The next five exercises give a program for characterizing S5
in this way. These were communicated to me by Walter Feit
who attributes the first four to Richard Brauer—though he
notes that John Thompson first recognized the importance of
the result in 9. In all of these exercises, as well as in the rest
of this set, G is a finite group.

6. Let u and v be distinct involutions in G. Show that <& #* is
(isomorphic to) a dihedral group.

7. Let u and v be involutions in G. Show that if uv is of odd
order then « and v are conjugate in G (v = gugfl).
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8. Let u and v be involutions in G such that uv has even order
2n, so w = (uv)” is an involution. Show that u,v € C(w).

9. Suppose G contains exactly two conjugacy classes of
involutions. Let u1 and u2 be non-conjugate involutions in G.
Let ¢; = |C(ui)|, i =1, 2. Let S; i = 1, 2, be the set of ordered
pairs (x, y) with x conjugate to u1, y conjugate to u2, and (xy)”
= u; for some n. Let s; = |Si|. Prove that |G| = c1s2 + c2s1.
(Hint: Count the number of ordered pairs (x, y) with x
conjugate to u1 and y conjugate to u2 in two ways. First, this
number is (|Gl|/c1)(|Gl/c2). Since x is not conjugate to y,
exercises 7 and 8 imply that for n = o(xy)/2, (xy)" is conjugate
to either u1 or u2. This implies that (|G|/c1)(|G|/c2) = (|G|/c1)s1
+ (|G|/c2)s2.)

10. (An abstract characterization of S5.) Let G contain exactly
two conjugacy classes of involutions and let u1 and u2 be
representatives of these classes. Suppose C1 = C(u1) = <2 x
S3 and C2 = C(u2) is a dihedral group of order 8. Then G =
Ss.

Sketch of proof.

(1) Since some involution is in the center of a Sylow
subgroup, C2 is a Sylow 2-subgroup.

(i1) Replacing u1 by a conjugate, one may assume u| €
C2; and then up € Cj.

(ii1)) C2 contains three classes of involutions. If x is an

involution in C2, x # u2 then x is conjugate to xu. Since G
contains two classes of involutions, deduce that either sp = 0

159



or s2 =4 and C2 contains a non-cyclic group ” of order 4 such
that all involutions in V are conjugate to u2 in G.

(iv) contains three conjugacy classes of involutions. If x
is an involution in C1, x # u1, then x is not conjugate to xu1 in
C1. Since G contains two classes of involutions (iii) implies
that for any involution x in C1, x # u1, exactly one of x and
xu1 is conjugate to u1. Hence deduce that s = 9 (in the
notation of exercise 9).

(v) Use exercise 10 to show that either sp =4, |G| = 120
ors2 =0, |G| =72.

(vi) Show that |G| # 72 as follows. Let P be a Sylow
3-group of C1 Assume |G| = 72. Let O be a Sylow subgroup
of G containing P. Then |Q] = 9 and “Ci €» < N(P). Then
36||N(P)|. Hence there exists H with C(P) c H and |H| = 36.
This implies that u1 € H and since u2 is a square, u2 € H.
Since [G:H] = 2, H < G and so H contains all involutions in
G. Then C2 N H contains all involutions in C2. This is
impossible as [C2 N H| =4 and C2 contains five involutions.

(vii) By (iii), C2 contains a non-cyclic group V of order 4
such that u2 € V and all the involutions in V" are conjugate in
G. Let x be an element of G such that xﬁluzx +uy, xﬁluzx eV
Then x ' Cox #Crand up € C(x_luzx) =xCox.

(viii) C(V) = V. N(V) contains at least two Sylow
2-subgroups of G, by (vii).

(1x) N(V)/V = Aut V = S3. Hence |N(V)| = 24.
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(x) [G:N(V)] = 5. Show that G acts effectively on the
coset space G/N(V) and hence that G = S5s.

The next four exercises are designed to prove the followmg
extension of Sylow’s first theorem. If p is a prime and p | 1G],
then the number of subgroups of order p” is congruent 1 (mod
p). The theorem is due to Frobenius. The proof we shall
indicate is a very slick one due to P. X. Gallagher (4Archiv der
Mathematik, vol. XXIII (1967), p. 469). It is based on the
action of G on the set S of subsets of cardinality p This type
of proof of Sylow’s theorem has had a curious history. It
seems to have been discovered by G. A. Miller more than
fifty years ago (A4mnals of Math., vol. 16 (1915), pp.
169—171). However, it seems to have been totally forgotten
until it was rediscovered by H. Wielandt in 1959.

11. Let |G| =p Fm where pis a prime, and let » denote number
of subgroups of G of order p Let S be the set of subsets of G
of cardinality p and let G act on S by left translation. If 4 €
S, let H4 = Stab A. Then Hy4 acts on A by left translations.
Note that the orbits in 4 under the action of H4 are collections
of right cosets. Hence prove that |H4| | pk.

12. Let So be the subset of 4 € S such that |Hy4| = pk, and 3o
the subset of B € S such that |Hp| = pl, | < k. Note that the
orbit of any B under the action of G on S has cardinality
divisible by pm and hence prove that

IS| = |So| (mod pm).

13 Let 4 € Sp and let x € 4. Then H4 x — A and since |H4| =
p =|A|, Hax = A. Thus 4 is a right coset of Hy4, a subgroup of
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order pk. Conversely, let H be any subgroup of order pk, Hx
one of its right cosets. Then H(Hx) = Hx so Stab Hx contains
H. Then, by exercise 11, Stab Hx = H and so Hx € So.
Conclude from this that

1So| = nm

where 7 is the number of subgroups of order pk.

14. Note that |S| depends only on |G| and pk, and that by
exercises 12 and 13, n = |So|//m = |S|/m (mod p). Hence the
congruence class of n (mod p) depends only on |G| and pk,
and not on G. Now look at a cyclic group of order |G|. In this
case there is exactly one subgroup of order p". Hence n = 1
(mod p).

The next two exercises are designed to construct a group
isomorphic to any Sylow p-subgroup of S;, p a prime not
exceeding 7.

15. Show that the order of the Sylow p-subgroup of Sy is
27" where

w31

where [k/[] denotes the largest integer <k//. Show also that if
we write

nw=ay+ ap+ ap’ + - + ap*

where 0 < a; < p (note. that this is the representation of n
using the base p), then
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vinl)= Y a{l +p+---+p'")

=1

16. Let Zp denote the subgroup of Sp generated by the cycle

(12 ... p). Note that the wreath product Z, 1 Zp has order p¥ *
and 1s 1som0rp11c to a subgroup of Sp? (ex*trc1ses 10 'tld 11,
p. 79). Define Z "), r > 1, inductively by Z p =2Zp, Z lp

=z h [ Zp. Show that Z " has order P """ and is
isomorphic to a subgroup of Sp". Hence show that if n = ao +
ajp+ ...+ akpk, 0 < ai < p, then any Sylow p-subgroup of Sy
is isomorphic to

z\  SERE S L xZF”*x~--xZF“x---xZP“x"'xZ‘,“‘.
e g L a

' This term is quite commonly used in this connection.
Unfortunately it conflicts with the meaning of the unit 1. It
will generally be clear from the context which meaning is
intended.

2 Throughout this book we use the following notations (which
have become standard): M, for the set of natural numbers 0, 1,
2, ... Z, for the set of integers; @, for the set of rational
numbers; ®, for the set of real numbers; €, for the set of
complex numbers.

3 The semigroups satisfying (a) and (b"), which is (b) with
“right inverse” replaced by “left inverse,” need not be groups.
Their structure has been determined by A. H. Clifford in
Annals of Mathematics, vol. 34 (1933), pp. 865-871.
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4 An attractive biography of Abel’s life has been written by
Oystein Ore, Niels Hendrik Abel, Minneapolis, University of
Minnesota Press, 1957.

31t s interesting to read the discussion of congruences for
integers at the beginning of the great classic on number
theory, Disquisitiones Arithmeticae, by Carl Friedrich Gauss.
This work, published in 1801, was written when Gauss was
nineteen. English translation by A.A. Clarke, Yale University
Press, New Haven, 1966.

6 Perhaps the deepest result of linear algebra not using linear
transformations 1is the theorem on the invariance of

dimensionality (any two bases have the same cardinality).

7 Another construction of free groups is given on p. 89 of
Basic Algebra 11.
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2
Rings

In this chapter we begin the study of a second type of
algebraic structure, called a ring. The prototype for these
structures is the ring Z of integers, which in the last chapter
we regarded from the monoid point of view as providing the
two monoids (Z, +, 0) and (Z, -, 1). The ring theoretic way of
viewing Z treats these two structures simultaneously and
relates the two by means of the distributive law. Unlike the
theory of groups, which had essentially one source— namely,
the study of bijective transformations relative to the resultant
composition—the theory of rings has been fused out of a
number of special theories. For this reason it will appear less
orderly and unified than the theory of groups. However, the
multitude of examples, including many familiar to the reader,
should be convincing evidence of the richness of this branch
of algebra. In the next chapter we shall see that rings also
arise in a manner analogous to that of transformation groups,
namely, as rings of endomorphisms of abelian groups.
Moreover, we have the concept of a module, which for rings
is the exact analogue of the concept of a group acting on a set.

We begin our discussion with definitions and examples of the
various types of rings: domains, division rings, commutative
rings, and fields. After this we

study the basic notions of ideals, quotient rings, and
homomorphisms, which are analogous, respectively, to
normal subgroups, factor groups, and homomorphisms for
groups. In the second half of the chapter we restrict our
attention mainly to commutative rings, first considering
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constructions and characterizations of certain extensions of
these: fields of fractions of commutative domains, polynomial
rings in an indeterminate x. After this we consider the
elementary factorization theory of commutative domains.
Applications, especially to number theory, will be indicated
from time to time. The last section, which may be regarded as
optional, will be devoted to “rings without unit” and the
imbedding of these in “rings,” which we consider always as
having a unit.

A good deal of this material will seem familiar. However, the
student should note that our point of view has some
differences from those which he may have encountered
before. For example, polynomials are treated formally rather
than functionally, and matrices are allowed to have entries in
any ring, rather than just in the ring R of real numbers. Also
we emphasize the basic homomorphism properties associated
with certain constructions of extensions of a given ring. In
important instances these properties give a characterization of
the extension and play an important role in what follows.

2.1 DEFINITION AND ELEMENTARY PROPERTIES

DEFINITION 2.1. A4 ring is a structure consisting of a
non-vacuous set R together with two binary compositions +, -
in R and two distinguished elements 0, 1 € R such that

1. (R, +, 0) is an abelian group.
2. (R, -, 1) is a monoid.

3. The distributive laws
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D alb + ¢) = ab + ac

(b+cla=ba+ ca

hold for all a, b, c € R.!

Thus the assumptions included under 1 and 2 are that a + b
and ab € R, and the following conditions hold:

Al la+b+c=a+(b+c
A2 a+b=>b+a
A3 a+0=a=0+a

A4 For each a there is an inverse —a such that a + (—a) =0 =
—a+ta.

M1 (ab)e = albc)
M2 gl =a=la

The structure (R, + , 0) is called the additive group of R and
(R, -, 1) is called the multiplicative monoid of R. A subset S
of a ring R is a subring if S is a subgroup of the additive
group and also a submonoid of the multiplicative monoid of
R. Clearly the intersection of any set of subrings of R is a
subring. Hence if 4 is a subset of R one can define the subring
generated by A to be the intersection of all subrings of R
which contain 4. This is characterized by the properties: it is a
subring, it contains A, and it is contained in every subring
containing 4.

EXAMPLES
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1.2,+,-,0,1 as usual. We noted in the Introduction that this
is a ring.

2. Q the rational numbers with usual +, -, 0, 1.
3. R the ring of real numbers.

4. € the ring of complex numbers. R, @, and Z are subrings of
C.

5. The set Z[v2] of real numbers of the form m + nv2, m, n e
2. Clearly the difference of two numbers in Z [v2] is in 2 [v2].
Also 1 € Z[v2] and if m, n, m', n' € Z then (m + n¥2)(m' + n’
V2) = (mm' + 2nn') + (mn' + nm' W2 e Z[v2]. Hence Z[v2] is
a subring of R.

6. Same as (5) with Z replaced by @. The same calculations
show that this is a subring of R.

7. Similarly, we check that Z[¥ —1] and @[V — !]—the sets of

complex numbers m + n¥ — 1, where, in the first case m,n € Z,
and in the second m, n € @ —are subrings of €. These are the

subrings generated by Z and ¥ 1 and by @ and v -1,
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respectively. The first of these is called the ring of Gaussian
integers.

8. The set I' of real-valued continuous functions on the
interval [0,1] where we define /' + g and fg as usual by (f +

2 = M) + g), ()X = fx)g(). Let 0 and 1 be the
constant functions 0 and 1, respectively. Then (I, +, -, 0, 1)

is a ring.

9. The set {0, 1, 2} with the indicated 0 and 1, and with
addition and multiplication defined by the tables:

¥\ 01 32 C 1012

! i
0 |01 2 0| 00 0
I 1 2 0 1|01 2
2 1201 200 21

is a ring. This can be verified directly. It will be clear without
such direct verification soon (perhaps it is already).

A number of elementary properties of rings are consequences
of the fact that a ring is an abelian group relative to addition
and a monoid relative to multiplication. For example, we have
—(a+b)y=—a-b=—a+(->b)and if na is defined forn € Z
as before, then the rules for multiples (or powers) in an
abelian group,

nla + b) = na + nb

n+mla=na+ ma
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(nm)a = nima)

hold. We also have the generalized associative laws for
addition and multiplication and the generalized commutative
law for addition (see pp. 40 and 41). There are also a number
of simple consequences of the distributive laws which we
now note. In the first place, induction on m and n gives the
generalization

(ay +az+ -+ anby +by+---+ b)
=ayby +aby+ - +ab, +ahy +azby 4+ azb, + 0
+ ayh, + azb, +--- + ab,,

or

(§)(52)- 5

We note next that

gl =0 =0a

for all a; for we have a0 = a(0 + 0) = a0 + a0. Addition of —
a0 gives a0 = 0. Similarly, 0a = 0. We have the equation

O0=0b=(a+(—a))b=ab + (—a)h

which shows that

{(—a)p = —ab

Similarly, a( — b) = — ab; consequently

170



(—a)(—b) = —al—b) = —(—ab) = ab

If @ and b commute, that is, ab = ba, then a'b" = b"a". Also,
by induction we can prove the binomial theorem

(1) m+br=w+(Dm'h+(gwiﬁ+-w+N

et

where the binomial coefficient

n n!
@ (J=munm

The inductive step of the proof conies from the formula

4 1P (L T r! 2 o
k k—1) kiir—k\! (k= 1r—k+ 1)

- (r++ 1) B r+ 1
Ckr—k+ 1) k)'

The reader should carry out the proof and note just how the
commutative law of multiplication intervenes.

EXERCISES

1. Let C be the set of real-valued continuous functions on the
real line R. Show that C with the usual addition of functions
and 0 is an abelian group, and that C with product (f - g)(x) =
flg(x)) and 1 the identity map is a monoid. Is C with these
compositions and 0 and 1 a ring?
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2. Show that in aring R, a(b — c¢) = ab —ac where b —c=b + (
—c¢) and n(ab) = (na)b = a(nb) if n € 1.

3. Show that if all the axioms for a ring except commutativity
of addition are assumed, then commutativity follows, and
hence we have a ring.

4. Let I be the set of complex numbers of the form m + nv =3
where either m, n € Z or both m and »n are halves of odd
integers. Show that / is a subring of C.

5. If a and b are elements of a ring, define a0 = a,a = |a, b]
= ab — ba and inductively a® = [a(k a 1), b] (note that for the
sake of simplicity we do not indicate the dependence of a®
on b). Prove the following formula:

}i: blahl-l.= i (k+ l)bl'.lui.“_
i=0

j=o\J+1

2.2 TYPES OF RINGS

We obtain various types of rings by imposing special
conditions on the multiplicative monoid. For example, a ring
R is called commutative if (R, -, 1) is commutative. All the
examples listed in the preceding section have this property.
Examples of non-commutative rings will be given in the next
two sections. A ring is called a domain (also integral domain)
if the set R* of non-zero elements of R is a submonoid of (R,
-, 1). It 1s implicit in the definition of a domain R that R # 0.
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Besides this, the condition that R is a domain is that a # 0 and
b # 0 in R imply ab # 0. Clearly any subring of a domain is a
domain. All the examples in section 1 except 8 are domains.
On the other hand, in 8 we can take the two elements f'and g
such that

; for 0=sx<4
ﬂll_{x—% for 3<x<1

f=x+3% for 0=sx<|
olx) = 0 for f<x<l.

Then f# 0 (the constant function 0) and g # 0 but fg = 0.
Hence the ring of real-valued continuous functions on [0, 1] is
not a domain .

If a is an element of a ring R for which there exists b # 0 such
that ab = 0 (ba = 0), then a is called a left (right) zero divisor.
Clearly 0 is a left and a right zero divisor if R has more than
one element. If a # 0 is a left zero divisor and ab = 0 for b #
0, then b is a non-zero right zero divisor. If is clear from this
and the definition of a domain that R # 0 is a domain if and
only if it possesses no zero divisors # 0 (right or left).

We note also that a ring is a domain if and only if R # 0 and
the restricted cancellation laws hold, that is, ab = ac, a # 0,
imply b = ¢, and ba = ca, a # 0, imply b = c. For, if R is a
domain and ab = ac, then a(b—c¢) =0,s0ifa # 0, then b —c =
0 and b = c. Similarly, ba = ca, a # 0 give b = c. Conversely,
let R be a ring # 0 in which these cancellation laws hold. Let
ab =0, a # 0. Then ab = a0, so that cancelling gives b = 0.
Hence R is a domain.
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A ring R is called a division ring (also skew field, sfield, or
field) if the set R* of non-zero elements is a subgroup of (R, -,
1). This is equivalent to: 1 # 0, and for any a # 0 there exists a
b such that ab = 1 = ba. Examples 2, 3, 4, 6, and 9 as well as
the second example in 7 are division rings in which
multiplication is commutative. Division rings that have this
property are called fields. We shall give an example of a
non-commutative division ring in section 2.4.

It is clear that any division ring is a domain, and since
subrings of domains are domains, any subring of a division
ring is a domain. The converse does not hold, since Z is a
domain which is not a division ring, and Z is a subring of the
field @. A subring of a ring which is itself a division ring will
be called a division subring. If a # 0 in a division ring R then
the equation ax = b has the solution x = a Iy, By the
restricted cancellation law this is the only solution of the
equation. Similarly, ya = b has the unique solution y = ba L

We have seen that the set of invertible elements of any
monoid is a subgroup. In particular, the set U of invertible
elements of (R, -, 1) is a subgroup. We shall call the elements
of U units—even though this conflicts slightly with the
designation the unit for 1—and U is called the group of units
(or invertible elements) of the ring. For example, the group of
units of Zis {1,—1}.

EXERCISES

1. Show that any finite domain is a division ring.
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2. Show that a domain contains no idempotents (62 = e)
except e = 0 and e = 1. An element z is called nilpotent if z"" =
0 for some n € Z*. Show that 0 is the only nilpotent in a
domain.

3. Let z be an element of a ring for which there exists aw # 0
such that zwz = 0. Show that z is either a left or a right zero
divisor.

4. Show that if 1 — ab is invertible in a ring then so is 1 — ba.

5. Show that a function f'in the example (8) of section 2.1 is a
zero divisor if and only if the set of points x where f{x) = 0
contains an open interval. What are the idempotents of this
ring? The nilpotents? The units?

6. Let u be an element of a ring that has a right inverse. Prove
that the following conditions on u are equivalent: (1) u has
more than one right inverse, (2) u is not a unit, (3) u is a left 0
divisor.

7. (Kaplansky.) Prove that if an element of a ring has more
than one right inverse then it has infinitely many. Construct a
counterexample to show that this does not hold for monoids.

8. Show that an element u of a ring is a unit with v=1u Lif
and only if either of the following conditions holds: (1) uvu =
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u, vty = 1, (2) uvu = u and v is the only element satisfying

this condition.

9. (Hua.) Let a and b be elements of a ring such that a, b, and
ab — 1 are units. Show that a — b~ ! and (a-b 1)_ I _a lare
units and the following identity holds:

(a=b"")"' —a")" =aba—a

10. (Cohn.) Let G be a group, e an element of G and 6 a map
of the subset G1 = {x € GJx # 1} into itself satisfying

(i) 00xy H=p@x)y Lxe GlyeG.
(ii) 0%(x) = x.
(i) O 1) = e(@ox .
(iv) 0y~ Hy = (B0 N ), x, v € Grx#y.

Show that there exists a unique division ring D such that D* =
GandinG,0x=1-x,x e G1,e=—1.

2.3 MATRIX RINGS

The reader is probably already familiar with matrices and
determinants from his study of linear algebra or multivariable
calculus. We shall now generalize these notions to the extent
which will be needed in our subsequent work: matrices with
entries in any ring and determinants of matrices with entries
in a commutative ring. For a reader already familiar with

176



matrices and determinants the content of this section can be
summarized by saying that the familiar results carry over in
this generality.

Let R be a ring, n a positive integer. We shall now define the
ring Mu(R) of n x n matrices over the ring R. The underlying
set of this ring are the n x n arrays or matrices

{:lj {,!l o "Iln

”I] “I: e ”1,1
(3) A=

Uy n2 iy

of n rows and columns with entries (also elements,
coefficients, or coordinates) ajj € R. The element aj; of R in
the intersection of the ith row and jth column of 4 will be
referred to as the (i, j)-entry of A. Two matrices 4 and B =
(bij) are regarded as equal if and only if a;j = bjj for every i, j,
and the set Mu(R) is the complete set of n x n matrices with
entries in R. In short, My(R) is the product set of n? copies of
R.

We define addition of matrices by the formula

4y @43 "'t Gya biy bz -+ by,
Gy @3z " Oy, i by, bia - by,
gy Gyy 777 Oy by bag - b,

ay +byy an+byy o a4 by,

_|axz by ay+byy o ay+ by,

Gy +by ay, +by - a,tb,
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Thus, to obtain the sum we add the entries a;; and bj; in the
same position. We define the matrix 0 to be the matrix whose
entries are all 0. Then it is easy to verify that with the given
addition and 0, Mu(R) is an abelian group. Multiplication of
matrices is defined by

ay @3 vt Ay| (b by o by,
Gy @3y v Gy,| by by o by,
Ay Ay a by ba b

Z“ltb“ Eﬂuhtz Eﬂubn

- Eulthll Eﬂzthtz Eﬂubn

Z“nn":'u Zankbxz Zankbkn

Thus the product P = AB has as its (i, j)-entry the element

Pij = @by + apby; + - + ayb,;

For example, in the ring M3(Z) of 3 x 3 matrices over Z we
have

] -2 3 0 3 4 -7 =25 8
0 1 -1 2 5 1] = 3 11 -1
| 2 5 —-2/\—-1 -6 2 12 43 9

1 0 0
0

| = 01
0 0 I
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that is, we have the unit 1 of R on the “main” diagonal
running from the upper left-hand corner to the lower
right-hand corner, and all other entries are 0. Then it is
immediate that 41 = 4 = 14 for 4 € Myu(R). Also
multiplication is associative: the (i, /)-entry of A(BC), 4 =
(aij), B = (bij), C = (cij) 1s 3. j, k aij(bjkcki) and the (i, [)-entry
of (AB)C 1s ) j iaijbjk)cki. These are equal by the
associativity of multiplication in R. The distributive laws
hold, for the (i, j)-entries of A(B + C) and of AB + AC are
respectively D k aik(bkj + ckj) and

; W:‘th‘u + aucyy)
and these are equal by one of the distributive laws in R.

Similarly, we have the other distributive law in My(R). Hence
we have shown that (Mu(R), +, -, 0, 1) is a ring.

We now define ejj to be the matrix having a lone 1 as its (7,
Jj)-entry and all other entries 0. The n” matrices ejj, 1 <i,j<n
are customarily called matrix units, though they are not
(except for n = 1) units (= invertible elements) of Mu(R). It is
easy to verify the following multiplication table:

(4) €€ = Opey

where Jjk is the Kronecker delta defined by

{5‘] ﬁ”: t, é_jt=ﬂ If Jiék

Also we have

(6) |l =e;; +e3:+" "+ e,
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The e;; are idempotent: eiiz = ¢j;, and if n > 1, we have e]] e
= e12, e, e12 el1 = 0, which shows that My(R) is never
commutative if n > 1 and R # 0.

We shall denote the matrix

ay
a, 0
0
ﬂﬂ
having the entries al, a2, ..., an in this order on the main

diagonal and 0’s elsewhere as diag{ai, a2, ... an}. It is clear
that the set of these diagonal matrices is a subring of My(R).
We now put a' = diag{a, a, ..., a}. Then a — a' is injective
and we have (a + b)' =a' + b', (ab) =a'b’, 0'=0, 1'=1. Thus
the map @ — a' is both a monomorphism of (R, +, 0) into
(Mn(R), +, 0) and of (R, -, 1) into (Mu(R, -, 1). It follows that
R'={d'| a € R} is a subring of My(R) and a — a’

regarded as a map of R into R’ is an isomorphism of rings,
where we define this to be a map which is both an
isomorphism for the additive groups and an isomorphism for
the multiplicative monoids.

We shall now identify R with the isomorphic subring R’ of
Mpu(R), identifying an a € R with the corresponding diagonal
matrix a’ = diag{a, a, ..., a}. This identification is similar to
the one which is made in identifying the integers with the
rational numbers with denominators 1, and has the effect of
embedding R in Myu(R). We now observe that multiplication
of a matrix 4 on the left (right) by a € R amounts to
multiplication of all the entries on the left (right) by a. Hence
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aejj = ejja and this matrix has the element a in the (i,
Jj)-position and 0’s elsewhere. Then it is clear that for the
matrix 4 of (3) we have

M A= }E,- ayey;

Thus every matrix is a linear combination of the ej; with
“coefficients” ajj € R.

The group of invertible elements of My(R) is called the linear
group GLy(R). We shall now derive, for the case R
commutative, a determinant criterion for a matrix 4 to be
invertible, that is, to belong to GLx(R). It is assumed that the
reader is familiar with the definition of determinants and the
elementary facts about them.” It is easy to convince ourselves
that the main formulas on determinants, which can be found
in any text on linear algebra, are valid for determinants of
matrices over any commutative ring. Thus if R is
commutative we can define for 4 = (ajj) the determinant

(8) det A = Z{sg 4T PPN PYRRRR

where the summation is taken over all permutations 7 of 1, 2,
..., n,and sg w =1 or — 1 according as 7 is even or odd. The
cofactor of the element a;; in 4, as in (3), is (— 1)’ 7/ times the
determinant of the » — 1 X n — 1 matrix obtained by striking
out the ith row and the jth column of 4. We recall that we can
“expand” a determinant by any row and any column in the
sense that we obtain det 4 by multiplying the entries of any
row (or column) by their cofactors and adding the results.
Thus if 4;; denotes the cofactor of a;j then we have
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-alel-l - ”II"“'J:: o i “‘lﬂA;ﬂ = dﬂ't -"'1
(9)
@Ay +aydy + -+ a,A,; =det A

We recall also that the sum of the products of the elements of
any row (column)
and the corresponding cofactors of the elements of another
row (column) is O:

ﬂ“r‘I” JF“IJ"‘{LI +"'+H.in"1”=ﬂ.. i#}'.

These relations lead us to define the adjoint of the matrix 4 =
(aij) to be the matrix whose (i, j)-entry is ajj = Aji. Using this
definition it is immediate that formulas (9) and (10) are
equivalent to the matrix equations

(11) Afadj A) = det 4 = (adj A)4

where det 4 in the middle is the corresponding element diag
{det A4, ..., det A} in Muy(R). We recall also the rule for
multiplying determinants, which in matrix form is

(12) det AB = (det A)(det B).

The multiplication rule (12) and the fact that det 1 = 1 imply
that A — det 4 is a homomorphism of the multiplicative
monoid of Myu(R), R commutative, into the multiplicative
monoid of R. It is clear that such a homomorphism maps the
group GLy(R) into U(R), the group of units of R: that is, if 4
€ GLu(R), then det 4 is a unit in R. Conversely, suppose A =
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det 4 is a unit. Since R is commutative aB = Ba for every a €
R, B € Mu(R). In particular, (adj A)A~ ' = A~ I(adj 4) so

A(adj A~ = AA" ' = (A ! adj 4)A.
Thus we see that

(13) (adj H)A ' = A"\,

This result shows that if det 4 is a unit then 4 is invertible,
moreover, we have the formula (13) for its inverse. The main
part of the result we have proved is stated in the following
THEOREM 2.1. If R is a commutative ring, a matrix A €
Myu(R) is invertible if and only if its determinant is invertible
in R.

A noteworthy special case of the theorem is the

COROLLARY. [fFisafield, A € My(F) is invertible if and
only ifdet A # 0.

EXERCISES

1. Show that the matrix

1 4 1
1] I =1
-3 -6 -8

is invertible in M3(Z) and find its inverse.
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2. Prove that if R is a commutative ring then AB = 1 in My(R)
implies B4 = 1. (This is not always true for non-commutative
R.)

3. Verify that for any p € Rand i #j, 1 + pejj is invertible in
Myu(R) with inverse 1 — pe;jj. More generally, show that if z is a
nilpotent element of a ring (that is, 2 = 0 for some positive
integer n), then 1 — z is invertible. Also determine its inverse.

4. Show that diag {al, a2, ..., an} is invertible in My(R) if and
only if every q; is invertible in R. What is the inverse?

a b)
5. Verify that for a, b € B, a + b¥ 1 — ("b 4/ is an
isomorphism of € with a subring of M2(®).

6. Show that in any ring the set C(S) of elements which
commute with every element of a given subset S constitute a
subring. If S is taken to be the whole ring, then C = C(S) is
called the center of the ring. Note that this subring is
commutative. Determine C(S) in Mu(R) for S = {ejjli, j = 1,
..., n}. Also determine the center of My(R).

7. Determine C(S) where S is the single matrix N = e12 + €23
+...ten—-1n.
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8. Show that if R is commutative and D is the set of diagonal
matrices in Mu(R), then C(D) = D.

9. Let S be any ring which contains a set of matrix units, that
is, a set of elements {ejj|i,j =1, ..., n} such that e;j ex; = Jjk eil
and Y 1" ¢;j=1. Forany i, j, 1 <i,j <nand any a € S define
aij=Y"k=1 ekiajk. Show that a;j € R= C({exlk, [ =1, ..., n})
and that a = Y, j ajje;j. Show that if 7j; are any elements of R,
then ) rijejj = 0 only if every r;; = 0. Hence show that §' =
Myu(R) (= denotes isomorphism).

10. Let R be a ring, R" a set, 7 a bijective map of R into R.
Show that R' becomes a ring if one defines:

a+b=n""ma)+nb)), O=n"Y0
a'h’ =y~ "(n(a' (b)), I'=n"'1)

and that # is an isomorphism of R' with R. Use this to prove
that if u is an invertible element of a ring then(R, +, - u, 0, u
1)where ayb = aub is a ring isomorphic to R. Show also
that(R, ©, 0, 1, O)wherea @ b=a+b—-1,aob=a+b—ab
1s a ring isomorphic to R.

11. Show that the rings Mum(R) and Mu(Mm(R)) are
isomorphic (Hint: Use “block” addition and multiplication of
matrices.)
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12. Show that if R is a field, A € Mu(R) is a zero divisor in
this ring if and only if 4 is not invertible. Does this hold for
arbitrary commutative R? Explain.

2.4 QUATERNIONS

In 1843, W. R. Hamilton constructed the first example of a
division ring in which the commutative law of multiplication
does not hold. This was an extension of the field of complex
numbers, whose elements were quadruples of real numbers
(a, B, y, 0} for which the usual addition and a multiplication
were defined so that 1 = (1, 0, 0, 0) is the unit and i = (0, 1, O,
0),7=(0,0,1,0), and k= (0, 0, 0, 1) satisfy i* = j> = k* = — 1
= ijk.3 Hamilton called his quadruples quaternions. Previously
he had defined complex numbers as pairs of real numbers (a,
p) with the product (a, p)(y, ) = (ay — po, ado + py).
Hamilton’s discovery of quaternions led to a good deal of
experimentation with other such “hypercomplex” number
systems and eventually to a structure theory whose goal was
to classify such systems. A good deal of important algebra
thus evolved from the discovery of quaternions.

We shall not follow Hamilton’s way of introducing
quaternions. Instead we shall define this system as a certain
subring of the ring M>(C) of 2 x 2 matrices with complex
number entries. This will have the advantage of reducing the
calculations to a single simple verification.

We consider the subset H of the ring M2(€) of complex 2 x 2
matrices that have the form

(14) L ( a h) _ ( %o + an.-".—_l , + a.\,_l) -
~b a =0y + a3/ — %o — @y —1
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We claim that H is a subring of M2(C). Since @ — %2 = @
a, for complex numbers it is clear that H is closed under
subtraction; hence H is a subgroup of the additive group of
M>(C). We obtain the unit matrix by taking a = 1, 5 = 0 in
(14). Hence 1 € H. Since

a b\fec d\ [ac—bd ad+bé
—b a/\-d ¢/ \—-bc—ad —bd+ac
and @182 = D | A 5, the right-hand side has the form

(% &)

where u = ac — bd,y = ad + bé. Hence H is closed under
multiplication and so H is a subring of M>(C).

We shall now show that H is a division ring. We note first
that

A= det( T -:xn.-‘E_ el %E) = ap® + 2% + oy + ay’,
=%y + da/— 1 ot — g —1

Since the a; are real numbers this is real, and is 0 only if every

o; = 0, that is, if the matrix is 0. Hence every non-zero

element of H has an inverse in M2(€). Moreover, we have, by

the definition of the adjoint given in section 2.3, that

w( % )G )
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Since @ = a this is obtained from the x in (14) by replacing a

by a and A and b by —b and so it is contained in H. Thus if
the matrix x is # O then its inverse is

aA™!' —=bA™!
bA™' aA™!
and this is contained in H. Hence H is a division ring.

The ring H contains in its center the field B of real numbers
identified with the set of diagonal matrices diag{a, a}, a € K.
H also contains the matrices

__(J__1 0 ) {0 1 2 0 -1
No -/A) }_(—1 ﬂ')’ (v‘ﬁ ﬂ)'

We verify that

(15) X =g + o3i + a3 j + a3k
and if ap + a1i + ayj + azk = Bo + P1i + foj + B3k, Bi € B, then

_f Pt =1 Byt ﬁw"'—_!

( &y + u:\""jl_ @; + ’1.!\-"'{__1) ( . )
—B:+ Biv=1 Py— ﬁ'wf?|

~tg + g =1 g = ty4f=1

so @; = fi, 0 <i < 3. Thus any x in H can be written in one and
only one way in the form (15). The product of two elements
in H

(2o + 2y + oyj + ayk)flo + Poi + faj + B3K)

188



is determined by the product and sum in F, the distributive
laws and the multiplication table

(16) P=j=kl=~1
ij = —ji =k jk=—ki=i ki= —ik =},

Incidentally, because these show that H is not commutative
we have constructed a division ring that is not a field. The
ring M is called the division ring of real quaternions.

EXERCISES

1. Define X = ap — a1i — a2 — a3k for x = ap + a1i + apj + ask.
Show that X ¥ ¥ =% + ¥, XV = V& _and that £ =x if x € B,

2. Show that xX = N(x) where N(x) = ao® + a1 + a® + a3’

Define 7(x) = 2a0. Show that x satisfies the quadratic
equation x“ — T(x)x + N(x) = 0.

3. Prove that N(xy) = N(x)N(y).

4. Show that the set Ho of quaternions x = ag + a1i + azj +
o3k, whose ‘“coordinates” «; are rational, form a division
subring of H.

5. Verify that the set / of quaternions x in which all the
coordinates «; are either integers or all are halves of odd
integers is a subring of H. Is this a division subring? Show
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that 7(x) and N(x) € Z for any x € I. Determine the group of
units of /.

6. Show that the subring of M2(€C) generated by € and H is
M(C).

7. Let m and n be non-zero integers and let R be the subset of
M»(€) consisting of the matrices of the form

(a+b\-'"r_rr c+d-.,-';)

mlc — d\,-"EJ a— b\fﬁ

where a, b, ¢, d € Q. Show that R is a subring of M2(€) and
that R is a division ring if and only if the only rational
numbers x, y, z, ¢ satifying the equation X2 - my2 —nz? + mnt?
=0arex =y =z=1t=0. Give a choice of m, n that R is a
division ring and a choice of m, n that R is not a division ring.

8. Determine the center of H. Determine the subring C(7)
commuting with 7.

9. Let S be a division subring of H which is stabilized by
every map x — dxd 1, d # 0 in H. Show that either S=H or §
is contained in the center.

10. (Cartan-Brauer-Hua.) Let D be a division ring, C its
center and let S be a division subring of D which is stabilized
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by every map x — dxd 1, d # 0 in D. Show that either S = D
orScC.

2.5 IDEALS, QUOTIENT RINGS

We define a congruence = in a ring to be a relation in R which
is a congruence for the additive group (R, +, 0) and the
multiplicative monoid (R, -, 1). Hence = is an equivalence
relation such that a = 4" and b= b" imply a + b=a’' + b" and
ab=a'b'. Let @ denote the congruence class of a € R and let
R be the quotient set. As we have seen in section 1.5, we have
binary compositions + and - in R defined by @ + b =a+ b,

A b = ab. These define the group (R, +, (_]) and the monoid (
R, -, T). We also have

ab+é&=dab+rc)=alb+c)=ab+ ac=ab + at = ab + ac

Similarly, (b + &)@ = 5@ +&@. Hence (R, +, -, 0, T)is a
ring which we shall call a quotient (or difference) ring of R.

We recall also that the congruences in (R, +, 0) are obtained
from the subgroups / (necessarily normal since (R, +) is
commutative) by defining a = b if a — b € I. Then the

congruence class @ is the coset a + I. If this is also a
congruence for the multiplicative monoid, then for any a € R
and any b € I we have a =a and b =0, and so ab =a0 =0
and ba = 0. In other words, if a € R and b € [ then ab and ba
€ I. Conversely, suppose / is a subgroup of the additive group
satisfying this condition. Then if a = a" and b = b’ (mod 1), a —
a' elsoab—a'b=(a-a)bel Alsoa'b—a'b>=a'(b-">") e
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1. Hence ab — a'b’' = (ab — a'b) + (a'b — a'b") € I. Hence ab =
a'b’ (mod 7). We now give the following

DEFINITION 2.2 IfR is a ring, an ideal I of R is a subgroup
of the additive group such that for any a € R and any b € 1,
ab and ba € 1.

Our results show that congruences in a ring R are obtained
from ideals / of R by defining a = a' if a — a’ € 1. The
corresponding quotient ring R will be denoted as R/I and will
be called the quotient ring of R with respect to the ideal 1. The
elements of R/I are the cosets a + / and the addition and
multiplication in R/I are defined by

fa+N+b+D=la+b)+1
(a+ b+ IN=ab + L

(17)

Also [ is the 0 and 1 + [ the unit of R/I.

It is interesting to look at the “algebra” of ideals of a ring R.
We note first that the intersection of any set of ideals in R is
an ideal. This is immediate from the definition. If S is a subset
of R then the intersection (S) of all ideals of R containing §
(non-vacuous, since R is such an ideal) is an ideal containing
S

and is contained in every ideal containing S. We call (S) the
ideal generated by S. If S 1s a finite set, {a1, a2, ..., an}, then
we write (al, az, ..., an) for (S). It is not easy to write down all
the elements of this ideal. It is clear first that it contains all
finite sums of products of the form xa;y where x, y € R and
there is no way of combining xa;y + x'a;y" into a single term.
Thus we see that to indicate explicitly all the elements of the
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ideal (a1, a2, ..., an) we must consider all elements of the
form

(18) X @ Vi, + Y X2i@a¥ai, + 0+ Y Xe GV,

Now it is clear that the set / of elements of the form (18) is an
ideal. It is clear also that / contains every a; = la;l. Hence

I ={a,a,,...,a,)

If 7 and J are ideals we denote the ideal generated by / U J as
I+ J. We claim that this is the set K of elements of the form a
+b,a € I, b € J. This is clear since K is an ideal containing /
and J and is contained in every ideal containing / and J.
Another important ideal associated with / and J is the product
1J, defined to be the ideal generated by all the products ab, a
e I, b € J. It is easily seen that IJ coincides with the set of
elements of the form a1 b1 + a2 by + ... + am by where a; € I,
bi e J.

Sometimes we need to consider a sequence of ideals 11, 12, ...
such that /1 < Io < .... We call this an ascending chain of

ideals. 1t is useful to observe that for such a chain, U Ij is an

ideal. It suffices to show that U]J is closed under subtraction
and under left and right multiplication by arbitrary elements

of R. To see the first, let a, b € UI] Then a € Ij for some j
and b € I for some k. If [ is the greater of j and & then both a
and b are in /). Hence a — b € Ij since 7 is an ideal. Also xa

and ax € [j foranyx € R. Thusa - b € UI and xa, ax € UI]
for any g and b in UIJ and any x € R. Then \JJ; is an ideal.
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If R is commutative, our description of the elements of (ai, a2,
..., ap simplifies considerably: namely, this ideal is the set of
elements of the form 31" xjai(= ¥1" aix;), xi € R. This is clear
from (18). In particular, the ideal (a) generated by a is the set
of elements xa, x € R. This is called the principal ideal
generated by a.

We can give a neat characterization of fields in terms of
ideals: namely, we have

THEOREM 2.2. Let R be a commutative ring # 0. Then R is
a field if and only if the only ideals in R are R (= (1)) and 0 (

=(0).

Proof. Suppose R is a division ring and / is a non-zero ideal
mR. Ifa#0

isin 7 then sois 1 = aa . It is clear that the only ideal of a
ring containing 1 is R (since / will then contain every x = xl).
Hence /= R. This proves that the only ideals in a division ring
are 0 and R. In particular this holds for fields. Conversely,
suppose that R is a commutative ring # 0 whose only ideals
are 0 and R. If a # 0 is in R then (a) # 0, so (a) = R. It follows
that 1 € (a) and hence there is an x € R such that ax = 1. Thus
every non-zero element of R is invertible and R is a field. [J

EXERCISES

1. Let I be the ring of real-valued continuous functions on [0,
1] (example 8, p. 87). Let S be a subset of [0, 1] and let Zs =

{f|fx) = 0, x € S}. Verify that Z is an ideal. Let S1 = [0, 1],
S$h = [i, 11,11 = Zs1, I» = Zs2. Show that I1/2 =11 N I = 0.
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2. Show that the associative law holds for products of ideals:
(UK =I(JK) if I, J, and K are ideals.

3. Does the distributive law, I(J + K) = IJ + IK hold?

4. If R is a ring we define a right (left) ideal in R to be a
subgroup of the additive group of R such that ba € I (ab € I)

for every a € R, b € 1. Verify that the subset of matrices of
00

the form (“' b) is a right ideal and the subset of the form

a ﬂ)
(h 0/ is a left ideal in M2(R) for any R. Are either of these
sets ideals?

5. Prove the following extension of Theorem 2.2. A ring R #0
is a division ring if and only if 0 and R are the only left (right)
ideals in R.

6. Let R be a commutative ring and let N denote the set of
nilpotent elements of R. Show that N is an ideal and R/N
contains no non-zero nilpotent elements.

