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Preface

An aerial robot is a system capable of sustained flight with no direct human control
and able to perform a specific task. A lighter than air robot can also be defined as
a lighter than air unmanned aerial vehicle or an unmanned airship with sufficient
autonomy. Lighter than air systems are particularly appealing since the energy to
keep them airborne is small. To provide autonomy to the aerial vehicles requires the
development of methods to conducting and decisions for implementing the various
operations of a mission. Guidance and control for lighter than air robots involve
significant differences from traditionally defined mobile robots. Qualities charac-
teristics to lighter than air robots include non trivial dynamics with added masses
and inertias, 3D environments, disturbed operating conditions and high level of un-
certainty in state knowledge and environment. Otherwise, they share qualities with
typical robotic problems including partial knowledge of the environment and tasks
that can be precisely specified or not. These tasks can involve continuous interaction
with the environment.

The purpose of this book is to familiarize the readers with some planning and
control strategies that have been proven efficient through research. It is made of a
hierarchy of modules with well defined functions operating at a variety of rates,
linked together from top to bottom. The outer loop, closed periodically, consists of
a discrete search that produces a set of waypoints leading to the goal while avoiding
obstacles and weighed regions. The second level smoothes this set so that the gen-
erated paths are feasible and the last one is the tracking controller that attempts to
minimize the error between the robot measured trajectory and the reference trajec-
tory.

This hierarchy conveys to the content of the book: Modeling, Mission Planning,
Trajectory Design and Control.

Yasmina Bestaoui SebbaneParis, France
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Chapter 1
Introduction

Abstract An aerial robot is a system capable of sustained flight with no direct
human control and able to perform a specific task. A Lighter Than Air Robot (LTAR)
is an unmanned lighter than air vehicle with sufficient autonomy. Robotic airships
can also be called Aerobot. Lighter-Than-Air-Vehicles are becoming more popular
in aerial missions. A Lighter Than Air Robot behaves and functions differently to a
heavier than air craft: airplane and helicopter. It does not require any motor action
to maintain a certain altitude and position in the space as it relies on low density gas
inside the envelope to balance its own weight. It uses buoyancy to float in the air.

1.1 Aerial Robotics

Aerial robotics is a growing field with many application possibilities. Aerial robots
can be viewed as the evolution of the unmanned aerial vehicles. An unmanned Sys-
tem is defined as an electro-mechanical system, with no human operator aboard, that
is able to exert its power to perform designed missions. An autonomous system re-
acts to its external inputs and takes some action without operator control. The goal
is to design a system that reacts to its environment and plans its own activities to
achieve the mission goals.

An unmanned system may be mobile or stationary and it includes categories of
unmanned ground vehicles, unmanned underwater vehicles, unmanned surface ve-
hicles and unmanned aerial vehicles (UAV). Unmanned Aerial Vehicles are divided
into three categories: rotary wings (helicopter), fixed wing (airplane) and lighter
than air (airship). An airship is an engine-driven lighter-than-air craft that can be
steered. Modern airships employ advanced technologies such as composite materi-
als, modern electronic systems, fly by light or fly by wire transmissions controls and
the latest theories in stability, control and aerodynamics. Some aspects of modern
design are borrowed from other disciplines, while in certain areas such as envelope
fabrics and automatic docking systems, the technology is specifically developed for
airships. The conventional airship is essentially a low speed vehicle with the power
requirement being approximately proportional to the cube of the airspeed. An air-
ship is very fuel efficient, and its endurance, one of its primary benefits, can be
several orders of magnitude greater than for a heavier than air craft. The payload

Y. Bestaoui Sebbane, Lighter than Air Robots,
Intelligent Systems, Control and Automation: Science and Engineering 58,
DOI 10.1007/978-94-007-2663-5_1, © Springer Science+Business Media B.V. 2012
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2 1 Introduction

of airships is generally limited by the gas lift available in the climatic conditions
prevailing at the cruise flight altitude.

A lighter than air robot is an unmanned airship with sufficient autonomy. Vehi-
cle autonomy is a discipline fertilized by the robotics and computer science fields.
Autonomy implies a degree of self-regulation inherent in a system’s operation and
is a key technology for future high-performance and remote operation applications.
The promise of autonomy includes

• Reduced need for human intervention, which is specially important for dull and/or
dangerous missions

• Increased performance range and capabilities
• Extended operation life
• Decreased cost

The requirement for autonomy from direct human interaction places heavy emphasis
on reliable guidance and control strategies. Three main layers are identified in the
context of autonomous aerial vehicles [71, 72]:

• Strategic layer: This layer includes a number of functions which are responsible
to assess the current status of the system and the mission planning with the goal
of defining and prioritizing the mission objectives. Generation of way-points and
task scheduling are examples of activities in this layer: topic of Chap. 3.

• Tactical layer: This layer includes functions which aim at devising plans to
achieve the goals set by the strategic layer using the available resources. The
function of guidance is included in this layer: topic of Chap. 4.

• Skill layer: This layer includes all the functions performed by the control system
to execute the plan devised by the tactical layer such as control and regulation:
topic of Chap. 5.

For an unmanned airship to be a lighter than air robot, it must be able to interact with
the world it is working in. One such interaction is the movement which allows the
lighter than air robot to move from one initial configuration to a final configuration
all by itself, without the help of human and without the collision with any obstacle.
The planning and control must be studied in order to make this interaction possible.
The former is to find a feasible and even optimal trajectory for the robot to follow
while the latter is to implement the plan [162].

Like all flying vehicles, the performance of aerial robots depends extensively on
their size and the characteristics of their lifting mechanisms (wings, rotors). Due to
the special requirement of automatic flight in complex outdoor environment, guid-
ance and control are very important in practice. The specific characteristics of vari-
ous vehicle types pose different challenges to the planning and control. For example,
a helicopter or an airship (with a tail rotor) have the ability to stop and go backwards
whereas a fixed wing aircraft has to maintain a minimum velocity, in order to fly [40,
61, 62, 79, 100, 127].

One way to deflect some of the concerns associated with high fuel consumption
of heavier than air craft is to rely on lighter than air vehicles. They offer an un-
matched capability to fly for long periods of time and to do it silently. Airships float
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in the atmosphere due to their buoyancy so are airborne when filled with gas, before
being launched and remain airborne until the ballonets are filled with air or the gas
eventually is released in extreme situations. With this feature, a lighter than air robot
could conduct a continuous aerial operation with very low energy consumption.

Lighter than air vehicles are an attractive solution for many applications requiring
a sustained airborne presence. The missions foreseen are environmental monitoring,
inspection, surveillance and other applications, such that the lighter than air robot
should fly at low altitude, be able to hover above points of interest, take-off and
land vertically, present a secure degradation in case of failure [5, 60, 102, 108, 116].
Another application is a new concept consisting of using autonomous airships as
platforms operating for extended periods of time at very high altitudes (between
20,000 and 100,000 m) to fulfill missions currently accomplished using spacecraft.

Wide area surveillance for months at a time is presently impossible as neither
satellites nor aircraft can provide these capabilities simultaneously. However, re-
newable energy technology has progressed enough to seriously consider building an
airship for ultra-long duration flights (such as thin film photo-voltaic arrays and fuel
cells. . . ) [26, 163, 175, 205, 227].

Interest in near-space solutions for telecommunications has also increased be-
cause they are more feasible than in the past, due to technological advances in
lightweight materials and in solar power technology. As airships need less energy
to stay aloft, they are considered as potential near-space platforms [126, 152, 153,
182].

Unmanned airships have the following modes of control: fully autonomous,
semi-autonomous, tele-operation and remote control.

Fully autonomous operation is the subject of this book. Guidance, control and
navigation of the lighter than air robot is accomplished by an on board self-contained
flight-management control system. The aerial robot must be equipped with reliable
position and actuation equipment so as to be able of controlled flight and this con-
stitutes a requirement prior to doing research or development in this field [116, 120,
129, 138, 161, 176, 196]. The choice of sensors is critical to obtaining a properly
aerial robot. Usually the same suite of sensors may not apply to all phases of flight.
The individual inputs collected from each sensor are usually not sufficient to esti-
mate the state of the vehicle. Different sensors may be efficient over different flight
regimes. The proper way to leverage individual information provided by each sen-
sor is through an appropriate filtering process that can yield rather comprehensive
information about the entire system’s state. The necessity for good state estimates
arises early in the development process since closed loop flight would be impossible
otherwise.

Lighter than air robots have essentially two flight regimes: hover and cruising
flight:

• Aerostatics hovering (Hover): The speed of the lighter than air robot relative to
the surrounding air is small such that few or no forces act on the vehicle, except
those resulting from the propulsion itself. The ability to hover is extremely useful
for any operations that require a constant position versus the Earth.
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• Aerodynamics flight (Cruising Flight): There is a significant relative speed be-
tween the vehicle and its surrounding environment. Significant aerodynamics
forces act on the vehicle. These aerodynamic forces then largely dominate those
generated by the power system. Unlike hovering flight, cruising flight usually
results in the aerial robot constantly meeting wind, which makes the range of
adverse events to flight quite narrower.

Guidance is the logic that issues steering commands to the vehicle to accomplish
certain flight objectives. The guidance algorithm generates the autopilot commands
that steer the lighter than air robot. Planning trajectories is a fundamental aspect
of autonomous vehicle guidance. In the literature [34, 69, 96, 101, 107, 114, 124,
132, 155, 160, 174, 199], a large number of techniques have been proposed to deal
with mobile robots governed by kinematic equations and subject to non holonomic
constraints. The majority of these techniques exploits the inherent structure of those
systems and leads to very restricted algorithms when applied to aerial robots.

Guidance and control are the main topics of this book. It is necessary, for this
purpose, to use absolute navigation and positioning that allows to obtain global and
time-independent information. Inertial measurements are essential for stability con-
trol, but navigation and other high level tasks demand an additional global local-
ization system. A typical solution adopted for aerial vehicles is the use of GPS, but
the precision and the availability can appear too poor in particular flight configura-
tions, as well as the time of delivery and processing too long. Other systems are then
necessary to insure an accurate navigation at full time, coupled to the localization
device. To navigate accurately, series of predefined way-points can be delivered, ei-
ther by aeronautic active radio devices or by extraction of particular objects of the
environment or by the mission planner. In the case of a lighter than air robot, this
operation must handle meteorological information, especially force and direction of
the wind, in order to plan trajectory corrections but also for a secure auto-piloting.
Many sensing options exist [202, 211, 213]:

• Inertial navigation system: It consists of a combination of three orthogonally
mounted accelerometers and three orthogonally mounted gyroscopes. The ac-
celerometers measure, up to sensor error, the accelerations experienced by the
vehicle at the location of the inertial sensor minus gravity. Gyroscopes measure
vehicle angular velocities. Current inertial sensors are usually rigidly linked to
the vehicle in order to form a strap down inertial measurement system. Inertial
measurement units are extremely useful for measuring variations in acceleration
and angular velocities. They constitute a basis of inner-loop control system. Prac-
tical inertial navigation system on a lighter than air robot typically receive at least
position updates from other sensors called inertial aiding.

• Global Navigation system: GPS, GLONASS, GALILEO space based system of-
fer real-time absolute position information using a constellation of satellites cir-
cumnavigating the Earth. Wherever they are available, satellite navigation sys-
tems are a convenient and cheap means for a vehicle to locate itself approxi-
mately.

• Air data probes and altimeters: Pressure measuring devices are useful sensors in
airships. It is possible to measure the atmospheric pressure at the location of the
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lighter than air robot and the dynamic pressure along all vehicle axes, with a suit-
able arrangement of pressure sensors (such as Pitot tubes). These data can them-
selves be transformed into useful informations about the lighter than air robot
altitude and direction of motion relative to the air. Indeed, pressure probes are
very sensitive to flow perturbations generated by the hull, gondola, engines and
propellers. Air data probes are therefore positioned as far away as possible from
the main elements of the vehicle. Mounted together with inertial measurement
system, air data probes allow the airship to maintain stable flight at a prescribed
altitude.

• Terrestrial radio navigation system: VHF omni-directional range (VOR)
• Weather Radar and passive vision sensors
• Magnetic compasses
• Distance measuring equipment: altitude radars, ultrasonic sensors, laser range

finders. . .

The assumption is made throughout this book that the information required on the
vehicle and the environment is available.

1.2 Outline of the Book

The contents of the book are organized as follows:

• To guide and control a lighter than air robot, useful models of their kinemat-
ics and dynamics are needed in different forms, depending on the desired type
of guidance and control. The purpose of the second chapter is to present the
complex flight dynamics associated with lighter than air vehicles. Kinematics are
first presented using both approaches of Euler angles and Euler parameters. Then
six degrees of freedom dynamics are proposed respectively within Newton-Euler
and Lagrange-Hamilton frameworks followed by translational dynamics. As far
as planning and guidance are concerned, translational dynamics are sufficient to
represent the behavior of a lighter than air vehicle. Finally, some aerology char-
acteristics are mentioned.

• A basic problem which has to be solved by aerial robots is the generation of a
plan for moving from one location to another location in space to accomplish
a desired task while at the same time avoiding collisions with obstacles. The
purpose of the third chapter is to present mission planning with its subdivisions:
flight planning, obstacle and collision avoidance. An overview of existing mission
planning algorithms, without and with differential constraints, is provided in this
chapter. The world, configuration, or state space is divided into free space and
obstacle space: these are disjoint subsets of the space. Free space is the subset
of points in which the vehicle can move without contact with the obstacles and
obstacle space is the subset of points representing a collision between the vehicle
and an obstacle. Planning with uncertain winds followed by planning with strong
winds are then presented. Finally, task assignment is considered.
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• The purpose of the fourth chapter is trajectory design in hover and in cruising
flight. The role of the trajectory generator is to generate a feasible time trajectory
for the aerial vehicle. The first section of this chapter presents trim trajectories in
hover. The second section considers lateral planning of the lighter than air robot
while the third one considers 3D optimal time trajectories, in the presence of
bounds on the acceleration inputs considering the nominal deterministic part of
the wind. The problem is in fact the determination of a control law that transfers
this dynamic system between two assigned states so as to minimize the execu-
tion time. A powerful tool for solving this problem is the Pontryagin minimum
principle that provides necessary conditions for optimality. By exploiting these
conditions in conjunction with the analysis of the specific characteristics of the
kinematics of the lighter than air robot, it is possible to identify a reduced set of
candidate trajectories among which there is certainly the desired optimal solution
(if it exists). The subject of the last section of this chapter is parametric curves,
the lighter than air robot being subject to nonholonomic constraints. When min-
imizing curvature (and torsion), the problem can be solved by planning a path
for the kinematic model. If the cost criterion depends on the path as well as the
timing law, it is necessary to plan directly on the kinematic model. The dynamic
model is used for the computation of the various constraints on velocities and
higher derivatives.

• The purpose of the fifth chapter is the design of advanced control system, using re-
spectively the linear approach in the second section and the nonlinear approaches
in the third section. The control characteristics of the vehicle have to be evaluated
by considering specific tasks such as ability to maneuver from hover, to accel-
erate into a heavy wind or cross wind, and to hover a point on the ground in a
variable, shifting wind. . . Subsequently, the control power characteristics of the
vehicle are to be determined by considering the proposed control concepts. Clas-
sical linear control and linear robust control are briefly presented in the first part
of the chapter. In the second part of the chapter, some nonlinear approaches such
as dynamic inversion, sliding mode and backstepping controllers are then consid-
ered. To present a more complete presentation, diagnosis and response to systems
failure must also be considered. The selection of the performance model incorpo-
rating health state information about the vehicle is also an important aspect of the
feedback design.

• Finally, general conclusions and perspectives are presented in the last chapter and
some current projects are proposed in the Appendix.



Chapter 2
Modeling

Abstract Nowadays, non rigid airships with a cigar shaped profile are the most
common type. These airships do not have any rigid internal framework. The objec-
tive of this chapter is to present kinematics and dynamics models of a lighter than
air robot, taking into account wind effect. Newton-Euler and Hamilton-Lagrange ap-
proaches are used for this discussion then the translational model is presented. Here,
motion is referenced to a system of orthogonal body axes fixed in the airship, with
the origin assumed to coincide with the bow. Finally, some aerology characteristics
are briefly discussed.

2.1 Introduction

The airship is essentially a low speed vehicle and is fundamentally a balloon with a
means of propulsion but in order to produce an effective vehicle, the balloon element
has to be considerably modified. The primary requirement of the envelope is that it
should be of streamline form to reduce air resistance and improve controllability and
that it should be able to sustain the additional loads imposed by aerodynamic forces
and propulsive components. A representative mathematical model of a lighter than
air vehicle differs from the usual aircraft model because the lighter than air vehicle
displaces a very large volume and its virtual mass and inertia properties become
significant and thus the aerodynamics and control characteristics are described quite
differently.

What makes a vehicle lighter than air is the fact that it uses a lifting gas (i.e.
Helium as Hydrogen has been banned) in order to be lighter than the surrounding
air. While Hydrogen gas is approximately 7 percent more buoyant, Helium has the
advantage of being non-inflammable in addition to being fire retardant.

The principle of Archimedes applies in the air as well as under water. The dif-
ference between airships and balloons is that: balloons simply follow the direction
of the winds. In contrast, airships are powered and have some means of controlling
their direction. There are basically three different kinds of airships: rigid, semi-rigid
and non-rigid airships (see Fig. 2.1).

Non rigid airships or pressure airships, also known as blimps, are the most com-
mon form nowadays. They are basically large gas balloons. Their shape is main-
tained by their internal overpressure. The only solid parts are the gondola, the set of

Y. Bestaoui Sebbane, Lighter than Air Robots,
Intelligent Systems, Control and Automation: Science and Engineering 58,
DOI 10.1007/978-94-007-2663-5_2, © Springer Science+Business Media B.V. 2012
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Fig. 2.1 Different kind of airships, taken from http://library.thinkquest.org/18033/airship.html

propellers and the tail fins. The envelope holds the Helium that makes the airship
lighter than air. In addition to the lift provided by Helium, airships derive aerody-
namic lift from the shape of the envelope as it moves through the air. An envelope
as the gas containment membrane encloses the lifting gas and the ballonets and pro-
vides protection from the environment. Ballonets are filled with air by blowers to
maintain a fixed pressure inside as the temperature of the lifting gas or the airship
altitude changes. Ballonets permit the envelope pressure to be controlled and rela-
tive fullness of fore and aft ballonets is associated with pitch control. Adjustment
of air volume in ballonets and gas volume in the envelope produces the change of
buoyancy. The vertical portion of the gondola loads is supported by an internal sus-
pension system which is contained in the envelope and runs from the top of the
envelope to the gondola. The principal function of the external suspension system
attached to the bottom part of the gondola loads into the envelope. The envelope
fabric consists of laminated composite and is designed to withstand environment
and flight loads. Non rigid airships have simple structures and are easy to design,
build and maintain.

The most common form of a dirigible is like an ellipsoid. It is a highly aero-
dynamically profile with a good resistance to aerostatics pressures. Aerodynamics
forces occur when a body moves relative to the air in which it is immersed. These
forces are classified as steady when they are invariant with time or transient when
they are not. The steady forces arise when a body is in uniform motion in a still
atmosphere. Transient forces occur during maneuvers or owing to turbulence in the
atmosphere. Aerodynamic forces and moments arise from the local surface pres-
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sures, which when integrated over the whole body, give the overall forces and mo-
ments. It is therefore necessary to determine the local pressures. At non-neutral lift,
it becomes necessary to trim the airship to generate aerodynamic lift to balance the
difference between the weight and lift forces. This in turn creates additional drag
with the consequent penalty in performance.

Several research studies have been carried out on dynamic modeling and sim-
ulation of airships. Dynamic models are built to study guidance and control tech-
niques of airships, trajectory, stability and maneuverability. This chapter consists of
5 sections. Section 2.2 presents kinematics using two different approaches: Euler
angles and Euler parameters. In Sect. 2.3, six degrees of freedom dynamics are pre-
sented, using respectively Newton-Euler and Lagrange-Hamilton methods, followed
by three degrees of freedom translational dynamics and aerology characteristics, in
Sect. 2.4. Finally some concluding remarks are given in Sect. 2.5.

2.2 Kinematics

The model used was written originally for a buoyant underwater vehicle [73]. It was
modified later to take into account the specificity of the airship [10, 15, 23, 24, 89,
108]. The position of all points belonging to the airship rigid body with respect to
the inertial fixed frame Rf can be completely defined by knowing the orientation
of a body fixed frame Rm to the airship body and the position of its origin with
respect to the reference frame Rf . The choice of the body fixed frame origin can be
made at the center of gravity, center of volume (assumed to coincide with the gross
center of lift) or also at the bow of the hull. The Aerodynamic frame Ra is used
extensively in flight mechanics with flight equations of motion and through an air-
craft’s air data probe and other sensors. The airship’s air speed, Va is referenced to
the aerodynamic frame. These three frames are classically considered in the deriva-
tion of the kinematical and dynamical equations of the motion of the aerial vehicles.
There are many ways to describe finite rotations between frames. Direction cosines,
quaternions, Euler angles, can serve as examples. Some of these groups of variables
are very close to each other in their nature.

Remark 2.1 In classical vector mechanics, it is customary to represent the acceler-
ation of a rigid body by means of the linear acceleration of a specified point in the
body and an angular acceleration vector which applies to the whole body.

Remark 2.2 The derivation relationship in two different frames can be written as

V = ṙ + Ω × r (2.1)

V̇ = r̈ + Ω̇ × r + Ω × (Ω × r) (2.2)

where Ω is the angular velocity.
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Remark 2.3 The finite rotation of a rigid body does not obey to the laws of vector
addition (in particular commutativity) and as a result the angular velocity of the
body cannot be integrated to give the attitude of a body [13].

These remarks are extensively used in the following demonstrations.

2.2.1 Euler Angles

The usual minimal representation of orientation is given by a set of three Euler
angles. Assembled with the three position coordinates, they allow the description of
the situation of a rigid body. A 3×3 direction cosine matrix (of Euler parameters) is
used to describe the orientation of the body (achieved by 3 successive rotations) with
respect to some fixed frame reference. This parametrization is a three parameters set
corresponding to the yaw ψ , pitch θ and roll φ, which can be directly measured by
the attitude sensors. Adopting this formulation, the rotation matrix R can be written
as a function of η2 = (φ, θ,ψ)T given by:

R(η2) = Rz(ψ)Ry(θ)Rx(φ) (2.3)

with

Rx(φ) =
⎛
⎝

1 0 0
0 cosφ − sinφ

0 sinφ cosφ

⎞
⎠

Ry(θ) =
⎛
⎝

cos θ 0 sin θ

0 1 0
− sin θ 0 cos θ

⎞
⎠

Rz(ψ) =
⎛
⎝

cosψ − sinψ 0
sinψ cosψ 0

0 0 1

⎞
⎠

This transformation, also called the Direction Cosine Matrix (DCM), can be ex-
plicited as:

R(η2) =
⎛
⎝

cosψ cos θ − sinψ cosφ + cosψ sin θ sinφ sinψ sinφ + cosψ sin θ cosφ

sinψ cos θ cosψ cosφ + sinψ sin θ sinφ − cosψ sinφ + sinψ sin θ cosφ

− sin θ cos θ sinφ cos θ cosφ

⎞
⎠

(2.4)

The rotation matrix R is an orthogonal matrix. The set of such matrices constitutes
the special orthogonal matrix group SO(3) defined as:

SO(3) =
{
R ∈ �3×3,RT R = I3×3,det (R) = 1

}
(2.5)
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The relationship between the body fixed angular velocity vector ν2 = (p, q, r)T

and the rate of change of the Euler angles η̇2 = (φ̇, θ̇ , ψ̇)T can be determined by
resolving the Euler rates into the body fixed coordinate frame:

⎛
⎝

p

q

r

⎞
⎠ =

⎛
⎝

φ̇

0
0

⎞
⎠+

⎛
⎝

1 0 0
0 cosφ sinφ

0 − sinφ cosφ

⎞
⎠
⎛
⎝

0
θ̇

0

⎞
⎠

+
⎛
⎝

1 0 0
0 cosφ sinφ

0 − sinφ cosφ

⎞
⎠
⎛
⎝

cos θ 0 − sin θ

0 1 0
sin θ 0 cos θ

⎞
⎠
⎛
⎝

0
0
ψ̇

⎞
⎠ (2.6)

or equivalently

p = φ̇ − ψ̇ sin θ

q = θ̇ cosφ + ψ̇ sinφ cos θ

r = −θ̇ sinφ + ψ̇ cosφ cos θ

(2.7)

The configuration of the airship is completely defined by associating the orien-
tation matrix and the Rm frame origin position vector, η1 = (x, y, z)T , with respect
to Rf using homogeneous matrix formulation as:

AM =
(

R(η2) η1
03×3 1

)
(2.8)

The set of all such matrices is called the special Euclidean group of rigid-body
transformations in three dimensions noted SE(3) defined by:

SE(3) =
{
AM

∣∣∣∣AM =
(

R(η2) η1
03×3 1

)
,R ∈ SO(3), η1 ∈ �3

}
(2.9)

The set SE(3) is a Lie group. Given a curve C(t) : [−a, a] → SE(3), an element
S(t) of the Lie algebra se(3) can be associated to the tangent vector Ċ(t) at an
arbitrary configuration A(t) by:

S(t) = A−1
M (t)ȦM(t) =

(
Sk(ν2) RT η̇1

0 0

)
(2.10)

where

Sk(ν2) = RT (t)Ṙ(t) (2.11)

is a 3 × 3 skew symmetric operator on a vector defined by:

Sk(ν2) = Sk((p, q, r)T ) =
⎛
⎝

0 −r q

r 0 −p

−q p 0

⎞
⎠ (2.12)

such that

∀x, y ∈ �3: Sk(y)x = y × x (2.13)
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A curve on SE(3) physically represents a motion of the rigid body. If (ω(t), ν(t))

is the pair corresponding to S(t), then ν2 = Ω = (p, q, r)T physically corresponds
to the angular velocity of the rigid body, while ν1 = V = (u, v,w)T is the linear
velocity of the origin Om of the frame Rm with respect to the inertial frame Rf ,
both the linear and angular velocities are expressed in the body fixed frame Rm.

The kinematic relationship between the different velocities are given by:

(
η̇1
η̇2

)
= RV =

(
R(η2) 03×3
03×3 J (η2)

)(
V

Ω

)
(2.14)

where R is the rotation matrix defined by Eq. (2.4) and J(η2) is defined by:

J (η2) =
⎛
⎝

1 0 − sin θ

0 cosφ sinφ cos θ

0 − sinφ cosφ cos θ

⎞
⎠

−1

=
⎛
⎝

1 sinφ tan θ cosφ tan θ

0 cosφ − sinφ

0 sinφ
cos θ

cosφ
cos θ

⎞
⎠ (2.15)

This matrix presents a singularity for θ = ±π
2 . During practical operations of the

airship, the pitch angle of θ = ±π
2 is not likely to be encountered.

2.2.2 Euler Parameters

To avoid the singularity inherent to this representation, Euler parameters can be
presented. They are unit quaternions and are represented by a normalized vector of
four real numbers [7, 9, 15, 24]. Taking the vector part of a unit quaternion and
normalizing it gives the rotational axis and the scalar part allows to obtain the angle
of rotation.

2.2.2.1 Introduction

A general spatial displacement of a rigid body consists of a finite rotation about
a spatial axis and a finite translation along some vector. The rotational and trans-
lational axes in general are not related to each other. It is often easier to describe
a spatial displacement as a combination of a rotation and a translation motions,
where the two axes are not related. However, the combined effect of the two par-
tial transformations can be expressed as an equivalent unique screw displacement.
The concept of a screw thus represents an ideal mathematical tool to analyze spatial
transformation [177].

The Euler representation, a four parameter representation, is based on the idea
that a transformation from one co-ordinate frame to another may be effected by a
single rotation about a vector μ defined with respect to the reference frame. Let
q denote the Euler parameters which are expressed by the rotation axis n and the
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rotation angle μ about the axis as follows:

q =

⎛
⎜⎜⎝

q0
q1
q2
q3

⎞
⎟⎟⎠=

⎛
⎜⎜⎜⎝

cos(μ
2 )

sin(
μ
2 )nx

sin(
μ
2 )ny

sin(
μ
2 )nz

⎞
⎟⎟⎟⎠ , 0 ≤ μ ≤ 2π (2.16)

The quaternion can also be written as:

q = q0 + q1 î + q2ĵ + q3k̂ (2.17)

q0 is real, q1, q2, q3 are imaginary. The following properties apply:

î.î = −1 ĵ .ĵ = −1 k̂.k̂ = −1
î.ĵ = −ĵ .î = k̂ k̂.î = −î.k̂ = ĵ k̂.ĵ = −ĵ .k̂ = −î

(2.18)

The quaternion product may be expressed in matrix form as:

q.p =

⎛
⎜⎜⎝

q0 −q1 −q2 −q3
q1 q0 −q3 q2
q2 q3 q0 −q1
q3 −q2 q1 q0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

p0
p1
p2
p3

⎞
⎟⎟⎠ (2.19)

2.2.2.2 Propagation of Quaternion with Time

The configuration space R3 × SO3 may be replaced by R3 × S3 where

S3 =
{
x ∈ R4 such that ‖x‖2 = 1

}

is the unit sphere in R4 for the Euclidean norm ‖ · ‖2. The associated kinematics
differential equations of Euler parameters define a vector field on S3 (the 3 sphere
on R4) and are given by:

q̇ = 1

2
(q0I3×3 + Sk(q))Ω = 1

2
(q0Ω − Ω × q)

q̇0 = −1

2
qT Ω

(2.20)

where q is the vectorial part of the quaternion. Thus, the time derivative of Euler
parameters can be determined at any configuration of the body if the angular velocity
is given.

Remark 2.4 Equation of this form may be solved in a navigation system to keep
track of the quaternion parameters which define body orientation. The quaternion
parameters may then be used to compute an equivalent direction cosine matrix, or
used directly to transform the measured specific force vector into the chosen refer-
ence frame.
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2.2.2.3 Kinematic Model

Let us introduce η = (η1, η2)
T where η1 = (x, y, z)T is the position vector of the

airship (expressed in the Earth fixed frame), η2 = (q0, q1, q2, q3)
T is the quaternion

representing the orientation, V as the linear velocity of the origin and Ω as the
angular velocity (expressed in the airship fixed frame):

V =
⎛
⎝

u

v

w

⎞
⎠ Ω =

⎛
⎝

p

q

r

⎞
⎠ (2.21)

The kinematics of the lighter than air robot can be expressed in the following
way:

η̇ =
(

η̇1
η̇2

)
=
(

R(η2) 0
0 J (η2)

)
V = RV (2.22)

where V = (V ,Ω)T .
The orientation matrices R and J are formulated as follows [167, 218]:

R(η2) =
⎛
⎝

1 − 2(q2
2 + q2

3 ) 2(q1q2 + q3q0) 2(q1q3 − q2q0)

2(q1q2 − q3q0) 1 − 2(q2
1 + q2

3 ) 2(q2q3 + q1q0)

2(q1q3 + q2q0) 2(q2q3 − q1q0) 1 − 2(q2
1 + q2

2 )

⎞
⎠ (2.23)

or equivalently

R =
(
q2

0 − qT q
)

I3×3 + 2qqT + 2q0Sk(q) (2.24)

and

J (η2) = 1

2

⎛
⎜⎜⎝

−q1 −q2 −q3
q0 −q3 q2
q3 q0 −q1

−q2 q1 q0

⎞
⎟⎟⎠ (2.25)

with J (η2)
T J (η2) = 1

4I3×3. If the following diagonal matrix is defined:

Δ6×6 =
(

I3×3 03×3

03×3
1
4 I3×3

)
(2.26)

Then:

RT R = Δ6×6 (2.27)

giving way to the formulation for the left pseudo-inverse of R as

R+ = Δ−1
6×6RT (2.28)

This formulation is only achievable due to the fact that the quaternions are used
instead of the Euler angles for attitude representation.
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Remark 2.5 Euler parameters cannot be used in a Lagrangian approach of dynamic
modeling since this 7 parameters configuration is not a minimal one.

2.3 Dynamics

A mathematical description of the flight dynamics must include the aerodynamic,
structural and other internal dynamics effects that influence the response of the
lighter than air robot to inputs control and external atmospheric disturbances [17,
23, 82, 89]. In this section, analytic expressions for the forces and moments on the
lighter than air robot are derived. The forces and moments are referred to a system
of body-fixed axes, centered at the lighter than air bow. There are in general two
approaches in deriving equations of motion. One is to apply Newton-Euler’s law
and the other one is the Lagrange-Hamilton framework.

Remark 2.6 For preliminary analysis, an airship can be treated as a loaded beam
subjected to bending forces from unequal distribution of weight and buoyancy and
shear forces are calculated by dividing the airship body into many longitudinal seg-
ments. The computation of the static bending moments can be separated into three
parts: vertical forces of distributed weight and buoyancy, longitudinal components
of suspension rope tension and longitudinal forces due to increase of gas superpres-
sure [133]. The contribution of the gondola weight is included in the first two parts.
The aerodynamic bending moment can be computed from the effect of the empen-
nage lift and transverse forces on the envelope (using Munk’s momentum theory
[154]).

The lighter than air platform considered in this book is a generic airship. It is
a non rigid airship equipped with two vectorable engines on the sides of the gon-
dola, one tail rotor and 4 control surfaces at the stern. This airship is controlled
with elevator and rudder surfaces for controllability of the pitch and heading angles,
respectively, at significant airspeeds. These surfaces are mounted at the rear of the
airship. Bow and/or stern thrusters are also used for landing and docking operations.

Remark 2.7 Some simplifying assumptions are made in this derivation: the Earth
fixed reference frame is inertial, the gravitational field is constant. The hull is con-
sidered as a solid. Elasticity is not considered in this derivation [10]. The motion
of the Helium inside the hull is neglected. The volume of the lighter than air robot
is considered constant. As the speed of a lighter than air robot is generally low, the
coupling between dynamics and thermal phenomena are neglected and the density
of the air is not locally modified by the system’s motion.
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2.3.1 Mass Characteristics

A significant difference of an airship from a typical aircraft is that its mass charac-
teristics strongly depends on the change of altitude [105]. The pressure difference
between the surrounding atmosphere and the inner gas (Helium) should be kept as
constant as possible at each altitude level. This permanent pressure difference is
required for maintaining the aerodynamic shape of the envelope under most opera-
tional conditions. As the atmospheric pressure changes with the altitude, it should
be compensated by the internal pressure. For this purpose, the envelope is equipped
with two air filled ballonets. The volume occupied by the inner gas and the ballonets
represents the inner volume of the hull envelope and is nearly constant. By filling
the ballonets with the air, they displace the volume of the inner gas, increasing the
total pressure of the gas in the envelope. In general, the total mass of the airship can
be expressed by the following equation:

m = mgas + mBal + mic + mF + mP (2.29)

where mgas is the mass of the inner gas (Helium), mBal is the total mass of air
ballonets, mic represents the mass of all internal components (skin, structures. . . ),
mF (t) the time varying fuel mass and finally mp the payload mass. The mass of the
Helium can be considered as constant if leakage through the hull’s skin is insignifi-
cant. The mass of all internal components can be derived by accounting all elements
of the airship as a consolidation of point and distributed masses [215, 217]. Each
ballonet can be modeled as a fixed point with variable mass [42]. The volume of
ballonets depends on change of the atmospheric pressure gradient. At sea level,
where the atmospheric level is high, the ballonet volume has its maximum level and
reduces with the increased altitude.

2.3.2 6 DOF Dynamics: Newton-Euler Approach

In this section, the dynamics model is defined as the set of equations relying the
situation of the vehicle in its position, velocity and acceleration to the control vector.
The forces and moments are referred to a system of body-fixed axes, centered at the
bow N of the lighter than air robot.

Let the motion of the lighter than air robot be described by its velocity V a 6D
vector including the linear V and angular Ω velocities. Let the surrounding air be
described by an wind velocity Va . The wind coordinates vector is defined as: ηw =
(xw yw zw φw θw ψw)T whose time derivative is relative to the wind velocity

η̇w = RVw (2.30)

The robot has thus a relative air velocity Va = V − Vw . As the vector from point
N, being the bow to point G, being the center of gravity, is represented by OG =
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ON + NG where

NG = (xg 0 zg

)T

Both velocities are related via:

VG = V − Sk
(
NG
)
Ω (2.31)

where Sk(NG) is the skew matrix related to NG.

2.3.2.1 Newton-Euler Equations

Newton’s laws of motion are used to relate the applied forces and moments to the
resulting translational and rotational accelerations. Translational and rotational mo-
tions are considered in the sequel.

Translational Motion Concerning forces, the Newton-Euler equations of motion
may be given by the following relations:

∑
Fext = dPd

dt

∣∣∣∣
Rf

= dPd

dt

∣∣∣∣
Rm

+ Ω × Pd (2.32)

The generalized force vector is given by Fext while the linear momentum is given
by:

Pd = mVG = m
(
V − Sk

(
NG
)
Ω
)

(2.33)

Rotational Motion Concerning moments, the Newton-Euler equations of motion
may be given by the following relations:

∑
Mext = dΠN

dt

∣∣∣∣
Rf

+ V × Pd = dΠN

dt

∣∣∣∣
Rm

+ Ω × ΠN + V × Pd (2.34)

with

ΠN = ΠG + NG × mVG = IGΩ + NG × mVG = INΩ + NG × mV (2.35)

where ΠN and ΠG are the angular momentum computed respectively at the points
N and G. From Koenig theorem, the inertia operator in N is calculated as:

IN = IG + mNG × (Ω × (NG
))

(2.36)

Thus, these forces and torques equations may be written as:

∑
Fext = mV̇/Rm

− mSk
(
NG

)
Ω̇/Rm

+ ṁV/Rm
− ṁSk

(
NG
)
Ω/Rm

+ mΩ × V/Rm
− mΩ × Sk

(
NG
)
Ω/Rm

(2.37)
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and
∑

Mext = INΩ̇/Rm
+ mSk

(
NG
)
V̇/Rm

+ Ω × INΩ

+ Ω × mSk
(
NG
)
V + Mvar (2.38)

where

Mvar = İNΩ/Rm
+ ṁSk

(
NG
)
V/Rm

+ V × mV − V × mSk
(
NG

)
Ω (2.39)

The total kinetic energy W of the mechanical system is thus defined as:

W = 1

2

(
VG

Ω

)T (
Pd

Π

)
= 1

2

(
V

Ω

)T

MRB

(
V

Ω

)
(2.40)

where:

– MRB = ( mI3×3 −mSk(NG)

mSk(NG) IN

)
is the lighter than air robot rigid body inertia matrix,

m being the lighter than air robot total mass.

– IN =
(

Ixx 0 −Ixz

0 Iyy 0
−Izx 0 Izz

)
is the moment of inertia, assuming the symmetry about the

XZ plane.

Remark 2.8 The terms Ω × mV − Ω × mSk(NG)Ω are considered as Coriolis
and centrifugal forces while the Coriolis and centrifugal moments terms are Ω ×
mSk(NG)V + V × mV − V × mSk(NG)Ω + Ω × INΩ .

Taking into account these assumptions, the analytic expressions of forces and
moments acting on the lighter than air robot expressed in body-fixed frame Rm, can
be given by:

MRB V̇ = C(V)V + τs + τa + τp + MdV

η̇ = RV

V =
(

V

Ω

) (2.41)

where:

– The Coriolis and centrifugal tensor Tc = C(V)V is given by

Tc =
(

Ω × mV − Ω × mSk(NG)Ω

Ω × INΩ + V × mV + Ω × mSk(NG)V − V × mSk(NG)Ω

)

where

C(V) =
(

03×3 −mSk(V + Ω × NG)

−mSk(V + Ω × NG) −Sk(INΩ) − mSk(NG)V

)
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is the Coriolis-centrifugal matrix associated to the lighter than air robot body
mass, depending on its local velocities.

– τs is the static tensor due to the weight and lift forces.
– τp is the propulsion system tensor.
– τa is the aerodynamic tensor due to the atmosphere-lighter than air robot interac-

tion and depends on the relative velocity.

– Md = ( ṁI3×3 −ṁSk(NG)

ṁSk(NG) İN

)

In presence of wind with velocity VW , the aerodynamic forces and moment depend
on the airship relative linear velocity ν1a with respect to wind velocity, Va = V −
VW , and hence VA = (Va,Ω)T .

2.3.2.2 Static Tensor

The gravity and lift forces must be considered in the following expressions:

Fgravity = RT

⎛
⎝

0
0

mg

⎞
⎠ (2.42)

and

Flif t = −RT

⎛
⎝

0
0

B = ρ · Vol · g

⎞
⎠ (2.43)

where B is the buoyancy force, ρ is the volumic mass of the inner gas, Vol is the
lighter than air robot volume and g is the gravity acceleration.

The static force vector is given by the difference between the lighter than air
robot weight (acting at the center of gravity G) and the lift force (acting upwards on
the center of lift C). The static moment is given by the following relation

Ms = NG × Fgravity + NC × Flif t (2.44)

where C represents the center of lift in the body fixed frame. Thus the static tensor
can be given by:

τs =
(

Fgravity + Flif t

NG × Fgravity + NC × Flif t

)
(2.45)

Remark 2.9 In hover mode, the lighter than air robot stability is mainly affected by
its center of lift in relation to the center of gravity which can be adjusted to obtain
either stable, neutral or unstable conditions. Putting all weight on the top would
create a highly unstable lighter than air robot with a tendency to roll over in a stable
position.



20 2 Modeling

2.3.2.3 Propulsive Tensor

Actuators provide the means for maneuvering the lighter than air robot along its
course, propelled by thrust. The required thrust and power change with flight condi-
tions according to:

Treq = 1

2
ρ(h)V 2U

2/3
H CD0

Preq = Treq

υ

(2.46)

where υ is the efficiency of the propellers, and U
2/3
H is the standard aerodynamic

reference area for airships.
Propellers are designed to exert thrust to drive the vehicle forward. The most

popular propulsion system layout for pressurized lighter than air robot is twin ducted
propellers mounted either side of the envelope bottom. Another one may exist in the
stern for torque correction and attitude control. Hence, the lighter than air robot is
an under-actuated system with two types of control: forces generated by thrusters
and angular input μm controlling the direction of the thrusters. The lighter than air
robot actuators list may be split into the following two sets:

1. Force inputs are available from the vectored two main propellers on each side
of the gondola, providing a complementary lift to oppose the weighting mass,
as well as a forward thrust controlling the longitudinal speed. When a differen-
tial input is added between two propellers, they also provide torque to control
the rolling motion near hover. Finally a stern lateral thruster may be present to
provide yaw control at low airspeed.

2. Surface deflections of the tail, when a minimum airspeed is present, provide
torque inputs mostly for the control of the pitching and yawing motions.

When the air is perfectly still, the hover control is reduced to the use of the first set
only.

Therefore for the first set, the propulsion torques can be written as:

τp =

⎛
⎜⎜⎜⎜⎜⎜⎝

FM cosμ

FT

−FM sinμ

0
FMOz cosμ + FMOx sinμ

FT Oy

⎞
⎟⎟⎟⎟⎟⎟⎠

(2.47)

where FM , FT represent respectively the main and tail torques, μ is the tilt angle

of the main engine, the vector

(
Ox

0
Oz

)
is the position of the main engines while the

vector

(
Oy

0
0

)
represent the position of the stern rotor. The surface deflections are

considered in the aerodynamic tensor presented in the following paragraph.
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Remark 2.10 Maximum in-flight incremental acceleration load factors owing to
worst gusts or maneuvering, in general, may be: 0.75 g vertical, 0.5 g side and
0.5 g longitudinal.

2.3.2.4 Aerodynamic Tensor

The total aerodynamic forces and moments are related to

– Non stationary terms related to translational and rotational accelerations
– Terms involving translation-rotation products equivalent to Coriolis forces
– Terms involving rotation-rotation products equivalent to centrifugal forces
– Terms involving translation-translation products equivalent to stationary phenom-

ena

Some elements of the theory of slender bodies are given in the following references
[11, 12, 36, 64, 89, 108, 123, 207, 231].

Stationary Phenomena A pure translation depending aerodynamic tensor is con-
sidered. This phenomena arises from the forces and moment coming from the dis-
tribution of the pressure around the body and also the friction forces due to the
viscosity of the air [123, 154, 207]. This tensor can expressed as:

τsta = 1

2
ρν2

aSref

⎛
⎜⎜⎜⎜⎜⎜⎝

CT

CL

CN

Cl

Cn

Cm

⎞
⎟⎟⎟⎟⎟⎟⎠

(2.48)

where CL,CN,CT ,Cl,Cm,Cn are aerodynamic coefficients depending on the geo-
metrical shape of the airship and the positions of the control surfaces: rudders and
elevators. These coefficients may be calculated in two different ways. The first one,
is a pure experimental procedure which consists on collecting data in a wind tunnel,
the second one, is an analytical procedure based on geometric quantities procedure
[89, 113, 120, 131, 135, 137, 139, 149].

Remark 2.11 The bare hull of classic streamline form is directionally unstable, tend-
ing to turn broadside on the direction of motion. However, the ellipsoidal form re-
mains a good compromise between structural and aerodynamic requirements for
in-flight motion.

All aerodynamic lift and drag forces result from the combination of shear and
pressure forces. Drag forces that are function of lift are known as induced drag.
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Drag forces not strongly related to lift are usually known as parasite drag or zero lift
drag [63].

If the theoretical pressure forces in a perfect fluid are integrated over a stream-
lined body without flow separation, the pressure over a body that yields a drag force
in the flight direction should be exactly matched by the pressure around the body
which yield a forward force. Thus, if skin friction is ignored, the net drag would be
zero. This is known to be false, because even if the lift of a body of revolution is
less than the lift due to a wing, it is different from zero.

The boundary layer which is produced by viscosity causes the flow to separate
somewhere on the back half of the lighter than air robot. This prevents the full
attainment of the forward acting force leaving a net drag force due to viscous sep-
aration. This drag force depends upon the location of the separation point of the
body. This separation point is function of the curvature of the body and the amount
of energy in the flow. Thus, Kirchoff’s theory must be completed by the theory of
slender bodies, initiated by Munk (1924) [154]. This theory is expressed for bodies
whose thickness ratio � 1 (ratio between the maximum diameter of the hull and
its length). Typically airship hulls experience skin friction drag, form (or pressure)
drag and induced drag.

Owing to the large surface area of the airship, skin friction is the largest fraction
of the total drag. For this reason, the reference area Sref (the wetted area) is in
general approximated as the surface area. However, another approach is to consider
the surface area as (Buoyant · Volum)2/3.

In the stationary part, two additive terms appear [89, 208, 217]:

– The first one for low values of the angle of attack α

CL1 = C1 cosα sin 2β

CN1 = C1 sin 2α cos2 β

Cn1 = C0 cosα sin 2β

Cm1 = C2 sin 2α cos2 β

(2.49)

β being the side-slip angle
– The second one in turbulent situation, augmenting rapidly with the angle of attack

CL2 = C3 sinβ

√
sin2 α cos2 β + sin2 β

CN2 = C3 sinα cosβ

√
sin2 α cos2 β + sin2 β

Cl2 = (C4 sinα + C10 cosα) sin 2β

Cm2 = C5 sinα cosβ

√
sin2 α cos2 β + sin2 β

Cn2 = C9 sinβ

√
cos2 α cos2 β + sin2 β

(2.50)
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Finally, the following general relations are obtained:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

CL = CL1 + CL2

CN = CN1 + CN2

CT =
[
C6

(
sign(CL)

√
C2

N + C2
L + C7

)2

+ C8

]
cos2 α cos2 β

Cl = Cl2

Cn = Cn1 + Cn2

Cm = Cm1 + Cm2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.51)

where the Ci , i = 0..10 are constants depending on the reference area, the separation
point location, the base surface at this point and the diameter function of the lighter
than air robot.

Non Stationary Aerodynamic Phenomena When the lighter than air robot
moves, the air close to its body is moved. Contrary to the other aerial vehicles,
the mass of displaced air is close to those of the lighter than air robot and conse-
quently cannot be neglected. The displaced air mass is known as added mass or
virtual mass. Added mass and inertia coefficients received their name because they
can be linearly combined with the true lighter than air robot mass in the equations
of motion to form one coefficient [11, 36, 42, 64, 80, 137, 207].

Each component of the airship is represented by an ellipsoid with three indepen-
dently sized principal axes, this allows the added masses to be calculated analyti-
cally. Ellipsoid geometry, orientation and relative location are chosen so that both
added masses and added moments of inertia are optimally modeled. Interference
effects between the main hull component and an appendage are approximately ac-
counted for by using the flow field around a replacement ellipsoid for the hull to
modify the flow at the appendage, interference effects between appendages are ne-
glected. The analysis uses incompressible potential flow theory. It does not account
for any circulation in the flow [214].

The added mass matrix is, in general, an extra-diagonal matrix:

MA = −

⎛
⎜⎜⎜⎜⎜⎜⎝

Xu̇ Xv̇ Xẇ Xṗ Xq̇ Xṙ

Yu̇ Yv̇ Yẇ Yṗ Yq̇ Yṙ

Zu̇ Zv̇ Zẇ Zṗ Zq̇ Zṙ

Ku̇ Kv̇ Kẇ Kṗ Kq̇ Kṙ

Mu̇ Mv̇ Mẇ Mṗ Mq̇ Mṙ

Nu̇ Nv̇ Nẇ Nṗ Nq̇ Nṙ

⎞
⎟⎟⎟⎟⎟⎟⎠

(2.52)

The inertial effects of this added mass constitute the first component of the aerody-
namic tensor. Another part of the aerodynamic forces is coming from the translation-
rotation and rotation-rotation coupling motions and can be assimilated to Coriolis-
centrifugal effects associated to the added mass and can also be represented as a
damping effect representation. Due to the importance of the added mass of the
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lighter than air robot, this tensor must be included. In addition, a pure translation
depending aerodynamic tensor is considered. The total added masses of the vehicle
are taken to be the sum of the added masses of each of the component ellipsoids,
except that interference effects between the hull and fins are accounted for first. The
interference effects can be modeled approximately by superimposing a uniform ve-
locity over a relatively small ellipsoid which finds itself in the presence of a larger
one; this interference velocity is the velocity field around the large ellipsoid evalu-
ated at the location of the centroid of the smaller one, without the smaller ellipsoid
being present.

The added mass matrix of a rigid body lighter than air robot must include the
contributions of both the hull and the fins as:

MArigid
= MAH + MAF (2.53)

It is in general acknowledged that added mass coefficients are not strongly depen-
dent on viscous effects (such as circulation and boundary layer growth). Indeed,
many of the experimental techniques currently in use for determining the coeffi-
cients make this assumption since they ignore the dependence of added mass on
both the orientation of the vehicle to the oncoming flow and time in an unsteady
flow. A potential flow analysis, neglecting circulation, is an appropriate method for
estimating the added mass coefficient.

Fortunately, many of the added mass derivatives contained in the general expres-
sions for added mass are either zero or mutually related when the body has various
symmetries.

Added Mass Derivatives for a Prolate Ellipsoid An ellipsoid considered with
the origin at the center of the ellipsoid, can be described as:

x2

a2
+ y2

b2
+ z2

c2
= 1 (2.54)

Here a, b, c are the semi-axes. A prolate spheroid is obtained by letting b = c and
a > b. Cross coupling terms will be zero due to body symmetry about three planes:

Xu̇ = −m
α0

2 − α0

Yv̇ = Zẇ = −m
β0

2 − β0
Kṗ = 0

Nṙ = Mq̇ = −1

5

(b2 − a2)2(α0 − β0)

2(b2 − a2) − (b2 + a2)(α0 − β0)

(2.55)

where the mass of the prolate spheroid is

m = 4

3
πρab2 (2.56)
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The eccentricity e is introduced

e2 = 1 − b2

a2 (2.57)

Hence, the constants α0 and β0 can be calculated as

α0 = 2(1 − e2)

e3

(
1

2
ln

(
1 + e

1 − e

)
− e

)

β0 = 1

e2 −
(

1 − e2

2e3 ln

(
1 + e

1 − e

)) (2.58)

An alternative representation of these mass derivatives is presented by Lamb [123]
who defines Lamb’s k-factors as

k1 = α0

2 − α0

k2 = β0

2 − β0

k′ = e4(β0 − α0)

(2 − e2)(2e2 − (2 − e2)(β0 − α0))

(2.59)

Hence the definition of the added mass derivatives simplifies to

Xu̇ = −k1m

Yv̇ = Zẇ = −k2m

Nṙ = Mq̇ = −k′Iy

(2.60)

where the moment of inertia of the prolate spheroid is

Iy = Iz = 4

15
πρab2(a2 + b2) (2.61)

The lighter than air robot hull is generally responsible for the greatest contribu-
tion to the added mass coefficient. In practice, a simple approach to obtain the added
mass and moments of inertia of the hull is to approximate the hull as a set of ellip-
soids of revolution. For each ellipsoid, all the off-diagonal terms in the added mass
matrix are considered to be zero.

Fins added masses are calculated semi-empirically using flat plat models. The
added mass and moment of inertia of the fins can be computed by integrating the
2D added mass of the cross section over the fin region. The contribution of the fins
to these 2D added mass terms can be written as:

mF,22 = mF,33 = ρπ

(
b − R2

s

b

)2

mF,44 = 2

π
k44ρb4

(2.62)
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where Rs is the hull cross sectional radius and b is the fin semi span. The factor k44
is a function of Rs/b. The non-zero elements in the added mass matrix of the fins
are obtained from the following integrals:

mF,22 = mF,33 = ηf

xFE∫

xFS

(
mF,22dx

)
(2.63)

mF,35 = −mF,26 = mF,33 = ηf

xFE∫

xFS

(
mF,22xdx

)
(2.64)

mF,44 = ηf

xFE∫

xFS

(
mF,44dx

)
(2.65)

mF,55 = mF,66 = ηf

xFE∫

xFS

(
mF,22x

2dx
)

(2.66)

where xFS, xFE are respectively the x coordinates of the start and end positions of
the fins. An efficiency factor ηf is included to account for 3D effects.

Complete Lighter than Air Robot Model To make an operational lighter than
air robot, it is necessary to provide control surfaces and propulsion units (in the gon-
dola). Each of these items has its own drag modified when it is fitted to the hull as it
is then operating in the flow field of the hull and vice-versa. The ailerons modify all
the forces and moments coefficients. However, correctly dimensioned and situated,
they stabilize the streamlined body. The gondola introduces an asymmetry in the
geometry of the vehicle. It influences all the forces sometimes only modifying the
first and second term introduced above through the coefficients Ci and sometimes
adding a third term independent of the angle of attack α and the skid angle β .

Hence, the aerodynamical tensor, defined by the contribution of all aerody-
namic phenomena, can be synthesized as: Coriolis-centrifugal effects associated
to the added mass and can also be represented as an damping effect represen-
tation, i.e. D(Ω)VA. Moreover, the pure translation motion action tensor, τ1 =
(01×3, (V × MArigid

V )T )T , is usually ignored in the other aerial applications.
Using the Complementarity between the coefficients of Kirchoff and Bryson the-

ories, the following damping coefficient D = [DV DΩ ]T , is obtained:

DV =

⎛
⎜⎜⎜⎜⎝

0 a22r −a33q

pm13 + r(xm11 − a11) 0 a33p

(a11 − xm22 )q −a22p 0
pm33 + r(a15 + xm13 ) −(a62 + a35)q (a62 + a35)r + a24p

(a35 + xm22 )q −a42r + a62p −a15q

−(a51 + a24 − xm13 )p − (a26 − x2m11)r (a15 + a42)q −a53p

⎞
⎟⎟⎟⎟⎠
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DΩ =

⎛
⎜⎜⎜⎜⎝

a24r −a35q a26r

a35q −a15q 0
−a24p − a26r a15q 0

−a64q (a55 − a66)r 0
a64p + (a66 − a44)r 0 −a64r

(a44 − a55)q a46r 0

⎞
⎟⎟⎟⎟⎠

(2.67)

The aerodynamic torques are thus given by the following relation:

τa = MRBV̇A + D(Ω)VA + τsta (2.68)

2.3.2.5 Complete Model with Euler Angles

The complete mechanical-aerodynamical lighter than air robot model can be given
by:

MV̇ = MRB V̇w + C(V)V + τs + D(Ω)VA + τsta + τp + MdV (2.69)

η̇ = RV (2.70)

where M = MArigid
+ MRB is the total mass matrix.

Remark 2.12 For a system with added masses, the term V × MV is different from
zero. The terms V × MV , Ω × MV , V × MΩ and Ω × MΩ show the centrifugal
and Coriolis components.

Another modeling approach is considered in the next section.

2.3.3 6 DOF Dynamics: Lagrange Approach

One advantage with the Lagrangian approach is to deal with two scalar energy func-
tions W (kinetic energy) and Ep (potential energy). The Newtonian approach is vec-
tor oriented since everything is derived from Newton’s second law. The Lagrangian
description uses generalized coordinates (one for each degree of freedom), all of
which must be independent. The equations of motion for lighter than air vehicles are
derived in a Lagrangian framework. The Lagrangian approach has several distinc-
tive features to the Newtonian approach. The derivation of the aerodynamic added
inertia and the vehicle’s rigid body equations of motion can be done in a common
framework [123, 143, 150, 231]. The added inertia is given a physical interpretation
when the vehicle-ambient air system is considered from an energy point of view
instead of a force moment approach. Recall that:

d

dt

(
∂L

∂η̇

)
− ∂L

∂η
+ ∂Pd

∂η̇
= τη =

m∑
i=1

Fi(η)ui (2.71)
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where L is the Lagrangian F defines the input directions and the additional term
describes the dissipative forces Pd as a power function.

∂Pd

∂η̇
= Dη (η, ν) η̇ (2.72)

Forces dissipating energy are called dissipative forces: friction, air drag. . . The
generalized coordinates are taken to be η = (x, y, z,φ, θ,ψ)T so that V =
(u, v,w,p,q, r)T are dependent variables related to the generalized coordinates
[11, 12, 41, 42, 64, 105, 207].

A rigid body moving in an unbounded fluid is holonomic due to, the unbound-
edness and the infinite extent of the fluid. Hence a rigid body moving without con-
straints in 6 degrees of freedom is an ordinary Lagrangian system. However, the
infinite degrees of freedom system by the ambient air particles cannot be said to be
holonomic.