7. Let I be an ideal in R, U the group of units of R. Let U] be
the subset of elements a € U such that a = 1 (mod /). Show
that U1 is a normal subgroup of U.
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8. Let / be an ideal in R and let My (/) denote the set of n x n
matrices with entries in /. Show that Mjy(/) is an ideal in
Myu(R). Prove that every ideal in Mu(R) has the form Myu(/) for
some ideal / of R, and that / — Mjy(J) is a bijective map of the
set of ideals of R onto the set of ideals of Mu(R).

2.6 IDEALS AND QUOTIENT RINGS FOR 2

After the generalities of the last section we now consider the
ideals of Z and their corresponding quoyient rings 2//. This
will lead us to some interesting number theoretic results.

As we have seen in section 1.5 and again in section 1.10, the
subgroups of the additive group (Z, +, 0) are the cyclic groups
(k> where k is a nonnegative integer. Since k> = {xklx € Z}
it is clear that <k is the same thing as the principal ideal (k)
of multiples of £. Since any ideal is a subgroup it follows that
every ideal in Z is a principal ideal. Now it is clear that (/) ©
(k) if and only if k£ € (/), hence, if and only if k = Im, m € Z.
Thus the inclusion relation (/) o (k) for the principal ideals (/),
(k) 1is equivalent to the divisibility condition /|k. A
consequence of this is that if m, n € Z and (m, n) denotes
theideal generated by m and n, then (m, n) = (d) where d is a
g.c.d. of m and n.Since (m, n) > (m) and (n), we have djm and
d|n. On the other hand, if e|m and e|n then (¢) > (m) and (e) ©
(n). Then (e) o (m, n) = (d) so e|d. Similarly, we see that (m)
N (n) = ([m, n]) where [m, n] is a least common multiple of m
and n.

We look next at the quotient ring Z/(k), which is called the
ring of residues modulo k. Since (k) = (— k) we may assume k
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> 0. If k=0, then &/(k) can be identified with Z, and if £ > 0,
the elements of Z/(k) are the k cosets

O=k,T=1+(kh2=2+(k)..., k—=1=k—1+ (k)

Suppose first that & is composite: k = /m, [> 1, m > 1. Then !
+ 0 and m # 0 in 2/(k) but Im = k = 0. Thus 2/(k) has
non-zero zero divisors if k is composite. Next let £ = p be a
prime. In this case every a+£0in Z/(p) 1s invertible. Since Z
/(k) is commutative ( 5_5 ab=ba=pa ), it follows that Z/(p)
is a field. Given @ # 0, then pJfa and 1 is a g.c.d. of p and a.
Hence we have integers x and y such that ax + py = 1. Then 1
= @x T py=7ax + P¥Y = A% Hence A is invertible with ¥ as
inverse.

These simple results are important enough to state as a
theorem.

THEOREM 2.3. The ring Z/(k) for k composite is not a
domain. On the other hand, Z/(p) for p prime is a field.

We shall now determine the group U(Z/(k)) of units of (2/(k).
If £ =0 then these are 1 and — 1. If £ > 0 we have

THEOREM 2.4. The group U((Z/(k)), k > 0, consists of the

classes @ = q + (k) such that a and k are relatively prime
(that is, have 1 as g.c.d.).

Proof. If (a, k) = 1 (equivalently: the ideal (a, k) = (1)), then
we have integers x and y such that ax + ky = 1. Then @ % = 1,
so @ is invertible. Conversely, if @b =T, then ab=T1, so ab
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=1 + mk, m € I Clearly this equation shows that any
common divisor of a and &k divides 1. Hence a and k are
relatively prime. [J

The foregoing result shows that |U(Z/(k))| is the number ¢(k)
of positive integers less than k£ and relatively prime to k. The
function ¢ of positive integers thus defined is called the Euler
p-function (see exercises 4, p. 47). For example, if k= 12, the

units of Z/(k) are -f, 5, ?, ﬁ, and thus ¢(12) = 4. In the next
section we shall indicate in an exercise a formula for
computing ¢(k) from the factorization of & into primes. At this
point we note that if p is a prime, then it is clear from the
definition that p(p) = p — 1. Also it is easy to see that ¢p(p€) =

p-p° " =p1-1p).

We recall that is G is a finite group, then a% =1 for every a
€ G. A consequence of this result and Theorem 2.4 is that if

(a, k) =1, then a2 = 1. The usual way of stating this result
is

THEOREM 2.5. (Euler.) If a is an integer prime to the
positive integer k, then a?® =1 (mod k).

For k = p a prime this reduces to an earlier result due to
Fermat.

COROLLARY. If p is a prime and a is an integer not
divisible by p then a@® ~ 1 =1 (mod p).

This result can also be stated in a slightly different form,

namely, that & = a (mod p). This holds for all a since it is
trivial if @ is divisible by p. On the other hand, if &’ = a (mod
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p) and a # 0 (mod p), then a” ~ I=1 (mod p) by cancellation.
Hence the two statements are equivalent.

EXERCISES

1. Write down addition and multiplication tables for Z/(5) and
for Z/(6).

2. Show that Z/(k) contains non-zero nilpotent elements (' =
0, z # 0) if and only if £ is divisible by the square of a prime.
Determine the nilpotent elements of 2/(180).

3. Prove that if D is a finite division ring then aP' = a for
every a € D.

4. Let A € GL2(Z/(p)) (that is, A4 is an invertible 2 x 2 matrix
with entries in Z/(p)). Show that 49 = 1 if ¢ = (p* — 1)(p* - p).
Show also that 49 " 2 = 42 for every A € Ma(2/(p)).

a U
5. Let T denote the set of triangular matrices (h ") where a,
b, ¢ € 1. Verify that T is a subring of M2(Z). Determine the
ideals of 7.
2.7 HOMOMORPHISMS OF RINGS. BASIC THEOREMS

In this section we define homomorphism for rings and derive
their basic properties. Everything will follow from our earlier
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results on homomorphisms of monoids and of groups (in
sections 1.9 and 1.10) since our starting point is

DEFINITION 2.3. 4 homomorphism of a ring R into a ring
R' is a map of R into R' which is a homomorphism of both the
additive group and the multiplicative monoid of R into the
corresponding objects of R'.

Recalling that # is a homomorphism of a group G into a group
G' if n(ab) = n(a)n(b), we see that the conditions that a map #
of aring R into a ring R" is a homomorphism are

nla + b) = nla) 4+ nib), mab) = nlam(b), nl)=1

where 1’ is the unit of R'. If [ is an ideal in R we have the
corresponding congruence in R and the quotient ring R = R/I.

Also we have the natural map v : @ — @. This is an
epimorphism for the additive groups and the multiplicative
monoids, hence it is an epimorphism (= surjective
homomorphism) of the ring R onto the ring R. As in the case
of groups, we call K = 75 1(O’) the kernel of the
homomorphism # of R (0’ the zero element of R'). Since a = b
(mod K)— that is, a — b € K—is a congruence, the result of
section 2.5 shows that K is an ideal in R (a fact, which can be
verified directly also). The homomorphism # is a
monomorphism (= injective homomorphism) if and only if
the kernel is 0. It is clear also that the image under a
homomorphism of R into R’ is a subring of R’ since it is a
subgroup of the additive group of R’ as well as a submonoid
of the multiplicative monoid.
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Now suppose # is a homomorphism of the ring R into the ring
R’ and [ is an ideal contained in the kernel of #. Then we
know that

ia=a+I—nla)

is a group and a monoid homomorphism, hence it is a ring
homomorphism. We call 1 the induced (ring) homomorphism
of R/I into R'. It is clear that we

have the commutativity of

n

1

R/

and % is the only homomorphism from R// to R’ making this
diagram commutative. Also 7 is a monomorphism if and only
if 7 coincides with the kernel of #. In this case we have the

FUNDAMENTAL THEOREM OF HOMOMORPHISMS OF
RINGS.

Let n be a homomorphism of a ring R into a ring R', K =n
1(O’) the kernel. Then K is an ideal in R and we have a unique
homomorphism M of R/K into R' such that n = "v where v is
the natural homomorphism of R into R/K. Moreover, v is an
epimorphism and "l is a monomorphism.
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This, of course, has the immediate

COROLLARY. Any homomorphic image of a ring R is
isomorphic to a quotient ring R/K of R by an ideal K.

The subgroup correspondence of a group and a homomorphic
image given in Theorem 1.8’ is applicable to rings via their
additive groups. The result for rings is

THEOREM 2.6. Let n be an epimorphism of a ring R onto a
ring R', K the kernel. Then in the 1-1 correspondence of the
set of subgroups H of (R, +, 0) containing K with the set of
subgroups of R' pairing H with y(H), H is a subring (ideal) if
and only if n(H) is a subring (ideal) of R'. Moreover, if [ is an
ideal of R containing K then

(19) a+l-na+1, I =n

is an isomorphism of R/I with R'/I'.

Proof. Since the image under a homomorphism is a subring
it is clear that if H is a subring of R then #(H) is a subring of
R'. If H is an ideal in R, then n(H) is a subgroup of the
additive group of R". If 1 € H and x’' € R’ then there exists an
x such that n(x) = x". Hence n(h)x" = n(h)n(x) = n(hx) € n(H)
and similarly x'n(h) € n(H). Hence n(H) is an ideal. If A" is a
subring (ideal) in R' then 7 1(H’) is a subgroup of the
additive group of R and it is immediate that this is a subring
(ideal) of R. It follows that the 1-1 correspondence between
the set of subgroups of the additive group of R containing K
with the set of subgroups of R" induces 1-1 correspondences
between the sets of subrings and also between the sets of
ideals contained in the two sets of subgroups. Also we know
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from the group result that (19) is an isomorphism of the
additive groups of R/ and R'/I' if I is an ideal in R containing
K and I' = 5(I). Since

(@+ Db+ 1)=ab + 1 - nlab) + I' = niam(b) + I'
= (n(a) + I')(n(b) + I')

(19) is a ring isomorphism. [

The isomorphism of R/I and R'/I' given in the foregoing
theorem is sometimes called the first isomorphism theorem
for rings. We also have, as we have for groups, the

SECOND ISOMORPHISM THEOREM FOR RINGS. Let R
be a ring, S a subring, I an ideal in R. Then S+ 1= {s + i|s
S, i € I} is a subring of R containing I as an ideal, S N I is an
ideal in S, and we have the isomorphism

(20) s+ I—=s+(8Snl), SES
of (S + I)/I with S/(S N ).

Proof. Direct verification shows that S + [ is a subring.
Obviously 7 is an ideal in S + 1. We have the homomorphism s
— s + [ of § into R/l which is the restriction to S of the natural
homomorphism of R into R/I. The image is clearly (S + I)/I
and the kernel is the set of s such that s + /= /. This is the set
S N I. Hence we have the isomorphism s + (S N /) — s + [ of
S/(S N I) into (S + I)/I. The isomorphism (20) is the inverse of
this map. [J
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We shall now apply the fundamental homomorphism theorem
of rings to identify the smallest subring of a given ring R, that
is, the subring generated by

1. We shall call this the prime ring of R (though it may have
nothing to do with primes). For our purpose we need to use
the ring of integers Z with unit 1 and

for the moment it will be clearer if we use a different symbol,
say e, for the unit of R. Consider the map n — ne, n € Z, of Z
into R. Since

(n 4+ me = ne + me

(nm)e = (nm)e? = (ne)(me)

hold in R (see section 2.1) and 1 — e, our map is a
homomorphism of Z into R. The image Ze = {neln € Z} is
therefore a subring of R. Moreover, if S is any subring of R
then e € S and so Ze — S. Hence it is clear that Ze is the prime
ring. Our homomorphism can also be regarded as one into Ze,
in which case it is an epimorphism. Consequently Ze = Z/K
for some ideal K in Z and we know that K = (k), k> 0. If k=0
we have Ze = Z and if k£ > 0 then Ze is isomorphic to the ring
of residues modulo k. We can now safely shift back to the
notation 1 for the unit of R and we can identify the prime ring
with the ring Z or 2/(k) to which it is isomorphic. With this
understanding we have the following

THEOREM 2.7. The prime ring of a ring R is either I or the
ring ¥/(k) of residues modulo some k> 0.

We recall that if k£ is composite then Z/(k) has non-zero zero
divisors. Hence if R is a domain then the prime ring is either Z
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or Z/(p) for some prime p. We shall say that R is of
characteristic k if its prime ring is Z/(k), k > 0 (so that Z/(0) =
Z). Hence for a domain the characteristic is either O or a prime
p- We remark also that if the characteristic of a ring is £ > 0
then ka = (kl)a = 0 for all a in the ring. Clearly, k is the
smallest positive integer having this property.

EXERCISES

1. Prove that if # is a homomorphism of the ring R into the
ring R' and { is a homomorphism of R’ into R” then {7 is a
homomorphism of R into R"”

2. Show that if u is a unit in R and # is a homomorphism of R
into R’ then #(u) is a unit in R'. Suppose # is an epimorphism.
Does this imply that # is an epimorphism of the group of units
of R onto the group of units of R'?

3. Let I be an ideal in R, n a positive integer. Apply the
fundamental theorem on homomorphisms to prove that
Mn(R)/Mn(I) = Mn(R/I).

4. Show that if R is a commutative ring of prime characteristic
p then a — a” is an endomorphism of R ( = homomorphism
of R into R). Is this an automorphism?

5. Let F be a finite field of characteristic p (a prime). Show
that p — 1||F] — 1. Hence conclude that if |F] is even then the
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characteristic is two. (We shall see later that |F] is a power of
p)

6. A ring R is simple if R # 0 and R and 0 are the only ideals
in R. Show that the characteristic of a simple ring is either 0
or a prime p.

7. If S is a subset of a ring (field) R then the subring (subfield)
generated by S is defined to be the intersection of all the
subrings (subfields) containing S. If this is R itself then S is
called a set of generators of the ring R (field R). Show that if
n1 and 72 are homomorphisms of the ring R (field R) into a
second ring (field) and #1(s) = n2(s) for every s in a set of
generators of the ring R (field R) then # = n2.

8. Show that every homomorphism of a division ring into a
ring R # 0 is a monomorphism.

9.If R1, R2, ..., Ry are rings we define the direct sum R1 © R
@ ... Ry as for monoids and groups. The underlying set is R =
R1 X Ry X ... X Ry. Addition, multiplication, 0, and 1 are
defined by

(ay, a3 ...,a8,)+ (b, by ..., b ={a, + by, a; + by,...,a,+b,)
(@, a3, ... 8 (b, by .0\ b,) = (a\by, ash,, ..., ab,)
0=(0,,0,..., 0,)
1=(1,,13.... L)
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0i, 1; the zero and unit of R;. Verify that R is a ring. Show that
the units of R are the elements (u1, u2, ..., un), u; a unit of R;.
Hence show that if U = U(R) and U; = U(R;) then U = Uj %
Uz x ... x Up, the direct product of the Uj, and that |U| = I1|Uj|
if the U; are finite.

10. (Chinese remainder theorem). Let /1 and /2 be ideals of a
ring R which are relatively prime in the sense that I1 + Io = R.
Show that if a1 and a2 are elements of R then there exists an a
€ R such that a = a; (mod /;). More generally, show that if /1,
..., Im are ideals such that /; + ﬂk #ilk =R for 1 <j <m, then
for any (al, a2, ..., am), ai € R, there exists an a € R such that
a = aj (mod Ix) for all £.

11. Use the Chinese remainder theorem and the fundamental
theorem of homomorphisms to show that if /1 and /2 are
relatively prime ideals and /=11 N Iz then R/I = R/I1 @ R/I.

12. Use exercise 11 to prove that if m and n are relatively
prime integers then p(mn) = p(m)p(n), ¢ the Euler p-function
p. 105). Show also that if p is a prime then p(p°) = p® — P° ™~
. Hence prove that if n = p1°! p2®? ... p;’, p;i distinct primes,
then

r F l
pm) =[] (p*—p" )= nﬂ(l - —).
= 1

i=1
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13. Show that the only ring homomorphism of R into R is the
identity.

14. Let R be the ring of real-valued continuous functions on
[0, 1] (example 8, p. 87). Note that if 0 < ¢# < 1 then the
evaluation map 7 : f — f(¢) is a homomorphism of R into F.
Show that any homomorphism # of R into R is of this form.
(Hint: If n # n¢ there is an f; € R such that n(f) # ndfr) = fi(¢).
Then gt = ft — 5n(fy)1 € R and g«¢) # 0 but 5(gs) = 0. Show that
there exist a finite number of # such that g(x) =3 gtlz # 0 for
all x. Then g~ e Rbut n(g)=0.)

15. Define a maximal ideal of a ring R to be a proper ideal /
such that there exists no proper ideal /' such that 'I" # I. Show
that an ideal / of a commutative ring R is maximal if and only
if R/I is a field.

16. Define a prime ideal I of a commutative ring R by the
conditions: / # R and if ab € [ then either a € T or b € I
Show that if / is maximal then / is prime.

17. Determine the ideals and the maximal ideals and prime
ideals of Z/(60).

2.8 ANTI-ISOMORPHISMS

Let R be a commutative ring, My(R) the ring of n X n matrices

with entries in R. If 4 = (ajj) € Mu(R) we define the transpose
of A (or transposed matrix) ‘A to be the matrix having aji as
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its (i, j)-entry. This means that ’4 is obtained by reflecting the
elements of 4 in its main diagonal. For example, if

l 2 3
.,1._(1 L
5 -1 [{]

-y

li
ad b -
- D
=

It is clear that ("4) = 4, so 4 — 4 is bijective. Also, if 4 =
(aij) and B = (bjj) then A + B = (ajj + bjj), so (4 + B) has aji +
bji as its (i, j)-entry. Hence (4 + B) = '4 + 'B Thus the
transpose map ¢ : A — ‘A is an automorphism of the additive
group of Myu(R). Clearly ‘1 = 1. Now consider P = 4B whose
(i, j)-entry is pjj = >k = 1aikbkj. Hence the (i, j)-entry of P is
"k =1 ajkbki. On the other hand, the (i, j)-entry of ‘B'4 is "'k
= 1 briajk = X"k = 1ajkbki, since R is commutative. We have
shown that

(21) (AB) = ('B)('A).

A map x — x* of a ring R into itself which is an
automorphism of the additive group, sends 1 into 1 and
reverses the order of multiplication: (xy)* = y*x™* is

called an anti-automorphism of R. If, in addition, x** =x, x €
R, then the map is called an involution. Our calculations show
that this is the case with the transpose map in Mu(R), R
commutative.
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Another important instance of an involution is the map

(22) X=g+oyi+oyf+a k=%
=ty — 8,0 — &3] — a3k, x el

in Hamilton’s quaternion algebra H. This can be verified
directly or it can be deduced from the anti-automorphic
character of the transpose map, as we proceed to show. We
observe first that if u is an invertible element of a ring then
the map x — wuxu is an automorphism. As in the case of
groups, such automorphisms are called inner automorphisms.
We note next that if we compose an automorphism with an
anti-automorphism in either order the result is an
anti-automorphism. As a consequence of these two remarks
we see that the map

a b 0 —1\fa ¢ 01y [ d b=ad'ah
e )"\t o)\ aJ\-1 o)\ ¢ a/F N\ 4
is an anti-automorphism in M2(R). Moreover, the formula for

(ﬂ' h) (ﬂ' h) (ﬂ' h)
adi\¢ 4/ shows that adj(adj\¢ 4/) = \¢ d/ Hence the

“adj” map is an involution. We now specialize R = € and we
refer back to the definition of H as the subring of M2(€) of
a b

matrices of the form (_ b a). We recall also the definitions
of i, ], k as

() () (s
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Then adj i = — i, adj j = — j, and adj k = — k. Thus the
involution x — adj x in €2 stabilizes H and induces the
involution x — X, as in (22), in H.

A map x — x' of a ring R into a ring R' is called an
anti-isomorphism if it is an isomorphism for the additive
groups and satisfies

(23) (xy) = y'X/, | = 1’, the unit of R",

If such a map exists, then R and R’ are said to be
anti-isomorphic. It is sometimes useful to have a ring which
is anti-isomorphic to a given ring R. Such a ring can be
constructed easily. To do this we take the same underlying set
R, the same +, 1 and 0, but we define a new product by
simply reversing the

factors and then multiplying as in R. Denoting this product as
a % b we have the definition:

(24) ax b=bhg

Then

(@ x b) % ¢c=bax¢=celba)
ax(bxe)=axch=(cha
and

axbhb+e)=b+cha=ha+ca=axb+axc

(b+c)xa=alb+cl=ab+ac=bxa+rc xa
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Alsoax1=la=a=al=1 % a. Hence (R, +, X,0, 1)is a
ring. To dlstmgulsh this from R = (R, +, -, 0 1) we shall
denote it as R’ (read “R opposite”) and call it the opposite
(ring) of R. It is clear that the identity map is an
anti-isomorphism of R and RO, Also any antl isomorphism of
R is the same thing as an isomorphism of R,

EXERCISES

1. Show that the identity map in R is an anti-automorphism if
and only if R is commutative.

2. Show that x = ao + a1i + a2j + a3k — x* = ap — a1i + ayj +
a3k 1s an involution in H.

3. Let x — x' be an anti-isomorphism of R onto R'. If 4 = (aij)
let A* = t(a'ij). Verify that 4 — A4* is an anti-isomorphism of
Myu(R) onto Mu(R").

4. Let a — a* be an anti-automorphism of a ring R. Let H =
{h|h* = h} (called symmetric or *-symmetric elements) and K
= {klk* = — k} (called skew or *-skew elements). Verify that H
and K are subgroups of the additive group of R. Define {ab}
=ab + ba and [ab] = ab — ba. Show that if a, b, ¢, € H then so
do

aba, a" for n e N, {ab}, abe + cba, [[ab]c]
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and that [ab] € K. Show that if a, b € K then [ab] € K and if
a € Hand b € K then [ab] € H.

5. Let

010
wu=|0 0 1
000

in M3(Q) and let

u 0 0 1
X == ) m—
o «) ""\o o

where u is as indicated and 0 and 1 are the 0 and unit matrices
in M3(Q). Hence x, y € Ms(Q). Verify the following relations

*=0=), px=x%

Let R be the subring of Me(d) generated by @, x and y. Show
that every element of R has the form f{x) + g(x)y where fix) =
a+bx+ cxz, gx)=a +bx+c'x*,and a, b, c,a’, b, c' € Q,
and that (1, x, xz, V, VX, yx2) is a base for R as vector space
over Q. Show that if x’ is a nilpotent element of R and )" is an
element of R such that y'2 = 0, then y’x’2 = 0. Hence conclude
that R has no antiautomorphisms.

6. Define anti-homomorphism of a ring R into a ring R’ to be a
map 7 which is a homomorphism of the additive group of R
into R sending 1 into 1 (for 1") and satistying #n(ab) =
n(b)n(a). Verify that the composite of a homomorphism
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(antihomomorphism) and an anti-homomorphism
(homomorphism) is an anti-homomorphism and the
composite of two anti-homomorphisms is a homomorphism.

7. Define a Jordan homomorphism n of a ring R into a ring R’
by the conditions: # is an additive group homomorphism, 7(1)
= 1, and n(aba) = n(a)n(b)n(a). Show that any
homomorphism or anti-homomorphism is a Jordan
homomorphism. Show that Jordan homomorphisms satisfy:

ma) = nla, k e M
mabe + cha) = nlamibwmic) + nicmibmia)
nlab + ba) = nla)nib) + nibmia).

8. (Jacobson and Rickart.) Show that if # is a Jordan
homomorphism of a ring R into a domain D then for any a, b

€ R either n(ab) = n(a)n(b) or n(ab) = n(b)n(a).

9. (Hua.) Let n be a mapping of a ring R into a ring R’ such
that n(a + b) = n(a) + n(b), n(1) = 1, and for any a, b in R
either n(ab) = n(a)n(b) or n(ab) = n(b)n(a). Prove that 5 is
either a homomorphism or anti-homomorphism.

10. (Jacobson and Rickart.) Prove that any Jordan
homomorphism of a ring into a domain is either a
homomorphism or an anti-homomorphism.
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11. (Hua.) Let # be a map of a division ring D into a division
ring D' satisfying the following conditions: (i) # is a
homomorphism of the additive groups, (ii) #(1) = 1', (iii) if a
# 0 then n7(a) # 0 and 5(a) = n(a ). Show that 7 is either a
homomorphism or an anti-homomorphism. (Hint: Use Hua’s
identity, exercise 9, p. 92).

2.9 FIELD OF FRACTIONS OF A COMMUTATIVE
DOMAIN

We have seen that any subring of a division ring is a domain.
It is natural to ask if the converse holds: namely, can every
domain be imbedded in a division ring? By this we mean:
given domain D, does there exist a monomorphism of D into
some division ring F? If this were the case then D would be
isomorphic to a subring D’ of F, so that by identifying D with
D' we could regard D as a subring of the division ring F. The
question we have raised was an open one for some time until
it was answered in the negative by A. Malcev, who gave the
first example of a domain which cannot be imbedded in a
division ring. We shall indicate Malcev’s example in some
exercises below. Our main concern in this section will be in
the most important positive result in this direction, namely,
that every commutative domain can be imbedded in a field.
The method for doing this is exactly the familiar one that is
used to construct the field of rational numbers from the ring
of integers. To understand why it works it will be well to look
first at the relation between a subring D of a field and the
subfield F generated by D.

Accordingly, we suppose we have a subring D of a field. Let

F be the subfield generated by D. What are the elements of F?
First it is clear that if a, b € D and b # 0 then ab e F. We
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now make the important observation that F is just the set of
elements of this form. First, the following equations show that

{ab '|a,be D, b +# 0}

is a subfield of the given field:

ab™ ' +ecd '=adb 'd ' + cbb'd" ! = (ad + be)bd) !
0=0b""
—abt = (—a)p!
(ab™Wed ™ ") = ach™'d™! = ac(bd)™!

1l=agg!

(@b YY" '=bhat if a#0.

(It should be noted that commutativity of multiplication is
used in several places in these calculations.) Since F' is
generated by D, no subfield of F' different from F contains D,
and since the set of {ab 1} contains D as the subset of
elements al | = a, it is clear that

(25) F={ab~"|a,beD,b+0}

One more question needs to be raised. When do we have
equality, ab I'= ¢d” 1, for the elements of the set we have
determined? It is clear that this is the case if and only if ad =
bec, since this relation follows from ab U ed Vif we
multiply both sides by bd, and ab V= cd ! results if we
multiply both sides of ad = be by (bd) .
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Suppose now that we are given a commutative domain D. We
wish to imbed D in a field. The foregoing remarks indicate
that if this can be done, then the elements of a minimal field
extension of D are to be obtained from the pairs (a, b), a, b €
D, b #0. We have in mind that (a, b) is to play the role of ab
| Hence we adopt the following procedure, which is
suggested by the foregoing considerations.

Let D* denote the set of non-zero elements of D. Then D* #
@ since D # 0. We consider the product set D x D* of pairs
(a, b), a € D, b € D* and we introduce a relation ~ in D x D*
by defining (a, b) ~ (c, d) if and only if ad = bc. Then (a, b) ~
(a, b) since ab = ba, and if (a, b) ~ (¢, d), then ad = bc; hence
c¢b =da, and so (¢, d) ~ (a, b). Finally, if (a, b) ~ (¢, d) and (c,
d) ~ (e, f) then ad = bc and cf = de. Hence adf = bcf = bde.
Since d # 0 and D is commutative, d may be cancelled to give
af = be, which is the condition that (a, b) ~ (e, f). We have
therefore proved that ~ is an equivalence relation. We shall
call the equivalence class determined by (a, b) the fraction (or
quotient) a/b. Thus we have a/b = c¢/d if and only if ad = bc.
Let F = {a/b} the quotient set determined by our equivalence
relation in D x D*,

We shall now introduce an addition, multiplication, 0, and 1
in F to make F a field. We note first that if a/b and c/d are
two fractions, then bd # 0 since b # 0 and d # 0. Hence we
can form the fraction (ad + bc)/bd. Moreover, if a/b = a'/b’
and c¢/d = c'/d', then

(26) (ad + be)bd = (a'd + b'c')/b'd',

for, by assumption, ab’ = ba' and cd' = dc'. Hence
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ab'dd' = ba'dd’ and cd'bb' = dc'bb
so that

ab'dd’ + ed'bb’ = ba'dd" + dc'bb’

or

(ad + be)b'd’ = (a'd’ + b'c')bd,

which implies (26). It is now clear that

(27) a/b + ¢/d = (ad + be)/bd

defines a (single-valued) composition + in F. Similarly we see
that if a/b and c¢/d are fractions then so is ac/bd. Moreover, if
a/b = a'/b" and c/d = ¢'/d’, then ab’ = ba' and cd' = c'd, so
ab'cd' = ba'c'd. Hence ac/bd = a'c'/b'd' and so

(28) (a/b)c/d) = ac/bd

defines a (single-valued) multiplication in F. If we put 0 = 0/1
and 1 = 1/1 we obtain a/b + 0 = a/b + 0/1 = (al + b0)/bl = a/b
and similarly 0 + a/b = a/b. Also (a/b)l = a/b = 1(a/b). A
straightforward verification, which is left to the reader, will
show that (F, +, -, 0, 1) is a commutative ring. Now suppose
a/b# 0. Then a # 0, since 0/b = 0/1 by 01 = 0 = 0b. Hence b/a
is a fraction and (a/b)(b/a) = ab/ab = 1/1 = 1. Thus a/b has the
inverse (a/b) !'= b/a and hence F is a field.

We now consider the map

(29) a-—afl
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of D into F. Clearly this maps 0 into 0, 1 into 1; anda + b —
(a+b)/1=a/l+b/1 and ab — ab/1 = (a/l)(b/1). Hence (29) is
a homomorphism. If /1 =0 = 0/1 then al =10 =0, so a = 0.
Hence the kernel is 0 and (29) is a monomorphism.

We have therefore proved the following

THEOREM 2.8. Any commutative domain can be imbedded
in a field.

We shall now identify a with a/1 (just as we identify the
integer a with the rational number a/1). Then D is identified
with a subring of F. Moreover, for any element alb of F we
have a/b = (a/l)(I/b) = (a/l)(b/1) ~ = ab (because of our
identification). Thus it is clear that D generates the field F.
We shall call F the field of fractions of D. The basic
homomorphism property of this field is given in

THEOREM 2.9. Let D be a commutative domain, F its field
of fractions. Then any monomorphism np of D into a field F'
has a unique extension to a monomorphism of nr of F into F".

Proof. We indicate np as a — a'. We shall prove first that if
np can be extended to a homomorphism #r of F into F' then
this can be done in only one way. In other words, we settle
the umqueness questlon first. Now this part is clear, since if b
#0then b ~ — (b)) ! under nr. Hence ab ' S a (b)
under 7F. Since every element of F can be written as ab
follows that NF s determmed to be the

map ab = — a'(b') It is now clear that our task is to show
that ab~ ! — a ‘(') ° is a well-defined map and is a
monomorphism of F into F’ which extends nD. To prove that
this defines a map we assume that ab * = =cd . Then we
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have ad = bc and consequently a'd’ = b'c’ in F'. Hence a’gb’)_
U= ¢(@y . This shows that ab~ ' — a) ! is
single-valued. Next we check the homomorphism property.
This follows from the following calculations in which a, b, c,
deDand b#0,d+#0.

ab ! 4+ ed™ ! = (ad + be)bd)™ ! = (ad + be)((bd)) !
=(a'd" + b')Nb) Hd) !
=d'(b)" " 4+ c(d)!

aclbd)™ ' = a'c'(b)y Yd') !

(@' (b)) "Nc'(d) ")

{ab™ "Ned )

It is clear also that 1 — 1’, the unit of F”, since D and F have
the same unit and #p is a homomorphism. We note next that
ab” ! — ab) I'is an extension of nD since it maps a = al !
—al) I'= &', We have seen that any homomorphism of a
field is a monomorphism (exercise 8, p. 110). Hence we have
proved that #p can be extended to a monomorphism %z of F,
and we saw at the outset that this is unique. [

EXERCISES
1. What is the field of fractions of a field?

2. Show that if D is a domain and F1 and F? are fields such
that D is a subring of each and each is generated by D, then
there is a unique isomorphism of Fi onto F2 that is the
identity map on D.
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3. Show that any commutative monoid satisfying the
cancellation law (ab = ac = b = ¢) can be imbedded in an
abelian group.

4. Show that if ¢” = b and &" = b", for m and n relatively
prime positive integers, and a and b in a commutative
domain, then a = b.

5. Let R be a commutative ring, and S a submonoid of the
multiplicative monoid of R. In R x § define (a, s) ~ (b, ?) if
there exists a u € S such that u(at — bs) = 0. Show that this is
an equivalence relation in R x S. Denote the equivalence class
of (a, s) as a/s and the quotient set consisting of these classes
as RS . Show that

RS ! becomes a ring relative to

a/s + bft = (at + bs)/st
{a/sWb/t) = ah/st
0=0/1
1=IfL
Show that a — a/1 is a homomorphism of R into RS Iand
that this is a monomorphism if and only if no element of S'is a

Z€ero di\llisor in R. Show that the elements s/1, s € S, are units
inRS .

6. (Ore.) Let D be a domain (not necessarily commutative)
having the right common multiple property that any two
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non-zero elements a, b € D have a non-zero right common
multiple m = ab1 = bai. Consider D x D*, D* the set of
non-zero elements of D, and define (a, b) ~ (c, d) if for b1 # 0
and d1 # 0 such that bd1 = db1 we have adi = ¢b1. Show that
this is independent of the choice of b1, d1 and that ~ is an
equivalence relation in D x D*. Let F denote the set of
equivalence classes a/b. Show that ' becomes a division ring
relative to a/b + c/d = (ad1 + cb1)/m where m = bd1 = db1 # 0,
0=0/1,1=1/1, (a/b)(c/d) = ac1/db1 where b1 # 0 and ch1 =
bc1. Show that a — a/l is a monomorphism of D into ' and F
is the set of elements (a/l)(b/1) 1, a,be D,b#0.

7. (Malcev.) Show that if a;, bi, 1 <i < 4, are elements of a
group satisfying the relations a1a2 = a3ba, a1b2 = a3zbs, biraz
= b3a4, then b1b2 = b3ba. Let W be the free monoid generated
by elements a;, bi, 1 < i < 4 (see p. 68), and let = be the
smallest congruence relation ( = intersection of all congruence
relations) in W containing the elements (a1a2, a3as4), (ai1b2,
azba), (b1az, b3as). Let S = W/ =. Show that S satisfies the
cancellation laws but that S cannot be imbedded in a group.

8. (Malcev.) Let Z[S] be the set of integral linear
combinations of the elements of the monoid S of exercise 7
with the obvious definitions of equality, addition,
multiplication, 0, and 1 (see exercise 8, p. 127). Show that 2
[S] is a domain that cannot be imbedded in a division ring.

2.10 POLYNOMIAL RINGS

For the remainder of this chapter—except in section 2.17 and
in an occasional exercise—all rings will be commutative and
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the word “ring” will be synonymous with “commutative
ring.”

One is often interested in studying a ring R’ relative to a given
subring R. In this connection we wish to consider subrings of
R’ generated by R and subsets U of R'. Such a subring will be
denoted as R[U] and will be called the subring obtained by
“adjoining” the subset U to the subring R. If V' is a second
subset then R[U][V] is the subring obtained by adjoining V to
the subring R[U]. We claim that this coincides with R[U U V],
the subring of R’ resulting from the adjunction of U L V' to R.
First, it is clear that R[U U F contains R[U] and

J and, since the subring generated by R[U] and V' is contained
in every subring containing these sets, we have R[U U V] o
R[U][V]. Next, it is clear that R[U][V] contains R and the
subset U U V; hence R[U][V] o R[U v V]. Thus R[U][V] =
RIUV V.

We are interested primarily in subrings obtained by adjoining
finite subsets to the “base” ring R. If U = {u1, u2, ..., un} we
write R[ul, u2, ..., un] for R[U]. Inducting on the foregoing
remark we see that

(30) Rluy, iz, ... 4] = R[u J[uz] -+ [u,]

that is, R[u1, u2, ..., uy] is obtained from R by a succession of
adjunctions of single elements to previously constructed
subrings. It is therefore natural to study first subrings of the
form R[u], We can immediately write down all the elements
of R[u]; these are just the polynomials in u with coefficients in
R, that is, the set of elements of the form
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(31) do + ayu + ayu* +---+au", a€R

It is clear that R[u] contains all of these elements. Moreover,
if Yo" aju' and 30" bj/ are polynomials in u with coefficients
in R and n > m, then

(ag + ayu + -~ + au™) + (bg + byu + - - - + b u™)
(32) = (ag + bg) + (ay + by)u + *+* + (a, + b Ju™

mel .

+ Gy gl v gt

and, since (aiui)(bjui )= aibjui tJ , we have, by the distributive
laws,

(ag +au+ -+ au"by + byu 4+ 4 b um

(33) :
=pa+ P+ Pt
where
i
34 = b, ;= 1.0y
(34) P IZHHH i 1+¥-4{‘”

Moreover, 0 and 1 are polynomials in u and — Yo" a’ =
>0"(~ a;)u'. Thus the set of polynomials in u with coefficients
in R form a subring of R'. Hence this set coincides with R[u].

The formulas (32)—(34) show us how to calculate the sum and
the product of given polynomials. All of this is simple
enough. However, there is one difficulty—that of deciding
when two polynomial expressions in u represent the same
element. It may happen that we have different-looking
expressions for the same element. For example, if u € R
(which is not excluded) then the element u € R[u] can be
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represented both as ap with ap = u and as aju with a1 = 1.

Less trivially, taking R =Cand R=R, u = v =1 we have u?

=—1.

We shall now construct a ring R[x] in which the only relations

of the form ag + aix + ... = bg + b1x + ... are the trivial ones
in which a; = b; for all i. Heuristically, the ring we seek is the
set of expressions ap + aix + ... + anx", ai € R, where

equality is defined by equality of the coefficients: ). aix' =Y
bix" only if a; = b; for all i. Addition and multiplication will be
given by (32)-(34) with x replacing u. The statement on
equality means that we want a polynomial in x to determine
the sequence of its coefficients and, of course, these are all 0
from a certain point on. We are therefore led to identify a
polynomial in x with a sequence (o, al, ..., an, 0,0, ...), a; €
R, and to introduce an addition and multiplication for such
sequences corresponding to the formulas (32)—(34).

We shall now carry out this program precisely and in detail.
Let R be a given ring and let R[x] denote the set of infinite
sequences

(ag, @y, 03, ...)

that have only a finite number of non-zero terms a;.
Sequences («o, al, a2, ...) and (bo, b1, b2, ...) are regarded as
equal if and only if a; = b; for all i. In other words, R[x] is the
set of maps i — a; of the set M of non-negative integers into
the given ring R such that a; = 0 for sufficiently large i. For
the present, x in our notation R[x] is meaningless, but a
genuine x will soon make its appearance to justify the
notation. We introduce a binary composition in R[x] by
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[ﬂu, ﬂ'l,ﬂz. o ] e [bu. bl' hl‘ - .} Etﬂn + hﬂ.. “l + h.. ﬂz + h‘i,. . J

which evidently is in R[x] and zero element by

0=(0,00,...)

Then it is immediate that (R[x], + , 0) is an abelian group.
Next we introduce another binary composition - in R[x] by

(35) (ag, ay, a3, . . Nbg, by, byy .. .) = (Pos Prs P2s - - )

where p; is given by (34). If a; = 0 for i > n and b; = 0 for j >
m then pr = 0 for k > m + n. Hence the element on the
right-hand side of (35) is in R[x]. We also put

1=(,0,0,...)

Then (ao, al, ...)1 = (a0, al, ...) = 1(ao0, a1, ...). If 4 = (a0, al,
...), B=(bo, b1, ...), and C = (co, cl, ...) € R[x], then the (i +
1)-st term in (4B)C is

Y labda= Y (ah)g
J+kFi=y

j+k=m
m+I=i

Similarly, the corresponding term in A(BC) is

E ﬂj( ; h&"r) = E ajb,cy)
m+ji=i k+j=m Jrk+i=i

Hence (4B)C = A(BC) follows from the associative law in R.
Similarly, we can verify the distributive laws. Also
commutativity of multiplication is clear from the definition of
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the p; in (34) and the commutative law in R. Hence (R[x], +, -,
0, 1) is a commutative ring.

We now consider the map

a—=a =(a00,...)

of R into R[x]. It is clear that this is a monomorphism of the
ring R into R[x]. We shall now identify R with its image in
R[x], identifying a with a'. In this way we can regard R as a
subring of R[x]. Now let x denote the element (0, 1, 0, O, ...)
of R[x]. The formula for the product and induction on k show
that if £ > 0, then

k+1

*=(00,...,0,1,0,...)

We have for a € R(identified with a’ = (a, 0, ...)),

k+1

ax* =(0,0,...,0,a0,...).

Hence

(90 81s- .- 0 0,0, . ) =0y +ayx +--- + a,x"

and R[x] is the ring obtained by adjoining x to R. We shall call
R[x] the ring of polynomials over R in the indeterminate x.
The foregoing formula and the definition of equality show
that if Y aix' = Y bix', then a; = b; for all i. In particular, Y a;x’
= 0 implies every a; = 0.
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Once we have constructed the ring R[x] we can use it to study
any ring R[u], for we shall see that any R[u] is a
homomorphic image of R[x]. Thus we shall have R[u] =
R[x)/I, I an ideal in R[x]. This will imply that the problem of
relations in R[u] can be solved by noting that ap + aju + ... =
bo+ biu+ ... ifand only if Y aix' =3 bix' (mod I). Hence we
shall know the relations if we know the ideal /. The
fundamental homomorphism property of R[x] is given in

THEOREM 2.10. Let R and S be (commutative) rings, n a
homomorphism of R into S, u an element of S. Let R[x] be the
ring of polynomials over R in the indeterminate x. Then n has
one and only one extension to a homomorphism ny of R[x]
into S mapping x into u.

Proof. IfA=ao+ aix+ ... + anx” then we simply put

nAd)=ap + aju+ -+ au"

where, in general, @’ = 5(a). If B=bo + b1x + ... + byx™, then
AB=po + pix + ... +pn+mx”+m where p;i = Y + k = i ajb.
Then

NdAB) = po+pru+--+ pra" "

p; = E _ ahy

since 7 is a ring homomorphism. On the other hand,
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nAAMJAB) = (ay + ayu + - - + au" )by + byu + -+ + b u™)
=po+ P+ 4+ pii' ™ =nlAB)

Still easier is the verification of #u(4 + B) = nu(A) + nu(B),
which is left to the reader. Now we have for a € R that n,(a)
= a' = n(a), so ny is an extension of 7. Also nu(l) = n(l) =1
(the unit of S) and #4(x) = u. Hence 7, is a homomorphism of
R[x] which extends # and maps x into u. Since R[x] is
generated by R and x it is the only homomorphism having this
property (exercise 7, p. 110). This completes the proof. [J

Now let S be any overring of R—that is, let S be a ring
containing R as a subring—and let # € S. Then the theorem
shows that we have a unique homomorphism, which is the
identity map on R and sends x — u. We shall now write A(x)
for A =ao+ aix + ... + axx” and we shall denote the image of
A(x) under this homomorphism as A(u). In this way we shall
be using the customary functional notations in the present
situation, though we are not really dealing with functions. It
will be convenient also to speak of “substituting u for x in
A(x)” when in reality what we are doing is applying the
homomorphism of R[x] into S which extends the identity map
on R and sends x into u. If [ is the kernel of our
homomorphism, then R[u] = R[x]/I. Since the homomorphism
is the identity on R, we have R N I = 0. This result tells us
precisely what the rings R[u] obtained by adjoining a single
element u to R look like: namely, we have the

COROLLARY. R[u] = R[x])/I where x is an indeterminate
and 1 is an ideal in such that I[N R=0
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Conversely, if I is an ideal in R[x] such that / N R = 0, then
the restriction to R of the natural homomorphism v of R[x]
into R[x]/I is a monomorphism. We may identify R with its
image (the element a € R with the coset a + [). In this way
R[x]/I o R as a subring. Since R[x] is generated by R and x, its
homomorphic image is generated by R and u = x + 1. Hence
R[x)/I = R[u]. O

The homomorphism A4(x) — A(u) is a monomorphism if and
only if A(u) = 0 implies 4(x) = 0, that is, ap + a1u + ... + au”
= 0 implies every a; = 0. In this case u is called
transcendental over R, otherwise u is algebraic over R. The
classical case of this is the one in which S =R (or €) and R =
Q. Then a real (or complex) number is called algebraic or
transcendental according as this element of B (or €) is
algebraic or transcendental over Q.

We shall now consider the extension of all of this from one
element to a finite number. Reversing somewhat the
foregoing order of presentation, we shall launch directly into
the generalization of Theorem 2.10, which we state in the
following form.

THEOREM 2.11. For any ring R and any positive integer r

there exists a ring R[xl, x2, ..., x| with the following
“universal” property. If S is any ring and n is a
homomorphism of R into S and i — u; is a map of {1, 2, ..., r}
into S, then there exists a unique extension of n to a
homomorphism ny;, ..., ur of R[x1, ..., xr] into S sending xj —
ui, 1 <i<r.

Proof. We define R[x1, ..., xy] inductively: R[xi1] is the

polynomial ring in an indeterminate x| (for x) over R and,
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generally, R[x1, ..., xi] is the polynomial ring in an
indeterminate x; over R[x], ..., xi — 1], 1 <i < r. By Theorem
2.10, we have a homomorphism 7,1 of R[x1] into S extending
n and sending x| — u1. Using induction, we may assume we
have a homomorphism of R[x1, ..., x» — 1] extending # and
sending x; — u;,1 <i<r— 1. Then Theorem 2.10 provides an
extension of this to a homomorphism 7y, ..., u, of

| G [ | | — Xe—111%]

into S sending x — uy. Then ny, ..., u, 1S @ homomorphism
extension of # to R[x1, ..., xr] such that x; — u;, | <i<r. The
uniqueness of 7y, ..., u, 1S clear since R[x1, ..., x/] is generated
by R and the x’s. [

There is essentially only one ring having the property stated
in Theorem 2.11. To show this, suppose that R[y1, ..., y] is
another one. Then we have a homomorphism ¢ of R[x1, ...,
xr] into R[y1, ..., yr] which is the identity on R and sends x; —
vi, 1 <i<r. We also have a homomorphism of {’ of R[y1, ...,
yr] into

R[x1, ..., xy] which is the identity on R and sends y; — x;, | <
i <r. Then {’{ is an endomorphism of R[x1, ..., x| which is
the identity on R and the x’s. Hence (' is the identity
automorphism of R[x1, ..., xr]. Similarly, { is the identity on
R[y1, ..., yr]. Then {and {" are isomorphisms.

We shall now call R[x1, ..., x/] the ring of polynomials over R
in r indeterminates xi, ..., xr. The result just proved shows
that how one constructs this ring is only a matter of esthetics,
since it is essentially unique. (Another construction will be
indicated in exercise 9, at the end of this section.) Though our
construction (by successive adjunctions of single
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indeterminates) does not treat the x’s symmetrically, the end
product is symmetric. In fact, we have the following

THEOREM 2.12. Let R[x1, ..., xy] be the polynomial ring in
r indeterminates over R and let & be a permutation of 1, 2, ...,
r. Then there exists a unique automorphism {(x) of R[x1, ...,
xy] which is the identity on R and sends xj — xn(i), | <i<r.

Proof. Theorem 2.11 gives a unique endomorphism {(x)
satisfying the stated conditions. We have to show that this is
an automorphism. Now, if we compare effects on the set of
generators R U {xl, ..., Xr}, we see that if 71 and 72 are two
permutations of 1, ..., r, then C(mnz) {(m1){(72). Also (1) =
1. Hence {(m){(x ) =1={0r )C(n) Thus {(7) is an

automorphism. [

If (i1, ..., i) € M) that is, we have an r-tuple of
non- negatlve 1ntegers then we can associate with this the
monomial x1'' ** x, in the x’s. We have (x1"! = x")(xt/! -

j’) =x1!1 T/ 5, r T Ur 1t follows from this as in the special
case r = 1) that R[xl, ..., Xr] is the set of polynomials 3 ai, ...
i x1'! xr’”(ﬁmte sum) where the coefficients ai; ... i, € R.
For example, R[x, y] is the set of polynomials

Ggo + @1oX + g ¥ + G30%° + A, XY + Goay* + ¢, a;eR

We shall now show that if (7, ..., i) ¢j1? ..., jr) then the
associated monomials x1! " x,, xt/! = x/" are distinct and
the only relations ¥ a;, ... ;x1"' ... x," = 0 connecting distinct
monomials are the trivial ones w1th every aj; ... i, = 0. This

will follow by showing that if
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E ﬂa‘.---i.-"flh R .\:,f" =0, (i) = “1_ s

where the summation is taken over a finite number of distinct
elements (i) N ), then every coefficient is 0. Note that this
will imply that for (i) # (j), x1"' " x" # x¢/' ** x/" since,
otherwise, we have the non-trivial relation

ey o x — 1x! o x/” = 0. To prove our assertion we
observe that the case » = 1 has already been established and
we assume the result for  — 1 if » > 1. We can write

E ﬂ;l....-rx,i' e .Trl:r = Z Air.":,ir
{i}) le

where i, ranges over a finite subset of ¥ and

== | be—1y
AL =Y Qi Xy X.mq
)y

where (i") = (i1, ..., ir — 1), and the summation is taken over a
finite set of distinct(i"). If Y(;y @iy ... ir x1"1 " %" =0, Y 4 x,""
=0, 1, 2, .... Then every 4;» = 0 and so, by induction, we
conclude that a;; ... i, - 1i = 0 for any fixed i and every (7).
Then aj; ... i, = 0 for every (i).

As in the case » = 1 treated before, we see that for any R[ui,
..., uy] the homomorphism of R[x1, ..., x] into R[ui, ..., ur]
sending a — a, a € R, and x; — u;, 1 < i < r, is an
isomorphism if and only if the following independence
property holds for the w’s: Yy aiy ... r 1" = u/" = 0 only if
every aiy ... i, = 0. If this is the case the » elements ui, ..., ur
are said to be algebraically independent over R. 1t is clear that
this property of the x’s gives another characterization of the
ring R[x1, ..., xr] as an extension of R.
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EXERCISES

1. Show that the complex number @ = — i + i V3i i=~N-1
is algebraic (over ©). Show that @[] = Q[x]/I where I is the
principal ideal (x2 +x+1).

2. Show that V3 ¢ Q[v2] and that the real numbers 1, v2, ¥ 3,

V6 are linearly independent over @. Show that u = v 21355
algebraic and determine an ideal 7 such that Q@[x]// = Q[u].

3. Let / be an ideal in R and let /[x1, ..., x»] denote the subset
of R[x1, ..., x| of polynomials whose coefficients are
contained in /. Show that /[xi, ..., x;] is an ideal in the ring
R[x1, ..., x¢], and that R[x1, ..., x;[/I[x1, ..., xy] = (R/D[y1, ...,
vr] where the y; are indeterminates over R/I.

4. Let A = []i > j(xi — xj) in Z[x1, ..., x/] and let {(7) be the
automorphism of Z[x1, ..., x,] which maps x; — xz(;), 1 <i <
r. (Every automorphism of the ring Z[x1, ..., x,] is the identity
on Z. Why?) Verify that if 7 is a transposition then A — — A
under 7(7). Use this to prove the result given in section 1.6
that if 7 is a product of an even number of transpositions, then
every factorization of z as a product of transposmons contalns
an even number of transpositions. Show that 4> — A? under

every ((n).

234



5. Verify that the constructions in the text of R[x] and R[x1,
..., xr] are valid also for an R which is not necessarily
commutative. Show that in this case the x; are in the center of

R[x1, ..., x7]. State and prove the analogues of Theorems 2.10
and 2.11 for R[x] and R[x1, ..., xr].

6. Show that the matrix ring Myu(R[x1, ..., Xr], Xi
indeterminates in both cases.

7. Let R[[x]] denote the set of unrestricted sequences (ao, a1,
az, ...), ai € R. Show that one gets a ring from R[[x]] if one
defines +, -, 0, 1 as in the polynomial ring. This is called the
ring of formal power series in one indeterminate.

8. Let M be a monoid, R a commutative ring, and R[M] the set
of maps m — f(m) of M into R such that f(m) = 0 for all but a
finite number of m. Define addition, multiplication, 0, and 1

in R[M] by

(4 giim) = fim) + glm)
(fam) = Y. fip)alq)

Pg=m
Wm) =0
Il)y=1, imy=0 i m+#1,

Show that R[M] is a ring. Show that the set of maps a’ such
that a'(1) = a and a'(m) = 0 if m # 1 is a subring isomorphic to
R, and the set of maps m' such that m'(m) = 1 and m'(n) = 0 if
n # m is a submonoid of the multiplicative monoid of R[M]
isomorphic to M. Identify the subrings and monoids just
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indicated. Show that R is in the center of R[M] and that every
element of R[M] can be written as a linear combination of
elements of M with coefficients in R: that is, in the form )|
rimi, ri € R, mi € M. Show that ) r;m; = 0 if and only if every
ri = 0. Show that if ¢ is a homomorphism of R into a ring S
such that o(R) is contained in the center of S, and if 7 is a
homomorphism of M into the multiplicative monoid of S, then
there exists a unique homomorphism of R[M] into S
coinciding with ¢ on R and with T on M. If M is a group, R[M]
is called the group algebra of M over R.

9. Let R be any commutative ring and let NC) be the free
commutative monoid with » generators x; as on page 68.
Show that R[M(r )] defined as in exercise 8 is the same thing,
as R[x1, ..., xr], x; indeterminates.

10. Let M = FM") be the free monoid with 7 generators xi, ...,
xr (p. 68), and construct R[M] as in exercise 8. This is called
the free algebra over R generated by the x;i. State the basic
homomorphism property of this ring.

2.11 SOME PROPERTIES OF POLYNOMIAL RINGS
AND APPLICATIONS

Let R[x] be the ring of polynomials in an indeterminate x over
the (commutative) ring R. If f{x) # 0 is in R[x] we can write

(36) fix)=ay+ayx + -+ ax"

with an # 0. Then ay is called the leading coefficient of f(x)
and n is the degree, deg f, of f(x). It will be convenient also to
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say that the degree of 0 is the symbol — oo and to adopt the
usual conventions that — oo < n for every n € M, — 00 + (- 0) =
— o0, — o0 + n=—o00. We remark that f{x) € R if and only if deg
f=0or—ooand f(x) € R*, the set of non-zero elements of R,
if and only if deg /= 0. Also it is clear that

(37 deg| f(x) + g(x)] < max (deg f(x), deg g(x))

and equality holds in (37) unless deg f'= deg g. If g(x) = bo +
bix + ... + bmx" with by, # 0 and f{x) is as in (36) then

(38) flx)gix) = aghy + (agh, + a,bg)x + -+ a b x"™™

Hence if either a; or by, is not a zero divisor then anbm, # 0
and

(39) deg f(x)g(x) = deg [(x) + deg g(x).

If we take into account our convention on — o, we see that
(39) holds for all f{x) and g(x) if R = D is a domain. In the
case of a domain the properties of the degree function imply
the following

THEOREM 2.13. If D is a domain then so is the polynomial
DIx1, ..., x¢] in r indeterminates over D. Moreover, the units
of D|x1, ..., xr] are the units of D.

Proof. We consider first D[x]. If f{x)g(x) = 0 then its degree
is — o0. By (39), this can happen only if either deg f{x)=— o or
deg g(x) = — oo: that is, if either f{x) = 0 or g(x) = 0. If fix)g(x)
= 1 then the degree relation (39) implies that deg /= 0 = deg
g. Hence if f(x) is a unit in D[x] it is contained in D and its
inverse is in D. Thus the units of D[x] are the units of D. The
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extension of the two statements to D[x1, ..., xr] is immediate
by induction on ». [

We look next at the extension of the familiar division
algorithm for polynomials. Generally we are interested in this
only when the coefficient ring is a field. However,
occasionally we must consider the following more general
situation.

THEOREM 2.14. Let fix) and g(x) # 0 be polynomials in
R[x], R a ring, and let m be the degree and by, the leading
coefficient of g(x). Then there exists a k € M and polynomials
q(x) and r(x) € R[x] with deg r(x) < deg g(x) such that

(40) by f(x) = glx)g(x) + rx).

Proof. If deg f< deg g the result is clear on writing f{x) =0 -
g(x) + f(x). Hence suppose deg /> m = deg g. Then put

(41) B f(x) — @, X" "g(x) = fi(x)

Since the coefficients of x” in byf(x) and in ax" ~ "'g(x) are
both anbn, it is clear that deg f1 < deg f- Hence we can use
induction on the degree of f{x) to obtain a k1 € M, g1(x), r(x)
€ R[x] with deg r(x) < deg g(x) such that

(42) b fi(x) = glx)q,(x) + r(x)

Then, by (41) and (42),

b H(x) = bt a,x" "g(x) + glx)g,(x) + rix) = g(x)g(x) + r(x)
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where g(x) = by apd” "+ q1(x). O

There are several remarks that are worth making about
Theorem 2.14. In the first place, it is easy to see that the proof
leads to an algorithm for finding £, g(x) and r(x) in a finite
number of steps. This is the usual “long” division for
polynomials. We leave it to the reader to convince himself of
this by looking at some examples. It is easy to see that we can
always take the integer k to be the larger of the two integers 0
and deg f— deg g + 1. We note also that if by, is a unit then we
can divide out by bmk and obtain a relation of the form

(40) S(x) = g(x)g(x) + r(x)

(not the same ¢ and r as in (40)), where deg r(x) < deg g(x).
This is always the case if R = F'is a field. Moreover, in this
case the “quotient” g(x) and “remainder” »(x) are unique. For,
if

Six) = glx)glx) + rix) = q,(x)glx) + ry(x)
and deg r(x) and deg r1(x) < deg g(x) then we have
[4(x) = q,(x)]g(x) = ry(x) — rx)

Hence, if g(x) # g1(x) then the degree of the left-hand side is
at least m, and the degree of the right-hand side is less than m.
This contradiction shows that g(x) = g1(x) and hence r(x) =
r1(x). It is clear from this that g(x) is a divisor or factor of
flx)—that is, there exists a g(x) such that f(x) = g(x)g(x) if and
only if 7(x) = 0—and this fact can be ascertained in a finite
number of steps by carrying out the division algorithm.
Finally, we note that if we pass to the field of fractions, then
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(40") is equivalent to f(x)/g(x) = q(x) + r(x)/g(x), which may
be a form more familiar to the reader.

An important special case of theorem 2.14 is

COROLLARY 1. (The “remainder theorem.”) If f(x) € R[x]
and a € R then there exists a unique q(x) € R[x] such that

(43) f(x) = (x — a)g(x) + f(a).

Proof. The argument above shows that we have a unique
q(x) € R[x] and an » € R such that f{x) = (x — a)q(x) + r.
Substitution of x = a (that is, applying the homomorphism of
R[x] into R, which is the identity on R and sends x — a) gives
fla) = (a — a)q(a) + r = r. Hence we have (43), and ¢(x) is
unique. [l

An immediate corollary of Corollary 1 is

COROLLARY 2. (The “factor theorem.”) (x — a)|f(x)((x — @)
is a factor of f(x)) if and only if f(a) = 0.

We shall now apply these results to obtain some important
properties of F[x], F' a field, and more generally of F[u], a
ring generated by F and a single element u. We shall call a
domain D a principal ideal domain (abbreviated as p.i.d.) if
every ideal in D is principal. We recall that this is the case for
D = 1 (section 2.6) and we now prove

THEOREM 2.15. If F is a field then the ring F[x] of
polynomials in one indeterminate x over F is a principal ideal
domain.
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Proof. Let I be an ideal in F[x]. If I = 0 (the ideal with the
single element 0) then we can write / = (0). Now assume / # 0
and consider the non-zero elements of /. Since these have
degrees which are non-negative integers, there exists a g(x) #
0 in / of minimal degree among the non-zero elements of /.
Let f{x) be any element of /. Applying the division algorithm
we obtain f{x) = g(x)g(x) + r(x) where deg r(x) < deg g(x).
Since 7 is an ideal and f{(x) and g(x) are in / then r(x) = flx) —
q(x)g(x) € I If r(x) # 0 we have a contradiction to the choice
of g(x) as an element # 0 of least degree in /. Hence r(x) = 0
and f{x) = g(x)g(x). This shows that every element of / is a
multiple of g(x) € I and, of course, every such multiple is in /.
Hence 7 = (g(x)). Since this holds for every ideal / and since
F[x] has no non-zero zero divisors, F[x] is a p.i.d. [J

This result does not extend beyond the case of one
indeterminate: F[x1, x2, ..., xy] is not a p.i.d. if » > 1. For
example, let / be the set of polynomials in F[x1, ..., x,] having
0 as constant term: that is, having the form ¥ aiy ... ;. x1'" =
x/" with ag .. 0 = 0. It is clear that / is an ideal with the
generators x|, X2, ..., xr. If I = (a) then a|x; for 1 <i <r. Since
xi 1s an irreducible polynomial, either a is a unit or « is an
associate of x;. Since » > 1 and I # (1), both of these
possibilities are excluded. Thus 7 is not principal.

In F[x] we have (f(x)) D (g(x)) if and only if g(x) = fx)h(x),
that is, if and only if f{x)|g(x). If f{x)|g(x) and g(x)|f(x) we have
g(x) = fix)h(x) and fix) = g(x)k(x) so glx) = gX)k(x)A(x).
Hence if g(x) # 0 then k(x)h(x) = 1, and k and 4 are non-zero
elements of F. It follows that the generator g(x) of (g(x)) # 0
is determined up to a unit multiplier. We may therefore
normalize the generator so that its leading coefficient is 1, and
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it is then uniquely determined by this property. Polynomials
having leading coefficient 1 will be called monic.

We now consider any ring of the form Flu], F a field. We
have the epimorphism f(x) — f(u) of F[x] onto F[u], whose
kernel is an ideal / such that / N F'= 0 (section 2.10). Now I =
(g(x)) and g(x) is not a unit since / N F = 0. Hence either g(x)
= 0 or deg g(x) > 0. In the first case / = 0, so the epimorphism
fix) — flu) is an isomorphism and u is transcendental over F.
If deg g(x) > 0 we may assume it to be the monic generator of
1. Then we shall call g(x) the minimum polynomial over F of
the (algebraic) element u. This is the monic polynomial of
least degree having u for a root in the sense that g(u) = 0.
Moreover, it is clear that if f{x) is any polynomial such that
flu) = 0 then fix) € I = (g(x)), and f(x) is thus a multiple of
g(x). The structure of F[u] depends on the way g(x) factors in
Flx]. For example, we have

THEOREM 2.16. Let u be algebraic over F with minimum
polynomial g(x). Then Flu] is a field if g(x) is irreducible in
F[x] in the sense that we cannot write g(x) = fix)h(x) where
deg f(x) > 0 and deg h(x) > 0. On the other hand, if g(x) is
reducible then Flu] is not a domain.

Proof. We know that any ideal of F[x]/I has the form J/I
where J is an ideal of F|x] containing / = (g(x)) (Theorem 2.6,
p. 107). Then J = (f{x)) and g(x) = Ax)h(x). If g(x) is
irreducible either f{x) or A(x) is a unit. In the first case, J =
F[x]; in the second case, J = I. Hence F[u] = F[x]/I has just
two ideals: 0 and the whole ring. This implies that F[u] is a
field, by Theorem 2.2, p. 102. Now assume g(x) = flx)h(x)
where deg f{x) > 0 and deg A(x) > 0. Then deg f(x) and deg
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h(x) < deg g(x). Hence flu) # 0 and h(u) # 0. However,
Au)h(u) = g(u) = 0. Thus F[u] has zero divisors # 0. [

We shall apply next the “factor theorem” to establish the
following important result on roots of a polynomial.

THEOREM 2.17 Let fix) be a polynomial of degree n > 0 in
Flx], F a field. Then f(x) has at most n distinct roots in F.

Proof. Let al, a2, ..., ar be distinct roots of f{x). We shall
prove by induction on r that f{(x) is divisible by [ (x — aj).
This has just been proved for » = 1. Assume it for » — 1. Then
Sy =771 (x = gj)h(x) in Flx]; hence 0 = fla,) = 1i" " (ar
— aj)h(ar). Since every ar — a;j # 0 we get h(ar) = 0. Hence A(x)
= (x — ak(x), by the case » = 1. Then fix) = H11" (x — ai)k().
Comparison of degrees shows that r <n. [

As an application of this result and a criterion for a finite
abelian group to be cyclic, which we gave in Theorem 1.4 (p.
46), we shall now prove the following beautiful theorem on
fields.

THEOREM 2.18. Any finite subgroup of the multiplicative
group of afield is cyclic.

Proof. Let G be a finite subgroup of the multiplicative group
F* of non-zero elements of the field F. Of course, G is
abelian since F is a field. The criterion we had was that G is
cyclic if and only if |G| = exp G, the smallest integer m such
that @ = 1 for every a € G. Since a9 =1 for every a in a
finite group we always have exp G < |GJ. On the other hand,
by Theorem 2.17, f{x) = x**PY — 1 has at most exp G solutions
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in F and hence in G. Hence |G| < exp G. Thus exp G = |G| and
G is cyclic. [

We remark that the foregoing result is not valid for division
rings that are not commutative. For example, let H be the
division ring of quaternions over R. The quaternions + 1, + i,
+ j, = k form a finite non-cyclic subgroup of the multiplicative
group of H.

As a special case of Theorem 2.18 we see that if F is a finite
field then F* is cyclic. In particular, the non-zero elements of
Z/(p), p a prime, constitute a cyclic group of order p — 1 under
multiplication. Some number theoretic consequences of the
results we have obtained will be indicated in the following
exercises.

EXERCISES

1. Let Ax) =x"+aix '+ ...+ an, ai € F, a field, n > 0, and
let u = x + (f(x)) in F[x]/(f(x)). Show that every element of
Flu] can be written in one and only one way in the form bg +
biu+...+by-1un-1,bj eF.

2. Take F = @, fix) = x> + 3x — 2 in exercise 1. Show that F[u]
is a field and express the elements

(2u® + u = 3)3u® — qu + 1), (W —u+4)7

as polynomials of degree <2 in u.
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3. (a) Show that Q[v2] and Q[v3] are not isomorphic.

(b) Let [Fp = 2/(p), p a prime, and let R| = [Fp[x]/(x2 -2),R2=
Folx)/(% - 3).

Determine whether R1 = R in each of the cases in which p =
2,5, or1l.

4. Show that x> +x? + 1 is irreducible in (2/(2))[x] and that (Z
/2))[x]/(x3 + 3%+ 1) is a field with eight elements.

5. Construct fields with 25 and 125 elements.
6. Show that x> — x has 6 roots in Z/(6).

7. Use the Chinese remainder theorem (exercises 10 and 11,
p. 110) to show that if F is a field and f{x) € F[x] is monic
and factors as flx) = g(x)h(x), (g(x), h(x)) = 1, then F[x]/(f(x))
= Flx]/(g(x)) ® F(x)/(h(x)). Show also that if f{x) = | ]1”(x —
a;j) in F[x] where the a; are distinct then F[x]/(f(x)) = F @ ...
@ F (n F’s).

8. Show that the quaternion division ring H contains an
infinite number of elements u satisfying w=—1.

9. Show that the ideal (3, x> — x> + 2x — 1) in Z[x] is not
principal.
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10. Let I denote the ideal given in exercise 9. Is Z[x]/[ a
domain? (Hint: Show that Z[x)/[ = [x)/I where & = 2/(3) and
F=@ _-2+2%-1),8=x+(3))

11. Let R be a ring without nilpotent elements # 0 (z" = 0 in R
= z = 0). Prove that if f{x) € R[x] is a zero divisor then there
exists an element a # 0 in R such that af(x) = 0 (Note: This
holds without restriction on R.)

12. Let F' be a field of g elements, F* = {a1, ..., ag -1} the set
of non-zero elements of F. Show that aja2 ... ag -1 =- 1.
(Hint: Use the proof of Theorem 2.18 and also exercise 5, p.
110, if g is even.)

13. Prove Wilson’s theorem: If p is a prime in Z, then (p — 1)!
=—1 (mod p).

14. Find generators for the cyclic groups Z,* of non-zero
elements of Z/(p) forp =3, 5,7, and 11.

15. An integer a is called a quadratic residue modulo the
prime p or qzuadmtzc nonresidue mod p according as the
congruence x~ = a (mod p) has or has not a solution. We
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a a
define the Legendre symbol (F) by (F) =0if a =0 (mod p),
a
G) 1

a
a = 0(mod p) and a is a quadratic residue (mod p),(F) =—1if
a

a is not a quadratic residue modulo p. Note that (F) =1 if and

only if a + (p) is a square in the multiplicative group of Z/(p).
a

Hence show that for p # 2, (F) = 1 if and only if and only if

+)
a? D2 = 1(mod p). Show that for any integers a and b, ( P

16. Let fix), g(x) # 0 be elements of F[x] with deg g = m.
Show that f{x) can be written in one and only one way in the
form ao(x) + ai(x)g(x) + az(x)g(x) + ... + alx)g(x)" where
deg ai(x) <m.

The following exercise gives an alternative proof of the
remainder theorem that has several advantages over the proof
in the text; notably, it gives an explicit formula for the
quotient and it is valid for non-commutative rings.

17. Let fix) = ao + a1x + ... + apx”. We have the formulas x' —
s Ay

a = (' + ax! +...+a )(x—a) z>1 Left

multlphcatlon by ai and summation on z gives 0" aix' — 0"

aia' =31" a1(x’ Lvad 2+ ... +d )(x a). Hence f(x) =
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g(x)(x — a) + fla) where fla) = Yo" aid' and q(x) = ¥1"gp’ ~ 1,
gi=aitaj+a+... + apd” .

2.12 POLYNOMIAL FUNCTIONS

The reader is undoubtedly familiar with the notion of a
polynomial function of a real variable which occurs in the
calculus. We shall now consider the generalization of such
functions to any field F' and determine the relation between
the ring of polynomial functions and the ring of polynomials
in indeterminates over F.

Let S be a non-vacuous set and F a field, and let F° denote the
set of maps s — f(s) of S into F. As usual, /= g means f(s) =

g(s) for all s and addition and multiplication of functions are
defined by

(f + ghs) = f(s) + gls)

(fg)s) = [(s)g(s).
If a € F then a defines the constant function a such that a(s) =
a for all s. In particular we have the constant functions 0 and

1. It is straightforward to verify that (Fg, +,,0,1)i1s a
(commutative) ring. For example, we have

((f + g)h)s) = (f(s) + g(s))h(s) = f(s)h(s) + g(s)h(s) = (fh + gh)s)

Hence (f+ g)h = fh + gh. If we define (- f)(s) = — f(s) we have
fen=o.

It is immediate also that the map of F' into F> which sends any
a € F into the corresponding constant function is a
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monomorphism. From now on we identify F’ with its image,
so F> becomes an extension of the field .

We now take S = F, and so are considering the ring of maps
of F into itself. In addition to the constant functions a
particularly important map is the identity s — s, which we
have usually denoted as 1 (or 1F). In the present context we
shall use the customary calculus notation s for this function as
well as for the variable s—with the hope that we will create
no more than the usual confusion that results from the double
meaning assigned to this symbol. We now consider the
subring F[s]| generated by F (that is, the field of constant
functions) and s (the identity function). The elements of this
ring will be called polynomial functions in one variable over
F. Since the ring FJ[s] is generated by F and s we have the
epimorphism of F[x], x an indeterminate, onto F[s], which is
the identity map on F and sends x — s. Here fix) — f(s) and
f(s) is the function s — ap + a1s + ... + ans” if f(x) =ao + aix
+ ... anxn.

The homomorphism f{x) — f(s) is an isomorphism if and only
if F is infinite. To see this we observe that f{(s) = 0 in the ring
of polynomial functions means that f{s) = 0 for all values of
the variable s: that is, f{a) = 0 for all @ € F. We have already
seen that if f{x) # 0 and deg f = n then f{x) has no more than »
distinct roots in F. Thus if F'is infinite, then f(a) = 0 for all a
forces f= 0. Hence the kernel of the epimorphism is 0 and f{x)
— f(s) 1s an isomorphism of F[x] with the ring of polynomial
functions. On the other hand, if F is finite—say, if F' = {a1,
a, ..., agj—then the polynomial

hix)=(x=a)x=az) "(x—a,)#0
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whereas the function

his)=(s — aMs —az) (s —a) =0,

This is clear since h(a;)) = 0, 1 < i < g. Hence the
homomorphism f{x) — f{(s) is not an isomorphism if F is
finite. This is clear also by counting: the set of all maps of F
into F is finite. Hence F[s] is finite. On the other hand, F[x] is
infinite. Hence no isomorphism can exist between F[x] and
Fls].

The definition of polynomial functions in several variables is
an immediate generalization of the foregoing. Here we take S
= F(r), the product set F' x F x ... x F of r copies of F. Its
elements are the finite sequences (s1, s2, ..., sr). As before,
we have the ring of functions = i ), which is an
extension of the field /. We now pick out r particular
functions, “the projections on the » axes.” These are the maps

(819 82y ¢ 00y S) = 54 l<i<r

Again, following tradition, we denote the ith projection, just
displayed, as s; and we consider the ring F[si, s2, ..., Sr]
obtained by adjoining these to the field F' (of constant
functions). The elements of F[s1, ..., s7] are called polynomial
functions in r variables over F. If F[x1, x2, ..., xr] is the
polynomial ring in 7 indeterminates we have the epimorphism
of Flx1, ..., xy] into F[st, ..., s7], sending a — a, a € F, xi —
si the ith projection function. We denote the image of f{x1, x2,
...y Xr) as f(s1, 52, ..., sy). If F is a finite field of ¢ elements,
then we see, as in the special case » = 1, that f{x1, ..., xr) —
fis1, ..., sr) is not an isomorphism; but if F is infinite it is an
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isomorphism, as we shall now prove. This assertion is
equivalent to the following basic theorem.

THEOREM 2.19. If F is an infinite field and f(x1, x2, ..., xr)
is a polynomial # 0 in F[x1, x2, ..., xy] (xi indeterminates)
then there exist elements a\, a2, ..., ar in F such that fla1, a2,

...,Clr)?éo.

Proof. The case r = 1 has been proved. Hence we assume » >
1 and we assume the result for » — 1 indeterminates. We write

fxy, %3,...,%)=Bg+ B,x, + Byx,2 +--- + Bx"

where B; € F[x1, x2, ..., xr — 1] and we may assume B; =
Bu(x1, ..., xr — 1) # 0. Then, by the induction hypothesis, we
know that there exist a; € F such that By(ai, ..., ar—1) # 0.
Then

i | [ FR—— a,-1. %)= Bylay, ..., a,_4) + Bylay, ..., a,_)x,
+ 4+ Bfay, ..., a._ xS #0

in F[x;]. Hence we can choose x» = a, so that flai, ..., ar) # 0.

O

We can also easily determine the kernel K of the foregoing
epimorphism of F[xl,..., x;] into the ring of polynomial
functions in the case of a finite . We sketch the argument for
this and leave it to the reader to fill in the details. First, we
note that if |F| = ¢ then the foregoing argument will show that
if f(x1,..., xr) € F[x1, ..., x/], and the degree of f'in every x; <
g, then the corresponding polynomial function f{s1,..., s») # 0.
Next we observe that x;7 — x; € K since ¢ = a, a € F
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(exercise 3, p. 105). The next step is to prove that every
polynomial f{x, ..., xr) can be written in the form

(44) FXge s X)) = i,.r‘;{.tl ...... XX — x) 4+ folxgs e on s x,)
1

where the degree of £ in every x; is < g. This can be seen by
expressing every power x;'" = (x;7 — x;)qi(x;) + rr(x;) where gk,
rk € F[xi] and deg rr < q. Making

these substitutions in every monomial x1%! x2*2 = x%
occurring in f{x1, ..., x) we obtain (44). We now see that f{(x1,
..., Xr) € K if and only if fo(x1, ..., xr) = 0. This shows that K
is the ideal (x17 — x1, x27 — x2), ..., x4 — x;) generated by the
xi1 — x;. Hence the ring of polynomial functions in 7 variables
over a field of g elements is isomorphic to

Fl%gs: s 55 x, A%, — %y X" — X3y, %9 — X,).

EXERCISES

1. Prove the following extension of Theorem 2.19. If f(x1, ...,
xr) € Flx1, ..., x¢], F infinite, and fla1, ..., ar) = 0 for all (ai,
az, ..., ar) for which a second polynomial g(x|, ..., xr) # 0 has
values g(al, a2, ..., ar) # 0, then

In the remainder of the exercises F is a finite field with |F| =
q.
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2. Prove that every function in r variables over F' (every
element of F'( ) is a polynomial function. (Hint: Count both
sets.)

3. Define the degree of the monomial x1' *** x,”" to be ¥1” i
and the (fotal) degree of the polynomial f as the maximum of
the degrees of the monomials occurring in f (that is,
monomlals having non-zero coefficients aj; ... ;. iInf=) aij .

i x1't o x). Show that the method of provmg (44) by
replacing every x, = (xi — xi)qr(xi) + ri(x;) where deg 1k < g
yields a polynomial fo(x1, ..., x0) of deg < deg f (as well as of
deg < g in every x;).

4. Show that if fo and go are two polynomials of deg < ¢ in
every x;, and fo and go define the same function, then f) = go.

5. Let fixi, ..., xr) satisty f0,..., 0) =0 and flai, ..., ar) # 0 for
every (al, ..., ar) # (0, ..., 0). Prove that if g(x1, ..., x) =1 —
Aoty oo x) =1 fixt, ..., x)? " L then

iy, .. a,) =

1 if (ay,...,a)=10,...,0)
0 otherwise.

6. Show that the g of exercise 5 determines the same
polynomial function as

JolXps oo X) =1 — 2,7l =%, ) - (1 —x,7710),

Hence prove that deg g > (g — 1).
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7. (Artin-Chevalley.) Let f(x], ..., x) be a polynomial of
degree n < r, the number of indeterminates. Assume f{O0, ...,
0) = 0. Prove that there exist (al, ..., ar) # (0, ..., 0) such that

Aal, ...,ar)=0.
2.13 SYMMETRIC POLYNOMIALS

Let R be a ring, R[x1, ..., xr] the ring of polynomials over R in
r indeterminates. We have seen that if 7 is a permutation i —
i"of {1, 2, ..., r} then 7 determines an automorphism {(z) of
R[x1, ..., xy] suchthat a > a,a € R, xi - xi/, 1 <i<r
(Theorem 2.12, p. 125). A polynomial f(x1, ..., xr) is said to be
symmetric (in the x’s) if f(x1, ..., x) is fixed under {(x) for
every permutation z. The set of symmetric polynomials is a
subring ) of R[xl, ..., xr] containing R. The coefficients of the
powers of x of the polynomial

(45) gix) =(x = x ){x = x3) " (x = x,)
are symmetric, for we can extend the automorphism {(x) to an
automorphism {'(z) of R[x1, ..., x»; x] sending x — x. Then

C(m)(g(x)) = (x — x1)(x — x27) ... (x — x) = g(x). Hence if we
write

) glx) = X" = pix"" 1+ pax™ " = 4 (= 1P

where p; € R[x1, ..., xr], then {(n)(p;) = pi for all z. Thus p; €
Y. Comparing (45) and (46) we obtain

.
(A7) py=Y %, Pr=D2 XX}, Py= ; XiXjXiyovon  Pp=XgXg" " " Xy
1 =} I<j=<k
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The polynomials p; are called the elementary symmetric
polynomials in x1, ..., x». We shall now prove that } = R[p1,
p2, ..., pr] and that the p;, are algebraically independent over
R.

The equation ). = R[pl, ..., pr] means, of course, that every
symmetric polynomial can be expressed as a polynomial in
the elementary symmetric polynomials p; with coefficients in
R. It suffices to prove this for homogeneous polynomials. By
a homogeneous polynomial we mean one in which all of the
terms ax1* " x%" which occur have the same (total) degree
k1 + k2 + ... + kr. Any polynomial can be written in one and
only one way as a sum of homogeneous polynomials of
different degrees. Since the automorphism {(z) maps
homogeneous polynomials of degree k& into homogeneous
polynomials of degree k it is clear that if f{x1, ..., xy) is
symmetric then so are its homogeneous parts.

We now suppose that flxi, ..., x) is a homogeneous
symmetric polynomial of degree, say m. We introduce the
lexicographic orderin }g in the set of monomlals of degree m:
that is, we say that x| " 1s higher than xil o x itk =
n, ..., ks —lsbutks+1>ls+1 s>02 Forexample x12x2x3>
X1 xz3 > X1 x22 x3. Let x1™" x2 b be the highest
monomial occurring in /' (with non-

zero coefficient). Since f is symmetrlc it contains all the
monomials obtained from x1*! xo*2 - x, % by permuting the
x’s.Hence k1 >k > k3> ... k.

We now consider the hlghest monomlal in the homogeneous
symmetric polynomial p1 pz " pr dr , di > 0. We observe
that if M1 and M2 are monomials of degree m and N is a
monomial of degree r then M1 > M> implies NM1 > NM>.
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Hence if N1 > N2 then M1 N1 > M Np. Now it is clear that the
highest monomial in pl is x1 x2 ... xi. It follows that the
highest monomial in p1 pz “pr s

ditdat--tidp. datetidp, .. d

Xy X3 : i

Hence the highest monomial in pil ~#2 poR2 =3 -+ p kg the
same as that in f; so if the coefficient in f of thls monomial is
a, then the highest monomial in fi = f— ap1*1 ~*2 ppf2 =43 -

pr is less than that of /. We can repeat the process with fi.
Since there are only a finite number of monomials of degree
m, a finite number of applications of the process yields a
representation of fas a polynomial in p1, p2, ..., pr.

We show next that the p; are algebraically independent.
Suppose

Gy i =0
%,I dyedP) P

where this is summed over a finite set of distinct (d) = (dl, ...,
dy), di € 7", If the relation is non-trivial we have ady ...d-#0
for some (d). For any (d) define (k) = (41, kz, oo k) by ki = d
+dj+1+ ...+ dr Then the degree of p1¥' " p,*" in the x’s is
m=>31" k, 31" id; and the hlghest monomlal of this degree
occurring in pld1 " pr dr i x1k xR 1f d)=1,....d)
andKi=d'i+...+d =k forl §z§rthend, di, 1<i<r.
Thus distinct monomials pldl prdr in the p’s have distinct
highest monomials in the x’s occurring in them. We now
choose among the (d) such that aq; ... 4, # 0 the one such that
m is maximal and the highest monomlal x1k xrkr 1s
maximal. Then expressing our relation in the p’s in terms of
the x’s we get the terms xfU e xR only once and with
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non-zero coefficient aq; ... 4. This contradicts the algebraic
independence of the x’s.

We have now proved the first two statements in

THEOREM 2.20. Every symmetric polynomial is expressible
as a polynomial in the elementary symmetric polynomials p;.
The elementary symmetric polynomials are algebraically
independent over R. Every x; is algebraic over R[p1, p2 ..., pr].

The last statement is clear since (45) and (46) give
gix)=x"—px/ "+ pax" = 4+ (=1)p, =0

EXERCISES
1. Express D i, j, k + X7 sz Xk, ¥ =5, in terms of the p’s.

2. Let A =[] i < j(xi — xj). Show that A® is symmetric and
express A” for » = 3 in terms of the elementary symmetric
polynomials.

3. (Newton’s identities.) Let sk = Y"i = 1 x/*. Establish the
following relations connecting the symmetric polynomials sk
and the elementary symmetric polynomials p; : sk — p1sk—1 +
k—1 ky . _
pask—2—...t (=1 " pr-1s1+t (= D)kprk=0,1<k<n,sy
= pisntj—1F et (= D¥pksn+j—k+ ( 1)'pusi =0, > 0.
(Note that these are recursive formulas for expressing the
power sums si as polynomials in the p;. On the other hand,
they show that k/pi is a polynomial in sy, ..., sk with integer
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coefficients.) (Sketch ofProof Write fix) =x" — pix* 1+ ...
+(-1D)'"pn= ]_{1 x — xl) = (x — x/)qi(x). By exercise 17, p.
134, ql(zx) x" x,)x 24+ (- l)k(pk Pk—1xi +
pPk—2xi" — ...+ (= )'x; ) Formal dlfferentlatlon
(see pp. 230 231) gives nx" - ( 1)p1x =y"
qi(x) = nx — (n{yl s1)x" 24 (=1 (npk Pk—151+ ...
+ ( 1) Sk)x .. Comparlson of the coefficients of x”
B yields the first set of Newton’s identities for k <n — 1.
The remamlng identities can be obtained by summing on i the
relations x/" 7/ — pi/* T/ T+ 4 (= 1)'pux/ =0 for j > 0.)

2.14 FACTORIAL MONOIDS AND RINGS

In the remainder of this chapter we consider the elementary
theory of divisibility in (commutative) domains. In a number
of important domains every a # 0 and not a unit can be
written as a = p1 p2 ... ps, where the P; are irreducible, and
such factorizations are unique up to unit factors and the order
of the factors. When this is the case we can determine all the
factors (up to unit multipliers) of a and hence we can give a
simple condition for alb, that is, for ax = b to be solvable.
Since the factorization theory that we shall consider is a
purely multiplicative one, mainly concerned with the
multiplicative monoid of a domain, it will be clearer to
consider first the divisibility theory of monoids.

Let M be a commutative monoid satisfying the cancellation
law: ab = ac implies b = c. Let U be the subgroup of units of
M. 1fa, b € M, we say that b is a factor or divisor of a if there
exists an element ¢ in M such that a = bc. We indicate this by
writing b|a, and in this case we say that a is a multiple of b.
The relation of divisibility is transitive and reflexive—ift b|a
and c|b then c|a, and ala—but it is not symmetric. An element
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u is a unit if and only if u|1. The units are trivial factors since
they are factors of every element (a = u(u 1a)). If alb and b|a
then we shall say that a and b are associates and write a ~ b.
The conditions for this are b = au, a = bv. Hence b = bvu, and
thus, by the cancellation law, vu = 1 and v and u are units.
The converse is immediate, so the condition that a ~ b is that
a and b differ by a unit factor. Since the set of units

is a subgroup of M, it is clear that the relation of
associatesness is an equivalence relation.