The Lagrangian for the vehicle-ambient air system is defined as:

L = WRB + WA − Ep (2.73)

where WRB is the rigid body kinetic energy, WA is the fluid kinetic energy and Ep

is the potential energy defined implicitly by:

∂Ep

∂η
= τs(η) (2.74)

Hence the total kinetic energy can be expressed as:

WRB + WA = 1

2
η̇T R−T

(
MRB + MArigid

)
R−1η̇ (2.75)

where the following notation is used: R−T = (R−1)T .
The equations of motion for lighter than air vehicles can be written as follows:

MV̇ + C(V)V + D(V)V + τs(η) = �(φ) + τa + τp

η̇ = RV
(2.76)

M is the inertia matrix including the aerodynamic virtual inertia (added mass),
C(V)V contains the nonlinear forces and moments due to centrifugal and Corio-
lis forces and D(V)V is the vehicle damping matrix where the potential damping
and the viscous effects are lumped together. τs(η) is a vector containing the restor-
ing terms formed by the vehicle’s buoyancy and gravitational terms , �(φ) is the
atmospheric disturbance vector and τa + τp is a tensor containing the aerodynamic
and propulsion tensors. R is the velocity transformation matrix which transforms
velocities from the body fixed frame Rm to the Earth fixed reference frame Rf .
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2.3.3.1 Kinetic Energy

The kinetic energy of a solid in motion can be written as:

WRB(η, η̇) = 1

2

∫ ∫ ∫ [
ρ (V + (Ω × r))T (V + (Ω × r))

]
dv (2.77)

or equivalently:

WRB(η, η̇) = 1

2
η̇T MRBη̇ (2.78)

with the symmetric positive definite matrix:

MRB =

⎛
⎜⎜⎜⎜⎜⎜⎝

m 0 0 0 mzg −myg

0 m 0 −mzg 0 mxg

0 0 m myg −mxg 0
0 −mzg myg Ix −Ixy −Ixz

mzg 0 −mxg −Ixy Iy −Iyz

−myg mxg 0 −Ixz −Iyz Iz

⎞
⎟⎟⎟⎟⎟⎟⎠

(2.79)

The radiation induced forces and moments can identified as the sum of three com-
ponents:

– Added mass due to the inertia of the surrounding fluid
– Radiation induced potential damping due to the energy carried away by the wind
– Weight and buoyancy (Archimedes) forces

Added mass should be understood as pressure-induced forces and moments due to
a forced harmonic motion of the body which are proportional to the acceleration
of the body. In order to allow the vehicle to pass through the air, the fluid must
move aside and then close behind the vehicle. As a consequence, the fluid passage
possesses kinetic that it would lack if the vehicle was not in motion. The kinetic
energy of the air particles generated by a vehicle in motion can be written as:

WA(η, η̇) = 1

2
η̇T MArigid

η̇ (2.80)

with MArigid
the added mass and inertia matrix, symmetric positive definite. Math-

ematically, added mass is the proportionality constant relating the kinetic energy in
the air surrounding the vehicle to the square of the vehicle speed, in the same way
that vehicle mass relates vehicle kinetic energy to speed squared. During vehicle
accelerations, both the kinetic energy of the vehicle and the air are changed, their
ratio remaining constant in an ideal fluid. Therefore, an accelerating vehicle must
overcome the effective inertia of both the vehicle and added mass. The added mass
for a lighter than air robot can be equivalent to the actual vehicle mass, and so must
be accounted for properly.

Remark 2.13 The air is assumed to be an incompressible and homogeneous fluid of
infinite extent.
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2.3.3.2 Lighter than Air Robot Model

Let the motion of the lighter than air robot be described by its inertial velocity
V a 6D vector including the inertial linear V and angular Ω velocities. Let the
surrounding air be described by an inertial wind velocity VW = (VW ,ΩW )T . The
lighter than air robot has thus a relative air velocity Va :

Va = V − VW (2.81)

The total kinetic energy is defined as a sum [9, 80, 150, 206, 214]:

W = WG + WB + WV (2.82)

Accounting for:

– WG: The kinetic energy of the vehicle expressed in the center of gravity G located
at a distance NG from the body fixed frame center N:

– WB : The kinetic energy added to the buoyancy air (displaced by the lighter than
air robot volume) expressed in the center of lift C and where MB is the general-
ized mass matrix of the buoyancy air. In the case of the buoyancy air, the kinetic
energy is the difference between the extra kinetic energy and the contribution of
the air mass motion.

– WV : The energy due to an extra virtual mass also expressed in C and where Mv

is the generalized virtual mass matrix of the mass of air around the lighter than
air robot and displaced with its relative motion in the air.

where

WG = 1

2
VT

GMGVG (2.83)

with

WB = 1

2
VT

a MBVa − 1

2
VT MBV (2.84)

and

Wv = 1

2
VT

a MvVa (2.85)

where the generalized mass matrices being given by

MG =
(

mI3×3 0
0 IG

)
MB =

(
mBI3×3 0

0 JB

)
Mv =

(
Mv 0
0 Iv

)
(2.86)

Therefore, the total kinetic energy may be written as:

W = 1

2
VT

GMGVG + 1

2
VT

a MvVa − 1

2
VT MBV + 1

2
VT

a MBVa (2.87)
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All terms of the kinetic energy in the body-fixed frame consider that the linear
speed of the center of gravity G is related to the linear speed of the body fixed frame
center: the bow N, through the angular speed:

VG =
(

I3×3 −Sk(NG)

03×3 I3×3

)
V (2.88)

Substituting in the previous Eq. (2.87) gives:

W = 1

2
VT MNV − 1

2
VT MBV + 1

2
VT

a MBVa + 1

2
VT

a MvVa (2.89)

with

MN =
(

mI3×3 −mSk(NG)

mSk(NG) IG − m(Sk(NG))2

)
(2.90)

Therefore,

W = 1

2
(V − VW)T (Mv + MB)(V − VW) + 1

2
VT (MN − MB)V (2.91)

or

W = 1

2
VT (MN + Mv)V + 1

2
VT

w (MB + Mv)Vw − VT (MB + Mv)Vw (2.92)

Finally, the kinetic energy can be expressed as a function of the lighter than air robot
and wind inertial velocities

W = W1 + W2 + W3 (2.93)

or equivalently:

W1 = 1

2
VT MvnV (2.94)

with

W2 = 1

2
VT

W MBvVW (2.95)

and

W3 = −VT MBvVW (2.96)

where

Mvn = MN + Mv =
(

mI3×3 + Mv −mSk(NG)

mSk(NG) IG − m(Sk(NG))2 + Iv

)

MBv = Mv + MB =
(

mBI3×3 + Mv 0

0 JB + Iv

)
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Therefore, the Lagrange-Hamilton equations of motion are applied to each of the
three terms of the kinetic energy in the sequel.

2.3.3.3 First Term of the Kinetic Energy

The first term of the kinetic energy corresponding to the no wind case is then:

W1 = 1

2
VT MvnV = 1

2
η̇T R−T MvnR−1η̇ (2.97)

The partial derivative of this kinetic energy W1 relative to η̇ is

∂W1

∂η̇
= R−T MvnR−1η̇ (2.98)

since

MT
vn = Mvn (2.99)

Now taking the time derivative gives:

d

dt

(
∂W1

∂η̇

)
= Ṙ−T MvnR−1η̇ + R−T ṀvnR−1η̇

+ R−T MvnṘ−1η̇ + R−T MvnR−1η̈ (2.100)

Or equivalently:

d

dt

(
∂W1

∂η̇

)
= Ṙ−T MvnV + R−T ṀvnV + R−T MvnV̇ (2.101)

Where the following relations are used:

Ṙ−1R + R−1Ṙ = 06×6

V̇ = R−1η̈ − R−1ṘR−1η̇
(2.102)

The partial derivative of the kinetic energy W1 relative to η is thus:

∂W1

∂η
= 1

2

∂

∂η

(
η̇T R−T MvnR−1η̇

)
= KMvnV (2.103)

with

K = ∂

∂η

(
R−1η̇

)
(2.104)

or (
∂

∂η1

(
R−1η̇

)
∂

∂η2

(
R−1η̇

)
)

=
(

03×3 03×3
K1 K2

)
(2.105)
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The generalized force relative to the kinetic energy with no wind is then obtained:

F1(η, η̇) = R−T MvnV̇ +
(

R−T Ṁvn + Ṙ−T Mvn − KMvn

)
V (2.106)

2.3.3.4 Second Term of the Kinetic Energy

The second term of the kinetic energy is computed, defining the wind coordinates
vector as ηW = (xW ,yW , zW ,φW , θW ,ψW)T whose time derivative is related to the
wind velocity:

η̇W = RVW (2.107)

The second term of the kinetic energy corresponds to:

W2 = 1

2
VT

W MBvVW = 1

2
η̇T

W R−T MBvR−1η̇W (2.108)

with

d

dt

(
∂W2

∂η̇

)
= d

dt

(
∂

∂η̇

(
1

2
η̇T

W R−T MBvR−1η̇W

))
= 0 (2.109)

The partial derivative of the kinetic energy W2 relative to the generalized coor-
dinate η is

∂W2

∂η
= ∂

∂η

(
1

2
η̇T

W R−T MBvR−1η̇W

)
(2.110)

or

∂W2

∂η
= KW MBvVW (2.111)

where

KW =
(

03×3 03×3
KW1 KW2

)
(2.112)

The generalized force relative to is then obtained:

F2 = −KW MBvVW (2.113)

2.3.3.5 Third Term of the Kinetic Energy

Applying the same procedure to the third term, W3 = −η̇T R−T MBvVW we obtain:

d

dt

(
∂W3

∂η̇

)
= −Ṙ−T MBvVW − R−T MBvV̇W (2.114)

leading to:

F3(η, η̇) = −R−T MBvV̇W − Ṙ−T MBvVW + KMBvVW + KW MBvV (2.115)
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2.3.3.6 Forces

Summing up all the generalized forces, we have:

F(η, η̇) = R−T MvnV̇ +
(

R−T Ṁvn + Ṙ−T Mvn − KMvn

)
V − KW MBvVW

− R−T MBvV̇W − Ṙ−T MBvVW + KMBvVW + KW MBvV (2.116)

Let’s introduce

F(V) = RT F(η, η̇) (2.117)

Thus

F(V) = MvnV̇ + (Ω6 + V6)MvnV + ṀvnV − MBvV̇W

− (Ω6 + V6)MBvVW − VW6 MBvV (2.118)

where

V6 =
(

03×3 03×3
Sk(V ) 03×3

)
(2.119)

and

Ω6 =
(

Sk(Ω) 03×3
03×3 Sk(Ω)

)
(2.120)

and

Vw6 =
(

03×3 03×3
Sk(VW ) 03×3

)
(2.121)

where Sk(V ), Sk(Ω), Sk(VW) denote the antisymmetric cross product matrices cor-
responding to the vectors V , Ω , VW and using the following equations

Sk(V ) = −J T K1

Sk(Ω) = J T
(
(J̇ )−T

)− K2

Sk(VW ) = −JT Kw1

(2.122)

2.3.3.7 Potential Energy

The potential energy stored in the vehicle is the sum of the contributions relative to
each subsystem [55, 74, 105]. The contribution due only to the gravitational force is
expressed by:

Ug = −
∫

gT
0 p∗

i ρdv (2.123)
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The gravitational force vector is given by the difference between the lighter than air
robot weight (acting at the center of gravity) and the lift force (acting upwards on
the center of lift):

Fg = ∂L

∂q
(q, q̇) =

⎛
⎜⎜⎜⎜⎜⎜⎝

(mg − B) sin θ

−(mg − B) cos θ sinφ

−(mg − B) cos θ cosφ

Bzb cos θ sinφ − Byb cos θ cosφ

Bxb cos θ cosφ + Bzb sin θ

−Byb sin θ − Bxb cos θ sinφ

⎞
⎟⎟⎟⎟⎟⎟⎠

(2.124)

where B is the buoyancy force, ¯CN = (xb, yb, zb)
T represents the position of the

center of lift with respect to the body fixed frame. This leaves the final kinemat-
ics/wind torque equations as

T = F(V) − Fg (2.125)

Both 6 degrees of freedom models are necessary for control purpose closed loop.
However, for guidance purpose, the following 3 degrees of freedom gives enough
information about the lighter than air robot motion, while keeping some simplicity.

2.3.4 Translational Dynamics

For the purpose of flight path generation, it is usually sufficient to treat only the
translational motion. Using a point mass model for the lighter than air robot implies
that the yaw with respect to the relative wind frame is always zero. This is also
demonstrated by the absence of side slip in the aerodynamic model [126].

The translational equations of an aerial vehicle through the atmosphere are di-
rectly derived from Newton’s law. In this derivation, the assumptions are that the
Earth is non rotating and flat, and that the vehicle weight is constant. The external
forces consist of the thrust, the gravity and buoyancy forces and the aerodynamic
force. The gravity and buoyancy forces are treated in the same way.

The position of the lighter than air robot is described in the local coordinate
system ENU with unit vectors e, n, u pointing East, North and Up. Derivation of
kinematic equations involves three velocity concepts: inertial velocity, local velocity
and wind-relative velocity. The flight path coordinate system is defined, that relates
the velocity vector of the vehicle with respect to Earth to the geographic system. Two
angles relate the velocity coordinates to the geographic system. The heading angle
χ is measured from North to the projection of V (the aircraft velocity relative to the
wind) in the local tangent plane and the flight path angle γ takes vertically up to V.
The wind relative velocity vector is defined by the airspeed V, the flight path angle γ

and the heading χ . The variables x, y, z are the aircraft inertial coordinates. The x, y
directions are chosen such that the xy plane is horizontal, the x-direction is aligned
with the principal axis of symmetry and the z-direction is ascending vertically. The
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lighter than air equations of motion are expressed in a velocity coordinate frame
attached to the lighter than air robot, considering the velocity of the wind W =(

Wx

Wy

Wz

)
(components of the wind velocity in the inertial frame). The frame matrix

being given by:

R =
⎛
⎝

cosγ 0 sinγ

0 1 0
− sinγ 0 cosγ

⎞
⎠
⎛
⎜⎝

cos(π
2 − χ) sin(π

2 − χ) 0

− sin(π
2 − χ) cos(π

2 − χ) 0

0 0 1

⎞
⎟⎠

=
⎛
⎝

cosγ sinχ cosγ cosχ sinγ

cosχ − sinχ 0
sinγ sinχ sinγ cosχ cosγ

⎞
⎠

The velocity with respect to the local ENU frame is determined as:

Vlocal = V + W = RT

⎛
⎝

V

0
0

⎞
⎠+

⎛
⎝

Wx

Wy

Wz

⎞
⎠

It thus may be deduced that:

Vlocal = (V sinγ + Wz)u + (V cosγ sinχ + Wx) e + (V cosγ cosχ + Wy)n

The translational kinematics of an aerial vehicle taking into account the wind
effect can thus be expressed by the following equations:

ẋ = V sinχ cosγ + Wx

ẏ = V cosχ cosγ + Wy

ż = V sinγ + Wz

(2.126)

Three degrees of freedom dynamical models used in trajectory optimization for
aerial vehicles typically include wing body aerodynamics force effects but ignore
the aerodynamic force effects produced by the control surfaces. The implementa-
tion uses the translational equations of motion formulated from Newton’s law and
expressed in flight path coordinates. The state variables and their derivatives are the
speed of the vehicle center of mass with respect to Earth V , V̇ , the heading angle
and rate χ , χ̇ and the flight path angle and rate γ , γ̇ . Newton’s law is applied with
aerodynamic, propulsive and gravity forces as externally applied forces.

The acceleration expressed in the local frame is [201, 231]

⎛
⎝

V̇

0
0

⎞
⎠−

⎛
⎝

V

0
0

⎞
⎠×

⎡
⎣
⎛
⎝

cosγ 0 − sinγ

0 1 0
sinγ 0 cosγ

⎞
⎠
⎛
⎝

0
0
χ̇

⎞
⎠+

⎛
⎝

0
γ̇

0

⎞
⎠
⎤
⎦=

⎛
⎝

V̇

χ̇V cosγ

−γ̇ V

⎞
⎠

The approach followed in [126, 147, 228, 231] is proposed in this section. All the
external forces must be expressed in the wind axes coordinates. The contribution of
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the added mass phenomenon is described as:

FAM = −
(
Cb

w

)T

MaC
b
w

⎛
⎝

V̇

χ̇V cosγ

−χ̇V

⎞
⎠

= −
⎛
⎝

m11 m12 m13
m12 m22 m23
m13 m23 m33

⎞
⎠
⎛
⎝

V̇

χ̇V cosγ

−γ̇ V

⎞
⎠ (2.127)

where the added mass matrix is given by Ma =
(

Xu̇ Xv̇ Xẇ

Yu̇ Yv̇ Yẇ

Zu̇ Zv̇ Zẇ

)
and the matrix Cb

w can

be written as:

Cb
w =

⎛
⎝

cosα 0 sinα

0 1 0
− sinα 0 cosα

⎞
⎠ (2.128)

with this diagonal dominant matrix (Cb
w)T MaC

b
w approximated by a diagonal ma-

trix whose inverse can be calculated:

m11 = Xu̇ cos2 α − 2Xẇ cosα sinα + Zẇ sin2 α

m22 = Yv̇

m33 = Xu̇ sin2 α + 2Xẇ sinα cosα + Zẇ cos2 α

(2.129)

The gravity force is expressed by:

fg =
⎛
⎝

cosγ sinχ cosγ cosχ sinγ

cosχ − sinχ 0
sinγ sinχ sinγ cosχ cosγ

⎞
⎠
⎛
⎝

0
0

B − mg

⎞
⎠

The aerodynamic fa and thrust fp forces are given in body coordinates:

fap = fa + fp

=
⎛
⎝

1 0 0
0 cosσ sinσ

0 − sinσ cosσ

⎞
⎠
⎛
⎝
⎛
⎝

cosα 0 − sinα

0 1 0
sinα 0 cosα

⎞
⎠
⎛
⎝

T

0
0

⎞
⎠+

⎛
⎝

−D

0
L

⎞
⎠
⎞
⎠

=
⎛
⎝

T cosα − D

(T sinα + L) sinσ

(T sinα + L) cosσ

⎞
⎠

The angle σ is the bank angle.
The translational dynamics are given by the following relations:

V̇ = 1

m + m11
(T cosα − D + (B − mg) sinγ )

− m

m + m11

(
Ẇx cosγ sinχ + Ẇy cosγ cosχ + Ẇz sinγ

)
(2.130)
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χ̇ = 1

(m + m22)V cosγ
(L + T sinα) sinσ

− m

m + m22

(
Ẇx cosχ − Ẇy sinχ

V cosγ

)
(2.131)

γ̇ = −1

(m + m33)V
(L cosσ + T cosσ sinα + (B − mg) cosγ )

+ m

(m + m33)V

(
Ẇx sinγ sinχ + Ẇy sinγ cosχ + Ẇz cosγ

)
(2.132)

The parameter Ar is the reference area or characteristic area, ρ is the atmospheric
density, m is the mass of the lighter than air robot, M is the Mach number, B =
ρ.Vol.g is the buoyancy force, CL(M,α) and CD(M,α) are respectively the lift and
drag parameters, while the angle α is the angle of attack. The lift L and drag D are
given by:

D = 1

2
CD(M,α)V 2Arρ

L = 1

2
CL(M,α)V 2Arρ

(2.133)

Atmospheric density is computed using the standard atmosphere. Generally the
lift coefficient is a linear function of the angle of attack and the drag coefficient is a
quadratic function of CL(M,α):

CL(M,α) = CL0(M) + kLα (M)α

CD(M,α) = CD0 + KC2
L = kD0(M) + kD1(M)α + kD2(M)α2 (2.134)

where CL0 , CL1 and kD0 , kD1 , kD2 are resulting coefficients with respect to α. The
induced drag factor can be determined from the aerodynamic efficiency Emax and
the zero-lift drag coefficient CD0 as

K = 1

4CD0E
2
max

(2.135)

These equations have an important place in aerospace vehicle study because they
can be assembled from trimmed aerodynamic data and simple autopilot designs.
Nevertheless, they give a realistic picture of the translational and rotational dynam-
ics unless large angles and cross coupling effects dominate the simulations. Trajec-
tory studies, performance investigations, navigation and guidance evaluations can
be successfully executed with simulations of these equations.

2.4 Aerology Characteristics

The medium of flight is the relatively thin layer of air that envelopes the Earth (about
1 percent of its diameter). This atmosphere is driven into motion by Earth rotation
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and solar heating and is host to a variety of complex electromagnetic, chemical and
thermodynamical processes.

The physical atmospheric boundary layer flows over the Earth surface, which
influences the thickness and spatial growth of the layer, in such a way that a typical
Atmospheric Boundary Layer extends roughly 300 m above ground level. Because
the Atmospheric Boundary Layer is turbulent, a time averaged description does not
account for all of the velocity fluctuations and turbulent dispersions. To model the
3D unsteady motion, a direct numerical simulation of the incompressible Navier-
Stockes equation is employed for Reuτ = 270 where Re is the number of Reynolds
based on the boundary-layer thickness and uτ is the wall friction velocity based on
the shear stress.

The motion of a lighter than air robot in turbulence is subjected to buffeting by
random external forces and as a result the attitude angles and trajectory experiences
random variations with time [1, 8, 108, 228, 229]. The time scale and intensity of
these responses are governed by the scale and intensity of the turbulence, as well
as the speed and characteristics of the vehicle. The total velocity field of the atmo-
sphere is variable in both space and time, composed of a mean value and variations
from it. The mean wind is a parameter primarily for navigation and guidance.

At landing and takeoff, lighter than air robots fly close to the ground. The pres-
ence of the ground modifies the flow past the lighter than air robot significantly
so that large changes may take place in the trim and stability. The presence of the
ground imposes a boundary condition which inhibits the downward flow of air nor-
mally associated with the lifting action.

Excessive surface winds can cause an unsafe situation due to three types of wind
vectors: headwind, tailwind and crosswind. In addition to steady state surface winds,
essentially all high winds are accompanied by gusts. Wind gusts are a quick change
in the wind speed and/or direction [2].

– Windshift is a sustained change in the average wind direction of 45 degrees or
more which takes place in less than 15 mn or a lesser shift if the wind speed
during this period is 6 knots or greater. A wind shift could possibly turn a strong
headwind into an unacceptable crosswind that suspends operations. Windshifts
are typically associated with frontal passages.

– Windshear is an abrupt change in wind speed or direction, it can be vertical or
horizontal. Windshear is usually associated with frontal passages, gusty winds
and convective activity. Windshear becomes a hazard when an airship is close to
the ground and at slow speeds, typically during the take-off and landing phases
of flight.

– En route wind is not a hazard by itself. Strong headwinds will cause longer flight
times which then require more fuel to be carried out and burned.

– En route turbulence can affect the maximum altitude capability of the airship.
A typical flight cruising altitude is based on smooth air. Turbulence cannot be seen
at any distance ahead and is only known when it is encountered. Weather radar are
an excellent indication of precipitation and moisture content which when severe,
can be an indication of turbulence.
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– Convective induced turbulence is caused by the instability and resulting up and
down drafts due to convective activity typically associated with thunderstorms.
Significant Convective induced turbulence is typically associated with moderate
or heavy precipitation. Airborne radar can indicate the precipitation regions where
Convective induced turbulence is likely to exist. However, it exists also outside
the boundaries of precipitation and both the existence and magnitude of Convec-
tive induced turbulence is impossible to predict with current technology.

– Clear air turbulence is typically caused by the windshear that exists at the bound-
aries between large air masses. It exists when there is no visible sign of moisture
or weather event.

– Low altitude windshear is usually associated with a severe meteorological phe-
nomenon, called the downburst. It involves a descending column of air, which
then spreads horizontally in the neighborhood of the ground. This condition is
hazardous because a low and slow airship might encounter a headwind coupled
with a downdraft followed by a tailwind coupled with a downdraft. Ideally, what
the downburst model should generate is the wind vector as a function of posi-
tion in 3D field. Such a model would yield not only the wind at the origin of
the body fixed frame, but also the gradients of the vertical, horizontal and lateral
wind along the airship. These gradients may provide important inputs to the aero-
dynamic moments and hence to the attitude dynamics, during a critical portion of
the landing or take-off. The domain of principal interest is a region close to the
ground. The velocities involved are low and the ground boundary layer associated
with the downburst can be expected to be relatively thin.

– Another dangerous form of windshear is the microburst. Microburst is an isolated
wind event associated with the mature stage of a thunderstorm cell. A microburst
is formed when a column of air at high altitudes quickly cools because of evap-
oration of ice, snow or air and becoming denser than the surrounding air, falls
rapidly to the ground. On hitting the ground, this mass of air spreads radially out-
ward in all directions. A core of such a downburst can be about 2–3 km in width
and the winds generated can be as high as 150–200 km/h, the life of a microburst
is typically 5–15 mn. The microburst wind may be accompanied by rain or may
be dry. The wind originated at the base of a thunderstorm starts as a downburst
flowing shaft of air less than 4.5 Km in diameter. As the air falls to the ground,
it accelerates to speeds that can exceed 240 Km/h at its core. As the wind shift
gets close to the ground, the wind slows and gets deflected radially outward from
the shaft center. The outflow wind eventually dissipates. This phenomenon can
be extremely dangerous especially if the airship is low and slow [115].

2.4.1 Wind Profile

The winds change considerably with altitude. The general trend is that wind speed
gradually increases as the vehicle ascends through the troposphere, reaching a peak
in the jet stream altitude range of 10–15 km. It then gradually decreases again to
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reach a minimum speed in the lower portion of the stratosphere, generally between
the 18–25 km altitude. The current wind profile changes with geographic location
and the time of year. Typical wind behavior can be adequately characterized based
upon meteorological data, which provides a mechanism for design phase planning.
The Earth’s surface creates a boundary-layer effect so that winds generally increase
with altitude [147, 227].

Random turbulence is a chaotic motion of the air that is described by its statistical
properties. The main statistical features that need to be considered are: stationarity,
homogeneity, isotropy, time and distance scalers, probability distributions, correla-
tions and spectra.

Moreover, unlike scalar random processes in which there is only one dependent
and one independent variable, turbulence is a vector process in which the velocity
vector is a random function of the position vector and of time.

Recognizing that the scale of atmospheric turbulence is usually larger than the
flight vehicle, in a small region, the velocity of the wind can be regarded as a linear
function of distance. It then follows that in this region, the motion is a superposition
of three simple basic fields: translation, rotation and strain:

W(r) = W0 + ωAr + E1r + E2r

where W(r) is the wind velocity at r , W0 is its value at the origin and ωA, E1,
E2 are matrices containing the nine velocity gradients as elements, ωA represents
solid-body rotation of the air and E1, E2 are axial and shear rates of strain.

– In the case of high altitude when the scale of atmospheric turbulence is large, the
assumption of uniform velocity can be made with little loss in accuracy. This is
because the components of ωA, E1, E2 become small as the scale becomes large.

– In small scale turbulence, close to the ground, ωA, E2 are important. The wind
conditions that exist close to the ground (altitude < 600 m) within the Earth are
very different from those at higher altitude and are governed by quite different
parameters. At these low altitudes, flight path control is crucial. The principal
factors that govern the wind structure (profile of mean wind, turbulence’ inten-
sities and turbulence scales) are the roughness and uniformity of the underlying
terrain and the thermal stability of the atmosphere. Thermal stability is a powerful
factor, in fixing turbulence characteristics at low wind speeds, but for high winds,
a neutrally stable atmosphere is a good approximation

Two wind profiles are often used to model the variation in wind close to the surface:

W = V ∗

K

(
ln

(
h

h0

)
− Ψ

h

L∗

)

W = Vr

(
h

hr

)A
(2.136)

where W is the wind speed at altitude h, h0 is a roughness length, K is von Karman
constant, Ψ h

L∗ is a correction for non neutral stratification defined as a function of
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altitude and the Monin-Obukhov length L∗, the subscript r refers to some reference
velocity and height and A is a power law index that varies as a function of surface
friction (e.g. ≈ 0.10 for smooth surfaces such as a lake or ocean and ≈ 0.40 for an
urban area with tall buildings). The reference height hr typically varies between 10
and 100 m, depending on the location of the measurement equipment. In addition,
the power law index has been found to vary as a function of the surface wind speed.
Above a particular height h∗, the wind speed can be treated as constant (h∗ ≥ hr ).

Although the mean wind direction usually veers with height, the basic model
assumes that the wind vector does not change direction in the boundary layer. The
following cases may be studied:

– Uniform gust approximation (simplest case)
– Linear field approximation
– Correlations and spectra of gust gradients
– Unsteady aerodynamics

Discrete gusts are isolated encounters with steep gradients (horizontal or vertical) in
the horizontal and vertical speed of the air. These gradients may occur at the edges
of thermals and down drafts, in the wakes of structures, mountains, hills or at tem-
perature inversions. They may also appear as rare extremes of turbulence in clouds,
storms and the jet stream, possibly associated with organized structures embedded
in the otherwise chaotic background.

2.4.2 Down Burst

A down burst is one mass of cold air that descends to the ground in a column. It
is a particular case of down drafts. As the wind approaches the ground the wind
changes its direction and radiates outward. A down burst usually picks up dust and
may be visually detected. Doppler radar is able to look through a down burst and
measure its air movement. A down-draft flow is classically modeled by a pair of 3D
vortex rings that are placed symmetrically with respect to the ground. The stream
function of a 3D irrotational and incompressible ring vortex is expressed as complete
elliptic integrals. In this paragraph, the analytic formulation presented in [228] will
be followed where a wind velocity components for a primary vortex ring located at
(0,0, H) are modeled by:

Wx = x

r
WmHm

Wy = y

r
WmHm

Wz = 4

3
WmHz

(2.137)
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with

Hm = hp/r2p − hp/r1p√
r2 + h2

p + R2
v

− hm/r2m − hm/r1m√
r2 + h2

m + R2
v

(2.138)

Wm = 1.182

2π
RΓ (1 − er1p/r1m) (2.139)
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r2
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)0.75

(0.25r2 + h2
p + R2

v)
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− ( r1
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)0.75 + ( r2
r2m
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(2.140)

and

r =
√

x2 + y2 hp = h + H hm = h − H

r1 = r − R r2 = r + R r1p = r2
1 + h2

p (2.141)

r1m = r2
1 + h2

m r2p = r2
2 + h2

p r2m = r2
2 + h2

m

Rv is the ring vortex radius and Γ is its intensity. In this paragraph, the downburst
wind field is assumed stationary, for example for Wx :

Ẇx = ∂Wx

∂x
ẋ + ∂Wx

∂y
ẏ + ∂Wx

∂z
ż (2.142)

The same stands for Wy , Wz.
In a surveillance flight, an aerial vehicle would circle around a given area. The

onboard warning/detection systems may be: radar, lidar (light detection and rang-
ing) or infrared type devices. Radar devices measure the Doppler velocity of water
droplets moving with the winds. When there is no rain, the Lidar devices perform
well because the laser signal reflects from aerosol particles carried in the atmosphere
at low altitudes. The infrared devices rely on the temperature changed in the farfield
(1–3 km for the lighter than air robot) caused by the windshear/microburst activ-
ity. Once a down-draft is discovered, a lighter than air vehicle may repeatedly fly
through it during its limited lifespan. A downburst may last about 5–10 min. It can
create vertical winds up to 20 ms/s and as it spreads out near the ground, horizontal
winds up to 40 m/s. If the potential peak airspeed exceeds the performance capabil-
ity of a lighter than air vehicle, it should try to avoid the down-draft. Some collision
avoidance methods are presented in the next chapter.

2.5 Conclusions

Lighter than air robots are a highly interesting study object due to their stability
properties. Here, motion is referenced to a system of orthogonal body axes fixed
in the lighter than air robot, with the origin assumed to coincide with its bow. In
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the first part of this chapter, six degrees of freedom dynamic modeling of LTAR
were discussed with two different approaches: Newton-Euler method and Lagrange
method. The second section of this chapter addresses the problem of translational
dynamics. Atmospheric dynamics, presented in the last section of this chapter, dis-
play hardly predictable behavior making the system output differ from the nominal
conditions.

After establishing the equations of motion of lighter than air robots, some ques-
tions arise:

– How can be planned missions?
– How to avoid obstacles?
– How to characterize trim trajectories
– What are the handling qualities of this lighter than air robot?
– What are their controllability and stabilizability properties? How can closed loop

control systems be solved?. . .

Answers to these questions are the topics of the following chapters.



Chapter 3
Mission Planning

Abstract Planning can be considered as the generation of a set of paths from a
set of initial states to a set of goal states of a vehicle through an environment with
obstacles. Many approaches have been investigated for solving these problems. All
involve some kinds of simplification aiming to capture key elements of the task in a
form suitable for practical computation. For many aerial robot applications, a point
vehicle representation is usually used as an assumption that simplifies the problem.

3.1 Introduction

Mission planning is the process of planning how a mission will be conducted. This
includes determining the set of waypoints (flight planning), the path for the lighter
than air robot to fly (path planning) and the operation (task scheduling) of the pay-
load on board the lighter than air robot. Flight planning involves creating a plan
to guide a lighter than air robot from its initial position to a destination way point.
A flight plan has also to consider the region where the flight will be performed
and has to take a set of safety requirements into account. Mandatory safety require-
ments, like not running out of fuel, have to be satisfied in order to avoid the loss
of the aerial robot. The ability for the lighter than air robot to manage its position
away from obstacles represents a significant issue and a necessity for low altitude
operations.

A vehicle is an object that is capable of motion. Generally, vehicles are repre-
sented by a position vector in 2 or 3 dimensional space and an orientation vector,
along with a geometric model of the vehicle. A world space is the physical space
in which a vehicle exists. A configuration is a vector of parameters that define the
shape of the vehicle, most vehicles can be considered to be rigid bodies in 3D space
and thus defined uniquely by 6 numbers: 3 position coordinates and 3 orientation
coordinates. The set of all possible configurations of a vehicle is called the con-
figuration space or C-space. It is often necessary to include the state of the aerial
vehicle, which consists of the configuration coupled with rates of change of the
configuration. For the lighter than air robot, the state is given, at least, by three
position coordinates, three velocity coordinates, three orientation angles, three ori-
entation rate angles, for a total of twelve variables. The dynamic characteristics of
the aerial vehicle determine the dimension of the system, and many systems may
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use a reduced set of variables that adequately describe the physical state of the ve-
hicle. It is common to consider smaller state space with coupled states, or to extend
the state space to include higher order derivatives.

Planning schemes may be classified as explicit or implicit [225, 226]. An implicit
method is one in which the dynamic behavior of the robot is specified then the tra-
jectory and the actuator inputs required to go from the start configuration to the goal
configuration are derived from the interaction between the robot and the environ-
ment. The best-known example of this method is the potential field method [107]
and its extensions. Some other examples include the methods that applied random-
ized approaches [125], or graph theory [45]. These methods are presented in this
chapter.

In contrast, explicit methods, presented in the next chapter, attempt to find solu-
tions for the trajectories and actuators inputs explicitly during the motion. Explicit
methods can be discrete or continuous. Discrete approaches focus primarily on the
geometric constraints and the problem of finding a set of discrete configurations
between the end states that are free from collisions.

This chapter consists of 8 sections. Flight planning is the subject of Sect. 3.2
while Sect. 3.3 presents a review of the most important methods of obstacle and
collision avoidance. Section 3.4 provides the algorithms for planning with differ-
ential constraints. Sections 3.5 and 3.6 tackles respectively planning with uncertain
winds and strong winds, both topics being under scrutiny in research currently. Task
assignment is the subject of Sect. 3.7. Finally, some conclusions and perspectives
are the subject of Sect. 3.8.

3.2 Flight Planning

A mission describes the operation of this vehicle in a given region, during a certain
period of time while pursuing a specific objective. Way-points are locations to which
the lighter than air robot is required to fly, typically given as latitude, longitude and
altitude or in North, East and Up/Down coordinates. A flight plan is defined as the
ordered set of waypoints executed by the lighter than air robot during a mission. It
can be decomposed in phases. Each phase can be described by the coordinates of a
pair of way-points and by some informations such as the speed and acceleration at
which the airship is to fly between these way-points. A phase is completed when the
successive way-point is reached by the lighter than air robot. Along the way, there
may be a set of areas to visit and a set of areas to avoid. In addition, this mission
planning strategy should be dynamic as the mission planning problem is to create a
path in a dynamic environment.

Flight planning attempts to create paths that are consistent with the physical
constraints of the lighter than air robot, the obstacle and collision avoidance and
weighed regions. Weighed regions are regions with abnormally low or high pres-
sure, wind speeds or any other factor affecting flight. 3D mission planning involves
creating a pathfinder which helps the vehicle to reach the mission goal but also
creates a path to satisfy different constraints during the mission. This pathfinder
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generates the path from the initial point to the mission goal and navigates the vehi-
cle. The position, orientation and speed of the vehicle are known from the sensors
and the flight management system has information about the meteorological condi-
tions and probable obstacles to avoid. Flight planning requires an awareness of the
environment in which it is operating. The assumption is made that the information
required will be available.

Remark 3.1 A number of methods for manned aircrafts exists for obtaining this
information. A radar based system of the airborne dependent surveillance broadcast
(ADS-B) can provide the location and speed of nearby aircraft. Similarly, weather
radar can also provide information for adverse weather condition. In addition to the
location of the entities within the world, their dimensions must be known. Once the
digital representation of the world (i.e. situational awareness) has been created, high
level activities such as mission planning can be performed [115, 188, 219].

The aim is to replace the human expert with a synthetic one that can be de-
ployed on board the aerial robot, provided with an understanding of potentially de-
sirable trajectories qualities. It also has the ability to decide when a trajectory is
close enough to be acceptable, except for small deviations, then recheck the trajec-
tory. For example, if a trajectory satisfies all constraints except that it passes just
a short distance from a known obstacle, the flight management system can reroute
the path around the obstacle, interpolate the velocities needed and then check to
ensure that theses changes did not create a new problem (e.g. violating a constraint
on acceleration). This method combines a model of human decision-making with a
computational technique for obtaining optimal or near-optimal trajectories.

Getting to a particular location is typically the aim of path planning. When flying
at a constant altitude, kinematics of a lighter than air robot are analogous to those
of a mobile robot. Some techniques have been implemented on 2D mobile robots
operating in complex environments: Roadmap methods, cell decomposition and po-
tential fields methods [45, 81, 97, 103, 107, 121, 141, 156, 186, 191, 194, 210].
Planning for mobile robots has been the essential step for realizing autonomous
ground vehicles [65, 78, 86, 103, 107, 115, 124, 125, 168, 194]. The road map and
cell decomposition methods rely on rules that are derived using the geometry of
the obstacle field. Many problems such as motion planning for a number of circu-
lar or rectangular objects bounded by walls have been solved using the geometrical
methods. These methods have been extended to the case of moving obstacles.

In the potential field method, an artificial potential field is assigned to the area
where a robot works. The obstacles in the area are assigned a repulsive potential
while the goal position of the robot is described by an attractive potential. Then the
path of the robot is calculated by using the gradient of the total artificial potential.
Different mathematical definitions have been used for defining the artificial potential
fields and different strategies have been introduced for using the gradient of the total
potential to find a path for the robot. However, these methods must all be augmented
in some way to allow the use of a cost function that involves more than minimizing
path length or distance from obstacles.
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Autonomous aerial vehicles require fuel, power and time resources to move about
their environment. To fully define a trajectory, a path (i.e. a sequence of configura-
tions) must be augmented with velocities at least. Resources costs in the form of
forces/torques and traversal times can then be computed from the governing equa-
tions of motion. To incorporate quantities such as fuel and time into a traditional
path planner’s cost function system state must be augmented with velocities and
accelerations. . . An exhaustive search through a space of discretized dynamic pa-
rameter values (e.g. velocities) given constraints (e.g. limited accelerations) could
theoretically be used to augment each path segment with a good or even optimal tra-
jectory. However, computational efficiency is poor, and optimality is subject to the
level of dynamic parameter discretization. A global planner, in addition to avoid-
ing the dead-ends that may break a reactive navigation system, can take advantage
of maneuvers which, although immediately very costly, may result in a lower total
cost. This comes of course with a model of the world.

The simplest model of aerial robots is a point vehicle. Since in general, lighter
than air robots do not have to fit into tight spaces while flying, the simplification
of bounding the aerial vehicle by a rotationally-symmetrical solid has little effect
on the trajectory generated by the algorithm. In many aerial autonomous vehicles
problems, the differential constraints are significant since not accounting for the
equations of motion may produce conservative results.

Remark 3.2 A motion planning algorithm is considered to be complete if and only
if it finds a path when one exists, and returns a variable stating no path exists when
none exists. It is considered to be optimal when it returns the optimal path with re-
spect to some criterion. Any optimal planner is also complete. A sound planner is
one that always guarantees the vehicle will enter the goal region and stop there with-
out hitting any obstacle despite uncertainty in sensing and control. This definition
implies that the uncertainties are bounded.

3.3 Motion Planning Algorithms Review

To this date, motion planning is still an active topic research. The canonical motion
planning problem can be expressed as follows:

Consider a robot A moving in an Euclidean space W = �N , N = 2,3 called
workspace. Let O1 . . .Oon be the fixed rigid obstacles, in W . Both the geometry
of A, O1 . . .Oon, and the positions of O1 . . .Oon in W are assumed to be known.
Moreover, it is supposed that A is free flying that is the robot is not subject to any
kinematic constraint. The motion planning problem is the following: given an ini-
tial and a final configuration of A in W , find if there exists a path, i.e. a continuous
sequence of postures, that drives the lighter than air robot between the two config-
urations while avoiding collisions between A and the obstacles O1 . . .Oon; report a
failure if such a path does not exist.

Clearly, some of the hypotheses of this canonical problem may not be satisfied in
applications. For example, the assumption that the robot is the only object in motion
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in the workspace rules out the relevant case of moving obstacles. Advance knowl-
edge of obstacle geometry and placement is another strong assumption: especially
in unstructured environments, typically in charge of detecting obstacles by means
of its sensors, and the planning problem must therefore be solved on-line during the
motion [6, 34, 67, 122, 155, 174]. The free flying robot hypothesis does not hold
in nonholonomic mechanical systems, which cannot move along arbitrary paths in
the workspace. All the above assumptions are introduced in order to reduce motion
planning to the purely geometrical, but still quite difficult, problem of generating a
collision free path.

3.3.1 Overall Problem Description

The choice of the algorithm depends on the type of problem to be solved. The most
commonly-used metric is obstacle complexity, or the amount of information used
and stored in a computer model of the environment. It is generally measured in
terms of obstacles number, edges, or vertices. Other metrics are the fill ratio (per-
centage of the configuration space occupied by obstacles), along with higher order
characteristics, such as mean passage width or degree of clustering of obstacles.

The purpose of this section is to present some motion planning algorithms pub-
lished in the literature. Consistently keeping a safe distance from obstacles, and
producing smooth paths that exhibit desirable properties (e.g. duration, energy us-
age) are typical requirements. Low computational complexity is therefore generally
an important goal for an algorithm. A faster algorithm can allow a more rapid update
of the solution [78].

3.3.2 Problem Types

There are a variety of problem types defined in the literature. A problem is consid-
ered static if knowledge of the environment is perfect and dynamic if knowledge of
the environment is imperfect or changes as the task takes place. When the obstacles
are fixed in space, the problem is called time-invariant and when they are allowed
to move, the problem is called time-variant. The term differentially constrained (or
kinodynamic [125]) means that the vehicle’s equations of motion act as constraints
on the path. It is possible to further categorize problems based on the assumed ve-
hicle shape, environment type and behavior. The common problem types used in
literature are described below and taken from the following references: [45, 65, 78,
97, 103, 107, 111, 118, 122, 124, 125, 168, 194, 210, 221].

3.3.2.1 Point Robot

In this problem, the vehicle is modeled as a point within the world space. Thus the
configuration space is the same as the world space. Often, a vehicle is modeled by
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fitting it inside a bounding ball (in 2D Euclidean space this is a circle and in 3D
Euclidean space a sphere), and the configuration space is simply the world space
with the obstacles expanded by the radius of the vehicle’s bounding ball. Thus the
ball-shaped vehicle problem is the same as the point vehicle problem. This is a con-
servative approximation to and simplification of the mover’s problem. The minimum
length path is the optimal path.

3.3.2.2 Point Robot with Geometric Constraints

Planning with geometric constraints is the problem of moving an object through an
obstacle field to a goal state. The vehicle is usually modeled as a rigid body, thus
the configuration space has a larger dimension than the world space. A classical
problem of this case is the piano mover’s problem. For this kind of problem, it
is usually assumed that the object has no dynamic constraints. Mover’s problems
measure complexity of the vehicle in addition to that of the obstacle field.

3.3.2.3 Point Vehicle with Differential Constraints

In problems with differential constraints, time and states have to satisfy the equa-
tions of motion of the vehicle. Typically the states are constrained by limits on ve-
locity and acceleration, and sometimes also on higher-order derivatives of position,
and propulsion related to flight envelope. For many aerial vehicle, this more realistic
model is needed for stable control of the vehicle [22, 32, 35, 53, 59, 104, 109, 111,
136, 140, 145, 159, 178, 183–185, 189]. Optimality may be defined as minimizing
the flight time between initial and goal points or energy consumed, or a mix between
them.

Remark 3.3 Weighting factors are needed for cost functions that have more than
one term. The shortest path that uses the least amount of fuel is often neither the
shortest possible path, nor the path that uses the least fuel, but one which reaches a
balance between them. The relative weights of these terms determine what sort of
balance results. Substantial oversight is often required to analyze the sensitivity of
solution characteristic to cost function weights and this sensitivity analysis may be
specific to particular problems rather than fully generalizable.

Jogger’s problem deals with the dynamic problem of a jogger with a limited field
of view attempting to reach a goal position. The jogger’s problem is representative
of a vehicle with differential constraints, operating in a dynamic and possibly time-
variant environment, with limited sensory range.

Bug problem is a special case of the jogger’s problem, in the limit when the field
of view goes to zero. This algorithm assumes that the robot is a point operating
in a plane with a contact sensor to detect obstacles. This algorithm requires two
behaviors: move on a straight line and follow a boundary. The most straightforward
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path planning approach is to move toward the goal, unless an obstacle is encountered
in which case, circumnavigate the obstacle unless motion toward the goal is once
again allowable. The robot is assumed to be a point with perfect positioning with a
contact sensor that can detect an obstacle boundary if the point robot touches it. The
robot can also measure the distance d(x, y) between any two points x and y. Finally,
the workspace is assumed to be bounded.

3.3.2.4 General Vehicle with Differential Constraints

The differential constraints typically arise in two forms: one is on kinematics, and
this kind of problem is usually called nonholonomic problem. Another one is on
dynamics, involving second-order or higher differential constraints. The difference
between this problem and the point robot is that now it is insufficient to model
the vehicle with only a point in the world space, since six variables are needed
to indicate the position of the vehicle in a three dimensional Euclidean space. For
most cases, the configuration space is not a simple Euclidean space. When obstacles
are involved, the configuration space itself is not adequate to represent the obstacle
avoidance requirements, a higher order phase has to be employed.

In time-varying environments problem, the vehicle has to avoid obstacles that are
moving in time. Optimal planners for time-varying environments generally attempt
to minimize path length or time.

3.3.2.5 Obstacle Representation

Obstacles may have different shapes, convex or nonconvex. Nonconvex obstacles
can be embedded into convex forms.

A 3D ellipsoid is defined by 9 parameters [223]:

– 3 coordinates of the center location xc, yc, zc

– 3 semi-axes a, b, c

– 3 orientation angles φ, θ , ψ that relate the basic coordinate system to the principal
system X, Y , Z ⎛

⎝
X

Y

Z

⎞
⎠= Rx(φ)Ry(θ)Rz(ψ)

⎛
⎝

x − xc

y − yc

z − zc

⎞
⎠

If a given point (xp, yp, zp) after the transformation presented above to the principal

system satisfies
X2

p

a2 + Y 2
p

b2 + Z2
p

c2 > 1
It is outside of the ellipsoid obstacle.
A cuboid obstacle element is also defined by 9 parameters. A given point xp , yp ,

zp is outside the cuboid if after the transformation, one of the following conditions
is verified:

∣∣Xp

∣∣> a

2

∣∣Yp

∣∣> b

2

∣∣Zp

∣∣> c

2
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A cylinder obstacle is described by 8 elements which include coordinates of the
center of the bottom surface xb , yb , zb, radii of the top and the bottom surfaces
rt , rb, the height L and 2 orientation angles φ, θ where the axis of the cylinder is
initially aligned with the z axis. Transformation to a principal body axis is given by:

⎛
⎝

X

Y

Z

⎞
⎠= Rx(φ)Ry(θ)

⎛
⎝

x − xc

y − yc

z − zc

⎞
⎠

A given point (xp, yp, zp) is outside of the cylinder if after the transformation, one
of the following condition is met:

X2
p + Y 2

p >

(
rb − (rb − rt )

(
Zp

L

))2

Hp < 0 Hp > L

Superquadric functions provide an efficient and flexible means of representing
geometric shapes, overcoming the deficiencies of other representations, such as
spherically symmetric Gaussian or power law functions where objects are repre-
sented as spheres of diameter equal to the maximum physical object dimension.

Superquadrics are a family of complex geometric objects which include super-
ellipsoids and super-hyperboloids. Superquadrics are mathematical representations
of solid objects. They are a set of parametric functions that have great utility in
object modeling. Their parametric characteristics enable the creation of a range of
object shape by manipulating the roundness and shape parameters.

A generic superquadric function is defined in body axes as:
[(xB

a

)2/ε2 +
(yB

b

)2/ε2
]ε2/ε1

+
(zB

c

)2/ε2 = 1 (3.1)

For example, to define a spherical shape at some distance from the object edges, the
shape parameters ε1 and ε2 should equal unity.

The inside-outside function F defines whether a point lies inside, on the surface
or outside a superquadric surface and is given by:

F (a,XB) =
[(xB

a

)2/ε2 +
(yB

b

)2/ε2
]ε2/ε1

+
(zB

c

)2/ε2
(3.2)

Consider any point with coordinates (xB, yB, zB) with respect to a set of body axes
to the surperquadrics. If F < 1, point P lies inside the superquadric, whereas if
F = 1, the point lies on the superquadric surface and finally if F > 1, the point lies
outside the superquadric. Various obstacles shapes can now be represented using the
superquadric methodology by adjusting the five parameters defined in Eq. (3.1).

3.4 Planning with Differential Constraints

Most motion planning problems relevant to autonomous aerial vehicles applications
have to be considered as dynamics-constrained problems, affecting energy or dura-
tion of the trajectory. Taking into account the equations of motion is directly relevant
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to guaranteeing the soundness of the planner, since approximating the dynamics
only through a kinematic model with constraints will lead to overly conservative
models. Performance criteria have a significant effect on the resulting trajectories
and heuristic methods (e.g. minimizing distance) are not able to meet specific per-
formance requirements. This class of planning problems is more difficult to solve
due to the dependency between time and the state-space introduced by the differen-
tial constraints. Even in the trivial case of connecting two states in a configuration
space without obstacles, an exact solution is generally not possible.

For applications requiring a vehicle to navigate among obstacles, algorithms that
exploit some form of approximation or heuristic are necessary not only for finding
a feasible or sub-optimal trajectory but also for the need to negotiate with hardware
capacity. Solutions to this class of problem represent a newer research area where
very few approximating bounds or benchmarking results have been proposed [78].

3.4.1 Roadmap Algorithm

The road map algorithm applies sampling methods to the trajectory planning and
dynamic planning problems. It handles high dimensionality and global constraints.
Sampling methods are not based on a rigorous mathematical structure. Despite the
existence of numerous distinct sampling techniques, they all share similar defining
actions.

3.4.1.1 Cell Decomposition

The dimensions of the workspace environment are assumed to be much bigger than
the dimensions of the lighter than air robot. Thus static route planning can be appro-
priate. The 3D environment is discretized in space over an nx , ny , nz regular grid
along the Cartesian directions. Let Δx, Δy, Δz be the grid intervals in the x, y, z

axis respectively. Any point in the grid defines a node n = (hx,hy,hz), 0 ≤ hx ≤ nx ,
0 ≤ hy ≤ ny , 0 ≤ hz ≤ nz. A path Γ between a starting node ns and a destination
node nd is defined through a sequence of nodes Γ = ns, . . . , ni, ni+1, . . . , nd and
it is made of straight line segments connecting any two adjacent nodes ni , ni+1.
In practice, it is assumed that the navigation of the lighter than air robot is defined
through via-points that are the nodes of the grid. A current velocity vector Vc is de-
fined at any point in space. The traveling time required by a given path is evaluated
computing and adding up the time required to cover each segment constituting the
path. Consider the ith segment ni−1ni connecting the nodes ni−1, ni of any arbi-
trary path, let di indicate its length and let ei be a unitary vector oriented along the
segment ni−1ni in the direction of desired motion of the vehicle. A graph is a collec-
tion of nodes (vertices) and edges. Typically in motion planning, a node represents
a salient location and an edge connects two nodes that correspond to locations that
have an important relationship. This relationship could be that the nodes are mu-
tually accessible from each other, two nodes are within line of sight of each other,
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two pixels are next to each other in a grid. This relationship does not have to be
mutual if the robot can traverse from nodes V1 to V2 but not from V2 to V1. The
edge E12 connecting V1 and V2 is directed. Such a collection of nodes and edges is
called a directed graph. Typically, one searches a tree for a node with some desired
properties such as the goal location for the robot. This paragraph is based mostly on
references [45, 125].

There exist two main categories of search algorithms

– Uninformed methods where no information exists concerning which node should
the algorithm explore next. As a result, nodes are opened one by one until a goal
is reached, such as breadth first or depth first algorithms. . .

– Informed methods use some form of heuristics in order to select the next node to
open, such as branch and bound algorithm, A∗ and D∗ algorithms. . .

The exact methods decompose the free configuration space into smaller convex
polygons, which are then connected by a graph and searched using a graph search.

– Trapezoidal Decomposition: This approach divides the free space into trapezoidal
regions by dividing it with vertical lines from each of the obstacles vertices. The
vertical lines are trimmed so that they do not bisect the obstacles themselves.
A road map is then formed by connecting the midpoints of adjacent trapezoids,
and searched using a graph searching algorithm.

– Critical Curve Based Decomposition: While the trapezoidal decomposition is
useful for point vehicle path planning, rigid vehicles with freedom to rotate re-
quire a more complex approach. In this algorithm, free space is divided into
critical and non critical regions. The boundaries of these regions are piecewise
polynomial curves. The various regions formed by the decomposition process are
connected by a graph and this graph is searched for a path. The algorithm is for
2D problems. The Cylindrical Algebraic decomposition extends the critical-curve
decomposition to 3D problems. It bisects parts of the free space using critical sur-
faces.

– Connected Balls in Free Space: This approach is designed to deal with unstruc-
tured obstacle fields and operates by filling free space with overlapping balls (for
instance, spheres are balls in 3D Euclidean space) that are totally in free space.

– Rectanguloid Cell Decomposition: This divides the entire configuration space
into rectanguloid regions, and labels each rectanguloid as being completely filled
(black) partially filled (grey) or completely empty (white). The most common
example is that of the A∗ or D∗ search over a square of cubic grid of occupied
or unoccupied cells. This Approximate and Decompose method is similar to the
trapezoidal decomposition, but replaces the triangular end regions with rectangu-
lar mixed regions. This approach reduces the proportion of mixed area in com-
parison with a grid decomposition with mixed cells.

– Quadtree or Octree decomposition: This decomposition is designed to reduce the
number of points needed to represent obstacles as compared to a full grid repre-
sentation.

In general, sampling techniques synthesize a dense tree or road map of nodes and
edges. Each node represents a particular instantaneous state of the vehicle and an
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edge connects the two nodes via a planned path. Construction of the trees or road
maps is through deterministic or random generation of new nodes and then con-
necting the new nodes to the old ones via a planned path that can incorporate the
vehicle constraints. Once the construction phase is completed (i.e. a connection ex-
ists between start and finish), post processing on the resulting route is typically
necessary and desired to ensure smoothness and improve optimality. Overall, these
methods are excellent at quickly generating feasible solutions; however, complex
paths and increased dimension of the system kinematic and dynamic equations can
bog down the computational speed. These methods reduce the problem to that of a
graph search by fitting a graph or a road map to the space.

– Visibility Graph: This is an exact solution to the 2D point vehicle problem. This
approach uses the knowledge that the shortest path grazes polygonal obstacles
at their vertices and builds a road map of lines connecting each vertex with all
vertices visible from its position. Since the minimum-length path comes arbitrar-
ily close to obstacles many times in a typical path, this approach offers no safety
buffer to prevent collisions in the case of systems with uncertainty in their posi-
tion. To avoid this problem, the obstacle space is expanded by a ball larger than
the vehicle’s longest radius.

– Edge-Sampled Visibility Graph: This algorithm approximately solves the 3D path
length minimization point vehicle problem. This algorithm assigns multiple ver-
tices along edges of polyhedral obstacles so that there is a minimum edge length
n and builds a visibility graph from this expanded set of vertices.

– Voronoi Road map: Given the difficulty in controlling vehicles precisely enough
to follow the minimum-distance path without risk of colliding with obstacles,
many skeleton-based road map approaches have been taken. The Voronoi ap-
proach builds a skeleton that is maximally distant from the obstacles, and finds
the minimum distance path that follows this skeleton. This algorithm is a 2D
algorithm, complete but not optimal. Voronoi diagram is a special kind of decom-
position of a metric space determined by distances to a specified discrete set of
objects in the space. Given a set of points S, the corresponding Voronoi diagrams
are generated, each point P has its own Voronoi cell which consists of all points
closer to P than any other points. The border points between polygons are the
collection of the points with the distance to shared generators.

3.4.1.2 Depth First and Breadth-First Algorithms

– A depth first search starts at the root, chooses a child then that node’s child and so
on until finding either the desired node or a leaf. If the search encounters a leaf,
the search then backs up a level and then searches through an unvisited graph
until the desire node is found or all nodes are visited in the graph.

– Breadth first search is the opposite. The search starts at the root then visits all of
the children of the root first. Next, the search then visits all of the grand children
and so forth. The belief here is that the target node is near the root so this search
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would require less time. In 2D, Four point connectivity will only have edges to the
North, South, East and West, whereas 8 point connectivity will have edges to all
pixels surrounding the current pixel: North, East, South, West, North-East, North-
West, South-East, South-West. In 3D, there are 26 neighbors for a 45 degrees
discrimination [54].

– The wave-front planner is an implementation of a breadth first search. In general,
a breadth first search is implemented with a list in a First-In First-Out (FIFO)
manner, a queue. The depth first search contrasts in that the nodes are placed in
a Last-In First-Out (LIFO) manner, a stack. Another common search is called a
greedy search which expands nodes that are closest to the goal. Here the data
structure is called a priority queue in that the nodes are placed into a sorted list
based on a priority value. This priority value is a heuristic that measures distance
to the goal node.

Remark 3.4 Breadth-first search produces the shortest path to the start node in terms
of link strengths. Since the wavefront planner is a breadth-first search, a four point
connectivity wave front algorithm produces the shortest path with respect to the
distance function. It has an underlying graph, where each node corresponds to a
pixel and neighboring pixels have an edge length of one.

The graph search can be tuned to find optimal paths with respect to metrics such
as energy, time, distance traversability, safety. . . as well as combinations of them.
There is also the efficiency: minimize the number of nodes that have to be visited to
locate the goal node subject to the path optimality criteria. Depth first and breadth
first are uninformed: the search just moves through the graph without any preference
for or influence on where the goal node is located. For example, if the coordinates of
the goal node are known, then a graph search can use this information to help decide
which nodes in the graph to visit (i.e. expand) to locate the goal node. A graph search
may choose as its next node to explore one that has the shortest Euclidean distance
to the goal because such node has highest possibility, based on local information,
of getting closest to the goal. However, there is no guarantee that this node will
lead to the globally shortest path in the graph to the goal. This is just a good guess.
However, these good guesses are based on the best information available to the
search.

3.4.1.3 A∗ Algorithm

The A∗ algorithm searches a graph efficiently with respect to a chosen heuristic. The
A∗ algorithm will return an optimal path is the heuristic is optimistic. An optimistic
or admissible heuristic always returns a value less than or equal to the cost of the
shortest path from the current node to the goal node within the graph. The input
for A∗ is the graph itself. These nodes can naturally be embedded into the lighter
than air robot free space and thus have values corresponding to the cost required
to traverse between the adjacent nodes. The output of the A∗ algorithm is a back
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pointer path, which is a sequence of nodes starting from the goal and going back to
the start.