If bla but anb (a is not a factor of b) then we say that b is a
proper factor of a. If u is a unit and u = vw, then it is
immediate that v and w are units. Thus the units of M do not
have proper factors. An element a € M is said to be
irreducible® if a is not a unit and a has no proper factors other
than units. If @ is not a unit and is not irreducible then a = bc
where b and c are proper factors of a. Any associate of an
irreducible element is also irreducible.

If an element a € M has a factorization a = p1p2 ... ps, where
the p; are irreducible, then a also has the factorization a =
p'1p'2 ... p's where p'; = ujp; and the u; are units such that uju2

. us = 1. Hence if M has units # 1 and s > 1 we can always
alter a factorization in the way indicated to obtain other
factorizations into irreducible elements, and since the
commutative law holds we can also change the order of the
factors. We shall say that a factorization into irreducible
elements is essentially unique if these are the only changes
that can be made in factoring an element into irreducible
ones. More precisely, a = p1p2 ... ps 1s an essentially unique
factorization of a into irreducible elements p; if for any other
factorization a = p'1p2 ... p's, p'i irreducible, we have ¢ = s
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and p'i’ ~ p; for a suitable permutation i — i’ of {1, 2, ..., s}.
We use this definition to formulate the following

DEFINITION 24. Let M be a commutative monoid
satisfying the cancellation law. Then M is called factorial
(sometimes Gaussian or a unique factorization monoid) if
every non-unit of M has an essentially unique factorization
into irreducible elements. A domain D is factorial if its
monoid D* of non-zero elements is factorial.

Our main objective in the remainder of this chapter is to show
that a number of important types of domains are factorial.
That this is not always the case can be seen in considering the
following

EXAMPLE

Let D = Z[¥ — %], the set of complex numbers of the form a +

b =3, where a, b € Z. 1t is easy to check that D is a subring
of €. Hence D is a domain. To investigate the arithmetic in D
we introduce the norm of an element of this domain: if »r =a +

b —3., then we define the norm Nr)=rf = a® + 5b°. Since
the absolute value of complex numbers is a multiplicative
function, N is multiplicative on D: that is, N(rs) = N(r)N(s).
Also

N(r) is a positive integer if » # 0. We use the norm first to
determine the units of D. If »s = 1 then N(r)N(s) = 1, so N(r) =
a® + 5b> = 1. Since a and b are integers this holds only if a =
+ 1 and b = 0. Hence U = {1, — 1}. It follows that the only
associates of an element r are » and — . We shall now show
that 9 has two factorizations into irreducibles in D which do
not differ merely by unit factors. These are:
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0=3-3=02+-542-/-5)

All of the factors 3,2 £V - 5. are irreducible, forif 3=rs, r, s
€ D, then 9 = N(3) = N(r)N(s). Hence if r and s are non-units
then N(r) = 3 and N(s) = 3. However, it is clear that N(r) = a®
+ 5% = 3 has no integral solution. Thus 3 is irreducible and,

similarly, 2 + ¥~ 5.and 2 — ¥ —% are irreducible. Also, it is

clear that 3,2 + % ~ 5. and 3, 2 —+/3 are not associates. Hence 9
does not have an essentially unique factorization into
irreducible elements (though it does have factorizations into

irreducibles), and Z[¥ ~%] is therefore not factorial.

In any factorial monoid M one can determine up to unit
factors all the factors of a given non-unit a, provided that a
factorization of a into irreducible elements is known; for, if a
= p1p2 ... ps Where the p; are irreducible, and if @ = bc where
b=p1..p'1 c=p"t..p"u and the p’; and p"f are
irreducible, then

a=pip: Py =Pz PP P

Hence, by the uniqueness property, p’j ~ pi; where ij # ik if j #
k. Hence b ~ pipi; ... Pi;. Thus any factor of a is an associate
of one of the products of the form p;; pi, ... pi, obtained from
the factorization a = p1 p2 ... ps. If we call the number s of
irreducible factors in the decomposition a = p1 ... ps the
length of a then it is clear that any proper factor of a has
smaller length than a. Hence it is clear that any factorial
monoid satisfies the following
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Divisor chain condition. M contains no infinite sequences of

elements ai, a2, ... such that each a;i + 1 is a proper factor of
ai.
Equivalently, the condition is that if a1, a2, ... is a sequence

of elements of M such that a; + 1|a; then there exists an integer
Nsuchthatay~an+1~aN+2 ~ ....

We obtain next a second necessary condition for factoriality.
An element p of M is called a prime if p is not a unit and if
plab implies either pla or p|b. In other words, p is not a unit

and pJfa and pJfb implies pJfab. Now let p be an irreducible
element in a factorial monoid M and suppose p/ab. Then p is
not a unit and if @ is a unit then ab ~ b so p|b. Similarly, if b is
a unit then pla. If @ and b are non-units we have a = p1 ... ps,
b=p'1t ... p't, pi, p'j irreducible. Then ab = P1 ... psp'1 ... P’
and since plab, either p ~ p; for some i or p ~ p'; for some j.
Thus either p|a or p|b, and we have proved that any factorial
monoid satisfies

the

Primeness condition. Every irreducible element of M is
prime.

We shall now show that the foregoing two conditions are
sufficient for factoriality. We note first that the divisor chain
condition insures the existence of a factorization into
irreducible elements for any non-unit of M. Let a be a
non-unit. We shall show first that @ has an irreducible factor.
If a is irreducible, there is nothing to prove. Otherwise, let a =
a1 b1 where aj is a proper factor of a. Either aj is irreducible
or a1 = a2 by where a2 is a proper factor of aj. We continue
this process and obtain a sequence a, a1, a2, ... in which each
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element is a proper factor of the preceding one. By the divisor
chain condition this process terminates in a finite number of
steps with an irreducible factor ay of a.

Now put an = p1 and write a = p1 d'. If @' is a unit, a is
irreducible and we are through. Otherwise, a' = p2 a” where
p2 is irreducible. Continuing this process, we obtain the
sequence a, a’, a”, ... where each element is a proper factor of
the preceding and each AR pia(i), pi irreducible. This
breaks off with an irreducible element ¢ ~ 1) = ps- Then

a=pa =ppa°=--"=ppy-p,

and we have the required factorization of a into irreducible
factors.

We shall show next that the primeness condition insures the
essential uniqueness of factorization into irreducible
elements. Let

(48) a=ppyps=pPa P

be two factorizations of a into irreducible elements. If s =1, a
= p1 is irreducible; hence # = 1 and p'1 = p1. We shall now use
induction and assume that any element which has a
factorization as a product of s — 1 irreducible elements has
essentially only one such factorization. Since p1 in (48) is
irreducible, it is prime by the primeness condition, and it is
clear by induction that if p is a prime and p|a1 a2 ... ar then
plai for some i. Hence p1|p'j for some j. By rearranging the p’,
if necessary, we may assume pi|p'1. Since p'1 is irreducible
this means that p't ~ p1 and so p't = piui, u1 a unit. We
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substitute this in the second factorization in (48) and cancel
p1 to obtain

b=py--p=wpy Bi=01"""P

where p"2 = u1p'1t and p"; = p'i, i > 2, are irreducible. By the
induction assumption we have s — 1 = ¢ — 1 and for a suitable
ordering of the p”; we have pj ~ p"j,j =2, ..., s. Then s = ¢
and pi ~p'i, 1 <i<s.

We have now established the following criterion:

THEOREM 2.21. Let M be a commutative monoid satisfying
the cancellation law. Then M is factorial if and only if the
divisor chain condition and the primeness condition hold in
M.

We shall show next that we can replace the second condition
in the foregoing theorem by the condition that every pair of
elements of M have a greatest common divisor. An element d
is called a greatest common divisor (g.c.d.) of a and b if d|a
and d|b; and if ¢ is any element such that c|a and c|b, then c|d.
If d and d' are two g.c.d.’s of a and b, then the definition
shows that d|d" and d'|d. Hence d ~ d'. Thus, the g.c.d., if it
exists, is determined up to a unit multiplier. We shall find it
convenient to denote any determination of a g.c.d. of @ and b
as (a, b). The dual notion of a g.c.d. is a least common
multiple. We call m a least common multiple (1.c.m.) of a and
b if alm and b|m; and if » is any element such that a|n and b|n,
then m|n. We denote any l.c.m. of @ and b by [a, b].

We shall now show that in a factorial monoid any two
elements a and b have a g.c.d. and an l.c.m. If g is a unit then
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it is clear that a is a g.c.d. and b is an l.c.m. of @ and b. Hence
we may assume that a is not a unit. Then we look at a
factorization of a as a product of irreducible elements. By
replacing associated irreducible factors in such a factorization
of a by a single representative one multiplied by unit factors,
we obtain a factorization

e

(49) a=up,“'p; - p,

where u is a unit, the p; are irreducible and not associates, and
the e; are pos1t1ve 1ntegers Itis clear now that the factors of a
have the form u’ p1°' p2? = p,°” where ' is a unit and the e’
are integers such that 0 < e’ < e;. It is easy to see also that if a
and b are two non-units, then we can write these in terms of
the same non-associate irreducible elements, that is, we can
obtain

(50) a= upiﬂpzu S P,ﬂ, b= FPn‘nP:h i P;‘ﬁ

where u and v are units, if we allow the e; and f; to be
non-negative integers. Now consider the element

(51) d=p"p,”---p*  g;=min(e,f)

Clearly dL(a and d|b. Moreover, if c|la and c|b, then ¢ = wpl
p " pr ! where wis a unit and 0 < k; < e, fi. Then k; < g;
and c|d. Thus the element d is a

g.c.d. of a and b. In a similar manner one sees that if 4#; = max
(ei, fi), then

(52) m=p,p,*-.. ple

i1s an l.c.m. of ¢ and 5.
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If a and b have a unit as g.c.d. then we have (a, b) =1 and we
say that a and b are relatively prime. This is the case if and
only if either a or b is a unit or no irreducible factor of either
one is a factor of both.

Now let M be a commutative monoid with cancellation law
and assume that M satisfies the

G.c.d. condition. Any two elements of M have a g.c.d.
We shall show that this implies that irreducible elements of M
are prime. We break the argument up into a number of simple

lemmas.

LEMMA 1. A4ny finite number of elements ai, ..., ar of M
have a g.c.d., that is, there exists a d in M such that d|ai, 1 <i
<r,and if e € M satisfies e|ai for 1 <i <r, then eld.

Proof. Letd1 = (a1, a2),d2=(dl, a3), ..., d=dr= (dr -1, ar).
Then the definitions show that d is a g.c.d. of a1, ..., ar. O

We denote any g.c.d. of ai, ..., aras (ai, ..., ar).

LEMMA 2. ((a, b), ¢) ~(a, (b, ¢)).

Proof. Bothare g.c.d.’s ofa, b,and c. [

LEMMA 3. c(a, b) ~ (ca, cb).

Proof. Let (a, b) =d, (ca, cb) = e. Then cd|ca and cd|cbh, and
so cd|(ca, cb). Hence e = cdu. Now ca = ex = cdux. Hence a =

dux, that is, dula. Similarly, dulb and so du|d. Hence u is a
unit and (ca, cb) ~ cd ~ c(a, b). [
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LEMMA 4. If(a,b)~ 1 and (a,c)~ 1 then (a, bc) ~ 1.

Proof. 1f (a, b) ~ 1, then Lemma 3 shows that (ac, bc) ~ c. It
is clear that (a, ac) ~ a. Hence

I ~ (a, c) ~ (a, (ac, bc)) ~ ((a, ac), be) ~ (a, be). [

We can now prove

LEMMA 5. The g.c.d. condition implies the primeness
condition.

Proof. Let p be irreducible and suppose pJfa and pJfb. Since p
is irreducible these imply that (p, @) ~ 1 and (p, b) ~ 1. Then

Lemma 4 shows that (p, ab) ~ 1 and so pJfab. Thus if plab
then either pla or p|p. [

These results yield our second criterion for factoriality:

THEOREM 2.22 Let M be a commutative monoid satisfying
the cancellation law. Then M is factorial if and only if the
divisor chain condition and the g.c.d. condition hold in M.

Proof. Lemma 5 shows that if the indicated conditions hold
then the divisor chain condition and primeness condition
hold. Hence M is factorial by Theorem 2.21. Conversely, if M
is factorial then M satisfies the divisor chain condition and, as
we have seen, every pair of elements of M have a g.c.d. [

EXERCISES

1. Show that if M is factorial then ab ~ [a, b](a, b) in M.
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2. Let M be a commutative monoid with cancellation law.
Show that the relation of associateness ~ is a congruence
relation. Let M be the corresponding quotient monoid. Show
that M satisfies the cancellation law and that I' is the only unit
in M. Show that M is factorial if and only if M is factorial.

3. Show that Z[¥ - S-] satisfies the divisor chain condition.
4. Show that Z[x] satisfies the divisor chain condition.

5. Let D be the set of expressions a1x*!' + axx®? + ... + ax™
where the a; € some field ' and the o; are non-negative
rational numbers. Define equality and addition in the obvious
way and multiplication using the distributive law and
(aix™)(ax™) = ajaix™ * “. (This can be done rigorously using
the procedure of exercise 8, p. 127.) Show that D is a domain.
Show that the divisor chain condition fails in D.

6. Show that any prime is irreducible.

7. Let I[wf'rﬁ' ] be the set of real numbers of the form a + py/10
where a, b € Z. Show that Z[v10 ] is not factorial.
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8. Let p be a prime of the form 4n + 1 and let g be a prime
q

q
such that (P) = — 1(see p. 133 for the definition of (P)).
Show that Z[ v P4] is not factorial.

2.15 PRINCIPAL IDEAL DOMAINS AND EUCLIDEAN
DOMAINS

We are now going to apply our results on factorization in
monoids to domains. The results are applicable to any
commutative domain D, since the set D* of non-zero
elements of D is a submonoid of the multiplicative monoid of
D and the cancellation law holds. The concepts and results
carry over. We now make the important observation (which
we have already made for Z) that the divisibility bla is
equivalent to the set inclusion (b) D (a) for the principal
ideals (b) and (a). For, (b) D (a) is equivalent to a € (b) and
this is equivalent to a = bc, by the definition of (b). Since a
and b are associates in D* if and only if alb and b|a, we see
that a ~ b if and only if (a) > (b) and (b) D (a); hence, if and
only if (@) = (b). Thus a is a proper factor of b if and only if
we have the proper inclusion (@) # (b). The divisor chain
condition for M = D* is therefore equivalent to:

The ascending chain condition for principal ideals. D
contains no infinite properly ascending chain of principal

ideals (a1) % (a2) % (a3) % ... .

We have defined a principal ideal domain (p.i.d.) to be a
domain in which every ideal is principal. We have seen that Z
and F[x] for any field F are p.i.d., and we shall give other
examples of p.i.d. below. We shall now show that any p.i.d. D
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is factorial. We establish first the divisor chain property by
proving the ascending chain condition for principal (hence
all) ideals. We recall that in any ring the union of an
ascending chain of ideals is an ideal (section 2.5, p. 102).

Hence if (a1) < (a2) € (a3) — ... then [ = U(ai) is an ideal in
D. Consequently, I = (d) for some d € I. Then d € (an) for
some 7 and I = (d) < (an). Then if m > n, (am) 2 (an) D 1D
(am) so (an) = (an + 1) = .... This proves that D contains no
infinite properly ascending chain of ideals.

To complete the proof of factoriality it is enough to show that
D* satisfies either the primeness condition or the g.c.d.
condition. We shall prove both, thereby giving two alternative
proofs of factoriality.

Let a, b € D and consider the ideal (a, b) generated by a and
b Exactly as in the case of Z (p. 104) we see that if (a, b) =
(d) then d is a g.c.d. Since every ideal is principal this shows
that every pair of elements of D have a g.c.d.

We shall give next a direct proof that irreducible elements of
a p.i. d. are prime. This will give a proof of factoriality that is
independent of the considerations on greatest common
divisors that led to Theorem 2.22.

Let p be irreducible in D* and suppose plab but pJfa, a, b e
D*. The condition p irreducible means that there exists no
ideal 7 such that D = I Z (p). Since pJfa, a® (p)so(p,a)=(p)
and hence (p, @) = (1). Thus we have’u, v € D such that up +
va = 1. Then upb + vab = b. Since plab, this implies that p|b.
Hence p is a prime.
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We have now doubly proved:
THEOREM 2.23. Any principal ideal domain is factorial.

In particular, this implies that if F is a field, then F[x] is
factorial. We remark that it also gives another proof of the
fact that Z is factorial (p. 22).

The notion of a principal ideal domain is a nice abstract
concept. However, we need a practical criterion for proving
that certain rings are p.i.d. This is provided by the notion of a
Euclidean domain, which we now define.

DEFINITION 2.5. A4 domain D is called Euclidean if there
exists a map 6:a — d(a) of D into the set M of non-negative
integers such that if a, b # 0 € D, then there exist q, r € D
such that a = bq + r where o(r) <(b).

The ring Z becomes Euclidean if one defines d(a) = |a|. Also
the division algorithm for polynomials shows that F[x] is
Euclidean for any field F if we define d(fx)) = 24 /)
(where it is understood that 2~ * = 0). Another important
example of a Euclidean domain is the

Ring of Gaussian integers Z[¥ —1]. This is the subset of € of
complex numbers of the form m + ni where m, n € Z and i =

v =1 Thus Z[¥ —1] can be identified with the set of “lattice”
points, that is, points with integral coordinates in the complex
plane. It is readily verified that Z[/] is a subring of €, hence an
integral domain. If a = m + ni we put d(a) = a a-= |a|2 = m?* +
n’. Then o(a) € M and d(ab) = d(a)o(b). To prove that &
satisfies the condition of the definition of a Euclidean domain,
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we note that if b # 0 then ab™ ' = u + vi, where u and v are
rational numbers. Now we can find integers u and v such that

lu—u < i,|v—v|§ i.Set?Zu—u,nzv—u, sothat|?|§i
and || < i.Then

a = bllu+ &) + (v + n)i]

=hg+r

where ¢ = u + vi is in Z[i] and » = b(? + ni). Since r =a — bq, r
€ I[i]. Moreover

8(r) = [r> = bl + 1) < B¢ + 4) = 1a(b).

Thus §(r) < §(b). Hence Z[¥ —1] is Euclidean.
The main result on Euclidean domains is the following
THEOREM 2.24. FEuclidean domains are principal.

Proof. The proof is identical with the one given in the
special case D = F[x]. Let I be an ideal in a Euclidean domain
D. If I = (0) we have I = (0). Otherwise, let b # 0 be an
element of / for which d(b) is minimal for the non-zero
elements of /. Let a be any element of /. Then a = bg + r for
some ¢, r € D with 6(r) < d(b). Since r =a — bg € I and d(r) <
o(b) we must have » = 0 by the choice of b in /. Hence a = bq
sol=(b). O

Since every p.i.d. is factorial we have the

COROLLARY. Euclidean domains are factorial.
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EXERCISES

1. Let F be a field. Is /' a p.i.d.?

,_
2. Show that the set Z[v2] of real numbers of the form m + n
=
v2 m, n € Z is a Euclidean domain with respect to the
[
function 5(m + nv2) = |m2 —om? |.

3. Let D be the set of complex numbers of the form m + n

\.f’-_B where m and n are either both in Z or are both halves of
odd integers (exercise 4, p. 89). Show that D is a Euclidean

domain relative to d(m + nv""—_3) = m® + 3n’.

4. Let D be a p.i.d., E a domain containing D as a subring.
Show that if d is a g.c.d. of @ and b in D, then d is also a g.c.d.
ofaand b in E.

5. Show that if @ # 0 in a p.i.d. D, then D/(a) is a field ifa is a
prime and D/(a) is not a domain if a is not prime.

6. Let D be a Euclidean domain whose function ¢ satisfies: (i)
o(ab) = d(a)d(b) and (i) d(a + b) < max (d(a), o(b)). Show
that either D is a field or D = F[x], F a field, x an
indeterminate.
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7. Let p be a prime of the form 4n + 1, n € Z. Use the

- |: ’
criterion of exercise 15, p. 133 to show that ( P/ =1. Hence
prove that p is not a prime in Z[{], the ring of Gaussian
integers.

8. Use exercise 7 to prove that any prime p of the form 4n + 1
isasuma2+b2,a,b el

9. Determine the primes ( = irreducible elements) of Z[7].

10. Show that a positive integer m is a sum of two squares of
integers if and only if the primes of the form 4n + 3 occurring
in the prime decomposition of m occur with even
multiplicities.

11. (Euclid’s algorithm for finding the g.c.d.) Let a1, a2 be
non-zero elements of a Euclidean domain. Define a; and ¢;
recursively by a1 = g1 a2 + a3, ai = qiai + 1+ ai + 2 where d(a; +
2) < d(ai + 1). Show that there exists an n such that a, # 0 but
an + 1 =0, and that d = a, = (a1, a2). Also use the equations to
obtain an expression for d in the form xa1 + yas.

2

12. A})ply the foregomg to the polynomials S +x-3

andx* — x> +3x* +x—41in Q[x].
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The next three exercises are designed to explain one of the
mysteries of the integral calculus: the partial fraction
decomposition of rational functions.

13. Let F be a field and suppose f(x) is a non-zero polynomial
in F[x] which has a factorization f(x) = f1(x)f2(x) where deg f;
>0 and (f1, f2) = 1. Show that if deg g(x) < deg f(x), then there
exist ui(x) € F[x] such that g(x) = u2(x)f1(x) + u1(x)f2(x) and
deg u; < deg fi. (Hint: Existence of v1(x) and v2(x) such that
02(x)f1(x) + v1(x)f2(x) = g(x) 1s clear. Now divide vi(x) by fi(x)
obtaining the remainder u;(x) of degree < deg fi. Apply degree
considerations.) Note that in the field of fractions F(x) of F[x]
one has g(x)/f(x) = u1(x)/f1(x) + u2(x)/f2(x). Use induction to
prove that if x) = p1(x)°! "~ pHx)", pi(x) distinct primes, then
g)/fix) = X1" gi(x)/pix)”" where deg g < deg pi”".

14. Show that if g(x), p(x) # 0 in F[x] then there exist ai(x) €
Fx] with deg a; < deg p such that
glx) = aglx) + a,(x)plx) + - -+ a__(x)plx) !

E{t_l _anllx] ayglx) 4, 1{.1'_]

poF o Taar T T T

15. Assuming the result (which will be proved in Chapter 5)
that the irreducible polynomials in ®[x] are either linear or
quadratic, show that if f{x), g(x) € R[x] and deg g < deg 1,
then one can decompose the fraction g(x)//(x) in B(x) as a sum
of of partial fractions of one of the forms a/(x — )¢ or (bx +
c)/(x2 + sx + £)° where x> + sx + t is irreducible. More
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precisely, suppose f(x) = [T1" ¢ — r)% [[1" (&> + sjx + tj)’?
where the quadratics are irreducible then g(x)/f{x) can be
written in the

form

ksl o, . ¥ bieX + €,
i=iE=1(x = rg" j=ta,=1 (x* + spc + 1)

16. Investigate the uniqueness questions posed by exercises
13-15.

17. Define the Mobius function u(n) of positive integers by
the following rules: (a) u(1) =1, (b) w(n) = 0 if n has a square
factor, (c) u(n) = (= 1)° if n = p1 p2 ... ps, pi distinct primes.
Prove that u is multiplicative in the sense that u(n1 n2) =
u(m)u(no) if (n1, n2) = 1. Also prove that

1 il n=1

1) =
2. M4 {u it 0l

18. Prove the Mdbius inversion formula: If f{(n) is a function
of positive integers with values in a ring and

giny= Y fid)
dlim

then
(§)
fin) = Ej H gl
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19. Prove that if ¢(n) is the Euler p-function then

win) = E u(ﬂd.
\ai

dlm

20. Let F be a field with ¢ (< «) elements. Prove that the
number of irreducible monic quadratic polynomials with
coefficients in F is g(g — 1)/2 and the number of irreducible
cubics with coefficients in F'is q(q2 —1)/3. (See Corollary 2 to
Theorem 4.26, p. 289.)

2.16 POLYNOMIAL EXTENSIONS OF FACTORIAL
DOMAINS

In this section we prove the important theorem that states that
if D is factorial then so is the domain D[x] of polynomials in
an indeterminate x over D.

Let D be factorial. Then any finite set of non-zero elements of
D have a g.c.d. We shall find it convenient to define the g.c.d.
(a1, a2, ..., ak) where a; € D to be O if all the a; = 0, and
otherwise to be the g.c.d. of the non-zero a;. If f(x) = ao + aix
+ ...+ apx" # 0 we define the content c(f) of f(x) as (a0, al, ...,
an) (#0). If d = c(f) we can write a; = da'i, 0 <i <n, and f(x) =
dfi(x) where

Silx)=as + ayx + - + ax

We have seen in our discussion of g.c.d.’s in monoids
(section 2.14) that (da, db) = d(a, b). It follows by induction
that d(b1, b2, ..., by) = (db1, ..., dby).
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This evidently implies that the content c(fi) is 1. A
polynomial having this property is called primitive. Hence we
have the factorization fx) = c(f)f1(x) as a product of the
content of fand a primitive polynomial. Now let f{x) = ef2(x)
be any factorization of f{x) as a product of a constant e and a
primitive polynomial /(x) = a”o + a"1x + ... + a"x". Then a;
=a"je and 1 is a g.c.d. of the a";. Hence e is a g.c.d. of the a;,
and so e ~ c(f).

It is useful to extend the factorization of a polynomial as
product of an element of D and a primitive polynomial to
polynomials with coefficients in the field of fractions. The
result we require is

LEMMA 1. Let D be a factorial domain, F the field of
fractions of D, and fix) # 0 € F|x]. Then f(x) = yf1(x) where y
€ F and fi1(x) is a primitive polynomial in D[x]. Moreover,
this factorization is unique up to unit multipliers in D.

Proof. Let fix)=ap+ aix + ... + axx” where the a; € F and
on # 0. We can write a; = a;b; 1, ai, bi € D. Then if b =[] bj,
bfix) € D[x] so bfix) = cfi(x) where fi(x) € D[x] and is
primitive. Then f(x) = y fi(x) where y =cb e F. Now let fx)
= 0f2(x) where 0 € F and f2(x) € D[x] and is primitive. Then
=de 1, d, e € D. Hence we have cbh~ ! filx) =de ! f2(x) and
cef1(x) = bdfa(x). The result proved before for polynomials
with coefficients in D shows that f1(x) ~ f2(x) and ce ~ bd.
Then we have bd = uce, u is a unit in D, and de ~ = ucb~ L
Hence 6 = uy as required. [
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As in the case of D[x], we call the element y, which is
determined up to a unit multiplier by f(x), the content of f(x) €
F[x]. An immediate consequence of Lemma 1 is the

COROLLARY. Let fix) and g(x) be primitive in D[x] and
assume these are associates in F[x]. Then they are associates
in D[x].

Proof. We are given that f(x) = ag(x), a # 0 in F. Then the
uniqueness part of Lemma 1 shows that o is a unit in D. [J

The key lemma for proving the factoriality of D[x] is

LEMMA 2(Gauss’ lemma.) The product of primitive
polynomials is primitive.

Proof. Suppose f(x) and g(x) are primitive but A(x) = f(x)g(x)
is not. Then there exists an irreducible element (hence a

prime) p € D such that pJff(x), pJfg(x) but p|h(x). We now
observe that saying that p is a prime is equivalent to saying

that D = D/(p) i1s a domain. This is immediate from the

definitions. Hence D [x]
is a domain. We now apply the homomorphism of D[x] onto

D [x] sending a € D into its coset d=a+(p)and x — x. This
gives J (0)8(x) = h(x) = 0 but / (x) £ 0, 9(x) # 0. This
contradicts the fact that EI*[)c] is a domain and hence proves
the lemma.

LEMMA 3. If fix) € Dx] has positive degree and is
irreducible in D[x], then f(x) is irreducible in F[x].
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Proof. If fix) € D[x] has positive degree and is irreducible in
DI[x] then f(x) is primitive. Suppose that f{x) is reducible in
Flx]: fix) = ¢1(x) p2(x) where ¢i(x) € F[x] and deg ¢i(x) > 0.
We have ¢i(x) = o;fi(x) where a; € F and fi(x)is primitive in
D[x]. Then f{x) = a102/1(x)f2(x) and fi(x)f2(x) is primitive by
Gauss' lemma. It follows that f{x) and fi(x)f2(x) differ by a
unit multiplier in D. Since deg fi(x) > 0 this contradicts the
irreducibility of f{x) in D[x]. [

We are now ready to prove
THEOREM 2.25. If D is factorial then so is D[x].

Proof. Let f(x) € D[x] be non-zero and not a unit. Then f{x)
= df1(x) where d € D and fi(x) is primitive. If deg fi(x) > 0
then f1(x) is not a unit and if this is not irreducible we have
f1(x) = f1 1(x)f1 2(x) where deg f1i(x) > 0 so deg f1i(x) < deg
f1(x). Clearly f1 i(x) is primitive. Hence using induction on the
degree we see that f1(x) = g1(x) g2(x) ... g«(x) where the g;(x)
are irreducible in D[x]. If d is not a unit we have d = p1p2
...ps Where the p; are irreducible in D. Clearly these are then
irreducible in D[x]. Using the factorizations of d and fi(x)
(when these are not units) we obtain a factorization of f{x)
into irreducible factors in D[x]. It remains to prove
uniqueness up to unit multipliers of any two such
factorizations. Suppose first that f{x) is primitive. Then the
irreducible factors of f{x) all have positive degree. Thus we
have f(x) = q1(x) ... gn(x) = q1 (x) . gk (x) where the g;(x)
and gj (x) are irreduc1ble of positive degree Then these are
irreducible in F[x] by Lemma 3. Since F[x] is factorial we
have /1 = k, and by suitably ordering the g; (x) Wwe may assume
that ¢i(x) and g; (x) for 1 <i < h are associates in F[x]. Then
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the corollary to Lemma 1 shows that g;(x) ~ qi’(x) in D[x].
Next suppose that f{x) is not primitive. Since the irreducible
factors of positive degree are primitive, their product is
primitive. Hence any factorization of f{x) into irreducible
elements in D[x] contains factors belonging to D, and their
product is the content of f{x). By modifying by a unit
multiplier we may assume that this is the same for the two
factorizations. Since D is factorial we

can pair off the irreducible factors of f{x) belonging to D into
associate pairs. The product of the remaining factors, if any,
is a primitive polynomial. Since we have taken care of these
the proof is complete.

An immediate consequence of the theorem is that if D is
factorial so is the ring D[x1, ..., xy] of polynomials in r
indeterminates over D: for example, Z[x1, ..., x;] is factorial
and so is F[x1, ..., xr] for any field F. It is clear from this that
the class of factorial domains is more extensive than that of
p.i.d. (see p. 131 and also exercise 5 below).

An important consequence of the factoriality of D[x] and of
Lemma 3 is the following

COROLLARY. If D is factorial and fix) € D|x] is monic,
then any monic factor of f(x) in F[x] is contained in D|x].

Proof. We can write f{ix) = p1(x)°! ... pr(x)* where the pi(x)
are monic and irreducible in D[x], pi(x) # pj(x) if i #j and e; >
0. Then the monic factors of f{x) in D[x] have the form pl(x)f1
pr(x)fr with 0 < f; < e;. If we now pass from D[x] to F[x]
then, by Lemma 3, the p;(x) are irreducible in F[x]. Hence f(x)
has the same monic factors in D[x] and in F[x]. [
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EXERCISES

1. Prove that if fix) is a monic polynomial with integer
coefficients then any rational root of f{x) is an integer.

2. Prove the following irreducibility criterion due to
Eisenstein. If ix) = ap + aix + ... + anx” € Z[x] and there
exists a prime p such that pla;, 0 <i<n -1, pJfan and p2+ao,
then f{x) is irreducible in Q[x].

3. Show that if p is a prime (in ) then the polynom1a1
obtained by replacing x by x + L inx” = ' +x’ ~ 1=
(” — D/(x — 1) is irreducible 1n ﬂ[x% Hence prove that the
“cyclotomic” polynomial x” ~ . + 1 is irreducible

in Q[x].

4. Obtain factorization into irreducible factors in Z[x] of the
following polynomials: X - 1, P 1, P 1, P I,x" —1, K8
1, - 1,x10 -1,

5. Prove that if D is a domain which is not a field then D[x] is
not a p.i.d.

6. Let F be a field and f(x) an irreducible polynomial in F[x].
Show that f{(x) is irreducible in F(#)[x], # an indeterminate.

2.17 “RNGS” (RINGS WITHOUT UNIT)

In most algebra books a ring is defined to be non-vacuous set
R equipped with two binary compositions + and - and an
element 0 such that (R, +, 0) is an abelian group, (R, *) is a
semigroup (p. 29), and the distributive laws hold. In other
words, the existence of a unit for multiplication is not
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assumed. We shall consider these systems briefly, and so as
not to conflict with our old terminology we adopt a different
term: rngs6 for the structures which are not assumed to have
units. We remark first that the elementary properties of rings
which we noted in section 2.1 (generalized associativity,
generalized distributivity, rules for multiples, etc.) carry over
to rngs. The verification of this is left to the reader. We shall
now show that any rng can be imbedded in a ring. This fact
permits the reduction of most questions on rngs to the case of
rings.

Suppose we are given a rng R. Our procedure for constructing
a ring containing R is to take S = Z x R the product set of Z
and R. If m, n € Zand a, b € R we define addition in S by

(53) (ma)+(nb)=(m+na+bh)

We define 0 = (0, 0). Then it is clear that (S, +, 0) is an
abelian group: in fact, it is the direct product (also called
direct sum) of (Z, +, 0) and (R, +, 0). We define multiplication
in S by

(54) (m, alin, b) = (mn, mb + na + ab)

where on the right-hand side mb and na denote respectively
the mth multiple of » and the nth multiple of a as defined in
the additive group (R, +, 0). We have
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((m, a)(n, B))(g, <) = (mn, mb + na + ab)(q, ¢)
= ((mn)q, (mn)c + qimb + na + ab) + (mb + na + ab)c)
= ((mn)gq, (mn)c + g(imb) + glna) + glab) + (mb)c
+(najc + (ab)c)
(m, a)(n, b)g, ¢)) = (m, a)ing, nc + gb + be)
= (mi{ng), minc) + migh) + m(bc) + (ng)a
+ alne + gb + be)).

It now follows from the associative laws in Z and in R, the
distributive laws in R, and the properties of multiples in R that
the associative law of multiplication is valid in S. If we put 1
= (1, 0) then we have 1(m, a) = (1, 0)(m, a) = (m, a) = (m, a)(
1,0)=(m, a) 1. Hence (S, -, 1) is a monoid.

Also we have

(m, (. b) + (q. )] = (m, a)m + . b + c)
= (min + g), mib + ¢} + (n + gla + alb + c))

{m, a)(n, b) + (m, a)ig, c) = (mn, mb 4+ na + ab) + (mgq, mc + qa + ac)
= (mn + mg, mb + na + ab + me + ga + ac).

Hence (m, a)[(n, b) + (¢, ¢)] = (m, a)(n, b) + (m, a)(g, c).
Similarly, the other distributive law holds. Hence (S, +, -, 0,
1) is a ring.

We now consider the subset of elements (0, a)in S. We have
(0, @) + (0, b) = (0, a + b), (0, a),(0, b) = (0, ab) and 0 = (0, 0)
is in this subset. Thus the subset is a subring isomorphic to R
(with the obvious definitions of these terms).We have
therefore proved

THEOREM 2.26. Any mg can be imbedded in a ring.
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We note also that R identified with the corresponding subset
of S is an ideal in S since (m, b)(0, a) = (0, ma + ba) and (0,
a)(m, b) = (0, ma + ab).

EXERCISES

1. An element a of a rg R is called right (left)
quasi-invertible (or right or left quasiregular) if there exists a
b such that a + b —ab =0 (a + b — ba = 0). Show that this is
equivalent to saying that 1 — a has the right inverse (left
inverse) 1 — b in § = Z x R, with the ring structure defined
above.

2. (Kaplansky.) Let R be a rng in which every element but one
is right quasiinvertible. Show that R has a unit and R is a
division ring.

3. Let R be a rng for which there exists a positive integer k
such that ka = 0 for all @ € R. Let Sk = Z/(k) x R. Write m =m
+ (k) in Z/(k) and define (M, a) + (1, b) = (M + 1, a + b), (M,
a)(, b) = (M1, mb + na + ab), 0 = (U, 0), 1 = (1, 0). Verify
that (Sk, +, -, 0, 1) is a ring of characteristic k£ and that R is
imbedded in Sk.

4. Let R be a rng without zero divisors # O(that is, ab = 0 in R
implies either @ = 0 or b = 0). Assume R comtains elements a
and b # 0 such that ab + kb = 0 for some positive integer k.
Show that ca + kc =0 =ac + kc for all ¢ € R.

5. Let R be a rng without zero divisors # 0 and let S be the
ring Z X R as in the text. Let Z= {z € S| za =0 for all a € R}.
Show that Z is an ideal in S and S/Z is a domain. Show that a
— a + Z is a monomorphism of R into S/Z.
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"The term “ring” appears to have been used first by A.
Fraenkel, who gave a set of axioms for this concept in an
article in Journal fiir die reine und angewandete Mathematik,
vol. 145 (1914). However, his definition was marred by the
inclusion of some ad hoc assumptions that are not appropriate
for a general theory. The concept as defined here is due to
Emmy Noether, who formulated it in a paper in
Mathematische Annalen, vol. 83 (1921). Before this the term
“Zahlring” had occurred in algebraic number theory.

’The principal theorems on determinants will be derived later
in this book, using exterior algebras (section 7.2, pp.
416-419).

31t seems to have taken Hamilton ten years to arrive at this
multiplication table. In fact, he had spent a good deal of effort
trying to construct a field of triples of real numbers (which is
not possible) before he realized that it was necessary to go to
quadruples and to drop the commutativity of multiplication.
Perhaps this bit of history may serve as an encouragement to
the student who sometimes finds himself on the wrong track
in attacking a problem. (See Carl A. Boyer, 4 History of
Mathematics, New York, Wiley, 1968, p. 625.)

*We use this term rather than “prime,” which we have used
hitherto in discussing the arithmetic of Z. In the general case

prime elements will be defined differently below (p. 142).

SThere is no harm in allowing either a = 0 or b = 0 in these
considerations.
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6Suggested pronunciation: rungs. This term was suggested to
me by Louis Rowen.
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Modules over a Principal Ideal Domain

The central concept of the axiomatic development of linear
algebra is that of a vector space over a field. The
axiomatization of linear algebra, which was effected in the
1920’s, was motivated to a large extent by the desire to
introduce geometric notions in the study of certain classes of
functions in analysis. At first one dealt exclusively with
vector spaces over the reals or the complexes. It soon became
apparent that this restriction was rather artificial, since a large
body of the results depended only on the solution of linear
equations and thus were valid for arbitrary fields. This led to
the study of vector spaces over arbitrary fields and this is
what presently constitutes linear algebra.

The concept of a module is an immediate generalization of
that of a vector space. One obtains the generalization by
simply replacing the underlying field by any ring. Why make
this generalization? In the first place, one learns from
experience that the internal logical structure of mathematics
strongly urges the pursuit of such “natural” generalizations.
These often result in an improved insight into the theory
which led to them in the first place. A good illustration of this
is afforded by the study of a linear transformation in a finite
dimensional vector space over a field—a central problem of
linear algebra. As we

shall see in sections 3.2 and 3.10, given a linear
transformation 7 in a vector space V over F, we can use this
to convert V into a module over the polynomial ring F[4], A an
indeterminate.! The study of this module will lead to the
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theory of canonical forms for matrices of a linear
transformation and to the solution of the problem of similarity
of matrices.

It is an easy step to pass from modules over F[1] to modules
over any principal ideal domain. This will give us other
applications. In particular, specializing the p.i.d. to be Z, we
shall obtain the structure theory of finitely generated abelian
groups, hence, of finite abelian groups.

It would be wrong to conclude from these remarks that the
historical development of the theory of modules followed the
logical path of extension of linear algebra which we have
indicated. The concept of a module seems to have made its
first appearance in algebra in algebraic number theory—in
studying subsets of rings of algebraic numbers closed under
addition and multiplication by elements of a specified
subring. Modules first became an important tool in algebra in
the late 1920’s largely due to the insight of Emmy Noether,
who was the first to realize the potential of the module
concept. In particular she observed that this concept could be
used to bridge the gap between two important developments
in algebra that had been going on side by side and
independently:  the theory of representations (=
homomorphisms) of finite groups by matrices due to
Frobenius, Burnside, and Schur, and the structure theory of
algebras due to Molien, Cartan, and Wedderburn. We
consider these matters in Vol. II of this work. More recently
one has had the development of homological algebra, in
which modules also play a central role. This, too, is
considered in Vol. II.
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The principal topic of this chapter is the study of finitely
generated modules over a p.i.d. D and the two special cases,
in which D is either Z or a polynomial ring F[1], F a field. As
we have noted, these give, respectively, the structure theory
of finitely generated abelian groups and canonical forms for
linear transformations. Of course, we shall need to begin with
some general theory. However, we shall not develop this
much beyond what is actually needed to achieve our
immediate objectives. Most of the general theory of modules
and other applications are discussed in our second volume.

3.1RING OF ENDOMORPHISMS OF AN ABELIAN
GROUP

Let M be an abelian group. We use the additive notation in M:
+ for the given binary composition, 0 for the unit, — a for the
inverse of a, and ma, m € Z, for the mth power. Let End M
denote the set of endomorphisms of M. By definition

, these are the maps 7 of M into M such that

(1) nx + ¥) = n(x) + gy n0)=0

and we have seen that the second condition is a consequence
of the first. Hence a map # of M into M is an endomorphism if
and only if

(1) nix + y) = nix) +niy)

We recall that this implies also that # (mx) = mn(x) for any m
€ Z. We recall further that if X is a set of generators for M,
then 7 is determined by its effect on X: that is, if  (x) = {(x)
for two endomorphisms # and { and all x in a set of
generators, then n = .
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Let us look at some
EXAMPLES

1. Let M be an infinite cyclic group (£, +, 0). Then 1 is a
generator and if 7(1) = m, then n(x) = n (xI) = xn(l) = xm.
Hence 7 is the map x — mx, x € M, where m = 5(l).
Moreover, if m is any element of Z, then the map x — mx is
an endomorphism since we have the power rule m(x + y) = mx
+ my. It is clear that x — mx maps 1 into m. Since
endomorphisms are determined by their effects on the
generator 1 it is clear we have a 1-1 correspondence between
the set End M, M = (Z, +, 0) and Z, which pairs » € End M
withn (1)=m € £Z.

2. Let M = (2(2), +, 0), the direct product (or sum) of two
copies of (£, +, 0). The elements here are the pairs of integers
(x, y) and we have (x, y) = x(1, 0) + (0, 1), so e = (1, 0) and f
= (0, 1) generate z®. Hence if n € End Z 2), then # is
determined by the pair of elements ;g (e), n(f). Moreover, any
pair of elements (u, v) € k1 can be obtained in this
way, this is, if (u, v) is given, then there exists an
endomorphism # such that # (e) = u4 and 7 (f) = v. To see this
we let # be the map which sends (x, y) = xe + yfinto xu + yv.
Then (', y) > xu+and x +x, y +y) > (x +xWu + (y +
yv; = (xu + yv) + (x'u + y'v). Hence 7 is a homomorphism
and 7n(e) = u and #5(f) = v, as required. Thus we have a 1-1
correspondence between End 7 and 2 x E(z) which pairs

?21; endomorphism # with the element ( (e), n(f)) € 7@ x z

These considerations generalize immediately to M = £ ™ for
any positive integer n and
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lead to a 1-1 correspondence between End Z ™ and

r LRy LU}

3. Let M be a finite cyclic group. In this case we may take M
= (£/(n), +,0) where n is a positive integer, and, in general, x
is the coset x + (n). Then I is a generator and we have a 1-1
correspondence between End #/(n) and £/(n) sending # € End
Z/(n) into 5 (1).

We shall now organize End M for any abelian group M into a
ring. We know that if  , { € End M, then the composite # €
End M, and we have the associative law (#{)p = n({p). Also,
the identity map 1:x—x is an endomorphism.

Hence (End M, -, 1) is a monoid. All of this holds even if M is
not abelian. However, a good deal more can be said in the
abelian case: namely, as we shall now show, End M with
composite multiplication and an addition and 0, which we
shall now define, constitute a ring. If #, { € End M we define

n+Cby

(2) (n + ONx) = m(x) + {(x).

This map of M into M is an endomorphism since

(7 + O0x + y) =nlx + p) + {x + y)
= n(x) + mly) + {(x) + ()
= n{x) + {(x) + nly) + ()
= (g + O)x) + (n + OUy)

We remark that the commutativity of + is used in the passage
from the second to the third of these equations. Next we
define the map 0 as x — 0, x € M. Evidently this is an
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endomorphism and # + 0 =# =0 + 5 for any # € End M. Let
— 5 be the map x — — 1n(x) so — 7 is the composite of # and
the map x — — x, which is an automorphism, since M is
abelian. Hence — n € End M, and clearly # + (-5) =0=-n + 7.
Since ((7 + C) + p)(x) = (7 + O(x) + p(x) = n(x) + {(x) + p(x)
and (7 + (C + p))x) =nx) + (€ + p)(x) = n(x) + {x) + p(x),
associativity holds for the addition composition +.
Commutativity also holds since (17 + {)(x) = n(x) + {(x) = {(x)
+ n(x) = (€ + n)(x). Thus we have verified that (End M, +, 0)
is an abelian group.

Previously, we had that (End M, 1) is a monoid. Now, we
have for#, { p € End M,

(p(n + O)(x) = pln(x) + {(x)) = (pnXx) + (p)(x) = (pn + pINx)

Similarly, ((n + Op)(x) = n(p(x)) + {(p(x)). Hence both
distributive laws hold in End M, and so we have verified the

following basic

THEOREM 3.1 Let M be an abelian group (written
additively) and let End M denote the set of endomorphisms of
M. Define n¢ and n + C for n, C € End M by (n{)(x) = n(C(x))
and (n + {)(x) = n(x) + {(x), 1 and 0 by Ix = x, Ox = 0. Then
(End M, +, -, 0, 1) is a ring.

We shall call (End M, +, -, 0, 1) or, more briefly, End M, the
ring of endomorphisms of the abelian group M. We consider
again the examples we gave above and we seek to identify the
rings End M in these cases.

EXAMPLES
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1.M=(Z,+,0). We saw that the map n — 7(l) is a bijective
map of End M onto Z In this map n + { —(n +{)(1) = »(1) +
A1), nG,—HOM)= n(l(1))= dDHn(1)=n(1){(1) and 1 —1(1) =
1 Hence #— #(1)is an isomorphism of End M with the ring of
integers Z. Hence we can say that the ring of endomorphisms
of an infinite cyclic group is the ring Z.

2.M = (2(2), +, 0). In this case we obtain the bijective map 7
— (n(e), n(f)) of End M onto 7@ x 2(2), the set of pairs of
elements of 22, Here e = (1,0) and f'= (0, 1). Suppose 7(e) =
(a, b) and n(f) = (¢, d). Then we evidently have a bijective
map

w
(3) "y d

of End M onto the ring M2(Z) of 2 x 2 integral matrices. We
claim that this is an isomorphism. Suppose ( is a second
endomorphism and {(e) = (a’, "), {(f) = (c¢’, d'). Then

ro a
14' » (H- dr)

Now (7 + 0)(e) =n(e) + {(e) = (a, b) + (', b') = (a + a’, b +
b") and similarly (7 + )(f) = (¢ + ¢/, d + d’). Hence

. a+a c+c
TEAZ\b+b d+d
and this is the sum of the matrices in (3) and (4). Next we

determine (7¢)(e) = n({{e)) =7 (a', b) =n(a'e + bf) = n (a’e) +
n(by) = a'ne) + b'n(f) = a'la, b) +b'(c, d) = (a'a, a'b) + (b'c,
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b'd) = (aa' + cb', ba' + db'). Similarly, (m{(f) = (ac' + cd’, bc'
+ dd'). Thus

1 aa’ + cb ac' + ed' fa e\ [fd ¢
™ \ba +db be v ad) " \b df\b @

the product of the matrix in (3) followed by the one in (4).
1 0

1 —r( )
Also 1(e) = (1, 0) and 1(f) = (0, 1) so O 1/ Hence we
have verified that the map (3) is an isomorphism of End M
with the matrix ring M2(Z).

3. M a cyclic group of order n. One sees, as in 1, that End M
is isomorphic to the ring Z/(n).

The fact that End M is a ring with respect to the compositions
and the 0 and 1 that we defined is analogous to the fact that
the set of bijective maps of a set with the usual composition
and 1 is a group. We now define a ring of endomorphisms to
be any subring of a ring End M, M an abelian group. We shall
now prove the analogue for rings of Cayley’s theorem for

groups (p. 38).

THEOREM 3.2. Any ring is isomorphic to a ring of
endomorphisms of an abelian group.2

Proof. The idea of the proof is identical with that of Cayley’s
theorem. Given the ring R we take M = (R, +, 0), the additive
group of R, and for any a we call the map ar:x — ax the left
multiplication determined by a.’ Since ar(x+y)=alx+y) =
ax +ay=arx + ary, ar € End M. Also (a + b)Lx = (a + b)x =
ax + bx = arx + brx = (ar + br)x (by definition of the sum of
endomorphisms) and (ab)Lx = (ab)x = a(bx) = ar(brx) =
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(arbr) (x), Ix = x. Hence a — ar is a homomorphism of the
ring R into End M. Since az = by implies a =arl = br1=b, a
— ay, is a monomorphism. The image is a subring Ry, of End
M and we have R = Ry [J

It is interesting to consider also the right multiplications of a
ring. We define agp:x — xa and note that this is an
endomorphism of M = (R, +,0) since (x + y)a = xa + ya. Also
it is immediate that @ — agr is an anti-homomorphism of R
into End M. The image Rgr = {aRr} is a subring of End M and
R and are anti-isomorphic. We note also that the subrings Rz
and Rp are the centralizers of each other in End M, that is, we
have

THEOREM 3.3 R, = C(Rg) and Rr = C(RL) in End M.

Proof. 1t is clear from (ax)b = a(xb) that arbr = bray, for any
a, b € R. Now let 7 be an endomorphism of M such that azn =
nar, a € R. Then n(x) = n(x1) = n(xrl) = xr(n (1)) = xn(1).
Hence # = n(1)r € RRr. Thus C(Rr) = RR and, by symmetry
C(RRr) = R1.

EXERCISES

1. Let G be a group (written multiplicatively), and let F' = GY
be the set of maps of G into G. If 5, { € F define n{ in the
usual way as the composite # following . Define 5 + { by (n
+ 0)(x) = n(x){(x). Define I:x — x,0:x — 1. Investigate the
properties of the structure (F, +, -, 0, 1).

2. Let M be an abelian group. Observe that Aut M is the group
of units (invertible elements) of End M. Use this to show that
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Aut M for the cyclic group of order n is isomorphic to the
group of cosets m =m + (n) in Z/(n) such that (m, n) = 1.

3. Determine Aut M for M = (2(2), +, 0).
4. Determine End (ﬂ’, +, 0).

5. In several cases we have considered, we have End (R, +, 0)
~ R for a ring R. Does this hold in general? Does it hold if R is
a field?

3.2LEFT AND RIGHT MODULES

The concept of a left module is the ring analogue of a group
acting on a set. As in the group case, this arises in considering
a homomorphism of a given ring R into the ring of
endomorphisms, End M, of an abelian group M. If 7 is such a
homomorphism, 7(a) €End M, so we have

nla)x + ¥) = glafx) + nlal(y), x,yeM,

and since 7 is a homomorphism we have

nla + b)(x) = (nla) + n(b))(x) = nla)x) + n(blx)
n(ab)(x) = (n(a) n(b))(x) = nia)n(b)(x))
n(1)x) = x,
x€ M, a, b € R. We now consider the map (a, x) — n(a)(x) of

R x M into M and we abbreviate the image #(a)(x) as ax. Then
the foregoing equations read:

. alx + y) = ax + ay
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2. (a 4+ b)x = ax + bx
¥ {ab)x = a(bx)
4. lx = x

forx,y € M, a, b, 1 € R. We formalize this in the following

DEFINITION 3.1. If R is a ring, a left R-module is an
abelian group M together with a map (a, x) — ax of R x M
into M satisfying properties 1-4.

We have seen that a homomorphism # of R into End M gives
rise to a left module structure on M by defining ax = n(a)(x)
for a € R, x € M. Conversely,

suppose we are given a left R-module M. For any a € R we let
ar, be the map x — ax of M into itself. Then the module
property 1 states that a; € End M. Moreover, it is clear from
properties 2—4 that @ — ar, is a homomorphism of R into End
M. The module obtained from this homomorphism by the
procedure we gave is the given left module. On the other
hand, if we begin with a homomorphism # of R into End M
and we construct the corresponding left R-module M, then the
associated homomorphism a — af, coincides with #, since arx
= ax = n(a)(x). Thus it is clear that the concept of a left
R-module is equivalent to that of a homomorphism of R into
the ring of endomorphisms of some abelian group.

The notion of right .R-module is dual to that of left R-module.
We give this in
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DEFINITION 3.1". A4 right module for a ring R is an abelian
group M together with a map (x, a) — xa of M x R into M
satisfying for a, b, 1 € Rand x, y € M:

l'. (x + y)a=xa+ ya

r3

xia + b) = xa + xb
3. x{ab) = (xa)b
4‘. ..l:] = X,

Let ag denote the map x — xa in M. Then ar € End M and a
— apR satisfies (@ + b)r = ar + br, (ab)R = brar, IR =1, so
this is an anti-homomorphism of R into End M (section 2.8, p.
114). Conversely, if # is an anti-homomorphism of R into the
endomorphism ring, End M, of an abelian group, M becomes
an R-module if we define the action xa, x € M, a € R, to be

n(a)(x).

Any anti-homomorphism # of a ring can be regarded as a
homomorphism of the opposite ring R of R (p. 113). This is
clear since the identity map is an anti-isomorphism of R’ onto
R and the composite of this and # is a homomorphism. It
follows from this that if M is a right (left) module for R, and
we put ax = xa (xa = ax), we make M into a left (right)
R -module. If R is commutative, R’ =R as rings and so any
left (right) R-module is also a right (left) R-module in which
ax = xa. Thus for commutative rings there is no distinction
between left and right modules.

We now consider some important instances of modules. We
observe first that any abelian group M (written additively) is a
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Z-module. Here one defines ax in the usual way fora € Z, x €
M. The module conditions 1-4 are clear from the properties
of multiples in an abelian group. The observation that abelian
groups are Z-modules permits us to subsume the theory of
abelian groups in

that of modules. The usefulness of this reduction will be
apparent in what follows.

A type of module which is very probably familiar to the
reader is a vector space V over a field F. We recall that a
vector space is defined axiomatically as an abelian group V'
together with a product ax € V for ¢ € F, x € J such that
conditions 1 -4 hold. Thus Vis a left F-module. Now suppose
T is a linear transformation in V. We abbreviate 7(x) as Tx.
Then the defining conditions are that 7 maps V into V" and

(5) T(x+y) =Tx+Ty, T(ax)=a(Tx),

a € F,x,y € V. The first of these conditions is that 7 € End V'
and the second is that ar7 = Tar for every endomorphism
ar:x — ax, a € F. It follows that the subring F7[T], generated
by F1L = {ar|la € F} and T, is a commutative subring of End
V. Since a — ar is a homomorphism of F, the basic
homomorphism property of F[A1], A an indeterminate,
(Theorem 2.10, p. 122) shows that the map

ﬂn 4 ﬂti;. n i = H.J-'.-- — ﬂuL + ﬁlLT + -+ ﬂmLTm
(a; € F) is a homomorphism of F[A] into F[T], hence, into

End V. Then it is clear that /" becomes a left F[1]-module if
we define

(ag + agh + -+ - + 4 A")x = agx + a(Tx) + - - + a, (T™x)
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for every fld) =ao + a1 A+ ... + am A" € F[1]. We shall see
that the theory of a single linear transformation of a finite
dimensional vector space can be derived by viewing the
vector space as an F[A]-module in this way.

As our last example of a module we consider any ring R, and
take M to be the additive group (R, +, 0) of R. Let R act on M
by left multiplication: ax for a € R and x € M is the product
as defined in Then 1-4 are clear, and so M is a left R-module.
Similarly M is a right R-module if we define xa, x € M, a €
R, to be the ring product.

EXERCISES

1. Let M be a left R-module and let # be a homomorphism of
a ring S into R. Show that M becomes a left S-module if we
define ax =#(a)(x) fora € S, x € M.

2. Let M be a left R-module and let B = {b € R|bx =0 for all x
€ M}. Verify that B is an ideal in R. Show also that if C is
any ideal contained in B then M becomes a left R/C-module
by defining (a + C)x = ax.

3. Let M be a left R-module, S a subring of R. Show that M is
a left S-module if we define bx, b € S, x € M, as given in M
as left R-module. (Note that this is a special case of exercise
1). In particular, the ring R can be regarded as a left S-module
in this way.

4. Let V' =R"0 the vector space of n-tuples of real numbers

with the usual addition and multiplication by elements of .
Let T be the linear transformation of ¥ defined by
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X=0x, X3, %)= Tx =(x,, x5, X3,.... X—3).

Consider V as left R[A]-module as in the text, and determine:
(a) x, (bg(/lz + 2)x, ()T + A™2 + .+ I)x. What elements
satisfy (7‘ - Dx=0?

5. Consider the example of exercise 4 and let B be the ideal in
R[A] defined as in exercise 2. Give an explicit description of
B.

6. Let M be an abelian group written additively. Show that
there is only one way of making M into a left Z-module.

7. Let M be a left l-module. Show that the given action of U
is the only one which can be used to make M a left 1J
-module.

8. Le_t M be a finite abelian group # 0. Can M be made into a
left IJ-module?

3.3FUNDAMENTAL CONCEPTS AND RESULTS

From now on we shall deal almost exclusively with left
modules and we shall refer to these simply as “modules,”
“R-modules,” or “modules over R” (R the given ring). Of
course, what we shall say about these will be applicable also
to right modules. The modifier “right” will be used when we
wish to state results explicitly for these.

Let M be an R-module. The fact that x ax is an endomorphism

of (M, +, 0) implies that a0 =0 and a( — x)= —ax, x € M, a €
R. The fact that a — ar is a homomorphism of R into End M
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gives Ox = 0, ( — a@)x = —ax. Also, by induction, we have a( )

xi) =) axjand (3 aj)x =) aix.

We define a submodule N of M to be a subgroup of the
additive group (M, +, 0) which is closed under the action of
the elements of R: that is, if « € R and y € N, then ay € N.
Explicitly, the conditions for a non-vacuous subset N of M to
be a submodule are: (a) if y1, 2 € Nthen y1 +y2 € N, (b) if y
€ N and a € R then ay € N. These are certainly satisfied by
submodules. On the other hand, if N satisfies these conditions,
then N contains 0 = 0y, y € N, and N contains — y = ( — /).
Thus N is a subgroup of the additive group and hence a
submodule of M.

What are the submodules of the types of modules we
considered in section 3.2? First, let M be a £-module. If Nis a
subgroup of (M, +, 0), and n is a positive integer and y € N,
then ny =y + ... +y (n terms) € N. Also Oy and

( — n)y € N. Hence N is a Z-submodule. The converse is
clear. Hence the Z-submodules of M are the subgroups of (M,
+, 0). Next let /' be a vector space over a field F. Then it is
clear from the definitions that the submodules are the
subspaces of V. Now let T be a linear transformation in F" and
regard V as an F[A]-module in the manner of section 3.2. In
this case the submodules are simply the subspaces W
stabilized by 7—that is, satistying TW(= T(W)) ? W—since
this condition on a subspace amounts to A\w € W if w € W,
and clearly this implies that (ap + a1 A + ... + azA)w € W.
Finally, we consider the case of R regarded as left R-module
(M = (R, +, 0) and the module action is left multiplication).
Here the submodules are the subsets of R that are closed
under addition and under left multiplication by arbitrary
elements of R. Such a subset is called a left ideal of R (cf.
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exercise 4 on p. 103). Similarly, the submodules of R
regarded as right R-modules in the usual way are the right
ideals: subsets closed under addition and under right
multiplication by arbitrary elements of R.

If {Ng}is a set of submodules of M, then N Ny is a
submodule. Hence if S is a non-vacuous subset, then the

intersection { S} of all the submodules of M containing S is a
submodule of M. We call this the submodule generated by S,
since it is a submodule containing S and contained in every

submodule containing S. It is immediate that <S} is the
subset of elements of the form aiy1 + a2y2 + ... + a;yr where

the a; € R and the y; { S } If {N4} is a set of submodules,
then the submodule generated by U Ny is the set of sums yq7
+ ya2 + ... T yar where yak € Ngk. We call this the submodule
generated by the Ny and denote it as )’ Ng. If {N, }is finite,
say, {N1, N2,..., Nm}, then we write either ' Njor + No + ...
+ N, for the submodule generated by the N;.

We now consider the factor group M = M/N of M relative to a
submodule N. Its elements are the cosets x = x + N with the
addition (x; + N) + (x2 + N) = x1 + x2 + N, the 0-element N,
and — (x + N)=—x + N.If a € R and x| = x2 (mod N), that is,
x2 —x1 € Nthen ax2 — ax1 = a(x2 — x1) € N so ax] = ax2(mod
N). It follows that if we put

(6) as=alx + N)=ax + N = ax

then this coset is independent of the choice of the element x in
its coset. Hence (a, x) — ax is a map of R x M into M. We
also have
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a(%, + %;) = alx, + x,) = ax, + ax,

= ax, + ax; = ax, + ax,

and, similarly, (a + b)x = ax + bx, (ab)x = a(bx) and 1x = x.
Thus M = M/N with the action (6) is an .R-module. We call
this the quotient module M/N of M with respect to the
submodule N.

We define homomorphisms for modules only if the rings over
which these are defined are identical. In this case we define a
homomorphism(module homomorphism, R-homomorphism,
homomorphism over R) of M into M' to be a map #n of M into
M’ which is a homomorphism of the additive groups and
which satisfies n(ax) = an(x), a € R, x € M. It is clear from
(6) that if N is a submodule of M then the natural map v.x —
x =x + N is a module homomorphism of M into M.

The kernel of a homomorphism of M into M’ is defined to be
the kernel 17'1(0) of the group homomorphism. This is a
subgroup of M, and since 5(y) = 0 implies n(ay) = an(y) =0,
ker # is a submodule of M. The image #(M) (or im 1 = {n(x)|x
€ M}) is a submodule of M'; for it is a subgroup of M’, and if
y € n(M), y =n(x), x€ M, and ay = an(x) = n(ax) € n(M). As
in the case of groups, it is immediate that if NV is a submodule
contained in ker #, then the map

(7) H:Xx=x+ N=nx)

is a module homomorphism of M/N into M’ such that = v
where v is the homomorphism x — x = x + N. Moreover, 1 is
a monomorphism if and only if N = ker 1. In this case we
have the fundamental theorem of homomorphisms for

305



modules that any homomorphism # can be factored as nv
where v is the natural homomorphism of M onto M = M/ker 5
and 7 is the induced monomorphism of M into M’ (y-M —
M"). If 5 is surjective so is 1, and 7 is then an isomorphism.
Thus any homomorphic image of M is isomorphic to a
quotient module.

The results in sections 1.9 and 1.10 on group homomorphisms
carry over to modules. It is left to the reader to check this; we
shall feel free to use the corresponding module results when
we have need for them.

The analogue for modules of cyclic groups are cyclic
modules. Such a module is generated by a single element and
thus has the form M = Rx = {ax\a € R}where x € M. The role
played by the infinite cyclic group (£, +, 0) is now taken by R
as R-module. This is generated by 1, since R = RI. If M = Rx
then we have the homomorphism i, of R into Rx which sends
a ax. Clearly this is a group homomorphism and px(ba) =
(ba)x, and bux(a) = b(ax). Hence ux(ba) = bux(a) and p is
indeed a module homomorphism of R. Evidently this is
surjective and hence M = Rx = R/ker ux. Now ker py = {d €
R|dx = 0} and, being a submodule of R, it is a left ideal of R.
We shall call this the annihilator of x (in R) and denote it as
ann x. In this notation we have the following formula for a
cyclic module:

(%) Rx = R/ann x.

If ann x = 0 we have Rx = R. In the special case R = Z we
have either #x = R, or ann x = (n) where n > 0 and is the
smallest positive integer such that nx = 0. Clearly this is the
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order of the element x and of the cyclic group { X } Thus ann
x for an element x of a module can be regarded as a
generalization of the order of an element of a group. For this
reason ann x is sometimes called the order ideal of the
element x.

Now let M and N be modules and let Hom(M, N) (or
Homgr(M, N)) denote the set of homomorphisms of M into N.
This set can be made into an abelian group by defining # + C
for #, £ € Hom(M, N) by (17 + {)(x) =n(x) + {(x) and 0 by 0(x)
= 0 (the zero element of N). The verification that # + {, 0 €
Hom(M, N) and that (Hom(M, N), +, 0) is an abelian group
requires only one step more than the corresponding
verification that the endomorphisms of an abelian group form
an abelian group (p. 160). This is that (n + {(ax) = a((y +
{)(x)), which is clear, since (17 + {)(ax) = n(ax) + {(ax) = an(x)
+al(x) and a((n + O(x)) = a(y(x) + {(x)) = an(x) + al(x). Now
consider a third module P, and let » € Hom(M, N), C €
Hom(N, P). Then {n is a homomorphism of the additive
group (M,+,0) into (P, +,0), and since ({n)(ax) = {(M(ax)) =
(an(x)) = aln@)) = a(@)(X)), {n € Hom(M, P). As in the
special case of End M, we have the distributive laws ({1 +
Cm = Cm + Cm, Ci + m2) = St + G2 if g, n1, m2, €
Hom(M, A4) and {, C1, {2 € Hom(N, P). It is clear also that 1yn
= n =nlM, and if Q is a fourth module, then (o{)n = w({n)
for » € Hom(M, N), L € Hom(V, P), ® € Hom(P, Q). These
results specialize to the conclusion that (Hom(M, M), +, -, 0,
1) is a ring. We shall denote this ring as EndrM and call it the
ring of endomorphisms of the module M.

EXERCISES

307



1. Determine Hom(Z, £/(n)) and Hom(Z/(n), £), n — 0 (as £
-modules).

2. Determine Hom(Z/(m), £/(n)), m, n —0 (as Z-modules).
3. Show that Hom(E(z), )= (2(2), +, 0).

4. Prove that for any R and R-module M, Hom(R, M) = (M, +,
0).

5. Show that Endr M is the centralizer in End M of the set of
group endomorphisms ay, a € R.

6. Does a7, € Endr M?

7. A module M is called irreducible if M # 0 and 0 and M are
the only submodules of M. Show that M is irreducible if and
only if M # 0 and M is cyclic with every non-zero element as
generator.

8. A left (right) ideal I of R is called maximal if R # I and
there exist no left (right) ideals I' such that R = I' 2 I. Show
that a module M is irreducible if and only if M = R/l where /
is a maximal left ideal of R.

9. (Schur's lemma.) Show that if M1 and M> are irreducible
modules, then any nonzero homomorphism of M1 into Mais
an isomorphism. Hence show that if M is irreducible then
Endr M is a division ring.

3.4FREE MODULES AND MATRICES
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Let R be a ring and let R™be the set of n-tuples (x1, x2, ...,
Xn), Xi € R. As a generalization of the familiar construction of
the n dimensional vector space RMwe introduce an addition,
0 element in R™and a multiplication by elements of R in the
following manner:

9 (cpXa- o X+ VYoo ¥ =X F P X+ Vaue oo X+ 1))
(10) 0=(0,0,...,0)
(11) AXy Xy vnays X,) = (ax,, ax;,..., ax,).

It is clear that (R(”), +, 0) is an abelian group; this is just a
special case of the direct product construction that we gave on
p. 35. It is immediate also from (11) that the module
conditions 1-4 hold for R"™. Hence R™is a module over the
ring R. In the special case n = 1, RWis the same thing as R
regarded as left R-module in the usual manner. Put

i
(12) e=(0,...,0,10,...,0.

Then x;e; = (0,..., 0, x;,0,..., 0) and

(13) x =(x,, xz*_...xﬂ}=ix,{*,-.
)

Hence the n elements e; generate R™Mas R-module. Moreover,
by (13), Y xie; = 0 implies (x1, x2, ..., xn) = 0, which implies
every x; = 0. Equivalently, Y xjej ~ Y yie; implies xi = y;, 1 <i
< n. A set of generators having these properties is called a
base. The existence of a base of n elements characterizes R
in the sense of isomorphism. We shall show this by first
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establishing another basic property of R(n)namely, if M is any
module over R and (u1, u2, ..., un) is an ordered set of n
elements of M, then there exists a unique homomorphism u of
R®into M sending e; — uj, 1 <i <n. To see this we simply
define pu by

(14) p:{.‘c,,...~.t,,}=z.t,r,-—hz,qu:-.

It is clear that this is single valued, and direct verification
shows that it is a module homomorphism. Moreover, we have
= u; for all i and since a homomorphism is determined by its
action on a set of generators (module analogue of Theorem
1.7, p. 60), it is clear that p is the only homomorphism of
R™into M sending e; into u; 1 <i <n.

Now suppose the u; constitute a base for M in the sense
defined above. Then im p, which is a submodule of M,
contains the generators uj ,..., uy. Hence im p = M. Also, if x
= (X1, ..., xn) € ker p then ) x;u; = 0, so, by the definition of a
base, every x; = 0 and x = 0. Thus ker p = 0 and so is an
isomorphism. We have therefore shown that the existence of a
base of n elements for a module M implies that M = R™. In
this case we shall say that M is a free R-module of rank n.

It may happen that there exist distinct integers m and n such
that R = R™. Examples of R for which this occurs are
somewhat difficult to construct. In fact, for many important
classes of rings one has the familiar result of linear algebra of
invariance of base number. In particular, as we shall now
show, this holds for all commutative rings.

THEOREM 3.4. If R is commutative, R"™ = R" implies m =
n.
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Proof. In view of the result on free modules, the statement to
be proved is equivalent to: if M is a module over a
commutative ring R and M has bases of m and of n elements,
then m = n. Thus let {ej|l <i <n}, {fjl <j <m}be bases for
M. Then we have

fi= E”ﬂfu €= X by f;
1

where the aj;, bjj € R. Substitution now gives

fi= 2 aubyly

E,- = . 'hlﬂﬂ'ei"

Since the ’s and the e’s form bases we have

L 1 if =1
15 oo
¢ i:zl a4y {n if j#j
- L if i=17
(16) th h“““':{ﬂ it i#7

where j, j'=1,2,...,m; i, i'=1, 2,..., n. Now suppose m < n
and consider the two n X n matrices
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dyy dy; dyq

'um1 aﬂll ﬂmn
A=10 o 0

1_].[; ......... ﬂ :

by, by 0 --- 0
i b;, b,, 0 --- 0

Then (16) is equivalent to the matrix condition B4 = 1. Since
R is commutative this implies AB = 1 (Theorem 2.1, p. 96 and
exercise 2, p. 97). However, it is clear from the form of the
matrices A and B that the last n — m rows of AB are 0, so AB #
1. This contradiction shows that m > n. By symmetry, n > m,
som=n.

The foregoing argument shows that if (e1,..., ex) and (f1,... ,
Jfn are bases and fj = Y"i=; ajie;, e; = Y."j=1 bjjfithen AB =1 =
BA for A = (ajj), B = (bij)Hence 4 and B are invertible, that is,
A, B € GLn(R), the group of n X n invertible matrices with
entries in R. Conversely, suppose (e1,... , ex) 1s a base and 4
€ GLu(R). Define fj = MM M "i=] ajiei 1 <j <n. Then (f1,...,
fn) is also a base. First, we have Y. biifj = Y, j=1 bijajiei = ek
since BA = 1. Since the ej generate M, this shows that the f;
also generate M. Next suppose we have a relation ) djfj = 0.
Then Y, j djajiei = 0 and ¥"j=1 djaji=0, 1 <i < n. Hence }';,
j=1 djajibih = 0 for all 4. Since AB = 1 this gives dj = 0 for all
h. Hence (f1,..., fn) 1s a base. This result shows that if we are
given one ordered base (ey,..., en) for a free module over a
commutative ring R, then we obtain all ordered bases (f, ...,
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fn) by applying the matrices 4 € GLn(R) to (e;) in the sense
that we take fj = > ajjei, A = (ajj).

We now drop the restriction that R is commutative, and we
consider the additive group Hom(R"™ R™) of (module)
homomorphisms of R into R"™ for any m, n. To study this
we choose bases (el,..., em), (fi,..., fn) for R(™ and R®
respectively. If n € Hom(R™, R") we tabulate

mey) =an i +apfa+ - +af,

mez) = ayy fi + azafo + -+ ax,M,
(17)

and call the m x n matrix 4 = (ajj) (m rows and n columns) the
matrix of n relative to the (ordered) bases (ey, ..., em), (f1,... ,
fn). The homomorphism 7 is determined by its matrix relative
to the bases (e;), (fj). For, if we have (17), and if x = (x1 ,...,
Xm) = ). xiej, then

mx) = ”(E ""-J{Ji) = z -‘t’ﬂ{t“i] = Z‘tf{‘fl—r"]'
i i)

Thus 7 is the map

(18) B yovend X) =* (Vis oo s Vo)
where

{19] _II‘J': Z x,r'"”. j"—_ I..‘...-q.";
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We can express this also in matrix form. In general, if 4 =
(aij) and B = (bjj) are m x n matrices, we define the sum 4 +
B = (ajj + bjj): that is, 4 + B is the matrix whose (i, j)- entry is
ajj + bjj. If A= (ajj) is an m x n matrix and B = (bjk) is an n X
g matrix, then we define the product P = 4B as the m X ¢
matrix whose (i, k)-entry, 1 <i<m, 1 <k < g, is given by the
formula

(20) P = 2, by

J= ]

For example, we have

e a6 9)-(3
I 5 —4 __|5_4u—5'

If we use the definition of the matrix product given by (20)
then we can rewrite (18) and (19) as

(21) CHE T A E Y | T Vo) = (x5 ..., XA,

The set My, n(R) of m x n matrices with entries taken from R
is a group under the addition composition (ajj) + (bij) = (aij +
bij)and 0 as the m x n matrix all of whose entries are 0. We
shall now show that this group is isomorphic to

Hom(R", R™) under the map 7 — 4 where 4 is the matrix
of n relative to the bases (e), (fj) for R"™ and R™
respectively. It is clear that # — A is injective since A
determines # by (21), and also our map is surjective, since if
A 1s a given matrix in My, »(R) we can define v; = nj: 1a(i['.
Then, as we have seen, there exists an 7 € Hom(R"™, R n{)
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such that n(e;) = vi,1 < i < m. Clearly, this # has as its
associated matrix the given matrlx A. Hence n — A 1is
bijective. Now let { € Hom(R"™, R"™) and let { — B = (bij)
so {(ei) = . bijfj. Then (7 + C)(ei) = n(ei) + Cer) = X j aijfj + 2 j
bijfi = > j (ajj + bij)fj.Thusy + { >4+ B,andn > Aisa
group isomorphism.

Next let p € Hom(R"™, R and let (g1,22,..., gq) be a base
for R9). Let C be the matrix of p relative to the bases (f1, ...,
fn), (g15---s gq) SO )3(6) > %=1 cjkgk, C = (cjk). As before, let
n € Hom(R ") , R" ) have the matrix 4 = (ajj) relative to and
Then pn € Hom(R(m) R, and

(pn)e) = plnle)) = p(; ﬂa,_.ﬁ) = g aypl(f)) = JEk @€ el

Thus the matrix of pn relative to (e;), (gk) is AC. We can use
this fact to prove that multiplication of rectangular matrices is
associative, a fact, which, of course, can be established also
directly, as in the special case of square matrices (p. 94). We
mtroduce a fourth free module R with base (hl) and let TE
Hom(R¥, R®)). Then t(pn) = (zp)y € Hom@R"™, RY). We
shall now denote the matrix of any homomorphlsm we are
considering relative to the bases we have chosen by putting a
superscript * after the symbol for the map, e.g., n* =4, p* =
C. Then we have (pn)* = n*p* and hence n*(p*c*) = n*(zp)*
= (tlpn))* = (pn)*t* = (n*p*)r*. Since n*, p* and t* can be
taken to be any m x n, n x g, ¢ X s matrices this proves
associativity for arbitrary matrix multiplications. In the same
way one can establish the distributive laws: if 4, 47,42 € Mp,
n(R) and C, Cj, C2 € My, ¢(R) then (41 + A2)C = A1C + A2C
and A(C1+ C2)=AC1 + AC.
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In the special case of Endr R"™ = Hom(R™, R™) our result
gives an anti-isomorphism # — #* = 4 of Endr R™ with the
ring of matrices Mu(R) ( = My, n (R)). Here 4 is the matrix of
n relative to the base (e;): that is, if 7(e;) = ). ajjej then 4 =
(aij). If R 1s commutative we have the anti-automorphism 4
—! 4 (the transpose of 4) in the matrix ring Mu(R) (see p.
111). Combining this with the anti-isomorphism  — n* =4
we obtain an isomorphism 7 —!' 4 of End gR™ with Mu(R).
This is what we used in the example of 7® which we
considered on p. 161.

All of these considerations relating homomorphisms between
free modules and matrices should be familar to the reader in
the special case of matrices associated with linear maps of
vector spaces. The foregoing discussion illustrates the general
principle that in many situations the passage from vector
spaces to free modules is fairly routine.

EXERCISES

1. Let R be arbitrary and let (e1 ,..., en) be a base for R™
Show that (fi, ..., fm), fi= X'i=1 ajjeejt is a base for R™ if and
only these exists an n < m matrix B such that AB = 1,,, BA =
1, where 4 = (ajj), 1m 1s the usual m * m unit matrix, and 1, is
the 7 x n unit matrix. Hence show that R = R™ if and only
if there exists 4 € M, n(R), B € My, m(R) such that AB = 1,
BA=1y.

2. Let € Endr (R(n)) and let 4 be the matrix of # relative to
the base (e1,..., en). Let fi = 3 Pijej where P = (pjj) € GL n(R).
Verif%/ that the matrix of # relative to the base (f1, ... fn) 1s
PAP.
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3. Let denote a free right R-module with base (e1, ..., exn). Let
n € Endg R, and write 5(e;) = 3" =1 ejaji. Show that n — 4 =
(aij) 1s an isomorphism of Endr R, with Mu(R).

4.Let R be commutative. Show that if # is a surjective
endomorphism of R™ then n is bijective. Does the same
conclusion hold if # is injective?

5. Let R be commutative and let M and N be R-modules. If a€
R and n € Hom(M, N) define an by (an)(x) = a(n(x)) = n(ax).
Show that an € Hom(M, N) and that this action of R on
Hom(M, N) converts the latter into an R-module. Show that
Hom(R"™, R™) is free of rank mn.

6. Let R be commutative and let (e1, ..., ex) be a base for R™.
Put fi =} aijej where 4 = (ajj) € MnER). Show that the f7 form
a base for a free submodule K of R if and only if det 4 is
not a zero-divisor. Show that for any x =x + K in R™/K one
has (det A)x = 0. (Hint: It suffices to show that (det 4) ¢; =0
for1 <i<n.)

3.5DIRECT SUMS OF MODULES

We shall now define the module analogue of the direct
product of monoids or of groups (p. 35). Let M1, Mo, ..., My
be modules over the same ring R and let M be the product set
M1 x M> x ... x My of n-tuples (x1, x2, ..., xn) where x; € M;.
As in the special case of the free module R(n), we introduce an
addition, a 0 element, and a multiplication by elements in R
by
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(i35 + D3 9 = (X1 + Yoo Xa + 1)
0=00,...,0)

Xy, X = (a%g, .44 ax,), aeR.

These define a module structure on M. Then M with this
structure is called the direct sum of the modules M; and is
denoted eitheras M1 ® M>® ... ® My, oras ® " M,.

A basic homomorphism property of @ "1 M; is the following
result. Suppose we are given homomorphisms #; 1 <i < n, of
M; into a module N. Then we

have the map # of @ M;, into N defined by

"

1) = 3 ).

Since

Xy + Yipouos: Xo + Vo) = g nix; + y) = i ndx) + ir:,{_nl
=mlxy, ... X))+ 0y, ..., ¥a)

and

MK 15050 s ax,) = i nlax,) = i an(x) =a i ni(x;)

n is a homomorphism of @ M; into N. We shall use this
homomorphism in the proof of the first part of the following
theorem, which characterizes by internal properties the direct
sum of modules.
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THEOREM 3.5. Let M be a module and suppose M contains
submodules M, ..., My having the following properties:

(1) M =M1+ M+ ... + My(that is, M is generated by the M;

(11) for every i,1 <i <n, we have

MinM, 4+ 4+M_,+M_,,++M)=0.
Then the map

L
(X X = Y X
1
is an isomorphism of ? M; with M. Conversely, in ? M let

i
M; = {(0,..., 1 T | 0)|x; e M,}.

Then M'i is a submodule of ? M; isomorphic to M; and the
conditions (1), (i1) hold for these submodules of ® M;

Proof. Suppose the submodules M; of M satisfy (i) and (i),
and consider the map i:(x1, ..., xs) — Y. "1x;. Since this is just
the map # defined by the isomorphisms x; — x; of M; onto M;
as above, i is a homomorphism of @ M; into M. Now i is
surjective; for, if x is any element of M we can write x =) x;,
x; € M;

since M = ) M; by condition (i) and > M; is the set of
elements of the form Y x;, x; € M;. Then i(x1, ..., xp) =Y. x; =
x. To see that 1 is injective it suffices to show that its kernel is
0, that is, to prove that if 1(x1,..., x,) = 3. "7 x; = 0 then every
x;i = 0. This is clear from (i1) since ), "xi=0 gives — x; = Y
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xj, hence x; € M; ™ (Y j# M)) = 0. Thus every x; = 0. We
have now proved that / is an isomorphism. Conversely,
consider @ M, It is immediate that the map

i
X = (0,...,0,x,0,....0) is a monomorphism of M; into
M. The image is M'j, so M'; is a submodule of M isomorphic
to M;. Since

0y O+ (0, x5, 0,0, 0 0+ (0,,..,0, %) = (X, X35+« 2 X0

(1) holds for the submodules M’; of M. Since | jzi M’j is the
set of elements of the form (xi, ..., xi-1, 0, xi + 1, ..., X») it 1s
clear also that (ii) holds. This completes the proof. [

This theorem permits us to identify a module M with @ M; if
the M; are submodules of M satisfying the conditions (i) and
(i1). In this case we shall say that M is the (internal) direct
sum of its submodules M;, and we shall also write M = @ M;
or M=M1 @ M>® ... ® My whenever conditions (i) and (ii)
hold for the submodules M;.

If a set of submodules M;, 1 <i < n, satisfy condition (ii) then
we shall say that these submodules of M are independent. 1t is
immediate that this is the case if and only if every relation of
the form )| "xi =0, x; € M;, implies every x; = 0. Also the M;
are independent if and only if every relation Y "1 x; =3 "1 yi,
Xi, vi € Mj, forces xj =y, 1 <i < n. It should be noted that the
independence conditions are stronger than the condition M; M
Mj = 0,1 +#j, and are even stronger than the set of conditions
M; O (Vi ]\1( = 0. For example, in the two dimensional
vector space B over R, let

X = {(x, 0)|]x € R}, Y = {0, y)lv € R}, and Z={(z,2)ze R}.
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Pictorially, we have

Y

that is, X is the set of vectors having end points on the x-axis,
Y is the set having end points on the y-axis and Z is the set
having end points on the 459 line. Clearly, the intersection of
any one of these lines with the union of the other two is the
origin. On the other hand, X + Y = E(z), soX+Yynz=2
Hence X, Y, and Z are not independent.

The criteria in terms of elements for independence of
submodules have the following consequences:

I. Let My, ..., Mj be independent submodules of M. Put N1 =
Mp+ .. M, N2=Mpj +1+ ...+ Mpi+r2, N3=My] + 12+ 1
+ ...+ Myi+r2+r3, etc. Then N1, N2, ... are independent.

II. Let Mi,..., My be independent and suppose M; = M;; @
Mi2 ® ... ® Mjyi, 1 <i<n, where the Mj; are submodules of
M;. Then the submodules Mjy,..., My1, M2, ..., M22,...,
Mhui,..., My are independent.
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The proof is left to the reader. An immediate consequence of
these results is

THEOREM 3.6. Let M = @ M; , M; a submodule (that is, M is
the direct sum of the submodules ;). Put N1 = M1 + ... +
My, N2=My1 + 1+ ... + Myj+s2, etc. Then M =@ Nj. Also, if
Mi=® Mj;, 1 <i<n,1<j<rj then M =@ Mj;.

We omit the proof of this also.
EXERCISES

1.Let V be a vector space over a field F. Show that the
non-zero vectors x;, 1 <i < n, of V are linearly independent if
and only if the subspaces Fx; are independent. Show also that
the x; form a base if and only if V=& Fx;.

2. Let M be a module, and M;, 1 <i < n, be submodules such
that M = M; and the “triangular” set of conditions

le M J'r'f_;_ =0
[J‘r‘f. + JWI, ™ J'l-i"3 =U'

(M oot My_ o)y M, =0
hold. Show that M = ® M,.

3. Show that Z/(p®), p a prime, e > 0, regarded as a Z-module
is not a direct sum

of any two non-zero submodules. Does this hold for Z? Does
it hold for Z/(n) for other positive integers n?
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4. Show that if M = M1 @ M> then M1 = M/M> and M) =
M/Mq

5. Let M and N be R-modules, f:M — N, g:N — M R-module
homomorphisms such that fg(y) = y for all y € N. Show that
M=ker f® Im g.

3.6FINITELY GENERATED MODULES OVER A P.ID.
PRELIMINARY RESULTS

We are now ready to turn our attention to the main objective
of this chapter: the study of finitely generated modules over a
principal ideal domain and the applications of this theory to
finite abelian groups and to linear transformations. Let M be a
module over a p.i.d. D which is generated by a finite set of
elements x1, x2, ..., xn, so M =3 "7 Dx;. To study M it is
natural to introduce the free module D™ with base (e1,e2, ...,
eng and the epimorphism #: ¥ "1 ajei — Y "1 aixi, aj € D, of
D™ onto M. Then M = where K = ker 7 A first result

we shall need is that K is finitely generated. This will follow
from the following stronger result.

THEOREM 3.7. Let D be a p.i.d. and let D™ be the free
module of rank »n over D. Then any submodule K of D™ s
free with base of m <n elements.