The A∗ algorithm has a priority queue which contains a list of nodes sorted by
priority, determined by the sum of the distance traveled in the graph thus far from
the start node and the heuristic. The first node to be put into the priority queue is
naturally the start node. Next, the start node is expanded by popping the start node
and putting all adjacent nodes to the start node into the priority queue sorted by their
corresponding priorities.

The input for the A∗ algorithm being the graph itself, the nodes can naturally be
embedded into the robot’s free space and thus can have coordinates. Edges corre-
spond to adjacent nodes and have values corresponding to the cost required to tra-
verse between the adjacent nodes. The output of the A∗ algorithm is a back pointer
path, which is a sequence of nodes starting from the goal and going back to the
start. Two additional structure are used, an open set O and a closed set C. The open
set O is the priority queue and the closed set C contains all processed nodes. Other
notation includes

– Star(n) represents the set of nodes which are adjacent to n
– C(n1, n2) is the length of edge connecting n1 and n2
– g(n) is the total length of a back pointer path from n to qgoal

– h(n) is the heuristic cost function which returns the estimated cost of shortest path
from n to qgoal

– f(n) = g(n) + h(n) is the estimated cost of shortest path from qstart to qgoal via n

The Euclidean distance between the current point and the destination goal, divided
by the maximum possible nominal speed can be employed as a heuristic function.
This choice ensures that the heuristic cost will always be lower than the actual cost
to reach the goal from a given node and thus the optimum solution is guaranteed
[22].

The algorithm can be formulated as follow [45]:

Algorithm A∗

– Input: A graph
– Output: A path between start and goal nodes
– Repeat

1. Pick nbest from 0 such that f (nbest ) < f (n)

2. Remove nbest from O and add to C

3. If nbest = qgoal , EXIT
4. expand nbest : for all x ∈ Star(nbest ) that are not in C

5. if x /∈ O then
6. add x to O

7. else if g(nbest ) + C(nbest , x) < g(x) then
8. update x’s back pointer to point to nbest

9. end if

– Until O is empty
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There are variations or special cases of A∗ algorithm.

– When f (n) = h(n), then the search becomes a greedy search because the search
is only considering what it believes is the best path to the goal from the current
node.

– When f (n) = g(n) the planner is not using any heuristic information but rather
growing a path that is shortest from the start until it encounters the goal. This
classic search is called Dijkstra algorithm.

3.4.1.4 D∗ Algorithm

In dynamic environments, there are three types of dynamic obstacles.

– ones that move significantly slower than the robot
– those that move at the same speed
– obstacles that move much faster than the robot

The super-fast obstacle case is easy to ignore because the obstacles will be moving
so fast, that there probably is no need to plan for them because they will either move
too fast for the planner or they will be in and out of the robot’s path so quickly that it
does not require any consideration. In this paragraph, dynamic environments where
the world change at a speed much slower than the robot, are considered.

The A∗ algorithm can be run to determine a path from start to goal and then
follow that path until an unexpected change occurs. The D∗ algorithm is devised
to locally repair the graph allowing efficient updated searching in dynamic environ-
ments, hence the term D∗. D∗ initially determines a path starting with the goal and
working back to the start using a slightly modified Dijkstra’s search.

The modification involves updating a heuristic and a minimum heuristic function.
Each cell contains a heuristic cost (h) which for D∗ is an estimate of path length from
the particular cell to the goal, not necessarily the shortest path length to the goal as
it was for A∗. These h values will be updated during the initial Dijkstra search to
reflect the existence of obstacles. The minimum heuristic values h are the estimate
of the shortest path length to the goal. Both the h and the values will vary as the D∗
search runs, but they are equal upon initialization [45].

Notation

– X represents a state
– O is the priority queue
– L is the list of all states
– S is the start state
– t(x) is the value of state with respect to priority queue

1. t(x): New if x has never been in O
2. t(x): Open if x is currently in O
3. t(x): Closed if x was in O but currently is not
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Algorithm D∗

– Input: List of all states L

– Output: The goal state, if it is reachable, and the list of states L are updated so
that back pointer list describes a path from the start to the goal. If the goal state is
not reachable, return NULL
• For each X ∈ L do
• t (X) = New
• endfor
• h(G) = 0; 0 = {G}; Xc = S

• The following loop is Dijkstra’s search for an initial path.

1. repeat
2. kmin = process-state(0,L)

3. until (kmin > h(xc)) or (kmin = −1)
4. P = Get-Pointer-list(L,Xc,G)

5. If P = Null then
6. return (Null)
7. end if
8. end repeat

• endfor
• Xc is the second element of P Move to the next state in P
• P = Get-Back-Pointer-List(L,Xc,G)

• until Xc = G
• return (Xc)
Subroutine: Get-back-pointer-list(L,S,G)

• Input: A list of states L and two states (start and goal)
• Output: A list of states from start to goal as described by the back pointers in

the list of states L

1. If path exists then
2. return (the list of states)
3. else
4. return NULL
5. endif

Subroutine: Insert (O,X,hnew)

• Input: Open list, a state and a h-value
• Output: Open list is modified

1. If t(X) = New then
2. h(X) = hnew

3. else if t(X) = Open then
4. k(X) = min(h(X), hnew)

5. endif
6. h(X) = hnew

7. t(X) = Open
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8. Sort O based on increasing k values

C(X,Y) is the estimated path length between adjacent states X, Y. h(X) is the
estimated cost of a path from X to Goal (heuristic). k(X) is the estimated cost of
a shortest path from X to Goal (minimum heuristic = minh(X) before X is put
on O, values h(X) takes after X is put on O). b(X) = Y is the measured distance
adjacent states with X, Y.
Subroutine
• Input: The Open list, 2 states and a value
• Output: A k value and the open list gets updated

1. C(X,Y ) = cval

2. If t(X) = Closed then
3. Insert (O,X,h(X)) = min(h(X), hnew)

4. endif
5. h(X) = hnew

6. t(X) = Open
7. Sort O based on increasing k values

Subroutine: Min − State(0)

• Input: The Open list O
• Output: The state with minimum k value in the list related values

1. if O = ∅ then
2. Return (−1)
3. else
4. return (argminY∈O k(Y ))
5. endif

Subroutine: Get − Min(0)

• Input: The Open list O
• Output: Lowest k-values of all states in the open list

1. if O = ∅ then
2. Return (−1)
3. else
4. return (argminY∈O k(Y ))
5. endif

Subroutine: Process − State
• Input: List of all states L and the list of all states that are open
• Output: kmin and an updated list of all states and an updated open list

1. If X = Min − State(O)

2. If X = Null then
3. return (−1)
4. endif
5. kold = Get − Min(O)

6. delete (X)
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7. kold < h(X) then
8. for each neighbor Y ∈ L of X do
9. If h(Y ) ≤ kold and h(X) > h(Y ) + C(X,Y ) then

10. b(X) = Y
11. h(X) = h(Y) + C(X,Y)

12. endif
13. endfor
14. endif
15. if Kold = h(X) then
16. for each neighbor Y ∈ L of X do
17. if (t(Y) = New) or (b(Y ) = X and h(Y ) �= h(Y ) + C(X,Y )) or (b(Y ) �= X

and h(Y ) > h(Y ) + C(X,Y )) then
18. b(Y) = X
19. Insert (O,Y,h(X) + C(X,Y ))
20. endif
21. endfor
22. else
23. for each neighbor Y ∈ L of X do
24. If (t(Y) = New) or (b(Y) = X and h(Y) �= h(X) + C(X,Y))
25. then b(Y) = X
26. Insert (O,Y,h(XW) + C(X,Y ))
27. else if (b(Y ) �= X and h(X) > h(Y ) + C(X,Y ) and t (Y ) = Close and

h(Y ) > kold then
28. Insert (O,Y,h(Y ))
29. endif
30. endfor
31. endif
32. Return Get-kmin (O)

The next section presents another well known method for obstacle avoidance:
Artificial Potential methods.

3.4.2 Artificial Potential Methods

In many applications such as surveillance and monitoring, the lighter than air
robot must be able to plan its motion on-line, i.e. using partial information on the
workspace gathered during the motion on the basis of sensor measurements. An
effective method for on-line planning relies on the use of artificial potential fields.
Essentially, the point that represents the robot in configuration space moves under
the influence of a potential field U obtained as the superposition of an attractive
potential to the goal and a repulsive potential from the C obstacle region. Planning
takes place in an incremental fashion: at each robot configuration Q, the artificial
force generated by the potential is defined as the negative gradient −∇U(Q) of the
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potential, which indicates the most promising direction of local motion. The poten-
tial field can be used to serve as a controller. The same properties apply here: the
function is generally simple to compute, but may result in an incomplete planner
and is non-optimal in general. If the potential field is designed properly, it may be
used directly as part of a feedback controller. However, if used in that way, care
needs to be taken so that the feedback controller is stable. Furthermore, to use such
a method, there usually exist certain constraints on the form of the vehicle dynam-
ics. The free configuration space can be decomposed into convex cells and then
local control policies are designed for each cell to respect dynamic constraints. The
convergence can be proved for a double integrator. It can also be applied for an
affine system within a polyhedral environment. Such configuration space division
techniques also enable a combination of control method and powerful logic-based
Artificial Intelligence methods.

Potential field methods are based on the idea of assigning a potential function
to the free space and simulating the vehicle as a particle reacting to forces due to
the potential field. The goal point has the lowest potential, and attracts the vehicle
while obstacles repel the vehicle. Since their initial publication [107], potential field
methods have been generally known for being of low computational complexity
but incomplete. However, a potential field which has the properties of a navigation
function makes a complete path planner. The value of a potential function can be
viewed as energy and hence the gradient of the potential is a force, which points
in the direction that locally maximally increases the potential. The combination of
repulsive and attractive forces should direct the robot from the start location to the
goal location while avoiding obstacles. The robot terminates motion when it reaches
a point where the gradient vanishes. Such a point is called a critical point. When the
Hessian is non singular, the critical point is non degenerate, isolated. Although the
methodology is appealing due to its intuitive nature and computationally efficient
implementation (controls are typically available in analytic form) there is often no
guarantee that local minima are not present which may trap the vehicle in some
configuration other than the desired one. This problem can be overcome by generat-
ing the potential field as a numerical solution to the Laplace equation or by various
heuristics such as adding noise to escape from any local minima.

There are two classes of potential fields known to satisfy properties of a naviga-
tion function: those based on a harmonic function and those based on solving the
optimal distance-to-go function. These methods require, however, discretizing the
configuration space into a grid with M points. The added advantage of a navigation
function is that it can be used to provide direct feedback control, rather than relying
on feed-forward control, as traditional trajectory planners do. A single navigation
function produces a trajectory for every possible starting point in the configuration
space. Both methods require full knowledge of the configuration space prior to the
planning event.

• Potential Field with Gradient Descent (Virtual Force Field VFF): This original
potential field approach is designed to run quickly. It assigns a decaying function
to the goal point with a negative minimum value and a decaying function to each
of the obstacles with a positive maximum value and sums the functions from the
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goal and all obstacles to get the total potential. The Virtual Force Field algorithm
is sometimes used directly for trajectory generation and is valid for an arbitrary
number of dimensions, the limitations are trap situations due to local minima and
no passage between closely spaced obstacles.

• Harmonic Potential Functions: This class of functions is based on solving a partial
differential equation with a Laplacian term. These equations include Laplace’s
equation, Poisson’s equation, the conduction heat flow equation, . . . While not
producing an optimal path, these equations generate functions that are smooth
navigation functions, have only one local minimum that occurs at the goal point,
potential obtaining a constant maximal value at the boundaries of obstacles, and
has a non-degenerate Hessian at each critical point of the function.

Remark 3.5 The method of Potential Field Guided Search (Depth-First, Best-First,
Variational Planning-Arbitrary Potential Field) assumes limited computational re-
quirements and the need to react under changing environments. An intuitive visual-
ization of this method is to imagine the vehicle to be a positively charged particle in
the state space. Obstacles have a similar positive charge—repulsive force—and the
target location has a negative charge—attractive force. The accumulation of these
forces drives the vehicle towards the goal. This approach is designed for poten-
tial fields that have local minima. Rather than use gradient descent, which is easily
trapped in local minima, a search that is complete in the resolution or probabilistic
sense is used. This can be considered as being similar to an A∗ search with the sim-
ple heuristic replaced by a potential field. The variational planning approach uses
the potential as a cost functional and attempts to find a path to the goal point that
minimizes this cost.

3.4.2.1 Classical Methods

As noted before, the artificial potential field methodology is based on the assumption
of the existence of a virtual potential field which attracts the vehicle towards a goal,
while repelling it away from obstacles and other flying vehicles. This section is
based mainly on [65, 109, 194].

Attractive Potential The attractive potential is designed so as to guide the robot
to the goal configuration Qg . To this end, a paraboloid function may be used:

Ua1(Q) = 1

2
ka ‖e(Q)‖2 (3.3)

where ka > 0 and e = Qg − Q is the error vector with respect to the goal configu-
ration Qg . This function is always positive and has a global minimum in Qg , where
it is zero. The resulting attractive force is defined as:

fa1(Q) = −∇Ua1(Q) = −kae(Q) (3.4)

Hence, fa1 converges linearly to zero when the robot configuration q tends to the
goal configuration Qg .
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Alternatively, a conical attractive potential may be defined as:

Ua2(Q) = ka ‖e(Q)‖ (3.5)

Also, Ua2 is always positive and zero in Qg . The corresponding attractive force is

fa2(Q) = −∇Ua2(Q) = −ka
e(Q)

‖e(Q)‖ (3.6)

that is constant in modulus. This represents an advantage with respect to the force
fa1 generated by the paraboloid attractive potential, which tends to grow indefinitely
as the error vector increases in norm. On the other hand, fa2 is indefinite in Qg .
A choice that combines the advantages of the above two potentials is to define the
attractive potential as a conical surface away from the goal and as a paraboloid in the
vicinity where ‖e(Q)‖ = 1 (i.e. on the surface of the sphere of unit radius centered
in Qg), one obtains an attractive force that is continuous for any Q.

Repulsive Potential The repulsive potential Ur is added to the attractive potential
Ua to prevent the lighter than air robot from colliding with obstacles as it moves
under the influence of the attractive force fa . In particular, the idea is to build a
barrier potential in the vicinity of the C obstacle region, so as to repel the point that
represents the robot. In the following, the C obstacle region has been partitioned
in convex components COi , i = 1 . . . p. These components may coincide with the
C obstacles themselves. In the presence of non convex C obstacles, it is necessary
to perform the decomposition in convex components before building the repulsive
potential.

For each convex component COi , an associated repulsive potential is defined as:

Ur,i =
⎧⎨
⎩

0 if ηi(Q) > η0,i

kr,i

2

(
1

ηi (Q)
− 1

η0,i

)2
if ηi(Q) ≤ η0,i

(3.7)

where η0,i is the range of influence of COi , kr,i > 0, ηi(q) is the distance of q from
COi

ηi(Q) = min
Q′∈COi

∥∥Q − Q′∥∥ (3.8)

The potential Ur,i is zero outside COi and positive inside the range of influence η0,i

and tends to infinity as the boundary of COi is approached.

• When C = �2 and the convex component COi is polygonal, an equipotential con-
tour of Ur,i (i.e. the locus of configurations q such that Ur,i has a certain constant
value) consists of rectilinear tracts that are parallel to the sides of the polygon,
connected by arcs of circle in correspondence of the vertices. The contours get
closer to each other in the proximity of the C obstacle boundary, due to the hy-
perboloidic profile of the potential.

• When C = �3 and the convex component COi is polyhedral, the equipotential
surfaces of Ur,i are copies of the faces of COi , connected by patches of cylindrical
surfaces in correspondence of the edges and spherical surfaces in correspondence
of the vertices of COi .
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The repulsive force resulting from Ur,i is:

fr,i = −∇Ur,i(Q) =
⎧⎨
⎩

0 if ηi(Q) > η0,i

kr,i

η2
i (Q)

(
1

ηi (Q)
− 1

η0,i

)
∇ηi(Q) if ηi(Q) ≤ η0,i

(3.9)

Denote by Qm the configuration of COi that is closer to Q (Qm is uniquely de-
termined in view of the convexity of COi ). The gradient vector ∇ηi(Q) which is
orthogonal to the equi-potential contour (or surface) passing through q. If the bound-
ary of COi is piecewise differentiable, the function ηi is differentiable everywhere
in Cf ree and fr,i is continuous in the same space.

The aggregate repulsive potential is obtained for the on obstacles by:

Ur(Q) =
on∑
i=1

Ur,i(Q) (3.10)

If ηi(Qg) > η0,i for i = 1..on (i.e. if the goal is placed outside the range of influence
of each obstacle component COi ), the value of the aggregate repulsive field Ur is
zero in Qg . In the following, it will be assumed that this is the case.

Total Potential The total potential Ur is obtained by adding the attractive and the
aggregate repulsive potentials:

Ut(Q) = Ua(Q) + Ur(Q) (3.11)

This results in the force field

ft (Q) = −∇Ut(Q) = fa(Q) +
on∑
i=1

fr,i(Q) (3.12)

Ut(Q) clearly has a global minimum in qg , but there may also exist some local
minima where the force field is zero. This happens in the ‘shadow zone’ when the
repulsive potential Ur,i has equi-potential contours with lower curvature than the
attractive potential in the same area

Planning Techniques Different approaches for planning collision-free motions
are briefly discussed below [194]:

1. The first possibility is to let

τ = ft (3.13)

hence considering ft (q) as a vector of generalized forces that induce a motion
of the robot in accordance with its dynamic model.

2. The second method regards the robot as a unit point mass moving under the
influence of ft (q) as in

Q̈ = ft (3.14)

3. The third possibility is to interpret the force field ft (q) as a desired velocity for
the robot by letting

Q̇ = ft (3.15)
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In principle, one could use these three approaches for on-line as well as off-line
motion planning. In the first case, Eq. (3.13) directly represents control inputs for
the robot, whereas the implementation of Eq. (3.14) requires the resolution of the
inverse dynamics problem. Equation (3.15) can instead be used on-line in a kine-
matic control scheme, in particular to provide the reference inputs for the low-level
controllers that are in charge of reproducing such generalized velocities as accu-
rately as possible. In any case, the artificial force field ft represents, either directly
or indirectly, a true feedback control that guides the robot towards the goal, that
have been detected by the sensory system. To emphasize this aspect, on-line motion
generation based on artificial potentials is also referred to as reactive planning.

In off-line motion planning, configuration space paths are generated by simula-
tion. In general, the use of Eq. (3.13), generates smoother paths, because with this
scheme, the reactions to the presence of obstacles are naturally filtered through the
robot dynamics. On the other hand, the strategy represented by Eq. (3.15) is faster
in executing the motion corrections suggested by the force field ft and thus be con-
sidered safer. The characteristics in Eq. (3.14) are intermediate between the other
two. Another aspect to be considered is that using Eq. (3.15) guarantees (in the ab-
sence of local minima) the asymptotic stability of Qg (i.e. the robot reaches the
goal with zero velocity) whereas this is not true for the other two motion generation
strategies. To achieve asymptotic stability with Eqs. (3.13), (3.14), a damping term
proportional to the robot velocity Q̇ must be added to ft . The most common choice
is the simple numerical integration of Eq. (3.15) via the Euler method:

Qk+1 = Qk + Tft(Q) (3.16)

where Qk+1, Qk represent respectively the current and the next robot configuration,
and T is the integration step. To improve the quality of the generated path, it is also
possible to use a temporal variable T, smaller when the modulus of the force field
ft is larger in the vicinity of obstacles) or smaller (close to the destination Qg).
Equation (3.16) may be interpreted as a numerical implementation of the gradient
method for the minimization of Ut(Q), often referred to as the algorithm of steepest
descent.

Local Minima Problem The possibility of the existence of local minima in the
artificial potential field could be one of the drawbacks of the potential field method.
A local minimum can attract and trap the robot, preventing it from reaching its final
goal. Search methods have been introduced to address this problem at a high com-
putational cost. One method for avoiding the generation of local minima is adding
multiple auxiliary attraction potentials, whose positions are determined by a genetic
algorithm. Also a set of analytical guidelines have been given for designing potential
functions to avoid local minima for a number of representative scenarios. Another
approach is based on the use of navigation functions, i.e. artificial potentials that
have no local minima.

Definition 3.1 A function Φ : Qf ree → [0,1] is called a navigation function if it

• is smooth (or at least Ck for k ≥ 2)
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• has a unique minimum at Qg in the connected component of the free space that
contains Qg

• is uniformly maximal on the boundary of the free space
• is Morse (A Morse function is one whose critical points are all non degenerate,

critical points are isolated.)

A way to define a navigation function consists of building first a diffeomorphism
that maps the C obstacle region to a collection of spheres, then generating a classical
total potential in the transformed space, and finally mapping it back to the original
configuration space so as to obtain a potential free of local minima. If the C obstacles
are star-shaped, such a diffeomorphism actually exists, and the procedure outlined
above provides in fact a navigation function. Another possibility is to build the po-
tential using harmonic functions, that are the solutions of a particular differential
approach that describes the physical process of heat transmission or fluid dynam-
ics.It has been shown that harmonic potential do not suffer from local minima and
lead to unique solutions. This property of harmonic potential functions allows the
potential to be defined in Euclidean space rather than in the configuration space.

3.4.2.2 Harmonic Functions

Harmonic potential fields have been utilized for mobile robots in known environ-
ments containing stationary or moving obstacles by employing the panel method
known in fluid mechanics. The panel method is currently extended to the case of
unknown environments and 3D environments.

Potential theory is used in describing many conservative systems in an irrota-
tional fluid flow. In the absence of viscous effects and rotational force, the originally
irrotational flow will remain so in the region around a body inside the flow field. Let
us denote the vectorial velocity field in this region by V . Vorticity vanishes when
the flow is irrotational, that is:

V = −∇Φ = ∂Φ

∂x1
i + ∂Φ

∂x2
j + ∂Φ

∂x3
k (3.17)

where Φ is a scalar velocity potential. Furthermore, when the fluid is incompress-
ible, the velocity field must satisfy the continuity equation

V.V = 0 ⇒ ∇2Φ = 0 (3.18)

∇2 is the Laplacian operator. This equation is called the Laplace or potential equa-
tion and its solutions are called harmonic or potential functions. Many physical
problems are described by the Laplace equation. The properties of harmonic func-
tions related to local minimum are described in the following.

• The Superposition property of the potential functions is related to the linearity of
the Laplace equation. If Φ1, Φ2 are harmonic functions, then any linear combina-
tion of Φ1 and Φ2 is also a harmonic function and a solution of Laplace equation.
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• The Mean Value Property of A 2D potential function Φ(x1, x2) that is harmonic
in a circle with center at (x01 , x02) is such that

Φ
(
x01, x02

)= 1

2π

∫ 2π

0

(
x01 + r cos θ, x02 + r sin θ

)
dθ (3.19)

The value of the potential at the center of any arbitrary circle is equal to the aver-
age of the potential integrated over the circumference of the circle. This property
is independent of the radius r of the circle only if the function is harmonic inside
the circle. A similar results holds for an arbitrary number of dimensions.

• The minimum/maximum property of a non constant harmonic function occurs on
singular boundaries where the potential tends to infinity. The above properties
of a harmonic function are very useful in building an artificial potential field for
obstacle avoidance problem, eliminating the possibility of generating a stationary
point in the velocity field except the goal point.

3.4.2.3 3D Harmonic Potential Functions

Uniform Label A uniform flow from a starting position to a goal position is
used to set up the potential field to generate a more effective force. When the start
point is far from the goal point, the goal point’s potential is too weak to attract the
robot effectively. The uniform flow drives the lighter than air robot toward the goal
point in such a situation, resulting to a more effective potential. The 3D potential of
uniform flow Φu is written as [21, 65]:

Φu = − (a1x1 + a2x2 + a3x3)U (3.20)

where a1, a2, a3 are the direction cosines of a line connecting the start point to the
goal point and U is the strength of the potential. The potential function defined for
Φu satisfying the 3D form of the Laplace equation, is harmonic.

Goal Sink Since the robot must reach the goal, an attractive harmonic potential
is needed at the goal, where the superposed potential has only one global minimum.
This attractive goal can be represented by a singular point sink. The 3D harmonic
potential generated by the goal sink is expressed as

Φg = − λg

Rg

(3.21)

where Rg is the distance between the point (x1, x2, x3) (the current location of the
robot) and the goal point G(xg1 , xg2 , xg3) and λg is the goal sink strength. The goal
potential Φg given by (3.21) satisfies the Laplace equation (3.18).

Spatial Panel Any 3D obstacle can be approximated by a number of spatial pan-
els. The potential due to the obstacles can be obtained by calculating the potential
for each polygonal panel and superposing the results. Harmonic sources or sinks
of uniform density, similar to the functions defined for the goal potential, are dis-
tributed on each panel. A single panel is a planar on which uniform sources or sinks
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are distributed. The total potential resulting from this distribution must be calculated
for each 3D panel. The calculation is done by integration.

The unit vector n̂ is perpendicular to the surface of the panel and is directed
outward of the obstacle volume. The unit vector î is directed along a leg of the
panel generally shown as ∂S. The unit vector û is in the plane of the panel and is
perpendicular to the unit vector î. Panel j, with surface Sj produces the following
potential at a point C(x1, x2, x3)

Φj (x1, x2, x3) = λj

∫
Sj

dSj

Rj

(3.22)

where Rj is the distance of the point C(x1, x2, x3) to an arbitrary point on the spa-
tial panel j. The origin of the coordinate system is located at point O. The vector
representing point C, at which the potential is being calculated is denoted by rc . If r′
is the vector pointing from the origin at an arbitrary point on leg ∂Sk of the polygon
S, then Rk can be expressed as:

1

Rk

= 1

|rc − r ′| (3.23)

The integral (3.22) can be converted to a summation of integrals over the bound-
ary of the panel S in which the position of an arbitrary point on the edges of the
panel, Eq. (3.23) appear:

Φj = λj

∑
k

P̂ 0
k ûk

(
P 0

k ln
Rk+ + lk+
Rk− + lk−

)
− |d|T1 (3.24)

where

T1 = atan
P 0

k lk+
(R0

k )
2 + |d|Rk+

− atan
P 0

k lk−
(R0

k )
2 + |d|Rk−

(3.25)

More informations on this derivation can be found in [220].
All these geometric parameters can be evaluated when the edges of the panel Si

are defined. An edge k of the panel Si is defined as a line segment by specifying the
position of the two ends of the edge k with respect to the origin O as vectors rk+ and
rk− respectively. A unit vector ûk is defined such that it is perpendicular to the edge
k and lies in the plane of the polygon Si .

With the position of the two ends of the edge k given the distance Rk+ and Rk−
can be found:

R0
k = |(r+

k − r−
k ) × (rc − r−

k )|
|(r+

k − r−
k )| (3.26)

where

R+
k = ∣∣r+

k − rc
∣∣ (3.27)

R−
k = ∣∣r−

k − rc
∣∣ (3.28)
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The distance d, height of the observation point C above the plane of Sk and measured
positively in the direction of n̂, may be calculated as:

d = n.
(
r − r+

k

)= n.
(
r − r−

k

)
(3.29)

The three distances R0
k , d and P 0

k form a right angled triangle, thus:

P 0
k =

√
(R0

k )
2 − d2 (3.30)

The signed distances l−k and l+k from point D on the extension of the edge k to the
two ends of the edge k must be calculated. The sign of these distances is positive if
the vector pointing from D to the corresponding end of the line segment has the same
direction îk . The signed distances l−k and l+k can be determined after the position of
point D has been calculated.

The position of point D is obtained by following the procedure discussed below.
First, the unit vector of the edge k is defined as:

Îk = r+
k − r−

k

|r+
k − r−

k | (3.31)

Then the position of point D can be found as:

rDk
=
[
Îk(rc − r−

k )
]
Îk + r−

k (3.32)

using the position of point D from Eq. (3.32), the following relation for l−k and l+k
can be found:

l−k = (r−
k − rDk)Îk (3.33)

l+k = (r+
k − rDk)Îk (3.34)

Finally, the unit vector P 0
k can be written as

P̂ 0
k = (rDk − rc)ûk

|(rDk − rc).ûk| ûk (3.35)

where

ûk = n̂k × Îk (3.36)

At the configuration proposed for the position of point C, both vectors P 0
k and ûk

have the same direction. If the projection of point C on the panel Sj was on the
other side of the edge k, both vectors P 0

k and ûk would have opposite directions.

3.4.2.4 3D Robust Harmonic Potential Field

A 3D potential field for obstacle avoidance consists of a uniform potential pointing
from the start to the goal of the desired path, a goal sink potential at the goal of the
desired path and several spatial panels surrounding and representing the obstacles.
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The strength of the spatial panels must be determined such that the condition on the
total potential gradients at the center of the panels are satisfied:

Vi = − ∂Φ

∂ni

, i = 1..m (3.37)

The notation ni in Eq. (3.37) means that the gradient is in the ni direction (unit
vector perpendicular to the spatial panel) and m is the number of spatial panels. After
Vi ’s are specified, the m Eqs. (3.37) are solved for the unknown panel strength per
unit area.

The other condition on the panel strengths (per unit area) is the 3D convergence
condition:

λg > λ0 > 0 (3.38)

where λ0 is the total strength of all the spatial panels

λ0 =
m∑

i=1

Aiλi (3.39)

where Ai is the area of panel i.
The total potential field at point C(x1, x2, x3) is:

Φ(x1, x2, x3) = Φu + Φg +
m∑

j=1

Φj (3.40)

where Φu (3.22), Φg (3.23), Φj (3.24) are the potential fields due to the uniform,
goal and panel strengths. If Φ ′

j defines the potential of the spatial panel j per unit
strength per unit area, Eq. (3.40) can be rewritten as:

Φ(x1, x2, x3) = Φu + Φg + ΛT .Φ ′ (3.41)

where

Φ ′ = (Φ ′
1, . . . ,Φ

′
m

)T ; Λ = (λ1, . . . , λm)T (3.42)

Substituting Eq. (3.41) into Eq. (3.37) results in:

Vi = −∂Φu

∂ni

− ∂Φg

∂ni

−
m∑

j=1

λj

∂Φj

∂ni

, i = 1..m (3.43)

where
∂Φu

∂ni

= −n̂i

(
a1 î + a2ĵ + a3k̂

)
(3.44)

∂Φg

∂ni

= −n̂i

λg(xci
− xg)

|xci − xg |3 (3.45)

and

∂Φ ′
j

∂ni

= −n̂i

(
∂Φ ′

j

∂x1
î + ∂Φ ′

j

∂x2
ĵ + ∂Φ ′

j

∂x3
k̂

)
(3.46)
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The partial derivatives in Eq. (3.46) can be calculated by differentiating the sum-
mation term in Eq. (3.24), or approximated numerically. The following relation is
presented for the first coordinate:

∂Φ ′
j

∂x1
≈ Φ ′

j (xci1 + Δxci1 , xci2 , xci3) − Φ ′
j (xci1 , xci2, xci3)

Δxci1

(3.47)

The same kind of relation is valid for the other two coordinates.
Equation (3.43) is written in the matrix form

Λ = P−1 (−V + Υ ) (3.48)

where

Pij = ∂φ′
j

∂ni

∣∣∣∣
ci

, i, j = 1..m (3.49)

with

V = (V1,V2, . . . , Vm)T (3.50)

and

Υi = −∂φu

∂ni

− ∂φg

∂ni

, i = 1..n (3.51)

The convergence condition (3.38) must be satisfied:

λ0 = AT Λ (3.52)

with

A = (A1,A2, . . . ,Am)T (3.53)

thus

AT P−1 (−V + Υ ) < −λg (3.54)

The desired outward normal velocities at the center of the spatial panels are assumed
to be proportional to the panel area, with a a safety parameter:

V = aA (3.55)

Thus

a <
λg + AT P−1Υ

AT P−1A
(3.56)

with

amax = λg + AT P−1Υ

AT P−1A
(3.57)

and

ra = a

amax
(3.58)
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The safe λj ’s that satisfy the convergence condition (3.52) can be found from:

Λ = P−1 (−raamaxA + Υ ) (3.59)

Hence, the components of the velocity field are determined as:

u1(x1, x2, x3) = −∂φu

∂x1
− ∂φg

∂x1
−

m∑
j=1

λj

∂φj

∂x1
(3.60)

u2(x1, x2, x3) = −∂φu

∂x2
− ∂φg

∂x2
−

m∑
j=1

λj

∂φj

∂x2
(3.61)

u3(x1, x2, x3) = −∂φu

∂x3
− ∂φg

∂x3
−

m∑
j=1

λj

∂φj

∂x3
(3.62)

3D Robust Harmonic Potential Algorithm

1. The uniform flow strength U, the goal strength λg and the safety ratio ra are
selected.

2. The start position xs = (xs1 , xs2 , xs3) and the goal position xg = (xg1 , xg2 , xg3)

are defined.
3. The 3D obstacles in the environment must be approximated by volumes that can

be contained in a number of 3D polygons. The parameters of the polygons are
determined such that the vertices starting from an arbitrary vertex in the direction
a of right hand notation about the vector n̂j which is perpendicular to the panel
and pointing outward of an obstacle volume are numbered.

4. The direction of the uniform flow is calculated such that the uniform flow points
from the start point to the goal point

a1 î + a2 ĵ + a3k̂ = xg − xs

|xg − xs | (3.63)

5. The matrix P is evaluated using Eq. (3.49) and Υ by Eq. (3.51)
6. The parameters amax is calculated using Eq. (3.57)
7. The safety ratio (0 < ra < 1) is selected.
8. The strength per unit area for the m panels are calculated using Eq. (3.59)
9. Equations (3.60)–(3.62) are used to determine the direction of the local tangent

to the path. The path is generated by a numerical procedure, stepping a small
constant length along the calculated local tangent. The path starts at x1 = xs . At
any integration step k, the direction of the local tangent to the path and the new
position are calculated as:

uk = u(xk)

ûk = uk

|uk|
xk+1 = xk + ûkΔs

(3.64)



74 3 Mission Planning

where Δs is an arbitrary small distance. The iteration in k continues until the
point found for the path is closer than the defined small distance Δs∥∥xk+1 − xg

∥∥≤ Δs (3.65)

10. The array of points xk is the 3D planned path

3.4.3 Sampling Based Trajectory Planning

3.4.3.1 Grid Based State Space Search

This method defines an arbitrary speed-varying safety corridor, making this partic-
ular algorithm one of very few trajectory planning algorithms with a proven explicit
safety guarantee. This algorithm discretizes the entire state space of the vehicle
onto a lattice, and searches the lattice for the time-optimal path that satisfies the
safety corridor. Although the algorithm converges as a polynomial of the number
of obstacles, it is a high-order polynomial that is exponential with the number of
dimensions, making practical real-time implementation difficult due to high dimen-
sionality of the state-space. It has also difficulty in solving planning problems for
the case of under-actuated vehicles, as the lighter than air robot.

3.4.3.2 State Space Navigation Function with Interpolation

Much like the grid-based state space search, this method approximates the time-
optimal path to a goal. Instead of returning only a single trajectory, it returns a
navigation function over the state space. This navigation function can be computed
by either value iteration or control policy iteration, although value iteration is more
popular. For a given state, performing gradient descent on this navigation function
will produce an approximately time-optimal trajectory to the goal. Interpolation be-
tween lattice points allows a continuous function which can be used for feedback.
The algorithm takes on the same order of complexity as the grid-based state space
search.

3.4.3.3 Reachability Graph

This approach also uses a body-centered frame of reference: for each state, the tree
explores variety of states including the maximum deflection states. The combina-
torial complexity of such a process is often prohibitive, and the tree quickly fills
the space close to the initialization point. The basic approach has been employed
for curvature constrained path problem in 2D. Another way to make this approach
tractable is to use cell-based pruning: the configuration space is divided into cells,
and the reachability graph is set up to be a tree that has no more than one leaf ending
in each cell.
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3.4.4 Decoupled Trajectory Planning

3.4.4.1 Minimum Distance Discrete Path Followed by Trajectory Forming
(2 Step Approach)

This algorithm follows the same general approach: first a discrete path through the
configuration space is found by one of the above presented algorithms, and then the
resulting path is used as the basis for the generation of a trajectory that is feasible
for the dynamics-constrained vehicle. For the first stage, a well-known algorithm
such as A∗, the probabilistic road map, or the Voronoi approach is typically used.
Complexity in this approach is dominated by the path planning phase computations.
This decomposition-based approach allows efficient computation of approximate
solutions, but makes proofs of completeness, optimality, or even of soundness, dif-
ficult. There is no safety corridor built in and soundness requires checking whether
the trajectory intersects with obstacle space, and re-computing or rejecting trajecto-
ries that do not pass. Generally, practical implementations of these algorithms will
use a conservative corridor to prevent collisions.

3.4.4.2 Discrete C-Space Search Connected by 2 Point Free Space Boundary
Value Solver

In this approach, a set of waypoints is first selected (generally by a grid based
search), a velocity is assigned to each one, and a boundary value problem connecting
each way point to the next point is solved. Although these boundary value problems
do not have to deal with obstacles, a general simple solution is not possible, so the
solution is generally approximated using numerical methods. As with the previous
method, an explicit collision check on the trajectory is needed to ensure soundness,
possibly at the expense of completeness.

3.4.4.3 Discrete C-Space Search Interpolated with Polynomial Arcs

In this approach, an ordered set of waypoints produced by a discrete planner is fitted
with a spline made up of polynomial arcs. This spline is set up so that the vehicle
can follow it without violating acceleration constraints, and typically consists of
circular arc segments with a minimum radius and straight segments [69]. Other types
of spline, such as the Pythagorean hodograph have been proposed for the same
purpose, in 2D [68, 91].

The Curvature Constrained Paths with Speed Control Planning is coupled with
the previous approach; once a curvature constrained path is produced, it is possi-
ble to optimize the speed so that the vehicle will follow this path in minimal time.
This path-constrained trajectory planning problem requires solving only a 2D path
constrained state space (with time and velocity axes) and can be accomplished effi-
ciently.
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3.4.4.4 2D Voronoi Solutions from Multiple Body-Based Planes

In this approach, several planes containing both the initial and final goal points are
extracted as subsets of the 3D configuration space. These planes that are discrim-
inated from each other by a single angle and this angle is discretized so there are
a finite number of planes (in general, 4 to 6 planes suffices). These planes are then
searched with a 2D dimensional path planner, such as Voronoi roadmap planner,
and then rated against each other according to optimality criteria. The best of the set
according to the performance index, is chosen.

3.4.5 The Finite State Motion Model: The Maneuver Automaton

The general idea of finite state models is to reduce the optimization or search prob-
lem from an infinite dimensional space to a finite one. It helps to significantly reduce
the computational complexity of a trajectory optimization [71, 72].

There are two primary types of finite-state models for dynamics systems: the
first is a discrete-time model with quantized states (quantization); another choice
is to relax the restrictions on control and time and use instead operations over dis-
crete stages with fixed start and end states. These stages, which are feasible time-
parameterized curves in state space, are called motion primitives. In the context of
vehicle trajectory planning, this model is called a maneuver automaton (MA). The
concept of Maneuver Automaton for vehicle is based on the observation that human
pilots achieve control using a combination of trim trajectories and maneuvers (non-
equilibrium transitions between trims). Frazzoli et al. [72] provides a definition of
the concept of Maneuver Automaton within the context of autonomous guidance.
Maneuver Automaton form the set of trim and maneuvers are used to pre-compute a
cost-to-go map. This map can be used on line with a greedy guidance policy. States
falling between the pre-computed values are obtained via interpolation. In this form,
the vehicle behavior is constrained to the set of primitives in the maneuver automa-
ton.

Remark 3.6 For agile vehicles such as robotic helicopters, it can be an issue to
achieve a sufficiently expressive maneuver automaton due to the ‘curse of dimen-
sionality’.

To relax the vehicle behavior and provide flexibility in an obstacle-rich envi-
ronment, Schouwenaars et al. in [184] use the concept of the Maneuver Automaton
within a receding horizon optimization framework. Instead of fixed trim trajectories,
the trims are replaced by controllable linear modes.

Parallel to the Maneuver Automaton concept, a similar idea called ‘control
quanta’ is introduced for driftless systems with a symmetry property in [142]. For
this special class of systems, by employing control quanta, the reachable set can be
restricted to a lattice, and by choosing a suitable set of control quanta, the reachable
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set can be everywhere dense in the limit when M approaches infinity. The difference
is that for the control quanta method, the control policy is chosen from a collection
of control library policies, while for motion primitive method the trajectory is cho-
sen from a library of maneuvers that can result from a various control strategies.

3.4.6 Mathematical Programming

Mathematical programming methods treat the trajectory planning problem as a nu-
merical optimization problem. Some popular methods include Mixed Integer Lin-
ear Programming (MILP), non linear programming and other constrained optimiza-
tion approaches. These methods are also known as trajectory optimization methods,
since they find a trajectory to a goal point that is optimal in the resolution sense.
However, the cost functions typically have a number of local minima thus finding
the global solution strongly depends on the initial guess (the general formulation
is NP hard, although given an initial guess sufficiently close to the global solution,
the optimization converges in polynomial time). For this type of problem, one stan-
dard strategy is to enforce the equations of motion as constraints. Another strategy
is to discretize the variational principles underlying the systems dynamics, such as
Hamilton’s principle or Lagrange-D’Alembert principles, and then these discrete
equations can serve as constraints. This kind of strategy is called Discrete Mechan-
ics and Optimal Control (DMOC). Several approaches have been used to break this
into simpler problems.

The MILP mixed integer linear programming approach [178] uses indirect
branch-and-bound optimization, reformulating the problem in a linearized form and
using commercial software to solve the MILP problem. There are two elements to a
generic brand-and-bound method [59]

• Branching: The problem is divided into subproblems by partitioning the search
space. Each subproblem is further divided in the same way, and the algorithm
proceeds by searching a tree of sub-problems, hence branching

• Bounding: a lower bound on the optimal cost of each subproblem is found by
solving a relaxed simpler form of that subproblem. These bounds are then used to
identify if a branch requires further subdivision. If the subproblem is infeasible or
the solution to the subproblem is worse than the cost of the best feasible solution
found so far, then the branch is said to be fathomed and no further branching is
necessary.

The following discussion illustrates the direct mapping of the branch and bound to
the 2D avoidance problem.

• Branching: the problem of avoidance obstacles 1..M can be divided into two sub-
problems
• the problem of passing clockwise around obstacle 1 and avoiding obstacles

2..M or
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• the problem of passing counterclockwise around obstacle 1 and avoiding ob-
stacles 2..M

• Bounding: the shortest path passing clockwise (or counterclockwise) around ob-
stacle 1 and avoiding obstacles 2..M must be longer than the shortest path passing
clockwise (or counterclockwise) around obstacle 1 and ignoring obstacles 2..M

The global optimality of any solution obtained from a branch and bound method
is guaranteed, assuming that the globally optimal solution to each evaluated sub-
problem is found. In the avoidance case, this corresponds to finding the best path
passing on a given side of a set of active obstacles and ignoring all others. Because
this subproblem no longer involves a choice of side, it can be solved by nonlinear
programming. Although, it is difficult to express the concept of one side or another
in terms of an explicit constraint, it can be achieved by initializing the search on the
appropriate side and employing a primal-dual optimization method which is then
checked against the desired path.

An initial trajectory for the mathematic programming methods, such as a
constant-speed trajectory, is then used as an initial point in the mathematical pro-
gramming search. If this initial point falls within the basin of attraction of the global
solution, then the mathematical programming approach can find the optimal solution
in polynomial time. However, unless care is taken in finding proper initial points,
the solution could fall into a local minimum, and general global optimization ap-
proaches guaranteed to find the global minimum are prohibitively expensive. Mixed
Integer Linear Programming can extend continuous linear programming to include
binary or integer decision variables to encode logical constraints and discrete deci-
sions together with the continuous vehicle dynamics. The approach to optimal path
planning based on MILP was introduced in [30, 136, 184] for robotic helicopters.
The UAV’s trajectory generation is formulated as a 3D optimization problem under
certain conditions in the Euclidean space, characterized by a set of decision vari-
ables, a set of constraints and the objective function. The decision variables are the
UAV’s state variables, i.e. position and speed. The constraints are derived from a
simplified model of the UAV and the environment where it has to fly on. These
constraints include:

• Dynamics constraints, such as a maximum turning force which causes a minimum
turning radius, as well as a maximum climbing rate.

• Obstacles avoidance constraints like no-flight zones.
• Target reaching constraints of a specific way point or target.

The objective function includes different measures of the quality in the solution of
this problem, although the most important criterion is the minimization of the total
flying time to reach the target.

3.4.7 Receding Horizon Control

Receding Horizon Control (RHC) solves the numerical optimization problem over
a reduced time horizon. In this approach, an open-loop control policy is designed to
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control the vehicle until the end of the time horizon. Optimization over a finite hori-
zon requires reduced computation time, however, it will not converge to a globally
optimal solution without using an appropriate cost-to-go function to capture the dis-
carded portion of the trajectory. Except in trivial cases, optimality and completeness
are difficult to prove. In helicopter robots guidance applications, this approach has
often been used with a MILP solution.

Receding Horizon Control is a suitable trajectory planning technique for many
UAV applications. Sensory information can be incorporated into on-line compu-
tation thus it can deal with uncertainty; at the same time, only local information
is integrated thus it can reduce computational effort. However, properly designed
terminal cost function needs to be provided to the on-line planner to guarantee com-
pleteness and near-optimality. The value function captures the relationship between
the vehicle dynamics (state), the environment and the cost.

3.4.8 Reactive Planning

The term ‘reactive planning’ refers in general to a broad class of algorithms that use
only local knowledge of the obstacle field to plan the trajectory. Reactive algorithms
are important in dealing with uncertainty, and run very quickly since no elaborate
couplings are involved. In the case where a global obstacle map is not available
and obstacle positions are known within a small radius, a reactive algorithm pre-
vents last-minute collisions by stopping or swerving the vehicle when an obstacle
is known to be in the trajectory, which has been planned by a different algorithm.
This type of approach is important in many existing practical implementations in
order to ‘patch’ an unsound algorithm to ensure that it is sound, as well as to deal
with obstacle fields that may change suddenly. However, reactive planners, due to
their inability to take the global planning problem into consideration, are seldom
used as the sole trajectory generation process. If only the reactive planner is used,
the vehicle may never find a trajectory that will lead to the goal.

The Motion Description Language (MDL) and its extension (MDLe) can be used
to define and design the reactive algorithms. In this framework, a sensor based in-
terrupt (i.e. obstacle detected) will cause the vehicle to switch to another behavior.
Fuzzy logic could also be used as a basis for a reactive algorithm, as well as visual
flow based reactive planning.

There are many ongoing works on this topic, especially bio-inspired reactive
planning algorithms. This can be explained due to the deficiencies of existing plan-
ning algorithms to involve sensory information in a principled way so that a com-
plete planning framework results.

3.4.9 Probabilistic Roadmap Methods: PRM

The roadmap methods described above are able to find a shortest path on a given
path. The issue most path planning methods are dealing with is how to create such a
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graph. To be useful for path planning applications, the roadmap should represent the
connectivity of the free configuration space well and cover the space such that any
query configuration can be easily connected to the roadmap. PRM is a probabilistic
complete method that is able to solve to solve complicated path planning problems
in arbitrarily high dimension configuration spaces.

Probabilistic planners represent a class of efficient methods. They belong to the
general family of sampling-based methods. A configuration that does not cause a
collision is added to the current road map and connected if possible to other already
stored configurations.

The above strategy is quite general and may lead to different planning methods
depending on the specific design choices, and mainly on the criterion for selecting
the samples in to be checked for collision. The basic PRM Approach constructs
a roadmap by iteratively sampling configurations randomly from the configuration
space. Using a collision checker, it can be determined whether a configuration be-
longs to the free or forbidden configuration space. If a configuration is collision-free,
it is added as a node to the roadmap. Subsequently, it is attempted to connect this
node to the roadmap. To save time, a connection is only tried to nodes which are
close. The set of nodes to which a connection is attempted is called the neighbor set
of the current node.

Connections between nodes are tried using a local planner which is a simple
planner that is allowed to fail on all but the simplest queries. In The basic PRM
Approach, the local planner simply tries to connect two configurations by a straight
line through the configuration space. The local planner succeeds when the straight
line is collision free, which is collisions checking intermediate configurations, up
to some predefined resolution. If the connection succeeds, an edge between the two
associated nodes is added to the roadmap.If a connection has been tried to all nodes
of the neighbor set, a new node is sampled, and the process repeats. This continues
until some application specific stop criterion is met. Usually, this is when some
predefined set of query configurations are inter-connected via the roadmap.

The local planner should be able to find a path between two configurations in
simple cases in a small amount of time. Given a configuration and a local planner,
one can define the set of configurations to which a local planning attempt will suc-
ceed. This set is called the visibility region of a node under a certain local planner.
The larger the visibility region is, the more powerful the local planner.

The most straightforward sampling scheme is to sample configurations uniform
randomly over the configuration space.

3.4.10 Rapidly Expanding Random Tree (RRT)

The Rapidly Expanding Random Tree is an algorithm which is suited for quickly
searching high-dimensional spaces that have both algebraic and differential con-
straints. The key idea is to bias the exploration toward unexplored portions of the
space by sampling points in the state space and incrementally pulling the search tree
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toward them, leading to quick and uniform exploration of even high-dimensional
state spaces. The underlying premise is to build a graph structure with nodes at ex-
plored positions and with edges describing the control inputs needed to move from
node to node [111].

For each step, a random state (xrand) is chosen in the state space. Then (xnear )

in the tree that is the closest to the (xrand) in metric ρ is selected. Inputs u ∈ U, the
input set are applied for Δt , making motions toward (xrand) from (xnear ). Among
the potential new states, the state that is as close as possible to (xrand) is selected as
a new state (xnew). The new state is added to the tree as a new vertex. This process
is continued until (xnew) reaches (xgoal).

Since a vertex with a larger Voronoi region has a higher probability to be chosen
as (xnear ) and it is pulled to the randomly chosen state as close as possible, the
size of larger Voronoi regions is reduced as the tree grows. Therefore, the graph
explores the state space uniformly and quickly. To improve the performance of the
RRT, several techniques have been proposed such as biased sampling and reducing
metric sensitivity [111].

This method uses a stochastic search over the body-centered frame of reference
and expands a tree through a random sampling of the configuration space. This algo-
rithm is proven to be complete in the probabilistic sense, and to produce a trajectory
that is feasible given the dynamic constraints of the vehicle. However, there is no
proof of the convergence rate or of optimality.

3.4.11 Guided Expansive Search Trees

Guided Expansive Search Trees is a variation of conventional probabilistic path
planning strategies: PRM, RRT and most similarly Expansive Search Trees (EST).
Guided Expansive Search Trees have advantages over the conventional techniques
when the state space is governed by higher dimensions, Kinodynamic constraints
and when minimizing the control cost of the entire path is important. Guided Ex-
pansive Search Trees borrow from conventional expansion techniques for robustness
in finding paths and also use path cost statistics to guide the tree in the window of
acceptably low-cost paths [169].

Conventional probabilistic path planning algorithm rely on a metric to determine
whether two configurations are ‘close’. But in kinodynamic state spaces, it is not
obvious when two configurations should be considered ‘close’. Often, a 1-norm or
weighted 1-norm of the vector of the configuration is used in a kd-tree or range
tree, or only the 1-norm of the static representation is used, ignoring the derivatives
and time. These techniques do not necessarily accurately represent the reachability
of the configuration. For instance, two configurations which are close based on a
1-norm will likely not be able to reach one another with a reasonable cost.

The pseudo-code for this algorithm is the following

1. For i = 0 to N do
2. p = choose-waypoint()
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3. n = expand-waypoint(p)

4. (if n is not valid) continue
5. add-to-tree (p, n)
6. assign-weigh (n)
7. if n connects to goal: return add-to-tree (n, goal)
8. end for.

The weighting function of the Expansive Search Trees algorithm only looks at the
number of neighbors nneigh within a range weight = 1

nneigh
.

The guided expansive search tree algorithm differs in that it additionally takes
into account the out-degree, number of out-going edges from the waypoint; the order
of the waypoint; how recently it was created and the A∗ cost, estimated total cost to
the goal computed as the sum of the control required to reach the waypoint from the
root and the estimated control cost to reach the goal. These statistics are taken to the
power α, β , γ , δ respectively.

weight = (order)γ

nα
neigh(out − degree)β(A∗ cost)δ

The out-degree term prevents a highly weighted waypoints from being expanded
too many times. This is incremented even if the expanded to waypoint is not valid.
The A∗ cost term focuses the search towards the goal and prevents the tree from
often expanding high-cost waypoints which violate a velocity or rate constraints.
The order term, like the number of neighbors term, tends to keep the tree expanding
on the frontier.

The purpose of using the number of neighboring waypoints in the weighting
function is to bias the search towards expanding on the frontier. So, whether two
waypoints are close should be defined based on the control cost between the two
configurations. This indicate how likely one way-point is to expand into the region
of the other.

3.5 Planning with Uncertain Winds

One of the most challenging applications is planning under uncertainty. A flight
planning algorithm that is robust to changing flight conditions, disturbances and
vehicle uncertainties would be an improvement over current flight technology. The
general problem of planning with uncertainty can be phrased as follows: Given a
vehicle with uncertain position information, uncertain environment knowledge (e.g.
obstacle locations) and having limited precision in tracking commands, find the best
path to the goal. In most of the real world UAV planning problems, the issue of
uncertainty in sensing and control is unavoidable. The Receding Horizon Control
framework described earlier can also be employed to deal with uncertainties; the off-
line pre-planned trajectory or approximate cost-to-go function accounts for global
convergence and the on-line Receding Horizon Control can be used to negotiate
with mid-flight uncertainties. It can be used to generate trajectories for a vehicle
operating in an environment with atmospheric turbulence.
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Remark 3.7 When the actual wind vector field is not known exactly and may deviate
significantly from the wind velocities estimated by the model, a technique to address
this issue is to explicitly incorporates wind uncertainties into the planning algorithm.

When systematic search methods fail, less conventional search techniques have
to be considered. Many of them employ some form of random or stochastic search,
including Receding horizon control, Markov decision process and chance con-
strained algorithms. Heuristic methods are techniques which seek good solutions
at reasonable computational cost without being able to guarantee optimality.

Remark 3.8 The field of Simultaneous Localization and Mapping (SLAM) is im-
portant in problems of planning with uncertainty. A common line of attack for solv-
ing such problems in real time is to break the problem into two phases: an off-line
phase and an on-line phase. The off line phase consists of solving the optimal control
problem for various reference trajectories and storing these reference trajectories on
board for later on line use. These reference trajectories are used to compute the ac-
tual trajectory on line via a neighboring optimal feedback control strategy, typically
based on the linearized dynamics. This approach requires extensive ground based
analysis and on board storage capabilities. Moreover, perturbations around the ref-
erence trajectory might not be small and therefore applying the linearized equations
may not be appropriate. Although the SLAM problems is closely linked with the
problem of motion planning with uncertainty, it does not immediately address the
motion planning issues, so it is not covered in this book.

3.5.1 Receding Horizon Approach

For manned aircrafts, the nominal path is specified by the air traffic controller by a
sequence of way-points and is typically a piecewise linear one. The coordinates of
the way-points are assumed to be given in a global coordinate frame. The speed is
typically measured in nautical miles per hour. Aircraft motions are subject to vari-
ous random perturbations such as wind, air turbulence . . . and thus may deviate from
the nominal path. This cross-track deviation may be corrected by the on board Flight
Management System (FMS). In addition, aircraft dynamics may exhibit several dis-
tinct modes, for example, keeping constant heading, turning, ascending, descending
and may switch modes at proper times when following the nominal paths. The air-
craft is assigned some flight plan to follow that consists of an ordered sequence of
way-points {Pi, i = 0 . . .M}, Pi = (xi, yi) ∈ R2. Ideally, the aircraft should fly at
some constant speed along the reference path composed of the concatenation of the
ordered sequence {Ii, i = 1 . . .M} of line segments Ii , with starting point Pi and
ending point Pi+1, i = 1 . . .M . Deviations from the reference path may be caused
by the wind affecting the aircraft position and by limitations in the aircraft dynamics
in performing sharp turns resulting in cross-track error. The on board 3D FMS tries
to reduce the cross-track error by issuing corrective actions based on the aircraft’s
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current geometric deviation from the nominal path, however, without taking into ac-
count timing specifications. The obtained results are applied to a clearance changing
the flight plan. The position of the aircraft may be measured via secondary radar or
other localization systems such as Automatic Dependent Surveillance Broadcast
(ADS-B) [86]. These measurements are precise enough to neglect measurement
noise. Current methods of position localization produce errors of order of terms
of meters, which are small compared to the effect of other sources of nominal un-
certainty such as winds. The flight plan possibly involves altitude changes. Altitude
changes can be used as resolution maneuvers to avoid severe weather areas or other
conflict situations with other aircraft. Forbidden airspace areas may have an arbi-
trary shape, which can also change in time, as for example, in the case of a storm
that covers an area of irregular shape and evolves dynamically.

As for the manned aircraft, the evolution of the lighter than air robot is subject to
many natural sources of uncertainty, roughly classified into two classes.

• Nominal uncertainty, that affects all flights, results of generic perturbations due
to weather, variability in the mass of the aerial robot, variability in the settings
of the Mission planning or control systems, biased measurements. . . Nominal un-
certainty gives rise to quantitative differences between the actual lighter than air
robot and the model used to predict its evolution.

• Non nominal uncertainty that affects certain flights, result of things as malfunc-
tions, errors of the human operators, extreme weather conditions. Non nominal
uncertainty gives rise to qualitative structural differences between the actual air
traffic and the model used to predict its evolution.

3.5.1.1 Basic Problem Statement

In a receding horizon approach, a trajectory that optimizes the cost function over a
period of time, called the planning horizon, is designed first. The trajectory is im-
plemented over the shorter execution time and the optimization is performed again
starting from the state that is reached at the end of the execution time. The terminal
condition is assumed to be changing with time.In this section, the idea is simple: as
uncertainty always exists, a way of taking care of it is to update the reference paths
either periodically or when necessary. The immediate measurements of the position
and orientation are taken as initial conditions for the next reference trajectories [20].

When the target point is far off then there is no real advantage to finding the
optimal trajectory on line with high precision from the starting point until the end.
As the lighter than air robot continues to move to the target, the flight management
system can get more accurate information about the surrounding environment (path
constraints) which may be different from what was assumed at the beginning when
the trajectory was optimized. Moreover, the path constraints change in a dynamic
environment.
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3.5.1.2 Hierarchical Planning Structure

This approach involves determining the optimal open loop motion plans based on
the available information and world model and repeating this process to refine the
plan as the information becomes more accurate [14]. The structure necessary for
the update of the reference trajectories is described in this paragraph. A hierarchical
structure appears as there exists an upper level of decision making and a lower level
where the motion planning problem is solved. One clock, associated with the lower
level, allows the reference trajectories design, depending on the nature of the next
way-point. It is reset at each update. The following concepts must be introduced to
describe this hierarchical structure operation

• Periodic Updates: First, periodic updates are introduced with a period 10 to 1000
times greater than the step of the autopilot.

• Anticipated Updates: An important perturbation may occur between two peri-
odic updates. To handle this situation, a new reference trajectory is required. The
concept of anticipated update is thus important. To decide whether an important
perturbation occurs the system needs a supervision level.

• Supervision level: The supervision system is based on a spatio-temporal criterion.
• The temporal part: It depends on the value of a parameter called ect computed

continuously in the lower level. The parameter ect gives an evaluation of the
arrival time predicted in the kth update and the arrival time predicted continu-
ously on the basis of the measured configuration, Tc:

ect = |T k − Tc − h| (3.66)

where h is the time given by the clock. If ect > εmin then an update occurs; εmin

is user-fixed relatively to the environment
• The spatial part: The spatial parameter is defined as es = |Xr − X| where Xr

is the reference configuration and X the measured one. If ex > δmin then an
update must take place; The parameters εmin as δmin influence the number of
updates.

The above procedure has been developed to be implemented on embedded systems
aboard the lighter than air robot [1, 14, 27]. Periodically updated paths can be gen-
erated to accommodate a slowly drifting wind direction and/or wind speed. A flight
planning system is presented that enables the vehicle to move in a non-predefined
way. Taking into account the situation detected by the sensors and on the basis of a
spatio-temporal criterion, the proposed system is able to decide whether a new refer-
ence trajectory must be planned. If an update is necessary, the reference is computed
taking into account the measured states, the limitations on thrust and velocity and
the next way-point (or final destination). It is assumed that the sampling interval is
small enough that the discretization effects can be neglected.
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3.5.2 Markov Decision Process Approach

To prepare the motion planning problem, the uncertainty in the wind field is mod-
eled. The problem of reaching a particular goal location as a Markov Decision Pro-
cess (MDP) is formulated using a discretized space approach. Solving the Markov
Decision Process provides a policy of what actuation option should be expected at
any given location.

3.5.2.1 Introduction

A particular finite Markov Decision process is defined by its state and action sets
and by the one-step dynamics of the environment. Given any state s and action a,
the probability of each possible next state s ′, is

P a
ss ′ = Pr

{
st+1 = s′‖st = s, at = a

}

where Pa
ss′ represents transition probabilities and t denotes a finite time step [104].

In the Markov Decision Process, the value of P a
ss ′ does not depend on the past state

transition history. The agent receives a reward r every time it carries out the one-
step action. Given any current state s and action a, together with any next state s′,
the expected value of the next reward is:

Ra
ss ′ = E

{
rt+1‖sr = s, at = a, st+1 = s′}

P a
ss′ and Ra

ss ′ completely specify the dynamics of the finite Markov Decision Pro-
cess. In the finite Markov Decision Process, the agent follows the policy Π . The
policy Π is a mapping from each state s and action a to the probability Π(s, a)

of taking action a when in state s. In the stochastic planning calculation, based on
the Markov Decision Process, the policy Π is decided so as to maximize the value
function V Π(s). The V Π(s) denotes the expected return when starting in S and
following Π thereafter. The definition of V Π(s) is:

V Π(s) = EΠ

[ ∞∑
k=0

γ krt+k+1

∥∥∥st = s

]

where EΠ denotes the expected value given when the agent follows the policy Π

and γ is the discount rate 0 < γ < 1. If the values of P a
ss′ and Ra

ss′ are known,
dynamic programming is used to calculate the best policy Π that maximizes the
value function V Π(s). When the values of P a

ss′ and Ra
ss′ are unknown, a method

such as on-line reinforcement learning is useful in obtaining the best policy Π in the
learning environment. After the planning calculation has finished, a greedy policy
that selects action value a that maximizes V Π(s) is optimal.

Because the wind velocity W(ri, t) is uncertain, the next state sj may be consid-
ered as a random variable and a probability distribution can be constructed over all
adjacent cells. Given these transition probabilities from all states, the motion plan-
ning problem is to select the actions that minimizes time-to-goal. This problem is
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thus naturally posed as a Markov Decision Process (S,A,P,R) where S represents
the set of possible states si , A is the set of actions available from each state, P gives
the transition probabilities Pa(si, s

′
j ) from current state si to possible next states s ′

j

under action a, R defines the expected immediate reward for each transition and
each transition a. In this problem, reward is negative travel time.

3.5.2.2 Modeling Wind Uncertainty

The wind is decomposed into direction and magnitude components, denoted re-
spectively by θi and Wi . Independent probability distributions are assigned to each.
The expected value of each component is equal to the field model value given by
W̄i(r, t). To model the uncertainty in θi , a Von Mises distribution is employed

fvm

(
θi, θ̄i

)= exp(k cos(θi − θ̄i ))

2πI0(k)
(3.67)

where θ̄i = ∠W̄i(r, t) is the mean, k is a concentration parameter and I0(k) is the
modified Bessel function of the first kind of order 0. The wind magnitude Wi uncer-
tainty is modeled as Gaussian with mean W̄i = ‖W(ri, t)‖. The standard deviation
is set as proportional to the magnitude, σi = ρWi (ρ is chosen by the user).

3.5.2.3 Transition Probabilities

Next, the transition probabilities Pa(si, s
′
j ) are defined that govern state s ′

j is entered
after executing each action a from each state si . If there is no vehicle actuation, the
wind direction wholly determines the next state’s position. In that case, the proba-
bility of the wind forcing the vehicle from state si to an adjacent state sj is

Pa(si, s
′
j ) =

∫ θij +π/4

θij

fvm

(
θi, θ̄i

)
dθ (3.68)

where θij is the smaller bordering angle of the 1/8 circular sector pointing from si
to sj .

A Monte Carlo method may be used to determine the probabilities P and ex-
pected rewards R from resultant vector for each action, described as follows. First a
set θ0 of N sample points are drawn from the Von Mises distribution fvm (θ , θ̄ ) and
a set W0 of N sample from the standard normal distribution (this step is required
only once, whereas the following steps must be done by iterating for each si ). Sec-
ond these samples are adjusted for the state si . Third, the resultant velocity samples
are calculated by converting the random wind samples to Cartesian coordinates and
adding the actuation.
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3.5.2.4 Action Space and Rewards

Travel time is used as a transition cost between states. The expected value of the
velocity magnitude is estimated as the population mean of the above Monte-Carlo
samples.

To complete the problem set-up, a goal location is defined and created as a sink
state at this location, from which all transitions are set to have probability zero. Thus
the cumulative reward will decrease with every transition until the vehicle reaches
the goal location.

Given this set-up, the Markov Decision Process will determine for each given
current state si what is the optimal immediate action a so that the expected cumu-
lative time to goal is minimal, this collection of actions is referred to as the optimal
policy Π∗.

3.5.3 Chance Constrained Predictive Control Under Stochastic
Uncertainty

Lighter than air robots must be able to plan control actions that are robust to the
inherent uncertainty in the real world. This uncertainty arises due to uncertain state
estimation, disturbances and modeling errors, as well as stochastic mode transitions
such as component failures. Some authors [32] have investigated control under set-
bounded uncertainty. In this case, robust control ensures that failure is prevented
under all possible uncertainties. In many cases, for example wind disturbances, un-
certainty is best represented using a stochastic model, rather than a set bounded one.
Early approaches of control under stochastic uncertainty, such as linear Gaussian
quadratic used the certainty equivalence principle. This enables uncertain variables
to be replaced with their expectation and control laws to be designed in terms of
these expectations. Alternative approaches expressed uncertain classes of stochas-
tic control problems as a Markov decision process. Predictive stochastic control
takes into account probabilistic uncertainty in dynamic systems and aims to control
the predicted distribution of the system state in some optimal manner over a finite
planning horizon. Chance constraints specify that the probability of failure must be
below a given threshold. Failure can be defined as collision either with an obstacle
or failure to reach the goal region. This chance constrained formulation enables the
user to specify a desired level of conservatism, which can be traded against per-
formance. It is much beyond the calculation possibilities of the actual embedded
systems, but technology is advancing fast.

The key idea is to approximate all probability distributions using a finite set of
samples or particles. The stochastic predictive problem is approximated as a deter-
ministic one. As the number of particles tend to infinity, the approximation tends
to the original stochastic problem. Constraints are incorporated on the probability
of failure, enabling chance constrained stochastic control with continuous decision
variables. The proposed formulation based on the analysis presented in [32].
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3.5.3.1 Problem Formulation

The following definitions are taken: the states X = (x, y, z, γ,χ,V ), the controls
U = (T ,σ,α) the model parameters Θ = (CD,CL,m,max,may,maz) and finally
disturbances W = (Wx,Wy,Wz, Ẇx, Ẇy, Ẇz).

The states of the system are defined by the following function

X1 = f1 (X0,U0,Θ0, ν0)

X2 = f2 (X0,U0,U1,Θ0,Θ1, ν0, ν1)

. . .

XT = fT (X0,U0:T −1,Θ0:T −1, ν0:T −1)

(3.69)

XT is used to denote the value of variable X at time T , and X1:T denotes the se-
quence 〈X1,X2, . . . ,XT 〉. The initial state, model parameters and disturbances are
modeled as random variables. The problem is to design a finite, optimal sequence of
control inputs, taking into account probabilistic uncertainty, which ensures that the
state of the system leaves a given feasible region F with probability at most ε and
keeps the expected state within another feasible region F. This can be formulated
as:

Problem 3.1 Minimize E[h(U0:T −1,X1:T )]
Subject to

p (X1:T /∈ F) ≤ ε

E (X1:T ) ∈ G
U0:T −1 ∈ U

where h is a cost function defined over the control inputs and system state trajectory.
F is an operator defined feasible region for the system state trajectory, G is an op-
erator defined feasible region for the expected state trajectory and U is an operator
defined feasible region for the control inputs.

For the lighter than air robot planning, F is defined so that the system state is in
the goal region at the final time step and avoids a number of obstacles at all time
steps. G is defined so that the expected velocity is identically zero at the final time.
Optimality can be defined in terms of either minimizing control effort or time to
reach the goal. . . Wind and turbulence disturbances are considered.

Weighting factors are needed for cost functions that have more than one term.
The shortest path that uses the least amount of fuel is often neither the shortest
possible path, nor the path that uses the least fuel, but one which strikes a balance
between them. The relative weights of these terms determine what sort of balance
results. Substantial oversight is often required to analyze the sensitivity of solution
characteristic to cost function weights and this sensitivity analysis may be specific
to particular problems rather than fully generalizable.

Changing the weights changes the resulting behaviors. If saving fuel and avoiding
obstacles are highly prized, the robot may travel slowly, avoid rapid accelerations
and looping far around obstacles. Behaviors that are optimal with respect to specific
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physical quantities (e.g. fuel, time and distance from obstacles) are sought. Given
the flight management system goals and environment, some of the quantities may
be perceived as more important than others and weighted more heavily, resulting in
a behavior that is optimal for this LTAR, with these goals, in this particular environ-
ment. A computational modeling system is presented, that recognize what kind of
behaviors is mostly likely to be successful, given the goal and the environment at
the moment.

3.5.3.2 Algorithm

Approximating the probability distribution of a random variable using samples (or
particles) can lead to tractable algorithms for estimation and control. A particle rep-
resents a state trajectory over the entire planning horizon.

This method works by approximating all probabilistic distributions with par-
ticles, thereby approximating an intractable stochastic optimization as a tractable
deterministic optimization problem. By solving this deterministic problem, an ap-
proximate solution to the original stochastic problem is obtained, with the additional
property that as the number of particles used tends to infinity, the approximation be-
comes exact.

Algorithm Chance constrained particle control algorithm

1. Generate N samples from the proposal distribution q(X0,W0:T −1, θ0:T −1) de-
fined over the initial state, disturbances and model parameters.

2. Calculate the importance weight ωi for each sample

ωi = p(X(i))

q(X(i))

3. Express the distribution of the future state trajectories approximately as a set of N
particles; each particle X1:T corresponds to the state trajectory given a particular
set of samples {X(i)

0 , ν0;T −1(i),Θ0:T −1(i)} and depends explicitly on the control
inputs U0;T − which are yet to be generated.

4. Approximate the chance constraints in terms of the generated particles. The prob-
ability of failure is approximated as follows P(X1:T /∈ F) ≈ 1

N

∑N
i=1 ωig(X

(i)
1:T )

where PA = EX[g(x)] with

g(X) =
{

0 f (X) ∈ A

1 f (X) /∈ A

The approximated chance constraint is then 1
N

∑N
i=1 ωig(X

(i)
1:T ) ≤ δ0.

5. Approximate the constraints on the expected state using the sample mean ap-
proximation 1

N

∑N
i=1 ωiX

(i)
1:T .

6. Approximate the expected cost in terms of particles: ĥ = 1
N

∑N
i=1 ωih(U0...T −1,

X
(i)
1:T ). A weighed fraction of no more than δ0 of the particle can fall outside of

the feasible region.
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7. Solve deterministic constrained optimization problem minimizing ĥ over control
inputs U0...T −1 ∈ U subject to 1

N

∑N
i=1 ωig(X

(i)
1:T ) ≤ δ0 and 1

N

∑N
i=1 ωiX

(i)
1:T ∈ G.

3.6 Planning in Strong Winds

The lighter than air robot could be driven with its own actuation, but due to its large
inertia and slow dynamics, its actuation capability is fairly limited when winds are
too strong. In some missions [32, 221], it would be more efficient to take advantage
of the wind field and ride on the wind that is much stronger than what the actuator
would produce. However, path planning in a flow field that is much stronger than the
vehicle’s actuation limits is very little studied. One of the challenges in dealing with
wind field is that it is driven by many factors and therefore is highly nonlinear and
time varying. It is possible to formulate the path planning as a graph search problem
on a directed graph by discretizing the space time world and the vehicle actuation.
The following discussion was mostly taken from [118, 221].

As the time constant of the vehicle dynamics is significantly smaller than the
time constant of the path planning problem, the vehicle is assumed to move with the
wind when no actuation is applied. The wind field W(r, t) is highly nonlinear.

In order to handle this nonlinearity, the trajectory planning problem is converted
into a graph search problem on a discretized environment. Because the wind at a
given location differs depending when the lighter than air robot reaches there tem-
poral and spatial discretizations are performed.

• Node: Let si denote the ith node in the graph. Each node si is a function of the
position xi , yi , zi and the time ti . A uniform grid is used to represent the environ-
ment and let nx , ny , nz, nt respectively denote the number of cells in x, y, z and
time axes. Furthermore, let Δx, Δy, Δy, Δt respectively denote the discretized
step size along these axes. Define nr = nxnynz as the number of cell positions in
the environment and N = nrnt as the total number of cells (i = 1..N)

• Edge: If the winds were stationary, one could find which adjacent cell the lighter
than air robot will hit from a given cell by looking only at the wind direction at
the cell center. The edge cost in this section is a time of travel from one node to
the next and could be similarly computed by simply calculating the distance to
the next cell and dividing it by the wind velocity. However, this does not apply to
the time varying wind case because the wind direction/magnitude could change
as the lighter than air robot travels.

The idea is to numerically integrate the velocity vector over time with a time step
Δt . To simplify the planning problem, the actuation is assumed to be constant over
this duration. From each cell, n actuation vectors are considered, that are different
in magnitude and/or direction. From each actuation vector, the integration starts
from the center of each cell si and goes until the integrated position reaches one of
the neighboring cells s′

i . The integration gives both the neighboring cell s′
i that the

vehicle will go next and the time of travel from si to s′
i . Let c(si) denote this time
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of travel, which is also used as a cost. To account for a continually weak wind field
in which the lighter than air robot cannot reach a neighboring cell, the integration is
terminated at time ntmaxΔt so that c(si) < ntmaxΔt , ∀i. In such a case, the vehicle is
assumed to stay at the same location for the first time step, reaching a node with the
same position by a different time ti + Δt .

Let R(si) denote a set of reachable cells from si . Then, using the information of
node s′

i , R(si) is characterized as

sj ∈ R(si) ⇒

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

xj = x′
i

yj = y′
i

zj = z′
i

tj = ti + c′(si)

(3.70)

From each node si , the connections made to all nodes in R(si) with the associated
cost c(si). Let A denote this weighted adjacency matrix of the graph. As the lighter
than air robot only moves in the positive direction in time, the adjacency matrix
of the graph can be represented with an upper block triangular matrix and this up-
per level block triangular structure can be exploited to decompose a graph search
problem.

Let ns denote the number of starting nodes. The problem statement for the graph
search is to find the shortest paths from ns starting nodes si to all nr locations. Once
the graph is constructed, an A∗ (or D∗) algorithm can be applied to find the shortest
paths. A matrix of size ns ×nr can represent the minimum time of arrival at each 3D
location from each starting node. Let this matrix be denoted by C∗. Its (p, q) element
Cpq stores the time of travel from the pth starting location to the q th location and is
set to be ∞ if there exists no such trajectory. Each block contains a snapshot of the
3D world whose size is nr × nr . With a large nt , the memory requirement for graph
construction and A∗ (or D∗) algorithm becomes significant. However, the upper
block triangular structure of the adjacency matrix can be exploited to decompose
the problem with several smaller subproblems that uses much smaller memory.

The main idea of the decomposition algorithm is as follows. The vehicle is as-
sumed to start at t = 0, so that all the starting nodes are in the (1,1) block. This
approach splits the weighted adjacency matrix A into several sub-matrices Mk ,
k = 1 . . . kmax and repeatedly applies A∗ (or D∗) algorithm to each sub-matrix. let
br and bc be the number of row blocks and column blocks in each sub-matrix
Mk respectively. Because each block has a size nr × nr , the sub-matrix Mk con-
sists of row from (k − 1)brnr + 1 to kbrnr and columns from (k − 1)brnr + 1 to
(k −1)brnr +bcnr of A. The result of each subproblem can be represented by a ma-
trix whose size is much smaller than the sub-matrix used in the subproblems. The
next subproblem is formed by appending to its sub-matrix the small matrix obtained
in the previous sub-problem. This process is repeated until all the sub-matrices are
processed or all the shortest path from the starting node to the 3D locations is found.

Algorithm (Decomposed Dijkstra)

1. Solve for shortest paths with weighted adjacency matrix M1, obtain a matrix
[E1|F1] with the minimum cost.
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2. From E1, compute the minimum path cost C1 from ns starting locations to each
3D location.

3. Initialize the cost matrix C∗ = C1

4. For k = 2 to kmax do
5. if all elements of C∗ are not ∞ then
6. break
7. end if
8. Solve for shortest paths with weighted adjacency matrix

[
Ons,ns

| Fk−1| Ons,br nr

Obrnr ,ns | Mk

]
(3.71)

Obtain a matrix [Gk|Ek|Fk] with the minimum cost.
9. From Ek compute the minimum path cost from starting locations to each 3D

location Ck

10. Update the cost matrix C∗ = min(C∗,Ck). Note that this min operation is ele-
ment wise.

11. end for

The first step (line 1) is to run Dijkstra’s algorithm with M1 as a weighted ad-
jacency matrix: sub-problem 1. The resultant shortest path costs (from ns starting
locations to all the cells considered in sub-problem 1) can be represented by a ma-
trix D1 whose size is of ns × (bcnr ). This D1 can be partitioned into two matrices
D1 = [E1|F1] where E1 is a matrix of size ns × (bc − br )nr and F1 is a matrix of
size ns × (bc − br )nr .

The matrix E1 corresponds to cells with time steps between 0 and (br − 1)Δt

and the optimal paths to these cells have been obtained. The matrix F1 corresponds
to cells with time stamps after brΔt and not all the options to reach them have been
explored yet.

Using E1 the cost matrix C∗ is initialized. E1 is then reshaped into a 3D array of
size ns × nr × br and then take the minimum along the 3rd dimension, obtaining a
ns × nr matrix denote by C1. For the nodes that cannot be reached from the starting
cells, Dijkstra’s algorithm is assumed to output ∞ as the cost. The cost matrix C∗ is
then set to be C∗ = C1, in line 3. The next sub-problem uses M2 and considers times
from bcΔt to (2bc − 1)Δt but it also includes ns starting nodes. Therefore, in order
to form the weighted adjacency matrix of this sub-problem M2 must be augmented
using the result of the previous sub-problem (line 8). Let Op,q denote a zero matrix
of size p ×q . Then, the weighted adjacency matrix used in sub-problem 2 is written
as: [

Ons,ns | F1| Ons,brnr

Obrnr ,ns | M2

]
(3.72)

Note that an infinity matrix of width ns is appended from the left. This is because
the starting nodes at time t = 0 have only outgoing edges. The matrix F1 obtained
in the previous sub-problem, stores the cost of moving from the starting cells to all
cells at time between (br + 1)Δt and bcΔt .
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After solving sub-problem 2, the resultant shortest path costs are represented by
a matrix D2. The first ns columns of D2 correspond to the starting cells, so that D2
can be partitioned into D2 = [G2|E2|F2] where G2 is a square matrix of size ns and
E2 and F2 respectively the same size as E1 and F1.

From E2, the minimum path costs from starting locations to each 3D locations
are computed and C∗ is updated (lines 9–10). As shown in the algorithm, the process
is repeated until all the rows of the adjacency matrix A are used or all paths to the
3D locations are found and C∗ has no non ∞ element.

3.7 Task Assignment

At the level of the task assignment problem, the vehicle dynamics is usually ab-
stracted as being first order with a maximum speed Vmax. This abstraction allows
the task assignment algorithm to capture important aspects of the vehicle perfor-
mance: in particular, how long the lighter than air robot is expected to take to fulfill
a particular task, while being sufficiently simple to allow computational tractability.
The trajectory planning and control levels below the task assignment are responsi-
ble for carrying out these lower-level functions, allowing this simplification to be
made. The vehicle propulsion system may be abstracted as an entity that enables
the vehicle to move at the maximum speed Vmax. Health feedback about the propul-
sion system may dynamically modify Vmax to reflect the state of the propulsion
system. For example, knowledge of a failing motor may cause Vmax to decrease
from its nominal value. Knowledge of the fuel state of the vehicle is important to
be able to estimate the remaining useful flight time of the vehicle. The performance
model should include an estimator that performs the remaining flight time calcula-
tion based on the remaining fuel, average fuel consumption rates, and perhaps other
environmental factors. Use of this information allows the task assignment algorithm
to safely make assignments while ensuring the lighter than air robot can return to
the base before running out of fuel [30, 117].

Issues related to how vehicle health (e.g. fuel management and vehicle failures)
affects the real time mission planning, are introduced. This represents a step toward
enabling robust decision making for the aerial vehicle by improving its operational
reliability and capability through better self-awareness and adaptive mission plan-
ning. One such solution architecture is shown in Fig. 3.1 in which a number of
components are combined to achieve the overall goals of the mission. The mission
planning component provides the list of tasks to the task assignment component
[3]. Once the assignments have been made, they are sent to the trajectory designer
which plans feasible trajectories. The output of the trajectory designer is a sequence
of way-points for the lighter than air robot to follow. These way-points are sent to
the controllers which compute the actual controls needed to follow the way-points
plans [128].

Inherent in each of the component in the architecture is a set of interconnected
models used to predict future system behavior. For example, the controller contains
a model of the control input dynamics of the vehicle, while the task assignment
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Fig. 3.1 Overall autonomous mission system architecture

component contains a model of the performance the LTAR is expected to produce
if given an assigned task. In the most general sense, system actions are selected
by searching for actions that lead to desirable, predicted outcomes as given by the
system models. Clearly, the performance of the system, therefore, depends heavily
on the accuracy of these models.

One strategy for improving the accuracy of the models is to include additional
feedback loops that provide information that can be used to adjust the models in real
time. The amount, type, and quality of feedback information that each component
receives plays a large role in how effectively the system can deal with dynamically
changing factors in the environment, mission objectives and state of the vehicles.
Intuitively, feedback is necessary wherever there is uncertainty in the system, so
that the initial plan of action made by each of the components of the planner can
be modified when changes occur. Uncertainty may be present at all levels of the
planning architecture as a result of incomplete knowledge of many factors, such
as actuator performance at the control level, dynamic constraints at the trajectory
design level, sensor health at the task assignment level and long-term maintenance
needs at the mission management level. . .

Most of the work done on task assignment has used only a static vehicle per-
formance model, making it difficult for these approaches to adapt to unexpected
changes, such as sensor failures, during the course of the mission. By updating the
performance model of an already existing algorithm, previous work on the task as-
signment problem can be extended without requiring the modification of the exist-
ing algorithm. Its performance can be improved only by improving the quality of
information available to make assignments.

The Receding horizon task assignment (RHTA) algorithm works as follows:
Given the set of tasks W , distances between tasks d(i, j), the algorithm enumer-
ates all possible task sequences of specified length nc. These sequences are called
petals. The value of each petal is estimated as:

Svp =
∑

λTipSwd
(3.73)
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where Tip is the time at which the task i is completed in petal p, Swd
is the task

value and λ is a time discount factor. Given the values of all the petals Svp , receding
horizon task assignment solves the following optimization problem to select the
optimal petal for the lighter than air robot.

maxJ =
Nvp∑
p=1

Nv∑
ν=1

Svpxvp

subject to
Nv∑
ν=1

Nvp∑
p=1

Avpxvp ≤ 1, xvp ∈ {0,1}

Nvp∑
p=1

xvp = 1, ∀ν ∈ 1, . . . ,Nv

(3.74)

Here xvp is a binary variable that is equal to 1 if the pth petal is selected and 0 if not
and Avp

equals 1 if task i is visited in petal p and 0 otherwise.
In this example, health state information is represented by adding a fuel state to

the vehicle model. In this case, the fuel model is straightforward;

• The vehicle fuel level fi decreases at a constant rate kf uel anytime the vehicle is
flying

• If fi reaches zero before the vehicle refuels, LTAR will reverse to a free balloon.
• In addition, the occurrence of failures is modeled as a Poisson process with

time intensity ρf ; when a failure occurs, the rate of fuel burn increases to
kf uel,f ailure > kf uel . Thus this failure mode increases the rate at which fuel is
burned (and thus decreases the time at which a vehicle can complete tasks).

Due to the inclusion of randomly occurring failures, the fuel model is able to capture
some of the uncertainty in the health state of the vehicle.

The Receding horizon task assignment will assign the Lighter than air robot to
return to the base when every possible permutation of way-points is rejected by the
pruning criterion. Thus this method provides a simple rule that determines when the
vehicle should return to the base for refueling since it cannot safely service any of
the remaining tasks.

3.8 Conclusions

Given the flight management system goals and environment, some of the quantities
may be perceived as more important than others and weighted more heavily, result-
ing in a behavior that is optimal for this LTAR, with these goals, in this particular
environment. A computational modeling system is presented, that recognize what
kind of behaviors is mostly likely to be successful, given the goal and the environ-
ment at the moment.



3.8 Conclusions 97

In a typical aerial autonomous vehicles application, the vehicle operates in 3D
space and has differential constraints, including limited speed and maximum accel-
eration. There does not exist yet an algorithm that provides an exact analytic solution
to such a problem. Even state of the art approximation algorithms operating in a 3D
subspace of this problem space are difficult to compute in real time. Furthermore,
several simplifications and sub-cases of the general problem have been proven to
be unsolvable in polynomial time. Approximation algorithms are possible and of-
ten rely on exact solutions to simplified sub-problems. Some collision avoidance
methods are presented.

Flight management of a vehicle in a dynamic partially known environment is
a complex real time problem. The flight route can be preprogrammed at launch
based on current weather conditions and forecast information, but once en route,
changes to the flight plan have to be made in accordance to changes in the weather.
Even though forecast models have improved, weather and wind patterns continu-
ously change and are still difficult to predict. Thus, the use of frequently updated
weather information during the flight will allow adaptation and re-planning based
on current and near-term forecasts. The Weather forecast become an important part
of the flight management system, to detect signs of a slight change in wind velocity,
monitor development and movement of clouds, recognize conditions suitable for the
development of temperature inversions or of local wind phenomena.

Given the uncertain nature of real-world problems, the ability to deal with vari-
ous types of uncertainty and systems errors is also crucial for algorithms in practical
applications. Another way to deal with uncertainty is to have adaptive algorithms
which do not require re-computing. For most problems considered for aerial au-
tonomous vehicles tasks, it has been proven that no algorithm exists that can find ex-
act solutions in polynomial time. Ultimately, an algorithm’s performance is judged
by the operators of the actual vehicle in the field; this practical perspective needs to
be kept in mind when analyzing computational complexity.

Despite the results presented in this chapter, significant research efforts are still
needed to advance the state of the art of trajectory planning. Properly dealing with
uncertainty has not yet been adequately studied for lighter than air robots planning.

Many of the algorithms designed to solve the dynamics-constrained problem rely
on a decomposition approach, first solving an obstacle avoidance problem (pre-
sented in this chapter) then a path planning problem applying smoothing constraints
(presented in Chap. 4), forming a trajectory that conforms to the path, and using a
control loop to follow this trajectory (presented in Chap. 5).





Chapter 4
Trajectory Design

Abstract As the lighter than air robot is under-actuated, i.e. less control inputs
than degrees of freedom, the set of feasible trajectory will be restricted and con-
sequently, the problem of trajectory generation becomes more complicated than a
simple interpolation. Care must be taken in the selection of the basic primitives.

4.1 Introduction

Classically, methods such as continuous optimization and discrete search are sought
in trajectory generation. In general, the optimality of a trajectory can be defined ac-
cording to several objectives, like minimizing the transfer time or the energy [16,
18, 29, 51, 85, 144]. Trajectories are optimized by the application of numerical opti-
mal control methods, based on the calculus of variations. Dubins in [58] considered
a particle moving at a constant velocity in the plane with a constraint of trajectory
curvature. He proved the existence of shortest paths for his problem and showed
that the optimal trajectories are a combination of arc of circles and segments of
lines. Boukraa et al. in [38] presents a 3D trim trajectories planner algorithm for
an autonomous plane. The proposed algorithm uses a sequence of five elementary
trim trajectories to generate a 3D global trajectory in space. Trim trajectories take
a particular place in the aeronautic applications [28, 82, 83, 89]. They correspond
to forces and moments equilibrium in body-fixed frame under a fixed controls con-
figuration. More precisely, they correspond to the equilibrium points of dynamic
equations. The approach will be presented in the second section.

Frazzoli et al. in [72] described motion plans as the concatenation of a number of
well defined motion primitives selected from a finite library. They use a maneuver
automaton, defining rules for the concatenation of primitives in the form of a regular
language, a maneuver being defined as a non trivial primitive compatible from the
beginning and the end with trim primitives. In this scope, the problem of trajectories
planning is subdivided into two levels. The lower level consists in the computation
of the set of basic primitives, to be used by the higher level to construct the nominal
trajectory by a convenient sequencing strategy. Sufficient conditions are given in
[71, 82, 222] to guarantee minimal set of trim trajectories to ensure a controllability
in the symmetric space.

In the papers cited above, the atmosphere was considered to be an isotropic and
homogeneous medium, i.e. when there is no wind and the air density is constant with
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altitude. However, wind cannot be ignored. McGee and Hedrick in [144] describe a
method for finding the minimum time path from an initial position and orientation
to a final position and orientation in the 2D plane for an airplane with a bounded
turning rate in the presence of a known constant wind with a magnitude less than
the airplane velocity. The problem statement is equivalent to finding the minimum
time path from an initial configuration to a final one, over a moving virtual target,
where the velocity of the virtual target is equal and opposite to the velocity of the
wind. Nelson et al. in [158] have introduced a method for a mini aerial vehicle path
following based on the concept of vector field in the presence of constant wind
disturbances.

Rysdyk in [180] presents a path formulation for maneuvering a fixed wing air-
craft in wind. Wind refers to an un-accelerated horizontally moving air mass. The
inertial path of a fixed wing aircraft circling in wind can be formulated as a trochoid
curve. In these papers, only 2D horizontal motion was considered. Seube et al. in
[187] formulated the take-off problem in a 2D vertical plane in the presence of wind
shear as a differential game against nature. The first player is the relative angle of
attack of the aircraft (considered as the control variable) and the second player is
the disturbance caused by a wind shear. Zhao and Qi in [229] studied the optimal
powered dynamic soaring flights of UAV that use low altitude wind gradients for re-
ducing fuel consumption. Optimal control methods are used to study fuel-efficient
dynamic soaring flights that utilize both wind energy and engine thrust.

This chapter consists of 6 sections. Section 4.2 presents the analysis of the hov-
ering trajectories in 3D, then, in Section 4.3, lateral planning of the lighter than air
robot in cruising flight followed in Section 4.4 by trajectory design for translational
dynamics when wind is considered. Efforts are put in this paragraph on a constant
velocity wind. Section 4.5 introduces parametric curves and explicits the relation-
ship between trajectory generation algorithms and under-actuation. Finally, some
conclusions and perspectives are the subject of Section 4.6.

4.2 Trajectory Generation in Hover

In a trimmed maneuver, the lighter than air robot will be accelerated under the ac-
tion of non-zero resultant aerodynamic and gravitational forces and moments, these
effects will be balanced by effects such as centrifugal and gyroscopic inertial forces
and moments. Under the trim condition, the vehicle motion is uniform in the body
fixed frame. The trim trajectories have the advantage of facilitating the planning and
control problems. The aerodynamic coefficients which are variable in time and space
become stationary under this condition and their identification becomes easier [172].

4.2.1 Trim Trajectories

The remainder of this section gives a mathematical characterization of the trim tra-
jectories [15, 82, 83].
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4.2.1.1 Trim Trajectories Characterization

As mentioned before, trim trajectories are characterized by the stationarity of the
body-fixed velocity components and the controls. This condition can be mathemat-
ically formalized by:

V̇ (t) ≡ 0 Ω̇(t) ≡ 0 ∀t ∈ [0, tf ] (4.1)

Focusing on the angular velocity kinematics transformation:

Ω = J (η2)
−1η̇2 (4.2)

By deriving the above equation with respect to time and using condition (4.1), the
following relations can be written:

ṗ = φ̈ − ψ̈ sin θ − ψ̇ θ̇ cos θ = 0

q̇ = θ̈ cosφ − θ̇ sinφφ̇ + ψ̈ sinφ cos θ

+ ψ̇φ̇ cosφ cos θ − ψ̇ θ̇ sinφ sin θ = 0

ṙ = −θ̈ sinφ − θ̇ φ̇ cosφ + ψ̈ cosφ cos θ

− ψ̇φ̇ sinφ cos θ − ψ̇ θ̇ cosφ sin θ = 0

(4.3)

Based on the dynamics equations, all forces and moments acting on the lighter than
air robot depending on the velocity vector are constant except the vector of the
aerostatic forces and moments τs which depends on the attitude variables, the roll φ

and the pitch θ angles. It follows that, in order to guarantee the stationarity of this
vector: the roll angle φe and pitch θe angle must be constant. Hence, Eq. (4.3) can
be simplified to:

pe = −ψ̇e sin θe

qe = ψ̇e sin(φe) cos(θe)

re = ψ̇e cos(φe) cos(θe)

(4.4)

The components of the body-fixed angular velocity vector depend on the roll an-
gle φe , pitch angle θe and the yaw rate ψ̇e.

It is thus possible to characterize the geometry of the trim trajectories as follows:

η̇1 = R(η2)

⎛
⎝

ue

ve

we

⎞
⎠= Rz(ψ)

⎛
⎝

a

b

c

⎞
⎠ (4.5)

where ⎛
⎝

a

b

c

⎞
⎠= Ry(θe)Rx(φe)

⎛
⎝

ue

ve

we

⎞
⎠
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Hence, when the translational kinematics are used, the following relation is ob-
tained:

η̇1 =
⎛
⎝

a cos(ψ̇et + ψ1) − b sin(ψ̇et + ψ1)

a sin(ψ̇et + ψ1) + b cos(ψ̇et + ψ1)

c

⎞
⎠ (4.6)

where ψ1 is an integration constant. This equation can also be written under the
following form

η̇1 =
⎛
⎝

Ve cos(γe) cos(ψ̇et + ψ0)

Ve cos(γe) sin(ψ̇et + ψ0)

−Ve sin(γe)

⎞
⎠ (4.7)

γe = acos(
√

a2+b2

Ve
) represents the flight path angle. Or equivalently

sinγe = − cosφe cos θeue + sinφeve + cosφe sin θewe√
u2

e + v2
e + w2

e

The navigation velocity is given Ve = ‖V ‖, and ψ0 is the initial heading angle.
Integrating the above equation, the geometric characterization of trim trajectories

can be described by:

η1 =
⎛
⎜⎝

Ve

ψ̇e
cos(γe) sin(ψ̇et + ψ0)

− Ve

ψ̇e
cos(γe) cos(ψ̇et + ψ0)

−Ve sin(γe)t

⎞
⎟⎠+

⎛
⎝

x1
y1
z1

⎞
⎠ (4.8)

where the integration constants are given by

x1 = x0 − Ve

ψ̇e

cosγe sinψe

y1 = y0 + Ve

ψ̇e

cosγe cosψe

z1 = z0

where (x0, y0, z0)
T is the initial position of the lighter than air robot. It is possible

to parametrize the trim trajectory by the vector Te = (φe, θe, ue, ve,we, ψ̇e) where
the subscript e denotes the equilibrium values.

This trajectory can also be expressed with respect to the curvilinear abscissa s as
for a uniform motion: s = Vet

η1 =

⎛
⎜⎜⎝

Ve

ψ̇e
cos(γe) sin(

ψ̇e

Ve
s + ψ0)

− Ve

ψ̇e
cos(γe) cos( ψ̇e

Ve
s + ψ0)

− sin(γ )s

⎞
⎟⎟⎠+

⎛
⎝

x1
y1
z1

⎞
⎠ (4.9)
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Depending on the values of γe and ψ̇e , the trajectories can be represented by a helix
(see Fig. 4.3), a circle arc (see Fig. 4.2) or a straight line (see Fig. 4.1).

4.2.1.2 Trim Trajectories Calculation

The above kinematic analysis of the trim trajectories shows that their geometry de-
pends on the body-fixed linear velocity vector Ve, the roll angle φe, pitch angle θe

and the rate of yaw angle ψ̇e. The choice of these quantities should satisfy the dy-
namic equations, the controls saturations and envelope protection constraints.

Control Saturation Constraints The lighter than air robot controls belong to
specific ranges due to the power, angle of vectorization and deflection angles of
control surfaces limitations. Assuming that the option of tail rotor is not offered for
this particular vehicle, the limitation constraints imposed on the force Fme and the
angle of vectorization μme are expressed in terms of trim vector components Te and
control surfaces angles of deflection as follows:

τp =

⎛
⎜⎜⎜⎜⎜⎜⎝

Fme cos(μme)

0
−Fme sin(μme)

0
Fme cos(μme)Oz + Fme sin(μme)Ox

0

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

Fx(νe, η2e , δe)

Fy(νe, η2e
, δe)

Fz(νe, η2e , δe)

Mx(νe, η2e
, δe)

My(νe, η2e , δe)

Mz(νe, η2e , δe)

⎞
⎟⎟⎟⎟⎟⎟⎠

(4.10)

Fmmin
≤ Fme =

√
F 2

x (νe, η2e , δe) + F 2
z (νe, η2e , δe) ≤ Fmmax (4.11)

μmin ≤ μme
= atan

Fz(νe, η2e
, δe)

Fx(νe, η2e , δe)
≤ μmax (4.12)

and the limitations of control surfaces angles of deflection are given by:

δemin
≤ δee

≤ δemax
(4.13)

δrmin
≤ δre ≤ δrmax (4.14)

Under-actuation Constraints The control of the lighter than air robot is per-
formed by 4 actuators (i.e. throttle, vectored angle, rudders and elevators). Hence,
in this case, the under-actuation degree is 2. The action of rudders and elevators
on the dynamic equation appears in a nonlinear manner, making the derivation of
the under-actuated constraints very difficult. To bypass this problem, the control
surfaces (rudders and elevators) angles are considered in the optimization variables.
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The under-actuated constraints related to propulsion system is given by:

⎛
⎜⎜⎝

My(νe, η2e
, δe) − OzFx(νe, η2e

, δe) + OxFz(νe, η2e
, δe)

Fy(νe, η2e , δe)

Mx(νe, η2e
, δe)

Mz(νe, η2e , δe)

⎞
⎟⎟⎠= 0 (4.15)

Other Constraints The last type of constraints considered in the calculation of
trim trajectory concerns the geometry of the path and the speed of the lighter than
air robot Ve . The geometric parameters are the flight path angle γe and the turning
radius Re , set to desired values by the user [71, 82]. It is possible to consider also
some constraints on the angle of attack αe, and side slip βe angles to guarantee the
flight envelope protection. These constraints are given by:

Re = Ve

|ψ̇e|
cos(γe) (4.16)

γe = acos

(√
a2 + b2

Ve

)
(4.17)

Ve =
√

u2
e + v2

e + w2
e (4.18)

αmin ≤ αe = asin

(
we√

u2
e + w2

e

)
≤ αmax (4.19)

βmin ≤ βe = asin

(
ve

‖ν1e
‖
)

≤ βmax (4.20)

Taking into account these constraints, the calculation of the trim conditions are
determined by solving a set of nonlinear equalities and inequalities for the vector Te

and control surfaces vector δ = [δe, δr ]T , that makes the body-fixed accelerations
vector null, i.e. V̇ ≡ 0 and Ω̇ ≡ 0. A convenient way to do this, is to formulate an
optimization problem to choose the solution that minimizes the energy consumed
during the execution of the trim trajectory. This choice is straightforward because
the velocity and controls are constant, and hence the energy is proportional to the
arrival time. The expression of the energy is given by:

E =
∫ tf

t0

F 2
mdt (4.21)

The controls are constrained to take fixed values. It follows that:

E = F 2
m(tf − t0) (4.22)
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Fig. 4.1 3D trim trajectory
for straight forward trim flight

4.2.1.3 Simulation Results

In this section, some simulation results obtained by the proposed algorithm are
presented. The controls are constrained to 0 ≤ Fm ≤ 20N , −45◦ ≤ δe ≤ 45◦,
−45◦ ≤ δr ≤ 45◦ and the navigation velocity is set to Ve = 6 ms−1. Initially the
lighter than air robot is at rest. When the controls associated to required trim con-
ditions are applied, the states of the lighter than air robot converge to the nominal
values.

Straight Forward Trim Flight In this section the simulation results correspond-
ing to straight forward trim flight situation are presented. In this case the radius of
gyration is set to Re = ∞. Figure 4.1 depicts the 3D trim trajectories corresponding
to flight path angles γe = −10◦,0,10◦.

Circular Trim Trajectories with Constant Altitude The simulation results cor-
responding to the circular trim trajectories with constant altitude, i.e. γe = 0, are
presented in this section. The 3D circular trim trajectories with a radius of gyration
R = 40 m are depicted in Fig. 4.2 (red path). Due to the symmetry of the dynamics
of the lighter than air robot with respect to the yaw angle ψ , it is possible to find the
opposite circular trim trajectories by inverting the rudder angle δr (blue path).

Helicoidal Trim Trajectories In this section we present the more general case.
It corresponds to the helical trim trajectories Fig. 4.3 corresponding to Re = 40 m,
γe = 10◦ (blue) and γe = −10◦ (red).

4.2.2 Under-actuation at Hover

In this paragraph, nominal trajectories are characterized, the model is supposed per-
fect and any perturbation such as wind or sensor disturbance is neglected. At low ve-
locity, the surface control are ineffective so aerodynamical forces can be neglected.
The three equality constraints deriving from the under-actuation are sought.
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Fig. 4.2 (Color online) 3D
circular trim trajectories with
constant altitude

Fig. 4.3 (Color online) 3D
helical trim trajectories

Remark 4.1 The following notation is used in the sequel of this section Sθ = sin θ ,
Cθ = cos θ .

4.2.2.1 Problem Formulation

Considering the dynamics of the lighter than air robot and its propulsion at low
speed, the following dynamics equations can be written:

f = Mν̇1 + ν2 × Mν1 + b =
⎛
⎝

FM sinμ

FT

FM cos(μ)

⎞
⎠ (4.23)

and

τ = I ν̇2 + ν2 × Iν2 + ν1 × Mν1 + β1 =
⎛
⎝

0
(Oz cosμ + Ox sinμ)FM

OyFT

⎞
⎠ (4.24)
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with

b = diag(Dv)ν1 + (mg − B)

⎛
⎝

CψCθ

SψCθ

−Sθ

⎞
⎠

β1 = diag(DΩ)ν2 + B

⎛
⎝

CψCθ

SψCθ

−Sθ

⎞
⎠

and

Diag(Dv) = −diag(Xu,Yv,Zw)

Diag(DΩ) = −diag(Lp,Mq,Nr)

The roll moment being zero (see Eq. (4.23)), τ1 = 0 gives the following con-
straint:

Ixxℵ + (Ixx − Izz)
(−θ̇Cφ + ψ̇SφCθ

)
(−θ̇Sφ + ψ̇CφCθ

)+ Dp

(
φ̇ − ψ̇Sθ

)+ zbBCθSφ = 0 (4.25)

where

ℵ = φ̈ − ψ̈Sθ − ψ̇ θ̇Cθ (4.26)

In addition, (Oz cosμ + Ox sinμ)FM = τ2 gives

Iyyℵ′ + (M11 − M33)uw + (Ixx − Izz)
(
φ̇ − ψ̇Sθ

) (−θ̇Sφ + ψ̇CφCθ

)

+ Dq

(
θ̇Cφ + ψ̇SφCθ

)+ zbBSθ + OzM11u̇

+ OzM22w
(
θ̇Cφ + ψ̇SφCθ

)− OzM22v
(−θ̇Sφ + ψ̇CφCθ

)

+ OzDuu + Oz(mg − B)Sθ = 0 (4.27)

where

ℵ′ = θ̈Cφ − θ̇ φ̇Sφ + ψ̈SψCθ + ψ̇φ̇CφCθ − ψ̇ θ̇SφSθ (4.28)

The third constraint can be derived from the constraint: OyFT = τ3 and can ex-
pressed as:

Izzℵ′′ + (M22 − M11)uv + (Iyy − Ixx)
(
φ̇ − ψ̇Sθ

) (
θ̇Cφ + ψ̇SφCθ

)

+ Nr

(−θ̇Sφ + ψ̇CφCθ

)

+ OyM22v̇ − OyM22w
(
φ̇ − ψ̇Sθ

)

+ OyM11u
(−θ̇Sφ + ψ̇CφCθ

)+ OyDvv − Oy(mg − B)SφCθ = 0 (4.29)

where,

ℵ′′ = −θ̈Sφ − θ̇ φ̇Cφ + ψ̈CφCθ − ψ̇φ̇SφCθ − ψ̇ θ̇CφSθ (4.30)
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4.2.2.2 Analysis of the Constraints

The following formulation of the differential equations is considered. The variations
of the roll and pitch angles as well as the longitudinal velocity are imposed and the
influence of the under-actuation on the variations of the yaw angle, the lateral and
vertical velocities are studied.

The first equality constraint (see Eq. (4.25)) is equivalent to the resolution of an
ordinary differential equation of the from:

a(t)ψ̈ + b(t)ψ̇2 + c(t)ψ̇ + d(t) = 0 (4.31)

where

a(t) = IxxSθ

b(t) = (Izz − Iyy)(CφSφC2
θ )

c(t) = −SθDp + 2(Izz − Iyy)CθC
2
φ − (Ixx + Izz − Iyy)θ̇Cθ

d(t) = −zbBCθSθ − Ixxφ̈ − Dpφ̇ + (Izz − Iyy)θ̇
2SφCφ

(4.32)

if Ξ(t) = ψ̇(t) then the non autonomous generalized logistic equation must be
solved:

a(t)Ξ̇(t) + b(t)Ξ(t)2 + c(t)Ξ(t) + d(t) = 0 (4.33)

The third equality constraint can be written as:

w(t) = α0 + α1u + α2v + α3uv + α4v̇ (4.34)

where

α0 = α′
0(Iyy − Ixx) − Ox(mg − B)CθSφ + Dr(ψ̇CθCφ − θ̇Sφ)

−Oy(ψ̇Sθ − φ̇)

+ Izz(ψ̈CθCφ − θ̈Sφ − ψ̇ θ̇SθCφ − θ̇ φ̇Cφ)

−OyM22(ψ̇Sθ − φ̇)
(4.35)

α1 = − (ψ̇CθCφ − θ̇Sφ)M11

(ψ̇Sθ − φ̇)M22

α2 = − Dv

(ψ̇Sθ − φ̇)M22

α3 = M11 − M22

OyM22(ψ̇Sθ − φ̇)

α4 = − 1

(ψ̇Sθ − φ̇)M22

(4.36)

and

α′
0 =

(
−ψ̇2SθCθSφ − ψ̇ θ̇SθCφ + ψ̇φ̇CθSφ + θ̇ φ̇Cφ

)
(4.37)
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The second equality constraint gives

β0 + β1u + β2u
2 + β3uv + β4v

2 + β5uv̇ + β6v + β7v̇ + β8u̇ = 0 (4.38)

where

β0 = β ′
0 + β ′

3α0

β1 = β ′
1 + α1β

′
3 + α0β

′
5

β2 = β ′
5α1

β3 = β ′
5α2 + α3β

′
3

β4 = β ′
5α3

β5 = β ′
5α4

β6 = β ′
2 + α2β

′
3

β7 = α4β
′
3

β8 = β ′
4

(4.39)

with the following relations

β ′
0 = Iyyβ

′′
0 + (Ixx − Izz)β

′′′
0 + Dq

(
ψ̇CθSφ + θ̇Cφ

)− BzbSθ

+ Oz(mg − B)Sθ

β ′′
0 = ψ̈CθSφ + θ̈Cθ + ψ̇φ̇CθCφ − ψ̇ θ̇SθSφ − θ̇ φ̇Sφ

β ′′′
0 = −θ̇ φ̇Sφ + ψ̇φ̇CφCθ + ψ̇ θ̇SθSφ − ψ̇2CθSθCφ

β ′
1 = OzXu

β ′
2 = −OzM22

(
ψ̇CθCφ − θ̇Sφ

)

β ′
3 = OzM22

(
ψ̇CθSφ + θ̇Cφ

)

β ′
4 = OzM11

β ′
5 = (M11 − M22)

(4.40)

4.2.2.3 Resolution of the Differential Equations

The differential equation

aψ̈ + bψ̇2 + cψ̇ + d = 0 (4.41)

where

a = −IxxSθ

b = (Izz − Iyy)SφCθCφCθ

c = −DpSθ

d = −zbBCθSφ

(4.42)
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admits an analytic general solution.
By using the method of separation of variables and integration by partial frac-

tions, in the constant coefficient case, logistic equation can be solved and the behav-
ior of all solutions is analyzed [16]

For φ = 0; ψ(t) = ψ0e
−Lpt/Ixx

For θ = 0; ψ(t) = t
√

Bzb

Cφ(Izz−Iyy )
+ ψ0

For the particular case, where ψ̇ is constant, classical trim trajectories are en-
countered

1. ψ̇ is constant

φ = constant = φ0 θ = constant = θ0 ψ = ψ0t (4.43)

The first equality constraint becomes a second order polynomial equation:

bψ̇2 + cψ̇ + d = 0 (4.44)

The third equality constraint gives

w(t) = α0 + α1u + α2v + α3uv + α4v̇ (4.45)

where

α0 = −ψ̇2SθCθSφ(Iyy − Ixx) + Drψ̇CθCφ

Oyψ̇Sθ

+ −M22Oy(mg − B)CθSφ + Izzψ̈CθCφ

Oyψ̇SθM22

α1 = −CθCφM11

SθM22

α2 = −Dv

M22ψ̇Sθ

α3 = M11 − M22

OyM22ψ̇Sθ

α4 = −1

ψ̇SθM22

(4.46)

while the second equality constraint gives for u̇ = v̇ = 0,

v = −β0 + β1u + β2u
2

β6 + β3u + β4u2
(4.47)

Otherwise,

β0 + β1u + β2u
2 + β3uv + β4u

2v + β5uv̇ + β6v + β7v̇ + β8u̇ = 0 (4.48)

When u̇ = v̇ = ẇ = 0, the classical kinematics equations of the trim equations
are retrieved.
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2. ψ̇ is not constant:
In this paragraph, the roll and pitch angles are assumed to have linear varia-

tions:

θ = θ̇0t + θ0 φ = φ̇0t + φ0 (4.49)

When the coefficients of the non autonomous logistic equation are no longer
constant, no explicit solutions can be found in general and the equilibrium point
may become unstable. For a study to be complete, the existence of stable peri-
odic or stable bounded solutions is an essential part of qualitative theory of this
differential equation, in order to determine non trivial solutions and study their
behavior. The logistic equation with positive non autonomous bounded coeffi-
cients has exactly one bounded solution that is positive and does not tend to the
zero solution.

Solving the first equality constraint, the roll moment being null, ∀t , implies

Lpφ̇0 = 0 =⇒ φ̇0 = 0 (4.50)

Rearranging the first equality constraint with this requirement gives:

θ̇Cφ0Sφ0 = 0 (4.51)

three cases are possible:

θ̇0 = 0 or φ0 = 0 or φ0 = π

2
(4.52)

a. The first case: trim trajectories has already been studied.
b. If the roll angle is null, the following differential equations must be solved

ψ̈ + ψ̇

(
a + bθ̇0

Cθ

Sθ

)
= 0 (4.53)

where

a = Lp/Ixx

b = −(Ixx − Iyy − Izz)/Ixx

(4.54)

the following derivatives ψ̇ is obtained

ψ̇(t) = − θ̇0Sθ0θ
b
0 S−b

θ e−aθ/θ̇0

− cosh(aθ0/θ̇0) + sinh(aθ0/θ̇0)
(4.55)

The third case φ0 = π
2 gives the following differential equations

ψ̈ + ψ̇

(
a1 + a2θ̇0

Cθ

Sθ

)
+ a3

Cθ

Sθ

= 0 (4.56)
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where

a1 = Lp

Ixx

a2 = Ixx − Iyy + Izz

Ixx

a3 = Bzb

Ixx

(4.57)

c. The third equality constraint gives

w = δ1 + δ2uv + δ3u + δ4v + δ5u̇ (4.58)

where

δ1 = θ̇0
Iyy + Izz − Ixx

OyM22
− NrCθ

OySθM22
− Izzψ̈Cθ

Oyψ̇SθM22

δ2 = − M22 − M11

Oyψ̇SθM22

δ3 = −CθM22

SθM22

δ4 = − Yv

ψ̇SθM22

δ5 = − 1

ψ̇Sθ

(4.59)

Once the yaw angle is calculated, the linear and angular velocities are deter-
mined as well as the 3D path.

4.3 Lateral Planning in Cruising Flight

The lighter than air robot model consists of 12 states that can be divided into two
main modes: longitudinal and lateral. The focus of this section is on lateral mode
in constant altitude [82, 84]. The vectored thrusters and elevators are associated
to the longitudinal navigation controller to hold the altitude and relative velocity
navigation constant. The rudders allow the airship to navigate in the horizontal
plan.

4.3.1 Lateral Dynamics of the Lighter than Air Robot

The model of the trimmed lateral dynamics in the body fixed frame is given by:
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myv̇ − (maz + Ẏṗ)ṗ − (max + Ẏṙ )ṙ

= mzwep − mxuer + Ye + Ẏvv + Ẏpp + Ẏr r + Ẏδδr

+ (FG − B)φ cos(θe) (4.60)

Jzṙ − Jxzṗ + (max + Ṅv̇)v̇

= maxwep − maxuer + Ne + Ṅvv + Ṅpp + Ṅr r + Ṅδδr

+ axFGφ cos(θe) (4.61)

Jxṗ − Jxzṙ − (maz + L̇v̇)v̇

= −mazwep + maxuer + Le + L̇vv + L̇pp + L̇rr

− axFGφ cos(θe) (4.62)

these equations correspond to the Lateral, Yaw and roll dynamics. Ve and v are the
axial and lateral velocity components in local frame.

ue = Ve cosβ ≈ Vr

v = Ve sinβ ≈ Vrβ
(4.63)

where Ẏṗ , Ẏṙ , Ẏp , Ẏr , Ẏδ , Ṅṗ , Ṅṙ , Ṅp , Ṅr , Ṅδ , Ṅx , L̇v̇ , L̇v , L̇p , L̇r are the aerody-
namic coefficients. mi is the apparent mass in the i th direction. Ji are inertia matrix
elements. m is the airship mass. θe is the equilibrium pitch angle. ai are the coor-
dinates of the center of mass in the local frame. β is the skid angle between the
relative velocity Vr and xm axis into (xm, ym) plane.

In the absence of wind, this angle appears when the lighter than air robot follows
a path with a curvature different from zero. For a fixed rudder deflection, i.e. corre-
sponding to the circle path, this angle takes a constant value when an equilibrium
between aerodynamic moment, caused by the airship body (hull, the vertical fins
and control surfaces) motion with respect to the surrounding air and the centrifugal
one is established. This angle takes on small values.

In general, in lateral movement, the lighter than air robot moves with a low speed.
The equilibrium between the centrifugal moment around xm axis caused by the rud-
der deflection and gravitational moment is the cause of a small roll angle and rate
which can be neglected. Taking these considerations into account, the model can be
simplified as:

myv̇ − (max + Ẏṙ )ṙ = −mxuer + Ẏvv + Ẏr r + Ẏδδr (4.64)

Jzṙ + (max + Ṅv̇)v̇ = −maxuer + Ṅvv + Ṅr r + Ṅδδr (4.65)
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and the kinematic equations are given by:

ψ̇ = r

ẋ = Ve cos(ψ + β)

ẏ = Ve sin(ψ + β)

(4.66)

The model of the lateral dynamics of the airship can be thus written as:

β̇ = a11β + a12r + b1δr

ṙ = a21β + a22r + b2δr

ψ̇ = r

ẋ = Ve cos(ψ + β)

ẏ = Ve sin(ψ + β)

(4.67)

where:

a11 = JzẎv + (max + Ẏṙ )Ṅv

myJz + (max + Ẏṙ )(max + Ṅv̇)

a12 = 1

Ve

Jz(Ẏr − mxue) + (max + Ẏṙ )(Ṅr − maxue)

myJz + (max + Ẏṙ )(max + Ṅv̇)

a21 = Ve

−(max + Ṅv̇) + Ṅvmy

myJz + (max + Ẏṙ )(max + Ṅv̇)

a22 = −(max + Ṅv̇)
(
Ṅr − maxue

)

myJz + (max + Ẏṙ )(max + Ṅv̇)

b1 = JzẎδ + (max + Ẏṙ )Ṅδ

myJz + (max + Ẏṙ )(max + Ṅv̇)

1

Ve

b2 = −(max + Ṅv̇)Ẏδ + myṄδ

myJz + (max + Ẏṙ )(max + Ṅv̇)

The lateral dynamics of the airship have thus an affine structure. In the compact
form the dynamics can be given by:

Ẋ = f (X) + gδr (4.68)
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where the state variable is defined as X = (β, r,ψ,x, y)T and

f (X) =

⎛
⎜⎜⎜⎜⎝

a11β + a12r

a21β + a22r

r

Ve cos(ψ + β)

Ve sin(ψ + β)

⎞
⎟⎟⎟⎟⎠

and g =

⎛
⎜⎜⎜⎜⎝

b1
b2
0
0
0

⎞
⎟⎟⎟⎟⎠

(4.69)

This system is an under actuated one i.e. states are steered by a single input control.
The nonholonomic constraint can be formulated as:

ẋ sin (β + ψ) − ẏ cos (β + ψ) = 0 (4.70)

this kind of constraints are called Pfaffian Constraints.

4.3.2 Time Optimal Extremals

In this paragraph, let’s introduce reference time-optimal paths for the system under
study, taking into account the system dynamics and actuator capabilities. Hence,
this problem can be formulated as follows:

∫ T

0
dt = T (4.71)

Subject to

Ẋ = f (X) + gU

X(0) = X0 and X(T ) = Xf

Umin ≤ U ≤ Umax

(4.72)

The problem is to find the admissible control U that minimizes the time for which
the system reaches the final state Xf from the initial one X0. Without loss of gener-
ality, and by normalization and shifting operations (if the two bounds of the control
domain are not symmetric), the control is constrained to belong to a unit interval,
i.e. −1 ≤ U ≤ 1.