Proof. Since we are not excluding K = 0 we must adopt the
convention that the module consisting of 0 alone is “free of
rank 0” (with vacuous base). Of course, the result is trivial if
n = 0. Now suppose n > 0 and assume the result holds for any
submodule of a free module with a base of n - 1 elements
over D. Let DD be the submodule generated by ey, ..., en.
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This is free with (e2,..., ex) as base; hence, if K ? DD then
the result holds. Thus we may assume K ? D" Consider
the subset I of D of elements b for which there exists an
element of the form be1 + y € K where y € D(n'l). This is an
1deal in D and since K ? D(n'l), I£0. Hence I = (d) with d # 0
and we have an element fi = de; + y1 € K where y| €
DD Now consider L = K N D"D. This is a submodule of
DD g0, by induction, it has a base (2, ..., fm) of m — 1 <n
— 1 elements (where we may have m — 1 = 0). We shall now
show that (f1, /2, ..., fm) 1s a base for K and this will prove the
theorem. First, let x € K. Then x = be1 + y where b € I = (d)
and y € D" Then b = ki d and so x-k1fi = kide1r +y —
ki(det +y1)=y-kiytr€ L=K N D" Hence x — kifi =
Y™ kif; where the kj € D and x = Y "ikifi. Thus the f;
generate K. Next suppose Y. "1kjfi = 0. Then kide1 + kiy1 + 3
™ kjj= 0. Since y1 and the f},

j =2, are in D("'l), this gives a relation kide1 + Y "2 lrex = 0
with 1 € D. Hence k1d = 0 and since d # 0, K1 = 0. Then )
"kif;i = 0 and since (f2, ..., fm) is a base for L, every kj = 0.
Thus (fi, 2, ..., fm) is a base for X. [

Since any field F is a p.i.d. (whose only ideals are (0) and
(1)), the foregoing theorem can be specialized to the case in
which D = F'is a field. Then it reduces to the following well
known result of linear algebra. If V' is an n dimensional vector
space over F'(that is, V'is a free F-module of rank n) then any
subspace of V is finite dimensional with dimensionality m <
n.

We return now to M = DY/K and we apply Theorem 3.7 to
conclude that K has a base of m < n elements. The method we
are going to apply will work just as well if we have a finite set
of generators, and as a practical matter it is sometimes useful

324



not to have to resort to a base. Hence we assume we have a
set of generators f1, f2, ..., fm for the submodule K where m
may exceed n. We now express these generators in terms of
the base (e1, €2, ..., en) in the form

fi=ay,e, +ae; + -+ a,e,

(22) Ja=aze, + azse; +-- + aye,

The m X n matrix A = (ak;) of these relations is called the
relations matrix of the ordered set of generators (f1, ..., fm) in
terms of the ordered base (e1, ..., exn). Of course, there is
nothing special about our choices of the base (e;) for D™ and
the generators (f;) for K. This observation suggests that we
see what happens when we change these. Now we know that
any other base for D™ will have the form (e'1, ..., e'n) where
e'i =Y "j=ipije; where P = (pjj) is an invertible matrix in the
matrix ring Mu(D). We can’t make such a sweeping statement
about sets of generators for the submodule K. However, it is
clear that if Q = (gx7) is an invertible matrix in My (D) with
inverse Q'1 = (g*x) then (f'1, ... , f'm), where fx =Y " 1=1
qkif1 is another set of generators for £. For, it is clear that the
k€ Kand ) k g*if'k = Dk 1 9 *rkqkifi = fr so the f's are in the
submodule generated by the f"’s. Hence the f"’s generate K.
What is the relations matrix of the f"’s relative to the e’’s? We
have

Ja= Z qufi = % Judi€j = ‘Z_ qudyPRe;
v wJsl

where (p*jj) = P! Hence the new relations matrix is
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A= QAP

We are now led to the problem of making the “right” choices
for QO and P to achieve a simple “normal” form for the
relations which will yield important information on M =
D"/K. Since the matrix problem thus posed is of interest in its
own right we shall treat it separately in the next section before
returning to our analysis of DMK,

EXERCISES

1. Find a base for the submodule of &) generated by f1 = (1,
0,-1),£=2,-3,1),3=(0,3,1),/4=(3, 1, 5).

2. Find a base for the submodule of L [X]G) generated by f1 =
Qh—1, 0, A2 +3), 5= (A, LAD), £ = (WHL,20, 207 - 3).

3. Find a base for the Z-submodule of ) consisting of all
(x1, x2, x3) satisfying the conditions x1 + 2x2 + 3x3 =0, x1 +
4xy +9x3 = 0.

3. 7TEQUIVALENCE OF MATRICES WITH ENTRIES IN A
P.I.D.

Two m X n matrices with entries in a p.i.d. D are said to be
equivalent if there exists an invertible matrix P in My, (D) and
an invertible matrix Q in My(D) such that B = PAQ. It is clear
that this defines an equivalence relation in the set My, n(D) of
m % n matrices with entries in D. We now consider the
problem of selecting among the matrices equivalent to a given
matrix 4 one that has a particularly simple “normal” form.
The result we shall prove is the following
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THEOREM 38. If A € Mu, »(D), D a p.id., then A is
equivalent to a matrix which has the “diagonal” form

diag{di, d>, ..., dr, 0, ..., 0}

(23)

where the di # 0 and did; if i <j.

We shall obtain the matrices P and Q which transform A4 into
a matrix of the form (23) as products of matrices of some
special forms which we shall now define. Without specifying
the size (m x m or n x n) we introduce first certain invertible
(square) matrices with entries in D), which we shall call
elementary, and consider the effects of left or right
multiplications by these matrices.

First, let b € D and let i # ;. Put Tj(b) = 1 + bejj where ejj is
the matrix with a lone 1 in the (i, j) place, O’s elsewhere.
Tj(b) 1s invertible since

T BT {—b) = (1 + be;)(1 — be;)) = 1.

Next, let u be an invertible element of D and put Dj(u) =1 +
(u — Deji so Di(u) is diagonal with ith diagonal entry u and
remaining diagonal entries 1. Then Dj(u) is invertible with
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Di(uy! = Di(u’"). Finally, let P =1 — eji — ejj + e + ejj. Also
this matrix is invertible since P = 1.

It is easy to verify that

I. Left multiplication of 4 by the m xm matrix Tjj(b) yields a
matrix whose ith row is obtained by multiplying the jth row
of A by b and adding it to the ith row of A4, and whose
remaining rows are the same as in 4.

Right multiplication of 4 by the n X n matrix Tji(b) gives a
matrix whose jth column is b times the ith column of 4 plus
the jth column of 4, and whose remaining columns are
identical with those of 4.

II. Left multiplication of 4 by the m x m matrix Dj(u)
amounts to the operation of multiplying the ith row of 4 by u,
and leaving the other rows as in 4.

Right multiplication of 4 by the n x n matrix D;(u#) amounts to
multiplying the ith column of 4 by u, and leaving the
remaining columns unaltered.

III. Left multiplication of 4 by the m % m matrix Pj; amounts
to interchanging the ith and jth rows of 4, and leaving the
other rows as in 4.

Right multiplication of 4 by the n x n matrix Pj; amounts to
interchanging the ith and jth columns of 4, and leaving the

other columns unchanged.

We call the matrices Tjj(b), Di(u), Pij elementary matrices of
types 1, 11, and III respectively. Left (right) multiplication of 4
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by one of these will be called an elementary transformation
on the rows (columns) of the corresponding type. Such
elementary transformations yield matrices equivalent to 4.

We now proceed to the

Proof of Theorem 3.8. We shall first give a proof in the
special case in which D is Euclidean with map 5 of D into 4
(p. 148). If A = 0 there is nothing to prove. Otherwise, let ajj
be a non-zero element of 4 with minimal 8(ajj). Elementary
row and column transformations will bring this element to the
(1, 1) position. Assume now that it is there. Let £ > 1 and ajk
= a11bk + bik, where d(bjk) <

d(a11). Now subtract the first column times b from the kth.
This elementary transformation replaces ajx by bik. If bik # 0
we obtain a matrix equivalent to 4 for which the minimum 6
for the non-zero entries is less than that appearing in 4. We
repeat the original procedure with this new matrix. Similarly,
if ax; = a11bk + bki, where by # 0 and 6(bk/) < d(a11) then an
elementary transformation of type I on the rows gives an
equivalent matrix for which the minimum 5 for the non-zero
entries has been reduced. Since the “degree” o is a
non-negative integer a finite number of applications of this
process yields an equivalent matrix B = (bj) in which b11\bjk
and b11|bk; for all k. Then elementary transformation on the
rows and columns of type I gives an equivalent matrix of
form

biy O 0
(24) 0 €3 ot Lz
D le {'Lmn
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We can also arrange to have b11 | ck for every k, [. For if by +
cki then we add the kth row to the first obtaining the new first
row (b11, ck2, ..., Ckl, ..., Ckn). Repetition of the first process
replaces ck/ by a non-zero element with a ¢ less than that of
b11 A finite number of steps of the sort indicated will then
give a matrix (24) equivalent to 4 in which b11 # 0 and b11|ck
for every k, [. We now repeat the process on the submatrix
(cki). This gives an equivalent matrix of the form

by 0 0
0 ¢ 0 0
(2) 0 0 dy - ds,
0 0 dpy - dy

in which ¢22 + dpg for all p, q. Moreover, the elementary
transformations on the rows and columns of (ck;) which yield
(25) do not affect the divisibility condition by b11 Hence b11 |
c22 and bi1|dpg. Continuing in this way we obtain the
equivalent diagonal matrix diag {d1, d2, ..., dr, 0, ..., 0} with
dildj for i <j (d1 = bi1, d2 = c22, etc).

The argument in the general case is quite similar to the
foregoing. Here we use induction on the length of a non-zero
element of D in place of d(a). We define the length [(a) of a #
0 to be the number of prime factors occurring in a
factorization a = p1 p2 ... pr, pi primes. We also use the
convention that /(x) = 0 if u is a unit. In addition to the
elementary transformations that sufficed in the Euclidean case
we shall need to use also multiplications by matrices of the
form
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(26)

X

)
where (-1" '/ is invertible. As in the previous case we may
assume that a11 # 0 and l(a11) < l(ajj) for every ajj # 0.

Assume a11+ alk. Interchanging the second and kth column we

may assume a11 1 a12. Write a = ai1, b = a1z, and let d = (a,
b) so I(d) < I(a). There exist elements x, y € D such that ax +
by =d. Puts = bd ', t = —ad '. Then we have the matrix
equation

3 6 -6 )

which implies that both matrices are invertible (since D is
commutative). Then (26) is invertible. Multiplying 4 on the
right by this gives the matrix whose first row is (d, 0, a13, ...,

ain) and /(d) < l(a11). Similarly, if a1i + akl for some k,
elementary transformations together with left multiplication
by a suitable matrix (26) yields an equivalent matrix in which
the length of some non-zero element is less that /(a11). In this
way we can arrange to have ai1 | aix and a11 | ax for all k.
Elementary transformations then give a matrix of the form
(24). The rest of the argument is essentially the same as in the

331



Euclidean case. The only difference is that we continue to
reduce the length rather than the degree 5. [

A matrix equivalent to 4 having the diagonal form given in
Theorem 3.8 is called a normal form for A. The diagonal
elements of a normal form are called invariant factors of A.
Clearly any of these can be replaced by an associate (product
by a unit). We shall now show that this is the only alteration
which can be made in the invariant factors, that is, these are
determined up to unit multipliers. We shall obtain this result
by deriving formulas for the invariant factors in terms of the
elements of 4. We recall that the matrix 4 is said to be of
(determinantal) rank r if there exists a non-zero r-rowed
minor in 4 but every (» + 1)-rowed minor of 4 is 0. Since the
i-rowed minors are sums of products of (i — I)-rowed minors
by elements of D it is clear that if the rank is 7, then for every
i, 1 <i<r, A has non-zero i-rowed minors. We now have the
following result, which gives formulas for the invariant
factors.

THEOREM 3.9. Let A be an m x n matrix with entries in a
p.i.d. D and suppose the rank of A to be t. For each i <r let A;
be a g.c.d. of the i-rowed minors of A.

Then any set of invariant factors for A differ by unit
multipliers from the elements

{2?] fji :'ﬂl'dz='ﬂ'2ﬂl_l1"'1dr:&rﬂr_ll-

(Note: It is clear that A; =0 and A;-1)
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Proof. Let Q = (qki) be an m X m matrix with entries in D.
Then the (k, i)-entry of QA is ) qkjaji. This shows that the
rows of QA are linear combinations with coefficients in D of
the rows of 4. Hence the i-rowed minors of QA4 are linear
combinations of the i-rowed minors of 4 and so the g.c.d. of
the i-rowed minors of 4 is a divisor of the g.c.d. of the
i-rowed minors of QA. Similarly, since the columns of AP, P
€ My(D), are linear combinations of the columns of A, the
g.c.d. of the i-rowed minors of A4 is a divisor of the g.c.d. of
the i-rowed minors of AP. Combining these two facts and
using symmetry of the relation of equivalence, we see that if
A and B are equivalent the g.c.d. of the i-rowed minors of 4
and B are the same. Now let B = diag{d1,d2, ..., dr, 0, ..., 0}
be a normal form for 4. Then the divisibility conditions d; | dj
if i <j imply that a g.c.d. of the i-rowed minors of B is A; =
didy ... di. Evidently the assertion of the theorem follows
from this. [J

An immediate consequence of Theorem 3.9 is that the
invariant factors are determined up to unit multipliers and two
m x n matrices are equivalent if and only if they have the
same invariant factors.

EXERCISES

1. Obtain a normal form for the integral matrix

& 2 3 0
2 3 —4 1
—3 3 1 2
-1 2 =3 3
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2. Obtain a normal form for the matrix

A—17 8 12 —14

- =46 1422 35 —4
2 -1 A-4 4

-4 2 2 k=3

in Ma(1d[A]), X an indeterminate. Also find invertible matrices
P and QO such that PAQ is in normal form.

3. Determine the invariant factors of

A4+l 2 —6
l 4 =3
1 1 i-—4

by using the formulas (27).

4. Prove that if D is Euclidean then any invertible matrix in
Myu(D) is a product of elementary matrices. Show also that
any elementary matrix of type III is a product of elementary
matrices of types I and II. (Consider the case of 2 % 2 matrices
first.) Hence prove that if D is Euclidean any invertible matrix
in 4Mn(D) is a product of elementary matrices of types I and
II.

5.Prove that if F is a field any matrix in Mu(F) of
determinant 1 is a product of elementary matrices of type I.

6.Let Dbeap.id anda; € D, 1 <i<n.Letdbeag.c.d. of
the elements a;. Show that there exists an invertible matrix QO
in My(D) such that
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[ IR A— a)Q=(d0,...,0.

7. Show that if the elements ai1, ai12, ..., aln are relatively
prime then there exist axj € D, 2 <k <n, 1 <j < n such that
the square matrix (ajj) is invertible in My(D) (D a p.i.d.).

8. Let A € My(D) where D is Euclidean and assume det 4 # 0.
Show that there exists an invertible P € My(D) such that PA
has the triangular form

ll3‘1 EJ‘IZ In
d, '5"13 re | By
D T d

where the d; # 0 and for any i, 3(bji) < 6(d).

9. Show that if 4 € My, n(D), D a p.i.d., then 4 and * 4 have
the same invariant factors.

10. Let R be a ring and define the elementary matrix Tjj(a), i #
J, a € R, as above. Verify the following relations:

(i) (Tif@)) ' = T\ —a).

fli] Tu{a] Tu{h} o TI‘J[” + h.'
(iii) (Tyjla), T (b)) = Tylab) if k # i where, in general, (x, y) = x 'y " 'xy.
(vi) (Tda), Tlb) = 1ilj#k izt

These are called the Steinberg relations.

3.8STRUCTURE THEOREM FOR FINITELY
GENERATED MODULES OVER A P.I.D.
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We are now ready to prove the

FUNDAMENTAL STRUCTURE THEOREM FOR
FINITELY GENERATED MODULES OVER A P.I.D. If M
(#0) is a finitely generated module over a p.i.d. D, M is a
direct sum of cyclic modules: M = Dz1 @ Dz © ... @ Dzg
such that the order ideals ann z; satisfy

(28) ann z, @ ann z; o --° 2 ann z,, ann z, # D.

Remark. If b € ann z, b(az) = a(bz) = 0 for any a € D. Hence
ann az O ann z. This implies that any two generators of a
cyclic D-module have the same annihilator. Thus ann z is
independent of the choice of the generator z of Dz.

Proof. We have seen that if x1, x2, ..., xn is a set of generators
for M we have the epimorphism n of the free module D™
with base(e;) 1 < i < n, onto M sending e¢; — x;. Then M =
D™/K and K is generated by a finite set of elements f1, ..., fm
such that fj = > ajie;. Thus we have the relations matrix 4 =
(aji) € Mm,n(D). We now replace the base (e;) by (es) where
4 i z"f LA = {'If”} invertible in My(D), and we replace
the set of generators fi ,1 < k < m, by f1, ..., fm where
A= Ei:' it and Q = (qx) is invertible in My(D). Then,
as we saw in section 3.6, the new relations matrix is QAP'I.
By Theorem 3.8, we can choose P and Q so that QAP'1 =
diag{di, ..., dr, 0, ..., 0} where the d’s are # 0 and dj|d; if i <
j. This means that the relations connecting the generators f'
of K to the base (e')) are

{29} f|r=d1'€1 ..... If‘;f=dr€;,lr;+] ="'=_,I':,'.=U,
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Now put ¥t = Yppxpl<i<n Then y1, y2, ..., yn is another
set of generators of M which are the images of the base (e’))
under the epimorphism 7 of D™ into M. Since die'=fi € K
for 1 <i <r, we have d;y; = 0 for the corresponding y;. Now

suppose we have a relation 21 by =0 where the b; € D.

Then Z hrek

Lbei = eff =) cde. Since (e'1, €"2, ... €'y) is a base for
D™ this implies that b; = cid;, 1 <i < n. But then by = cidiyi
= 0. Thus we have shown that if )’ b;y; = 0 then every b;y; = 0.

Hence we have

and hence we have

M =3 Dy;=Dy, @Dy, ® - @ Dy,

Moreover, we have the additional fact that if b;y; = 0 then b; €
(di). Since djyi = 0 we have ann y; = (d;). The divisibility
conditions on the d; evidently

give the relations

(dy) 2(dy) == (d,).

Now it is clear that if d; is a unit then d;y; = 0 implies y; = 0.
Hence this element can be dropped from the set of generators
{1, ¥2, ..., yn}. Suppose di, ..., dr are units and that d+1,
dr+2, ... are not units, and put z1 = y+1, 22 = Y2, ..., Zs = ¥n
where s = n — t. Then we have M = Dz1 @ Dzp @ ... @ Dz
where every Dzj # 0 and the conditions (28) hold. [J

EXERCISES
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1. Determine the structure of 23K where X is generated by

fi=2,1,-3),A=(1,-1,2).

2. Let D be the ring of Gaussian integers E[»"’—_L]. Determine
the structure of D®)/K where K is generated by f1 = (1, 3, 6),

f=(2+3i,-3i, 12 -18i), 5= (2 3i, 6 + 9, ~18i), i =/~ L
Show that M = D®)/K i finite (of order 352512).

3. Let M be the ideal in Z[x] generated by 2 and x. Show that
M is not a direct sum of cyclic Z[x]-modules.

The remaining exercises are designed to develop a proof of
the fundamental structure theorem which does not depend on
the normal form of matrices (Theorem 3.8). In these M is a
finitely generated module over a p.i.d. D. We use the notion
of length of an element of D as defined in section 3.7,
extending this to 0 by putting /(0) = oo, which we regard as
greater than any integer. Also, if x € M, we define /(x) = 1(d)
where ann x = (d).

4. Let N be a submodule of M, x € M. Show that: (i) ann (x +
N) D ann x and ann (x + N) £ ann x if and only if Dx N N# 0,
(i1) I(x + N) < l(x) and /(x + N) < [(x) if and only if Dx N N #
0.

5. Let x1, x2, ..., xn be a set of n (> 1) generators for M and let
y=23ax where the greatest common divisor (a1, a2, ..., an)
= 1. Show that there exists a set of n generators y1, 12, ..., ¥n

with y1 =y (cf. exercise 7, p. 186). (Sketch of proof. Clear for
n = 1. Forn =2, let b1 b2 € D satisty a1b1 + a2b2 = 1. Then
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y1 =y, y2=—bax1 + bix2 generate M. For n > 2, put d = (a2,
..., an). The case d = 0 (hence a2 = ... = ap = 0) is trivial, so
assume d # 0 and write aj = da'j. Then (a”2, ... , a’n) = 1, so,
by induction, one has a set of generators ¥z = X3 ), V3,

...,yn for N=233Dx, Also (a1, d) =1 and y = aix1 + dy2, so
the case n = 2 shows that there is a z2 in P = Dx1 + Dy»2 such
that D + Dzp = P. Then y, z2, 3, ..., yn generate M.)

6. Let x1, x2, ..., xn be a set of generators for M such that (i) n
is minimal, (i1) /(x1) is minimal for all sets of n generators for

M. Show that M = Dx] @ N where ¥ = 2z D and that ann
x1 D ann y for any y € N. This will prove the structure
theorem by induction on n. (Sketch of proof. If Dx1 N N # 0,
l(x1 + N) < l(x1) by exercise 4. Then ann (x1 + N) = (a1) # 0
and aix1 + axx2 + -+ + apxp =0 for @i € D. Putd = (a1, -,
an), ai = da'i. Then (a’1, ..., a’n) = 1, so by exercise 5 we

have a set of generators ° ' DR '¥n We have dy1 =
0 and /(y1) < I1(d) < l(a1) < l(x1) contrary to the choice of x1,
..., Xp. To show ann x| D ann y for y € N it suffices to prove
ann x] O ann xj, j > 1 and, by symmetry, it is enough to show
ann x| D ann x2. Suppose not and let ann x| = (d1) ann x2 =
(d2). Then d> # 0, so (d1, d2) =d # 0 and /(d) < I(d1) = I(x1).
Also dij=dd’iand (d’i, d"2) = 1 so we have a set of generators
V1, ¥2 ..., yn With y1 = d’1x1 + d"2x2. Then [(y1) < l(x1), a
contradiction.)

3.9 TORSION MODULES AND PRIMARY
COMPONENTS.INVARIANCE THEOREM

The decomposition of a finitely generated module over a
p.i.d. given by the fundamental structure theorem is generally
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not unique. For example, if M is free, then any base (eq, ...,
en) determines such a decomposition, M = De1 @ ... @ Dey
with ann e; = 0, and changing the base to another one (f1,
...,fn) where the f’s are not merely multiples of the e’s in
some order gives a second direct decomposition, M = Df] @
® Dfy, different from the first. However, there is
something which is invariant about the various
decompositions of M into cyclic submodules whose order
ideals satisfy the inclusion relations stated in the structure
theorem: namely, the sequence of order ideals ann z1, ann z2,
. is the same for any two such decompositions. Our next
main objective is to prove this. However, before launching
into the proof it will be useful to introduce the concept of the
torsion submodule of a module over a p.i.d. and to develop
some of its properties. This will facilitate the proof of the
invariance theorem and afford a better insight into the
structure of modules over a p.i.d.

Let M be a finitely generated module over a p.i.d. D, and let
tor M be the subset of elements y € M such that ay = 0 for
some a # 0 in D. Then y € tor M if and only if ann y # 0. If
aiyi=0,i=1,2,and a; # 0, then a = ajaz # 0 and a(y1 +»2) =
azailyl + aiazy2 = 0. This, and the fact that ay = 0 implies
a(by) = b(ay) = 0 shows that tor M is a submodule of M. We
call this the torsion submodule of M and say that M is a
torsion module if M = tor M. Now suppose we have the
decomposition M = Dz1 @ Dzy @ ... © Dzg, where ann z1 D
ann z2 O ... D ann zg. Suppose also that ann z; # 0 if i < and
ann z; = 0 if » <i <s. Then the z;, i <r, are in tor M so Dz] +
... + Dzy — tor M. On the other hand, suppose y = b1z1 + ... +
bszs € tor M. Then there exists an a # 0 such that 0 = ay =
abiz1 + ... + abszs = 0. Then every abiz; = 0, which implies
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that ab; = 0 if i > r. Since a # 0 this gives b;=0,i>r,and y =

2ibgz;eDzy ... + Dz, Thus we have

(30) tor M =Dz, 4+ 4 Dz,.
It is clear also that Dzy+1 + ... + Dzg=Dz+1 ® ... ® Dzgis a

free submodule of M, and M = tor M @ (Dzy+1 + ... + Dzs).
We therefore have the following

THEOREM 3.10 Any finitely generated module over a p.i.d.
is a direct sum of its torsion submodule and a free submodule.

If p is a prime we define the p- component M)y of M to be the
subset of M of elements y such that p y 0 for some k € M.
This is contained in tor M and it is a submodule. If p1, p2, ...,
ph are distinct primes then the corresponding p;-components
are independent. To see this it is enough to show that M1 N
(Mp2 + ... + Mpp) = 0. Hence let y be in this intersection.
Theny=y2 +. +yh vi € Mpi1, and pl Ty; = 0 for some kl
M. Hence pzk ph hy = 0. On the other hand we have pl Ty
= 0 since y € Mp1. Then p1 ki g ann y andpz .. Dh kh & ann
y. Hence 1 = (1", po2 ... pi*") € ann y and soy=0. We
shall show next that “almost all”, meaning all but a finite
number, of the p-components are 0 and tor M is a direct sum
of these p-components. This will follow from the first part of
the following.

LEMMA. (1) If M = Dx where ann x = (d) and d = gh with
(g, h) =1, then M — Dy ® Dz where ann y — (g) and ann z —
(h). 2) If M — Dy + Dz where ann y = (g) ann z = (h), and (g,
h) =1, then M = Dx where ann x = (gh).
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Proof. (1) Put y = hx, z = gx. Then Dy + Dz contains x since
there exist a, b € D such that ah + bg = 1; hence x = (ah +
bg)x = a(hx) + b(gx) = ay + bz. Since M = Dx it follows that
M=Dy+ Dz. Ifu€ Dy N Dz, gu=0 and hu = 0 since gy =
ghx = 0 and hz = hgx = 0. Then u = lu = ahu + bgu = 0.
Hence Dy N Dz=0and M = Dy @ Dz. It is clear also that ann
v =(g) and ann z = (h). (2) As in (1), we have M = Dy @ Dz,
and if we put x =y + z, then cx = 0 implies ¢y = 0 = cz. Then ¢
is a multiple of g and of A, hence, of their least common
multiple gh. Since (gh)(y + z) = 0 we have ann x = (gh). Also,
if ah + bg =1 then y = ahy = ah(y + z) = ahx. Hence y € Dx.
Thenz=x—y € Dxand so Dx =M. [J

It follows by induction from the first part of this lemma that if
d = p1°'p2° ... p where the p; are distinct primes and ann x
=(d),then M=Dx1 @ ... ® Dx;

where ann x; = (P;*). This shows that any cyclic torsion
module is a direct sum of cyclic modules which are primary
in the sense that their order ideals have the form (p°), p a
prime. We can use this to prove

THEOREM 3.11. Let M be a finitely generated torsion
module over a p.i.d. Then the primary component My = 0 for
all but a finite number of primes: say, p1, p2, ..., ph, and M =
Mp1 @ Mp2 ® ... © Mpp.

Proof. Let x1, ..., xn be a set of generators, so M =Dx1 + ... +
Dxy, and let p1, ..., ph be the distinct prime factors of all the
dj such that ann x; = (d;). Then Dx; € Mp1 + ... + Mpp and so
M = Mp1 + ... + Mpp. Since the Mp;. are independent we have
M=Mp1® ... ® Mpj. Now let p be a prime different from all
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the pi, 1 <i < h. Then Mp = Mp N (Mp1 + ... + Mpp) = 0.
Hence every My, p # pi, is 0. [J

We now combine the fundamental structure theorem with the
decomposition of a cyclic torsion module into primary ones.
This gives the following result:

THEOREM 3.12. Any finitely generated torsion module is a
direct sum of primary cyclic modules.

Evidently we obtain this result by writing M as a direct sum
of cyclic modules as in the main theorem. Then, as we saw
above, each of these is a direct sum of primary cyclic
submodules. Consequently M is such a direct sum. More
precisely, if M = Dz1 @ ... ® Dz, and ann z; = (d;) satisfies
ann z] D ann z2 O ... D ann z, then d1|d2| ... |dr. Then we may
assume that d; = p1°" ... pp®" where the displayed primes are
distinct and ej1 < ej2 < ... <ejr, | <j < h. Then M is a direct
sum of cyclic modules with annihilators (p;”). We remark
also that if the prime powers p;*/ are given then we can
reconstruct the d;: the last one, ds, is the least common
multiple of all the prime powers that occur. Striking out the
prime power factors of ds, then ds-1 is the l.c.m. of the
remaining ones, and so on. For exa 3ple if D =Z and the
prlme ower factors of the d; are 3%, 3°, 34,52, 5% 7, 7° then

375 7 ds—1 = 3°5% 7, and ds— 2—d1—32 Wenotealso
that if we are given a decomposition of M as a direct sum of
primary cyclic submodules, then by forming sums of suitable
primary cyclic submodules as in the second part of the
foregoing lemma we obtain a direct decomposition into cyclic
submodules. In our example let x1, x2, ..., x7 be generators of
the sequence of primary direct summands of M. Then Dx3 +
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Dxs5 + Dx7 = Dz3, Dx2 + Dx4 + Dx¢ = Dz2, Dx1 = Dz1 and ann
zj = (d;) satisfy ann z] D ann z2 D ann z3.

We are now ready to prove the

INVARIANCE THEOREM. Let M = Dz1 © Dz @ ... ®
Dzg=Dw) @ Dwy @ ... ® Dwswhere annzy Dannzy O ... D
ann zg and ann wj D ann w2 D ... D ann wy and none of the
components are 0. Then s =t and ann zj = ann w;, | <i<s.

Proof. 1. Reduction to torsion modules. Suppose that ann z; #
0 for i <rand =0 for i > r, and that ann W; # 0 forj <u and =
0 forj > u. Then

tor M=Dz,®&---@ Dz, =Dw, ®--- & Dw,,

by (30). Also M/tor M = Dzy+1 ©® ... ® Dzg = Dwy+1 = ... =
Dw; and these are free modules of ranks s — r and ¢t — u
respectively. The theorem on invariance of rank for free
modules over a commutative ring (Theorem 3.4) shows that s
— r =t — u. Thus the number of ann z; = 0 is the same as the
number of ann w; = 0. It remains to prove the theorem for tor
M, for which we have the displayed direct decompositions
into cyclic submodules.

II. Reduction to primary torsion modules. We now assume M
is a torsion module and we decompose the cyclic summands
Dzj and DW; as direct sums of primary cyclic submodules.
The foregoing considerations on decomposition into primary
cyclic submodules imply that the theorem will follow for
torsion modules if we can show that any two decompositions
of M as direct sums of primary cyclic submodules have the
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same set of order ideals. This amounts to showing that for any
prime power p¢ the number of cyclic direct summands with
order ideal (p°) is the same for the two decompositions. Now
if we fix p and form the sum of the cyclic summands in each
decomposition having order ideals of the form (p°), e = 1, 2,
..., then both of these sums coincide with the p-component
M). Hence it suffices to prove the result for each M), that is,
we may assume M = M), is primary.

1. Proof'in the primary case. We now assume M = Mp. Then
ann z; — (p%), ann w; = (pft) and, since annzi Dannz2 O ... D
ann zg and ann w1 D ann w2 O ... D ann wy, we have e] < ep <
...<esand fi <f2<...<fr. We now observe that for any k €
, pkM = {pkxlx € M} is a submodule and M > pM > pzM -
. Let M® = pkM/pk “lyr Any coset of this D-module has
the form pkx + pkHM and satisfies p(pkx + karl M) = AR VES
0 in M. Thus the ideal (p) annihilates M® so MP can be
regarded in a natural way as D = D/(p) module (exercise 2, p.
165). Since p is a prime, D is a field, and so M® is a vector
space over D. We can relate its dimensionality to the e; and f;
in the following way. We have pkM =01if k> esand pkM =
Dpkzq+1 + Dkaq+2 +...+
D st if eg+1 is the first e; > k. Then the cosets kaq+l +
P VA pkzs + pkﬂM form a base for M® as vector space
over D. Hence we see that the dimensionality of this space is
the same as the number of e; > k. Similarly, the
dimensionality is the number of fj > k. We therefore conclude
that for any £ € M the number of e; > k is the same as the
number of fj > k. This forces s = f and e; = fj 1 <i <s, which
completes the proof of the theorem. [

We shall now call the sequence of order ideals, ann z{, ann z2,
.., whose uniqueness has just been proved, the invariant
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factor ideals of the module M. Our proof shows also that if M
is a torsion module the order ideals of the primary cyclic
submodules in any two decompositions of M as direct sum of
such submodules are invariant. We call these the elementary
divisor ideals of M. It is clear that any two finitely generated
modules over a p.i.d. are isomorphic if and only if they have
the same invariant factor ideals. Similarly, for torsion
modules, isomorphism holds if and only if the two modules
have the same elementary divisor ideals.

In the special case D = Z any ideal has a unique non-negative
generator, and if D = F[A], F a field, then any ideal is either
generated by 0 or by a monic polynomial. It is natural in these
cases to replace the invariant factor ideals and elementary
divisor ideals by these normalized generators. One calls these
the invariant factors and elementary divisors of the module.

EXERCISES

1. Let D = R[A] and suppose M is a direct sum of cyclic
modules whose order ideals are the ideals generated by the
polynomials (1 — 1)>, (2 + 1%, (A — DA + DY, (1 +2)(02 +
1)°. Determine the elementary divisors and invariant factors of
M.

2. Show that a torsion module M over a p.i.d. D is irreducible
(definition in exercise 7, p. 169) if and only if M = Dz and
ann z = (p), p a prime. Show that if M is finitely generated
then M is indecomposable in the sense that M is not a direct
sum of two non-zero submodules if and only if M = Dz where
ann z = 0 or ann z = (p°)p a prime.
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3. Define the rank of a finitely generated module M over a
p.i.d. D to be the rank of the free module M/tor M. (This is
free since it is isomorphic to F if M =tor M @ F, F free as in
Theorem 3.10.) Show that if M = D"/K then rank M = n —
rank K. Show also that if N is a submodule of M then N and
M/N are finitely generated and rank M = rank N + rank M/N.

4. Let M be a torsion module for the p.i.d. D with invariant
factor ideals (d1) o (d2) o ... D (ds). Show that any
homomorphic image M of M is a torsion module with
invariant factor ideals (d1) D (d2) © ... D (dy) satisfying the
conditions: ¢ <'s, dilds, di-1|ds—1, ..., d1|ds—+—1. (Hint: Suppose
first that M is primary.)

5.Let A, B € Myu(D) satisfy det 4B # 0(D a p.i.d.). Let
diag{ai,a2,...,an}, diag{bl, b2, ..., by}, diag{ci,c2, ... cn} be
normal forms for 4, B and AB respectively (so ajaj+1, etc.).
Prove that aj|c; and bjlc; for 1 <i<n.

6. Show that the assertion made in exercise 4 on a
homomorphic image M of M holds for any submodule N of
M.

7. Call a submodule N of M pure if for any y € Nand a € D,
ax =y is solvable in M if and only if it is solvable in N. Show
that if N is a direct summand then N is pure. Show that if N is
a pure submodule of M and ann (x + N) = (d) then x can be
chosen in its coset x + N so that ann x = (d).

8. Show that if N is a pure submodule of a finitely generated

torsion module M over a p.i.d., then N is a direct summand of
M.
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9. Let M be a finitely generated torsion module over a p.i.d.
Show that any cyclic submodule Dz such that ann z < ann x
for every x € M, is a pure submodule. Hence by exercise 8,
Dz is a direct summand.

3.10APPLICATIONS TO ABELIAN GROUPS AND TO
LINEAR TRANSFORMATIONS

We first specialize the structure theory of finitely generated
modules M over a p.i.d. D to the case D = Z. Then M is any
abelian group with a finite set of generators. In particular, M
can be any finite group. The main structure theorem now
states that any finitely generated abelian group M is a direct

sum of cyclic groups: M = { z] ) @ {zz} @ .. {Zs}
where ann z; = (d;) and d1|d2|... |ds. If we normalize d; to be
non-negative then the order of z; is dj if d; > 0 and the order of
z; 18 infinite if d; = 0. The torsion subgroup (= submodule) of
M is the subset of M of elements of finite order. In the

foregoing decomposition this coincides with { zl} + ...+ {

2} where di >0, ... dr> 0 but dr+ 1 = 0. Since | & zi/ | = d;

for i < r it is clear that tor M is a finite group of order 1 d;.
The second structure theorem (Theorem 3.10) implies that
any finitely generated abelian group is a direct sum of a finite
group and a free group. The finite component in any such
decomposition is uniquely determined as the torsion
subgroup. The free component may not be unique, but its rank
is an invariant.

The result on the decomposition of a torsion module as a

direct sum of primary cyclic modules specializes in the
present case to: any finite abelian group is a direct sum of
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cyclic groups of prime power orders. The prime powers
occurring in such a decomposition counted with their
multiplicities are uniquely determined. These are called the
invariants of the finite abelian group. Clearly,

two finite abelian groups are isomorphic if and only if they
have the same invariants.

For the sake of reference we summarize the main results on
finitely generated abelian groups in the following

THEOREM 3.13. Any finitely generated abelian group is a
direct sum of a finite group, its torsion subgroup, and a free
group. The rank of the free component is an invariant. Any
finite abelian group is a direct sum of cyclic groups of prime
power orders. These orders, together with their multiplicities,
are uniquely determined, and constitute a complete set of
invariants in the sense that two finite abelian groups are
isomorphic if and only if they have the same set of these
invariants.

We apply our results next to the study of a single linear
transformation 7 in a finite dimensional vector space V over a
field. Let (u1,u2, ..., ux) be a base for V over F and write

n

{3]} TH;=EHUHJ, I-=l,2,...,ﬂ-.

1

Then A4 is the matrix of 7 relative to the given base. We recall
that if (v1,v2, ..., vu) is a second base for J over F and v; =)
sijuj where S = (sj7) 1s an invertible matrix, then the matrix of
T relative to (vi,v2, ..., vu) 18 SA4S~!. Matrices related in this
way are said to be similar. As before (section 3.2), we can
make V' an F[A]-module by defining the action of any
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polynomial g(X) = bo + b1k + ... +bu\" on any vector x € V
as

glA)x = bgx + by(Tx) + -+ 4+ b (T™x).

Clearly this action of F[A] is the extension of the action of F
such that Ax = Tx.

We note first that V' is a torsion F[A]-module. For, let x € V/
and consider the sequence of vectors x, Ax, sz, .... Since V'is
n-dimensional over F we have an integer m < n such that A"'x
1s a linear combination of x, Ax, ..., Xm_lx, say hmy — box +
bidx + ... + b1V 'x), b; € F. Then g(A) = A" — by—1 A" !
—... — bo is a non-zero polynomial such that g(A)x = 0. Thus
ann x contains g(A) # 0 and ann x # 0.

The base (u1,u2, ..., uy) for V over F is evidently a set of
generators of V" as F[A]-module (though, generally, not a baseg
and we have the homomorphism 1 of the free module F] [X]("

with base (e1, e2, ..., en) onto V sending e; — uj, 1 <i < n.
Our method of analyzing V" as F[A]-module calls for a set of
generators for K = ker 1. Such a set is given in the following

LEMMA. The elements, 'Ji =%~ i-1ayep 1 <i<n,

form a base for K.

Proof. Since Tu; =}’ ajjuj it 1s clear that f; € K. We have Le; =
Ji + 2 aijjej and these relations permit us to write any element
> gi (Me; in the form > Ai(M)fi + > brer where the b; € F. If this
element is in K then ) bje; € k and so Y| bju; = 0. Since the u;
constitute a base for J over F every b; = 0 and our element of
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K has the form ) hi(A)fi. This shows that the f; generate k.
Suppose next that we have a relation | 4;(L)f; = 0. Then

f hy(A)ie; = Z hi(4)a;;e;
i=1 1

ij=
and, since the e; form a base for F [X](”),

h(A)i =Y hid)as.

If any 4i(A) # 0 let A+ (L) be one of maximal degree. Then
clearly the relation A (M)A = )} hj(M)ajr is impossible. This
proves that every 4;(}) = 0 and so the f; form a base for K. [J]

The matrix relating the base (f;) of K to the base (e;) of F[1]™
is

A - iy —dy2 _ﬂl:r
(32) Al—Ad=| —89n A—dyy 7" —dy
— tyy — tpa A Qo

Hence this is the matrix whose normal form gives the
invariant factors of V as F[A]-module, and consequently gives
the decomposition of this module as direct sum of cyclic
ones. The determinant det (Al — A4) is called the characteristic
polynomial of A. It has the form

(33) f)=det(Al — A) = " — 1" ' + -+ +(—1)a,
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Here a1= ) aiji is called the trace, tr A, of the matrix 4, and ay
= det 4. In general, a; is the sum of the i-rowed principal (=
diagonal) minors of the matrix 4. Since f{A) # 0 and f(A) is the
product of the invariant factors of Al — A4 it is clear that none
of these is 0 (which follows also from the fact that V is a
torsion module over F[A]). Thus a normal form for Al — A4 has
the form

(34) diag{l, ..., 1, dy(A) ..., d(4)}

where the dj(A) are monic of positive degree and d;(1)|d;j(A) if
i <j. Our results given in section 3.8 show that if P and Q are
invertible matrices in Mu(F[A]) such that

(35) P(Al — A)Q = diag{l, ..., Ldy(),. ... d A0}

_ - ) = * L= ;
and if we write Q I'= (4% and put 2 Ay, 2% = Vs

then we have

(36) V=Fiz ®F[ilz; ® - -- @ F[4]z,

where ann z; = (di(M)).

We shall use (36) for obtaining a certain canonical matrix for
the linear transformation 7. Suppose first s=1, that is, V =
FTA]z is cyclic as F[A]-module. Then ann z = (f(A)) where f(1)
is the characteristic polynomial of 4 as in (33). Since f(4) is
the non-zero polynomial of least degree such that f{A)z =0, z,
Az, ..., "1z are linearly independent. Hence (z, Az, ..., A" 1z)
is a base for V over F. We have
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Tz =4z
T(Az) = A(Az) = A%z
(37) :
T(A""%2) = 1"z

TA" 12) = "2 = a,(1* '2) —a,(A" 22) +--- + (— 1P g,z

Hence the matrix of 7 relative to the base (z, Az, ..., Xn_lz) is

0 1 0 - 0

0 0 1 0

0 |

(—1)" "a, —a, 4a,

In general, if d(A) is a monic polynomial, and we write d(A) =

A" —bm—Mm_l— ... — bo then the matrix
] 1 0O 0
(38) e P B L 9
e
by by by

is called the companion matrix of the given polynomial d(A).
Using this terminology we can say that the matrix of T
relative to the base (z, Az, ..., X"ilz) (in the cyclic case) is the
companion matrix of the characteristic polynomial f(}).