To solve this problem, the Pontryagin Maximum Principle is applied to obtain
necessary conditions for a reference trajectory of a system to be time-optimal: if
X(t) is time-optimal trajectory defined on [0, T ], and U(t) is the corresponding
time-optimal reference control, then there exists an absolutely continuous vector
function called the adjoint vector λ such that the following conditions are satisfied:

1. λ(t) �= 0 ∀t ∈ [0, T ]
2. H(X(t), λ(t),U∗(t)) = minU H(X(t), λ(t),U(t)) ≤ 0
3. The adjoint vector λ(t) satisfies the following equation: λ̇ = − ∂H

∂X
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A triple (X, λ,U) verifying the necessary conditions is called an extremal. First,
consider the Hamiltonian H:

H(X(t), λ(t),U(t)) = 1 + λT f (X)

= 1 + λ1 (a11β + a12r + b1δr ) + λ2 (a21β + a22r + b2δr)

+ λ3r + λ4Ve cos(β + ψ) + λ5Ve sin(β + ψ) (4.73)

and the co-state dynamics are given by:

λ̇1 = −λ1a11 − λ2a21 + λ4Ve sin(β + ψ) − λ5Ve cos(β + ψ)

λ̇2 = −λ1a12 − λ2a22 − λ3

λ̇3 = λ4Ve sin(β + ψ) − λ5Ve cos(β + ψ)

λ̇4 = 0

λ̇5 = 0

(4.74)

Therefore, as λ4 and λ5 are constant on [0, T ] there exists μ =
√

λ2
4 + λ2

5 ≥ 0 and

ζ = atan 2(
λ5√

λ4+λ2
5

,
λ2

4√
λ2

4+λ2
5

) ∈ [0,2π] such that ∀t ∈ [0, T ] then:

λ̇1 = −λ1a11 − λ2a21 + μVe sin(β + ψ − ζ )

λ̇2 = −λ1a12 − λ2a22 − λ3

λ̇3 = μVe sin(β + ψ − ζ )

λ4 = μ cos(ζ )

λ5 = μ sin(ζ )

(4.75)

and the Hamiltonian becomes:

H(X, λ,U) = 1 + λ1 (a11β + a12r) + λ2(a21β + a22r)

+ λ3r + μVe cos(β + ψ − ζ ) + (λ1b1 + λ2b2) δr (4.76)

The minimization of the Hamiltonian with respect to the control δr is obtained by
minimizing λT g(X)δr . The control belongs to a unit control domain, then this min-
imization can be achieved by taking for δr the opposite sign of λT g(X), then:

δr = 1 if λT g < 0

δr = −1 if λT g > 0

The function Φ(t) = λT g defined along an extremal X,λ, δr is called the switching
function associated to that system. The zeroes of this function are important for
the study of optimal synthesis. If there exists a nonempty interval such that Φ(t) is
identically zero, the extremal is singular on that interval. Assume now the extremal
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to be bang, i.e. takes its values in {−1,+1} for almost a time ts such that δr is not
almost everywhere constant on any interval of the form ]ts − ε, ts + ε[. ts is called
a switching time for δr and the corresponding state is called switching state. The
trajectories corresponding to the controls δr = ±1 are circles. The fastest way to
turn is turning with the smallest radius, means that making the rudders deflection in
one of its limits, i.e., to turn left or right [82, 84].

4.3.2.1 Singular Extremals

The singular controls are characterized by the fact that Φ(t) is identically zero in a
nonempty interval. However, the Pontryagin Maximum Principle loses its discrimi-
native nature, i.e. every controls in U satisfy the necessary conditions. In this case,
some additional conditions are needed. The fact that Φ(t) = 0 in a nonempty inter-
val implies that all its time derivatives are null in that interval, i.e.

Φ̇(t) = Φ̈(t) = . . . = Φ2m(t) = 0 (4.77)

the process of derivation is stopped when the control appear in the expression of
these derivation. For an affine system,

Φ2m(t) = a(X, λ) + b(X, λ)δr = 0 (4.78)

k is called the order of singular control. Hence, the singular control can be expressed
as:

δr = −a(X, λ)

b(X, λ)
(4.79)

Proposition 4.1 The singular controls of this system are of the first order and are
never abnormal.

Proof Let’s derive the switching function φ(t):

Φ(t) = λT g = b1λ1 + b2λ2 (4.80)

Differentiation gives

Φ̇(t) = b1λ̇1 + b2λ̇2

Φ̈(t) = b1λ̈1 + b2λ̈2
(4.81)

Nullifying these equations, the following relation is obtained:

λ2 = −b1

b2
λ1 (4.82)
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while replacing in the first and the second equations of the system of equa-
tions (4.74), we find:

λ̇1 = −
(

a11 − b1

b2
a21

)
λ1 + λ̇3

λ̇2 = −
(

a22 − b2

b1
a12

)
λ2 − λ3

(4.83)

�

Proposition 4.2 The system of differential Eqs. (4.82, 4.83) has as solution λ1 =
λ2 = λ3 = 0.

Proof The condition λ1 = λ2 = λ3 = 0 gives sin(ψ +β − ζ ) = 0 implying ψ +β −
ζ = kπ with k ∈ Z. This result represents the necessary condition for the existence
of the singular control. So the Hamiltonian becomes:

H(X,λ,u) = 1 + μVe cos(β + ψ − ζ ) = 0 (4.84)

from this,

μ = − 1

Ve cos(β + ψ − ζ )
= ± 1

Vr

(4.85)

implying that μ is never equal to zero, because the zero value of μ implies a null
adjoint vector λ, contradicting Pontryagin Maximum Principle statements.

To prove the minimality of the singular controls, the generalized convexity con-
dition often called, strengthened Legendre-Clebsh condition must be tested:

(−1)k
∂

∂u

(
d2kΦ

dt2k

)
≥ 0 (4.86)

k is the order of singular control, thus:

(−1)k
∂

∂δr

(
d2kΦ

dt2k

)
= −b2

1μVe cos(ψ + β − ζ ) = b2
1 ≥ 0 (4.87)

Hence, the singular control can be given by:

δr =
(

a11 + b2

b1
(1 + a12)

)
tan(ψ + β − ζ ) − a11β + (1 + a12r)

b1
(4.88)

from the existence condition of the singular control.
Once the singular control is determined, the geometric shape of the reference

trajectory of the airship under this singular control is illustrated. From the singular
control necessary condition, ψ +β − ζ is constant, and ζ is constant too, thus ψ + ζ

is constant. This implies that the angle between the relative velocity Ve and the x
reference axis is constant. Thus the singular trajectory is a straight line. The same
result can be found by applying the control defined below in the dynamics of:

β̇ + ψ̇ = 0 (4.89)
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The reference trajectory is thus a line. Transition from a curved path to the line
requires the application of the singular control which grows monotonously. This
explosion of control is due to the rejection of the discontinuities in path curvature
by the lighter than air dynamics. For this reason this curvature has to be smoothed by
optimizing the transition time between a non zero curvature trajectory and a straight
line. When two configurations are aligned the optimal path is obviously a straight
line, i.e. β = r = 0, which correspond to δ∗

r = 0. �

4.3.2.2 Optimal Transition of a Non Null Curvature Path to a Straight Line

The switch between the non zero curvature path and a straight line must be charac-
terized separately. The shapes of the optimal state and control trajectories in each
mode separately have been already characterized. Therefore, the time interval cor-
responding to the mode switching need to be specified and the parameters that de-
termine when and for how long the singular control lasts. Both issues are addressed
using a continuity argument. The line is characterized by zero values of β , r , and
the non null curvature paths are characterized by non zero values of β , r . The dy-
namics of β , r are used for achieving this objective. In optimal control literature,
the following theorem is demonstrated.

Proposition 4.3 For any linear normal system the optimal control is of bang-bang
type.

Proof The normality condition means that the system is controllable with respect to
each of its control inputs. The determinant of the controllability matrix is:

a21b
2
1 + b1b2 (a22 − a11) − a12b

2
2

Let’s find the switching surface allowing the system to intersect the origin, starting
from any initial condition within this surface, and under a specific control, i.e. δ =
±1. The dynamics of the yaw rate and the side-slip angle are asymptotically stable.
To simplify the computations, a separation of dynamics is performed by state matrix
diagonalization, using linear state space variable transformation. Let

(
z1
z2

)
= T −1

(
β

r

)
(4.90)

where T is a 2 × 2 matrix formed by the eigenvectors corresponding to the system
eigenvalues. The resultant diagonalized dynamics are given by:

ż1 = λ1z1 + bz1δr

ż2 = λ2z2 + bz2δr

(4.91)
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The corresponding solutions of this system are given by:

z1 = bz1δr + z10λ1

λ1
expλ1t −bz1

δr

λ1

z2 = bz2δr + z20λ2

λ2
expλ2t −bz2

δr

λ2

(4.92)

where z10 and z20 are the initial conditions. The cross time with the origin tc is
easily calculated as:

tc = ln (bz1δr/(bz1δr + z10λ1))

λ1
= ln (bz2δr/(bz2δr + z20λ1))

λ2
(4.93)

Thus, the following relation must hold

z10 = −δr
(bz2δr/(bz2δr + z20λ2))

λ2/λ1 − 1

(bz2δr/(bz2δr + z20λ2))
λ2/λ1

(4.94)

This equation defines the switching surface in z1 and z2 coordinates corresponding
to δr = ±1.

The algorithm of the optimal transition is based on the detection of the cross
points of the bang-bang trajectories with the switching surface, the idea is to com-
pare the horizontal distance of the system state point (z1, z2) from the switching
surface by replacing the z1 and z2 in Eq. (4.94) and switching when the condition
|z1 − z10| ≤ ε is hold. In this case the control switch to the other bang. �

4.4 Zermelo Navigation Problem

Zermelo’s problem was originally formulated to find the quickest nautical path for
a ship at sea in the presence of currents, from a given departure point in �2 to
a given destination point. It can also be applied to the particular case of a lighter
than air robot with a zero flight path angle and the wind velocity represented by
W = (Wx,Wy) [92, 96, 147, 166].

4.4.1 Navigation Equation

Time optimal trajectory generation can be formulated as follows:

min
∫ T

0
dt (4.95)

subject to

ẋ = u1(t) + Wx

ẏ = u2(t) + Wy

(4.96)
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with the constraint u2
1(t) + u2

2(t) ≤ V 2
max If the terminal point is reachable at any

time, then it is reachable in the minimal time. However, if the wind is too strong,
there may be points that are not reachable at all.

The Hamiltonian is classically given by: H = 1 + λ1(u1(t) + Wx) + λ2(u2(t) +
Wy) where the Lagrange multipliers are represented by λ1, λ2. The application of
the necessary condition of optimality

dλ1

dt
= −∂H

∂x
= −λ1

∂Wx

∂x
− λ2

∂Wy

∂x

dλ2

dt
= −∂H

∂y
= −λ1

∂Wx

∂y
− λ2

∂Wy

∂y

(4.97)

Each extremal control u∗(t) must satisfy ‖u∗(t)‖ = Vmax for almost all t . The max-
imality condition yields that

u∗(t) = Vmax

λ(t)

‖λ‖
for almost all t, as λ(t) cannot be identically zero.

Zermelo’s navigation formula consists of a differential equation for u∗(t) ex-
pressed in terms of only the drift vector and its derivatives. The derivation can
be explained as follows. Let the angle μ(t) given by u1(t) = Vmax cosμ(t) and
u2(t) = Vmax sinμ(t) then

cosμ(t) = λ1

‖λ‖ , sinμ(t) = λ2

‖λ‖
Differentiating these relations, the following equalities can be given:

cosμ
d ‖λ‖
dt

− ‖λ‖ sinμ
dμ

dt
= dλ1

dt
= −λ1

∂Wx

∂x
− λ2

∂Wy

∂x

sinμ
d ‖λ‖
dt

+ ‖λ‖ cosμ
dμ

dt
= dλ2

dt
= −λ1

∂Wx

∂y
− λ2

∂Wy

∂y

(4.98)

Finally the Zermelo navigation equation is given by:

dμ

dt
= − cos2 μ

∂Wx

∂y
+ sinμ cosμ

(
∂Wx

∂x
− ∂Wy

∂y

)
+ sin2 μ

∂Wx

∂x
(4.99)

4.4.2 One Particular Solution

When the problem is to find minimum-time paths through a 2D region of position-
dependent vector velocity [92]:

ẋ = V sinχ + Wx(x, y)

ẏ = V cosχ + Wx(x, y)
(4.100)
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The heading angle is the control available for achieving the minimum time objective.
If Wx(x, y) = −VV y and Wy(x, y) = 0, it has been proved in [92] that

y = V

Vw

(
1

sinχ
− 1

sinχf

)

x = V

2VW

(
asinh(tanχf ) − asinh(tanχ) + tanχ

(
1

sinχ
− 1

sinχf

)

− 1

cosχf

(
tanχf − tanχ

))
(4.101)

The time to go is given by

T = 1

VW

(
tanχf − tanχ

)
(4.102)

4.5 3D Trajectory Design with Wind

The contribution of this section is the analysis of time-optimal 3D trajectories for
a lighter than air robot in a constant velocity wind. This section studies both issues
that arise in the planning of trajectory of lighter than air robot in winds: the con-
trollability of the lighter than air robot expressed by its kinematical model and time
optimal trajectory characterization in 3D space.

The problem of transferring a dynamical system from an arbitrary initial config-
uration to a desired target in minimum time is of fundamental interest as an optimal
control problem. Trajectory plan for a lighter than air robot must incorporate wind
as a significant factor that can affect both the feasibility and optimality of trajectory.
A family of primitives is deduced from the resolution of this optimization problem.

In guidance studies, one assumes that only local information on the wind flow-
field is available and determines a near optimal trajectory, namely a trajectory that
approximates the behavior of the optimal trajectory [148].

4.5.1 Determination of the Reference Controls

The kinematic model of the lighter than air robot exhibits a property known as dif-
ferential flatness particularly relevant in planning problems. A nonlinear system

Ẋ = f(X) + g(X)U (4.103)

is differentially flat if there exists a set of outputs Y called flat outputs such that the
state X and the control inputs U can be expressed algebraically as a function of Y
and its time derivative up to a certain order:

X = X
(
Y, Ẏ, Ÿ, . . . ,Y(r)

)

U = U
(
Y, Ẏ, Ÿ, . . . ,Y(r)

) (4.104)
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As a consequence, once an output is assigned for Y, the associated trajectory of the
state X and history of control inputs are uniquely determined. The dynamic model
is recalled as:

ẋ = V sinχ cosγ + Wx

ẏ = V cosχ cosγ + Wy

ż = V sinγ + Wz

(4.105)

V̇ = 1

m + m11
(T cosα − D + (B − mg) sinγ )

− m

m + m11

(
Ẇx cosγ sinχ + Ẇy cosγ cosχ + Ẇz sinγ

)
(4.106)

χ̇ = 1

(m + m22)V cosγ
(L + T sinα) sinσ

− m

m + m22

(
Ẇx cosχ − Ẇy sinχ

V cosγ

)
(4.107)

γ̇ = −1

(m + m33)V
(L cosσ + T cosσ sinα + (B − mg) cosγ )

+ m

(m + m33)V

(
Ẇx sinγ sinχ + Ẇy sinγ cosχ + Ẇz cosγ

)
(4.108)

If one assumes that the control inputs are T ,σ,α or equivalently T ,σ,L then the
lighter than air motion is differentially flat. By determining a suitable lighter than
air robot trajectory in Cartesian coordinates x, y, and z, the required lighter than air
robot controls can be calculated.

V =
√

(ẋ − Wx)2 + (ẏ − Wy)2 + (ż − Wz)2 (4.109)

γ = asin
ż − Wz

V
(4.110)

χ = atan
ẋ − Wx

ẏ − Wy

(4.111)

Using the following notations,

η1 = (m + m11)V̇ − (B − mg) sinγ

+ m
(
Ẇx cosγ sinχ + Ẇy cosγ cosχ + Ẇz sinγ

)

η2 = (m + m22)V χ̇ cosγ + m
(
Ẇx cosχ − Ẇy sinχ

)
(4.112)
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η3 = −(m + m33)V γ̇ − (B − mg) cosγ

− m
(
Ẇx sinγ sinχ + Ẇy sinγ cosχ + Ẇz cosγ

)

The bank angle is given by:

σ = atan
η2

η3
(4.113)

While the thrust is given by:

T =
√(

η1 + L
CD

CL

)2

+ (η2 − L sinσ)2 + (η3 − L cosσ)2 (4.114)

The lift is given by resolving the following equation:

L2 − (η2 − T sinα sinσ)2 + (η3 − T sinα cosσ)2 = 0 (4.115)

where the lift force L is normal to the velocity vector of the lighter than air robot
with respect to the air and is contained in the plane of symmetry of the vehicle. The
drag force D is parallel and in the opposite direction of the velocity vector.

D = L
CD

CL

= L

(
CD0

Cl

+ KCL

)
(4.116)

The constraints are first expressed in terms of thrust and velocities and then trans-
formed into limitations on flight path and heading angles.

Remark 4.2 As the lighter than air robot admits a set of flat outputs, these may be
exploited to solve planning problems efficiently. In fact, some interpolation schemes
can be used to solve the path of Y in such a way to satisfy the appropriate boundary
conditions. The evolution of the other configuration variables, together with the as-
sociated control inputs, can then be computed algebraically from Y. The resulting
configuration space path will automatically satisfy the nonholonomic constraints.

4.5.2 Accessibility and Controllability

The nonlinear dynamics model can be written as a set of first-order ordinary differ-
ential equation as:

Ẋ = f(X,U) = f(X) + g(X)U

Y = h(X)
(4.117)

where X is the state vector X ∈ Rn, U is the control vector U ∈ Rm, Y is the mea-
sured output Y ∈ Rp .
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Remark 4.3 As modeling involves approximation and some degree of uncertainty
in dealing with dynamic systems, properties whose validity in nominal situations
may imply validity in almost all situations are called generic properties. These are
properties that hold on open and dense subsets of suitable domains of definition,
provided they hold at some points of such domains.

A basic notion is that of reachable state and controllability. Controllability con-
cerns the possibility of steering the system from a state X0 to another state X1. For
linear systems, controllability is a structural property, in the sense that any linear
system can be split into a controllable subsystem and an autonomous uncontrollable
one [204].

Definition 4.1 A system of the form (4.117) is said to be controllable at X0 if there
exists a neighborhood V of X0 such that any state X1 ∈ V is reachable from X0.

The notion of the observability of a system concerns the possibility of recovering
the state X(t) from knowledge of the measured output Y(t), the input U(t) and
possibly a finite number of their time derivatives Y (k)(t), k ≥ 0 and U(l), l ≥ 0.
The structural property which can be easily characterized in a nonlinear framework
concerns the existence of an open and dense submanifold of the state space Rn

around whose points the system is locally observable. The use of an observer that
evaluates the state from the knowledge of inputs and outputs is in order whenever
the state itself is not directly measurable, but its value is required for computing a
feedback or for monitoring the system behavior. In contrast to the linear situation,
observability of a given nonlinear system is necessary but not sufficient to assure
the possibility of constructing an observer.

Controllability is an important notion for affine systems with or without drift.
Sussmann [203] and Jurdjevic [96] introduced the theory of Lie groups and their
associated Lie algebras into the context of nonlinear control to express notions such
as controllability, observability and realization theory. Some of the early works on
nonlinear controllability of driftless systems were based on linearization of non-
linear systems. It was observed that if the linearization of a nonlinear system at
an equilibrium point is controllable, the system itself is locally controllable. Later,
a differential geometric approach to the problem was adopted in which a control
system was viewed as a family of vector fields. It was observed that a lot of the
interesting control theoretic information was contained in the Lie brackets of these
vector fields.

Driftless nonholonomic control systems have been extensively studied in recent
years. Chow’s theorem [96] leads to the characterization of controllability for sys-
tems without drift. It provides a Lie algebra rank test, for controllability of nonlinear
systems without drift, similar in spirit to that of Kalman’s rank condition for linear
systems. In the setting of controlled mechanical systems, the Lagrangian dynam-
ics, being second order, necessarily include drift. In this setting, Chow’s theorem
cannot be used to conclude controllability. Studying controllability of general sys-
tems with drift is usually a hard problem. The discussion of nonholonomic system
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with drift in the literature has been concentrated on the so-called dynamic exten-
sion of drift-free systems with the addition of integrators. Sufficient conditions for
the controllability of a conservative dynamical nonlinear affine control system on a
compact Riemannian manifold are presented, if the drift vector field is assumed to
be weakly positively Poisson stable [47, 49, 181, 218].

Let’s begin with a brief study of controllability of nonlinear systems applied to
this system:

ẋ = V sinχ cosγ + Wx

ẏ = V cosχ cosγ + Wy

ż = V sinγ + Wz

V̇ = u1

χ̇ = u2

γ̇ = u3

(4.118)

or in an affine nonlinear control system with drift:

Ẋ = f (X) + g1u1 + g2u2 + g3u3 = A(X)X + W + G(X)U (4.119)

where the state variable is defined as X = (x, y, z,V ,χ, γ )T , the control variable
by U = (V̇ , χ̇ , γ̇ )T , the drift function by:

f (X) =

⎛
⎜⎜⎜⎜⎜⎜⎝

V sinχ cosγ + Wx

V cosχ cosγ + Wy

V sinγ + Wz

0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 cosγ sinχ 0 0
0 0 0 cosγ cosχ 0 0
0 0 0 sinγ 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

x

y

z

V

χ

γ

⎞
⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎝

Wx

Wy

Wz

0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

(4.120)

and the input functions are given by:

g1 = (0,0,0,1,0,0)T

g2 = (0,0,0,0,1,0)T

g3 = (0,0,0,0,0,1)T
or G(X) = [g1 g2 g3] (4.121)

Remark 4.4 This control system with drift

Ẋ = f (X) +
m∑

i=1

gi(X)Ui
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may be thought as a special case of the drift free system by defining the new system

Ẋ =
m∑

i=0

gi(X)Ui

with the input U0 attached to the vector field g0(X) = f (X) frozen at 1.

Remark 4.5 The Lie bracket is defined as [f,g] = ∂g
∂X

f − ∂f
∂X

g.

Definition 4.2 The controllability Lie algebra C of an affine control system is de-
fined to be the span over the ring of smooth functions of elements of the form
[Xk, [Xk−1, [. . . , [X2,X1], . . .]]] where Xi ∈ {f,g1, . . . , gm} and k = 0,1,2, . . .

A Lie subalgebra of a module is a submodule that is closed under the Lie bracket.
The controllability Lie algebra may be used to define the accessibility distribution
as the distribution

C(X) = span {X(X),X ∈ C}
From the definition of C, it follows that C(X) is an involutive distribution. The con-
trollability Lie algebra is the smallest Lie algebra containing {f,g1, . . . , gm} which
is closed under Lie bracketing. The controllability distribution contains valuable in-
formation about the set of states that are accessible from a given starting point X0.

Definition 4.3 Let Rν(X0, T ) ⊂ Rm be the subset of all states accessible from
state X0 in time T with the trajectories being confined to a neighborhood U of X0.
This is called the reachable set from X0.

Several important results have been derived based on the structure of the Lie
algebra generated by the control vector fields. Assume X ∈ M ⊂ �6 where M is a
smooth manifold. Let X(t,X0, u) denote the solution for t ≥ 0 for a particular input
function u and initial condition X(0) = X0.

Let Rν(X0, T ) = {X ∈ M , there exists an admissible input u : [0, T ] → u such
that

X(t,X0, u) ∈ V, 0 ≤ t ≤ T and X(T ) = Xf } (4.122)

By definition, all the Lie brackets that can be generated using these vector fields
belong to A. The accessibility algebra A of the system (4.118) is the smallest sub
algebra of V ⊂ �n that contains f,g1, g2, g3. The accessibility distribution ΔA of
the system (4.118) is defined as: ΔA = span{ν|ν ∈ A}, thus ΔA is the involutive
closure of Δ = span{f,g1, g2, g3}. The computation of ΔA may be organized as an
iterative procedure:

ΔA = span
{
ν
∣∣ν ∈ Δi; ∀i ≥ 1

}
(4.123)
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With:

Δ1 = Δ = span {f,g1, g2, g3}
Δi = Δi−1 + span

{[
g, ν
]
, g ∈ Δ1, ν ∈ Δi−1

}
, i ≥ 2

This procedure stops after K steps, where K is the smallest integer such that
ΔK+1 = ΔK > ΔA. This number is called the nonholonomy degree of the system
and is related to the ‘level’ of Lie brackets that must be included in ΔA.

Since dim(ΔA) ≤ n, so the following condition is necessary:

K ≤ n − m

Let us now find ΔA of this system (4.118):

Δ1 = span{f,g1, g2, g3}
At the second level, the following relationship can be written:

Δ2 = Δ1 + span

{
g4 = [f,g1

]
, g5 = [f,g2

]
, g6 = [f,g3

]
,

g7 = [g1, g2
]
, g8 = [g1, g3

]
, g9 = [g2, g3

]
}

(4.124)

with [
f,
[
f,g1

]]= [f,
[
f,g2

]]= [f,
[
f,g3

]]= [g3,
[
f,g3

]]= 06×1[
g1,
[
f,g1

]]= V
[
f,g3

]
[
g1,
[
f,g3

]]= − [g3,
[
f,g1

]]= −V
[
f,g1

]
[
g1,
[
f,g2

]]= − [g2,
[
f,g1

]]= − tanγ
[
f,g2

]
[
g2,
[
f,g3

]]= − [g3,
[
f,g2

]]= −V
[
f,g2

]
[
g2,
[
f,g2

]]= (V cosχ cosγ V sinχ cosγ 0 0 0 0)T

Identical calculations are made for level 3 and 4 to obtain

Δ4 = Δ3 = ΔA = span
{
f,g1, g2, g3,

[
f,g1

]
,
[
f,g2

]
,
[
f,g3

]}
(4.125)

The Lie brackets are zero since level 2, thus this system is nilpotent.
The rank of the matrix obtained: M = (f, g1, g2, g3, [f,g1], [f,g2])
Straightforward calculations allow to write:

rank(M)

= rank

⎛
⎜⎜⎜⎜⎜⎜⎝

V sinχ cosγ + Wx 0 0 0 V sinχ sinγ V cosχ cosγ

V cosχ cosγ + Wy 0 0 0 V cosχ sinγ −V sinχ cosγ

V sinγ + Wz 0 0 0 −V cosγ 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

(4.126)
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where the determinant of this matrix is given by:

det(M) = −V 3 cosγ − WzV
2 sinγ cosγ − WxV

2 sinχ cos2 γ

− WyV 2 cosχ cos2 γ (4.127)

So the previous relation (4.127) must be studied, verifying that the determinant is
different from zero. With this condition, system (4.118) verifies the Lie Algebra
rank condition and is locally accessible.

Therefore the non-holonomy degree of the system is: (K = 3) for det(M) �= 0
and its satisfies the condition (K = 3) ≤ (n − m = 3). If the drift f is positively
Poisson stable vector field, and as the accessibility Lie algebra rank condition is
satisfied, the system is controllable.

The pointwise linear controllability means that the pair [A(X)G(X)] is control-
lable for any X ∈ �6, with a condition

det
[
G(X) A(X)G(X) A(X)2G(X) A(X)3G(X) A(X)4G(X) A(X)5G(X)

]
> 0

with the following property

A(X)2G(X) = A(X)3G(X) = A(X)4G(X) = A(X)5G(X) = 06×6

Finally, the following result is obtained:

rank
[
G(X) A(X)G(X) A(X)2G(X) A(X)3G(X) A(X)4G(X) A(X)5G(X)

]= 4

for γ �= 0 and χ �= 0.

4.5.3 Motion Planning when Wind Can Be Neglected

Nonholonomic motions planning relies on finding a trajectory in the state space
between given initial and final configurations subject to nonholonomic constraints.
The Lie algebraic method relies on a series of local planning around consecutive
current states. Global trajectory results from joining local trajectories. At a current
state, a direction of motion toward the goal state is established. Then, a rich enough
space of controls is taken. As the system is controllable, via some vector fields, the
controls are able to generate the fields [67, 181].

The steering method for affine driftless systems exploits different properties of
such a system namely nilpotence, chained form and differential flatness.

1. Nilpotence: A control system is nilpotent as soon as the Lie brackets of the con-
trol vector fields vanish from some given length. For such system, it is possible to
compute a basis of the control Lie algebra from a Philip Hall family. Because the
system is nilpotent, each exponential of Lie brackets can be developed exactly as
finite combination of the control vector fields and thus find piecewise constant
controls steering the system exactly to the goal
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2. Differential flatness is a property enjoyed by this mechanical system. A flat sys-
tem is a system such that there exists a finite set of variable yi differentially
independent which appear as differential function of the system variables (state
variables and inputs) and a finite number of their derivatives, each system vari-
able being itself a function of the yi and a finite number of their derivatives. The
variables yi are called the linearizing outputs of the system. In this case, path
planning takes place in a space defined by parameters different in general from
the configuration variables

3. Chained forms: For systems that can be converted into chained form, it is possible
to steer them exactly to the goals using either sinusoidal, polynomial or piecewise
constant controls.

As compared with driftless systems, relatively few approaches have so far been
proposed for the stabilization of systems with drift. The difficulty in steering systems
with drift arises from the fact, that in the most general case of non recurrent or
instable drift, the system motion along the drift vector needs to counteracted by
enforcing system motions along adequately chosen Lie bracket vector fields in the
system, underlying controllability Lie algebra.

This system Ξ

Ẋ = f (X) + g1u1 + g2u2 + g3u3 = A(X)X + W + G(X)U (4.128)

can be steered along these Lie brackets {g1, g2, g3, g4, g5, g6}. The vectors g4, g5, g6
represent new motion directions that can be followed approximately. Locally gener-
ating motion in these directions is slower than following the vector fields g1, g2, g3.
The Philip Hall basis gives a way to choose the smallest number of Lie products that
must be considered to generate a basis for this distribution.

The level of difficulty in steering controllable systems is proportional to the order
of Lie brackets. When the dimension of the L is 6 according to Chow’s theorem and
Lie algebra rank condition, the system is proved to be completely nonholonomic
and controllable.

The motion planning problem is concerned with finding a control that steers the
system from an initial configuration Xi to the final configuration Xf ∈ �5 along a
certain trajectory. The following extension Ξe of Eq. (4.128) is proposed by adding
higher order Lie bracket motions

Ẋ = f (X) + g1u1 + g2u2 + g3u3 + g4u4 + g5u5 + g6u6 (4.129)

where u4, u5, u6 are fictitious inputs that may not correspond to the actual system
inputs. It has been proved above that the system is nilpotent, as all the Lie brack-
ets vanish from level 3. Once the extended system has been selected, the solution
proposed here of the motion planning problem involves two steps:

1. STEP 1: Find a control U = (u1, u2, u3, u4, u5, u6)
T that steers Ξe from a point

Xi to a point Xf , defining a curve �(t) : [0, T ] → �5, then the tangent vector
�̇ (t) is expressed as a linear combination of

g1 (�(t)) , g2 (�(t)) , g3 (�(t)) ,
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g4 (�(t)) , g5 (�(t)) , g6 (�(t))

the corresponding coefficients being ui(t), i = 1..6
2. STEP 2: Use U to compute a control u that steers Ξe from the point Xi to a

point Xf by computing the Philip Hall coordinates of the extended system and
by finding a control u from the Philip Hall coordinates.

As {g1, g2, g3, g4, g5, g6} are vector fields defined in a neighborhood N of a point X

such that at each point of N , the set {g1, g2, g3, g4, g5, g6} constitutes a basis of the
tangent space, then there is a smaller neighborhood of X on which the maps

(α1, α2, α3, α4, α5) → eα1g1+α2g2+α3g3+α4g4+α5g5+α6g6X

and

(α1, α2, α3, α4, α5) → eα1g1eα2g2eα3g3eα4g4eα5g5eα6g6X

are two coordinate systems, called the first and second normal coordinate system as-
sociated to {g1, g2, g3, g4, g5, g6}. The Campbell Baker Hausdorff Dynkin (CBHD)
formula states precisely the difference between the two systems for a sufficiently
small τ , one has

eτf .eτg = eτf +τg−0.5[f,g]+τ2ε(t)

where ε(τ ) → 0 when τ → 0.
Actually, the whole formula gives an explicit form for the ε(t) function. More

precisely, ε(t) yields a formal series whose coefficients ck of τ k are combinations
of brackets of degree k, i.e.

τ 2ε(t) =
∞∑

k=3

τ kck

Roughly speaking, the Campbell Baker Hausdorff Dynkin formula tells how a small
time controllable nonholonomic system can reach any point in the neighborhood of
a starting point. The formula is the hard core of the local controllability concepts.
It yields a method for explicitly computing admissible paths in a neighborhood of a
point.

4.5.3.1 Philip Hall Coordinates

The Philip Hall basis of the controllability Lie Algebra generated by {f,g1, g2, g3}
is defined as follows {g1, g2, g3, g4, g5, g6}. All flows can be represented in the form

S(t) = eh6(t)g6eh5(t)g5eh4(t)g4eh3(t)g3eh2(t)g2eh1(t)g1

S(t) = eh1(t)g1eh2(t)g2eh3(t)g3eh4(t)g4eh5(t)g5eh6(t)g6
(4.130)

The map S → (h1, . . . , h6) and S → (h1, . . . , h6) establish global diffeomorphism
between Lie groups and �6. hi are the backward Philip Hall coordinates of S and
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hi are the forward Philip Hall coordinates of S. In addition, S(t) satisfies the differ-
ential equation

Ṡ(t) = S(t) (g1u1 + g2u2 + g3u3 + g4u4 + g5u5 + g6u6) S(0) = I

Differentiating yields to
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ḣ1

ḣ2

ḣ3

ḣ4

ḣ5

ḣ6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

u1
u2
u3

u4 + h1u1
u5 + h2u2
u6 + h3u3

⎞
⎟⎟⎟⎟⎟⎟⎠

hi(0) = 0 (4.131)

The forward Philip Hall coordinates can be found out

⎛
⎜⎜⎜⎜⎜⎜⎝

h1

h2

h3

h4

h5

h6

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

h1
h2
h3

h4 + h1 × h2
h5 + h2 × h3
h6 + h2 × h3

⎞
⎟⎟⎟⎟⎟⎟⎠

(4.132)

Now, the problem of finding the initial control U is tackled out.

4.5.3.2 Finding U

Now, the following initial value problem is considered:

Ṡ∗(t) = S∗(t) (g1u1 + g2u2 + g3u3) S∗(0) = I (4.133)

The backward Philip Hall coordinates hi being known, the control u(t) must be
found that produces S∗(t) having these coordinates. First, the forward coordinates
can be obtained from Eq. (4.133). Then, the question is turned into finding a control
for

S∗(t) = eh1(t)g1eh2(t)g2eh3(t)g3eh4(t)g4eh5(t)g5eh6(t)g6

Each exponential factor must be solved separately, then the results must be concate-
nated.

Remark 4.6 The symbol ⊗ is used for concatenation, for example A ⊗ B means A

followed by B .

Since the first flow eh1(t)g1 is just along g1, so the control input u1 = h1 for the
first control sequence. Similarly, for the second and third control sequences, the
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result input u2 = h2 will result in the flow eh2(t)g2 and u3 = h3 will result in the
flow eh3(t)g3 . So the control sequences h1(t)g1 ⊗ h2(t)g2 ⊗ h3(t)g3 generate the
flow eh1(t)g1eh2(t)g2eh3(t)g3 .

Now that the flow along the Lie bracket direction eh4(t)g4 = eh4(t)[f,g1] is needed.
Using the Campbell Baker Hausdorff formula, the following six control sequence
(assuming h4 > 0),

√
h4(t)g1 ⊗

√
h4(t)g2 ⊗

√
h4(t)g3

⊗
(
−
√

h4(t)g3

)
⊗
(
−
√

h4(t)g2

)
⊗
(
−
√

h4(t)g1

)
,

give rise to eh4(t)g4 idem for eh5(t)g5 = eh5(t)[f,g2] with

√
h5(t)g1 ⊗

√
h5(t)g2 ⊗

√
h5(t)g3 ⊗

(
−
√

h5(t)g3

)

⊗
(
−
√

h5(t)g2

)
⊗
(
−
√

h5(t)g1

)

give rise to eh4(t)g4eh5(t)g5 idem for eh6(t)g6 = eh6(t)[f,g3] with

√
h6(t)g1 ⊗

√
h6(t)g2 ⊗

√
h6(t)g3 ⊗

(
−
√

h6(t)g3

)

⊗
(
−
√

h6(t)g2

)
⊗
(
−
√

h6(t)g1

)

give rise to eh4(t)g4eh5(t)g5eh6(t)g6 so far a control U made of 1×1×1×6×6×6 =
216 pieces have been obtained so S(t) can be realized by 216 moves.

Remark 4.7 if h4 < 0 or h5 < 0 or h6 < 0, just interchange respectively f and g1,
f and g2, f and g3 [130].

4.5.4 Determination of the Minimum Energy Trajectories

The problem may be formulated as:

min
1

2

∫ 1

0

(
uT (t)u(t)dt

)

subject to Ẋ = f (X) +
m∑

i=1

gi(X)Ui

In this paragraph, the least squares optimal control problem for an affine system
from drift from X0 to Xf in one unit time. The steering problem is assumed to
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have a solution (by Chow’s theorem, this is guaranteed when the controllability Lie
algebra generated by g1, . . . , gm is of rank n for all X) [52].

A heuristic derivation is given from the calculus of variations of the necessary
conditions for optimality. Constraints are incorporated into the cost function using
a Lagrange multiplier function λ(t) ∈ �n to get

J (X,λ,U) =
∫ 1

0

(
1

2
uT (t)u(t) − λT

(
Ẋ − f (X) −

m∑
i=1

gi(X)Ui

))
dt (4.134)

The Hamiltonian function is introduced as:

H(X,λ,U) = 1

2
uT (t)u(t) + λT

(
f (X) +

m∑
i=1

gi(X)Ui

)
(4.135)

This yields to

J (X,λ,U) = −λT (t)X(t)|10 +
∫ 1

0

(
H(X,λ,U) + λ̇T X

)
dt (4.136)

Consider the variations in J caused by variations in the control input U

δJ (X,λ,U) = −λT (t)δX(t)|10 +
∫ 1

0

(
∂H

∂X
δX + ∂H

∂U
δU + λ̇T δX

)
dt (4.137)

If the optimal input has been found, a necessary condition for stationarity is that the
first variation above be zero for all variations δU and δX.

λ̇ = −∂H

∂X

0 = ∂H

∂U

(4.138)

From the second of these equations, it follows that the optimal inputs are given by:

Ui = −λT
i gi(X)

The optimal inputs satisfy the differential equations

U̇ = Ω (λ,X)U +
⎛
⎝

λT
[
f,g1

]
. . .

λT
[
f,gm

]

⎞
⎠ (4.139)

with

Ω (λ,X)U =

⎛
⎜⎜⎝

0 λT
[
g1, g2

]
λT
[
g1, g3

]

−λT
[
g1, g2

]
0 λT

[
g2, g3

]

−λT
[
g1, g3

]
λT
[
g2, g3

]
0

⎞
⎟⎟⎠
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4.5.5 Determination of Time Optimal Trajectories

The subject of this section is to formulate the trajectory generation problem in min-
imum time as this system has bounds on the magnitudes of the inputs and the states.
The velocity is assumed to be linearly variable. As the set of allowable inputs is con-
vex, the time optimal paths result from saturating the inputs at all times (or zero for
singular control). For a linear time-invariant controllable system with bounded con-
trol inputs, the time-optimal control solution to a typical two point boundary value
problem is a bang-bang function with a finite number of switches. Time optimal
trajectory generation can be formulated as follows [25]:

min
∫ T

0
dt (4.140)

subject to

ẋ = V sinχ cosγ + Wx

ẏ = V cosχ cosγ + Wy

ż = V sinγ + Wz

(4.141)

V̇ = u1

χ̇ = u2

γ̇ = u3

(4.142)

initial and final conditions

x(0) = x0, y(0) = y0, z(0) = z0,

χ(0) = χ0, γ (0) = γ0, V (0) = V0

x(T ) = xf , y(T ) = yf , z(T ) = zf ,

χ(T ) = χf , γ (T ) = γf , V (T ) = Vf

(4.143)

Limitations on the control inputs

|u1| ≤ u1max |u2| ≤ u2max |u3| ≤ u3max (4.144)

and on state variables

|V | ≤ Vmax |γ | ≤ γmax (4.145)

Remark 4.8 This formulation is a generalization of Zermelo’s navigation problem,
where the problem consists of finding the quickest nautical path for a ship at sea in
the presence of currents.

For points that are reachable, the resolution is based on the Pontryagin Minimum
Principle which constitutes a generalization of Lagrange problem of the calculus of
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variations. It is a local reasoning based on the comparison of trajectories correspond-
ing to infinitesimally close control laws [192]. It provides necessary conditions for
paths to be optimal. Of course, the kinematic model used below implies a perfect
response to the turn commands. A major reason for using the kinematic model is the
fact that only necessary conditions for optimality exist for the second order model
(given by Pontryagin minimum principle) [93, 95, 224].

The Hamiltonian, formed by adjoining the state equation with the appropriate
adjoint variable λ1, . . . , λ6, is classically defined as follows:

H = 1 + λ1(V sinχ cosγ + Wx) + λ2(V cosχ cosγ + Wy)

+ λ3(V sinγ + Wz) + λ4u1 + λ5u2 + λ6u3 (4.146)

where λ represents the Lagrange multiplier. The optimal control input must satisfy
the following set of necessary conditions

Ẋ = ∂H

∂λ
where X(0), X(T) are specified (4.147)

λ̇ = −∂H

∂X
where λ(0), λ(T ) are free (4.148)

With the transversality condition

H(T ) = 0 (4.149)

The co-state variables are free, i.e. unspecified, at both the initial and final times
because the corresponding state variables of the system are specified. A first inter-
esting result is the determination of a sufficient family of trajectories, i.e. a family
of trajectories containing an optimal solution for linking any two configurations.

As the drift is not an explicit function of time t, a first integral of the two point
boundary value problem exists and thus the Hamiltonian H is constant on the opti-
mal trajectory. Because H(T ) = 0 from the transversality condition,

H(t) = 0, ∀t ∈ [0, tf ]

The co-state equations are then obtained in the standard fashion by differentiating
the negative of the Hamiltonian with respect to the states.

Lagrange Multipliers Analysis The first order necessary conditions must be sat-
isfied by formulating the differential equations for the costates. The adjoint equa-
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tions are the first part of the necessary conditions (4.148) where

λ̇1 = 0

λ̇2 = 0

λ̇3 = 0

λ̇4 = λ1 cosχ cosγ − λ2 sinχ cosγ + λ3 sinγ

λ̇5 = λ1V sinχ cosγ − λ2V cosχ cosγ = λ1(ẏ − Wy) − λ2(ẋ − Wx)

λ̇6 = λ1V cosχ sinγ + λ2V sinχ sinγ − λ3V cosγ

(4.150)

Integrating the first three multiplier dynamics, the following relations are obtained

λ1 = μ sin ζ = constant

λ2 = μ cos ζ = constant

λ3 = constant

λ̇4 = −μ

2
cos (χ + γ − ζ ) − μ

2
cos (χ − γ − ζ ) + λ3 sinγ

λ̇5 = −μV

2
sin (χ + γ − ζ ) − μV

2
sin (χ − γ − ζ )

λ̇6 = μV

2
sin (χ + γ − ζ ) + μV

2
cos (χ − γ + ζ ) − λ3V sinγ

(4.151)

λ5 = λ1y − λ2x − λ1Wyt + λ2Wxt + λ50 (4.152)

Defining the Hamiltonian and multiplier dynamics in this way, the minimum prin-
ciple of Pontryagin states that the control variable must be chosen to minimize the
Hamiltonian at every instant.

H(X,u∗) ≤ H(X,u) (4.153)

On the optimal trajectory, the optimal control u∗ must satisfy:

λ4u
∗
1 + λ5u

∗
2 + λ6u

∗
3 ≤ λ4u1 + λ5u2 + λ6u3 (4.154)

Minimization of the Hamiltonian function subject to the control constraints requires
that

uj = − sgn
{
Sj

}= − sgn

{
n∑

i=1

Bijλi, j = 1 . . .m

}
(4.155)

where Sj is the switching function associated with the j th control input uj and the
signum function is defined as

sgn
{
Sj

}=
{

+1 if Sj > 0

−1 if Sj < 0
(4.156)
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Fig. 4.4 The six sequences of Dubins

and it becomes singular for

−1 < uj < +1 if Sj = 0

Leading to the following solution

u∗
1 = −u1max sign(λ4)

u∗
2 = −u2max sign(λ5)

u∗
3 = −u3max sign(λ6)

(4.157)

Thus, the following multipliers can be integrated as

λ4 = −μ

2

sin (χ + γ − ζ )

δ2u2max + δ3u3max

− μ

2

sin (χ − γ − ζ )

δ2u2max − δ3u3max

+ λ3 cosγ

δ3u3max

λ5 = μ sin ζ
(
y − Wyt

)− μ cos ζ (x − Wxt)

(4.158)

In 2D, according to Dubins’ theorem [58] a mobile robot minimum time optimal
trajectory under maximum control constraint and constant velocity has six solutions
{RSL,RSR,LSL,LSR,RLR,LRL} where R represents Right, S: straight and L
Left. Such paths are a concatenation of an arc of a minimum-radius circle (either in
the positive or negative direction) with either an arc of a minimum radius circle (in
the opposite direction) or with a straight segment. Figure 4.4 shows these six curves.

4.5.5.1 Singular Controls

Let uk denote a component of the control vector U . A regular control uk is a control
where the optimality condition Huk

= 0 explicitly contains the control uk , so that
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Huk
uk is not identically zero. The Weierstrass condition is a necessary condition for

a regular optimal control to be a strong relative minimum.
A singular control uk occurs when Huk

uk ≡ 0. It is an important case as this
Hamiltonian contains control variables linearly. Such paths are a concatenation of
an arc of a minimum-radius circle (either in the positive or negative direction) with
either an arc of a minimum radius circle (in the opposite direction) or with a straight
segment.

The generalized Legendre-Clebsch condition

(−1)ι
∂

∂U

(
d2Hu

dt2

)
≥ 0 (4.159)

where ι denotes the order of the singular control. The Weierstrass condition and
the Legendre-Clebsch condition can be applied to individual or combinations of
regular controls and the generalized Legendre-Clebsch condition can be applied to
individual singular controls.

1. For the multiplier λ4, when the singular control occurs V = Vmax and λ4 = λ̇4 =
0 thus, the relation

λ̇4V = −λ1 (ẋ − Wx) − λ2
(
ẏ − Wy

)+ λ3 (ż − Wz)

Integrating for the singular control, the following relation is obtained:

λ1x − λ2y + λ3z = λ1Wx − λ2Wy + λ3Wz + λ7

where λ7 is an integration constant.
2. Because the values of λ1, λ2, λ50 are constant, each value of λ5 defines a line

parallel to the characteristic direction, if Wx = Wy = 0. The line defined by λ5 =
0 is the line on some switching and straight line travel must occur. Straight lines
and changing in turning direction on the optimal path must occur on a single line.

y = λ2

λ1
x + Wyt − λ2

λ1
Wxt − λ50

λ1
(4.160)

3. If both following relations are compared for the singular control in λ6:

0 = λ̇6 = λ1V cosχ sinγ + λ2V sinχ sinγ − λ3V cosγ

and the nonholonomic constraint

0 = ẋ cosχ sinγ + ẏ sinχ sinγ − ż cosγ

thus

ẋ = λ1V

ẏ = λ2V

ż = λ3V

(4.161)

Four cases can be derived from the previous relations.
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• λ1 = λ2 = λ3 = 0: The optimal trajectory is represented by a point.
• λ1 = λ2 = 0: The optimal trajectory is represented by a straight line along the

Up axis.
• λ1 = λ3 = 0: The optimal trajectory is represented by a straight line along the

North axis.
• λ2 = λ3 = 0: The optimal trajectory is represented by a straight line along the

East axis.

It is necessary to fuse a boundary-valued optimal control with a singular value.

4.5.5.2 Paths

The number of switches in the controls u1, u2, u3 depend on the corresponding func-
tions λ4, λ5, λ6 respectively. When the initial and final points are more than two
turn radii apart, the minimum time path comprises 3 segments. All straight lines and
changing in turning direction on the optimal path must occur on a single line. These
solutions can be written in the following concise form:

u∗
1 ∈
⎧⎨
⎩

⎛
⎝

δ1u1max

0
±δ1u1max

⎞
⎠ ,

⎛
⎝

δ1u1max

−δ1umax

δ1u1max

⎞
⎠
⎫⎬
⎭ (4.162)

u∗
2 ∈
⎧⎨
⎩

⎛
⎝

δ2u2max

0
±δ2u2max

⎞
⎠ ,

⎛
⎝

δ2u2max

−δ2u2max

δ2u2max

⎞
⎠
⎫⎬
⎭ (4.163)

u∗
3 ∈
⎧⎨
⎩

⎛
⎝

δ3u3max

0
±δ3u3max

⎞
⎠ ,

⎛
⎝

δ3u3max

−δ3u3max

δ3u3max

⎞
⎠
⎫⎬
⎭ (4.164)

with

δ1 = − sign(λ4) = ±1 (4.165)

δ2 = − sign(λ5) = ±1 (4.166)

δ3 = − sign(λ6) = ±1 (4.167)

Analysis of the First Set of Solutions S1 In this paragraph, emphasis is put on
an analytical resolution of the first set of time optimal control problem solutions.

S1:

u∗
1 =

⎛
⎝

δ1u1max for 0 ≤ t ≤ t1
−δ1u1max for t1 ≤ t ≤ t2
δ1u1max for t2 ≤ t ≤ T

⎞
⎠ (4.168)
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u∗
2 =

⎛
⎝

δ2u2max for 0 ≤ t ≤ t ′1−δ2u2max for t ′1 ≤ t ≤ t ′2
δ2u2max for t ′2 ≤ t ≤ T

⎞
⎠ (4.169)

u∗
3 =

⎛
⎝

δ3u3max for 0 ≤ t ≤ t ′′1−δ3u3max for t ′′1 ≤ t ≤ t ′′2
δ3u3max for t ′′2 ≤ t ≤ T

⎞
⎠ (4.170)

Taking into account the following conditions

T > 0 t1 ≥ 0 t1 ≤ t2 t2 ≤ T

t ′1 ≥ 0 t ′1 ≤ t ′2 t ′2 ≤ T

t ′′1 ≥ 0 t ′′1 ≤ t ′2 t ′′2 ≤ T

(4.171)

By integration of Eq. (4.168), one can obtain;

V ∗(t) =
⎛
⎝

δ1u1maxt + V0 for 0 ≤ t ≤ t ′1−δ1u1maxt + V1 for t ′1 ≤ t ≤ t ′2
δ1u1maxt + V2 for t ′2 ≤ t ≤ T

⎞
⎠ (4.172)

χ∗(t) =
⎛
⎝

δ2u2maxt + χ0 for 0 ≤ t ≤ t1
−δ2u2maxt + χ1 for t1 ≤ t ≤ t2
δ2u2maxt + χ2 for t2 ≤ t ≤ T

⎞
⎠ (4.173)

γ ∗(t) =
⎛
⎝

δ3u3maxt + γ0 for 0 ≤ t ≤ t ′′1−δ3u3maxt + γ1 for t ′′1 ≤ t ≤ t ′′2
δ3u3maxt + γ2 for t ′′2 ≤ t ≤ T

⎞
⎠ (4.174)

The integration constants γ1, γ2, χ1, χ2,V1,V2 will be determined using the initial
and final conditions as well as the continuity condition.

V1 = 2δ1u1maxt
′
1 + V0 V2 = −2δ1u1maxt

′
2 + V1

χ1 = 2δ2u2maxt1 + χ0 χ2 = −2δ2u2maxt2 + χ1

γ1 = 2δ3u3maxt
′
1 + γ0 γ2 = −2δ3u3maxt ′2 + γ1

(4.175)

The final conditions give

Vf = V2 + δ1u1maxT

χf = χ2 + δ2u2maxT

γf = γ2 + δ3u3maxT

(4.176)

With this relation, one obtains the first equation relying the transition times with the
final time.

t2 = 1

2

(
T + 2t1 − Vf − V0

δ1u1max

)
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Fig. 4.5 (Color online) Trim
helicoidal motion without
(blue) and with (red) wind

t ′2 = 1

2

(
T + 2t ′1 − χf − χ0

δ2u2max

)
(4.177)

t ′′2 = 1

2

(
T + 2t ′′1 − γf − γ0

δ3u3max

)

Next, the vertical equation in z is integrated, followed by the integration of the
horizontal equations in x, y, respecting the boundary values conditions and the con-
tinuity at the switching points. With the condition H(t) = 0 ∀t ∈ [0, T ], transcen-
dental equations are obtained.

T is the smallest positive solution of these equations to be solved numerically. As
this family is small enough and sufficiently well specified, it is possible to compare
the cost of candidate trajectories by means of a numerical technique. The existence
of a candidate solution time T cannot be ensured in any condition, particularly when
wind is too strong.

Simulation Results A well known situation concerns the trim trajectories in the
air path. They are obtained for t ′1 = 0, t ′2 = T .

Figure 4.5 shows the effect of a steady wind when Wx = 0.25V on the trim
trajectory (in blue). The red curve represents a helix with a translation in the x
direction. In 2D plane, a trochoid curve is obtained. The influence of the wind is
bigger as time passes by. Figure 4.6 represents the trochoidal variation in the x-y
plane (in red) and a trim circle (in blue). Figure 4.7 presents the general case where
t ′1 �= 0, t1 �= 0, t ′2 �= 0, t2 �= 0, T �= 0, with the initial conditions x0 = 0;y0 = 0, z0 =
0, χ0 = 0, γ0 = 0.

4.5.5.3 Numerical Approach

Optimal control problems are often solved numerically via direct methods. In re-
cent years considerable attention has been focused on a class of direct transcription
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Fig. 4.6 (Color online)
Trochoidal variation

Fig. 4.7 3D general variation

method called pseudo-spectral or orthogonal collocation methods. In a pseudo spec-
tral method, a finite basis of global interpolating polynomial is used to approximate
the state at a set of discretization points. The time derivative of the state is approxi-
mated by differentiating the interpolating polynomial and constraining the derivative
to be equal to the vector field at a finite set of collocation points. Although any set of
unique collocation points can be chosen, an orthogonal collocation is chosen, i.e. the
collocation point are the roots of an orthogonal polynomial (or linear combinations
of such polynomials and their derivatives). Pseudo-spectral methods are commonly
implemented via orthogonal collocation.

Within the class of pseudo-spectral methods, there are two different implementa-
tion strategies: local and global approaches. In a local approach, the time interval is
divided into a large number of subintervals called segments or finite elements and a
small number of collocation points are used within each segment. The segments are
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then linked via continuity condition on the state, the independent variable and pos-
sibly the control. The rationale for using local collocation is that the discretization
points are located so that they support the local behavior of the dynamics.

In global collocation form, a single segment is used across the entire interval and
the number of collocation points is varied. For smooth problems, global collocation
is more accurate than local collocation for a given number of total collocation points.
For non smooth problems, the accuracies of global and local collocation methods
are comparable.

To improve the accuracy of the direct optimization solutions and to enlarge the
convergence domain of the indirect methods, a hybrid approach is proposed to
solve the optimal control problem. This cascaded computational scheme has become
widely applied. The key idea is to extract the co-states and other control structure
information from a nonlinear programming approach as a first step. The indirect
shooting method is then used to refine the solutions.

The three major steps to solve for the optimal maneuver solutions and to validate
the results based on the first order optimality conditions.

1. The kinematic and dynamic differentiation equations are discretized using the
Euler or trapezoidal method. Commercially available software is used to get the
preliminary and approximate control structures, switching times and initial co-
states

2. Using the results from step 1 as the initial guess, this software is used as a shoot-
ing method to solve the two point boundary value problem. The constraints in-
clude the final time conditions and the invariance of the Hamiltonian.

3. The results from step 2, together with the originally known initial time state
conditions, are used to solve for the dynamic system response by integrating the
kinematic and dynamic equations forward in time. The Hamiltonian history and
the final state errors are the validation criteria.

This approach can only guarantee that the found solutions are local extrema.

4.6 Parametric Curves

To lead the lighter than air robot from an initial configuration q(ti) = qi to a final
configuration q(tf ) = qf in the absence of obstacles, a trajectory q(t) for t ∈ [ti , tf ]
has to be planned. The trajectory q(t) can be broken down into a geometric path q(s)

with dq(s)
ds

�= 0 for any value of s and a timing law s = s(t) with the parameter s

varying between s(ti) = si and s(tf ) = sf in a monotonic fashion, i.e. with ṡ(t) ≥ 0
for t ∈ [ti , tf ]. A possible choice for s is the arc length along the path; in this case
it would be si = 0 and sf = L where L is the length of the path. The above space
time separation implies that

q̇ = dq

dt
= dq

ds
ṡ = q ′ṡ
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where the prime symbol denotes differentiation with respect to s. The generalized
velocity vector is then obtained as the product of the vector q ′, which is directed as
the tangent to the path in configuration space, by the scalar ṡ that varies its modulus.
Nonholonomic constraints can then be rewritten as

A(q)q̇ = A(q)q ′ṡ = 0

if ṡ �= 0 for t ∈ [ti , tf ], one has

A(q)q ′ = 0

This condition that must be verified at all points by the tangent vector on the config-
uration space path, characterizes the motion of geometric path admissibility induced
by the kinematic constraint that actually affects generalized velocities.

Path planning focuses on finding a path through free space from an initial to a
final location. The focus in this section in on turning a sequence of configurations
into a smooth curve that is then passed to the control system of the vehicle. In 2D
the curves fall into two categories

• Curves whose coordinates have a closed form expressions for example B-splines,
quintic polynomials or polar splines

• Curves whose curvature is a function of their arc length for example clothoids,
cubic spirals, quintic G2 splines or intrinsic splines

For non holonomic vehicles such as mobile robots or aerial vehicles, dynamic model
and actuators constraints that directly affect path are used to reject infeasible paths.
The term feasible means that the path will be continuously flyable and safe. The
flyable path should be smooth, i.e without twists and cusps. The smoothness of the
path is determined by amount of bending of the path, measured by curvature and
torsion of the path [4, 6].

The curvilinear abscissa s being considered instead of the time, the curve C(s)
represents the motion of this vehicle in R3, where

V = ds

dt
(4.178)

The shape of a space curve can be completely captured by its curvature and torsion.
The tangent, normal and binormal of the curve C(s), in the Frenet Serret frame, are
defined as:

T (s) = C′(s)
‖C′(s)‖ N(s) = C′(s) × C ′′(s)

‖C′(s) × C ′′(s)‖ b(s) = T (s) × N(s) (4.179)

This tangent is constrained to have unity norm (′ represents derivation versus the
curvilinear abscissa s). κ(s) is called the curvature of the motion:

κ(s) = C′(s) × C ′′(s)
‖C ′(s)‖3

(4.180)
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and the torsion of the motion is

τ(s) = (C′(s) × C′′(s))C ′′′

‖C ′(s) × C′′(s)‖2 (4.181)

If a non vanishing curvature and a torsion are given as smooth functions of s, the-
oretically both equations can be integrated to find the numerical values of the cor-
responding space curve (up to a rigid motion). The shape of a 3D curve can be
completely captured by its curvature and torsion functions. Hence, they are con-
sidered to be a set of intrinsic and complete shape features of the curve C(s) and
expressed by the differential system.

⎛
⎝

Ṫ (s)

Ṅ(s)

ḃ(s)

⎞
⎠=

⎛
⎝

0 κ 0
−κ 0 τ

0 −τ 0

⎞
⎠
⎛
⎝

T (s)

N(s)

b(s)

⎞
⎠

The length of the Darboux vector, also called total curvature, includes both of the
above features:

Θ = τ(s)T (s) + κ(s)B(s) (4.182)

Θ indicates how the entire frame rotates, making it the measure of the structural
variation in C. The entire frame rotate about Θ at the angular rate of ‖Θ‖.

Thus, the differential equation describing the evolution of the Frenet formula for
parameterized curves in �3 for a unit speed curve can be written as:

dΦ(s)

ds
= Φ(s)Sk

⎛
⎝

τ

0
κ

⎞
⎠ (4.183)

If a non vanishing curvature and torsion are given as smooth functions of s, theoreti-
cally Eq. (4.183) when integrated can give the numerical value of the corresponding
space curve, up to a rigid motion.

The path planning generates a feasible flight path for an aerial vehicle to reach the
target. Geometrically, admissible paths for the lighter than air robot are the solution
of this system. In 3D space, the following flight path is characterized by:

dx = sinχ cosγ ds

dy = cosχ cosγ ds

dz = sinγ ds

(4.184)

Two non-holonomic constraints can thus be deduced:

dx cosχ − dy sinχ = 0

{dx sinχ + dy cosχ} sinγ − dz cosγ = 0
(4.185)

Using the Frenet-Serret formulation,curvature κ can be deduced:

κ(s) = (γ ′2 + χ ′2 cos2 γ )−1/2 (4.186)
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as well as torsion τ

τ(s) = (χ ′γ ′′ cosγ + 2χ ′γ ′2 sinγ − γ ′χ ′′ cosγ

− γ ′χ ′2 cosχ cosγ sin2 γ sinχ + χ ′3 sinγ cos2 γ )

/(γ ′2 + χ ′2 cos2 γ ) (4.187)

Remark 4.9 The Frenet frame equations are pathological for example when the
curve is perfectly straight or when the curvature vanishes momentarily.

The purpose of the following sections is to propose a 3D flight path to the aerial
vehicle joining the initial and final configurations.

The inputs of this path planning algorithm are

• the initial configuration: xi, yi, zi , γi, χi,Vi

• the final configuration: xf , yf , zf , γf ,χf ,Vf .

Depending on these parameters, many possibilities exist. The most obvious one is
to propose a polynomial variation of x, y and z.

4.6.1 Cartesian Polynomials

This problem can be solved by interpolating via Cartesian polynomials using the
following cubic polynomials versus a normalized arclength 0 ≤ s ≤ 1

x(s) = s3xf − (s − 1)3xi + αxs
2(s − 1) + βxs(s − 1)2

y(s) = s3yf − (s − 1)3yi + αys
2(s − 1) + βys(s − 1)2

z(s) = s3zf − (s − 1)3zi + αzs
2(s − 1) + βzs(s − 1)2

(4.188)

that automatically satisfy the boundary conditions on x, y, z. The orientation at each
point being related to x′, y′, z′, it is also necessary to impose the additional boundary
conditions

x′(0) = cosγi sinχi

y ′(0) = cosγi cosχi

z′(0) = sinγi

(4.189)

and

x′(1) = cosγf sinχf

y′(1) = cosγf cosχf

z′(1) = sinγf

(4.190)
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Deriving once the equations (4.188), the following relations are obtained:

x′(s) = 3s2xf − 3(s − 1)2xi + αxs(3s − 2) + βx(3s − 1)(s − 1)

y ′(s) = 3s2yf − 3(s − 1)2yi + αys(3s − 2) + βy(3s − 1)(s − 1)

z′(s) = 3s2zf − 3(s − 1)2zi + αzs(3s − 2) + βz(3s − 1)(s − 1)

(4.191)

and deriving twice the equations (4.188),

x′′(s) = 6sxf − 6(s − 1)xi + αx(6s − 2) + βx(6s − 2)

y′′(s) = 6syf − 6(s − 1)yi + αy(3s − 2) + βy(6s − 2)

z′′(s) = 6szf − 6(s − 1)zi + αz(6s − 2) + βz(6s − 2)

(4.192)

The geometric inputs that drive the robot along the Cartesian path are

V (s) = ±
√

(x′(s))2 + (y′(s))2 + (z′(s))2

V = 1

T

√
(x ′(s))2 + (y′(s))2 + (z′(s))2

(4.193)

Resolving for the various parameters, the following equalities are obtained

αx = cosγf sinχf − 3xf

αy = cosγf cosχf − 3yf

αz = sinγf − 3zf

(4.194)

and

βx = cosγi sinχi + 3xi

βy = cosγi cosχi + 3yi

βz = sinγi + 3zi

(4.195)

The evolution of the vehicle orientation along the path can then be computed for the
flight path angle

γ = asin

(
dz/ds

V (s)

)
(4.196)

and the heading angle

χ = atan 2

(
dx

ds
,
dy

ds

)
+ kπ; k = 0,1 (4.197)

The two possible choices for k account for the fact that the same Cartesian path may
be followed moving forward (k=0) or backward (k=1). If the initial orientation is
assigned, only one of the choices for k is correct.

This approach can be easily generalizable to a fourth or fifth polynomial. How-
ever the main drawback is a complicated formulation of the curvature and the torsion
making control of smoothness (twists and cusps) a difficult task. The approach fol-
lowed in the following subsection aims to propose an easy formulation of these two
parameters.
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Fig. 4.8 Trim path

4.6.2 Trim Flight Paths

In this case, the flight path angle γ is constant while the angle χ is linearly varying
versus s.

χ(s) = χ0 + sχ1 (4.198)

The parameters γ0, χ0, χ1 being constants, the following relations can be proposed:

x(s) = xi + cosγ0

χ1
(cos(χ0 + χ1s) − cosχ0) (4.199)

y(s) = yi − cosγ0

χ1
(sin(χ0 + χ1s) − sinχ0) (4.200)

z(s) = s sin(γ0) + zi (4.201)

It is a well-known fact that trim trajectories are represented in general by helices,
with particular cases: straight motion or circle arcs (see Fig. 4.8) (The units are in
1000 m).

This particular case occurs when γi = γf and the following relationships are
verified

χ1 = sin(γi)
χf − χi

zf − zi

(4.202)

with the constraint between the initial and final positions:

[χ1(xf − xi) + cosγi sinχi]2 + [χ1(yf − yi) − cosγi cosχi]2 = cos2 γi (4.203)

L the length of the path being given by

L = χf − χi

χ1
(4.204)
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For this kind of curves, curvature and torsion are constant

κ(s) = χ1 cos(γ0)

τ (s) = χ1 sin(γ0)
(4.205)

The role of the trajectory generator is to generate a feasible time trajectory for the
aerial vehicle. Once the path has been calculated in the Earth fixed frame, mo-
tion must be investigated using the dynamic model and reference trajectories de-
termined taking into account actuators constraints (inequality constraints) and the
under-actuation (equality constraints) of an aerial vehicle and limitations on curva-
ture and torsion.

4.6.3 Non Trim Flight Paths

In this paragraph, non trim trajectories are studied where the flight path angle γ is
assumed in the first instance constant, then a linear function of s. The heading angle
is assumed to be a linear or a quadratic function of s.

Remark 4.10 Transition curves are used for blending in the plane that is to round
corners or for smooth transition between straight lines and circular arcs, two circular
arcs or two straight lines. The resulting curves should have position and curvature
continuity as well as continuity of the unit tangent vector. Such continuity is usually
referred to in the Computer Aided Geometric Design as G2 Continuity. Higher order
of continuity Gk will ensure smoother transition curve with direct physical meaning
on moving the lighter than air robot along its path.

The issues of continuity of the curvature and its derivative have led to novel para-
metric curves such as polar polynomial, cubic spiral, sums of sine and cosine,
Pythagorean Hodograph curve, parameter splines of higher order, uniform quartic
B-splines, η3 splines.

4.6.3.1 Non Trim Trajectories at Constant Altitude

The initial Pi = (xi, yi, χi)
T and final configurations Pf = (xf , yf ,χf )T are said

symmetrical if ζ = χi+χf

2 where ς = arctan
yf −yi

xf −xi
the orientation of Pf versus Pi .

Let’s define the Euclidean distance d =
√

(xf − xi)2 + (yf − yi)2 and the deflec-
tion ζ = χf − χi . A path is represented by the pair (�, κ) where � is a positive
length and κ: [− �

2 , �
2 ]. Let’s suppose that x(0) = y(0) = χ(0) = 0. Knowing the
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path curvature κ(s) and initial conditions allow the construction of the path:

χ(s) =
∫ s

0
κ(u)du

x(s) =
∫ s

0
sin(χ(u))du

y(s) =
∫ s

0
cos(χ(u))du

0 ≤ s ≤ �

(4.206)

Clothoids The curvature of a clothoid curve is proportional to the length of the
path as a curve element κ(s) = σcs, where σc is a real constant called the sharp-
ness of the Clothoid. In the xy plane, this is a well known path in mobile robotics:
clothoid curve [69, 101].

An elementary path is considered as a concatenation of two equal piecewise
clothoids.

κ(s) = σcs ∀s ∈
[

0,
�

2

]

κ(s) = σc(� − s) ∀s ∈
[

�

2
, �

] (4.207)

Furthermore, two configurations in the plane can be obtained with two different el-
ementary paths to form a bi-elementary path. In particular to link two successive
way-points Pi = (xi, yi, χi)

T , Pf = (xf , yf ,χf )T , it is necessary to calculate the
split configurations Ps = (xs, ys,χs)

T which is a symmetric configurations with
respect to the start and end configurations. For symmetrical configurations, the fol-
lowing relations are verified

κ

(
�

2

)
= −κ

(
−�

2

)

χ

(
�

2

)
= χ

(
−�

2

)
= ζ

2

D(ζ) = 2
∫ 0.5

0
sin(2ζu2)du

⇒ −1

2
≤ s ≤ 1

2

κ(s) = 4ζ s

χ(s) = 2ζ s2

x(s) =
∫ s

0
sin(2ζu2)du

y(s) =
∫ s

0
cos(2ζu2)du

(4.208)
For non symmetrical configurations, one intermediate configuration symmetrical to
both initial and final configurations must be found. It belongs to a circle. Then two
portions of clothoids must be joined.

For a real clothoid, the following relations are used

1. homothetie � = d
D(ζ )

2. rotation χ(s) → χ(s) + ς

3. translation x(s) → x(s) + x0 and y(s) → y(s) + y0
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The loci of split configurations joining the start and end configurations with a
bi-elementary path is a circle. Therefore, it exists an infinite set of solutions (bi-
elementary paths with different lengths and curvatures) joining start and end config-
urations. In particular, the shortest bounded curvature path satisfying κ ≤ κmax is of
interest.

Spiral Cubic For symmetrical configurations

D(ζ) = 2
∫ 0.5

0
cos

(
ζ s

(
3

2
− 2u2

))
du

� = d

D(ζ )

κ(s) = 6ζ

�3

(
�2

4
− s2

)

χ(s) = 6ζ

�3

(
�2

4
s − s3

3

)

x(s) =
∫ s

0
sin(χ(u))du

y(s) =
∫ s

0
cos(χ(u))du

(4.209)

The locus of intermediate configurations for non symmetrical initial and final con-
figurations are on

1. if Pi and Pf are parallel configurations then it is on the line

(x − xi)(y − yf ) = (x − xf )(y − yi)

2. it not, the loci is a circle whose center is given by

Pc =
(

xi + xf + c(yi + yf )

2
,
yi + yf + c(xi + xf )

2

)

where c = (tan χi+χf

2 )−1.

Polar Polynomials 2D Polar Polynomials are defined as

x = r(χ) sinχ

y = r(χ) cosχ
(4.210)

The polar radius r is a polynomial function of the angle χ

r(χ) = R

(
1 + χ2

2
− χ3

χf − χi

+ χ4

2(χf − χi)2

)
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Fig. 4.9 3D curve with linear
torsion and curvature

4.6.3.2 γ Angle Constant

With this assumption, the following relations are proposed:

dx = sin(χ0 + χ1s + χ2s
2) cos(γ0)ds

dy = cos(χ0 + χ1s + χ2s
2) cos(γ0)ds

dz = sin(γ0)ds

(4.211)

Path in the x-y plane is shown in Fig. 4.9 (The units are in 1000 m). In 3D, this
path has as curvature and torsion linear functions of s:

κ(s) = (χ1 + 2χ2s) cos(γ0) (4.212)

τ(s) = (χ1 + 2χ2s) sin(γ0) (4.213)

Limitations κmax , τmax on these two parameters can be easily added.

(χ1 + 2Lχ2) ≤ κmax

cos(γi)
(4.214)

(χ1 + 2Lχ2) ≤ τmax

sin(γi)
(4.215)

or

χ1 ≤ κmax

cos(γi)
(4.216)

χ1 ≤ τmax

sin(γi)
(4.217)

This relationship must be respected

χi + χ1L + χ2L
2 − χf = 0 (4.218)
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Once the path is chosen, the temporal variation of the lighter than air robot motion
has to be determined. On this path, an optimal control problem can be formulated
using the following nominal force, with respect to the acceleration:

F 2 = u2
1 + u2

2 + u2
3 (4.219)

where

u1 = mV̇ + 1

2
CD(M,α)V 2Arρ + mg sinγ

u2 = mV γ̇ − 1

2
CL(M,α)V 2Arρ cosσ + mg cosγ

u3 = mV cosγ χ̇ − 1

2
CL(M,α)V 2Arρ sinγ

(4.220)

A time varying velocity can be obtained as a result of this optimization.
A generalization can be easily obtained for a quadratic variation of the curvature

and torsion.

4.6.3.3 Angle γ as a Linear Function of s

In this case, the following relations are proposed:

dx = sin(χ0 + χ1s) cos(γ0 + γ1s)ds

dy = cos(χ0 + χ1s) cos(γ0 + γ1s)ds

dz = sin(γ0 + γ1s)ds

(4.221)

Using the initial and final configurations, the following relations must be re-
spected:

γ1 = zf − zi

cosγi − cosγf

(4.222)

and

χ1 = (zf − zi)(χf − χi)

(cosγi − cosγf )(γf − γi)
(4.223)

In 3D, this path has as curvature:

κ(s) = (γ 2
1 + χ2

1 cos2(γ0 + γ1s))
−1/2 (4.224)

The obtained flight path is depicted in Fig. 4.10 (The units are in 1000 m). A general-
ization in this direction would give a more complicated formulation of the curvature
and torsion.
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Fig. 4.10 3D curve with
linear varying heading and
flight path angles

4.6.4 Maneuvers Between Two Different Trims

The problem of maneuvers between two different trim trajectories is an important
problem in motion planning for an aerial vehicle. Let’s consider the case of joining
a trim path to a non trim one, in the case of a constant flight angle γi . Let L1 and
L2 be respectively the length of the first and the second part. The coordinates of the
junction point (xj , yj , zj , χj ) have to be determined, by the resolution of a set of
nonlinear equations.

xj = xi − cosγi

χ1
(sinχj − sinχ0) (4.225)

yj = yi + cosγi

χ1
(cosχj − cosχ0) (4.226)

zj = zi + L1 sinγi = zf − L2 sinγi (4.227)

The following simulation results are used to join a trim path (in blue) to a non trim
path (in red) with constant torsion and linear curvature. The initial configuration for
both paths is x0 = 0 m; y0 = 0 m; z0 = 100 m; χ0 = 0 rad; γ0 = 0.1 rad; For the
trim path, the final configuration is xt = 900 m; yt = 1400 m; zt = 300 m; χt =
2 rad; γt = 0.1 rad. For the non trim path, the final configuration is xnt = 400 m;
ynt = 950 m; znt = 300 m; χnt = 4 rad; γnt = 0.1 rad.

Trim (shown by a thin line) and non trim (shown by a bold line) 3D paths are
shown in Fig. 4.11 (The units are m). The trim trajectories have the advantage of
facilitating the planning and control problems. A linear control technique with vari-
able parameters could be sufficient to stabilize the vehicle in the neighborhood of
trim conditions.
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Fig. 4.11 (Color online) 3D
trim (thick) and non trim
(fine) paths with linear
curvature

4.6.5 Frenet-Serret Approach

Let’s propose the curvature and the torsion as continuous functions of the curvilin-
ear abscissa s then find the corresponding path. Polynomial functions are a good
example of continuous easy to deal with functions. So, let’s take the curvature and
torsion as [28]:

κ(s) =
n∑

i=0

ais
i τ (s) =

m∑
j=0

bj s
j (4.228)

n and m represent respectively the order of curvature and torsion polynomials.
The differential equation describing the evolution of Φ can be written as:

dΦ(s)

ds
= Φ(s)Sk

⎛
⎝

κ

0
τ

⎞
⎠ (4.229)

Integrating this matrix differential equation gives:

Φ(s) = exp(�(s)) ∈ SO(3)

�(s) =
⎛
⎜⎝

∑m
i=0

ai

i+1si+1

0∑m
j=0

bj

j+1 sj+1

⎞
⎟⎠

(4.230)

Using Rodrigues formula to write a closed form solution

Φ(s) = I3×3 + sin‖�(s)‖
‖�(s)‖ �(s) + 1 − cos‖�(s)‖

‖�(s)‖ � 2(s) (4.231)
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The tangent vector of the Frenet-Serret frame

T (s) = Φ(s)

⎛
⎝

1
0
0

⎞
⎠=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 − � 2
3 (s)

1−cos
√

� 2
1 (s)+� 2

3 (s)

� 2
1 (s)+� 2

3 (s)

�3(s)
sin
√

� 2
1 (s)+� 2

3 (s)√
� 2

1 (s)+� 2
3 (s)

�1(s)�3(s)
1−cos

√
� 2

1 (s)+� 2
3 (s)

� 2
1 (s)+� 2

3 (s)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

while the normal vector is

N(s) = Φ(s)

⎛
⎝

0
1
0

⎞
⎠=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−�3(s)
sin
√

� 2
1 (s)+� 2

3 (s)√
� 2

1 (s)+� 2
3 (s)

1 − (� 2
1 (s) + � 2

3 (s)
) 1−cos

√
� 2

1 (s)+� 2
3 (s)

� 2
1 (s)+� 2

3 (s)

�1(s)
sin
√

� 2
1 (s)+� 2

3 (s)√
� 2

1 (s)+� 2
3 (s)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

and the binormal vector is:

B(s) = Φ(s)

⎛
⎝

0
0
1

⎞
⎠=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

�1(s)�3(s)
1−cos

√
� 2

1 (s)+� 2
3 (s)

� 2
1 (s)+� 2

3 (s)

−�1(s)
sin
√

� 2
1 (s)+� 2

3 (s)√
� 2

1 (s)+� 2
3 (s)

1 − � 2
1 (s)

1−cos
√

� 2
1 (s)+� 2

3 (s)

� 2
1 (s)+� 2

3 (s)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Finally, the 3D curve is obtained via the Fresnel integrals

C(s) =
∫

T (u)du (4.232)

Doing a parallel with planar curves, three cases can be studied:

• constant curvature and torsion
• curvature and/or torsion linear function of s
• curvature and/or torsion quadratic function of s

4.6.6 Pythagorean Hodograph

The above presented curves are defined in terms of the Fresnel integrals which
are not rational and not exactly expressible as a non uniform rational B-splines
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(NURBS). As an alternative, the cubic Bezier and Pythagorean curves can be ex-
plored. The Pythagorean Hodograph curves are introduced to provide exact solu-
tions to a number of basic computational problems that arise in robot path planning.
These include analytic reduction of the arc length and bending energy integrals,
construction of rational offset (parallel) curves, formulation of real time interpola-
tor for motion control applications; determination of rotation minimizing frames for
specifying orientations of rigid bodies along spatial paths.

A polynomial space curve is said to Double Pythagorean Hodograph (DPH) if
the Frenet frame, the curvature and the torsion have all a rational dependence on the
curve parameter [68, 190].

4.6.6.1 2D Pythagorean Hodograph

In 2D, a Pythagorean Hodograph r(t) = (x(t), y(t)) is a polynomial curve whose
tangents ẋ(t) and ẏ(t) satisfies

ẋ2(t) + ẏ2(t) = σ 2(t) (4.233)

for some polynomial σ(t) where ẋ(t) = dx
dt

and ẏ(t) = dy
dt

. From the principles of
differential geometry, the path length s and parametric speed ṡ of a parametric curve
are given by:

s =
∫ t2

t1

‖ṙ(t)‖dt =
∫ t2

t1

√
ẋ2(t) + ẏ2(t)dt (4.234)

If the sum of square of the tangents ẋ(t), ẏ(t) could be represented by perfect square
of a single polynomial, it leads to two advantages:

• The radical form for calculating the path length is eliminated
• The parametric speed of the curve is simply a polynomial function of the param-

eter t.

This is achieved by forming the hodograph of the curve r(t) of the form:

ẋ(t) = w(t)
(
u2(t) − v2(t)

)

ẏ(t) = 2w(t)u(t)v(t)
(4.235)

Equation (4.233) becomes

√
ẋ2(t) + ẏ2(t) = σ(t) = w(t)

(
u2(t) + v2(t)

)
(4.236)

where u(t), v(t),w(t) and σ(t) are non zero real polynomials, satisfying gcd(u(t),

v(t)) = 1 (greater common divisor). Now, Eq. (4.234) becomes

s =
∫ t2

t1

σ(t)dt (4.237)
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Depending on the order of the polynomials u(t), v(t),w(t) the Pythagorean Hodo-
graph curve can be either cubic, quartic or quintic. The expressions for unit tan-
gent T , unit normal N and curvature κ of a Pythagorean Hodograph curve are:

T = (u2 − v2,2uv)

u2 + v2 N = (2uv, v2 − u2)

u2 + v2

κ = (2 (uv̇ − vu̇) ,2uv)

w(u2 + v2)

(4.238)

The off-set curve r0(t) of the curve r(t) at a distance ±d is

r0(t) = r(t) ± dN(t)

4.6.6.2 3D Pythagorean Hodograph

In 3D, the Pythagorean Hodograph is defined by a velocity

ṡ =
√

ẋ2(t) + ẏ2(t) + ż2(t)

polynomial in t . The arc length of the Pythagorean Hodograph curve can be com-
puted precisely by evaluating a polynomial. For the hodograph ṙ = (ẋ(t), ẏ(t), ż(t)),
it is necessary and sufficient that its components be expressible in terms of polyno-
mials u(t), v(t),p(t), q(t) in the form

ẋ(t) = u2(t) + v2(t) − p2(t) − q2(t)

ẏ(t) = 2 (u(t)q(t) + v(t)p(t))

ż(t) = 2 (v(t)q(t) − u(t)p(t))

σ (t) = u2(t) + v2(t) + p2(t) + q2(t)

(4.239)

If u(t), v(t),p(t), q(t) are all constants, the hodograph is a single point specifying
a uniformly parameterized straight line.

The simplest non trivial Pythagorean Hodograph are cubic, they correspond to
segments of non circular helices with a constant ration κ

τ
. They may be characterized

by certain geometrical constraints on these Bezier control polygons.

r(t) =
3∑

k=1

bk

(
3
k

)
(1 − t)3−k tk t ∈ [0,1] (4.240)

To guarantee sufficient shape flexibility, fifth order Pythagorean Hodograph curve
may be employed. The construction of spatial Pythagorean Hodograph fifth order is
described, in Bernstein-Bezier form

r(t) =
5∑

k=1

bk

(
5
k

)
(1 − t)5−k tk t ∈ [0,1] (4.241)
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where bk = (xk, yk, zk) are control points, whose vertices define the control polygon
or Bezier polygon, t is a parameter and k = 0 . . .5. For PH fifth orders, |r ′ × r ′′| =
σ 2ι and ι = (up′ − u′p + vq ′ − v′q)2 + (uq ′ − u′q + v′p − vp′)2.

For PH fifth order, (r ′ × r ′′).r ′′′ is of degree 6 while σ, ι are both in degree 4 in t .
For a PH curve with ι = ω2, the Frenet frame vectors and the curvature and torsion
functions are given by the rational expressions

T = r ′

σ
N = σr ′′ − σ ′r ′

σω
B = r ′ × r ′′

σω

κ = ω

σ 2 τ = (r ′ × r ′′).r ′′′

σ 2ω2

(4.242)

Hence, the PH curves may be regarded as the complete set of polynomial curves
that have rational Frenet frame.

Let the initial and final configurations be (xi, yi, zi , χi, γi)
T and (xf , yf , zf ,χf ,

γf )T . The four control points of the Bezier polygon are calculated by first order
Hermite interpolation as follows:

b0 = (xi, yi, zi)

b5 = (xf , yf , zf

)

b1 = b0 + 1

5
(sinχi cosγi, cosχi cosγi, sinγi)

b4 = b5 − 1

5

(
sinχf cosγf , cosχf cosγf , sinγf

)
(4.243)

The control points b0, b1, b4, b5 are fixed. Now the problem is reduced to finding
the control points b2, b3. Both polynomials curves are given by

u(t) = u0(1 − t)2 + 2u1(1 − t) + u2t
2

v(t) = v0(1 − t)2 + 2v1(1 − t) + v2t
2

p(t) = p0(1 − t)2 + 2p1(1 − t) + p2t
2

q(t) = q0(1 − t)2 + 2q1(1 − t) + q2t
2

(4.244)

Knowing that

∫ (
n

k

)
(1 − t)n−k tkdt = 1

n + 1

n+1∑
i=k+1

(1 − t)n+1−i t i (4.245)

The set of equations to be solved for the control points b2, b3 results in four so-
lutions. Among these four paths, only one has an acceptable shape that is without
twists and cusps. This path will be used as reference and is identified by calculating
the bending energy of the curve and choosing the path whose energy is minimal.
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4.6.7 η3 Splines

The η3 Splines can represent any seventh order polynomial curve with third order
geometric continuity denoted as G3 continuity: continuous in position, curvature
and derivative of the curvature [170].

The 2D problem can be formulated as: Determine the minimal order polyno-
mial curve which interpolates two given configurations Pi = (xi, yi, χi, κi, κ

′
i ) and

Pf = (xf , yf ,χf , κf , κ ′
f ). The 7th order is the minimal order polynomial curve

interpolating such configurations.
The solution proposed for the above interpolating problem is given by a 7th order

polynomial curve P(u) = (x(u), y(u)), u ∈ [0,1] defined below:

x(u) = α0 + α1u + α2u
2 + α3u

3 + α4u
4 + α5u

5 + α6u
6 + α7u

7

y(u) = β0 + β1u + β2u
2 + β3u

3 + β4u
4 + β5u

5 + β6u
6 + β7u

7
(4.246)

The polynomial coefficients are detailed by the following closed-form expressions,
by solving a nonlinear equation system associated to the end point interpolation
conditions:

α0 = xi

α1 = η1 cosχi

α2 = 1

2
η3 cosχi − 1

2
η2

1κi sinχi

α3 = 1

6
η5 cosχi − 1

6

(
η3

1κ
′
i + 3η1η3κi

)
sinχi

α4 = 35(xf − xi) −
(

20η1 + 5η3 + 2

3
η5

)
cosχi

+
(

5η2
1κi + 2

3
η3

1κ
′
i + 2η1η3κi

)
sinχi

−
(

15η2 − 5

2
η4 + 1

6
η6

)
cosχf

−
(

5

2
η2

2κf − 1

6
η3

2κ
′
f − 1

2
η2η4κf

)
sinχf

α5 = −84(xf − xi) + (45η1 + 10η3 + η5) cosχi

−
(

10η2
1κi + η3

1κ
′
i + 3η1η3κi

)
sinχi

(4.247)

+
(

39η2 − 7η4 + 1

2
η6

)
cosχf

+
(

7η2
2κf − 1

2
η3

2κ
′
f − 3

2
η2η4κf

)
sinχf
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α6 = 70(xf − xi) −
(

36η1 + 15

2
η3 + 2

3
η5

)
cosχi

+
(

15

2
η2

1κi + 2

3
η3

1κ
′
i + 2η1η3κi

)
sinχi

−
(

34η2 − 13

2
η4 + 1

2
η6

)
cosχf

−
(

13

2
η2

2κf − 1

2
η3

2κ
′
f − 3

2
η2η4κf

)
sinχf

α7 = −20(xf − xi) +
(

10η1 + 2η3 + 1

6
η5

)
cosχi

−
(

2η2
1κi + 1

6
η3

1κ
′
i + 1

2
η1η3κi

)
sinχi

+
(

10η2 − 2η4 + 1

6
η6

)
cosχf

+
(

2η2
2κf − 1

6
η3

2κ
′
f − 1

2
η2η4κf

)
sinχf

More informations can be found in [170]. The real vector ηv = (η1, η2, η3, η4, η1,

η5, η6)
T can be freely selected and influence the path shape without violating the

end-point interpolating conditions. This solution represents a family of curves that
depend on a symmetric parameterization induced by the chosen ηv vector. Specifi-
cally, parameters η1, η3, η5 influence the curve at its beginning while the parameters
η2, η4, η6 affect the curve ending. Parameters η1, η2 can be interpreted as velocity
parameters while parameters η3, η4, η5, η6 are twist parameters depending on curve
accelerations and jerks at the end-points.

Acting on the shaping parameters vector η, a wide variety of curves satisfying the
boundary conditions can be obtained. This suggests choosing η to generate optimal
curves. Different optimality criteria may be chosen depending on the mission of the
lighter than air robot.

The role of the trajectory generator is to generate a feasible time trajectory for the
aerial robot. Once the path has been calculated in the Earth fixed frame, motion must
be investigated and reference trajectories determined taking into account actuators
constraints.

4.7 Conclusions

The fundamentals of flight are in general: straight and level flight (maintenance of
selected altitude), ascents and descents, level turns and wind drift correction. In
the first section of this chapter, trim trajectories are presented. Trim is concerned
with the ability to maintain flight equilibrium with controls fixed. A trimmed flight
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condition is defined as one in which the rate of change (of magnitude) of the lighter
than air state vector is zero (in the body-fixed frame) and the resultant of the applied
forces and moments is zero.

The second part of this chapter addresses the problem of characterizing continu-
ous paths in 3D, taking into account the under-actuation. Three differential algebraic
equations must be solved as there is six degrees of freedom and three inputs. The
constraint on the yaw angle is in the form of a generalized logistic equation while the
other constraints are differential algebraic equations in v and w, when the variations
of the longitudinal velocity u, and the pitch and roll angles are imposed.

In the third section, an algorithm for 2D and 3D open-loop path planning is de-
rived for the system presented in the previous section. The idea is to use the struc-
ture and to apply simple bang-bang controls in the planning. The amount of control
available is a concern in the planning for this system due to the drift term. The class
of bang-bang controls is often a sufficiently rich class of controls for analysis of
nonlinear systems. This simple class of controls makes it possible to integrate the
equations forward in a simple manner. Zermelo navigation problem is considered in
the sequel.

Then the problem of characterizing continuous paths in 3D is addressed with
constraints on curvature and torsion, as consequence from limitations on thrust and
velocity. Parametric paths are investigated, depending on the initial and final config-
urations. Smoother paths can be obtained by asking for the continuity of the deriva-
tives of the path curvature and torsion. This section addresses the problem of charac-
terizing continuous paths in 3D. Parametric paths with given curvature and torsion
are investigated. Two particular cases are studied: constant, linear and quadratic
variation of the heading angle versus the curvilinear abscissa, with the assumption
of a constant or linear variation of the flight path angle, to consider different kinds
of maneuvers. Maneuvers should be kept only to join two trim flight paths. Finally,
some parametric curves such as polynomials, Pytaghorean Hodograph, 3 splines are
presented.

Trajectory planning incorporates dynamics into planning processes. Depending
on the mission, time variable velocity must be considered, giving more flexibility
to the trajectory generator, with respect to the limitations on actuators, on curvature
and torsion. This is the topic of future work for non trim trajectories.





Chapter 5
Control

Abstract The control methods implemented on lighter than air robots lie in two
categories: traditional control methods and advanced control methods. The tradi-
tional control methods achieve autonomous control goals via classical control algo-
rithms. These control methods have the advantage of being easily implemented and
providing reliable control performance while the weaknesses include the costs of
computation to model the system and tuning the control parameters. The most ba-
sic nonlinear control laws are the On-off control and Gain scheduling. Most of the
advanced control methods are faced with highly nonlinear and time varying control
system, in which it is difficult to obtain an accurate dynamic model of the LTAR and
the environment. Several control methods have been developed such as back step-
ping control, robust control, model-prediction control and other intelligent control
methods.

5.1 Introduction

Linear control design techniques have been used for flight control problems for
many years [48, 108]. One of the reasons why airships can be controlled quite well
by linear controllers is that they behave almost linearly through most of their flight
envelope. However, when the airship is required to pass through a highly nonlinear
dynamic region or when other complicated control objectives are set, it is difficult
to obtain practical controllers based on linear design techniques. The sources of
nonlinearities are the aerodynamic forces generated at low airspeeds and high an-
gles of attack (especially when wind disturbances are present); trajectory constraints
imposed due to proximity of ground; kinematic nonlinearities when active maneu-
vering is required; actuator saturations. . .

Advanced control methods are becoming more popular for lighter than air robot
as these control methods are mainly developed to improve the control performance
of the lighter than air robot in a complex and unstable flight environment [1, 9, 33,
37–39, 106, 111, 134, 151]. In contrast to the linear systems, the characteristics
of the nonlinear systems are not simply classified and there are no general methods
comparable in power to those of linear analysis. Nonlinear techniques are quite often
designed for individual cases [4, 50, 88, 98, 99, 197, 216, 230].

Y. Bestaoui Sebbane, Lighter than Air Robots,
Intelligent Systems, Control and Automation: Science and Engineering 58,
DOI 10.1007/978-94-007-2663-5_5, © Springer Science+Business Media B.V. 2012

165



166 5 Control

A completely different approach is to enable applicability of the well known
linear control methods to control nonlinear systems. This can be achieved using
nonlinear dynamic inversion [150, 209]. This process, also known as feedback lin-
earization, involves on line approximate linearization of a nonlinear plant via feed-
back.

Another control technique is variable structure (also known as sliding mode)
control [31, 75–77]. In this approach, a hyper surface (in state space) called slid-
ing surface or switching surface is selected so that the system trajectory exhibits
desirable behavior when confined to this hyper surface. Depending on whether the
current state is above or below the sliding surface, a different control gain is ap-
plied. Unlike gain scheduling, the method involves high speed switching to keep the
system on the sliding surface. Adaptive control term covers a set of various control
techniques that are capable of on line adaptation. The applications of adaptive con-
trol is generally biased toward control for large time scales so that the controller has
sufficient time to learn how to behave. This makes the relatively short-time recovery
process unsuitable for on line adaptation.

Based on the airship dynamic model research, Azinheira [9] has done a specific
research on hovering control of the airship. He uses the visual servo control and
back stepping control technology to realize the hovering tasks in the outdoor en-
vironment. Takaya [205] developed a PID controller to control the landing motion
for an indoor blimp robot. Moutinho in [150] used the dynamic inversion to realize
robust control method in their autonomous airship of the Aurora project. A dynamic
inversion controller was implemented with desired dynamics given by a linear op-
timal compensator. The stability analysis of the nonlinear system is done applying
Lyapunov’s stability theory. Fukao in [75] implemented inverse optimal tracking
control to improve the robustness of an autonomous airship control system. Back
stepping control and model prediction control are efficient and well discussed con-
trol algorithms. Hygounenc [89, 90] deals with very low perturbations, for each
phase, a reduced model is determined and a controller is designed on the basis of
back stepping procedures.

The Fault Detection and Isolation (FDI) technique is one of the important pro-
cesses in a redundancy management system. Fault detection refers to the decision
of whether a fault occurred or not, and fault isolation is the process of finding and
excluding the failed sensor. Currently, the FDI techniques have been developed us-
ing hardware redundancy or analytical redundancy. Hardware redundancy usually
makes the system complicated because multiple redundant sensors are used for cross
channel monitoring. On the other hand, analytical redundancy uses the information
from the system’s mathematical model [44, 49, 56, 66, 70, 75, 146].

5.2 Linear Control

The complexity of the lighter than air robot non linear dynamic equations justifies
the search for a linear version, also important in order to analyze and evaluate the
characteristics of the vehicle dynamics. A linear dynamics model is formulated to
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allow a quantitative assessment of the flight stability and the response to control in-
puts of the lighter than air robot. To derive the linear dynamics model, the first step
is to introduce a reference equilibrium state. The second step is to write the equa-
tions for the small disturbance from trim. In small perturbations about the trimmed
equilibrium, it is also possible to decouple longitudinal from lateral motion. Once
the state matrix is obtained, the lighter than air robot flying and handling qualities is
characterized by the eigenvalues and eigenvectors. For a stable lighter than air robot
the real parts of the eigenvalues must be negative. Each element of the eigenvectors
denotes the magnitude and phase of the response of a particular state variable rela-
tive to other states. The purpose of this section is to show some recent approaches
in the context of aerial robots research in order to highlight the potential advan-
tages of control methods. It is an efficient way to analyze and improve the control
in the aerial robots research. Many different control tasks could be considered for a
lighter than air robot to achieve a successful flight test. Motion control is the most
developed and discussed issue in practical applications. It is used to autonomously
and efficiently control certain flight motions, such as hovering, taking off, landing
motions. . . A common approach to deal with nonlinearities is linearization about a
reference trajectory.

There are two good reasons for algebraically deriving the small-perturbation
equations.

• the aerodynamic parameters needed for the linear equations can be estimated rel-
atively quickly

• the algebraic small-perturbation equations provide a great deal of insight into the
relative importance of the various aerodynamic derivatives under different flight
conditions and their effect on the stability of the lighter than air robot motion.

There are some constraints on the evolution of the state of the system to ensure
safe operations such as the flight envelope constraints closely related to the lighter
than air robot and its dynamics or constraints on the state and the input such as fuel
consumption.

5.2.1 Linear Formulation in Cruising Flight

The motion control tasks are important in analyzing dynamic models of the lighter
than air robot. Linearization is the procedure in which a set of nonlinear differen-
tial equations is approximated by a linear set. There are two main reasons for the
importance of linearization.

• there are many good design and analysis tools for linear systems
• if the small signal linear model of a system is stable, then there will exist a region,

which may be small, within which the nonlinear system will be stable.

Thus, in general, the first technique of nonlinear system analysis and design is to
obtain a linear approximation and design a controller for it. Simulation can then
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be used to explore the quality of this design when used with the nonlinear system
model.

When it is assumed that motion of the lighter than air robot is constrained to small
perturbations about the trimmed equilibrium flight condition then the model may be
considerably simplified. In particular, the products and squares of small perturbation
variables u,v,w,p,q, r become negligibly small. In small perturbations, it is also
reasonable to assume decoupled longitudinal and lateral motion and consequently
all coupling derivatives may be omitted from the equations.

5.2.1.1 Linear Approximation

Let’s choose a state vector defined as X = (u,w,q, θ, v,p, r,φ)T . The first four
states describe the longitudinal motion and the last four the lateral motion. U is the
control input vector, depending on the flight mode: hover or cruising. At low air-
speeds, the propellers vectoring angle is necessary in order to compensate for the
loss of lift force from aerodynamics. For very low airspeeds, the model is essen-
tially that of aerostatic forces, with the weight excess being compensated by the
propellers vectoring. For high airspeeds, the propellers vectoring is not necessary
and the model is essentially that of aerodynamic forces. In the transition from low
to high vectoring angle, there exists a compensation from both aerodynamic forces
and propellers vectoring. For these reasons, this should be the most difficult region
to be corroborated in the model validation process and in the control design [150].

To derive the linear dynamics model, the first step is to introduce a reference
equilibrium or a trim state X̄, along which the system will be linearized and the
corresponding control Ū .

If the lighter than air robot is in equilibrium flight then

X̄e = (ue,we, qe, θe, ve,pe, re, φe)
T .

The second step is to write the equations for the small disturbance from equilib-
rium as

Ẋ = f(X̄e + ΔX, Ūe + ΔU) ≈ AΔX + BΔU (5.1)

where A = ∂f
∂X

is the state matrix of the Jacobian of function f with respect to X
with a similar definition of the control input matrix B = ∂f

∂U
. These Jacobians are

evaluated for the trim trajectories and control.
The matrices A and B can be evaluated numerically at X̄e, Ūe by finite differ-

ences of the nonlinear differential equation. Once the matrix A is obtained, the
stability of the lighter than air robot can be characterized by the eigenvalues and
eigenvectors of A. They can be either distinct and real, representing non oscillatory
modes, or complex conjugate as λ1,2 = σ ±jω0 representing oscillatory modes. For
an oscillatory mode, the natural frequency and damping ratio can be evaluated from
σ,ω0. For a stable lighter than air robot, the real parts of all the eigenvalues must
be negative. The eigenvectors represent the relationship of the elements of the state
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variables in the corresponding mode. Each element of an eigenvector denotes the
magnitude and phase of the response of a particular state variable relative to other
states [48, 201]. Once the matrices A and B are obtained, the control responses in
the frequency domain can be computed.

The state matrix A can be partitioned in four distinct sub-matrices as:

A =
(

Along 0
0 Alat

)
(5.2)

where some of the elements of the non diagonal blocks are not exactly zero but
by of much smaller magnitude than the elements in the 4 × 4 matrices Along,Alat .
Therefore, the longitudinal and lateral motions can be decoupled.

5.2.1.2 Longitudinal Equations

For a cruising flight, the linearized longitudinal decoupled equations of motion may
therefore be written as [108]:

mxu̇ + (
maz − Ẋq̇

)
q̇

= Xe + Ẋuu + Ẋww + (
Ẋq − mzWe

)
q + Ẋδ (δe + δr ) + Ẋt δt

+ Te − (mg − B) (sin θe + θ cos θe) (5.3)

mzẇ − (
max + Żq̇

)
q̇

= Ze + Żuu + Żww + (
Żq − mxue

)
q + Żδe

δe

− (mg − B)
(
cos θe − θ̇ sin θe

)
(5.4)

Jyq̇ + (
max − Ṁu

)
u̇ − (

max + Ṁw

)
ẇ

= −θ
(
(mgaz + Bbz) cos θe − (mgax + Bbx) sin θe

)

− (mgaz + Bbz) sin θe − (mgax + Bbx) cos θe (5.5)

Longitudinal Trim Equations The condition for longitudinal trim may be de-
duced by noting that in trimmed equilibrium the perturbation variables are all zero
and Eqs. (5.3, 5.4, 5.5) reduce to

Xe + Te − (mg − B) sin θe = 0

Ze + (mg − B) cos θe = 0

Me + Ted − (mgax + Bbx) cos θe − (mgaz + Bbz) sin θe = 0

(5.6)

Trim is thus achieved by adjusting thrust Te, lift force B and center of volume bx, bz

simultaneously.

Small Perturbations in Longitudinal Equations The linearized longitudinal
equations of motion describing small perturbations about the trim state follow when
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the trim terms, which sum to zero are removed from Eqs. (5.3, 5.4, 5.5). Writing the
resulting equations in state space form,

Ẋlong = AlongXlong + BlongUlong (5.7)

where

XT
long = (

u w q θ
)

UT
long = (

δe δr

) (5.8)

The state space matrix Along and the control matrix Blong are thus given by the
following relations

Along =
⎛
⎜⎝

ẋu ẋw (ẋq − mzWe) −(mg − B) cos θe

żu żw (żq + mxUe) −(mg − B) sin θe

Ṁu Ṁw (Ṁq − maxUe − mazWe) −(mgaz + Bbz) cos θe + (mgax sin θe)

0 0 1 0

⎞
⎟⎠

Blong =

⎛
⎜⎜⎝

xδ xt

zδ 0
mδ mt

0 0

⎞
⎟⎟⎠ (5.9)

Classical controllability studies can be made with this linear formulation. If the
Kalman condition rank(Blong,AlongBlong, . . . ,A

3
longBlong) = 4 is verified, the sys-

tem is controllable.

5.2.1.3 Lateral Equations

The linearized lateral equations of motion may be developed similarly:

myv̇ − (
maz + Ẏṗ

)
ṗ + (

max − Ẏṙ

)
ṙ

= Ye + Ẏvv + (Ẏp + mzWe)p + (Ẏr − mxUe)r + Ẏδr
δr

+ (mg − B)φ cos θe (5.10)

Jzṙ − Jxzṗ + (
max − Ṅv̇

)
v̇

= Ne + Ṅvv + (Ṅp + maxWe)p + (Ṅr − maxUe)r + Ṅδr δr

+ (mgax + Bbx)φ cos θe (5.11)

Jxṗ − Jxzṙ − (
maz − L̇v̇

)
v̇

= Le + L̇vv + (L̇p − maxWe)p + (L̇r + mazUe)r

− (mgaz + Bbz)φ cos θe (5.12)

Trim Lateral Equations The condition for lateral trim may be deduced by noting
that in trimmed equilibrium the perturbation variables are all zero and Eqs. (5.10,
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5.11, 5.12) reduce to:

Ye = Le = Ne (5.13)

The residual lateral force, yaw and roll moments are all zero.

Small Perturbations in Lateral Equations The linearized lateral equations of
motion describing small perturbations about the trim state follow when the trim
terms, which sum to zero are removed from Eqs. (5.10), (5.11), (5.12). Writing the
resulting equations in state space form,

Ẋlat = AlatXlat + BlatUlat (5.14)

where

XT
lat = (

v p r φ
)

UT
lat = δr

(5.15)

The state space matrix Alat and the control matrix Blat are thus given by the
following relations

Alat =

⎛
⎜⎜⎝

yv yp yr yφ

lv lp lr zφ

nv np nr nφ

0 0 1 0

⎞
⎟⎟⎠ Blat =

⎛
⎜⎜⎝

uδ

0
nδ

0

⎞
⎟⎟⎠ (5.16)

If the Kalman condition rank(Blat ,AlatBlat , . . . ,A
3
latBlat ) = 4 is verified, the

system is controllable.

5.2.1.4 Lateral Under-actuation

If the objective is hovering above the ground, the wind disturbance appears both as:

• a positive factor, which will help to control the lighter than air robot due to the
increased authority of the tail control surfaces

• a drawback, producing a mostly horizontal force that needs to be balanced by a
lighter than air robot actuator. This is only possible using the longitudinal forces
and aligning the vehicle to reduce the drag forces.

As a consequence, and in order to avoid the saturation occurrences resulting from
the reduced lateral controllability, along with the definition of suitable saturation
limits, it is necessary to correct the control objective. In the presence of wind, the
wind heading provides a non arbitrary yaw reference. This way, the airship may
align itself face to the wind, and the lateral force input may vanish in stationary
conditions.

Remark 5.1 The wind heading must be available. This value may be estimated using
the measurement of the airship velocity as well as airspeed and side slip angle β .
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5.2.2 Flying and Handling Qualities

A linear dynamics model is now formulated to allow a quantitative assessment of the
flight stability and the frequency responses to control inputs of the lighter than air
robot. Analytical linear dynamics models have been used to study airship stability
[48, 64, 108, 113, 131, 182, 196, 212], the aerodynamics loads in these models are
usually written in terms of aerodynamic derivatives.

The state and control matrices being respectively A and B , a steady state Xe is
locally stable if the real parts of all the eigenvalues of the A matrix are negative. If
the real part of any eigenvalue of the matrix A is positive, the steady state is locally
unstable. The system is attracted to a stable steady state in its neighborhood and
repelled if the steady state is unstable. The eigenvectors of the state matrix A char-
acterize subspaces of different modes of disturbed motion. The linearized response
to control input is characterized by the control matrix B . The state matrix A and
control matrix B are calculated on a grid of points for different flight regimes and
steady maneuvers provide a linear parameter varying approximation for the original
nonlinear system which is equally important for the open loop dynamic analysis and
for control law design.

5.2.2.1 Properties of the Longitudinal Linear Model

The state equation is solved to obtain the response transfer functions. Since the
solution involves algebraic manipulation of matrices it is necessary to first obtain
the Laplace transform of the state equation thus, assuming zero initial conditions,

X(s) = (
sI4×4 − Along

)−1
BlongU(s) (5.17)

where I4×4 is the 4 × 4 unit matrix
Typically, the longitudinal characteristic equation has two real and one complex

pair of roots, each root describing a stability mode. Analysis of the eigenvalues of
the state matrix A enables an approximate description of the stability modes to be
made [48, 108, 201]

• The surge mode is described by the biggest real root of Δ(s). The mode appears
as an exponential speed subsidence usually the mode is stable with a long time
constant. It is associated to the forward speed ūe.

• The heave mode is described at the hover by the second real root of Δ(s). It is
associated with the vertical speed w̄e or equivalently the angle of attack α.

• The longitudinal pendulum mode corresponds to the complex pair of poles that is
associated to the pitch angle θ̄e and the pitch rate q̄e .

5.2.2.2 Properties of the Lateral Linear Model

Typically the lateral characteristic equation also has two real roots and one complex
pair of roots in its solution.
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• The fast mode: Yaw subsidence mode is related to the yaw rate r̄ and presents a
time constant that decreases with the airspeed. The mode appears as an exponen-
tial speed subsidence usually the mode is stable with a long time constant.

• The slow mode, usually named, side slip subsidence mode is associated with the
lateral speed v̄e or equivalently the angle of side slip β .

• In the hover condition, the zero damping of the complex pair characterizes the
oscillatory roll mode related to the roll rate p̄e and the roll angle φ̄e. The os-
cillatory rolling movement is the lateral equivalent of the longitudinal pendulum
oscillation and arises because the center of gravity is located below the center of
lift of the lighter than air robot. With the increase of airspeed, the general stabil-
ity improves since the damping ratio of the oscillatory mode increases and the
eigenvalues of the real modes become more negative.

5.2.2.3 Performance Maneuverability

The evaluation of the lighter than air robot flight performance and maneuvering ca-
pabilities is an important task of development. Flight performance is an important
task of development and reflects a lighter than air robot’s ability to perform steady
coordinated maneuvers at different speeds and altitudes (e.g. its capability of main-
taining a straight and level flight, a steady level turn, climbing or gliding turns).
The maneuverability characterizes an aerial vehicle ability to alter its steady flight
trajectory via rotation with respect to the flight velocity vector. The level of ma-
neuverability is directly linked with attainable values for the angle of attack or the
normal load factor and the angular rate in the velocity vector roll maneuver.

The steady performance and maneuvering capabilities are usually evaluated by
solving the steady-state problem for the rigid-body equations of motion, which de-
pend on the propulsion, aerodynamics mass and inertia characteristics. For example,
the steady states can be determined for any particular combination of control in-
puts without setting any requirement for maneuver parameters. Alternatively, some
steady state and control variables can be chosen as independent and the remaining
variables can be determined according to the imposed kinematical constraints.

The continuation and bifurcation analysis method have evolved into a powerful
tool for lighter than air robot trim and stability analysis. Within this computational
framework, the equilibrium states are computed in the extended space of state vari-
ables and one selected control parameter, whereas all other control effectors are kept
constant [43, 48, 49, 55, 181].

The steady states are represented as a one parameter continuation diagram or as a
two-dimensional equilibrium surface. At some ranges of control parameters, folded
dependencies may appear in the steady state diagrams and surfaces, which indicate
potential nonlocal departures in motion variables at limit points of the folds. Other
types of bifurcations or changes in steady state local stability are also identified dur-
ing the continuation procedure, thus allowing effective prediction of lighter than air
robot instability and loss of control. Imposing additional maneuver specific kine-
matical constraints, allows the continuation of steady states representing a specified
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maneuver. In this constrained problem, several control surfaces are deflected for
designing airship steady state maneuvers.

The computation problem for steady states is formulated for equations of mo-
tions, augmented by auxiliary equations specifying maneuver kinematics and ma-
neuver parameters. The solutions of this constrained trim problem are presented in
the form of attainable equilibrium sets computed on a grid of points in the plane of
two selected parameters characterizing the flight regime and steady maneuver. All
steady states are classified according to the eigenvalue spectrum of the linearized
system. This classification generates local stability maps, giving a qualitative in-
sight into the lighter than air robot nonlinear dynamics. Deflection constraints on
the lighter than air robot control inputs limit the available control power so that the
set of equilibrium states for the nonlinear system is bounded.

5.2.3 Classical Linear Control

For the design of the linear controllers, several control design methodologies are
available within control theory [56, 57, 70, 108, 119, 150]. Pole Placement (PP) and
Linear Quadratic Regulator (LQR) are among the most popular modern controller
techniques for Multiple Input Multiple Output system (MIMO). Pole placement al-
lows to allocate the poles of the MIMO system to desired locations in one step by
solving equations for the feedback gains or by using the Bass-Gura approach. The
pole placement strategy does not confer any stability robustness to the closed loop
system. This is an important factor since any model of the system is an approxi-
mation of the real nonlinear dynamics. Furthermore, these models do not take into
account disturbances such as wind gusts or sensor measurement noise. Robustness
to model parameter errors and to disturbances is, in fact, a key issue in the choice of
the controller.

Optimal control methods are attractive because they handle multi-input-multi-
output systems easily and aid in the selection of the desired pole location. The Linear
Quadratic Regulator is the solution to an optimization problem that has some attrac-
tive properties. The optimal controller automatically ensures a stable closed loop
system, achieves guaranteed levels of stability robustness and is simple to compute.
This control minimizes a quadratic cost functional such that constraints imposed by
the system dynamics are verified. The design weights (state and control weighting
matrices) are the tools to balance the state errors against the control effort. In the
lighter than air robot control case, the control weighting matrix is a specially impor-
tant tool in the sense that it allows the designer to change the control effort of the
different actuators over the flight envelope.

Remark 5.2 Gain scheduling is the prevailing flight control design methodology
while the linear control is only valid around a single equilibrium condition, the gain
scheduling solution performs for a large set of trim conditions and then constructs a
gain schedule by considering gains with respect to flight conditions.
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5.2.3.1 Pole Placement by Feedback

Pole Placement by State Feedback The key idea for the control-pole selection
is that the poles are chosen so that the design specifications are met while the use
of control is kept to a level needed to meet the specifications. This pole selection
criterion keeps the actuator sizes to a minimum, which helps to minimize the cost
and weight of the control system. Consider a linear time invariant dynamic system
described by:

Ẋ = AX + BU (5.18)

where X ∈ Rn,U ∈ Rm. In state feedback control, the state vector is multiplied by
a gain matrix K and feedback into the control input:

U = −KX (5.19)

where K ∈ Rm×n. The closed loop system is then described by:

Ẋ = (A − BK)X (5.20)

and the closed loop characteristic equation becomes

|sI − A + BK| = 0 (5.21)

If the system is controllable, the eigenvalues of the closed loop system can be arbi-
trarily assigned, provided that the real parts are negative and the complex conjugate
eigenvalues appear in pairs.

Pole Placement by Output Feedback In feedback control the value of the con-
trol input is chosen not as an explicit function of time, but on the basis of an observed
output. Unexpected events, small disturbances or miscalculations due to uncertain
parameters can be taken into consideration by feedback control but not by open loop
control.

Ẋ = AX + BU

Y = CX
(5.22)

A control law is thus defined by

U = KY (5.23)

where the matrix K is called the feedback gain matrix. This leads to the equation

Ẏ =
(
CAC−1 + CBK

)
Y (5.24)

It comes down to choosing, for given matrices A,B,C, the feedback matrix such
that the pair [(CAC−1 + CBK),K] has desirable properties.

The poles of the closed loop system are very important features for judging the
behavior of the closed loop system. When all poles lie in the open left half plane, the
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system is asymptotically stable. The pole placement problem concerns the choice of
the feedback gain matrix K such that specified closed loop locations are achievable.
The closed loop poles or equivalently the closed loop characteristic polynomial can
be chosen if and only if the system is controllable.

rank
[
B,AB, . . . ,An−1B

]
= n

An equilibrium point of a nonlinear system can be stabilized if the linearized
system is controllable, or more generally, stabilizable.

5.2.3.2 Linear Quadratic Regulator and Estimator

Linear Quadratic Regulator The gain matrix K of the state-feedback U =
−KX can be determined by minimizing the linear quadratic performance index

J = 1

2

∫ T

0

(
XT Q1X + UT R1U

)
dt (5.25)

where Q1 is the state weighting matrix and R1 is the control input weighting matrix.
The gain matrix K is then obtained as

K = R−1
1 BT S (5.26)

by solving the algebraic Riccati equation

dS

dt
= AT S + SA − SBR−1

1 BT S + Q1 (5.27)

Certain conditions must be met for a unique positive definite solution to the above
Riccati equation to exist:

1. The matrix Q1 must symmetric and positive semi-definite i.e. Q1 = QT
1 ≥ 0

2. The matrix R1 must be symmetric positive definite i.e. R1 = RT
1 > 0

3. The pair (A,B) must be controllable (stabilizable)
4. The pair (A,H) must be observable (detectable) where HT H = Q1 and

rankH = rankQ1

When T → ∞ then the Riccati equation becomes

0 = AT S + SA − SBR−1BT S + Q1 (5.28)

Linear Quadratic Estimator To determine the estimator gain matrix L using
the Linear Quadratic Estimator (LQE), the system described by the following state
space equations is considered:

Ẋ = AX + BU + GWN

Y = CX + VN

(5.29)
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where WN is the process noise and VN is the measurement noise, both WN,VN are
assumed to be white noise processes with

E
[
WN(t)WT

N (τ)
]

= WNδ(t − τ)

E
[
VN(t)V T

N (τ)
]

= VNδ(t − τ)

(5.30)

where WN and VN are the corresponding spectral density matrices. The gain ma-
trix L of the linear quadratic estimator is then selected such that the observation
error:

e = X − X̂

is minimized in the presence of noise, by solving the algebraic Riccati equation

AS + SAT − SCT V−1
N CS + GWNGT = 0 (5.31)

where S is the estimate error covariance matrix and

L = SCT V−1
N

The linear quadratic Gaussian (LQG)/linear quadratic estimator technique offers an
optimal compensator design in the presence of random disturbances given certain
weighting parameters for the states and the control inputs and certain parameters
describing the random disturbances. The question remains of how to choose these
parameters and what choice provides the best optimal design.

5.2.4 Linear Robust Control

At the heart of robust control is the concept of an uncertain Linear Time Invariant
(LTI) model. Model uncertainty arises when system gains or other parameters are
not precisely known or can vary over a given range. To be robust, the control system
must meet given stability and performance requirements for all possible values of
uncertain parameters.