We now consider the general case in which we have the
decomposition (36). Then we obtain a base for V' over F' by
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stringing together F-bases for the cyclic submodules F[A]z;. If
deg di(\) = n; then (zi\zi, ..., N 'zj) is a base for F[A]z; and
if

(39) d{l)=4"—b

E.n.'-l‘lu‘_] T, bi.n

then TOw' 'zj) = biozi + bit(\zi) + ... + bin-1(\"~1 7). It is
clear that the matrix of T relative to the base

[211&2“.,.,;—”' 121 22,.!"22_ ..... f]“ _131,...1...#‘.-“:‘ ‘Zg}
has the form
B, H 0
(40) B = A
ﬂ ¥
B,

where B; is the companion matrix of dj(A). The matrix B is
called the rational canonical form for the linear
transformation 7. Clearly the rational canonical form can be
written down as soon as we know the invariant factors of A1 —
A, and these can be calculated by performing a series of
elementary transformations on the rows and columns of A1 —
A.

EXAMPLE

Let T be the linear transformation in ¥ = @0 ) such that
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Tuy, = —u; — 21, + 6uy
Tus = —uy + Ju,

Ti..l3= —I.I:i— H1+4\H3.

Here the matrix 4 is

-1 -2 =& A+1 2 —6
—1 0 3), and il - A= | A -3
S L, [ 1 1 i—-4
We have

0 1 0 1 3 A-3 1
0 =1 LAl —=A4)10 0 -1 ( A=1
1 2—4 =3 o 1 —1 (A—1)7°

and the two matrices flanking A1 — 4 have determinants 1 and
so are invertible in M3(ﬂJ [A]). Hence the invariant factors of
v as [4]-module are . — 1 and (1 — )’ =22 — 24 + 1, and
the rational canonical form is
[1] o o
0 0 1
0|-1 2

Our method also yields a matrix in M3(U) which transforms
A into its rational canonical
form. Thus, in the above notation we have

1 3 i-3 1 i =3
Q-(ﬂ 0 —l). Q"=(u ~1 t)
01 -1 0 -1 0
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and

D|=u|+j.u=—‘3ﬂ3=u
Uy = —Uz + Uy

”3 = _uz.

Then a base (z7,z2,z3) which gives the rational canonical form

1S

The matrix relating this to the initial base is
0 -1 1
0 =1 0]
1 0 -3

We can check that

0 -1 1 -1 —2 & 0 -1 Iy !
1 0 -3 -1 —1 4 1 0 -3

|
0
0

There is a second canonical form (= matrix) for a linear
transformation T, the so-called Jordan form, which can be
defined if the invariant factors can be factored as products of
linear factors A — r in F[A]. This will always be the case if
is the field of complex numbers € (see Chapter 5, p. 309).
Under the hypothesis we have made, the elementary divisors
of V as F[A]-module have the form (1 — r)°, r € F.
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Corresponding to each of these we have a cyclic direct
summand F[A]w with ann w = ((4 — )°). The F-space F[A]w
has the base

(41) w, (A —rw,(A—=rPw, .., (A=rf"'w

and we have

Tw=/iwe=rw+(i—rw

TA—rw=AA—rw=nrHi—rw+(i—riw

TA=rf w=dd=r"w+(A—=r""'w

TA=r"w=rd-rf"'w

Hence the matrix of the restriction of 7 to F[A]w relative to
the base (w, A—r)w, ..., (A — ) lw) is

(42)

If V'=F[Aw1 © F[A]Jw2 @ ... @ F[A]wy with ann w; = (A —
r)°)) then we can string together bases of the types just
indicated for the sequence of cyclic spaces to obtain a base for
V over F such that the matrix of T relative to this base is the
Jordan canonical form
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0
(43) La: |
U L
C,
where
i 1 '
' 0
r; |
Cy=|reervrernrnns (e; rows and columns).
0 ro 1
F;
EXAMPLE

In the foregoing example (p. 198) the invariant factors were (4
-1, (4 - 1)2. These are also the elementary divisors and the
Jordan canonical form is

Our results can be stated also in terms of matrices rather than
linear transformations. Given a matrix 4 € My(F) we can use
this to define the linear transformation T'in ¥ = F”) such that
Tui =3 ajjuj, (u1,u2, ..., un) a base for V over F. The various
matrices similar to A4 are the matrices of T relative to the
various ordered bases of V over F. We call the rational
canonical form of 7 (or the Jordan canonical form, when this
is defined) the rational canonical form (the Jordan canonical
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form) of the given matrix 4. An immediate consequence of
our

results is that the matrices 4 and B are similar if and only if 4
and B have the same rational canonical forms (or Jordan
canonical forms, when defined).

The classical results on characteristic and minimum
polynomials of matrices are also consequences of our results.
We shall now derive these. Let 4, T, and the u; be as indicated
and let the normal form of A1 — 4 be P(Al — A)Q = diag{l,
ooy LdI(V), ..., ds(M)}, P and Q invertible in Mu(FTA]), di(A)
monic of positive degree. Then P and Q have determinants
which are non-zero elements of F and the characteristic
polynomial of 4 is

(44) f(A) = det (A1 — A) = d (Ad5(A) - -+ d ().

We also have di(A)|di(A) if i<j and V = F[A]z1 @ F[A]22 @ ...
® F[M]zs where ann z; = ds(A)Put m(A) = ds(A). Since
di(A)\m(L) we have m(A)z; = 0, and since any x € V has the
form x = ) gi(A)Z; we have m(h)x = 0. Thus m(7T) = 0 or,
equivalently, m(4) = 0 for the matrix 4. Since g(7) = 0, or
g(A) = 0 implies g(A)zs = 0, g(A) = 0 implies that m(1)|g(4).
Thus m()) is the monic polynomial of least degree such that
m(A) = 0. It is clear from (44) that f{4) = 0. And since every
di (M)|m(h) it is clear that f{A) and m(LA) have the same
irreducible factors, differing only in the multiplicities of these
factors. Finally, if we recall the formulas for the invariant
factors given in Theorem 3.9 (p. 184) we see that m(A) = ds(L)
= fAM)/An—1(A) where A ;—1(A) is the monic g.c.d. of the (n —
1)-rowed minors of A1 — A. These results can be stated as the
following theorem, which is a composite of results due to
Hamilton, Cayley, and Frobenius.
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THEOREM 3.14 Let A € Mu(F), F a field, and let f(\) = det
(A1 — A) be the characteristic polynomial of A. Then f(A) = 0.
Also let Ay—1(A) be the monic g.c.d. of the (n — 1)-rowed
minors of A1 — A and put m(L) = f(MN)/Ap—1(L). Then m(4) =0
and m(\) is a factor of every polynomial g(\) such that g(A4) =
0. Moreover, m(\) and f(\) have the same prime factors in

FIAL
EXERCISES

1. Determine the number of non-isomorphic abelian groups of
order 360.

2. Let 2 be the free Z-module with base (el,..., en), K the
submodule generated by the elements where a;; € Z and d =
det (a;) # 0. Show that [Z"/K]| = |d].

—
3.Let @+byv—=lpe a non-zero element of the ring of

Gaussian _integers Z[V=1)Show that
Z[V-=1Aa+ by -1)| =a® + b*.

4. Verify that the characteristic polynomial of is a product of
linear factors in U[X]. Determine the rational and Jordan
canonical forms for 4 in M4(U). Also find matrices which
show that 4 is similar to these canonical forms.

I 0o 0 0

0 1 0 0

e =32 =3 0 1
-2 0 =T =
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5. Prove that if F' is a field, the matrices 4, B € My(F) are
similar if and only if the matrices Al — A4, Al — B are
equivalent in My (FTA]).

6. Prove that any matrix 4 is similar to its transpose’ 4.

7. Show that the F[A]-module determined by a linear
transformation 7 is cyclic if and only if the characteristic
polynomial f{A) is the minimum polynomial of 7.

8. Prove that any nilpotent matrix in Mu(F) is similar to a
matrix of the form

N,

0

N,

where N; has the form

9. Show that a matrix 4 € M,(C) is similar to a diagonal
matrix, diag{ri1,72, ..., ra}, ri € €, if and only if the minimum
polynomial m(\) has distinct roots.

10. Show that if 4° = A4 then 4 is similar to a matrix diag{l,
e 1,0, ..., 0},
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11. (Weyr.) Show that the matrices 4, B € My(C) are similar
if and only if for every a € Cand k=1, 2, 3,... rank (al —A)k
=rank (al — B)k.

12. Show that the following matrices in My(Z/(p)), p a prime,
are similar:

010 L1} 110 0
001 0 o110

o 1 11
1 0 0 01

13. Let P be the companion matrix of a monic irreducible
polynomial p(A) of degree m and let N = e1,;. Show that the
minimum polynomial of the em % em matrix.

P N O - - 0
0O PN - - 0
0 - P N

.0 P

is p(L)°. Hence show that if 4 is a matrix such that the
elementary divisors of A1 — 4 are p1(W)°L, p2(V), ..., PN,
where the pj()\) are irreducible, then 4 is similar to
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where B; has the form of B with P the companion matrix of
pi(A) and number of blocks equal e;.

14. Show that any matrix in Mu(R) is similar to a matrix
consisting of diagonal blocks which have one of the following
forms:

0 111 0O
—-b a|l 0 1 0
T[T
0 r 1 0 _ﬂ. ;
0 -0r 1 0 0 1] 1 0
0 0 r =% al'g 9
0 1
—-b a

where a° < 4b.

15. Let R be a commutative ring, R"™ the free R-module with
base (e1,e2, ..., en) and let n be the R-endomorphism of R(n)
such that ne; = Y. ajjej where 4 = (a;j)€ Mu(R). Make, R™ an
R[A]-module, as in the field case, so that ax, a € R,is defined
as in R and \x = nx. Then one has the relations
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(A—ay e, —a 6, — - —ay,e,=0

Let 4;; be the cofactor of the (i,/)-entry in A1 — 4. Multiply the
foregoing relations by A1, A2i, ...,Ani respectively and add.
Show that this gives the relations f{A)e; = 0 where f(A) = det
(M1 — A). Then f{n) = 0 and, by the isomorphism of Endr R™
with Mu(R) (p. 174), we obtain the Hamilton-Cayley theorem
for matrices with entries in R:f(4) = 0.

3.11THE RING OF ENDOMORPHISMS OF A FINITELY
GENERATED MODULE OVER A P.I.D.

An interesting problem is that of determining the n X n
matrices B with entries in a field / which commute with a
given matrix 4 € My(F). This translates to the geometric
problem of determining the linear transformations U in an
n-dimensional vector space V over F which commute with a
given linear transformation 7 of V over F. Then U is an
endomorphism of the additive group of V such that U(ax) =
a(Ux), a € F, and U(Tx) = T(Ux). Regarding V as an
F[A]-module, as before, the last condition becomes U(Ax) =
MUx), which implies that U(ka) = Xk(Ux). Then we have
U(f(M)x) = f{A)(Ux) for any polynomial f(A) € F[A] and so U is
an endomorphism of J regarded as an F[A]-module.
Conversely, this condition is sufficient to insure that U is a
linear transformation in V over F which commutes with 7,
since it includes the facts that U is a group endomorphism,
that U(ax) = a(Ux), a € F, and U(Tx) = U(Ax) = MUx) =
T(Ux).
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More generally, we now consider the problem of explicitly
determining the ring D' of endomorphisms (that is, Hom(},
M)) of a finitely generated module M over a p.i.d. D. We
begin with a decomposition M = Dz; ? Dz ? ... ? Dzy where
annz; ?annz2 7 ... D ann zg and ann z; = (d;) # 0 for i <r but
ann z; =0 1ifi > r. Let 1 € D' and suppose nzi ( =n(zi)) = w; €
M, 1 <i<s. Then if and hence

nx = ﬂ(z “i-'r) =Y maz) =} afnz) =} aw;.

This shows (as we know already) that | is determined by its
effect on the generators z; of M. Moreover, diW; = di(yzi) =
n(dizi) = 0, which shows that ann w; D ann z; so if ann w; =
(gi), then g;j is arbitrary if i > r, and gj|d; if i <r.

Conversely, suppose that for each i we pick an element w; €
M such that ann w; ? ann z;. Suppose x € M and x = ) aizi =
Y. bizi are two representations of x. Then we have a; — b; €
ann z;. Hence a; — b; € ann wi and consequently > ajw; =)
biwi;. This shows that n:) aizi — >, aiw; Direct verification
shows also thatn € D".

Our result is the following. We have a bijection 1 — (w1,w2,
..., Ws) of the ring D' = Hom(M, M) onto the set of s-tuples of
elements of M satisfying ann w; © ann zj. We now write w; =
. bijZj, bijj € D, and we associate with the ordered set (w1,w2,
..., Wg) the matrix
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(45) B= byy by - hls

in the ring Ms(D) of s % s matrices with entries in D. This
matrix may not be uniquely determined since any b;; may be
replaced by b'jj such that b';; = bjj (mod dj) if j < r. This is the
only alteration which can be made without changing the w;.
The condition that ann w; D ann z; is equivalent to

(46) d:b;; = 0 (mod d)).

This, of course, means that there exist ¢;; € D such that d;b;j=
cijdj. Hence (46) is equivalent to the following condition on
the matrix B of (45): there exists a C € Ms(D) such that

(47) diag{d,,d,, ..., d,}B= Cdiag{d,, ds,...,d,}.

The set R of matrices B satisfying (47) is a subring of Ms(D).
Any B € R determines an | € D’ such that nz; = ) b;iZ;. It is
easy to verify (as in the special case of a free module treated
in section 3.4) that the map ‘B — 1 is an epimorphism of R
onto D'. It is clear that n = 0 if and only if bj; = 0 (mod d}) for
B = (bjj). Hence the kernel K of our homomorphism is the set
of matrices ‘B such that,

(48) B = Q diag{d,.d,, ..., d,}

Where QO = Ms(D). We remark that matrices of this form
automatically satisfy (47). This implies
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THEOREM 3.15. Let M = Dz1 @ Dzp @ ... ® Dzg where the
order ideals ann z; = (d;) satisfy ann z] D ann z2 O ... D ann
zs. Then the ring D' of endo-morphisms of the D-module M is
anti-isomorphic to R/K where R is the ring of matrices B €
Ms(D) for which there exists a C € Ms(D) such that diag{d1,
..., ds} B=C diag{di, ..., ds} and K is the ideal of matrices
of the form Q diag{d, ..., ds}, Q € Ms(D).

If M is a free module, all the di = 0. Then R = Ms(D) and K =
0. In this case we have the result of section 3.4. If s = 1, so

that M is cyclic, the condition for B = (b) is trivially satisfied
by the commutativity of D. Then D' = D/(d) where d = d.

A more explicit determination of the ring of matrices R can be
made if we make use of the conditions on the d; that dj|d; if
i<r, and d; = 0 if i > r. The conditions (46) then imply:

1. bjj is arbitrary if i > since in this case dj = 0 (mod dj),

2. bjj=01fi <randj > r since in this case d; # 0 and dj = 0;
3. bjj is arbitrary if i,j > r since d; = d;j = 0 in this case;

4.b;=0(modd; ' dy)ifi<j<r.

Changing the notation slightly we see that B has the form

[ by byad,"'dy v byd, 7, 0 e 0

by, by, b;,d;"d, 0 0

{49' bri hr: Y hr‘r 0 TR 0
bl"rl 1 h’fi.z hr#lr hr lr®1 brol.j

b.l 1 b!. 2 hl.! hll‘" 1 b“
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Here the upper right-hand corner consists of O's, all the
mdlcated bjj are arbitrary, and the (i,j)-entry for 1 <j <ris
bijdi— a’] The conditions that the matrix is in K are that the bj;
= 0 1f j > r, that b;; is divisible by dj if i >j and j <r, and that
bjj is divisible by d; if i < j <r. If the module is a torsion
module, » = s and (49) reduces to the block of matrix in the
upper left-hand corner.

We now specialize M = V, where V is the F[A]-module
determined by a linear transformation T in a finite
dimensional vector space V over F. This is a torsion module.
Any bjj, i >, can be replaced by b'jj in the same coset mod d;.
Hence we may assume deg bjj < nj = deg dj if i >j. Similarly,
we may assume deg bjj < n; if i <j. Matrices B € R satisfying
these conditions will be called normalized. 1t is clear that the
map B — n restricted to normalized matrices of R is a
bijection into D'. There is a natural way of regarding D" and R
as vector spaces over F. For R we obtain a module structure
over F simply by multiplying all the entries of B € R by a €
F. For D' we define an, a € F, 1 € D' by (an)x = a(nx) =
n(ax) (cf. exercise 5, p. 175). Using these vector space
structures it is immediate that the set S of normalized matrices
contained in R is a subspace and B — n is an F-linear
isomorphism of S into D'. We are interested in calculating the
dimensionality of D' over F, in matrix terms, the
dimensionality over F of the vector space of matrices which
commute with a given matrix. The isomorphism just
established gives us a way of doing this, namely, we may
calculate dim S. Let Sj;, 1 <ij <s, denote the subspaces of S
of normalized matrices having 0 entries in all places except
the (1,j)-position. Then dim Sj; = n; if i >, and dim Sj; = n; if i
<j. Since S is the direct sum of the subspaces Sj; we have
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A =1
dmS =3 (s—j+ Un+ ¥ (s—im
J=1 =1
= 2{23—2f+l}n,.
J=l

We can state this result in terms of matrices in the following
way:

THEOREM 3.16. (Frobenius.) Let A € My(F), F a field, and
let di(A), d2(M) ..., ds(A) be the invariant factors #1 of Al — A.
Let nj = deg di(\). Then the dimensionality of the vector space
over F of matrices commutative with A is given by the
formula

(50) N=73 @s—2+

Of course, this can also be stated in terms of linear
transformations. In this form it gives the following

COROLLARY. 4 linear transformation T is cyclic (that is the
corresponding F[N]-module is cyclic) if and only if the only
linear transformations commuting with T are polynomials in
T.

Proof. T is cyclic if and only if s = 1. We also know that ds())
is the minimum polynomial m(A) of 7 and hence ns is the
dimensionality over F of the ring F[7] of polynomials in T
with coefficients in F (see exercise 1, p. 133). If S=1 then (50)
gives N = n1 = dim F[7]. Hence the space of linear
transformations commuting with 7, which, of course, contains
F[T], coincides with F[T]. If s > 1, (50) implies that. Hence
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there exist linear transformations commuting with 7" which
are not polynomials in 7.[]

EXAMPLE

Let F =10 and

1 0 0
A= (I‘J 0 l)-

0 -1 2
If T is the corresponding linear transformation and the vector
space is 1ﬂ’[?»]-module via T then V = 1ﬂ’[&]f] ? ‘U[i]fz. The

invariant factors are A — 1 and (4 — 1)2. The normalized
matrices of R have the form

] b,4(A—1)
5] 11 12 .
e (h,. hu+ha=z)' by @

Since Afi Zﬂ,szz = (2L — )2 = —f2 + 2(M2), the linear
transformation U corresponding to (51) satisfies

Ufy = by = by f2 + byalify)
Ufy = by fy + bzz.fz + Hz.z[i.f:}
UAfy) = by fy = bya fy + (byy + 205,)(41).

Accordingly, the general form of a matrix which commutes
with 4 is

by, —by; by 3
by, by b g
by, —b by + 2b5;

-
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We return to the general case of a finitely generated
D-module M for a p.i.d. D, where we have M = Dz1 @ Dz» @
... ® Dz as before. Since D is commutative it is clear that the
ring of endomorphism D' of M includes all the maps x — ax,
a € D. It is clear also that these are contained in the center of
D'. We shall now prove

THEOREM 3.17. The center of D' = Hom(M, M) is the set of
maps x — ax, a € D.

Proof. Our determination of D’ shows that for any i, 1 <i <,
there exist an endomorphism g5 such that €;sZs = Z; €isZj = 0
if j # 5. Now let y be in the center of D'. Then yZs = yegszs =
€ssVzs = €ss(O aizi)(ai € D) = ai€sszi = aszs. Also yzi = veisZs
= &isyZs = €is(Qajzj) = Y ajeisZ;j = aszi. It follows that vy is the
map x — asx. [

Specializing Theorem 3.17 to the case of the module
determined by a linear tranformation, we obtain

COROLLARY 1. If U is a linear transformation in a finite
dimensional vector space which commutes with every linear
tranformation commuting with a given linear transformation
T, then U is a polynomial in T.

An immediate consequence of this corollary obtained by
taking 7=1 is

COROLLARY 2. The center of the ring of linear
transformations of a finite dimensional vector space over
afield F is the set of scalar multiplications x — ax, a € F.

EXERCISES
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1. Let G be a finite abelian group which is a direct sum of
cyclic groups of orders n1,n2, ..., ng where njjn; if i <j. Show
that the number of endomorphisms of G is

&
N = ] a3+t
i |

2. Determine the matrices in Ms(U) commuting with

2 Q Q = 9
— T — T — I — R — |
2 =90 0 o
_ o o o 9
o Q 9 oo

3. Determine the matrices in Ma(1d) commuting with

0
0
0
1

L = =

0
1
0
-3

= [ e R = My

4. Prove that a linear transformation T in a finite dimensional
vector space over a field is cyclic if and only if the ring of
linear transformations commuting with 7' is a commutative
ring.

5. Prove the following extension of Theorem 3.17. The only

endomorphisms of M which commute with every idempotent
element of D’ are the mappings x — ax, a € D.
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"' We use a to denote an indeterminate in the present chapter.
We do this in order to reserve x to represent vectors or, more
generally, elements of a module.

% This result in a somewhat more special sitution—that of
algebras—seems to have been noted first by Poincaré.

3 We recall that in the group case our preferred terminology
was “translation” for such a map.

* There exist p.i.d. in which not every invertible matrix is a
product of elementary ones. An example of this type is given
in a paper by P.M. Cohn, On the structure of GL2 of a ring,
Institut des Hautes Etudes Scientifiques, Publication #30
(1966), pp. 5-54.
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4
Galois Theory of Equations

The main objective of this chapter is the treatment of two
classical problems: solvability of polynomial equations by
radicals and constructions with straightedge and compass. We
shall first indicate briefly their history.

In elementary algebra one derives the formula

—b + /b — dac

= 2a

for solving the quadratic equation ax® + bx + ¢ = 0. In essence
this was known to the Babylonians. During the period of the
Italian Renaissance a considerable effort was directed toward
generalizing this to equations of higher degree and this
culminated in one of the great achievements of Renaissance
mathematics: formulas for the roots of cubic and quartic
equations. The first was due to Scipione del Ferro, who was a
professor at the University of Bologna from 1496 to 1526.
The exact date of his discovery is unknown, however we do
know that some time prior to 1541, Niccolo Tartaglia,
perhaps aware of the existence of del Ferro’s solution, was
able to discover it for himself. Tartaglia’s solution was
published by Geronimo Cardano in Ars Magna (1545) and is
generally

known as “Cardan’s formulas” for the solution of cubic
equations It is easzy (for us) to see that the solution of cubic
equations X+ ax* + bx + ¢ = 0 can be reduced to the
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“reduced” case of equations of the form 3+ px +q=0 (by
1
replacing x by x — 3a). Let x1, x2,x3 denote the roots of the
N Y. ) S
reduced equation and put & = —4p3 - 21q2, {=—-1-3/-3
vy =x1+ Z;sz + —x3, 2 = x1 + —x2 + —x3.Then Cardan’s
formulas are

1."' ’
n=J-Fa+iJ-3

yv:=3-Fq-1J-3

for suitable determinations of the cube roots (see pp.
264-266). The form of the reduced equation implies that x| +
x2 + x3 = 0. Hence the determination of its roots xj is reduced
to solving the three linear equations x1 + x2 + x3 = 0, x1 +
szz +x3=y1,x1+ o0+ C2x3 =y).

A general method for solving quartic equations, which was
also published by Cardano in Ars Magna, is attributed to
Cardano’s assistant, Ludovico Ferarri. We shall indicate this
method later, and note here only that, as in the case of cubics,
the solutions are given in terms of root extractions and
rational operations performed on the coefficients of the given
equation.

From the middle of the sixteenth century to the beginning of
the nineteenth century a number of attempts were made by
some of the greatest mathematicians of the period (e.g., Euler
and Lagrange) to obtain similar results for quintic equations.
Lagrange did considerably more than the other would-be
solvers of quintic equations: namely, he gave an incisive
analysis of the existing solutions of cubics and quartics and
showed that the reason these could be solved by radicals was
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that one could reduce their solution to that of “resolvent”
equations of lower degrees. On the other hand, he found that
the application of the same method to a quintic led to a
resolvent of degree six. This might have suggested strongly
that equations of higher degree than the fourth could not
generally be solved by radicals. Nevertheless, it was a
startling discovery when this was indeed found to be the case.
This was established independently by A. Ruffini (published
in 1813) and by N. H. Abel (published in 1827). Their result
(usually attributed to Abel) states that the “general” equation
of nth degree, that is, the equation x” + " L+ 1,20
with indeterminate coefficients # is not solvable by radicals.
The proofs of Ruffini and of Abel are somewhat obscure and
perhaps not complete in all details. For us they are interesting
only as history since they were soon superseded by the
crowning achievement of this line of research: Galois’
discoveries in the theory of equations. Galois

obtained his results while he was still in his teens: he was
killed in a duel in 1832 just before he was twenty-one. Galois’
work not only provided a proof of the Ruffini-Abel theorem
but it gave a criterion for solvability by radicals of any
equation x” + a1 ' + ... = 0 (not just the “general” one).
Moreover, the main result of Galois’ discoveries, which
showed that there is a 1-1 correspondence between the set of
subfields of a certain type of field extension and the
subgroups of a finite group—the Galois group—has become a
central result in all of algebra, whose importance has
transcended by far that of the original problem which led to
it.” Galois’ theory has been considerably simplified and
refined—mainly by the introduction of more abstract
ideas—during the century which followed its publication in
1846, some fifteen years after his death.
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The second main problem on which we shall focus our
attention had its origin in Greek mathematics. The Greeks
were unable to decide whether or not certain geometric
constructions were possible using only a straight-edge
(unmarked ruler) and compass. The most notable of these
were: (1) trisection of any angle; (2) duplication of the cube,
that is, construction of the side of a cube whose volume is
twice that of the volume of a given cube; (3) construction of a
regular heptagon (= regular polygon of seven sides); (4)
squaring the circle, that is, construction of a square whose
area is that of a given circle. Any problem on
straight-edge-compass construction can be formulated as an
algebraic problem on fields. Once this is done it is easy to see
that the first three of the foregoing problems have negative
answers. This can be seen by applying the basic
dimensionality formula for fields (Theorem 4.2). The
impossibility of squaring the circle follows from the fact, first
established by F. Lindemann in 1882, that 7 is a
transcendental number, that is, is not algebraic over 1. The
general problem of determining the integers n such that the
regular n-gon can be constructed (with straight-edge and
compass) was solved by Gauss in his Dis-quisitiones
Arithmeticae (1801). A consequence of his results is that the
constructions are possible if n = 17, 257, or 65537. Gauss’
first recorded discovery in mathematics was a method for
constructing a regular polygon of 17 sides. This had eluded
mathematicians from the time of the Greeks until Gauss—a
period of about two thousand years. Gauss’ results were
obtained by elementary but somewhat lengthy calculations
involving the roots of unity. As we shall see, Galois’ theory
makes it possible to get these rather quickly without
calculations.
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Besides the results indicated, we shall be interested in this
chapter in some byproducts of the Galois theory, one of these
being the study of finite fields, which was also initiated by
Galois. We shall introduce also some other basic field
concepts: norms, traces, primitive elements, and normal
bases.

4.1 PRELIMINARY RESULTS, SOME OLD, SOME NEW

We have defined the prime ring of a ring R as the smallest
subring of R and we saw that this is the set Zl of integral
multiples of 1 (section 2.7). Moreover, either Z1 = Zor Zl1 = Z
/(k), (k # 0). In the first case, R has characteristic 0 and in the
second it has characteristic £. If R is a domain, & = p a prime.
Now let R = F' a field. Then we define the prime field of F to
be the smallest subfield of F. If F has characteristic p # 0, the
prime subring is a subfield since it is isomorphic to Z/(p).
Hence in this case the prime subring and prime field of F
coincide. If F has characteristic 0, we have the
monomorphism m — ml of Z into the prime field of F, and
this can be extended to a monomorphism of & into the prime
field. It follows that the prime field is isomorphic to . In
this sense we can say that any field contains either the ring Z
/(p) for some prime p ( = the characteristic of the field) or else
it contains the field IJ of rational numbers.

Let £ be an extension field of the field F (£ is a field
containing F' as sub-field). If S is a subset of E, we recall that
F[S] denotes the subring of E generated by F and S or, as we
shall now say, the subring of E/F generated by S. We shall
now use the notation F(S) for the subfield of E/F generated by
S meaning, of course, the subfield of £ generated by F and S.
As in the ring case, it is immediate that if 7 is a second subset
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of E then F(S)(T) = F(S U T) (section 2.10). If u is an element
of E then we write F(u) for F({u}) and, more generally, for a
finite set {u1s uo, ..., un} we put F(uy ua,..., un) = F({uig uz,
..., un}). What does F(u) look like? First, we recall that if x is
an indeterminate, then we have the homomorphism g(x)—
g(u) of the polynomial ring F[x] into £, which is the identity
of F'and sends x—u (Theorem 2.10, p. 122). If the kernel is 0,
then Flu] = F[x].Otherwise, we have a monic polynomial f(x)
of positive degree such that the kernel is the principal ideal
(fix)), and then Flu] = F[x]/(fix)). The polynomial f{x) is
prime (since, otherwise F[x]/(f(x))is not a domain). Then
FIx]/(fx)) is a field (Theorem 2.16, p. 131). Hence, it is clear
that in this case, F(u) = F[u]. In the other case: F[x] = Flu],
the homomorphism g(x)— g(u) is a monomorphism and this
has a unique extension to a monomorphism of the field of
fractions F(x)of F[x].Then F(u) = F(u) = f(x) and F(u)consists
of the set of elements g(u)h(u)'1 where g(x), h(x) € F[x] and
h(x) # 0. In this case also, u is transcendental, whereas if F(u)

= Flx}J/(f (x)),

flx)of positive degree, then u is algebraic and, if f{x)is monic,
then this is the minimum polynomial of the element u. In any
case, if £ = F(u), then we say that E is a simple (field)
extension of F and we call u a primitive element (= field
generator of E/F).

In studying an extension field E relative to a subfield F it is
useful to consider E as vector space (or module) over F. Here
the abelian group structure of E is that given by the addition
composition and the module composition ay, a € F,y € E, is
the product in E. The extensions we shall encounter most
frequently in this chapter are finite dimensional extensions
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over the base field /. We denote the dimensionality as We
shall show first that an element u € E is algebraic over F if
and only if [F(u):F] < o and in this case [F(u):F] is the
degree of the minimum polynomial of u over F. We shall call
this number the degree of u over F. Let u be algebraic, f(x) =
¥+ ax™! + ... + ay € Flx] the minimum polynomial of u
over . We have F(u) = Fu] and if g(x)€ F[x], g(x) = f(x)q(x)
+ r(x) where deg r(x) < deg f(x) = n. Then g(u) = O q(u) +
r(u), which shows that any element of FTu] has the form

ﬂ;“}=bﬂ+blu+"'+hﬂ_”l-_l. b.‘EF-

and since f(x) is the polynomial of least degree such that ]f(u)
= (), the only relation of the form bg + bju + ... + bp- "
which can hold for b; € F is the one with all bl 0. Thus

(Lw...,u8"Y

is a base for F(u)/F. Hence this extension is n dimensional
where n = deg f(x). On the other hand, if u is transcendental
the elements 1, , uz,... of F(u) are linearly independent over
F, which implies that F(u)is not finite dimensional over F.

We state a part of our results as

THEOREM 4.1. Let u be an element of an extension field E of
a field F. Then u is algebraic over F if and only if F(u) is
finite dimensional over F. In this case F(u) coincides with the
subring Flu] generated by F and u.
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We now suppose we have a two-storied extension of F, that
is, we have F < E < K where K is a field and E and F are
subfields. Then we can regard K as vector space over £ and
over F, and E as vector space over F. We denote these spaces
as K/E, K/F, and E/F respectively. We then have the
following important relation on dimensionalities.

THEOREM 4.2. If K?E?F are fields then [K:F] is finite if and
only if [K:F]| and [F:F| are finite. In this case we have the
dimensionality relation

(1) [K:F] =[K:E][E:F]

Proof If [K:F] < oo then [E:F] is finite since E is a subspace of
K/F. If (u1,u2, ..., un) is a base for K/F then clearly every
element of K is a linear combination of the wu; with
coefficients in F and a fortiori with coefficients in F. Hence,
by a standard result of linear algebra, we can extract a base
for K/E out of the set {u1 u2, ..., um}. Thus [K:F] < oo.
Conversely, suppose [K:F] and [E:F] are finite and (vI..., Vi)
is a base for K/E, (wi..., wr) a base for E/F. If z is any
element of K we have z = Y 1">a;vifor suitable a; € F, and a;
= 3/bjjW; for suitable b;; € F. Then z =Y ;bjwjvjso every
element of K is an F—linear combination of the mr elements
W;iVi. Now suppose Y a;vibjjw;vi = 0 for € F. Then Y a;vi =0
for ar= Y bjiW; Since the form a base for K/F this implies that
every a; = 0. Since the w, form a base for F/F, ar= Y bijjw;=0
implies every = 0. Hence we have proved that the mr

elements W;v; are F—independent, so they constitute a base for
K/F. Thus [K:F] = mr = [K:F|[F:F] < . [
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An immediate consequence of the foregoing result is that if
[K:F] < €, then the dimensionality of any subfield E/F is a
divisor of the dimensionality of K/F. In particular, if [K:F] is
a prime, then the only subfields of K/F are K and F.

EXERCISES

1. Let E = W(u) where W +u+2=0. Express (u2 +u+
)(u? — u ) and (u — 1) in the form au® + bu + ¢ where a, b, ¢
el

2. Determine [ W2 VGJ:U].

3. Let p be a prime and let v € € satisfy v # W=1(g,v=
cos 2 /p + i sin 2m s/p). Show that [LD(v):ld] =p — 1. (Hins:
Use exercise 3, p. 154.)

4. Let w = cos /6 + i sin /6 (in € )Note that w'? = 1 but w' #
1if 1 <r <12 (so w is a generator of the cyclic group of 12th
roots of 1). Show that [Ll(w):ld] = 4 and determine the
minimum polynomial of w over 1.

5. Let E = F(u) where u is algebraic of odd degree ( = degree
of the minimum polynomial of #). Show that £ = F1 (uz).

6. Let E; =1, 2, be a subfield of K/F such that [E;:F] is finite.
Show that if £ is the subfield of K generated by E1 and E»

then [E:F]| < [E1:F]|[E2:F].
7. Let E be an extension field of F which is algebraic over F

in the sense that every element of £ is algebraic over F. Show
that any subring of E/F is a subfield. Hence prove that any
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subring of a finite dimensional extension field E/F is a
subfield.

8. Let E = F(u), u transcendental, and let K # F be a subfield
of E/F. Show that u is algebraic over K.

9. Let E be an extension field of the field F such that (i) [E:F]
< oo, (i1) for any two subfields £1 and E2 containing F, either

E1 o E2 or E2 o E1. Show that £ has a primitive element over
F.

4.2 CONSTRUCTION WITH STRAIGHT-EDGE AND
COMPASS

The problem of Euclidean construction, that is, construction
with straightedge and compass, can be formulated in the
following way. Given a finite set of points S = {P| P2,..., Pn}
in a plane ®, define a subset Sy, m = 1, 2,..., of cd
inductively by S7 = S, and Sy+7 is the union of S; and (1) the
set of points of intersections of pairs of lines connecting
distinct points of Sy, (2) the set of points of intersections of
the lines specified in (1) with all circles having centers in Sy
and radii equal to segments having end points in S, (3) the set
of points of intersections of pairs of circles defined in (2). Let
C(P1, Pa,..., Py) = U™1si. Then we shall say that a point P of
o can be constructed (by straight-edge and compass) from Pj
P,... ,P, if P € C(P1 P2,..., P,). Otherwise P cannot be
constructed from the P;.

How does this correspond to constructibility as defined in
Euclidean geometry? The given elements in a construction in
Euclidean geometry are points, lines, circles, and angles—a
finite number of each. Now a line is determined by two of its
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points, a circle by its center and a point on the circle, and an
angle by its vertex and two points on the two sides of the
angle equidistant from the vertex. Hence, making these
replacements, we may assume that we are given a finite set S1
= {P1 P2,..., Py) in the plane w. The points of the successive
sets $2, 53,..., which we defined, can certainly be obtained
from S1 by straightedge-compass construction a la Euclid. We
remark also that in Euclidean conductions one sometimes
encounters an instruction to use an “arbitrary” point or length
restricted only by a condition that the point is contained in a
certain region or that the length satisfies a certain inequality.
Thus one is instructed to choose points in designated
(non-vacuous) open subsets of the plane. We shall see in a
moment that if the given set S| has at least two distinct points,
then the set C(P1 P2,..., Py) we defined is dense in the plane.
Hence any instruction involving the choice of a point in a
non-vacuous open subset of the plane can be fulfilled by
choosing some point in C(P1 P2,..., Py). Consequently, our
definition of constructible points—which has the advantage
of being precise— is equivalent to what seems to have been
intended in Euclidean geometry.

As an example, we consider the problem of trisecting an
angle of 60°. Here we are given the points P1 = (0, 0) (the

vertex), P2 = (1, 0) and P3 = (cos 60°, sin 60°) = (Y2,% "ﬁ).ls
the point P = (cos 20°, sin 20°) contained in C(P1 P2, P3)? An
angle of 60° can be trisected using only a straight-edge and
compass if and only if this question has an affirmative
answer.

We shall now formulate our definition algebraically. We
assume n > 2, since, otherwise, C(P1 P2,..., Pn) = {P1}. We
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choose a Cartesian coordinate system so that P1 = (0, 0), the
origin, and P2 = (1, 0). We associate with the point P = (x, y)
the complex number x + iy. In this way the plane is identified
with the field € of complex numbers. The given set {Pi]
P»,..., Py} is identified with a set of complex numbers {z|
z2,..., zn} such that z1 = 0, z2 = 1. What is the set C(z1 z2,...,
zy) of complex numbers corresponding to the set of points
C(P1 Pa,..., Py)? It is natural to call this set the set of complex
numbers which are constructible (by straight-edge and
compass) from z1 z2,..., zn. We shall now obtain the following
characterization: C(z1 z2,..., zn) is the smallest sub-field of the
complex field containing the z; and closed under square roots
and conjugation—that is, containing every z such that Zisin
the set and containing z = x — iy if z = x + iy x y real, is in the
set. By “smallest” we mean, as usual, that C(z; z2,..., z») has
the indicated closure properties and is contained in every
subset of € having these closure properties.

Suppose z and z' € C(z; z2,..., zn). Then z + z' can be
constructed by the usual parallelogram method of forming the
sum of two vectors:
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Thus z + z' is obtained as (the obvious) one of the two points
of intersection of the circle with center at z and radius |Z'| (the
length of 0z') with the circle centered at z’ with radius |z|. Also
it is clear that — z € C(z1 z2,..., zn). Hence C(z] z2,..., zn) 1s a
subgroup of the additive group of €. To see that C(z1 z2,...,
zn) 1s closed under multiplication, inverses, and square roots
we use the polar form of z:z = re'®where the absolute value 7
N

z=x* iy and 6 ,the amplitude, is the angle from the x-axis to
the line Oz. If ' = r'e'?" then zz'= 17'¢®" Phas absolute value
rr’ equal to the product of the absolute values of zz= and z’,
and its amplitude is the sum of the two given amplitudes. It is
easy to see that we can construct the ray having amplitude 6+
0' and the following figure indicates a construction of r7".

e

Here the broken line is parallel to 17" and can be constructed
by ruler and compass in the same way that the parallels in the
first figure were constructed. A reversal of the foregoing
construction in which  and ' are placed on the V-ax1s gives
the point r/r' on the x-axis. It follows that z(z') can be
constructed (if z” # 0). We see easily (as is well known) that
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any angle can be bisected with straigrht—edge and compass.

r
The following diagram indicates how ™" can be constructed.

This implies that 2> € C(z| z2,..., zn) if z€ C(z1..., zn). It is
clear also that z € C(z1 z2,..., z,) since this point can be
obtained by dropping a perpendicular from z to the x-axis
(line p1P2) and locating z as the mirror image of z in the
x-axis. This completes the proof that C(z15 z2,..., zn) 1s a
subfield of € closed under square roots and conjugation.

Next let C’ be any subfield of € containing the z;, 1 <i <n, and
closed under square roots and conjugation. If we take into
account the inductive definition of C(z1 z2,..., zx) as Y ;we
see that in order to prove that C' ?(z1,22 ..., z») it suffices to
show that the intersection of any two lines determined by
points of

C', or of such a line with a circle having center a point of C’
and radius a segment joining two points of ', or of two such
circles, all belong to . We note first that the fact that C' is

i
closed under conjugation and contains i = ¥ —1 implies
that if z = x + iy € ¢’, x, y real, then x,y €c’. It follows from
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this that the equation of any line through distinct points in C’
has the form ax + by + ¢ = 0 where a, b, c are real numbers in
(' and the equation of a circle with center a point of C’ and
radius equal to the length of a segment with end points in C'is
of the form x* + y2 + dx + ey + f= 0 where d, e, f are real
numbers in ¢’ Now, the coordinates of the point of
intersection of non-parallel lines ax + by + ¢ =0 and a’x + by
+ ¢’ = 0 can be obtained by Cramer’s rule as quotients of
certain determinants obtained from a, b, ¢, a’, b’, ¢'. Hence the
point of intersection of two lines whose coefficients are real
numbers in C’ has coordinates that are real numbers in C. The
absmssas of the points of intersection of y mx + b and 2+
y + dx + ey +f= 0 are obtained by solving X+ (mx + b) + dx
+ e(mx + b) + f= 0. Using the quadratic formula we see that
the solutions are real and in C'if m, b, d, e, and f are real in C’
and the line and circle intersect. We handle s1m11arly the case
of a line with equation x = @ and a circle X+ y +dx+ey+f
= 0. Finally, we note that the points of 1ntersect10n of the two
c1rclesx2+y2+dx+ey+f 0 and x* +y +dx+ey+=0
are the same as the points of intersection of X+ y2 +dx + ey
+ =0 with the line (d — d")x + (e — ")y + f~f = 0. It follows
that the points of intersection of lines and circles having real
coefficients in C’' have coordinates (p, ¢g) expressible
rationally or with square roots in terms of the coefficients.
Hence p + gi € ¢'. This completes the proof of our assertion
that C(z1 z2,..., zn)is the smallest subfield of C containing the
zj and closed under conjugation and square roots.

It should be noted that C(z1 z2,..., z») contains all complex
numbers of the form p + ig where p and ¢ are rational, and
this subset is dense in € in the sense that any circular region
contains a point of the set. We can now deduce from the
characterization of C(z1..., z») the following
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Criterion A. Let z1 z2,...,zy €C and put F=W(z1..., zp, z1...,
zn). Then a complex number z is constructible from z1 z2,..
zy if and only if z is contained in a subﬁeld of € of the form
F(u1 ua,..., ur) where u1> € F and every ul €F(uy...ui-1).

A field of the form F(u1 u2,..., ur) where u12 € F, uiz
F(ui..., ui—1) will be called a square root tower over F.