Some of the parameters that describe the lighter than air robot are likely to be un-
certain. These parameters are mostly the aerodynamic model parameters, obtained
in wind tunnel experiments. The weighting mass or heaviness, which represents
the difference between the weight and buoyancy forces, is also considered, since the
equilibrium flight is mostly affected by its value. The control laws are designed con-
sidering a deterministic model of the lighter than air robot named nominal. However,
the real system has a wind disturbance input, since in a real flight, wind disturbances
are always present. Complex models are not always required for good control. How-
ever, optimization methods (including methods based on H∞,H2 and μ synthesis
optimal control theory) generally tend to produce controllers with at least as many
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states as the plant model. Unlike traditional optimal control, robust optimal con-
trol minimizes the influence of various types of uncertainties in addition to (or even
instead of) performance and control energy optimization. Generally, this implies de-
sign of a possibly low gain controller with reduced sensitivity to input changes. As a
consequence, robust controllers often tend to be conservative and slow. On the other
hand, they may be thought as the stabilizing controllers for the whole set of plants
(which include a range of uncertainties) and not only for the modeled system. The
majority of robust control techniques have origins in the classical frequency domain
methods. The key modification of the classic methods is shifting from eigenvalues to
singular values (of the transfer function that describes the system), the singular value
Bode plot being the major indicator of multi-variable feedback system performance.
Probably the most popular modern robust control design techniques (particularly
in the aerospace field) are H∞,H2 control, also known as the frequency-weighted
LQG synthesis and the small gain problem respectively. These techniques and the
underlying theories are described in several works [33, 57, 88, 119, 171, 193, 230].

Remark 5.3 The H∞ control design found extensive use for aircraft flight control.
One of the first such applications was the development of controllers for the lon-
gitudinal control of a Harrier jump jet [88]. This work has been extended in [171]
to fully integrated longitudinal, lateral and propulsive control. Other works include
[98], where a lateral autopilot for a large civil aircraft is designed, and [106], where
a robust longitudinal controller subject to aircraft weight and center of gravity un-
certainty is demonstrated. A mixed H∞,H2 approach is applied in [193] to design
an auto land controller for a large commercial aircraft. The method employed here
utilizes the H2 controller for slow trajectory tracking and the H∞ controller for fast
dynamic robustness and disturbance rejection. Several H∞ controllers have been
tried to accomplish the UAV shipboard launch task [50]. It has been found that
these controllers perform quite well in nominal situations. However, in the presence
of large disturbances which place the aircraft well beyond its linear design operating
point, the controllers performed poorly (sometimes extremely). At the same time,
inability to include even simple static nonlinearities such as time delays and satura-
tions made it difficult to synthesize a practical controller for this task within linear
approach. Another deficiency found is common to all frequency domain techniques:
the frequency domain performance specifications cannot be rigidly translated into
time and spatial domain specifications.

The time domain performance can be accounted for directly in the time domain l1
design [33]. It is often extended to include the frequency domain objectives, re-
sulting in a mixed norm approach. However, l1 design is plagued by the excessive
order of the generated controllers. This is usually solved by reducing the problem
to suboptimal control, imposing several restrictions on the system and performance
specifications. Controllers with excessive order will generally be produced when
using practical constraints. There have been attempts to solve the H∞ optimal con-
trol problems for nonlinear systems. However, these methods usually rely on very
limiting assumptions about the model, uncertainties and disturbance structure. One
mathematical development of nonlinear H∞ control can be found in [193, 218, 230].
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5.2.4.1 Modeling Errors and Stability Robustness

In the design of a lighter than air robot control system, it is important to realize
that the rigid body equations are only an approximation to the nonlinear dynamics.
A lighter than air robot has flexible modes that are important [10]. These unmod-
eled dynamics can act to destabilize, a control system that may have quite suitable
behavior in terms only of rigid body model.

Moreover, as the lighter than air robot changes its equilibrium flight condition,
the linearized rigid body model describing its perturbed behavior changes. This pa-
rameter variation is a low frequency effect that can also act to destabilize the sys-
tem. To compensate for this variation, one may determine suitable controller gains
for linearized models at several design equilibrium points over a flight envelope.
Then, these design gains may be scheduled in computer look up tables for suitable
controller performance over the whole envelope.

Gain scheduling is a process by which one of several different control algorithms
is chosen based on some operating conditions and is thus adaptive. Since the control
algorithms are designed off-line with a priori-information, gain scheduling algo-
rithm must identify the proper control design to another during system operation.
Effectively, the design is broken into regions of operation and in each, a fixed con-
trol design is used.

The control parameters are changed in small discrete amounts at a rate much
slower than the slowest time constant of the closed loop system, the system stability
can be ensured by examining each of the control laws as if it were fixed. Thus gain
scheduling is usually defined as dependent on some slowly varying parameter (rela-
tive to the control bound width). Although gain scheduling is adaptive, it is perhaps
the least sophisticated of the strategies of adaptive control. This is because a rela-
tively number of designs are done off-line and loaded into the controller as options
that are subsequently chosen during operation as a function of some measured or
computed conditions. It is the predominant method of control used to handle the
wide plant variations that occur in flight control system.

Remark 5.4 For gain scheduling to work, it is essential for the controller gains at
each design equation point to guarantee stability for actual flight conditions near
that equilibrium point. Thus, it is important to design controllers that have stability
robustness in spite of modeling errors due to high frequency unmodeled dynamics
and plant parameter variations.

It is often important to account for disturbances such as wind gusts and also
for sensor measurement noise. Disturbances can often act to cause unsatisfactory
performance in a system that has been designed without taking them into account.
Thus it is important to design controllers that have performance robustness, which
is the ability to guarantee acceptable performance (in terms for instance of per-
cent overshoot, settling time, . . . ) even though the system may be subject to distur-
bances.

For robust performance, the minimum singular value of the closed loop gain
should be large at low frequencies, where disturbances are present. On the other
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hand, for robust stability the maximum singular value of the loop gain should be
small at high frequencies, where there are significant modeling inaccuracies. To
guarantee stability despite parameter variations in the linearized model due to oper-
ating point changes, the maximum singular value should be below an upper limit.
Inputs in a certain direction in the input space will excite only the singular values
associated with that direction.

It is important for the control gains to stabilize the lighter than air robot at all
points near the design operating point for this gain scheduling procedure to be
effective. In passing from operating point to operating point, the parameters of
this state variable model vary. Controllers that guarantee robust stability despite
plant parameter variations must be designed. Suppose the nominal perturbed model
is

Ẋ = AX + BU

Y = CX
(5.32)

However, due to operating changes, the actual airship perturbed motion is described
by:

Ẋ = (A + ΔA)X + (B + ΔB)U

Y = (C + ΔC)X
(5.33)

Where the plant parameter variation matrices are ΔA,ΔB,ΔC. The transfer func-
tion for this representation is given as:

G′(s) = G(s) + ΔG(s) (5.34)

with

G(s) = C (sI − A)−1 B (5.35)

and

ΔG(s) = C (sI − A)−1 ΔB + ΔC (sI − A)−1 B

+ C (sI − A)−1 ΔA(sI − A)−1 B (5.36)

where second order effects have been neglected.
To incorporate the robustness concept into the Linear Quadratic output feedback

design procedure, the following steps may be accomplished:

1. If necessary, augment the system with added dynamics to achieve the required
steady state error behavior or to achieve balanced singular value at closed loop.

2. Select a performance index, the Performance Index weighting matrices Q1

and R1

3. Determine the optimal output feedback gain K
4. Simulate the time responses of the closed loop system to verify that they are

satisfactory. If not, select different Q, R, K and return to step 3
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5. Determine the low frequency and high frequency bounds required for perfor-
mance robustness and stability robustness. Plot the loop gain singular values to
verify that the bounds are satisfied. If they are not, select different Q1 and R1, K
and return to step 3

5.2.4.2 Standard H∞

Consider a linear time varying invariant system described by:

Ẋ(t) = AX(t) + B1d(t) + B2U(t)

Z(t) = C1X(t) + D11d(t) + D12U(t)

Y (t) = C2X(t) + D21d(t) + D22U(t)

(5.37)

where X ∈ Rn, d ∈ Rm1 , U ∈ Rm2 , Y ∈ Rp1 , Z ∈ Rp2 are respectively the state,
disturbance input, control input, controlled output and measured output vectors.

The transfer function representation of this system is given by:
(

Z(s)

Y (s)

)
=

(
P11(s) P12(s)

P21(s) P22(s)

)(
d(s)

U(s)

)

=
{(

C1
C2

)
(sI − A)−1 (B1,B2) +

(
D11(s) D12(s)

D21(s) D22(s)

)}(
d(s)

U(s)

)
(5.38)

where Pij (s) are real-rational transfer function matrices and P(s) = (Pij (s), i =
1,2; j = 1,2) is called the generalized plant, which may include the internal feed-
back loop model and frequency-dependent weightings.

For a linear system with a feedback control of the form

U(s) = −K(s)Y (s) (5.39)

The closed-loop transfer function from D to Z can be derived as:

Tzd(P,K) = P11 + P12K (I − P12K)−1 P21 (5.40)

where K(s) is a compensator transfer function matrix to be synthesized. The H∞
norm of a real rational transfer function matrix T (s) is defined as

‖T (s)‖∞ = sup
ω

σ̄ (T (jω)) (5.41)

where σ̄ (T (jω)) denotes the largest singular value of T (jω) for a given ω. The H∞
space consists of functions that are stable and bounded.

The design objective of standard H∞ control problem is then to find K(s) subject
to ‖Tzd(P,K)‖∞ < γ for some specified γ ∈ R.

Using the input-output decomposition of structured plant parameter variations
in terms of the fictitious inputs and outputs of an internal uncertainty loop to be
discussed next, the state space solution to the standard H∞ control problem will be
utilized to design parameter-insensitive parameters [218].
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Modeling of Structured Parameter Uncertainty Consider an uncertain linear
dynamic system described by:

EẊ = FX + Gdd + GuU (5.42)

where X,d,U are the state, external disturbance and control input vectors, respec-
tively, Gd is the disturbance distribution matrix, Gu is the control input distribution
matrix and the matrices E,F are subject to structured parameter variations.

Suppose that there are l independent uncertain parameter variables δi and assume
that the perturbed matrices E,F can be linearly decomposed as follows:

E = E0 + ΔE

F = F0 + ΔF
(5.43)

where E0,F0 are the nominal matrices and ΔE,ΔF are the perturbation matrices
defined as:

ΔE =
l∑

i=1

ΔEiδi =
l∑

i=1

Mi
EδiIKi

Ni
E = MEεENE

ΔF =
l∑

i=1

ΔFiδi =
l∑

i=1

Mi
F δiIνi

Ni
F = MF εF NF

(5.44)

where Ki is the rank of ΔEi , νi is the rank of ΔFi and εE, εF are diagonal matrices
with δi as their diagonal elements.

If Ki = νi = 1 for i = 1, . . . , l a special case of rank-one dependency, M
(i)
E ,M

(i)
F

become column vectors and N
(i)
E ,N

(i)
F become row vectors. In this case, there is no

repeated elements δi in εE, εF .
Let ε = diag(εE, εF ),

z̃ = (
z̃E z̃F

) = (
NEẋE NF ẋF

) ; d̃ = −εz̃

where d is called the fictitious disturbance input, z̃ the fictitious output and ε the
gain matrix of a fictitious internal uncertainty loop, which is caused by uncertainty
in the matrices E,F , then substituting, we obtain

E0Ẋ = F0X + Gdd̃ + Gdd + GuU (5.45)

where G
d̃

= (ME;MF ). Defining the controlled output vector as:

z =
(

C11
0

)
X +

(
0
I

)
U (5.46)

and introducing new variables

d̂ =
(

d̃

d

)
; ẑ =

(
z̃

z

)
(5.47)
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We obtain a modified state space representation of the system as follows

Ẋ = AX + B1d̂ + B2U

ẑ = C1X + D11d̂ + D12

(5.48)

where

A = E−1
0 F0; B1 = E−1

0

(
G

d̃
Gd

) ; B2 = E−1
0 Gu

Note that D11 = 0 if there is no uncertainty in E.

D11 = NEE−1
0

⎛
⎜⎜⎝

Gd̃
Gd

0 0
0 0
0 0

⎞
⎟⎟⎠ D12 =

⎛
⎜⎜⎝

NEE−1
0 Gu

0
0
1

⎞
⎟⎟⎠ C1 =

⎛
⎜⎜⎝

NEE−1
0 F0

NF

C11
0

⎞
⎟⎟⎠

Robust H∞ Compensator Design Consider an uncertain linear system described
by
(

Ẑ(s)

Y (s)

)
=

(
P11(s) P12(s)

P21(s) P22(s)

)(
d̂(s)

U(s)

)

=
{(

C1
C2

)
(sI − A)−1 (B1,B2) +

(
D11(s) D12(s)

D21(s) D22(s)

)}(
d̂(s)

U(s)

)
(5.49)

where X ∈ Rn, d̂ ∈ Rm,U ∈ Rm2 , ẑ ∈ Rp1 , y ∈ Rp2 are respectively the state, aug-
mented disturbance input, control input vectors, augmented controlled output and
measured output vectors. Furthermore, the fictitious disturbance input d̃ and the fic-
titious output z̃ are defined as

d̃ = Δz̃

where Δ is the gain matrix of the internal uncertainty loop. This uncertain system
to be controlled can also be described by

⎛
⎝

z̃

z

y

⎞
⎠ =

⎛
⎝

G11 G12 G13
G21 G22 G23
G31 G32 G33

⎞
⎠

⎛
⎝

d̃

d

u

⎞
⎠ d̃ = Δz̃ U = −K(s)Y (5.50)

where K(s) is a feedback compensator to be designed.
After closing the control loop with a stabilizing controller K(s) but with the

internal uncertainty loop broken, the following representation of the closed loop
system is obtained.

ẑ = T
ẑd̂

d̂ (5.51)

where

T
ẑd̂

=
(

T11 T12
T21 T22

)
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T11 = G11 − G13K (I + G33K)−1 G31

T12 = G12 − G13K (I + G33K)−1 G32

T21 = G21 − G23K (I + G33K)−1 G31

T22 = G22 − G23K (I + G33K)−1 G32

The actual closed-loop transfer function matrix from d to z under plant perturbations
becomes

Tzd = T22 + T21Δ(I − T11Δ)−1 T12 (5.52)

The following propositions provide sufficient conditions for stability performance
robustness [46, 218].

Proposition 5.1 (Stability robustness) If ‖T11(s)‖ < ∞ then Tzd(s,α1Δ),∀d ∈
[0,1] is stable for ‖Δ‖ ≤ γ −1

1 .

Proposition 5.2 (Performance robustness) If ‖T
ẑd̂

(s)‖ < γ1 then Tzd(s,α1Δ) ∀α1 ∈
[0,1] is stable and ‖Tzd(s,α1Δ)‖∞ < γ1, ∀d ∈ [0,1] with ‖Δ‖ ≤ γ −1

1 .

Because T11 can be represented as

T11 = [
I 0

](
T11 T12
T21 T22

)(
0
I

)

so it can be concluded that ‖T11‖∞ ≤ ‖T
ẑd̂

(s)‖. Consequently, if the condition
‖T

ẑd̂
(s)‖ < γ1 both stability and performance robustness will be achieved with re-

spect to bounded uncertainty ‖Δ‖ ≤ γ −1
1 .

Proposition 5.3 (H∞ Suboptimal controller) Consider a linear system described
by:

(
ẑ(s)

y(s)

)
=

{(
C1
C2

)
(sI − A)−1 (

B1 B2
) +

(
D11 D12
D21 D22

)}(
d̂(s)

u(s)

)

=
(

P11(s) P12(s)

P21(s) P22(s)

)(
d̂(s)

d(s)

)
(5.53)

Assume the following

1. (A,B2) is stabilizable and (C2,A) is detectable
2. DT

12(C1D12) = (0 I )

3.
( B1

D21

)
DT

21 = ( 0
I

)
4. The rank of P21(jω) and P12(jω) is p2 and m2, respectively for all ω

5. D11 = 0 and D22 = 0
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There exists an internally stabilizing controller such that ‖T
ẑd̂

‖ < ∞ if and only if
the following Riccati equations

0 = AT S + SA − S
(
B2B

T
2 − γ −2

1 B1B
T
1

)
S + CT

1 C1

0 = AS′ + S′AT − S ′ (CT
2 C2 − γ −2

1 CT
1 C1

)
S′ + B1B

T
1

have solutions S and S′. An H∞ suboptimal controller that satisfies ‖T
ẑd̂

‖ < ∞
where γ1 is a design tradeoff variable specifying an upper bound of the perturbed
closed loop transfer matrix T

ẑd̂
is then obtained as:

˙̂x = Acx̂ + Ly

u = Kx̂

where

K = BT
2 S

L =
(
I − γ −2

1 S ′S
)−1

S ′CT
2

Ac = A + γ −2
1 B1B

T
1 S − B2K − LC2

and x̂ represents the controller state vector.

The closed loop system (neglecting all of the external inputs) is then described
as: (

ẋ
˙̂x
)

=
(

A −B2K

LC2 Ac

)(
x

x̂

)
(5.54)

This controller has a structure similar to a conventional state space controller, con-
sisting of an estimator and a regulator, but is designed for a plant system matrix

A + γ −2
1 B1B

T
1 S

Consequently, the separation principle of the conventional LQG technique does not
hold here.

5.3 Nonlinear Control

The designer of a control system must define basic things:

• A model of the plant to be controlled and the range of its validity
• The nominal value of the model parameters and their expected deviation
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• The performance objectives
• The constraints on the design, such as the cost of control action, control authority

limits and the intended cost of the controller

Design of controls for nonlinear systems may be placed in several categories: the
most primitive is feedback linearization. Parameter variations of the lighter than air
robot models can have severe impact on performance and stability.

5.3.1 Dynamic Inversion

Some research has been done for the control systems design for maneuvering the
lighter than air robot. Dynamic inversion (or feedback linearization) is a method-
ology to design closed loop control laws for non linear systems. It searches for a
global control law from a single global nonlinear model of the plant. A fundamental
assumption in the Dynamic inversion methodology is that the plant dynamics should
be perfectly modeled and may be canceled exactly. In practice, this assumption is
not realistic, and the robustness of the closed loop dynamics must be secured, in
order to suppress any undesired behavior due to plant uncertainties. An outer loop
controller can be used to improve a Dynamic inversion inner loop controller robust-
ness to uncertainties as wind and turbulence disturbances as well as uncertainties in
the model parameters [195, 198].

5.3.1.1 Dynamic Inversion Approach

Dynamic inversion is a controller design technique by which existing undesirable
dynamics are canceled out and replaced by designer specified appropriate ones.

Consider the nonlinear system affine in control given by:

Ẋ1 = B1X2

Ẋ2 = f0(X2) + f1(X4)

Ẋ3 = (B2 + B4) (f0(X2) + f1(X4)) + B3U

Ẋ4 = U

Y = X1

(5.55)

where the state vector is given by X = (X1,X2,X3,X4), dim(X) = 12 where

X1 =
⎛
⎝

x

y

z

⎞
⎠ X2 =

⎛
⎝

V

χ

γ

⎞
⎠ X3 =

⎛
⎝

V̇

χ̇

γ̇

⎞
⎠ X4 =

⎛
⎝

T

σ

α

⎞
⎠
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The control inputs are

U =
⎛
⎝

Ṫ

σ̇

α̇

⎞
⎠ and Y = X1

contains the output variables to be controlled. f0, f1 are non linear functions given
respectively by:

f0(X2) =
⎛
⎜⎝

(B−mg) sinγ
m+m11

0
− (B−mg) cosγ

(m+m33)V

⎞
⎟⎠ f1(X4) =

⎛
⎜⎜⎝

(T cosα−D)
m+m11

(T sinα+L) sinσ
(m+m22)V cosγ

− ((T sinα+L) cosσ)
(m+m33)V

⎞
⎟⎟⎠

The different matrices are given as

B1 =
⎛
⎝

cosγ sinχ 0 0
cosγ cosχ 0 0

sinγ 0 0

⎞
⎠

B2 =
⎛
⎜⎝

0 0 (B−mg) cosγ
m+m11

0 0 0
− (B−mg) cosγ

(m+m33)V
2 0 (B−mg) sinγ

(m+m33)V

⎞
⎟⎠

B3 =

⎛
⎜⎜⎝

− cosα
m+m11

0 −T sinα−Dα

m+m11

sinα
(m+m22)V cosγ

(T sinα+L) cosσ
(m+m22)V cosγ

(T cosα+Lα) sinσ
(m+m22)V cosγ

sinα
(m+m33)V

− (T sinα+L) sinσ
(m+m33)V

(T cosα+Lα) cosσ
(m+m33)V

⎞
⎟⎟⎠

B4 =

⎛
⎜⎜⎝

− Dv

m+m11
0 0

− Lv sinσ
(m+m22)V cosγ

+ (T sinα+L) sinσ

(m+m22)V
2 cosγ

0 (T sinα+L) sinσV cosσ

(m+m22)V
2 cos2 γ

− (T sinα+L) cosσ

(m+m33)V
2 0 0

⎞
⎟⎟⎠

with Dα = ∂D
∂α

,Lα = ∂L
∂α

,Dv = ∂D
∂V

,Lv = ∂L
∂V

.
In order to deduce the input necessary to track a desired output Yref , Y is derived

twice, yielding

Ÿ = Hv (f (V,P ) + BU) + Hph(V,P ) (5.56)

where Hv and Hp matrices are the partial derivatives of h with respect to V and P
respectively. The inversion of the output dynamic equation is thus given by

U = (HvB)−1 (
Ÿ − (

Hvf (V,P ) + Hph(V,P )
))

(5.57)

which state the necessary input value U for a desired output acceleration Ÿ , as long
as the matrix Hvg may be inverted.
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5.3.1.2 Stability Analysis

In this paragraph, the stability of the control system of the lighter than air robot is
analyzed. The Lyapunov stability tools are used. There are basically two ways of
using Lyapunov’s direct method for control design and both are mostly trial and
error methods. The first technique involves hypothesizing one form for the control
law and then finding a Lyapunov function to justify the choice. The second tech-
nique in opposition, requires hypothesizing a Lyapunov function candidate and then
finding a control law to make this candidate a real Lyapunov function. Perhaps, the
most powerful approach to the study of stability of nonlinear systems is Lyapunov
second method. It is a theoretical tool and the important feature is that it does not
require the solutions of the system equations to be known, it requires generation of
a Lyapunov function which can be very elusive.

The intuitive idea is that a physical system can only store finite energy and thus
if it can be shown that energy is always being dissipated except at the equilibrium
point, then the system must finally reach equilibrium when the energy is gone. The
mathematical representation of the system’s energy is in the Lyapunov function. In
addition to stability tests, Lyapunov theory can be an aid to the designer for choosing
control alternatives for nonlinear systems by finding a control law which yields a
Lyapunov function for the system.

The resulting closed loop model is assumed linear and described by

Ẋm = AXm + BYref

Ym = CXm

(5.58)

where A and B are constant matrices, Xm = [Vm,Pm] is the state vector and Ym =
Pm is the model output. The eigenvalues of the matrix A have negative real parts so
that the model reference system has an asymptotically stable equilibrium state.

The desired acceleration Ÿm is then given by:

Ÿm = CA2Xm + CABYref + CBẎref (5.59)

Defining the augmented model output as:

Ym =
(

Ẏm

Ym

)
= DXm + EYref (5.60)

where

D =
(

CA

C

)
E =

(
CB

0

)
(5.61)

We have:

Ẏm = DẊm + EẎref = AY Ym + BY Yref + EẎref (5.62)
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where

AY = DAD−1

BY = (
DB − DAD−1E

) (5.63)

An augmented nonlinear output dynamics is obtained:

Ẏm =
(

Ÿm

Ẏm

)
= F + GU (5.64)

where

F =
(

Hvf + Hph

h

)
G =

(
hvg

0

)
(5.65)

Let’s now define the output error vector e by:

e =
(

Ẏm

Ym

)
−

(
Ẏ

Y

)
(5.66)

The differential equation for the error vector e is given by:

ė = Ẏm − Ẏ = AY e + AY Y − Ẏ + BY Yref + EẎref (5.67)

In the present problem, the error vector should be reduced to zero by a suitable
control vector U. This controller should be such that at steady state Y = Ym and
Ẏ = Ẏm or e = ė = 0. Thus the origin e = 0 is an equilibrium state.

A convenient starting point in the synthesis of the control vector U is the con-
struction of a candidate Lyapunov function for the system.

WL(e) = eT Pe (5.68)

where P is a real symmetric matrix. Taking the derivative of WL(e) with respect to
time gives:

ẆL(e) = ėT Pe + eT Pė = eT
(
AT

Y P + PAY

)
e + 2M̂ (5.69)

where

M̂ = eT P
(
AY Y − Ẏ + BY Yref + EẎref

)

The function WL(e) is a Lyapunov function if

1. AT
Y P + PAY = −Q is a negative definite matrix

2. the control U can be chosen to make the scalar quantity M̂ non positive

Condition 1 can always be met by a proper choice of P, since the eigenvalues of A
are assumed to have negative real parts, corresponding to the stability defined for
the model. The problem is then to choose an appropriate control vector U so that M̂
is either zero or negative. The following case is for M̂ = 0

AY Y − Ẏ + BY Yref + EẎref = 0
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gives the following solution for U

U = G−1 [
AY Y − F + BY Yref + EẎref

]
(5.70)

or equivalently:

U =
(

(hvg)−1

0

)(
Ẏm −

(
hvf + hph

h

))

when ‖U‖ ≤ Umax unless U = Umax (5.71)

where Y = Ym. This control law is exactly the one proposed in relation (5.71), which
proves its asymptotic stability.

5.3.2 Trajectory Tracking in a High Constant Altitude Flight

Compared to satellites, the airship platform in the lower stratosphere has the advan-
tages of being closer to the ground for better resolution images and requires less
power for radio wave relay. Since a stratospheric LTA platform has to be light and
large in its displacement volume, a non rigid structured hull would be most ade-
quate. Winds in the stratosphere are weak at the altitude around 20 km above the
ground, where the atmospheric pressure is about 40 hPa. The average temperature
at this altitude is −50 degrees Celsius. Air density at this altitude is about 1/20 of
that at sea-level and the LTA envelope needs to be large enough to yield necessary
lift. This kind of airship is a super-light weight membrane structure. They are as-
sumed super-pressurized, buoyant helium is expected to remain above atmospheric
pressure inside the envelope, independent of variations in the environment of the
airship. Neither the volume nor the mass changes during a flight, assuming that no
ballast is dropped.

One of the basic problem is the control of this stratospheric airship. Some analy-
sis were made in [48], dependent on assumptions made from linear models for each
studied airship (moving in troposphere). The linear models were obtained from non
linear simulation models by linearizing about a number of chosen trim speeds rep-
resentative of a typical speed envelope. The decoupled linear models comprised the
longitudinal and lateral motions of the neutrally buoyant airship, for speeds from
the hover (0–0.1 m/s) to 10 m/s. In this paragraph, Input/Output linearization is
proposed as a control method.

When the lighter than air robot flies at constant altitude, then the system dynam-
ics can be expressed as [24]:

mxẍ = (F1 + F2) cos θ − kxẋ

myÿ = (F1 + F2) sin θ − kyẏ

Jzθ̈ = (F1 − F2)(kt lx + ly) − kθ θ̇

(5.72)
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where lx and ly are acting lengths and kt is a rotor dependent constant. F1 and F2 are
actuating forces of the motors. This airship can go forward or backward depending
on the orientation of the actuators.

Neglecting the air resistance and all kind of damping and friction, and assuming
than the added mass coefficients are identical in the x and y directions, the following
relations can be proposed:

ẍ = u1 cos θ

ÿ = u1 sin θ

θ̈ = u2

(5.73)

where

u1 = (F1 + F2)

m

u2 = (F1 − F2)
kt lx + ly

Jz

(5.74)

This is an under actuated system. The non integrable condition arising in terms of
acceleration is called the second order non holonomic condition.

5.3.2.1 Properties of the Dynamic Model

The aim of this paragraph is to study some properties of the model (5.73), such as
controllability.

State-Space Formulation If the state-space variable is respectively defined as
X = (x y θ ẋ ẏ θ̇ )T and the input U = (u1 u2)

T then the state space model can be
expressed as:

Ẋ = f0(X) + g(X)U

Y = h(X) =
(

x

y

) (5.75)

Where

f0(X) =

⎛
⎜⎜⎜⎜⎜⎜⎝

x4
x5
x6
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

g(X) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0
0 0
0 0

cos(x3) 0
sin(x3) 0

0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

(5.76)

A number of outputs must be chosen to be controlled equal to the number of its
inputs to make the system be square, for this aim x, y are selected as outputs of
interest.
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These equations represent an affine system with drift. The vector fields f0, g are
smooth typically real analytic on R6. The control U is a measurable function taking
values in a compact subset U ⊂ R2 containing zero in its interior.

Drift less non-holonomic control systems have been studied by [39, 181]. Several
important results have been derived based on the structure of Lie algebra generated
by the control vector fields. The discussion of non-holonomic systems with drift has
been concentrated on the dynamic extension of drift free systems.

Accessibility and Controllability Controllability indicates the existence of a
path that connects an initial configuration to the desired final configuration, given a
non holonomic system. There are many possible approaches to finding conditions
for local controllability leading to different results and requiring different hypothe-
ses. For analytic affine systems, the entire information about local properties of
the system such as local controllability is contained in the values of the iterated
Lie brackets of the vector fields f0, g1, g2. Moreover, these values are easily com-
putable. Therefore it is a natural approach to look for conditions for local control-
lability in terms of the elements of the Lie Algebra generated by the vector fields
f0, g1, g2.

In the sequel, the control characteristic indices σi , equal to the least order of
the time derivative of the output Y which is directly affected by some input, are
introduced.

Y
(σi)
i = L

(σi)
f0

+
m∑

j=1

Lgj
hjuj 1 ≤ i ≤ m = 2 (5.77)

Proposition 5.4 A system represented by the Eq. (5.75) is locally accessible and the
non-holonomy order is r = 4, while the growth vector is (2, 4, 6). The relative growth
vector is (2, 2, 2). The Control characteristic indices associated with system (5.73)
are given as follows:

σ1 = σ2 = 2 (5.78)

Proof For this particular class of affine non-holonomic system, to check the con-
trollability, the following Lie brackets must be considered.

g3 = [f0, g1]
g4 = [f0, g2]

(5.79)

Where

adi
gg = [g0, adi−1

g g] (5.80)

with:

rank(g1, g2) = 2

rank(g1, g2, g3, g4) = 4

rank(g1, g2, g3, g4, g5, g7) = 6

(5.81)
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Thus the nonholonomy order is 4 while the growth vector is (2,4,0,6) and the
relative growth vector is (2,2,0,2). It has been checked the Lie algebra spans the
entire space (�6). Thus the system is locally accessible.

Lgj
Lk

ghi(X) = 0 with 1 ≤ j ≤ m and 0 ≤ k ≤ ρi − 2

Lgj
L

ρi−1
g hi(X) 
= 0 for some j such that 1 ≤ j ≤ m

(5.82)

where

Lf h = ∂h

∂x
f

L0
f h = h

Li
f h = Lf

(
Li−1

f h
)

(5.83)

The above definition of control characteristic indices is given about the ori-
gin: it may be given around any point X̄ ∈ Rn such that rank(G(X̄)) = 2 and
rank(dh1(X̄), dh2(X̄), . . . , dhm(X̄)) = 2

(
ẍ

ÿ

)
= Φ1(X)

(
Γ1
Γ2

)
(5.84)

with

Φ1(X) =
(

a1 a1
−a2 a2

)

Thus the relative degree is:

σ1 = σ2 = 2 �

As σ = ∑2
i=1 σi = 4, there exists no zero dynamics. In this case, the controllabil-

ity indices are equal to the control characteristic indices. The system is of minimum
phase.

5.3.2.2 Motion Control

The next step is to control the motion of the vehicle onto the path. For kinemat-
ics models, the stabilization problem has essentially been solved with two types of
control laws:

• time-varying piecewise continuous control.
• Time-varying continuous control.

An analogous study must be made for dynamics models. Given a desired state
trajectory, a controller which stabilizes the system to this trajectory, must be con-
structed. The system given by relation (5.75) is not input—state linearizable. How-
ever, this system having a well defined relative degree can be Input/Output lineariz-
able. The key of this method is to transform the non linear system into a linear one
by applying a state feedback and state transformation.
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Proposition 5.5 If the control U is chosen such that

U = E(X)−1 (−a(X) + V ) (5.85)

Then the system (5.73) can be equivalently written as

ÿ = V (5.86)

Where V is the new input.

If the decoupling matrix E(X) is non singular then the system is locally decou-
plable and Input Output linearizable by state feedback

E(X) = ∂h

∂X

∂f0

∂X
f0

a(X) = ∂h

∂X

∂f0

∂X
g

(5.87)

The output to be controlled is the output of a chain of cascaded integrators fed
by a nonlinear but invertible forcing term.

For the airship,

r1 = r2 = 2

and

E(X) =
(

cos(x3) 0
sin(x3) 0

)
(5.88)

where E is a singular matrix. To skip this problem, differentiating the outputs four
times allow all inputs to appear but in this case the determinant of the decoupling
matrix depend on the force u1, this causes a serious problem when u1 = 0. This
drawback can be avoided by choosing the point of interest different from the gravi-
tational center of airship. Let:

xp = x + l cos(x3)

yp = y + l sin(x3)
(5.89)

be the coordinate of this point Xp .
In this case the drift term can be written as:

f (X) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

x4
x5
x6

x2
6 l cos(x3)

x2
6 l sin(x3)

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(5.90)



5.3 Nonlinear Control 195

h(X) =
(

x1
x2

)
(5.91)

applying the same calculus, r1 = r2 = 2 with

E(X) =
(

cos(x3) −l sin(x3)

sin(x3) l cos(x3)

)

a(X) =
(−x2

6 l cos(x3)

−x2
6 l sin(x3)

) (5.92)

and

det(E(X)) = l

The linearized model system does not contain an unobservable zero dynamics. Thus,
using a stable tracking law, we can make the point Xp tracking the reference trajec-
tory.

Proof Input-output linearization of the system is obtained by differentiating the out-
puts yi until the inputs appear. So, the system become:

y
ri
i = L

ri
f hi +

2∑
j=1

Lgi
Lri

g hjuj (5.93)

with

Lgi
Lri

g hj 
= 0

for at least one j. Rewrite those equations in the compact form

(
y

r1
1

y
r2
2

)
=

(
L

r1
f h1

L
r2
f h2

)
+

(
Lg1L

r1
f h1 Lg2L

r2
f h2

Lg1L
r1
f h1 Lg2L

r2
f h2

)(
u1
u2

)
(5.94)

and the control canceling the nonlinearity is given by the equation:

U = E(X)−1

(
ν1 − L

r1
f

ν2 − L
r2
f

)
(5.95)

where E(x), the decoupling matrix, must be non-singular, νi are the auxiliary inputs
can be chosen as follows:

ν = yd
ri
i − ki

1e
ri−1
i − . . . − ki

ri
ei (5.96)

with

ei = ydi − yi
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yd being the reference trajectory. The coefficients k
j
i must be chosen such that the

polynoms:

e
ri
i + ki

1e
ri−1
i + . . . + ki

ri
ei = 0

is Hurwitz to guarantee the asymptotic convergence of the errors to zero. �

5.3.3 Variable Structure Robust Control

In a variety of missions, inertial trajectory control of lighter than air robot in three-
dimensional space is essential. The control model can be written as:

ẋ = V sinχ cosγ

ẏ = V cosχ cosγ

ż = V sinγ

V̇ = (T cosα − D + (B − mg) sinγ )

m + m11

χ̇ = (L + T sinα) sinσ

(m + m22)V cosγ

γ̇ = − (L cosσ + T cosσ sinα + (B − mg) cosγ )

(m + m33)V

(5.97)

The design of flight path controllers is relatively complicated. The reason lies in the
higher relative degrees (4, 4, 4) (ignoring small forces contributed by the control
surfaces) of the position coordinates (x, y, z) with second derivative of thrust and
control surface deflections as control inputs. Each of the variables χ,γ has relative
degree only 2. Relative degree of an output of a system is defined to be the order of
the derivative of the output in which control input appears for the first time. Thus,
dynamic inversion approach requires derivative of fourth order of x, y, and z. The
presence of uncertainties in the model creates additional difficulties.

Remark 5.5 One can use an adaptive back stepping design for the compensation of
uncertainties. However, computational difficulties arise because the virtual control
inputs appear and depend on uncertain aerodynamic parameters.

The approach followed in this section is robust control design using the Vari-
able Structure Control (VSC) theory, an appropriate sliding surface on which the
trajectory has desirable property, is first selected.

The control input is taken as U = (Ṫ , σ̇ , α̇)T , the output Y = (x, y, z)T and the
state vector X = (X1,X2)

T , X1 = (x, y, z)T , X2 = (V ,χ, γ )T .
The following sliding surface is chosen:

S = ë + Kvė + Kpe + Ki

∫
edt (5.98)
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where e = (x − xr, y − yr , z − zr)
T = X1 − X1r .

These gains Kp,Kv,Ki are chosen so that S = 0 yields exponentially stable
response for e; Integral feedback provides additional flexibility for a robust design.
The motion of the closed loop system including the VSC law evolves in two phases.

• First, the trajectory beginning from arbitrary initial state is attracted toward S=0.
• In the second phase, which is termed a sliding phase, e converges to zero because

S = 0.

Once the choice of a sliding surface has been made, a controller must be designed
such that S = 0 becomes an attractive surface; Differentiating X twice gives:

Ẍ = B1

⎛
⎝

V̇

χ̇

γ̇

⎞
⎠ = B1 (f0 (V , γ ) + f1 (T ,V, γ )) (5.99)

f0, f1 are non linear functions given respectively by:

f0(X2) =
⎛
⎜⎝

(B−mg) sinγ
m+m11

0
− (B−mg) cosγ

(m+m33)V

⎞
⎟⎠

f1(X4) =

⎛
⎜⎜⎝

(T cosα−D)
m+m11

(T sinα+L) sinσ
(m+m22)V cosγ

((T sinα+L) cosσ)
(m+m33)V

⎞
⎟⎟⎠

and the matrix B1 can be written as:

B1 =
⎛
⎝

sinχ cosγ V cosχ cosγ −V sinχ sinγ

cosχ cosγ V sinχ sinγ −V cosχ sinγ

sinγ 0 V cosγ

⎞
⎠ (5.100)

Differentiating one more time, the following relation is obtained

X(3) = Ḃ1(f0 + f1) + B1
(
ḟ1 + ḟ2

) = f3 + B1B2U (5.101)

where

f3 = Ḃ1(f0 + f1) + B1ḟ0 + B1

(
∂f1

∂V
V̇ + ∂f1

∂χ
χ̇ + ∂f1

∂γ
γ̇

)
(5.102)

B4 = B1B2 (5.103)

with

B2 =

⎛
⎜⎜⎝

1
m+m11

0 −1
m+m11

∂L
∂α

0 L
m+m22

cosσ
V

0

0 mL
V (m+m33)

sinσ
cosγ

m cosσ
(m+m33)V cosγ

∂L
∂α

⎞
⎟⎟⎠ (5.104)
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Differentiating S given in relation (5.98) and using relation (5.101) gives

Ṡ = f3 + B4U + KvB1(f0 + f1) + Kpė − Kie − X(3)
r − KvẌr

= f5 + B4U = (
f ∗

5 + Δf5
) + (

B∗
4 + ΔB4

)
U (5.105)

Here starred functions denote nominal values of functions and Δf5,ΔB4, denote
uncertain functions.

For the existence of a VSC (or even a feedback linearizing control), invertibility
of matrix B4 is required. Of course, B4 is function of its arguments and singularities
of this matrix belong to only certain hypersurfaces. In view of relation (5.104), if B
is singular, U cannot directly affect S, computing the determinant gives:

det (B4) = −∂L

∂α

L cos2 α

m
(5.106)

This determinant is different from zero if σ 
= ±π/2 rad.

Remark 5.6 Thus in a neighborhood of the trim value, B is invertible and a vari-
able structure control law can be designed. Of course computation of exact region
in which it is invertible is interesting, but it is quite involved because B4 is a com-
plicated nonlinear function. For trajectory control, maneuver through the region in
which singularity lies must be avoided by a proper trajectory planner.

For the derivation of the control law, the Lyapunov approach is used. If there
exists a scalar function W(x, t) having continuous first partial derivatives and satis-
fying the conditions

• W(x, t) is positive definite
• Ẇ (x, t) is negative definite

thus the equilibrium state at the origin is uniformly asymptotically stable and W is
called a Lyapunov function.

For the lighter than air robot, the following candidate Lyapunov function is pro-
posed:

W = 1

2
ST S (5.107)

The derivative of W is given by:

Ẇ = ST (f5 + Δf5 + (B4 + ΔB4)U) (5.108)

In view of relation (5.108) for making Ẇ negative, the control law is chosen of the
form

U = (B4)
−1 (−f5 − KS − K ′ sign(S)

)
(5.109)
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Where K is a diagonal matrix, and K > 0 is yet to be chosen. Now the following
assumption is made

∥∥∥ΔB4(B4)
−1

∥∥∥∞ ≤ a0

∥∥∥Δf5 − ΔB4(B4)
−1 (f5 + KS)

∥∥∥∞ ≤ a0

(5.110)

The parameters a0 and a1 can be taken as positive constants. The first inequality
restricts the uncertainty in the input matrix which requires that any uncertain U
dependent term appearing in relation (5.109) should be small. A good estimate of
this term can be used to satisfy assumption (5.110). In view of relation (5.109) for
compensating the uncertainty, one chooses the gain K as

K ≥ (1 − a0)
−1(η + a1)η > 0 (5.111)

Then using the uncertainty bounds of assumption 1, one can show that

Ẇ ≥ −η ‖S‖1 − ST KS (5.112)

∀S 
= 0 almost everywhere on t ∈ [0,+∞) where ‖S‖1 = ∑3
1 |Si | Thus the sur-

face S = 0 is reached in a finite time and by the definition of S, the trajectory track-
ing error e tends to zero. It is noted that the VSC law, can be synthesized using the
computed value of S̈ using the nominal values of the parameters. As the control sys-
tem includes discontinuous functions, this can cause chattering phenomenon, here
it can be avoided by smoothing the discontinuous functions by replacing sign func-
tion by saturation function. This modifies the control law in small boundary layers
surrounding S = 0. Outside the boundary layers, relation (5.109) is valid and as ε

tends to zero, the control laws with the sign functions are recovered.

5.3.4 Back Stepping Controller Design

The separation of the lighter than air robot model in dynamic and kinematic equa-
tions in a cascaded system appearance suggests that the back stepping solution
which is a Lyapunov based control design approach can be applied. By formulating
a scalar positive function of the system states and then choosing a control law that
makes this function decrease, the nonlinear control system thus designed will be
asymptotically stable. Moreover, it will be robust to some unmatched uncertainties.

Back stepping approach is a recursive procedure which allows deriving control
law for a nonlinear system, based on an appropriate Lyapunov function candidate.
Three approaches are presented below: the first one considers longitudinal/lateral
decoupling, the second one uses the 6 degrees of freedom dynamics with Euler
angles kinematic representation while the third utilizes quaternion kinematic repre-
sentation.
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5.3.4.1 Longitudinal/Lateral Decoupling

If the state dynamics involved in longitudinal and lateral motions appear to be
weakly dependent, decoupling between lateral and longitudinal states is performed.

To describe the dynamics with the longitudinal plane, the following state variable
ηlong = (x, z, θ) and νlong = (u,w,q) are used.

To describe the dynamics with the lateral plane, the following state variable
ηlat = (y,φ,ψ) and νlat = (v,p, r) are used.

Longitudinal Control Four phases are to be considered within the longitudinal
flight: take-off, transient longitudinal flight, steady longitudinal flight and landing.
The take-off can be defined as a trajectory tracking and may be viewed as a part
of the transient longitudinal phase. The control objective of the transient phase is to
drive the lighter than air robot up to a reference altitude, cruise velocity and constant
pitch angle θe. During this phase, the robot remains sufficiently close to its steady
state to perform a longitudinal trajectory tracking. The control objective of landing
is to reduce progressively the altitude and velocity until the lighter than air robot
stops.

The longitudinal kino-dynamics model can be expressed as

ẋ = u cos θ + w sin θ

ż = −u sin θ + w cos θ

θ̇ = q

mxu̇ + maxq̇ = −mxwq + 1
2ρCDV 2vol2/3

− (mg − FB) sin θ + FM cosμ

mzẇ − maxq̇ = −mzuq + 1
2ρCLV 2vol2/3 + (mg − FB) cos θ

(5.113)

− FM sinμ + felδel

Jyq̇ + maxu̇ − mazẇ = −maxuq − mazwq + 1
2ρCmV 2vol

− mgaz sin θ − axFB cos θ

− FMOx sinμ + FMOz cosμ + Melδel

V is the relative lighter than air robot velocity, vol is the volume of the hull, (ax, az)

and (Ox,Oz) determine respectively the position of the center of mass and the vec-
tored thrust with respect to the body fixed frame Rm, felδel and Melδel are the force
and moment induced by the elevator, δel is the elevator angle.

The proposed trajectory tracking strategy is based on backstepping techniques.
Let ηref represent the expected lighter than air robot position and e1 = η − ηref the
position error. To perform the tracking, an additional variable e2 that will behave as
a sliding variable is introduced:

e2 = ė1 + λe1
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then e2 = η̇ − η̇ref + λe1 = η̇ − η̇v where η̇v = η̇ref − λe1.
In the sequel e2 is considered as a velocity error and η̇v as a virtual velocity. From

the relation η̇v = J (η)νv and η̇ref = J (η)νref , the virtual velocity can be expressed
with respect to the body fixed frame Rm.

νv = νref − J−1(η)λe1

Following the backstepping scheme, which consists of two embedded control
loops, νv can be viewed as a kinematic controller. Considering the positive functions
S1 = 1

2‖e1‖2 whose time derivative verifies Ṡ1 = eT
1 ė1 = −eT

1 λe1 + eT
1 e2. Once

η̇ = η̇v or ν = νv , e2 = 0, the position error e1 converges asymptotically to zero.
The next step is then to determine the dynamic controller which allows to stabi-

lize e2 to zero.
Introducing e′

1 = J−1(η)e1 and e′
2 = J−1(η)e2 = ν −νv , the controller is defined

by:

Tp = Td(ν) + Ta(ν) + Ts(η) + Mν̇v − λ2e
′
2 λ2 > 0

The closed loop stability is deduced from the following candidate Lyapunov func-
tion:

S2 = 1

2
e′T

2 Me′
2

The parameter M being the inertia matrix.
The time derivative can be expressed as

Ṡ2 = e′T
2 Mė2′ = e′T

2

[
Tp − Td(ν) − Ta(ν) − Ts(η) − Mν̇v

]

Replacing Tp by its closed loop expression, Ṡ2 = −e′T
2 λ2e2′ < 0. Showing that e2′

converges asymptotically to zero. Introducing a = ν̇v − M−1λ2e2, the transition
input between the kinematic and the dynamic loop, the controller expresses

Tp = Td(ν) + Ta(ν) + Ts(η) + Ma

On the other hand, Tp is directly related to the inputs: the elevator angle and the
horizontal and vertical components of the thrust by the relation.

Tp = BU

where

B =
⎛
⎝

1 0 0
0 −1 fel

Oz −Ox Mel

⎞
⎠ , U =

⎛
⎝

Fxvect

Fzvect

δel

⎞
⎠

When the lighter than air velocity is different from zero, the matrix B is invertible
and the system is controllable. This condition is naturally verified as soon as the
tracking phase is started.
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Lateral Control This flight phase is used to control the lighter than air robot
lateral motion after a longitudinal flight. The altitude, pitch angle and velocity are
initially stabilized to their reference equilibrium values.

The lateral kinodynamics can then be expressed as

ẏ = ue cos θe cosψ + v sinψ

φ̇ = p

ψ̇ = r

myv̇ − maxṗ + maxṙ = mxwep − mxuer + FYe + FYvv + FYpp + FYr r

+ (mg − B)φ cos θe + fYrud
δrud

Jxṗ − Jxzṙ − maxv̇ = −maxwep + maxuer + MLe + MLvv

+ MLpp + MLr r − axmgφ cos θe

Jzṙ − Jxzṗ + maxv̇ = mazwep − maxuer + MNe
+ MNv

v + MNp
p

+ MNr r + axmgφ cos θe + MNrud
δrud

(5.114)

where Jx, Jy, Jxz are inertia parameters, FYe
+ FYv

v + . . . are linearized expres-
sions of aerodynamic forces and moments, fYrud

δrud,MNrud
δrud are the aerody-

namic force and moment induced by the mobile surface, δrud is the deflection angle
of the rudder.

Remark 5.7 For this model, the aerodynamic stability condition is expressed by
FYe = MLe = MNe = 0.

To consider separately the kinematic and the dynamic regulation, the lateral mo-
tion is based on a backstepping control scheme, through a path following scheme.

Let L be the lateral distance between the bow of the lighter than air robot and
the desired path and ψ̃ be the angular error between the velocity V and the mobile
frame Xd axis whose orientation is given by ψd . The error dynamics reduces to

L̇ = V sin ψ̄

˙̃
ψ = rc

(5.115)

where ψ̄ = ψ + β − ψd , β being the skid angle and rc the control variable. To
stabilize the system, the following controller is proposed

rc = −K1LV
sin ψ̄

ψ̄
− K2V ψ̄

The stability of the closed loop system is investigated through the following candi-
date Lyapunov function.

S1 = 1

2
K1L

2 + 1

2
ψ̄2 > 0
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By differentiation versus time,

Ṡ1 = K1LL̇ + ψ̄ ˙̄ψ = K1LV sin ψ̄ + rcψ̄ = −K2V ψ̇2 ≤ 0

Thus ψ̄ converges asymptotically to zero. By using some additional boundedness
arguments and Barbalat’s lemma, the convergence of L to zero can be proven as
well.

Let r̃ = r − rc denote the angular velocity error. Considering the dynamic model
with the kinematic equation ψ̇ = p, the lateral dynamic can be expressed as:

M∗X = AX + Bδrud

r = CX
(5.116)

where the following notations are used: X = (v,p, r,φ)T and C = (0,0,1,0).
The following controller is considered

δrud =
(
CM∗−1

B
)−1 (

−CM∗−1
AX + ṙc − K3r̄

)

Differentiating the output equation,

ṙ = CẊ = CM∗−1
AX + CM∗−1

Bδrud

in which CM∗−1
B is a scalar. Then,

Ṡ2 = r̄ (ṙ − ṙc) = r̄
(
CM∗−1

AX + CM∗−1
Bδrud − ṙc

)
= −K3r̄

2 ≤ 0

This proves that the angular velocity is asymptotically stabilized.

5.3.4.2 Euler Angles Approach

A nonlinear model based velocity and attitude controller is designed by using the
backstepping technique. The equations of motion are defined as

Mν̇ + C(ν)ν + D(ν)ν + τs(η2) = τp + R−1b (5.117)

where the notations are reminded: ν = (u, v,w,p,q, r)T with η = (η1, η2)
T where

η1 = (x, y, z)T and η2 = (φ, θ,ψ)T .
A non linear model based velocity and attitude controller is designed by using

the backstepping technique. The output to be controlled is redefined from position
and attitude to linear velocity and attitude. By feeding the controller the appropriate
guidance signals, positional convergence is ensured such that the guidance based
path following task objectives are met.

Start by defining the projection matrix

H = [
03×3 I3×3

]
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Then the error variables are defined as

z1 = η2 − ηref z2 = ν − νref (5.118)

where νd ∈ �6 is a vector of stabilizing functions to be defined later.
The following control Lyapunov function is proposed

V1 = 1

2
zT

1 K1z1 (5.119)

where K1 = kT
1 > 0. Differentiating V1 with respect to t along the z1 dynamics

yields

V̇1 = zT
1 K1ż1 = zT

1 K1
(
η̇2 − η̇ref

) = zT
1 K1

(
Jν2 − η̇ref

)

= zT
1 K1JHz2 + zT

1 K1
(
Jαω − η̇ref

)
(5.120)

where αω = Hνref . This motivates the choice of αω as

αω = J−1 (
νref − z1

)

which results in

V̇1 = −zT
1 K1z1 + zT

2 HT JT K1z1 (5.121)

V1 is augmented to obtain

V2 = V1 + 1

2
zT

2 Mz2 + 1

2
bT Γ −1b

where b ∈ �6 is an adaptation error defined as b = b̂ − b with b̂ being the estimate
of b and by assumption ḃ = 0. The symmetric definite positive matrix Γ is the
adaptation gain matrix.

Differentiating V2 along the trajectory z1, z2 and b, the following relation is ob-
tained:

V̇2 = −zT
1 Kz1 + zT

2

(
HT T T K1z1 + Mż2

)
+ bT Γ −1 ˙̂

b

Since M = M−1 and ˙̂
b = ḃ,

Mż2 = M
(
ν − νref

) = τ + J−1b − g − Dν − Cν − Mν̇ref

which yields to

V̇2 = −zT
1 K1z1 + zT

2

(
HT T T K1z1 + τ + J−1b − g

)

+ zT
2

(−Dν − Cν − Mν̇ref

) + bT Γ −1 ˙̂
b
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Using the fact that V = z2 + νref and b = b̂ − b,

V̇2 = −zT
1 K1z1 − zT

2 Dz2 − zT
2 Cz2 + zT

2

(
HT T T K1z1 + τ + J−1b̂ − g

)

+ zT
2

(
−Dνref − Cνref − Mν̇ref + bT Γ −1

( ˙̂
b − Γ J−T z2

))

where zT
2 Cz2 = 0, since C is skew symmetric. By assigning,

τ = Mν̇ref + Cνref + Dνref + g − J−1b̂ − HT T T K1z1 − K2z2

where K2 = KT
2 > 0 and by choosing ˙̂

b = Γ J−T z2, the following relation is ob-
tained:

V̇2 = −zT
1 K1z1 − zT

2 (D + K2)z2

Thus the error asymptotically converges to zero.

5.3.4.3 Quaternion Approach

The vectorial back stepping gives an advantage over the integrator back stepping in
case of applying to the complicated MIMO system since the control law is derived
in few steps [7–9].

In a low airspeed or hovering state, the aerodynamics are reduced, and conse-
quently the control surfaces authority, thus demanding a superior action by the mo-
tors for position and attitude control. This might lead to saturation of the control
signals, which are usually bounded. The key issue is then to include these input
limitations in the controller synthesis. The LTAR dynamics can be presented in the
following form:

MẊ = −Ω6MX + ESag + f (5.122)

where E = (mwI3
mc3

)

Ω6 =
(

Ω3 0
0 Ω3

)

with Ω3 = Sk(ω), c3 = Sk(c)

Ω7 =
(

Ω3 0
0 1

2Ω4

)

with

Ω4 =

⎛
⎜⎜⎝

0 −Ω1 −Ω2 −Ω3
Ω1 0 −Ω3 Ω2
Ω2 Ω3 0 −Ω1
Ω3 −Ω2 Ω1 0

⎞
⎟⎟⎠
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Ẋ = KX + M−1
(
ESag + f

)

η̇ = DCX

Ṡ = −Ω3S

Ḋ = DΩ7

(5.123)

where K = −M−1Ω6M linearly depends on the velocity V, whereas M is constant
or slowly varying.

Consider two intermediate output variables.

Y1 = aη + T X

Y2 = ΞX
(5.124)

where a is a positive scalar and the candidate Lyapunov function is defined as:

W = 1

2
YT

1 Y1 + 1

2
YT

2 Y2 (5.125)

Then

Ẇ = YT
1 Ẏ1 + Y T

2 Ẏ2 (5.126)

Ẏ1 = aη̇ + Ṫ X + T Ẋ = aT X + DΩ7CX + T Ẋ

Ẏ2 = ΞẊ
(5.127)

Leading to

YT
2 Ẏ2 = (ΞX)ΞẊ = XT Ξ2Ẋ = XT T T Ẋ

or

Ẇ = (aη + 2T X)T
(
aT X + DΩ7CX + T Ẋ

)

− (T X)T (aT X + DΩ7CX) (5.128)

If the input is chosen so that

T Ẋ = (aη + 2T X) − aT X − DΩ7CX (5.129)

then

Ẇ = − (aη + 2T X)T (aη + 2T X) − a (T X)T (T X) − XT CT Δ2
7Ω7CX (5.130)

Taking into account that Δ2
7Ω6 is anti-symmetric, which eliminates the last term,

the derivative may finally be expressed as:

Ẇ = − (aη + 2T X)T (aη + 2T X) − a (T X)T (T X) (5.131)

which states that if a > 0 this derivative is negative definite, indicating a closed loop
system with global asymptotic stability.
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The closed loop dynamics are then given by the control law definition

T Ẋ = −(a + 2)T X − aη − DΩ7CX

η̇ = T X
(5.132)

or introducing Λ2
1 = −(a + 2)I7

Ẋ = −T +Λ2
1T X − aT +η − CT Ω7CX

η̇ = T X
(5.133)

The positive scalar a is a tuning parameter.
The control law is thus

f = −MT T Δ−2
7

(
aη + Λ2

1T X
)

− M
(
CT Ω7C + K

)
X − ESag (5.134)

In order to include the input limitations into the design phase, this control law is
adapted with the inclusion of saturations in the feedback law according:

fs = −MAT σ2
[
AX + Γ X + σ1

[
Bη

]] − ESag (5.135)

where

A = Δ−1
7 Λ1T

B = aΔ−1
7 Λ−1

1 Λ1

Γ = Λ−1
1 Δ−1

7 T
(
CT Ω7C + K

)
(5.136)

and the saturation functions are defined as:

σ [z] = Σz (5.137)

where the diagonal matrix Σ is defined by:

|zi | < mi ⇒ Σi = 1

|zi | ≥ mi ⇒ Σi = mi

|zi |
with 0 < rwmi < R Let’s define the candidate Lyapunov function

W2 = 1

2

Considering the saturated force input, the velocity derivatives

Ẋ = KX + M−1
(
ESag + fs

)

Ẋ = KX − AT σ2
(
AX + Γ X + σ1

[
Bη

]) (5.138)
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leading to

Ẇ2 = XT KX − XAT σ2
(
AX + Γ X + σ1

[
Bη

])

The first term is zero since K is antisymmetric. Introducing z1 = Bη, z2 = AX,
v2 = Γ X, this equation may be written as

Ẇ2 = −zT
2 σ2 [z2 + v2 + σ1 [z1]]

If the saturations are chosen such that R1 <
r2
2 , then for |z2| >

r2
2 , Ẇ2 < 0 showing

that W2 is a Lyapunov function and thus after a finite time T2, the variable z2 will
enter the linear zone of its saturation and remain into it. After time T2, the force
input is then

fs = −MAT
(
AX + Γ X + σ1

[
Bη

]) − ESag

and the velocity derivative is

Ẋ = KX − AT
(
AX + Γ X + σ1

[
Bη

]) = AT
(
AX + σ1

[
Bη

]) − CT Ω7CX

Recalling that the overall function

W = 1

2
YT

1 Y1 + 1

2
YT

2 Y2

Differentiating this equation

Ẇ = (aη + 2T X)T (aT X + DΩ7CX + T X) − a (T X)T T X

or

Ẇ = − (X2z2 + X1z1)
T (X2z2 + X1σ1 [z1]) − a (T X)T T X

with X1 = Δ7Λ1 = (a + 2)1/2Δ7 and X2 = Δ7Λ
−1
1 = 2(a + 2)−1/2Δ7.