Proof of the criterion. Since C(z1..., zn 1s closed under square
roots and conjugation it is clear that C(z1..., zx,) contains F
and every square root tower

over F. Hence C(z1..., zn) © C"where C'is the set of complex
numbers satisfying the stated condition. Let z, z' € C'. Then z’
is contained in a square root tower F(u' 1 ..., u'r) and z’ is
contamed in a square root tower F(u1..., u’s). Then z+ 2z, 2z,
and z”' if z # 0 are contained in the square root towerF (u1

ur u1', ug"). Thus C’ is a subfield of €. Clearly C is closed
under square roots, and since F' = F, it is clear that F(uy ...,
ur) = F(ug ..., wy), which implies that C' is closed under
conjugation. Hence

C oz, 250 s T

Thus C'= C(z1 z2,..., zn), which establishes the criterion. [

For the present applications the following easy consequence
of the foregoing criterion will be adequate.

COROLLARY. Let F = Wz 1..., zy z1..., zn). Then any
complex number z which is constructible from zj..., zn is
algebraic of degree a power of two over F.
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Proof. If L is an extension field of the form K(u) where W =a
€ K then it is immediate that either L = K or [L:K] = 2. Hence,
by iterated application of the dimensionality formula for
fields (Theorem 4.2), we see that every square root tower over
F has dimensionality a power of two over F. It follows (also
by Theorem 4.2) that if z is contained in such an extension
then [F(z):F] = 2° for some s > 0. [

In many problems on constructibility we are given just two
points or, equivalenty, a segment. By choosing an appropriate
coordinate system, we may take these to be 0 and 1. Then F =
lJ. In this case we shall call C = C(z1 z2) the field of (
Euclidean) constructible complex numbers. The corollary
shows that such numbers are algebraic over W of degree a
power of two.

We shall now use the foregoing corollary to dispose of three
of the four classical construction problems stated above. The
fourth, on the problem of squaring the circle, will be treated
in section 4.12 where we shall prove that © is transcendental.

Trisection of angles. Not every angle can be trisected with
straight-edge and compass. In particular, 60° cannot be
trisected. We have seen that the construction of an angle of
20° from one of 60° requires the constructibility of the point
P = (cos 20°, sin 20°) from P, = (0, 0), P2 = (1, 0) and P3 =
(cos 60°, sin 60°) =

i
(%Y. Then the point O = (cos 20°, 0), the foot of the
perpendicular from P to PP, would be constructible. It is
easier to apply the criterion and corollary to this. In the
present case we have to consider the complex numbers z1 = 0,

> | 1 ] -
n=1 72712 +34/31 and the field F = U (z1 22, z3, 21, 22, 23)
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- QW-3), Applying the corollary we see that success in the
trisection of 60° requires that cos 20° has degree a power of

two over F, and hence over L} [ﬂ}{y“'_i}'ﬂ'] =2 Now we
have the trlgonometrlc identity cos 30 = 4 cos> 6 — 3 cos 0
which gives 40> — 3a = 1/z for a = cos 20°. Thus the required
number a is a root of 4x° — 3x —% = 0 and so the minimum
polynomial of a over I is a factor of this. Hence, if 43 - 3x
— 1/2 is irreducible in W[x], then this will be the minimum
polynomial of a. Then the degree of a will be three and
therefore not a power of two. It will follow that 60° cannot be
trlsected Now, the given polynom1a1 is irreducible if and only
if 4(‘/zx) —3(x)— 2= Yoxd —3/2x—is irreducible. Multiplying
by 2 we get x° — 3x — 1. Any rational root of this is integral
and so must be a divisor of 1. Since 1 and — 1 are not roots we
see that x> — 3x — 1 is irreducible.

>
Duplication of the cube. Here we have to show that ‘ﬁ is not
a constructible (complex) number. This follows from

[@(3/2):Q]

=3, since x° — 2 is irreducible in T [x].

Construction of regular p-gons, p a prime.This requires the
constructibility of the complex number z = cos 27r/§7 isin
2m/p.We have z =1 and since X — 1 = (! + X

I), wehave 22 1+ 22+ . +1=0.Since s ' +xX 2+ ...+
1 is irreducible in Q[x] (exercise 3, p. 154) we see that [LD(2):
3] =p —1. Hence a necessary condition for constructibility of
the regular p-gon by straight-edge and compass is thatp — 1 =
2%for some non-negative integer 5. Thus the regular p-gon can
be constructed only for primes p of the form 2° + 1. Since 6 is
not a power of 2 it follows that the regular heptagon cannot be
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constructed. We now observe that a necessary condition that
2° + 1 be a prime is that s = 2'for some non-negative integer
t.For, suppose s is divisible by an odd number u, s = uv. Then
841 = 2UV (2V+ 1) % (2 (u— 1) —9 (u— 2)v+ .+ 1) by
the identity x" +1—(x+1)(x T2 3 +1)for
any odd positive integer u. Then 2* + 1 = 2UV + 1 is not a
prime. Thus we have the improved necessary condition for
constructlblhty of the regular p-gon, p a prime: p must be of
the form 22' + 1. Primes of this form are called Fermat primes
after Pierre Fermat, Who conjectured (wrongly) that any
integer of the form 2+ lisa prime.” The known Fermat
primes

are: p =3, 5, 17, 257, 65537, obtained by taking 1 =0, 1, 2, 3,
4. Based on empirical evidence it has been conjectured that
the number of Fermat primes is finite and it is conceivable
that the foregoing list is the complete set.

In section 4.11 we shall give a necessary and sufficient
condition for the con-structibility of the regular n-gon for any
integral n. This will imply the converse of the foregoing
result, namely, that the regular p-gon can be constructed if p
is a Fermat prime. We shall conclude this section by
computing z = cos 2n/17 + i sin 2n/17 by a sequence of
rational operations and extractions of square roots. This will
show that z is a constructible complex number and hence that
the regular 17-gon can be constructed.

Put 0 = 27/17 and let z = cos 6 + i sin . Then zX = cos k) + i
sin k6 and these are distinct if 1 <k <17. Also (z )17 = (217)
=1, so the z furnish 17 distinct 17th roots of unity. Since the
equation X7T-1=0 has at most 17 roots (Theorem 2.17, p.
132), these must be the . Moreover, these constitute a cyclic
subgroup of the multiplicative group €* of €. The minimum
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polynomlal of z over 1 is the irreducible polynomial f(x) =
20 x* which has the roots z,. 216 in €. Then fix) =
! k:1(x - zk)and we have the relation

16
@ i
1
Sincezz=1 givesz=z ! we have (zk)_1 =7 K= cos kO — i sin
k6 and
(3) 2+ z7% = 2 cos k0.

We recall that the multiplicative group of Z/(17) is cyclic
(Theorem 2.18, p. 132) and, in fact, 3 = 3 + (17) is a
generator, since

(4) 32=93"=133%= 16 (mod 17)

so the order of 3 in E/(17) is not 1, 2, 22 or 23. Since this
order is a divisor of 2% it must be 2*. Now put

2 4 # & i 12 14
x1=z+z" 2 4+ 4

3t 313 305

(3) xy=20 2 2 2 2 2 2 4

Since 3° + 3% = 0 (mod 17), we have 32 +319=0 (mod 17),
3443 2—O(rnoc;n) and 3%+ 3! —0(m0d17) Hepce x1, =

(Z + z ) + (Z + z7 ) +
(B 424+ + ) =+ 2 )+ P+ 2N+ Y+ (P 27D,
Thus
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(6) X, = 2(cos 0 + cos 8 + cos 40 + cos 20))

and, similarly,

We have x| + x2 = 116 X = 1 and direct multiplication,
using the trigonometric identity

2 cos xcos ff = cos (¢ + f) + cos (« — f), , shows that x1x2 =

4(x1 + x2) =—4. Hence x1 and x2 are roots of (x — x1)(x —x2) =

x>+ x —4 = 0. The roots of this equation are H—1£17).

Since 8 = 2x/17, cos 36 >0, cos 70 < 0, cos 56 < 0 and cos 60
< 0. Also |cos 60| = cos (m — 60) = cos 5n/17 >; cos 6m/17 =
cos 30. Hence x2 <0 and so

] Xy = 2{cos 30 + cos T8 + cos 58 + cos 66).
(8) X =H—1+17),  x=H-1-1].
Next, put

yw=z+z ' +z*+z27% = 2cos 6 + cos 40)
yp =24 2"% 4+ 2% 4 z7% = 2cos 80 + cos 26)
ya=z22+z ¥ +2% 4+ z7% = Xcos 30 + cos 50)

Ya=2' +2 7+ 2%+ 2% = 2cos 70 + cos 66).

Then, directly using the cosine identity noted above, we have
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B
¥1¥2 = Hcos 8 + cos 40)(cos 80 + cos 26) =23 cos ko = — 1.
I

Similarly, y3y4 = — 1, and since yx + y2 = x1 and y3 + y4 = x2,
vyx and y7 are roots of x~ — x1x —1=0, and y3 and y4 are roots of
x> — x2x —1=0. Since cos 6 > cos 20 and cos 40 > 0 but cos 80
< 0 we have y1 > y»2. Similarly, y3 > y4. Hence

y'lzi{xt +vfxlz+4}| }’225‘(1’1 _\"x12+4}5

© C P
y3 = 3x + \fxzz + 4), Ya = 3x; — /X327 + 4).
Now put
zy=z24+2 '=2c0808, z;=2z*42z"*=2cosdb.

Then z1 >z, z2 + z2 = y1 and zxz2 = 4 cos 0 cos 40 = 2(cos 50
+ cos 30) = y3. Hence

(10) 2cos 0 =4y, + WEZ_—T}J]

Then, using (8) and (9), one can obtain an explicit (somewhat
horrendous)formula for cos 6. Then one obtains sin 6 =

1 —cos* @ C - :
v ; and z = cos 0 + i sin 0. It is clear from this that

z is a constructible complex number and consequently the
regular 17—-gon can be constructed with straight-edge and
compass4.We have refrained from giving any reasons for the
steps in our computations.These will become clear later after
we have developed the Galois theory.
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EXERCISES

1. Show that the regular pentagon can be constructed with
straight—edge and compass.

2. Show that arc cos 11/16 can be trisected with straight—edge
and compass.

3. Show that the regular 9—gon cannot be constructed.
4.3 SPLITTING FIELD OF A POLYNOMIAL

The mathematicians of the nineteenth century dealt almost
exclusively with the field € of complex numbers and its
subfields. The important fact about C from the algebraic
standpoint is that it is an adequate field for solving algebraic
equations in one unknown, that is, it is algebraically closed in
the sense that every polynomial equation x” + a1x 1 + ... +
an =0, a; € €, has a root in €. The central role played by € in
nineteenth—century algebra can be gleaned from the fact that
during this period the result that € is algebraically closed was
called “the fundamental theorem of algebra.” We still retain
this terminology but only out of respect for the past, since the
theorem no longer plays a central role in algebra. For one
thing, we are interested also in fields of characteristic p# 0
(for example, because of their usefulness in number theory)
and these can not be imbedded in €. Our starting point will be
an arbitrary base field F. Given a polynomial f{x) € F[x] we
would like to have at hand an extension field £ of F" which in
some sense contains all the roots of the equation f{x) = 0. We
recall thatf(») = 0 if and only if f(x) is divisible by x — 7 (p.
130) and we shall say that f{x)(assumed to be monic) splits in
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the extension field £ if f{x) = IT" 1(x — 7;)’ that is a Product of
linear ( = first degree) factors in F[x]. Then

if 7 is a root off(x)in E we have 0 = f{r) = I,/ (r — r;), which
implies that » is one of the »;. We also have the same
factorization f(x) = I[1(x — rj)the polynomial ring P[x] where R
is the field F(r1 ..., r2). It is clear that in dealing with the
single polynomial f{x) it would be a good idea to shift our
attention from £ to F(r1..., rn), which is tailored to the study
of f We now formulate the following important

DEFINITION 4.1 Let F be a field, f(x) a monic polynomial in
Flx]. Then an extension field E/F is called a splitting field
over F of f(x) if

(i) fixy=(x—rx—ry) - (x—r,)
in E[x] and
(ii) E = Flr Fagasa s

that is, E is generated by the roots of f(x).

Our first task will be to prove the existence of a splitting field
for any polynomial f{x) of positive degree. The proof of this
result can be obtained by extending a method used first by A.

Cauchy to construct € from R (adjunction of ¥ l) and later
used by L. Kronecker to construct a single root of an
irreducible polynomial. We now give the proof of
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THEOREM 4.3. Any monic polynomial f{x) € F|x]of positive
degree has a splitting field E/F.

Proof. Let f(x) = fi(x)f2(x) ...fi{x) be the factorization of f{x)
into monic irreducible factors. Evidently k<n = degf(x). We
use induction on n — k. If n — k = 0, all the f{x) are linear,
which means that F itself is a splitting field. Hence assume »
— k > 0 so that some fi(x), say f(x), is of degree >1. Put K =
F[x]/(fix)). Then, since fx(x) is irreducible, K is a field. K is
also an extension field of F' (using the identification of a € F
with a + ((f1x)) and K = F(r)where r = x + (4(x)) is a root of
fix) =0). It is now best to forget about the mechanics of all of
this and just to keep in mind that we have somehow produced
an extension field K/F which is generated over F by a single
root » of the irreducible polynomial f1x). Since K > F and f{(x)
and the fi(x) € F[x] < K[x], we obtain the factorization of f{x)
into monic irreducible factors in K[x] by factoring every f1(x)
into monic irreducible factors. Also we have fi(x) = (x —
r)g(x) in K[x] since fi(r) = 0. Hence, if [/ is the number of
irreducible

factors in the factorization of f{x) in K[x], then 1> kson — [ <
n — k. Hence the induction hypothesis can be applied to f{x)
and K to conclude that we have an extension field £ =
K(r1,r2,..., rn) such that f{ix) = [[/"(x — ) in E[x]. Since fi(r)
= 0 and f1(x)\fix), we have f(r) = 0; hence r = r for some i.
Then
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is a splitting field over F of f{x). (]
EXAMPLES

1. Let fix) = X+ ax + b, If fix) is reducible in F[x] (F
arbitrary) then F' is a splitting field. Otherwise, put £ =
FIx)/(fix)) = F(r1) where 1 = x + (f(x)). Then E is a splitting
field since f{r1 )= 0 so f{x) = (x — r1)(x — r2) in F[x]. Thus £ =
F(ry) = F(r1, r2). Since f(x) is the minimum polynomial of 7|
over F, [E:F] = 2.

2. Let the base field F be Z/(2), the field of two elements, and
let fix) =x> +x+ 1. Since 1 + 1 + 1 # 0 (mod 2) and 0 + 0 +
1 iO(mod 2), fix) has no roots in F; hence f(x) is irreducible
in Flx]. Put 1 =x + (f{x)) in F[x]/(f(x)) so F(rx) is a field and
X+ x+1=(x+r) + ax + b) in F(r1)[x]. (Note that we
can write + for — since the characteristic is two.) Comparison
of coefficients shows that a = 71 b = 1+71%. The elements of
F(r1 can be listed as ¢ + dr + er12, ¢, d, e € F. There are eight
of these:0, 1, r1 1 + r12 1+ r12, + r12, and 1 + r + r12
Substltutlng these in x* + r1x + 1 + 71> we reach (" ) +
ri(r1 )+ 1+rm2=rm*+rm3+1+r%=0since r> =r1 + 1
and 71* = 1% + r1 Hence x> + ax + b factors into linear factors
in F(r1)[x] and E = F(r1) is a splitting field of x> +x + 1 over
F.

3.Let F=W, fix)= (x2 - 2)(x2 — 3). Since the rational roots
of x> — 2 and x~ — 3 must be integral (exercise 1, p. 154), it
follows that x> — 2 and x? — 3 are irreducible in lI..Tl[x] Form K
=Q@)n=x+ 6> - 2) in D)/ - 2). The elements of K
have the form a + bri a, b € ). We claim that - 3s
irreducible in K[x]. Otherw1$e we have rational numbers a, b
such that (a + br1) = 3. Then (a +2h° ) + 2abr1 = 3 so that
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ab =0 and ¢ + 2b% = 3. If b = 0 we obtain a* = 3 which is

impossible since is not rational, and if a = 0, b% = 3/2. Then
=

(2b) = 6 and smce "uls not rational we again obtain an
1mp0551b111ty Thus x> — 3 is irreducible in K[x] Now form E
= Kx]/(x — 3). Then this is a splitting field over &} of (x —
2)(x* —3) and [F:] = [EK][K:0] =2.2 = 4.

4. LetF ] f(x) x’ — 1, p a prime. Wehavexp—l—(x—
neP-1 + xp_2 .+ 1) and we know that xP-1 + xP2 + .. +
1 is irreducible in U[x]. Let E = U(z) where z = x + (xp -+
P2+ inU[x]/(xp_l +xP2 4+ . +1). Wehave 2 = 1
and since X’ + ... + 1 is the minimum polynomial of z over
13 the elements 1 z,..., 2771 are distinct. Also (zk)p %=1
s0 every 2 is a root of xp — 1. It follows that ¥’ ~ ' =[] 1" (x
—Z )E[x] Thus E is a splitting field over 1} of x” — 1, and [E:
=p-1.

Before proceeding to our next main result—the uniqueness up
to isomorphism of splitting fields—we note that splitting
fields are finite dimensional over the base field. Let E/F be a
splitting field over F of f{x). Then E = F(r1 r2,..., rn) Where
fir1) =0, 1 <i <n. Then r; is algebraic over F, hence also
over F(r1 r2,...ri-1), Then [F(r1..., ri):F(ry ..., ric1)] < o©
since this is the degree of r; over F(r1..., ri-1). Hence, by
iterative use of the dimensionality formula for fields
(Theorem 4.2), we obtain

[E:F] = [Flry,...,r:F] = j!l [Firy,. st Flry, ..., y)] < o0

where it is understood that the first term in this product is

[F(r1):F].

400



We shall now prove that any two splitting fields over F of a
polynomial fix) € F[x] are isomorphic, and we shall also
obtain some important information on the number of
isomorphisms between splitting fields of f{x). In order to carry
through an inductive argument it is necessary to generalize
the considerations slightly as follows. We consider two

isomorphic fields F and F and an isomorphism #:a— @ of F
onto . We know that this can be extended to a unique
isomorphism g(x) — g(x) of F[x] onto F[x]. Let f{x) € F[x] be
monic of positive degree and let £ be a splitting field over F
of f(x), E a splitting field over F of f{x). Then we have the
following important

THEOREM 4.4. Let n:a— @ be an isomorphism of a field F
onto a field F, f(x) € F[x] be monic of positive degree, f(x) the
corresponding polynomial in F[x] (under the isomorphism
which extends n and maps x — x), and let E and E be splitting
fields of f{x) and f{x) over F and F respectively. Then n can be
extended to an isomorphism of E onto E. Moreover, the
number of such extensions is <[F:F| and it is precisely [F:F]
if f(x) has distinct roots in E.

Before proceeding to the proof we separate off the following
lemma which will serve as the induction step of the proof.

LEMMA. Let n be an isomorphism of a field F onto a field F
and let £ and E be extension fields of F" and F respectively.
Suppose r € E is algebraic over F with minimum polynomial
g(x). Then n can be extended to a monomorphism { of F(r)
into £ if and only if g(x) has a root in E, in which case the
number of such extensions is the same as the number of
distinct roots of g(x) in E.
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Proof. If an extension ( exists, then we can apply it to the
relation g({(7)) = 0 to obtain g(C(r)) = 0. Thus {(r) is a root of
g(x) =01n E. Conversely, let r be such

a root. We have the homomorphism /4(x) — A(r) of F[x] into
E(Theorem 2.10, p. 122). The kernel contains the ideal
(g(x))so we have the induced homomorphism A(x) + (g(x)) —
h(r) of F[x]/(g(x)) into E. Similarly, we have the
homomorphism A(x) + (g(x)) — h(r) of F[x]/(g(x)) onto F(r).
Since g(x) is irreducible, F[x]/(g(x)) is a field and so both
homomorphisms are mono—morphisms and the second one is
an isomorphism. If we take the inverse of this isomorphism
and follow it with the monomorphism of F[x]/(g(x)) into £ we
obtain the monomorphism A(r) — h(r) of F(r) = F[r] into E.
Since F(r) is generated by F and r it is clear that this is the
only monomorphism of F(r) into E extending n and sending r
— 7. It is now clear that the number of monomorphism
extensions is the same as the number of distinct choices of r,
hence, the number of distinct roots of g(x) in E. [J

Proof of theorem 4.4. We prove the result by induction on
[E:F). If [E:F] = 1, E=F and fix) = Il (x — rj) in Fx].
Applying the isomorphism /(x)— h(x) of E[x] we obtain f(x)
= II[(x — r) in F[x]. Thus the r;, are the roots of f{x) in E, and,
since E is generated over F by these roots, £ = F and there is
just 1 = [E:F] extension. Now assume [E:F] > 1. Then f(x) is
not a product of linear factors in F[x]. Let g(x) be a monic
irreducible factor of f{x) of degree > 1. Then g(x)\ f{x) in F[x].
We may also assume g(x) = II1"(x — ) fix) = II"'((x — s},
gx)=T11" (x = S)f(x) =" (x — S)) in E[x] and E[x]. Put k=
F(r1). Since g(x) is irreducible it is the minimum polynomial
of r1 over F and [K:F] = m = deg g(x). By the lemma, there
exist k& monomorphisms (i1, ... {x of K into E which are
extensions of # where k is the number of different s; 1 <i <m.
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Thus k& = m if the s; 1 < i < m, are distinct. Now it is clear
from the definition of a splitting field that £ is a splitting field
over K of f{(x)€K[x] and Fis a splitting field over {;(K) of f(x).
Since [E:K]| = [E:FJ/[K:F]| = [E:F]/m < [E:F] induction on
dimensionality implies that every {; can be extended to an
isomorphism of F onto E, and that the number of such
extensions is <[E:K] and is [E:K] if J(x) has distinct roots in
F. Any of these isomorphisms is an extension of the given
isomorphism # of F onto F. Hence we obtain in this way at
least one extension of #n to an isomorphism of £ onto F.
Moreover, since the extensions of y#which are extensions of
distinct (i are distinct, we obtain in this way <m[E:K] = [F:F]
extensions of # and exactly [F:F] such extensions if f{x) has
distinct roots. Our proof will therefore be complete if we can
convince ourselves that our method has accounted for every
extension of the isomorphism of F to F' to one of £ to E. But
this is clear, since if € is such an extension, the restriction of
to K is a monomorphism of K into £ and so this restriction
coincides with one of the {;, i <i <k. [

If we specialize the first part of this theorem to the case F' = F
and nthe identity mapping on F, we conclude that if £ and £
are two splitting fields over F' of f{x) then there exists an
isomorphism of E onto £ which is the identity on F. We refer
to such an isomorphism (similarly, monomorphism) as an
isomorphism over F of E onto E. The second part of the result
applied to F' = F gives the important information that there are
at most [E:F] automorphisms of E/F (E over F) and there are
exactly this number if f{x) has n distinct roots.

EXERCISES
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1. Show that the dimensionality of a splitting field E/F of f(x)
of degree n is at most n!.

2. Construct a splitting field over 0 of x> — 2. Find its
dimensionality over L.

3. Determine a splitting field over Z/(p) of x” - l,ee M.

4. Let E/F be a splitting field over F of f{x)and let K be a
subfield of E/F. Show that any monomorphism of K/F into
E/F can be extended to an automorphism of E.

5. Let E be an extension field of F such that [E:F] = n < .
Let K be any extension field of F. Use the method of the
proof of Theorem 4.4 to show that the number of
monomorphisms of E/F into K/F does not exceed n.

4.4 MULTIPLE ROOTS

Let f{x) be a monic polynomial of positive degree in F[x] and
let E/F be a splitting field. We write the factorization of f{x)
in E[x] as

(11) flx)y=0—r i x—r)? o (x—r)

ri € E, ri# rjif i #j, and we say that r; is a root of multiplicity
ki of the equation f(x) = 0. If k; = 1, then 7; is called a simple
root; otherwise r; is a multiple root. If we have a second
splitting field E/F of fix), then fx) = Hsl(x — rj.) In E[x]
where a — @ is an isomorphism of E/F onto E/F. It is clear
from this that the multiplicities k; are independent of the
choice of the splitting field. In particular, the fact that f{x) has
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only simple roots is independent of the choice of E. The last
result (Theorem 4.4) shows that there is a distinct advantage
in working with polynomials having only simple roots, since
in this case we have the exact formula that the number of
automorphisms of E/F is [E:F].

We shall show in this section that if /' is of characteristic 0 or
if Fis a finite field, then there is no loss in generality in
assuming that all the roots are simple. We observe first that if
we factor ix) = P1(x)"\p2(x)"? ... px)"t in F[x] where the Pi
(x) are distinct primes, then E/Fis a splitting field for f{x) if
and only if E/F is a splitting field for fo(x) = P1(x)p2(x) ...
pi(x).This is clear from the definition. Hence we may assume
at the outset that f{x) is a product of distinct prime
polynomials in F[x]. We remark also that if p(x) and g(x)are
distinct monic prime polynomials in F[x], then (p(x), g(x)) =1
in F[x]; hence there exist a(x),b(x) € F[x] such that a(x)p(x) +
b(x)q(x) = 1. This precludes that p(x) = 0 and g(x) = 0 have a
common root in E. It follows that if fix) is a product of
distinct primes, then all the roots of f{x) are simple if and only
if this is the case for the prime factors of f{x).

We shall now develop a criterion for multiple roots which can
be tested in F[x] and thus does not require recourse to a
splitting field. This will be based on formal differentiation of
polynomials, which we shall now define. We adjoin an
indeterminate 4 to F[x] to obtain the polynomial ring F[x,A] in
the two indeterminates x, A.Since F[x, h] = F[x][h] and 4 is
transcendental over F[x], any element of F[x, /4] can be
written in one and only one way as fo(x) + fi(x)h + ... +
fa()H", fi(x) € F[x]. In particular, if f{x)€ F[x] we have f{x +
h) =fo(x) + f1(x)h + ... + fa(x)A". Putting 2 = 0 in this (that is,
applying the homomorphism of F[x, /] into F[x] such that a
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— a for a.€ F, x — x, h — 0) we obtain f{x) = fo(x), and so
fix+ h)—fx)is d1v1s1ble by A.Dividing /4 out we obtain f1(x) +
Lxh+ ..+ fn(x)h , and putting £ = 0 in this polynomial
we obtaln f1(x) Wthh we define to be the derivative f'(x) (or
fix)") of f(x) Clearly f’(x) satisfies the congruence

(12) fx+h=fx)+ f()h (mod k).

Moreover if g(x) € Flx] satlsﬁes fix + h) =f(x) + g(x)h (mod
W ) then f(x)h = g(x)h(mod W ) and so f(x) = g(x) (mod
W ),which gives g(x) = f(x). Thus f(x) is characterized by the
congruence (12). This characterization permits us to establish
quickly the basic properties of the map f— f which we shall
call the standard derivation in F[x]. These are:

F-linearity:(f + g)' f+ g'.(af)' = af fora € F.

The product rule:

(13) (fg) =fg+ 19

x'=1.

Property (i) is immediate from (12). To establish the product

rule we multiply (12) by the corresponding congruence for
g(x + h). This gives
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(fa)x + h) = f(x + h)g(x + h) = [f(x) + [ ()h][g(x) + ¢'()h] (mod h?)
= f(x)g(x) + [/ (x)g(x)
+ f(x)g'(x)]h (mod h?).

Hence (13) follows from the characterlstlc property (12)
applied to fg.Since x + & = x + 14 (mod W we have X' = 1
wh1ch is (ii1). This and the product rule imply that (x ) =

1fk—123 .. Also 12 =1 gives I 1+11'—1's0that2(1)
=1"and 1'=0. It now follows from the linearity that if f{x) =
ao+aix + ... +apx”", then

f(x)=ay +2a,x" - + nax"*

as in the calculus of functions of a real variable.
We can now prove

THEOREM 4.5. Let f(x) be a monic polynomial of positive
degree in F[x]. Then all the roots of f in any splitting field E/F

are simple if and only if (f, f) = 1.

Proof. Let d(x) = (f(x),f(x)) in F[x]. Suppose f(x) has a
multiple root in E[x], so fix) = (x — r)kg(x) with k > 1 Taking
derivatives in we obtainf’(x) = (x — r) g+ k(x — r) g which
is divisible by x — r since k — 1 < 1. Thus x — r is a common
factor of fix) and f(x) in E[x]. It follows that d(x)# 1. Next
suppose all the roots of f are simple. Then we have f{x) = IT1"
(x — ri) ri # rj if i # j. The extension of the product rule to
more than two factors now gives
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ffll} = i{x [ I Fi- I i?'j+1)' =k

It is clear from this formula that (x — 7;) + f(x); hence (f(x),
S()) = 1.0

If fix) is irreducible in F[x], then (f,f') # 1 implies that f[f".
Since deg /' < deg f'this forces f = 0. If the characteristic is 0,
the formula for the derivative shows that /' = 0 if and only if /
€ [ Hence f' # 0 if f(x) is irreducible and F is of characteristic
0. If the characteristic is p # 0 and fix) = ap + a1x + ... + apx”,
then f(x) = Zi=1"ax' ~ 'and f(x) = 0 if and only if ia; = 0, 1 <
i < n. This holds if and only if a; = 0 for every i not divisible
by p:hence, if and only if fix) = bo + b1 + box?P + ... +
bmx™P = g(xP) where g(x) = bo + b1x + ... + byx".

We shall now construct an example of an irreducible
polynomial in characteristic p which has multiple roots. Let F'
be any field of characteristic p.Then we have 1” = 1, and the
commutativity of multiplication gives (ab)’ = a’b’. By the
binomial theorem.

Pl g
(@+bf=a"+b"+ ) (P)a‘h""
1 1
and since the binomial coefficient (P;) = p!/i! (p — i)! is an
integer, and in the rational form which we have displayed, p
occurs in the numerator but not in the denominator,(’;) is
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divisible by p. and so (a + bY = d’ +
bP. Thus we have

{]4} {(1 - hjp =a" 4 h.f-" (ab).ﬂ = afh?, 17 = 1

in F. This shows that the map a — o’ is an endomorphism of
the ring F. Since F is a field this is a monomorphism and the
image F?, the set of pth powers, is a subfield of F.

We now prove the following

LEMMA. if F has characteristic p and a € F, then X — a is
either irreducible in F[x] or it is a pth power in F[x].

Proof. Suppose X’ — a = g(x)h(x) in F[x] where g(x) is a
monic polynomial of degree k&, 1 <k <p — 1. Let E be a
splitting field over F of X’ — a and let b € E be a root of this
polynomial. Then we have b’ = a s X - 2= - =(x-
bY = g(x)h(x). Hence g(x) = (x — bX)and b* € F. Since b’ € F
also and there exist integers u and v such that uk + vp =1, b =
(WY{BP)’ € F. Thus we have ¥ — a = (x—” in F[x]. O

We can now construct our example of an irreducible
polynomial which has multiple roots. As base field F we take
the field (Z/(p)(¢))of rational expressions in an indeterminate ¢
over the prime field Z/(p) of p elements, that is, the field of
fractions of the polynomial ring (£/(p))[¢]. We claim that ¢ is
not a pth power in th1s field. Suppose ¢ = (f(t)/g(t))p where f{f)
=ag+ajt+...+ap';and g(f)=bo+b 1t+ ... + byt Then
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SOP =al? + alP?; + ...+ @i, g(tf = boP + biPP+ .+
b’ so we have a relation

(b[}p + blprp 4 e + bmprmﬂ}r - an.ﬁ’ + alﬂtﬂ e HHFIHP.

The linear independence of the powers 1, ¢, tz,... over #/(p)
then implies that every bi # 0 contradicting the (tacit)
assumption that g(z) # 0. The foregoing lemma now shows
that the polynomial f{ix) = x” — ¢ € F[x] is irreducible. On the
other hand, we see that it is a pth power in F[x], E a splitting
field. (We can also see that it has multiple roots by using the
derivative criterion and ( ~ )’ =px? "1 =0,

We shall now call a polynomial contained in F[x] separable if
its irreducible factors have distinct roots. The result we have
proved is that if F is of characteristic 0, then every
polynomial with coefficients in F' is separable and if the
characteristic is p there exist inseparable polynomials, at least
for certain F.We now look at this question more closely in the
characteristic p # 0 case. We shall call a field (of any
characteristic) perfect if every polynomial in F[x] is
separable. Then we have seen that every field of characteristic
0 1s perfect. For characteristic p # 0 we have the following
criterion.

THEOREM 4.6. 4 field F of characteristic p # 0 is perfect if
and only if F = F¥, the subfield of pth powers of the elements
of F.

Proof. If F’ % F, let a € F, ¢ F¥. Then ¥ — a is irreducible,

by the lemma. Since (X’ — a)’ = 0, this is an inseparable
irreducible polynomial. Hence F' is not perfect. Now suppose
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that f{x) is an inseparable irreducible polynomial € F[x]. Then
(fix), f(x)) # 1 and we have seen that this implies that f{x) = ao
+ apd + appx? + ... One of these a; is not azpth power. For,
1f every a; = bf thenf(x) = ag + apx’ + agpx .= bof +

Xl + boPx?P + ... = (bo + bpx + bsz2 +.. ) contrary to the
1rredu01b1hty of f(x). Hence F # . [

COROLLARY. Every finite field is perfect.

Proof. The characteristic of a finite field is a prime p.The
monomorphism a — o of F is an isomorphism since F is
finite. Hence F = I is perfect by Theorem 4.6. [

EXERCISES

1. Let F be a field of characteristic 0,/(x) €F[x] be monic of
positive de%ree. Show that if d(x) = (f(x), f(x))then g(x)
=f(x)d(x) has the same roots as f{x) and that these are all
simple roots of g(x).

2. Let f{x) be irreducible in Fx], F of characteristic p. Show
that f{x) can be written as g(x’ ) where g(x) is irreducible and
separable. Use this to show that every root of f(x) has the
same multiplicity p® (in a splitting field).

3. Let F be of characteristic p. A polynomial fix) € F[x] is
called a p—polynomial if it has the form X’ + a1 + ... +
amx. Show that a monic polynomial of positive degree is a
p—polynomial if and only if its roots form a finite subgroup of
the additive group of the splitting field and every root has the
same multiplicity p°.
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4. Let F be imperfect of characteristic p. Show that x” " ais
irreducible ifa ¢ F¥ ande=0, 1,2, ....

5. Let F' be of characteristic p and let a € F. Show that f{x) =
x¥ — x — a has no multiple roots and that f{x) is irreducible in
F[x] ifand only if a # ¢’ — ¢ for any c € F.

4.5 THE GALOIS GROUP. THE FUNDAMENTAL
GALOIS PAIRING

We shall now derive the central results of Galois’ theory.
These establish a 1-1 correspondence between the set of
subfields of E/F, where E is a splitting field of a separable
polynomial in F[x], with the set of subgroups of the group of
automorphisms of E/F. The properties of this correspondence
serve as the basis of Galois’ criterion for solvability of an
equation by radicals and for constructibility by straight-edge
and compass. Moreover, as we noted in the introduction to
this chapter, these results play a fundamental role in many
other considerations in algebra and number theory.

First, some definitions and notations. Let £ be an extension
field of a field F' and let G be the set of automorphisms of
E/F: that is, the set of automorphisms # of E such that 7(a) =
a for every a € F. G is a group of transformations of £:1 € G
and if », { € G, then  { and 71'1 € (G. We shall call G the
Galois group of E over F and denote it as Gal E/F when we
wish to indicate the fields £ and F.

EXAMPLES

1. E = F(u) where u>=a € Fand aisnota square in F. We
assume also that the characteristic, char F' # 2. Since a is not a
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square in F, x> — a is irreducible in F] [x]. Hence this is the
minimum polynomial of u over F. Then [E:F] =2 and (1, u)
is a base for E/F. Clearly the two maps ¢ + du — ¢+ du, c, d
€ F,and ¢ + du — ¢ — du are automorzphisms of E/F. These
are the only ones. For, if # € Gal E/F, u” = a implies (;1(u))2 =
a and since the roots in E of x* — a = 0 are u and — u, either
n(u) = u or n(u) = — u. Then # is either the identity map or the
map ¢ + du — ¢ — du. Thus Gal E/F is a cyclic group of order
two.

2 B QW23 One sees easily that Gal E/F has order 4 and
consists of the automorphisms #1 = 1, 72, #3, #4 such that
naly2) = =2 maly3 =3 mly2 =2,

a3 = =3 2 = —2 3 = -3,

3. Let F be imperfect of characteristic p and let a € F, ¢ F'.
Then x* — a is irreducible (Lemma, p. 232). Adjunction of a
root u of X = a gives an extension E = F(u) such that [E:F] =
p. Moreover, since ¥ — a = (x — u)’ in E[x], then E is a
splitting field over F of the inseparable polynomial X — a. If
n € Gal E/F then n(u)’ = a so n(u) = u. It follows that = 1
and Gal E/F = 1.

4. Let F be a field and let £ = F(f) where ¢ is transcendental
over F. As shall be indicated in exercise 11 below, u € E is a
generator of E/F if and only if it has the form

_at+b

ST ad — be #£0.

(13) ]

Since an automorphism of FE/F sends generators into
generators, it follows that Gal E/F is the set of maps
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Je)gle) — f(ulglu)

where u is as in (15). We can see from this that Gal E/F is
isomorphic to the factor group GL2(F)/F* where GL2(F) is
the group of invertible 2 x 2 matrices with entries in F, and
F* is the set of matrices diag{a, a}, a # 0.

Now let G be any group of automorphisms of a field £ (that
is, a subgroup of the automorphism group of E). Let

Inv G = {aeE|pla) =a,neG}

in other words, Inv G is the set of elements of £ which are not
moved by any # € G. From the properties

na + b) = nfa) + n(b),  nlub) = nlamb), 1) =1,
Ma N=na)'. a#0

of an automorphism of a field, it is clear that Inv G is a
subfield of E. We call this the subfield of G—invariants or the
G—fixed subfield of E.

If E is a given field then the definitions of Inv G for G a
group of automorphisms in £, and of Gal E/F for F a subfield,
provide two maps

G—=InvG
F - Gal E/F.

The first is from the set of groups of automorphisms of £ into
the set of sub-fields of F, the second from the set of subfields
of E to the set of groups of
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automorphisms. We shall now list the basic properties of
these maps:

i) G, =2Gy=Inv G, =lnv G,

(ii) F, o F,= Gal E/F, = Gal E/F,
{iii) Inv (Gal E/F)= F
(iv) Gal (E/Inv G) = G.

These are immediate consequences of the definitions and we
leave it to the reader to carry out the verifications.

We shall now apply these ideas to splitting fields. Using the
present terminology, the remarks following Theorem 4.4. can
be restated as follows. If E is a splitting field over F of a
polynomial f(x) then Gal E/F is finite and we have the
inequality |Gal E/F| < [E:F]. Moreover,|Gal E/F = [E:F] if f(x)
has distinct roots. In section 4.4. we saw that we can replace
f(x) by a polynomialfi(x) which is the product of the distinct
prime factors of f(x), and if f(x) is separable then fi(x) has
distinct roots. We therefore have the following important
preliminary result.

LEMMA 1. Let E/F be a splitting field of a separable
polynomial contained in F|x]. Then

(16) |Gal E/F| = [E:F].

Our next attack will be from the group side. We begin with an
arbitrary field £ and any finite group of automorphisms G
acting in £. Then we have the following

LEMMA 2. (Artin.) Let G be a finite group of automorphisms
of a field E and let F = Inv G. Then

415



(17 [E:F] < |G|

Proof. Let n = |G|. Then (17) will follow if we can show that
any m > n elements of E are linearly dependent over F. We
shall base the proof of this on the well-known result of linear
algebra that any system of » homogeneous linear equations m
> n unknowns, with coefficients in a field £, has a non-trivial
solution in E. This theorem is often used to prove the
invariance of dimensionality of a finite dimensional vector
space, so it is very likely familiar to the reader. For the sake
of completeness we shall append a proof of the theorem on
linear equations after this proof. Let G = {n1 =1, n2, ..., n}
and let w1, up, ..., um be m > n elements of E. Then the
theorem on linear equations assures us that we have a
non-trivial solution (ai, ..., am) of the system of

n equations

(18) Ji nuy; =0, ls<is<n
=1

in the m unknowns x1, ..., x,. By non-triviality we mean that
(a1 ..., am) # (0, ..., 0). Among such solutions we choose one
(b1, ..., bm) with the least number of non-zero b’s. By
reordering the unknowns we may assume b| # 0 and
observing that bl'l(b1, ..., by) 1s also a solution, we may
assume b1 = 1. At this point we claim that every bj is in F' =
Inv G, which will prove the F'—dependence of the u;, since the
first equation in (18) is Y ujx; = 0 (1 = 1). Suppose some bj¢
F. Without loss of generality we may assume this is b2 and,
by the definition of F, we have an nx € G such that ni(h2) #
by. Now we apply nito the system of equations
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Diinfub=01<i<n  This  will give us
201 mandlumdb) = 0,1 < i < . and since (4, ..., k) is a
permutation of (51, ..., #n) we have the equations
2o b} =0,1 < i< m Tye (1, ni(b2), ... nk(bm)) is also
a solution of (18). Subtracting this from the solution (1, b2,

..., bm) we obtain the solution (0, b2 — ni(b2), ... , bm —
nik(bm)) which is non-trivial since b2 — ni(b2) # 0. Clearly this
has fewer non-zero entries than (b1, b2, ..., bm), contrary to

our choice of (b1, b2, ..., bm). This completes the proof
modulo the

LEMMA ON LINEAR EQUATIONS. Let

Ay +d33%; 7 + Xy =0

Ba Xy 4 GaaXs 4 gy, x, =0

be a system of n < m linear homogeneous equations with
coefficients ajj in a field E. Then there exists a solution (a1,
az, ...,am)#(0,0, ...,0)witha; € E.

Proof. The result is trivial if every a;; = 0 so we may assume
some ajj # 0. Since we can reorder the equations and the
variables there is no loss in generality in assuming that aum #
0. Subtract the last equation multipled by Gimanm | from the
ith, 1 <i<n— 1. This gives an equivalent system of equations
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ay Xy + a4 by Xy =0

! “om o J _—
By—1.1%1 + + @ u—1%m-1 =0

1%y + o Oy 1%t F Dt = 0

Assuming the result for » — 1, we have a non-trivial solution
(ai, ..., am—1) of the first n — 1 equations. Then if we put

an! b= _am_liﬂllﬂl + Carrd + ﬂl.m_laﬂ_l.]

we obtain the non-trivial solution (a1, a2, ..., am) of the
second system, hence of the first. Since the case n = 1 is
trivial this proves the result by induction on n. [

It is convenient at this point to introduce two field concepts
which are related to concepts for polynomials which we have
introduced previously. We recall that an extension field E/F is
said to be algebraic over F' if every element of E is algebraic
over F; this will certainly be the case if £ is finite dimensional
over F, since F(f) is infinite dimensional when ¢ is
transcendental. We shall now call E/F separable (algebraic)
if the minimum polynomial of every element of E is
separable. The extension field E/F is called normal
(algebraic) if every irreducible polynomial in F[x] which has
a root in £ is a product of linear factors in F[x]. This is
equivalent to saying that £ contains a splitting field for the
minimum polynomial of every element of £. Normality plus
separability mean that every irreducible polynomial of F[x]
which has a root in £ is a product of distinct linear factors in
E[x]. Also