From the above formulas and considering that all the design parameters are pos-
itive, it may be verified that both X1 and X2 are positive diagonal matrices and their
minimum and maximum eigenvalues verify

λmax(X2) <
√

2 < λmin(X1)

which leads to

|z2| < |σ1 [z1]| ⇒ |X2z2| < |X1σ1 [z1]|
Then Ẇ < 0 showing the exponential stability of the controlled system.
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5.3.5 Line Tracking by Path Curvature and Torsion

The trajectory C(s) expressed in terms of this coordinate system is in local canonical
form

x(s) = s − κ(s0)
2s3

6

y(s) = κ(s0)s
2

2
+ κ ′(s0)

2s3

6

z(s) = κ(s0)τ (s0)s
3

6

(5.139)

In the neighborhood of C(s0), the curve C(s) has third order contact to a circular
helix set at its Frenet-Serret frame

C1(s̄) =
(

a cos
s̄

c
, a sin

s̄

c
,−bs̄

c

)T

with

a = κ(s0)

κ2(s0) + τ2(s0)
, b = τ(s0)

κ2(s0) + τ 2(s0)
, c =

√
a2 + b2

When the vehicle is supposed to track a directed line L, the following control can
be proposed

dκ

ds
= −a1κ − a2(γ − γref ) − a3(χ − χref ) − a4(dist)plane

dτ

ds
= −a5τ − a6(γ − γref ) − a7(χ − χref ) − a8(dist)outside

(5.140)

where ai are positive constants. This negative feedback rule is called a steering
function. The first terms −a1κ or −a5τ are feedback terms for damping. The second
terms −a2(γ −γref )−a3(χ −χref ) or −a6(γ −γref )−a7(χ −χref ) are a feedback
terms for the angle errors, finally the last terms are a feedback term for the positional
error.

5.3.6 Intelligent Control

Intelligent control as a new trail is also transferred to the LTAR control from the
modern robotic research. Intelligent control is a general term that describes a di-
verse collection of non-traditional control techniques based on soft computing ap-
proach [159, 164, 165]. These include neural networks, fuzzy logic, adaptive con-
trol, genetic algorithms and several others. Often they are combined with each other
as well as with more traditional methods; for example, fuzzy logic controller pa-
rameters being optimized using genetic algorithms or a neural network driving a
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traditional linear controller. Reinforcement learning is one intelligent learning tech-
nology which can help facilitate an easier design for autonomous control system
and reduces human interaction as much as possible in aerial flights.

Artificial Neural Networks, in analogy to biological structures, take advantage of
distributed information processing and their inherent potential for parallel compu-
tation. Neural network (NN), very basically, is a network of simple nonlinear pro-
cessing elements (neurons) which can exhibit complex global behavior determined
by element parameters and the connections between the processing elements. It has
been shown that a certain class of neural network (NN) can approximate any con-
tinuous nonlinear function with any desired accuracy [200]. This property allows
to employ NN for system identification purposes, which can be performed both off
line and on line. Another area of intensive application of NN is fault tolerant con-
trol, made possible due to on line adaptation capability of NN. In [165], an ‘add-on’
neural controller is developed to increase auto-landing capabilities of a damaged
aircraft with one of two stuck control surfaces. A significant increase in success-
ful landings rate is shown, especially when the control surfaces are stuck at large
deflections. Fuzzy logic control also gained some popularity among flight control
engineers. This type of control relies on approximate reasoning based on a set of
rules where intermediate positions between ‘false’ and ‘true’ are possible. Fuzzy
logic control may be especially useful when a decision must be made between sev-
eral controversial conditions [87, 94, 112, 200].

Evolutionary and genetic algorithms (EAs, GAs) are global optimization tech-
niques applicable to a broad area of engineering problems. They can be used to
optimize the parameters of various control systems, from simple PID controllers
to fuzzy logic and neural network driven controllers. Another common design ap-
proach is evolutionary optimization of trajectories, accompanied by a suitable track-
ing controller.

Remark 5.8 The difficulty can be resolved by using a systematic approach based on
genetic algorithms, also referred to as evolutionary methods. They do not require
any guess for the variables of the problem, the parameters involved in the process
are coded as binary arrays and a complete set of them forms an individual. Genetic
algorithms do not need any guess because the starting population is randomly gener-
ated. However, they require the definition of the search space for all the parameters,
that is the ranges in which the values of the parameters are to be searched. Suitable
operators, such as crossover and mutation, govern the reproduction mechanism and
the population is improved (with reference to the objective function) generation af-
ter generation. Elitism is an additional operator that is usually employed to preserve
the best individual in the generation. Basically, evolutionary method constitute an
effective statistical search technique for selecting the best parameters that is the pa-
rameters that minimize the objective function. At the end of the process, genetic
algorithms are expected to generate the best individual which includes the optimal
values of all the parameters.
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Model Predictive Control has been combined with dynamic model analysis for
airship control. Ko in [112] presented a new type of Model Predictive Control which
was related to the Gaussian processing and reinforcement learning technology.

In [179], the problem of learning to control the height of an autonomous blimp
on line and without pre-defined physical models is investigated. The goal is to allow
the lighter than air robot to autonomously learn the actions necessary to maintain its
height from scratch after it has been switched on. The lighter than air robot should
adapt its behavior to the environment and its own dynamics such as the amount of
Helium contained in the envelope. The lighter than air robot should actually learn
new policies from scratch whenever needed and still being able to fulfill its mis-
sion. The approach is based on the reinforcement learning controller, i.e. the goal
to be achieved by the controller is specified by virtual rewards given to the sys-
tem when certain system states are reached. This approach employs a Kalman filter
to estimate the ground clearance based on noisy distance measurements obtained
from an ultrasound range sensor. Based on these height estimates, Monte Carlo re-
inforcement learning is applied in combination with Gaussian processes to repre-
sent the Q function over the continuous state action space. Reinforcement learning
is based on the idea that an agent interacts with a potentially unknown environment
and gets rewarded or penalized according to the actions it performs. In general, the
agent receives rewards for actions that are beneficial in certain states for achiev-
ing a long term goal. The agent thus seeks to behave in a way that maximizes its
numerical reward. A reinforcement learning task can be defined by a quadruple
{S,A, δ, r} consisting of states S, actions A, a transition function δ : S × A → S

and a reward functions r : S ×A → � which defines the immediate reward to be re-
ceived when executing action a in state s. The goal is to define a policy Π : S → A

which maps each state s to an action a, such that the future expected reward is
maximized. The expected long time reward in state st can be expressed recursively
as RΠ(st ) = ∑∞

i=0 ςirt+i where ς ∈ [0,1] is a discount factor. In general, the se-
quence of rewards rt+i is obtained by starting in state st and then iteratively applying
a policy Π for selecting the next action

at = Π(st )

Several approaches may be proposed to solve the reinforcement learning problem
by maximizing the expected long time reward. In [179], the Monte Carlo method,
which has the advantage that it allows the agent to learn directly from experience
while interacting on line with a completely unknown environment. This enables the
lighter than air robot to learn without prior knowledge and also in situations in which
no simulation environment is available.

5.4 System Health Management

System Health Management is considered as a system engineering discipline that
includes the processes, techniques and technologies used to design, analyze, build,
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verify and operate a system to prevent faults and to minimize their effects. Sys-
tem Health Management, when implemented successfully greatly enhances safety,
affordability and maintainability of complex systems [117].

A System Health Management system consists of instrumentation components
(sensors, wires, data recorders. . . ) a Fault Detection Isolation and Response (FDIR)
module, diagnostic and prognostic software as well as processes and procedures
responsible for information gathering about a system’s health and corresponding
decision making. SHM are typically used to accomplish two main goals:

• to accurately assess the system health and to pinpoint problems and anomalies,
monitoring the health of a system and detecting and isolating faults and respond-
ing to potential problems by enabling system reconfiguration or restoration.

• to support the management of the system’s off-line maintenance and repair oper-
ations, by mapping anomalies to physical components that have failed during op-
eration and by predicting physical components that are likely to fail in the future.
These components, referred as Line Replaceable Units (LRU) are then replaced
to restore a failed system function.

Many aspects of System Health Management have been implemented in many sys-
tems. What is needed is a coherent framework to integrate across instrumentation
design, on board Fault Detection Isolation and Response, ground maintenance, di-
agnostics and various fault-related analyzes applied to lighter than air robots. A sys-
tematic design methodology, Functional Fault Analysis (FFA) can be developed
with the goal of integrating System Health Management into early design of com-
plex systems.

The basis for the Functional Fault Analysis methodology is a high level func-
tional model of the system that captures the physical architecture, including the
physical connectivity of energy, material and data flows. The model also contains all
sensory information, failure modes associated with each component of the system,
the propagation of the effects of these failures modes and the timing by which fault
effects propagate along the modeled physical paths. Once, this integrated model is
built, the designers and system analysts can assess the capability of the sensor suite
of the system to isolate the location of faults, and determine if redundant sensors
exist to confirm the existence of a fault. Moreover, these capabilities can be used
to assess the sensor suite’s diagnostic functionality and to analyze the race between
the propagation of faults effects and the Fault Detection Isolation and Response
mechanisms designed to compensate and respond to them.

The Functional Fault Analysis methodology offers advantages for both the design
and the operational phases. During the design phase, the Functional Fault Analysis
provides the ability to:

• Assess the effectiveness of the sensor suite to isolate faults to the Line Replace-
able Units.

• Model the fault effect propagation paths and assess the time latencies along those
paths.

• Document and analyze the Fault Detection Isolation and Response time response
capability in terms of sensor detection capability, sensor confirmation, and the
time from fault initiation until detection is confirmed.
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• Assist design engineers by uncovering problems in design issues across subsys-
tem boundaries.

Failure Modes and Effects Analysis (FMEA) has been the most widely used tech-
nique for conducting fault impact analysis. This technique systematically examines
individual system components to assess risk and reliability. It is a bottom-up ap-
proach that starts at the component level and follows an inductive logic to determine
the consequences of critical component failures. Accordingly, failure mechanisms
in which each component can potentially fail are identified and evaluated separately
to determine what effect they have at the system level. Complementary to Failure
Modes and Effects Analysis, Fault Tree Analysis (FTA) is performed using a top-
down approach. Fault Tree Analysis starts with identification of a high level failure
event. A deductive logic is then followed to drive contributing events that could lead
to the occurrence of immediate higher level events. At the end, the analysis presents
the chain of events combined with logical gates in a tree structure. Using this ap-
proach, possible event paths from failure root causes to top level consequences can
be captured. Finally, Probabilistic Risk Assessment (PRA) is a method that com-
bines a number of fault/event modeling such as Master Logic Diagrams (MLD),
Event Sequence Diagrams (ESD) and fault trees and integrates them into a proba-
bilistic framework to prioritize risk drivers during design.

5.4.1 Health Monitoring

The need for increased flight safety leads to the design of reconfigurable fault-
tolerant control system. The main objective of fault tolerant control is to maintain
the specified performance of a system in the presence of faults. Two approaches can
be distinguished in this area: the passive and the active approaches. In the passive
approach, the control algorithm is designed so that the system is able to achieve its
given objectives, in healthy as well as in faulty situations. Unfortunately achieving
robustness to certain faults is only possible at the expense of decreased nominal
performance. The active approaches react actively to fault events by using reconfig-
uration mechanisms. Consequently, this ensures nominal performances in fault-free
situations. An active fault tolerant control is characterized by on line and real time
fault detection and isolation and a reconfiguration mechanism. This scheme requires
its control law to react to faults through reconfiguration and Fault Detection and Iso-
lation (FDI) modules. The goal is to maintain overall system stability and acceptable
performance in spite of the occurrence of faults by reconfiguring the nominal con-
trol law when a fault is detected by the FDI unit. The FDI mechanism is supposed to
detect and diagnose any relevant failure that could lead to flight performance degra-
dation. This shall be done sufficiently early and in compliance with the stringent
operational and flight dynamic constraints, to set up timely safe recovery actions
and to improve the situation awareness of the flight management system.

One approach to detect and isolate actuator or sensor faults is the Multiple Model
Adaptive Estimation (MMAE) methods. It is based on a bank of Kalman filters (KF),
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each of which is matching a particular fault statics of the system. A hypothesis test-
ing algorithm uses the residuals from each Kalman filter to assign a conditional
probability to each fault hypothesis. The main advantage of the method lies in its
responsiveness to parameter variations, leading to faster fault isolation than that
attained by other methods without multiple—model structure. It also enables the
reconstruction of a correct state estimate even when an actuator or sensor fault oc-
curs, because the estimated state vector is the sum of each KF estimate weighted by
its corresponding probability. The multiple model adaptive estimation method can
be applied in practice as long as the expected faults can be hypothesized by a rea-
sonable number of Kalman filters. To make the multiple model adaptive estimation
method applicable for any flight condition and capable of isolating lock in place
or floating actuator faults, the multiple model adaptive estimation algorithm is com-
bined with Extended Kalman Filter (EKF) used for the nonlinear estimation of some
(unknown) fault parameter: the deflection of a faulty control surface or actuator.

A fault tolerant control system needs to first detect and isolate the presence and
location of faults, and then recover from the identified faults by reconfiguring the
control system architecture. The development of these three tasks is known as the
Fault Detection, Isolation and Recovery (FDIR) problem. An extensive body of
work has been conducted on FDIR design of linear systems. Among them the parity
space approach which basically performs consistency checks on the mathematical
equations governing the system has been studied [30, 117, 146].

Besides the parity space approach, many researchers simply use Luenberger ob-
servers or Kalman filters to monitor system performance. In the absence of mod-
eling uncertainties and disturbances, the errors between the state estimates and the
actual states, namely the residuals, diminish to zero, whereas the presence of a fault
causes the residuals to deviate from zero. In order to avoid false alarms caused by
uncertainties and disturbances, the threshold must be sufficiently larger than zero,
although this will subsequently decrease the sensitivity of the detection system to
lower magnitude faults.

The methods described above are applicable to the linear approximation of the
lighter than air robot model.

5.4.2 Diagnosis, Response to Systems Failure

When a classical airship has a failure in flight, for example total loss of power or
the flying control system, it can revert to being a free balloon. When the vehicle
is hovering without any payload and low on fuel, it is light enough to maintain
altitude and land safely in the event of power failure in one of the rotors. A particular
concern is that off-nominal conditions or degraded components could reduce the
capabilities of the lighter than air robot to accomplish the mission objectives. A fault
is defined as any kind of malfunction in the actual physical system that tends to
degrade the overall system performance. Such malfunction may occur either in the
sensors (instruments), actuators or in the components of the process. To maintain a
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high level of performance, it is important that failures can be promptly detected and
identified so that appropriate remedies can be applied.

In the past decades, numerous approaches to the problem of failure detection,
isolation and accommodation (FDIA) in dynamic systems have been developed.
Among them are two major philosophies: physical redundancy and analytical re-
dundancy. Physical redundancy is achieved simply through hardware replication.
Unlike physical redundancy, analytical redundancy is a model-based method. Ana-
lytical redundancy methods have many advantages over physical redundancy meth-
ods: the replication of identical hardware components (actuator/sensor) is more ex-
pensive, restricted and sometimes difficult to implement in practice. Fault detection
and isolation can be achieved by the eigenstructure assignment method and Linear
Matrix Inequality technique.

There has been significant research on the observer approach, the parity space
approach and the robust parameter estimation approach. Parity equations are gen-
erally constructed to detect the fault and isolate the faulty sensor. The value of the
parity equation related to the faulty sensor has a non zero value over the threshold
and therefore a faulty sensor can be identified by comparing all the values of the
parity equations.

Especially, eigenstructure assignment is realized by the concept of detection
spaces. Once a set of stable eigenvalues with respect to each independent detec-
tion space is assigned, the LMI technique can be used to find the optimal detection
filter, so that the noise effect on the residual is reduced. The proposed filter has good
performance as well as the following advantages:

• The eigenvalues are assigned in the detection space, which is the sum of mini-
mum (C,A) invariant subspace and invariant zero directions for Fi . It extends
the applicability of the detection filter.

• The designed filter is robust to disturbances, which makes the filter more practi-
cally useful

• The LMI technique is used to solve the optimal filter problem, which is compu-
tationally efficient. The proposed method can be used to perform real-time detec-
tion and isolation.

The state-space model of the linear time invariant model with additive faults and
without disturbances in continuous time format, approximation of the lighter than
air robot, is

Ẋ(t) = AX(t) + BU(t) +
q∑

i=1

Fimi(t)

Y (t) = CX(t)

(5.141)

When no faults occur, mi(t) = 0. The fault direction Fi can be used to model actu-
ator, sensor and components faults. The system is assumed to be observable. Con-
sidering the following full order observer, the following error system dynamics is
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obtained

ε̇(t) = (A + LC)ε(t) −
q∑

i=1

Fimi(t)

r(t) = Cε(t)

(5.142)

where r(t) is the residual output. Clearly, if L is chosen such that A + LC is stable,
r(t) in the steady state will deviate from zero when any faults has occurred. But it is
not enough because different faults must be isolated and that is a more difficult task.
To detect and isolate faults, a set of detection subspaces T1, T2, . . . , Tq is assumed
to satisfy the following three conditions:

(A + LC)Ti ⊆ Ti

Fi ⊆ Ti

CTi ∩
q∑

j 
=i

CTj = �
(5.143)

Then the residual r(t) has a unique representation of r(t) = z1 + z2 + . . . + zq

with zi ∈ CTi . Therefore, faults can be isolated by projecting r(t) onto independent
subspaces CTi . The detection subspace Ti can be spanned by the following linearly
independent vectors:

Ti = [
νis . . . νi1 Fi AFi . . . Aki Fi

]
(5.144)

where ki si the smallest integer such that CAki Fi 
= 0 and zik, νik are the invariant
zero and associated zero direction, which are defined as k = 1,2, . . . , s

(A + FiK)νik = zikνik

Cνik = 0
(5.145)

Because (A + LC)Ti ⊆ Ti and AkiF is in the column space of Ti , we can define

(A + LC)AkiFi = Tixi = Ti

[
βis . . . βi1 α0 α1 . . . αki

]
(5.146)

5.5 Conclusions

The lighter than air robot is a nonlinear system, but for classical controller design,
linearized models obtained at some operating points are used in aerodynamic flight.
In practice, it is necessary to determine linear models at several design operating
points over a specified flight envelope and determine optimal control gains for each
one. Then the design control gains are tabulated and scheduled using microproces-
sors, so that the gains most appropriate for the actual operating points of the lighter
than air robot are used in the controller. It is usual to determine which of the design
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operating points are closest to the actual operating point and use a linear combina-
tion of the control gains corresponding to these control points.

As shown in the second part of the chapter, dynamic response at the hover is char-
acterized by the stability modes which in turn are determined by the aerodynamic
properties. Since the aerodynamic contribution is negligibly small both the longi-
tudinal and lateral non-oscillatory stability modes have time constants measured in
hours than seconds. Similarly, the oscillatory stability modes have negligible aero-
dynamic damping. For all practical purposes, the lighter than air robot appears to be
neutrally stable at the hover.

As shown in the third section of the chapter, airships offer a control challenge as
they have non zero drift and their linearization at zero velocity is not controllable.
Several nonlinear control techniques have been used such as dynamic inversion,
variable structure control. Finally, system health management is discussed at the
end of the chapter.





Chapter 6
General Conclusions

Lighter than air systems are particularly appealing, since the energy required to keep
them airborne is small. The Lift of the lighter than air robot is mainly aerostatic,
as opposed to aerodynamics as in airplanes and helicopters. Consequently, lighter
than air robots spend most energy moving and compensating wind disturbances,
rather than trying to keep themselves on air. Guidance and control methods of such
vehicles have been presented throughout this book. However, research is very active
in this field and many challenges still exist.

The challenges faced by the Lighter Than Air Robots (LTAR) span several and
distinct fields, including guidance, control, navigation, collision prevention, take-
off/landing techniques, state regulations, safety/reliability, man-machine interface
design issues. . .

1. The ability for a vehicle to manage its position away from obstacles represents
a significant issue and a necessity for low altitude operations in crowded envi-
ronments or their ability to detect hard to see obstacles such as suspended cables
quickly. All operations involving close coordination and physical interaction be-
tween vehicles or between vehicle and the ground require further research. Flight
in cluttered environments includes any phase of the flight where the vehicle is in
close proximity to obstacles. This flight mode is particularly important for low
altitude applications, using a variety of sensing techniques. Low altitude aerial
robots, often operating in a cluttered environment, offer the opportunity to ex-
plore many generic robotics topics, including vision, path planning, mapping
and other algorithms in a progressive manner.

2. Another challenge of autonomously controlling/navigating the airship from low
to high airspeeds, for example, from vertical take-off/landing and hovering flight
up to aerodynamic flight. Given such a broad operational range, vehicle con-
trol mainly varies from propulsion and propulsion vectoring (at low speeds)
to propulsion and aerodynamic surfaces (at high speeds), stressing the abrupt
change and non-linear behavior of airship dynamics. Therefore, complex non-
linear control techniques for airship control and guidance are under investigation,
including atmospheric disturbances such as wind and gusts.
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3. Decision making in reality always consists of uncertainty. Uncertainty is not an
occasional, temporary occurrence in decision planning. A realistic and robust
decision cannot be made without understanding and bringing uncertainty into the
planning process. Under uncertainty, what is required is a decision that performs
well over all the possible scenarios. This is known as the robust decision making.

4. Future LTAR will be operated with algorithms capable of monitoring the airship
health and of taking action if needed. Fault tolerant control systems for small
and low-cost LTAR should not significantly increase the number of actuators or
sensors to achieve the safer operation.

5. One of the most difficult issues related to autonomy is operating in a highly dy-
namic environment with other vehicles operated by humans. Humans are capable
of generating some highly unpredictable behaviors therefore an autonomous ve-
hicle must be flexible enough to deal with unpredictable events or situations.

6. Last but not least, all the algorithms must be implemented on real-time micro-
controllers.



Appendix
Current Projects

A.1 Introduction

After being neglected for a few decades, airships are now again a source of high
interest, and new research programs are being launched around the world. This new
trend in favor of airships is mainly due to at least three reasons: a major concern
for sustainable growth, an increasing need for carrying heavy loads, and new ex-
pectations for survey and monitoring means. Their use represents a niche in the
aeronautical market.

Operational airships in the world are usually propelled by fossil combustible en-
gines. Only small airships, such as robotic airships, are electrically propelled. One
goal is to imagine and validate the concept of an airship using only non-fossil and
renewable energy, with the highest level of autonomy. This goal has to be achieved
with the highly airship-specific constraint of weight minimization. Effectively, each
increase in weight results in an increase in gas volume required for sustaining the
overall airship load, typically roughly 1 m3 for any 1 kg in load increase. Two
sources of energy are been studied: solar energy retrieved on the upper surface of the
airship envelope, and fuel cell energy. The large uppers surfaces of airships could
provide with an appropriate solar exposure but, due to their convex shape, imply the
use of flexible photovoltaic cell arrays [26].

The projects presented below have the advantage of coupling academic research
with development of a vehicle platform. Another characteristic is the interdisci-
plinary aspect. Disciplines involved are aerodynamics, flight mechanics and control,
avionics and navigation, mission planning and replanning, structure, power systems,
computing, embedded systems, mechatronics and interdisciplinary design aspects,
not forgetting the societal aspect.

A.2 Artic Airship

Advances in technology make airships one of the most promising modes of freight
transport for the 21st century. Interest has been growing in the potential for air-
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ships to serve remote areas that have fewer transportation alternatives and scarce in-
frastructure. Historical precedence suggests that airships can operate safely in cold
weathers. These locations hold the promise to begin the explosive growth in de-
mand for Lighter than air technology. No existing buoyancy aircraft is certified for
operations in icing conditions. Consequently, the first assumption in formulating a
qualitative forecast is that new airships can be engineered to operate safely in win-
ter cold, precipitation and wind conditions. The only infrastructure requirement is
an unimproved runway or expanse of lake for takeoff and landing. Hybrid aircraft
could become the dominant mode of transport in circumpolar regions [173].

For mining demand, mines are operated by a combination of winter roads and
small aircrafts. Winter roads are used to bring in the year’s supply of diesel and heat-
ing oil to operate the mines. Remote communities in circumpolar regions depend on
annual sea lift, ice roads and small airplanes for transportation services. Annual ser-
vices transport the heavy indivisible role for hybrid aircraft or bulky goods but are
inconvenient.

A particular concept that belongs to the class of vertical takeoff and landing air-
craft with unprecedented lifting capability is the quad-rotor hybrid airship [157].
Basically, this concept consists of a non rigid buoyant non rotating hull that is rigidly
attached to a structural frame supporting the propulsion components. This vehicle
consists of a buoyant envelope attached to a supporting structure to which four ro-
tor systems are attached. The rotors are used for control and maneuvering in near-
hovering flight. The form of this airship is not classical too. This airship has a delta
wing form, which compensates for a considerable part of the total weight of the ve-
hicle with aerodynamic lift. The forces and moments required to control the aircraft
with or without its load are obtained by changing the lifting rotor thrust vectors as
well as thrust generated by the auxiliary propellers, in unison or differentially. The
empennage control surfaces provide additional control moments in pitch and yaw
during forward flight. The idea of combining aerodynamic and aerostatic lift is not
a new one. The first patent for a ‘semi buoyant aircraft’ arose in 1931. Later, hy-
brids with high aspect ratio wings, lifting bodies or those operating in ground effect
were proposed. In addition, a concept has appeared in the combination of helicopter
and airship. The advantage of such arrangement is that the empty weight of the
vehicle is supported by the force due to buoyancy while the propulsive forces are
entirely available for lifting the payload and controlling the vehicle. This complexity
is worthwhile, given the objective to provide a large payload, high manoeuvrability
and operation costs well below that of a comparable helicopter. The main idea of
this proposal is to combine both aerodynamic lift with quad-rotor structure, making
this airship hybrid in both ways.

Many types of emergency response can be envisioned but oil spills and forest
fires are the most pressing problems in the North. Hybrid aircraft could provide
communications and fire intelligence to manage the emergency response. Two key
objectives for this type of mission are that the airship has exceptionally long en-
durance and that it operates with a sufficiently high level of autonomy, to lighten
the heavy workload of the operator. In order to achieve these objectives, a robust
guidance and control system is required, capable of auto piloting and controlling
the airship under an extremely wide range of atmospheric and wind conditions.
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The objectives of the project are the following:

1. A small-scale flight research vehicle must be designed and built. Its maneu-
verability and handling qualities have to be investigated at low airspeeds and
Stability characteristics analyzed.

2. Nonlinear equations of motion capable of modeling the dynamics of this cou-
pled multi-rotor/support frame have to be developed. Using these equations, an
aeromechanical stability analysis has to be performed in order to identify po-
tential instabilities of this type of vehicle. The coupling between various blade
supporting structure and rigid body modes have be identified. The effects of
changes in buoyancy ratio (buoyant lift/total weight) on the dynamic charac-
teristics of the vehicle have to be studied. Mechanical and aerodynamic coeffi-
cients must be identified.

3. Flight dynamics simulator.
4. Trim characteristic of the vehicle have to be discussed in hovering flight and in

normal flight.
5. Navigation and Path planner with realistic wind information. How to use mete-

orological information into the flight management system. Mission reconfigu-
ration and trajectory optimization.

6. Sensor and actuator suite, advanced communication.
7. Choice of the control platform software architecture.
8. Concepts for controlling the vehicle with or without its external load have to be

evaluated.
9. Response to control inputs while hovering over a point have to be shown. Ef-

fects of the varying mass due to fuel consumption must be analyzed.
10. Effects of atmospheric turbulence in flight or in hover should be investigated.
11. Diagnosis, fault-tolerance and systems failure must be investigated.
12. Last but not least, Feasibility study in ground effect and Long range and en-

durance power and propulsion have to be checked.

A.2.1 Vehicle Description

Based on a preliminary design study, a vehicle configuration is selected that consists
of four modified rotors mounted on an interconnecting structure that is attached to
a delta wing airship envelope [26]. In order to determine the effect of vehicle buoy-
ancy on its flight characteristics, it is designed to be closer to neutral buoyancy
while it is empty and with maximum payload. Heaviness of the airship corresponds
to gross weight in excess of static lift for that flight condition. This delta wing form
compensates for a considerable part of the total weight of the vehicle with aerody-
namic lift. The forces and moments required to control the aircraft with or without
its load are obtained by changing the lifting rotor thrust vectors as well as thrust gen-
erated by the auxiliary propellers, in unison or differentially. The empennage control
surfaces provide additional control moments in pitch and yaw during forward flight.
For the present vehicle configuration, control variables may be systematically com-
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bined for controlling the airship in all of its flight modes, including precision hover.
A particular choice of these options, in a sequence or in unison, depends on the
flight and operating conditions. Clearly, in the absence of a payload the airship is
light enough that very little rotor thrust is required to lift and sustain it in flight.
Consequently, in this case, rotor thrust vectoring for controlling the vehicle is inef-
fective. However, the auxiliary propellers can be conveniently used in this mode to
control the vehicle. These constraints suggest that in a case where the airship is hov-
ering over a point on the ground, the lifting rotors should be used for vehicle control
when it is heavy and the auxiliary propellers when it is light. In the ferry mode when
the vehicle is not carrying any payload it may be controlled like a conventional air-
ship, particularly during short takeoff and landing while the lifting rotors may be
used for control augmentation only. An important aspect of the vehicle control con-
figuration is selecting the location of its auxiliary propeller components. Typically,
the line of action of the resultant of thrust vectors determine the vehicle attitude and
its trimmability during hover. The vertical location of these components must be
selected on the basis of operational and ground handling considerations [55].

A.2.2 Weight, Mass Distribution and Balance

Weight, mass distribution and balance are difficult to achieve, since small tolerance
differences over such big structures have a significant effect. For example, if actual
fin weights do not match their design estimates overall balance will be affected ow-
ing to the fin’s extreme position. It is also difficult to predict accurately the position
of the center of lift. This is because the gas container varies accordingly to applied
pressures and other loads, its materials of construction and inertia and gravitational
effects. For airships, it is the relationship between the center of gravity and center of
lift which is the important parameter. For the airship to remain statically level, the
center of gravity should be directly below the center of lift. Any horizontal offset
will result in the airship adopting a pitch angle. The vertical separation between the
center of gravity and the center of lift affects the handling characteristics of the air-
ship, the greater the separation the more stable the airship becomes, though greater
control inputs are required are required for pitch and roll maneuvers. During the de-
sign phase, much effort should be spent ensuring that the center of gravity is as close
as possible to the optimum position when considering the loaded airship [108].

A.2.3 Modeling and Identification

Complete rigid body motion of the airship has to be simulated using general non lin-
ear equations of motion. Basically, the airship hull is assumed in first approximation,
to be a rigid body supporting the gondola and the fins. External forces and moments
acting on the vehicle due to gravity, lift, aerodynamics and control inputs must be
included in the model. Similarly, acceleration dependent aerodynamics forces and
moments on the airship have to be estimated and included [36].
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A.2.4 Aerodynamics

The aerodynamics of an airship shows fundamental differences with the airplane
aerodynamics. Whereas airplane wings are relatively thin and of high aspect ratio,
the envisaged deltoid wing is necessarily thick, in order to create lift, and of small
aspect ratio. Of course, the results obtained on Delta wings which generally equip
fighter airplane cannot be used for this deltoid wing due to differences in velocity,
leading edge shape and thickness. But above all, a more fundamental difference con-
cerns the behavior in unsteady movements of the body. Due to the fact that a airship
has its own mass M of the same order of magnitude than the mass Ma corresponding
to lift, all the unsteady aerodynamic coefficients, proportional to Ma are of consid-
erable importance whereas they are negligible for a heavier than air airplane. The
consequence is that the mass and inertial characteristics of an airship are increased
by the presence of the surrounding air, and that this increase is different accord-
ing to the direction of the acceleration and their knowledge are of major necessity
for a flight mechanics model. The final aim of the aerodynamics study is to built a
complete model for the aerodynamics of the deltoid wing, including parameters like
velocity, angle of attack, side slip angle, roll, pitch, yaw but also all the derivatives
with respect to time of these parameters. The means to provide in order to achieve
this goal are:

• Wind tunnel tests for the steady aerodynamics.
• Dynamic tests on a flying mock-up in order to find the unsteady aerodynamics

coefficients by the analysis of the trajectories.
• Computational fluid dynamics to compare with wind tunnel tests and assess the

capacity of the numerical codes for prediction of the aerodynamic coefficients.
• Theoretical study to establish the basis of the model either for steady or unsteady

flow.

A.2.5 Localization and Positioning

Localization of the vehicle is the first step for an autonomous navigation system.
Accurate localization information is also needed by the geographical (in 3D) and
temporal mapping of the on-board experimental data. Autonomous positioning can
be achieved by exploiting navigation satellite data (GPS, GNSS), and by means of
semi-passive back-up techniques. Classical aircraft on-board instruments are also
provided to the pilot in case of failure of the autonomous system. There are many
absolute localization (and navigation) devices using vision systems, artificial bea-
cons, ultrasonic or laser range finders, and radio-systems. The satellite navigation
allows to obtain global positioning in the reference system fixed to the Earth. They
provide medium or high independent accuracy of positioning. An enhanced system
will use redundancy and complementarity of data delivered by several localization
sources of different natures. Specific data fusion and interpretation processes must
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then be studied, depending of the chosen multi-sensor system and the desired accu-
racy and reliability.

The challenge for lighter than air robot today, is to increase their level of auton-
omy. One important aspect of autonomy is their capacity to automatically construct
a map of its environment starting in a partially known or unknown setting and si-
multaneously localize itself within this map. This airborne simultaneous localization
and mapping (A-SLAM) problem remains a very important problem to address, as
its solution can postulate as a strong candidate to achieve seamless navigation. Clas-
sically, GPS information is used to correct drifts of the inertial sensors on board the
autonomous vehicles. However, GPS is not always available, due to poor or absent
GPS coverage.

One of the popular approaches proposed to solve the simultaneous localization
and mapping (SLAM) problem uses Kalman Filtering techniques. Extensive re-
search works have been reported in the literature, employing the Extended Kalman
Filter (EKF) to address the SLAM problem. Techniques based on particle filter-
ing schemes and unscented Kalman filtering scheme are also investigated. An EKF
based SLAM approach estimates and stores the vehicle pose and the map feature
positions in one state vector. The uncertainties of these state estimates are stored in
an error-covariance matrix that includes cross-correlations between feature/vehicle
pose estimates.

In A-SLAM, optical cameras represent an interesting way to providing vast or
precise information content. The acquired images are affected by many geometri-
cal and photo-metrical transformations. The 6 degrees of freedom that characterize
the movement of the aerial vehicle lead to different geometrical transformations be-
tween an acquired image and the next acquired one. In addition as the aerial vehicle
navigates in a natural environment, the acquired images often present luminosity
and contrast changes [202, 211].

A.2.6 Navigation and Path Planner

The navigation subsystem is very important for aerial vehicles. It is necessary
to use absolute navigation and positioning that allows to obtain global and time-
independent information. Inertial measurements are essential for stability control,
but navigation and other high level tasks demand an additional global localization
system. A typical solution adopted for vehicles is the use of GPS, but the precision
and the availability can appear too poor in particular flight configurations, as well
as the time of delivery and processing too long. Other systems are then necessary
to insure an accurate navigation at full time, coupled to the localization device. To
navigate accurately, series of predefined way-points can be delivered, either by aero-
nautic active radio devices or by extraction of particular objects of the environment.
Both these solutions seem inefficient in the arctic area. Suitable other techniques
must be studied to plan the route in order to deliver information to the path-planner.
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This operation must handle meteorological information, especially force and direc-
tion of the wind, in order to plan trajectory corrections but also for a secure auto-
piloting.

A.2.7 Feeding the Path Planner with Realistic Wind Information

Flight management of an vehicle in a dynamic partially known environment is a
complex real time problem. The flight route can be preprogrammed at launch based
on current weather conditions and forecast information, but once en route, changes
to the flight plan have to be made in accordance to changes in the weather. Even
though forecast models have improved, weather and wind patterns continuously
change and are still difficult to predict. Thus, the use of frequently updated weather
information during the flight will allow adaptation and replanning based on current
and near-term forecasts. The Weather forecast must become an important part of the
auto-pilot and the flight management system, to detect signs of a slight change in
wind velocity, monitor development and movement of clouds, recognize conditions
suitable for the development of temperature inversions or of local wind phenomena.

A.2.8 Data Processing and Transmission

In the field of transmissions and telecommunication, difficulties come from the high
data flow used for the exchanges with a distant survey or data collecting platform.
Both the abroad scientific instruments and the autopilot and the flight management
system (including localization and navigation supports) need communication ser-
vices. For this purpose, intelligent algorithms for on-board processing of data are
necessary, in particular the matching of data provided by sensors, and also regard-
ing to their position and timing. Theses processes can include image registration,
resolution enhancement, motion-blur compensation, segmentation, feature detec-
tion. Some data fusion processes can enhance the accuracy and reliability of the
data. Others can extract information of higher level, as symbolic ones, giving a
more relevant and compact package of knowing than the rough data. Combined
with compression algorithms these processes are then able to comply with the lim-
ited bandwidth of the downlink, so that only the most important data are selected
and transmitted.

A.2.9 Airship Piloting and Response to Wind Disturbances

The differences on piloting an airship from that of fixed or rotary wing flight in-
cludes lower speeds and slower responses and the possibly greater impact of certain
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meteorological conditions. Every landing is different owing to a combination of
meteorological, local and on-board factors: trim slightly different; static heaviness
altered by superheat effects; wind velocity slightly varied; different eddy currents
or thermals; slightly altered flight path, descent rate or ground speed. The payload
of airships is generally limited by the gas lift available in the climatic conditions
prevailing at the cruise flight altitude. This means that the key cruise altitude, tem-
perature conditions, payload and mission profile must be established very early in
the design process, as alterations to these can cause big changes to volume. Many of
the airship’s principal operational problems are associated with the functions of lift
control, and of interface movements, i.e. landing, load exchange, and take-off. One
of the principal operational requirements of this airship is that it should be able to
hover in windy environment. Consequently, the operational flight envelope within
which the vehicle, with or without payload can be trimmed in hover has to be deter-
mined by considering various wind magnitude and directions. The capability of this
research aircraft to perform under adverse weather conditions depends on the ade-
quacy of its control for satisfactory operation. It is convenient to consider various
operational flight conditions involving step changes in wind magnitude and shifting
wind direction to illustrate typical performance of the aircraft [221].

Airships with their nearly neutral lift, large dimensions and relatively low cruise
speeds, are sensitive to large scale atmospheric gradients and accelerations. Con-
trol concepts must be designed, which emphasize requirements of precision vehicle
control and gust response suppression in low-speed and hover flight operations. The
utility of this vehicle will depend on its ability to operate in the arctic zone weather.
The effects of closed loop control on the hovering performance of this quad rotor
hybrid airship in crosswind flight conditions, must be analyzed. The capabilities of
this airship to perform under adverse weather conditions would depend upon the
adequacy of its control for satisfactory operation. In order to define such a control
system and the operational limits of the vehicle itself, it is necessary to characterize
the operational flight conditions by representative weather scenarios through mea-
surements and modeling of the atmosphere. Typical atmospheric conditions in the
arctic zone, that are critical to the performance of the vehicle have to be identi-
fied [2].

A.2.10 Loading and Unloading Lifts

The mass of an airship can vary considerably according to the value of the payload.
This complicates the handling of a conventional airship both on the ground and in
the air. For the quad rotor hybrid airship, the rotors are not only used for low speed
control but also to provide overall lift to compensate for the payload. Recovery on
return to the ground provides the most demanding of the ground handling problems.
The reason lies in the need to reduce to zero both the horizontal and vertical energy
associated with the approach to landing. The problem is the susceptibility of the
aircraft to wind variations. The accurate positioning of the airship for the purpose
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of lifting or placing a load, is difficult. During ground handling, the forward speed
of the airship is low in comparison with likely wind speed. The aerodynamic effects
resulting from winds are partly reacted by the constraints imposed by handling and
partly by inertial effects as the airship responds to the applied forces. In cruising
flight, the aerodynamic disturbing effects are reacted to by natural stability, control
and inertial effects, so the conditions are quite dissimilar. The problem of controlling
the airship alone while it is hovering over a point on the ground in a turbulent cross
wind is different from that of the airship with a sling load. In the latter case, it is
intended to control the payload motion such that the payload excursions relative to
the ground is minimal rather than of the vehicle. The length of the suspension cable
is an important parameter in determining the extent of dynamic coupling between
the vehicle and payload as well as in designing a closed loop control system for im-
proved vehicle performance. Mathematical models describing the combined motion
as well as decoupled motions of the vehicle and payload must be used to deter-
mine the effect of motion of the payload suspension point on the payload dynamics.
Subsequently, a closed loop control system has to be used to examine the desirable
characteristics of such a system in limiting the response of the vehicle, with or with-
out a suspended payload. In order to assess the vehicle/payload system sensitivity
to atmospheric disturbances, the turbulence scale length should be arbitrarily var-
ied. Further studies should consider a power spectrum of the wind turbulence model
that includes wind acceleration contribution as well. This is of special significance
to this vehicle because of its buoyant characteristics. The effects of cross coupling
with other lateral and directional dynamics on the system response to cross winds
should be investigated. The corresponding model for wind disturbance should in-
clude correlated wind turbulence components in all of the rigid body degrees of
freedom of the vehicle. The design of the closed loop control system for this system
with these constraints is a challenging task [5].

A.2.11 Diagnosis, Response to Systems Failure

When a classical airship has a failure in flight, for example total loss of power or
the flying control system, it can revert to being a free balloon. Since the quad rotor
hybrid airship is a unique experimental aircraft, its failure modes need a thorough
investigation both on ground and in flight. The hybrid nature of the vehicle lends
itself to a combination of emergency modes of operation associated with system
failures in a delta-wing airship and helicopter. When the vehicle is hovering without
any payload and low on fuel, it is light enough to maintain altitude and land safely
in the event of power failure in one of the rotors [146].

A.2.12 Flight Dynamics Simulator

Due to the unique rotor configuration and the delta-wing aerodynamic lift, conven-
tional models and tools for rotor crafts dynamics analysis cannot be used. A flight
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dynamics simulation has to be developed for hybrid heavy lift airships to simulate
the present aircraft configuration. Complete six degrees of freedom has to be simu-
lated by using estimated values of the overall physical and aerodynamic properties
of the aircraft. Unlike the airplane or helicopter, the handling qualities criteria for
hybrid airships are nebulous. Consequently, the control characteristics of the vehi-
cle have to be evaluated by considering specific tasks such as ability to maneuver
from hover, ability to accelerate into a heavy wind or cross wind, and ability to
hover a point on the ground in a variable, shifting wind. Subsequently, the control
power characteristics of the vehicle with or without payload are to be determined by
considering the proposed control concepts. Several failure modes of the vehicle are
to be simulated to determine their consequence on the flight of the vehicle and its
safety. Pilot-in-the-loop simulation will give better insight in this regard, especially
if the thrust vectors are to be operated independently [77].

A.2.13 Small Scale Delta-Wing Quad-Rotor Airship

Since the quad-rotor delta-wing airship is a novel vehicle concept, it is proposed
to design and build a small-scale flight research vehicle for ground and flight tests
to prove the feasibility of the concept and to investigate its flying qualities. For the
chosen vehicle configuration, concepts for controlling the vehicle in all of its flight
modes have to be developed and evaluated by using a flight dynamics simulation of
the vehicle. The response of the vehicle to control inputs and atmospheric distur-
bances are to be predicted in terms of typical flight parameters. A critical issue for
heavy-load airship is the ability to control the altitude of the airship as the load is
being secured to the airship structure, carried and finally removed [60, 62, 79].

A.2.14 Ground Handling

The issue of Ground handling is still seen as one of the most problematic areas of
airship operation. The solution of ground handling requirements is associated with
the provision of adequate control to enable precise low speed flight to be undertaken
reliably and safely [55].

A.3 Bridge Monitoring

An important application, bridge monitoring, is highlighted in this section [19, 21].
A flight simulator software is developed to test the various methods of guidance
and control proposed in this book. The objective of this section is to present a
software simulation of missions to demonstrate innovative concepts for airborne
systems. This flight simulator software is used to accurately represent the system
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Fig. A.1 Chevire bridge (Nantes, France)

behavior and to generate multiple numerical data useful for analysis of results and
algorithms improvement. Thus it is interesting to see a graphical representation of
the displacement of the object simulated. Furthermore, the development of a stan-
dardized interface between software modeling and visualization environments can
more easily use a variety of tools. This flight simulator implements the numerical
models: the model of the airship, the simulated models of the environment, the at-
mosphere and its evolution, the databases needed for scenarios, and finally tools
for recording simulation data. This flight simulator software enables to present an
easy and understandable way of monitoring mission specialist. The environment of
virtual reality can be connected directly with all possible commands and all types
of translation. To demonstrate the possibilities of such a tool, a specific example of
bridge was chosen: the bridge of Chevire (Nantes, France) which an overview is
shown in Fig. A.1.

It is a typical example where the monitoring work of a bridge can be automated.
This bridge has three distinct parts to watch for:

• On deck
• The bearings that support the deck: abutments at both ends and a dozen piles
• The foundation that allows the transmission of forces of structure and land.

Monitoring of the deck, abutments and piers lends itself well to automation by mon-
itoring with an airborne platform. In the simulated mission, the airship should fly
from its point of rest, watch the first bridge pier in translation, monitor the span and
continue monitoring the second cell, eventually returning to another point of rest. To
perform the simulation, the position in space (x, y, z) and orientation (Euler angles:
roll, pitch, yaw) of the vehicle are sent to the interface located in a Matlab-Simulink
@ model with an “s-function”. Subsequently, the interface converts the data into the
coordinate system of the viewer selected. This is a model which is used to calcu-
late the data needed to display graphics. This model consists of several blocks from
library sources. These blocks represent the mission planning, trajectory generation,
the airship model and 3D visualization.
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Fig. A.2 Whole trajectory without wind

Fig. A.3 Trajectory without wind with a different point of view

Several views are possible: on the road, on the airship, the whole trajectory and
an distant observer. It is possible to move around the stage with arrows separated
by 45 degrees: North, Northeast, East, South East, South, Southwest, West, North-
West. Thus, it is possible to follow the airship in its motion. Figure A.2 shows the
entire path followed by the autonomous airship in nominal conditions while Fig. A.3
presents the same trajectories with a different point of view.

Figure A.4 shows a simulation where the breeze is supposed to have a constant
speed in directions x and z. It is easy to see that the influence of wind increases with
time, because uncorrected errors are added to each other in following the initial
flight plan.

The feasibility of the trajectory generated depends on the technique used, the
cost function chosen and the various constraints. In this case, constraints on the
airship concerning its geometry, kinematics and dynamics have to be considered.
The constraints from the environment are mainly non-collision with fixed obstacles
cumbersome environment and taking into account proximity interactions with the
airship. If the obstacle avoidance depends on the geometry of the environment and
is common to all robotic tasks, the second point depends in general physical char-
acteristics of the airship. The criteria to be met during the troubleshooting planning
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Fig. A.4 High velocity wind

concern that a solution must optimize a cost function expressed in terms of distance
traveled by the airship between two configurations ends, duration or energy neces-
sary to the execution of his movement. Other criteria may also be considered such
as the inclusion of safety distance to obstacles.

The objectives of the planning function are:

• Ordering the passage on the various mission areas
• Calculate a path between each element of the route
• Require the implementation of the monitoring operation.

A.4 Monitoring of High Voltage Power Networks

This research project concerns the monitoring of overhead lines and very high volt-
age of 63 KV to 400 KV and dams and reservoirs that produce hydroelectric power.
These construction works of civil engineering present a great diversity, both tied to
their inherent construction, their geographical location and the purpose for which
they are constructed. It is clear that the control and monitoring of these structures
is essential to ensure sustainability so that they can meet the requirements for safe
use. Today, the inspection is to diagnosing disorders that can present these works, to
characterize them and follow them over time so as to respond in a timely manner and
especially before the construction work reaches a critical state. Each year, in France,
more than 100,000 km of lines are inspected as well. 400 KV lines and dams are un-
der constant surveillance. The control principle is to be ready to intervene regardless
of the date and time when the network situation requires it. Moreover, the resump-
tion of activity after a climatic phenomenon must be done as quickly as possible
while it is currently dangerous for inspectors. The inspection includes, therefore,
two essential features

• Go to collect information on the ground by a systematic survey of all the disorders
• Process, analyze and leverage this information to know precisely the pathology

and the exact condition of the structure, to use the appropriate time by the man-
ager for the restoration.
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In addition, inspection of these structures is a complex process of responding to
strong obligations and standard requiring constant adaptation to the multiple types
of electrical networks:

• Mesh (for the highest voltage)
• Radial or curly
• Tree. . .

To access all parts of the work, the inspection team makes use of heavy equip-
ment resources (helicopters, boats. . . ) sometimes endangering the lives of the offi-
cers conducting the inspection, not to mention the time inspection and the financial
impact through the implementation of Security Officers in support of the actual in-
spection of the area around the structure, maintenance of devices. After an initial
detailed inspection to classify the works, other detailed inspections are carried out
with regular surveillance at intervals corresponding to the condition and age of the
structure. In addition, there may be special inspection activities on the construction
works whose condition is considered critical. Often, this means following specific
areas of pathology to take the decision of repair or consolidation.

A.4.1 Current Market for Inspection of Electrical Networks

Once a year, technicians monitor the entire estate by helicopter. This procedure re-
quires the presence of three officers on board a helicopter, a navigator, a pilot and a
technical observer. The navigator advises the pilot on the route to follow. The pilot
must fly close to lines, about fifteen or twenty meters above the ground, approxi-
mately 10 m above the electrical network. He must maneuver the helicopter to pro-
vide the best visibility to the technical observer. The technical agent visually detects
anomalies and then photographed them for record and send response to the ground
teams with overhanging structures, verify the anomalies on the lines and see if there
are broken or cracked insulators by lightning, frayed conductors, tree branches on
the lines or dangerously close to the lines, twisted wire broken, lightning exploded,
transformer leaking. . . and must avoid the traps: the crossing of lines. . . . This is a
rigorous process and really stressful for the inspection team. In addition, electro-
magnetic fields generated by power lines, difficult weather (storm, snow. . . ) and the
danger of electrocution (electrical arcing can occur even without direct contact with
the line) make this inspection operation also dangerous. This aerial inspection is
done primarily for reasons of safety and security. It is accompanied by ground vis-
its, inspection and control of towers by thermography. The latter technique to detect
the temperature rise is also done by helicopter. The Technical Officer has a software
coupled to a GPS to record the problems and keep the history. A good steering pre-
cision allows the observation of items to be inspected. The helicopter is currently
instrumented as follows:

• The exterior: a sling designed to carry and stow items of equipment needed to re-
pair lines and poles. A system of mirrors allows the pilot to control the maneuvers
with precision
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• The interior: a GPS screen that displays each component of the line (this system
connected to a laptop allows visual reference) and an infrared camera that detects
hot spots of the line, areas of excessive resistance to the passage current and likely
to cause malfunctions.

Control and monitoring of high voltage lines are clearly a separate market, relatively
large and yet this market remains poorly industrialized since only visual.

A.4.2 Project Goals

This research program focuses on the automation of inspection tasks, replacing
the pilot and navigator in the inspection task and then providing specialized air-
borne robots for surveillance in general. This project is the integration of a different
methodology from that currently used. The primary objective is to ensure the safety
of users and distribution of electricity. Maintaining the infrastructure for mainte-
nance as effective as possible is a key topic, then, a longevity/maintenance cost as
high as possible.

Given the great diversity of structures, the human-made diagnosis has now
reached certain limits. Indeed, an inspection requires a shift on the whole and then
analyzing each of the previous and newly identified faults. This process requires ex-
pensive means of access, is long and lacks repeatability. This is especially relevant
to tall towers. Requirements are:

• Statement of defects per unit length on the cables, or works hard to reach surfaces.
The interest is to obtain a mapping of disorders. The need is to achieve a fast,
economical seizure and treatment. Quantification need not be extremely precise.

• The Inspection Support: there is a strong interest in key areas to inspect for return
simply an image that will be performed by the technical officer.

• Record malfunctioning geometric lines or towers.

The objective of this research project is to develop an aerial robotic diagnostic
tool able to:

• Conduct an initial analysis which will determine whether human intervention is
required (direct economic gain)

• Conduct sometimes this analysis in difficult wind conditions (security gain)
• To store the data acquired on the ground for further exploitation more relevant to

the secure and reliable global diagnosis of the works.

This research offers a leap in both science and technology by offering a completely
innovative technology based on airborne platform independent. One major innova-
tion is the use of mini-UAV autonomous inspection of high voltage electrical net-
works, in difficult wind conditions, by establishing a process:

• Safer for those carrying out this diagnosis
• Simple to implement
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• Less expensive than the current method
• More reliable diagnosis of structure.

Technological innovations will focus on the design of a mini autonomous UAV and
its command and mission planning adapted to the inspection of high voltage net-
works. The system will have a remote control device in line with the work environ-
ment and a complete measurement, to assist the maintenance operator. A demon-
strator must be proposed with a form suitable for inspection and payload sensors
specific to this application. An innovative software to make the mission strategy by
automating the inspection of high voltage in the presence of difficult flying condi-
tions, should be proposed. The scientific and technical innovation will be presented
through five main areas:

• Design of a lighter than air robot dedicated to this mission
• Autopilot
• Mission planning
• Gyro-stabilized turret to eliminate vibration and airborne vectors allow fine point-

ing toward the area to inspect.
• Image processing.

This research can be applied to other monitoring applications in the longer term.

A.5 FAA Recommendations

Tasks are knowledge areas, flight procedures or maneuvers appropriate to an area of
operation

• Preflight procedures
• Launch site selection
• Inflation
• Basket/Gondola management
• Pre-launch check

• Launch and landing
• Normal Launch
• Launch over obstacle
• Approach to landing
• Normal landing
• High-wind landing

• Fundamentals of flights
• Altitude control (level flight)
• Ascents
• Descents

• Performance maneuvers
• Rapid ascent
• Rapid descent
• Contour flying
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• High altitude flight
• Obstruction clearance

• How to fly a balloon
• Physical laws applicable to balloon flight
• Effects of changes in temperature, pressure, humidity and altitude on maintain-

ing equilibrium
• Effects of false or uncontrolled lift during takeoff, landing and wind shear pen-

etration
• Fundamentals of a flight profile and course for intended route of flight based

on winds aloft
• Mountain flying

• Consideration for access to landing areas
• Evidence of possible turbulence and descending air currents on leeward side of

mountains
• Concerns for terrain, effects on wind (upslope, downslope) and possible rapid

weather changes
• Performance and limitations

• Use of performance charts, tables and other data in determining performance
in various phases of flight

• Determine load and altitude limits
• Requirement to arrest a terminal velocity descent
• Effects of atmospheric conditions on performance
• Factors to be considered in determining that the required performance is within

the balloon’s capabilities
• Launch site selection

• Importance of size and surface condition of site
• Consideration of accessibility and obstacles
• Hazards surrounding launch site
• Consideration of suitable landing areas based on wind conditions.

A.6 Indoor Lighter than Air Robot: A Differential Geometry
Modeling Approach

If the assumption of filtering out the most of the pitch and roll motion, the state
space of the lighter than air robot may be considered as SE(2) × �, which is the
product of the planar motion with a purely vertical translation, a proper subgroup of
SE(3). Let the transformation from the inertial fixed frame to the body fixed frame
be

Xf = Ab
Mf

Xb =
(

R η1
03×3 1

)
Xb (A.1)

where R is the rotation matrix and η1 is the translation. The twist describing the
velocity (or angular velocity) is denoted by ξ and ξ̂ = Sk(ξ) matrix rotation such
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that

ξ̂ = Sk(ξ) =
⎛
⎝

0 −ξ3 ξ2
ξ3 0 −ξ1

−ξ2 ξ1 0

⎞
⎠ (A.2)

then the body velocity of the lighter than air robot is

ξ̂ =
(
Ab

Mf

)−1
Ȧb

Mf
=

(
ω̂ V

0 0

)
(A.3)

where V = (u, v,w)T and ω = (p, q, r). Since there is no direct forcing in the side-
slip direction, the external forces such as air current are neglected and since the
large surface area provides a significant amount of drag, for an indoor lighter than
air robot, it is considered that p = q = v = 0 [110, 226].

The dynamics of the indoor lighter than air robot is slow (≤ 3 m/s) and so the
Reynolds number is relatively small (≈ 104). Thus it can be modeled as a neutrally
buoyant rigid body in an ideal fluid. The body is approximated as an ellipsoid. Let
Pf and Πf denote respectively the linear and angular components of the momentum
with respect to the inertial frame while Pb and Πb are the same components written
in the lighter than air frame, then

(
Pf

Πf

)
=

(
R 0

η̂1R R

)(
Pb

Πb

)
(A.4)

or

Pf = RPb

Πf = RΠb + η1 × Pf
(A.5)

Let fi, τj be the applied forces and torques in the fixed frame and Fi , Θj be those
expressed in the lighter than air robot with Fi = Rfi and Θj = T τj . According to
Newton’s law,

Ṗi =
∑

i

fi

Π̇f = τ + R
∑

i

fi × ri

(A.6)

where ri is the vector from origin of the fixed frame to the line of action of the acting
force and τ = ∑

i τj . The vector from the origin of the lighter than air frame to the
same line is denoted with ρi = ri − η1. Differentiating, the following relations are
obtained:

Ṗb = Pb × Ωf +
∑

i

fi

Π̇b = τ + Π × ω + Pb × V +
∑

i

ρi × Fi

(A.7)
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Next, the augmented mass and inertia matrices are respectively approximated by
Ma = diag(mx,my,mz) and Ja = (Jax, Jay, Jaz) where the cross-coupling terms
between linear and angular velocity since the rotational motion is assumed to occur
about a single axis. Then the reduced Lagrangian for the system is given by the
kinetic energy of the lighter than air robot plus the air


 = 1

2

(
ωT Jω + V T MV

)
(A.8)

with

M = Ma + mI3×3

and

J = Ja + Jbody

Differentiating the Lagrangian with respect to V and Ω gives

P = ∂


∂V
= MV

and

Π = ∂


∂ω
= Jω

Noting that

F1 =
⎛
⎝

F1 cosσ

0
F1 sinσ

⎞
⎠ , F2 =

⎛
⎝

F2 cosσ

0
F2 sinσ

⎞
⎠ , F3 =

⎛
⎝

0
F3
0

⎞
⎠ ,

V =
⎛
⎝

u

0
w

⎞
⎠ , ω =

⎛
⎝

0
q

0

⎞
⎠

Furthermore, the assumptions made above lead to

M11u̇ = (F1 + F2) cosσ + Fdragx

M33ẇ = (F1 + F2) sinσ + Fdragz

J22q̇ = (F1 − F2)
(
kt lx + ly cosσ

) + τdragz

(A.9)

where F1,F2 are actuating forces of the motors, Fdragx ,Fdragz , τdragz are drag
forces due to air resistance, σ is the tilt angle of the propellers, lx , ly are acting
lengths. Also the rotor forces has been included as F3 = kt (F1 − F2) by design
where kt is predetermined.

The dynamic equations of the system may be written as:

ξ =
⎛
⎝

u̇

ẇ

q̇

⎞
⎠
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=
⎛
⎝

M11 0 0
0 M33 0
0 0 J22

⎞
⎠

−1 ⎛
⎝

B1 0 0
0 B2 0
0 0 B3

⎞
⎠ ξ2

+
⎛
⎝

M11 0 0
0 M33 0
0 0 J22

⎞
⎠

−1 ⎛
⎝

(F1 + F2) cosσ

(F1 + F2) sinσ

(F1 − F2)
(
kt lx + ly cosσ

)

⎞
⎠ (A.10)

where

Fdragx = B1u
2

Fdragz = B2w
2

τdragx = B3q
2
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